Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/sched/task.h>
16#include <linux/sched/task_stack.h>
17#include <linux/mm.h>
18#include <linux/errno.h>
19#include <linux/ptrace.h>
20#include <linux/user.h>
21#include <linux/security.h>
22#include <linux/audit.h>
23#include <linux/signal.h>
24#include <linux/regset.h>
25#include <linux/elf.h>
26#include <linux/resume_user_mode.h>
27
28#include <asm/processor.h>
29#include <asm/ptrace_offsets.h>
30#include <asm/rse.h>
31#include <linux/uaccess.h>
32#include <asm/unwind.h>
33
34#include "entry.h"
35
36/*
37 * Bits in the PSR that we allow ptrace() to change:
38 * be, up, ac, mfl, mfh (the user mask; five bits total)
39 * db (debug breakpoint fault; one bit)
40 * id (instruction debug fault disable; one bit)
41 * dd (data debug fault disable; one bit)
42 * ri (restart instruction; two bits)
43 * is (instruction set; one bit)
44 */
45#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
46 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
47
48#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
49#define PFM_MASK MASK(38)
50
51#define PTRACE_DEBUG 0
52
53#if PTRACE_DEBUG
54# define dprintk(format...) printk(format)
55# define inline
56#else
57# define dprintk(format...)
58#endif
59
60/* Return TRUE if PT was created due to kernel-entry via a system-call. */
61
62static inline int
63in_syscall (struct pt_regs *pt)
64{
65 return (long) pt->cr_ifs >= 0;
66}
67
68/*
69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
70 * bitset where bit i is set iff the NaT bit of register i is set.
71 */
72unsigned long
73ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
74{
75# define GET_BITS(first, last, unat) \
76 ({ \
77 unsigned long bit = ia64_unat_pos(&pt->r##first); \
78 unsigned long nbits = (last - first + 1); \
79 unsigned long mask = MASK(nbits) << first; \
80 unsigned long dist; \
81 if (bit < first) \
82 dist = 64 + bit - first; \
83 else \
84 dist = bit - first; \
85 ia64_rotr(unat, dist) & mask; \
86 })
87 unsigned long val;
88
89 /*
90 * Registers that are stored consecutively in struct pt_regs
91 * can be handled in parallel. If the register order in
92 * struct_pt_regs changes, this code MUST be updated.
93 */
94 val = GET_BITS( 1, 1, scratch_unat);
95 val |= GET_BITS( 2, 3, scratch_unat);
96 val |= GET_BITS(12, 13, scratch_unat);
97 val |= GET_BITS(14, 14, scratch_unat);
98 val |= GET_BITS(15, 15, scratch_unat);
99 val |= GET_BITS( 8, 11, scratch_unat);
100 val |= GET_BITS(16, 31, scratch_unat);
101 return val;
102
103# undef GET_BITS
104}
105
106/*
107 * Set the NaT bits for the scratch registers according to NAT and
108 * return the resulting unat (assuming the scratch registers are
109 * stored in PT).
110 */
111unsigned long
112ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
113{
114# define PUT_BITS(first, last, nat) \
115 ({ \
116 unsigned long bit = ia64_unat_pos(&pt->r##first); \
117 unsigned long nbits = (last - first + 1); \
118 unsigned long mask = MASK(nbits) << first; \
119 long dist; \
120 if (bit < first) \
121 dist = 64 + bit - first; \
122 else \
123 dist = bit - first; \
124 ia64_rotl(nat & mask, dist); \
125 })
126 unsigned long scratch_unat;
127
128 /*
129 * Registers that are stored consecutively in struct pt_regs
130 * can be handled in parallel. If the register order in
131 * struct_pt_regs changes, this code MUST be updated.
132 */
133 scratch_unat = PUT_BITS( 1, 1, nat);
134 scratch_unat |= PUT_BITS( 2, 3, nat);
135 scratch_unat |= PUT_BITS(12, 13, nat);
136 scratch_unat |= PUT_BITS(14, 14, nat);
137 scratch_unat |= PUT_BITS(15, 15, nat);
138 scratch_unat |= PUT_BITS( 8, 11, nat);
139 scratch_unat |= PUT_BITS(16, 31, nat);
140
141 return scratch_unat;
142
143# undef PUT_BITS
144}
145
146#define IA64_MLX_TEMPLATE 0x2
147#define IA64_MOVL_OPCODE 6
148
149void
150ia64_increment_ip (struct pt_regs *regs)
151{
152 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
153
154 if (ri > 2) {
155 ri = 0;
156 regs->cr_iip += 16;
157 } else if (ri == 2) {
158 get_user(w0, (char __user *) regs->cr_iip + 0);
159 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
160 /*
161 * rfi'ing to slot 2 of an MLX bundle causes
162 * an illegal operation fault. We don't want
163 * that to happen...
164 */
165 ri = 0;
166 regs->cr_iip += 16;
167 }
168 }
169 ia64_psr(regs)->ri = ri;
170}
171
172void
173ia64_decrement_ip (struct pt_regs *regs)
174{
175 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
176
177 if (ia64_psr(regs)->ri == 0) {
178 regs->cr_iip -= 16;
179 ri = 2;
180 get_user(w0, (char __user *) regs->cr_iip + 0);
181 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
182 /*
183 * rfi'ing to slot 2 of an MLX bundle causes
184 * an illegal operation fault. We don't want
185 * that to happen...
186 */
187 ri = 1;
188 }
189 }
190 ia64_psr(regs)->ri = ri;
191}
192
193/*
194 * This routine is used to read an rnat bits that are stored on the
195 * kernel backing store. Since, in general, the alignment of the user
196 * and kernel are different, this is not completely trivial. In
197 * essence, we need to construct the user RNAT based on up to two
198 * kernel RNAT values and/or the RNAT value saved in the child's
199 * pt_regs.
200 *
201 * user rbs
202 *
203 * +--------+ <-- lowest address
204 * | slot62 |
205 * +--------+
206 * | rnat | 0x....1f8
207 * +--------+
208 * | slot00 | \
209 * +--------+ |
210 * | slot01 | > child_regs->ar_rnat
211 * +--------+ |
212 * | slot02 | / kernel rbs
213 * +--------+ +--------+
214 * <- child_regs->ar_bspstore | slot61 | <-- krbs
215 * +- - - - + +--------+
216 * | slot62 |
217 * +- - - - + +--------+
218 * | rnat |
219 * +- - - - + +--------+
220 * vrnat | slot00 |
221 * +- - - - + +--------+
222 * = =
223 * +--------+
224 * | slot00 | \
225 * +--------+ |
226 * | slot01 | > child_stack->ar_rnat
227 * +--------+ |
228 * | slot02 | /
229 * +--------+
230 * <--- child_stack->ar_bspstore
231 *
232 * The way to think of this code is as follows: bit 0 in the user rnat
233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
234 * value. The kernel rnat value holding this bit is stored in
235 * variable rnat0. rnat1 is loaded with the kernel rnat value that
236 * form the upper bits of the user rnat value.
237 *
238 * Boundary cases:
239 *
240 * o when reading the rnat "below" the first rnat slot on the kernel
241 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
242 * merged in from pt->ar_rnat.
243 *
244 * o when reading the rnat "above" the last rnat slot on the kernel
245 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
246 */
247static unsigned long
248get_rnat (struct task_struct *task, struct switch_stack *sw,
249 unsigned long *krbs, unsigned long *urnat_addr,
250 unsigned long *urbs_end)
251{
252 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
253 unsigned long umask = 0, mask, m;
254 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
255 long num_regs, nbits;
256 struct pt_regs *pt;
257
258 pt = task_pt_regs(task);
259 kbsp = (unsigned long *) sw->ar_bspstore;
260 ubspstore = (unsigned long *) pt->ar_bspstore;
261
262 if (urbs_end < urnat_addr)
263 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
264 else
265 nbits = 63;
266 mask = MASK(nbits);
267 /*
268 * First, figure out which bit number slot 0 in user-land maps
269 * to in the kernel rnat. Do this by figuring out how many
270 * register slots we're beyond the user's backingstore and
271 * then computing the equivalent address in kernel space.
272 */
273 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
274 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
275 shift = ia64_rse_slot_num(slot0_kaddr);
276 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
277 rnat0_kaddr = rnat1_kaddr - 64;
278
279 if (ubspstore + 63 > urnat_addr) {
280 /* some bits need to be merged in from pt->ar_rnat */
281 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
282 urnat = (pt->ar_rnat & umask);
283 mask &= ~umask;
284 if (!mask)
285 return urnat;
286 }
287
288 m = mask << shift;
289 if (rnat0_kaddr >= kbsp)
290 rnat0 = sw->ar_rnat;
291 else if (rnat0_kaddr > krbs)
292 rnat0 = *rnat0_kaddr;
293 urnat |= (rnat0 & m) >> shift;
294
295 m = mask >> (63 - shift);
296 if (rnat1_kaddr >= kbsp)
297 rnat1 = sw->ar_rnat;
298 else if (rnat1_kaddr > krbs)
299 rnat1 = *rnat1_kaddr;
300 urnat |= (rnat1 & m) << (63 - shift);
301 return urnat;
302}
303
304/*
305 * The reverse of get_rnat.
306 */
307static void
308put_rnat (struct task_struct *task, struct switch_stack *sw,
309 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
310 unsigned long *urbs_end)
311{
312 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
313 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
314 long num_regs, nbits;
315 struct pt_regs *pt;
316 unsigned long cfm, *urbs_kargs;
317
318 pt = task_pt_regs(task);
319 kbsp = (unsigned long *) sw->ar_bspstore;
320 ubspstore = (unsigned long *) pt->ar_bspstore;
321
322 urbs_kargs = urbs_end;
323 if (in_syscall(pt)) {
324 /*
325 * If entered via syscall, don't allow user to set rnat bits
326 * for syscall args.
327 */
328 cfm = pt->cr_ifs;
329 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
330 }
331
332 if (urbs_kargs >= urnat_addr)
333 nbits = 63;
334 else {
335 if ((urnat_addr - 63) >= urbs_kargs)
336 return;
337 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
338 }
339 mask = MASK(nbits);
340
341 /*
342 * First, figure out which bit number slot 0 in user-land maps
343 * to in the kernel rnat. Do this by figuring out how many
344 * register slots we're beyond the user's backingstore and
345 * then computing the equivalent address in kernel space.
346 */
347 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
348 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
349 shift = ia64_rse_slot_num(slot0_kaddr);
350 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
351 rnat0_kaddr = rnat1_kaddr - 64;
352
353 if (ubspstore + 63 > urnat_addr) {
354 /* some bits need to be place in pt->ar_rnat: */
355 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
356 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
357 mask &= ~umask;
358 if (!mask)
359 return;
360 }
361 /*
362 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
363 * rnat slot is ignored. so we don't have to clear it here.
364 */
365 rnat0 = (urnat << shift);
366 m = mask << shift;
367 if (rnat0_kaddr >= kbsp)
368 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
369 else if (rnat0_kaddr > krbs)
370 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
371
372 rnat1 = (urnat >> (63 - shift));
373 m = mask >> (63 - shift);
374 if (rnat1_kaddr >= kbsp)
375 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
376 else if (rnat1_kaddr > krbs)
377 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
378}
379
380static inline int
381on_kernel_rbs (unsigned long addr, unsigned long bspstore,
382 unsigned long urbs_end)
383{
384 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
385 urbs_end);
386 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
387}
388
389/*
390 * Read a word from the user-level backing store of task CHILD. ADDR
391 * is the user-level address to read the word from, VAL a pointer to
392 * the return value, and USER_BSP gives the end of the user-level
393 * backing store (i.e., it's the address that would be in ar.bsp after
394 * the user executed a "cover" instruction).
395 *
396 * This routine takes care of accessing the kernel register backing
397 * store for those registers that got spilled there. It also takes
398 * care of calculating the appropriate RNaT collection words.
399 */
400long
401ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
402 unsigned long user_rbs_end, unsigned long addr, long *val)
403{
404 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
405 struct pt_regs *child_regs;
406 size_t copied;
407 long ret;
408
409 urbs_end = (long *) user_rbs_end;
410 laddr = (unsigned long *) addr;
411 child_regs = task_pt_regs(child);
412 bspstore = (unsigned long *) child_regs->ar_bspstore;
413 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
414 if (on_kernel_rbs(addr, (unsigned long) bspstore,
415 (unsigned long) urbs_end))
416 {
417 /*
418 * Attempt to read the RBS in an area that's actually
419 * on the kernel RBS => read the corresponding bits in
420 * the kernel RBS.
421 */
422 rnat_addr = ia64_rse_rnat_addr(laddr);
423 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
424
425 if (laddr == rnat_addr) {
426 /* return NaT collection word itself */
427 *val = ret;
428 return 0;
429 }
430
431 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
432 /*
433 * It is implementation dependent whether the
434 * data portion of a NaT value gets saved on a
435 * st8.spill or RSE spill (e.g., see EAS 2.6,
436 * 4.4.4.6 Register Spill and Fill). To get
437 * consistent behavior across all possible
438 * IA-64 implementations, we return zero in
439 * this case.
440 */
441 *val = 0;
442 return 0;
443 }
444
445 if (laddr < urbs_end) {
446 /*
447 * The desired word is on the kernel RBS and
448 * is not a NaT.
449 */
450 regnum = ia64_rse_num_regs(bspstore, laddr);
451 *val = *ia64_rse_skip_regs(krbs, regnum);
452 return 0;
453 }
454 }
455 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
456 if (copied != sizeof(ret))
457 return -EIO;
458 *val = ret;
459 return 0;
460}
461
462long
463ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
464 unsigned long user_rbs_end, unsigned long addr, long val)
465{
466 unsigned long *bspstore, *krbs, regnum, *laddr;
467 unsigned long *urbs_end = (long *) user_rbs_end;
468 struct pt_regs *child_regs;
469
470 laddr = (unsigned long *) addr;
471 child_regs = task_pt_regs(child);
472 bspstore = (unsigned long *) child_regs->ar_bspstore;
473 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
474 if (on_kernel_rbs(addr, (unsigned long) bspstore,
475 (unsigned long) urbs_end))
476 {
477 /*
478 * Attempt to write the RBS in an area that's actually
479 * on the kernel RBS => write the corresponding bits
480 * in the kernel RBS.
