Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine (KVM) Hypervisor
 
 
 
   4 *
   5 * Copyright (C) 2006 Qumranet, Inc.
   6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   7 *
   8 * Authors:
   9 *   Avi Kivity   <avi@qumranet.com>
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 */
  12
  13#include <kvm/iodev.h>
  14
  15#include <linux/kvm_host.h>
  16#include <linux/kvm.h>
  17#include <linux/module.h>
  18#include <linux/errno.h>
  19#include <linux/percpu.h>
  20#include <linux/mm.h>
  21#include <linux/miscdevice.h>
  22#include <linux/vmalloc.h>
  23#include <linux/reboot.h>
  24#include <linux/debugfs.h>
  25#include <linux/highmem.h>
  26#include <linux/file.h>
  27#include <linux/syscore_ops.h>
  28#include <linux/cpu.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/mm.h>
  31#include <linux/sched/stat.h>
  32#include <linux/cpumask.h>
  33#include <linux/smp.h>
  34#include <linux/anon_inodes.h>
  35#include <linux/profile.h>
  36#include <linux/kvm_para.h>
  37#include <linux/pagemap.h>
  38#include <linux/mman.h>
  39#include <linux/swap.h>
  40#include <linux/bitops.h>
  41#include <linux/spinlock.h>
  42#include <linux/compat.h>
  43#include <linux/srcu.h>
  44#include <linux/hugetlb.h>
  45#include <linux/slab.h>
  46#include <linux/sort.h>
  47#include <linux/bsearch.h>
  48#include <linux/io.h>
  49#include <linux/lockdep.h>
  50#include <linux/kthread.h>
  51#include <linux/suspend.h>
  52
  53#include <asm/processor.h>
  54#include <asm/ioctl.h>
  55#include <linux/uaccess.h>
  56
  57#include "coalesced_mmio.h"
  58#include "async_pf.h"
  59#include "kvm_mm.h"
  60#include "vfio.h"
  61
  62#include <trace/events/ipi.h>
  63
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/kvm.h>
  66
  67#include <linux/kvm_dirty_ring.h>
  68
  69
  70/* Worst case buffer size needed for holding an integer. */
  71#define ITOA_MAX_LEN 12
  72
  73MODULE_AUTHOR("Qumranet");
  74MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
  75MODULE_LICENSE("GPL");
  76
  77/* Architectures should define their poll value according to the halt latency */
  78unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  79module_param(halt_poll_ns, uint, 0644);
  80EXPORT_SYMBOL_GPL(halt_poll_ns);
  81
  82/* Default doubles per-vcpu halt_poll_ns. */
  83unsigned int halt_poll_ns_grow = 2;
  84module_param(halt_poll_ns_grow, uint, 0644);
  85EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  86
  87/* The start value to grow halt_poll_ns from */
  88unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  89module_param(halt_poll_ns_grow_start, uint, 0644);
  90EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  91
  92/* Default halves per-vcpu halt_poll_ns. */
  93unsigned int halt_poll_ns_shrink = 2;
  94module_param(halt_poll_ns_shrink, uint, 0644);
  95EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  96
  97/*
  98 * Allow direct access (from KVM or the CPU) without MMU notifier protection
  99 * to unpinned pages.
 100 */
 101static bool allow_unsafe_mappings;
 102module_param(allow_unsafe_mappings, bool, 0444);
 103
 104/*
 105 * Ordering of locks:
 106 *
 107 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 108 */
 109
 110DEFINE_MUTEX(kvm_lock);
 
 111LIST_HEAD(vm_list);
 112
 
 
 
 
 113static struct kmem_cache *kvm_vcpu_cache;
 114
 115static __read_mostly struct preempt_ops kvm_preempt_ops;
 116static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 117
 118static struct dentry *kvm_debugfs_dir;
 
 119
 
 120static const struct file_operations stat_fops_per_vm;
 121
 122static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 123			   unsigned long arg);
 124#ifdef CONFIG_KVM_COMPAT
 125static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 126				  unsigned long arg);
 127#define KVM_COMPAT(c)	.compat_ioctl	= (c)
 128#else
 129/*
 130 * For architectures that don't implement a compat infrastructure,
 131 * adopt a double line of defense:
 132 * - Prevent a compat task from opening /dev/kvm
 133 * - If the open has been done by a 64bit task, and the KVM fd
 134 *   passed to a compat task, let the ioctls fail.
 135 */
 136static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 137				unsigned long arg) { return -EINVAL; }
 138
 139static int kvm_no_compat_open(struct inode *inode, struct file *file)
 140{
 141	return is_compat_task() ? -ENODEV : 0;
 142}
 143#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
 144			.open		= kvm_no_compat_open
 145#endif
 146static int kvm_enable_virtualization(void);
 147static void kvm_disable_virtualization(void);
 148
 149static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 150
 
 
 
 
 
 151#define KVM_EVENT_CREATE_VM 0
 152#define KVM_EVENT_DESTROY_VM 1
 153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 154static unsigned long long kvm_createvm_count;
 155static unsigned long long kvm_active_vms;
 156
 157static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158
 159__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
 160{
 
 
 
 
 
 
 161}
 162
 163/*
 164 * Switches to specified vcpu, until a matching vcpu_put()
 165 */
 166void vcpu_load(struct kvm_vcpu *vcpu)
 167{
 168	int cpu = get_cpu();
 169
 170	__this_cpu_write(kvm_running_vcpu, vcpu);
 171	preempt_notifier_register(&vcpu->preempt_notifier);
 172	kvm_arch_vcpu_load(vcpu, cpu);
 173	put_cpu();
 174}
 175EXPORT_SYMBOL_GPL(vcpu_load);
 176
 177void vcpu_put(struct kvm_vcpu *vcpu)
 178{
 179	preempt_disable();
 180	kvm_arch_vcpu_put(vcpu);
 181	preempt_notifier_unregister(&vcpu->preempt_notifier);
 182	__this_cpu_write(kvm_running_vcpu, NULL);
 183	preempt_enable();
 184}
 185EXPORT_SYMBOL_GPL(vcpu_put);
 186
 187/* TODO: merge with kvm_arch_vcpu_should_kick */
 188static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 189{
 190	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 191
 192	/*
 193	 * We need to wait for the VCPU to reenable interrupts and get out of
 194	 * READING_SHADOW_PAGE_TABLES mode.
 195	 */
 196	if (req & KVM_REQUEST_WAIT)
 197		return mode != OUTSIDE_GUEST_MODE;
 198
 199	/*
 200	 * Need to kick a running VCPU, but otherwise there is nothing to do.
 201	 */
 202	return mode == IN_GUEST_MODE;
 203}
 204
 205static void ack_kick(void *_completed)
 206{
 207}
 208
 209static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
 210{
 
 
 
 211	if (cpumask_empty(cpus))
 212		return false;
 213
 214	smp_call_function_many(cpus, ack_kick, NULL, wait);
 215	return true;
 216}
 217
 218static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
 219				  struct cpumask *tmp, int current_cpu)
 220{
 221	int cpu;
 222
 223	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
 224		__kvm_make_request(req, vcpu);
 225
 226	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 227		return;
 228
 229	/*
 230	 * Note, the vCPU could get migrated to a different pCPU at any point
 231	 * after kvm_request_needs_ipi(), which could result in sending an IPI
 232	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
 233	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
 234	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
 235	 * after this point is also OK, as the requirement is only that KVM wait
 236	 * for vCPUs that were reading SPTEs _before_ any changes were
 237	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
 238	 */
 239	if (kvm_request_needs_ipi(vcpu, req)) {
 240		cpu = READ_ONCE(vcpu->cpu);
 241		if (cpu != -1 && cpu != current_cpu)
 242			__cpumask_set_cpu(cpu, tmp);
 243	}
 244}
 245
 246bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 247				 unsigned long *vcpu_bitmap)
 
 248{
 
 249	struct kvm_vcpu *vcpu;
 250	struct cpumask *cpus;
 251	int i, me;
 252	bool called;
 253
 254	me = get_cpu();
 255
 256	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
 257	cpumask_clear(cpus);
 
 
 
 
 
 258
 259	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
 260		vcpu = kvm_get_vcpu(kvm, i);
 261		if (!vcpu)
 262			continue;
 263		kvm_make_vcpu_request(vcpu, req, cpus, me);
 
 
 
 264	}
 265
 266	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 267	put_cpu();
 268
 269	return called;
 270}
 271
 272bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 
 273{
 274	struct kvm_vcpu *vcpu;
 275	struct cpumask *cpus;
 276	unsigned long i;
 277	bool called;
 278	int me;
 279
 280	me = get_cpu();
 281
 282	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
 283	cpumask_clear(cpus);
 284
 285	kvm_for_each_vcpu(i, vcpu, kvm)
 286		kvm_make_vcpu_request(vcpu, req, cpus, me);
 287
 288	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 289	put_cpu();
 290
 
 291	return called;
 292}
 293EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
 294
 
 
 
 
 
 
 295void kvm_flush_remote_tlbs(struct kvm *kvm)
 296{
 297	++kvm->stat.generic.remote_tlb_flush_requests;
 
 
 
 
 298
 299	/*
 300	 * We want to publish modifications to the page tables before reading
 301	 * mode. Pairs with a memory barrier in arch-specific code.
 302	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 303	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 304	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 305	 *
 306	 * There is already an smp_mb__after_atomic() before
 307	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 308	 * barrier here.
 309	 */
 310	if (!kvm_arch_flush_remote_tlbs(kvm)
 311	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 312		++kvm->stat.generic.remote_tlb_flush;
 
 313}
 314EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 
 315
 316void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
 317{
 318	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
 319		return;
 320
 321	/*
 322	 * Fall back to a flushing entire TLBs if the architecture range-based
 323	 * TLB invalidation is unsupported or can't be performed for whatever
 324	 * reason.
 325	 */
 326	kvm_flush_remote_tlbs(kvm);
 327}
 328
 329void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
 330				   const struct kvm_memory_slot *memslot)
 331{
 332	/*
 333	 * All current use cases for flushing the TLBs for a specific memslot
 334	 * are related to dirty logging, and many do the TLB flush out of
 335	 * mmu_lock. The interaction between the various operations on memslot
 336	 * must be serialized by slots_locks to ensure the TLB flush from one
 337	 * operation is observed by any other operation on the same memslot.
 338	 */
 339	lockdep_assert_held(&kvm->slots_lock);
 340	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
 341}
 342
 343static void kvm_flush_shadow_all(struct kvm *kvm)
 344{
 345	kvm_arch_flush_shadow_all(kvm);
 346	kvm_arch_guest_memory_reclaimed(kvm);
 347}
 348
 349#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 350static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 351					       gfp_t gfp_flags)
 352{
 353	void *page;
 354
 355	gfp_flags |= mc->gfp_zero;
 356
 357	if (mc->kmem_cache)
 358		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 359
 360	page = (void *)__get_free_page(gfp_flags);
 361	if (page && mc->init_value)
 362		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
 363	return page;
 364}
 365
 366int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
 367{
 368	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
 369	void *obj;
 370
 371	if (mc->nobjs >= min)
 372		return 0;
 373
 374	if (unlikely(!mc->objects)) {
 375		if (WARN_ON_ONCE(!capacity))
 376			return -EIO;
 377
 378		/*
 379		 * Custom init values can be used only for page allocations,
 380		 * and obviously conflict with __GFP_ZERO.
 381		 */
 382		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
 383			return -EIO;
 384
 385		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
 386		if (!mc->objects)
 387			return -ENOMEM;
 388
 389		mc->capacity = capacity;
 390	}
 391
 392	/* It is illegal to request a different capacity across topups. */
 393	if (WARN_ON_ONCE(mc->capacity != capacity))
 394		return -EIO;
 395
 396	while (mc->nobjs < mc->capacity) {
 397		obj = mmu_memory_cache_alloc_obj(mc, gfp);
 398		if (!obj)
 399			return mc->nobjs >= min ? 0 : -ENOMEM;
 400		mc->objects[mc->nobjs++] = obj;
 401	}
 402	return 0;
 403}
 404
 405int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 406{
 407	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
 408}
 409
 410int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 411{
 412	return mc->nobjs;
 413}
 414
 415void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 416{
 417	while (mc->nobjs) {
 418		if (mc->kmem_cache)
 419			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 420		else
 421			free_page((unsigned long)mc->objects[--mc->nobjs]);
 422	}
 423
 424	kvfree(mc->objects);
 425
 426	mc->objects = NULL;
 427	mc->capacity = 0;
 428}
 429
 430void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 431{
 432	void *p;
 433
 434	if (WARN_ON(!mc->nobjs))
 435		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 436	else
 437		p = mc->objects[--mc->nobjs];
 438	BUG_ON(!p);
 439	return p;
 440}
 441#endif
 442
 443static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 444{
 445	mutex_init(&vcpu->mutex);
 446	vcpu->cpu = -1;
 447	vcpu->kvm = kvm;
 448	vcpu->vcpu_id = id;
 449	vcpu->pid = NULL;
 450	rwlock_init(&vcpu->pid_lock);
 451#ifndef __KVM_HAVE_ARCH_WQP
 452	rcuwait_init(&vcpu->wait);
 453#endif
 454	kvm_async_pf_vcpu_init(vcpu);
 455
 
