Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Kernel support for the ptrace() and syscall tracing interfaces.
   4 *
   5 * Copyright (C) 1999-2005 Hewlett-Packard Co
   6 *	David Mosberger-Tang <davidm@hpl.hp.com>
   7 * Copyright (C) 2006 Intel Co
   8 *  2006-08-12	- IA64 Native Utrace implementation support added by
   9 *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  10 *
  11 * Derived from the x86 and Alpha versions.
  12 */
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/sched/task.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/mm.h>
  18#include <linux/errno.h>
  19#include <linux/ptrace.h>
  20#include <linux/user.h>
  21#include <linux/security.h>
  22#include <linux/audit.h>
  23#include <linux/signal.h>
  24#include <linux/regset.h>
  25#include <linux/elf.h>
  26#include <linux/resume_user_mode.h>
  27
 
  28#include <asm/processor.h>
  29#include <asm/ptrace_offsets.h>
  30#include <asm/rse.h>
  31#include <linux/uaccess.h>
  32#include <asm/unwind.h>
 
 
 
  33
  34#include "entry.h"
  35
  36/*
  37 * Bits in the PSR that we allow ptrace() to change:
  38 *	be, up, ac, mfl, mfh (the user mask; five bits total)
  39 *	db (debug breakpoint fault; one bit)
  40 *	id (instruction debug fault disable; one bit)
  41 *	dd (data debug fault disable; one bit)
  42 *	ri (restart instruction; two bits)
  43 *	is (instruction set; one bit)
  44 */
  45#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
  46		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  47
  48#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
  49#define PFM_MASK	MASK(38)
  50
  51#define PTRACE_DEBUG	0
  52
  53#if PTRACE_DEBUG
  54# define dprintk(format...)	printk(format)
  55# define inline
  56#else
  57# define dprintk(format...)
  58#endif
  59
  60/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
  61
  62static inline int
  63in_syscall (struct pt_regs *pt)
  64{
  65	return (long) pt->cr_ifs >= 0;
  66}
  67
  68/*
  69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  70 * bitset where bit i is set iff the NaT bit of register i is set.
  71 */
  72unsigned long
  73ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  74{
  75#	define GET_BITS(first, last, unat)				\
  76	({								\
  77		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
  78		unsigned long nbits = (last - first + 1);		\
  79		unsigned long mask = MASK(nbits) << first;		\
  80		unsigned long dist;					\
  81		if (bit < first)					\
  82			dist = 64 + bit - first;			\
  83		else							\
  84			dist = bit - first;				\
  85		ia64_rotr(unat, dist) & mask;				\
  86	})
  87	unsigned long val;
  88
  89	/*
  90	 * Registers that are stored consecutively in struct pt_regs
  91	 * can be handled in parallel.  If the register order in
  92	 * struct_pt_regs changes, this code MUST be updated.
  93	 */
  94	val  = GET_BITS( 1,  1, scratch_unat);
  95	val |= GET_BITS( 2,  3, scratch_unat);
  96	val |= GET_BITS(12, 13, scratch_unat);
  97	val |= GET_BITS(14, 14, scratch_unat);
  98	val |= GET_BITS(15, 15, scratch_unat);
  99	val |= GET_BITS( 8, 11, scratch_unat);
 100	val |= GET_BITS(16, 31, scratch_unat);
 101	return val;
 102
 103#	undef GET_BITS
 104}
 105
 106/*
 107 * Set the NaT bits for the scratch registers according to NAT and
 108 * return the resulting unat (assuming the scratch registers are
 109 * stored in PT).
 110 */
 111unsigned long
 112ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
 113{
 114#	define PUT_BITS(first, last, nat)				\
 115	({								\
 116		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
 117		unsigned long nbits = (last - first + 1);		\
 118		unsigned long mask = MASK(nbits) << first;		\
 119		long dist;						\
 120		if (bit < first)					\
 121			dist = 64 + bit - first;			\
 122		else							\
 123			dist = bit - first;				\
 124		ia64_rotl(nat & mask, dist);				\
 125	})
 126	unsigned long scratch_unat;
 127
 128	/*
 129	 * Registers that are stored consecutively in struct pt_regs
 130	 * can be handled in parallel.  If the register order in
 131	 * struct_pt_regs changes, this code MUST be updated.
 132	 */
 133	scratch_unat  = PUT_BITS( 1,  1, nat);
 134	scratch_unat |= PUT_BITS( 2,  3, nat);
 135	scratch_unat |= PUT_BITS(12, 13, nat);
 136	scratch_unat |= PUT_BITS(14, 14, nat);
 137	scratch_unat |= PUT_BITS(15, 15, nat);
 138	scratch_unat |= PUT_BITS( 8, 11, nat);
 139	scratch_unat |= PUT_BITS(16, 31, nat);
 140
 141	return scratch_unat;
 142
 143#	undef PUT_BITS
 144}
 145
 146#define IA64_MLX_TEMPLATE	0x2
 147#define IA64_MOVL_OPCODE	6
 148
 149void
 150ia64_increment_ip (struct pt_regs *regs)
 151{
 152	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
 153
 154	if (ri > 2) {
 155		ri = 0;
 156		regs->cr_iip += 16;
 157	} else if (ri == 2) {
 158		get_user(w0, (char __user *) regs->cr_iip + 0);
 159		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 160			/*
 161			 * rfi'ing to slot 2 of an MLX bundle causes
 162			 * an illegal operation fault.  We don't want
 163			 * that to happen...
 164			 */
 165			ri = 0;
 166			regs->cr_iip += 16;
 167		}
 168	}
 169	ia64_psr(regs)->ri = ri;
 170}
 171
 172void
 173ia64_decrement_ip (struct pt_regs *regs)
 174{
 175	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
 176
 177	if (ia64_psr(regs)->ri == 0) {
 178		regs->cr_iip -= 16;
 179		ri = 2;
 180		get_user(w0, (char __user *) regs->cr_iip + 0);
 181		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 182			/*
 183			 * rfi'ing to slot 2 of an MLX bundle causes
 184			 * an illegal operation fault.  We don't want
 185			 * that to happen...
 186			 */
 187			ri = 1;
 188		}
 189	}
 190	ia64_psr(regs)->ri = ri;
 191}
 192
 193/*
 194 * This routine is used to read an rnat bits that are stored on the
 195 * kernel backing store.  Since, in general, the alignment of the user
 196 * and kernel are different, this is not completely trivial.  In
 197 * essence, we need to construct the user RNAT based on up to two
 198 * kernel RNAT values and/or the RNAT value saved in the child's
 199 * pt_regs.
 200 *
 201 * user rbs
 202 *
 203 * +--------+ <-- lowest address
 204 * | slot62 |
 205 * +--------+
 206 * |  rnat  | 0x....1f8
 207 * +--------+
 208 * | slot00 | \
 209 * +--------+ |
 210 * | slot01 | > child_regs->ar_rnat
 211 * +--------+ |
 212 * | slot02 | /				kernel rbs
 213 * +--------+				+--------+
 214 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
 215 * +- - - - +				+--------+
 216 *					| slot62 |
 217 * +- - - - +				+--------+
 218 *					|  rnat	 |
 219 * +- - - - +				+--------+
 220 *   vrnat				| slot00 |
 221 * +- - - - +				+--------+
 222 *					=	 =
 223 *					+--------+
 224 *					| slot00 | \
 225 *					+--------+ |
 226 *					| slot01 | > child_stack->ar_rnat
 227 *					+--------+ |
 228 *					| slot02 | /
 229 *					+--------+
 230 *						  <--- child_stack->ar_bspstore
 231 *
 232 * The way to think of this code is as follows: bit 0 in the user rnat
 233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 234 * value.  The kernel rnat value holding this bit is stored in
 235 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 236 * form the upper bits of the user rnat value.
 237 *
 238 * Boundary cases:
 239 *
 240 * o when reading the rnat "below" the first rnat slot on the kernel
 241 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 242 *   merged in from pt->ar_rnat.
 243 *
 244 * o when reading the rnat "above" the last rnat slot on the kernel
 245 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 246 */
 247static unsigned long
 248get_rnat (struct task_struct *task, struct switch_stack *sw,
 249	  unsigned long *krbs, unsigned long *urnat_addr,
 250	  unsigned long *urbs_end)
 251{
 252	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
 253	unsigned long umask = 0, mask, m;
 254	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 255	long num_regs, nbits;
 256	struct pt_regs *pt;
 257
 258	pt = task_pt_regs(task);
 259	kbsp = (unsigned long *) sw->ar_bspstore;
 260	ubspstore = (unsigned long *) pt->ar_bspstore;
 261
 262	if (urbs_end < urnat_addr)
 263		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
 264	else
 265		nbits = 63;
 266	mask = MASK(nbits);
 267	/*
 268	 * First, figure out which bit number slot 0 in user-land maps
 269	 * to in the kernel rnat.  Do this by figuring out how many
 270	 * register slots we're beyond the user's backingstore and
 271	 * then computing the equivalent address in kernel space.
 272	 */
 273	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 274	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 275	shift = ia64_rse_slot_num(slot0_kaddr);
 276	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 277	rnat0_kaddr = rnat1_kaddr - 64;
 278
 279	if (ubspstore + 63 > urnat_addr) {
 280		/* some bits need to be merged in from pt->ar_rnat */
 281		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 282		urnat = (pt->ar_rnat & umask);
 283		mask &= ~umask;
 284		if (!mask)
 285			return urnat;
 286	}
 287
 288	m = mask << shift;
 289	if (rnat0_kaddr >= kbsp)
 290		rnat0 = sw->ar_rnat;
 291	else if (rnat0_kaddr > krbs)
 292		rnat0 = *rnat0_kaddr;
 293	urnat |= (rnat0 & m) >> shift;
 294
 295	m = mask >> (63 - shift);
 296	if (rnat1_kaddr >= kbsp)
 297		rnat1 = sw->ar_rnat;
 298	else if (rnat1_kaddr > krbs)
 299		rnat1 = *rnat1_kaddr;
 300	urnat |= (rnat1 & m) << (63 - shift);
 301	return urnat;
 302}
 303
 304/*
 305 * The reverse of get_rnat.
 306 */
 307static void
 308put_rnat (struct task_struct *task, struct switch_stack *sw,
 309	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
 310	  unsigned long *urbs_end)
 311{
 312	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
 313	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 314	long num_regs, nbits;
 315	struct pt_regs *pt;
 316	unsigned long cfm, *urbs_kargs;
 317
 318	pt = task_pt_regs(task);
 319	kbsp = (unsigned long *) sw->ar_bspstore;
 320	ubspstore = (unsigned long *) pt->ar_bspstore;
 321
 322	urbs_kargs = urbs_end;
 323	if (in_syscall(pt)) {
 324		/*
 325		 * If entered via syscall, don't allow user to set rnat bits
 326		 * for syscall args.
 327		 */
 328		cfm = pt->cr_ifs;
 329		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
 330	}
 331
 332	if (urbs_kargs >= urnat_addr)
 333		nbits = 63;
 334	else {
 335		if ((urnat_addr - 63) >= urbs_kargs)
 336			return;
 337		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
 338	}
 339	mask = MASK(nbits);
 340
 341	/*
 342	 * First, figure out which bit number slot 0 in user-land maps
 343	 * to in the kernel rnat.  Do this by figuring out how many
 344	 * register slots we're beyond the user's backingstore and
 345	 * then computing the equivalent address in kernel space.
 346	 */
 347	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 348	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 349	shift = ia64_rse_slot_num(slot0_kaddr);
 350	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 351	rnat0_kaddr = rnat1_kaddr - 64;
 352
 353	if (ubspstore + 63 > urnat_addr) {
 354		/* some bits need to be place in pt->ar_rnat: */
 355		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 356		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
 357		mask &= ~umask;
 358		if (!mask)
 359			return;
 360	}
 361	/*
 362	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
 363	 * rnat slot is ignored. so we don't have to clear it here.
 364	 */
 365	rnat0 = (urnat << shift);
 366	m = mask << shift;
 367	if (rnat0_kaddr >= kbsp)
 368		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
 369	else if (rnat0_kaddr > krbs)
 370		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
 371
 372	rnat1 = (urnat >> (63 - shift));
 373	m = mask >> (63 - shift);
 374	if (rnat1_kaddr >= kbsp)
 375		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
 376	else if (rnat1_kaddr > krbs)
 377		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
 378}
 379
 380static inline int
 381on_kernel_rbs (unsigned long addr, unsigned long bspstore,
 382	       unsigned long urbs_end)
 383{
 384	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
 385						      urbs_end);
 386	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
 387}
 388
 389/*
 390 * Read a word from the user-level backing store of task CHILD.  ADDR
 391 * is the user-level address to read the word from, VAL a pointer to
 392 * the return value, and USER_BSP gives the end of the user-level
 393 * backing store (i.e., it's the address that would be in ar.bsp after
 394 * the user executed a "cover" instruction).
 395 *
 396 * This routine takes care of accessing the kernel register backing
 397 * store for those registers that got spilled there.  It also takes
 398 * care of calculating the appropriate RNaT collection words.
 399 */
 400long
 401ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
 402	   unsigned long user_rbs_end, unsigned long addr, long *val)
 403{
 404	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
 405	struct pt_regs *child_regs;
 406	size_t copied;
 407	long ret;
 408
 409	urbs_end = (long *) user_rbs_end;
 410	laddr = (unsigned long *) addr;
 411	child_regs = task_pt_regs(child);
 412	bspstore = (unsigned long *) child_regs->ar_bspstore;
 413	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 414	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 415			  (unsigned long) urbs_end))
 416	{
 417		/*
 418		 * Attempt to read the RBS in an area that's actually
 419		 * on the kernel RBS => read the corresponding bits in
 420		 * the kernel RBS.
 421		 */
 422		rnat_addr = ia64_rse_rnat_addr(laddr);
 423		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
 424
 425		if (laddr == rnat_addr) {
 426			/* return NaT collection word itself */
 427			*val = ret;
 428			return 0;
 429		}
 430
 431		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
 432			/*
 433			 * It is implementation dependent whether the
 434			 * data portion of a NaT value gets saved on a
 435			 * st8.spill or RSE spill (e.g., see EAS 2.6,
 436			 * 4.4.4.6 Register Spill and Fill).  To get
 437			 * consistent behavior across all possible
 438			 * IA-64 implementations, we return zero in
 439			 * this case.
 440			 */
 441			*val = 0;
 442			return 0;
 443		}
 444
 445		if (laddr < urbs_end) {
 446			/*
 447			 * The desired word is on the kernel RBS and
 448			 * is not a NaT.
 449			 */
 450			regnum = ia64_rse_num_regs(bspstore, laddr);
 451			*val = *ia64_rse_skip_regs(krbs, regnum);
 452			return 0;
 453		}
 454	}
 455	copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
 456	if (copied != sizeof(ret))
 457		return -EIO;
 458	*val = ret;
 459	return 0;
 460}
 461
 462long
 463ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
 464	   unsigned long user_rbs_end, unsigned long addr, long val)
 465{
 466	unsigned long *bspstore, *krbs, regnum, *laddr;
 467	unsigned long *urbs_end = (long *) user_rbs_end;
 468	struct pt_regs *child_regs;
 469
 470	laddr = (unsigned long *) addr;
 471	child_regs = task_pt_regs(child);
 472	bspstore = (unsigned long *) child_regs->ar_bspstore;
 473	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 474	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 475			  (unsigned long) urbs_end))
 476	{
 477		/*
 478		 * Attempt to write the RBS in an area that's actually
 479		 * on the kernel RBS => write the corresponding bits
 480		 * in the kernel RBS.
 481		 */
 482		if (ia64_rse_is_rnat_slot(laddr))
 483			put_rnat(child, child_stack, krbs, laddr, val,
 484				 urbs_end);
 485		else {
 486			if (laddr < urbs_end) {
 487				regnum = ia64_rse_num_regs(bspstore, laddr);
 488				*ia64_rse_skip_regs(krbs, regnum) = val;
 489			}
 490		}
 491	} else if (access_process_vm(child, addr, &val, sizeof(val),
 492				FOLL_FORCE | FOLL_WRITE)
 493		   != sizeof(val))
 494		return -EIO;
 495	return 0;
 496}
 497
 498/*
 499 * Calculate the address of the end of the user-level register backing
 500 * store.  This is the address that would have been stored in ar.bsp
 501 * if the user had executed a "cover" instruction right before
 502 * entering the kernel.  If CFMP is not NULL, it is used to return the
 503 * "current frame mask" that was active at the time the kernel was
 504 * entered.
 505 */
 506unsigned long
 507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