481 */
482 if (ia64_rse_is_rnat_slot(laddr))
483 put_rnat(child, child_stack, krbs, laddr, val,
484 urbs_end);
485 else {
486 if (laddr < urbs_end) {
487 regnum = ia64_rse_num_regs(bspstore, laddr);
488 *ia64_rse_skip_regs(krbs, regnum) = val;
489 }
490 }
491 } else if (access_process_vm(child, addr, &val, sizeof(val),
492 FOLL_FORCE | FOLL_WRITE)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496}
497
498/*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506unsigned long
507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509{
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525}
526
527/*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534long
535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537{
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val),
547 FOLL_FORCE | FOLL_WRITE)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552}
553
554static long
555ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557{
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val),
564 FOLL_FORCE)
565 != sizeof(val))
566 return -EIO;
567
568 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569 if (ret < 0)
570 return ret;
571 }
572 return 0;
573}
574
575typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 unsigned long, unsigned long);
577
578static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579{
580 struct pt_regs *pt;
581 unsigned long urbs_end;
582 syncfunc_t fn = arg;
583
584 if (unw_unwind_to_user(info) < 0)
585 return;
586 pt = task_pt_regs(info->task);
587 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588
589 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590}
591
592/*
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
601 */
602void ia64_ptrace_stop(void)
603{
604 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605 return;
606 set_notify_resume(current);
607 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608}
609
610/*
611 * This is called to read back the register backing store.
612 */
613void ia64_sync_krbs(void)
614{
615 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616
617 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
618}
619
620/*
621 * Write f32-f127 back to task->thread.fph if it has been modified.
622 */
623inline void
624ia64_flush_fph (struct task_struct *task)
625{
626 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
627
628 /*
629 * Prevent migrating this task while
630 * we're fiddling with the FPU state
631 */
632 preempt_disable();
633 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
634 psr->mfh = 0;
635 task->thread.flags |= IA64_THREAD_FPH_VALID;
636 ia64_save_fpu(&task->thread.fph[0]);
637 }
638 preempt_enable();
639}
640
641/*
642 * Sync the fph state of the task so that it can be manipulated
643 * through thread.fph. If necessary, f32-f127 are written back to
644 * thread.fph or, if the fph state hasn't been used before, thread.fph
645 * is cleared to zeroes. Also, access to f32-f127 is disabled to
646 * ensure that the task picks up the state from thread.fph when it
647 * executes again.
648 */
649void
650ia64_sync_fph (struct task_struct *task)
651{
652 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
653
654 ia64_flush_fph(task);
655 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
656 task->thread.flags |= IA64_THREAD_FPH_VALID;
657 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
658 }
659 ia64_drop_fpu(task);
660 psr->dfh = 1;
661}
662
663/*
664 * Change the machine-state of CHILD such that it will return via the normal
665 * kernel exit-path, rather than the syscall-exit path.
666 */
667static void
668convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
669 unsigned long cfm)
670{
671 struct unw_frame_info info, prev_info;
672 unsigned long ip, sp, pr;
673
674 unw_init_from_blocked_task(&info, child);
675 while (1) {
676 prev_info = info;
677 if (unw_unwind(&info) < 0)
678 return;
679
680 unw_get_sp(&info, &sp);
681 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
682 < IA64_PT_REGS_SIZE) {
683 dprintk("ptrace.%s: ran off the top of the kernel "
684 "stack\n", __func__);
685 return;
686 }
687 if (unw_get_pr (&prev_info, &pr) < 0) {
688 unw_get_rp(&prev_info, &ip);
689 dprintk("ptrace.%s: failed to read "
690 "predicate register (ip=0x%lx)\n",
691 __func__, ip);
692 return;
693 }
694 if (unw_is_intr_frame(&info)
695 && (pr & (1UL << PRED_USER_STACK)))
696 break;
697 }
698
699 /*
700 * Note: at the time of this call, the target task is blocked
701 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
702 * (aka, "pLvSys") we redirect execution from
703 * .work_pending_syscall_end to .work_processed_kernel.
704 */
705 unw_get_pr(&prev_info, &pr);
706 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
707 pr |= (1UL << PRED_NON_SYSCALL);
708 unw_set_pr(&prev_info, pr);
709
710 pt->cr_ifs = (1UL << 63) | cfm;
711 /*
712 * Clear the memory that is NOT written on syscall-entry to
713 * ensure we do not leak kernel-state to user when execution
714 * resumes.
715 */
716 pt->r2 = 0;
717 pt->r3 = 0;
718 pt->r14 = 0;
719 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
720 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
721 pt->b7 = 0;
722 pt->ar_ccv = 0;
723 pt->ar_csd = 0;
724 pt->ar_ssd = 0;
725}
726
727static int
728access_nat_bits (struct task_struct *child, struct pt_regs *pt,
729 struct unw_frame_info *info,
730 unsigned long *data, int write_access)
731{
732 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
733 char nat = 0;
734
735 if (write_access) {
736 nat_bits = *data;
737 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
738 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
739 dprintk("ptrace: failed to set ar.unat\n");
740 return -1;
741 }
742 for (regnum = 4; regnum <= 7; ++regnum) {
743 unw_get_gr(info, regnum, &dummy, &nat);
744 unw_set_gr(info, regnum, dummy,
745 (nat_bits >> regnum) & 1);
746 }
747 } else {
748 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
749 dprintk("ptrace: failed to read ar.unat\n");
750 return -1;
751 }
752 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
753 for (regnum = 4; regnum <= 7; ++regnum) {
754 unw_get_gr(info, regnum, &dummy, &nat);
755 nat_bits |= (nat != 0) << regnum;
756 }
757 *data = nat_bits;
758 }
759 return 0;
760}
761
762static int
763access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
764 unsigned long addr, unsigned long *data, int write_access);
765
766static long
767ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
768{
769 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
770 struct unw_frame_info info;
771 struct ia64_fpreg fpval;
772 struct switch_stack *sw;
773 struct pt_regs *pt;
774 long ret, retval = 0;
775 char nat = 0;
776 int i;
777
778 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
779 return -EIO;
780
781 pt = task_pt_regs(child);
782 sw = (struct switch_stack *) (child->thread.ksp + 16);
783 unw_init_from_blocked_task(&info, child);
784 if (unw_unwind_to_user(&info) < 0) {
785 return -EIO;
786 }
787
788 if (((unsigned long) ppr & 0x7) != 0) {
789 dprintk("ptrace:unaligned register address %p\n", ppr);
790 return -EIO;
791 }
792
793 if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
794 access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
795 access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
796 access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
797 access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
798 access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
799 access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
800 return -EIO;
801
802 /* control regs */
803
804 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
805 retval |= __put_user(psr, &ppr->cr_ipsr);
806
807 /* app regs */
808
809 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
810 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
811 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
812 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
813 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
814 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
815
816 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
817 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
818 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
819 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
820 retval |= __put_user(cfm, &ppr->cfm);
821
822 /* gr1-gr3 */
823
824 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
825 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
826
827 /* gr4-gr7 */
828
829 for (i = 4; i < 8; i++) {
830 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
831 return -EIO;
832 retval |= __put_user(val, &ppr->gr[i]);
833 }
834
835 /* gr8-gr11 */
836
837 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
838
839 /* gr12-gr15 */
840
841 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
842 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
843 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
844
845 /* gr16-gr31 */
846
847 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
848
849 /* b0 */
850
851 retval |= __put_user(pt->b0, &ppr->br[0]);
852
853 /* b1-b5 */
854
855 for (i = 1; i < 6; i++) {
856 if (unw_access_br(&info, i, &val, 0) < 0)
857 return -EIO;
858 __put_user(val, &ppr->br[i]);
859 }
860
861 /* b6-b7 */
862
863 retval |= __put_user(pt->b6, &ppr->br[6]);
864 retval |= __put_user(pt->b7, &ppr->br[7]);
865
866 /* fr2-fr5 */
867
868 for (i = 2; i < 6; i++) {
869 if (unw_get_fr(&info, i, &fpval) < 0)
870 return -EIO;
871 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
872 }
873
874 /* fr6-fr11 */
875
876 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
877 sizeof(struct ia64_fpreg) * 6);
878
879 /* fp scratch regs(12-15) */
880
881 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
882 sizeof(struct ia64_fpreg) * 4);
883
884 /* fr16-fr31 */
885
886 for (i = 16; i < 32; i++) {
887 if (unw_get_fr(&info, i, &fpval) < 0)
888 return -EIO;
889 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
890 }
891
892 /* fph */
893
894 ia64_flush_fph(child);
895 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
896 sizeof(ppr->fr[32]) * 96);
897
898 /* preds */
899
900 retval |= __put_user(pt->pr, &ppr->pr);
901
902 /* nat bits */
903
904 retval |= __put_user(nat_bits, &ppr->nat);
905
906 ret = retval ? -EIO : 0;
907 return ret;
908}
909
910static long
911ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
912{
913 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
914 struct unw_frame_info info;
915 struct switch_stack *sw;
916 struct ia64_fpreg fpval;
917 struct pt_regs *pt;
918 long retval = 0;
919 int i;
920
921 memset(&fpval, 0, sizeof(fpval));
922
923 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
924 return -EIO;
925
926 pt = task_pt_regs(child);
927 sw = (struct switch_stack *) (child->thread.ksp + 16);
928 unw_init_from_blocked_task(&info, child);
929 if (unw_unwind_to_user(&info) < 0) {
930 return -EIO;
931 }
932
933 if (((unsigned long) ppr & 0x7) != 0) {
934 dprintk("ptrace:unaligned register address %p\n", ppr);
935 return -EIO;
936 }
937
938 /* control regs */
939
940 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
941 retval |= __get_user(psr, &ppr->cr_ipsr);
942
943 /* app regs */
944
945 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
946 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
947 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
948 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
949 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
950 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
951
952 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
953 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
954 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
955 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
956 retval |= __get_user(cfm, &ppr->cfm);
957
958 /* gr1-gr3 */
959
960 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
961 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
962
963 /* gr4-gr7 */
964
965 for (i = 4; i < 8; i++) {
966 retval |= __get_user(val, &ppr->gr[i]);
967 /* NaT bit will be set via PT_NAT_BITS: */
968 if (unw_set_gr(&info, i, val, 0) < 0)
969 return -EIO;
970 }
971
972 /* gr8-gr11 */
973
974 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
975
976 /* gr12-gr15 */
977
978 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
979 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
980 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
981
982 /* gr16-gr31 */
983
984 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
985
986 /* b0 */
987
988 retval |= __get_user(pt->b0, &ppr->br[0]);
989
990 /* b1-b5 */
991
992 for (i = 1; i < 6; i++) {
993 retval |= __get_user(val, &ppr->br[i]);
994 unw_set_br(&info, i, val);
995 }
996
997 /* b6-b7 */
998
999 retval |= __get_user(pt->b6, &ppr->br[6]);
1000 retval |= __get_user(pt->b7, &ppr->br[7]);
1001
1002 /* fr2-fr5 */
1003
1004 for (i = 2; i < 6; i++) {
1005 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1006 if (unw_set_fr(&info, i, fpval) < 0)
1007 return -EIO;
1008 }
1009
1010 /* fr6-fr11 */
1011
1012 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1013 sizeof(ppr->fr[6]) * 6);
1014
1015 /* fp scratch regs(12-15) */
1016
1017 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1018 sizeof(ppr->fr[12]) * 4);
1019
1020 /* fr16-fr31 */
1021
1022 for (i = 16; i < 32; i++) {
1023 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1024 sizeof(fpval));
1025 if (unw_set_fr(&info, i, fpval) < 0)
1026 return -EIO;
1027 }
1028
1029 /* fph */
1030
1031 ia64_sync_fph(child);
1032 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1033 sizeof(ppr->fr[32]) * 96);
1034
1035 /* preds */
1036
1037 retval |= __get_user(pt->pr, &ppr->pr);
1038
1039 /* nat bits */
1040
1041 retval |= __get_user(nat_bits, &ppr->nat);
1042
1043 retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
1044 retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
1045 retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
1046 retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
1047 retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
1048 retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
1049 retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
1050 retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
1051
1052 return retval ? -EIO : 0;
1053}
1054
1055void
1056user_enable_single_step (struct task_struct *child)
1057{
1058 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1059
1060 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1061 child_psr->ss = 1;
1062}
1063
1064void
1065user_enable_block_step (struct task_struct *child)
1066{
1067 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1068
1069 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1070 child_psr->tb = 1;
1071}
1072
1073void
1074user_disable_single_step (struct task_struct *child)
1075{
1076 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1077
1078 /* make sure the single step/taken-branch trap bits are not set: */
1079 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1080 child_psr->ss = 0;
1081 child_psr->tb = 0;
1082}
1083
1084/*
1085 * Called by kernel/ptrace.c when detaching..
1086 *
1087 * Make sure the single step bit is not set.
1088 */
1089void
1090ptrace_disable (struct task_struct *child)
1091{
1092 user_disable_single_step(child);
1093}
1094
1095static int
1096access_uarea (struct task_struct *child, unsigned long addr,
1097 unsigned long *data, int write_access);
1098
1099long
1100arch_ptrace (struct task_struct *child, long request,
1101 unsigned long addr, unsigned long data)
1102{
1103 switch (request) {
1104 case PTRACE_PEEKTEXT:
1105 case PTRACE_PEEKDATA:
1106 /* read word at location addr */
1107 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1108 FOLL_FORCE)
1109 != sizeof(data))
1110 return -EIO;
1111 /* ensure return value is not mistaken for error code */
1112 force_successful_syscall_return();
1113 return data;
1114
1115 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1116 * by the generic ptrace_request().