 
 
 456	kvm_vcpu_set_in_spin_loop(vcpu, false);
 457	kvm_vcpu_set_dy_eligible(vcpu, false);
 458	vcpu->preempted = false;
 459	vcpu->ready = false;
 460	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 461	vcpu->last_used_slot = NULL;
 462
 463	/* Fill the stats id string for the vcpu */
 464	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
 465		 task_pid_nr(current), id);
 466}
 467
 468static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 469{
 470	kvm_arch_vcpu_destroy(vcpu);
 471	kvm_dirty_ring_free(&vcpu->dirty_ring);
 472
 473	/*
 474	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 475	 * the vcpu->pid pointer, and at destruction time all file descriptors
 476	 * are already gone.
 477	 */
 478	put_pid(vcpu->pid);
 479
 480	free_page((unsigned long)vcpu->run);
 481	kmem_cache_free(kvm_vcpu_cache, vcpu);
 482}
 
 483
 484void kvm_destroy_vcpus(struct kvm *kvm)
 485{
 486	unsigned long i;
 487	struct kvm_vcpu *vcpu;
 488
 489	kvm_for_each_vcpu(i, vcpu, kvm) {
 490		kvm_vcpu_destroy(vcpu);
 491		xa_erase(&kvm->vcpu_array, i);
 492	}
 493
 494	atomic_set(&kvm->online_vcpus, 0);
 495}
 496EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
 497
 498#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
 499static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 500{
 501	return container_of(mn, struct kvm, mmu_notifier);
 502}
 503
 504typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
 505
 506typedef void (*on_lock_fn_t)(struct kvm *kvm);
 507
 508struct kvm_mmu_notifier_range {
 509	/*
 510	 * 64-bit addresses, as KVM notifiers can operate on host virtual
 511	 * addresses (unsigned long) and guest physical addresses (64-bit).
 512	 */
 513	u64 start;
 514	u64 end;
 515	union kvm_mmu_notifier_arg arg;
 516	gfn_handler_t handler;
 517	on_lock_fn_t on_lock;
 518	bool flush_on_ret;
 519	bool may_block;
 520};
 521
 522/*
 523 * The inner-most helper returns a tuple containing the return value from the
 524 * arch- and action-specific handler, plus a flag indicating whether or not at
 525 * least one memslot was found, i.e. if the handler found guest memory.
 526 *
 527 * Note, most notifiers are averse to booleans, so even though KVM tracks the
 528 * return from arch code as a bool, outer helpers will cast it to an int. :-(
 529 */
 530typedef struct kvm_mmu_notifier_return {
 531	bool ret;
 532	bool found_memslot;
 533} kvm_mn_ret_t;
 534
 535/*
 536 * Use a dedicated stub instead of NULL to indicate that there is no callback
 537 * function/handler.  The compiler technically can't guarantee that a real
 538 * function will have a non-zero address, and so it will generate code to
 539 * check for !NULL, whereas comparing against a stub will be elided at compile
 540 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
 541 */
 542static void kvm_null_fn(void)
 543{
 
 
 544
 
 
 
 545}
 546#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
 547
 548/* Iterate over each memslot intersecting [start, last] (inclusive) range */
 549#define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
 550	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
 551	     node;							     \
 552	     node = interval_tree_iter_next(node, start, last))	     \
 553
 554static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
 555							   const struct kvm_mmu_notifier_range *range)
 556{
 557	struct kvm_mmu_notifier_return r = {
 558		.ret = false,
 559		.found_memslot = false,
 560	};
 561	struct kvm_gfn_range gfn_range;
 562	struct kvm_memory_slot *slot;
 563	struct kvm_memslots *slots;
 564	int i, idx;
 565
 566	if (WARN_ON_ONCE(range->end <= range->start))
 567		return r;
 568
 569	/* A null handler is allowed if and only if on_lock() is provided. */
 570	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
 571			 IS_KVM_NULL_FN(range->handler)))
 572		return r;
 573
 574	idx = srcu_read_lock(&kvm->srcu);
 
 
 575
 576	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
 577		struct interval_tree_node *node;
 578
 579		slots = __kvm_memslots(kvm, i);
 580		kvm_for_each_memslot_in_hva_range(node, slots,
 581						  range->start, range->end - 1) {
 582			unsigned long hva_start, hva_end;
 583
 584			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
 585			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
 586			hva_end = min_t(unsigned long, range->end,
 587					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
 588
 589			/*
 590			 * To optimize for the likely case where the address
 591			 * range is covered by zero or one memslots, don't
 592			 * bother making these conditional (to avoid writes on
 593			 * the second or later invocation of the handler).
 594			 */
 595			gfn_range.arg = range->arg;
 596			gfn_range.may_block = range->may_block;
 597
 598			/*
 599			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 600			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 601			 */
 602			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
 603			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
 604			gfn_range.slot = slot;
 605
 606			if (!r.found_memslot) {
 607				r.found_memslot = true;
 608				KVM_MMU_LOCK(kvm);
 609				if (!IS_KVM_NULL_FN(range->on_lock))
 610					range->on_lock(kvm);
 611
 612				if (IS_KVM_NULL_FN(range->handler))
 613					goto mmu_unlock;
 614			}
 615			r.ret |= range->handler(kvm, &gfn_range);
 616		}
 617	}
 618
 619	if (range->flush_on_ret && r.ret)
 620		kvm_flush_remote_tlbs(kvm);
 621
 622mmu_unlock:
 623	if (r.found_memslot)
 624		KVM_MMU_UNLOCK(kvm);
 625
 626	srcu_read_unlock(&kvm->srcu, idx);
 627
 628	return r;
 629}
 630
 631static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
 632						unsigned long start,
 633						unsigned long end,
 634						gfn_handler_t handler,
 635						bool flush_on_ret)
 636{
 637	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 638	const struct kvm_mmu_notifier_range range = {
 639		.start		= start,
 640		.end		= end,
 641		.handler	= handler,
 642		.on_lock	= (void *)kvm_null_fn,
 643		.flush_on_ret	= flush_on_ret,
 644		.may_block	= false,
 645	};
 646
 647	return __kvm_handle_hva_range(kvm, &range).ret;
 648}
 649
 650static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
 651							 unsigned long start,
 652							 unsigned long end,
 653							 gfn_handler_t handler)
 654{
 655	return kvm_handle_hva_range(mn, start, end, handler, false);
 656}
 657
 658void kvm_mmu_invalidate_begin(struct kvm *kvm)
 659{
 660	lockdep_assert_held_write(&kvm->mmu_lock);
 661	/*
 662	 * The count increase must become visible at unlock time as no
 663	 * spte can be established without taking the mmu_lock and
 664	 * count is also read inside the mmu_lock critical section.
 665	 */
 666	kvm->mmu_invalidate_in_progress++;
 667
 668	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
 669		kvm->mmu_invalidate_range_start = INVALID_GPA;
 670		kvm->mmu_invalidate_range_end = INVALID_GPA;
 671	}
 672}
 673
 674void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
 675{
 676	lockdep_assert_held_write(&kvm->mmu_lock);
 677
 678	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
 679
 680	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
 681		kvm->mmu_invalidate_range_start = start;
 682		kvm->mmu_invalidate_range_end = end;
 683	} else {
 684		/*
 685		 * Fully tracking multiple concurrent ranges has diminishing
 686		 * returns. Keep things simple and just find the minimal range
 687		 * which includes the current and new ranges. As there won't be
 688		 * enough information to subtract a range after its invalidate
 689		 * completes, any ranges invalidated concurrently will
 690		 * accumulate and persist until all outstanding invalidates
 691		 * complete.
 692		 */
 693		kvm->mmu_invalidate_range_start =
 694			min(kvm->mmu_invalidate_range_start, start);
 695		kvm->mmu_invalidate_range_end =
 696			max(kvm->mmu_invalidate_range_end, end);
 697	}
 698}
 699
 700bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
 701{
 702	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
 703	return kvm_unmap_gfn_range(kvm, range);
 704}
 705
 706static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 707					const struct mmu_notifier_range *range)
 708{
 709	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 710	const struct kvm_mmu_notifier_range hva_range = {
 711		.start		= range->start,
 712		.end		= range->end,
 713		.handler	= kvm_mmu_unmap_gfn_range,
 714		.on_lock	= kvm_mmu_invalidate_begin,
 715		.flush_on_ret	= true,
 716		.may_block	= mmu_notifier_range_blockable(range),
 717	};
 718
 719	trace_kvm_unmap_hva_range(range->start, range->end);
 720
 721	/*
 722	 * Prevent memslot modification between range_start() and range_end()
 723	 * so that conditionally locking provides the same result in both
 724	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
 725	 * adjustments will be imbalanced.
 726	 *
 727	 * Pairs with the decrement in range_end().
 728	 */
 729	spin_lock(&kvm->mn_invalidate_lock);
 730	kvm->mn_active_invalidate_count++;
 731	spin_unlock(&kvm->mn_invalidate_lock);
 732
 733	/*
 734	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
 735	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
 736	 * each cache's lock.  There are relatively few caches in existence at
 737	 * any given time, and the caches themselves can check for hva overlap,
 738	 * i.e. don't need to rely on memslot overlap checks for performance.
 739	 * Because this runs without holding mmu_lock, the pfn caches must use
 740	 * mn_active_invalidate_count (see above) instead of
 741	 * mmu_invalidate_in_progress.
 742	 */
 743	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
 744
 745	/*
 746	 * If one or more memslots were found and thus zapped, notify arch code
 747	 * that guest memory has been reclaimed.  This needs to be done *after*
 748	 * dropping mmu_lock, as x86's reclaim path is slooooow.
 749	 */
 750	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
 751		kvm_arch_guest_memory_reclaimed(kvm);
 752
 753	return 0;
 754}
 755
 756void kvm_mmu_invalidate_end(struct kvm *kvm)
 757{
 758	lockdep_assert_held_write(&kvm->mmu_lock);
 759
 
