Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine (KVM) Hypervisor
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 */
12
13#include <kvm/iodev.h>
14
15#include <linux/kvm_host.h>
16#include <linux/kvm.h>
17#include <linux/module.h>
18#include <linux/errno.h>
19#include <linux/percpu.h>
20#include <linux/mm.h>
21#include <linux/miscdevice.h>
22#include <linux/vmalloc.h>
23#include <linux/reboot.h>
24#include <linux/debugfs.h>
25#include <linux/highmem.h>
26#include <linux/file.h>
27#include <linux/syscore_ops.h>
28#include <linux/cpu.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/mm.h>
31#include <linux/sched/stat.h>
32#include <linux/cpumask.h>
33#include <linux/smp.h>
34#include <linux/anon_inodes.h>
35#include <linux/profile.h>
36#include <linux/kvm_para.h>
37#include <linux/pagemap.h>
38#include <linux/mman.h>
39#include <linux/swap.h>
40#include <linux/bitops.h>
41#include <linux/spinlock.h>
42#include <linux/compat.h>
43#include <linux/srcu.h>
44#include <linux/hugetlb.h>
45#include <linux/slab.h>
46#include <linux/sort.h>
47#include <linux/bsearch.h>
48#include <linux/io.h>
49#include <linux/lockdep.h>
50#include <linux/kthread.h>
51#include <linux/suspend.h>
52
53#include <asm/processor.h>
54#include <asm/ioctl.h>
55#include <linux/uaccess.h>
56
57#include "coalesced_mmio.h"
58#include "async_pf.h"
59#include "kvm_mm.h"
60#include "vfio.h"
61
62#include <trace/events/ipi.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
67#include <linux/kvm_dirty_ring.h>
68
69
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
73MODULE_AUTHOR("Qumranet");
74MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75MODULE_LICENSE("GPL");
76
77/* Architectures should define their poll value according to the halt latency */
78unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79module_param(halt_poll_ns, uint, 0644);
80EXPORT_SYMBOL_GPL(halt_poll_ns);
81
82/* Default doubles per-vcpu halt_poll_ns. */
83unsigned int halt_poll_ns_grow = 2;
84module_param(halt_poll_ns_grow, uint, 0644);
85EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86
87/* The start value to grow halt_poll_ns from */
88unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89module_param(halt_poll_ns_grow_start, uint, 0644);
90EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91
92/* Default halves per-vcpu halt_poll_ns. */
93unsigned int halt_poll_ns_shrink = 2;
94module_param(halt_poll_ns_shrink, uint, 0644);
95EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96
97/*
98 * Allow direct access (from KVM or the CPU) without MMU notifier protection
99 * to unpinned pages.
100 */
101static bool allow_unsafe_mappings;
102module_param(allow_unsafe_mappings, bool, 0444);
103
104/*
105 * Ordering of locks:
106 *
107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108 */
109
110DEFINE_MUTEX(kvm_lock);
111LIST_HEAD(vm_list);
112
113static struct kmem_cache *kvm_vcpu_cache;
114
115static __read_mostly struct preempt_ops kvm_preempt_ops;
116static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117
118static struct dentry *kvm_debugfs_dir;
119
120static const struct file_operations stat_fops_per_vm;
121
122static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124#ifdef CONFIG_KVM_COMPAT
125static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127#define KVM_COMPAT(c) .compat_ioctl = (c)
128#else
129/*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
136static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
139static int kvm_no_compat_open(struct inode *inode, struct file *file)
140{
141 return is_compat_task() ? -ENODEV : 0;
142}
143#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145#endif
146static int kvm_enable_virtualization(void);
147static void kvm_disable_virtualization(void);
148
149static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151#define KVM_EVENT_CREATE_VM 0
152#define KVM_EVENT_DESTROY_VM 1
153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154static unsigned long long kvm_createvm_count;
155static unsigned long long kvm_active_vms;
156
157static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
158
159__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
160{
161}
162
163/*
164 * Switches to specified vcpu, until a matching vcpu_put()
165 */
166void vcpu_load(struct kvm_vcpu *vcpu)
167{
168 int cpu = get_cpu();
169
170 __this_cpu_write(kvm_running_vcpu, vcpu);
171 preempt_notifier_register(&vcpu->preempt_notifier);
172 kvm_arch_vcpu_load(vcpu, cpu);
173 put_cpu();
174}
175EXPORT_SYMBOL_GPL(vcpu_load);
176
177void vcpu_put(struct kvm_vcpu *vcpu)
178{
179 preempt_disable();
180 kvm_arch_vcpu_put(vcpu);
181 preempt_notifier_unregister(&vcpu->preempt_notifier);
182 __this_cpu_write(kvm_running_vcpu, NULL);
183 preempt_enable();
184}
185EXPORT_SYMBOL_GPL(vcpu_put);
186
187/* TODO: merge with kvm_arch_vcpu_should_kick */
188static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
189{
190 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
191
192 /*
193 * We need to wait for the VCPU to reenable interrupts and get out of
194 * READING_SHADOW_PAGE_TABLES mode.
195 */
196 if (req & KVM_REQUEST_WAIT)
197 return mode != OUTSIDE_GUEST_MODE;
198
199 /*
200 * Need to kick a running VCPU, but otherwise there is nothing to do.
201 */
202 return mode == IN_GUEST_MODE;
203}
204
205static void ack_kick(void *_completed)
206{
207}
208
209static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
210{
211 if (cpumask_empty(cpus))
212 return false;
213
214 smp_call_function_many(cpus, ack_kick, NULL, wait);
215 return true;
216}
217
218static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
219 struct cpumask *tmp, int current_cpu)
220{
221 int cpu;
222
223 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
224 __kvm_make_request(req, vcpu);
225
226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 return;
228
229 /*
230 * Note, the vCPU could get migrated to a different pCPU at any point
231 * after kvm_request_needs_ipi(), which could result in sending an IPI
232 * to the previous pCPU. But, that's OK because the purpose of the IPI
233 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
234 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
235 * after this point is also OK, as the requirement is only that KVM wait
236 * for vCPUs that were reading SPTEs _before_ any changes were
237 * finalized. See kvm_vcpu_kick() for more details on handling requests.
238 */
239 if (kvm_request_needs_ipi(vcpu, req)) {
240 cpu = READ_ONCE(vcpu->cpu);
241 if (cpu != -1 && cpu != current_cpu)
242 __cpumask_set_cpu(cpu, tmp);
243 }
244}
245
246bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
247 unsigned long *vcpu_bitmap)
248{
249 struct kvm_vcpu *vcpu;
250 struct cpumask *cpus;
251 int i, me;
252 bool called;
253
254 me = get_cpu();
255
256 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
257 cpumask_clear(cpus);
258
259 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
260 vcpu = kvm_get_vcpu(kvm, i);
261 if (!vcpu)
262 continue;
263 kvm_make_vcpu_request(vcpu, req, cpus, me);
264 }
265
266 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
267 put_cpu();
268
269 return called;
270}
271
272bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
273{
274 struct kvm_vcpu *vcpu;
275 struct cpumask *cpus;
276 unsigned long i;
277 bool called;
278 int me;
279
280 me = get_cpu();
281
282 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
283 cpumask_clear(cpus);
284
285 kvm_for_each_vcpu(i, vcpu, kvm)
286 kvm_make_vcpu_request(vcpu, req, cpus, me);
287
288 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
289 put_cpu();
290
291 return called;
292}
293EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
294
295void kvm_flush_remote_tlbs(struct kvm *kvm)
296{
297 ++kvm->stat.generic.remote_tlb_flush_requests;
298
299 /*
300 * We want to publish modifications to the page tables before reading
301 * mode. Pairs with a memory barrier in arch-specific code.
302 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
303 * and smp_mb in walk_shadow_page_lockless_begin/end.
304 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
305 *
306 * There is already an smp_mb__after_atomic() before
307 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
308 * barrier here.
309 */
310 if (!kvm_arch_flush_remote_tlbs(kvm)
311 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
312 ++kvm->stat.generic.remote_tlb_flush;
313}
314EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
315
316void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
317{
318 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
319 return;
320
321 /*
322 * Fall back to a flushing entire TLBs if the architecture range-based
323 * TLB invalidation is unsupported or can't be performed for whatever
324 * reason.
325 */
326 kvm_flush_remote_tlbs(kvm);
327}
328
329void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
330 const struct kvm_memory_slot *memslot)
331{
332 /*
333 * All current use cases for flushing the TLBs for a specific memslot
334 * are related to dirty logging, and many do the TLB flush out of
335 * mmu_lock. The interaction between the various operations on memslot
336 * must be serialized by slots_locks to ensure the TLB flush from one
337 * operation is observed by any other operation on the same memslot.
338 */
339 lockdep_assert_held(&kvm->slots_lock);
340 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
341}
342
343static void kvm_flush_shadow_all(struct kvm *kvm)
344{
345 kvm_arch_flush_shadow_all(kvm);
346 kvm_arch_guest_memory_reclaimed(kvm);
347}
348
349#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
350static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
351 gfp_t gfp_flags)
352{
353 void *page;
354
355 gfp_flags |= mc->gfp_zero;
356
357 if (mc->kmem_cache)
358 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
359
360 page = (void *)__get_free_page(gfp_flags);
361 if (page && mc->init_value)
362 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
363 return page;
364}
365
366int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
367{
368 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
369 void *obj;
370
371 if (mc->nobjs >= min)
372 return 0;
373
374 if (unlikely(!mc->objects)) {
375 if (WARN_ON_ONCE(!capacity))
376 return -EIO;
377
378 /*
379 * Custom init values can be used only for page allocations,
380 * and obviously conflict with __GFP_ZERO.
381 */
382 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
383 return -EIO;
384
385 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
386 if (!mc->objects)
387 return -ENOMEM;
388
389 mc->capacity = capacity;
390 }
391
392 /* It is illegal to request a different capacity across topups. */
393 if (WARN_ON_ONCE(mc->capacity != capacity))
394 return -EIO;
395
396 while (mc->nobjs < mc->capacity) {
397 obj = mmu_memory_cache_alloc_obj(mc, gfp);
398 if (!obj)
399 return mc->nobjs >= min ? 0 : -ENOMEM;
400 mc->objects[mc->nobjs++] = obj;
401 }
402 return 0;
403}
404
405int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
406{
407 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
408}
409
410int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
411{
412 return mc->nobjs;
413}
414
415void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
416{
417 while (mc->nobjs) {
418 if (mc->kmem_cache)
419 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
420 else
421 free_page((unsigned long)mc->objects[--mc->nobjs]);
422 }
423
424 kvfree(mc->objects);
425
426 mc->objects = NULL;
427 mc->capacity = 0;
428}
429
430void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
431{
432 void *p;
433
434 if (WARN_ON(!mc->nobjs))
435 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
436 else
437 p = mc->objects[--mc->nobjs];
438 BUG_ON(!p);
439 return p;
440}
441#endif
442
443static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
444{
445 mutex_init(&vcpu->mutex);
446 vcpu->cpu = -1;
447 vcpu->kvm = kvm;
448 vcpu->vcpu_id = id;
449 vcpu->pid = NULL;
450 rwlock_init(&vcpu->pid_lock);
451#ifndef __KVM_HAVE_ARCH_WQP
452 rcuwait_init(&vcpu->wait);
453#endif
454 kvm_async_pf_vcpu_init(vcpu);
455
456 kvm_vcpu_set_in_spin_loop(vcpu, false);
457 kvm_vcpu_set_dy_eligible(vcpu, false);
458 vcpu->preempted = false;
459 vcpu->ready = false;
460 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
461 vcpu->last_used_slot = NULL;
462
463 /* Fill the stats id string for the vcpu */
464 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
465 task_pid_nr(current), id);
466}
467
468static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
469{
470 kvm_arch_vcpu_destroy(vcpu);
471 kvm_dirty_ring_free(&vcpu->dirty_ring);
472
473 /*
474 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
475 * the vcpu->pid pointer, and at destruction time all file descriptors
476 * are already gone.
477 */
478 put_pid(vcpu->pid);
479
480 free_page((unsigned long)vcpu->run);
481 kmem_cache_free(kvm_vcpu_cache, vcpu);
482}
483
484void kvm_destroy_vcpus(struct kvm *kvm)
485{
486 unsigned long i;
487 struct kvm_vcpu *vcpu;
488
489 kvm_for_each_vcpu(i, vcpu, kvm) {
490 kvm_vcpu_destroy(vcpu);
491 xa_erase(&kvm->vcpu_array, i);
492 }
493
494 atomic_set(&kvm->online_vcpus, 0);
495}
496EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
497
498#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
499static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
500{
501 return container_of(mn, struct kvm, mmu_notifier);
502}
503
504typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
505
506typedef void (*on_lock_fn_t)(struct kvm *kvm);
507
508struct kvm_mmu_notifier_range {
509 /*
510 * 64-bit addresses, as KVM notifiers can operate on host virtual
511 * addresses (unsigned long) and guest physical addresses (64-bit).
512 */
513 u64 start;
514 u64 end;
515 union kvm_mmu_notifier_arg arg;
516 gfn_handler_t handler;
517 on_lock_fn_t on_lock;
518 bool flush_on_ret;
519 bool may_block;
520};
521
522/*
523 * The inner-most helper returns a tuple containing the return value from the
524 * arch- and action-specific handler, plus a flag indicating whether or not at
525 * least one memslot was found, i.e. if the handler found guest memory.
526 *
527 * Note, most notifiers are averse to booleans, so even though KVM tracks the
528 * return from arch code as a bool, outer helpers will cast it to an int. :-(
529 */
530typedef struct kvm_mmu_notifier_return {
531 bool ret;
532 bool found_memslot;
533} kvm_mn_ret_t;
534
535/*
536 * Use a dedicated stub instead of NULL to indicate that there is no callback
537 * function/handler. The compiler technically can't guarantee that a real
538 * function will have a non-zero address, and so it will generate code to
539 * check for !NULL, whereas comparing against a stub will be elided at compile
540 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
541 */
542static void kvm_null_fn(void)
543{
544
545}
546#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
547
548/* Iterate over each memslot intersecting [start, last] (inclusive) range */
549#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
550 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
551 node; \
552 node = interval_tree_iter_next(node, start, last)) \
553
554static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
555 const struct kvm_mmu_notifier_range *range)
556{
557 struct kvm_mmu_notifier_return r = {
558 .ret = false,
559 .found_memslot = false,
560 };
561 struct kvm_gfn_range gfn_range;
562 struct kvm_memory_slot *slot;
563 struct kvm_memslots *slots;
564 int i, idx;
565
566 if (WARN_ON_ONCE(range->end <= range->start))
567 return r;
568
569 /* A null handler is allowed if and only if on_lock() is provided. */
570 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
571 IS_KVM_NULL_FN(range->handler)))
572 return r;
573
574 idx = srcu_read_lock(&kvm->srcu);
575
576 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
577 struct interval_tree_node *node;
578
579 slots = __kvm_memslots(kvm, i);
580 kvm_for_each_memslot_in_hva_range(node, slots,
581 range->start, range->end - 1) {
582 unsigned long hva_start, hva_end;
583
584 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
585 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
586 hva_end = min_t(unsigned long, range->end,
587 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
588
589 /*
590 * To optimize for the likely case where the address
591 * range is covered by zero or one memslots, don't
592 * bother making these conditional (to avoid writes on
593 * the second or later invocation of the handler).
594 */
595 gfn_range.arg = range->arg;
596 gfn_range.may_block = range->may_block;
597
598 /*
599 * {gfn(page) | page intersects with [hva_start, hva_end)} =
600 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
601 */
602 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
603 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
604 gfn_range.slot = slot;
605
606 if (!r.found_memslot) {
607 r.found_memslot = true;
608 KVM_MMU_LOCK(kvm);
609 if (!IS_KVM_NULL_FN(range->on_lock))
610 range->on_lock(kvm);
611
612 if (IS_KVM_NULL_FN(range->handler))
613 goto mmu_unlock;
614 }
615 r.ret |= range->handler(kvm, &gfn_range);
616 }
617 }
618
619 if (range->flush_on_ret && r.ret)
620 kvm_flush_remote_tlbs(kvm);
621
622mmu_unlock:
623 if (r.found_memslot)
624 KVM_MMU_UNLOCK(kvm);
625
626 srcu_read_unlock(&kvm->srcu, idx);
627
628 return r;
629}
630
631static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
632 unsigned long start,
633 unsigned long end,
634 gfn_handler_t handler,
635 bool flush_on_ret)
636{
637 struct kvm *kvm = mmu_notifier_to_kvm(mn);
638 const struct kvm_mmu_notifier_range range = {
639 .start = start,
640 .end = end,
641 .handler = handler,
642 .on_lock = (void *)kvm_null_fn,
643 .flush_on_ret = flush_on_ret,
644 .may_block = false,
645 };
646
647 return __kvm_handle_hva_range(kvm, &range).ret;
648}
649
650static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
651 unsigned long start,
652 unsigned long end,
653 gfn_handler_t handler)
654{
655 return kvm_handle_hva_range(mn, start, end, handler, false);
656}
657
658void kvm_mmu_invalidate_begin(struct kvm *kvm)
659{
660 lockdep_assert_held_write(&kvm->mmu_lock);
661 /*
662 * The count increase must become visible at unlock time as no
663 * spte can be established without taking the mmu_lock and
664 * count is also read inside the mmu_lock critical section.
665 */
666 kvm->mmu_invalidate_in_progress++;
667
668 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
669 kvm->mmu_invalidate_range_start = INVALID_GPA;
670 kvm->mmu_invalidate_range_end = INVALID_GPA;
671 }
672}
673
674void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
675{
676 lockdep_assert_held_write(&kvm->mmu_lock);
677
678 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
679
680 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
681 kvm->mmu_invalidate_range_start = start;
682 kvm->mmu_invalidate_range_end = end;
683 } else {
684 /*
685 * Fully tracking multiple concurrent ranges has diminishing
686 * returns. Keep things simple and just find the minimal range
687 * which includes the current and new ranges. As there won't be
688 * enough information to subtract a range after its invalidate
689 * completes, any ranges invalidated concurrently will
690 * accumulate and persist until all outstanding invalidates
691 * complete.
692 */
693 kvm->mmu_invalidate_range_start =
694 min(kvm->mmu_invalidate_range_start, start);
695 kvm->mmu_invalidate_range_end =
696 max(kvm->mmu_invalidate_range_end, end);
697 }
698}
699
700bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
701{
702 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
703 return kvm_unmap_gfn_range(kvm, range);
704}
705
706static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
707 const struct mmu_notifier_range *range)
708{
709 struct kvm *kvm = mmu_notifier_to_kvm(mn);
710 const struct kvm_mmu_notifier_range hva_range = {
711 .start = range->start,
712 .end = range->end,
713 .handler = kvm_mmu_unmap_gfn_range,
714 .on_lock = kvm_mmu_invalidate_begin,
715 .flush_on_ret = true,
716 .may_block = mmu_notifier_range_blockable(range),
717 };
718
719 trace_kvm_unmap_hva_range(range->start, range->end);
720
721 /*
722 * Prevent memslot modification between range_start() and range_end()
723 * so that conditionally locking provides the same result in both
724 * functions. Without that guarantee, the mmu_invalidate_in_progress
725 * adjustments will be imbalanced.
726 *
727 * Pairs with the decrement in range_end().
728 */
729 spin_lock(&kvm->mn_invalidate_lock);
730 kvm->mn_active_invalidate_count++;
731 spin_unlock(&kvm->mn_invalidate_lock);
732
733 /*
734 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
735 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
736 * each cache's lock. There are relatively few caches in existence at
737 * any given time, and the caches themselves can check for hva overlap,
738 * i.e. don't need to rely on memslot overlap checks for performance.
739 * Because this runs without holding mmu_lock, the pfn caches must use
740 * mn_active_invalidate_count (see above) instead of
741 * mmu_invalidate_in_progress.
742 */
743 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
744
745 /*
746 * If one or more memslots were found and thus zapped, notify arch code
747 * that guest memory has been reclaimed. This needs to be done *after*
748 * dropping mmu_lock, as x86's reclaim path is slooooow.
749 */
750 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
751 kvm_arch_guest_memory_reclaimed(kvm);
752
753 return 0;
754}
755
756void kvm_mmu_invalidate_end(struct kvm *kvm)
757{
758 lockdep_assert_held_write(&kvm->mmu_lock);
759
760 /*
761 * This sequence increase will notify the kvm page fault that
762 * the page that is going to be mapped in the spte could have
763 * been freed.
764 */
765 kvm->mmu_invalidate_seq++;
766 smp_wmb();
767 /*
768 * The above sequence increase must be visible before the
769 * below count decrease, which is ensured by the smp_wmb above
770 * in conjunction with the smp_rmb in mmu_invalidate_retry().
771 */
772 kvm->mmu_invalidate_in_progress--;
773 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
774
775 /*
776 * Assert that at least one range was added between start() and end().
777 * Not adding a range isn't fatal, but it is a KVM bug.
778 */
779 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
780}
781
782static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
783 const struct mmu_notifier_range *range)
784{
785 struct kvm *kvm = mmu_notifier_to_kvm(mn);
786 const struct kvm_mmu_notifier_range hva_range = {
787 .start = range->start,
788 .end = range->end,
789 .handler = (void *)kvm_null_fn,
790 .on_lock = kvm_mmu_invalidate_end,
791 .flush_on_ret = false,
792 .may_block = mmu_notifier_range_blockable(range),
793 };
794 bool wake;
795
796 __kvm_handle_hva_range(kvm, &hva_range);
797
798 /* Pairs with the increment in range_start(). */
799 spin_lock(&kvm->mn_invalidate_lock);
800 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
801 --kvm->mn_active_invalidate_count;
802 wake = !kvm->mn_active_invalidate_count;
803 spin_unlock(&kvm->mn_invalidate_lock);
804
805 /*
806 * There can only be one waiter, since the wait happens under
807 * slots_lock.
808 */
809 if (wake)
810 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
811}
812
813static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
814 struct mm_struct *mm,
815 unsigned long start,
816 unsigned long end)
817{
818 trace_kvm_age_hva(start, end);
819
820 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn,
821 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
822}
823
824static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
825 struct mm_struct *mm,
826 unsigned long start,
827 unsigned long end)
828{
829 trace_kvm_age_hva(start, end);
830
831 /*
832 * Even though we do not flush TLB, this will still adversely
833 * affect performance on pre-Haswell Intel EPT, where there is
834 * no EPT Access Bit to clear so that we have to tear down EPT
835 * tables instead. If we find this unacceptable, we can always
836 * add a parameter to kvm_age_hva so that it effectively doesn't
837 * do anything on clear_young.
838 *
839 * Also note that currently we never issue secondary TLB flushes
840 * from clear_young, leaving this job up to the regular system
841 * cadence. If we find this inaccurate, we might come up with a
842 * more sophisticated heuristic later.
843 */
844 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
845}
846
847static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
848 struct mm_struct *mm,
849 unsigned long address)
850{
851 trace_kvm_test_age_hva(address);
852
853 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
854 kvm_test_age_gfn);
855}
856
857static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
858 struct mm_struct *mm)
859{
860 struct kvm *kvm = mmu_notifier_to_kvm(mn);
861 int idx;
862
863 idx = srcu_read_lock(&kvm->srcu);
864 kvm_flush_shadow_all(kvm);
865 srcu_read_unlock(&kvm->srcu, idx);
866}
867
868static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
869 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
870 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
871 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
872 .clear_young = kvm_mmu_notifier_clear_young,
873 .test_young = kvm_mmu_notifier_test_young,
874 .release = kvm_mmu_notifier_release,
875};
876
877static int kvm_init_mmu_notifier(struct kvm *kvm)
878{
879 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
880 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
881}
882
883#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
884
885static int kvm_init_mmu_notifier(struct kvm *kvm)
886{
887 return 0;
888}
889
890#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
891
892#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
893static int kvm_pm_notifier_call(struct notifier_block *bl,
894 unsigned long state,
895 void *unused)
896{
897 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
898
899 return kvm_arch_pm_notifier(kvm, state);
900}
901
902static void kvm_init_pm_notifier(struct kvm *kvm)
903{
904 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
905 /* Suspend KVM before we suspend ftrace, RCU, etc. */
906 kvm->pm_notifier.priority = INT_MAX;
907 register_pm_notifier(&kvm->pm_notifier);
908}
909
910static void kvm_destroy_pm_notifier(struct kvm *kvm)
911{
912 unregister_pm_notifier(&kvm->pm_notifier);
913}
914#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
915static void kvm_init_pm_notifier(struct kvm *kvm)
916{
917}
918
919static void kvm_destroy_pm_notifier(struct kvm *kvm)
920{
921}
922#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
923
924static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
925{
926 if (!memslot->dirty_bitmap)
927 return;
928
929 vfree(memslot->dirty_bitmap);
930 memslot->dirty_bitmap = NULL;
931}
932
933/* This does not remove the slot from struct kvm_memslots data structures */
934static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
935{
936 if (slot->flags & KVM_MEM_GUEST_MEMFD)
937 kvm_gmem_unbind(slot);
938
939 kvm_destroy_dirty_bitmap(slot);
940
941 kvm_arch_free_memslot(kvm, slot);
942
943 kfree(slot);
944}
945
946static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
947{
948 struct hlist_node *idnode;
949 struct kvm_memory_slot *memslot;
950 int bkt;
951
952 /*
953 * The same memslot objects live in both active and inactive sets,
954 * arbitrarily free using index '1' so the second invocation of this
955 * function isn't operating over a structure with dangling pointers
956 * (even though this function isn't actually touching them).
957 */
958 if (!slots->node_idx)
959 return;
960
961 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
962 kvm_free_memslot(kvm, memslot);
963}
964
965static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
966{
967 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
968 case KVM_STATS_TYPE_INSTANT:
969 return 0444;
970 case KVM_STATS_TYPE_CUMULATIVE:
971 case KVM_STATS_TYPE_PEAK:
972 default:
973 return 0644;
974 }
975}
976
977
978static void kvm_destroy_vm_debugfs(struct kvm *kvm)
979{
980 int i;
981 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
982 kvm_vcpu_stats_header.num_desc;
983
984 if (IS_ERR(kvm->debugfs_dentry))
985 return;
986
987 debugfs_remove_recursive(kvm->debugfs_dentry);
988
989 if (kvm->debugfs_stat_data) {
990 for (i = 0; i < kvm_debugfs_num_entries; i++)
991 kfree(kvm->debugfs_stat_data[i]);
992 kfree(kvm->debugfs_stat_data);
993 }
994}
995
996static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
997{
998 static DEFINE_MUTEX(kvm_debugfs_lock);
999 struct dentry *dent;
1000 char dir_name[ITOA_MAX_LEN * 2];
1001 struct kvm_stat_data *stat_data;
1002 const struct _kvm_stats_desc *pdesc;
1003 int i, ret = -ENOMEM;
1004 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1005 kvm_vcpu_stats_header.num_desc;
1006
1007 if (!debugfs_initialized())
1008 return 0;
1009
1010 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1011 mutex_lock(&kvm_debugfs_lock);
1012 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1013 if (dent) {
1014 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1015 dput(dent);
1016 mutex_unlock(&kvm_debugfs_lock);
1017 return 0;
1018 }
1019 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1020 mutex_unlock(&kvm_debugfs_lock);
1021 if (IS_ERR(dent))
1022 return 0;
1023
1024 kvm->debugfs_dentry = dent;
1025 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1026 sizeof(*kvm->debugfs_stat_data),
1027 GFP_KERNEL_ACCOUNT);
1028 if (!kvm->debugfs_stat_data)
1029 goto out_err;
1030
1031 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1032 pdesc = &kvm_vm_stats_desc[i];
1033 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1034 if (!stat_data)
1035 goto out_err;
1036
1037 stat_data->kvm = kvm;
1038 stat_data->desc = pdesc;
1039 stat_data->kind = KVM_STAT_VM;
1040 kvm->debugfs_stat_data[i] = stat_data;
1041 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1042 kvm->debugfs_dentry, stat_data,
1043 &stat_fops_per_vm);
1044 }
1045
1046 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1047 pdesc = &kvm_vcpu_stats_desc[i];
1048 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1049 if (!stat_data)
1050 goto out_err;
1051
1052 stat_data->kvm = kvm;
1053 stat_data->desc = pdesc;
1054 stat_data->kind = KVM_STAT_VCPU;
1055 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1056 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1057 kvm->debugfs_dentry, stat_data,
1058 &stat_fops_per_vm);
1059 }
1060
1061 kvm_arch_create_vm_debugfs(kvm);
1062 return 0;
1063out_err:
1064 kvm_destroy_vm_debugfs(kvm);
1065 return ret;
1066}
1067
1068/*
1069 * Called after the VM is otherwise initialized, but just before adding it to
1070 * the vm_list.
1071 */
1072int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1073{
1074 return 0;
1075}
1076
1077/*
1078 * Called just after removing the VM from the vm_list, but before doing any
1079 * other destruction.
1080 */
1081void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1082{
1083}
1084
1085/*
1086 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1087 * be setup already, so we can create arch-specific debugfs entries under it.
1088 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1089 * a per-arch destroy interface is not needed.
1090 */
1091void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1092{
1093}
1094
1095static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1096{
1097 struct kvm *kvm = kvm_arch_alloc_vm();
1098 struct kvm_memslots *slots;
1099 int r, i, j;
1100
1101 if (!kvm)
1102 return ERR_PTR(-ENOMEM);
1103
1104 KVM_MMU_LOCK_INIT(kvm);
1105 mmgrab(current->mm);
1106 kvm->mm = current->mm;
1107 kvm_eventfd_init(kvm);
1108 mutex_init(&kvm->lock);
1109 mutex_init(&kvm->irq_lock);
1110 mutex_init(&kvm->slots_lock);
1111 mutex_init(&kvm->slots_arch_lock);
1112 spin_lock_init(&kvm->mn_invalidate_lock);
1113 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1114 xa_init(&kvm->vcpu_array);
1115#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1116 xa_init(&kvm->mem_attr_array);
1117#endif
1118
1119 INIT_LIST_HEAD(&kvm->gpc_list);
1120 spin_lock_init(&kvm->gpc_lock);
1121
1122 INIT_LIST_HEAD(&kvm->devices);
1123 kvm->max_vcpus = KVM_MAX_VCPUS;
1124
1125 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1126
1127 /*
1128 * Force subsequent debugfs file creations to fail if the VM directory
1129 * is not created (by kvm_create_vm_debugfs()).
1130 */
1131 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1132
1133 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1134 task_pid_nr(current));
1135
1136 r = -ENOMEM;
1137 if (init_srcu_struct(&kvm->srcu))
1138 goto out_err_no_srcu;
1139 if (init_srcu_struct(&kvm->irq_srcu))
1140 goto out_err_no_irq_srcu;
1141
1142 r = kvm_init_irq_routing(kvm);
1143 if (r)
1144 goto out_err_no_irq_routing;
1145
1146 refcount_set(&kvm->users_count, 1);
1147
1148 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1149 for (j = 0; j < 2; j++) {
1150 slots = &kvm->__memslots[i][j];
1151
1152 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1153 slots->hva_tree = RB_ROOT_CACHED;
1154 slots->gfn_tree = RB_ROOT;
1155 hash_init(slots->id_hash);
1156 slots->node_idx = j;
1157
1158 /* Generations must be different for each address space. */
1159 slots->generation = i;
1160 }
1161
1162 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1163 }
1164
1165 r = -ENOMEM;
1166 for (i = 0; i < KVM_NR_BUSES; i++) {
1167 rcu_assign_pointer(kvm->buses[i],
1168 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1169 if (!kvm->buses[i])
1170 goto out_err_no_arch_destroy_vm;
1171 }
1172
1173 r = kvm_arch_init_vm(kvm, type);
1174 if (r)
1175 goto out_err_no_arch_destroy_vm;
1176
1177 r = kvm_enable_virtualization();
1178 if (r)
1179 goto out_err_no_disable;
1180
1181#ifdef CONFIG_HAVE_KVM_IRQCHIP
1182 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1183#endif
1184
1185 r = kvm_init_mmu_notifier(kvm);
1186 if (r)
1187 goto out_err_no_mmu_notifier;
1188
1189 r = kvm_coalesced_mmio_init(kvm);
1190 if (r < 0)
1191 goto out_no_coalesced_mmio;
1192
1193 r = kvm_create_vm_debugfs(kvm, fdname);
1194 if (r)
1195 goto out_err_no_debugfs;
1196
1197 r = kvm_arch_post_init_vm(kvm);
1198 if (r)
1199 goto out_err;
1200
1201 mutex_lock(&kvm_lock);
1202 list_add(&kvm->vm_list, &vm_list);
1203 mutex_unlock(&kvm_lock);
1204
1205 preempt_notifier_inc();
1206 kvm_init_pm_notifier(kvm);
1207
1208 return kvm;
1209
1210out_err:
1211 kvm_destroy_vm_debugfs(kvm);
1212out_err_no_debugfs:
1213 kvm_coalesced_mmio_free(kvm);
1214out_no_coalesced_mmio:
1215#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1216 if (kvm->mmu_notifier.ops)
1217 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1218#endif
1219out_err_no_mmu_notifier:
1220 kvm_disable_virtualization();
1221out_err_no_disable:
1222 kvm_arch_destroy_vm(kvm);
1223out_err_no_arch_destroy_vm:
1224 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1225 for (i = 0; i < KVM_NR_BUSES; i++)
1226 kfree(kvm_get_bus(kvm, i));
1227 kvm_free_irq_routing(kvm);
1228out_err_no_irq_routing:
1229 cleanup_srcu_struct(&kvm->irq_srcu);
1230out_err_no_irq_srcu:
1231 cleanup_srcu_struct(&kvm->srcu);
1232out_err_no_srcu:
1233 kvm_arch_free_vm(kvm);
1234 mmdrop(current->mm);
1235 return ERR_PTR(r);
1236}
1237
1238static void kvm_destroy_devices(struct kvm *kvm)
1239{
1240 struct kvm_device *dev, *tmp;
1241
1242 /*
1243 * We do not need to take the kvm->lock here, because nobody else
1244 * has a reference to the struct kvm at this point and therefore
1245 * cannot access the devices list anyhow.
1246 *
1247 * The device list is generally managed as an rculist, but list_del()
1248 * is used intentionally here. If a bug in KVM introduced a reader that
1249 * was not backed by a reference on the kvm struct, the hope is that
1250 * it'd consume the poisoned forward pointer instead of suffering a
1251 * use-after-free, even though this cannot be guaranteed.
1252 */
1253 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1254 list_del(&dev->vm_node);
1255 dev->ops->destroy(dev);
1256 }
1257}
1258
1259static void kvm_destroy_vm(struct kvm *kvm)
1260{
1261 int i;
1262 struct mm_struct *mm = kvm->mm;
1263
1264 kvm_destroy_pm_notifier(kvm);
1265 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1266 kvm_destroy_vm_debugfs(kvm);
1267 kvm_arch_sync_events(kvm);
1268 mutex_lock(&kvm_lock);
1269 list_del(&kvm->vm_list);
1270 mutex_unlock(&kvm_lock);
1271 kvm_arch_pre_destroy_vm(kvm);
1272
1273 kvm_free_irq_routing(kvm);
1274 for (i = 0; i < KVM_NR_BUSES; i++) {
1275 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1276
1277 if (bus)
1278 kvm_io_bus_destroy(bus);
1279 kvm->buses[i] = NULL;
1280 }
1281 kvm_coalesced_mmio_free(kvm);
1282#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1283 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1284 /*
1285 * At this point, pending calls to invalidate_range_start()
1286 * have completed but no more MMU notifiers will run, so
1287 * mn_active_invalidate_count may remain unbalanced.
1288 * No threads can be waiting in kvm_swap_active_memslots() as the
1289 * last reference on KVM has been dropped, but freeing
1290 * memslots would deadlock without this manual intervention.
1291 *
1292 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1293 * notifier between a start() and end(), then there shouldn't be any
1294 * in-progress invalidations.
1295 */
1296 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1297 if (kvm->mn_active_invalidate_count)
1298 kvm->mn_active_invalidate_count = 0;
1299 else
1300 WARN_ON(kvm->mmu_invalidate_in_progress);
1301#else
1302 kvm_flush_shadow_all(kvm);
1303#endif
1304 kvm_arch_destroy_vm(kvm);
1305 kvm_destroy_devices(kvm);
1306 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1307 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1308 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1309 }
1310 cleanup_srcu_struct(&kvm->irq_srcu);
1311 cleanup_srcu_struct(&kvm->srcu);
1312#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1313 xa_destroy(&kvm->mem_attr_array);
1314#endif
1315 kvm_arch_free_vm(kvm);
1316 preempt_notifier_dec();
1317 kvm_disable_virtualization();
1318 mmdrop(mm);
1319}
1320
1321void kvm_get_kvm(struct kvm *kvm)
1322{
1323 refcount_inc(&kvm->users_count);
1324}
1325EXPORT_SYMBOL_GPL(kvm_get_kvm);
1326
1327/*
1328 * Make sure the vm is not during destruction, which is a safe version of
1329 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1330 */
1331bool kvm_get_kvm_safe(struct kvm *kvm)
1332{
1333 return refcount_inc_not_zero(&kvm->users_count);
1334}
1335EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1336
1337void kvm_put_kvm(struct kvm *kvm)
1338{
1339 if (refcount_dec_and_test(&kvm->users_count))
1340 kvm_destroy_vm(kvm);
1341}
1342EXPORT_SYMBOL_GPL(kvm_put_kvm);
1343
1344/*
1345 * Used to put a reference that was taken on behalf of an object associated
1346 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1347 * of the new file descriptor fails and the reference cannot be transferred to
1348 * its final owner. In such cases, the caller is still actively using @kvm and
1349 * will fail miserably if the refcount unexpectedly hits zero.
1350 */
1351void kvm_put_kvm_no_destroy(struct kvm *kvm)
1352{
1353 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1354}
1355EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1356
1357static int kvm_vm_release(struct inode *inode, struct file *filp)
1358{
1359 struct kvm *kvm = filp->private_data;
1360
1361 kvm_irqfd_release(kvm);
1362
1363 kvm_put_kvm(kvm);
1364 return 0;
1365}
1366
1367/*
1368 * Allocation size is twice as large as the actual dirty bitmap size.
1369 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1370 */
1371static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1372{
1373 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1374
1375 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1376 if (!memslot->dirty_bitmap)
1377 return -ENOMEM;
1378
1379 return 0;
1380}
1381
1382static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1383{
1384 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1385 int node_idx_inactive = active->node_idx ^ 1;
1386
1387 return &kvm->__memslots[as_id][node_idx_inactive];
1388}
1389
1390/*
1391 * Helper to get the address space ID when one of memslot pointers may be NULL.
1392 * This also serves as a sanity that at least one of the pointers is non-NULL,
1393 * and that their address space IDs don't diverge.
1394 */
1395static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1396 struct kvm_memory_slot *b)
1397{
1398 if (WARN_ON_ONCE(!a && !b))
1399 return 0;
1400
1401 if (!a)
1402 return b->as_id;
1403 if (!b)
1404 return a->as_id;
1405
1406 WARN_ON_ONCE(a->as_id != b->as_id);
1407 return a->as_id;
1408}
1409
1410static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1411 struct kvm_memory_slot *slot)
1412{
1413 struct rb_root *gfn_tree = &slots->gfn_tree;
1414 struct rb_node **node, *parent;
1415 int idx = slots->node_idx;
1416
1417 parent = NULL;
1418 for (node = &gfn_tree->rb_node; *node; ) {
1419 struct kvm_memory_slot *tmp;
1420
1421 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1422 parent = *node;
1423 if (slot->base_gfn < tmp->base_gfn)
1424 node = &(*node)->rb_left;
1425 else if (slot->base_gfn > tmp->base_gfn)
1426 node = &(*node)->rb_right;
1427 else
1428 BUG();
1429 }
1430
1431 rb_link_node(&slot->gfn_node[idx], parent, node);
1432 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1433}
1434
1435static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1436 struct kvm_memory_slot *slot)
1437{
1438 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1439}
1440
1441static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1442 struct kvm_memory_slot *old,
1443 struct kvm_memory_slot *new)
1444{
1445 int idx = slots->node_idx;
1446
1447 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1448
1449 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1450 &slots->gfn_tree);
1451}
1452
1453/*
1454 * Replace @old with @new in the inactive memslots.
1455 *
1456 * With NULL @old this simply adds @new.
1457 * With NULL @new this simply removes @old.
1458 *
1459 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1460 * appropriately.
1461 */
1462static void kvm_replace_memslot(struct kvm *kvm,
1463 struct kvm_memory_slot *old,
1464 struct kvm_memory_slot *new)
1465{
1466 int as_id = kvm_memslots_get_as_id(old, new);
1467 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1468 int idx = slots->node_idx;
1469
1470 if (old) {
1471 hash_del(&old->id_node[idx]);
1472 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1473
1474 if ((long)old == atomic_long_read(&slots->last_used_slot))
1475 atomic_long_set(&slots->last_used_slot, (long)new);
1476
1477 if (!new) {
1478 kvm_erase_gfn_node(slots, old);
1479 return;
1480 }
1481 }
1482
1483 /*
1484 * Initialize @new's hva range. Do this even when replacing an @old
1485 * slot, kvm_copy_memslot() deliberately does not touch node data.
1486 */
1487 new->hva_node[idx].start = new->userspace_addr;
1488 new->hva_node[idx].last = new->userspace_addr +
1489 (new->npages << PAGE_SHIFT) - 1;
1490
1491 /*
1492 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1493 * hva_node needs to be swapped with remove+insert even though hva can't
1494 * change when replacing an existing slot.
1495 */
1496 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1497 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1498
1499 /*
1500 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1501 * switch the node in the gfn tree instead of removing the old and
1502 * inserting the new as two separate operations. Replacement is a
1503 * single O(1) operation versus two O(log(n)) operations for
1504 * remove+insert.
1505 */
1506 if (old && old->base_gfn == new->base_gfn) {
1507 kvm_replace_gfn_node(slots, old, new);
1508 } else {
1509 if (old)
1510 kvm_erase_gfn_node(slots, old);
1511 kvm_insert_gfn_node(slots, new);
1512 }
1513}
1514
1515/*
1516 * Flags that do not access any of the extra space of struct
1517 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1518 * only allows these.
1519 */
1520#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1521 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1522
1523static int check_memory_region_flags(struct kvm *kvm,
1524 const struct kvm_userspace_memory_region2 *mem)
1525{
1526 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1527
1528 if (kvm_arch_has_private_mem(kvm))
1529 valid_flags |= KVM_MEM_GUEST_MEMFD;
1530
1531 /* Dirty logging private memory is not currently supported. */
1532 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1533 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1534
1535 /*
1536 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1537 * read-only memslots have emulated MMIO, not page fault, semantics,
1538 * and KVM doesn't allow emulated MMIO for private memory.
1539 */
1540 if (kvm_arch_has_readonly_mem(kvm) &&
1541 !(mem->flags & KVM_MEM_GUEST_MEMFD))
1542 valid_flags |= KVM_MEM_READONLY;
1543
1544 if (mem->flags & ~valid_flags)
1545 return -EINVAL;
1546
1547 return 0;
1548}
1549
1550static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1551{
1552 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1553
1554 /* Grab the generation from the activate memslots. */
1555 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1556
1557 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1558 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1559
1560 /*
1561 * Do not store the new memslots while there are invalidations in
1562 * progress, otherwise the locking in invalidate_range_start and
1563 * invalidate_range_end will be unbalanced.
1564 */
1565 spin_lock(&kvm->mn_invalidate_lock);
1566 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567 while (kvm->mn_active_invalidate_count) {
1568 set_current_state(TASK_UNINTERRUPTIBLE);
1569 spin_unlock(&kvm->mn_invalidate_lock);
1570 schedule();
1571 spin_lock(&kvm->mn_invalidate_lock);
1572 }
1573 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1574 rcu_assign_pointer(kvm->memslots[as_id], slots);
1575 spin_unlock(&kvm->mn_invalidate_lock);
1576
1577 /*
1578 * Acquired in kvm_set_memslot. Must be released before synchronize
1579 * SRCU below in order to avoid deadlock with another thread
1580 * acquiring the slots_arch_lock in an srcu critical section.