1117 */
1118
1119 case PTRACE_PEEKUSR:
1120 /* read the word at addr in the USER area */
1121 if (access_uarea(child, addr, &data, 0) < 0)
1122 return -EIO;
1123 /* ensure return value is not mistaken for error code */
1124 force_successful_syscall_return();
1125 return data;
1126
1127 case PTRACE_POKEUSR:
1128 /* write the word at addr in the USER area */
1129 if (access_uarea(child, addr, &data, 1) < 0)
1130 return -EIO;
1131 return 0;
1132
1133 case PTRACE_OLD_GETSIGINFO:
1134 /* for backwards-compatibility */
1135 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1136
1137 case PTRACE_OLD_SETSIGINFO:
1138 /* for backwards-compatibility */
1139 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1140
1141 case PTRACE_GETREGS:
1142 return ptrace_getregs(child,
1143 (struct pt_all_user_regs __user *) data);
1144
1145 case PTRACE_SETREGS:
1146 return ptrace_setregs(child,
1147 (struct pt_all_user_regs __user *) data);
1148
1149 default:
1150 return ptrace_request(child, request, addr, data);
1151 }
1152}
1153
1154
1155/* "asmlinkage" so the input arguments are preserved... */
1156
1157asmlinkage long
1158syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1159 long arg4, long arg5, long arg6, long arg7,
1160 struct pt_regs regs)
1161{
1162 if (test_thread_flag(TIF_SYSCALL_TRACE))
1163 if (ptrace_report_syscall_entry(®s))
1164 return -ENOSYS;
1165
1166 /* copy user rbs to kernel rbs */
1167 if (test_thread_flag(TIF_RESTORE_RSE))
1168 ia64_sync_krbs();
1169
1170
1171 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1172
1173 return 0;
1174}
1175
1176/* "asmlinkage" so the input arguments are preserved... */
1177
1178asmlinkage void
1179syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1180 long arg4, long arg5, long arg6, long arg7,
1181 struct pt_regs regs)
1182{
1183 int step;
1184
1185 audit_syscall_exit(®s);
1186
1187 step = test_thread_flag(TIF_SINGLESTEP);
1188 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1189 ptrace_report_syscall_exit(®s, step);
1190
1191 /* copy user rbs to kernel rbs */
1192 if (test_thread_flag(TIF_RESTORE_RSE))
1193 ia64_sync_krbs();
1194}
1195
1196/* Utrace implementation starts here */
1197struct regset_get {
1198 void *kbuf;
1199 void __user *ubuf;
1200};
1201
1202struct regset_set {
1203 const void *kbuf;
1204 const void __user *ubuf;
1205};
1206
1207struct regset_getset {
1208 struct task_struct *target;
1209 const struct user_regset *regset;
1210 union {
1211 struct regset_get get;
1212 struct regset_set set;
1213 } u;
1214 unsigned int pos;
1215 unsigned int count;
1216 int ret;
1217};
1218
1219static const ptrdiff_t pt_offsets[32] =
1220{
1221#define R(n) offsetof(struct pt_regs, r##n)
1222 [0] = -1, R(1), R(2), R(3),
1223 [4] = -1, [5] = -1, [6] = -1, [7] = -1,
1224 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1225 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1226 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1227#undef R
1228};
1229
1230static int
1231access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1232 unsigned long addr, unsigned long *data, int write_access)
1233{
1234 struct pt_regs *pt = task_pt_regs(target);
1235 unsigned reg = addr / sizeof(unsigned long);
1236 ptrdiff_t d = pt_offsets[reg];
1237
1238 if (d >= 0) {
1239 unsigned long *ptr = (void *)pt + d;
1240 if (write_access)
1241 *ptr = *data;
1242 else
1243 *data = *ptr;
1244 return 0;
1245 } else {
1246 char nat = 0;
1247 if (write_access) {
1248 /* read NaT bit first: */
1249 unsigned long dummy;
1250 int ret = unw_get_gr(info, reg, &dummy, &nat);
1251 if (ret < 0)
1252 return ret;
1253 }
1254 return unw_access_gr(info, reg, data, &nat, write_access);
1255 }
1256}
1257
1258static int
1259access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1260 unsigned long addr, unsigned long *data, int write_access)
1261{
1262 struct pt_regs *pt;
1263 unsigned long *ptr = NULL;
1264
1265 pt = task_pt_regs(target);
1266 switch (addr) {
1267 case ELF_BR_OFFSET(0):
1268 ptr = &pt->b0;
1269 break;
1270 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1271 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1272 data, write_access);
1273 case ELF_BR_OFFSET(6):
1274 ptr = &pt->b6;
1275 break;
1276 case ELF_BR_OFFSET(7):
1277 ptr = &pt->b7;
1278 }
1279 if (write_access)
1280 *ptr = *data;
1281 else
1282 *data = *ptr;
1283 return 0;
1284}
1285
1286static int
1287access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1288 unsigned long addr, unsigned long *data, int write_access)
1289{
1290 struct pt_regs *pt;
1291 unsigned long cfm, urbs_end;
1292 unsigned long *ptr = NULL;
1293
1294 pt = task_pt_regs(target);
1295 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1296 switch (addr) {
1297 case ELF_AR_RSC_OFFSET:
1298 /* force PL3 */
1299 if (write_access)
1300 pt->ar_rsc = *data | (3 << 2);
1301 else
1302 *data = pt->ar_rsc;
1303 return 0;
1304 case ELF_AR_BSP_OFFSET:
1305 /*
1306 * By convention, we use PT_AR_BSP to refer to
1307 * the end of the user-level backing store.
1308 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1309 * to get the real value of ar.bsp at the time
1310 * the kernel was entered.
1311 *
1312 * Furthermore, when changing the contents of
1313 * PT_AR_BSP (or PT_CFM) while the task is
1314 * blocked in a system call, convert the state
1315 * so that the non-system-call exit
1316 * path is used. This ensures that the proper
1317 * state will be picked up when resuming
1318 * execution. However, it *also* means that
1319 * once we write PT_AR_BSP/PT_CFM, it won't be
1320 * possible to modify the syscall arguments of
1321 * the pending system call any longer. This
1322 * shouldn't be an issue because modifying
1323 * PT_AR_BSP/PT_CFM generally implies that
1324 * we're either abandoning the pending system
1325 * call or that we defer it's re-execution
1326 * (e.g., due to GDB doing an inferior
1327 * function call).
1328 */
1329 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1330 if (write_access) {
1331 if (*data != urbs_end) {
1332 if (in_syscall(pt))
1333 convert_to_non_syscall(target,
1334 pt,
1335 cfm);
1336 /*
1337 * Simulate user-level write
1338 * of ar.bsp:
1339 */
1340 pt->loadrs = 0;
1341 pt->ar_bspstore = *data;
1342 }
1343 } else
1344 *data = urbs_end;
1345 return 0;
1346 case ELF_AR_BSPSTORE_OFFSET:
1347 ptr = &pt->ar_bspstore;
1348 break;
1349 case ELF_AR_RNAT_OFFSET:
1350 ptr = &pt->ar_rnat;
1351 break;
1352 case ELF_AR_CCV_OFFSET:
1353 ptr = &pt->ar_ccv;
1354 break;
1355 case ELF_AR_UNAT_OFFSET:
1356 ptr = &pt->ar_unat;
1357 break;
1358 case ELF_AR_FPSR_OFFSET:
1359 ptr = &pt->ar_fpsr;
1360 break;
1361 case ELF_AR_PFS_OFFSET:
1362 ptr = &pt->ar_pfs;
1363 break;
1364 case ELF_AR_LC_OFFSET:
1365 return unw_access_ar(info, UNW_AR_LC, data,
1366 write_access);
1367 case ELF_AR_EC_OFFSET:
1368 return unw_access_ar(info, UNW_AR_EC, data,
1369 write_access);
1370 case ELF_AR_CSD_OFFSET:
1371 ptr = &pt->ar_csd;
1372 break;
1373 case ELF_AR_SSD_OFFSET:
1374 ptr = &pt->ar_ssd;
1375 }
1376 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1377 switch (addr) {
1378 case ELF_CR_IIP_OFFSET:
1379 ptr = &pt->cr_iip;
1380 break;
1381 case ELF_CFM_OFFSET:
1382 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1383 if (write_access) {
1384 if (((cfm ^ *data) & PFM_MASK) != 0) {
1385 if (in_syscall(pt))
1386 convert_to_non_syscall(target,
1387 pt,
1388 cfm);
1389 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1390 | (*data & PFM_MASK));
1391 }
1392 } else
1393 *data = cfm;
1394 return 0;
1395 case ELF_CR_IPSR_OFFSET:
1396 if (write_access) {
1397 unsigned long tmp = *data;
1398 /* psr.ri==3 is a reserved value: SDM 2:25 */
1399 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1400 tmp &= ~IA64_PSR_RI;
1401 pt->cr_ipsr = ((tmp & IPSR_MASK)
1402 | (pt->cr_ipsr & ~IPSR_MASK));
1403 } else
1404 *data = (pt->cr_ipsr & IPSR_MASK);
1405 return 0;
1406 }
1407 } else if (addr == ELF_NAT_OFFSET)
1408 return access_nat_bits(target, pt, info,
1409 data, write_access);
1410 else if (addr == ELF_PR_OFFSET)
1411 ptr = &pt->pr;
1412 else
1413 return -1;
1414
1415 if (write_access)
1416 *ptr = *data;
1417 else
1418 *data = *ptr;
1419
1420 return 0;
1421}
1422
1423static int
1424access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1425 unsigned long addr, unsigned long *data, int write_access)
1426{
1427 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1428 return access_elf_gpreg(target, info, addr, data, write_access);
1429 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1430 return access_elf_breg(target, info, addr, data, write_access);
1431 else
1432 return access_elf_areg(target, info, addr, data, write_access);
1433}
1434
1435struct regset_membuf {
1436 struct membuf to;
1437 int ret;
1438};
1439
1440static void do_gpregs_get(struct unw_frame_info *info, void *arg)
1441{
1442 struct regset_membuf *dst = arg;
1443 struct membuf to = dst->to;
1444 unsigned int n;
1445 elf_greg_t reg;
1446
1447 if (unw_unwind_to_user(info) < 0)
1448 return;
1449
1450 /*
1451 * coredump format:
1452 * r0-r31
1453 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1454 * predicate registers (p0-p63)
1455 * b0-b7
1456 * ip cfm user-mask
1457 * ar.rsc ar.bsp ar.bspstore ar.rnat
1458 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1459 */
1460
1461
1462 /* Skip r0 */
1463 membuf_zero(&to, 8);
1464 for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1465 if (access_elf_reg(info->task, info, n, ®, 0) < 0) {
1466 dst->ret = -EIO;
1467 return;
1468 }
1469 membuf_store(&to, reg);
1470 }
1471}
1472
1473static void do_gpregs_set(struct unw_frame_info *info, void *arg)
1474{
1475 struct regset_getset *dst = arg;
1476
1477 if (unw_unwind_to_user(info) < 0)
1478 return;
1479
1480 if (!dst->count)
1481 return;
1482 /* Skip r0 */
1483 if (dst->pos < ELF_GR_OFFSET(1)) {
1484 user_regset_copyin_ignore(&dst->pos, &dst->count,
1485 &dst->u.set.kbuf, &dst->u.set.ubuf,
1486 0, ELF_GR_OFFSET(1));
1487 dst->ret = 0;
1488 }
1489
1490 while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1491 unsigned int n, from, to;
1492 elf_greg_t tmp[16];
1493
1494 from = dst->pos;
1495 to = from + sizeof(tmp);
1496 if (to > ELF_AR_END_OFFSET)
1497 to = ELF_AR_END_OFFSET;
1498 /* get up to 16 values */
1499 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1500 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1501 from, to);
1502 if (dst->ret)
1503 return;
1504 /* now copy them into registers */
1505 for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1506 if (access_elf_reg(dst->target, info, from,
1507 &tmp[n], 1) < 0) {
1508 dst->ret = -EIO;
1509 return;
1510 }
1511 }
1512}
1513
1514#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1515
1516static void do_fpregs_get(struct unw_frame_info *info, void *arg)
1517{
1518 struct task_struct *task = info->task;
1519 struct regset_membuf *dst = arg;
1520 struct membuf to = dst->to;
1521 elf_fpreg_t reg;
1522 unsigned int n;
1523
1524 if (unw_unwind_to_user(info) < 0)
1525 return;
1526
1527 /* Skip pos 0 and 1 */
1528 membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
1529
1530 /* fr2-fr31 */
1531 for (n = 2; to.left && n < 32; n++) {
1532 if (unw_get_fr(info, n, ®)) {
1533 dst->ret = -EIO;
1534 return;
1535 }
1536 membuf_write(&to, ®, sizeof(reg));
1537 }
1538
1539 /* fph */
1540 if (!to.left)
1541 return;
1542
1543 ia64_flush_fph(task);
1544 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1545 membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1546 else
1547 membuf_zero(&to, 96 * sizeof(reg));
1548}
1549
1550static void do_fpregs_set(struct unw_frame_info *info, void *arg)
1551{
1552 struct regset_getset *dst = arg;
1553 elf_fpreg_t fpreg, tmp[30];
1554 int index, start, end;
1555
1556 if (unw_unwind_to_user(info) < 0)
1557 return;
1558
1559 /* Skip pos 0 and 1 */
1560 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1561 user_regset_copyin_ignore(&dst->pos, &dst->count,
1562 &dst->u.set.kbuf, &dst->u.set.ubuf,
1563 0, ELF_FP_OFFSET(2));
1564 dst->ret = 0;
1565 if (dst->count == 0)
1566 return;
1567 }
1568
1569 /* fr2-fr31 */
1570 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1571 start = dst->pos;
1572 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1573 dst->pos + dst->count);
1574 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1575 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1576 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1577 if (dst->ret)
1578 return;
1579
1580 if (start & 0xF) { /* only write high part */
1581 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1582 &fpreg)) {
1583 dst->ret = -EIO;
1584 return;
1585 }
1586 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1587 = fpreg.u.bits[0];
1588 start &= ~0xFUL;
1589 }
1590 if (end & 0xF) { /* only write low part */
1591 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1592 &fpreg)) {
1593 dst->ret = -EIO;
1594 return;
1595 }
1596 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1597 = fpreg.u.bits[1];
1598 end = (end + 0xF) & ~0xFUL;
1599 }
1600
1601 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1602 index = start / sizeof(elf_fpreg_t);
1603 if (unw_set_fr(info, index, tmp[index - 2])) {
1604 dst->ret = -EIO;
1605 return;
1606 }
1607 }
1608 if (dst->ret || dst->count == 0)
1609 return;
1610 }
1611
1612 /* fph */
1613 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1614 ia64_sync_fph(dst->target);
1615 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1616 &dst->u.set.kbuf,
1617 &dst->u.set.ubuf,
1618 &dst->target->thread.fph,
1619 ELF_FP_OFFSET(32), -1);
1620 }
1621}
1622
1623static void
1624unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1625 struct task_struct *target, void *data)
1626{
1627 if (target == current)
1628 unw_init_running(call, data);
1629 else {
1630 struct unw_frame_info info;
1631 memset(&info, 0, sizeof(info));
1632 unw_init_from_blocked_task(&info, target);
1633 (*call)(&info, data);
1634 }
1635}
1636
1637static int
1638do_regset_call(void (*call)(struct unw_frame_info *, void *),
1639 struct task_struct *target,
1640 const struct user_regset *regset,
1641 unsigned int pos, unsigned int count,
1642 const void *kbuf, const void __user *ubuf)
1643{
1644 struct regset_getset info = { .target = target, .regset = regset,
1645 .pos = pos, .count = count,
1646 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1647 .ret = 0 };
1648 unwind_and_call(call, target, &info);
1649 return info.ret;
1650}
1651
1652static int
1653gpregs_get(struct task_struct *target,
1654 const struct user_regset *regset,
1655 struct membuf to)
1656{
1657 struct regset_membuf info = {.to = to};
1658 unwind_and_call(do_gpregs_get, target, &info);
1659 return info.ret;
1660}
1661
1662static int gpregs_set(struct task_struct *target,
1663 const struct user_regset *regset,
1664 unsigned int pos, unsigned int count,
1665 const void *kbuf, const void __user *ubuf)
1666{
1667 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1668 kbuf, ubuf);
1669}
1670
1671static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1672{
1673 do_sync_rbs(info, ia64_sync_user_rbs);
1674}
1675
1676/*
1677 * This is called to write back the register backing store.