 760	/*
 761	 * This sequence increase will notify the kvm page fault that
 762	 * the page that is going to be mapped in the spte could have
 763	 * been freed.
 764	 */
 765	kvm->mmu_invalidate_seq++;
 766	smp_wmb();
 767	/*
 768	 * The above sequence increase must be visible before the
 769	 * below count decrease, which is ensured by the smp_wmb above
 770	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
 771	 */
 772	kvm->mmu_invalidate_in_progress--;
 773	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
 774
 775	/*
 776	 * Assert that at least one range was added between start() and end().
 777	 * Not adding a range isn't fatal, but it is a KVM bug.
 778	 */
 779	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
 780}
 781
 782static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 783					const struct mmu_notifier_range *range)
 784{
 785	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 786	const struct kvm_mmu_notifier_range hva_range = {
 787		.start		= range->start,
 788		.end		= range->end,
 789		.handler	= (void *)kvm_null_fn,
 790		.on_lock	= kvm_mmu_invalidate_end,
 791		.flush_on_ret	= false,
 792		.may_block	= mmu_notifier_range_blockable(range),
 793	};
 794	bool wake;
 795
 796	__kvm_handle_hva_range(kvm, &hva_range);
 797
 798	/* Pairs with the increment in range_start(). */
 799	spin_lock(&kvm->mn_invalidate_lock);
 800	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
 801		--kvm->mn_active_invalidate_count;
 802	wake = !kvm->mn_active_invalidate_count;
 803	spin_unlock(&kvm->mn_invalidate_lock);
 804
 805	/*
 806	 * There can only be one waiter, since the wait happens under
 807	 * slots_lock.
 808	 */
 809	if (wake)
 810		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
 811}
 812
 813static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 814					      struct mm_struct *mm,
 815					      unsigned long start,
 816					      unsigned long end)
 817{
 818	trace_kvm_age_hva(start, end);
 
 
 
 
 
 
 
 
 
 
 
 819
 820	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn,
 821				    !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
 822}
 823
 824static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 825					struct mm_struct *mm,
 826					unsigned long start,
 827					unsigned long end)
 828{
 829	trace_kvm_age_hva(start, end);
 
 830
 
 
 831	/*
 832	 * Even though we do not flush TLB, this will still adversely
 833	 * affect performance on pre-Haswell Intel EPT, where there is
 834	 * no EPT Access Bit to clear so that we have to tear down EPT
 835	 * tables instead. If we find this unacceptable, we can always
 836	 * add a parameter to kvm_age_hva so that it effectively doesn't
 837	 * do anything on clear_young.
 838	 *
 839	 * Also note that currently we never issue secondary TLB flushes
 840	 * from clear_young, leaving this job up to the regular system
 841	 * cadence. If we find this inaccurate, we might come up with a
 842	 * more sophisticated heuristic later.
 843	 */
 844	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
 
 
 
 
 845}
 846
 847static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 848				       struct mm_struct *mm,
 849				       unsigned long address)
 850{
 851	trace_kvm_test_age_hva(address);
 
 852
 853	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
 854					     kvm_test_age_gfn);
 
 
 
 
 
 855}
 856
 857static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 858				     struct mm_struct *mm)
 859{
 860	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 861	int idx;
 862
 863	idx = srcu_read_lock(&kvm->srcu);
 864	kvm_flush_shadow_all(kvm);
 865	srcu_read_unlock(&kvm->srcu, idx);
 866}
 867
 868static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 
 869	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 870	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 871	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 872	.clear_young		= kvm_mmu_notifier_clear_young,
 873	.test_young		= kvm_mmu_notifier_test_young,
 
 874	.release		= kvm_mmu_notifier_release,
 875};
 876
 877static int kvm_init_mmu_notifier(struct kvm *kvm)
 878{
 879	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 880	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 881}
 882
 883#else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
 884
 885static int kvm_init_mmu_notifier(struct kvm *kvm)
 886{
 887	return 0;
 888}
 889
 890#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
 891
 892#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
 893static int kvm_pm_notifier_call(struct notifier_block *bl,
 894				unsigned long state,
 895				void *unused)
 896{
 897	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
 898
 899	return kvm_arch_pm_notifier(kvm, state);
 900}
 901
 902static void kvm_init_pm_notifier(struct kvm *kvm)
 903{
 904	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
 905	/* Suspend KVM before we suspend ftrace, RCU, etc. */
 906	kvm->pm_notifier.priority = INT_MAX;
 907	register_pm_notifier(&kvm->pm_notifier);
 908}
 909
 910static void kvm_destroy_pm_notifier(struct kvm *kvm)
 911{
 912	unregister_pm_notifier(&kvm->pm_notifier);
 913}
 914#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
 915static void kvm_init_pm_notifier(struct kvm *kvm)
 916{
 917}
 918
 919static void kvm_destroy_pm_notifier(struct kvm *kvm)
 920{
 921}
 922#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
 923
 924static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 925{
 926	if (!memslot->dirty_bitmap)
 927		return;
 928
 929	vfree(memslot->dirty_bitmap);
 930	memslot->dirty_bitmap = NULL;
 931}
 932
 933/* This does not remove the slot from struct kvm_memslots data structures */
 934static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 935{
 936	if (slot->flags & KVM_MEM_GUEST_MEMFD)
 937		kvm_gmem_unbind(slot);
 938
 939	kvm_destroy_dirty_bitmap(slot);
 940
 941	kvm_arch_free_memslot(kvm, slot);
 942
 943	kfree(slot);
 
 944}
 945
 946static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 947{
 948	struct hlist_node *idnode;
 949	struct kvm_memory_slot *memslot;
 950	int bkt;
 951
 952	/*
 953	 * The same memslot objects live in both active and inactive sets,
 954	 * arbitrarily free using index '1' so the second invocation of this
 955	 * function isn't operating over a structure with dangling pointers
 956	 * (even though this function isn't actually touching them).
 957	 */
 958	if (!slots->node_idx)
 959		return;
 960
 961	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
 962		kvm_free_memslot(kvm, memslot);
 963}
 964
 965static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
 966{
 967	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
 968	case KVM_STATS_TYPE_INSTANT:
 969		return 0444;
 970	case KVM_STATS_TYPE_CUMULATIVE:
 971	case KVM_STATS_TYPE_PEAK:
 972	default:
 973		return 0644;
 974	}
 975}
 976
 977
 978static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 979{
 980	int i;
 981	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
 982				      kvm_vcpu_stats_header.num_desc;
 983
 984	if (IS_ERR(kvm->debugfs_dentry))
 985		return;
 986
 987	debugfs_remove_recursive(kvm->debugfs_dentry);
 988
 989	if (kvm->debugfs_stat_data) {
 990		for (i = 0; i < kvm_debugfs_num_entries; i++)
 991			kfree(kvm->debugfs_stat_data[i]);
 992		kfree(kvm->debugfs_stat_data);
 993	}
 994}
 995
 996static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
 997{
 998	static DEFINE_MUTEX(kvm_debugfs_lock);
 999	struct dentry *dent;
1000	char dir_name[ITOA_MAX_LEN * 2];
1001	struct kvm_stat_data *stat_data;
1002	const struct _kvm_stats_desc *pdesc;
1003	int i, ret = -ENOMEM;
1004	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1005				      kvm_vcpu_stats_header.num_desc;
1006
1007	if (!debugfs_initialized())
1008		return 0;
1009
1010	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1011	mutex_lock(&kvm_debugfs_lock);
1012	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1013	if (dent) {
1014		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1015		dput(dent);
1016		mutex_unlock(&kvm_debugfs_lock);
1017		return 0;
1018	}
1019	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1020	mutex_unlock(&kvm_debugfs_lock);
1021	if (IS_ERR(dent))
1022		return 0;
1023
1024	kvm->debugfs_dentry = dent;
1025	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1026					 sizeof(*kvm->debugfs_stat_data),
1027					 GFP_KERNEL_ACCOUNT);
1028	if (!kvm->debugfs_stat_data)
1029		goto out_err;
1030
1031	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1032		pdesc = &kvm_vm_stats_desc[i];
1033		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1034		if (!stat_data)
1035			goto out_err;
1036
1037		stat_data->kvm = kvm;
1038		stat_data->desc = pdesc;
1039		stat_data->kind = KVM_STAT_VM;
1040		kvm->debugfs_stat_data[i] = stat_data;
1041		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1042				    kvm->debugfs_dentry, stat_data,
1043				    &stat_fops_per_vm);
1044	}
1045
1046	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1047		pdesc = &kvm_vcpu_stats_desc[i];
1048		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1049		if (!stat_data)
1050			goto out_err;
1051
1052		stat_data->kvm = kvm;
1053		stat_data->desc = pdesc;
1054		stat_data->kind = KVM_STAT_VCPU;
1055		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1056		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1057				    kvm->debugfs_dentry, stat_data,
1058				    &stat_fops_per_vm);
1059	}
1060
1061	kvm_arch_create_vm_debugfs(kvm);
1062	return 0;
1063out_err:
1064	kvm_destroy_vm_debugfs(kvm);
1065	return ret;
1066}
1067
1068/*
1069 * Called after the VM is otherwise initialized, but just before adding it to
1070 * the vm_list.
1071 */
1072int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1073{
1074	return 0;
1075}
1076
1077/*
1078 * Called just after removing the VM from the vm_list, but before doing any
1079 * other destruction.
1080 */
1081void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1082{
1083}
1084
1085/*
1086 * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1087 * be setup already, so we can create arch-specific debugfs entries under it.
1088 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1089 * a per-arch destroy interface is not needed.
1090 */
1091void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1092{
1093}
1094
1095static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1096{
1097	struct kvm *kvm = kvm_arch_alloc_vm();
1098	struct kvm_memslots *slots;
1099	int r, i, j;
1100
1101	if (!kvm)
1102		return ERR_PTR(-ENOMEM);
1103
1104	KVM_MMU_LOCK_INIT(kvm);
1105	mmgrab(current->mm);
1106	kvm->mm = current->mm;
1107	kvm_eventfd_init(kvm);
1108	mutex_init(&kvm->lock);
1109	mutex_init(&kvm->irq_lock);
1110	mutex_init(&kvm->slots_lock);
1111	mutex_init(&kvm->slots_arch_lock);
1112	spin_lock_init(&kvm->mn_invalidate_lock);
1113	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1114	xa_init(&kvm->vcpu_array);
1115#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1116	xa_init(&kvm->mem_attr_array);
1117#endif
1118
1119	INIT_LIST_HEAD(&kvm->gpc_list);
1120	spin_lock_init(&kvm->gpc_lock);
1121
1122	INIT_LIST_HEAD(&kvm->devices);
1123	kvm->max_vcpus = KVM_MAX_VCPUS;
1124
1125	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1126
1127	/*
1128	 * Force subsequent debugfs file creations to fail if the VM directory
1129	 * is not created (by kvm_create_vm_debugfs()).
1130	 */
1131	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1132
1133	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1134		 task_pid_nr(current));
1135
1136	r = -ENOMEM;
1137	if (init_srcu_struct(&kvm->srcu))
1138		goto out_err_no_srcu;
1139	if (init_srcu_struct(&kvm->irq_srcu))
1140		goto out_err_no_irq_srcu;
1141
1142	r = kvm_init_irq_routing(kvm);
1143	if (r)
1144		goto out_err_no_irq_routing;
1145
1146	refcount_set(&kvm->users_count, 1);
 