1581 */
1582 mutex_unlock(&kvm->slots_arch_lock);
1583
1584 synchronize_srcu_expedited(&kvm->srcu);
1585
1586 /*
1587 * Increment the new memslot generation a second time, dropping the
1588 * update in-progress flag and incrementing the generation based on
1589 * the number of address spaces. This provides a unique and easily
1590 * identifiable generation number while the memslots are in flux.
1591 */
1592 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1593
1594 /*
1595 * Generations must be unique even across address spaces. We do not need
1596 * a global counter for that, instead the generation space is evenly split
1597 * across address spaces. For example, with two address spaces, address
1598 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1599 * use generations 1, 3, 5, ...
1600 */
1601 gen += kvm_arch_nr_memslot_as_ids(kvm);
1602
1603 kvm_arch_memslots_updated(kvm, gen);
1604
1605 slots->generation = gen;
1606}
1607
1608static int kvm_prepare_memory_region(struct kvm *kvm,
1609 const struct kvm_memory_slot *old,
1610 struct kvm_memory_slot *new,
1611 enum kvm_mr_change change)
1612{
1613 int r;
1614
1615 /*
1616 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1617 * will be freed on "commit". If logging is enabled in both old and
1618 * new, reuse the existing bitmap. If logging is enabled only in the
1619 * new and KVM isn't using a ring buffer, allocate and initialize a
1620 * new bitmap.
1621 */
1622 if (change != KVM_MR_DELETE) {
1623 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1624 new->dirty_bitmap = NULL;
1625 else if (old && old->dirty_bitmap)
1626 new->dirty_bitmap = old->dirty_bitmap;
1627 else if (kvm_use_dirty_bitmap(kvm)) {
1628 r = kvm_alloc_dirty_bitmap(new);
1629 if (r)
1630 return r;
1631
1632 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1633 bitmap_set(new->dirty_bitmap, 0, new->npages);
1634 }
1635 }
1636
1637 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1638
1639 /* Free the bitmap on failure if it was allocated above. */
1640 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1641 kvm_destroy_dirty_bitmap(new);
1642
1643 return r;
1644}
1645
1646static void kvm_commit_memory_region(struct kvm *kvm,
1647 struct kvm_memory_slot *old,
1648 const struct kvm_memory_slot *new,
1649 enum kvm_mr_change change)
1650{
1651 int old_flags = old ? old->flags : 0;
1652 int new_flags = new ? new->flags : 0;
1653 /*
1654 * Update the total number of memslot pages before calling the arch
1655 * hook so that architectures can consume the result directly.
1656 */
1657 if (change == KVM_MR_DELETE)
1658 kvm->nr_memslot_pages -= old->npages;
1659 else if (change == KVM_MR_CREATE)
1660 kvm->nr_memslot_pages += new->npages;
1661
1662 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1663 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1664 atomic_set(&kvm->nr_memslots_dirty_logging,
1665 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1666 }
1667
1668 kvm_arch_commit_memory_region(kvm, old, new, change);
1669
1670 switch (change) {
1671 case KVM_MR_CREATE:
1672 /* Nothing more to do. */
1673 break;
1674 case KVM_MR_DELETE:
1675 /* Free the old memslot and all its metadata. */
1676 kvm_free_memslot(kvm, old);
1677 break;
1678 case KVM_MR_MOVE:
1679 case KVM_MR_FLAGS_ONLY:
1680 /*
1681 * Free the dirty bitmap as needed; the below check encompasses
1682 * both the flags and whether a ring buffer is being used)
1683 */
1684 if (old->dirty_bitmap && !new->dirty_bitmap)
1685 kvm_destroy_dirty_bitmap(old);
1686
1687 /*
1688 * The final quirk. Free the detached, old slot, but only its
1689 * memory, not any metadata. Metadata, including arch specific
1690 * data, may be reused by @new.
1691 */
1692 kfree(old);
1693 break;
1694 default:
1695 BUG();
1696 }
1697}
1698
1699/*
1700 * Activate @new, which must be installed in the inactive slots by the caller,
1701 * by swapping the active slots and then propagating @new to @old once @old is
1702 * unreachable and can be safely modified.
1703 *
1704 * With NULL @old this simply adds @new to @active (while swapping the sets).
1705 * With NULL @new this simply removes @old from @active and frees it
1706 * (while also swapping the sets).
1707 */
1708static void kvm_activate_memslot(struct kvm *kvm,
1709 struct kvm_memory_slot *old,
1710 struct kvm_memory_slot *new)
1711{
1712 int as_id = kvm_memslots_get_as_id(old, new);
1713
1714 kvm_swap_active_memslots(kvm, as_id);
1715
1716 /* Propagate the new memslot to the now inactive memslots. */
1717 kvm_replace_memslot(kvm, old, new);
1718}
1719
1720static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1721 const struct kvm_memory_slot *src)
1722{
1723 dest->base_gfn = src->base_gfn;
1724 dest->npages = src->npages;
1725 dest->dirty_bitmap = src->dirty_bitmap;
1726 dest->arch = src->arch;
1727 dest->userspace_addr = src->userspace_addr;
1728 dest->flags = src->flags;
1729 dest->id = src->id;
1730 dest->as_id = src->as_id;
1731}
1732
1733static void kvm_invalidate_memslot(struct kvm *kvm,
1734 struct kvm_memory_slot *old,
1735 struct kvm_memory_slot *invalid_slot)
1736{
1737 /*
1738 * Mark the current slot INVALID. As with all memslot modifications,
1739 * this must be done on an unreachable slot to avoid modifying the
1740 * current slot in the active tree.
1741 */
1742 kvm_copy_memslot(invalid_slot, old);
1743 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1744 kvm_replace_memslot(kvm, old, invalid_slot);
1745
1746 /*
1747 * Activate the slot that is now marked INVALID, but don't propagate
1748 * the slot to the now inactive slots. The slot is either going to be
1749 * deleted or recreated as a new slot.
1750 */
1751 kvm_swap_active_memslots(kvm, old->as_id);
1752
1753 /*
1754 * From this point no new shadow pages pointing to a deleted, or moved,
1755 * memslot will be created. Validation of sp->gfn happens in:
1756 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1757 * - kvm_is_visible_gfn (mmu_check_root)
1758 */
1759 kvm_arch_flush_shadow_memslot(kvm, old);
1760 kvm_arch_guest_memory_reclaimed(kvm);
1761
1762 /* Was released by kvm_swap_active_memslots(), reacquire. */
1763 mutex_lock(&kvm->slots_arch_lock);
1764
1765 /*
1766 * Copy the arch-specific field of the newly-installed slot back to the
1767 * old slot as the arch data could have changed between releasing
1768 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1769 * above. Writers are required to retrieve memslots *after* acquiring
1770 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1771 */
1772 old->arch = invalid_slot->arch;
1773}
1774
1775static void kvm_create_memslot(struct kvm *kvm,
1776 struct kvm_memory_slot *new)
1777{
1778 /* Add the new memslot to the inactive set and activate. */
1779 kvm_replace_memslot(kvm, NULL, new);
1780 kvm_activate_memslot(kvm, NULL, new);
1781}
1782
1783static void kvm_delete_memslot(struct kvm *kvm,
1784 struct kvm_memory_slot *old,
1785 struct kvm_memory_slot *invalid_slot)
1786{
1787 /*
1788 * Remove the old memslot (in the inactive memslots) by passing NULL as
1789 * the "new" slot, and for the invalid version in the active slots.
1790 */
1791 kvm_replace_memslot(kvm, old, NULL);
1792 kvm_activate_memslot(kvm, invalid_slot, NULL);
1793}
1794
1795static void kvm_move_memslot(struct kvm *kvm,
1796 struct kvm_memory_slot *old,
1797 struct kvm_memory_slot *new,
1798 struct kvm_memory_slot *invalid_slot)
1799{
1800 /*
1801 * Replace the old memslot in the inactive slots, and then swap slots
1802 * and replace the current INVALID with the new as well.
1803 */
1804 kvm_replace_memslot(kvm, old, new);
1805 kvm_activate_memslot(kvm, invalid_slot, new);
1806}
1807
1808static void kvm_update_flags_memslot(struct kvm *kvm,
1809 struct kvm_memory_slot *old,
1810 struct kvm_memory_slot *new)
1811{
1812 /*
1813 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1814 * an intermediate step. Instead, the old memslot is simply replaced
1815 * with a new, updated copy in both memslot sets.
1816 */
1817 kvm_replace_memslot(kvm, old, new);
1818 kvm_activate_memslot(kvm, old, new);
1819}
1820
1821static int kvm_set_memslot(struct kvm *kvm,
1822 struct kvm_memory_slot *old,
1823 struct kvm_memory_slot *new,
1824 enum kvm_mr_change change)
1825{
1826 struct kvm_memory_slot *invalid_slot;
1827 int r;
1828
1829 /*
1830 * Released in kvm_swap_active_memslots().
1831 *
1832 * Must be held from before the current memslots are copied until after
1833 * the new memslots are installed with rcu_assign_pointer, then
1834 * released before the synchronize srcu in kvm_swap_active_memslots().
1835 *
1836 * When modifying memslots outside of the slots_lock, must be held
1837 * before reading the pointer to the current memslots until after all
1838 * changes to those memslots are complete.
1839 *
1840 * These rules ensure that installing new memslots does not lose
1841 * changes made to the previous memslots.
1842 */
1843 mutex_lock(&kvm->slots_arch_lock);
1844
1845 /*
1846 * Invalidate the old slot if it's being deleted or moved. This is
1847 * done prior to actually deleting/moving the memslot to allow vCPUs to
1848 * continue running by ensuring there are no mappings or shadow pages
1849 * for the memslot when it is deleted/moved. Without pre-invalidation
1850 * (and without a lock), a window would exist between effecting the
1851 * delete/move and committing the changes in arch code where KVM or a
1852 * guest could access a non-existent memslot.
1853 *
1854 * Modifications are done on a temporary, unreachable slot. The old
1855 * slot needs to be preserved in case a later step fails and the
1856 * invalidation needs to be reverted.
1857 */
1858 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1860 if (!invalid_slot) {
1861 mutex_unlock(&kvm->slots_arch_lock);
1862 return -ENOMEM;
1863 }
1864 kvm_invalidate_memslot(kvm, old, invalid_slot);
1865 }
1866
1867 r = kvm_prepare_memory_region(kvm, old, new, change);
1868 if (r) {
1869 /*
1870 * For DELETE/MOVE, revert the above INVALID change. No
1871 * modifications required since the original slot was preserved
1872 * in the inactive slots. Changing the active memslots also
1873 * release slots_arch_lock.
1874 */
1875 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1876 kvm_activate_memslot(kvm, invalid_slot, old);
1877 kfree(invalid_slot);
1878 } else {
1879 mutex_unlock(&kvm->slots_arch_lock);
1880 }
1881 return r;
1882 }
1883
1884 /*
1885 * For DELETE and MOVE, the working slot is now active as the INVALID
1886 * version of the old slot. MOVE is particularly special as it reuses
1887 * the old slot and returns a copy of the old slot (in working_slot).
1888 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1889 * old slot is detached but otherwise preserved.
1890 */
1891 if (change == KVM_MR_CREATE)
1892 kvm_create_memslot(kvm, new);
1893 else if (change == KVM_MR_DELETE)
1894 kvm_delete_memslot(kvm, old, invalid_slot);
1895 else if (change == KVM_MR_MOVE)
1896 kvm_move_memslot(kvm, old, new, invalid_slot);
1897 else if (change == KVM_MR_FLAGS_ONLY)
1898 kvm_update_flags_memslot(kvm, old, new);
1899 else
1900 BUG();
1901
1902 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1903 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1904 kfree(invalid_slot);
1905
1906 /*
1907 * No need to refresh new->arch, changes after dropping slots_arch_lock
1908 * will directly hit the final, active memslot. Architectures are
1909 * responsible for knowing that new->arch may be stale.
1910 */
1911 kvm_commit_memory_region(kvm, old, new, change);
1912
1913 return 0;
1914}
1915
1916static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1917 gfn_t start, gfn_t end)
1918{
1919 struct kvm_memslot_iter iter;
1920
1921 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1922 if (iter.slot->id != id)
1923 return true;
1924 }
1925
1926 return false;
1927}
1928
1929/*
1930 * Allocate some memory and give it an address in the guest physical address
1931 * space.
1932 *
1933 * Discontiguous memory is allowed, mostly for framebuffers.
1934 *
1935 * Must be called holding kvm->slots_lock for write.
1936 */
1937int __kvm_set_memory_region(struct kvm *kvm,
1938 const struct kvm_userspace_memory_region2 *mem)
1939{
1940 struct kvm_memory_slot *old, *new;
1941 struct kvm_memslots *slots;
1942 enum kvm_mr_change change;
1943 unsigned long npages;
1944 gfn_t base_gfn;
1945 int as_id, id;
1946 int r;
1947
1948 r = check_memory_region_flags(kvm, mem);
1949 if (r)
1950 return r;
1951
1952 as_id = mem->slot >> 16;
1953 id = (u16)mem->slot;
1954
1955 /* General sanity checks */
1956 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1957 (mem->memory_size != (unsigned long)mem->memory_size))
1958 return -EINVAL;
1959 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1960 return -EINVAL;
1961 /* We can read the guest memory with __xxx_user() later on. */
1962 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1963 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1964 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1965 mem->memory_size))
1966 return -EINVAL;
1967 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1968 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1969 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1970 return -EINVAL;
1971 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1972 return -EINVAL;
1973 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974 return -EINVAL;
1975 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976 return -EINVAL;
1977
1978 slots = __kvm_memslots(kvm, as_id);
1979
1980 /*
1981 * Note, the old memslot (and the pointer itself!) may be invalidated
1982 * and/or destroyed by kvm_set_memslot().
1983 */
1984 old = id_to_memslot(slots, id);
1985
1986 if (!mem->memory_size) {
1987 if (!old || !old->npages)
1988 return -EINVAL;
1989
1990 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991 return -EIO;
1992
1993 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1994 }
1995
1996 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997 npages = (mem->memory_size >> PAGE_SHIFT);
1998
1999 if (!old || !old->npages) {
2000 change = KVM_MR_CREATE;
2001
2002 /*
2003 * To simplify KVM internals, the total number of pages across
2004 * all memslots must fit in an unsigned long.
2005 */
2006 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007 return -EINVAL;
2008 } else { /* Modify an existing slot. */
2009 /* Private memslots are immutable, they can only be deleted. */
2010 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2011 return -EINVAL;
2012 if ((mem->userspace_addr != old->userspace_addr) ||
2013 (npages != old->npages) ||
2014 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2015 return -EINVAL;
2016
2017 if (base_gfn != old->base_gfn)
2018 change = KVM_MR_MOVE;
2019 else if (mem->flags != old->flags)
2020 change = KVM_MR_FLAGS_ONLY;
2021 else /* Nothing to change. */
2022 return 0;
2023 }
2024
2025 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2026 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2027 return -EEXIST;
2028
2029 /* Allocate a slot that will persist in the memslot. */
2030 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2031 if (!new)
2032 return -ENOMEM;
2033
2034 new->as_id = as_id;
2035 new->id = id;
2036 new->base_gfn = base_gfn;
2037 new->npages = npages;
2038 new->flags = mem->flags;
2039 new->userspace_addr = mem->userspace_addr;
2040 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2041 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2042 if (r)
2043 goto out;
2044 }
2045
2046 r = kvm_set_memslot(kvm, old, new, change);
2047 if (r)
2048 goto out_unbind;
2049
2050 return 0;
2051
2052out_unbind:
2053 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2054 kvm_gmem_unbind(new);
2055out:
2056 kfree(new);
2057 return r;
2058}
2059EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2060
2061int kvm_set_memory_region(struct kvm *kvm,
2062 const struct kvm_userspace_memory_region2 *mem)
2063{
2064 int r;
2065
2066 mutex_lock(&kvm->slots_lock);
2067 r = __kvm_set_memory_region(kvm, mem);
2068 mutex_unlock(&kvm->slots_lock);
2069 return r;
2070}
2071EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2072
2073static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2074 struct kvm_userspace_memory_region2 *mem)
2075{
2076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2077 return -EINVAL;
2078
2079 return kvm_set_memory_region(kvm, mem);
2080}
2081
2082#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2083/**
2084 * kvm_get_dirty_log - get a snapshot of dirty pages
2085 * @kvm: pointer to kvm instance
2086 * @log: slot id and address to which we copy the log
2087 * @is_dirty: set to '1' if any dirty pages were found
2088 * @memslot: set to the associated memslot, always valid on success
2089 */
2090int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2091 int *is_dirty, struct kvm_memory_slot **memslot)
2092{
2093 struct kvm_memslots *slots;
2094 int i, as_id, id;
2095 unsigned long n;
2096 unsigned long any = 0;
2097
2098 /* Dirty ring tracking may be exclusive to dirty log tracking */
2099 if (!kvm_use_dirty_bitmap(kvm))
2100 return -ENXIO;
2101
2102 *memslot = NULL;
2103 *is_dirty = 0;
2104
2105 as_id = log->slot >> 16;
2106 id = (u16)log->slot;
2107 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2108 return -EINVAL;
2109
2110 slots = __kvm_memslots(kvm, as_id);
2111 *memslot = id_to_memslot(slots, id);
2112 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2113 return -ENOENT;
2114
2115 kvm_arch_sync_dirty_log(kvm, *memslot);
2116
2117 n = kvm_dirty_bitmap_bytes(*memslot);
2118
2119 for (i = 0; !any && i < n/sizeof(long); ++i)
2120 any = (*memslot)->dirty_bitmap[i];
2121
2122 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2123 return -EFAULT;
2124
2125 if (any)
2126 *is_dirty = 1;
2127 return 0;
2128}
2129EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2130
2131#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2132/**
2133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2134 * and reenable dirty page tracking for the corresponding pages.
2135 * @kvm: pointer to kvm instance
2136 * @log: slot id and address to which we copy the log
2137 *
2138 * We need to keep it in mind that VCPU threads can write to the bitmap
2139 * concurrently. So, to avoid losing track of dirty pages we keep the
2140 * following order:
2141 *
2142 * 1. Take a snapshot of the bit and clear it if needed.
2143 * 2. Write protect the corresponding page.
2144 * 3. Copy the snapshot to the userspace.
2145 * 4. Upon return caller flushes TLB's if needed.
2146 *
2147 * Between 2 and 4, the guest may write to the page using the remaining TLB
2148 * entry. This is not a problem because the page is reported dirty using
2149 * the snapshot taken before and step 4 ensures that writes done after
2150 * exiting to userspace will be logged for the next call.
2151 *
2152 */
2153static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2154{
2155 struct kvm_memslots *slots;
2156 struct kvm_memory_slot *memslot;
2157 int i, as_id, id;
2158 unsigned long n;
2159 unsigned long *dirty_bitmap;
2160 unsigned long *dirty_bitmap_buffer;
2161 bool flush;
2162
2163 /* Dirty ring tracking may be exclusive to dirty log tracking */
2164 if (!kvm_use_dirty_bitmap(kvm))
2165 return -ENXIO;
2166
2167 as_id = log->slot >> 16;
2168 id = (u16)log->slot;
2169 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2170 return -EINVAL;
2171
2172 slots = __kvm_memslots(kvm, as_id);
2173 memslot = id_to_memslot(slots, id);
2174 if (!memslot || !memslot->dirty_bitmap)
2175 return -ENOENT;
2176
2177 dirty_bitmap = memslot->dirty_bitmap;
2178
2179 kvm_arch_sync_dirty_log(kvm, memslot);
2180
2181 n = kvm_dirty_bitmap_bytes(memslot);
2182 flush = false;
2183 if (kvm->manual_dirty_log_protect) {
2184 /*
2185 * Unlike kvm_get_dirty_log, we always return false in *flush,
2186 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2187 * is some code duplication between this function and
2188 * kvm_get_dirty_log, but hopefully all architecture
2189 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2190 * can be eliminated.
2191 */
2192 dirty_bitmap_buffer = dirty_bitmap;
2193 } else {
2194 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2195 memset(dirty_bitmap_buffer, 0, n);
2196
2197 KVM_MMU_LOCK(kvm);
2198 for (i = 0; i < n / sizeof(long); i++) {
2199 unsigned long mask;
2200 gfn_t offset;
2201
2202 if (!dirty_bitmap[i])
2203 continue;
2204
2205 flush = true;
2206 mask = xchg(&dirty_bitmap[i], 0);
2207 dirty_bitmap_buffer[i] = mask;
2208
2209 offset = i * BITS_PER_LONG;
2210 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2211 offset, mask);
2212 }
2213 KVM_MMU_UNLOCK(kvm);
2214 }
2215
2216 if (flush)
2217 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2218
2219 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2220 return -EFAULT;
2221 return 0;
2222}
2223
2224
2225/**
2226 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2227 * @kvm: kvm instance
2228 * @log: slot id and address to which we copy the log
2229 *
2230 * Steps 1-4 below provide general overview of dirty page logging. See
2231 * kvm_get_dirty_log_protect() function description for additional details.
2232 *
2233 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2234 * always flush the TLB (step 4) even if previous step failed and the dirty
2235 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2236 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2237 * writes will be marked dirty for next log read.
2238 *
2239 * 1. Take a snapshot of the bit and clear it if needed.
2240 * 2. Write protect the corresponding page.
2241 * 3. Copy the snapshot to the userspace.
2242 * 4. Flush TLB's if needed.
2243 */
2244static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2245 struct kvm_dirty_log *log)
2246{
2247 int r;
2248
2249 mutex_lock(&kvm->slots_lock);
2250
2251 r = kvm_get_dirty_log_protect(kvm, log);
2252
2253 mutex_unlock(&kvm->slots_lock);
2254 return r;
2255}
2256
2257/**
2258 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2259 * and reenable dirty page tracking for the corresponding pages.
2260 * @kvm: pointer to kvm instance
2261 * @log: slot id and address from which to fetch the bitmap of dirty pages
2262 */
2263static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2264 struct kvm_clear_dirty_log *log)
2265{
2266 struct kvm_memslots *slots;
2267 struct kvm_memory_slot *memslot;
2268 int as_id, id;
2269 gfn_t offset;
2270 unsigned long i, n;
2271 unsigned long *dirty_bitmap;
2272 unsigned long *dirty_bitmap_buffer;
2273 bool flush;
2274
2275 /* Dirty ring tracking may be exclusive to dirty log tracking */
2276 if (!kvm_use_dirty_bitmap(kvm))
2277 return -ENXIO;
2278
2279 as_id = log->slot >> 16;
2280 id = (u16)log->slot;
2281 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2282 return -EINVAL;
2283
2284 if (log->first_page & 63)
2285 return -EINVAL;
2286
2287 slots = __kvm_memslots(kvm, as_id);
2288 memslot = id_to_memslot(slots, id);
2289 if (!memslot || !memslot->dirty_bitmap)
2290 return -ENOENT;
2291
2292 dirty_bitmap = memslot->dirty_bitmap;
2293
2294 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2295
2296 if (log->first_page > memslot->npages ||
2297 log->num_pages > memslot->npages - log->first_page ||
2298 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2299 return -EINVAL;
2300
2301 kvm_arch_sync_dirty_log(kvm, memslot);
2302
2303 flush = false;
2304 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2305 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2306 return -EFAULT;
2307
2308 KVM_MMU_LOCK(kvm);
2309 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2310 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2311 i++, offset += BITS_PER_LONG) {
2312 unsigned long mask = *dirty_bitmap_buffer++;
2313 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2314 if (!mask)
2315 continue;
2316
2317 mask &= atomic_long_fetch_andnot(mask, p);
2318
2319 /*
2320 * mask contains the bits that really have been cleared. This
2321 * never includes any bits beyond the length of the memslot (if
2322 * the length is not aligned to 64 pages), therefore it is not
2323 * a problem if userspace sets them in log->dirty_bitmap.
2324 */
2325 if (mask) {
2326 flush = true;
2327 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2328 offset, mask);
2329 }
2330 }
2331 KVM_MMU_UNLOCK(kvm);
2332
2333 if (flush)
2334 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2335
2336 return 0;
2337}
2338
2339static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2340 struct kvm_clear_dirty_log *log)
2341{
2342 int r;
2343
2344 mutex_lock(&kvm->slots_lock);
2345
2346 r = kvm_clear_dirty_log_protect(kvm, log);
2347
2348 mutex_unlock(&kvm->slots_lock);
2349 return r;
2350}
2351#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2352
2353#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2354static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2355{
2356 if (!kvm || kvm_arch_has_private_mem(kvm))
2357 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2358
2359 return 0;
2360}
2361
2362/*
2363 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2364 * such that the bits in @mask match @attrs.
2365 */
2366bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2367 unsigned long mask, unsigned long attrs)
2368{
2369 XA_STATE(xas, &kvm->mem_attr_array, start);
2370 unsigned long index;
2371 void *entry;
2372
2373 mask &= kvm_supported_mem_attributes(kvm);
2374 if (attrs & ~mask)
2375 return false;
2376
2377 if (end == start + 1)
2378 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2379
2380 guard(rcu)();
2381 if (!attrs)
2382 return !xas_find(&xas, end - 1);
2383
2384 for (index = start; index < end; index++) {
2385 do {
2386 entry = xas_next(&xas);
2387 } while (xas_retry(&xas, entry));
2388
2389 if (xas.xa_index != index ||
2390 (xa_to_value(entry) & mask) != attrs)
2391 return false;
2392 }
2393
2394 return true;
2395}
2396
2397static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2398 struct kvm_mmu_notifier_range *range)
2399{
2400 struct kvm_gfn_range gfn_range;
2401 struct kvm_memory_slot *slot;
2402 struct kvm_memslots *slots;
2403 struct kvm_memslot_iter iter;
2404 bool found_memslot = false;
2405 bool ret = false;
2406 int i;
2407
2408 gfn_range.arg = range->arg;
2409 gfn_range.may_block = range->may_block;
2410
2411 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2412 slots = __kvm_memslots(kvm, i);
2413
2414 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2415 slot = iter.slot;
2416 gfn_range.slot = slot;
2417
2418 gfn_range.start = max(range->start, slot->base_gfn);
2419 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2420 if (gfn_range.start >= gfn_range.end)
2421 continue;
2422
2423 if (!found_memslot) {
2424 found_memslot = true;
2425 KVM_MMU_LOCK(kvm);
2426 if (!IS_KVM_NULL_FN(range->on_lock))
2427 range->on_lock(kvm);
2428 }
2429
2430 ret |= range->handler(kvm, &gfn_range);
2431 }
2432 }
2433
2434 if (range->flush_on_ret && ret)
2435 kvm_flush_remote_tlbs(kvm);
2436
2437 if (found_memslot)
2438 KVM_MMU_UNLOCK(kvm);
2439}
2440
2441static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2442 struct kvm_gfn_range *range)
2443{
2444 /*
2445 * Unconditionally add the range to the invalidation set, regardless of
2446 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2447 * if KVM supports RWX attributes in the future and the attributes are
2448 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2449 * adding the range allows KVM to require that MMU invalidations add at
2450 * least one range between begin() and end(), e.g. allows KVM to detect
2451 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2452 * but it's not obvious that allowing new mappings while the attributes
2453 * are in flux is desirable or worth the complexity.
2454 */
2455 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2456
2457 return kvm_arch_pre_set_memory_attributes(kvm, range);
2458}
2459
2460/* Set @attributes for the gfn range [@start, @end). */
2461static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2462 unsigned long attributes)
2463{
2464 struct kvm_mmu_notifier_range pre_set_range = {
2465 .start = start,
2466 .end = end,
2467 .handler = kvm_pre_set_memory_attributes,
2468 .on_lock = kvm_mmu_invalidate_begin,
2469 .flush_on_ret = true,
2470 .may_block = true,
2471 };
2472 struct kvm_mmu_notifier_range post_set_range = {
2473 .start = start,
2474 .end = end,
2475 .arg.attributes = attributes,
2476 .handler = kvm_arch_post_set_memory_attributes,
2477 .on_lock = kvm_mmu_invalidate_end,
2478 .may_block = true,
2479 };
2480 unsigned long i;
2481 void *entry;
2482 int r = 0;
2483
2484 entry = attributes ? xa_mk_value(attributes) : NULL;
2485
2486 mutex_lock(&kvm->slots_lock);
2487
2488 /* Nothing to do if the entire range as the desired attributes. */
2489 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2490 goto out_unlock;
2491
2492 /*
2493 * Reserve memory ahead of time to avoid having to deal with failures
2494 * partway through setting the new attributes.
2495 */
2496 for (i = start; i < end; i++) {
2497 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2498 if (r)
2499 goto out_unlock;
2500 }
2501
2502 kvm_handle_gfn_range(kvm, &pre_set_range);
2503
2504 for (i = start; i < end; i++) {
2505 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2506 GFP_KERNEL_ACCOUNT));
2507 KVM_BUG_ON(r, kvm);
2508 }
2509
2510 kvm_handle_gfn_range(kvm, &post_set_range);
2511
2512out_unlock:
2513 mutex_unlock(&kvm->slots_lock);
2514
2515 return r;
2516}
2517static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2518 struct kvm_memory_attributes *attrs)
2519{
2520 gfn_t start, end;
2521
2522 /* flags is currently not used. */
2523 if (attrs->flags)
2524 return -EINVAL;
2525 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2526 return -EINVAL;
2527 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2528 return -EINVAL;
2529 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2530 return -EINVAL;
2531
2532 start = attrs->address >> PAGE_SHIFT;
2533 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2534
2535 /*
2536 * xarray tracks data using "unsigned long", and as a result so does
2537 * KVM. For simplicity, supports generic attributes only on 64-bit
2538 * architectures.
2539 */
2540 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2541
2542 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2543}
2544#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2545
2546struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2547{
2548 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2549}
2550EXPORT_SYMBOL_GPL(gfn_to_memslot);
2551
2552struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2553{
2554 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2555 u64 gen = slots->generation;
2556 struct kvm_memory_slot *slot;
2557
2558 /*
2559 * This also protects against using a memslot from a different address space,
2560 * since different address spaces have different generation numbers.
2561 */
2562 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2563 vcpu->last_used_slot = NULL;
2564 vcpu->last_used_slot_gen = gen;
2565 }
2566
2567 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2568 if (slot)
2569 return slot;
2570
2571 /*
2572 * Fall back to searching all memslots. We purposely use
2573 * search_memslots() instead of __gfn_to_memslot() to avoid
2574 * thrashing the VM-wide last_used_slot in kvm_memslots.
2575 */
2576 slot = search_memslots(slots, gfn, false);
2577 if (slot) {
2578 vcpu->last_used_slot = slot;
2579 return slot;
2580 }
2581
2582 return NULL;
2583}
2584
2585bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2586{
2587 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2588
2589 return kvm_is_visible_memslot(memslot);
2590}
2591EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2592
2593bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2594{
2595 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2596
2597 return kvm_is_visible_memslot(memslot);
2598}
2599EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2600
2601unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2602{
2603 struct vm_area_struct *vma;
2604 unsigned long addr, size;
2605
2606 size = PAGE_SIZE;
2607
2608 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2609 if (kvm_is_error_hva(addr))
2610 return PAGE_SIZE;
2611
2612 mmap_read_lock(current->mm);
2613 vma = find_vma(current->mm, addr);
2614 if (!vma)
2615 goto out;
2616
2617 size = vma_kernel_pagesize(vma);
2618
2619out:
2620 mmap_read_unlock(current->mm);
2621
2622 return size;
2623}
2624
2625static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2626{
2627 return slot->flags & KVM_MEM_READONLY;
2628}
2629
2630static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2631 gfn_t *nr_pages, bool write)
2632{
2633 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2634 return KVM_HVA_ERR_BAD;
2635
2636 if (memslot_is_readonly(slot) && write)
2637 return KVM_HVA_ERR_RO_BAD;
2638
2639 if (nr_pages)
2640 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2641
2642 return __gfn_to_hva_memslot(slot, gfn);
2643}
2644
2645static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2646 gfn_t *nr_pages)
2647{
2648 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2649}
2650
2651unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2652 gfn_t gfn)
2653{
2654 return gfn_to_hva_many(slot, gfn, NULL);
2655}
2656EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2657
2658unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2659{
2660 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2661}
2662EXPORT_SYMBOL_GPL(gfn_to_hva);
2663
2664unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2665{
2666 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2669
2670/*
2671 * Return the hva of a @gfn and the R/W attribute if possible.
2672 *
2673 * @slot: the kvm_memory_slot which contains @gfn
2674 * @gfn: the gfn to be translated
2675 * @writable: used to return the read/write attribute of the @slot if the hva
2676 * is valid and @writable is not NULL
2677 */
2678unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2679 gfn_t gfn, bool *writable)
2680{
2681 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2682
2683 if (!kvm_is_error_hva(hva) && writable)
2684 *writable = !memslot_is_readonly(slot);
2685
2686 return hva;
2687}
2688
2689unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2690{
2691 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2692
2693 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2694}
2695
2696unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2697{
2698 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2699
2700 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2701}
2702
2703static bool kvm_is_ad_tracked_page(struct page *page)
2704{
2705 /*
2706 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2707 * touched (e.g. set dirty) except by its owner".
2708 */
2709 return !PageReserved(page);
2710}
2711
2712static void kvm_set_page_dirty(struct page *page)
2713{
2714 if (kvm_is_ad_tracked_page(page))
2715 SetPageDirty(page);
2716}
2717
2718static void kvm_set_page_accessed(struct page *page)
2719{
2720 if (kvm_is_ad_tracked_page(page))
2721 mark_page_accessed(page);
2722}
2723
2724void kvm_release_page_clean(struct page *page)
2725{
2726 if (!page)
2727 return;
2728
2729 kvm_set_page_accessed(page);
2730 put_page(page);
2731}
2732EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2733
2734void kvm_release_page_dirty(struct page *page)
2735{
2736 if (!page)
2737 return;
2738
2739 kvm_set_page_dirty(page);
2740 kvm_release_page_clean(page);
2741}
2742EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2743
2744static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2745 struct follow_pfnmap_args *map, bool writable)
2746{
2747 kvm_pfn_t pfn;
2748
2749 WARN_ON_ONCE(!!page == !!map);
2750
2751 if (kfp->map_writable)
2752 *kfp->map_writable = writable;
2753
2754 if (map)
2755 pfn = map->pfn;
2756 else
2757 pfn = page_to_pfn(page);
2758
2759 *kfp->refcounted_page = page;
2760
2761 return pfn;
2762}
2763
2764/*
2765 * The fast path to get the writable pfn which will be stored in @pfn,
2766 * true indicates success, otherwise false is returned.
2767 */
2768static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2769{
2770 struct page *page;
2771 bool r;
2772
2773 /*
2774 * Try the fast-only path when the caller wants to pin/get the page for
2775 * writing. If the caller only wants to read the page, KVM must go
2776 * down the full, slow path in order to avoid racing an operation that
2777 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2778 * at the old, read-only page while mm/ points at a new, writable page.
2779 */
2780 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2781 return false;
2782
2783 if (kfp->pin)
2784 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2785 else
2786 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2787
2788 if (r) {
2789 *pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2790 return true;
2791 }
2792
2793 return false;
2794}
2795
2796/*
2797 * The slow path to get the pfn of the specified host virtual address,
2798 * 1 indicates success, -errno is returned if error is detected.
2799 */
2800static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2801{
2802 /*
2803 * When a VCPU accesses a page that is not mapped into the secondary
2804 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2805 * make progress. We always want to honor NUMA hinting faults in that
2806 * case, because GUP usage corresponds to memory accesses from the VCPU.
2807 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2808 * mapped into the secondary MMU and gets accessed by a VCPU.
2809 *
2810 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2811 * implicitly honor NUMA hinting faults and don't need this flag.
2812 */
2813 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2814 struct page *page, *wpage;
2815 int npages;
2816
2817 if (kfp->pin)
2818 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2819 else
2820 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2821 if (npages != 1)
2822 return npages;
2823
2824 /*
2825 * Pinning is mutually exclusive with opportunistically mapping a read
2826 * fault as writable, as KVM should never pin pages when mapping memory
2827 * into the guest (pinning is only for direct accesses from KVM).
2828 */
2829 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2830 goto out;
2831
2832 /* map read fault as writable if possible */
2833 if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2834 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2835 put_page(page);
2836 page = wpage;
2837 flags |= FOLL_WRITE;
2838 }
2839
2840out:
2841 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2842 return npages;
2843}
2844
2845static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2846{
2847 if (unlikely(!(vma->vm_flags & VM_READ)))
2848 return false;
2849
2850 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2851 return false;
2852
2853 return true;
2854}
2855
2856static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2857 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2858{
2859 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2860 bool write_fault = kfp->flags & FOLL_WRITE;
2861 int r;
2862
2863 /*
2864 * Remapped memory cannot be pinned in any meaningful sense. Bail if
2865 * the caller wants to pin the page, i.e. access the page outside of
2866 * MMU notifier protection, and unsafe umappings are disallowed.
2867 */
2868 if (kfp->pin && !allow_unsafe_mappings)
2869 return -EINVAL;
2870
2871 r = follow_pfnmap_start(&args);
2872 if (r) {
2873 /*
2874 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2875 * not call the fault handler, so do it here.
2876 */
2877 bool unlocked = false;
2878 r = fixup_user_fault(current->mm, kfp->hva,
2879 (write_fault ? FAULT_FLAG_WRITE : 0),
2880 &unlocked);
2881 if (unlocked)
2882 return -EAGAIN;
2883 if (r)
2884 return r;
2885
2886 r = follow_pfnmap_start(&args);
2887 if (r)
2888 return r;
2889 }
2890
2891 if (write_fault && !args.writable) {
2892 *p_pfn = KVM_PFN_ERR_RO_FAULT;
2893 goto out;
2894 }
2895
2896 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2897out:
2898 follow_pfnmap_end(&args);
2899 return r;
2900}
2901
2902kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2903{
2904 struct vm_area_struct *vma;
2905 kvm_pfn_t pfn;
2906 int npages, r;
2907
2908 might_sleep();
2909
2910 if (WARN_ON_ONCE(!kfp->refcounted_page))
2911 return KVM_PFN_ERR_FAULT;
2912
2913 if (hva_to_pfn_fast(kfp, &pfn))
2914 return pfn;
2915
2916 npages = hva_to_pfn_slow(kfp, &pfn);
2917 if (npages == 1)
2918 return pfn;
2919 if (npages == -EINTR || npages == -EAGAIN)
2920 return KVM_PFN_ERR_SIGPENDING;
2921 if (npages == -EHWPOISON)
2922 return KVM_PFN_ERR_HWPOISON;
2923
2924 mmap_read_lock(current->mm);
2925retry:
2926 vma = vma_lookup(current->mm, kfp->hva);
2927
2928 if (vma == NULL)
2929 pfn = KVM_PFN_ERR_FAULT;
2930 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2931 r = hva_to_pfn_remapped(vma, kfp, &pfn);
2932 if (r == -EAGAIN)
2933 goto retry;
2934 if (r < 0)
2935 pfn = KVM_PFN_ERR_FAULT;
2936 } else {
2937 if ((kfp->flags & FOLL_NOWAIT) &&
2938 vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2939 pfn = KVM_PFN_ERR_NEEDS_IO;
2940 else
2941 pfn = KVM_PFN_ERR_FAULT;
2942 }
2943 mmap_read_unlock(current->mm);
2944 return pfn;
2945}
2946
2947static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
2948{
2949 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2950 kfp->flags & FOLL_WRITE);
2951
2952 if (kfp->hva == KVM_HVA_ERR_RO_BAD)
2953 return KVM_PFN_ERR_RO_FAULT;
2954
2955 if (kvm_is_error_hva(kfp->hva))
2956 return KVM_PFN_NOSLOT;
2957
2958 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2959 *kfp->map_writable = false;
2960 kfp->map_writable = NULL;
2961 }
2962
2963 return hva_to_pfn(kfp);
2964}
2965
2966kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2967 unsigned int foll, bool *writable,
2968 struct page **refcounted_page)
2969{
2970 struct kvm_follow_pfn kfp = {
2971 .slot = slot,
2972 .gfn = gfn,
2973 .flags = foll,
2974 .map_writable = writable,
2975 .refcounted_page = refcounted_page,
2976 };
2977
2978 if (WARN_ON_ONCE(!writable || !refcounted_page))
2979 return KVM_PFN_ERR_FAULT;
2980
2981 *writable = false;
2982 *refcounted_page = NULL;
2983
2984 return kvm_follow_pfn(&kfp);
2985}
2986EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
2987
2988int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
2989 struct page **pages, int nr_pages)
2990{
2991 unsigned long addr;
2992 gfn_t entry = 0;
2993
2994 addr = gfn_to_hva_many(slot, gfn, &entry);
2995 if (kvm_is_error_hva(addr))
2996 return -1;
2997
2998 if (entry < nr_pages)
2999 return 0;
3000
3001 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3002}
3003EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3004
3005/*
3006 * Don't use this API unless you are absolutely, positively certain that KVM
3007 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3008 *
3009 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3010 * its refcount.