 508		       unsigned long *cfmp)
 509{
 510	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
 511	long ndirty;
 512
 513	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 514	bspstore = (unsigned long *) pt->ar_bspstore;
 515	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 516
 517	if (in_syscall(pt))
 518		ndirty += (cfm & 0x7f);
 519	else
 520		cfm &= ~(1UL << 63);	/* clear valid bit */
 521
 522	if (cfmp)
 523		*cfmp = cfm;
 524	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
 525}
 526
 527/*
 528 * Synchronize (i.e, write) the RSE backing store living in kernel
 529 * space to the VM of the CHILD task.  SW and PT are the pointers to
 530 * the switch_stack and pt_regs structures, respectively.
 531 * USER_RBS_END is the user-level address at which the backing store
 532 * ends.
 533 */
 534long
 535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
 536		    unsigned long user_rbs_start, unsigned long user_rbs_end)
 537{
 538	unsigned long addr, val;
 539	long ret;
 540
 541	/* now copy word for word from kernel rbs to user rbs: */
 542	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 543		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
 544		if (ret < 0)
 545			return ret;
 546		if (access_process_vm(child, addr, &val, sizeof(val),
 547				FOLL_FORCE | FOLL_WRITE)
 548		    != sizeof(val))
 549			return -EIO;
 550	}
 551	return 0;
 552}
 553
 554static long
 555ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
 556		unsigned long user_rbs_start, unsigned long user_rbs_end)
 557{
 558	unsigned long addr, val;
 559	long ret;
 560
 561	/* now copy word for word from user rbs to kernel rbs: */
 562	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 563		if (access_process_vm(child, addr, &val, sizeof(val),
 564				FOLL_FORCE)
 565				!= sizeof(val))
 566			return -EIO;
 567
 568		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
 569		if (ret < 0)
 570			return ret;
 571	}
 572	return 0;
 573}
 574
 575typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
 576			    unsigned long, unsigned long);
 577
 578static void do_sync_rbs(struct unw_frame_info *info, void *arg)
 579{
 580	struct pt_regs *pt;
 581	unsigned long urbs_end;
 582	syncfunc_t fn = arg;
 583
 584	if (unw_unwind_to_user(info) < 0)
 585		return;
 586	pt = task_pt_regs(info->task);
 587	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
 588
 589	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
 590}
 591
 592/*
 593 * when a thread is stopped (ptraced), debugger might change thread's user
 594 * stack (change memory directly), and we must avoid the RSE stored in kernel
 595 * to override user stack (user space's RSE is newer than kernel's in the
 596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
 597 * task is stopped, so user RSE has updated data.  we then copy user RSE to
 598 * kernel after the task is resummed from traced stop and kernel will use the
 599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 600 * synchronize user RSE to kernel.
 601 */
 602void ia64_ptrace_stop(void)
 603{
 604	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
 605		return;
 606	set_notify_resume(current);
 607	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
 608}
 609
 610/*
 611 * This is called to read back the register backing store.
 612 */
 613void ia64_sync_krbs(void)
 614{
 615	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
 616
 617	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
 618}
 619
 620/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * Write f32-f127 back to task->thread.fph if it has been modified.
 622 */
 623inline void
 624ia64_flush_fph (struct task_struct *task)
 625{
 626	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 627
 628	/*
 629	 * Prevent migrating this task while
 630	 * we're fiddling with the FPU state
 631	 */
 632	preempt_disable();
 633	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
 634		psr->mfh = 0;
 635		task->thread.flags |= IA64_THREAD_FPH_VALID;
 636		ia64_save_fpu(&task->thread.fph[0]);
 637	}
 638	preempt_enable();
 639}
 640
 641/*
 642 * Sync the fph state of the task so that it can be manipulated
 643 * through thread.fph.  If necessary, f32-f127 are written back to
 644 * thread.fph or, if the fph state hasn't been used before, thread.fph
 645 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 646 * ensure that the task picks up the state from thread.fph when it
 647 * executes again.
 648 */
 649void
 650ia64_sync_fph (struct task_struct *task)
 651{
 652	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 653
 654	ia64_flush_fph(task);
 655	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
 656		task->thread.flags |= IA64_THREAD_FPH_VALID;
 657		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
 658	}
 659	ia64_drop_fpu(task);
 660	psr->dfh = 1;
 661}
 662
 663/*
 664 * Change the machine-state of CHILD such that it will return via the normal
 665 * kernel exit-path, rather than the syscall-exit path.
 666 */
 667static void
 668convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
 669			unsigned long cfm)
 670{
 671	struct unw_frame_info info, prev_info;
 672	unsigned long ip, sp, pr;
 673
 674	unw_init_from_blocked_task(&info, child);
 675	while (1) {
 676		prev_info = info;
 677		if (unw_unwind(&info) < 0)
 678			return;
 679
 680		unw_get_sp(&info, &sp);
 681		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
 682		    < IA64_PT_REGS_SIZE) {
 683			dprintk("ptrace.%s: ran off the top of the kernel "
 684				"stack\n", __func__);
 685			return;
 686		}
 687		if (unw_get_pr (&prev_info, &pr) < 0) {
 688			unw_get_rp(&prev_info, &ip);
 689			dprintk("ptrace.%s: failed to read "
 690				"predicate register (ip=0x%lx)\n",
 691				__func__, ip);
 692			return;
 693		}
 694		if (unw_is_intr_frame(&info)
 695		    && (pr & (1UL << PRED_USER_STACK)))
 696			break;
 697	}
 698
 699	/*
 700	 * Note: at the time of this call, the target task is blocked
 701	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
 702	 * (aka, "pLvSys") we redirect execution from
 703	 * .work_pending_syscall_end to .work_processed_kernel.
 704	 */
 705	unw_get_pr(&prev_info, &pr);
 706	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
 707	pr |=  (1UL << PRED_NON_SYSCALL);
 708	unw_set_pr(&prev_info, pr);
 709
 710	pt->cr_ifs = (1UL << 63) | cfm;
 711	/*
 712	 * Clear the memory that is NOT written on syscall-entry to
 713	 * ensure we do not leak kernel-state to user when execution
 714	 * resumes.
 715	 */
 716	pt->r2 = 0;
 717	pt->r3 = 0;
 718	pt->r14 = 0;
 719	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
 720	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
 721	pt->b7 = 0;
 722	pt->ar_ccv = 0;
 723	pt->ar_csd = 0;
 724	pt->ar_ssd = 0;
 725}
 726
 727static int
 728access_nat_bits (struct task_struct *child, struct pt_regs *pt,
 729		 struct unw_frame_info *info,
 730		 unsigned long *data, int write_access)
 731{
 732	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
 733	char nat = 0;
 734
 735	if (write_access) {
 736		nat_bits = *data;
 737		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
 738		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
 739			dprintk("ptrace: failed to set ar.unat\n");
 740			return -1;
 741		}
 742		for (regnum = 4; regnum <= 7; ++regnum) {
 743			unw_get_gr(info, regnum, &dummy, &nat);
 744			unw_set_gr(info, regnum, dummy,
 745				   (nat_bits >> regnum) & 1);
 746		}
 747	} else {
 748		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
 749			dprintk("ptrace: failed to read ar.unat\n");
 750			return -1;
 751		}
 752		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
 753		for (regnum = 4; regnum <= 7; ++regnum) {
 754			unw_get_gr(info, regnum, &dummy, &nat);
 755			nat_bits |= (nat != 0) << regnum;
 756		}
 757		*data = nat_bits;
 758	}
 759	return 0;
 760}
 761
 762static int
 763access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
 764		unsigned long addr, unsigned long *data, int write_access);
 765
 766static long
 767ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 768{
 769	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
 770	struct unw_frame_info info;
 771	struct ia64_fpreg fpval;
 772	struct switch_stack *sw;
 773	struct pt_regs *pt;
 774	long ret, retval = 0;
 775	char nat = 0;
 776	int i;
 777
 778	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
 779		return -EIO;
 780
 781	pt = task_pt_regs(child);
 782	sw = (struct switch_stack *) (child->thread.ksp + 16);
 783	unw_init_from_blocked_task(&info, child);
 784	if (unw_unwind_to_user(&info) < 0) {
 785		return -EIO;
 786	}
 787
 788	if (((unsigned long) ppr & 0x7) != 0) {
 789		dprintk("ptrace:unaligned register address %p\n", ppr);
 790		return -EIO;
 791	}
 792
 793	if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
 794	    access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
 795	    access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
 796	    access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
 797	    access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
 798	    access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
 799	    access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
 800		return -EIO;
 801
 802	/* control regs */
 803
 804	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
 805	retval |= __put_user(psr, &ppr->cr_ipsr);
 806
 807	/* app regs */
 808
 809	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 810	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
 811	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 812	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 813	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 814	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 815
 816	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
 817	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
 818	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 819	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
 820	retval |= __put_user(cfm, &ppr->cfm);
 821
 822	/* gr1-gr3 */
 823
 824	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
 825	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
 826
 827	/* gr4-gr7 */
 828
 829	for (i = 4; i < 8; i++) {
 830		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
 831			return -EIO;
 832		retval |= __put_user(val, &ppr->gr[i]);
 833	}
 834
 835	/* gr8-gr11 */
 836
 837	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
 838
 839	/* gr12-gr15 */
 840
 841	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
 842	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
 843	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
 844
 845	/* gr16-gr31 */
 846
 847	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
 848
 849	/* b0 */
 850
 851	retval |= __put_user(pt->b0, &ppr->br[0]);
 852
 853	/* b1-b5 */
 854
 855	for (i = 1; i < 6; i++) {
 856		if (unw_access_br(&info, i, &val, 0) < 0)
 857			return -EIO;
 858		__put_user(val, &ppr->br[i]);
 859	}
 860
 861	/* b6-b7 */
 862
 863	retval |= __put_user(pt->b6, &ppr->br[6]);
 864	retval |= __put_user(pt->b7, &ppr->br[7]);
 865
 866	/* fr2-fr5 */
 867
 868	for (i = 2; i < 6; i++) {
 869		if (unw_get_fr(&info, i, &fpval) < 0)
 870			return -EIO;
 871		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 872	}
 873
 874	/* fr6-fr11 */
 875
 876	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
 877				 sizeof(struct ia64_fpreg) * 6);
 878
 879	/* fp scratch regs(12-15) */
 880
 881	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
 882				 sizeof(struct ia64_fpreg) * 4);
 883
 884	/* fr16-fr31 */
 885
 886	for (i = 16; i < 32; i++) {
 887		if (unw_get_fr(&info, i, &fpval) < 0)
 888			return -EIO;
 889		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 890	}
 891
 892	/* fph */
 893
 894	ia64_flush_fph(child);
 895	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
 896				 sizeof(ppr->fr[32]) * 96);
 897
 898	/*  preds */
 899
 900	retval |= __put_user(pt->pr, &ppr->pr);
 901
 902	/* nat bits */
 903
 904	retval |= __put_user(nat_bits, &ppr->nat);
 905
 906	ret = retval ? -EIO : 0;
 907	return ret;
 908}
 909
 910static long
 911ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 912{
 913	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
 914	struct unw_frame_info info;
 915	struct switch_stack *sw;
 916	struct ia64_fpreg fpval;
 917	struct pt_regs *pt;
 918	long retval = 0;
 919	int i;
 920
 921	memset(&fpval, 0, sizeof(fpval));
 922
 923	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
 924		return -EIO;
 925
 926	pt = task_pt_regs(child);
 927	sw = (struct switch_stack *) (child->thread.ksp + 16);
 928	unw_init_from_blocked_task(&info, child);
 929	if (unw_unwind_to_user(&info) < 0) {
 930		return -EIO;
 931	}
 932
 933	if (((unsigned long) ppr & 0x7) != 0) {
 934		dprintk("ptrace:unaligned register address %p\n", ppr);
 935		return -EIO;
 936	}
 937
 938	/* control regs */
 939
 940	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
 941	retval |= __get_user(psr, &ppr->cr_ipsr);
 942
 943	/* app regs */
 944
 945	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 946	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
 947	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 948	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 949	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 950	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 951
 952	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
 953	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
 954	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 955	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
 956	retval |= __get_user(cfm, &ppr->cfm);
 957
 958	/* gr1-gr3 */
 959
 960	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
 961	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
 962
 963	/* gr4-gr7 */
 964
 965	for (i = 4; i < 8; i++) {
 966		retval |= __get_user(val, &ppr->gr[i]);
 967		/* NaT bit will be set via PT_NAT_BITS: */
 968		if (unw_set_gr(&info, i, val, 0) < 0)
 969			return -EIO;
 970	}
 971
 972	/* gr8-gr11 */
 973
 974	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
 975
 976	/* gr12-gr15 */
 977
 978	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
 979	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
 980	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
 981
 982	/* gr16-gr31 */
 983
 984	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
 985
 986	/* b0 */
 987
 988	retval |= __get_user(pt->b0, &ppr->br[0]);
 989
 990	/* b1-b5 */
 991
 992	for (i = 1; i < 6; i++) {
 993		retval |= __get_user(val, &ppr->br[i]);
 994		unw_set_br(&info, i, val);
 995	}
 996
 997	/* b6-b7 */
 998
 999	retval |= __get_user(pt->b6, &ppr->br[6]);
1000	retval |= __get_user(pt->b7, &ppr->br[7]);
1001
1002	/* fr2-fr5 */
1003
1004	for (i = 2; i < 6; i++) {
1005		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1006		if (unw_set_fr(&info, i, fpval) < 0)
1007			return -EIO;
1008	}
1009
1010	/* fr6-fr11 */
1011
1012	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1013				   sizeof(ppr->fr[6]) * 6);
1014
1015	/* fp scratch regs(12-15) */
1016
1017	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1018				   sizeof(ppr->fr[12]) * 4);
1019
1020	/* fr16-fr31 */
1021
1022	for (i = 16; i < 32; i++) {
1023		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1024					   sizeof(fpval));
1025		if (unw_set_fr(&info, i, fpval) < 0)
1026			return -EIO;
1027	}
1028
1029	/* fph */
1030
1031	ia64_sync_fph(child);
1032	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1033				   sizeof(ppr->fr[32]) * 96);
1034
1035	/* preds */
1036
1037	retval |= __get_user(pt->pr, &ppr->pr);
1038
1039	/* nat bits */
1040
1041	retval |= __get_user(nat_bits, &ppr->nat);
1042
1043	retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
1044	retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
1045	retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
1046	retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
1047	retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
1048	retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
1049	retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
1050	retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
1051
1052	return retval ? -EIO : 0;
 