1678 * ptrace does this before it stops, so that a tracer reading the user
1679 * memory after the thread stops will get the current register data.
1680 */
1681static int
1682gpregs_writeback(struct task_struct *target,
1683 const struct user_regset *regset,
1684 int now)
1685{
1686 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1687 return 0;
1688 set_notify_resume(target);
1689 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1690 NULL, NULL);
1691}
1692
1693static int
1694fpregs_active(struct task_struct *target, const struct user_regset *regset)
1695{
1696 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1697}
1698
1699static int fpregs_get(struct task_struct *target,
1700 const struct user_regset *regset,
1701 struct membuf to)
1702{
1703 struct regset_membuf info = {.to = to};
1704 unwind_and_call(do_fpregs_get, target, &info);
1705 return info.ret;
1706}
1707
1708static int fpregs_set(struct task_struct *target,
1709 const struct user_regset *regset,
1710 unsigned int pos, unsigned int count,
1711 const void *kbuf, const void __user *ubuf)
1712{
1713 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1714 kbuf, ubuf);
1715}
1716
1717static int
1718access_uarea(struct task_struct *child, unsigned long addr,
1719 unsigned long *data, int write_access)
1720{
1721 unsigned int pos = -1; /* an invalid value */
1722 unsigned long *ptr, regnum;
1723
1724 if ((addr & 0x7) != 0) {
1725 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1726 return -1;
1727 }
1728 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1729 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1730 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1731 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1732 dprintk("ptrace: rejecting access to register "
1733 "address 0x%lx\n", addr);
1734 return -1;
1735 }
1736
1737 switch (addr) {
1738 case PT_F32 ... (PT_F127 + 15):
1739 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1740 break;
1741 case PT_F2 ... (PT_F5 + 15):
1742 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1743 break;
1744 case PT_F10 ... (PT_F31 + 15):
1745 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1746 break;
1747 case PT_F6 ... (PT_F9 + 15):
1748 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1749 break;
1750 }
1751
1752 if (pos != -1) {
1753 unsigned reg = pos / sizeof(elf_fpreg_t);
1754 int which_half = (pos / sizeof(unsigned long)) & 1;
1755
1756 if (reg < 32) { /* fr2-fr31 */
1757 struct unw_frame_info info;
1758 elf_fpreg_t fpreg;
1759
1760 memset(&info, 0, sizeof(info));
1761 unw_init_from_blocked_task(&info, child);
1762 if (unw_unwind_to_user(&info) < 0)
1763 return 0;
1764
1765 if (unw_get_fr(&info, reg, &fpreg))
1766 return -1;
1767 if (write_access) {
1768 fpreg.u.bits[which_half] = *data;
1769 if (unw_set_fr(&info, reg, fpreg))
1770 return -1;
1771 } else {
1772 *data = fpreg.u.bits[which_half];
1773 }
1774 } else { /* fph */
1775 elf_fpreg_t *p = &child->thread.fph[reg - 32];
1776 unsigned long *bits = &p->u.bits[which_half];
1777
1778 ia64_sync_fph(child);
1779 if (write_access)
1780 *bits = *data;
1781 else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1782 *data = *bits;
1783 else
1784 *data = 0;
1785 }
1786 return 0;
1787 }
1788
1789 switch (addr) {
1790 case PT_NAT_BITS:
1791 pos = ELF_NAT_OFFSET;
1792 break;
1793 case PT_R4 ... PT_R7:
1794 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1795 break;
1796 case PT_B1 ... PT_B5:
1797 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1798 break;
1799 case PT_AR_EC:
1800 pos = ELF_AR_EC_OFFSET;
1801 break;
1802 case PT_AR_LC:
1803 pos = ELF_AR_LC_OFFSET;
1804 break;
1805 case PT_CR_IPSR:
1806 pos = ELF_CR_IPSR_OFFSET;
1807 break;
1808 case PT_CR_IIP:
1809 pos = ELF_CR_IIP_OFFSET;
1810 break;
1811 case PT_CFM:
1812 pos = ELF_CFM_OFFSET;
1813 break;
1814 case PT_AR_UNAT:
1815 pos = ELF_AR_UNAT_OFFSET;
1816 break;
1817 case PT_AR_PFS:
1818 pos = ELF_AR_PFS_OFFSET;
1819 break;
1820 case PT_AR_RSC:
1821 pos = ELF_AR_RSC_OFFSET;
1822 break;
1823 case PT_AR_RNAT:
1824 pos = ELF_AR_RNAT_OFFSET;
1825 break;
1826 case PT_AR_BSPSTORE:
1827 pos = ELF_AR_BSPSTORE_OFFSET;
1828 break;
1829 case PT_PR:
1830 pos = ELF_PR_OFFSET;
1831 break;
1832 case PT_B6:
1833 pos = ELF_BR_OFFSET(6);
1834 break;
1835 case PT_AR_BSP:
1836 pos = ELF_AR_BSP_OFFSET;
1837 break;
1838 case PT_R1 ... PT_R3:
1839 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1840 break;
1841 case PT_R12 ... PT_R15:
1842 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1843 break;
1844 case PT_R8 ... PT_R11:
1845 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1846 break;
1847 case PT_R16 ... PT_R31:
1848 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1849 break;
1850 case PT_AR_CCV:
1851 pos = ELF_AR_CCV_OFFSET;
1852 break;
1853 case PT_AR_FPSR:
1854 pos = ELF_AR_FPSR_OFFSET;
1855 break;
1856 case PT_B0:
1857 pos = ELF_BR_OFFSET(0);
1858 break;
1859 case PT_B7:
1860 pos = ELF_BR_OFFSET(7);
1861 break;
1862 case PT_AR_CSD:
1863 pos = ELF_AR_CSD_OFFSET;
1864 break;
1865 case PT_AR_SSD:
1866 pos = ELF_AR_SSD_OFFSET;
1867 break;
1868 }
1869
1870 if (pos != -1) {
1871 struct unw_frame_info info;
1872
1873 memset(&info, 0, sizeof(info));
1874 unw_init_from_blocked_task(&info, child);
1875 if (unw_unwind_to_user(&info) < 0)
1876 return 0;
1877
1878 return access_elf_reg(child, &info, pos, data, write_access);
1879 }
1880
1881 /* access debug registers */
1882 if (addr >= PT_IBR) {
1883 regnum = (addr - PT_IBR) >> 3;
1884 ptr = &child->thread.ibr[0];
1885 } else {
1886 regnum = (addr - PT_DBR) >> 3;
1887 ptr = &child->thread.dbr[0];
1888 }
1889
1890 if (regnum >= 8) {
1891 dprintk("ptrace: rejecting access to register "
1892 "address 0x%lx\n", addr);
1893 return -1;
1894 }
1895
1896 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1897 child->thread.flags |= IA64_THREAD_DBG_VALID;
1898 memset(child->thread.dbr, 0,
1899 sizeof(child->thread.dbr));
1900 memset(child->thread.ibr, 0,
1901 sizeof(child->thread.ibr));
1902 }
1903
1904 ptr += regnum;
1905
1906 if ((regnum & 1) && write_access) {
1907 /* don't let the user set kernel-level breakpoints: */
1908 *ptr = *data & ~(7UL << 56);
1909 return 0;
1910 }
1911 if (write_access)
1912 *ptr = *data;
1913 else
1914 *data = *ptr;
1915 return 0;
1916}
1917
1918static const struct user_regset native_regsets[] = {
1919 {
1920 .core_note_type = NT_PRSTATUS,
1921 .n = ELF_NGREG,
1922 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
1923 .regset_get = gpregs_get, .set = gpregs_set,
1924 .writeback = gpregs_writeback
1925 },
1926 {
1927 .core_note_type = NT_PRFPREG,
1928 .n = ELF_NFPREG,
1929 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
1930 .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
1931 },
1932};
1933
1934static const struct user_regset_view user_ia64_view = {
1935 .name = "ia64",
1936 .e_machine = EM_IA_64,
1937 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1938};
1939
1940const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
1941{
1942 return &user_ia64_view;
1943}
1944
1945struct syscall_get_args {
1946 unsigned int i;
1947 unsigned int n;
1948 unsigned long *args;
1949 struct pt_regs *regs;
1950};
1951
1952static void syscall_get_args_cb(struct unw_frame_info *info, void *data)
1953{
1954 struct syscall_get_args *args = data;
1955 struct pt_regs *pt = args->regs;
1956 unsigned long *krbs, cfm, ndirty, nlocals, nouts;
1957 int i, count;
1958
1959 if (unw_unwind_to_user(info) < 0)
1960 return;
1961
1962 /*
1963 * We get here via a few paths:
1964 * - break instruction: cfm is shared with caller.
1965 * syscall args are in out= regs, locals are non-empty.
1966 * - epsinstruction: cfm is set by br.call
1967 * locals don't exist.
1968 *
1969 * For both cases arguments are reachable in cfm.sof - cfm.sol.
1970 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
1971 */
1972 cfm = pt->cr_ifs;
1973 nlocals = (cfm >> 7) & 0x7f; /* aka sol */
1974 nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
1975 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
1976 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
1977
1978 count = 0;
1979 if (in_syscall(pt))
1980 count = min_t(int, args->n, nouts);
1981
1982 /* Iterate over outs. */
1983 for (i = 0; i < count; i++) {
1984 int j = ndirty + nlocals + i + args->i;
1985 args->args[i] = *ia64_rse_skip_regs(krbs, j);
1986 }
1987
1988 while (i < args->n) {
1989 args->args[i] = 0;
1990 i++;
1991 }
1992}
1993
1994void syscall_get_arguments(struct task_struct *task,
1995 struct pt_regs *regs, unsigned long *args)
1996{
1997 struct syscall_get_args data = {
1998 .i = 0,
1999 .n = 6,
2000 .args = args,
2001 .regs = regs,
2002 };
2003
2004 if (task == current)
2005 unw_init_running(syscall_get_args_cb, &data);
2006 else {
2007 struct unw_frame_info ufi;
2008 memset(&ufi, 0, sizeof(ufi));
2009 unw_init_from_blocked_task(&ufi, task);
2010 syscall_get_args_cb(&ufi, &data);
2011 }
2012}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/sched/task.h>
16#include <linux/sched/task_stack.h>
17#include <linux/mm.h>
18#include <linux/errno.h>
19#include <linux/ptrace.h>
20#include <linux/user.h>
21#include <linux/security.h>
22#include <linux/audit.h>
23#include <linux/signal.h>
24#include <linux/regset.h>
25#include <linux/elf.h>
26#include <linux/tracehook.h>
27
28#include <asm/pgtable.h>
29#include <asm/processor.h>
30#include <asm/ptrace_offsets.h>
31#include <asm/rse.h>
32#include <linux/uaccess.h>
33#include <asm/unwind.h>
34#ifdef CONFIG_PERFMON
35#include <asm/perfmon.h>
36#endif
37
38#include "entry.h"
39
40/*
41 * Bits in the PSR that we allow ptrace() to change:
42 * be, up, ac, mfl, mfh (the user mask; five bits total)
43 * db (debug breakpoint fault; one bit)
44 * id (instruction debug fault disable; one bit)
45 * dd (data debug fault disable; one bit)
46 * ri (restart instruction; two bits)
47 * is (instruction set; one bit)
48 */
49#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
50 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
51
52#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
53#define PFM_MASK MASK(38)
54
55#define PTRACE_DEBUG 0
56
57#if PTRACE_DEBUG
58# define dprintk(format...) printk(format)
59# define inline
60#else
61# define dprintk(format...)
62#endif
63
64/* Return TRUE if PT was created due to kernel-entry via a system-call. */
65
66static inline int
67in_syscall (struct pt_regs *pt)
68{
69 return (long) pt->cr_ifs >= 0;
70}
71
72/*
73 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
74 * bitset where bit i is set iff the NaT bit of register i is set.
75 */
76unsigned long
77ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
78{
79# define GET_BITS(first, last, unat) \
80 ({ \
81 unsigned long bit = ia64_unat_pos(&pt->r##first); \
82 unsigned long nbits = (last - first + 1); \
83 unsigned long mask = MASK(nbits) << first; \
84 unsigned long dist; \
85 if (bit < first) \
86 dist = 64 + bit - first; \
87 else \
88 dist = bit - first; \
89 ia64_rotr(unat, dist) & mask; \
90 })
91 unsigned long val;
92
93 /*
94 * Registers that are stored consecutively in struct pt_regs
95 * can be handled in parallel. If the register order in
96 * struct_pt_regs changes, this code MUST be updated.
97 */
98 val = GET_BITS( 1, 1, scratch_unat);
99 val |= GET_BITS( 2, 3, scratch_unat);
100 val |= GET_BITS(12, 13, scratch_unat);
101 val |= GET_BITS(14, 14, scratch_unat);
102 val |= GET_BITS(15, 15, scratch_unat);
103 val |= GET_BITS( 8, 11, scratch_unat);
104 val |= GET_BITS(16, 31, scratch_unat);
105 return val;
106
107# undef GET_BITS
108}
109
110/*
111 * Set the NaT bits for the scratch registers according to NAT and
112 * return the resulting unat (assuming the scratch registers are
113 * stored in PT).