3011 */
3012struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3013{
3014 struct page *refcounted_page = NULL;
3015 struct kvm_follow_pfn kfp = {
3016 .slot = gfn_to_memslot(kvm, gfn),
3017 .gfn = gfn,
3018 .flags = write ? FOLL_WRITE : 0,
3019 .refcounted_page = &refcounted_page,
3020 };
3021
3022 (void)kvm_follow_pfn(&kfp);
3023 return refcounted_page;
3024}
3025EXPORT_SYMBOL_GPL(__gfn_to_page);
3026
3027int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3028 bool writable)
3029{
3030 struct kvm_follow_pfn kfp = {
3031 .slot = gfn_to_memslot(vcpu->kvm, gfn),
3032 .gfn = gfn,
3033 .flags = writable ? FOLL_WRITE : 0,
3034 .refcounted_page = &map->pinned_page,
3035 .pin = true,
3036 };
3037
3038 map->pinned_page = NULL;
3039 map->page = NULL;
3040 map->hva = NULL;
3041 map->gfn = gfn;
3042 map->writable = writable;
3043
3044 map->pfn = kvm_follow_pfn(&kfp);
3045 if (is_error_noslot_pfn(map->pfn))
3046 return -EINVAL;
3047
3048 if (pfn_valid(map->pfn)) {
3049 map->page = pfn_to_page(map->pfn);
3050 map->hva = kmap(map->page);
3051#ifdef CONFIG_HAS_IOMEM
3052 } else {
3053 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3054#endif
3055 }
3056
3057 return map->hva ? 0 : -EFAULT;
3058}
3059EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3060
3061void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3062{
3063 if (!map->hva)
3064 return;
3065
3066 if (map->page)
3067 kunmap(map->page);
3068#ifdef CONFIG_HAS_IOMEM
3069 else
3070 memunmap(map->hva);
3071#endif
3072
3073 if (map->writable)
3074 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3075
3076 if (map->pinned_page) {
3077 if (map->writable)
3078 kvm_set_page_dirty(map->pinned_page);
3079 kvm_set_page_accessed(map->pinned_page);
3080 unpin_user_page(map->pinned_page);
3081 }
3082
3083 map->hva = NULL;
3084 map->page = NULL;
3085 map->pinned_page = NULL;
3086}
3087EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3088
3089static int next_segment(unsigned long len, int offset)
3090{
3091 if (len > PAGE_SIZE - offset)
3092 return PAGE_SIZE - offset;
3093 else
3094 return len;
3095}
3096
3097/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3098static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3099 void *data, int offset, int len)
3100{
3101 int r;
3102 unsigned long addr;
3103
3104 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3105 return -EFAULT;
3106
3107 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108 if (kvm_is_error_hva(addr))
3109 return -EFAULT;
3110 r = __copy_from_user(data, (void __user *)addr + offset, len);
3111 if (r)
3112 return -EFAULT;
3113 return 0;
3114}
3115
3116int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3117 int len)
3118{
3119 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3120
3121 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3122}
3123EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3124
3125int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3126 int offset, int len)
3127{
3128 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3129
3130 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3131}
3132EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3133
3134int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3135{
3136 gfn_t gfn = gpa >> PAGE_SHIFT;
3137 int seg;
3138 int offset = offset_in_page(gpa);
3139 int ret;
3140
3141 while ((seg = next_segment(len, offset)) != 0) {
3142 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3143 if (ret < 0)
3144 return ret;
3145 offset = 0;
3146 len -= seg;
3147 data += seg;
3148 ++gfn;
3149 }
3150 return 0;
3151}
3152EXPORT_SYMBOL_GPL(kvm_read_guest);
3153
3154int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3155{
3156 gfn_t gfn = gpa >> PAGE_SHIFT;
3157 int seg;
3158 int offset = offset_in_page(gpa);
3159 int ret;
3160
3161 while ((seg = next_segment(len, offset)) != 0) {
3162 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3163 if (ret < 0)
3164 return ret;
3165 offset = 0;
3166 len -= seg;
3167 data += seg;
3168 ++gfn;
3169 }
3170 return 0;
3171}
3172EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3173
3174static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3175 void *data, int offset, unsigned long len)
3176{
3177 int r;
3178 unsigned long addr;
3179
3180 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3181 return -EFAULT;
3182
3183 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3184 if (kvm_is_error_hva(addr))
3185 return -EFAULT;
3186 pagefault_disable();
3187 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3188 pagefault_enable();
3189 if (r)
3190 return -EFAULT;
3191 return 0;
3192}
3193
3194int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3195 void *data, unsigned long len)
3196{
3197 gfn_t gfn = gpa >> PAGE_SHIFT;
3198 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3199 int offset = offset_in_page(gpa);
3200
3201 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3202}
3203EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3204
3205/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3206static int __kvm_write_guest_page(struct kvm *kvm,
3207 struct kvm_memory_slot *memslot, gfn_t gfn,
3208 const void *data, int offset, int len)
3209{
3210 int r;
3211 unsigned long addr;
3212
3213 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3214 return -EFAULT;
3215
3216 addr = gfn_to_hva_memslot(memslot, gfn);
3217 if (kvm_is_error_hva(addr))
3218 return -EFAULT;
3219 r = __copy_to_user((void __user *)addr + offset, data, len);
3220 if (r)
3221 return -EFAULT;
3222 mark_page_dirty_in_slot(kvm, memslot, gfn);
3223 return 0;
3224}
3225
3226int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3227 const void *data, int offset, int len)
3228{
3229 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3230
3231 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3232}
3233EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3234
3235int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3236 const void *data, int offset, int len)
3237{
3238 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3239
3240 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3241}
3242EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3243
3244int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3245 unsigned long len)
3246{
3247 gfn_t gfn = gpa >> PAGE_SHIFT;
3248 int seg;
3249 int offset = offset_in_page(gpa);
3250 int ret;
3251
3252 while ((seg = next_segment(len, offset)) != 0) {
3253 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3254 if (ret < 0)
3255 return ret;
3256 offset = 0;
3257 len -= seg;
3258 data += seg;
3259 ++gfn;
3260 }
3261 return 0;
3262}
3263EXPORT_SYMBOL_GPL(kvm_write_guest);
3264
3265int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3266 unsigned long len)
3267{
3268 gfn_t gfn = gpa >> PAGE_SHIFT;
3269 int seg;
3270 int offset = offset_in_page(gpa);
3271 int ret;
3272
3273 while ((seg = next_segment(len, offset)) != 0) {
3274 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3275 if (ret < 0)
3276 return ret;
3277 offset = 0;
3278 len -= seg;
3279 data += seg;
3280 ++gfn;
3281 }
3282 return 0;
3283}
3284EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3285
3286static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3287 struct gfn_to_hva_cache *ghc,
3288 gpa_t gpa, unsigned long len)
3289{
3290 int offset = offset_in_page(gpa);
3291 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3292 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3293 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3294 gfn_t nr_pages_avail;
3295
3296 /* Update ghc->generation before performing any error checks. */
3297 ghc->generation = slots->generation;
3298
3299 if (start_gfn > end_gfn) {
3300 ghc->hva = KVM_HVA_ERR_BAD;
3301 return -EINVAL;
3302 }
3303
3304 /*
3305 * If the requested region crosses two memslots, we still
3306 * verify that the entire region is valid here.
3307 */
3308 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3309 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3310 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3311 &nr_pages_avail);
3312 if (kvm_is_error_hva(ghc->hva))
3313 return -EFAULT;
3314 }
3315
3316 /* Use the slow path for cross page reads and writes. */
3317 if (nr_pages_needed == 1)
3318 ghc->hva += offset;
3319 else
3320 ghc->memslot = NULL;
3321
3322 ghc->gpa = gpa;
3323 ghc->len = len;
3324 return 0;
3325}
3326
3327int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3328 gpa_t gpa, unsigned long len)
3329{
3330 struct kvm_memslots *slots = kvm_memslots(kvm);
3331 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3332}
3333EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3334
3335int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3336 void *data, unsigned int offset,
3337 unsigned long len)
3338{
3339 struct kvm_memslots *slots = kvm_memslots(kvm);
3340 int r;
3341 gpa_t gpa = ghc->gpa + offset;
3342
3343 if (WARN_ON_ONCE(len + offset > ghc->len))
3344 return -EINVAL;
3345
3346 if (slots->generation != ghc->generation) {
3347 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3348 return -EFAULT;
3349 }
3350
3351 if (kvm_is_error_hva(ghc->hva))
3352 return -EFAULT;
3353
3354 if (unlikely(!ghc->memslot))
3355 return kvm_write_guest(kvm, gpa, data, len);
3356
3357 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3358 if (r)
3359 return -EFAULT;
3360 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3361
3362 return 0;
3363}
3364EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3365
3366int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3367 void *data, unsigned long len)
3368{
3369 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3370}
3371EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3372
3373int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3374 void *data, unsigned int offset,
3375 unsigned long len)
3376{
3377 struct kvm_memslots *slots = kvm_memslots(kvm);
3378 int r;
3379 gpa_t gpa = ghc->gpa + offset;
3380
3381 if (WARN_ON_ONCE(len + offset > ghc->len))
3382 return -EINVAL;
3383
3384 if (slots->generation != ghc->generation) {
3385 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3386 return -EFAULT;
3387 }
3388
3389 if (kvm_is_error_hva(ghc->hva))
3390 return -EFAULT;
3391
3392 if (unlikely(!ghc->memslot))
3393 return kvm_read_guest(kvm, gpa, data, len);
3394
3395 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3396 if (r)
3397 return -EFAULT;
3398
3399 return 0;
3400}
3401EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3402
3403int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3404 void *data, unsigned long len)
3405{
3406 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3407}
3408EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3409
3410int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3411{
3412 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3413 gfn_t gfn = gpa >> PAGE_SHIFT;
3414 int seg;
3415 int offset = offset_in_page(gpa);
3416 int ret;
3417
3418 while ((seg = next_segment(len, offset)) != 0) {
3419 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3420 if (ret < 0)
3421 return ret;
3422 offset = 0;
3423 len -= seg;
3424 ++gfn;
3425 }
3426 return 0;
3427}
3428EXPORT_SYMBOL_GPL(kvm_clear_guest);
3429
3430void mark_page_dirty_in_slot(struct kvm *kvm,
3431 const struct kvm_memory_slot *memslot,
3432 gfn_t gfn)
3433{
3434 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3435
3436#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3437 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3438 return;
3439
3440 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3441#endif
3442
3443 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3444 unsigned long rel_gfn = gfn - memslot->base_gfn;
3445 u32 slot = (memslot->as_id << 16) | memslot->id;
3446
3447 if (kvm->dirty_ring_size && vcpu)
3448 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3449 else if (memslot->dirty_bitmap)
3450 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3451 }
3452}
3453EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3454
3455void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3456{
3457 struct kvm_memory_slot *memslot;
3458
3459 memslot = gfn_to_memslot(kvm, gfn);
3460 mark_page_dirty_in_slot(kvm, memslot, gfn);
3461}
3462EXPORT_SYMBOL_GPL(mark_page_dirty);
3463
3464void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3465{
3466 struct kvm_memory_slot *memslot;
3467
3468 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3469 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3470}
3471EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3472
3473void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3474{
3475 if (!vcpu->sigset_active)
3476 return;
3477
3478 /*
3479 * This does a lockless modification of ->real_blocked, which is fine
3480 * because, only current can change ->real_blocked and all readers of
3481 * ->real_blocked don't care as long ->real_blocked is always a subset
3482 * of ->blocked.
3483 */
3484 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3485}
3486
3487void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3488{
3489 if (!vcpu->sigset_active)
3490 return;
3491
3492 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3493 sigemptyset(¤t->real_blocked);
3494}
3495
3496static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3497{
3498 unsigned int old, val, grow, grow_start;
3499
3500 old = val = vcpu->halt_poll_ns;
3501 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3502 grow = READ_ONCE(halt_poll_ns_grow);
3503 if (!grow)
3504 goto out;
3505
3506 val *= grow;
3507 if (val < grow_start)
3508 val = grow_start;
3509
3510 vcpu->halt_poll_ns = val;
3511out:
3512 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3513}
3514
3515static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3516{
3517 unsigned int old, val, shrink, grow_start;
3518
3519 old = val = vcpu->halt_poll_ns;
3520 shrink = READ_ONCE(halt_poll_ns_shrink);
3521 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3522 if (shrink == 0)
3523 val = 0;
3524 else
3525 val /= shrink;
3526
3527 if (val < grow_start)
3528 val = 0;
3529
3530 vcpu->halt_poll_ns = val;
3531 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3532}
3533
3534static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3535{
3536 int ret = -EINTR;
3537 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3538
3539 if (kvm_arch_vcpu_runnable(vcpu))
3540 goto out;
3541 if (kvm_cpu_has_pending_timer(vcpu))
3542 goto out;
3543 if (signal_pending(current))
3544 goto out;
3545 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3546 goto out;
3547
3548 ret = 0;
3549out:
3550 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3551 return ret;
3552}
3553
3554/*
3555 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3556 * pending. This is mostly used when halting a vCPU, but may also be used
3557 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3558 */
3559bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3560{
3561 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3562 bool waited = false;
3563
3564 vcpu->stat.generic.blocking = 1;
3565
3566 preempt_disable();
3567 kvm_arch_vcpu_blocking(vcpu);
3568 prepare_to_rcuwait(wait);
3569 preempt_enable();
3570
3571 for (;;) {
3572 set_current_state(TASK_INTERRUPTIBLE);
3573
3574 if (kvm_vcpu_check_block(vcpu) < 0)
3575 break;
3576
3577 waited = true;
3578 schedule();
3579 }
3580
3581 preempt_disable();
3582 finish_rcuwait(wait);
3583 kvm_arch_vcpu_unblocking(vcpu);
3584 preempt_enable();
3585
3586 vcpu->stat.generic.blocking = 0;
3587
3588 return waited;
3589}
3590
3591static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3592 ktime_t end, bool success)
3593{
3594 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3595 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3596
3597 ++vcpu->stat.generic.halt_attempted_poll;
3598
3599 if (success) {
3600 ++vcpu->stat.generic.halt_successful_poll;
3601
3602 if (!vcpu_valid_wakeup(vcpu))
3603 ++vcpu->stat.generic.halt_poll_invalid;
3604
3605 stats->halt_poll_success_ns += poll_ns;
3606 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3607 } else {
3608 stats->halt_poll_fail_ns += poll_ns;
3609 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3610 }
3611}
3612
3613static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3614{
3615 struct kvm *kvm = vcpu->kvm;
3616
3617 if (kvm->override_halt_poll_ns) {
3618 /*
3619 * Ensure kvm->max_halt_poll_ns is not read before
3620 * kvm->override_halt_poll_ns.
3621 *
3622 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3623 */
3624 smp_rmb();
3625 return READ_ONCE(kvm->max_halt_poll_ns);
3626 }
3627
3628 return READ_ONCE(halt_poll_ns);
3629}
3630
3631/*
3632 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3633 * polling is enabled, busy wait for a short time before blocking to avoid the
3634 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3635 * is halted.
3636 */
3637void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3638{
3639 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3640 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3641 ktime_t start, cur, poll_end;
3642 bool waited = false;
3643 bool do_halt_poll;
3644 u64 halt_ns;
3645
3646 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3647 vcpu->halt_poll_ns = max_halt_poll_ns;
3648
3649 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3650
3651 start = cur = poll_end = ktime_get();
3652 if (do_halt_poll) {
3653 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3654
3655 do {
3656 if (kvm_vcpu_check_block(vcpu) < 0)
3657 goto out;
3658 cpu_relax();
3659 poll_end = cur = ktime_get();
3660 } while (kvm_vcpu_can_poll(cur, stop));
3661 }
3662
3663 waited = kvm_vcpu_block(vcpu);
3664
3665 cur = ktime_get();
3666 if (waited) {
3667 vcpu->stat.generic.halt_wait_ns +=
3668 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3669 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3670 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3671 }
3672out:
3673 /* The total time the vCPU was "halted", including polling time. */
3674 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3675
3676 /*
3677 * Note, halt-polling is considered successful so long as the vCPU was
3678 * never actually scheduled out, i.e. even if the wake event arrived
3679 * after of the halt-polling loop itself, but before the full wait.
3680 */
3681 if (do_halt_poll)
3682 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3683
3684 if (halt_poll_allowed) {
3685 /* Recompute the max halt poll time in case it changed. */
3686 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3687
3688 if (!vcpu_valid_wakeup(vcpu)) {
3689 shrink_halt_poll_ns(vcpu);
3690 } else if (max_halt_poll_ns) {
3691 if (halt_ns <= vcpu->halt_poll_ns)
3692 ;
3693 /* we had a long block, shrink polling */
3694 else if (vcpu->halt_poll_ns &&
3695 halt_ns > max_halt_poll_ns)
3696 shrink_halt_poll_ns(vcpu);
3697 /* we had a short halt and our poll time is too small */
3698 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3699 halt_ns < max_halt_poll_ns)
3700 grow_halt_poll_ns(vcpu);
3701 } else {
3702 vcpu->halt_poll_ns = 0;
3703 }
3704 }
3705
3706 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3707}
3708EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3709
3710bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3711{
3712 if (__kvm_vcpu_wake_up(vcpu)) {
3713 WRITE_ONCE(vcpu->ready, true);
3714 ++vcpu->stat.generic.halt_wakeup;
3715 return true;
3716 }
3717
3718 return false;
3719}
3720EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3721
3722#ifndef CONFIG_S390
3723/*
3724 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3725 */
3726void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3727{
3728 int me, cpu;
3729
3730 if (kvm_vcpu_wake_up(vcpu))
3731 return;
3732
3733 me = get_cpu();
3734 /*
3735 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3736 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3737 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3738 * within the vCPU thread itself.
3739 */
3740 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3741 if (vcpu->mode == IN_GUEST_MODE)
3742 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3743 goto out;
3744 }
3745
3746 /*
3747 * Note, the vCPU could get migrated to a different pCPU at any point
3748 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3749 * IPI to the previous pCPU. But, that's ok because the purpose of the
3750 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3751 * vCPU also requires it to leave IN_GUEST_MODE.
3752 */
3753 if (kvm_arch_vcpu_should_kick(vcpu)) {
3754 cpu = READ_ONCE(vcpu->cpu);
3755 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3756 smp_send_reschedule(cpu);
3757 }
3758out:
3759 put_cpu();
3760}
3761EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3762#endif /* !CONFIG_S390 */
3763
3764int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3765{
3766 struct task_struct *task = NULL;
3767 int ret;
3768
3769 if (!read_trylock(&target->pid_lock))
3770 return 0;
3771
3772 if (target->pid)
3773 task = get_pid_task(target->pid, PIDTYPE_PID);
3774
3775 read_unlock(&target->pid_lock);
3776
3777 if (!task)
3778 return 0;
3779 ret = yield_to(task, 1);
3780 put_task_struct(task);
3781
3782 return ret;
3783}
3784EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3785
3786/*
3787 * Helper that checks whether a VCPU is eligible for directed yield.
3788 * Most eligible candidate to yield is decided by following heuristics:
3789 *
3790 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3791 * (preempted lock holder), indicated by @in_spin_loop.
3792 * Set at the beginning and cleared at the end of interception/PLE handler.
3793 *
3794 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3795 * chance last time (mostly it has become eligible now since we have probably
3796 * yielded to lockholder in last iteration. This is done by toggling
3797 * @dy_eligible each time a VCPU checked for eligibility.)
3798 *
3799 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3800 * to preempted lock-holder could result in wrong VCPU selection and CPU
3801 * burning. Giving priority for a potential lock-holder increases lock
3802 * progress.
3803 *
3804 * Since algorithm is based on heuristics, accessing another VCPU data without
3805 * locking does not harm. It may result in trying to yield to same VCPU, fail
3806 * and continue with next VCPU and so on.
3807 */
3808static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3809{
3810#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3811 bool eligible;
3812
3813 eligible = !vcpu->spin_loop.in_spin_loop ||
3814 vcpu->spin_loop.dy_eligible;
3815
3816 if (vcpu->spin_loop.in_spin_loop)
3817 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3818
3819 return eligible;
3820#else
3821 return true;
3822#endif
3823}
3824
3825/*
3826 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3827 * a vcpu_load/vcpu_put pair. However, for most architectures
3828 * kvm_arch_vcpu_runnable does not require vcpu_load.
3829 */
3830bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3831{
3832 return kvm_arch_vcpu_runnable(vcpu);
3833}
3834
3835static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3836{
3837 if (kvm_arch_dy_runnable(vcpu))
3838 return true;
3839
3840#ifdef CONFIG_KVM_ASYNC_PF
3841 if (!list_empty_careful(&vcpu->async_pf.done))
3842 return true;
3843#endif
3844
3845 return false;
3846}
3847
3848/*
3849 * By default, simply query the target vCPU's current mode when checking if a
3850 * vCPU was preempted in kernel mode. All architectures except x86 (or more
3851 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3852 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3853 * directly for cross-vCPU checks is functionally correct and accurate.
3854 */
3855bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3856{
3857 return kvm_arch_vcpu_in_kernel(vcpu);
3858}
3859
3860bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3861{
3862 return false;
3863}
3864
3865void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3866{
3867 int nr_vcpus, start, i, idx, yielded;
3868 struct kvm *kvm = me->kvm;
3869 struct kvm_vcpu *vcpu;
3870 int try = 3;
3871
3872 nr_vcpus = atomic_read(&kvm->online_vcpus);
3873 if (nr_vcpus < 2)
3874 return;
3875
3876 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3877 smp_rmb();
3878
3879 kvm_vcpu_set_in_spin_loop(me, true);
3880
3881 /*
3882 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3883 * waiting for a resource to become available. Attempt to yield to a
3884 * vCPU that is runnable, but not currently running, e.g. because the
3885 * vCPU was preempted by a higher priority task. With luck, the vCPU
3886 * that was preempted is holding a lock or some other resource that the
3887 * current vCPU is waiting to acquire, and yielding to the other vCPU
3888 * will allow it to make forward progress and release the lock (or kick
3889 * the spinning vCPU, etc).
3890 *
3891 * Since KVM has no insight into what exactly the guest is doing,
3892 * approximate a round-robin selection by iterating over all vCPUs,
3893 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3894 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3895 *
3896 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3897 * they may all try to yield to the same vCPU(s). But as above, this
3898 * is all best effort due to KVM's lack of visibility into the guest.
3899 */
3900 start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3901 for (i = 0; i < nr_vcpus; i++) {
3902 idx = (start + i) % nr_vcpus;
3903 if (idx == me->vcpu_idx)
3904 continue;
3905
3906 vcpu = xa_load(&kvm->vcpu_array, idx);
3907 if (!READ_ONCE(vcpu->ready))
3908 continue;
3909 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3910 continue;
3911
3912 /*
3913 * Treat the target vCPU as being in-kernel if it has a pending
3914 * interrupt, as the vCPU trying to yield may be spinning
3915 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3916 * for the purposes of directed yield.
3917 */
3918 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3919 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3920 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3921 continue;
3922
3923 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3924 continue;
3925
3926 yielded = kvm_vcpu_yield_to(vcpu);
3927 if (yielded > 0) {
3928 WRITE_ONCE(kvm->last_boosted_vcpu, i);
3929 break;
3930 } else if (yielded < 0 && !--try) {
3931 break;
3932 }
3933 }
3934 kvm_vcpu_set_in_spin_loop(me, false);
3935
3936 /* Ensure vcpu is not eligible during next spinloop */
3937 kvm_vcpu_set_dy_eligible(me, false);
3938}
3939EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3940
3941static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3942{
3943#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3944 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3945 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3946 kvm->dirty_ring_size / PAGE_SIZE);
3947#else
3948 return false;
3949#endif
3950}
3951
3952static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3953{
3954 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3955 struct page *page;
3956
3957 if (vmf->pgoff == 0)
3958 page = virt_to_page(vcpu->run);
3959#ifdef CONFIG_X86
3960 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3961 page = virt_to_page(vcpu->arch.pio_data);
3962#endif
3963#ifdef CONFIG_KVM_MMIO
3964 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3965 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3966#endif
3967 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3968 page = kvm_dirty_ring_get_page(
3969 &vcpu->dirty_ring,
3970 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3971 else
3972 return kvm_arch_vcpu_fault(vcpu, vmf);
3973 get_page(page);
3974 vmf->page = page;
3975 return 0;
3976}
3977
3978static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3979 .fault = kvm_vcpu_fault,
3980};
3981
3982static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3983{
3984 struct kvm_vcpu *vcpu = file->private_data;
3985 unsigned long pages = vma_pages(vma);
3986
3987 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3988 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3989 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3990 return -EINVAL;
3991
3992 vma->vm_ops = &kvm_vcpu_vm_ops;
3993 return 0;
3994}
3995
3996static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3997{
3998 struct kvm_vcpu *vcpu = filp->private_data;
3999
4000 kvm_put_kvm(vcpu->kvm);
4001 return 0;
4002}
4003
4004static struct file_operations kvm_vcpu_fops = {
4005 .release = kvm_vcpu_release,
4006 .unlocked_ioctl = kvm_vcpu_ioctl,
4007 .mmap = kvm_vcpu_mmap,
4008 .llseek = noop_llseek,
4009 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4010};
4011
4012/*
4013 * Allocates an inode for the vcpu.
4014 */
4015static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4016{
4017 char name[8 + 1 + ITOA_MAX_LEN + 1];
4018
4019 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4020 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4021}
4022
4023#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4024static int vcpu_get_pid(void *data, u64 *val)
4025{
4026 struct kvm_vcpu *vcpu = data;
4027
4028 read_lock(&vcpu->pid_lock);
4029 *val = pid_nr(vcpu->pid);
4030 read_unlock(&vcpu->pid_lock);
4031 return 0;
4032}
4033
4034DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4035
4036static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4037{
4038 struct dentry *debugfs_dentry;
4039 char dir_name[ITOA_MAX_LEN * 2];
4040
4041 if (!debugfs_initialized())
4042 return;
4043
4044 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4045 debugfs_dentry = debugfs_create_dir(dir_name,
4046 vcpu->kvm->debugfs_dentry);
4047 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4048 &vcpu_get_pid_fops);
4049
4050 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4051}
4052#endif
4053
4054/*
4055 * Creates some virtual cpus. Good luck creating more than one.
4056 */
4057static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4058{
4059 int r;
4060 struct kvm_vcpu *vcpu;
4061 struct page *page;
4062
4063 /*
4064 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4065 * too-large values instead of silently truncating.
4066 *
4067 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4068 * changing the storage type (at the very least, IDs should be tracked
4069 * as unsigned ints).
4070 */
4071 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4072 if (id >= KVM_MAX_VCPU_IDS)
4073 return -EINVAL;
4074
4075 mutex_lock(&kvm->lock);
4076 if (kvm->created_vcpus >= kvm->max_vcpus) {
4077 mutex_unlock(&kvm->lock);
4078 return -EINVAL;
4079 }
4080
4081 r = kvm_arch_vcpu_precreate(kvm, id);
4082 if (r) {
4083 mutex_unlock(&kvm->lock);
4084 return r;
4085 }
4086
4087 kvm->created_vcpus++;
4088 mutex_unlock(&kvm->lock);
4089
4090 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4091 if (!vcpu) {
4092 r = -ENOMEM;
4093 goto vcpu_decrement;
4094 }
4095
4096 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4097 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4098 if (!page) {
4099 r = -ENOMEM;
4100 goto vcpu_free;
4101 }
4102 vcpu->run = page_address(page);
4103
4104 kvm_vcpu_init(vcpu, kvm, id);
4105
4106 r = kvm_arch_vcpu_create(vcpu);
4107 if (r)
4108 goto vcpu_free_run_page;
4109
4110 if (kvm->dirty_ring_size) {
4111 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4112 id, kvm->dirty_ring_size);
4113 if (r)
4114 goto arch_vcpu_destroy;
4115 }
4116
4117 mutex_lock(&kvm->lock);
4118
4119#ifdef CONFIG_LOCKDEP
4120 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4121 mutex_lock(&vcpu->mutex);
4122 mutex_unlock(&vcpu->mutex);
4123#endif
4124
4125 if (kvm_get_vcpu_by_id(kvm, id)) {
4126 r = -EEXIST;
4127 goto unlock_vcpu_destroy;
4128 }
4129
4130 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4131 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4132 if (r)
4133 goto unlock_vcpu_destroy;
4134
4135 /* Now it's all set up, let userspace reach it */
4136 kvm_get_kvm(kvm);
4137 r = create_vcpu_fd(vcpu);
4138 if (r < 0)
4139 goto kvm_put_xa_release;
4140
4141 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4142 r = -EINVAL;
4143 goto kvm_put_xa_release;
4144 }
4145
4146 /*
4147 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4148 * pointer before kvm->online_vcpu's incremented value.
4149 */
4150 smp_wmb();
4151 atomic_inc(&kvm->online_vcpus);
4152
4153 mutex_unlock(&kvm->lock);
4154 kvm_arch_vcpu_postcreate(vcpu);
4155 kvm_create_vcpu_debugfs(vcpu);
4156 return r;
4157
4158kvm_put_xa_release:
4159 kvm_put_kvm_no_destroy(kvm);
4160 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4161unlock_vcpu_destroy:
4162 mutex_unlock(&kvm->lock);
4163 kvm_dirty_ring_free(&vcpu->dirty_ring);
4164arch_vcpu_destroy:
4165 kvm_arch_vcpu_destroy(vcpu);
4166vcpu_free_run_page:
4167 free_page((unsigned long)vcpu->run);
4168vcpu_free:
4169 kmem_cache_free(kvm_vcpu_cache, vcpu);
4170vcpu_decrement:
4171 mutex_lock(&kvm->lock);
4172 kvm->created_vcpus--;
4173 mutex_unlock(&kvm->lock);
4174 return r;
4175}
4176
4177static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4178{
4179 if (sigset) {
4180 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4181 vcpu->sigset_active = 1;
4182 vcpu->sigset = *sigset;
4183 } else
4184 vcpu->sigset_active = 0;
4185 return 0;
4186}
4187
4188static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4189 size_t size, loff_t *offset)
4190{
4191 struct kvm_vcpu *vcpu = file->private_data;
4192
4193 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4194 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4195 sizeof(vcpu->stat), user_buffer, size, offset);
4196}
4197
4198static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4199{
4200 struct kvm_vcpu *vcpu = file->private_data;
4201
4202 kvm_put_kvm(vcpu->kvm);
4203 return 0;
4204}
4205
4206static const struct file_operations kvm_vcpu_stats_fops = {
4207 .owner = THIS_MODULE,
4208 .read = kvm_vcpu_stats_read,
4209 .release = kvm_vcpu_stats_release,
4210 .llseek = noop_llseek,
4211};
4212
4213static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4214{
4215 int fd;
4216 struct file *file;
4217 char name[15 + ITOA_MAX_LEN + 1];
4218
4219 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4220
4221 fd = get_unused_fd_flags(O_CLOEXEC);
4222 if (fd < 0)
4223 return fd;
4224
4225 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4226 if (IS_ERR(file)) {
4227 put_unused_fd(fd);
4228 return PTR_ERR(file);
4229 }
4230
4231 kvm_get_kvm(vcpu->kvm);
4232
4233 file->f_mode |= FMODE_PREAD;
4234 fd_install(fd, file);
4235
4236 return fd;
4237}
4238
4239#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4240static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4241 struct kvm_pre_fault_memory *range)
4242{
4243 int idx;
4244 long r;
4245 u64 full_size;
4246
4247 if (range->flags)
4248 return -EINVAL;
4249
4250 if (!PAGE_ALIGNED(range->gpa) ||
4251 !PAGE_ALIGNED(range->size) ||
4252 range->gpa + range->size <= range->gpa)
4253 return -EINVAL;
4254
4255 vcpu_load(vcpu);
4256 idx = srcu_read_lock(&vcpu->kvm->srcu);
4257
4258 full_size = range->size;
4259 do {
4260 if (signal_pending(current)) {
4261 r = -EINTR;
4262 break;
4263 }
4264
4265 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4266 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4267 break;
4268
4269 if (r < 0)
4270 break;
4271
4272 range->size -= r;
4273 range->gpa += r;
4274 cond_resched();
4275 } while (range->size);
4276
4277 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4278 vcpu_put(vcpu);
4279
4280 /* Return success if at least one page was mapped successfully. */
4281 return full_size == range->size ? r : 0;
4282}
4283#endif
4284
4285static long kvm_vcpu_ioctl(struct file *filp,
4286 unsigned int ioctl, unsigned long arg)
4287{
4288 struct kvm_vcpu *vcpu = filp->private_data;
4289 void __user *argp = (void __user *)arg;
4290 int r;
4291 struct kvm_fpu *fpu = NULL;
4292 struct kvm_sregs *kvm_sregs = NULL;
4293
4294 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4295 return -EIO;
4296
4297 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4298 return -EINVAL;
4299
4300 /*
4301 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4302 * execution; mutex_lock() would break them.
4303 */
4304 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4305 if (r != -ENOIOCTLCMD)
4306 return r;
4307
4308 if (mutex_lock_killable(&vcpu->mutex))
4309 return -EINTR;
4310 switch (ioctl) {
4311 case KVM_RUN: {
4312 struct pid *oldpid;
4313 r = -EINVAL;
4314 if (arg)
4315 goto out;
4316
4317 /*
4318 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4319 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4320 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4321 * directly to this vCPU
4322 */
4323 oldpid = vcpu->pid;
4324 if (unlikely(oldpid != task_pid(current))) {
4325 /* The thread running this VCPU changed. */
4326 struct pid *newpid;
4327
4328 r = kvm_arch_vcpu_run_pid_change(vcpu);
4329 if (r)
4330 break;
4331
4332 newpid = get_task_pid(current, PIDTYPE_PID);
4333 write_lock(&vcpu->pid_lock);
4334 vcpu->pid = newpid;
4335 write_unlock(&vcpu->pid_lock);
4336
4337 put_pid(oldpid);
4338 }
4339 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4340 r = kvm_arch_vcpu_ioctl_run(vcpu);
4341 vcpu->wants_to_run = false;
4342
4343 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4344 break;
4345 }
4346 case KVM_GET_REGS: {
4347 struct kvm_regs *kvm_regs;
4348
4349 r = -ENOMEM;
4350 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4351 if (!kvm_regs)
4352 goto out;
4353 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4354 if (r)
4355 goto out_free1;
4356 r = -EFAULT;
4357 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4358 goto out_free1;
4359 r = 0;
4360out_free1:
4361 kfree(kvm_regs);
4362 break;
4363 }
4364 case KVM_SET_REGS: {
4365 struct kvm_regs *kvm_regs;
4366
4367 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4368 if (IS_ERR(kvm_regs)) {
4369 r = PTR_ERR(kvm_regs);
4370 goto out;
4371 }
4372 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4373 kfree(kvm_regs);
4374 break;
4375 }
4376 case KVM_GET_SREGS: {
4377 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4378 r = -ENOMEM;
4379 if (!kvm_sregs)
4380 goto out;
4381 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4382 if (r)
4383 goto out;
4384 r = -EFAULT;
4385 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4386 goto out;
4387 r = 0;
4388 break;
4389 }
4390 case KVM_SET_SREGS: {
4391 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4392 if (IS_ERR(kvm_sregs)) {
4393 r = PTR_ERR(kvm_sregs);
4394 kvm_sregs = NULL;
4395 goto out;
4396 }
4397 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4398 break;
4399 }
4400 case KVM_GET_MP_STATE: {
4401 struct kvm_mp_state mp_state;
4402
4403 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4404 if (r)
4405 goto out;
4406 r = -EFAULT;
4407 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4408 goto out;
4409 r = 0;
4410 break;
4411 }
4412 case KVM_SET_MP_STATE: {
4413 struct kvm_mp_state mp_state;
4414
4415 r = -EFAULT;
4416 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4417 goto out;
4418 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4419 break;
4420 }
4421 case KVM_TRANSLATE: {
4422 struct kvm_translation tr;
4423
4424 r = -EFAULT;
4425 if (copy_from_user(&tr, argp, sizeof(tr)))
4426 goto out;
4427 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4428 if (r)
4429 goto out;
4430 r = -EFAULT;
4431 if (copy_to_user(argp, &tr, sizeof(tr)))
4432 goto out;
4433 r = 0;
4434 break;
4435 }
4436 case KVM_SET_GUEST_DEBUG: {
4437 struct kvm_guest_debug dbg;
4438
4439 r = -EFAULT;
4440 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4441 goto out;
4442 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4443 break;
4444 }
4445 case KVM_SET_SIGNAL_MASK: {
4446 struct kvm_signal_mask __user *sigmask_arg = argp;
4447 struct kvm_signal_mask kvm_sigmask;
4448 sigset_t sigset, *p;
4449
4450 p = NULL;
4451 if (argp) {
4452 r = -EFAULT;
4453 if (copy_from_user(&kvm_sigmask, argp,
4454 sizeof(kvm_sigmask)))
4455 goto out;
4456 r = -EINVAL;
4457 if (kvm_sigmask.len != sizeof(sigset))
4458 goto out;
4459 r = -EFAULT;
4460 if (copy_from_user(&sigset, sigmask_arg->sigset,
4461 sizeof(sigset)))
4462 goto out;
4463 p = &sigset;
4464 }
4465 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4466 break;
4467 }
4468 case KVM_GET_FPU: {
4469 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4470 r = -ENOMEM;
4471 if (!fpu)
4472 goto out;
4473 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4474 if (r)
4475 goto out;
4476 r = -EFAULT;
4477 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4478 goto out;
4479 r = 0;
4480 break;
4481 }
4482 case KVM_SET_FPU: {
4483 fpu = memdup_user(argp, sizeof(*fpu));
4484 if (IS_ERR(fpu)) {
4485 r = PTR_ERR(fpu);
4486 fpu = NULL;
4487 goto out;
4488 }
4489 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4490 break;
4491 }
4492 case KVM_GET_STATS_FD: {
4493 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4494 break;
4495 }
4496#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4497 case KVM_PRE_FAULT_MEMORY: {
4498 struct kvm_pre_fault_memory range;
4499
4500 r = -EFAULT;
4501 if (copy_from_user(&range, argp, sizeof(range)))
4502 break;
4503 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4504 /* Pass back leftover range. */
4505 if (copy_to_user(argp, &range, sizeof(range)))
4506 r = -EFAULT;
4507 break;
4508 }
4509#endif
4510 default:
4511 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4512 }
4513out:
4514 mutex_unlock(&vcpu->mutex);
4515 kfree(fpu);
4516 kfree(kvm_sregs);
4517 return r;
4518}
4519
4520#ifdef CONFIG_KVM_COMPAT
4521static long kvm_vcpu_compat_ioctl(struct file *filp,
4522 unsigned int ioctl, unsigned long arg)
4523{
4524 struct kvm_vcpu *vcpu = filp->private_data;
4525 void __user *argp = compat_ptr(arg);
4526 int r;
4527
4528 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4529 return -EIO;
4530
4531 switch (ioctl) {
4532 case KVM_SET_SIGNAL_MASK: {
4533 struct kvm_signal_mask __user *sigmask_arg = argp;
4534 struct kvm_signal_mask kvm_sigmask;
4535 sigset_t sigset;
4536
4537 if (argp) {
4538 r = -EFAULT;
4539 if (copy_from_user(&kvm_sigmask, argp,
4540 sizeof(kvm_sigmask)))
4541 goto out;
4542 r = -EINVAL;
4543 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4544 goto out;
4545 r = -EFAULT;
4546 if (get_compat_sigset(&sigset,
4547 (compat_sigset_t __user *)sigmask_arg->sigset))
4548 goto out;
4549 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4550 } else
4551 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4552 break;
4553 }
4554 default:
4555 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4556 }
4557
4558out:
4559 return r;
4560}
4561#endif
4562
4563static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4564{
4565 struct kvm_device *dev = filp->private_data;
4566
4567 if (dev->ops->mmap)
4568 return dev->ops->mmap(dev, vma);
4569
4570 return -ENODEV;
4571}
4572
4573static int kvm_device_ioctl_attr(struct kvm_device *dev,
4574 int (*accessor)(struct kvm_device *dev,
4575 struct kvm_device_attr *attr),
4576 unsigned long arg)
4577{
4578 struct kvm_device_attr attr;
4579
4580 if (!accessor)
4581 return -EPERM;
4582
4583 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4584 return -EFAULT;
4585
4586 return accessor(dev, &attr);
4587}
4588
4589static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4590 unsigned long arg)
4591{
4592 struct kvm_device *dev = filp->private_data;
4593
4594 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4595 return -EIO;
4596
4597 switch (ioctl) {
4598 case KVM_SET_DEVICE_ATTR:
4599 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4600 case KVM_GET_DEVICE_ATTR:
4601 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4602 case KVM_HAS_DEVICE_ATTR:
4603 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4604 default:
4605 if (dev->ops->ioctl)
4606 return dev->ops->ioctl(dev, ioctl, arg);
4607
4608 return -ENOTTY;
4609 }
4610}
4611
4612static int kvm_device_release(struct inode *inode, struct file *filp)
4613{
4614 struct kvm_device *dev = filp->private_data;
4615 struct kvm *kvm = dev->kvm;
4616
4617 if (dev->ops->release) {
4618 mutex_lock(&kvm->lock);
4619 list_del_rcu(&dev->vm_node);
4620 synchronize_rcu();
4621 dev->ops->release(dev);
4622 mutex_unlock(&kvm->lock);
4623 }
4624
4625 kvm_put_kvm(kvm);
4626 return 0;
4627}
4628
4629static struct file_operations kvm_device_fops = {
4630 .unlocked_ioctl = kvm_device_ioctl,
4631 .release = kvm_device_release,
4632 KVM_COMPAT(kvm_device_ioctl),
4633 .mmap = kvm_device_mmap,
4634};
4635
4636struct kvm_device *kvm_device_from_filp(struct file *filp)
4637{
4638 if (filp->f_op != &kvm_device_fops)
4639 return NULL;
4640
4641 return filp->private_data;
4642}
4643
4644static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4645#ifdef CONFIG_KVM_MPIC
4646 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4647 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4648#endif
4649};
4650
4651int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4652{
4653 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4654 return -ENOSPC;
4655
4656 if (kvm_device_ops_table[type] != NULL)
4657 return -EEXIST;
4658
4659 kvm_device_ops_table[type] = ops;
4660 return 0;
4661}
4662
4663void kvm_unregister_device_ops(u32 type)
4664{
4665 if (kvm_device_ops_table[type] != NULL)
4666 kvm_device_ops_table[type] = NULL;
4667}
4668
4669static int kvm_ioctl_create_device(struct kvm *kvm,
4670 struct kvm_create_device *cd)
4671{
4672 const struct kvm_device_ops *ops;
4673 struct kvm_device *dev;
4674 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4675 int type;
4676 int ret;
4677
4678 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4679 return -ENODEV;
4680
4681 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4682 ops = kvm_device_ops_table[type];
4683 if (ops == NULL)
4684 return -ENODEV;
4685
4686 if (test)
4687 return 0;
4688
4689 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4690 if (!dev)
4691 return -ENOMEM;
4692
4693 dev->ops = ops;
4694 dev->kvm = kvm;
4695
4696 mutex_lock(&kvm->lock);
4697 ret = ops->create(dev, type);
4698 if (ret < 0) {
4699 mutex_unlock(&kvm->lock);
4700 kfree(dev);
4701 return ret;
4702 }
4703 list_add_rcu(&dev->vm_node, &kvm->devices);
4704 mutex_unlock(&kvm->lock);
4705
4706 if (ops->init)
4707 ops->init(dev);
4708
4709 kvm_get_kvm(kvm);
4710 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4711 if (ret < 0) {
4712 kvm_put_kvm_no_destroy(kvm);
4713 mutex_lock(&kvm->lock);
4714 list_del_rcu(&dev->vm_node);
4715 synchronize_rcu();
4716 if (ops->release)
4717 ops->release(dev);
4718 mutex_unlock(&kvm->lock);
4719 if (ops->destroy)
4720 ops->destroy(dev);
4721 return ret;
4722 }
4723
4724 cd->fd = ret;
4725 return 0;
4726}
4727
4728static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4729{
4730 switch (arg) {
4731 case KVM_CAP_USER_MEMORY:
4732 case KVM_CAP_USER_MEMORY2:
4733 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4734 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4735 case KVM_CAP_INTERNAL_ERROR_DATA:
4736#ifdef CONFIG_HAVE_KVM_MSI
4737 case KVM_CAP_SIGNAL_MSI:
4738#endif
4739#ifdef CONFIG_HAVE_KVM_IRQCHIP
4740 case KVM_CAP_IRQFD:
4741#endif
4742 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4743 case KVM_CAP_CHECK_EXTENSION_VM:
4744 case KVM_CAP_ENABLE_CAP_VM:
4745 case KVM_CAP_HALT_POLL:
4746 return 1;
4747#ifdef CONFIG_KVM_MMIO
4748 case KVM_CAP_COALESCED_MMIO:
4749 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4750 case KVM_CAP_COALESCED_PIO:
4751 return 1;
4752#endif
4753#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4754 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4755 return KVM_DIRTY_LOG_MANUAL_CAPS;
4756#endif
4757#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4758 case KVM_CAP_IRQ_ROUTING:
4759 return KVM_MAX_IRQ_ROUTES;
4760#endif
4761#if KVM_MAX_NR_ADDRESS_SPACES > 1
4762 case KVM_CAP_MULTI_ADDRESS_SPACE:
4763 if (kvm)
4764 return kvm_arch_nr_memslot_as_ids(kvm);
4765 return KVM_MAX_NR_ADDRESS_SPACES;
4766#endif
4767 case KVM_CAP_NR_MEMSLOTS:
4768 return KVM_USER_MEM_SLOTS;
4769 case KVM_CAP_DIRTY_LOG_RING:
4770#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4771 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4772#else
4773 return 0;
4774#endif
4775 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4776#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4777 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4778#else
4779 return 0;
4780#endif
4781#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4782 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4783#endif
4784 case KVM_CAP_BINARY_STATS_FD:
4785 case KVM_CAP_SYSTEM_EVENT_DATA:
4786 case KVM_CAP_DEVICE_CTRL:
4787 return 1;
4788#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4789 case KVM_CAP_MEMORY_ATTRIBUTES:
4790 return kvm_supported_mem_attributes(kvm);
4791#endif
4792#ifdef CONFIG_KVM_PRIVATE_MEM
4793 case KVM_CAP_GUEST_MEMFD:
4794 return !kvm || kvm_arch_has_private_mem(kvm);
4795#endif
4796 default:
4797 break;
4798 }
4799 return kvm_vm_ioctl_check_extension(kvm, arg);
4800}
4801
4802static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4803{
4804 int r;
4805
4806 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4807 return -EINVAL;
4808
4809 /* the size should be power of 2 */
4810 if (!size || (size & (size - 1)))
4811 return -EINVAL;
4812
4813 /* Should be bigger to keep the reserved entries, or a page */
4814 if (size < kvm_dirty_ring_get_rsvd_entries() *
4815 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4816 return -EINVAL;
4817
4818 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4819 sizeof(struct kvm_dirty_gfn))
4820 return -E2BIG;
4821
4822 /* We only allow it to set once */
4823 if (kvm->dirty_ring_size)
4824 return -EINVAL;
4825
4826 mutex_lock(&kvm->lock);
4827
4828 if (kvm->created_vcpus) {
4829 /* We don't allow to change this value after vcpu created */
4830 r = -EINVAL;
4831 } else {
4832 kvm->dirty_ring_size = size;
4833 r = 0;
4834 }
4835
4836 mutex_unlock(&kvm->lock);
4837 return r;
4838}
4839
4840static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4841{
4842 unsigned long i;
4843 struct kvm_vcpu *vcpu;
4844 int cleared = 0;
4845
4846 if (!kvm->dirty_ring_size)
4847 return -EINVAL;
4848
4849 mutex_lock(&kvm->slots_lock);
4850
4851 kvm_for_each_vcpu(i, vcpu, kvm)
4852 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4853
4854 mutex_unlock(&kvm->slots_lock);
4855
4856 if (cleared)
4857 kvm_flush_remote_tlbs(kvm);
4858
4859 return cleared;
4860}
4861
4862int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4863 struct kvm_enable_cap *cap)
4864{
4865 return -EINVAL;
4866}
4867
4868bool kvm_are_all_memslots_empty(struct kvm *kvm)
4869{
4870 int i;
4871
4872 lockdep_assert_held(&kvm->slots_lock);
4873
4874 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4875 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4876 return false;
4877 }
4878
4879 return true;
4880}
4881EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4882
4883static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4884 struct kvm_enable_cap *cap)
4885{
4886 switch (cap->cap) {
4887#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4888 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4889 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4890
4891 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4892 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4893
4894 if (cap->flags || (cap->args[0] & ~allowed_options))
4895 return -EINVAL;
4896 kvm->manual_dirty_log_protect = cap->args[0];
4897 return 0;
4898 }
4899#endif
4900 case KVM_CAP_HALT_POLL: {
4901 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4902 return -EINVAL;
4903
4904 kvm->max_halt_poll_ns = cap->args[0];
4905
4906 /*
4907 * Ensure kvm->override_halt_poll_ns does not become visible
4908 * before kvm->max_halt_poll_ns.