1053}
1054
1055void
1056user_enable_single_step (struct task_struct *child)
1057{
1058	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1059
1060	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1061	child_psr->ss = 1;
1062}
1063
1064void
1065user_enable_block_step (struct task_struct *child)
1066{
1067	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1068
1069	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1070	child_psr->tb = 1;
1071}
1072
1073void
1074user_disable_single_step (struct task_struct *child)
1075{
1076	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1077
1078	/* make sure the single step/taken-branch trap bits are not set: */
1079	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1080	child_psr->ss = 0;
1081	child_psr->tb = 0;
1082}
1083
1084/*
1085 * Called by kernel/ptrace.c when detaching..
1086 *
1087 * Make sure the single step bit is not set.
1088 */
1089void
1090ptrace_disable (struct task_struct *child)
1091{
1092	user_disable_single_step(child);
1093}
1094
1095static int
1096access_uarea (struct task_struct *child, unsigned long addr,
1097	      unsigned long *data, int write_access);
1098
1099long
1100arch_ptrace (struct task_struct *child, long request,
1101	     unsigned long addr, unsigned long data)
1102{
1103	switch (request) {
1104	case PTRACE_PEEKTEXT:
1105	case PTRACE_PEEKDATA:
1106		/* read word at location addr */
1107		if (ptrace_access_vm(child, addr, &data, sizeof(data),
1108				FOLL_FORCE)
1109		    != sizeof(data))
1110			return -EIO;
1111		/* ensure return value is not mistaken for error code */
1112		force_successful_syscall_return();
1113		return data;
1114
1115	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1116	 * by the generic ptrace_request().
1117	 */
1118
1119	case PTRACE_PEEKUSR:
1120		/* read the word at addr in the USER area */
1121		if (access_uarea(child, addr, &data, 0) < 0)
1122			return -EIO;
1123		/* ensure return value is not mistaken for error code */
1124		force_successful_syscall_return();
1125		return data;
1126
1127	case PTRACE_POKEUSR:
1128		/* write the word at addr in the USER area */
1129		if (access_uarea(child, addr, &data, 1) < 0)
1130			return -EIO;
1131		return 0;
1132
1133	case PTRACE_OLD_GETSIGINFO:
1134		/* for backwards-compatibility */
1135		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1136
1137	case PTRACE_OLD_SETSIGINFO:
1138		/* for backwards-compatibility */
1139		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1140
1141	case PTRACE_GETREGS:
1142		return ptrace_getregs(child,
1143				      (struct pt_all_user_regs __user *) data);
1144
1145	case PTRACE_SETREGS:
1146		return ptrace_setregs(child,
1147				      (struct pt_all_user_regs __user *) data);
1148
1149	default:
1150		return ptrace_request(child, request, addr, data);
1151	}
1152}
1153
1154
1155/* "asmlinkage" so the input arguments are preserved... */
1156
1157asmlinkage long
1158syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1159		     long arg4, long arg5, long arg6, long arg7,
1160		     struct pt_regs regs)
1161{
1162	if (test_thread_flag(TIF_SYSCALL_TRACE))
1163		if (ptrace_report_syscall_entry(&regs))
1164			return -ENOSYS;
1165
1166	/* copy user rbs to kernel rbs */
1167	if (test_thread_flag(TIF_RESTORE_RSE))
1168		ia64_sync_krbs();
1169
1170
1171	audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1172
1173	return 0;
1174}
1175
1176/* "asmlinkage" so the input arguments are preserved... */
1177
1178asmlinkage void
1179syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1180		     long arg4, long arg5, long arg6, long arg7,
1181		     struct pt_regs regs)
1182{
1183	int step;
1184
1185	audit_syscall_exit(&regs);
1186
1187	step = test_thread_flag(TIF_SINGLESTEP);
1188	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1189		ptrace_report_syscall_exit(&regs, step);
1190
1191	/* copy user rbs to kernel rbs */
1192	if (test_thread_flag(TIF_RESTORE_RSE))
1193		ia64_sync_krbs();
1194}
1195
1196/* Utrace implementation starts here */
1197struct regset_get {
1198	void *kbuf;
1199	void __user *ubuf;
1200};
1201
1202struct regset_set {
1203	const void *kbuf;
1204	const void __user *ubuf;
1205};
1206
1207struct regset_getset {
1208	struct task_struct *target;
1209	const struct user_regset *regset;
1210	union {
1211		struct regset_get get;
1212		struct regset_set set;
1213	} u;
1214	unsigned int pos;
1215	unsigned int count;
1216	int ret;
1217};
1218
1219static const ptrdiff_t pt_offsets[32] =
1220{
1221#define R(n) offsetof(struct pt_regs, r##n)
1222	[0] = -1, R(1), R(2), R(3),
1223	[4] = -1, [5] = -1, [6] = -1, [7] = -1,
1224	R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1225	R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1226	R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1227#undef R
1228};
1229
1230static int
1231access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1232		unsigned long addr, unsigned long *data, int write_access)
1233{
1234	struct pt_regs *pt = task_pt_regs(target);
1235	unsigned reg = addr / sizeof(unsigned long);
1236	ptrdiff_t d = pt_offsets[reg];
 
1237
1238	if (d >= 0) {
1239		unsigned long *ptr = (void *)pt + d;
1240		if (write_access)
1241			*ptr = *data;
1242		else
1243			*data = *ptr;
1244		return 0;
1245	} else {
1246		char nat = 0;
 
1247		if (write_access) {
1248			/* read NaT bit first: */
1249			unsigned long dummy;
1250			int ret = unw_get_gr(info, reg, &dummy, &nat);
 
1251			if (ret < 0)
1252				return ret;
1253		}
1254		return unw_access_gr(info, reg, data, &nat, write_access);
 
 
 
 
 
 
 
 
 
 
 
 
1255	}
 
 
 
 
 
1256}
1257
1258static int
1259access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1260		unsigned long addr, unsigned long *data, int write_access)
1261{
1262	struct pt_regs *pt;
1263	unsigned long *ptr = NULL;
1264
1265	pt = task_pt_regs(target);
1266	switch (addr) {
1267	case ELF_BR_OFFSET(0):
1268		ptr = &pt->b0;
1269		break;
1270	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1271		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1272				     data, write_access);
1273	case ELF_BR_OFFSET(6):
1274		ptr = &pt->b6;
1275		break;
1276	case ELF_BR_OFFSET(7):
1277		ptr = &pt->b7;
1278	}
1279	if (write_access)
1280		*ptr = *data;
1281	else
1282		*data = *ptr;
1283	return 0;
1284}
1285
1286static int
1287access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1288		unsigned long addr, unsigned long *data, int write_access)
1289{
1290	struct pt_regs *pt;
1291	unsigned long cfm, urbs_end;
1292	unsigned long *ptr = NULL;
1293
1294	pt = task_pt_regs(target);
1295	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1296		switch (addr) {
1297		case ELF_AR_RSC_OFFSET:
1298			/* force PL3 */
1299			if (write_access)
1300				pt->ar_rsc = *data | (3 << 2);
1301			else
1302				*data = pt->ar_rsc;
1303			return 0;
1304		case ELF_AR_BSP_OFFSET:
1305			/*
1306			 * By convention, we use PT_AR_BSP to refer to
1307			 * the end of the user-level backing store.
1308			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1309			 * to get the real value of ar.bsp at the time
1310			 * the kernel was entered.
1311			 *
1312			 * Furthermore, when changing the contents of
1313			 * PT_AR_BSP (or PT_CFM) while the task is
1314			 * blocked in a system call, convert the state
1315			 * so that the non-system-call exit
1316			 * path is used.  This ensures that the proper
1317			 * state will be picked up when resuming
1318			 * execution.  However, it *also* means that
1319			 * once we write PT_AR_BSP/PT_CFM, it won't be
1320			 * possible to modify the syscall arguments of
1321			 * the pending system call any longer.  This
1322			 * shouldn't be an issue because modifying
1323			 * PT_AR_BSP/PT_CFM generally implies that
1324			 * we're either abandoning the pending system
1325			 * call or that we defer it's re-execution
1326			 * (e.g., due to GDB doing an inferior
1327			 * function call).
1328			 */
1329			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1330			if (write_access) {
1331				if (*data != urbs_end) {
1332					if (in_syscall(pt))
1333						convert_to_non_syscall(target,
1334								       pt,
1335								       cfm);
1336					/*
1337					 * Simulate user-level write
1338					 * of ar.bsp:
1339					 */
1340					pt->loadrs = 0;
1341					pt->ar_bspstore = *data;
1342				}
1343			} else
1344				*data = urbs_end;
1345			return 0;
1346		case ELF_AR_BSPSTORE_OFFSET:
1347			ptr = &pt->ar_bspstore;
1348			break;
1349		case ELF_AR_RNAT_OFFSET:
1350			ptr = &pt->ar_rnat;
1351			break;
1352		case ELF_AR_CCV_OFFSET:
1353			ptr = &pt->ar_ccv;
1354			break;
1355		case ELF_AR_UNAT_OFFSET:
1356			ptr = &pt->ar_unat;
1357			break;
1358		case ELF_AR_FPSR_OFFSET:
1359			ptr = &pt->ar_fpsr;
1360			break;
1361		case ELF_AR_PFS_OFFSET:
1362			ptr = &pt->ar_pfs;
1363			break;
1364		case ELF_AR_LC_OFFSET:
1365			return unw_access_ar(info, UNW_AR_LC, data,
1366					     write_access);
1367		case ELF_AR_EC_OFFSET:
1368			return unw_access_ar(info, UNW_AR_EC, data,
1369					     write_access);
1370		case ELF_AR_CSD_OFFSET:
1371			ptr = &pt->ar_csd;
1372			break;
1373		case ELF_AR_SSD_OFFSET:
1374			ptr = &pt->ar_ssd;
1375		}
1376	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1377		switch (addr) {
1378		case ELF_CR_IIP_OFFSET:
1379			ptr = &pt->cr_iip;
1380			break;
1381		case ELF_CFM_OFFSET:
1382			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1383			if (write_access) {
1384				if (((cfm ^ *data) & PFM_MASK) != 0) {
1385					if (in_syscall(pt))
1386						convert_to_non_syscall(target,
1387								       pt,
1388								       cfm);
1389					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1390						      | (*data & PFM_MASK));
1391				}
1392			} else
1393				*data = cfm;
1394			return 0;
1395		case ELF_CR_IPSR_OFFSET:
1396			if (write_access) {
1397				unsigned long tmp = *data;
1398				/* psr.ri==3 is a reserved value: SDM 2:25 */
1399				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1400					tmp &= ~IA64_PSR_RI;
1401				pt->cr_ipsr = ((tmp & IPSR_MASK)
1402					       | (pt->cr_ipsr & ~IPSR_MASK));
1403			} else
1404				*data = (pt->cr_ipsr & IPSR_MASK);
1405			return 0;
1406		}
1407	} else if (addr == ELF_NAT_OFFSET)
1408		return access_nat_bits(target, pt, info,
1409				       data, write_access);
1410	else if (addr == ELF_PR_OFFSET)
1411		ptr = &pt->pr;
1412	else
1413		return -1;
1414
1415	if (write_access)
1416		*ptr = *data;
1417	else
1418		*data = *ptr;
1419
1420	return 0;
1421}
1422
1423static int
1424access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1425		unsigned long addr, unsigned long *data, int write_access)
1426{
1427	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1428		return access_elf_gpreg(target, info, addr, data, write_access);
1429	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1430		return access_elf_breg(target, info, addr, data, write_access);
1431	else
1432		return access_elf_areg(target, info, addr, data, write_access);
1433}
1434
1435struct regset_membuf {
1436	struct membuf to;
1437	int ret;
1438};
1439
1440static void do_gpregs_get(struct unw_frame_info *info, void *arg)
1441{
1442	struct regset_membuf *dst = arg;
1443	struct membuf to = dst->to;
1444	unsigned int n;
1445	elf_greg_t reg;
1446
1447	if (unw_unwind_to_user(info) < 0)
1448		return;
1449
1450	/*
1451	 * coredump format:
1452	 *      r0-r31
1453	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1454	 *      predicate registers (p0-p63)
1455	 *      b0-b7
1456	 *      ip cfm user-mask
1457	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1458	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1459	 */
1460
1461
1462	/* Skip r0 */
1463	membuf_zero(&to, 8);
1464	for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1465		if (access_elf_reg(info->task, info, n, &reg, 0) < 0) {
1466			dst->ret = -EIO;
 
 
1467			return;
1468		}
1469		membuf_store(&to, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	}
1471}
1472
1473static void do_gpregs_set(struct unw_frame_info *info, void *arg)
1474{
 
1475	struct regset_getset *dst = arg;
 
 
1476
1477	if (unw_unwind_to_user(info) < 0)
1478		return;
1479
1480	if (!dst->count)
1481		return;
1482	/* Skip r0 */
1483	if (dst->pos < ELF_GR_OFFSET(1)) {
1484		user_regset_copyin_ignore(&dst->pos, &dst->count,
1485					  &dst->u.set.kbuf, &dst->u.set.ubuf,
1486					  0, ELF_GR_OFFSET(1));
1487		dst->ret = 0;
1488	}
1489
1490	while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1491		unsigned int n, from, to;
1492		elf_greg_t tmp[16];
1493
1494		from = dst->pos;
1495		to = from + sizeof(tmp);
1496		if (to > ELF_AR_END_OFFSET)
1497			to = ELF_AR_END_OFFSET;
1498		/* get up to 16 values */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1500				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1501				from, to);
1502		if (dst->ret)
1503			return;
1504		/* now copy them into registers */
1505		for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1506			if (access_elf_reg(dst->target, info, from,
1507						&tmp[n], 1) < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508				dst->ret = -EIO;
1509				return;
1510			}
1511	}
1512}
1513
1514#define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1515
1516static void do_fpregs_get(struct unw_frame_info *info, void *arg)
1517{
1518	struct task_struct *task = info->task;
1519	struct regset_membuf *dst = arg;
1520	struct membuf to = dst->to;
1521	elf_fpreg_t reg;
1522	unsigned int n;
1523
1524	if (unw_unwind_to_user(info) < 0)
1525		return;
1526
1527	/* Skip pos 0 and 1 */
1528	membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
 
 
 
 
 
 
 
1529
1530	/* fr2-fr31 */
1531	for (n = 2; to.left && n < 32; n++) {
1532		if (unw_get_fr(info, n, &reg)) {
1533			dst->ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
1534			return;
1535		}
1536		membuf_write(&to, &reg, sizeof(reg));
1537	}
1538
1539	/* fph */
1540	if (!to.left)
1541		return;
1542
1543	ia64_flush_fph(task);
1544	if (task->thread.flags & IA64_THREAD_FPH_VALID)
1545		membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1546	else
1547		membuf_zero(&to, 96 * sizeof(reg));
 
 
 
 
 
 
 