114 */
115unsigned long
116ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
117{
118# define PUT_BITS(first, last, nat) \
119 ({ \
120 unsigned long bit = ia64_unat_pos(&pt->r##first); \
121 unsigned long nbits = (last - first + 1); \
122 unsigned long mask = MASK(nbits) << first; \
123 long dist; \
124 if (bit < first) \
125 dist = 64 + bit - first; \
126 else \
127 dist = bit - first; \
128 ia64_rotl(nat & mask, dist); \
129 })
130 unsigned long scratch_unat;
131
132 /*
133 * Registers that are stored consecutively in struct pt_regs
134 * can be handled in parallel. If the register order in
135 * struct_pt_regs changes, this code MUST be updated.
136 */
137 scratch_unat = PUT_BITS( 1, 1, nat);
138 scratch_unat |= PUT_BITS( 2, 3, nat);
139 scratch_unat |= PUT_BITS(12, 13, nat);
140 scratch_unat |= PUT_BITS(14, 14, nat);
141 scratch_unat |= PUT_BITS(15, 15, nat);
142 scratch_unat |= PUT_BITS( 8, 11, nat);
143 scratch_unat |= PUT_BITS(16, 31, nat);
144
145 return scratch_unat;
146
147# undef PUT_BITS
148}
149
150#define IA64_MLX_TEMPLATE 0x2
151#define IA64_MOVL_OPCODE 6
152
153void
154ia64_increment_ip (struct pt_regs *regs)
155{
156 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
157
158 if (ri > 2) {
159 ri = 0;
160 regs->cr_iip += 16;
161 } else if (ri == 2) {
162 get_user(w0, (char __user *) regs->cr_iip + 0);
163 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
164 /*
165 * rfi'ing to slot 2 of an MLX bundle causes
166 * an illegal operation fault. We don't want
167 * that to happen...
168 */
169 ri = 0;
170 regs->cr_iip += 16;
171 }
172 }
173 ia64_psr(regs)->ri = ri;
174}
175
176void
177ia64_decrement_ip (struct pt_regs *regs)
178{
179 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
180
181 if (ia64_psr(regs)->ri == 0) {
182 regs->cr_iip -= 16;
183 ri = 2;
184 get_user(w0, (char __user *) regs->cr_iip + 0);
185 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
186 /*
187 * rfi'ing to slot 2 of an MLX bundle causes
188 * an illegal operation fault. We don't want
189 * that to happen...
190 */
191 ri = 1;
192 }
193 }
194 ia64_psr(regs)->ri = ri;
195}
196
197/*
198 * This routine is used to read an rnat bits that are stored on the
199 * kernel backing store. Since, in general, the alignment of the user
200 * and kernel are different, this is not completely trivial. In
201 * essence, we need to construct the user RNAT based on up to two
202 * kernel RNAT values and/or the RNAT value saved in the child's
203 * pt_regs.
204 *
205 * user rbs
206 *
207 * +--------+ <-- lowest address
208 * | slot62 |
209 * +--------+
210 * | rnat | 0x....1f8
211 * +--------+
212 * | slot00 | \
213 * +--------+ |
214 * | slot01 | > child_regs->ar_rnat
215 * +--------+ |
216 * | slot02 | / kernel rbs
217 * +--------+ +--------+
218 * <- child_regs->ar_bspstore | slot61 | <-- krbs
219 * +- - - - + +--------+
220 * | slot62 |
221 * +- - - - + +--------+
222 * | rnat |
223 * +- - - - + +--------+
224 * vrnat | slot00 |
225 * +- - - - + +--------+
226 * = =
227 * +--------+
228 * | slot00 | \
229 * +--------+ |
230 * | slot01 | > child_stack->ar_rnat
231 * +--------+ |
232 * | slot02 | /
233 * +--------+
234 * <--- child_stack->ar_bspstore
235 *
236 * The way to think of this code is as follows: bit 0 in the user rnat
237 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
238 * value. The kernel rnat value holding this bit is stored in
239 * variable rnat0. rnat1 is loaded with the kernel rnat value that
240 * form the upper bits of the user rnat value.
241 *
242 * Boundary cases:
243 *
244 * o when reading the rnat "below" the first rnat slot on the kernel
245 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
246 * merged in from pt->ar_rnat.
247 *
248 * o when reading the rnat "above" the last rnat slot on the kernel
249 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
250 */
251static unsigned long
252get_rnat (struct task_struct *task, struct switch_stack *sw,
253 unsigned long *krbs, unsigned long *urnat_addr,
254 unsigned long *urbs_end)
255{
256 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
257 unsigned long umask = 0, mask, m;
258 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
259 long num_regs, nbits;
260 struct pt_regs *pt;
261
262 pt = task_pt_regs(task);
263 kbsp = (unsigned long *) sw->ar_bspstore;
264 ubspstore = (unsigned long *) pt->ar_bspstore;
265
266 if (urbs_end < urnat_addr)
267 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
268 else
269 nbits = 63;
270 mask = MASK(nbits);
271 /*
272 * First, figure out which bit number slot 0 in user-land maps
273 * to in the kernel rnat. Do this by figuring out how many
274 * register slots we're beyond the user's backingstore and
275 * then computing the equivalent address in kernel space.
276 */
277 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
278 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
279 shift = ia64_rse_slot_num(slot0_kaddr);
280 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
281 rnat0_kaddr = rnat1_kaddr - 64;
282
283 if (ubspstore + 63 > urnat_addr) {
284 /* some bits need to be merged in from pt->ar_rnat */
285 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
286 urnat = (pt->ar_rnat & umask);
287 mask &= ~umask;
288 if (!mask)
289 return urnat;
290 }
291
292 m = mask << shift;
293 if (rnat0_kaddr >= kbsp)
294 rnat0 = sw->ar_rnat;
295 else if (rnat0_kaddr > krbs)
296 rnat0 = *rnat0_kaddr;
297 urnat |= (rnat0 & m) >> shift;
298
299 m = mask >> (63 - shift);
300 if (rnat1_kaddr >= kbsp)
301 rnat1 = sw->ar_rnat;
302 else if (rnat1_kaddr > krbs)
303 rnat1 = *rnat1_kaddr;
304 urnat |= (rnat1 & m) << (63 - shift);
305 return urnat;
306}
307
308/*
309 * The reverse of get_rnat.
310 */
311static void
312put_rnat (struct task_struct *task, struct switch_stack *sw,
313 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
314 unsigned long *urbs_end)
315{
316 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
317 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
318 long num_regs, nbits;
319 struct pt_regs *pt;
320 unsigned long cfm, *urbs_kargs;
321
322 pt = task_pt_regs(task);
323 kbsp = (unsigned long *) sw->ar_bspstore;
324 ubspstore = (unsigned long *) pt->ar_bspstore;
325
326 urbs_kargs = urbs_end;
327 if (in_syscall(pt)) {
328 /*
329 * If entered via syscall, don't allow user to set rnat bits
330 * for syscall args.
331 */
332 cfm = pt->cr_ifs;
333 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
334 }
335
336 if (urbs_kargs >= urnat_addr)
337 nbits = 63;
338 else {
339 if ((urnat_addr - 63) >= urbs_kargs)
340 return;
341 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
342 }
343 mask = MASK(nbits);
344
345 /*
346 * First, figure out which bit number slot 0 in user-land maps
347 * to in the kernel rnat. Do this by figuring out how many
348 * register slots we're beyond the user's backingstore and
349 * then computing the equivalent address in kernel space.
350 */
351 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
352 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
353 shift = ia64_rse_slot_num(slot0_kaddr);
354 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
355 rnat0_kaddr = rnat1_kaddr - 64;
356
357 if (ubspstore + 63 > urnat_addr) {
358 /* some bits need to be place in pt->ar_rnat: */
359 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
360 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
361 mask &= ~umask;
362 if (!mask)
363 return;
364 }
365 /*
366 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
367 * rnat slot is ignored. so we don't have to clear it here.
368 */
369 rnat0 = (urnat << shift);
370 m = mask << shift;
371 if (rnat0_kaddr >= kbsp)
372 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
373 else if (rnat0_kaddr > krbs)
374 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
375
376 rnat1 = (urnat >> (63 - shift));
377 m = mask >> (63 - shift);
378 if (rnat1_kaddr >= kbsp)
379 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
380 else if (rnat1_kaddr > krbs)
381 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
382}
383
384static inline int
385on_kernel_rbs (unsigned long addr, unsigned long bspstore,
386 unsigned long urbs_end)
387{
388 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
389 urbs_end);
390 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
391}
392
393/*
394 * Read a word from the user-level backing store of task CHILD. ADDR
395 * is the user-level address to read the word from, VAL a pointer to
396 * the return value, and USER_BSP gives the end of the user-level
397 * backing store (i.e., it's the address that would be in ar.bsp after
398 * the user executed a "cover" instruction).
399 *
400 * This routine takes care of accessing the kernel register backing
401 * store for those registers that got spilled there. It also takes
402 * care of calculating the appropriate RNaT collection words.
403 */
404long
405ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
406 unsigned long user_rbs_end, unsigned long addr, long *val)
407{
408 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
409 struct pt_regs *child_regs;
410 size_t copied;
411 long ret;
412
413 urbs_end = (long *) user_rbs_end;
414 laddr = (unsigned long *) addr;
415 child_regs = task_pt_regs(child);
416 bspstore = (unsigned long *) child_regs->ar_bspstore;
417 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
418 if (on_kernel_rbs(addr, (unsigned long) bspstore,
419 (unsigned long) urbs_end))
420 {
421 /*
422 * Attempt to read the RBS in an area that's actually
423 * on the kernel RBS => read the corresponding bits in
424 * the kernel RBS.
425 */
426 rnat_addr = ia64_rse_rnat_addr(laddr);
427 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
428
429 if (laddr == rnat_addr) {
430 /* return NaT collection word itself */
431 *val = ret;
432 return 0;
433 }
434
435 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
436 /*
437 * It is implementation dependent whether the
438 * data portion of a NaT value gets saved on a
439 * st8.spill or RSE spill (e.g., see EAS 2.6,
440 * 4.4.4.6 Register Spill and Fill). To get
441 * consistent behavior across all possible
442 * IA-64 implementations, we return zero in
443 * this case.
444 */
445 *val = 0;
446 return 0;
447 }
448
449 if (laddr < urbs_end) {
450 /*
451 * The desired word is on the kernel RBS and
452 * is not a NaT.
453 */
454 regnum = ia64_rse_num_regs(bspstore, laddr);
455 *val = *ia64_rse_skip_regs(krbs, regnum);
456 return 0;
457 }
458 }
459 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
460 if (copied != sizeof(ret))
461 return -EIO;
462 *val = ret;
463 return 0;
464}
465
466long
467ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
468 unsigned long user_rbs_end, unsigned long addr, long val)
469{
470 unsigned long *bspstore, *krbs, regnum, *laddr;
471 unsigned long *urbs_end = (long *) user_rbs_end;
472 struct pt_regs *child_regs;
473
474 laddr = (unsigned long *) addr;
475 child_regs = task_pt_regs(child);
476 bspstore = (unsigned long *) child_regs->ar_bspstore;
477 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
478 if (on_kernel_rbs(addr, (unsigned long) bspstore,
479 (unsigned long) urbs_end))
480 {
481 /*
482 * Attempt to write the RBS in an area that's actually
483 * on the kernel RBS => write the corresponding bits
484 * in the kernel RBS.
485 */
486 if (ia64_rse_is_rnat_slot(laddr))
487 put_rnat(child, child_stack, krbs, laddr, val,
488 urbs_end);
489 else {
490 if (laddr < urbs_end) {
491 regnum = ia64_rse_num_regs(bspstore, laddr);
492 *ia64_rse_skip_regs(krbs, regnum) = val;
493 }
494 }
495 } else if (access_process_vm(child, addr, &val, sizeof(val),
496 FOLL_FORCE | FOLL_WRITE)
497 != sizeof(val))
498 return -EIO;
499 return 0;
500}
501
502/*
503 * Calculate the address of the end of the user-level register backing
504 * store. This is the address that would have been stored in ar.bsp
505 * if the user had executed a "cover" instruction right before
506 * entering the kernel. If CFMP is not NULL, it is used to return the
507 * "current frame mask" that was active at the time the kernel was
508 * entered.
509 */
510unsigned long
511ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
512 unsigned long *cfmp)
513{
514 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
515 long ndirty;
516
517 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
518 bspstore = (unsigned long *) pt->ar_bspstore;
519 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
520
521 if (in_syscall(pt))
522 ndirty += (cfm & 0x7f);
523 else
524 cfm &= ~(1UL << 63); /* clear valid bit */
525
526 if (cfmp)
527 *cfmp = cfm;
528 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
529}
530
531/*
532 * Synchronize (i.e, write) the RSE backing store living in kernel
533 * space to the VM of the CHILD task. SW and PT are the pointers to
534 * the switch_stack and pt_regs structures, respectively.
535 * USER_RBS_END is the user-level address at which the backing store
536 * ends.
537 */
538long
539ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
540 unsigned long user_rbs_start, unsigned long user_rbs_end)
541{
542 unsigned long addr, val;
543 long ret;
544
545 /* now copy word for word from kernel rbs to user rbs: */
546 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
547 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
548 if (ret < 0)
549 return ret;
550 if (access_process_vm(child, addr, &val, sizeof(val),
551 FOLL_FORCE | FOLL_WRITE)
552 != sizeof(val))
553 return -EIO;
554 }
555 return 0;
556}
557
558static long
559ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
560 unsigned long user_rbs_start, unsigned long user_rbs_end)
561{
562 unsigned long addr, val;
563 long ret;
564
565 /* now copy word for word from user rbs to kernel rbs: */
566 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
567 if (access_process_vm(child, addr, &val, sizeof(val),
568 FOLL_FORCE)
569 != sizeof(val))
570 return -EIO;
571
572 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
573 if (ret < 0)
574 return ret;
575 }
576 return 0;
577}
578
579typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
580 unsigned long, unsigned long);
581
582static void do_sync_rbs(struct unw_frame_info *info, void *arg)
583{
584 struct pt_regs *pt;
585 unsigned long urbs_end;
586 syncfunc_t fn = arg;
587
588 if (unw_unwind_to_user(info) < 0)
589 return;
590 pt = task_pt_regs(info->task);
591 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
592
593 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
594}
595
596/*
597 * when a thread is stopped (ptraced), debugger might change thread's user
598 * stack (change memory directly), and we must avoid the RSE stored in kernel
599 * to override user stack (user space's RSE is newer than kernel's in the
600 * case). To workaround the issue, we copy kernel RSE to user RSE before the
601 * task is stopped, so user RSE has updated data. we then copy user RSE to
602 * kernel after the task is resummed from traced stop and kernel will use the
603 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
604 * synchronize user RSE to kernel.