4909 *
4910 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4911 */
4912 smp_wmb();
4913 kvm->override_halt_poll_ns = true;
4914
4915 return 0;
4916 }
4917 case KVM_CAP_DIRTY_LOG_RING:
4918 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4920 return -EINVAL;
4921
4922 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4923 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4924 int r = -EINVAL;
4925
4926 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4927 !kvm->dirty_ring_size || cap->flags)
4928 return r;
4929
4930 mutex_lock(&kvm->slots_lock);
4931
4932 /*
4933 * For simplicity, allow enabling ring+bitmap if and only if
4934 * there are no memslots, e.g. to ensure all memslots allocate
4935 * a bitmap after the capability is enabled.
4936 */
4937 if (kvm_are_all_memslots_empty(kvm)) {
4938 kvm->dirty_ring_with_bitmap = true;
4939 r = 0;
4940 }
4941
4942 mutex_unlock(&kvm->slots_lock);
4943
4944 return r;
4945 }
4946 default:
4947 return kvm_vm_ioctl_enable_cap(kvm, cap);
4948 }
4949}
4950
4951static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4952 size_t size, loff_t *offset)
4953{
4954 struct kvm *kvm = file->private_data;
4955
4956 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4957 &kvm_vm_stats_desc[0], &kvm->stat,
4958 sizeof(kvm->stat), user_buffer, size, offset);
4959}
4960
4961static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4962{
4963 struct kvm *kvm = file->private_data;
4964
4965 kvm_put_kvm(kvm);
4966 return 0;
4967}
4968
4969static const struct file_operations kvm_vm_stats_fops = {
4970 .owner = THIS_MODULE,
4971 .read = kvm_vm_stats_read,
4972 .release = kvm_vm_stats_release,
4973 .llseek = noop_llseek,
4974};
4975
4976static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4977{
4978 int fd;
4979 struct file *file;
4980
4981 fd = get_unused_fd_flags(O_CLOEXEC);
4982 if (fd < 0)
4983 return fd;
4984
4985 file = anon_inode_getfile("kvm-vm-stats",
4986 &kvm_vm_stats_fops, kvm, O_RDONLY);
4987 if (IS_ERR(file)) {
4988 put_unused_fd(fd);
4989 return PTR_ERR(file);
4990 }
4991
4992 kvm_get_kvm(kvm);
4993
4994 file->f_mode |= FMODE_PREAD;
4995 fd_install(fd, file);
4996
4997 return fd;
4998}
4999
5000#define SANITY_CHECK_MEM_REGION_FIELD(field) \
5001do { \
5002 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5003 offsetof(struct kvm_userspace_memory_region2, field)); \
5004 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5005 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5006} while (0)
5007
5008static long kvm_vm_ioctl(struct file *filp,
5009 unsigned int ioctl, unsigned long arg)
5010{
5011 struct kvm *kvm = filp->private_data;
5012 void __user *argp = (void __user *)arg;
5013 int r;
5014
5015 if (kvm->mm != current->mm || kvm->vm_dead)
5016 return -EIO;
5017 switch (ioctl) {
5018 case KVM_CREATE_VCPU:
5019 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5020 break;
5021 case KVM_ENABLE_CAP: {
5022 struct kvm_enable_cap cap;
5023
5024 r = -EFAULT;
5025 if (copy_from_user(&cap, argp, sizeof(cap)))
5026 goto out;
5027 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5028 break;
5029 }
5030 case KVM_SET_USER_MEMORY_REGION2:
5031 case KVM_SET_USER_MEMORY_REGION: {
5032 struct kvm_userspace_memory_region2 mem;
5033 unsigned long size;
5034
5035 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5036 /*
5037 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5038 * accessed, but avoid leaking kernel memory in case of a bug.
5039 */
5040 memset(&mem, 0, sizeof(mem));
5041 size = sizeof(struct kvm_userspace_memory_region);
5042 } else {
5043 size = sizeof(struct kvm_userspace_memory_region2);
5044 }
5045
5046 /* Ensure the common parts of the two structs are identical. */
5047 SANITY_CHECK_MEM_REGION_FIELD(slot);
5048 SANITY_CHECK_MEM_REGION_FIELD(flags);
5049 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5050 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5051 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5052
5053 r = -EFAULT;
5054 if (copy_from_user(&mem, argp, size))
5055 goto out;
5056
5057 r = -EINVAL;
5058 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5059 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5060 goto out;
5061
5062 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5063 break;
5064 }
5065 case KVM_GET_DIRTY_LOG: {
5066 struct kvm_dirty_log log;
5067
5068 r = -EFAULT;
5069 if (copy_from_user(&log, argp, sizeof(log)))
5070 goto out;
5071 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5072 break;
5073 }
5074#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5075 case KVM_CLEAR_DIRTY_LOG: {
5076 struct kvm_clear_dirty_log log;
5077
5078 r = -EFAULT;
5079 if (copy_from_user(&log, argp, sizeof(log)))
5080 goto out;
5081 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5082 break;
5083 }
5084#endif
5085#ifdef CONFIG_KVM_MMIO
5086 case KVM_REGISTER_COALESCED_MMIO: {
5087 struct kvm_coalesced_mmio_zone zone;
5088
5089 r = -EFAULT;
5090 if (copy_from_user(&zone, argp, sizeof(zone)))
5091 goto out;
5092 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5093 break;
5094 }
5095 case KVM_UNREGISTER_COALESCED_MMIO: {
5096 struct kvm_coalesced_mmio_zone zone;
5097
5098 r = -EFAULT;
5099 if (copy_from_user(&zone, argp, sizeof(zone)))
5100 goto out;
5101 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5102 break;
5103 }
5104#endif
5105 case KVM_IRQFD: {
5106 struct kvm_irqfd data;
5107
5108 r = -EFAULT;
5109 if (copy_from_user(&data, argp, sizeof(data)))
5110 goto out;
5111 r = kvm_irqfd(kvm, &data);
5112 break;
5113 }
5114 case KVM_IOEVENTFD: {
5115 struct kvm_ioeventfd data;
5116
5117 r = -EFAULT;
5118 if (copy_from_user(&data, argp, sizeof(data)))
5119 goto out;
5120 r = kvm_ioeventfd(kvm, &data);
5121 break;
5122 }
5123#ifdef CONFIG_HAVE_KVM_MSI
5124 case KVM_SIGNAL_MSI: {
5125 struct kvm_msi msi;
5126
5127 r = -EFAULT;
5128 if (copy_from_user(&msi, argp, sizeof(msi)))
5129 goto out;
5130 r = kvm_send_userspace_msi(kvm, &msi);
5131 break;
5132 }
5133#endif
5134#ifdef __KVM_HAVE_IRQ_LINE
5135 case KVM_IRQ_LINE_STATUS:
5136 case KVM_IRQ_LINE: {
5137 struct kvm_irq_level irq_event;
5138
5139 r = -EFAULT;
5140 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5141 goto out;
5142
5143 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5144 ioctl == KVM_IRQ_LINE_STATUS);
5145 if (r)
5146 goto out;
5147
5148 r = -EFAULT;
5149 if (ioctl == KVM_IRQ_LINE_STATUS) {
5150 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5151 goto out;
5152 }
5153
5154 r = 0;
5155 break;
5156 }
5157#endif
5158#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5159 case KVM_SET_GSI_ROUTING: {
5160 struct kvm_irq_routing routing;
5161 struct kvm_irq_routing __user *urouting;
5162 struct kvm_irq_routing_entry *entries = NULL;
5163
5164 r = -EFAULT;
5165 if (copy_from_user(&routing, argp, sizeof(routing)))
5166 goto out;
5167 r = -EINVAL;
5168 if (!kvm_arch_can_set_irq_routing(kvm))
5169 goto out;
5170 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5171 goto out;
5172 if (routing.flags)
5173 goto out;
5174 if (routing.nr) {
5175 urouting = argp;
5176 entries = vmemdup_array_user(urouting->entries,
5177 routing.nr, sizeof(*entries));
5178 if (IS_ERR(entries)) {
5179 r = PTR_ERR(entries);
5180 goto out;
5181 }
5182 }
5183 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5184 routing.flags);
5185 kvfree(entries);
5186 break;
5187 }
5188#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5189#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5190 case KVM_SET_MEMORY_ATTRIBUTES: {
5191 struct kvm_memory_attributes attrs;
5192
5193 r = -EFAULT;
5194 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5195 goto out;
5196
5197 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5198 break;
5199 }
5200#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5201 case KVM_CREATE_DEVICE: {
5202 struct kvm_create_device cd;
5203
5204 r = -EFAULT;
5205 if (copy_from_user(&cd, argp, sizeof(cd)))
5206 goto out;
5207
5208 r = kvm_ioctl_create_device(kvm, &cd);
5209 if (r)
5210 goto out;
5211
5212 r = -EFAULT;
5213 if (copy_to_user(argp, &cd, sizeof(cd)))
5214 goto out;
5215
5216 r = 0;
5217 break;
5218 }
5219 case KVM_CHECK_EXTENSION:
5220 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5221 break;
5222 case KVM_RESET_DIRTY_RINGS:
5223 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5224 break;
5225 case KVM_GET_STATS_FD:
5226 r = kvm_vm_ioctl_get_stats_fd(kvm);
5227 break;
5228#ifdef CONFIG_KVM_PRIVATE_MEM
5229 case KVM_CREATE_GUEST_MEMFD: {
5230 struct kvm_create_guest_memfd guest_memfd;
5231
5232 r = -EFAULT;
5233 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5234 goto out;
5235
5236 r = kvm_gmem_create(kvm, &guest_memfd);
5237 break;
5238 }
5239#endif
5240 default:
5241 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5242 }
5243out:
5244 return r;
5245}
5246
5247#ifdef CONFIG_KVM_COMPAT
5248struct compat_kvm_dirty_log {
5249 __u32 slot;
5250 __u32 padding1;
5251 union {
5252 compat_uptr_t dirty_bitmap; /* one bit per page */
5253 __u64 padding2;
5254 };
5255};
5256
5257struct compat_kvm_clear_dirty_log {
5258 __u32 slot;
5259 __u32 num_pages;
5260 __u64 first_page;
5261 union {
5262 compat_uptr_t dirty_bitmap; /* one bit per page */
5263 __u64 padding2;
5264 };
5265};
5266
5267long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5268 unsigned long arg)
5269{
5270 return -ENOTTY;
5271}
5272
5273static long kvm_vm_compat_ioctl(struct file *filp,
5274 unsigned int ioctl, unsigned long arg)
5275{
5276 struct kvm *kvm = filp->private_data;
5277 int r;
5278
5279 if (kvm->mm != current->mm || kvm->vm_dead)
5280 return -EIO;
5281
5282 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5283 if (r != -ENOTTY)
5284 return r;
5285
5286 switch (ioctl) {
5287#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5288 case KVM_CLEAR_DIRTY_LOG: {
5289 struct compat_kvm_clear_dirty_log compat_log;
5290 struct kvm_clear_dirty_log log;
5291
5292 if (copy_from_user(&compat_log, (void __user *)arg,
5293 sizeof(compat_log)))
5294 return -EFAULT;
5295 log.slot = compat_log.slot;
5296 log.num_pages = compat_log.num_pages;
5297 log.first_page = compat_log.first_page;
5298 log.padding2 = compat_log.padding2;
5299 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5300
5301 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5302 break;
5303 }
5304#endif
5305 case KVM_GET_DIRTY_LOG: {
5306 struct compat_kvm_dirty_log compat_log;
5307 struct kvm_dirty_log log;
5308
5309 if (copy_from_user(&compat_log, (void __user *)arg,
5310 sizeof(compat_log)))
5311 return -EFAULT;
5312 log.slot = compat_log.slot;
5313 log.padding1 = compat_log.padding1;
5314 log.padding2 = compat_log.padding2;
5315 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5316
5317 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5318 break;
5319 }
5320 default:
5321 r = kvm_vm_ioctl(filp, ioctl, arg);
5322 }
5323 return r;
5324}
5325#endif
5326
5327static struct file_operations kvm_vm_fops = {
5328 .release = kvm_vm_release,
5329 .unlocked_ioctl = kvm_vm_ioctl,
5330 .llseek = noop_llseek,
5331 KVM_COMPAT(kvm_vm_compat_ioctl),
5332};
5333
5334bool file_is_kvm(struct file *file)
5335{
5336 return file && file->f_op == &kvm_vm_fops;
5337}
5338EXPORT_SYMBOL_GPL(file_is_kvm);
5339
5340static int kvm_dev_ioctl_create_vm(unsigned long type)
5341{
5342 char fdname[ITOA_MAX_LEN + 1];
5343 int r, fd;
5344 struct kvm *kvm;
5345 struct file *file;
5346
5347 fd = get_unused_fd_flags(O_CLOEXEC);
5348 if (fd < 0)
5349 return fd;
5350
5351 snprintf(fdname, sizeof(fdname), "%d", fd);
5352
5353 kvm = kvm_create_vm(type, fdname);
5354 if (IS_ERR(kvm)) {
5355 r = PTR_ERR(kvm);
5356 goto put_fd;
5357 }
5358
5359 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5360 if (IS_ERR(file)) {
5361 r = PTR_ERR(file);
5362 goto put_kvm;
5363 }
5364
5365 /*
5366 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5367 * already set, with ->release() being kvm_vm_release(). In error
5368 * cases it will be called by the final fput(file) and will take
5369 * care of doing kvm_put_kvm(kvm).
5370 */
5371 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5372
5373 fd_install(fd, file);
5374 return fd;
5375
5376put_kvm:
5377 kvm_put_kvm(kvm);
5378put_fd:
5379 put_unused_fd(fd);
5380 return r;
5381}
5382
5383static long kvm_dev_ioctl(struct file *filp,
5384 unsigned int ioctl, unsigned long arg)
5385{
5386 int r = -EINVAL;
5387
5388 switch (ioctl) {
5389 case KVM_GET_API_VERSION:
5390 if (arg)
5391 goto out;
5392 r = KVM_API_VERSION;
5393 break;
5394 case KVM_CREATE_VM:
5395 r = kvm_dev_ioctl_create_vm(arg);
5396 break;
5397 case KVM_CHECK_EXTENSION:
5398 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5399 break;
5400 case KVM_GET_VCPU_MMAP_SIZE:
5401 if (arg)
5402 goto out;
5403 r = PAGE_SIZE; /* struct kvm_run */
5404#ifdef CONFIG_X86
5405 r += PAGE_SIZE; /* pio data page */
5406#endif
5407#ifdef CONFIG_KVM_MMIO
5408 r += PAGE_SIZE; /* coalesced mmio ring page */
5409#endif
5410 break;
5411 default:
5412 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5413 }
5414out:
5415 return r;
5416}
5417
5418static struct file_operations kvm_chardev_ops = {
5419 .unlocked_ioctl = kvm_dev_ioctl,
5420 .llseek = noop_llseek,
5421 KVM_COMPAT(kvm_dev_ioctl),
5422};
5423
5424static struct miscdevice kvm_dev = {
5425 KVM_MINOR,
5426 "kvm",
5427 &kvm_chardev_ops,
5428};
5429
5430#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5431static bool enable_virt_at_load = true;
5432module_param(enable_virt_at_load, bool, 0444);
5433
5434__visible bool kvm_rebooting;
5435EXPORT_SYMBOL_GPL(kvm_rebooting);
5436
5437static DEFINE_PER_CPU(bool, virtualization_enabled);
5438static DEFINE_MUTEX(kvm_usage_lock);
5439static int kvm_usage_count;
5440
5441__weak void kvm_arch_enable_virtualization(void)
5442{
5443
5444}
5445
5446__weak void kvm_arch_disable_virtualization(void)
5447{
5448
5449}
5450
5451static int kvm_enable_virtualization_cpu(void)
5452{
5453 if (__this_cpu_read(virtualization_enabled))
5454 return 0;
5455
5456 if (kvm_arch_enable_virtualization_cpu()) {
5457 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5458 raw_smp_processor_id());
5459 return -EIO;
5460 }
5461
5462 __this_cpu_write(virtualization_enabled, true);
5463 return 0;
5464}
5465
5466static int kvm_online_cpu(unsigned int cpu)
5467{
5468 /*
5469 * Abort the CPU online process if hardware virtualization cannot
5470 * be enabled. Otherwise running VMs would encounter unrecoverable
5471 * errors when scheduled to this CPU.
5472 */
5473 return kvm_enable_virtualization_cpu();
5474}
5475
5476static void kvm_disable_virtualization_cpu(void *ign)
5477{
5478 if (!__this_cpu_read(virtualization_enabled))
5479 return;
5480
5481 kvm_arch_disable_virtualization_cpu();
5482
5483 __this_cpu_write(virtualization_enabled, false);
5484}
5485
5486static int kvm_offline_cpu(unsigned int cpu)
5487{
5488 kvm_disable_virtualization_cpu(NULL);
5489 return 0;
5490}
5491
5492static void kvm_shutdown(void)
5493{
5494 /*
5495 * Disable hardware virtualization and set kvm_rebooting to indicate
5496 * that KVM has asynchronously disabled hardware virtualization, i.e.
5497 * that relevant errors and exceptions aren't entirely unexpected.
5498 * Some flavors of hardware virtualization need to be disabled before
5499 * transferring control to firmware (to perform shutdown/reboot), e.g.
5500 * on x86, virtualization can block INIT interrupts, which are used by
5501 * firmware to pull APs back under firmware control. Note, this path
5502 * is used for both shutdown and reboot scenarios, i.e. neither name is
5503 * 100% comprehensive.
5504 */
5505 pr_info("kvm: exiting hardware virtualization\n");
5506 kvm_rebooting = true;
5507 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5508}
5509
5510static int kvm_suspend(void)
5511{
5512 /*
5513 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5514 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5515 * count is stable. Assert that kvm_usage_lock is not held to ensure
5516 * the system isn't suspended while KVM is enabling hardware. Hardware
5517 * enabling can be preempted, but the task cannot be frozen until it has
5518 * dropped all locks (userspace tasks are frozen via a fake signal).
5519 */
5520 lockdep_assert_not_held(&kvm_usage_lock);
5521 lockdep_assert_irqs_disabled();
5522
5523 kvm_disable_virtualization_cpu(NULL);
5524 return 0;
5525}
5526
5527static void kvm_resume(void)
5528{
5529 lockdep_assert_not_held(&kvm_usage_lock);
5530 lockdep_assert_irqs_disabled();
5531
5532 WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5533}
5534
5535static struct syscore_ops kvm_syscore_ops = {
5536 .suspend = kvm_suspend,
5537 .resume = kvm_resume,
5538 .shutdown = kvm_shutdown,
5539};
5540
5541static int kvm_enable_virtualization(void)
5542{
5543 int r;
5544
5545 guard(mutex)(&kvm_usage_lock);
5546
5547 if (kvm_usage_count++)
5548 return 0;
5549
5550 kvm_arch_enable_virtualization();
5551
5552 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5553 kvm_online_cpu, kvm_offline_cpu);
5554 if (r)
5555 goto err_cpuhp;
5556
5557 register_syscore_ops(&kvm_syscore_ops);
5558
5559 /*
5560 * Undo virtualization enabling and bail if the system is going down.
5561 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5562 * possible for an in-flight operation to enable virtualization after
5563 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5564 * invoked. Note, this relies on system_state being set _before_
5565 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5566 * or this CPU observes the impending shutdown. Which is why KVM uses
5567 * a syscore ops hook instead of registering a dedicated reboot
5568 * notifier (the latter runs before system_state is updated).
5569 */
5570 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5571 system_state == SYSTEM_RESTART) {
5572 r = -EBUSY;
5573 goto err_rebooting;
5574 }
5575
5576 return 0;
5577
5578err_rebooting:
5579 unregister_syscore_ops(&kvm_syscore_ops);
5580 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5581err_cpuhp:
5582 kvm_arch_disable_virtualization();
5583 --kvm_usage_count;
5584 return r;
5585}
5586
5587static void kvm_disable_virtualization(void)
5588{
5589 guard(mutex)(&kvm_usage_lock);
5590
5591 if (--kvm_usage_count)
5592 return;
5593
5594 unregister_syscore_ops(&kvm_syscore_ops);
5595 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5596 kvm_arch_disable_virtualization();
5597}
5598
5599static int kvm_init_virtualization(void)
5600{
5601 if (enable_virt_at_load)
5602 return kvm_enable_virtualization();
5603
5604 return 0;
5605}
5606
5607static void kvm_uninit_virtualization(void)
5608{
5609 if (enable_virt_at_load)
5610 kvm_disable_virtualization();
5611}
5612#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5613static int kvm_enable_virtualization(void)
5614{
5615 return 0;
5616}
5617
5618static int kvm_init_virtualization(void)
5619{
5620 return 0;
5621}
5622
5623static void kvm_disable_virtualization(void)
5624{
5625
5626}
5627
5628static void kvm_uninit_virtualization(void)
5629{
5630
5631}
5632#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5633
5634static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5635{
5636 if (dev->ops->destructor)
5637 dev->ops->destructor(dev);
5638}
5639
5640static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5641{
5642 int i;
5643
5644 for (i = 0; i < bus->dev_count; i++) {
5645 struct kvm_io_device *pos = bus->range[i].dev;
5646
5647 kvm_iodevice_destructor(pos);
5648 }
5649 kfree(bus);
5650}
5651
5652static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5653 const struct kvm_io_range *r2)
5654{
5655 gpa_t addr1 = r1->addr;
5656 gpa_t addr2 = r2->addr;
5657
5658 if (addr1 < addr2)
5659 return -1;
5660
5661 /* If r2->len == 0, match the exact address. If r2->len != 0,
5662 * accept any overlapping write. Any order is acceptable for
5663 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5664 * we process all of them.
5665 */
5666 if (r2->len) {
5667 addr1 += r1->len;
5668 addr2 += r2->len;
5669 }
5670
5671 if (addr1 > addr2)
5672 return 1;
5673
5674 return 0;
5675}
5676
5677static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5678{
5679 return kvm_io_bus_cmp(p1, p2);
5680}
5681
5682static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5683 gpa_t addr, int len)
5684{
5685 struct kvm_io_range *range, key;
5686 int off;
5687
5688 key = (struct kvm_io_range) {
5689 .addr = addr,
5690 .len = len,
5691 };
5692
5693 range = bsearch(&key, bus->range, bus->dev_count,
5694 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5695 if (range == NULL)
5696 return -ENOENT;
5697
5698 off = range - bus->range;
5699
5700 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5701 off--;
5702
5703 return off;
5704}
5705
5706static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5707 struct kvm_io_range *range, const void *val)
5708{
5709 int idx;
5710
5711 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5712 if (idx < 0)
5713 return -EOPNOTSUPP;
5714
5715 while (idx < bus->dev_count &&
5716 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5717 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5718 range->len, val))
5719 return idx;
5720 idx++;
5721 }
5722
5723 return -EOPNOTSUPP;
5724}
5725
5726/* kvm_io_bus_write - called under kvm->slots_lock */
5727int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5728 int len, const void *val)
5729{
5730 struct kvm_io_bus *bus;
5731 struct kvm_io_range range;
5732 int r;
5733
5734 range = (struct kvm_io_range) {
5735 .addr = addr,
5736 .len = len,
5737 };
5738
5739 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5740 if (!bus)
5741 return -ENOMEM;
5742 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5743 return r < 0 ? r : 0;
5744}
5745EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5746
5747/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5748int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5749 gpa_t addr, int len, const void *val, long cookie)
5750{
5751 struct kvm_io_bus *bus;
5752 struct kvm_io_range range;
5753
5754 range = (struct kvm_io_range) {
5755 .addr = addr,
5756 .len = len,
5757 };
5758
5759 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5760 if (!bus)
5761 return -ENOMEM;
5762
5763 /* First try the device referenced by cookie. */
5764 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5765 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5766 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5767 val))
5768 return cookie;
5769
5770 /*
5771 * cookie contained garbage; fall back to search and return the
5772 * correct cookie value.
5773 */
5774 return __kvm_io_bus_write(vcpu, bus, &range, val);
5775}
5776
5777static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5778 struct kvm_io_range *range, void *val)
5779{
5780 int idx;
5781
5782 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5783 if (idx < 0)
5784 return -EOPNOTSUPP;
5785
5786 while (idx < bus->dev_count &&
5787 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5788 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5789 range->len, val))
5790 return idx;
5791 idx++;
5792 }
5793
5794 return -EOPNOTSUPP;
5795}
5796
5797/* kvm_io_bus_read - called under kvm->slots_lock */
5798int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5799 int len, void *val)
5800{
5801 struct kvm_io_bus *bus;
5802 struct kvm_io_range range;
5803 int r;
5804
5805 range = (struct kvm_io_range) {
5806 .addr = addr,
5807 .len = len,
5808 };
5809
5810 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5811 if (!bus)
5812 return -ENOMEM;
5813 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5814 return r < 0 ? r : 0;
5815}
5816
5817int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5818 int len, struct kvm_io_device *dev)
5819{
5820 int i;
5821 struct kvm_io_bus *new_bus, *bus;
5822 struct kvm_io_range range;
5823
5824 lockdep_assert_held(&kvm->slots_lock);
5825
5826 bus = kvm_get_bus(kvm, bus_idx);
5827 if (!bus)
5828 return -ENOMEM;
5829
5830 /* exclude ioeventfd which is limited by maximum fd */
5831 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5832 return -ENOSPC;
5833
5834 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5835 GFP_KERNEL_ACCOUNT);
5836 if (!new_bus)
5837 return -ENOMEM;
5838
5839 range = (struct kvm_io_range) {
5840 .addr = addr,
5841 .len = len,
5842 .dev = dev,
5843 };
5844
5845 for (i = 0; i < bus->dev_count; i++)
5846 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5847 break;
5848
5849 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5850 new_bus->dev_count++;
5851 new_bus->range[i] = range;
5852 memcpy(new_bus->range + i + 1, bus->range + i,
5853 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5854 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5855 synchronize_srcu_expedited(&kvm->srcu);
5856 kfree(bus);
5857
5858 return 0;
5859}
5860
5861int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5862 struct kvm_io_device *dev)
5863{
5864 int i;
5865 struct kvm_io_bus *new_bus, *bus;
5866
5867 lockdep_assert_held(&kvm->slots_lock);
5868
5869 bus = kvm_get_bus(kvm, bus_idx);
5870 if (!bus)
5871 return 0;
5872
5873 for (i = 0; i < bus->dev_count; i++) {
5874 if (bus->range[i].dev == dev) {
5875 break;
5876 }
5877 }
5878
5879 if (i == bus->dev_count)
5880 return 0;
5881
5882 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5883 GFP_KERNEL_ACCOUNT);
5884 if (new_bus) {
5885 memcpy(new_bus, bus, struct_size(bus, range, i));
5886 new_bus->dev_count--;
5887 memcpy(new_bus->range + i, bus->range + i + 1,
5888 flex_array_size(new_bus, range, new_bus->dev_count - i));
5889 }
5890
5891 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5892 synchronize_srcu_expedited(&kvm->srcu);
5893
5894 /*
5895 * If NULL bus is installed, destroy the old bus, including all the
5896 * attached devices. Otherwise, destroy the caller's device only.
5897 */
5898 if (!new_bus) {
5899 pr_err("kvm: failed to shrink bus, removing it completely\n");
5900 kvm_io_bus_destroy(bus);
5901 return -ENOMEM;
5902 }
5903
5904 kvm_iodevice_destructor(dev);
5905 kfree(bus);
5906 return 0;
5907}
5908
5909struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5910 gpa_t addr)
5911{
5912 struct kvm_io_bus *bus;
5913 int dev_idx, srcu_idx;
5914 struct kvm_io_device *iodev = NULL;
5915
5916 srcu_idx = srcu_read_lock(&kvm->srcu);
5917
5918 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5919 if (!bus)
5920 goto out_unlock;
5921
5922 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5923 if (dev_idx < 0)
5924 goto out_unlock;
5925
5926 iodev = bus->range[dev_idx].dev;
5927
5928out_unlock:
5929 srcu_read_unlock(&kvm->srcu, srcu_idx);
5930
5931 return iodev;
5932}
5933EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5934
5935static int kvm_debugfs_open(struct inode *inode, struct file *file,
5936 int (*get)(void *, u64 *), int (*set)(void *, u64),
5937 const char *fmt)
5938{
5939 int ret;
5940 struct kvm_stat_data *stat_data = inode->i_private;
5941
5942 /*
5943 * The debugfs files are a reference to the kvm struct which
5944 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5945 * avoids the race between open and the removal of the debugfs directory.
5946 */
5947 if (!kvm_get_kvm_safe(stat_data->kvm))
5948 return -ENOENT;
5949
5950 ret = simple_attr_open(inode, file, get,
5951 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5952 ? set : NULL, fmt);
5953 if (ret)
5954 kvm_put_kvm(stat_data->kvm);
5955
5956 return ret;
5957}
5958
5959static int kvm_debugfs_release(struct inode *inode, struct file *file)
5960{
5961 struct kvm_stat_data *stat_data = inode->i_private;
5962
5963 simple_attr_release(inode, file);
5964 kvm_put_kvm(stat_data->kvm);
5965
5966 return 0;
5967}
5968
5969static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5970{
5971 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5972
5973 return 0;
5974}
5975
5976static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5977{
5978 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5979
5980 return 0;
5981}
5982
5983static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5984{
5985 unsigned long i;
5986 struct kvm_vcpu *vcpu;
5987
5988 *val = 0;
5989
5990 kvm_for_each_vcpu(i, vcpu, kvm)
5991 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5992
5993 return 0;
5994}
5995
5996static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5997{
5998 unsigned long i;
5999 struct kvm_vcpu *vcpu;
6000
6001 kvm_for_each_vcpu(i, vcpu, kvm)
6002 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6003
6004 return 0;
6005}
6006
6007static int kvm_stat_data_get(void *data, u64 *val)
6008{
6009 int r = -EFAULT;
6010 struct kvm_stat_data *stat_data = data;
6011
6012 switch (stat_data->kind) {
6013 case KVM_STAT_VM:
6014 r = kvm_get_stat_per_vm(stat_data->kvm,
6015 stat_data->desc->desc.offset, val);
6016 break;
6017 case KVM_STAT_VCPU:
6018 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6019 stat_data->desc->desc.offset, val);
6020 break;
6021 }
6022
6023 return r;
6024}
6025
6026static int kvm_stat_data_clear(void *data, u64 val)
6027{
6028 int r = -EFAULT;
6029 struct kvm_stat_data *stat_data = data;
6030
6031 if (val)
6032 return -EINVAL;
6033
6034 switch (stat_data->kind) {
6035 case KVM_STAT_VM:
6036 r = kvm_clear_stat_per_vm(stat_data->kvm,
6037 stat_data->desc->desc.offset);
6038 break;
6039 case KVM_STAT_VCPU:
6040 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6041 stat_data->desc->desc.offset);
6042 break;
6043 }
6044
6045 return r;
6046}
6047
6048static int kvm_stat_data_open(struct inode *inode, struct file *file)
6049{
6050 __simple_attr_check_format("%llu\n", 0ull);
6051 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6052 kvm_stat_data_clear, "%llu\n");
6053}
6054
6055static const struct file_operations stat_fops_per_vm = {
6056 .owner = THIS_MODULE,
6057 .open = kvm_stat_data_open,
6058 .release = kvm_debugfs_release,
6059 .read = simple_attr_read,
6060 .write = simple_attr_write,
6061};
6062
6063static int vm_stat_get(void *_offset, u64 *val)
6064{
6065 unsigned offset = (long)_offset;
6066 struct kvm *kvm;
6067 u64 tmp_val;
6068
6069 *val = 0;
6070 mutex_lock(&kvm_lock);
6071 list_for_each_entry(kvm, &vm_list, vm_list) {
6072 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6073 *val += tmp_val;
6074 }
6075 mutex_unlock(&kvm_lock);
6076 return 0;
6077}
6078
6079static int vm_stat_clear(void *_offset, u64 val)
6080{
6081 unsigned offset = (long)_offset;
6082 struct kvm *kvm;
6083
6084 if (val)
6085 return -EINVAL;
6086
6087 mutex_lock(&kvm_lock);
6088 list_for_each_entry(kvm, &vm_list, vm_list) {
6089 kvm_clear_stat_per_vm(kvm, offset);
6090 }
6091 mutex_unlock(&kvm_lock);
6092
6093 return 0;
6094}
6095
6096DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6097DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6098
6099static int vcpu_stat_get(void *_offset, u64 *val)
6100{
6101 unsigned offset = (long)_offset;
6102 struct kvm *kvm;
6103 u64 tmp_val;
6104
6105 *val = 0;
6106 mutex_lock(&kvm_lock);
6107 list_for_each_entry(kvm, &vm_list, vm_list) {
6108 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6109 *val += tmp_val;
6110 }
6111 mutex_unlock(&kvm_lock);
6112 return 0;
6113}
6114
6115static int vcpu_stat_clear(void *_offset, u64 val)
6116{
6117 unsigned offset = (long)_offset;
6118 struct kvm *kvm;
6119
6120 if (val)
6121 return -EINVAL;
6122
6123 mutex_lock(&kvm_lock);
6124 list_for_each_entry(kvm, &vm_list, vm_list) {
6125 kvm_clear_stat_per_vcpu(kvm, offset);
6126 }
6127 mutex_unlock(&kvm_lock);
6128
6129 return 0;
6130}
6131
6132DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6133 "%llu\n");
6134DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6135
6136static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6137{
6138 struct kobj_uevent_env *env;
6139 unsigned long long created, active;
6140
6141 if (!kvm_dev.this_device || !kvm)
6142 return;
6143
6144 mutex_lock(&kvm_lock);
6145 if (type == KVM_EVENT_CREATE_VM) {
6146 kvm_createvm_count++;
6147 kvm_active_vms++;
6148 } else if (type == KVM_EVENT_DESTROY_VM) {
6149 kvm_active_vms--;
6150 }
6151 created = kvm_createvm_count;
6152 active = kvm_active_vms;
6153 mutex_unlock(&kvm_lock);
6154
6155 env = kzalloc(sizeof(*env), GFP_KERNEL);
6156 if (!env)
6157 return;
6158
6159 add_uevent_var(env, "CREATED=%llu", created);
6160 add_uevent_var(env, "COUNT=%llu", active);
6161
6162 if (type == KVM_EVENT_CREATE_VM) {
6163 add_uevent_var(env, "EVENT=create");
6164 kvm->userspace_pid = task_pid_nr(current);
6165 } else if (type == KVM_EVENT_DESTROY_VM) {
6166 add_uevent_var(env, "EVENT=destroy");
6167 }
6168 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6169
6170 if (!IS_ERR(kvm->debugfs_dentry)) {
6171 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6172
6173 if (p) {
6174 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6175 if (!IS_ERR(tmp))
6176 add_uevent_var(env, "STATS_PATH=%s", tmp);
6177 kfree(p);
6178 }
6179 }
6180 /* no need for checks, since we are adding at most only 5 keys */
6181 env->envp[env->envp_idx++] = NULL;
6182 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6183 kfree(env);
6184}
6185
6186static void kvm_init_debug(void)
6187{
6188 const struct file_operations *fops;
6189 const struct _kvm_stats_desc *pdesc;
6190 int i;
6191
6192 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6193
6194 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6195 pdesc = &kvm_vm_stats_desc[i];
6196 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6197 fops = &vm_stat_fops;
6198 else
6199 fops = &vm_stat_readonly_fops;
6200 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6201 kvm_debugfs_dir,
6202 (void *)(long)pdesc->desc.offset, fops);
6203 }
6204
6205 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6206 pdesc = &kvm_vcpu_stats_desc[i];
6207 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6208 fops = &vcpu_stat_fops;
6209 else
6210 fops = &vcpu_stat_readonly_fops;
6211 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6212 kvm_debugfs_dir,
6213 (void *)(long)pdesc->desc.offset, fops);
6214 }
6215}
6216
6217static inline
6218struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6219{
6220 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6221}
6222
6223static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6224{
6225 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6226
6227 WRITE_ONCE(vcpu->preempted, false);
6228 WRITE_ONCE(vcpu->ready, false);
6229
6230 __this_cpu_write(kvm_running_vcpu, vcpu);
6231 kvm_arch_vcpu_load(vcpu, cpu);
6232
6233 WRITE_ONCE(vcpu->scheduled_out, false);
6234}
6235
6236static void kvm_sched_out(struct preempt_notifier *pn,
6237 struct task_struct *next)
6238{
6239 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6240
6241 WRITE_ONCE(vcpu->scheduled_out, true);
6242
6243 if (task_is_runnable(current) && vcpu->wants_to_run) {
6244 WRITE_ONCE(vcpu->preempted, true);
6245 WRITE_ONCE(vcpu->ready, true);
6246 }
6247 kvm_arch_vcpu_put(vcpu);
6248 __this_cpu_write(kvm_running_vcpu, NULL);
6249}
6250
6251/**
6252 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6253 *
6254 * We can disable preemption locally around accessing the per-CPU variable,
6255 * and use the resolved vcpu pointer after enabling preemption again,
6256 * because even if the current thread is migrated to another CPU, reading
6257 * the per-CPU value later will give us the same value as we update the
6258 * per-CPU variable in the preempt notifier handlers.
6259 */
6260struct kvm_vcpu *kvm_get_running_vcpu(void)
6261{
6262 struct kvm_vcpu *vcpu;
6263
6264 preempt_disable();
6265 vcpu = __this_cpu_read(kvm_running_vcpu);
6266 preempt_enable();
6267
6268 return vcpu;
6269}
6270EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6271
6272/**
6273 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6274 */
6275struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6276{
6277 return &kvm_running_vcpu;
6278}
6279
6280#ifdef CONFIG_GUEST_PERF_EVENTS
6281static unsigned int kvm_guest_state(void)
6282{
6283 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6284 unsigned int state;
6285
6286 if (!kvm_arch_pmi_in_guest(vcpu))
6287 return 0;
6288
6289 state = PERF_GUEST_ACTIVE;
6290 if (!kvm_arch_vcpu_in_kernel(vcpu))
6291 state |= PERF_GUEST_USER;
6292
6293 return state;
6294}
6295
6296static unsigned long kvm_guest_get_ip(void)
6297{
6298 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6299
6300 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6301 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6302 return 0;
6303
6304 return kvm_arch_vcpu_get_ip(vcpu);
6305}
6306
6307static struct perf_guest_info_callbacks kvm_guest_cbs = {
6308 .state = kvm_guest_state,
6309 .get_ip = kvm_guest_get_ip,
6310 .handle_intel_pt_intr = NULL,
6311};
6312
6313void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6314{
6315 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6316 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6317}
6318void kvm_unregister_perf_callbacks(void)
6319{
6320 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6321}
6322#endif
6323
6324int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6325{
6326 int r;
6327 int cpu;
6328
6329 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6330 if (!vcpu_align)
6331 vcpu_align = __alignof__(struct kvm_vcpu);
6332 kvm_vcpu_cache =
6333 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6334 SLAB_ACCOUNT,
6335 offsetof(struct kvm_vcpu, arch),
6336 offsetofend(struct kvm_vcpu, stats_id)
6337 - offsetof(struct kvm_vcpu, arch),
6338 NULL);
6339 if (!kvm_vcpu_cache)
6340 return -ENOMEM;
6341
6342 for_each_possible_cpu(cpu) {
6343 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6344 GFP_KERNEL, cpu_to_node(cpu))) {
6345 r = -ENOMEM;
6346 goto err_cpu_kick_mask;
6347 }
6348 }
6349
6350 r = kvm_irqfd_init();
6351 if (r)
6352 goto err_irqfd;
6353
6354 r = kvm_async_pf_init();
6355 if (r)
6356 goto err_async_pf;
6357
6358 kvm_chardev_ops.owner = module;
6359 kvm_vm_fops.owner = module;
6360 kvm_vcpu_fops.owner = module;
6361 kvm_device_fops.owner = module;
6362
6363 kvm_preempt_ops.sched_in = kvm_sched_in;
6364 kvm_preempt_ops.sched_out = kvm_sched_out;
6365
6366 kvm_init_debug();
6367
6368 r = kvm_vfio_ops_init();
6369 if (WARN_ON_ONCE(r))
6370 goto err_vfio;
6371
6372 kvm_gmem_init(module);
6373
6374 r = kvm_init_virtualization();
6375 if (r)
6376 goto err_virt;
6377
6378 /*
6379 * Registration _must_ be the very last thing done, as this exposes
6380 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6381 */
6382 r = misc_register(&kvm_dev);
6383 if (r) {
6384 pr_err("kvm: misc device register failed\n");
6385 goto err_register;
6386 }
6387
6388 return 0;
6389
6390err_register:
6391 kvm_uninit_virtualization();
6392err_virt:
6393 kvm_vfio_ops_exit();
6394err_vfio:
6395 kvm_async_pf_deinit();
6396err_async_pf:
6397 kvm_irqfd_exit();
6398err_irqfd:
6399err_cpu_kick_mask:
6400 for_each_possible_cpu(cpu)
6401 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6402 kmem_cache_destroy(kvm_vcpu_cache);
6403 return r;
6404}
6405EXPORT_SYMBOL_GPL(kvm_init);
6406
6407void kvm_exit(void)
6408{
6409 int cpu;
6410
6411 /*
6412 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6413 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6414 * to KVM while the module is being stopped.
6415 */
6416 misc_deregister(&kvm_dev);
6417
6418 kvm_uninit_virtualization();
6419
6420 debugfs_remove_recursive(kvm_debugfs_dir);
6421 for_each_possible_cpu(cpu)
6422 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6423 kmem_cache_destroy(kvm_vcpu_cache);
6424 kvm_vfio_ops_exit();
6425 kvm_async_pf_deinit();
6426 kvm_irqfd_exit();
6427}
6428EXPORT_SYMBOL_GPL(kvm_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54#include <linux/suspend.h>
55
56#include <asm/processor.h>
57#include <asm/ioctl.h>
58#include <linux/uaccess.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "kvm_mm.h"
63#include "vfio.h"
64
65#include <trace/events/ipi.h>
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/kvm.h>
69
70#include <linux/kvm_dirty_ring.h>
71
72
73/* Worst case buffer size needed for holding an integer. */
74#define ITOA_MAX_LEN 12
75
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
79/* Architectures should define their poll value according to the halt latency */
80unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81module_param(halt_poll_ns, uint, 0644);
82EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84/* Default doubles per-vcpu halt_poll_ns. */
85unsigned int halt_poll_ns_grow = 2;
86module_param(halt_poll_ns_grow, uint, 0644);
87EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89/* The start value to grow halt_poll_ns from */
90unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91module_param(halt_poll_ns_grow_start, uint, 0644);
92EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94/* Default resets per-vcpu halt_poll_ns . */
95unsigned int halt_poll_ns_shrink;
96module_param(halt_poll_ns_shrink, uint, 0644);
97EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99/*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105DEFINE_MUTEX(kvm_lock);
106LIST_HEAD(vm_list);
107
108static struct kmem_cache *kvm_vcpu_cache;
109
110static __read_mostly struct preempt_ops kvm_preempt_ops;
111static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113struct dentry *kvm_debugfs_dir;
114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116static const struct file_operations stat_fops_per_vm;
117
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120#ifdef CONFIG_KVM_COMPAT
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141#endif
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
144
145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147#define KVM_EVENT_CREATE_VM 0
148#define KVM_EVENT_DESTROY_VM 1
149static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150static unsigned long long kvm_createvm_count;
151static unsigned long long kvm_active_vms;
152
153static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156{
157}
158
159bool kvm_is_zone_device_page(struct page *page)
160{
161 /*
162 * The metadata used by is_zone_device_page() to determine whether or
163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 * the device has been pinned, e.g. by get_user_pages(). WARN if the
165 * page_count() is zero to help detect bad usage of this helper.