1548}
1549
1550static void do_fpregs_set(struct unw_frame_info *info, void *arg)
1551{
1552	struct regset_getset *dst = arg;
1553	elf_fpreg_t fpreg, tmp[30];
1554	int index, start, end;
1555
1556	if (unw_unwind_to_user(info) < 0)
1557		return;
1558
1559	/* Skip pos 0 and 1 */
1560	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1561		user_regset_copyin_ignore(&dst->pos, &dst->count,
1562					  &dst->u.set.kbuf, &dst->u.set.ubuf,
1563					  0, ELF_FP_OFFSET(2));
1564		dst->ret = 0;
1565		if (dst->count == 0)
1566			return;
1567	}
1568
1569	/* fr2-fr31 */
1570	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1571		start = dst->pos;
1572		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1573			 dst->pos + dst->count);
1574		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1575				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1576				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1577		if (dst->ret)
1578			return;
1579
1580		if (start & 0xF) { /* only write high part */
1581			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1582					 &fpreg)) {
1583				dst->ret = -EIO;
1584				return;
1585			}
1586			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1587				= fpreg.u.bits[0];
1588			start &= ~0xFUL;
1589		}
1590		if (end & 0xF) { /* only write low part */
1591			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1592					&fpreg)) {
1593				dst->ret = -EIO;
1594				return;
1595			}
1596			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1597				= fpreg.u.bits[1];
1598			end = (end + 0xF) & ~0xFUL;
1599		}
1600
1601		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1602			index = start / sizeof(elf_fpreg_t);
1603			if (unw_set_fr(info, index, tmp[index - 2])) {
1604				dst->ret = -EIO;
1605				return;
1606			}
1607		}
1608		if (dst->ret || dst->count == 0)
1609			return;
1610	}
1611
1612	/* fph */
1613	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1614		ia64_sync_fph(dst->target);
1615		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1616						&dst->u.set.kbuf,
1617						&dst->u.set.ubuf,
1618						&dst->target->thread.fph,
1619						ELF_FP_OFFSET(32), -1);
1620	}
1621}
1622
1623static void
1624unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1625	       struct task_struct *target, void *data)
1626{
1627	if (target == current)
1628		unw_init_running(call, data);
1629	else {
1630		struct unw_frame_info info;
1631		memset(&info, 0, sizeof(info));
1632		unw_init_from_blocked_task(&info, target);
1633		(*call)(&info, data);
1634	}
1635}
1636
1637static int
1638do_regset_call(void (*call)(struct unw_frame_info *, void *),
1639	       struct task_struct *target,
1640	       const struct user_regset *regset,
1641	       unsigned int pos, unsigned int count,
1642	       const void *kbuf, const void __user *ubuf)
1643{
1644	struct regset_getset info = { .target = target, .regset = regset,
1645				 .pos = pos, .count = count,
1646				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1647				 .ret = 0 };
1648	unwind_and_call(call, target, &info);
 
 
 
 
 
 
 
 
 
1649	return info.ret;
1650}
1651
1652static int
1653gpregs_get(struct task_struct *target,
1654	   const struct user_regset *regset,
1655	   struct membuf to)
 
1656{
1657	struct regset_membuf info = {.to = to};
1658	unwind_and_call(do_gpregs_get, target, &info);
1659	return info.ret;
1660}
1661
1662static int gpregs_set(struct task_struct *target,
1663		const struct user_regset *regset,
1664		unsigned int pos, unsigned int count,
1665		const void *kbuf, const void __user *ubuf)
1666{
1667	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1668		kbuf, ubuf);
1669}
1670
1671static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1672{
1673	do_sync_rbs(info, ia64_sync_user_rbs);
1674}
1675
1676/*
1677 * This is called to write back the register backing store.
1678 * ptrace does this before it stops, so that a tracer reading the user
1679 * memory after the thread stops will get the current register data.
1680 */
1681static int
1682gpregs_writeback(struct task_struct *target,
1683		 const struct user_regset *regset,
1684		 int now)
1685{
1686	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1687		return 0;
1688	set_notify_resume(target);
1689	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1690		NULL, NULL);
1691}
1692
1693static int
1694fpregs_active(struct task_struct *target, const struct user_regset *regset)
1695{
1696	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1697}
1698
1699static int fpregs_get(struct task_struct *target,
1700		const struct user_regset *regset,
1701		struct membuf to)
 
1702{
1703	struct regset_membuf info = {.to = to};
1704	unwind_and_call(do_fpregs_get, target, &info);
1705	return info.ret;
1706}
1707
1708static int fpregs_set(struct task_struct *target,
1709		const struct user_regset *regset,
1710		unsigned int pos, unsigned int count,
1711		const void *kbuf, const void __user *ubuf)
1712{
1713	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1714		kbuf, ubuf);
1715}
1716
1717static int
1718access_uarea(struct task_struct *child, unsigned long addr,
1719	      unsigned long *data, int write_access)
1720{
1721	unsigned int pos = -1; /* an invalid value */
 
1722	unsigned long *ptr, regnum;
1723
1724	if ((addr & 0x7) != 0) {
1725		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1726		return -1;
1727	}
1728	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1729		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1730		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1731		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1732		dprintk("ptrace: rejecting access to register "
1733					"address 0x%lx\n", addr);
1734		return -1;
1735	}
1736
1737	switch (addr) {
1738	case PT_F32 ... (PT_F127 + 15):
1739		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1740		break;
1741	case PT_F2 ... (PT_F5 + 15):
1742		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1743		break;
1744	case PT_F10 ... (PT_F31 + 15):
1745		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1746		break;
1747	case PT_F6 ... (PT_F9 + 15):
1748		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1749		break;
1750	}
1751
1752	if (pos != -1) {
1753		unsigned reg = pos / sizeof(elf_fpreg_t);
1754		int which_half = (pos / sizeof(unsigned long)) & 1;
1755
1756		if (reg < 32) { /* fr2-fr31 */
1757			struct unw_frame_info info;
1758			elf_fpreg_t fpreg;
1759
1760			memset(&info, 0, sizeof(info));
1761			unw_init_from_blocked_task(&info, child);
1762			if (unw_unwind_to_user(&info) < 0)
1763				return 0;
1764
1765			if (unw_get_fr(&info, reg, &fpreg))
1766				return -1;
1767			if (write_access) {
1768				fpreg.u.bits[which_half] = *data;
1769				if (unw_set_fr(&info, reg, fpreg))
1770					return -1;
1771			} else {
1772				*data = fpreg.u.bits[which_half];
1773			}
1774		} else { /* fph */
1775			elf_fpreg_t *p = &child->thread.fph[reg - 32];
1776			unsigned long *bits = &p->u.bits[which_half];
1777
1778			ia64_sync_fph(child);
1779			if (write_access)
1780				*bits = *data;
1781			else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1782				*data = *bits;
1783			else
1784				*data = 0;
1785		}
1786		return 0;
1787	}
1788
1789	switch (addr) {
1790	case PT_NAT_BITS:
1791		pos = ELF_NAT_OFFSET;
1792		break;
1793	case PT_R4 ... PT_R7:
1794		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1795		break;
1796	case PT_B1 ... PT_B5:
1797		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1798		break;
1799	case PT_AR_EC:
1800		pos = ELF_AR_EC_OFFSET;
1801		break;
1802	case PT_AR_LC:
1803		pos = ELF_AR_LC_OFFSET;
1804		break;
1805	case PT_CR_IPSR:
1806		pos = ELF_CR_IPSR_OFFSET;
1807		break;
1808	case PT_CR_IIP:
1809		pos = ELF_CR_IIP_OFFSET;
1810		break;
1811	case PT_CFM:
1812		pos = ELF_CFM_OFFSET;
1813		break;
1814	case PT_AR_UNAT:
1815		pos = ELF_AR_UNAT_OFFSET;
1816		break;
1817	case PT_AR_PFS:
1818		pos = ELF_AR_PFS_OFFSET;
1819		break;
1820	case PT_AR_RSC:
1821		pos = ELF_AR_RSC_OFFSET;
1822		break;
1823	case PT_AR_RNAT:
1824		pos = ELF_AR_RNAT_OFFSET;
1825		break;
1826	case PT_AR_BSPSTORE:
1827		pos = ELF_AR_BSPSTORE_OFFSET;
1828		break;
1829	case PT_PR:
1830		pos = ELF_PR_OFFSET;
1831		break;
1832	case PT_B6:
1833		pos = ELF_BR_OFFSET(6);
1834		break;
1835	case PT_AR_BSP:
1836		pos = ELF_AR_BSP_OFFSET;
1837		break;
1838	case PT_R1 ... PT_R3:
1839		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1840		break;
1841	case PT_R12 ... PT_R15:
1842		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1843		break;
1844	case PT_R8 ... PT_R11:
1845		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1846		break;
1847	case PT_R16 ... PT_R31:
1848		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1849		break;
1850	case PT_AR_CCV:
1851		pos = ELF_AR_CCV_OFFSET;
1852		break;
1853	case PT_AR_FPSR:
1854		pos = ELF_AR_FPSR_OFFSET;
1855		break;
1856	case PT_B0:
1857		pos = ELF_BR_OFFSET(0);
1858		break;
1859	case PT_B7:
1860		pos = ELF_BR_OFFSET(7);
1861		break;
1862	case PT_AR_CSD:
1863		pos = ELF_AR_CSD_OFFSET;
1864		break;
1865	case PT_AR_SSD:
1866		pos = ELF_AR_SSD_OFFSET;
1867		break;
1868	}
1869
1870	if (pos != -1) {
1871		struct unw_frame_info info;
1872
1873		memset(&info, 0, sizeof(info));
1874		unw_init_from_blocked_task(&info, child);
1875		if (unw_unwind_to_user(&info) < 0)
1876			return 0;
1877
1878		return access_elf_reg(child, &info, pos, data, write_access);
 
1879	}
1880
1881	/* access debug registers */
1882	if (addr >= PT_IBR) {
1883		regnum = (addr - PT_IBR) >> 3;
1884		ptr = &child->thread.ibr[0];
1885	} else {
1886		regnum = (addr - PT_DBR) >> 3;
1887		ptr = &child->thread.dbr[0];
1888	}
1889
1890	if (regnum >= 8) {
1891		dprintk("ptrace: rejecting access to register "
1892				"address 0x%lx\n", addr);
1893		return -1;
1894	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895
1896	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1897		child->thread.flags |= IA64_THREAD_DBG_VALID;
1898		memset(child->thread.dbr, 0,
1899				sizeof(child->thread.dbr));
1900		memset(child->thread.ibr, 0,
1901				sizeof(child->thread.ibr));
1902	}
1903
1904	ptr += regnum;
1905
1906	if ((regnum & 1) && write_access) {
1907		/* don't let the user set kernel-level breakpoints: */
1908		*ptr = *data & ~(7UL << 56);
1909		return 0;
1910	}
1911	if (write_access)
1912		*ptr = *data;
1913	else
1914		*data = *ptr;
1915	return 0;
1916}
1917
1918static const struct user_regset native_regsets[] = {
1919	{
1920		.core_note_type = NT_PRSTATUS,
1921		.n = ELF_NGREG,
1922		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
1923		.regset_get = gpregs_get, .set = gpregs_set,
1924		.writeback = gpregs_writeback
1925	},
1926	{
1927		.core_note_type = NT_PRFPREG,
1928		.n = ELF_NFPREG,
1929		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
1930		.regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
1931	},
1932};
1933
1934static const struct user_regset_view user_ia64_view = {
1935	.name = "ia64",
1936	.e_machine = EM_IA_64,
1937	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1938};
1939
1940const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
1941{
1942	return &user_ia64_view;
1943}
1944
1945struct syscall_get_args {
1946	unsigned int i;
1947	unsigned int n;
1948	unsigned long *args;
1949	struct pt_regs *regs;
 
1950};
1951
1952static void syscall_get_args_cb(struct unw_frame_info *info, void *data)
1953{
1954	struct syscall_get_args *args = data;
1955	struct pt_regs *pt = args->regs;
1956	unsigned long *krbs, cfm, ndirty, nlocals, nouts;
1957	int i, count;
1958
1959	if (unw_unwind_to_user(info) < 0)
1960		return;
1961
1962	/*
1963	 * We get here via a few paths:
1964	 * - break instruction: cfm is shared with caller.
1965	 *   syscall args are in out= regs, locals are non-empty.
1966	 * - epsinstruction: cfm is set by br.call
1967	 *   locals don't exist.
1968	 *
1969	 * For both cases arguments are reachable in cfm.sof - cfm.sol.
1970	 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
1971	 */
1972	cfm = pt->cr_ifs;
1973	nlocals = (cfm >> 7) & 0x7f; /* aka sol */
1974	nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
1975	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
1976	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
1977
1978	count = 0;
1979	if (in_syscall(pt))
1980		count = min_t(int, args->n, nouts);
1981
1982	/* Iterate over outs. */
1983	for (i = 0; i < count; i++) {
1984		int j = ndirty + nlocals + i + args->i;
1985		args->args[i] = *ia64_rse_skip_regs(krbs, j);
 
 
 
 
1986	}
1987
1988	while (i < args->n) {
1989		args->args[i] = 0;
1990		i++;
 
 
1991	}
1992}
1993
1994void syscall_get_arguments(struct task_struct *task,
1995	struct pt_regs *regs, unsigned long *args)
 
1996{
1997	struct syscall_get_args data = {
1998		.i = 0,
1999		.n = 6,
2000		.args = args,
2001		.regs = regs,
 
2002	};
2003
2004	if (task == current)
2005		unw_init_running(syscall_get_args_cb, &data);
2006	else {
2007		struct unw_frame_info ufi;
2008		memset(&ufi, 0, sizeof(ufi));
2009		unw_init_from_blocked_task(&ufi, task);
2010		syscall_get_args_cb(&ufi, &data);
2011	}
2012}
v3.5.6
 
   1/*
   2 * Kernel support for the ptrace() and syscall tracing interfaces.
   3 *
   4 * Copyright (C) 1999-2005 Hewlett-Packard Co
   5 *	David Mosberger-Tang <davidm@hpl.hp.com>
   6 * Copyright (C) 2006 Intel Co
   7 *  2006-08-12	- IA64 Native Utrace implementation support added by
   8 *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * Derived from the x86 and Alpha versions.
  11 */
  12#include <linux/kernel.h>
  13#include <linux/sched.h>
 