605 */
606void ia64_ptrace_stop(void)
607{
608 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
609 return;
610 set_notify_resume(current);
611 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
612}
613
614/*
615 * This is called to read back the register backing store.
616 */
617void ia64_sync_krbs(void)
618{
619 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
620
621 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
622}
623
624/*
625 * After PTRACE_ATTACH, a thread's register backing store area in user
626 * space is assumed to contain correct data whenever the thread is
627 * stopped. arch_ptrace_stop takes care of this on tracing stops.
628 * But if the child was already stopped for job control when we attach
629 * to it, then it might not ever get into ptrace_stop by the time we
630 * want to examine the user memory containing the RBS.
631 */
632void
633ptrace_attach_sync_user_rbs (struct task_struct *child)
634{
635 int stopped = 0;
636 struct unw_frame_info info;
637
638 /*
639 * If the child is in TASK_STOPPED, we need to change that to
640 * TASK_TRACED momentarily while we operate on it. This ensures
641 * that the child won't be woken up and return to user mode while
642 * we are doing the sync. (It can only be woken up for SIGKILL.)
643 */
644
645 read_lock(&tasklist_lock);
646 if (child->sighand) {
647 spin_lock_irq(&child->sighand->siglock);
648 if (child->state == TASK_STOPPED &&
649 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
650 set_notify_resume(child);
651
652 child->state = TASK_TRACED;
653 stopped = 1;
654 }
655 spin_unlock_irq(&child->sighand->siglock);
656 }
657 read_unlock(&tasklist_lock);
658
659 if (!stopped)
660 return;
661
662 unw_init_from_blocked_task(&info, child);
663 do_sync_rbs(&info, ia64_sync_user_rbs);
664
665 /*
666 * Now move the child back into TASK_STOPPED if it should be in a
667 * job control stop, so that SIGCONT can be used to wake it up.
668 */
669 read_lock(&tasklist_lock);
670 if (child->sighand) {
671 spin_lock_irq(&child->sighand->siglock);
672 if (child->state == TASK_TRACED &&
673 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
674 child->state = TASK_STOPPED;
675 }
676 spin_unlock_irq(&child->sighand->siglock);
677 }
678 read_unlock(&tasklist_lock);
679}
680
681/*
682 * Write f32-f127 back to task->thread.fph if it has been modified.
683 */
684inline void
685ia64_flush_fph (struct task_struct *task)
686{
687 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
688
689 /*
690 * Prevent migrating this task while
691 * we're fiddling with the FPU state
692 */
693 preempt_disable();
694 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
695 psr->mfh = 0;
696 task->thread.flags |= IA64_THREAD_FPH_VALID;
697 ia64_save_fpu(&task->thread.fph[0]);
698 }
699 preempt_enable();
700}
701
702/*
703 * Sync the fph state of the task so that it can be manipulated
704 * through thread.fph. If necessary, f32-f127 are written back to
705 * thread.fph or, if the fph state hasn't been used before, thread.fph
706 * is cleared to zeroes. Also, access to f32-f127 is disabled to
707 * ensure that the task picks up the state from thread.fph when it
708 * executes again.
709 */
710void
711ia64_sync_fph (struct task_struct *task)
712{
713 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
714
715 ia64_flush_fph(task);
716 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
717 task->thread.flags |= IA64_THREAD_FPH_VALID;
718 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
719 }
720 ia64_drop_fpu(task);
721 psr->dfh = 1;
722}
723
724/*
725 * Change the machine-state of CHILD such that it will return via the normal
726 * kernel exit-path, rather than the syscall-exit path.
727 */
728static void
729convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
730 unsigned long cfm)
731{
732 struct unw_frame_info info, prev_info;
733 unsigned long ip, sp, pr;
734
735 unw_init_from_blocked_task(&info, child);
736 while (1) {
737 prev_info = info;
738 if (unw_unwind(&info) < 0)
739 return;
740
741 unw_get_sp(&info, &sp);
742 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
743 < IA64_PT_REGS_SIZE) {
744 dprintk("ptrace.%s: ran off the top of the kernel "
745 "stack\n", __func__);
746 return;
747 }
748 if (unw_get_pr (&prev_info, &pr) < 0) {
749 unw_get_rp(&prev_info, &ip);
750 dprintk("ptrace.%s: failed to read "
751 "predicate register (ip=0x%lx)\n",
752 __func__, ip);
753 return;
754 }
755 if (unw_is_intr_frame(&info)
756 && (pr & (1UL << PRED_USER_STACK)))
757 break;
758 }
759
760 /*
761 * Note: at the time of this call, the target task is blocked
762 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
763 * (aka, "pLvSys") we redirect execution from
764 * .work_pending_syscall_end to .work_processed_kernel.
765 */
766 unw_get_pr(&prev_info, &pr);
767 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
768 pr |= (1UL << PRED_NON_SYSCALL);
769 unw_set_pr(&prev_info, pr);
770
771 pt->cr_ifs = (1UL << 63) | cfm;
772 /*
773 * Clear the memory that is NOT written on syscall-entry to
774 * ensure we do not leak kernel-state to user when execution
775 * resumes.
776 */
777 pt->r2 = 0;
778 pt->r3 = 0;
779 pt->r14 = 0;
780 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
781 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
782 pt->b7 = 0;
783 pt->ar_ccv = 0;
784 pt->ar_csd = 0;
785 pt->ar_ssd = 0;
786}
787
788static int
789access_nat_bits (struct task_struct *child, struct pt_regs *pt,
790 struct unw_frame_info *info,
791 unsigned long *data, int write_access)
792{
793 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
794 char nat = 0;
795
796 if (write_access) {
797 nat_bits = *data;
798 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
799 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
800 dprintk("ptrace: failed to set ar.unat\n");
801 return -1;
802 }
803 for (regnum = 4; regnum <= 7; ++regnum) {
804 unw_get_gr(info, regnum, &dummy, &nat);
805 unw_set_gr(info, regnum, dummy,
806 (nat_bits >> regnum) & 1);
807 }
808 } else {
809 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
810 dprintk("ptrace: failed to read ar.unat\n");
811 return -1;
812 }
813 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
814 for (regnum = 4; regnum <= 7; ++regnum) {
815 unw_get_gr(info, regnum, &dummy, &nat);
816 nat_bits |= (nat != 0) << regnum;
817 }
818 *data = nat_bits;
819 }
820 return 0;
821}
822
823static int
824access_uarea (struct task_struct *child, unsigned long addr,
825 unsigned long *data, int write_access);
826
827static long
828ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
829{
830 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
831 struct unw_frame_info info;
832 struct ia64_fpreg fpval;
833 struct switch_stack *sw;
834 struct pt_regs *pt;
835 long ret, retval = 0;
836 char nat = 0;
837 int i;
838
839 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
840 return -EIO;
841
842 pt = task_pt_regs(child);
843 sw = (struct switch_stack *) (child->thread.ksp + 16);
844 unw_init_from_blocked_task(&info, child);
845 if (unw_unwind_to_user(&info) < 0) {
846 return -EIO;
847 }
848
849 if (((unsigned long) ppr & 0x7) != 0) {
850 dprintk("ptrace:unaligned register address %p\n", ppr);
851 return -EIO;
852 }
853
854 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
855 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
856 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
857 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
858 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
859 || access_uarea(child, PT_CFM, &cfm, 0)
860 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
861 return -EIO;
862
863 /* control regs */
864
865 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
866 retval |= __put_user(psr, &ppr->cr_ipsr);
867
868 /* app regs */
869
870 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
871 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
872 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
873 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
874 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
875 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
876
877 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
878 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
879 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
880 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
881 retval |= __put_user(cfm, &ppr->cfm);
882
883 /* gr1-gr3 */
884
885 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
886 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
887
888 /* gr4-gr7 */
889
890 for (i = 4; i < 8; i++) {
891 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
892 return -EIO;
893 retval |= __put_user(val, &ppr->gr[i]);
894 }
895
896 /* gr8-gr11 */
897
898 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
899
900 /* gr12-gr15 */
901
902 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
903 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
904 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
905
906 /* gr16-gr31 */
907
908 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
909
910 /* b0 */
911
912 retval |= __put_user(pt->b0, &ppr->br[0]);
913
914 /* b1-b5 */
915
916 for (i = 1; i < 6; i++) {
917 if (unw_access_br(&info, i, &val, 0) < 0)
918 return -EIO;
919 __put_user(val, &ppr->br[i]);
920 }
921
922 /* b6-b7 */
923
924 retval |= __put_user(pt->b6, &ppr->br[6]);
925 retval |= __put_user(pt->b7, &ppr->br[7]);
926
927 /* fr2-fr5 */
928
929 for (i = 2; i < 6; i++) {
930 if (unw_get_fr(&info, i, &fpval) < 0)
931 return -EIO;
932 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
933 }
934
935 /* fr6-fr11 */
936
937 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
938 sizeof(struct ia64_fpreg) * 6);
939
940 /* fp scratch regs(12-15) */
941
942 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
943 sizeof(struct ia64_fpreg) * 4);
944
945 /* fr16-fr31 */
946
947 for (i = 16; i < 32; i++) {
948 if (unw_get_fr(&info, i, &fpval) < 0)
949 return -EIO;
950 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
951 }
952
953 /* fph */
954
955 ia64_flush_fph(child);
956 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
957 sizeof(ppr->fr[32]) * 96);
958
959 /* preds */
960
961 retval |= __put_user(pt->pr, &ppr->pr);
962
963 /* nat bits */
964
965 retval |= __put_user(nat_bits, &ppr->nat);
966
967 ret = retval ? -EIO : 0;
968 return ret;
969}
970
971static long
972ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
973{
974 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
975 struct unw_frame_info info;
976 struct switch_stack *sw;
977 struct ia64_fpreg fpval;
978 struct pt_regs *pt;
979 long ret, retval = 0;
980 int i;
981
982 memset(&fpval, 0, sizeof(fpval));
983
984 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
985 return -EIO;
986
987 pt = task_pt_regs(child);
988 sw = (struct switch_stack *) (child->thread.ksp + 16);
989 unw_init_from_blocked_task(&info, child);
990 if (unw_unwind_to_user(&info) < 0) {
991 return -EIO;
992 }
993
994 if (((unsigned long) ppr & 0x7) != 0) {
995 dprintk("ptrace:unaligned register address %p\n", ppr);
996 return -EIO;
997 }
998
999 /* control regs */
1000
1001 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1002 retval |= __get_user(psr, &ppr->cr_ipsr);
1003
1004 /* app regs */
1005
1006 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1007 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1008 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1009 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1010 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1011 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1012
1013 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1014 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1015 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1016 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1017 retval |= __get_user(cfm, &ppr->cfm);
1018
1019 /* gr1-gr3 */
1020
1021 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1022 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1023
1024 /* gr4-gr7 */
1025
1026 for (i = 4; i < 8; i++) {
1027 retval |= __get_user(val, &ppr->gr[i]);
1028 /* NaT bit will be set via PT_NAT_BITS: */
1029 if (unw_set_gr(&info, i, val, 0) < 0)
1030 return -EIO;
1031 }
1032
1033 /* gr8-gr11 */
1034
1035 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1036
1037 /* gr12-gr15 */
1038
1039 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1040 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1041 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1042
1043 /* gr16-gr31 */
1044
1045 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1046
1047 /* b0 */
1048
1049 retval |= __get_user(pt->b0, &ppr->br[0]);
1050
1051 /* b1-b5 */
1052
1053 for (i = 1; i < 6; i++) {
1054 retval |= __get_user(val, &ppr->br[i]);
1055 unw_set_br(&info, i, val);
1056 }
1057
1058 /* b6-b7 */
1059
1060 retval |= __get_user(pt->b6, &ppr->br[6]);
1061 retval |= __get_user(pt->b7, &ppr->br[7]);
1062
1063 /* fr2-fr5 */
1064
1065 for (i = 2; i < 6; i++) {
1066 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1067 if (unw_set_fr(&info, i, fpval) < 0)
1068 return -EIO;
1069 }
1070
1071 /* fr6-fr11 */
1072
1073 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1074 sizeof(ppr->fr[6]) * 6);
1075
1076 /* fp scratch regs(12-15) */
1077
1078 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1079 sizeof(ppr->fr[12]) * 4);
1080
1081 /* fr16-fr31 */
1082
1083 for (i = 16; i < 32; i++) {
1084 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1085 sizeof(fpval));
1086 if (unw_set_fr(&info, i, fpval) < 0)
1087 return -EIO;
1088 }
1089
1090 /* fph */
1091
1092 ia64_sync_fph(child);
1093 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1094 sizeof(ppr->fr[32]) * 96);
1095
1096 /* preds */
1097
1098 retval |= __get_user(pt->pr, &ppr->pr);
1099
1100 /* nat bits */
1101
1102 retval |= __get_user(nat_bits, &ppr->nat);
1103
1104 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1105 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1106 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1107 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1108 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1109 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1110 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1111 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1112
1113 ret = retval ? -EIO : 0;
1114 return ret;
1115}
1116
1117void
1118user_enable_single_step (struct task_struct *child)
1119{
1120 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1121
1122 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1123 child_psr->ss = 1;
1124}
1125
1126void
1127user_enable_block_step (struct task_struct *child)
1128{
1129 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1130
1131 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1132 child_psr->tb = 1;
1133}
1134
1135void
1136user_disable_single_step (struct task_struct *child)
1137{
1138 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1139
1140 /* make sure the single step/taken-branch trap bits are not set: */
1141 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1142 child_psr->ss = 0;
1143 child_psr->tb = 0;
1144}
1145
1146/*
1147 * Called by kernel/ptrace.c when detaching..
1148 *
1149 * Make sure the single step bit is not set.
1150 */
1151void
1152ptrace_disable (struct task_struct *child)
1153{
1154 user_disable_single_step(child);
1155}
1156
1157long
1158arch_ptrace (struct task_struct *child, long request,
1159 unsigned long addr, unsigned long data)
1160{
1161 switch (request) {
1162 case PTRACE_PEEKTEXT:
1163 case PTRACE_PEEKDATA:
1164 /* read word at location addr */
1165 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1166 FOLL_FORCE)
1167 != sizeof(data))
1168 return -EIO;
1169 /* ensure return value is not mistaken for error code */
1170 force_successful_syscall_return();
1171 return data;
1172
1173 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1174 * by the generic ptrace_request().