 
1147
1148	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1149		for (j = 0; j < 2; j++) {
1150			slots = &kvm->__memslots[i][j];
1151
1152			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1153			slots->hva_tree = RB_ROOT_CACHED;
1154			slots->gfn_tree = RB_ROOT;
1155			hash_init(slots->id_hash);
1156			slots->node_idx = j;
1157
1158			/* Generations must be different for each address space. */
1159			slots->generation = i;
1160		}
1161
1162		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1163	}
1164
1165	r = -ENOMEM;
1166	for (i = 0; i < KVM_NR_BUSES; i++) {
1167		rcu_assign_pointer(kvm->buses[i],
1168			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1169		if (!kvm->buses[i])
1170			goto out_err_no_arch_destroy_vm;
1171	}
1172
 
 
1173	r = kvm_arch_init_vm(kvm, type);
1174	if (r)
1175		goto out_err_no_arch_destroy_vm;
1176
1177	r = kvm_enable_virtualization();
1178	if (r)
1179		goto out_err_no_disable;
1180
1181#ifdef CONFIG_HAVE_KVM_IRQCHIP
1182	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1183#endif
1184
1185	r = kvm_init_mmu_notifier(kvm);
1186	if (r)
1187		goto out_err_no_mmu_notifier;
1188
1189	r = kvm_coalesced_mmio_init(kvm);
1190	if (r < 0)
1191		goto out_no_coalesced_mmio;
1192
1193	r = kvm_create_vm_debugfs(kvm, fdname);
1194	if (r)
1195		goto out_err_no_debugfs;
1196
1197	r = kvm_arch_post_init_vm(kvm);
1198	if (r)
1199		goto out_err;
1200
1201	mutex_lock(&kvm_lock);
1202	list_add(&kvm->vm_list, &vm_list);
1203	mutex_unlock(&kvm_lock);
1204
1205	preempt_notifier_inc();
1206	kvm_init_pm_notifier(kvm);
1207
1208	return kvm;
1209
1210out_err:
1211	kvm_destroy_vm_debugfs(kvm);
1212out_err_no_debugfs:
1213	kvm_coalesced_mmio_free(kvm);
1214out_no_coalesced_mmio:
1215#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1216	if (kvm->mmu_notifier.ops)
1217		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1218#endif
1219out_err_no_mmu_notifier:
1220	kvm_disable_virtualization();
1221out_err_no_disable:
1222	kvm_arch_destroy_vm(kvm);
1223out_err_no_arch_destroy_vm:
1224	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1225	for (i = 0; i < KVM_NR_BUSES; i++)
1226		kfree(kvm_get_bus(kvm, i));
1227	kvm_free_irq_routing(kvm);
1228out_err_no_irq_routing:
1229	cleanup_srcu_struct(&kvm->irq_srcu);
1230out_err_no_irq_srcu:
1231	cleanup_srcu_struct(&kvm->srcu);
1232out_err_no_srcu:
1233	kvm_arch_free_vm(kvm);
1234	mmdrop(current->mm);
1235	return ERR_PTR(r);
1236}
1237
1238static void kvm_destroy_devices(struct kvm *kvm)
1239{
1240	struct kvm_device *dev, *tmp;
1241
1242	/*
1243	 * We do not need to take the kvm->lock here, because nobody else
1244	 * has a reference to the struct kvm at this point and therefore
1245	 * cannot access the devices list anyhow.
1246	 *
1247	 * The device list is generally managed as an rculist, but list_del()
1248	 * is used intentionally here. If a bug in KVM introduced a reader that
1249	 * was not backed by a reference on the kvm struct, the hope is that
1250	 * it'd consume the poisoned forward pointer instead of suffering a
1251	 * use-after-free, even though this cannot be guaranteed.
1252	 */
1253	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1254		list_del(&dev->vm_node);
1255		dev->ops->destroy(dev);
1256	}
1257}
1258
1259static void kvm_destroy_vm(struct kvm *kvm)
1260{
1261	int i;
1262	struct mm_struct *mm = kvm->mm;
1263
1264	kvm_destroy_pm_notifier(kvm);
1265	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1266	kvm_destroy_vm_debugfs(kvm);
1267	kvm_arch_sync_events(kvm);
1268	mutex_lock(&kvm_lock);
1269	list_del(&kvm->vm_list);
1270	mutex_unlock(&kvm_lock);
1271	kvm_arch_pre_destroy_vm(kvm);
1272
1273	kvm_free_irq_routing(kvm);
1274	for (i = 0; i < KVM_NR_BUSES; i++) {
1275		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1276
1277		if (bus)
1278			kvm_io_bus_destroy(bus);
1279		kvm->buses[i] = NULL;
1280	}
1281	kvm_coalesced_mmio_free(kvm);
1282#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1283	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1284	/*
1285	 * At this point, pending calls to invalidate_range_start()
1286	 * have completed but no more MMU notifiers will run, so
1287	 * mn_active_invalidate_count may remain unbalanced.
1288	 * No threads can be waiting in kvm_swap_active_memslots() as the
1289	 * last reference on KVM has been dropped, but freeing
1290	 * memslots would deadlock without this manual intervention.
1291	 *
1292	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1293	 * notifier between a start() and end(), then there shouldn't be any
1294	 * in-progress invalidations.
1295	 */
1296	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1297	if (kvm->mn_active_invalidate_count)
1298		kvm->mn_active_invalidate_count = 0;
1299	else
1300		WARN_ON(kvm->mmu_invalidate_in_progress);
1301#else
1302	kvm_flush_shadow_all(kvm);
1303#endif
1304	kvm_arch_destroy_vm(kvm);
1305	kvm_destroy_devices(kvm);
1306	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1307		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1308		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1309	}
1310	cleanup_srcu_struct(&kvm->irq_srcu);
1311	cleanup_srcu_struct(&kvm->srcu);
1312#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1313	xa_destroy(&kvm->mem_attr_array);
1314#endif
1315	kvm_arch_free_vm(kvm);
1316	preempt_notifier_dec();
1317	kvm_disable_virtualization();
1318	mmdrop(mm);
1319}
1320
1321void kvm_get_kvm(struct kvm *kvm)
1322{
1323	refcount_inc(&kvm->users_count);
1324}
1325EXPORT_SYMBOL_GPL(kvm_get_kvm);
1326
1327/*
1328 * Make sure the vm is not during destruction, which is a safe version of
1329 * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1330 */
1331bool kvm_get_kvm_safe(struct kvm *kvm)
1332{
1333	return refcount_inc_not_zero(&kvm->users_count);
1334}
1335EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1336
1337void kvm_put_kvm(struct kvm *kvm)
1338{
1339	if (refcount_dec_and_test(&kvm->users_count))
1340		kvm_destroy_vm(kvm);
1341}
1342EXPORT_SYMBOL_GPL(kvm_put_kvm);
1343
1344/*
1345 * Used to put a reference that was taken on behalf of an object associated
1346 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1347 * of the new file descriptor fails and the reference cannot be transferred to
1348 * its final owner.  In such cases, the caller is still actively using @kvm and
1349 * will fail miserably if the refcount unexpectedly hits zero.
1350 */
1351void kvm_put_kvm_no_destroy(struct kvm *kvm)
1352{
1353	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1354}
1355EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1356
1357static int kvm_vm_release(struct inode *inode, struct file *filp)
1358{
1359	struct kvm *kvm = filp->private_data;
1360
1361	kvm_irqfd_release(kvm);
1362
1363	kvm_put_kvm(kvm);
1364	return 0;
1365}
1366
1367/*
1368 * Allocation size is twice as large as the actual dirty bitmap size.
1369 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1370 */
1371static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1372{
1373	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1374
1375	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1376	if (!memslot->dirty_bitmap)
1377		return -ENOMEM;
1378
1379	return 0;
1380}
1381
1382static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1383{
1384	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1385	int node_idx_inactive = active->node_idx ^ 1;
1386
1387	return &kvm->__memslots[as_id][node_idx_inactive];
1388}
1389
1390/*
1391 * Helper to get the address space ID when one of memslot pointers may be NULL.
1392 * This also serves as a sanity that at least one of the pointers is non-NULL,
1393 * and that their address space IDs don't diverge.
1394 */
1395static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1396				  struct kvm_memory_slot *b)
1397{
1398	if (WARN_ON_ONCE(!a && !b))
1399		return 0;
1400
1401	if (!a)
1402		return b->as_id;
1403	if (!b)
1404		return a->as_id;
1405
1406	WARN_ON_ONCE(a->as_id != b->as_id);
1407	return a->as_id;
1408}
1409
1410static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1411				struct kvm_memory_slot *slot)
1412{
1413	struct rb_root *gfn_tree = &slots->gfn_tree;
1414	struct rb_node **node, *parent;
1415	int idx = slots->node_idx;
1416
1417	parent = NULL;
1418	for (node = &gfn_tree->rb_node; *node; ) {
1419		struct kvm_memory_slot *tmp;
1420
1421		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1422		parent = *node;
1423		if (slot->base_gfn < tmp->base_gfn)
1424			node = &(*node)->rb_left;
1425		else if (slot->base_gfn > tmp->base_gfn)
1426			node = &(*node)->rb_right;
1427		else
1428			BUG();
1429	}
1430
1431	rb_link_node(&slot->gfn_node[idx], parent, node);
1432	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
 
 
 
 
 
 
 
 
 
1433}
1434
1435static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1436			       struct kvm_memory_slot *slot)
 
 
 
1437{
1438	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1439}
1440
1441static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1442				 struct kvm_memory_slot *old,
1443				 struct kvm_memory_slot *new)
 
 
 
 
 
 
1444{
1445	int idx = slots->node_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1448
1449	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1450			&slots->gfn_tree);
 
 
 
1451}
1452
1453/*
1454 * Replace @old with @new in the inactive memslots.
1455 *
1456 * With NULL @old this simply adds @new.
1457 * With NULL @new this simply removes @old.
1458 *
1459 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1460 * appropriately.
1461 */
1462static void kvm_replace_memslot(struct kvm *kvm,
1463				struct kvm_memory_slot *old,
1464				struct kvm_memory_slot *new)
1465{
1466	int as_id = kvm_memslots_get_as_id(old, new);
1467	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1468	int idx = slots->node_idx;
1469
1470	if (old) {
1471		hash_del(&old->id_node[idx]);
1472		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1473
1474		if ((long)old == atomic_long_read(&slots->last_used_slot))
1475			atomic_long_set(&slots->last_used_slot, (long)new);
1476
1477		if (!new) {
1478			kvm_erase_gfn_node(slots, old);
1479			return;
1480		}
1481	}
1482
1483	/*
1484	 * Initialize @new's hva range.  Do this even when replacing an @old
1485	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1486	 */
1487	new->hva_node[idx].start = new->userspace_addr;
1488	new->hva_node[idx].last = new->userspace_addr +
1489				  (new->npages << PAGE_SHIFT) - 1;
1490
1491	/*
1492	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1493	 * hva_node needs to be swapped with remove+insert even though hva can't
1494	 * change when replacing an existing slot.
1495	 */
1496	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1497	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1498
1499	/*
1500	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1501	 * switch the node in the gfn tree instead of removing the old and
1502	 * inserting the new as two separate operations. Replacement is a
1503	 * single O(1) operation versus two O(log(n)) operations for
1504	 * remove+insert.
1505	 */
1506	if (old && old->base_gfn == new->base_gfn) {
1507		kvm_replace_gfn_node(slots, old, new);
1508	} else {
1509		if (old)
1510			kvm_erase_gfn_node(slots, old);
1511		kvm_insert_gfn_node(slots, new);
1512	}
 