 
  14#include <linux/mm.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/regset.h>
  22#include <linux/elf.h>
  23#include <linux/tracehook.h>
  24
  25#include <asm/pgtable.h>
  26#include <asm/processor.h>
  27#include <asm/ptrace_offsets.h>
  28#include <asm/rse.h>
  29#include <asm/uaccess.h>
  30#include <asm/unwind.h>
  31#ifdef CONFIG_PERFMON
  32#include <asm/perfmon.h>
  33#endif
  34
  35#include "entry.h"
  36
  37/*
  38 * Bits in the PSR that we allow ptrace() to change:
  39 *	be, up, ac, mfl, mfh (the user mask; five bits total)
  40 *	db (debug breakpoint fault; one bit)
  41 *	id (instruction debug fault disable; one bit)
  42 *	dd (data debug fault disable; one bit)
  43 *	ri (restart instruction; two bits)
  44 *	is (instruction set; one bit)
  45 */
  46#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
  47		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  48
  49#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
  50#define PFM_MASK	MASK(38)
  51
  52#define PTRACE_DEBUG	0
  53
  54#if PTRACE_DEBUG
  55# define dprintk(format...)	printk(format)
  56# define inline
  57#else
  58# define dprintk(format...)
  59#endif
  60
  61/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
  62
  63static inline int
  64in_syscall (struct pt_regs *pt)
  65{
  66	return (long) pt->cr_ifs >= 0;
  67}
  68
  69/*
  70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  71 * bitset where bit i is set iff the NaT bit of register i is set.
  72 */
  73unsigned long
  74ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  75{
  76#	define GET_BITS(first, last, unat)				\
  77	({								\
  78		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
  79		unsigned long nbits = (last - first + 1);		\
  80		unsigned long mask = MASK(nbits) << first;		\
  81		unsigned long dist;					\
  82		if (bit < first)					\
  83			dist = 64 + bit - first;			\
  84		else							\
  85			dist = bit - first;				\
  86		ia64_rotr(unat, dist) & mask;				\
  87	})
  88	unsigned long val;
  89
  90	/*
  91	 * Registers that are stored consecutively in struct pt_regs
  92	 * can be handled in parallel.  If the register order in
  93	 * struct_pt_regs changes, this code MUST be updated.
  94	 */
  95	val  = GET_BITS( 1,  1, scratch_unat);
  96	val |= GET_BITS( 2,  3, scratch_unat);
  97	val |= GET_BITS(12, 13, scratch_unat);
  98	val |= GET_BITS(14, 14, scratch_unat);
  99	val |= GET_BITS(15, 15, scratch_unat);
 100	val |= GET_BITS( 8, 11, scratch_unat);
 101	val |= GET_BITS(16, 31, scratch_unat);
 102	return val;
 103
 104#	undef GET_BITS
 105}
 106
 107/*
 108 * Set the NaT bits for the scratch registers according to NAT and
 109 * return the resulting unat (assuming the scratch registers are
 110 * stored in PT).
 111 */
 112unsigned long
 113ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
 114{
 115#	define PUT_BITS(first, last, nat)				\
 116	({								\
 117		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
 118		unsigned long nbits = (last - first + 1);		\
 119		unsigned long mask = MASK(nbits) << first;		\
 120		long dist;						\
 121		if (bit < first)					\
 122			dist = 64 + bit - first;			\
 123		else							\
 124			dist = bit - first;				\
 125		ia64_rotl(nat & mask, dist);				\
 126	})
 127	unsigned long scratch_unat;
 128
 129	/*
 130	 * Registers that are stored consecutively in struct pt_regs
 131	 * can be handled in parallel.  If the register order in
 132	 * struct_pt_regs changes, this code MUST be updated.
 133	 */
 134	scratch_unat  = PUT_BITS( 1,  1, nat);
 135	scratch_unat |= PUT_BITS( 2,  3, nat);
 136	scratch_unat |= PUT_BITS(12, 13, nat);
 137	scratch_unat |= PUT_BITS(14, 14, nat);
 138	scratch_unat |= PUT_BITS(15, 15, nat);
 139	scratch_unat |= PUT_BITS( 8, 11, nat);
 140	scratch_unat |= PUT_BITS(16, 31, nat);
 141
 142	return scratch_unat;
 143
 144#	undef PUT_BITS
 145}
 146
 147#define IA64_MLX_TEMPLATE	0x2
 148#define IA64_MOVL_OPCODE	6
 149
 150void
 151ia64_increment_ip (struct pt_regs *regs)
 152{
 153	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
 154
 155	if (ri > 2) {
 156		ri = 0;
 157		regs->cr_iip += 16;
 158	} else if (ri == 2) {
 159		get_user(w0, (char __user *) regs->cr_iip + 0);
 160		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 161			/*
 162			 * rfi'ing to slot 2 of an MLX bundle causes
 163			 * an illegal operation fault.  We don't want
 164			 * that to happen...
 165			 */
 166			ri = 0;
 167			regs->cr_iip += 16;
 168		}
 169	}
 170	ia64_psr(regs)->ri = ri;
 171}
 172
 173void
 174ia64_decrement_ip (struct pt_regs *regs)
 175{
 176	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
 177
 178	if (ia64_psr(regs)->ri == 0) {
 179		regs->cr_iip -= 16;
 180		ri = 2;
 181		get_user(w0, (char __user *) regs->cr_iip + 0);
 182		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 183			/*
 184			 * rfi'ing to slot 2 of an MLX bundle causes
 185			 * an illegal operation fault.  We don't want
 186			 * that to happen...
 187			 */
 188			ri = 1;
 189		}
 190	}
 191	ia64_psr(regs)->ri = ri;
 192}
 193
 194/*
 195 * This routine is used to read an rnat bits that are stored on the
 196 * kernel backing store.  Since, in general, the alignment of the user
 197 * and kernel are different, this is not completely trivial.  In
 198 * essence, we need to construct the user RNAT based on up to two
 199 * kernel RNAT values and/or the RNAT value saved in the child's
 200 * pt_regs.
 201 *
 202 * user rbs
 203 *
 204 * +--------+ <-- lowest address
 205 * | slot62 |
 206 * +--------+
 207 * |  rnat  | 0x....1f8
 208 * +--------+
 209 * | slot00 | \
 210 * +--------+ |
 211 * | slot01 | > child_regs->ar_rnat
 212 * +--------+ |
 213 * | slot02 | /				kernel rbs
 214 * +--------+				+--------+
 215 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
 216 * +- - - - +				+--------+
 217 *					| slot62 |
 218 * +- - - - +				+--------+
 219 *					|  rnat	 |
 220 * +- - - - +				+--------+
 221 *   vrnat				| slot00 |
 222 * +- - - - +				+--------+
 223 *					=	 =
 224 *					+--------+
 225 *					| slot00 | \
 226 *					+--------+ |
 227 *					| slot01 | > child_stack->ar_rnat
 228 *					+--------+ |
 229 *					| slot02 | /
 230 *					+--------+
 231 *						  <--- child_stack->ar_bspstore
 232 *
 233 * The way to think of this code is as follows: bit 0 in the user rnat
 234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 235 * value.  The kernel rnat value holding this bit is stored in
 236 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 237 * form the upper bits of the user rnat value.
 238 *
 239 * Boundary cases:
 240 *
 241 * o when reading the rnat "below" the first rnat slot on the kernel
 242 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 243 *   merged in from pt->ar_rnat.
 244 *
 245 * o when reading the rnat "above" the last rnat slot on the kernel
 246 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 247 */
 248static unsigned long
 249get_rnat (struct task_struct *task, struct switch_stack *sw,
 250	  unsigned long *krbs, unsigned long *urnat_addr,
 251	  unsigned long *urbs_end)
 252{
 253	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
 254	unsigned long umask = 0, mask, m;
 255	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 256	long num_regs, nbits;
 257	struct pt_regs *pt;
 258
 259	pt = task_pt_regs(task);
 260	kbsp = (unsigned long *) sw->ar_bspstore;
 261	ubspstore = (unsigned long *) pt->ar_bspstore;
 262
 263	if (urbs_end < urnat_addr)
 264		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
 265	else
 266		nbits = 63;
 267	mask = MASK(nbits);
 268	/*
 269	 * First, figure out which bit number slot 0 in user-land maps
 270	 * to in the kernel rnat.  Do this by figuring out how many
 271	 * register slots we're beyond the user's backingstore and
 272	 * then computing the equivalent address in kernel space.
 273	 */
 274	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 275	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 276	shift = ia64_rse_slot_num(slot0_kaddr);
 277	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 278	rnat0_kaddr = rnat1_kaddr - 64;
 279
 280	if (ubspstore + 63 > urnat_addr) {
 281		/* some bits need to be merged in from pt->ar_rnat */
 282		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 283		urnat = (pt->ar_rnat & umask);
 284		mask &= ~umask;
 285		if (!mask)
 286			return urnat;
 287	}
 288
 289	m = mask << shift;
 290	if (rnat0_kaddr >= kbsp)
 291		rnat0 = sw->ar_rnat;
 292	else if (rnat0_kaddr > krbs)
 293		rnat0 = *rnat0_kaddr;
 294	urnat |= (rnat0 & m) >> shift;
 295
 296	m = mask >> (63 - shift);
 297	if (rnat1_kaddr >= kbsp)
 298		rnat1 = sw->ar_rnat;
 299	else if (rnat1_kaddr > krbs)
 300		rnat1 = *rnat1_kaddr;
 301	urnat |= (rnat1 & m) << (63 - shift);
 302	return urnat;
 303}
 304
 305/*
 306 * The reverse of get_rnat.
 307 */
 308static void
 309put_rnat (struct task_struct *task, struct switch_stack *sw,
 310	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
 311	  unsigned long *urbs_end)
 312{
 313	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
 314	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 315	long num_regs, nbits;
 316	struct pt_regs *pt;
 317	unsigned long cfm, *urbs_kargs;
 318
 319	pt = task_pt_regs(task);
 320	kbsp = (unsigned long *) sw->ar_bspstore;
 321	ubspstore = (unsigned long *) pt->ar_bspstore;
 322
 323	urbs_kargs = urbs_end;
 324	if (in_syscall(pt)) {
 325		/*
 326		 * If entered via syscall, don't allow user to set rnat bits
 327		 * for syscall args.
 328		 */
 329		cfm = pt->cr_ifs;
 330		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
 331	}
 332
 333	if (urbs_kargs >= urnat_addr)
 334		nbits = 63;
 335	else {
 336		if ((urnat_addr - 63) >= urbs_kargs)
 337			return;
 338		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
 339	}
 340	mask = MASK(nbits);
 341
 342	/*
 343	 * First, figure out which bit number slot 0 in user-land maps
 344	 * to in the kernel rnat.  Do this by figuring out how many
 345	 * register slots we're beyond the user's backingstore and
 346	 * then computing the equivalent address in kernel space.
 347	 */
 348	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 349	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 350	shift = ia64_rse_slot_num(slot0_kaddr);
 351	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 352	rnat0_kaddr = rnat1_kaddr - 64;
 353
 354	if (ubspstore + 63 > urnat_addr) {
 355		/* some bits need to be place in pt->ar_rnat: */
 356		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 357		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
 358		mask &= ~umask;
 359		if (!mask)
 360			return;
 361	}
 362	/*
 363	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
 364	 * rnat slot is ignored. so we don't have to clear it here.
 365	 */
 366	rnat0 = (urnat << shift);
 367	m = mask << shift;
 368	if (rnat0_kaddr >= kbsp)
 369		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
 370	else if (rnat0_kaddr > krbs)
 371		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
 372
 373	rnat1 = (urnat >> (63 - shift));
 374	m = mask >> (63 - shift);
 375	if (rnat1_kaddr >= kbsp)
 376		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
 377	else if (rnat1_kaddr > krbs)
 378		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
 379}
 380
 381static inline int
 382on_kernel_rbs (unsigned long addr, unsigned long bspstore,
 383	       unsigned long urbs_end)
 384{
 385	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
 386						      urbs_end);
 387	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
 388}
 389
 390/*
 391 * Read a word from the user-level backing store of task CHILD.  ADDR
 392 * is the user-level address to read the word from, VAL a pointer to
 393 * the return value, and USER_BSP gives the end of the user-level
 394 * backing store (i.e., it's the address that would be in ar.bsp after
 395 * the user executed a "cover" instruction).
 396 *
 397 * This routine takes care of accessing the kernel register backing
 398 * store for those registers that got spilled there.  It also takes
 399 * care of calculating the appropriate RNaT collection words.
 400 */
 401long
 402ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
 403	   unsigned long user_rbs_end, unsigned long addr, long *val)
 404{
 405	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
 406	struct pt_regs *child_regs;
 407	size_t copied;
 408	long ret;
 409
 410	urbs_end = (long *) user_rbs_end;
 411	laddr = (unsigned long *) addr;
 412	child_regs = task_pt_regs(child);
 413	bspstore = (unsigned long *) child_regs->ar_bspstore;
 414	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 415	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 416			  (unsigned long) urbs_end))
 417	{
 418		/*
 419		 * Attempt to read the RBS in an area that's actually
 420		 * on the kernel RBS => read the corresponding bits in
 421		 * the kernel RBS.
 422		 */
 423		rnat_addr = ia64_rse_rnat_addr(laddr);
 424		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
 425
 426		if (laddr == rnat_addr) {
 427			/* return NaT collection word itself */
 428			*val = ret;
 429			return 0;
 430		}
 431
 432		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
 433			/*
 434			 * It is implementation dependent whether the
 435			 * data portion of a NaT value gets saved on a
 436			 * st8.spill or RSE spill (e.g., see EAS 2.6,
 437			 * 4.4.4.6 Register Spill and Fill).  To get
 438			 * consistent behavior across all possible
 439			 * IA-64 implementations, we return zero in
 440			 * this case.
 441			 */
 442			*val = 0;
 443			return 0;
 444		}
 445
 446		if (laddr < urbs_end) {
 447			/*
 448			 * The desired word is on the kernel RBS and
 449			 * is not a NaT.
 450			 */
 451			regnum = ia64_rse_num_regs(bspstore, laddr);
 452			*val = *ia64_rse_skip_regs(krbs, regnum);
 453			return 0;
 454		}
 455	}
 456	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
 457	if (copied != sizeof(ret))
 458		return -EIO;
 459	*val = ret;
 460	return 0;
 461}
 462
 463long
 464ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
 465	   unsigned long user_rbs_end, unsigned long addr, long val)
 466{
 467	unsigned long *bspstore, *krbs, regnum, *laddr;
 468	unsigned long *urbs_end = (long *) user_rbs_end;
 469	struct pt_regs *child_regs;
 470
 471	laddr = (unsigned long *) addr;
 472	child_regs = task_pt_regs(child);
 473	bspstore = (unsigned long *) child_regs->ar_bspstore;
 474	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 475	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 476			  (unsigned long) urbs_end))
 477	{
 478		/*
 479		 * Attempt to write the RBS in an area that's actually
 480		 * on the kernel RBS => write the corresponding bits
 481		 * in the kernel RBS.
 482		 */
 483		if (ia64_rse_is_rnat_slot(laddr))
 484			put_rnat(child, child_stack, krbs, laddr, val,
 485				 urbs_end);
 486		else {
 487			if (laddr < urbs_end) {
 488				regnum = ia64_rse_num_regs(bspstore, laddr);
 489				*ia64_rse_skip_regs(krbs, regnum) = val;
 490			}
 491		}
 492	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
 
 493		   != sizeof(val))
 494		return -EIO;
 495	return 0;
 496}
 497
 498/*
 499 * Calculate the address of the end of the user-level register backing
 500 * store.  This is the address that would have been stored in ar.bsp
 501 * if the user had executed a "cover" instruction right before
 502 * entering the kernel.  If CFMP is not NULL, it is used to return the
 503 * "current frame mask" that was active at the time the kernel was
 504 * entered.
 505 */
 506unsigned long
 507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
 508		       unsigned long *cfmp)
 509{
 510	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
 511	long ndirty;
 512
 513	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 514	bspstore = (unsigned long *) pt->ar_bspstore;
 515	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 516
 517	if (in_syscall(pt))
 518		ndirty += (cfm & 0x7f);
 519	else
 520		cfm &= ~(1UL << 63);	/* clear valid bit */
 521
 522	if (cfmp)
 523		*cfmp = cfm;
 524	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
 525}
 526
 527/*
 528 * Synchronize (i.e, write) the RSE backing store living in kernel
 529 * space to the VM of the CHILD task.  SW and PT are the pointers to
 530 * the switch_stack and pt_regs structures, respectively.
 531 * USER_RBS_END is the user-level address at which the backing store
 532 * ends.
 533 */
 534long
 535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
 536		    unsigned long user_rbs_start, unsigned long user_rbs_end)
 537{
 538	unsigned long addr, val;
 539	long ret;
 540
 541	/* now copy word for word from kernel rbs to user rbs: */
 542	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 543		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
 544		if (ret < 0)
 545			return ret;
 546		if (access_process_vm(child, addr, &val, sizeof(val), 1)
 
 547		    != sizeof(val))
 548			return -EIO;
 549	}
 550	return 0;
 551}
 552
 553static long
 554ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
 555		unsigned long user_rbs_start, unsigned long user_rbs_end)
 556{
 557	unsigned long addr, val;
 558	long ret;
 559
 560	/* now copy word for word from user rbs to kernel rbs: */
 561	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 562		if (access_process_vm(child, addr, &val, sizeof(val), 0)
 