1175 */
1176
1177 case PTRACE_PEEKUSR:
1178 /* read the word at addr in the USER area */
1179 if (access_uarea(child, addr, &data, 0) < 0)
1180 return -EIO;
1181 /* ensure return value is not mistaken for error code */
1182 force_successful_syscall_return();
1183 return data;
1184
1185 case PTRACE_POKEUSR:
1186 /* write the word at addr in the USER area */
1187 if (access_uarea(child, addr, &data, 1) < 0)
1188 return -EIO;
1189 return 0;
1190
1191 case PTRACE_OLD_GETSIGINFO:
1192 /* for backwards-compatibility */
1193 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1194
1195 case PTRACE_OLD_SETSIGINFO:
1196 /* for backwards-compatibility */
1197 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1198
1199 case PTRACE_GETREGS:
1200 return ptrace_getregs(child,
1201 (struct pt_all_user_regs __user *) data);
1202
1203 case PTRACE_SETREGS:
1204 return ptrace_setregs(child,
1205 (struct pt_all_user_regs __user *) data);
1206
1207 default:
1208 return ptrace_request(child, request, addr, data);
1209 }
1210}
1211
1212
1213/* "asmlinkage" so the input arguments are preserved... */
1214
1215asmlinkage long
1216syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1217 long arg4, long arg5, long arg6, long arg7,
1218 struct pt_regs regs)
1219{
1220 if (test_thread_flag(TIF_SYSCALL_TRACE))
1221 if (tracehook_report_syscall_entry(®s))
1222 return -ENOSYS;
1223
1224 /* copy user rbs to kernel rbs */
1225 if (test_thread_flag(TIF_RESTORE_RSE))
1226 ia64_sync_krbs();
1227
1228
1229 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1230
1231 return 0;
1232}
1233
1234/* "asmlinkage" so the input arguments are preserved... */
1235
1236asmlinkage void
1237syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1238 long arg4, long arg5, long arg6, long arg7,
1239 struct pt_regs regs)
1240{
1241 int step;
1242
1243 audit_syscall_exit(®s);
1244
1245 step = test_thread_flag(TIF_SINGLESTEP);
1246 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1247 tracehook_report_syscall_exit(®s, step);
1248
1249 /* copy user rbs to kernel rbs */
1250 if (test_thread_flag(TIF_RESTORE_RSE))
1251 ia64_sync_krbs();
1252}
1253
1254/* Utrace implementation starts here */
1255struct regset_get {
1256 void *kbuf;
1257 void __user *ubuf;
1258};
1259
1260struct regset_set {
1261 const void *kbuf;
1262 const void __user *ubuf;
1263};
1264
1265struct regset_getset {
1266 struct task_struct *target;
1267 const struct user_regset *regset;
1268 union {
1269 struct regset_get get;
1270 struct regset_set set;
1271 } u;
1272 unsigned int pos;
1273 unsigned int count;
1274 int ret;
1275};
1276
1277static int
1278access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1279 unsigned long addr, unsigned long *data, int write_access)
1280{
1281 struct pt_regs *pt;
1282 unsigned long *ptr = NULL;
1283 int ret;
1284 char nat = 0;
1285
1286 pt = task_pt_regs(target);
1287 switch (addr) {
1288 case ELF_GR_OFFSET(1):
1289 ptr = &pt->r1;
1290 break;
1291 case ELF_GR_OFFSET(2):
1292 case ELF_GR_OFFSET(3):
1293 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1294 break;
1295 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1296 if (write_access) {
1297 /* read NaT bit first: */
1298 unsigned long dummy;
1299
1300 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1301 if (ret < 0)
1302 return ret;
1303 }
1304 return unw_access_gr(info, addr/8, data, &nat, write_access);
1305 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1306 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1307 break;
1308 case ELF_GR_OFFSET(12):
1309 case ELF_GR_OFFSET(13):
1310 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1311 break;
1312 case ELF_GR_OFFSET(14):
1313 ptr = &pt->r14;
1314 break;
1315 case ELF_GR_OFFSET(15):
1316 ptr = &pt->r15;
1317 }
1318 if (write_access)
1319 *ptr = *data;
1320 else
1321 *data = *ptr;
1322 return 0;
1323}
1324
1325static int
1326access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1327 unsigned long addr, unsigned long *data, int write_access)
1328{
1329 struct pt_regs *pt;
1330 unsigned long *ptr = NULL;
1331
1332 pt = task_pt_regs(target);
1333 switch (addr) {
1334 case ELF_BR_OFFSET(0):
1335 ptr = &pt->b0;
1336 break;
1337 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1338 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1339 data, write_access);
1340 case ELF_BR_OFFSET(6):
1341 ptr = &pt->b6;
1342 break;
1343 case ELF_BR_OFFSET(7):
1344 ptr = &pt->b7;
1345 }
1346 if (write_access)
1347 *ptr = *data;
1348 else
1349 *data = *ptr;
1350 return 0;
1351}
1352
1353static int
1354access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1355 unsigned long addr, unsigned long *data, int write_access)
1356{
1357 struct pt_regs *pt;
1358 unsigned long cfm, urbs_end;
1359 unsigned long *ptr = NULL;
1360
1361 pt = task_pt_regs(target);
1362 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1363 switch (addr) {
1364 case ELF_AR_RSC_OFFSET:
1365 /* force PL3 */
1366 if (write_access)
1367 pt->ar_rsc = *data | (3 << 2);
1368 else
1369 *data = pt->ar_rsc;
1370 return 0;
1371 case ELF_AR_BSP_OFFSET:
1372 /*
1373 * By convention, we use PT_AR_BSP to refer to
1374 * the end of the user-level backing store.
1375 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1376 * to get the real value of ar.bsp at the time
1377 * the kernel was entered.
1378 *
1379 * Furthermore, when changing the contents of
1380 * PT_AR_BSP (or PT_CFM) while the task is
1381 * blocked in a system call, convert the state
1382 * so that the non-system-call exit
1383 * path is used. This ensures that the proper
1384 * state will be picked up when resuming
1385 * execution. However, it *also* means that
1386 * once we write PT_AR_BSP/PT_CFM, it won't be
1387 * possible to modify the syscall arguments of
1388 * the pending system call any longer. This
1389 * shouldn't be an issue because modifying
1390 * PT_AR_BSP/PT_CFM generally implies that
1391 * we're either abandoning the pending system
1392 * call or that we defer it's re-execution
1393 * (e.g., due to GDB doing an inferior
1394 * function call).
1395 */
1396 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1397 if (write_access) {
1398 if (*data != urbs_end) {
1399 if (in_syscall(pt))
1400 convert_to_non_syscall(target,
1401 pt,
1402 cfm);
1403 /*
1404 * Simulate user-level write
1405 * of ar.bsp:
1406 */
1407 pt->loadrs = 0;
1408 pt->ar_bspstore = *data;
1409 }
1410 } else
1411 *data = urbs_end;
1412 return 0;
1413 case ELF_AR_BSPSTORE_OFFSET:
1414 ptr = &pt->ar_bspstore;
1415 break;
1416 case ELF_AR_RNAT_OFFSET:
1417 ptr = &pt->ar_rnat;
1418 break;
1419 case ELF_AR_CCV_OFFSET:
1420 ptr = &pt->ar_ccv;
1421 break;
1422 case ELF_AR_UNAT_OFFSET:
1423 ptr = &pt->ar_unat;
1424 break;
1425 case ELF_AR_FPSR_OFFSET:
1426 ptr = &pt->ar_fpsr;
1427 break;
1428 case ELF_AR_PFS_OFFSET:
1429 ptr = &pt->ar_pfs;
1430 break;
1431 case ELF_AR_LC_OFFSET:
1432 return unw_access_ar(info, UNW_AR_LC, data,
1433 write_access);
1434 case ELF_AR_EC_OFFSET:
1435 return unw_access_ar(info, UNW_AR_EC, data,
1436 write_access);
1437 case ELF_AR_CSD_OFFSET:
1438 ptr = &pt->ar_csd;
1439 break;
1440 case ELF_AR_SSD_OFFSET:
1441 ptr = &pt->ar_ssd;
1442 }
1443 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1444 switch (addr) {
1445 case ELF_CR_IIP_OFFSET:
1446 ptr = &pt->cr_iip;
1447 break;
1448 case ELF_CFM_OFFSET:
1449 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1450 if (write_access) {
1451 if (((cfm ^ *data) & PFM_MASK) != 0) {
1452 if (in_syscall(pt))
1453 convert_to_non_syscall(target,
1454 pt,
1455 cfm);
1456 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1457 | (*data & PFM_MASK));
1458 }
1459 } else
1460 *data = cfm;
1461 return 0;
1462 case ELF_CR_IPSR_OFFSET:
1463 if (write_access) {
1464 unsigned long tmp = *data;
1465 /* psr.ri==3 is a reserved value: SDM 2:25 */
1466 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1467 tmp &= ~IA64_PSR_RI;
1468 pt->cr_ipsr = ((tmp & IPSR_MASK)
1469 | (pt->cr_ipsr & ~IPSR_MASK));
1470 } else
1471 *data = (pt->cr_ipsr & IPSR_MASK);
1472 return 0;
1473 }
1474 } else if (addr == ELF_NAT_OFFSET)
1475 return access_nat_bits(target, pt, info,
1476 data, write_access);
1477 else if (addr == ELF_PR_OFFSET)
1478 ptr = &pt->pr;
1479 else
1480 return -1;
1481
1482 if (write_access)
1483 *ptr = *data;
1484 else
1485 *data = *ptr;
1486
1487 return 0;
1488}
1489
1490static int
1491access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1492 unsigned long addr, unsigned long *data, int write_access)
1493{
1494 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1495 return access_elf_gpreg(target, info, addr, data, write_access);
1496 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1497 return access_elf_breg(target, info, addr, data, write_access);
1498 else
1499 return access_elf_areg(target, info, addr, data, write_access);
1500}
1501
1502void do_gpregs_get(struct unw_frame_info *info, void *arg)
1503{
1504 struct pt_regs *pt;
1505 struct regset_getset *dst = arg;
1506 elf_greg_t tmp[16];
1507 unsigned int i, index, min_copy;
1508
1509 if (unw_unwind_to_user(info) < 0)
1510 return;
1511
1512 /*
1513 * coredump format:
1514 * r0-r31
1515 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1516 * predicate registers (p0-p63)
1517 * b0-b7
1518 * ip cfm user-mask
1519 * ar.rsc ar.bsp ar.bspstore ar.rnat
1520 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1521 */
1522
1523
1524 /* Skip r0 */
1525 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1526 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1527 &dst->u.get.kbuf,
1528 &dst->u.get.ubuf,
1529 0, ELF_GR_OFFSET(1));
1530 if (dst->ret || dst->count == 0)
1531 return;
1532 }
1533
1534 /* gr1 - gr15 */
1535 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1536 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1537 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1538 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1539 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1540 index++)
1541 if (access_elf_reg(dst->target, info, i,
1542 &tmp[index], 0) < 0) {
1543 dst->ret = -EIO;
1544 return;
1545 }
1546 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1547 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1548 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1549 if (dst->ret || dst->count == 0)
1550 return;
1551 }
1552
1553 /* r16-r31 */
1554 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1555 pt = task_pt_regs(dst->target);
1556 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1557 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1558 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1559 if (dst->ret || dst->count == 0)
1560 return;
1561 }
1562
1563 /* nat, pr, b0 - b7 */
1564 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1565 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1566 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1567 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1568 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1569 index++)
1570 if (access_elf_reg(dst->target, info, i,
1571 &tmp[index], 0) < 0) {
1572 dst->ret = -EIO;
1573 return;
1574 }
1575 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1576 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1577 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1578 if (dst->ret || dst->count == 0)
1579 return;
1580 }
1581
1582 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1583 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1584 */
1585 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1586 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1587 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1588 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1589 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1590 index++)
1591 if (access_elf_reg(dst->target, info, i,
1592 &tmp[index], 0) < 0) {
1593 dst->ret = -EIO;
1594 return;
1595 }
1596 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1597 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1598 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1599 }
1600}
1601
1602void do_gpregs_set(struct unw_frame_info *info, void *arg)
1603{
1604 struct pt_regs *pt;
1605 struct regset_getset *dst = arg;
1606 elf_greg_t tmp[16];
1607 unsigned int i, index;
1608
1609 if (unw_unwind_to_user(info) < 0)
1610 return;
1611
1612 /* Skip r0 */
1613 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1614 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1615 &dst->u.set.kbuf,
1616 &dst->u.set.ubuf,
1617 0, ELF_GR_OFFSET(1));
1618 if (dst->ret || dst->count == 0)
1619 return;
1620 }
1621
1622 /* gr1-gr15 */
1623 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1624 i = dst->pos;
1625 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1626 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1627 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1628 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1629 if (dst->ret)
1630 return;
1631 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1632 if (access_elf_reg(dst->target, info, i,
1633 &tmp[index], 1) < 0) {
1634 dst->ret = -EIO;
1635 return;
1636 }
1637 if (dst->count == 0)
1638 return;
1639 }
1640
1641 /* gr16-gr31 */
1642 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1643 pt = task_pt_regs(dst->target);
1644 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1645 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1646 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1647 if (dst->ret || dst->count == 0)
1648 return;
1649 }
1650
1651 /* nat, pr, b0 - b7 */
1652 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1653 i = dst->pos;
1654 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1655 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1656 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1657 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1658 if (dst->ret)
1659 return;
1660 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1661 if (access_elf_reg(dst->target, info, i,
1662 &tmp[index], 1) < 0) {
1663 dst->ret = -EIO;
1664 return;
1665 }
1666 if (dst->count == 0)
1667 return;
1668 }
1669
1670 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1671 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1672 */
1673 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1674 i = dst->pos;