1513}
1514
1515/*
1516 * Flags that do not access any of the extra space of struct
1517 * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1518 * only allows these.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519 */
1520#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1521	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1522
1523static int check_memory_region_flags(struct kvm *kvm,
1524				     const struct kvm_userspace_memory_region2 *mem)
1525{
1526	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1527
1528	if (kvm_arch_has_private_mem(kvm))
1529		valid_flags |= KVM_MEM_GUEST_MEMFD;
 
 
 
 
 
 
1530
1531	/* Dirty logging private memory is not currently supported. */
1532	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1533		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 
 
 
 
 
1534
1535	/*
1536	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1537	 * read-only memslots have emulated MMIO, not page fault, semantics,
1538	 * and KVM doesn't allow emulated MMIO for private memory.
1539	 */
1540	if (kvm_arch_has_readonly_mem(kvm) &&
1541	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1542		valid_flags |= KVM_MEM_READONLY;
1543
1544	if (mem->flags & ~valid_flags)
1545		return -EINVAL;
1546
1547	return 0;
1548}
1549
1550static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
 
1551{
1552	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1553
1554	/* Grab the generation from the activate memslots. */
1555	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1556
1557	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1558	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1559
1560	/*
1561	 * Do not store the new memslots while there are invalidations in
1562	 * progress, otherwise the locking in invalidate_range_start and
1563	 * invalidate_range_end will be unbalanced.
1564	 */
1565	spin_lock(&kvm->mn_invalidate_lock);
1566	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567	while (kvm->mn_active_invalidate_count) {
1568		set_current_state(TASK_UNINTERRUPTIBLE);
1569		spin_unlock(&kvm->mn_invalidate_lock);
1570		schedule();
1571		spin_lock(&kvm->mn_invalidate_lock);
1572	}
1573	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1574	rcu_assign_pointer(kvm->memslots[as_id], slots);
1575	spin_unlock(&kvm->mn_invalidate_lock);
1576
1577	/*
1578	 * Acquired in kvm_set_memslot. Must be released before synchronize
1579	 * SRCU below in order to avoid deadlock with another thread
1580	 * acquiring the slots_arch_lock in an srcu critical section.
1581	 */
1582	mutex_unlock(&kvm->slots_arch_lock);
1583
1584	synchronize_srcu_expedited(&kvm->srcu);
1585
1586	/*
1587	 * Increment the new memslot generation a second time, dropping the
1588	 * update in-progress flag and incrementing the generation based on
1589	 * the number of address spaces.  This provides a unique and easily
1590	 * identifiable generation number while the memslots are in flux.
1591	 */
1592	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1593
1594	/*
1595	 * Generations must be unique even across address spaces.  We do not need
1596	 * a global counter for that, instead the generation space is evenly split
1597	 * across address spaces.  For example, with two address spaces, address
1598	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1599	 * use generations 1, 3, 5, ...
1600	 */
1601	gen += kvm_arch_nr_memslot_as_ids(kvm);
1602
1603	kvm_arch_memslots_updated(kvm, gen);
1604
1605	slots->generation = gen;
1606}
1607
1608static int kvm_prepare_memory_region(struct kvm *kvm,
1609				     const struct kvm_memory_slot *old,
1610				     struct kvm_memory_slot *new,
1611				     enum kvm_mr_change change)
1612{
1613	int r;
1614
1615	/*
1616	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1617	 * will be freed on "commit".  If logging is enabled in both old and
1618	 * new, reuse the existing bitmap.  If logging is enabled only in the
1619	 * new and KVM isn't using a ring buffer, allocate and initialize a
1620	 * new bitmap.
1621	 */
1622	if (change != KVM_MR_DELETE) {
1623		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1624			new->dirty_bitmap = NULL;
1625		else if (old && old->dirty_bitmap)
1626			new->dirty_bitmap = old->dirty_bitmap;
1627		else if (kvm_use_dirty_bitmap(kvm)) {
1628			r = kvm_alloc_dirty_bitmap(new);
1629			if (r)
1630				return r;
1631
1632			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1633				bitmap_set(new->dirty_bitmap, 0, new->npages);
1634		}
1635	}
1636
1637	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1638
1639	/* Free the bitmap on failure if it was allocated above. */
1640	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1641		kvm_destroy_dirty_bitmap(new);
1642
1643	return r;
1644}
1645
1646static void kvm_commit_memory_region(struct kvm *kvm,
1647				     struct kvm_memory_slot *old,
1648				     const struct kvm_memory_slot *new,
1649				     enum kvm_mr_change change)
1650{
1651	int old_flags = old ? old->flags : 0;
1652	int new_flags = new ? new->flags : 0;
1653	/*
1654	 * Update the total number of memslot pages before calling the arch
1655	 * hook so that architectures can consume the result directly.
1656	 */
1657	if (change == KVM_MR_DELETE)
1658		kvm->nr_memslot_pages -= old->npages;
1659	else if (change == KVM_MR_CREATE)
1660		kvm->nr_memslot_pages += new->npages;
1661
1662	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1663		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1664		atomic_set(&kvm->nr_memslots_dirty_logging,
1665			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1666	}
1667
1668	kvm_arch_commit_memory_region(kvm, old, new, change);
1669
1670	switch (change) {
1671	case KVM_MR_CREATE:
1672		/* Nothing more to do. */
1673		break;
1674	case KVM_MR_DELETE:
1675		/* Free the old memslot and all its metadata. */
1676		kvm_free_memslot(kvm, old);
1677		break;
1678	case KVM_MR_MOVE:
1679	case KVM_MR_FLAGS_ONLY:
1680		/*
1681		 * Free the dirty bitmap as needed; the below check encompasses
1682		 * both the flags and whether a ring buffer is being used)
1683		 */
1684		if (old->dirty_bitmap && !new->dirty_bitmap)
1685			kvm_destroy_dirty_bitmap(old);
1686
1687		/*
1688		 * The final quirk.  Free the detached, old slot, but only its
1689		 * memory, not any metadata.  Metadata, including arch specific
1690		 * data, may be reused by @new.
1691		 */
1692		kfree(old);
1693		break;
1694	default:
1695		BUG();
1696	}
1697}
1698
1699/*
1700 * Activate @new, which must be installed in the inactive slots by the caller,
1701 * by swapping the active slots and then propagating @new to @old once @old is
1702 * unreachable and can be safely modified.
1703 *
1704 * With NULL @old this simply adds @new to @active (while swapping the sets).
1705 * With NULL @new this simply removes @old from @active and frees it
1706 * (while also swapping the sets).
1707 */
1708static void kvm_activate_memslot(struct kvm *kvm,
1709				 struct kvm_memory_slot *old,
1710				 struct kvm_memory_slot *new)
1711{
1712	int as_id = kvm_memslots_get_as_id(old, new);
1713
1714	kvm_swap_active_memslots(kvm, as_id);
1715
1716	/* Propagate the new memslot to the now inactive memslots. */
1717	kvm_replace_memslot(kvm, old, new);
1718}
1719
1720static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1721			     const struct kvm_memory_slot *src)
1722{
1723	dest->base_gfn = src->base_gfn;
1724	dest->npages = src->npages;
1725	dest->dirty_bitmap = src->dirty_bitmap;
1726	dest->arch = src->arch;
1727	dest->userspace_addr = src->userspace_addr;
1728	dest->flags = src->flags;
1729	dest->id = src->id;
1730	dest->as_id = src->as_id;
1731}
1732
1733static void kvm_invalidate_memslot(struct kvm *kvm,
1734				   struct kvm_memory_slot *old,
1735				   struct kvm_memory_slot *invalid_slot)
1736{
1737	/*
1738	 * Mark the current slot INVALID.  As with all memslot modifications,
1739	 * this must be done on an unreachable slot to avoid modifying the
1740	 * current slot in the active tree.
1741	 */
1742	kvm_copy_memslot(invalid_slot, old);
1743	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1744	kvm_replace_memslot(kvm, old, invalid_slot);
1745
1746	/*
1747	 * Activate the slot that is now marked INVALID, but don't propagate
1748	 * the slot to the now inactive slots. The slot is either going to be
1749	 * deleted or recreated as a new slot.
1750	 */
1751	kvm_swap_active_memslots(kvm, old->as_id);
1752
1753	/*
1754	 * From this point no new shadow pages pointing to a deleted, or moved,
1755	 * memslot will be created.  Validation of sp->gfn happens in:
1756	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1757	 *	- kvm_is_visible_gfn (mmu_check_root)
1758	 */
1759	kvm_arch_flush_shadow_memslot(kvm, old);
1760	kvm_arch_guest_memory_reclaimed(kvm);
1761
1762	/* Was released by kvm_swap_active_memslots(), reacquire. */
1763	mutex_lock(&kvm->slots_arch_lock);
1764
1765	/*
1766	 * Copy the arch-specific field of the newly-installed slot back to the
1767	 * old slot as the arch data could have changed between releasing
1768	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1769	 * above.  Writers are required to retrieve memslots *after* acquiring
1770	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1771	 */
1772	old->arch = invalid_slot->arch;
1773}
1774
1775static void kvm_create_memslot(struct kvm *kvm,
1776			       struct kvm_memory_slot *new)
1777{
1778	/* Add the new memslot to the inactive set and activate. */
1779	kvm_replace_memslot(kvm, NULL, new);
1780	kvm_activate_memslot(kvm, NULL, new);
1781}
1782
1783static void kvm_delete_memslot(struct kvm *kvm,
1784			       struct kvm_memory_slot *old,
1785			       struct kvm_memory_slot *invalid_slot)
1786{
1787	/*
1788	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1789	 * the "new" slot, and for the invalid version in the active slots.
1790	 */
1791	kvm_replace_memslot(kvm, old, NULL);
1792	kvm_activate_memslot(kvm, invalid_slot, NULL);
1793}
1794
1795static void kvm_move_memslot(struct kvm *kvm,
1796			     struct kvm_memory_slot *old,
1797			     struct kvm_memory_slot *new,
1798			     struct kvm_memory_slot *invalid_slot)
1799{
1800	/*
1801	 * Replace the old memslot in the inactive slots, and then swap slots
1802	 * and replace the current INVALID with the new as well.
1803	 */
1804	kvm_replace_memslot(kvm, old, new);
1805	kvm_activate_memslot(kvm, invalid_slot, new);
1806}
1807
1808static void kvm_update_flags_memslot(struct kvm *kvm,
1809				     struct kvm_memory_slot *old,
1810				     struct kvm_memory_slot *new)
1811{
1812	/*
1813	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1814	 * an intermediate step. Instead, the old memslot is simply replaced
1815	 * with a new, updated copy in both memslot sets.
1816	 */
1817	kvm_replace_memslot(kvm, old, new);
1818	kvm_activate_memslot(kvm, old, new);
1819}
1820
1821static int kvm_set_memslot(struct kvm *kvm,
 
1822			   struct kvm_memory_slot *old,
1823			   struct kvm_memory_slot *new,
1824			   enum kvm_mr_change change)
1825{
1826	struct kvm_memory_slot *invalid_slot;
 