 563				!= sizeof(val))
 564			return -EIO;
 565
 566		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
 567		if (ret < 0)
 568			return ret;
 569	}
 570	return 0;
 571}
 572
 573typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
 574			    unsigned long, unsigned long);
 575
 576static void do_sync_rbs(struct unw_frame_info *info, void *arg)
 577{
 578	struct pt_regs *pt;
 579	unsigned long urbs_end;
 580	syncfunc_t fn = arg;
 581
 582	if (unw_unwind_to_user(info) < 0)
 583		return;
 584	pt = task_pt_regs(info->task);
 585	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
 586
 587	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
 588}
 589
 590/*
 591 * when a thread is stopped (ptraced), debugger might change thread's user
 592 * stack (change memory directly), and we must avoid the RSE stored in kernel
 593 * to override user stack (user space's RSE is newer than kernel's in the
 594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
 595 * task is stopped, so user RSE has updated data.  we then copy user RSE to
 596 * kernel after the task is resummed from traced stop and kernel will use the
 597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 598 * synchronize user RSE to kernel.
 599 */
 600void ia64_ptrace_stop(void)
 601{
 602	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
 603		return;
 604	set_notify_resume(current);
 605	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
 606}
 607
 608/*
 609 * This is called to read back the register backing store.
 610 */
 611void ia64_sync_krbs(void)
 612{
 613	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
 614
 615	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
 616}
 617
 618/*
 619 * After PTRACE_ATTACH, a thread's register backing store area in user
 620 * space is assumed to contain correct data whenever the thread is
 621 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
 622 * But if the child was already stopped for job control when we attach
 623 * to it, then it might not ever get into ptrace_stop by the time we
 624 * want to examine the user memory containing the RBS.
 625 */
 626void
 627ptrace_attach_sync_user_rbs (struct task_struct *child)
 628{
 629	int stopped = 0;
 630	struct unw_frame_info info;
 631
 632	/*
 633	 * If the child is in TASK_STOPPED, we need to change that to
 634	 * TASK_TRACED momentarily while we operate on it.  This ensures
 635	 * that the child won't be woken up and return to user mode while
 636	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
 637	 */
 638
 639	read_lock(&tasklist_lock);
 640	if (child->sighand) {
 641		spin_lock_irq(&child->sighand->siglock);
 642		if (child->state == TASK_STOPPED &&
 643		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
 644			set_notify_resume(child);
 645
 646			child->state = TASK_TRACED;
 647			stopped = 1;
 648		}
 649		spin_unlock_irq(&child->sighand->siglock);
 650	}
 651	read_unlock(&tasklist_lock);
 652
 653	if (!stopped)
 654		return;
 655
 656	unw_init_from_blocked_task(&info, child);
 657	do_sync_rbs(&info, ia64_sync_user_rbs);
 658
 659	/*
 660	 * Now move the child back into TASK_STOPPED if it should be in a
 661	 * job control stop, so that SIGCONT can be used to wake it up.
 662	 */
 663	read_lock(&tasklist_lock);
 664	if (child->sighand) {
 665		spin_lock_irq(&child->sighand->siglock);
 666		if (child->state == TASK_TRACED &&
 667		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
 668			child->state = TASK_STOPPED;
 669		}
 670		spin_unlock_irq(&child->sighand->siglock);
 671	}
 672	read_unlock(&tasklist_lock);
 673}
 674
 675static inline int
 676thread_matches (struct task_struct *thread, unsigned long addr)
 677{
 678	unsigned long thread_rbs_end;
 679	struct pt_regs *thread_regs;
 680
 681	if (ptrace_check_attach(thread, 0) < 0)
 682		/*
 683		 * If the thread is not in an attachable state, we'll
 684		 * ignore it.  The net effect is that if ADDR happens
 685		 * to overlap with the portion of the thread's
 686		 * register backing store that is currently residing
 687		 * on the thread's kernel stack, then ptrace() may end
 688		 * up accessing a stale value.  But if the thread
 689		 * isn't stopped, that's a problem anyhow, so we're
 690		 * doing as well as we can...
 691		 */
 692		return 0;
 693
 694	thread_regs = task_pt_regs(thread);
 695	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
 696	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
 697		return 0;
 698
 699	return 1;	/* looks like we've got a winner */
 700}
 701
 702/*
 703 * Write f32-f127 back to task->thread.fph if it has been modified.
 704 */
 705inline void
 706ia64_flush_fph (struct task_struct *task)
 707{
 708	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 709
 710	/*
 711	 * Prevent migrating this task while
 712	 * we're fiddling with the FPU state
 713	 */
 714	preempt_disable();
 715	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
 716		psr->mfh = 0;
 717		task->thread.flags |= IA64_THREAD_FPH_VALID;
 718		ia64_save_fpu(&task->thread.fph[0]);
 719	}
 720	preempt_enable();
 721}
 722
 723/*
 724 * Sync the fph state of the task so that it can be manipulated
 725 * through thread.fph.  If necessary, f32-f127 are written back to
 726 * thread.fph or, if the fph state hasn't been used before, thread.fph
 727 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 728 * ensure that the task picks up the state from thread.fph when it
 729 * executes again.
 730 */
 731void
 732ia64_sync_fph (struct task_struct *task)
 733{
 734	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 735
 736	ia64_flush_fph(task);
 737	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
 738		task->thread.flags |= IA64_THREAD_FPH_VALID;
 739		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
 740	}
 741	ia64_drop_fpu(task);
 742	psr->dfh = 1;
 743}
 744
 745/*
 746 * Change the machine-state of CHILD such that it will return via the normal
 747 * kernel exit-path, rather than the syscall-exit path.
 748 */
 749static void
 750convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
 751			unsigned long cfm)
 752{
 753	struct unw_frame_info info, prev_info;
 754	unsigned long ip, sp, pr;
 755
 756	unw_init_from_blocked_task(&info, child);
 757	while (1) {
 758		prev_info = info;
 759		if (unw_unwind(&info) < 0)
 760			return;
 761
 762		unw_get_sp(&info, &sp);
 763		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
 764		    < IA64_PT_REGS_SIZE) {
 765			dprintk("ptrace.%s: ran off the top of the kernel "
 766				"stack\n", __func__);
 767			return;
 768		}
 769		if (unw_get_pr (&prev_info, &pr) < 0) {
 770			unw_get_rp(&prev_info, &ip);
 771			dprintk("ptrace.%s: failed to read "
 772				"predicate register (ip=0x%lx)\n",
 773				__func__, ip);
 774			return;
 775		}
 776		if (unw_is_intr_frame(&info)
 777		    && (pr & (1UL << PRED_USER_STACK)))
 778			break;
 779	}
 780
 781	/*
 782	 * Note: at the time of this call, the target task is blocked
 783	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
 784	 * (aka, "pLvSys") we redirect execution from
 785	 * .work_pending_syscall_end to .work_processed_kernel.
 786	 */
 787	unw_get_pr(&prev_info, &pr);
 788	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
 789	pr |=  (1UL << PRED_NON_SYSCALL);
 790	unw_set_pr(&prev_info, pr);
 791
 792	pt->cr_ifs = (1UL << 63) | cfm;
 793	/*
 794	 * Clear the memory that is NOT written on syscall-entry to
 795	 * ensure we do not leak kernel-state to user when execution
 796	 * resumes.
 797	 */
 798	pt->r2 = 0;
 799	pt->r3 = 0;
 800	pt->r14 = 0;
 801	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
 802	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
 803	pt->b7 = 0;
 804	pt->ar_ccv = 0;
 805	pt->ar_csd = 0;
 806	pt->ar_ssd = 0;
 807}
 808
 809static int
 810access_nat_bits (struct task_struct *child, struct pt_regs *pt,
 811		 struct unw_frame_info *info,
 812		 unsigned long *data, int write_access)
 813{
 814	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
 815	char nat = 0;
 816
 817	if (write_access) {
 818		nat_bits = *data;
 819		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
 820		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
 821			dprintk("ptrace: failed to set ar.unat\n");
 822			return -1;
 823		}
 824		for (regnum = 4; regnum <= 7; ++regnum) {
 825			unw_get_gr(info, regnum, &dummy, &nat);
 826			unw_set_gr(info, regnum, dummy,
 827				   (nat_bits >> regnum) & 1);
 828		}
 829	} else {
 830		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
 831			dprintk("ptrace: failed to read ar.unat\n");
 832			return -1;
 833		}
 834		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
 835		for (regnum = 4; regnum <= 7; ++regnum) {
 836			unw_get_gr(info, regnum, &dummy, &nat);
 837			nat_bits |= (nat != 0) << regnum;
 838		}
 839		*data = nat_bits;
 840	}
 841	return 0;
 842}
 843
 844static int
 845access_uarea (struct task_struct *child, unsigned long addr,
 846	      unsigned long *data, int write_access);
 847
 848static long
 849ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 850{
 851	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
 852	struct unw_frame_info info;
 853	struct ia64_fpreg fpval;
 854	struct switch_stack *sw;
 855	struct pt_regs *pt;
 856	long ret, retval = 0;
 857	char nat = 0;
 858	int i;
 859
 860	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
 861		return -EIO;
 862
 863	pt = task_pt_regs(child);
 864	sw = (struct switch_stack *) (child->thread.ksp + 16);
 865	unw_init_from_blocked_task(&info, child);
 866	if (unw_unwind_to_user(&info) < 0) {
 867		return -EIO;
 868	}
 869
 870	if (((unsigned long) ppr & 0x7) != 0) {
 871		dprintk("ptrace:unaligned register address %p\n", ppr);
 872		return -EIO;
 873	}
 874
 875	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
 876	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
 877	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
 878	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
 879	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
 880	    || access_uarea(child, PT_CFM, &cfm, 0)
 881	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
 882		return -EIO;
 883
 884	/* control regs */
 885
 886	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
 887	retval |= __put_user(psr, &ppr->cr_ipsr);
 888
 889	/* app regs */
 890
 891	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 892	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
 893	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 894	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 895	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 896	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 897
 898	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
 899	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
 900	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 901	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
 902	retval |= __put_user(cfm, &ppr->cfm);
 903
 904	/* gr1-gr3 */
 905
 906	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
 907	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
 908
 909	/* gr4-gr7 */
 910
 911	for (i = 4; i < 8; i++) {
 912		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
 913			return -EIO;
 914		retval |= __put_user(val, &ppr->gr[i]);
 915	}
 916
 917	/* gr8-gr11 */
 918
 919	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
 920
 921	/* gr12-gr15 */
 922
 923	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
 924	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
 925	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
 926
 927	/* gr16-gr31 */
 928
 929	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
 930
 931	/* b0 */
 932
 933	retval |= __put_user(pt->b0, &ppr->br[0]);
 934
 935	/* b1-b5 */
 936
 937	for (i = 1; i < 6; i++) {
 938		if (unw_access_br(&info, i, &val, 0) < 0)
 939			return -EIO;
 940		__put_user(val, &ppr->br[i]);
 941	}
 942
 943	/* b6-b7 */
 944
 945	retval |= __put_user(pt->b6, &ppr->br[6]);
 946	retval |= __put_user(pt->b7, &ppr->br[7]);
 947
 948	/* fr2-fr5 */
 949
 950	for (i = 2; i < 6; i++) {
 951		if (unw_get_fr(&info, i, &fpval) < 0)
 952			return -EIO;
 953		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 954	}
 955
 956	/* fr6-fr11 */
 957
 958	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
 959				 sizeof(struct ia64_fpreg) * 6);
 960
 961	/* fp scratch regs(12-15) */
 962
 963	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
 964				 sizeof(struct ia64_fpreg) * 4);
 965
 966	/* fr16-fr31 */
 967
 968	for (i = 16; i < 32; i++) {
 969		if (unw_get_fr(&info, i, &fpval) < 0)
 970			return -EIO;
 971		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 972	}
 973
 974	/* fph */
 975
 976	ia64_flush_fph(child);
 977	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
 978				 sizeof(ppr->fr[32]) * 96);
 979
 980	/*  preds */
 981
 982	retval |= __put_user(pt->pr, &ppr->pr);
 983
 984	/* nat bits */
 985
 986	retval |= __put_user(nat_bits, &ppr->nat);
 987
 988	ret = retval ? -EIO : 0;
 989	return ret;
 990}
 991
 992static long
 993ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 994{
 995	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
 996	struct unw_frame_info info;
 997	struct switch_stack *sw;
 998	struct ia64_fpreg fpval;
 999	struct pt_regs *pt;
1000	long ret, retval = 0;
1001	int i;
1002
1003	memset(&fpval, 0, sizeof(fpval));
1004
1005	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1006		return -EIO;
1007
1008	pt = task_pt_regs(child);
1009	sw = (struct switch_stack *) (child->thread.ksp + 16);
1010	unw_init_from_blocked_task(&info, child);
1011	if (unw_unwind_to_user(&info) < 0) {
1012		return -EIO;
1013	}
1014
1015	if (((unsigned long) ppr & 0x7) != 0) {
1016		dprintk("ptrace:unaligned register address %p\n", ppr);
1017		return -EIO;
1018	}
1019
1020	/* control regs */
1021
1022	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1023	retval |= __get_user(psr, &ppr->cr_ipsr);
1024
1025	/* app regs */
1026
1027	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1028	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1029	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1030	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1031	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1032	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1033
1034	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1035	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1036	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1037	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1038	retval |= __get_user(cfm, &ppr->cfm);
1039
1040	/* gr1-gr3 */
1041
1042	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1043	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1044
1045	/* gr4-gr7 */
1046
1047	for (i = 4; i < 8; i++) {
1048		retval |= __get_user(val, &ppr->gr[i]);
1049		/* NaT bit will be set via PT_NAT_BITS: */
1050		if (unw_set_gr(&info, i, val, 0) < 0)
1051			return -EIO;
1052	}
1053
1054	/* gr8-gr11 */
1055
1056	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1057
1058	/* gr12-gr15 */
1059
1060	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1061	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1062	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1063
1064	/* gr16-gr31 */
1065
1066	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1067
1068	/* b0 */
1069
1070	retval |= __get_user(pt->b0, &ppr->br[0]);
1071
1072	/* b1-b5 */
1073
1074	for (i = 1; i < 6; i++) {
1075		retval |= __get_user(val, &ppr->br[i]);
1076		unw_set_br(&info, i, val);
1077	}
1078
1079	/* b6-b7 */
1080
1081	retval |= __get_user(pt->b6, &ppr->br[6]);
1082	retval |= __get_user(pt->b7, &ppr->br[7]);
1083
1084	/* fr2-fr5 */
1085
1086	for (i = 2; i < 6; i++) {
1087		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1088		if (unw_set_fr(&info, i, fpval) < 0)
1089			return -EIO;
1090	}
1091
1092	/* fr6-fr11 */
1093
1094	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1095				   sizeof(ppr->fr[6]) * 6);
1096
1097	/* fp scratch regs(12-15) */
1098
1099	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1100				   sizeof(ppr->fr[12]) * 4);
1101
1102	/* fr16-fr31 */
1103
1104	for (i = 16; i < 32; i++) {
1105		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1106					   sizeof(fpval));
1107		if (unw_set_fr(&info, i, fpval) < 0)
1108			return -EIO;
1109	}
1110
1111	/* fph */
1112
1113	ia64_sync_fph(child);
1114	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1115				   sizeof(ppr->fr[32]) * 96);
1116
1117	/* preds */
1118
1119	retval |= __get_user(pt->pr, &ppr->pr);
1120
1121	/* nat bits */
1122
1123	retval |= __get_user(nat_bits, &ppr->nat);
1124
1125	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1126	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1127	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1128	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1129	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1130	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1131	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1132	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1133
1134	ret = retval ? -EIO : 0;
1135	return ret;
1136}
1137
1138void
1139user_enable_single_step (struct task_struct *child)
1140{
1141	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1142
1143	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1144	child_psr->ss = 1;
1145}
1146
1147void
1148user_enable_block_step (struct task_struct *child)
1149{
1150	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1151
1152	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1153	child_psr->tb = 1;
1154}
1155
1156void
1157user_disable_single_step (struct task_struct *child)
1158{
1159	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1160
1161	/* make sure the single step/taken-branch trap bits are not set: */
1162	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1163	child_psr->ss = 0;
1164	child_psr->tb = 0;
1165}
1166
1167/*
1168 * Called by kernel/ptrace.c when detaching..
1169 *
1170 * Make sure the single step bit is not set.
1171 */
1172void
1173ptrace_disable (struct task_struct *child)
1174{
1175	user_disable_single_step(child);
1176}
1177
 