1675 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1676 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1677 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1678 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1679 if (dst->ret)
1680 return;
1681 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1682 if (access_elf_reg(dst->target, info, i,
1683 &tmp[index], 1) < 0) {
1684 dst->ret = -EIO;
1685 return;
1686 }
1687 }
1688}
1689
1690#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1691
1692void do_fpregs_get(struct unw_frame_info *info, void *arg)
1693{
1694 struct regset_getset *dst = arg;
1695 struct task_struct *task = dst->target;
1696 elf_fpreg_t tmp[30];
1697 int index, min_copy, i;
1698
1699 if (unw_unwind_to_user(info) < 0)
1700 return;
1701
1702 /* Skip pos 0 and 1 */
1703 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1704 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1705 &dst->u.get.kbuf,
1706 &dst->u.get.ubuf,
1707 0, ELF_FP_OFFSET(2));
1708 if (dst->count == 0 || dst->ret)
1709 return;
1710 }
1711
1712 /* fr2-fr31 */
1713 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1714 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1715
1716 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1717 dst->pos + dst->count);
1718 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1719 index++)
1720 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1721 &tmp[index])) {
1722 dst->ret = -EIO;
1723 return;
1724 }
1725 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1726 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1727 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1728 if (dst->count == 0 || dst->ret)
1729 return;
1730 }
1731
1732 /* fph */
1733 if (dst->count > 0) {
1734 ia64_flush_fph(dst->target);
1735 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1736 dst->ret = user_regset_copyout(
1737 &dst->pos, &dst->count,
1738 &dst->u.get.kbuf, &dst->u.get.ubuf,
1739 &dst->target->thread.fph,
1740 ELF_FP_OFFSET(32), -1);
1741 else
1742 /* Zero fill instead. */
1743 dst->ret = user_regset_copyout_zero(
1744 &dst->pos, &dst->count,
1745 &dst->u.get.kbuf, &dst->u.get.ubuf,
1746 ELF_FP_OFFSET(32), -1);
1747 }
1748}
1749
1750void do_fpregs_set(struct unw_frame_info *info, void *arg)
1751{
1752 struct regset_getset *dst = arg;
1753 elf_fpreg_t fpreg, tmp[30];
1754 int index, start, end;
1755
1756 if (unw_unwind_to_user(info) < 0)
1757 return;
1758
1759 /* Skip pos 0 and 1 */
1760 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1761 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1762 &dst->u.set.kbuf,
1763 &dst->u.set.ubuf,
1764 0, ELF_FP_OFFSET(2));
1765 if (dst->count == 0 || dst->ret)
1766 return;
1767 }
1768
1769 /* fr2-fr31 */
1770 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1771 start = dst->pos;
1772 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1773 dst->pos + dst->count);
1774 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1775 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1776 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1777 if (dst->ret)
1778 return;
1779
1780 if (start & 0xF) { /* only write high part */
1781 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1782 &fpreg)) {
1783 dst->ret = -EIO;
1784 return;
1785 }
1786 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1787 = fpreg.u.bits[0];
1788 start &= ~0xFUL;
1789 }
1790 if (end & 0xF) { /* only write low part */
1791 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1792 &fpreg)) {
1793 dst->ret = -EIO;
1794 return;
1795 }
1796 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1797 = fpreg.u.bits[1];
1798 end = (end + 0xF) & ~0xFUL;
1799 }
1800
1801 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1802 index = start / sizeof(elf_fpreg_t);
1803 if (unw_set_fr(info, index, tmp[index - 2])) {
1804 dst->ret = -EIO;
1805 return;
1806 }
1807 }
1808 if (dst->ret || dst->count == 0)
1809 return;
1810 }
1811
1812 /* fph */
1813 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1814 ia64_sync_fph(dst->target);
1815 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1816 &dst->u.set.kbuf,
1817 &dst->u.set.ubuf,
1818 &dst->target->thread.fph,
1819 ELF_FP_OFFSET(32), -1);
1820 }
1821}
1822
1823static int
1824do_regset_call(void (*call)(struct unw_frame_info *, void *),
1825 struct task_struct *target,
1826 const struct user_regset *regset,
1827 unsigned int pos, unsigned int count,
1828 const void *kbuf, const void __user *ubuf)
1829{
1830 struct regset_getset info = { .target = target, .regset = regset,
1831 .pos = pos, .count = count,
1832 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1833 .ret = 0 };
1834
1835 if (target == current)
1836 unw_init_running(call, &info);
1837 else {
1838 struct unw_frame_info ufi;
1839 memset(&ufi, 0, sizeof(ufi));
1840 unw_init_from_blocked_task(&ufi, target);
1841 (*call)(&ufi, &info);
1842 }
1843
1844 return info.ret;
1845}
1846
1847static int
1848gpregs_get(struct task_struct *target,
1849 const struct user_regset *regset,
1850 unsigned int pos, unsigned int count,
1851 void *kbuf, void __user *ubuf)
1852{
1853 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1854 kbuf, ubuf);
1855}
1856
1857static int gpregs_set(struct task_struct *target,
1858 const struct user_regset *regset,
1859 unsigned int pos, unsigned int count,
1860 const void *kbuf, const void __user *ubuf)
1861{
1862 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1863 kbuf, ubuf);
1864}
1865
1866static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1867{
1868 do_sync_rbs(info, ia64_sync_user_rbs);
1869}
1870
1871/*
1872 * This is called to write back the register backing store.
1873 * ptrace does this before it stops, so that a tracer reading the user
1874 * memory after the thread stops will get the current register data.
1875 */
1876static int
1877gpregs_writeback(struct task_struct *target,
1878 const struct user_regset *regset,
1879 int now)
1880{
1881 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1882 return 0;
1883 set_notify_resume(target);
1884 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1885 NULL, NULL);
1886}
1887
1888static int
1889fpregs_active(struct task_struct *target, const struct user_regset *regset)
1890{
1891 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1892}
1893
1894static int fpregs_get(struct task_struct *target,
1895 const struct user_regset *regset,
1896 unsigned int pos, unsigned int count,
1897 void *kbuf, void __user *ubuf)
1898{
1899 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1900 kbuf, ubuf);
1901}
1902
1903static int fpregs_set(struct task_struct *target,
1904 const struct user_regset *regset,
1905 unsigned int pos, unsigned int count,
1906 const void *kbuf, const void __user *ubuf)
1907{
1908 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1909 kbuf, ubuf);
1910}
1911
1912static int
1913access_uarea(struct task_struct *child, unsigned long addr,
1914 unsigned long *data, int write_access)
1915{
1916 unsigned int pos = -1; /* an invalid value */
1917 int ret;
1918 unsigned long *ptr, regnum;
1919
1920 if ((addr & 0x7) != 0) {
1921 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1922 return -1;
1923 }
1924 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1925 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1926 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1927 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1928 dprintk("ptrace: rejecting access to register "
1929 "address 0x%lx\n", addr);
1930 return -1;
1931 }
1932
1933 switch (addr) {
1934 case PT_F32 ... (PT_F127 + 15):
1935 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1936 break;
1937 case PT_F2 ... (PT_F5 + 15):
1938 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1939 break;
1940 case PT_F10 ... (PT_F31 + 15):
1941 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1942 break;
1943 case PT_F6 ... (PT_F9 + 15):
1944 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1945 break;
1946 }
1947
1948 if (pos != -1) {
1949 if (write_access)
1950 ret = fpregs_set(child, NULL, pos,
1951 sizeof(unsigned long), data, NULL);
1952 else
1953 ret = fpregs_get(child, NULL, pos,
1954 sizeof(unsigned long), data, NULL);
1955 if (ret != 0)
1956 return -1;
1957 return 0;
1958 }
1959
1960 switch (addr) {
1961 case PT_NAT_BITS:
1962 pos = ELF_NAT_OFFSET;
1963 break;
1964 case PT_R4 ... PT_R7:
1965 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1966 break;
1967 case PT_B1 ... PT_B5:
1968 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1969 break;
1970 case PT_AR_EC:
1971 pos = ELF_AR_EC_OFFSET;
1972 break;
1973 case PT_AR_LC:
1974 pos = ELF_AR_LC_OFFSET;
1975 break;
1976 case PT_CR_IPSR:
1977 pos = ELF_CR_IPSR_OFFSET;
1978 break;
1979 case PT_CR_IIP:
1980 pos = ELF_CR_IIP_OFFSET;
1981 break;
1982 case PT_CFM:
1983 pos = ELF_CFM_OFFSET;
1984 break;
1985 case PT_AR_UNAT:
1986 pos = ELF_AR_UNAT_OFFSET;
1987 break;
1988 case PT_AR_PFS:
1989 pos = ELF_AR_PFS_OFFSET;
1990 break;
1991 case PT_AR_RSC:
1992 pos = ELF_AR_RSC_OFFSET;
1993 break;
1994 case PT_AR_RNAT:
1995 pos = ELF_AR_RNAT_OFFSET;
1996 break;
1997 case PT_AR_BSPSTORE:
1998 pos = ELF_AR_BSPSTORE_OFFSET;
1999 break;
2000 case PT_PR:
2001 pos = ELF_PR_OFFSET;
2002 break;
2003 case PT_B6:
2004 pos = ELF_BR_OFFSET(6);
2005 break;
2006 case PT_AR_BSP:
2007 pos = ELF_AR_BSP_OFFSET;
2008 break;
2009 case PT_R1 ... PT_R3:
2010 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2011 break;
2012 case PT_R12 ... PT_R15:
2013 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2014 break;
2015 case PT_R8 ... PT_R11:
2016 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2017 break;
2018 case PT_R16 ... PT_R31:
2019 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2020 break;
2021 case PT_AR_CCV:
2022 pos = ELF_AR_CCV_OFFSET;
2023 break;
2024 case PT_AR_FPSR:
2025 pos = ELF_AR_FPSR_OFFSET;
2026 break;
2027 case PT_B0:
2028 pos = ELF_BR_OFFSET(0);
2029 break;
2030 case PT_B7:
2031 pos = ELF_BR_OFFSET(7);
2032 break;
2033 case PT_AR_CSD:
2034 pos = ELF_AR_CSD_OFFSET;
2035 break;
2036 case PT_AR_SSD:
2037 pos = ELF_AR_SSD_OFFSET;
2038 break;
2039 }
2040
2041 if (pos != -1) {
2042 if (write_access)
2043 ret = gpregs_set(child, NULL, pos,
2044 sizeof(unsigned long), data, NULL);
2045 else
2046 ret = gpregs_get(child, NULL, pos,
2047 sizeof(unsigned long), data, NULL);
2048 if (ret != 0)
2049 return -1;
2050 return 0;
2051 }
2052
2053 /* access debug registers */
2054 if (addr >= PT_IBR) {
2055 regnum = (addr - PT_IBR) >> 3;
2056 ptr = &child->thread.ibr[0];
2057 } else {
2058 regnum = (addr - PT_DBR) >> 3;
2059 ptr = &child->thread.dbr[0];
2060 }
2061
2062 if (regnum >= 8) {
2063 dprintk("ptrace: rejecting access to register "
2064 "address 0x%lx\n", addr);
2065 return -1;
2066 }
2067#ifdef CONFIG_PERFMON
2068 /*
2069 * Check if debug registers are used by perfmon. This
2070 * test must be done once we know that we can do the
2071 * operation, i.e. the arguments are all valid, but
2072 * before we start modifying the state.
2073 *
2074 * Perfmon needs to keep a count of how many processes
2075 * are trying to modify the debug registers for system
2076 * wide monitoring sessions.
2077 *
2078 * We also include read access here, because they may
2079 * cause the PMU-installed debug register state
2080 * (dbr[], ibr[]) to be reset. The two arrays are also
2081 * used by perfmon, but we do not use
2082 * IA64_THREAD_DBG_VALID. The registers are restored
2083 * by the PMU context switch code.
2084 */
2085 if (pfm_use_debug_registers(child))
2086 return -1;
2087#endif
2088
2089 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2090 child->thread.flags |= IA64_THREAD_DBG_VALID;
2091 memset(child->thread.dbr, 0,
2092 sizeof(child->thread.dbr));
2093 memset(child->thread.ibr, 0,
2094 sizeof(child->thread.ibr));
2095 }
2096
2097 ptr += regnum;
2098
2099 if ((regnum & 1) && write_access) {
2100 /* don't let the user set kernel-level breakpoints: */
2101 *ptr = *data & ~(7UL << 56);
2102 return 0;
2103 }
2104 if (write_access)
2105 *ptr = *data;
2106 else
2107 *data = *ptr;
2108 return 0;
2109}
2110
2111static const struct user_regset native_regsets[] = {
2112 {
2113 .core_note_type = NT_PRSTATUS,
2114 .n = ELF_NGREG,
2115 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2116 .get = gpregs_get, .set = gpregs_set,
2117 .writeback = gpregs_writeback
2118 },
2119 {
2120 .core_note_type = NT_PRFPREG,
2121 .n = ELF_NFPREG,
2122 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2123 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2124 },
2125};
2126
2127static const struct user_regset_view user_ia64_view = {
2128 .name = "ia64",
2129 .e_machine = EM_IA_64,
2130 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2131};
2132
2133const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2134{
2135 return &user_ia64_view;
2136}
2137
2138struct syscall_get_set_args {
2139 unsigned int i;
2140 unsigned int n;
2141 unsigned long *args;
2142 struct pt_regs *regs;
2143 int rw;
2144};
2145
2146static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2147{
2148 struct syscall_get_set_args *args = data;
2149 struct pt_regs *pt = args->regs;
2150 unsigned long *krbs, cfm, ndirty;
2151 int i, count;
2152
2153 if (unw_unwind_to_user(info) < 0)
2154 return;
2155
2156 cfm = pt->cr_ifs;
2157 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2158 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2159
2160 count = 0;
2161 if (in_syscall(pt))
2162 count = min_t(int, args->n, cfm & 0x7f);
2163
2164 for (i = 0; i < count; i++) {
2165 if (args->rw)
2166 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2167 args->args[i];
2168 else
2169 args->args[i] = *ia64_rse_skip_regs(krbs,
2170 ndirty + i + args->i);
2171 }
2172
2173 if (!args->rw) {
2174 while (i < args->n) {
2175 args->args[i] = 0;
2176 i++;
2177 }
2178 }
2179}
2180
2181void ia64_syscall_get_set_arguments(struct task_struct *task,
2182 struct pt_regs *regs, unsigned int i, unsigned int n,
2183 unsigned long *args, int rw)
2184{
2185 struct syscall_get_set_args data = {
2186 .i = i,
2187 .n = n,
2188 .args = args,
2189 .regs = regs,
2190 .rw = rw,
2191 };
2192
2193 if (task == current)
2194 unw_init_running(syscall_get_set_args_cb, &data);
2195 else {
2196 struct unw_frame_info ufi;
2197 memset(&ufi, 0, sizeof(ufi));
2198 unw_init_from_blocked_task(&ufi, task);
2199 syscall_get_set_args_cb(&ufi, &data);
2200 }
2201}