1827	int r;
1828
1829	/*
1830	 * Released in kvm_swap_active_memslots().
1831	 *
1832	 * Must be held from before the current memslots are copied until after
1833	 * the new memslots are installed with rcu_assign_pointer, then
1834	 * released before the synchronize srcu in kvm_swap_active_memslots().
1835	 *
1836	 * When modifying memslots outside of the slots_lock, must be held
1837	 * before reading the pointer to the current memslots until after all
1838	 * changes to those memslots are complete.
1839	 *
1840	 * These rules ensure that installing new memslots does not lose
1841	 * changes made to the previous memslots.
1842	 */
1843	mutex_lock(&kvm->slots_arch_lock);
1844
1845	/*
1846	 * Invalidate the old slot if it's being deleted or moved.  This is
1847	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1848	 * continue running by ensuring there are no mappings or shadow pages
1849	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1850	 * (and without a lock), a window would exist between effecting the
1851	 * delete/move and committing the changes in arch code where KVM or a
1852	 * guest could access a non-existent memslot.
1853	 *
1854	 * Modifications are done on a temporary, unreachable slot.  The old
1855	 * slot needs to be preserved in case a later step fails and the
1856	 * invalidation needs to be reverted.
1857	 */
1858	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1860		if (!invalid_slot) {
1861			mutex_unlock(&kvm->slots_arch_lock);
1862			return -ENOMEM;
1863		}
1864		kvm_invalidate_memslot(kvm, old, invalid_slot);
1865	}
1866
1867	r = kvm_prepare_memory_region(kvm, old, new, change);
1868	if (r) {
1869		/*
1870		 * For DELETE/MOVE, revert the above INVALID change.  No
1871		 * modifications required since the original slot was preserved
1872		 * in the inactive slots.  Changing the active memslots also
1873		 * release slots_arch_lock.
1874		 */
1875		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1876			kvm_activate_memslot(kvm, invalid_slot, old);
1877			kfree(invalid_slot);
1878		} else {
1879			mutex_unlock(&kvm->slots_arch_lock);
1880		}
1881		return r;
 
 
 
1882	}
1883
1884	/*
1885	 * For DELETE and MOVE, the working slot is now active as the INVALID
1886	 * version of the old slot.  MOVE is particularly special as it reuses
1887	 * the old slot and returns a copy of the old slot (in working_slot).
1888	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1889	 * old slot is detached but otherwise preserved.
1890	 */
1891	if (change == KVM_MR_CREATE)
1892		kvm_create_memslot(kvm, new);
1893	else if (change == KVM_MR_DELETE)
1894		kvm_delete_memslot(kvm, old, invalid_slot);
1895	else if (change == KVM_MR_MOVE)
1896		kvm_move_memslot(kvm, old, new, invalid_slot);
1897	else if (change == KVM_MR_FLAGS_ONLY)
1898		kvm_update_flags_memslot(kvm, old, new);
1899	else
1900		BUG();
1901
1902	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1903	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1904		kfree(invalid_slot);
1905
1906	/*
1907	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1908	 * will directly hit the final, active memslot.  Architectures are
1909	 * responsible for knowing that new->arch may be stale.
1910	 */
1911	kvm_commit_memory_region(kvm, old, new, change);
1912
 
1913	return 0;
 
 
 
 
 
 
1914}
1915
1916static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1917				      gfn_t start, gfn_t end)
 
1918{
1919	struct kvm_memslot_iter iter;
 
1920
1921	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1922		if (iter.slot->id != id)
1923			return true;
1924	}
1925
1926	return false;
 
 
 
 
 
 
 
 
1927}
1928
1929/*
1930 * Allocate some memory and give it an address in the guest physical address
1931 * space.
1932 *
1933 * Discontiguous memory is allowed, mostly for framebuffers.
1934 *
1935 * Must be called holding kvm->slots_lock for write.
1936 */
1937int __kvm_set_memory_region(struct kvm *kvm,
1938			    const struct kvm_userspace_memory_region2 *mem)
1939{
1940	struct kvm_memory_slot *old, *new;
1941	struct kvm_memslots *slots;
1942	enum kvm_mr_change change;
1943	unsigned long npages;
1944	gfn_t base_gfn;
1945	int as_id, id;
1946	int r;
1947
1948	r = check_memory_region_flags(kvm, mem);
1949	if (r)
1950		return r;
1951
1952	as_id = mem->slot >> 16;
1953	id = (u16)mem->slot;
1954
1955	/* General sanity checks */
1956	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1957	    (mem->memory_size != (unsigned long)mem->memory_size))
1958		return -EINVAL;
1959	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1960		return -EINVAL;
1961	/* We can read the guest memory with __xxx_user() later on. */
1962	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1963	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1964	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1965			mem->memory_size))
1966		return -EINVAL;
1967	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1968	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1969	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1970		return -EINVAL;
1971	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1972		return -EINVAL;
1973	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974		return -EINVAL;
1975	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976		return -EINVAL;
1977
1978	slots = __kvm_memslots(kvm, as_id);
1979
1980	/*
1981	 * Note, the old memslot (and the pointer itself!) may be invalidated
1982	 * and/or destroyed by kvm_set_memslot().
1983	 */
1984	old = id_to_memslot(slots, id);
1985
1986	if (!mem->memory_size) {
1987		if (!old || !old->npages)
1988			return -EINVAL;
 
 
 
 
 
1989
1990		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991			return -EIO;
1992
1993		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1994	}
 
 
 
1995
1996	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997	npages = (mem->memory_size >> PAGE_SHIFT);
1998
1999	if (!old || !old->npages) {
2000		change = KVM_MR_CREATE;
2001
2002		/*
2003		 * To simplify KVM internals, the total number of pages across
2004		 * all memslots must fit in an unsigned long.
2005		 */
2006		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007			return -EINVAL;
2008	} else { /* Modify an existing slot. */
2009		/* Private memslots are immutable, they can only be deleted. */
2010		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2011			return -EINVAL;
2012		if ((mem->userspace_addr != old->userspace_addr) ||
2013		    (npages != old->npages) ||
2014		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2015			return -EINVAL;
2016
2017		if (base_gfn != old->base_gfn)
2018			change = KVM_MR_MOVE;
2019		else if (mem->flags != old->flags)
2020			change = KVM_MR_FLAGS_ONLY;
2021		else /* Nothing to change. */
2022			return 0;
2023	}
2024
2025	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2026	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2027		return -EEXIST;
 
2028
2029	/* Allocate a slot that will persist in the memslot. */
2030	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2031	if (!new)
2032		return -ENOMEM;
 
 
 
 
 
 
2033
2034	new->as_id = as_id;
2035	new->id = id;
2036	new->base_gfn = base_gfn;
2037	new->npages = npages;
2038	new->flags = mem->flags;
2039	new->userspace_addr = mem->userspace_addr;
2040	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2041		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2042		if (r)
2043			goto out;
 
 
 
2044	}
2045
2046	r = kvm_set_memslot(kvm, old, new, change);
2047	if (r)
2048		goto out_unbind;
2049
 