 
 
 
1178long
1179arch_ptrace (struct task_struct *child, long request,
1180	     unsigned long addr, unsigned long data)
1181{
1182	switch (request) {
1183	case PTRACE_PEEKTEXT:
1184	case PTRACE_PEEKDATA:
1185		/* read word at location addr */
1186		if (access_process_vm(child, addr, &data, sizeof(data), 0)
 
1187		    != sizeof(data))
1188			return -EIO;
1189		/* ensure return value is not mistaken for error code */
1190		force_successful_syscall_return();
1191		return data;
1192
1193	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1194	 * by the generic ptrace_request().
1195	 */
1196
1197	case PTRACE_PEEKUSR:
1198		/* read the word at addr in the USER area */
1199		if (access_uarea(child, addr, &data, 0) < 0)
1200			return -EIO;
1201		/* ensure return value is not mistaken for error code */
1202		force_successful_syscall_return();
1203		return data;
1204
1205	case PTRACE_POKEUSR:
1206		/* write the word at addr in the USER area */
1207		if (access_uarea(child, addr, &data, 1) < 0)
1208			return -EIO;
1209		return 0;
1210
1211	case PTRACE_OLD_GETSIGINFO:
1212		/* for backwards-compatibility */
1213		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1214
1215	case PTRACE_OLD_SETSIGINFO:
1216		/* for backwards-compatibility */
1217		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1218
1219	case PTRACE_GETREGS:
1220		return ptrace_getregs(child,
1221				      (struct pt_all_user_regs __user *) data);
1222
1223	case PTRACE_SETREGS:
1224		return ptrace_setregs(child,
1225				      (struct pt_all_user_regs __user *) data);
1226
1227	default:
1228		return ptrace_request(child, request, addr, data);
1229	}
1230}
1231
1232
1233/* "asmlinkage" so the input arguments are preserved... */
1234
1235asmlinkage long
1236syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1237		     long arg4, long arg5, long arg6, long arg7,
1238		     struct pt_regs regs)
1239{
1240	if (test_thread_flag(TIF_SYSCALL_TRACE))
1241		if (tracehook_report_syscall_entry(&regs))
1242			return -ENOSYS;
1243
1244	/* copy user rbs to kernel rbs */
1245	if (test_thread_flag(TIF_RESTORE_RSE))
1246		ia64_sync_krbs();
1247
1248
1249	audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3);
1250
1251	return 0;
1252}
1253
1254/* "asmlinkage" so the input arguments are preserved... */
1255
1256asmlinkage void
1257syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1258		     long arg4, long arg5, long arg6, long arg7,
1259		     struct pt_regs regs)
1260{
1261	int step;
1262
1263	audit_syscall_exit(&regs);
1264
1265	step = test_thread_flag(TIF_SINGLESTEP);
1266	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1267		tracehook_report_syscall_exit(&regs, step);
1268
1269	/* copy user rbs to kernel rbs */
1270	if (test_thread_flag(TIF_RESTORE_RSE))
1271		ia64_sync_krbs();
1272}
1273
1274/* Utrace implementation starts here */
1275struct regset_get {
1276	void *kbuf;
1277	void __user *ubuf;
1278};
1279
1280struct regset_set {
1281	const void *kbuf;
1282	const void __user *ubuf;
1283};
1284
1285struct regset_getset {
1286	struct task_struct *target;
1287	const struct user_regset *regset;
1288	union {
1289		struct regset_get get;
1290		struct regset_set set;
1291	} u;
1292	unsigned int pos;
1293	unsigned int count;
1294	int ret;
1295};
1296
 
 
 
 
 
 
 
 
 
 
 
1297static int
1298access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1299		unsigned long addr, unsigned long *data, int write_access)
1300{
1301	struct pt_regs *pt;
1302	unsigned long *ptr = NULL;
1303	int ret;
1304	char nat = 0;
1305
1306	pt = task_pt_regs(target);
1307	switch (addr) {
1308	case ELF_GR_OFFSET(1):
1309		ptr = &pt->r1;
1310		break;
1311	case ELF_GR_OFFSET(2):
1312	case ELF_GR_OFFSET(3):
1313		ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1314		break;
1315	case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1316		if (write_access) {
1317			/* read NaT bit first: */
1318			unsigned long dummy;
1319
1320			ret = unw_get_gr(info, addr/8, &dummy, &nat);
1321			if (ret < 0)
1322				return ret;
1323		}
1324		return unw_access_gr(info, addr/8, data, &nat, write_access);
1325	case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1326		ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1327		break;
1328	case ELF_GR_OFFSET(12):
1329	case ELF_GR_OFFSET(13):
1330		ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1331		break;
1332	case ELF_GR_OFFSET(14):
1333		ptr = &pt->r14;
1334		break;
1335	case ELF_GR_OFFSET(15):
1336		ptr = &pt->r15;
1337	}
1338	if (write_access)
1339		*ptr = *data;
1340	else
1341		*data = *ptr;
1342	return 0;
1343}
1344
1345static int
1346access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1347		unsigned long addr, unsigned long *data, int write_access)
1348{
1349	struct pt_regs *pt;
1350	unsigned long *ptr = NULL;
1351
1352	pt = task_pt_regs(target);
1353	switch (addr) {
1354	case ELF_BR_OFFSET(0):
1355		ptr = &pt->b0;
1356		break;
1357	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1358		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1359				     data, write_access);
1360	case ELF_BR_OFFSET(6):
1361		ptr = &pt->b6;
1362		break;
1363	case ELF_BR_OFFSET(7):
1364		ptr = &pt->b7;
1365	}
1366	if (write_access)
1367		*ptr = *data;
1368	else
1369		*data = *ptr;
1370	return 0;
1371}
1372
1373static int
1374access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1375		unsigned long addr, unsigned long *data, int write_access)
1376{
1377	struct pt_regs *pt;
1378	unsigned long cfm, urbs_end;
1379	unsigned long *ptr = NULL;
1380
1381	pt = task_pt_regs(target);
1382	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1383		switch (addr) {
1384		case ELF_AR_RSC_OFFSET:
1385			/* force PL3 */
1386			if (write_access)
1387				pt->ar_rsc = *data | (3 << 2);
1388			else
1389				*data = pt->ar_rsc;
1390			return 0;
1391		case ELF_AR_BSP_OFFSET:
1392			/*
1393			 * By convention, we use PT_AR_BSP to refer to
1394			 * the end of the user-level backing store.
1395			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1396			 * to get the real value of ar.bsp at the time
1397			 * the kernel was entered.
1398			 *
1399			 * Furthermore, when changing the contents of
1400			 * PT_AR_BSP (or PT_CFM) while the task is
1401			 * blocked in a system call, convert the state
1402			 * so that the non-system-call exit
1403			 * path is used.  This ensures that the proper
1404			 * state will be picked up when resuming
1405			 * execution.  However, it *also* means that
1406			 * once we write PT_AR_BSP/PT_CFM, it won't be
1407			 * possible to modify the syscall arguments of
1408			 * the pending system call any longer.  This
1409			 * shouldn't be an issue because modifying
1410			 * PT_AR_BSP/PT_CFM generally implies that
1411			 * we're either abandoning the pending system
1412			 * call or that we defer it's re-execution
1413			 * (e.g., due to GDB doing an inferior
1414			 * function call).
1415			 */
1416			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1417			if (write_access) {
1418				if (*data != urbs_end) {
1419					if (in_syscall(pt))
1420						convert_to_non_syscall(target,
1421								       pt,
1422								       cfm);
1423					/*
1424					 * Simulate user-level write
1425					 * of ar.bsp:
1426					 */
1427					pt->loadrs = 0;
1428					pt->ar_bspstore = *data;
1429				}
1430			} else
1431				*data = urbs_end;
1432			return 0;
1433		case ELF_AR_BSPSTORE_OFFSET:
1434			ptr = &pt->ar_bspstore;
1435			break;
1436		case ELF_AR_RNAT_OFFSET:
1437			ptr = &pt->ar_rnat;
1438			break;
1439		case ELF_AR_CCV_OFFSET:
1440			ptr = &pt->ar_ccv;
1441			break;
1442		case ELF_AR_UNAT_OFFSET:
1443			ptr = &pt->ar_unat;
1444			break;
1445		case ELF_AR_FPSR_OFFSET:
1446			ptr = &pt->ar_fpsr;
1447			break;
1448		case ELF_AR_PFS_OFFSET:
1449			ptr = &pt->ar_pfs;
1450			break;
1451		case ELF_AR_LC_OFFSET:
1452			return unw_access_ar(info, UNW_AR_LC, data,
1453					     write_access);
1454		case ELF_AR_EC_OFFSET:
1455			return unw_access_ar(info, UNW_AR_EC, data,
1456					     write_access);
1457		case ELF_AR_CSD_OFFSET:
1458			ptr = &pt->ar_csd;
1459			break;
1460		case ELF_AR_SSD_OFFSET:
1461			ptr = &pt->ar_ssd;
1462		}
1463	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1464		switch (addr) {
1465		case ELF_CR_IIP_OFFSET:
1466			ptr = &pt->cr_iip;
1467			break;
1468		case ELF_CFM_OFFSET:
1469			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1470			if (write_access) {
1471				if (((cfm ^ *data) & PFM_MASK) != 0) {
1472					if (in_syscall(pt))
1473						convert_to_non_syscall(target,
1474								       pt,
1475								       cfm);
1476					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1477						      | (*data & PFM_MASK));
1478				}
1479			} else
1480				*data = cfm;
1481			return 0;
1482		case ELF_CR_IPSR_OFFSET:
1483			if (write_access) {
1484				unsigned long tmp = *data;
1485				/* psr.ri==3 is a reserved value: SDM 2:25 */
1486				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1487					tmp &= ~IA64_PSR_RI;
1488				pt->cr_ipsr = ((tmp & IPSR_MASK)
1489					       | (pt->cr_ipsr & ~IPSR_MASK));
1490			} else
1491				*data = (pt->cr_ipsr & IPSR_MASK);
1492			return 0;
1493		}
1494	} else if (addr == ELF_NAT_OFFSET)
1495		return access_nat_bits(target, pt, info,
1496				       data, write_access);
1497	else if (addr == ELF_PR_OFFSET)
1498		ptr = &pt->pr;
1499	else
1500		return -1;
1501
1502	if (write_access)
1503		*ptr = *data;
1504	else
1505		*data = *ptr;
1506
1507	return 0;
1508}
1509
1510static int
1511access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1512		unsigned long addr, unsigned long *data, int write_access)
1513{
1514	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1515		return access_elf_gpreg(target, info, addr, data, write_access);
1516	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1517		return access_elf_breg(target, info, addr, data, write_access);
1518	else
1519		return access_elf_areg(target, info, addr, data, write_access);
1520}
1521
1522void do_gpregs_get(struct unw_frame_info *info, void *arg)
 
 
 
 
 
1523{
1524	struct pt_regs *pt;
1525	struct regset_getset *dst = arg;
1526	elf_greg_t tmp[16];
1527	unsigned int i, index, min_copy;
1528
1529	if (unw_unwind_to_user(info) < 0)
1530		return;
1531
1532	/*
1533	 * coredump format:
1534	 *      r0-r31
1535	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1536	 *      predicate registers (p0-p63)
1537	 *      b0-b7
1538	 *      ip cfm user-mask
1539	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1540	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1541	 */
1542
1543
1544	/* Skip r0 */
1545	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1546		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1547						      &dst->u.get.kbuf,
1548						      &dst->u.get.ubuf,
1549						      0, ELF_GR_OFFSET(1));
1550		if (dst->ret || dst->count == 0)
1551			return;
1552	}
1553
1554	/* gr1 - gr15 */
1555	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1556		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1557		min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1558			 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1559		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1560				index++)
1561			if (access_elf_reg(dst->target, info, i,
1562						&tmp[index], 0) < 0) {
1563				dst->ret = -EIO;
1564				return;
1565			}
1566		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1567				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1568				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1569		if (dst->ret || dst->count == 0)
1570			return;
1571	}
1572
1573	/* r16-r31 */
1574	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1575		pt = task_pt_regs(dst->target);
1576		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1577				&dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1578				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1579		if (dst->ret || dst->count == 0)
1580			return;
1581	}
1582
1583	/* nat, pr, b0 - b7 */
1584	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1585		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1586		min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1587			 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1588		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1589				index++)
1590			if (access_elf_reg(dst->target, info, i,
1591						&tmp[index], 0) < 0) {
1592				dst->ret = -EIO;
1593				return;
1594			}
1595		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1596				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1597				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1598		if (dst->ret || dst->count == 0)
1599			return;
1600	}
1601
1602	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1603	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1604	 */
1605	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1606		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1607		min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1608			 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1609		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1610				index++)
1611			if (access_elf_reg(dst->target, info, i,
1612						&tmp[index], 0) < 0) {
1613				dst->ret = -EIO;
1614				return;
1615			}
1616		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1618				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1619	}
1620}
1621
1622void do_gpregs_set(struct unw_frame_info *info, void *arg)
1623{
1624	struct pt_regs *pt;
1625	struct regset_getset *dst = arg;
1626	elf_greg_t tmp[16];
1627	unsigned int i, index;
1628
1629	if (unw_unwind_to_user(info) < 0)
1630		return;
1631
 
 
1632	/* Skip r0 */
1633	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1634		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1635						       &dst->u.set.kbuf,
1636						       &dst->u.set.ubuf,
1637						       0, ELF_GR_OFFSET(1));
1638		if (dst->ret || dst->count == 0)
1639			return;
1640	}
1641
1642	/* gr1-gr15 */
1643	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1644		i = dst->pos;
1645		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1646		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1647				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1648				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1649		if (dst->ret)
1650			return;
1651		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1652			if (access_elf_reg(dst->target, info, i,
1653						&tmp[index], 1) < 0) {
1654				dst->ret = -EIO;
1655				return;
1656			}
1657		if (dst->count == 0)
1658			return;
1659	}
1660
1661	/* gr16-gr31 */
1662	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1663		pt = task_pt_regs(dst->target);
1664		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1665				&dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1666				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1667		if (dst->ret || dst->count == 0)
1668			return;
1669	}
1670
1671	/* nat, pr, b0 - b7 */
1672	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1673		i = dst->pos;
1674		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1675		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1676				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1677				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1678		if (dst->ret)
1679			return;
1680		for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1681			if (access_elf_reg(dst->target, info, i,
1682						&tmp[index], 1) < 0) {
1683				dst->ret = -EIO;
1684				return;
1685			}
1686		if (dst->count == 0)
1687			return;
1688	}
1689
1690	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1691	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1692	 */
1693	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1694		i = dst->pos;
1695		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1696		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1697				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1698				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1699		if (dst->ret)
1700			return;
1701		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1702			if (access_elf_reg(dst->target, info, i,
1703						&tmp[index], 1) < 0) {
1704				dst->ret = -EIO;
1705				return;
1706			}
1707	}
1708}
1709
1710#define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1711
1712void do_fpregs_get(struct unw_frame_info *info, void *arg)
1713{
1714	struct regset_getset *dst = arg;
1715	struct task_struct *task = dst->target;
1716	elf_fpreg_t tmp[30];
1717	int index, min_copy, i;
 