166 */
167 if (WARN_ON_ONCE(!page_count(page)))
168 return false;
169
170 return is_zone_device_page(page);
171}
172
173/*
174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
176 * is likely incomplete, it has been compiled purely through people wanting to
177 * back guest with a certain type of memory and encountering issues.
178 */
179struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180{
181 struct page *page;
182
183 if (!pfn_valid(pfn))
184 return NULL;
185
186 page = pfn_to_page(pfn);
187 if (!PageReserved(page))
188 return page;
189
190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 if (is_zero_pfn(pfn))
192 return page;
193
194 /*
195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 * perspective they are "normal" pages, albeit with slightly different
197 * usage rules.
198 */
199 if (kvm_is_zone_device_page(page))
200 return page;
201
202 return NULL;
203}
204
205/*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
208void vcpu_load(struct kvm_vcpu *vcpu)
209{
210 int cpu = get_cpu();
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
213 preempt_notifier_register(&vcpu->preempt_notifier);
214 kvm_arch_vcpu_load(vcpu, cpu);
215 put_cpu();
216}
217EXPORT_SYMBOL_GPL(vcpu_load);
218
219void vcpu_put(struct kvm_vcpu *vcpu)
220{
221 preempt_disable();
222 kvm_arch_vcpu_put(vcpu);
223 preempt_notifier_unregister(&vcpu->preempt_notifier);
224 __this_cpu_write(kvm_running_vcpu, NULL);
225 preempt_enable();
226}
227EXPORT_SYMBOL_GPL(vcpu_put);
228
229/* TODO: merge with kvm_arch_vcpu_should_kick */
230static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231{
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245}
246
247static void ack_kick(void *_completed)
248{
249}
250
251static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252{
253 if (cpumask_empty(cpus))
254 return false;
255
256 smp_call_function_many(cpus, ack_kick, NULL, wait);
257 return true;
258}
259
260static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 struct cpumask *tmp, int current_cpu)
262{
263 int cpu;
264
265 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 __kvm_make_request(req, vcpu);
267
268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 return;
270
271 /*
272 * Note, the vCPU could get migrated to a different pCPU at any point
273 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 * to the previous pCPU. But, that's OK because the purpose of the IPI
275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 * after this point is also OK, as the requirement is only that KVM wait
278 * for vCPUs that were reading SPTEs _before_ any changes were
279 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 */
281 if (kvm_request_needs_ipi(vcpu, req)) {
282 cpu = READ_ONCE(vcpu->cpu);
283 if (cpu != -1 && cpu != current_cpu)
284 __cpumask_set_cpu(cpu, tmp);
285 }
286}
287
288bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 unsigned long *vcpu_bitmap)
290{
291 struct kvm_vcpu *vcpu;
292 struct cpumask *cpus;
293 int i, me;
294 bool called;
295
296 me = get_cpu();
297
298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 cpumask_clear(cpus);
300
301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 vcpu = kvm_get_vcpu(kvm, i);
303 if (!vcpu)
304 continue;
305 kvm_make_vcpu_request(vcpu, req, cpus, me);
306 }
307
308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 put_cpu();
310
311 return called;
312}
313
314bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 struct kvm_vcpu *except)
316{
317 struct kvm_vcpu *vcpu;
318 struct cpumask *cpus;
319 unsigned long i;
320 bool called;
321 int me;
322
323 me = get_cpu();
324
325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 cpumask_clear(cpus);
327
328 kvm_for_each_vcpu(i, vcpu, kvm) {
329 if (vcpu == except)
330 continue;
331 kvm_make_vcpu_request(vcpu, req, cpus, me);
332 }
333
334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 put_cpu();
336
337 return called;
338}
339
340bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341{
342 return kvm_make_all_cpus_request_except(kvm, req, NULL);
343}
344EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346void kvm_flush_remote_tlbs(struct kvm *kvm)
347{
348 ++kvm->stat.generic.remote_tlb_flush_requests;
349
350 /*
351 * We want to publish modifications to the page tables before reading
352 * mode. Pairs with a memory barrier in arch-specific code.
353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 *
357 * There is already an smp_mb__after_atomic() before
358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 * barrier here.
360 */
361 if (!kvm_arch_flush_remote_tlbs(kvm)
362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 ++kvm->stat.generic.remote_tlb_flush;
364}
365EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368{
369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 return;
371
372 /*
373 * Fall back to a flushing entire TLBs if the architecture range-based
374 * TLB invalidation is unsupported or can't be performed for whatever
375 * reason.
376 */
377 kvm_flush_remote_tlbs(kvm);
378}
379
380void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 const struct kvm_memory_slot *memslot)
382{
383 /*
384 * All current use cases for flushing the TLBs for a specific memslot
385 * are related to dirty logging, and many do the TLB flush out of
386 * mmu_lock. The interaction between the various operations on memslot
387 * must be serialized by slots_locks to ensure the TLB flush from one
388 * operation is observed by any other operation on the same memslot.
389 */
390 lockdep_assert_held(&kvm->slots_lock);
391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392}
393
394static void kvm_flush_shadow_all(struct kvm *kvm)
395{
396 kvm_arch_flush_shadow_all(kvm);
397 kvm_arch_guest_memory_reclaimed(kvm);
398}
399
400#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 gfp_t gfp_flags)
403{
404 gfp_flags |= mc->gfp_zero;
405
406 if (mc->kmem_cache)
407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 else
409 return (void *)__get_free_page(gfp_flags);
410}
411
412int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413{
414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 void *obj;
416
417 if (mc->nobjs >= min)
418 return 0;
419
420 if (unlikely(!mc->objects)) {
421 if (WARN_ON_ONCE(!capacity))
422 return -EIO;
423
424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425 if (!mc->objects)
426 return -ENOMEM;
427
428 mc->capacity = capacity;
429 }
430
431 /* It is illegal to request a different capacity across topups. */
432 if (WARN_ON_ONCE(mc->capacity != capacity))
433 return -EIO;
434
435 while (mc->nobjs < mc->capacity) {
436 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 if (!obj)
438 return mc->nobjs >= min ? 0 : -ENOMEM;
439 mc->objects[mc->nobjs++] = obj;
440 }
441 return 0;
442}
443
444int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445{
446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447}
448
449int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450{
451 return mc->nobjs;
452}
453
454void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455{
456 while (mc->nobjs) {
457 if (mc->kmem_cache)
458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 else
460 free_page((unsigned long)mc->objects[--mc->nobjs]);
461 }
462
463 kvfree(mc->objects);
464
465 mc->objects = NULL;
466 mc->capacity = 0;
467}
468
469void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470{
471 void *p;
472
473 if (WARN_ON(!mc->nobjs))
474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 else
476 p = mc->objects[--mc->nobjs];
477 BUG_ON(!p);
478 return p;
479}
480#endif
481
482static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483{
484 mutex_init(&vcpu->mutex);
485 vcpu->cpu = -1;
486 vcpu->kvm = kvm;
487 vcpu->vcpu_id = id;
488 vcpu->pid = NULL;
489#ifndef __KVM_HAVE_ARCH_WQP
490 rcuwait_init(&vcpu->wait);
491#endif
492 kvm_async_pf_vcpu_init(vcpu);
493
494 kvm_vcpu_set_in_spin_loop(vcpu, false);
495 kvm_vcpu_set_dy_eligible(vcpu, false);
496 vcpu->preempted = false;
497 vcpu->ready = false;
498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 vcpu->last_used_slot = NULL;
500
501 /* Fill the stats id string for the vcpu */
502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 task_pid_nr(current), id);
504}
505
506static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507{
508 kvm_arch_vcpu_destroy(vcpu);
509 kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511 /*
512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 * the vcpu->pid pointer, and at destruction time all file descriptors
514 * are already gone.
515 */
516 put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518 free_page((unsigned long)vcpu->run);
519 kmem_cache_free(kvm_vcpu_cache, vcpu);
520}
521
522void kvm_destroy_vcpus(struct kvm *kvm)
523{
524 unsigned long i;
525 struct kvm_vcpu *vcpu;
526
527 kvm_for_each_vcpu(i, vcpu, kvm) {
528 kvm_vcpu_destroy(vcpu);
529 xa_erase(&kvm->vcpu_array, i);
530 }
531
532 atomic_set(&kvm->online_vcpus, 0);
533}
534EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538{
539 return container_of(mn, struct kvm, mmu_notifier);
540}
541
542typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544typedef void (*on_lock_fn_t)(struct kvm *kvm);
545
546struct kvm_mmu_notifier_range {
547 /*
548 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 * addresses (unsigned long) and guest physical addresses (64-bit).
550 */
551 u64 start;
552 u64 end;
553 union kvm_mmu_notifier_arg arg;
554 gfn_handler_t handler;
555 on_lock_fn_t on_lock;
556 bool flush_on_ret;
557 bool may_block;
558};
559
560/*
561 * The inner-most helper returns a tuple containing the return value from the
562 * arch- and action-specific handler, plus a flag indicating whether or not at
563 * least one memslot was found, i.e. if the handler found guest memory.
564 *
565 * Note, most notifiers are averse to booleans, so even though KVM tracks the
566 * return from arch code as a bool, outer helpers will cast it to an int. :-(
567 */
568typedef struct kvm_mmu_notifier_return {
569 bool ret;
570 bool found_memslot;
571} kvm_mn_ret_t;
572
573/*
574 * Use a dedicated stub instead of NULL to indicate that there is no callback
575 * function/handler. The compiler technically can't guarantee that a real
576 * function will have a non-zero address, and so it will generate code to
577 * check for !NULL, whereas comparing against a stub will be elided at compile
578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579 */
580static void kvm_null_fn(void)
581{
582
583}
584#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585
586static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587
588/* Iterate over each memslot intersecting [start, last] (inclusive) range */
589#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 node; \
592 node = interval_tree_iter_next(node, start, last)) \
593
594static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 const struct kvm_mmu_notifier_range *range)
596{
597 struct kvm_mmu_notifier_return r = {
598 .ret = false,
599 .found_memslot = false,
600 };
601 struct kvm_gfn_range gfn_range;
602 struct kvm_memory_slot *slot;
603 struct kvm_memslots *slots;
604 int i, idx;
605
606 if (WARN_ON_ONCE(range->end <= range->start))
607 return r;
608
609 /* A null handler is allowed if and only if on_lock() is provided. */
610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 IS_KVM_NULL_FN(range->handler)))
612 return r;
613
614 idx = srcu_read_lock(&kvm->srcu);
615
616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 struct interval_tree_node *node;
618
619 slots = __kvm_memslots(kvm, i);
620 kvm_for_each_memslot_in_hva_range(node, slots,
621 range->start, range->end - 1) {
622 unsigned long hva_start, hva_end;
623
624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 hva_end = min_t(unsigned long, range->end,
627 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628
629 /*
630 * To optimize for the likely case where the address
631 * range is covered by zero or one memslots, don't
632 * bother making these conditional (to avoid writes on
633 * the second or later invocation of the handler).
634 */
635 gfn_range.arg = range->arg;
636 gfn_range.may_block = range->may_block;
637
638 /*
639 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 */
642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 gfn_range.slot = slot;
645
646 if (!r.found_memslot) {
647 r.found_memslot = true;
648 KVM_MMU_LOCK(kvm);
649 if (!IS_KVM_NULL_FN(range->on_lock))
650 range->on_lock(kvm);
651
652 if (IS_KVM_NULL_FN(range->handler))
653 break;
654 }
655 r.ret |= range->handler(kvm, &gfn_range);
656 }
657 }
658
659 if (range->flush_on_ret && r.ret)
660 kvm_flush_remote_tlbs(kvm);
661
662 if (r.found_memslot)
663 KVM_MMU_UNLOCK(kvm);
664
665 srcu_read_unlock(&kvm->srcu, idx);
666
667 return r;
668}
669
670static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 unsigned long start,
672 unsigned long end,
673 union kvm_mmu_notifier_arg arg,
674 gfn_handler_t handler)
675{
676 struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 const struct kvm_mmu_notifier_range range = {
678 .start = start,
679 .end = end,
680 .arg = arg,
681 .handler = handler,
682 .on_lock = (void *)kvm_null_fn,
683 .flush_on_ret = true,
684 .may_block = false,
685 };
686
687 return __kvm_handle_hva_range(kvm, &range).ret;
688}
689
690static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 unsigned long start,
692 unsigned long end,
693 gfn_handler_t handler)
694{
695 struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 const struct kvm_mmu_notifier_range range = {
697 .start = start,
698 .end = end,
699 .handler = handler,
700 .on_lock = (void *)kvm_null_fn,
701 .flush_on_ret = false,
702 .may_block = false,
703 };
704
705 return __kvm_handle_hva_range(kvm, &range).ret;
706}
707
708static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709{
710 /*
711 * Skipping invalid memslots is correct if and only change_pte() is
712 * surrounded by invalidate_range_{start,end}(), which is currently
713 * guaranteed by the primary MMU. If that ever changes, KVM needs to
714 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 * doesn't hold references to the old PFN.
716 */
717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718
719 if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 return false;
721
722 return kvm_set_spte_gfn(kvm, range);
723}
724
725static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 struct mm_struct *mm,
727 unsigned long address,
728 pte_t pte)
729{
730 struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 const union kvm_mmu_notifier_arg arg = { .pte = pte };
732
733 trace_kvm_set_spte_hva(address);
734
735 /*
736 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 * If mmu_invalidate_in_progress is zero, then no in-progress
738 * invalidations, including this one, found a relevant memslot at
739 * start(); rechecking memslots here is unnecessary. Note, a false
740 * positive (count elevated by a different invalidation) is sub-optimal
741 * but functionally ok.
742 */
743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 return;
746
747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748}
749
750void kvm_mmu_invalidate_begin(struct kvm *kvm)
751{
752 lockdep_assert_held_write(&kvm->mmu_lock);
753 /*
754 * The count increase must become visible at unlock time as no
755 * spte can be established without taking the mmu_lock and
756 * count is also read inside the mmu_lock critical section.
757 */
758 kvm->mmu_invalidate_in_progress++;
759
760 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 kvm->mmu_invalidate_range_start = INVALID_GPA;
762 kvm->mmu_invalidate_range_end = INVALID_GPA;
763 }
764}
765
766void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767{
768 lockdep_assert_held_write(&kvm->mmu_lock);
769
770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771
772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 kvm->mmu_invalidate_range_start = start;
774 kvm->mmu_invalidate_range_end = end;
775 } else {
776 /*
777 * Fully tracking multiple concurrent ranges has diminishing
778 * returns. Keep things simple and just find the minimal range
779 * which includes the current and new ranges. As there won't be
780 * enough information to subtract a range after its invalidate
781 * completes, any ranges invalidated concurrently will
782 * accumulate and persist until all outstanding invalidates
783 * complete.
784 */
785 kvm->mmu_invalidate_range_start =
786 min(kvm->mmu_invalidate_range_start, start);
787 kvm->mmu_invalidate_range_end =
788 max(kvm->mmu_invalidate_range_end, end);
789 }
790}
791
792bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793{
794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 return kvm_unmap_gfn_range(kvm, range);
796}
797
798static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 const struct mmu_notifier_range *range)
800{
801 struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 const struct kvm_mmu_notifier_range hva_range = {
803 .start = range->start,
804 .end = range->end,
805 .handler = kvm_mmu_unmap_gfn_range,
806 .on_lock = kvm_mmu_invalidate_begin,
807 .flush_on_ret = true,
808 .may_block = mmu_notifier_range_blockable(range),
809 };
810
811 trace_kvm_unmap_hva_range(range->start, range->end);
812
813 /*
814 * Prevent memslot modification between range_start() and range_end()
815 * so that conditionally locking provides the same result in both
816 * functions. Without that guarantee, the mmu_invalidate_in_progress
817 * adjustments will be imbalanced.
818 *
819 * Pairs with the decrement in range_end().
820 */
821 spin_lock(&kvm->mn_invalidate_lock);
822 kvm->mn_active_invalidate_count++;
823 spin_unlock(&kvm->mn_invalidate_lock);
824
825 /*
826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 * each cache's lock. There are relatively few caches in existence at
829 * any given time, and the caches themselves can check for hva overlap,
830 * i.e. don't need to rely on memslot overlap checks for performance.
831 * Because this runs without holding mmu_lock, the pfn caches must use
832 * mn_active_invalidate_count (see above) instead of
833 * mmu_invalidate_in_progress.
834 */
835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
836
837 /*
838 * If one or more memslots were found and thus zapped, notify arch code
839 * that guest memory has been reclaimed. This needs to be done *after*
840 * dropping mmu_lock, as x86's reclaim path is slooooow.
841 */
842 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
843 kvm_arch_guest_memory_reclaimed(kvm);
844
845 return 0;
846}
847
848void kvm_mmu_invalidate_end(struct kvm *kvm)
849{
850 lockdep_assert_held_write(&kvm->mmu_lock);
851
852 /*
853 * This sequence increase will notify the kvm page fault that
854 * the page that is going to be mapped in the spte could have
855 * been freed.
856 */
857 kvm->mmu_invalidate_seq++;
858 smp_wmb();
859 /*
860 * The above sequence increase must be visible before the
861 * below count decrease, which is ensured by the smp_wmb above
862 * in conjunction with the smp_rmb in mmu_invalidate_retry().
863 */
864 kvm->mmu_invalidate_in_progress--;
865 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
866
867 /*
868 * Assert that at least one range was added between start() and end().
869 * Not adding a range isn't fatal, but it is a KVM bug.
870 */
871 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
872}
873
874static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
875 const struct mmu_notifier_range *range)
876{
877 struct kvm *kvm = mmu_notifier_to_kvm(mn);
878 const struct kvm_mmu_notifier_range hva_range = {
879 .start = range->start,
880 .end = range->end,
881 .handler = (void *)kvm_null_fn,
882 .on_lock = kvm_mmu_invalidate_end,
883 .flush_on_ret = false,
884 .may_block = mmu_notifier_range_blockable(range),
885 };
886 bool wake;
887
888 __kvm_handle_hva_range(kvm, &hva_range);
889
890 /* Pairs with the increment in range_start(). */
891 spin_lock(&kvm->mn_invalidate_lock);
892 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
893 --kvm->mn_active_invalidate_count;
894 wake = !kvm->mn_active_invalidate_count;
895 spin_unlock(&kvm->mn_invalidate_lock);
896
897 /*
898 * There can only be one waiter, since the wait happens under
899 * slots_lock.
900 */
901 if (wake)
902 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
903}
904
905static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906 struct mm_struct *mm,
907 unsigned long start,
908 unsigned long end)
909{
910 trace_kvm_age_hva(start, end);
911
912 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
913 kvm_age_gfn);
914}
915
916static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
917 struct mm_struct *mm,
918 unsigned long start,
919 unsigned long end)
920{
921 trace_kvm_age_hva(start, end);
922
923 /*
924 * Even though we do not flush TLB, this will still adversely
925 * affect performance on pre-Haswell Intel EPT, where there is
926 * no EPT Access Bit to clear so that we have to tear down EPT
927 * tables instead. If we find this unacceptable, we can always
928 * add a parameter to kvm_age_hva so that it effectively doesn't
929 * do anything on clear_young.
930 *
931 * Also note that currently we never issue secondary TLB flushes
932 * from clear_young, leaving this job up to the regular system
933 * cadence. If we find this inaccurate, we might come up with a
934 * more sophisticated heuristic later.
935 */
936 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
937}
938
939static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
940 struct mm_struct *mm,
941 unsigned long address)
942{
943 trace_kvm_test_age_hva(address);
944
945 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
946 kvm_test_age_gfn);
947}
948
949static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
950 struct mm_struct *mm)
951{
952 struct kvm *kvm = mmu_notifier_to_kvm(mn);
953 int idx;
954
955 idx = srcu_read_lock(&kvm->srcu);
956 kvm_flush_shadow_all(kvm);
957 srcu_read_unlock(&kvm->srcu, idx);
958}
959
960static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
961 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
962 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
963 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
964 .clear_young = kvm_mmu_notifier_clear_young,
965 .test_young = kvm_mmu_notifier_test_young,
966 .change_pte = kvm_mmu_notifier_change_pte,
967 .release = kvm_mmu_notifier_release,
968};
969
970static int kvm_init_mmu_notifier(struct kvm *kvm)
971{
972 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
974}
975
976#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
977
978static int kvm_init_mmu_notifier(struct kvm *kvm)
979{
980 return 0;
981}
982
983#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
984
985#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
986static int kvm_pm_notifier_call(struct notifier_block *bl,
987 unsigned long state,
988 void *unused)
989{
990 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
991
992 return kvm_arch_pm_notifier(kvm, state);
993}
994
995static void kvm_init_pm_notifier(struct kvm *kvm)
996{
997 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
998 /* Suspend KVM before we suspend ftrace, RCU, etc. */
999 kvm->pm_notifier.priority = INT_MAX;
1000 register_pm_notifier(&kvm->pm_notifier);
1001}
1002
1003static void kvm_destroy_pm_notifier(struct kvm *kvm)
1004{
1005 unregister_pm_notifier(&kvm->pm_notifier);
1006}
1007#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1008static void kvm_init_pm_notifier(struct kvm *kvm)
1009{
1010}
1011
1012static void kvm_destroy_pm_notifier(struct kvm *kvm)
1013{
1014}
1015#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1016
1017static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1018{
1019 if (!memslot->dirty_bitmap)
1020 return;
1021
1022 kvfree(memslot->dirty_bitmap);
1023 memslot->dirty_bitmap = NULL;
1024}
1025
1026/* This does not remove the slot from struct kvm_memslots data structures */
1027static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1028{
1029 if (slot->flags & KVM_MEM_GUEST_MEMFD)
1030 kvm_gmem_unbind(slot);
1031
1032 kvm_destroy_dirty_bitmap(slot);
1033
1034 kvm_arch_free_memslot(kvm, slot);
1035
1036 kfree(slot);
1037}
1038
1039static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1040{
1041 struct hlist_node *idnode;
1042 struct kvm_memory_slot *memslot;
1043 int bkt;
1044
1045 /*
1046 * The same memslot objects live in both active and inactive sets,
1047 * arbitrarily free using index '1' so the second invocation of this
1048 * function isn't operating over a structure with dangling pointers
1049 * (even though this function isn't actually touching them).
1050 */
1051 if (!slots->node_idx)
1052 return;
1053
1054 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1055 kvm_free_memslot(kvm, memslot);
1056}
1057
1058static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1059{
1060 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1061 case KVM_STATS_TYPE_INSTANT:
1062 return 0444;
1063 case KVM_STATS_TYPE_CUMULATIVE:
1064 case KVM_STATS_TYPE_PEAK:
1065 default:
1066 return 0644;
1067 }
1068}
1069
1070
1071static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1072{
1073 int i;
1074 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1075 kvm_vcpu_stats_header.num_desc;
1076
1077 if (IS_ERR(kvm->debugfs_dentry))
1078 return;
1079
1080 debugfs_remove_recursive(kvm->debugfs_dentry);
1081
1082 if (kvm->debugfs_stat_data) {
1083 for (i = 0; i < kvm_debugfs_num_entries; i++)
1084 kfree(kvm->debugfs_stat_data[i]);
1085 kfree(kvm->debugfs_stat_data);
1086 }
1087}
1088
1089static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1090{
1091 static DEFINE_MUTEX(kvm_debugfs_lock);
1092 struct dentry *dent;
1093 char dir_name[ITOA_MAX_LEN * 2];
1094 struct kvm_stat_data *stat_data;
1095 const struct _kvm_stats_desc *pdesc;
1096 int i, ret = -ENOMEM;
1097 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1098 kvm_vcpu_stats_header.num_desc;
1099
1100 if (!debugfs_initialized())
1101 return 0;
1102
1103 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1104 mutex_lock(&kvm_debugfs_lock);
1105 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1106 if (dent) {
1107 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1108 dput(dent);
1109 mutex_unlock(&kvm_debugfs_lock);
1110 return 0;
1111 }
1112 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1113 mutex_unlock(&kvm_debugfs_lock);
1114 if (IS_ERR(dent))
1115 return 0;
1116
1117 kvm->debugfs_dentry = dent;
1118 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1119 sizeof(*kvm->debugfs_stat_data),
1120 GFP_KERNEL_ACCOUNT);
1121 if (!kvm->debugfs_stat_data)
1122 goto out_err;
1123
1124 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1125 pdesc = &kvm_vm_stats_desc[i];
1126 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1127 if (!stat_data)
1128 goto out_err;
1129
1130 stat_data->kvm = kvm;
1131 stat_data->desc = pdesc;
1132 stat_data->kind = KVM_STAT_VM;
1133 kvm->debugfs_stat_data[i] = stat_data;
1134 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1135 kvm->debugfs_dentry, stat_data,
1136 &stat_fops_per_vm);
1137 }
1138
1139 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1140 pdesc = &kvm_vcpu_stats_desc[i];
1141 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1142 if (!stat_data)
1143 goto out_err;
1144
1145 stat_data->kvm = kvm;
1146 stat_data->desc = pdesc;
1147 stat_data->kind = KVM_STAT_VCPU;
1148 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1149 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1150 kvm->debugfs_dentry, stat_data,
1151 &stat_fops_per_vm);
1152 }
1153
1154 kvm_arch_create_vm_debugfs(kvm);
1155 return 0;
1156out_err:
1157 kvm_destroy_vm_debugfs(kvm);
1158 return ret;
1159}
1160
1161/*
1162 * Called after the VM is otherwise initialized, but just before adding it to
1163 * the vm_list.
1164 */
1165int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1166{
1167 return 0;
1168}
1169
1170/*
1171 * Called just after removing the VM from the vm_list, but before doing any
1172 * other destruction.
1173 */
1174void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1175{
1176}
1177
1178/*
1179 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1180 * be setup already, so we can create arch-specific debugfs entries under it.
1181 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1182 * a per-arch destroy interface is not needed.
1183 */
1184void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1185{
1186}
1187
1188static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1189{
1190 struct kvm *kvm = kvm_arch_alloc_vm();
1191 struct kvm_memslots *slots;
1192 int r = -ENOMEM;
1193 int i, j;
1194
1195 if (!kvm)
1196 return ERR_PTR(-ENOMEM);
1197
1198 KVM_MMU_LOCK_INIT(kvm);
1199 mmgrab(current->mm);
1200 kvm->mm = current->mm;
1201 kvm_eventfd_init(kvm);
1202 mutex_init(&kvm->lock);
1203 mutex_init(&kvm->irq_lock);
1204 mutex_init(&kvm->slots_lock);
1205 mutex_init(&kvm->slots_arch_lock);
1206 spin_lock_init(&kvm->mn_invalidate_lock);
1207 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1208 xa_init(&kvm->vcpu_array);
1209#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1210 xa_init(&kvm->mem_attr_array);
1211#endif
1212
1213 INIT_LIST_HEAD(&kvm->gpc_list);
1214 spin_lock_init(&kvm->gpc_lock);
1215
1216 INIT_LIST_HEAD(&kvm->devices);
1217 kvm->max_vcpus = KVM_MAX_VCPUS;
1218
1219 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1220
1221 /*
1222 * Force subsequent debugfs file creations to fail if the VM directory
1223 * is not created (by kvm_create_vm_debugfs()).
1224 */
1225 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1226
1227 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1228 task_pid_nr(current));
1229
1230 if (init_srcu_struct(&kvm->srcu))
1231 goto out_err_no_srcu;
1232 if (init_srcu_struct(&kvm->irq_srcu))
1233 goto out_err_no_irq_srcu;
1234
1235 refcount_set(&kvm->users_count, 1);
1236 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1237 for (j = 0; j < 2; j++) {
1238 slots = &kvm->__memslots[i][j];
1239
1240 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1241 slots->hva_tree = RB_ROOT_CACHED;
1242 slots->gfn_tree = RB_ROOT;
1243 hash_init(slots->id_hash);
1244 slots->node_idx = j;
1245
1246 /* Generations must be different for each address space. */
1247 slots->generation = i;
1248 }
1249
1250 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1251 }
1252
1253 for (i = 0; i < KVM_NR_BUSES; i++) {
1254 rcu_assign_pointer(kvm->buses[i],
1255 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1256 if (!kvm->buses[i])
1257 goto out_err_no_arch_destroy_vm;
1258 }
1259
1260 r = kvm_arch_init_vm(kvm, type);
1261 if (r)
1262 goto out_err_no_arch_destroy_vm;
1263
1264 r = hardware_enable_all();
1265 if (r)
1266 goto out_err_no_disable;
1267
1268#ifdef CONFIG_HAVE_KVM_IRQCHIP
1269 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1270#endif
1271
1272 r = kvm_init_mmu_notifier(kvm);
1273 if (r)
1274 goto out_err_no_mmu_notifier;
1275
1276 r = kvm_coalesced_mmio_init(kvm);
1277 if (r < 0)
1278 goto out_no_coalesced_mmio;
1279
1280 r = kvm_create_vm_debugfs(kvm, fdname);
1281 if (r)
1282 goto out_err_no_debugfs;
1283
1284 r = kvm_arch_post_init_vm(kvm);
1285 if (r)
1286 goto out_err;
1287
1288 mutex_lock(&kvm_lock);
1289 list_add(&kvm->vm_list, &vm_list);
1290 mutex_unlock(&kvm_lock);
1291
1292 preempt_notifier_inc();
1293 kvm_init_pm_notifier(kvm);
1294
1295 return kvm;
1296
1297out_err:
1298 kvm_destroy_vm_debugfs(kvm);
1299out_err_no_debugfs:
1300 kvm_coalesced_mmio_free(kvm);
1301out_no_coalesced_mmio:
1302#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1303 if (kvm->mmu_notifier.ops)
1304 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1305#endif
1306out_err_no_mmu_notifier:
1307 hardware_disable_all();
1308out_err_no_disable:
1309 kvm_arch_destroy_vm(kvm);
1310out_err_no_arch_destroy_vm:
1311 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1312 for (i = 0; i < KVM_NR_BUSES; i++)
1313 kfree(kvm_get_bus(kvm, i));
1314 cleanup_srcu_struct(&kvm->irq_srcu);
1315out_err_no_irq_srcu:
1316 cleanup_srcu_struct(&kvm->srcu);
1317out_err_no_srcu:
1318 kvm_arch_free_vm(kvm);
1319 mmdrop(current->mm);
1320 return ERR_PTR(r);
1321}
1322
1323static void kvm_destroy_devices(struct kvm *kvm)
1324{
1325 struct kvm_device *dev, *tmp;
1326
1327 /*
1328 * We do not need to take the kvm->lock here, because nobody else
1329 * has a reference to the struct kvm at this point and therefore
1330 * cannot access the devices list anyhow.
1331 */
1332 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1333 list_del(&dev->vm_node);
1334 dev->ops->destroy(dev);
1335 }
1336}
1337
1338static void kvm_destroy_vm(struct kvm *kvm)
1339{
1340 int i;
1341 struct mm_struct *mm = kvm->mm;
1342
1343 kvm_destroy_pm_notifier(kvm);
1344 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1345 kvm_destroy_vm_debugfs(kvm);
1346 kvm_arch_sync_events(kvm);
1347 mutex_lock(&kvm_lock);
1348 list_del(&kvm->vm_list);
1349 mutex_unlock(&kvm_lock);
1350 kvm_arch_pre_destroy_vm(kvm);
1351
1352 kvm_free_irq_routing(kvm);
1353 for (i = 0; i < KVM_NR_BUSES; i++) {
1354 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1355
1356 if (bus)
1357 kvm_io_bus_destroy(bus);
1358 kvm->buses[i] = NULL;
1359 }
1360 kvm_coalesced_mmio_free(kvm);
1361#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1362 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1363 /*
1364 * At this point, pending calls to invalidate_range_start()
1365 * have completed but no more MMU notifiers will run, so
1366 * mn_active_invalidate_count may remain unbalanced.
1367 * No threads can be waiting in kvm_swap_active_memslots() as the
1368 * last reference on KVM has been dropped, but freeing
1369 * memslots would deadlock without this manual intervention.
1370 *
1371 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1372 * notifier between a start() and end(), then there shouldn't be any
1373 * in-progress invalidations.
1374 */
1375 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1376 if (kvm->mn_active_invalidate_count)
1377 kvm->mn_active_invalidate_count = 0;
1378 else
1379 WARN_ON(kvm->mmu_invalidate_in_progress);
1380#else
1381 kvm_flush_shadow_all(kvm);
1382#endif
1383 kvm_arch_destroy_vm(kvm);
1384 kvm_destroy_devices(kvm);
1385 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1386 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1387 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1388 }
1389 cleanup_srcu_struct(&kvm->irq_srcu);
1390 cleanup_srcu_struct(&kvm->srcu);
1391#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1392 xa_destroy(&kvm->mem_attr_array);
1393#endif
1394 kvm_arch_free_vm(kvm);
1395 preempt_notifier_dec();
1396 hardware_disable_all();
1397 mmdrop(mm);
1398}
1399
1400void kvm_get_kvm(struct kvm *kvm)
1401{
1402 refcount_inc(&kvm->users_count);
1403}
1404EXPORT_SYMBOL_GPL(kvm_get_kvm);
1405
1406/*
1407 * Make sure the vm is not during destruction, which is a safe version of
1408 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1409 */
1410bool kvm_get_kvm_safe(struct kvm *kvm)
1411{
1412 return refcount_inc_not_zero(&kvm->users_count);
1413}
1414EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1415
1416void kvm_put_kvm(struct kvm *kvm)
1417{
1418 if (refcount_dec_and_test(&kvm->users_count))
1419 kvm_destroy_vm(kvm);
1420}
1421EXPORT_SYMBOL_GPL(kvm_put_kvm);
1422
1423/*
1424 * Used to put a reference that was taken on behalf of an object associated
1425 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1426 * of the new file descriptor fails and the reference cannot be transferred to
1427 * its final owner. In such cases, the caller is still actively using @kvm and
1428 * will fail miserably if the refcount unexpectedly hits zero.
1429 */
1430void kvm_put_kvm_no_destroy(struct kvm *kvm)
1431{
1432 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1433}
1434EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1435
1436static int kvm_vm_release(struct inode *inode, struct file *filp)
1437{
1438 struct kvm *kvm = filp->private_data;
1439
1440 kvm_irqfd_release(kvm);
1441
1442 kvm_put_kvm(kvm);
1443 return 0;
1444}
1445
1446/*
1447 * Allocation size is twice as large as the actual dirty bitmap size.
1448 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1449 */
1450static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1451{
1452 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1453
1454 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1455 if (!memslot->dirty_bitmap)
1456 return -ENOMEM;
1457
1458 return 0;
1459}
1460
1461static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1462{
1463 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1464 int node_idx_inactive = active->node_idx ^ 1;
1465
1466 return &kvm->__memslots[as_id][node_idx_inactive];
1467}
1468
1469/*
1470 * Helper to get the address space ID when one of memslot pointers may be NULL.
1471 * This also serves as a sanity that at least one of the pointers is non-NULL,
1472 * and that their address space IDs don't diverge.
1473 */
1474static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1475 struct kvm_memory_slot *b)
1476{
1477 if (WARN_ON_ONCE(!a && !b))
1478 return 0;
1479
1480 if (!a)
1481 return b->as_id;
1482 if (!b)
1483 return a->as_id;
1484
1485 WARN_ON_ONCE(a->as_id != b->as_id);
1486 return a->as_id;
1487}
1488
1489static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1490 struct kvm_memory_slot *slot)
1491{
1492 struct rb_root *gfn_tree = &slots->gfn_tree;
1493 struct rb_node **node, *parent;
1494 int idx = slots->node_idx;
1495
1496 parent = NULL;
1497 for (node = &gfn_tree->rb_node; *node; ) {
1498 struct kvm_memory_slot *tmp;
1499
1500 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1501 parent = *node;
1502 if (slot->base_gfn < tmp->base_gfn)
1503 node = &(*node)->rb_left;
1504 else if (slot->base_gfn > tmp->base_gfn)
1505 node = &(*node)->rb_right;
1506 else
1507 BUG();
1508 }
1509
1510 rb_link_node(&slot->gfn_node[idx], parent, node);
1511 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1512}
1513
1514static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1515 struct kvm_memory_slot *slot)
1516{
1517 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1518}
1519
1520static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1521 struct kvm_memory_slot *old,
1522 struct kvm_memory_slot *new)
1523{
1524 int idx = slots->node_idx;
1525
1526 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1527
1528 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1529 &slots->gfn_tree);
1530}
1531
1532/*
1533 * Replace @old with @new in the inactive memslots.
1534 *
1535 * With NULL @old this simply adds @new.
1536 * With NULL @new this simply removes @old.
1537 *
1538 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1539 * appropriately.
1540 */
1541static void kvm_replace_memslot(struct kvm *kvm,
1542 struct kvm_memory_slot *old,
1543 struct kvm_memory_slot *new)
1544{
1545 int as_id = kvm_memslots_get_as_id(old, new);
1546 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1547 int idx = slots->node_idx;
1548
1549 if (old) {
1550 hash_del(&old->id_node[idx]);
1551 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1552
1553 if ((long)old == atomic_long_read(&slots->last_used_slot))
1554 atomic_long_set(&slots->last_used_slot, (long)new);
1555
1556 if (!new) {
1557 kvm_erase_gfn_node(slots, old);
1558 return;
1559 }
1560 }
1561
1562 /*
1563 * Initialize @new's hva range. Do this even when replacing an @old
1564 * slot, kvm_copy_memslot() deliberately does not touch node data.
1565 */
1566 new->hva_node[idx].start = new->userspace_addr;
1567 new->hva_node[idx].last = new->userspace_addr +
1568 (new->npages << PAGE_SHIFT) - 1;
1569
1570 /*
1571 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1572 * hva_node needs to be swapped with remove+insert even though hva can't
1573 * change when replacing an existing slot.
1574 */
1575 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1576 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1577
1578 /*
1579 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1580 * switch the node in the gfn tree instead of removing the old and
1581 * inserting the new as two separate operations. Replacement is a
1582 * single O(1) operation versus two O(log(n)) operations for
1583 * remove+insert.
1584 */
1585 if (old && old->base_gfn == new->base_gfn) {
1586 kvm_replace_gfn_node(slots, old, new);
1587 } else {
1588 if (old)
1589 kvm_erase_gfn_node(slots, old);
1590 kvm_insert_gfn_node(slots, new);
1591 }
1592}
1593
1594/*
1595 * Flags that do not access any of the extra space of struct
1596 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1597 * only allows these.
1598 */
1599#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1600 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1601
1602static int check_memory_region_flags(struct kvm *kvm,
1603 const struct kvm_userspace_memory_region2 *mem)
1604{
1605 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1606
1607 if (kvm_arch_has_private_mem(kvm))
1608 valid_flags |= KVM_MEM_GUEST_MEMFD;
1609
1610 /* Dirty logging private memory is not currently supported. */
1611 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1612 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1613
1614#ifdef CONFIG_HAVE_KVM_READONLY_MEM
1615 /*
1616 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1617 * read-only memslots have emulated MMIO, not page fault, semantics,
1618 * and KVM doesn't allow emulated MMIO for private memory.
1619 */
1620 if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1621 valid_flags |= KVM_MEM_READONLY;
1622#endif
1623
1624 if (mem->flags & ~valid_flags)
1625 return -EINVAL;
1626
1627 return 0;
1628}
1629
1630static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1631{
1632 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1633
1634 /* Grab the generation from the activate memslots. */
1635 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1636
1637 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1638 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1639
1640 /*
1641 * Do not store the new memslots while there are invalidations in
1642 * progress, otherwise the locking in invalidate_range_start and
1643 * invalidate_range_end will be unbalanced.
1644 */
1645 spin_lock(&kvm->mn_invalidate_lock);
1646 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1647 while (kvm->mn_active_invalidate_count) {
1648 set_current_state(TASK_UNINTERRUPTIBLE);
1649 spin_unlock(&kvm->mn_invalidate_lock);
1650 schedule();
1651 spin_lock(&kvm->mn_invalidate_lock);
1652 }
1653 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1654 rcu_assign_pointer(kvm->memslots[as_id], slots);
1655 spin_unlock(&kvm->mn_invalidate_lock);
1656
1657 /*
1658 * Acquired in kvm_set_memslot. Must be released before synchronize
1659 * SRCU below in order to avoid deadlock with another thread
1660 * acquiring the slots_arch_lock in an srcu critical section.
1661 */
1662 mutex_unlock(&kvm->slots_arch_lock);
1663
1664 synchronize_srcu_expedited(&kvm->srcu);
1665
1666 /*
1667 * Increment the new memslot generation a second time, dropping the
1668 * update in-progress flag and incrementing the generation based on
1669 * the number of address spaces. This provides a unique and easily
1670 * identifiable generation number while the memslots are in flux.
1671 */
1672 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1673
1674 /*
1675 * Generations must be unique even across address spaces. We do not need
1676 * a global counter for that, instead the generation space is evenly split
1677 * across address spaces. For example, with two address spaces, address
1678 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1679 * use generations 1, 3, 5, ...
1680 */
1681 gen += kvm_arch_nr_memslot_as_ids(kvm);
1682
1683 kvm_arch_memslots_updated(kvm, gen);
1684
1685 slots->generation = gen;
1686}
1687
1688static int kvm_prepare_memory_region(struct kvm *kvm,
1689 const struct kvm_memory_slot *old,
1690 struct kvm_memory_slot *new,
1691 enum kvm_mr_change change)
1692{
1693 int r;
1694
1695 /*
1696 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1697 * will be freed on "commit". If logging is enabled in both old and
1698 * new, reuse the existing bitmap. If logging is enabled only in the
1699 * new and KVM isn't using a ring buffer, allocate and initialize a
1700 * new bitmap.
1701 */
1702 if (change != KVM_MR_DELETE) {
1703 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1704 new->dirty_bitmap = NULL;
1705 else if (old && old->dirty_bitmap)
1706 new->dirty_bitmap = old->dirty_bitmap;
1707 else if (kvm_use_dirty_bitmap(kvm)) {
1708 r = kvm_alloc_dirty_bitmap(new);
1709 if (r)
1710 return r;
1711
1712 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1713 bitmap_set(new->dirty_bitmap, 0, new->npages);
1714 }
1715 }
1716
1717 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1718
1719 /* Free the bitmap on failure if it was allocated above. */
1720 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1721 kvm_destroy_dirty_bitmap(new);
1722
1723 return r;
1724}
1725
1726static void kvm_commit_memory_region(struct kvm *kvm,
1727 struct kvm_memory_slot *old,
1728 const struct kvm_memory_slot *new,
1729 enum kvm_mr_change change)
1730{
1731 int old_flags = old ? old->flags : 0;
1732 int new_flags = new ? new->flags : 0;
1733 /*
1734 * Update the total number of memslot pages before calling the arch
1735 * hook so that architectures can consume the result directly.