 
2050	return 0;
2051
2052out_unbind:
2053	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2054		kvm_gmem_unbind(new);
2055out:
2056	kfree(new);
2057	return r;
2058}
2059EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2060
2061int kvm_set_memory_region(struct kvm *kvm,
2062			  const struct kvm_userspace_memory_region2 *mem)
2063{
2064	int r;
2065
2066	mutex_lock(&kvm->slots_lock);
2067	r = __kvm_set_memory_region(kvm, mem);
2068	mutex_unlock(&kvm->slots_lock);
2069	return r;
2070}
2071EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2072
2073static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2074					  struct kvm_userspace_memory_region2 *mem)
2075{
2076	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2077		return -EINVAL;
2078
2079	return kvm_set_memory_region(kvm, mem);
2080}
2081
2082#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2083/**
2084 * kvm_get_dirty_log - get a snapshot of dirty pages
2085 * @kvm:	pointer to kvm instance
2086 * @log:	slot id and address to which we copy the log
2087 * @is_dirty:	set to '1' if any dirty pages were found
2088 * @memslot:	set to the associated memslot, always valid on success
2089 */
2090int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2091		      int *is_dirty, struct kvm_memory_slot **memslot)
2092{
2093	struct kvm_memslots *slots;
2094	int i, as_id, id;
2095	unsigned long n;
2096	unsigned long any = 0;
2097
2098	/* Dirty ring tracking may be exclusive to dirty log tracking */
2099	if (!kvm_use_dirty_bitmap(kvm))
2100		return -ENXIO;
2101
2102	*memslot = NULL;
2103	*is_dirty = 0;
2104
2105	as_id = log->slot >> 16;
2106	id = (u16)log->slot;
2107	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2108		return -EINVAL;
2109
2110	slots = __kvm_memslots(kvm, as_id);
2111	*memslot = id_to_memslot(slots, id);
2112	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2113		return -ENOENT;
2114
2115	kvm_arch_sync_dirty_log(kvm, *memslot);
2116
2117	n = kvm_dirty_bitmap_bytes(*memslot);
2118
2119	for (i = 0; !any && i < n/sizeof(long); ++i)
2120		any = (*memslot)->dirty_bitmap[i];
2121
2122	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2123		return -EFAULT;
2124
2125	if (any)
2126		*is_dirty = 1;
2127	return 0;
2128}
2129EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2130
2131#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2132/**
2133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2134 *	and reenable dirty page tracking for the corresponding pages.
2135 * @kvm:	pointer to kvm instance
2136 * @log:	slot id and address to which we copy the log
2137 *
2138 * We need to keep it in mind that VCPU threads can write to the bitmap
2139 * concurrently. So, to avoid losing track of dirty pages we keep the
2140 * following order:
2141 *
2142 *    1. Take a snapshot of the bit and clear it if needed.
2143 *    2. Write protect the corresponding page.
2144 *    3. Copy the snapshot to the userspace.
2145 *    4. Upon return caller flushes TLB's if needed.
2146 *
2147 * Between 2 and 4, the guest may write to the page using the remaining TLB
2148 * entry.  This is not a problem because the page is reported dirty using
2149 * the snapshot taken before and step 4 ensures that writes done after
2150 * exiting to userspace will be logged for the next call.
2151 *
2152 */
2153static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2154{
2155	struct kvm_memslots *slots;
2156	struct kvm_memory_slot *memslot;
2157	int i, as_id, id;
2158	unsigned long n;
2159	unsigned long *dirty_bitmap;
2160	unsigned long *dirty_bitmap_buffer;
2161	bool flush;
2162
2163	/* Dirty ring tracking may be exclusive to dirty log tracking */
2164	if (!kvm_use_dirty_bitmap(kvm))
2165		return -ENXIO;
2166
2167	as_id = log->slot >> 16;
2168	id = (u16)log->slot;
2169	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2170		return -EINVAL;
2171
2172	slots = __kvm_memslots(kvm, as_id);
2173	memslot = id_to_memslot(slots, id);
2174	if (!memslot || !memslot->dirty_bitmap)
2175		return -ENOENT;
2176
2177	dirty_bitmap = memslot->dirty_bitmap;
2178
2179	kvm_arch_sync_dirty_log(kvm, memslot);
2180
2181	n = kvm_dirty_bitmap_bytes(memslot);
2182	flush = false;
2183	if (kvm->manual_dirty_log_protect) {
2184		/*
2185		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2186		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2187		 * is some code duplication between this function and
2188		 * kvm_get_dirty_log, but hopefully all architecture
2189		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2190		 * can be eliminated.
2191		 */
2192		dirty_bitmap_buffer = dirty_bitmap;
2193	} else {
2194		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2195		memset(dirty_bitmap_buffer, 0, n);
2196
2197		KVM_MMU_LOCK(kvm);
2198		for (i = 0; i < n / sizeof(long); i++) {
2199			unsigned long mask;
2200			gfn_t offset;
2201
2202			if (!dirty_bitmap[i])
2203				continue;
2204
2205			flush = true;
2206			mask = xchg(&dirty_bitmap[i], 0);
2207			dirty_bitmap_buffer[i] = mask;
2208
2209			offset = i * BITS_PER_LONG;
2210			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2211								offset, mask);
2212		}
2213		KVM_MMU_UNLOCK(kvm);
2214	}
2215
2216	if (flush)
2217		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2218
2219	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2220		return -EFAULT;
2221	return 0;
2222}
2223
2224
2225/**
2226 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2227 * @kvm: kvm instance
2228 * @log: slot id and address to which we copy the log
2229 *
2230 * Steps 1-4 below provide general overview of dirty page logging. See
2231 * kvm_get_dirty_log_protect() function description for additional details.
2232 *
2233 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2234 * always flush the TLB (step 4) even if previous step failed  and the dirty
2235 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2236 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2237 * writes will be marked dirty for next log read.
2238 *
2239 *   1. Take a snapshot of the bit and clear it if needed.
2240 *   2. Write protect the corresponding page.
2241 *   3. Copy the snapshot to the userspace.
2242 *   4. Flush TLB's if needed.
2243 */
2244static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2245				      struct kvm_dirty_log *log)
2246{
2247	int r;
2248
2249	mutex_lock(&kvm->slots_lock);
2250
2251	r = kvm_get_dirty_log_protect(kvm, log);
2252
2253	mutex_unlock(&kvm->slots_lock);
2254	return r;
2255}
2256
2257/**
2258 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2259 *	and reenable dirty page tracking for the corresponding pages.
2260 * @kvm:	pointer to kvm instance
2261 * @log:	slot id and address from which to fetch the bitmap of dirty pages
2262 */
2263static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2264				       struct kvm_clear_dirty_log *log)
2265{
2266	struct kvm_memslots *slots;
2267	struct kvm_memory_slot *memslot;
2268	int as_id, id;
2269	gfn_t offset;
2270	unsigned long i, n;
2271	unsigned long *dirty_bitmap;
2272	unsigned long *dirty_bitmap_buffer;
2273	bool flush;
2274
2275	/* Dirty ring tracking may be exclusive to dirty log tracking */
2276	if (!kvm_use_dirty_bitmap(kvm))
2277		return -ENXIO;
2278
2279	as_id = log->slot >> 16;
2280	id = (u16)log->slot;
2281	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2282		return -EINVAL;
2283
2284	if (log->first_page & 63)
2285		return -EINVAL;
2286
2287	slots = __kvm_memslots(kvm, as_id);
2288	memslot = id_to_memslot(slots, id);
2289	if (!memslot || !memslot->dirty_bitmap)
2290		return -ENOENT;
2291
2292	dirty_bitmap = memslot->dirty_bitmap;
2293
2294	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2295
2296	if (log->first_page > memslot->npages ||
2297	    log->num_pages > memslot->npages - log->first_page ||
2298	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2299	    return -EINVAL;
2300
2301	kvm_arch_sync_dirty_log(kvm, memslot);
2302
2303	flush = false;
2304	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2305	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2306		return -EFAULT;
2307
2308	KVM_MMU_LOCK(kvm);
2309	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2310		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2311	     i++, offset += BITS_PER_LONG) {
2312		unsigned long mask = *dirty_bitmap_buffer++;
2313		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2314		if (!mask)
2315			continue;
2316
2317		mask &= atomic_long_fetch_andnot(mask, p);
2318
2319		/*
2320		 * mask contains the bits that really have been cleared.  This
2321		 * never includes any bits beyond the length of the memslot (if
2322		 * the length is not aligned to 64 pages), therefore it is not
2323		 * a problem if userspace sets them in log->dirty_bitmap.
2324		*/
2325		if (mask) {
2326			flush = true;
2327			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2328								offset, mask);
2329		}
2330	}
2331	KVM_MMU_UNLOCK(kvm);
2332
2333	if (flush)
2334		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2335
2336	return 0;
2337}
2338
2339static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2340					struct kvm_clear_dirty_log *log)
2341{
2342	int r;
2343
2344	mutex_lock(&kvm->slots_lock);
2345
2346	r = kvm_clear_dirty_log_protect(kvm, log);
2347
2348	mutex_unlock(&kvm->slots_lock);
2349	return r;
2350}
2351#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2352
2353#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2354static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2355{
2356	if (!kvm || kvm_arch_has_private_mem(kvm))
2357		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2358
2359	return 0;
2360}
2361
2362/*
2363 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2364 * such that the bits in @mask match @attrs.
2365 */
2366bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2367				     unsigned long mask, unsigned long attrs)
2368{
2369	XA_STATE(xas, &kvm->mem_attr_array, start);
2370	unsigned long index;
2371	void *entry;
2372
2373	mask &= kvm_supported_mem_attributes(kvm);
2374	if (attrs & ~mask)
2375		return false;
2376
2377	if (end == start + 1)
2378		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2379
2380	guard(rcu)();
2381	if (!attrs)
2382		return !xas_find(&xas, end - 1);
2383
2384	for (index = start; index < end; index++) {
2385		do {
2386			entry = xas_next(&xas);
2387		} while (xas_retry(&xas, entry));
2388
2389		if (xas.xa_index != index ||
2390		    (xa_to_value(entry) & mask) != attrs)
2391			return false;
2392	}
2393
2394	return true;
2395}
2396
2397static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2398						 struct kvm_mmu_notifier_range *range)
2399{
2400	struct kvm_gfn_range gfn_range;
2401	struct kvm_memory_slot *slot;
2402	struct kvm_memslots *slots;
2403	struct kvm_memslot_iter iter;
2404	bool found_memslot = false;
2405	bool ret = false;
2406	int i;
2407
2408	gfn_range.arg = range->arg;
2409	gfn_range.may_block = range->may_block;
2410
2411	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2412		slots = __kvm_memslots(kvm, i);
2413
2414		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2415			slot = iter.slot;
2416			gfn_range.slot = slot;
2417
2418			gfn_range.start = max(range->start, slot->base_gfn);
2419			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2420			if (gfn_range.start >= gfn_range.end)
2421				continue;
2422
2423			if (!found_memslot) {
2424				found_memslot = true;
2425				KVM_MMU_LOCK(kvm);
2426				if (!IS_KVM_NULL_FN(range->on_lock))
2427					range->on_lock(kvm);
2428			}
2429
2430			ret |= range->handler(kvm, &gfn_range);
2431		}
2432	}
2433
2434	if (range->flush_on_ret && ret)
2435		kvm_flush_remote_tlbs(kvm);
2436
2437	if (found_memslot)
2438		KVM_MMU_UNLOCK(kvm);
2439}
2440
2441static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2442					  struct kvm_gfn_range *range)
2443{
2444	/*
2445	 * Unconditionally add the range to the invalidation set, regardless of
2446	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2447	 * if KVM supports RWX attributes in the future and the attributes are
2448	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2449	 * adding the range allows KVM to require that MMU invalidations add at
2450	 * least one range between begin() and end(), e.g. allows KVM to detect
2451	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2452	 * but it's not obvious that allowing new mappings while the attributes
2453	 * are in flux is desirable or worth the complexity.
2454	 */
2455	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2456
2457	return kvm_arch_pre_set_memory_attributes(kvm, range);
2458}
2459
2460/* Set @attributes for the gfn range [@start, @end). */
2461static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2462				     unsigned long attributes)
2463{
2464	struct kvm_mmu_notifier_range pre_set_range = {
2465		.start = start,
2466		.end = end,
2467		.handler = kvm_pre_set_memory_attributes,
2468		.on_lock = kvm_mmu_invalidate_begin,
2469		.flush_on_ret = true,
2470		.may_block = true,
2471	};
2472	struct kvm_mmu_notifier_range post_set_range = {
2473		.start = start,
2474		.end = end,
2475		.arg.attributes = attributes,
2476		.handler = kvm_arch_post_set_memory_attributes,
2477		.on_lock = kvm_mmu_invalidate_end,
2478		.may_block = true,
2479	};
2480	unsigned long i;
2481	void *entry;
2482	int r = 0;
2483
2484	entry = attributes ? xa_mk_value(attributes) : NULL;
2485
2486	mutex_lock(&kvm->slots_lock);
2487
2488	/* Nothing to do if the entire range as the desired attributes. */
2489	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2490		goto out_unlock;
2491
2492	/*
2493	 * Reserve memory ahead of time to avoid having to deal with failures
2494	 * partway through setting the new attributes.
2495	 */
2496	for (i = start; i < end; i++) {
2497		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2498		if (r)
2499			goto out_unlock;
2500	}
2501
2502	kvm_handle_gfn_range(kvm, &pre_set_range);
2503
2504	for (i = start; i < end; i++) {
2505		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2506				    GFP_KERNEL_ACCOUNT));
2507		KVM_BUG_ON(r, kvm);
2508	}
2509
2510	kvm_handle_gfn_range(kvm, &post_set_range);
2511
2512out_unlock:
2513	mutex_unlock(&kvm->slots_lock);
2514
2515	return r;
2516}
2517static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2518					   struct kvm_memory_attributes *attrs)
2519{
2520	gfn_t start, end;
2521
2522	/* flags is currently not used. */
2523	if (attrs->flags)
2524		return -EINVAL;
2525	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2526		return -EINVAL;
2527	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2528		return -EINVAL;
2529	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2530		return -EINVAL;
2531
2532	start = attrs->address >> PAGE_SHIFT;
2533	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2534
2535	/*
2536	 * xarray tracks data using "unsigned long", and as a result so does
2537	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2538	 * architectures.
2539	 */
2540	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2541
2542	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2543}
2544#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2545
2546struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2547{
2548	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2549}
2550EXPORT_SYMBOL_GPL(gfn_to_memslot);
2551
2552struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2553{
2554	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2555	u64 gen = slots->generation;
2556	struct kvm_memory_slot *slot;
2557
2558	/*
2559	 * This also protects against using a memslot from a different address space,
2560	 * since different address spaces have different generation numbers.
2561	 */
2562	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2563		vcpu->last_used_slot = NULL;
2564		vcpu->last_used_slot_gen = gen;
2565	}
2566
2567	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2568	if (slot)
2569		return slot;
2570
2571	/*
2572	 * Fall back to searching all memslots. We purposely use
2573	 * search_memslots() instead of __gfn_to_memslot() to avoid
2574	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2575	 */
2576	slot = search_memslots(slots, gfn, false);
2577	if (slot) {
2578		vcpu->last_used_slot = slot;
2579		return slot;
2580	}
2581
2582	return NULL;
2583}
 