1718
1719	if (unw_unwind_to_user(info) < 0)
1720		return;
1721
1722	/* Skip pos 0 and 1 */
1723	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1724		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1725						      &dst->u.get.kbuf,
1726						      &dst->u.get.ubuf,
1727						      0, ELF_FP_OFFSET(2));
1728		if (dst->count == 0 || dst->ret)
1729			return;
1730	}
1731
1732	/* fr2-fr31 */
1733	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1734		index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1735
1736		min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1737				dst->pos + dst->count);
1738		for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1739				index++)
1740			if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1741					 &tmp[index])) {
1742				dst->ret = -EIO;
1743				return;
1744			}
1745		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1746				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1747				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1748		if (dst->count == 0 || dst->ret)
1749			return;
 
 
1750	}
1751
1752	/* fph */
1753	if (dst->count > 0) {
1754		ia64_flush_fph(dst->target);
1755		if (task->thread.flags & IA64_THREAD_FPH_VALID)
1756			dst->ret = user_regset_copyout(
1757				&dst->pos, &dst->count,
1758				&dst->u.get.kbuf, &dst->u.get.ubuf,
1759				&dst->target->thread.fph,
1760				ELF_FP_OFFSET(32), -1);
1761		else
1762			/* Zero fill instead.  */
1763			dst->ret = user_regset_copyout_zero(
1764				&dst->pos, &dst->count,
1765				&dst->u.get.kbuf, &dst->u.get.ubuf,
1766				ELF_FP_OFFSET(32), -1);
1767	}
1768}
1769
1770void do_fpregs_set(struct unw_frame_info *info, void *arg)
1771{
1772	struct regset_getset *dst = arg;
1773	elf_fpreg_t fpreg, tmp[30];
1774	int index, start, end;
1775
1776	if (unw_unwind_to_user(info) < 0)
1777		return;
1778
1779	/* Skip pos 0 and 1 */
1780	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1781		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1782						       &dst->u.set.kbuf,
1783						       &dst->u.set.ubuf,
1784						       0, ELF_FP_OFFSET(2));
1785		if (dst->count == 0 || dst->ret)
1786			return;
1787	}
1788
1789	/* fr2-fr31 */
1790	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1791		start = dst->pos;
1792		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1793			 dst->pos + dst->count);
1794		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1795				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1796				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1797		if (dst->ret)
1798			return;
1799
1800		if (start & 0xF) { /* only write high part */
1801			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1802					 &fpreg)) {
1803				dst->ret = -EIO;
1804				return;
1805			}
1806			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1807				= fpreg.u.bits[0];
1808			start &= ~0xFUL;
1809		}
1810		if (end & 0xF) { /* only write low part */
1811			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1812					&fpreg)) {
1813				dst->ret = -EIO;
1814				return;
1815			}
1816			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1817				= fpreg.u.bits[1];
1818			end = (end + 0xF) & ~0xFUL;
1819		}
1820
1821		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1822			index = start / sizeof(elf_fpreg_t);
1823			if (unw_set_fr(info, index, tmp[index - 2])) {
1824				dst->ret = -EIO;
1825				return;
1826			}
1827		}
1828		if (dst->ret || dst->count == 0)
1829			return;
1830	}
1831
1832	/* fph */
1833	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1834		ia64_sync_fph(dst->target);
1835		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1836						&dst->u.set.kbuf,
1837						&dst->u.set.ubuf,
1838						&dst->target->thread.fph,
1839						ELF_FP_OFFSET(32), -1);
1840	}
1841}
1842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843static int
1844do_regset_call(void (*call)(struct unw_frame_info *, void *),
1845	       struct task_struct *target,
1846	       const struct user_regset *regset,
1847	       unsigned int pos, unsigned int count,
1848	       const void *kbuf, const void __user *ubuf)
1849{
1850	struct regset_getset info = { .target = target, .regset = regset,
1851				 .pos = pos, .count = count,
1852				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1853				 .ret = 0 };
1854
1855	if (target == current)
1856		unw_init_running(call, &info);
1857	else {
1858		struct unw_frame_info ufi;
1859		memset(&ufi, 0, sizeof(ufi));
1860		unw_init_from_blocked_task(&ufi, target);
1861		(*call)(&ufi, &info);
1862	}
1863
1864	return info.ret;
1865}
1866
1867static int
1868gpregs_get(struct task_struct *target,
1869	   const struct user_regset *regset,
1870	   unsigned int pos, unsigned int count,
1871	   void *kbuf, void __user *ubuf)
1872{
1873	return do_regset_call(do_gpregs_get, target, regset, pos, count,
1874		kbuf, ubuf);
 
1875}
1876
1877static int gpregs_set(struct task_struct *target,
1878		const struct user_regset *regset,
1879		unsigned int pos, unsigned int count,
1880		const void *kbuf, const void __user *ubuf)
1881{
1882	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1883		kbuf, ubuf);
1884}
1885
1886static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1887{
1888	do_sync_rbs(info, ia64_sync_user_rbs);
1889}
1890
1891/*
1892 * This is called to write back the register backing store.
1893 * ptrace does this before it stops, so that a tracer reading the user
1894 * memory after the thread stops will get the current register data.
1895 */
1896static int
1897gpregs_writeback(struct task_struct *target,
1898		 const struct user_regset *regset,
1899		 int now)
1900{
1901	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1902		return 0;
1903	set_notify_resume(target);
1904	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1905		NULL, NULL);
1906}
1907
1908static int
1909fpregs_active(struct task_struct *target, const struct user_regset *regset)
1910{
1911	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1912}
1913
1914static int fpregs_get(struct task_struct *target,
1915		const struct user_regset *regset,
1916		unsigned int pos, unsigned int count,
1917		void *kbuf, void __user *ubuf)
1918{
1919	return do_regset_call(do_fpregs_get, target, regset, pos, count,
1920		kbuf, ubuf);
 
1921}
1922
1923static int fpregs_set(struct task_struct *target,
1924		const struct user_regset *regset,
1925		unsigned int pos, unsigned int count,
1926		const void *kbuf, const void __user *ubuf)
1927{
1928	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1929		kbuf, ubuf);
1930}
1931
1932static int
1933access_uarea(struct task_struct *child, unsigned long addr,
1934	      unsigned long *data, int write_access)
1935{
1936	unsigned int pos = -1; /* an invalid value */
1937	int ret;
1938	unsigned long *ptr, regnum;
1939
1940	if ((addr & 0x7) != 0) {
1941		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1942		return -1;
1943	}
1944	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1945		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1946		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1947		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1948		dprintk("ptrace: rejecting access to register "
1949					"address 0x%lx\n", addr);
1950		return -1;
1951	}
1952
1953	switch (addr) {
1954	case PT_F32 ... (PT_F127 + 15):
1955		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1956		break;
1957	case PT_F2 ... (PT_F5 + 15):
1958		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1959		break;
1960	case PT_F10 ... (PT_F31 + 15):
1961		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1962		break;
1963	case PT_F6 ... (PT_F9 + 15):
1964		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1965		break;
1966	}
1967
1968	if (pos != -1) {
1969		if (write_access)
1970			ret = fpregs_set(child, NULL, pos,
1971				sizeof(unsigned long), data, NULL);
1972		else
1973			ret = fpregs_get(child, NULL, pos,
1974				sizeof(unsigned long), data, NULL);
1975		if (ret != 0)
1976			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977		return 0;
1978	}
1979
1980	switch (addr) {
1981	case PT_NAT_BITS:
1982		pos = ELF_NAT_OFFSET;
1983		break;
1984	case PT_R4 ... PT_R7:
1985		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1986		break;
1987	case PT_B1 ... PT_B5:
1988		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1989		break;
1990	case PT_AR_EC:
1991		pos = ELF_AR_EC_OFFSET;
1992		break;
1993	case PT_AR_LC:
1994		pos = ELF_AR_LC_OFFSET;
1995		break;
1996	case PT_CR_IPSR:
1997		pos = ELF_CR_IPSR_OFFSET;
1998		break;
1999	case PT_CR_IIP:
2000		pos = ELF_CR_IIP_OFFSET;
2001		break;
2002	case PT_CFM:
2003		pos = ELF_CFM_OFFSET;
2004		break;
2005	case PT_AR_UNAT:
2006		pos = ELF_AR_UNAT_OFFSET;
2007		break;
2008	case PT_AR_PFS:
2009		pos = ELF_AR_PFS_OFFSET;
2010		break;
2011	case PT_AR_RSC:
2012		pos = ELF_AR_RSC_OFFSET;
2013		break;
2014	case PT_AR_RNAT:
2015		pos = ELF_AR_RNAT_OFFSET;
2016		break;
2017	case PT_AR_BSPSTORE:
2018		pos = ELF_AR_BSPSTORE_OFFSET;
2019		break;
2020	case PT_PR:
2021		pos = ELF_PR_OFFSET;
2022		break;
2023	case PT_B6:
2024		pos = ELF_BR_OFFSET(6);
2025		break;
2026	case PT_AR_BSP:
2027		pos = ELF_AR_BSP_OFFSET;
2028		break;
2029	case PT_R1 ... PT_R3:
2030		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2031		break;
2032	case PT_R12 ... PT_R15:
2033		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2034		break;
2035	case PT_R8 ... PT_R11:
2036		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2037		break;
2038	case PT_R16 ... PT_R31:
2039		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2040		break;
2041	case PT_AR_CCV:
2042		pos = ELF_AR_CCV_OFFSET;
2043		break;
2044	case PT_AR_FPSR:
2045		pos = ELF_AR_FPSR_OFFSET;
2046		break;
2047	case PT_B0:
2048		pos = ELF_BR_OFFSET(0);
2049		break;
2050	case PT_B7:
2051		pos = ELF_BR_OFFSET(7);
2052		break;
2053	case PT_AR_CSD:
2054		pos = ELF_AR_CSD_OFFSET;
2055		break;
2056	case PT_AR_SSD:
2057		pos = ELF_AR_SSD_OFFSET;
2058		break;
2059	}
2060
2061	if (pos != -1) {
2062		if (write_access)
2063			ret = gpregs_set(child, NULL, pos,
2064				sizeof(unsigned long), data, NULL);
2065		else
2066			ret = gpregs_get(child, NULL, pos,
2067				sizeof(unsigned long), data, NULL);
2068		if (ret != 0)
2069			return -1;
2070		return 0;
2071	}
2072
2073	/* access debug registers */
2074	if (addr >= PT_IBR) {
2075		regnum = (addr - PT_IBR) >> 3;
2076		ptr = &child->thread.ibr[0];
2077	} else {
2078		regnum = (addr - PT_DBR) >> 3;
2079		ptr = &child->thread.dbr[0];
2080	}
2081
2082	if (regnum >= 8) {
2083		dprintk("ptrace: rejecting access to register "
2084				"address 0x%lx\n", addr);
2085		return -1;
2086	}
2087#ifdef CONFIG_PERFMON
2088	/*
2089	 * Check if debug registers are used by perfmon. This
2090	 * test must be done once we know that we can do the
2091	 * operation, i.e. the arguments are all valid, but
2092	 * before we start modifying the state.
2093	 *
2094	 * Perfmon needs to keep a count of how many processes
2095	 * are trying to modify the debug registers for system
2096	 * wide monitoring sessions.
2097	 *
2098	 * We also include read access here, because they may
2099	 * cause the PMU-installed debug register state
2100	 * (dbr[], ibr[]) to be reset. The two arrays are also
2101	 * used by perfmon, but we do not use
2102	 * IA64_THREAD_DBG_VALID. The registers are restored
2103	 * by the PMU context switch code.
2104	 */
2105	if (pfm_use_debug_registers(child))
2106		return -1;
2107#endif
2108
2109	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2110		child->thread.flags |= IA64_THREAD_DBG_VALID;
2111		memset(child->thread.dbr, 0,
2112				sizeof(child->thread.dbr));
2113		memset(child->thread.ibr, 0,
2114				sizeof(child->thread.ibr));
2115	}
2116
2117	ptr += regnum;
2118
2119	if ((regnum & 1) && write_access) {
2120		/* don't let the user set kernel-level breakpoints: */
2121		*ptr = *data & ~(7UL << 56);
2122		return 0;
2123	}
2124	if (write_access)
2125		*ptr = *data;
2126	else
2127		*data = *ptr;
2128	return 0;
2129}
2130
2131static const struct user_regset native_regsets[] = {
2132	{
2133		.core_note_type = NT_PRSTATUS,
2134		.n = ELF_NGREG,
2135		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2136		.get = gpregs_get, .set = gpregs_set,
2137		.writeback = gpregs_writeback
2138	},
2139	{
2140		.core_note_type = NT_PRFPREG,
2141		.n = ELF_NFPREG,
2142		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2143		.get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2144	},
2145};
2146
2147static const struct user_regset_view user_ia64_view = {
2148	.name = "ia64",
2149	.e_machine = EM_IA_64,
2150	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2151};
2152
2153const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2154{
2155	return &user_ia64_view;
2156}
2157
2158struct syscall_get_set_args {
2159	unsigned int i;
2160	unsigned int n;
2161	unsigned long *args;
2162	struct pt_regs *regs;
2163	int rw;
2164};
2165
2166static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2167{
2168	struct syscall_get_set_args *args = data;
2169	struct pt_regs *pt = args->regs;
2170	unsigned long *krbs, cfm, ndirty;
2171	int i, count;
2172
2173	if (unw_unwind_to_user(info) < 0)
2174		return;
2175
 
 
 
 
 
 
 
 
 
 
2176	cfm = pt->cr_ifs;
 
 
2177	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2178	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2179
2180	count = 0;
2181	if (in_syscall(pt))
2182		count = min_t(int, args->n, cfm & 0x7f);
2183
 
2184	for (i = 0; i < count; i++) {
2185		if (args->rw)
2186			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2187				args->args[i];
2188		else
2189			args->args[i] = *ia64_rse_skip_regs(krbs,
2190				ndirty + i + args->i);
2191	}
2192
2193	if (!args->rw) {
2194		while (i < args->n) {
2195			args->args[i] = 0;
2196			i++;
2197		}
2198	}
2199}
2200
2201void ia64_syscall_get_set_arguments(struct task_struct *task,
2202	struct pt_regs *regs, unsigned int i, unsigned int n,
2203	unsigned long *args, int rw)
2204{
2205	struct syscall_get_set_args data = {
2206		.i = i,
2207		.n = n,
2208		.args = args,
2209		.regs = regs,
2210		.rw = rw,
2211	};
2212
2213	if (task == current)
2214		unw_init_running(syscall_get_set_args_cb, &data);
2215	else {
2216		struct unw_frame_info ufi;
2217		memset(&ufi, 0, sizeof(ufi));
2218		unw_init_from_blocked_task(&ufi, task);
2219		syscall_get_set_args_cb(&ufi, &data);
2220	}
2221}