1736 */
1737 if (change == KVM_MR_DELETE)
1738 kvm->nr_memslot_pages -= old->npages;
1739 else if (change == KVM_MR_CREATE)
1740 kvm->nr_memslot_pages += new->npages;
1741
1742 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1743 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1744 atomic_set(&kvm->nr_memslots_dirty_logging,
1745 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1746 }
1747
1748 kvm_arch_commit_memory_region(kvm, old, new, change);
1749
1750 switch (change) {
1751 case KVM_MR_CREATE:
1752 /* Nothing more to do. */
1753 break;
1754 case KVM_MR_DELETE:
1755 /* Free the old memslot and all its metadata. */
1756 kvm_free_memslot(kvm, old);
1757 break;
1758 case KVM_MR_MOVE:
1759 case KVM_MR_FLAGS_ONLY:
1760 /*
1761 * Free the dirty bitmap as needed; the below check encompasses
1762 * both the flags and whether a ring buffer is being used)
1763 */
1764 if (old->dirty_bitmap && !new->dirty_bitmap)
1765 kvm_destroy_dirty_bitmap(old);
1766
1767 /*
1768 * The final quirk. Free the detached, old slot, but only its
1769 * memory, not any metadata. Metadata, including arch specific
1770 * data, may be reused by @new.
1771 */
1772 kfree(old);
1773 break;
1774 default:
1775 BUG();
1776 }
1777}
1778
1779/*
1780 * Activate @new, which must be installed in the inactive slots by the caller,
1781 * by swapping the active slots and then propagating @new to @old once @old is
1782 * unreachable and can be safely modified.
1783 *
1784 * With NULL @old this simply adds @new to @active (while swapping the sets).
1785 * With NULL @new this simply removes @old from @active and frees it
1786 * (while also swapping the sets).
1787 */
1788static void kvm_activate_memslot(struct kvm *kvm,
1789 struct kvm_memory_slot *old,
1790 struct kvm_memory_slot *new)
1791{
1792 int as_id = kvm_memslots_get_as_id(old, new);
1793
1794 kvm_swap_active_memslots(kvm, as_id);
1795
1796 /* Propagate the new memslot to the now inactive memslots. */
1797 kvm_replace_memslot(kvm, old, new);
1798}
1799
1800static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1801 const struct kvm_memory_slot *src)
1802{
1803 dest->base_gfn = src->base_gfn;
1804 dest->npages = src->npages;
1805 dest->dirty_bitmap = src->dirty_bitmap;
1806 dest->arch = src->arch;
1807 dest->userspace_addr = src->userspace_addr;
1808 dest->flags = src->flags;
1809 dest->id = src->id;
1810 dest->as_id = src->as_id;
1811}
1812
1813static void kvm_invalidate_memslot(struct kvm *kvm,
1814 struct kvm_memory_slot *old,
1815 struct kvm_memory_slot *invalid_slot)
1816{
1817 /*
1818 * Mark the current slot INVALID. As with all memslot modifications,
1819 * this must be done on an unreachable slot to avoid modifying the
1820 * current slot in the active tree.
1821 */
1822 kvm_copy_memslot(invalid_slot, old);
1823 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1824 kvm_replace_memslot(kvm, old, invalid_slot);
1825
1826 /*
1827 * Activate the slot that is now marked INVALID, but don't propagate
1828 * the slot to the now inactive slots. The slot is either going to be
1829 * deleted or recreated as a new slot.
1830 */
1831 kvm_swap_active_memslots(kvm, old->as_id);
1832
1833 /*
1834 * From this point no new shadow pages pointing to a deleted, or moved,
1835 * memslot will be created. Validation of sp->gfn happens in:
1836 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1837 * - kvm_is_visible_gfn (mmu_check_root)
1838 */
1839 kvm_arch_flush_shadow_memslot(kvm, old);
1840 kvm_arch_guest_memory_reclaimed(kvm);
1841
1842 /* Was released by kvm_swap_active_memslots(), reacquire. */
1843 mutex_lock(&kvm->slots_arch_lock);
1844
1845 /*
1846 * Copy the arch-specific field of the newly-installed slot back to the
1847 * old slot as the arch data could have changed between releasing
1848 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1849 * above. Writers are required to retrieve memslots *after* acquiring
1850 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1851 */
1852 old->arch = invalid_slot->arch;
1853}
1854
1855static void kvm_create_memslot(struct kvm *kvm,
1856 struct kvm_memory_slot *new)
1857{
1858 /* Add the new memslot to the inactive set and activate. */
1859 kvm_replace_memslot(kvm, NULL, new);
1860 kvm_activate_memslot(kvm, NULL, new);
1861}
1862
1863static void kvm_delete_memslot(struct kvm *kvm,
1864 struct kvm_memory_slot *old,
1865 struct kvm_memory_slot *invalid_slot)
1866{
1867 /*
1868 * Remove the old memslot (in the inactive memslots) by passing NULL as
1869 * the "new" slot, and for the invalid version in the active slots.
1870 */
1871 kvm_replace_memslot(kvm, old, NULL);
1872 kvm_activate_memslot(kvm, invalid_slot, NULL);
1873}
1874
1875static void kvm_move_memslot(struct kvm *kvm,
1876 struct kvm_memory_slot *old,
1877 struct kvm_memory_slot *new,
1878 struct kvm_memory_slot *invalid_slot)
1879{
1880 /*
1881 * Replace the old memslot in the inactive slots, and then swap slots
1882 * and replace the current INVALID with the new as well.
1883 */
1884 kvm_replace_memslot(kvm, old, new);
1885 kvm_activate_memslot(kvm, invalid_slot, new);
1886}
1887
1888static void kvm_update_flags_memslot(struct kvm *kvm,
1889 struct kvm_memory_slot *old,
1890 struct kvm_memory_slot *new)
1891{
1892 /*
1893 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1894 * an intermediate step. Instead, the old memslot is simply replaced
1895 * with a new, updated copy in both memslot sets.
1896 */
1897 kvm_replace_memslot(kvm, old, new);
1898 kvm_activate_memslot(kvm, old, new);
1899}
1900
1901static int kvm_set_memslot(struct kvm *kvm,
1902 struct kvm_memory_slot *old,
1903 struct kvm_memory_slot *new,
1904 enum kvm_mr_change change)
1905{
1906 struct kvm_memory_slot *invalid_slot;
1907 int r;
1908
1909 /*
1910 * Released in kvm_swap_active_memslots().
1911 *
1912 * Must be held from before the current memslots are copied until after
1913 * the new memslots are installed with rcu_assign_pointer, then
1914 * released before the synchronize srcu in kvm_swap_active_memslots().
1915 *
1916 * When modifying memslots outside of the slots_lock, must be held
1917 * before reading the pointer to the current memslots until after all
1918 * changes to those memslots are complete.
1919 *
1920 * These rules ensure that installing new memslots does not lose
1921 * changes made to the previous memslots.
1922 */
1923 mutex_lock(&kvm->slots_arch_lock);
1924
1925 /*
1926 * Invalidate the old slot if it's being deleted or moved. This is
1927 * done prior to actually deleting/moving the memslot to allow vCPUs to
1928 * continue running by ensuring there are no mappings or shadow pages
1929 * for the memslot when it is deleted/moved. Without pre-invalidation
1930 * (and without a lock), a window would exist between effecting the
1931 * delete/move and committing the changes in arch code where KVM or a
1932 * guest could access a non-existent memslot.
1933 *
1934 * Modifications are done on a temporary, unreachable slot. The old
1935 * slot needs to be preserved in case a later step fails and the
1936 * invalidation needs to be reverted.
1937 */
1938 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1940 if (!invalid_slot) {
1941 mutex_unlock(&kvm->slots_arch_lock);
1942 return -ENOMEM;
1943 }
1944 kvm_invalidate_memslot(kvm, old, invalid_slot);
1945 }
1946
1947 r = kvm_prepare_memory_region(kvm, old, new, change);
1948 if (r) {
1949 /*
1950 * For DELETE/MOVE, revert the above INVALID change. No
1951 * modifications required since the original slot was preserved
1952 * in the inactive slots. Changing the active memslots also
1953 * release slots_arch_lock.
1954 */
1955 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1956 kvm_activate_memslot(kvm, invalid_slot, old);
1957 kfree(invalid_slot);
1958 } else {
1959 mutex_unlock(&kvm->slots_arch_lock);
1960 }
1961 return r;
1962 }
1963
1964 /*
1965 * For DELETE and MOVE, the working slot is now active as the INVALID
1966 * version of the old slot. MOVE is particularly special as it reuses
1967 * the old slot and returns a copy of the old slot (in working_slot).
1968 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1969 * old slot is detached but otherwise preserved.
1970 */
1971 if (change == KVM_MR_CREATE)
1972 kvm_create_memslot(kvm, new);
1973 else if (change == KVM_MR_DELETE)
1974 kvm_delete_memslot(kvm, old, invalid_slot);
1975 else if (change == KVM_MR_MOVE)
1976 kvm_move_memslot(kvm, old, new, invalid_slot);
1977 else if (change == KVM_MR_FLAGS_ONLY)
1978 kvm_update_flags_memslot(kvm, old, new);
1979 else
1980 BUG();
1981
1982 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1983 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1984 kfree(invalid_slot);
1985
1986 /*
1987 * No need to refresh new->arch, changes after dropping slots_arch_lock
1988 * will directly hit the final, active memslot. Architectures are
1989 * responsible for knowing that new->arch may be stale.
1990 */
1991 kvm_commit_memory_region(kvm, old, new, change);
1992
1993 return 0;
1994}
1995
1996static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1997 gfn_t start, gfn_t end)
1998{
1999 struct kvm_memslot_iter iter;
2000
2001 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2002 if (iter.slot->id != id)
2003 return true;
2004 }
2005
2006 return false;
2007}
2008
2009/*
2010 * Allocate some memory and give it an address in the guest physical address
2011 * space.
2012 *
2013 * Discontiguous memory is allowed, mostly for framebuffers.
2014 *
2015 * Must be called holding kvm->slots_lock for write.
2016 */
2017int __kvm_set_memory_region(struct kvm *kvm,
2018 const struct kvm_userspace_memory_region2 *mem)
2019{
2020 struct kvm_memory_slot *old, *new;
2021 struct kvm_memslots *slots;
2022 enum kvm_mr_change change;
2023 unsigned long npages;
2024 gfn_t base_gfn;
2025 int as_id, id;
2026 int r;
2027
2028 r = check_memory_region_flags(kvm, mem);
2029 if (r)
2030 return r;
2031
2032 as_id = mem->slot >> 16;
2033 id = (u16)mem->slot;
2034
2035 /* General sanity checks */
2036 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2037 (mem->memory_size != (unsigned long)mem->memory_size))
2038 return -EINVAL;
2039 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2040 return -EINVAL;
2041 /* We can read the guest memory with __xxx_user() later on. */
2042 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2043 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2044 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2045 mem->memory_size))
2046 return -EINVAL;
2047 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2048 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2049 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2050 return -EINVAL;
2051 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2052 return -EINVAL;
2053 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2054 return -EINVAL;
2055 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2056 return -EINVAL;
2057
2058 slots = __kvm_memslots(kvm, as_id);
2059
2060 /*
2061 * Note, the old memslot (and the pointer itself!) may be invalidated
2062 * and/or destroyed by kvm_set_memslot().
2063 */
2064 old = id_to_memslot(slots, id);
2065
2066 if (!mem->memory_size) {
2067 if (!old || !old->npages)
2068 return -EINVAL;
2069
2070 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2071 return -EIO;
2072
2073 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2074 }
2075
2076 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2077 npages = (mem->memory_size >> PAGE_SHIFT);
2078
2079 if (!old || !old->npages) {
2080 change = KVM_MR_CREATE;
2081
2082 /*
2083 * To simplify KVM internals, the total number of pages across
2084 * all memslots must fit in an unsigned long.
2085 */
2086 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2087 return -EINVAL;
2088 } else { /* Modify an existing slot. */
2089 /* Private memslots are immutable, they can only be deleted. */
2090 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2091 return -EINVAL;
2092 if ((mem->userspace_addr != old->userspace_addr) ||
2093 (npages != old->npages) ||
2094 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2095 return -EINVAL;
2096
2097 if (base_gfn != old->base_gfn)
2098 change = KVM_MR_MOVE;
2099 else if (mem->flags != old->flags)
2100 change = KVM_MR_FLAGS_ONLY;
2101 else /* Nothing to change. */
2102 return 0;
2103 }
2104
2105 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2106 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2107 return -EEXIST;
2108
2109 /* Allocate a slot that will persist in the memslot. */
2110 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2111 if (!new)
2112 return -ENOMEM;
2113
2114 new->as_id = as_id;
2115 new->id = id;
2116 new->base_gfn = base_gfn;
2117 new->npages = npages;
2118 new->flags = mem->flags;
2119 new->userspace_addr = mem->userspace_addr;
2120 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2121 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2122 if (r)
2123 goto out;
2124 }
2125
2126 r = kvm_set_memslot(kvm, old, new, change);
2127 if (r)
2128 goto out_unbind;
2129
2130 return 0;
2131
2132out_unbind:
2133 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2134 kvm_gmem_unbind(new);
2135out:
2136 kfree(new);
2137 return r;
2138}
2139EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2140
2141int kvm_set_memory_region(struct kvm *kvm,
2142 const struct kvm_userspace_memory_region2 *mem)
2143{
2144 int r;
2145
2146 mutex_lock(&kvm->slots_lock);
2147 r = __kvm_set_memory_region(kvm, mem);
2148 mutex_unlock(&kvm->slots_lock);
2149 return r;
2150}
2151EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2152
2153static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2154 struct kvm_userspace_memory_region2 *mem)
2155{
2156 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2157 return -EINVAL;
2158
2159 return kvm_set_memory_region(kvm, mem);
2160}
2161
2162#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2163/**
2164 * kvm_get_dirty_log - get a snapshot of dirty pages
2165 * @kvm: pointer to kvm instance
2166 * @log: slot id and address to which we copy the log
2167 * @is_dirty: set to '1' if any dirty pages were found
2168 * @memslot: set to the associated memslot, always valid on success
2169 */
2170int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2171 int *is_dirty, struct kvm_memory_slot **memslot)
2172{
2173 struct kvm_memslots *slots;
2174 int i, as_id, id;
2175 unsigned long n;
2176 unsigned long any = 0;
2177
2178 /* Dirty ring tracking may be exclusive to dirty log tracking */
2179 if (!kvm_use_dirty_bitmap(kvm))
2180 return -ENXIO;
2181
2182 *memslot = NULL;
2183 *is_dirty = 0;
2184
2185 as_id = log->slot >> 16;
2186 id = (u16)log->slot;
2187 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2188 return -EINVAL;
2189
2190 slots = __kvm_memslots(kvm, as_id);
2191 *memslot = id_to_memslot(slots, id);
2192 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2193 return -ENOENT;
2194
2195 kvm_arch_sync_dirty_log(kvm, *memslot);
2196
2197 n = kvm_dirty_bitmap_bytes(*memslot);
2198
2199 for (i = 0; !any && i < n/sizeof(long); ++i)
2200 any = (*memslot)->dirty_bitmap[i];
2201
2202 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2203 return -EFAULT;
2204
2205 if (any)
2206 *is_dirty = 1;
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2210
2211#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2212/**
2213 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2214 * and reenable dirty page tracking for the corresponding pages.
2215 * @kvm: pointer to kvm instance
2216 * @log: slot id and address to which we copy the log
2217 *
2218 * We need to keep it in mind that VCPU threads can write to the bitmap
2219 * concurrently. So, to avoid losing track of dirty pages we keep the
2220 * following order:
2221 *
2222 * 1. Take a snapshot of the bit and clear it if needed.
2223 * 2. Write protect the corresponding page.
2224 * 3. Copy the snapshot to the userspace.
2225 * 4. Upon return caller flushes TLB's if needed.
2226 *
2227 * Between 2 and 4, the guest may write to the page using the remaining TLB
2228 * entry. This is not a problem because the page is reported dirty using
2229 * the snapshot taken before and step 4 ensures that writes done after
2230 * exiting to userspace will be logged for the next call.
2231 *
2232 */
2233static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2234{
2235 struct kvm_memslots *slots;
2236 struct kvm_memory_slot *memslot;
2237 int i, as_id, id;
2238 unsigned long n;
2239 unsigned long *dirty_bitmap;
2240 unsigned long *dirty_bitmap_buffer;
2241 bool flush;
2242
2243 /* Dirty ring tracking may be exclusive to dirty log tracking */
2244 if (!kvm_use_dirty_bitmap(kvm))
2245 return -ENXIO;
2246
2247 as_id = log->slot >> 16;
2248 id = (u16)log->slot;
2249 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2250 return -EINVAL;
2251
2252 slots = __kvm_memslots(kvm, as_id);
2253 memslot = id_to_memslot(slots, id);
2254 if (!memslot || !memslot->dirty_bitmap)
2255 return -ENOENT;
2256
2257 dirty_bitmap = memslot->dirty_bitmap;
2258
2259 kvm_arch_sync_dirty_log(kvm, memslot);
2260
2261 n = kvm_dirty_bitmap_bytes(memslot);
2262 flush = false;
2263 if (kvm->manual_dirty_log_protect) {
2264 /*
2265 * Unlike kvm_get_dirty_log, we always return false in *flush,
2266 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2267 * is some code duplication between this function and
2268 * kvm_get_dirty_log, but hopefully all architecture
2269 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2270 * can be eliminated.
2271 */
2272 dirty_bitmap_buffer = dirty_bitmap;
2273 } else {
2274 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2275 memset(dirty_bitmap_buffer, 0, n);
2276
2277 KVM_MMU_LOCK(kvm);
2278 for (i = 0; i < n / sizeof(long); i++) {
2279 unsigned long mask;
2280 gfn_t offset;
2281
2282 if (!dirty_bitmap[i])
2283 continue;
2284
2285 flush = true;
2286 mask = xchg(&dirty_bitmap[i], 0);
2287 dirty_bitmap_buffer[i] = mask;
2288
2289 offset = i * BITS_PER_LONG;
2290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291 offset, mask);
2292 }
2293 KVM_MMU_UNLOCK(kvm);
2294 }
2295
2296 if (flush)
2297 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2298
2299 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2300 return -EFAULT;
2301 return 0;
2302}
2303
2304
2305/**
2306 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2307 * @kvm: kvm instance
2308 * @log: slot id and address to which we copy the log
2309 *
2310 * Steps 1-4 below provide general overview of dirty page logging. See
2311 * kvm_get_dirty_log_protect() function description for additional details.
2312 *
2313 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2314 * always flush the TLB (step 4) even if previous step failed and the dirty
2315 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2316 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2317 * writes will be marked dirty for next log read.
2318 *
2319 * 1. Take a snapshot of the bit and clear it if needed.
2320 * 2. Write protect the corresponding page.
2321 * 3. Copy the snapshot to the userspace.
2322 * 4. Flush TLB's if needed.
2323 */
2324static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2325 struct kvm_dirty_log *log)
2326{
2327 int r;
2328
2329 mutex_lock(&kvm->slots_lock);
2330
2331 r = kvm_get_dirty_log_protect(kvm, log);
2332
2333 mutex_unlock(&kvm->slots_lock);
2334 return r;
2335}
2336
2337/**
2338 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2339 * and reenable dirty page tracking for the corresponding pages.
2340 * @kvm: pointer to kvm instance
2341 * @log: slot id and address from which to fetch the bitmap of dirty pages
2342 */
2343static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2344 struct kvm_clear_dirty_log *log)
2345{
2346 struct kvm_memslots *slots;
2347 struct kvm_memory_slot *memslot;
2348 int as_id, id;
2349 gfn_t offset;
2350 unsigned long i, n;
2351 unsigned long *dirty_bitmap;
2352 unsigned long *dirty_bitmap_buffer;
2353 bool flush;
2354
2355 /* Dirty ring tracking may be exclusive to dirty log tracking */
2356 if (!kvm_use_dirty_bitmap(kvm))
2357 return -ENXIO;
2358
2359 as_id = log->slot >> 16;
2360 id = (u16)log->slot;
2361 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2362 return -EINVAL;
2363
2364 if (log->first_page & 63)
2365 return -EINVAL;
2366
2367 slots = __kvm_memslots(kvm, as_id);
2368 memslot = id_to_memslot(slots, id);
2369 if (!memslot || !memslot->dirty_bitmap)
2370 return -ENOENT;
2371
2372 dirty_bitmap = memslot->dirty_bitmap;
2373
2374 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2375
2376 if (log->first_page > memslot->npages ||
2377 log->num_pages > memslot->npages - log->first_page ||
2378 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2379 return -EINVAL;
2380
2381 kvm_arch_sync_dirty_log(kvm, memslot);
2382
2383 flush = false;
2384 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2385 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2386 return -EFAULT;
2387
2388 KVM_MMU_LOCK(kvm);
2389 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2390 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2391 i++, offset += BITS_PER_LONG) {
2392 unsigned long mask = *dirty_bitmap_buffer++;
2393 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2394 if (!mask)
2395 continue;
2396
2397 mask &= atomic_long_fetch_andnot(mask, p);
2398
2399 /*
2400 * mask contains the bits that really have been cleared. This
2401 * never includes any bits beyond the length of the memslot (if
2402 * the length is not aligned to 64 pages), therefore it is not
2403 * a problem if userspace sets them in log->dirty_bitmap.
2404 */
2405 if (mask) {
2406 flush = true;
2407 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2408 offset, mask);
2409 }
2410 }
2411 KVM_MMU_UNLOCK(kvm);
2412
2413 if (flush)
2414 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2415
2416 return 0;
2417}
2418
2419static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2420 struct kvm_clear_dirty_log *log)
2421{
2422 int r;
2423
2424 mutex_lock(&kvm->slots_lock);
2425
2426 r = kvm_clear_dirty_log_protect(kvm, log);
2427
2428 mutex_unlock(&kvm->slots_lock);
2429 return r;
2430}
2431#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2432
2433#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2434/*
2435 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2436 * matching @attrs.
2437 */
2438bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2439 unsigned long attrs)
2440{
2441 XA_STATE(xas, &kvm->mem_attr_array, start);
2442 unsigned long index;
2443 bool has_attrs;
2444 void *entry;
2445
2446 rcu_read_lock();
2447
2448 if (!attrs) {
2449 has_attrs = !xas_find(&xas, end - 1);
2450 goto out;
2451 }
2452
2453 has_attrs = true;
2454 for (index = start; index < end; index++) {
2455 do {
2456 entry = xas_next(&xas);
2457 } while (xas_retry(&xas, entry));
2458
2459 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2460 has_attrs = false;
2461 break;
2462 }
2463 }
2464
2465out:
2466 rcu_read_unlock();
2467 return has_attrs;
2468}
2469
2470static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2471{
2472 if (!kvm || kvm_arch_has_private_mem(kvm))
2473 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2474
2475 return 0;
2476}
2477
2478static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2479 struct kvm_mmu_notifier_range *range)
2480{
2481 struct kvm_gfn_range gfn_range;
2482 struct kvm_memory_slot *slot;
2483 struct kvm_memslots *slots;
2484 struct kvm_memslot_iter iter;
2485 bool found_memslot = false;
2486 bool ret = false;
2487 int i;
2488
2489 gfn_range.arg = range->arg;
2490 gfn_range.may_block = range->may_block;
2491
2492 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2493 slots = __kvm_memslots(kvm, i);
2494
2495 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2496 slot = iter.slot;
2497 gfn_range.slot = slot;
2498
2499 gfn_range.start = max(range->start, slot->base_gfn);
2500 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2501 if (gfn_range.start >= gfn_range.end)
2502 continue;
2503
2504 if (!found_memslot) {
2505 found_memslot = true;
2506 KVM_MMU_LOCK(kvm);
2507 if (!IS_KVM_NULL_FN(range->on_lock))
2508 range->on_lock(kvm);
2509 }
2510
2511 ret |= range->handler(kvm, &gfn_range);
2512 }
2513 }
2514
2515 if (range->flush_on_ret && ret)
2516 kvm_flush_remote_tlbs(kvm);
2517
2518 if (found_memslot)
2519 KVM_MMU_UNLOCK(kvm);
2520}
2521
2522static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2523 struct kvm_gfn_range *range)
2524{
2525 /*
2526 * Unconditionally add the range to the invalidation set, regardless of
2527 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2528 * if KVM supports RWX attributes in the future and the attributes are
2529 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2530 * adding the range allows KVM to require that MMU invalidations add at
2531 * least one range between begin() and end(), e.g. allows KVM to detect
2532 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2533 * but it's not obvious that allowing new mappings while the attributes
2534 * are in flux is desirable or worth the complexity.
2535 */
2536 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2537
2538 return kvm_arch_pre_set_memory_attributes(kvm, range);
2539}
2540
2541/* Set @attributes for the gfn range [@start, @end). */
2542static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2543 unsigned long attributes)
2544{
2545 struct kvm_mmu_notifier_range pre_set_range = {
2546 .start = start,
2547 .end = end,
2548 .handler = kvm_pre_set_memory_attributes,
2549 .on_lock = kvm_mmu_invalidate_begin,
2550 .flush_on_ret = true,
2551 .may_block = true,
2552 };
2553 struct kvm_mmu_notifier_range post_set_range = {
2554 .start = start,
2555 .end = end,
2556 .arg.attributes = attributes,
2557 .handler = kvm_arch_post_set_memory_attributes,
2558 .on_lock = kvm_mmu_invalidate_end,
2559 .may_block = true,
2560 };
2561 unsigned long i;
2562 void *entry;
2563 int r = 0;
2564
2565 entry = attributes ? xa_mk_value(attributes) : NULL;
2566
2567 mutex_lock(&kvm->slots_lock);
2568
2569 /* Nothing to do if the entire range as the desired attributes. */
2570 if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2571 goto out_unlock;
2572
2573 /*
2574 * Reserve memory ahead of time to avoid having to deal with failures
2575 * partway through setting the new attributes.
2576 */
2577 for (i = start; i < end; i++) {
2578 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2579 if (r)
2580 goto out_unlock;
2581 }
2582
2583 kvm_handle_gfn_range(kvm, &pre_set_range);
2584
2585 for (i = start; i < end; i++) {
2586 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2587 GFP_KERNEL_ACCOUNT));
2588 KVM_BUG_ON(r, kvm);
2589 }
2590
2591 kvm_handle_gfn_range(kvm, &post_set_range);
2592
2593out_unlock:
2594 mutex_unlock(&kvm->slots_lock);
2595
2596 return r;
2597}
2598static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2599 struct kvm_memory_attributes *attrs)
2600{
2601 gfn_t start, end;
2602
2603 /* flags is currently not used. */
2604 if (attrs->flags)
2605 return -EINVAL;
2606 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2607 return -EINVAL;
2608 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2609 return -EINVAL;
2610 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2611 return -EINVAL;
2612
2613 start = attrs->address >> PAGE_SHIFT;
2614 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2615
2616 /*
2617 * xarray tracks data using "unsigned long", and as a result so does
2618 * KVM. For simplicity, supports generic attributes only on 64-bit
2619 * architectures.
2620 */
2621 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2622
2623 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2624}
2625#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2626
2627struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2628{
2629 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2630}
2631EXPORT_SYMBOL_GPL(gfn_to_memslot);
2632
2633struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2634{
2635 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2636 u64 gen = slots->generation;
2637 struct kvm_memory_slot *slot;
2638
2639 /*
2640 * This also protects against using a memslot from a different address space,
2641 * since different address spaces have different generation numbers.
2642 */
2643 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2644 vcpu->last_used_slot = NULL;
2645 vcpu->last_used_slot_gen = gen;
2646 }
2647
2648 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2649 if (slot)
2650 return slot;
2651
2652 /*
2653 * Fall back to searching all memslots. We purposely use
2654 * search_memslots() instead of __gfn_to_memslot() to avoid
2655 * thrashing the VM-wide last_used_slot in kvm_memslots.
2656 */
2657 slot = search_memslots(slots, gfn, false);
2658 if (slot) {
2659 vcpu->last_used_slot = slot;
2660 return slot;
2661 }
2662
2663 return NULL;
2664}
2665
2666bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2667{
2668 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2669
2670 return kvm_is_visible_memslot(memslot);
2671}
2672EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2673
2674bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2675{
2676 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2677
2678 return kvm_is_visible_memslot(memslot);
2679}
2680EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2681
2682unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2683{
2684 struct vm_area_struct *vma;
2685 unsigned long addr, size;
2686
2687 size = PAGE_SIZE;
2688
2689 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2690 if (kvm_is_error_hva(addr))
2691 return PAGE_SIZE;
2692
2693 mmap_read_lock(current->mm);
2694 vma = find_vma(current->mm, addr);
2695 if (!vma)
2696 goto out;
2697
2698 size = vma_kernel_pagesize(vma);
2699
2700out:
2701 mmap_read_unlock(current->mm);
2702
2703 return size;
2704}
2705
2706static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2707{
2708 return slot->flags & KVM_MEM_READONLY;
2709}
2710
2711static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2712 gfn_t *nr_pages, bool write)
2713{
2714 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2715 return KVM_HVA_ERR_BAD;
2716
2717 if (memslot_is_readonly(slot) && write)
2718 return KVM_HVA_ERR_RO_BAD;
2719
2720 if (nr_pages)
2721 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2722
2723 return __gfn_to_hva_memslot(slot, gfn);
2724}
2725
2726static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2727 gfn_t *nr_pages)
2728{
2729 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2730}
2731
2732unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2733 gfn_t gfn)
2734{
2735 return gfn_to_hva_many(slot, gfn, NULL);
2736}
2737EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2738
2739unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2740{
2741 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2742}
2743EXPORT_SYMBOL_GPL(gfn_to_hva);
2744
2745unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2746{
2747 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2748}
2749EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2750
2751/*
2752 * Return the hva of a @gfn and the R/W attribute if possible.
2753 *
2754 * @slot: the kvm_memory_slot which contains @gfn
2755 * @gfn: the gfn to be translated
2756 * @writable: used to return the read/write attribute of the @slot if the hva
2757 * is valid and @writable is not NULL
2758 */
2759unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2760 gfn_t gfn, bool *writable)
2761{
2762 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2763
2764 if (!kvm_is_error_hva(hva) && writable)
2765 *writable = !memslot_is_readonly(slot);
2766
2767 return hva;
2768}
2769
2770unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2771{
2772 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2773
2774 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2775}
2776
2777unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2778{
2779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2780
2781 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2782}
2783
2784static inline int check_user_page_hwpoison(unsigned long addr)
2785{
2786 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2787
2788 rc = get_user_pages(addr, 1, flags, NULL);
2789 return rc == -EHWPOISON;
2790}
2791
2792/*
2793 * The fast path to get the writable pfn which will be stored in @pfn,
2794 * true indicates success, otherwise false is returned. It's also the
2795 * only part that runs if we can in atomic context.
2796 */
2797static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2798 bool *writable, kvm_pfn_t *pfn)
2799{
2800 struct page *page[1];
2801
2802 /*
2803 * Fast pin a writable pfn only if it is a write fault request
2804 * or the caller allows to map a writable pfn for a read fault
2805 * request.
2806 */
2807 if (!(write_fault || writable))
2808 return false;
2809
2810 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2811 *pfn = page_to_pfn(page[0]);
2812
2813 if (writable)
2814 *writable = true;
2815 return true;
2816 }
2817
2818 return false;
2819}
2820
2821/*
2822 * The slow path to get the pfn of the specified host virtual address,
2823 * 1 indicates success, -errno is returned if error is detected.
2824 */
2825static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2826 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2827{
2828 /*
2829 * When a VCPU accesses a page that is not mapped into the secondary
2830 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2831 * make progress. We always want to honor NUMA hinting faults in that
2832 * case, because GUP usage corresponds to memory accesses from the VCPU.
2833 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2834 * mapped into the secondary MMU and gets accessed by a VCPU.
2835 *
2836 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2837 * implicitly honor NUMA hinting faults and don't need this flag.
2838 */
2839 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2840 struct page *page;
2841 int npages;
2842
2843 might_sleep();
2844
2845 if (writable)
2846 *writable = write_fault;
2847
2848 if (write_fault)
2849 flags |= FOLL_WRITE;
2850 if (async)
2851 flags |= FOLL_NOWAIT;
2852 if (interruptible)
2853 flags |= FOLL_INTERRUPTIBLE;
2854
2855 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2856 if (npages != 1)
2857 return npages;
2858
2859 /* map read fault as writable if possible */
2860 if (unlikely(!write_fault) && writable) {
2861 struct page *wpage;
2862
2863 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2864 *writable = true;
2865 put_page(page);
2866 page = wpage;
2867 }
2868 }
2869 *pfn = page_to_pfn(page);
2870 return npages;
2871}
2872
2873static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2874{
2875 if (unlikely(!(vma->vm_flags & VM_READ)))
2876 return false;
2877
2878 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2879 return false;
2880
2881 return true;
2882}
2883
2884static int kvm_try_get_pfn(kvm_pfn_t pfn)
2885{
2886 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2887
2888 if (!page)
2889 return 1;
2890
2891 return get_page_unless_zero(page);
2892}
2893
2894static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2895 unsigned long addr, bool write_fault,
2896 bool *writable, kvm_pfn_t *p_pfn)
2897{
2898 kvm_pfn_t pfn;
2899 pte_t *ptep;
2900 pte_t pte;
2901 spinlock_t *ptl;
2902 int r;
2903
2904 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2905 if (r) {
2906 /*
2907 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2908 * not call the fault handler, so do it here.
2909 */
2910 bool unlocked = false;
2911 r = fixup_user_fault(current->mm, addr,
2912 (write_fault ? FAULT_FLAG_WRITE : 0),
2913 &unlocked);
2914 if (unlocked)
2915 return -EAGAIN;
2916 if (r)
2917 return r;
2918
2919 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2920 if (r)
2921 return r;
2922 }
2923
2924 pte = ptep_get(ptep);
2925
2926 if (write_fault && !pte_write(pte)) {
2927 pfn = KVM_PFN_ERR_RO_FAULT;
2928 goto out;
2929 }
2930
2931 if (writable)
2932 *writable = pte_write(pte);
2933 pfn = pte_pfn(pte);
2934
2935 /*
2936 * Get a reference here because callers of *hva_to_pfn* and
2937 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2938 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2939 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2940 * simply do nothing for reserved pfns.
2941 *
2942 * Whoever called remap_pfn_range is also going to call e.g.
2943 * unmap_mapping_range before the underlying pages are freed,
2944 * causing a call to our MMU notifier.
2945 *
2946 * Certain IO or PFNMAP mappings can be backed with valid
2947 * struct pages, but be allocated without refcounting e.g.,
2948 * tail pages of non-compound higher order allocations, which
2949 * would then underflow the refcount when the caller does the
2950 * required put_page. Don't allow those pages here.
2951 */
2952 if (!kvm_try_get_pfn(pfn))
2953 r = -EFAULT;
2954
2955out:
2956 pte_unmap_unlock(ptep, ptl);
2957 *p_pfn = pfn;
2958
2959 return r;
2960}
2961
2962/*
2963 * Pin guest page in memory and return its pfn.
2964 * @addr: host virtual address which maps memory to the guest
2965 * @atomic: whether this function can sleep
2966 * @interruptible: whether the process can be interrupted by non-fatal signals
2967 * @async: whether this function need to wait IO complete if the
2968 * host page is not in the memory
2969 * @write_fault: whether we should get a writable host page
2970 * @writable: whether it allows to map a writable host page for !@write_fault
2971 *
2972 * The function will map a writable host page for these two cases:
2973 * 1): @write_fault = true
2974 * 2): @write_fault = false && @writable, @writable will tell the caller
2975 * whether the mapping is writable.
2976 */
2977kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2978 bool *async, bool write_fault, bool *writable)
2979{
2980 struct vm_area_struct *vma;
2981 kvm_pfn_t pfn;
2982 int npages, r;
2983
2984 /* we can do it either atomically or asynchronously, not both */
2985 BUG_ON(atomic && async);
2986
2987 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2988 return pfn;
2989
2990 if (atomic)
2991 return KVM_PFN_ERR_FAULT;
2992
2993 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2994 writable, &pfn);
2995 if (npages == 1)
2996 return pfn;
2997 if (npages == -EINTR)
2998 return KVM_PFN_ERR_SIGPENDING;
2999
3000 mmap_read_lock(current->mm);
3001 if (npages == -EHWPOISON ||
3002 (!async && check_user_page_hwpoison(addr))) {
3003 pfn = KVM_PFN_ERR_HWPOISON;
3004 goto exit;
3005 }
3006
3007retry:
3008 vma = vma_lookup(current->mm, addr);
3009
3010 if (vma == NULL)
3011 pfn = KVM_PFN_ERR_FAULT;
3012 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3013 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3014 if (r == -EAGAIN)
3015 goto retry;
3016 if (r < 0)
3017 pfn = KVM_PFN_ERR_FAULT;
3018 } else {
3019 if (async && vma_is_valid(vma, write_fault))
3020 *async = true;
3021 pfn = KVM_PFN_ERR_FAULT;
3022 }
3023exit:
3024 mmap_read_unlock(current->mm);
3025 return pfn;
3026}
3027
3028kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3029 bool atomic, bool interruptible, bool *async,
3030 bool write_fault, bool *writable, hva_t *hva)
3031{
3032 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3033
3034 if (hva)
3035 *hva = addr;
3036
3037 if (addr == KVM_HVA_ERR_RO_BAD) {
3038 if (writable)
3039 *writable = false;
3040 return KVM_PFN_ERR_RO_FAULT;
3041 }
3042
3043 if (kvm_is_error_hva(addr)) {
3044 if (writable)
3045 *writable = false;
3046 return KVM_PFN_NOSLOT;
3047 }
3048
3049 /* Do not map writable pfn in the readonly memslot. */
3050 if (writable && memslot_is_readonly(slot)) {
3051 *writable = false;
3052 writable = NULL;
3053 }
3054
3055 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3056 writable);
3057}
3058EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3059
3060kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3061 bool *writable)
3062{
3063 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3064 NULL, write_fault, writable, NULL);
3065}
3066EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3067
3068kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3069{
3070 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3071 NULL, NULL);
3072}
3073EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3074
3075kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3076{
3077 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3078 NULL, NULL);
3079}
3080EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3081
3082kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3083{
3084 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3085}
3086EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3087
3088kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3089{
3090 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3091}
3092EXPORT_SYMBOL_GPL(gfn_to_pfn);
3093
3094kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3095{
3096 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3097}
3098EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3099
3100int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3101 struct page **pages, int nr_pages)
3102{
3103 unsigned long addr;
3104 gfn_t entry = 0;
3105
3106 addr = gfn_to_hva_many(slot, gfn, &entry);
3107 if (kvm_is_error_hva(addr))
3108 return -1;
3109
3110 if (entry < nr_pages)
3111 return 0;
3112
3113 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3114}
3115EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3116
3117/*
3118 * Do not use this helper unless you are absolutely certain the gfn _must_ be
3119 * backed by 'struct page'. A valid example is if the backing memslot is
3120 * controlled by KVM. Note, if the returned page is valid, it's refcount has
3121 * been elevated by gfn_to_pfn().
3122 */
3123struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3124{
3125 struct page *page;
3126 kvm_pfn_t pfn;
3127
3128 pfn = gfn_to_pfn(kvm, gfn);
3129
3130 if (is_error_noslot_pfn(pfn))
3131 return KVM_ERR_PTR_BAD_PAGE;
3132
3133 page = kvm_pfn_to_refcounted_page(pfn);
3134 if (!page)
3135 return KVM_ERR_PTR_BAD_PAGE;
3136
3137 return page;
3138}
3139EXPORT_SYMBOL_GPL(gfn_to_page);
3140
3141void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3142{
3143 if (dirty)
3144 kvm_release_pfn_dirty(pfn);
3145 else
3146 kvm_release_pfn_clean(pfn);
3147}
3148
3149int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3150{
3151 kvm_pfn_t pfn;
3152 void *hva = NULL;
3153 struct page *page = KVM_UNMAPPED_PAGE;
3154
3155 if (!map)
3156 return -EINVAL;
3157
3158 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3159 if (is_error_noslot_pfn(pfn))
3160 return -EINVAL;
3161
3162 if (pfn_valid(pfn)) {
3163 page = pfn_to_page(pfn);
3164 hva = kmap(page);
3165#ifdef CONFIG_HAS_IOMEM
3166 } else {
3167 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3168#endif
3169 }
3170
3171 if (!hva)
3172 return -EFAULT;
3173
3174 map->page = page;
3175 map->hva = hva;
3176 map->pfn = pfn;
3177 map->gfn = gfn;
3178
3179 return 0;
3180}
3181EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3182
3183void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3184{
3185 if (!map)
3186 return;
3187
3188 if (!map->hva)
3189 return;
3190
3191 if (map->page != KVM_UNMAPPED_PAGE)
3192 kunmap(map->page);
3193#ifdef CONFIG_HAS_IOMEM
3194 else
3195 memunmap(map->hva);
3196#endif
3197
3198 if (dirty)
3199 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3200
3201 kvm_release_pfn(map->pfn, dirty);
3202
3203 map->hva = NULL;
3204 map->page = NULL;
3205}
3206EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3207
3208static bool kvm_is_ad_tracked_page(struct page *page)
3209{
3210 /*
3211 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3212 * touched (e.g. set dirty) except by its owner".
3213 */
3214 return !PageReserved(page);
3215}
3216
3217static void kvm_set_page_dirty(struct page *page)
3218{
3219 if (kvm_is_ad_tracked_page(page))
3220 SetPageDirty(page);
3221}
3222
3223static void kvm_set_page_accessed(struct page *page)
3224{
3225 if (kvm_is_ad_tracked_page(page))
3226 mark_page_accessed(page);
3227}
3228
3229void kvm_release_page_clean(struct page *page)
3230{
3231 WARN_ON(is_error_page(page));
3232
3233 kvm_set_page_accessed(page);
3234 put_page(page);
3235}
3236EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3237
3238void kvm_release_pfn_clean(kvm_pfn_t pfn)
3239{
3240 struct page *page;
3241
3242 if (is_error_noslot_pfn(pfn))
3243 return;
3244
3245 page = kvm_pfn_to_refcounted_page(pfn);
3246 if (!page)
3247 return;
3248
3249 kvm_release_page_clean(page);
3250}
3251EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3252
3253void kvm_release_page_dirty(struct page *page)
3254{
3255 WARN_ON(is_error_page(page));
3256
3257 kvm_set_page_dirty(page);
3258 kvm_release_page_clean(page);
3259}
3260EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3261
3262void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3263{
3264 struct page *page;
3265
3266 if (is_error_noslot_pfn(pfn))
3267 return;
3268
3269 page = kvm_pfn_to_refcounted_page(pfn);
3270 if (!page)
3271 return;
3272
3273 kvm_release_page_dirty(page);
3274}
3275EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3276
3277/*
3278 * Note, checking for an error/noslot pfn is the caller's responsibility when
3279 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3280 * "set" helpers are not to be used when the pfn might point at garbage.
3281 */
3282void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3283{
3284 if (WARN_ON(is_error_noslot_pfn(pfn)))
3285 return;
3286
3287 if (pfn_valid(pfn))
3288 kvm_set_page_dirty(pfn_to_page(pfn));
3289}
3290EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3291
3292void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3293{
3294 if (WARN_ON(is_error_noslot_pfn(pfn)))
3295 return;
3296
3297 if (pfn_valid(pfn))
3298 kvm_set_page_accessed(pfn_to_page(pfn));
3299}
3300EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3301
3302static int next_segment(unsigned long len, int offset)
3303{
3304 if (len > PAGE_SIZE - offset)
3305 return PAGE_SIZE - offset;
3306 else
3307 return len;
3308}
3309
3310static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3311 void *data, int offset, int len)
3312{
3313 int r;
3314 unsigned long addr;
3315
3316 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3317 if (kvm_is_error_hva(addr))
3318 return -EFAULT;
3319 r = __copy_from_user(data, (void __user *)addr + offset, len);
3320 if (r)
3321 return -EFAULT;
3322 return 0;
3323}
3324
3325int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3326 int len)
3327{
3328 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3329
3330 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3331}
3332EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3333
3334int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3335 int offset, int len)
3336{
3337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3338
3339 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3340}
3341EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3342
3343int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3344{
3345 gfn_t gfn = gpa >> PAGE_SHIFT;
3346 int seg;
3347 int offset = offset_in_page(gpa);
3348 int ret;
3349
3350 while ((seg = next_segment(len, offset)) != 0) {
3351 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3352 if (ret < 0)
3353 return ret;
3354 offset = 0;
3355 len -= seg;
3356 data += seg;
3357 ++gfn;
3358 }
3359 return 0;
3360}
3361EXPORT_SYMBOL_GPL(kvm_read_guest);
3362
3363int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3364{
3365 gfn_t gfn = gpa >> PAGE_SHIFT;
3366 int seg;
3367 int offset = offset_in_page(gpa);
3368 int ret;
3369
3370 while ((seg = next_segment(len, offset)) != 0) {
3371 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3372 if (ret < 0)
3373 return ret;
3374 offset = 0;
3375 len -= seg;
3376 data += seg;
3377 ++gfn;
3378 }
3379 return 0;
3380}
3381EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3382
3383static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3384 void *data, int offset, unsigned long len)
3385{
3386 int r;
3387 unsigned long addr;
3388
3389 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3390 if (kvm_is_error_hva(addr))
3391 return -EFAULT;
3392 pagefault_disable();
3393 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3394 pagefault_enable();
3395 if (r)
3396 return -EFAULT;
3397 return 0;
3398}
3399
3400int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3401 void *data, unsigned long len)
3402{
3403 gfn_t gfn = gpa >> PAGE_SHIFT;
3404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3405 int offset = offset_in_page(gpa);
3406
3407 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3408}
3409EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3410
3411static int __kvm_write_guest_page(struct kvm *kvm,
3412 struct kvm_memory_slot *memslot, gfn_t gfn,
3413 const void *data, int offset, int len)
3414{
3415 int r;
3416 unsigned long addr;
3417
3418 addr = gfn_to_hva_memslot(memslot, gfn);
3419 if (kvm_is_error_hva(addr))
3420 return -EFAULT;
3421 r = __copy_to_user((void __user *)addr + offset, data, len);
3422 if (r)
3423 return -EFAULT;
3424 mark_page_dirty_in_slot(kvm, memslot, gfn);
3425 return 0;
3426}
3427
3428int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3429 const void *data, int offset, int len)
3430{
3431 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3432
3433 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3434}
3435EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3436
3437int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3438 const void *data, int offset, int len)
3439{
3440 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3441
3442 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3443}
3444EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3445
3446int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3447 unsigned long len)
3448{
3449 gfn_t gfn = gpa >> PAGE_SHIFT;
3450 int seg;
3451 int offset = offset_in_page(gpa);
3452 int ret;
3453
3454 while ((seg = next_segment(len, offset)) != 0) {
3455 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3456 if (ret < 0)
3457 return ret;
3458 offset = 0;
3459 len -= seg;
3460 data += seg;
3461 ++gfn;
3462 }
3463 return 0;
3464}
3465EXPORT_SYMBOL_GPL(kvm_write_guest);
3466
3467int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3468 unsigned long len)
3469{
3470 gfn_t gfn = gpa >> PAGE_SHIFT;
3471 int seg;
3472 int offset = offset_in_page(gpa);
3473 int ret;
3474
3475 while ((seg = next_segment(len, offset)) != 0) {
3476 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3477 if (ret < 0)
3478 return ret;
3479 offset = 0;
3480 len -= seg;
3481 data += seg;
3482 ++gfn;
3483 }
3484 return 0;
3485}
3486EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3487
3488static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3489 struct gfn_to_hva_cache *ghc,
3490 gpa_t gpa, unsigned long len)
3491{
3492 int offset = offset_in_page(gpa);
3493 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3494 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3495 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3496 gfn_t nr_pages_avail;
3497
3498 /* Update ghc->generation before performing any error checks. */
3499 ghc->generation = slots->generation;
3500
3501 if (start_gfn > end_gfn) {
3502 ghc->hva = KVM_HVA_ERR_BAD;
3503 return -EINVAL;
3504 }
3505
3506 /*
3507 * If the requested region crosses two memslots, we still
3508 * verify that the entire region is valid here.
3509 */
3510 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3511 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3512 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3513 &nr_pages_avail);
3514 if (kvm_is_error_hva(ghc->hva))
3515 return -EFAULT;
3516 }
3517
3518 /* Use the slow path for cross page reads and writes. */
3519 if (nr_pages_needed == 1)
3520 ghc->hva += offset;
3521 else
3522 ghc->memslot = NULL;
3523
3524 ghc->gpa = gpa;
3525 ghc->len = len;
3526 return 0;
3527}
3528
3529int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3530 gpa_t gpa, unsigned long len)
3531{
3532 struct kvm_memslots *slots = kvm_memslots(kvm);
3533 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3534}
3535EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3536
3537int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3538 void *data, unsigned int offset,
3539 unsigned long len)
3540{
3541 struct kvm_memslots *slots = kvm_memslots(kvm);
3542 int r;
3543 gpa_t gpa = ghc->gpa + offset;
3544
3545 if (WARN_ON_ONCE(len + offset > ghc->len))
3546 return -EINVAL;
3547
3548 if (slots->generation != ghc->generation) {
3549 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3550 return -EFAULT;
3551 }
3552
3553 if (kvm_is_error_hva(ghc->hva))
3554 return -EFAULT;
3555
3556 if (unlikely(!ghc->memslot))
3557 return kvm_write_guest(kvm, gpa, data, len);
3558
3559 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3560 if (r)
3561 return -EFAULT;
3562 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3563
3564 return 0;
3565}
3566EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3567
3568int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3569 void *data, unsigned long len)
3570{
3571 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3572}
3573EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3574
3575int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3576 void *data, unsigned int offset,
3577 unsigned long len)
3578{
3579 struct kvm_memslots *slots = kvm_memslots(kvm);
3580 int r;
3581 gpa_t gpa = ghc->gpa + offset;
3582
3583 if (WARN_ON_ONCE(len + offset > ghc->len))
3584 return -EINVAL;
3585
3586 if (slots->generation != ghc->generation) {
3587 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3588 return -EFAULT;
3589 }
3590
3591 if (kvm_is_error_hva(ghc->hva))
3592 return -EFAULT;
3593
3594 if (unlikely(!ghc->memslot))
3595 return kvm_read_guest(kvm, gpa, data, len);
3596
3597 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3598 if (r)
3599 return -EFAULT;
3600
3601 return 0;
3602}
3603EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3604
3605int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3606 void *data, unsigned long len)
3607{
3608 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3609}
3610EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3611
3612int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3613{
3614 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3615 gfn_t gfn = gpa >> PAGE_SHIFT;
3616 int seg;
3617 int offset = offset_in_page(gpa);
3618 int ret;
3619
3620 while ((seg = next_segment(len, offset)) != 0) {
3621 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3622 if (ret < 0)
3623 return ret;
3624 offset = 0;
3625 len -= seg;
3626 ++gfn;
3627 }
3628 return 0;
3629}
3630EXPORT_SYMBOL_GPL(kvm_clear_guest);
3631
3632void mark_page_dirty_in_slot(struct kvm *kvm,
3633 const struct kvm_memory_slot *memslot,
3634 gfn_t gfn)
3635{
3636 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3637
3638#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3639 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3640 return;
3641
3642 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3643#endif
3644
3645 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3646 unsigned long rel_gfn = gfn - memslot->base_gfn;
3647 u32 slot = (memslot->as_id << 16) | memslot->id;
3648
3649 if (kvm->dirty_ring_size && vcpu)
3650 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3651 else if (memslot->dirty_bitmap)
3652 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3653 }
3654}
3655EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3656
3657void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3658{
3659 struct kvm_memory_slot *memslot;
3660
3661 memslot = gfn_to_memslot(kvm, gfn);
3662 mark_page_dirty_in_slot(kvm, memslot, gfn);
3663}
3664EXPORT_SYMBOL_GPL(mark_page_dirty);
3665
3666void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3667{
3668 struct kvm_memory_slot *memslot;
3669
3670 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3671 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3672}
3673EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3674
3675void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3676{
3677 if (!vcpu->sigset_active)
3678 return;
3679
3680 /*
3681 * This does a lockless modification of ->real_blocked, which is fine
3682 * because, only current can change ->real_blocked and all readers of
3683 * ->real_blocked don't care as long ->real_blocked is always a subset
3684 * of ->blocked.
3685 */
3686 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3687}
3688
3689void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3690{
3691 if (!vcpu->sigset_active)
3692 return;
3693
3694 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3695 sigemptyset(¤t->real_blocked);
3696}
3697
3698static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3699{
3700 unsigned int old, val, grow, grow_start;
3701
3702 old = val = vcpu->halt_poll_ns;
3703 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3704 grow = READ_ONCE(halt_poll_ns_grow);
3705 if (!grow)
3706 goto out;
3707
3708 val *= grow;
3709 if (val < grow_start)
3710 val = grow_start;
3711
3712 vcpu->halt_poll_ns = val;
3713out:
3714 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3715}
3716
3717static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3718{
3719 unsigned int old, val, shrink, grow_start;
3720
3721 old = val = vcpu->halt_poll_ns;
3722 shrink = READ_ONCE(halt_poll_ns_shrink);
3723 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3724 if (shrink == 0)
3725 val = 0;
3726 else
3727 val /= shrink;
3728
3729 if (val < grow_start)
3730 val = 0;
3731
3732 vcpu->halt_poll_ns = val;
3733 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3734}
3735
3736static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3737{
3738 int ret = -EINTR;
3739 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3740
3741 if (kvm_arch_vcpu_runnable(vcpu))
3742 goto out;
3743 if (kvm_cpu_has_pending_timer(vcpu))
3744 goto out;
3745 if (signal_pending(current))
3746 goto out;
3747 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3748 goto out;
3749
3750 ret = 0;
3751out:
3752 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3753 return ret;
3754}
3755
3756/*
3757 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3758 * pending. This is mostly used when halting a vCPU, but may also be used
3759 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3760 */
3761bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3762{
3763 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3764 bool waited = false;
3765
3766 vcpu->stat.generic.blocking = 1;
3767
3768 preempt_disable();
3769 kvm_arch_vcpu_blocking(vcpu);
3770 prepare_to_rcuwait(wait);
3771 preempt_enable();
3772
3773 for (;;) {
3774 set_current_state(TASK_INTERRUPTIBLE);
3775
3776 if (kvm_vcpu_check_block(vcpu) < 0)
3777 break;
3778
3779 waited = true;
3780 schedule();
3781 }
3782
3783 preempt_disable();
3784 finish_rcuwait(wait);
3785 kvm_arch_vcpu_unblocking(vcpu);
3786 preempt_enable();
3787
3788 vcpu->stat.generic.blocking = 0;
3789
3790 return waited;
3791}
3792
3793static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3794 ktime_t end, bool success)
3795{
3796 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3797 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3798
3799 ++vcpu->stat.generic.halt_attempted_poll;
3800
3801 if (success) {
3802 ++vcpu->stat.generic.halt_successful_poll;
3803
3804 if (!vcpu_valid_wakeup(vcpu))
3805 ++vcpu->stat.generic.halt_poll_invalid;
3806
3807 stats->halt_poll_success_ns += poll_ns;
3808 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3809 } else {
3810 stats->halt_poll_fail_ns += poll_ns;
3811 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3812 }
3813}
3814
3815static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3816{
3817 struct kvm *kvm = vcpu->kvm;
3818
3819 if (kvm->override_halt_poll_ns) {
3820 /*
3821 * Ensure kvm->max_halt_poll_ns is not read before
3822 * kvm->override_halt_poll_ns.
3823 *
3824 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3825 */
3826 smp_rmb();
3827 return READ_ONCE(kvm->max_halt_poll_ns);
3828 }
3829
3830 return READ_ONCE(halt_poll_ns);
3831}
3832
3833/*
3834 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3835 * polling is enabled, busy wait for a short time before blocking to avoid the
3836 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3837 * is halted.
3838 */
3839void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3840{
3841 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3842 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3843 ktime_t start, cur, poll_end;
3844 bool waited = false;
3845 bool do_halt_poll;
3846 u64 halt_ns;
3847
3848 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3849 vcpu->halt_poll_ns = max_halt_poll_ns;
3850
3851 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3852
3853 start = cur = poll_end = ktime_get();
3854 if (do_halt_poll) {
3855 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3856
3857 do {
3858 if (kvm_vcpu_check_block(vcpu) < 0)
3859 goto out;
3860 cpu_relax();
3861 poll_end = cur = ktime_get();
3862 } while (kvm_vcpu_can_poll(cur, stop));
3863 }
3864
3865 waited = kvm_vcpu_block(vcpu);
3866
3867 cur = ktime_get();
3868 if (waited) {
3869 vcpu->stat.generic.halt_wait_ns +=
3870 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3871 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3872 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3873 }
3874out:
3875 /* The total time the vCPU was "halted", including polling time. */
3876 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3877
3878 /*
3879 * Note, halt-polling is considered successful so long as the vCPU was
3880 * never actually scheduled out, i.e. even if the wake event arrived
3881 * after of the halt-polling loop itself, but before the full wait.
3882 */
3883 if (do_halt_poll)
3884 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3885
3886 if (halt_poll_allowed) {
3887 /* Recompute the max halt poll time in case it changed. */
3888 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3889
3890 if (!vcpu_valid_wakeup(vcpu)) {
3891 shrink_halt_poll_ns(vcpu);
3892 } else if (max_halt_poll_ns) {
3893 if (halt_ns <= vcpu->halt_poll_ns)
3894 ;
3895 /* we had a long block, shrink polling */
3896 else if (vcpu->halt_poll_ns &&
3897 halt_ns > max_halt_poll_ns)
3898 shrink_halt_poll_ns(vcpu);
3899 /* we had a short halt and our poll time is too small */
3900 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3901 halt_ns < max_halt_poll_ns)
3902 grow_halt_poll_ns(vcpu);
3903 } else {
3904 vcpu->halt_poll_ns = 0;
3905 }
3906 }
3907
3908 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3909}
3910EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3911
3912bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3913{
3914 if (__kvm_vcpu_wake_up(vcpu)) {
3915 WRITE_ONCE(vcpu->ready, true);
3916 ++vcpu->stat.generic.halt_wakeup;
3917 return true;
3918 }
3919
3920 return false;
3921}
3922EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3923
3924#ifndef CONFIG_S390
3925/*
3926 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3927 */
3928void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3929{
3930 int me, cpu;
3931
3932 if (kvm_vcpu_wake_up(vcpu))
3933 return;
3934
3935 me = get_cpu();
3936 /*
3937 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3938 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3939 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3940 * within the vCPU thread itself.
3941 */
3942 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3943 if (vcpu->mode == IN_GUEST_MODE)
3944 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3945 goto out;
3946 }
3947
3948 /*
3949 * Note, the vCPU could get migrated to a different pCPU at any point
3950 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3951 * IPI to the previous pCPU. But, that's ok because the purpose of the
3952 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3953 * vCPU also requires it to leave IN_GUEST_MODE.
3954 */
3955 if (kvm_arch_vcpu_should_kick(vcpu)) {
3956 cpu = READ_ONCE(vcpu->cpu);
3957 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3958 smp_send_reschedule(cpu);
3959 }
3960out:
3961 put_cpu();
3962}
3963EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3964#endif /* !CONFIG_S390 */
3965
3966int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3967{
3968 struct pid *pid;
3969 struct task_struct *task = NULL;
3970 int ret = 0;
3971
3972 rcu_read_lock();
3973 pid = rcu_dereference(target->pid);
3974 if (pid)
3975 task = get_pid_task(pid, PIDTYPE_PID);
3976 rcu_read_unlock();
3977 if (!task)
3978 return ret;
3979 ret = yield_to(task, 1);
3980 put_task_struct(task);
3981
3982 return ret;
3983}
3984EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3985
3986/*
3987 * Helper that checks whether a VCPU is eligible for directed yield.
3988 * Most eligible candidate to yield is decided by following heuristics:
3989 *
3990 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3991 * (preempted lock holder), indicated by @in_spin_loop.
3992 * Set at the beginning and cleared at the end of interception/PLE handler.
3993 *
3994 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3995 * chance last time (mostly it has become eligible now since we have probably
3996 * yielded to lockholder in last iteration. This is done by toggling
3997 * @dy_eligible each time a VCPU checked for eligibility.)
3998 *
3999 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4000 * to preempted lock-holder could result in wrong VCPU selection and CPU
4001 * burning. Giving priority for a potential lock-holder increases lock
4002 * progress.
4003 *
4004 * Since algorithm is based on heuristics, accessing another VCPU data without
4005 * locking does not harm. It may result in trying to yield to same VCPU, fail
4006 * and continue with next VCPU and so on.
4007 */
4008static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4009{
4010#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4011 bool eligible;
4012
4013 eligible = !vcpu->spin_loop.in_spin_loop ||
4014 vcpu->spin_loop.dy_eligible;
4015
4016 if (vcpu->spin_loop.in_spin_loop)
4017 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4018
4019 return eligible;
4020#else
4021 return true;
4022#endif
4023}
4024
4025/*
4026 * Unlike kvm_arch_vcpu_runnable, this function is called outside
4027 * a vcpu_load/vcpu_put pair. However, for most architectures
4028 * kvm_arch_vcpu_runnable does not require vcpu_load.
4029 */
4030bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4031{
4032 return kvm_arch_vcpu_runnable(vcpu);
4033}
4034
4035static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4036{
4037 if (kvm_arch_dy_runnable(vcpu))
4038 return true;
4039
4040#ifdef CONFIG_KVM_ASYNC_PF
4041 if (!list_empty_careful(&vcpu->async_pf.done))
4042 return true;
4043#endif
4044
4045 return false;
4046}
4047
4048/*
4049 * By default, simply query the target vCPU's current mode when checking if a
4050 * vCPU was preempted in kernel mode. All architectures except x86 (or more
4051 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4052 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4053 * directly for cross-vCPU checks is functionally correct and accurate.
4054 */
4055bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4056{
4057 return kvm_arch_vcpu_in_kernel(vcpu);
4058}
4059
4060bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4061{
4062 return false;
4063}
4064
4065void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4066{
4067 struct kvm *kvm = me->kvm;
4068 struct kvm_vcpu *vcpu;
4069 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4070 unsigned long i;
4071 int yielded = 0;
4072 int try = 3;
4073 int pass;
4074
4075 kvm_vcpu_set_in_spin_loop(me, true);
4076 /*
4077 * We boost the priority of a VCPU that is runnable but not
4078 * currently running, because it got preempted by something
4079 * else and called schedule in __vcpu_run. Hopefully that
4080 * VCPU is holding the lock that we need and will release it.
4081 * We approximate round-robin by starting at the last boosted VCPU.
4082 */
4083 for (pass = 0; pass < 2 && !yielded && try; pass++) {
4084 kvm_for_each_vcpu(i, vcpu, kvm) {
4085 if (!pass && i <= last_boosted_vcpu) {
4086 i = last_boosted_vcpu;
4087 continue;
4088 } else if (pass && i > last_boosted_vcpu)
4089 break;
4090 if (!READ_ONCE(vcpu->ready))
4091 continue;
4092 if (vcpu == me)
4093 continue;
4094 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4095 continue;
4096
4097 /*
4098 * Treat the target vCPU as being in-kernel if it has a
4099 * pending interrupt, as the vCPU trying to yield may
4100 * be spinning waiting on IPI delivery, i.e. the target
4101 * vCPU is in-kernel for the purposes of directed yield.
4102 */
4103 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4104 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4105 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4106 continue;
4107 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4108 continue;
4109
4110 yielded = kvm_vcpu_yield_to(vcpu);
4111 if (yielded > 0) {
4112 kvm->last_boosted_vcpu = i;
4113 break;
4114 } else if (yielded < 0) {
4115 try--;
4116 if (!try)
4117 break;
4118 }
4119 }
4120 }
4121 kvm_vcpu_set_in_spin_loop(me, false);
4122
4123 /* Ensure vcpu is not eligible during next spinloop */
4124 kvm_vcpu_set_dy_eligible(me, false);
4125}
4126EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4127
4128static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4129{
4130#ifdef CONFIG_HAVE_KVM_DIRTY_RING
4131 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4132 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4133 kvm->dirty_ring_size / PAGE_SIZE);
4134#else
4135 return false;
4136#endif
4137}
4138
4139static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4140{
4141 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4142 struct page *page;
4143
4144 if (vmf->pgoff == 0)
4145 page = virt_to_page(vcpu->run);
4146#ifdef CONFIG_X86
4147 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4148 page = virt_to_page(vcpu->arch.pio_data);
4149#endif
4150#ifdef CONFIG_KVM_MMIO
4151 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4152 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4153#endif
4154 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4155 page = kvm_dirty_ring_get_page(
4156 &vcpu->dirty_ring,
4157 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4158 else
4159 return kvm_arch_vcpu_fault(vcpu, vmf);
4160 get_page(page);
4161 vmf->page = page;
4162 return 0;
4163}
4164
4165static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4166 .fault = kvm_vcpu_fault,
4167};
4168
4169static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4170{
4171 struct kvm_vcpu *vcpu = file->private_data;
4172 unsigned long pages = vma_pages(vma);
4173
4174 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4175 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4176 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4177 return -EINVAL;
4178
4179 vma->vm_ops = &kvm_vcpu_vm_ops;
4180 return 0;
4181}
4182
4183static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4184{
4185 struct kvm_vcpu *vcpu = filp->private_data;
4186
4187 kvm_put_kvm(vcpu->kvm);
4188 return 0;
4189}
4190
4191static struct file_operations kvm_vcpu_fops = {
4192 .release = kvm_vcpu_release,
4193 .unlocked_ioctl = kvm_vcpu_ioctl,
4194 .mmap = kvm_vcpu_mmap,
4195 .llseek = noop_llseek,
4196 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4197};
4198
4199/*
4200 * Allocates an inode for the vcpu.
4201 */
4202static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4203{
4204 char name[8 + 1 + ITOA_MAX_LEN + 1];
4205
4206 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4207 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4208}
4209
4210#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4211static int vcpu_get_pid(void *data, u64 *val)
4212{
4213 struct kvm_vcpu *vcpu = data;
4214
4215 rcu_read_lock();
4216 *val = pid_nr(rcu_dereference(vcpu->pid));
4217 rcu_read_unlock();
4218 return 0;
4219}
4220
4221DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4222
4223static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4224{
4225 struct dentry *debugfs_dentry;
4226 char dir_name[ITOA_MAX_LEN * 2];
4227
4228 if (!debugfs_initialized())
4229 return;
4230
4231 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4232 debugfs_dentry = debugfs_create_dir(dir_name,
4233 vcpu->kvm->debugfs_dentry);
4234 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4235 &vcpu_get_pid_fops);
4236
4237 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4238}
4239#endif
4240
4241/*
4242 * Creates some virtual cpus. Good luck creating more than one.
4243 */
4244static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4245{
4246 int r;
4247 struct kvm_vcpu *vcpu;
4248 struct page *page;
4249
4250 if (id >= KVM_MAX_VCPU_IDS)
4251 return -EINVAL;
4252
4253 mutex_lock(&kvm->lock);
4254 if (kvm->created_vcpus >= kvm->max_vcpus) {
4255 mutex_unlock(&kvm->lock);
4256 return -EINVAL;
4257 }
4258
4259 r = kvm_arch_vcpu_precreate(kvm, id);
4260 if (r) {
4261 mutex_unlock(&kvm->lock);
4262 return r;
4263 }
4264
4265 kvm->created_vcpus++;
4266 mutex_unlock(&kvm->lock);
4267
4268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4269 if (!vcpu) {
4270 r = -ENOMEM;
4271 goto vcpu_decrement;
4272 }
4273
4274 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4275 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4276 if (!page) {
4277 r = -ENOMEM;
4278 goto vcpu_free;
4279 }
4280 vcpu->run = page_address(page);
4281
4282 kvm_vcpu_init(vcpu, kvm, id);
4283
4284 r = kvm_arch_vcpu_create(vcpu);
4285 if (r)
4286 goto vcpu_free_run_page;
4287
4288 if (kvm->dirty_ring_size) {
4289 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4290 id, kvm->dirty_ring_size);
4291 if (r)
4292 goto arch_vcpu_destroy;
4293 }
4294
4295 mutex_lock(&kvm->lock);
4296
4297#ifdef CONFIG_LOCKDEP
4298 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4299 mutex_lock(&vcpu->mutex);
4300 mutex_unlock(&vcpu->mutex);
4301#endif
4302
4303 if (kvm_get_vcpu_by_id(kvm, id)) {
4304 r = -EEXIST;
4305 goto unlock_vcpu_destroy;
4306 }
4307
4308 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4309 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4310 if (r)
4311 goto unlock_vcpu_destroy;
4312
4313 /* Now it's all set up, let userspace reach it */
4314 kvm_get_kvm(kvm);
4315 r = create_vcpu_fd(vcpu);
4316 if (r < 0)
4317 goto kvm_put_xa_release;
4318
4319 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4320 r = -EINVAL;
4321 goto kvm_put_xa_release;
4322 }
4323
4324 /*
4325 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4326 * pointer before kvm->online_vcpu's incremented value.
4327 */
4328 smp_wmb();
4329 atomic_inc(&kvm->online_vcpus);
4330
4331 mutex_unlock(&kvm->lock);
4332 kvm_arch_vcpu_postcreate(vcpu);
4333 kvm_create_vcpu_debugfs(vcpu);
4334 return r;
4335
4336kvm_put_xa_release:
4337 kvm_put_kvm_no_destroy(kvm);
4338 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4339unlock_vcpu_destroy:
4340 mutex_unlock(&kvm->lock);
4341 kvm_dirty_ring_free(&vcpu->dirty_ring);
4342arch_vcpu_destroy:
4343 kvm_arch_vcpu_destroy(vcpu);
4344vcpu_free_run_page:
4345 free_page((unsigned long)vcpu->run);
4346vcpu_free:
4347 kmem_cache_free(kvm_vcpu_cache, vcpu);
4348vcpu_decrement:
4349 mutex_lock(&kvm->lock);
4350 kvm->created_vcpus--;
4351 mutex_unlock(&kvm->lock);
4352 return r;
4353}
4354
4355static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4356{
4357 if (sigset) {
4358 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4359 vcpu->sigset_active = 1;
4360 vcpu->sigset = *sigset;
4361 } else
4362 vcpu->sigset_active = 0;
4363 return 0;
4364}
4365
4366static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4367 size_t size, loff_t *offset)
4368{
4369 struct kvm_vcpu *vcpu = file->private_data;
4370
4371 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4372 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4373 sizeof(vcpu->stat), user_buffer, size, offset);
4374}
4375
4376static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4377{
4378 struct kvm_vcpu *vcpu = file->private_data;
4379
4380 kvm_put_kvm(vcpu->kvm);
4381 return 0;
4382}
4383
4384static const struct file_operations kvm_vcpu_stats_fops = {
4385 .owner = THIS_MODULE,
4386 .read = kvm_vcpu_stats_read,
4387 .release = kvm_vcpu_stats_release,
4388 .llseek = noop_llseek,
4389};
4390
4391static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4392{
4393 int fd;
4394 struct file *file;
4395 char name[15 + ITOA_MAX_LEN + 1];
4396
4397 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4398
4399 fd = get_unused_fd_flags(O_CLOEXEC);
4400 if (fd < 0)
4401 return fd;
4402
4403 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4404 if (IS_ERR(file)) {
4405 put_unused_fd(fd);
4406 return PTR_ERR(file);
4407 }
4408
4409 kvm_get_kvm(vcpu->kvm);
4410
4411 file->f_mode |= FMODE_PREAD;
4412 fd_install(fd, file);
4413
4414 return fd;
4415}
4416
4417static long kvm_vcpu_ioctl(struct file *filp,
4418 unsigned int ioctl, unsigned long arg)
4419{
4420 struct kvm_vcpu *vcpu = filp->private_data;
4421 void __user *argp = (void __user *)arg;
4422 int r;
4423 struct kvm_fpu *fpu = NULL;
4424 struct kvm_sregs *kvm_sregs = NULL;
4425
4426 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4427 return -EIO;
4428
4429 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4430 return -EINVAL;
4431
4432 /*
4433 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4434 * execution; mutex_lock() would break them.
4435 */
4436 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4437 if (r != -ENOIOCTLCMD)
4438 return r;
4439
4440 if (mutex_lock_killable(&vcpu->mutex))
4441 return -EINTR;
4442 switch (ioctl) {
4443 case KVM_RUN: {
4444 struct pid *oldpid;
4445 r = -EINVAL;
4446 if (arg)
4447 goto out;
4448 oldpid = rcu_access_pointer(vcpu->pid);
4449 if (unlikely(oldpid != task_pid(current))) {
4450 /* The thread running this VCPU changed. */
4451 struct pid *newpid;
4452
4453 r = kvm_arch_vcpu_run_pid_change(vcpu);
4454 if (r)
4455 break;
4456
4457 newpid = get_task_pid(current, PIDTYPE_PID);
4458 rcu_assign_pointer(vcpu->pid, newpid);
4459 if (oldpid)
4460 synchronize_rcu();
4461 put_pid(oldpid);
4462 }
4463 r = kvm_arch_vcpu_ioctl_run(vcpu);
4464 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4465 break;
4466 }
4467 case KVM_GET_REGS: {
4468 struct kvm_regs *kvm_regs;
4469
4470 r = -ENOMEM;
4471 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4472 if (!kvm_regs)
4473 goto out;
4474 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4475 if (r)
4476 goto out_free1;
4477 r = -EFAULT;
4478 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4479 goto out_free1;
4480 r = 0;
4481out_free1:
4482 kfree(kvm_regs);
4483 break;
4484 }
4485 case KVM_SET_REGS: {
4486 struct kvm_regs *kvm_regs;
4487
4488 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4489 if (IS_ERR(kvm_regs)) {
4490 r = PTR_ERR(kvm_regs);
4491 goto out;
4492 }
4493 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4494 kfree(kvm_regs);
4495 break;
4496 }
4497 case KVM_GET_SREGS: {
4498 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4499 GFP_KERNEL_ACCOUNT);
4500 r = -ENOMEM;
4501 if (!kvm_sregs)
4502 goto out;
4503 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4504 if (r)
4505 goto out;
4506 r = -EFAULT;
4507 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4508 goto out;
4509 r = 0;
4510 break;
4511 }
4512 case KVM_SET_SREGS: {
4513 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4514 if (IS_ERR(kvm_sregs)) {
4515 r = PTR_ERR(kvm_sregs);
4516 kvm_sregs = NULL;
4517 goto out;
4518 }
4519 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4520 break;
4521 }
4522 case KVM_GET_MP_STATE: {
4523 struct kvm_mp_state mp_state;
4524
4525 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4526 if (r)
4527 goto out;
4528 r = -EFAULT;
4529 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4530 goto out;
4531 r = 0;
4532 break;
4533 }
4534 case KVM_SET_MP_STATE: {
4535 struct kvm_mp_state mp_state;
4536
4537 r = -EFAULT;
4538 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4539 goto out;
4540 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4541 break;
4542 }
4543 case KVM_TRANSLATE: {
4544 struct kvm_translation tr;
4545
4546 r = -EFAULT;
4547 if (copy_from_user(&tr, argp, sizeof(tr)))
4548 goto out;
4549 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4550 if (r)
4551 goto out;
4552 r = -EFAULT;
4553 if (copy_to_user(argp, &tr, sizeof(tr)))
4554 goto out;
4555 r = 0;
4556 break;
4557 }
4558 case KVM_SET_GUEST_DEBUG: {
4559 struct kvm_guest_debug dbg;
4560
4561 r = -EFAULT;
4562 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4563 goto out;
4564 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4565 break;
4566 }
4567 case KVM_SET_SIGNAL_MASK: {
4568 struct kvm_signal_mask __user *sigmask_arg = argp;
4569 struct kvm_signal_mask kvm_sigmask;
4570 sigset_t sigset, *p;
4571
4572 p = NULL;
4573 if (argp) {
4574 r = -EFAULT;
4575 if (copy_from_user(&kvm_sigmask, argp,
4576 sizeof(kvm_sigmask)))
4577 goto out;
4578 r = -EINVAL;
4579 if (kvm_sigmask.len != sizeof(sigset))
4580 goto out;
4581 r = -EFAULT;
4582 if (copy_from_user(&sigset, sigmask_arg->sigset,
4583 sizeof(sigset)))
4584 goto out;
4585 p = &sigset;
4586 }
4587 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4588 break;
4589 }
4590 case KVM_GET_FPU: {
4591 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4592 r = -ENOMEM;
4593 if (!fpu)
4594 goto out;
4595 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4596 if (r)
4597 goto out;
4598 r = -EFAULT;
4599 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4600 goto out;
4601 r = 0;
4602 break;
4603 }
4604 case KVM_SET_FPU: {
4605 fpu = memdup_user(argp, sizeof(*fpu));
4606 if (IS_ERR(fpu)) {
4607 r = PTR_ERR(fpu);
4608 fpu = NULL;
4609 goto out;
4610 }
4611 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4612 break;
4613 }
4614 case KVM_GET_STATS_FD: {
4615 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4616 break;
4617 }
4618 default:
4619 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4620 }
4621out:
4622 mutex_unlock(&vcpu->mutex);
4623 kfree(fpu);
4624 kfree(kvm_sregs);
4625 return r;
4626}
4627
4628#ifdef CONFIG_KVM_COMPAT
4629static long kvm_vcpu_compat_ioctl(struct file *filp,
4630 unsigned int ioctl, unsigned long arg)
4631{
4632 struct kvm_vcpu *vcpu = filp->private_data;
4633 void __user *argp = compat_ptr(arg);
4634 int r;
4635
4636 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4637 return -EIO;
4638
4639 switch (ioctl) {
4640 case KVM_SET_SIGNAL_MASK: {
4641 struct kvm_signal_mask __user *sigmask_arg = argp;
4642 struct kvm_signal_mask kvm_sigmask;
4643 sigset_t sigset;
4644
4645 if (argp) {
4646 r = -EFAULT;
4647 if (copy_from_user(&kvm_sigmask, argp,
4648 sizeof(kvm_sigmask)))
4649 goto out;
4650 r = -EINVAL;
4651 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4652 goto out;
4653 r = -EFAULT;
4654 if (get_compat_sigset(&sigset,
4655 (compat_sigset_t __user *)sigmask_arg->sigset))
4656 goto out;
4657 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4658 } else
4659 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4660 break;
4661 }
4662 default:
4663 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4664 }
4665
4666out:
4667 return r;
4668}
4669#endif
4670
4671static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4672{
4673 struct kvm_device *dev = filp->private_data;
4674
4675 if (dev->ops->mmap)
4676 return dev->ops->mmap(dev, vma);
4677
4678 return -ENODEV;
4679}
4680
4681static int kvm_device_ioctl_attr(struct kvm_device *dev,
4682 int (*accessor)(struct kvm_device *dev,
4683 struct kvm_device_attr *attr),
4684 unsigned long arg)
4685{
4686 struct kvm_device_attr attr;
4687
4688 if (!accessor)
4689 return -EPERM;
4690
4691 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4692 return -EFAULT;
4693
4694 return accessor(dev, &attr);
4695}
4696
4697static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4698 unsigned long arg)
4699{
4700 struct kvm_device *dev = filp->private_data;
4701
4702 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4703 return -EIO;
4704
4705 switch (ioctl) {
4706 case KVM_SET_DEVICE_ATTR:
4707 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4708 case KVM_GET_DEVICE_ATTR:
4709 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4710 case KVM_HAS_DEVICE_ATTR:
4711 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4712 default:
4713 if (dev->ops->ioctl)
4714 return dev->ops->ioctl(dev, ioctl, arg);
4715
4716 return -ENOTTY;
4717 }
4718}
4719
4720static int kvm_device_release(struct inode *inode, struct file *filp)
4721{
4722 struct kvm_device *dev = filp->private_data;
4723 struct kvm *kvm = dev->kvm;
4724
4725 if (dev->ops->release) {
4726 mutex_lock(&kvm->lock);
4727 list_del(&dev->vm_node);
4728 dev->ops->release(dev);
4729 mutex_unlock(&kvm->lock);
4730 }
4731
4732 kvm_put_kvm(kvm);
4733 return 0;
4734}
4735
4736static struct file_operations kvm_device_fops = {
4737 .unlocked_ioctl = kvm_device_ioctl,
4738 .release = kvm_device_release,
4739 KVM_COMPAT(kvm_device_ioctl),
4740 .mmap = kvm_device_mmap,
4741};
4742
4743struct kvm_device *kvm_device_from_filp(struct file *filp)
4744{
4745 if (filp->f_op != &kvm_device_fops)
4746 return NULL;
4747
4748 return filp->private_data;
4749}
4750
4751static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4752#ifdef CONFIG_KVM_MPIC
4753 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4754 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4755#endif
4756};
4757
4758int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4759{
4760 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4761 return -ENOSPC;
4762
4763 if (kvm_device_ops_table[type] != NULL)
4764 return -EEXIST;
4765
4766 kvm_device_ops_table[type] = ops;
4767 return 0;
4768}
4769
4770void kvm_unregister_device_ops(u32 type)
4771{
4772 if (kvm_device_ops_table[type] != NULL)
4773 kvm_device_ops_table[type] = NULL;
4774}
4775
4776static int kvm_ioctl_create_device(struct kvm *kvm,
4777 struct kvm_create_device *cd)
4778{
4779 const struct kvm_device_ops *ops;
4780 struct kvm_device *dev;
4781 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4782 int type;
4783 int ret;
4784
4785 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4786 return -ENODEV;
4787
4788 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4789 ops = kvm_device_ops_table[type];
4790 if (ops == NULL)
4791 return -ENODEV;
4792
4793 if (test)
4794 return 0;
4795
4796 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4797 if (!dev)
4798 return -ENOMEM;
4799
4800 dev->ops = ops;
4801 dev->kvm = kvm;
4802
4803 mutex_lock(&kvm->lock);
4804 ret = ops->create(dev, type);
4805 if (ret < 0) {
4806 mutex_unlock(&kvm->lock);
4807 kfree(dev);
4808 return ret;
4809 }
4810 list_add(&dev->vm_node, &kvm->devices);
4811 mutex_unlock(&kvm->lock);
4812
4813 if (ops->init)
4814 ops->init(dev);
4815
4816 kvm_get_kvm(kvm);
4817 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4818 if (ret < 0) {
4819 kvm_put_kvm_no_destroy(kvm);
4820 mutex_lock(&kvm->lock);
4821 list_del(&dev->vm_node);
4822 if (ops->release)
4823 ops->release(dev);
4824 mutex_unlock(&kvm->lock);
4825 if (ops->destroy)
4826 ops->destroy(dev);
4827 return ret;
4828 }
4829
4830 cd->fd = ret;
4831 return 0;
4832}
4833
4834static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4835{
4836 switch (arg) {
4837 case KVM_CAP_USER_MEMORY:
4838 case KVM_CAP_USER_MEMORY2:
4839 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4840 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4841 case KVM_CAP_INTERNAL_ERROR_DATA:
4842#ifdef CONFIG_HAVE_KVM_MSI
4843 case KVM_CAP_SIGNAL_MSI:
4844#endif
4845#ifdef CONFIG_HAVE_KVM_IRQCHIP
4846 case KVM_CAP_IRQFD:
4847#endif
4848 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4849 case KVM_CAP_CHECK_EXTENSION_VM:
4850 case KVM_CAP_ENABLE_CAP_VM:
4851 case KVM_CAP_HALT_POLL:
4852 return 1;
4853#ifdef CONFIG_KVM_MMIO
4854 case KVM_CAP_COALESCED_MMIO:
4855 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4856 case KVM_CAP_COALESCED_PIO:
4857 return 1;
4858#endif
4859#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4860 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4861 return KVM_DIRTY_LOG_MANUAL_CAPS;
4862#endif
4863#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4864 case KVM_CAP_IRQ_ROUTING:
4865 return KVM_MAX_IRQ_ROUTES;
4866#endif
4867#if KVM_MAX_NR_ADDRESS_SPACES > 1
4868 case KVM_CAP_MULTI_ADDRESS_SPACE:
4869 if (kvm)
4870 return kvm_arch_nr_memslot_as_ids(kvm);
4871 return KVM_MAX_NR_ADDRESS_SPACES;
4872#endif
4873 case KVM_CAP_NR_MEMSLOTS:
4874 return KVM_USER_MEM_SLOTS;
4875 case KVM_CAP_DIRTY_LOG_RING:
4876#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4877 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4878#else
4879 return 0;
4880#endif
4881 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4882#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4883 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4884#else
4885 return 0;
4886#endif
4887#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4888 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4889#endif
4890 case KVM_CAP_BINARY_STATS_FD:
4891 case KVM_CAP_SYSTEM_EVENT_DATA:
4892 case KVM_CAP_DEVICE_CTRL:
4893 return 1;
4894#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4895 case KVM_CAP_MEMORY_ATTRIBUTES:
4896 return kvm_supported_mem_attributes(kvm);
4897#endif
4898#ifdef CONFIG_KVM_PRIVATE_MEM
4899 case KVM_CAP_GUEST_MEMFD:
4900 return !kvm || kvm_arch_has_private_mem(kvm);
4901#endif
4902 default:
4903 break;
4904 }
4905 return kvm_vm_ioctl_check_extension(kvm, arg);
4906}
4907
4908static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4909{
4910 int r;
4911
4912 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4913 return -EINVAL;
4914
4915 /* the size should be power of 2 */
4916 if (!size || (size & (size - 1)))
4917 return -EINVAL;
4918
4919 /* Should be bigger to keep the reserved entries, or a page */
4920 if (size < kvm_dirty_ring_get_rsvd_entries() *
4921 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4922 return -EINVAL;
4923
4924 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4925 sizeof(struct kvm_dirty_gfn))
4926 return -E2BIG;
4927
4928 /* We only allow it to set once */
4929 if (kvm->dirty_ring_size)
4930 return -EINVAL;
4931
4932 mutex_lock(&kvm->lock);
4933
4934 if (kvm->created_vcpus) {
4935 /* We don't allow to change this value after vcpu created */
4936 r = -EINVAL;
4937 } else {
4938 kvm->dirty_ring_size = size;
4939 r = 0;
4940 }
4941
4942 mutex_unlock(&kvm->lock);
4943 return r;
4944}
4945
4946static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4947{
4948 unsigned long i;
4949 struct kvm_vcpu *vcpu;
4950 int cleared = 0;
4951
4952 if (!kvm->dirty_ring_size)
4953 return -EINVAL;
4954
4955 mutex_lock(&kvm->slots_lock);
4956
4957 kvm_for_each_vcpu(i, vcpu, kvm)
4958 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4959
4960 mutex_unlock(&kvm->slots_lock);
4961
4962 if (cleared)
4963 kvm_flush_remote_tlbs(kvm);
4964
4965 return cleared;
4966}
4967
4968int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4969 struct kvm_enable_cap *cap)
4970{
4971 return -EINVAL;
4972}
4973
4974bool kvm_are_all_memslots_empty(struct kvm *kvm)
4975{
4976 int i;
4977
4978 lockdep_assert_held(&kvm->slots_lock);
4979
4980 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4981 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4982 return false;
4983 }
4984
4985 return true;
4986}
4987EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4988
4989static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4990 struct kvm_enable_cap *cap)
4991{
4992 switch (cap->cap) {
4993#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4994 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4995 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4996
4997 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4998 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4999
5000 if (cap->flags || (cap->args[0] & ~allowed_options))
5001 return -EINVAL;
5002 kvm->manual_dirty_log_protect = cap->args[0];
5003 return 0;
5004 }
5005#endif
5006 case KVM_CAP_HALT_POLL: {
5007 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5008 return -EINVAL;
5009
5010 kvm->max_halt_poll_ns = cap->args[0];
5011
5012 /*
5013 * Ensure kvm->override_halt_poll_ns does not become visible
5014 * before kvm->max_halt_poll_ns.
5015 *
5016 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5017 */
5018 smp_wmb();
5019 kvm->override_halt_poll_ns = true;
5020
5021 return 0;
5022 }
5023 case KVM_CAP_DIRTY_LOG_RING:
5024 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5025 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5026 return -EINVAL;
5027
5028 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5029 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5030 int r = -EINVAL;
5031
5032 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5033 !kvm->dirty_ring_size || cap->flags)
5034 return r;
5035
5036 mutex_lock(&kvm->slots_lock);
5037
5038 /*
5039 * For simplicity, allow enabling ring+bitmap if and only if
5040 * there are no memslots, e.g. to ensure all memslots allocate
5041 * a bitmap after the capability is enabled.
5042 */
5043 if (kvm_are_all_memslots_empty(kvm)) {
5044 kvm->dirty_ring_with_bitmap = true;
5045 r = 0;
5046 }
5047
5048 mutex_unlock(&kvm->slots_lock);
5049
5050 return r;
5051 }
5052 default:
5053 return kvm_vm_ioctl_enable_cap(kvm, cap);
5054 }
5055}
5056
5057static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5058 size_t size, loff_t *offset)
5059{
5060 struct kvm *kvm = file->private_data;
5061
5062 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5063 &kvm_vm_stats_desc[0], &kvm->stat,
5064 sizeof(kvm->stat), user_buffer, size, offset);
5065}
5066
5067static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5068{
5069 struct kvm *kvm = file->private_data;
5070
5071 kvm_put_kvm(kvm);
5072 return 0;
5073}
5074
5075static const struct file_operations kvm_vm_stats_fops = {
5076 .owner = THIS_MODULE,
5077 .read = kvm_vm_stats_read,
5078 .release = kvm_vm_stats_release,
5079 .llseek = noop_llseek,
5080};
5081
5082static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5083{
5084 int fd;
5085 struct file *file;
5086
5087 fd = get_unused_fd_flags(O_CLOEXEC);
5088 if (fd < 0)
5089 return fd;
5090
5091 file = anon_inode_getfile("kvm-vm-stats",
5092 &kvm_vm_stats_fops, kvm, O_RDONLY);
5093 if (IS_ERR(file)) {
5094 put_unused_fd(fd);
5095 return PTR_ERR(file);
5096 }
5097
5098 kvm_get_kvm(kvm);
5099
5100 file->f_mode |= FMODE_PREAD;
5101 fd_install(fd, file);
5102
5103 return fd;
5104}
5105
5106#define SANITY_CHECK_MEM_REGION_FIELD(field) \
5107do { \
5108 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5109 offsetof(struct kvm_userspace_memory_region2, field)); \
5110 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5111 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5112} while (0)
5113
5114static long kvm_vm_ioctl(struct file *filp,
5115 unsigned int ioctl, unsigned long arg)
5116{
5117 struct kvm *kvm = filp->private_data;
5118 void __user *argp = (void __user *)arg;
5119 int r;
5120
5121 if (kvm->mm != current->mm || kvm->vm_dead)
5122 return -EIO;
5123 switch (ioctl) {
5124 case KVM_CREATE_VCPU:
5125 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5126 break;
5127 case KVM_ENABLE_CAP: {
5128 struct kvm_enable_cap cap;
5129
5130 r = -EFAULT;
5131 if (copy_from_user(&cap, argp, sizeof(cap)))
5132 goto out;
5133 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5134 break;
5135 }
5136 case KVM_SET_USER_MEMORY_REGION2:
5137 case KVM_SET_USER_MEMORY_REGION: {
5138 struct kvm_userspace_memory_region2 mem;
5139 unsigned long size;
5140
5141 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5142 /*
5143 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5144 * accessed, but avoid leaking kernel memory in case of a bug.
5145 */
5146 memset(&mem, 0, sizeof(mem));
5147 size = sizeof(struct kvm_userspace_memory_region);
5148 } else {
5149 size = sizeof(struct kvm_userspace_memory_region2);
5150 }
5151
5152 /* Ensure the common parts of the two structs are identical. */
5153 SANITY_CHECK_MEM_REGION_FIELD(slot);
5154 SANITY_CHECK_MEM_REGION_FIELD(flags);
5155 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5156 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5157 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5158
5159 r = -EFAULT;
5160 if (copy_from_user(&mem, argp, size))
5161 goto out;
5162
5163 r = -EINVAL;
5164 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5165 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5166 goto out;
5167
5168 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5169 break;
5170 }
5171 case KVM_GET_DIRTY_LOG: {
5172 struct kvm_dirty_log log;
5173
5174 r = -EFAULT;
5175 if (copy_from_user(&log, argp, sizeof(log)))
5176 goto out;
5177 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5178 break;
5179 }
5180#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5181 case KVM_CLEAR_DIRTY_LOG: {
5182 struct kvm_clear_dirty_log log;
5183
5184 r = -EFAULT;
5185 if (copy_from_user(&log, argp, sizeof(log)))
5186 goto out;
5187 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5188 break;
5189 }
5190#endif
5191#ifdef CONFIG_KVM_MMIO
5192 case KVM_REGISTER_COALESCED_MMIO: {
5193 struct kvm_coalesced_mmio_zone zone;
5194
5195 r = -EFAULT;
5196 if (copy_from_user(&zone, argp, sizeof(zone)))
5197 goto out;
5198 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5199 break;
5200 }
5201 case KVM_UNREGISTER_COALESCED_MMIO: {
5202 struct kvm_coalesced_mmio_zone zone;
5203
5204 r = -EFAULT;
5205 if (copy_from_user(&zone, argp, sizeof(zone)))
5206 goto out;
5207 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5208 break;
5209 }
5210#endif
5211 case KVM_IRQFD: {
5212 struct kvm_irqfd data;
5213
5214 r = -EFAULT;
5215 if (copy_from_user(&data, argp, sizeof(data)))
5216 goto out;
5217 r = kvm_irqfd(kvm, &data);
5218 break;
5219 }
5220 case KVM_IOEVENTFD: {
5221 struct kvm_ioeventfd data;
5222
5223 r = -EFAULT;
5224 if (copy_from_user(&data, argp, sizeof(data)))
5225 goto out;
5226 r = kvm_ioeventfd(kvm, &data);
5227 break;
5228 }
5229#ifdef CONFIG_HAVE_KVM_MSI
5230 case KVM_SIGNAL_MSI: {
5231 struct kvm_msi msi;
5232
5233 r = -EFAULT;
5234 if (copy_from_user(&msi, argp, sizeof(msi)))
5235 goto out;
5236 r = kvm_send_userspace_msi(kvm, &msi);
5237 break;
5238 }
5239#endif
5240#ifdef __KVM_HAVE_IRQ_LINE
5241 case KVM_IRQ_LINE_STATUS:
5242 case KVM_IRQ_LINE: {
5243 struct kvm_irq_level irq_event;
5244
5245 r = -EFAULT;
5246 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5247 goto out;
5248
5249 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5250 ioctl == KVM_IRQ_LINE_STATUS);
5251 if (r)
5252 goto out;
5253
5254 r = -EFAULT;
5255 if (ioctl == KVM_IRQ_LINE_STATUS) {
5256 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5257 goto out;
5258 }
5259
5260 r = 0;
5261 break;
5262 }
5263#endif
5264#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5265 case KVM_SET_GSI_ROUTING: {
5266 struct kvm_irq_routing routing;
5267 struct kvm_irq_routing __user *urouting;
5268 struct kvm_irq_routing_entry *entries = NULL;
5269
5270 r = -EFAULT;
5271 if (copy_from_user(&routing, argp, sizeof(routing)))
5272 goto out;
5273 r = -EINVAL;
5274 if (!kvm_arch_can_set_irq_routing(kvm))
5275 goto out;
5276 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5277 goto out;
5278 if (routing.flags)
5279 goto out;
5280 if (routing.nr) {
5281 urouting = argp;
5282 entries = vmemdup_array_user(urouting->entries,
5283 routing.nr, sizeof(*entries));
5284 if (IS_ERR(entries)) {
5285 r = PTR_ERR(entries);
5286 goto out;
5287 }
5288 }
5289 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5290 routing.flags);
5291 kvfree(entries);
5292 break;
5293 }
5294#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5295#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5296 case KVM_SET_MEMORY_ATTRIBUTES: {
5297 struct kvm_memory_attributes attrs;
5298
5299 r = -EFAULT;
5300 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5301 goto out;
5302
5303 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5304 break;
5305 }
5306#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5307 case KVM_CREATE_DEVICE: {
5308 struct kvm_create_device cd;
5309
5310 r = -EFAULT;
5311 if (copy_from_user(&cd, argp, sizeof(cd)))
5312 goto out;
5313
5314 r = kvm_ioctl_create_device(kvm, &cd);
5315 if (r)
5316 goto out;
5317
5318 r = -EFAULT;
5319 if (copy_to_user(argp, &cd, sizeof(cd)))
5320 goto out;
5321
5322 r = 0;
5323 break;
5324 }
5325 case KVM_CHECK_EXTENSION:
5326 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5327 break;
5328 case KVM_RESET_DIRTY_RINGS:
5329 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5330 break;
5331 case KVM_GET_STATS_FD:
5332 r = kvm_vm_ioctl_get_stats_fd(kvm);
5333 break;
5334#ifdef CONFIG_KVM_PRIVATE_MEM
5335 case KVM_CREATE_GUEST_MEMFD: {
5336 struct kvm_create_guest_memfd guest_memfd;
5337
5338 r = -EFAULT;
5339 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5340 goto out;
5341
5342 r = kvm_gmem_create(kvm, &guest_memfd);
5343 break;
5344 }
5345#endif
5346 default:
5347 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5348 }
5349out:
5350 return r;
5351}
5352
5353#ifdef CONFIG_KVM_COMPAT
5354struct compat_kvm_dirty_log {
5355 __u32 slot;
5356 __u32 padding1;
5357 union {
5358 compat_uptr_t dirty_bitmap; /* one bit per page */
5359 __u64 padding2;
5360 };
5361};
5362
5363struct compat_kvm_clear_dirty_log {
5364 __u32 slot;
5365 __u32 num_pages;
5366 __u64 first_page;
5367 union {
5368 compat_uptr_t dirty_bitmap; /* one bit per page */
5369 __u64 padding2;
5370 };
5371};
5372
5373long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5374 unsigned long arg)
5375{
5376 return -ENOTTY;
5377}
5378
5379static long kvm_vm_compat_ioctl(struct file *filp,
5380 unsigned int ioctl, unsigned long arg)
5381{
5382 struct kvm *kvm = filp->private_data;
5383 int r;
5384
5385 if (kvm->mm != current->mm || kvm->vm_dead)
5386 return -EIO;
5387
5388 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5389 if (r != -ENOTTY)
5390 return r;
5391
5392 switch (ioctl) {
5393#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5394 case KVM_CLEAR_DIRTY_LOG: {
5395 struct compat_kvm_clear_dirty_log compat_log;
5396 struct kvm_clear_dirty_log log;
5397
5398 if (copy_from_user(&compat_log, (void __user *)arg,
5399 sizeof(compat_log)))
5400 return -EFAULT;
5401 log.slot = compat_log.slot;
5402 log.num_pages = compat_log.num_pages;
5403 log.first_page = compat_log.first_page;
5404 log.padding2 = compat_log.padding2;
5405 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406
5407 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5408 break;
5409 }
5410#endif
5411 case KVM_GET_DIRTY_LOG: {
5412 struct compat_kvm_dirty_log compat_log;
5413 struct kvm_dirty_log log;
5414
5415 if (copy_from_user(&compat_log, (void __user *)arg,
5416 sizeof(compat_log)))
5417 return -EFAULT;
5418 log.slot = compat_log.slot;
5419 log.padding1 = compat_log.padding1;
5420 log.padding2 = compat_log.padding2;
5421 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5422
5423 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5424 break;
5425 }
5426 default:
5427 r = kvm_vm_ioctl(filp, ioctl, arg);
5428 }
5429 return r;
5430}
5431#endif
5432
5433static struct file_operations kvm_vm_fops = {
5434 .release = kvm_vm_release,
5435 .unlocked_ioctl = kvm_vm_ioctl,
5436 .llseek = noop_llseek,
5437 KVM_COMPAT(kvm_vm_compat_ioctl),
5438};
5439
5440bool file_is_kvm(struct file *file)
5441{
5442 return file && file->f_op == &kvm_vm_fops;
5443}
5444EXPORT_SYMBOL_GPL(file_is_kvm);
5445
5446static int kvm_dev_ioctl_create_vm(unsigned long type)
5447{
5448 char fdname[ITOA_MAX_LEN + 1];
5449 int r, fd;
5450 struct kvm *kvm;
5451 struct file *file;
5452
5453 fd = get_unused_fd_flags(O_CLOEXEC);
5454 if (fd < 0)
5455 return fd;
5456
5457 snprintf(fdname, sizeof(fdname), "%d", fd);
5458
5459 kvm = kvm_create_vm(type, fdname);
5460 if (IS_ERR(kvm)) {
5461 r = PTR_ERR(kvm);
5462 goto put_fd;
5463 }
5464
5465 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5466 if (IS_ERR(file)) {
5467 r = PTR_ERR(file);
5468 goto put_kvm;
5469 }
5470
5471 /*
5472 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5473 * already set, with ->release() being kvm_vm_release(). In error
5474 * cases it will be called by the final fput(file) and will take
5475 * care of doing kvm_put_kvm(kvm).
5476 */
5477 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5478
5479 fd_install(fd, file);
5480 return fd;
5481
5482put_kvm:
5483 kvm_put_kvm(kvm);
5484put_fd:
5485 put_unused_fd(fd);
5486 return r;
5487}
5488
5489static long kvm_dev_ioctl(struct file *filp,
5490 unsigned int ioctl, unsigned long arg)
5491{
5492 int r = -EINVAL;
5493
5494 switch (ioctl) {
5495 case KVM_GET_API_VERSION:
5496 if (arg)
5497 goto out;
5498 r = KVM_API_VERSION;
5499 break;
5500 case KVM_CREATE_VM:
5501 r = kvm_dev_ioctl_create_vm(arg);
5502 break;
5503 case KVM_CHECK_EXTENSION:
5504 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5505 break;
5506 case KVM_GET_VCPU_MMAP_SIZE:
5507 if (arg)
5508 goto out;
5509 r = PAGE_SIZE; /* struct kvm_run */
5510#ifdef CONFIG_X86
5511 r += PAGE_SIZE; /* pio data page */
5512#endif
5513#ifdef CONFIG_KVM_MMIO
5514 r += PAGE_SIZE; /* coalesced mmio ring page */
5515#endif
5516 break;
5517 default:
5518 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5519 }
5520out:
5521 return r;
5522}
5523
5524static struct file_operations kvm_chardev_ops = {
5525 .unlocked_ioctl = kvm_dev_ioctl,
5526 .llseek = noop_llseek,
5527 KVM_COMPAT(kvm_dev_ioctl),
5528};
5529
5530static struct miscdevice kvm_dev = {
5531 KVM_MINOR,
5532 "kvm",
5533 &kvm_chardev_ops,
5534};
5535
5536#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5537__visible bool kvm_rebooting;
5538EXPORT_SYMBOL_GPL(kvm_rebooting);
5539
5540static DEFINE_PER_CPU(bool, hardware_enabled);
5541static int kvm_usage_count;
5542
5543static int __hardware_enable_nolock(void)
5544{
5545 if (__this_cpu_read(hardware_enabled))
5546 return 0;
5547
5548 if (kvm_arch_hardware_enable()) {
5549 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5550 raw_smp_processor_id());
5551 return -EIO;
5552 }
5553
5554 __this_cpu_write(hardware_enabled, true);
5555 return 0;
5556}
5557
5558static void hardware_enable_nolock(void *failed)
5559{
5560 if (__hardware_enable_nolock())
5561 atomic_inc(failed);
5562}
5563
5564static int kvm_online_cpu(unsigned int cpu)
5565{
5566 int ret = 0;
5567
5568 /*
5569 * Abort the CPU online process if hardware virtualization cannot
5570 * be enabled. Otherwise running VMs would encounter unrecoverable
5571 * errors when scheduled to this CPU.
5572 */
5573 mutex_lock(&kvm_lock);
5574 if (kvm_usage_count)
5575 ret = __hardware_enable_nolock();
5576 mutex_unlock(&kvm_lock);
5577 return ret;
5578}
5579
5580static void hardware_disable_nolock(void *junk)
5581{
5582 /*
5583 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5584 * hardware, not just CPUs that successfully enabled hardware!
5585 */
5586 if (!__this_cpu_read(hardware_enabled))
5587 return;
5588
5589 kvm_arch_hardware_disable();
5590
5591 __this_cpu_write(hardware_enabled, false);
5592}
5593
5594static int kvm_offline_cpu(unsigned int cpu)
5595{
5596 mutex_lock(&kvm_lock);
5597 if (kvm_usage_count)
5598 hardware_disable_nolock(NULL);
5599 mutex_unlock(&kvm_lock);
5600 return 0;
5601}
5602
5603static void hardware_disable_all_nolock(void)
5604{
5605 BUG_ON(!kvm_usage_count);
5606
5607 kvm_usage_count--;
5608 if (!kvm_usage_count)
5609 on_each_cpu(hardware_disable_nolock, NULL, 1);
5610}
5611
5612static void hardware_disable_all(void)
5613{
5614 cpus_read_lock();
5615 mutex_lock(&kvm_lock);
5616 hardware_disable_all_nolock();
5617 mutex_unlock(&kvm_lock);
5618 cpus_read_unlock();
5619}
5620
5621static int hardware_enable_all(void)
5622{
5623 atomic_t failed = ATOMIC_INIT(0);
5624 int r;
5625
5626 /*
5627 * Do not enable hardware virtualization if the system is going down.
5628 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5629 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5630 * after kvm_reboot() is called. Note, this relies on system_state
5631 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5632 * hook instead of registering a dedicated reboot notifier (the latter
5633 * runs before system_state is updated).
5634 */
5635 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5636 system_state == SYSTEM_RESTART)
5637 return -EBUSY;
5638
5639 /*
5640 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5641 * is called, and so on_each_cpu() between them includes the CPU that
5642 * is being onlined. As a result, hardware_enable_nolock() may get
5643 * invoked before kvm_online_cpu(), which also enables hardware if the
5644 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5645 * enable hardware multiple times.
5646 */
5647 cpus_read_lock();
5648 mutex_lock(&kvm_lock);
5649
5650 r = 0;
5651
5652 kvm_usage_count++;
5653 if (kvm_usage_count == 1) {
5654 on_each_cpu(hardware_enable_nolock, &failed, 1);
5655
5656 if (atomic_read(&failed)) {
5657 hardware_disable_all_nolock();
5658 r = -EBUSY;
5659 }
5660 }
5661
5662 mutex_unlock(&kvm_lock);
5663 cpus_read_unlock();
5664
5665 return r;
5666}
5667
5668static void kvm_shutdown(void)
5669{
5670 /*
5671 * Disable hardware virtualization and set kvm_rebooting to indicate
5672 * that KVM has asynchronously disabled hardware virtualization, i.e.
5673 * that relevant errors and exceptions aren't entirely unexpected.
5674 * Some flavors of hardware virtualization need to be disabled before
5675 * transferring control to firmware (to perform shutdown/reboot), e.g.
5676 * on x86, virtualization can block INIT interrupts, which are used by
5677 * firmware to pull APs back under firmware control. Note, this path
5678 * is used for both shutdown and reboot scenarios, i.e. neither name is
5679 * 100% comprehensive.
5680 */
5681 pr_info("kvm: exiting hardware virtualization\n");
5682 kvm_rebooting = true;
5683 on_each_cpu(hardware_disable_nolock, NULL, 1);
5684}
5685
5686static int kvm_suspend(void)
5687{
5688 /*
5689 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5690 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5691 * is stable. Assert that kvm_lock is not held to ensure the system
5692 * isn't suspended while KVM is enabling hardware. Hardware enabling
5693 * can be preempted, but the task cannot be frozen until it has dropped
5694 * all locks (userspace tasks are frozen via a fake signal).
5695 */
5696 lockdep_assert_not_held(&kvm_lock);
5697 lockdep_assert_irqs_disabled();
5698
5699 if (kvm_usage_count)
5700 hardware_disable_nolock(NULL);
5701 return 0;
5702}
5703
5704static void kvm_resume(void)
5705{
5706 lockdep_assert_not_held(&kvm_lock);
5707 lockdep_assert_irqs_disabled();
5708
5709 if (kvm_usage_count)
5710 WARN_ON_ONCE(__hardware_enable_nolock());
5711}
5712
5713static struct syscore_ops kvm_syscore_ops = {
5714 .suspend = kvm_suspend,
5715 .resume = kvm_resume,
5716 .shutdown = kvm_shutdown,
5717};
5718#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5719static int hardware_enable_all(void)
5720{
5721 return 0;
5722}
5723
5724static void hardware_disable_all(void)
5725{
5726
5727}
5728#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5729
5730static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5731{
5732 if (dev->ops->destructor)
5733 dev->ops->destructor(dev);
5734}
5735
5736static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5737{
5738 int i;
5739
5740 for (i = 0; i < bus->dev_count; i++) {
5741 struct kvm_io_device *pos = bus->range[i].dev;
5742
5743 kvm_iodevice_destructor(pos);
5744 }
5745 kfree(bus);
5746}
5747
5748static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5749 const struct kvm_io_range *r2)
5750{
5751 gpa_t addr1 = r1->addr;
5752 gpa_t addr2 = r2->addr;
5753
5754 if (addr1 < addr2)
5755 return -1;
5756
5757 /* If r2->len == 0, match the exact address. If r2->len != 0,
5758 * accept any overlapping write. Any order is acceptable for
5759 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5760 * we process all of them.
5761 */
5762 if (r2->len) {
5763 addr1 += r1->len;
5764 addr2 += r2->len;
5765 }
5766
5767 if (addr1 > addr2)
5768 return 1;
5769
5770 return 0;
5771}
5772
5773static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5774{
5775 return kvm_io_bus_cmp(p1, p2);
5776}
5777
5778static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5779 gpa_t addr, int len)
5780{
5781 struct kvm_io_range *range, key;
5782 int off;
5783
5784 key = (struct kvm_io_range) {
5785 .addr = addr,
5786 .len = len,
5787 };
5788
5789 range = bsearch(&key, bus->range, bus->dev_count,
5790 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5791 if (range == NULL)
5792 return -ENOENT;
5793
5794 off = range - bus->range;
5795
5796 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5797 off--;
5798
5799 return off;
5800}
5801
5802static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5803 struct kvm_io_range *range, const void *val)
5804{
5805 int idx;
5806
5807 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5808 if (idx < 0)
5809 return -EOPNOTSUPP;
5810
5811 while (idx < bus->dev_count &&
5812 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5813 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5814 range->len, val))
5815 return idx;
5816 idx++;
5817 }
5818
5819 return -EOPNOTSUPP;
5820}
5821
5822/* kvm_io_bus_write - called under kvm->slots_lock */
5823int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5824 int len, const void *val)
5825{
5826 struct kvm_io_bus *bus;
5827 struct kvm_io_range range;
5828 int r;
5829
5830 range = (struct kvm_io_range) {
5831 .addr = addr,
5832 .len = len,
5833 };
5834
5835 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5836 if (!bus)
5837 return -ENOMEM;
5838 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5839 return r < 0 ? r : 0;
5840}
5841EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5842
5843/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5844int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5845 gpa_t addr, int len, const void *val, long cookie)
5846{
5847 struct kvm_io_bus *bus;
5848 struct kvm_io_range range;
5849
5850 range = (struct kvm_io_range) {
5851 .addr = addr,
5852 .len = len,
5853 };
5854
5855 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5856 if (!bus)
5857 return -ENOMEM;
5858
5859 /* First try the device referenced by cookie. */
5860 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5861 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5862 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5863 val))
5864 return cookie;
5865
5866 /*
5867 * cookie contained garbage; fall back to search and return the
5868 * correct cookie value.
5869 */
5870 return __kvm_io_bus_write(vcpu, bus, &range, val);
5871}
5872
5873static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5874 struct kvm_io_range *range, void *val)
5875{
5876 int idx;
5877
5878 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5879 if (idx < 0)
5880 return -EOPNOTSUPP;
5881
5882 while (idx < bus->dev_count &&
5883 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5884 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5885 range->len, val))
5886 return idx;
5887 idx++;
5888 }
5889
5890 return -EOPNOTSUPP;
5891}
5892
5893/* kvm_io_bus_read - called under kvm->slots_lock */
5894int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5895 int len, void *val)
5896{
5897 struct kvm_io_bus *bus;
5898 struct kvm_io_range range;
5899 int r;
5900
5901 range = (struct kvm_io_range) {
5902 .addr = addr,
5903 .len = len,
5904 };
5905
5906 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5907 if (!bus)
5908 return -ENOMEM;
5909 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5910 return r < 0 ? r : 0;
5911}
5912
5913int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5914 int len, struct kvm_io_device *dev)
5915{
5916 int i;
5917 struct kvm_io_bus *new_bus, *bus;
5918 struct kvm_io_range range;
5919
5920 lockdep_assert_held(&kvm->slots_lock);
5921
5922 bus = kvm_get_bus(kvm, bus_idx);
5923 if (!bus)
5924 return -ENOMEM;
5925
5926 /* exclude ioeventfd which is limited by maximum fd */
5927 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5928 return -ENOSPC;
5929
5930 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5931 GFP_KERNEL_ACCOUNT);
5932 if (!new_bus)
5933 return -ENOMEM;
5934
5935 range = (struct kvm_io_range) {
5936 .addr = addr,
5937 .len = len,
5938 .dev = dev,
5939 };
5940
5941 for (i = 0; i < bus->dev_count; i++)
5942 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5943 break;
5944
5945 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5946 new_bus->dev_count++;
5947 new_bus->range[i] = range;
5948 memcpy(new_bus->range + i + 1, bus->range + i,
5949 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5950 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5951 synchronize_srcu_expedited(&kvm->srcu);
5952 kfree(bus);
5953
5954 return 0;
5955}
5956
5957int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5958 struct kvm_io_device *dev)
5959{
5960 int i;
5961 struct kvm_io_bus *new_bus, *bus;
5962
5963 lockdep_assert_held(&kvm->slots_lock);
5964
5965 bus = kvm_get_bus(kvm, bus_idx);
5966 if (!bus)
5967 return 0;
5968
5969 for (i = 0; i < bus->dev_count; i++) {
5970 if (bus->range[i].dev == dev) {
5971 break;
5972 }
5973 }
5974
5975 if (i == bus->dev_count)
5976 return 0;
5977
5978 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5979 GFP_KERNEL_ACCOUNT);
5980 if (new_bus) {
5981 memcpy(new_bus, bus, struct_size(bus, range, i));
5982 new_bus->dev_count--;
5983 memcpy(new_bus->range + i, bus->range + i + 1,
5984 flex_array_size(new_bus, range, new_bus->dev_count - i));
5985 }
5986
5987 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5988 synchronize_srcu_expedited(&kvm->srcu);
5989
5990 /*
5991 * If NULL bus is installed, destroy the old bus, including all the
5992 * attached devices. Otherwise, destroy the caller's device only.
5993 */
5994 if (!new_bus) {
5995 pr_err("kvm: failed to shrink bus, removing it completely\n");
5996 kvm_io_bus_destroy(bus);
5997 return -ENOMEM;
5998 }
5999
6000 kvm_iodevice_destructor(dev);
6001 kfree(bus);
6002 return 0;
6003}
6004
6005struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6006 gpa_t addr)
6007{
6008 struct kvm_io_bus *bus;
6009 int dev_idx, srcu_idx;
6010 struct kvm_io_device *iodev = NULL;
6011
6012 srcu_idx = srcu_read_lock(&kvm->srcu);
6013
6014 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6015 if (!bus)
6016 goto out_unlock;
6017
6018 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6019 if (dev_idx < 0)
6020 goto out_unlock;
6021
6022 iodev = bus->range[dev_idx].dev;
6023
6024out_unlock:
6025 srcu_read_unlock(&kvm->srcu, srcu_idx);
6026
6027 return iodev;
6028}
6029EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6030
6031static int kvm_debugfs_open(struct inode *inode, struct file *file,
6032 int (*get)(void *, u64 *), int (*set)(void *, u64),
6033 const char *fmt)
6034{
6035 int ret;
6036 struct kvm_stat_data *stat_data = inode->i_private;
6037
6038 /*
6039 * The debugfs files are a reference to the kvm struct which
6040 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6041 * avoids the race between open and the removal of the debugfs directory.
6042 */
6043 if (!kvm_get_kvm_safe(stat_data->kvm))
6044 return -ENOENT;
6045
6046 ret = simple_attr_open(inode, file, get,
6047 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6048 ? set : NULL, fmt);
6049 if (ret)
6050 kvm_put_kvm(stat_data->kvm);
6051
6052 return ret;
6053}
6054
6055static int kvm_debugfs_release(struct inode *inode, struct file *file)
6056{
6057 struct kvm_stat_data *stat_data = inode->i_private;
6058
6059 simple_attr_release(inode, file);
6060 kvm_put_kvm(stat_data->kvm);
6061
6062 return 0;
6063}
6064
6065static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6066{
6067 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6068
6069 return 0;
6070}
6071
6072static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6073{
6074 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6075
6076 return 0;
6077}
6078
6079static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6080{
6081 unsigned long i;
6082 struct kvm_vcpu *vcpu;
6083
6084 *val = 0;
6085
6086 kvm_for_each_vcpu(i, vcpu, kvm)
6087 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6088
6089 return 0;
6090}
6091
6092static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6093{
6094 unsigned long i;
6095 struct kvm_vcpu *vcpu;
6096
6097 kvm_for_each_vcpu(i, vcpu, kvm)
6098 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6099
6100 return 0;
6101}
6102
6103static int kvm_stat_data_get(void *data, u64 *val)
6104{
6105 int r = -EFAULT;
6106 struct kvm_stat_data *stat_data = data;
6107
6108 switch (stat_data->kind) {
6109 case KVM_STAT_VM:
6110 r = kvm_get_stat_per_vm(stat_data->kvm,
6111 stat_data->desc->desc.offset, val);
6112 break;
6113 case KVM_STAT_VCPU:
6114 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6115 stat_data->desc->desc.offset, val);
6116 break;
6117 }
6118
6119 return r;
6120}
6121
6122static int kvm_stat_data_clear(void *data, u64 val)
6123{
6124 int r = -EFAULT;
6125 struct kvm_stat_data *stat_data = data;
6126
6127 if (val)
6128 return -EINVAL;
6129
6130 switch (stat_data->kind) {
6131 case KVM_STAT_VM:
6132 r = kvm_clear_stat_per_vm(stat_data->kvm,
6133 stat_data->desc->desc.offset);
6134 break;
6135 case KVM_STAT_VCPU:
6136 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6137 stat_data->desc->desc.offset);
6138 break;
6139 }
6140
6141 return r;
6142}
6143
6144static int kvm_stat_data_open(struct inode *inode, struct file *file)
6145{
6146 __simple_attr_check_format("%llu\n", 0ull);
6147 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6148 kvm_stat_data_clear, "%llu\n");
6149}
6150
6151static const struct file_operations stat_fops_per_vm = {
6152 .owner = THIS_MODULE,
6153 .open = kvm_stat_data_open,
6154 .release = kvm_debugfs_release,
6155 .read = simple_attr_read,
6156 .write = simple_attr_write,
6157 .llseek = no_llseek,
6158};
6159
6160static int vm_stat_get(void *_offset, u64 *val)
6161{
6162 unsigned offset = (long)_offset;
6163 struct kvm *kvm;
6164 u64 tmp_val;
6165
6166 *val = 0;
6167 mutex_lock(&kvm_lock);
6168 list_for_each_entry(kvm, &vm_list, vm_list) {
6169 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6170 *val += tmp_val;
6171 }
6172 mutex_unlock(&kvm_lock);
6173 return 0;
6174}
6175
6176static int vm_stat_clear(void *_offset, u64 val)
6177{
6178 unsigned offset = (long)_offset;
6179 struct kvm *kvm;
6180
6181 if (val)
6182 return -EINVAL;
6183
6184 mutex_lock(&kvm_lock);
6185 list_for_each_entry(kvm, &vm_list, vm_list) {
6186 kvm_clear_stat_per_vm(kvm, offset);
6187 }
6188 mutex_unlock(&kvm_lock);
6189
6190 return 0;
6191}
6192
6193DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6194DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6195
6196static int vcpu_stat_get(void *_offset, u64 *val)
6197{
6198 unsigned offset = (long)_offset;
6199 struct kvm *kvm;
6200 u64 tmp_val;
6201
6202 *val = 0;
6203 mutex_lock(&kvm_lock);
6204 list_for_each_entry(kvm, &vm_list, vm_list) {
6205 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6206 *val += tmp_val;
6207 }
6208 mutex_unlock(&kvm_lock);
6209 return 0;
6210}
6211
6212static int vcpu_stat_clear(void *_offset, u64 val)
6213{
6214 unsigned offset = (long)_offset;
6215 struct kvm *kvm;
6216
6217 if (val)
6218 return -EINVAL;
6219
6220 mutex_lock(&kvm_lock);
6221 list_for_each_entry(kvm, &vm_list, vm_list) {
6222 kvm_clear_stat_per_vcpu(kvm, offset);
6223 }
6224 mutex_unlock(&kvm_lock);
6225
6226 return 0;
6227}
6228
6229DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6230 "%llu\n");
6231DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6232
6233static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6234{
6235 struct kobj_uevent_env *env;
6236 unsigned long long created, active;
6237
6238 if (!kvm_dev.this_device || !kvm)
6239 return;
6240
6241 mutex_lock(&kvm_lock);
6242 if (type == KVM_EVENT_CREATE_VM) {
6243 kvm_createvm_count++;
6244 kvm_active_vms++;
6245 } else if (type == KVM_EVENT_DESTROY_VM) {
6246 kvm_active_vms--;
6247 }
6248 created = kvm_createvm_count;
6249 active = kvm_active_vms;
6250 mutex_unlock(&kvm_lock);
6251
6252 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6253 if (!env)
6254 return;
6255
6256 add_uevent_var(env, "CREATED=%llu", created);
6257 add_uevent_var(env, "COUNT=%llu", active);
6258
6259 if (type == KVM_EVENT_CREATE_VM) {
6260 add_uevent_var(env, "EVENT=create");
6261 kvm->userspace_pid = task_pid_nr(current);
6262 } else if (type == KVM_EVENT_DESTROY_VM) {
6263 add_uevent_var(env, "EVENT=destroy");
6264 }
6265 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6266
6267 if (!IS_ERR(kvm->debugfs_dentry)) {
6268 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6269
6270 if (p) {
6271 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6272 if (!IS_ERR(tmp))
6273 add_uevent_var(env, "STATS_PATH=%s", tmp);
6274 kfree(p);
6275 }
6276 }
6277 /* no need for checks, since we are adding at most only 5 keys */
6278 env->envp[env->envp_idx++] = NULL;
6279 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6280 kfree(env);
6281}
6282
6283static void kvm_init_debug(void)
6284{
6285 const struct file_operations *fops;
6286 const struct _kvm_stats_desc *pdesc;
6287 int i;
6288
6289 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6290
6291 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6292 pdesc = &kvm_vm_stats_desc[i];
6293 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6294 fops = &vm_stat_fops;
6295 else
6296 fops = &vm_stat_readonly_fops;
6297 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6298 kvm_debugfs_dir,
6299 (void *)(long)pdesc->desc.offset, fops);
6300 }
6301
6302 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6303 pdesc = &kvm_vcpu_stats_desc[i];
6304 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6305 fops = &vcpu_stat_fops;
6306 else
6307 fops = &vcpu_stat_readonly_fops;
6308 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6309 kvm_debugfs_dir,
6310 (void *)(long)pdesc->desc.offset, fops);
6311 }
6312}
6313
6314static inline
6315struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6316{
6317 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6318}
6319
6320static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6321{
6322 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6323
6324 WRITE_ONCE(vcpu->preempted, false);
6325 WRITE_ONCE(vcpu->ready, false);
6326
6327 __this_cpu_write(kvm_running_vcpu, vcpu);
6328 kvm_arch_sched_in(vcpu, cpu);
6329 kvm_arch_vcpu_load(vcpu, cpu);
6330}
6331
6332static void kvm_sched_out(struct preempt_notifier *pn,
6333 struct task_struct *next)
6334{
6335 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6336
6337 if (current->on_rq) {
6338 WRITE_ONCE(vcpu->preempted, true);
6339 WRITE_ONCE(vcpu->ready, true);
6340 }
6341 kvm_arch_vcpu_put(vcpu);
6342 __this_cpu_write(kvm_running_vcpu, NULL);
6343}
6344
6345/**
6346 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6347 *
6348 * We can disable preemption locally around accessing the per-CPU variable,
6349 * and use the resolved vcpu pointer after enabling preemption again,
6350 * because even if the current thread is migrated to another CPU, reading
6351 * the per-CPU value later will give us the same value as we update the
6352 * per-CPU variable in the preempt notifier handlers.
6353 */
6354struct kvm_vcpu *kvm_get_running_vcpu(void)
6355{
6356 struct kvm_vcpu *vcpu;
6357
6358 preempt_disable();
6359 vcpu = __this_cpu_read(kvm_running_vcpu);
6360 preempt_enable();
6361
6362 return vcpu;
6363}
6364EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6365
6366/**
6367 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6368 */
6369struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6370{
6371 return &kvm_running_vcpu;
6372}
6373
6374#ifdef CONFIG_GUEST_PERF_EVENTS
6375static unsigned int kvm_guest_state(void)
6376{
6377 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6378 unsigned int state;
6379
6380 if (!kvm_arch_pmi_in_guest(vcpu))
6381 return 0;
6382
6383 state = PERF_GUEST_ACTIVE;
6384 if (!kvm_arch_vcpu_in_kernel(vcpu))
6385 state |= PERF_GUEST_USER;
6386
6387 return state;
6388}
6389
6390static unsigned long kvm_guest_get_ip(void)
6391{
6392 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6393
6394 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6395 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6396 return 0;
6397
6398 return kvm_arch_vcpu_get_ip(vcpu);
6399}
6400
6401static struct perf_guest_info_callbacks kvm_guest_cbs = {
6402 .state = kvm_guest_state,
6403 .get_ip = kvm_guest_get_ip,
6404 .handle_intel_pt_intr = NULL,
6405};
6406
6407void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6408{
6409 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6410 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6411}
6412void kvm_unregister_perf_callbacks(void)
6413{
6414 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6415}
6416#endif
6417
6418int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6419{
6420 int r;
6421 int cpu;
6422
6423#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6424 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6425 kvm_online_cpu, kvm_offline_cpu);
6426 if (r)
6427 return r;
6428
6429 register_syscore_ops(&kvm_syscore_ops);
6430#endif
6431
6432 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6433 if (!vcpu_align)
6434 vcpu_align = __alignof__(struct kvm_vcpu);
6435 kvm_vcpu_cache =
6436 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6437 SLAB_ACCOUNT,
6438 offsetof(struct kvm_vcpu, arch),
6439 offsetofend(struct kvm_vcpu, stats_id)
6440 - offsetof(struct kvm_vcpu, arch),
6441 NULL);
6442 if (!kvm_vcpu_cache) {
6443 r = -ENOMEM;
6444 goto err_vcpu_cache;
6445 }
6446
6447 for_each_possible_cpu(cpu) {
6448 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6449 GFP_KERNEL, cpu_to_node(cpu))) {
6450 r = -ENOMEM;
6451 goto err_cpu_kick_mask;
6452 }
6453 }
6454
6455 r = kvm_irqfd_init();
6456 if (r)
6457 goto err_irqfd;
6458
6459 r = kvm_async_pf_init();
6460 if (r)
6461 goto err_async_pf;
6462
6463 kvm_chardev_ops.owner = module;
6464 kvm_vm_fops.owner = module;
6465 kvm_vcpu_fops.owner = module;
6466 kvm_device_fops.owner = module;
6467
6468 kvm_preempt_ops.sched_in = kvm_sched_in;
6469 kvm_preempt_ops.sched_out = kvm_sched_out;
6470
6471 kvm_init_debug();
6472
6473 r = kvm_vfio_ops_init();
6474 if (WARN_ON_ONCE(r))
6475 goto err_vfio;
6476
6477 kvm_gmem_init(module);
6478
6479 /*
6480 * Registration _must_ be the very last thing done, as this exposes
6481 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6482 */
6483 r = misc_register(&kvm_dev);
6484 if (r) {
6485 pr_err("kvm: misc device register failed\n");
6486 goto err_register;
6487 }
6488
6489 return 0;
6490
6491err_register:
6492 kvm_vfio_ops_exit();
6493err_vfio:
6494 kvm_async_pf_deinit();
6495err_async_pf:
6496 kvm_irqfd_exit();
6497err_irqfd:
6498err_cpu_kick_mask:
6499 for_each_possible_cpu(cpu)
6500 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6501 kmem_cache_destroy(kvm_vcpu_cache);
6502err_vcpu_cache:
6503#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6504 unregister_syscore_ops(&kvm_syscore_ops);
6505 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6506#endif
6507 return r;
6508}
6509EXPORT_SYMBOL_GPL(kvm_init);
6510
6511void kvm_exit(void)
6512{
6513 int cpu;
6514
6515 /*
6516 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6517 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6518 * to KVM while the module is being stopped.
6519 */
6520 misc_deregister(&kvm_dev);
6521
6522 debugfs_remove_recursive(kvm_debugfs_dir);
6523 for_each_possible_cpu(cpu)
6524 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6525 kmem_cache_destroy(kvm_vcpu_cache);
6526 kvm_vfio_ops_exit();
6527 kvm_async_pf_deinit();
6528#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6529 unregister_syscore_ops(&kvm_syscore_ops);
6530 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6531#endif
6532 kvm_irqfd_exit();
6533}
6534EXPORT_SYMBOL_GPL(kvm_exit);
6535
6536struct kvm_vm_worker_thread_context {
6537 struct kvm *kvm;
6538 struct task_struct *parent;
6539 struct completion init_done;
6540 kvm_vm_thread_fn_t thread_fn;
6541 uintptr_t data;
6542 int err;
6543};
6544
6545static int kvm_vm_worker_thread(void *context)
6546{
6547 /*
6548 * The init_context is allocated on the stack of the parent thread, so
6549 * we have to locally copy anything that is needed beyond initialization
6550 */
6551 struct kvm_vm_worker_thread_context *init_context = context;
6552 struct task_struct *parent;
6553 struct kvm *kvm = init_context->kvm;
6554 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6555 uintptr_t data = init_context->data;
6556 int err;
6557
6558 err = kthread_park(current);
6559 /* kthread_park(current) is never supposed to return an error */
6560 WARN_ON(err != 0);
6561 if (err)
6562 goto init_complete;
6563
6564 err = cgroup_attach_task_all(init_context->parent, current);
6565 if (err) {
6566 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6567 __func__, err);
6568 goto init_complete;
6569 }
6570
6571 set_user_nice(current, task_nice(init_context->parent));
6572
6573init_complete:
6574 init_context->err = err;
6575 complete(&init_context->init_done);
6576 init_context = NULL;
6577
6578 if (err)
6579 goto out;
6580
6581 /* Wait to be woken up by the spawner before proceeding. */
6582 kthread_parkme();
6583
6584 if (!kthread_should_stop())
6585 err = thread_fn(kvm, data);
6586
6587out:
6588 /*
6589 * Move kthread back to its original cgroup to prevent it lingering in
6590 * the cgroup of the VM process, after the latter finishes its
6591 * execution.
6592 *
6593 * kthread_stop() waits on the 'exited' completion condition which is
6594 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6595 * kthread is removed from the cgroup in the cgroup_exit() which is
6596 * called after the exit_mm(). This causes the kthread_stop() to return
6597 * before the kthread actually quits the cgroup.
6598 */
6599 rcu_read_lock();
6600 parent = rcu_dereference(current->real_parent);
6601 get_task_struct(parent);
6602 rcu_read_unlock();
6603 cgroup_attach_task_all(parent, current);
6604 put_task_struct(parent);
6605
6606 return err;
6607}
6608
6609int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6610 uintptr_t data, const char *name,
6611 struct task_struct **thread_ptr)
6612{
6613 struct kvm_vm_worker_thread_context init_context = {};
6614 struct task_struct *thread;
6615
6616 *thread_ptr = NULL;
6617 init_context.kvm = kvm;
6618 init_context.parent = current;
6619 init_context.thread_fn = thread_fn;
6620 init_context.data = data;
6621 init_completion(&init_context.init_done);
6622
6623 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6624 "%s-%d", name, task_pid_nr(current));
6625 if (IS_ERR(thread))
6626 return PTR_ERR(thread);
6627
6628 /* kthread_run is never supposed to return NULL */
6629 WARN_ON(thread == NULL);
6630
6631 wait_for_completion(&init_context.init_done);
6632
6633 if (!init_context.err)
6634 *thread_ptr = thread;
6635
6636 return init_context.err;
6637}