2584
2585bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2586{
2587	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2588
2589	return kvm_is_visible_memslot(memslot);
2590}
2591EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2592
2593bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2594{
2595	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2596
2597	return kvm_is_visible_memslot(memslot);
2598}
2599EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2600
2601unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2602{
2603	struct vm_area_struct *vma;
2604	unsigned long addr, size;
2605
2606	size = PAGE_SIZE;
2607
2608	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2609	if (kvm_is_error_hva(addr))
2610		return PAGE_SIZE;
2611
2612	mmap_read_lock(current->mm);
2613	vma = find_vma(current->mm, addr);
2614	if (!vma)
2615		goto out;
2616
2617	size = vma_kernel_pagesize(vma);
2618
2619out:
2620	mmap_read_unlock(current->mm);
2621
2622	return size;
2623}
2624
2625static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2626{
2627	return slot->flags & KVM_MEM_READONLY;
2628}
2629
2630static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2631				       gfn_t *nr_pages, bool write)
2632{
2633	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2634		return KVM_HVA_ERR_BAD;
2635
2636	if (memslot_is_readonly(slot) && write)
2637		return KVM_HVA_ERR_RO_BAD;
2638
2639	if (nr_pages)
2640		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2641
2642	return __gfn_to_hva_memslot(slot, gfn);
2643}
2644
2645static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2646				     gfn_t *nr_pages)
2647{
2648	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2649}
2650
2651unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2652					gfn_t gfn)
2653{
2654	return gfn_to_hva_many(slot, gfn, NULL);
2655}
2656EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2657
2658unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2659{
2660	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2661}
2662EXPORT_SYMBOL_GPL(gfn_to_hva);
2663
2664unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2665{
2666	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2669
2670/*
2671 * Return the hva of a @gfn and the R/W attribute if possible.
2672 *
2673 * @slot: the kvm_memory_slot which contains @gfn
2674 * @gfn: the gfn to be translated
2675 * @writable: used to return the read/write attribute of the @slot if the hva
2676 * is valid and @writable is not NULL
2677 */
2678unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2679				      gfn_t gfn, bool *writable)
2680{
2681	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2682
2683	if (!kvm_is_error_hva(hva) && writable)
2684		*writable = !memslot_is_readonly(slot);
2685
2686	return hva;
2687}
2688
2689unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2690{
2691	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2692
2693	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2694}
2695
2696unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2697{
2698	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2699
2700	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2701}
2702
2703static bool kvm_is_ad_tracked_page(struct page *page)
2704{
2705	/*
2706	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2707	 * touched (e.g. set dirty) except by its owner".
2708	 */
2709	return !PageReserved(page);
2710}
2711
2712static void kvm_set_page_dirty(struct page *page)
2713{
2714	if (kvm_is_ad_tracked_page(page))
2715		SetPageDirty(page);
2716}
2717
2718static void kvm_set_page_accessed(struct page *page)
2719{
2720	if (kvm_is_ad_tracked_page(page))
2721		mark_page_accessed(page);
2722}
2723
2724void kvm_release_page_clean(struct page *page)
2725{
2726	if (!page)
2727		return;
2728
2729	kvm_set_page_accessed(page);
2730	put_page(page);
2731}
2732EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2733
2734void kvm_release_page_dirty(struct page *page)
2735{
2736	if (!page)
2737		return;
2738
2739	kvm_set_page_dirty(page);
2740	kvm_release_page_clean(page);
2741}
2742EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2743
2744static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2745				 struct follow_pfnmap_args *map, bool writable)
2746{
2747	kvm_pfn_t pfn;
2748
2749	WARN_ON_ONCE(!!page == !!map);
2750
2751	if (kfp->map_writable)
2752		*kfp->map_writable = writable;
2753
2754	if (map)
2755		pfn = map->pfn;
2756	else
2757		pfn = page_to_pfn(page);
2758
2759	*kfp->refcounted_page = page;
2760
2761	return pfn;
2762}
2763
2764/*
2765 * The fast path to get the writable pfn which will be stored in @pfn,
2766 * true indicates success, otherwise false is returned.
 
2767 */
2768static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
 
2769{
2770	struct page *page;
2771	bool r;
2772
2773	/*
2774	 * Try the fast-only path when the caller wants to pin/get the page for
2775	 * writing.  If the caller only wants to read the page, KVM must go
2776	 * down the full, slow path in order to avoid racing an operation that
2777	 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2778	 * at the old, read-only page while mm/ points at a new, writable page.
2779	 */
2780	if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2781		return false;
2782
2783	if (kfp->pin)
2784		r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2785	else
2786		r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2787
2788	if (r) {
2789		*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2790		return true;
2791	}
2792
2793	return false;
2794}
2795
2796/*
2797 * The slow path to get the pfn of the specified host virtual address,
2798 * 1 indicates success, -errno is returned if error is detected.
2799 */
2800static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
 
2801{
2802	/*
2803	 * When a VCPU accesses a page that is not mapped into the secondary
2804	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2805	 * make progress. We always want to honor NUMA hinting faults in that
2806	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2807	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2808	 * mapped into the secondary MMU and gets accessed by a VCPU.
2809	 *
2810	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2811	 * implicitly honor NUMA hinting faults and don't need this flag.
2812	 */
2813	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2814	struct page *page, *wpage;
2815	int npages;
2816
2817	if (kfp->pin)
2818		npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2819	else
2820		npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
 
 
 
 
 
 
 
2821	if (npages != 1)
2822		return npages;
2823
2824	/*
2825	 * Pinning is mutually exclusive with opportunistically mapping a read
2826	 * fault as writable, as KVM should never pin pages when mapping memory
2827	 * into the guest (pinning is only for direct accesses from KVM).
2828	 */
2829	if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2830		goto out;
2831
2832	/* map read fault as writable if possible */
2833	if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2834	    get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2835		put_page(page);
2836		page = wpage;
2837		flags |= FOLL_WRITE;
2838	}
2839
2840out:
2841	*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
 
 
 
 
 
2842	return npages;
2843}
2844
2845static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2846{
2847	if (unlikely(!(vma->vm_flags & VM_READ)))
2848		return false;
2849
2850	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2851		return false;
2852
2853	return true;
2854}
2855
2856static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2857			       struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
 
 
2858{
2859	struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2860	bool write_fault = kfp->flags & FOLL_WRITE;
2861	int r;
2862
2863	/*
2864	 * Remapped memory cannot be pinned in any meaningful sense.  Bail if
2865	 * the caller wants to pin the page, i.e. access the page outside of
2866	 * MMU notifier protection, and unsafe umappings are disallowed.
2867	 */
2868	if (kfp->pin && !allow_unsafe_mappings)
2869		return -EINVAL;
2870
2871	r = follow_pfnmap_start(&args);
2872	if (r) {
2873		/*
2874		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2875		 * not call the fault handler, so do it here.
2876		 */
2877		bool unlocked = false;
2878		r = fixup_user_fault(current->mm, kfp->hva,
2879				     (write_fault ? FAULT_FLAG_WRITE : 0),
2880				     &unlocked);
2881		if (unlocked)
2882			return -EAGAIN;
2883		if (r)
2884			return r;
2885
2886		r = follow_pfnmap_start(&args);
2887		if (r)
2888			return r;
2889	}
2890
2891	if (write_fault && !args.writable) {
2892		*p_pfn = KVM_PFN_ERR_RO_FAULT;
2893		goto out;
2894	}
2895
2896	*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2897out:
2898	follow_pfnmap_end(&args);
2899	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900}
2901
2902kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2903{
2904	struct vm_area_struct *vma;
2905	kvm_pfn_t pfn;
2906	int npages, r;
2907
2908	might_sleep();
 
2909
2910	if (WARN_ON_ONCE(!kfp->refcounted_page))
2911		return KVM_PFN_ERR_FAULT;
2912
2913	if (hva_to_pfn_fast(kfp, &pfn))
2914		return pfn;
2915
2916	npages = hva_to_pfn_slow(kfp, &pfn);
 
 
 
2917	if (npages == 1)
2918		return pfn;
2919	if (npages == -EINTR || npages == -EAGAIN)
2920		return KVM_PFN_ERR_SIGPENDING;
2921	if (npages == -EHWPOISON)
2922		return KVM_PFN_ERR_HWPOISON;
2923
2924	mmap_read_lock(current->mm);
 
 
 
 
 
 
2925retry:
2926	vma = vma_lookup(current->mm, kfp->hva);
2927
2928	if (vma == NULL)
2929		pfn = KVM_PFN_ERR_FAULT;
2930	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2931		r = hva_to_pfn_remapped(vma, kfp, &pfn);
2932		if (r == -EAGAIN)
2933			goto retry;
2934		if (r < 0)
2935			pfn = KVM_PFN_ERR_FAULT;
2936	} else {
2937		if ((kfp->flags & FOLL_NOWAIT) &&
2938		    vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2939			pfn = KVM_PFN_ERR_NEEDS_IO;
2940		else
2941			pfn = KVM_PFN_ERR_FAULT;
2942	}
 
2943	mmap_read_unlock(current->mm);
2944	return pfn;
2945}
2946
2947static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
2948{
2949	kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2950				     kfp->flags & FOLL_WRITE);
2951
2952	if (kfp->hva == KVM_HVA_ERR_RO_BAD)
 
 
 
2953		return KVM_PFN_ERR_RO_FAULT;
 
2954
2955	if (kvm_is_error_hva(kfp->hva))
 
 
2956		return KVM_PFN_NOSLOT;
 
2957
2958	if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2959		*kfp->map_writable = false;
2960		kfp->map_writable = NULL;
 
2961	}
2962
2963	return hva_to_pfn(kfp);
 
2964}
 
2965
2966kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2967			    unsigned int foll, bool *writable,
2968			    struct page **refcounted_page)
2969{
2970	struct kvm_follow_pfn kfp = {
2971		.slot = slot,
2972		.gfn = gfn,
2973		.flags = foll,
2974		.map_writable = writable,
2975		.refcounted_page = refcounted_page,
2976	};
2977
2978	if (WARN_ON_ONCE(!writable || !refcounted_page))
2979		return KVM_PFN_ERR_FAULT;
 
 
 
2980
2981	*writable = false;
2982	*refcounted_page = NULL;
 
 
 
 
 
 
 
 
 
2983
2984	return kvm_follow_pfn(&kfp);
 
 
2985}
2986EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
2987
2988int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
2989		       struct page **pages, int nr_pages)
 
 
 
 
 
 
2990{
2991	unsigned long addr;
2992	gfn_t entry = 0;
2993
2994	addr = gfn_to_hva_many(slot, gfn, &entry);
2995	if (kvm_is_error_hva(addr))
2996		return -1;
2997
2998	if (entry < nr_pages)
2999		return 0;
3000
3001	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3002}
3003EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3004
3005/*
3006 * Don't use this API unless you are absolutely, positively certain that KVM
3007 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3008 *
3009 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3010 *	  its refcount.
3011 */
3012struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3013{
3014	struct page *refcounted_page = NULL;
3015	struct kvm_follow_pfn kfp = {
3016		.slot = gfn_to_memslot(kvm, gfn),
3017		.gfn = gfn,
3018		.flags = write ? FOLL_WRITE : 0,
3019		.refcounted_page = &refcounted_page,
3020	};
3021
3022	(void)kvm_follow_pfn(&kfp);
3023	return refcounted_page;
3024}
3025EXPORT_SYMBOL_GPL(__gfn_to_page);
3026
3027int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3028		   bool writable)
3029{
3030	struct kvm_follow_pfn kfp = {
3031		.slot = gfn_to_memslot(vcpu->kvm, gfn),
3032		.gfn = gfn,
3033		.flags = writable ? FOLL_WRITE : 0,
3034		.refcounted_page = &map->pinned_page,
3035		.pin = true,
3036	};
3037
3038	map->pinned_page = NULL;
3039	map->page = NULL;
3040	map->hva = NULL;
3041	map->gfn = gfn;
3042	map->writable = writable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3043
3044	map->pfn = kvm_follow_pfn(&kfp);
3045	if (is_error_noslot_pfn(map->pfn))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3046		return -EINVAL;
3047
3048	if (pfn_valid(map->pfn)) {
3049		map->page = pfn_to_page(map->pfn);
3050		map->hva = kmap(map->page);
 
 
 
3051#ifdef CONFIG_HAS_IOMEM
 
 
3052	} else {
3053		map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3054#endif
3055	}
3056
3057	return map->hva ? 0 : -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3058}
3059EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3060
3061void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
 
 
 
3062{
 
 
 
3063	if (!map->hva)
3064		return;
3065
3066	if (map->page)
3067		kunmap(map->page);
 
 
 
 
3068#ifdef CONFIG_HAS_IOMEM
3069	else
3070		memunmap(map->hva);
 
 
3071#endif
3072
3073	if (map->writable)
3074		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3075
3076	if (map->pinned_page) {
3077		if (map->writable)
3078			kvm_set_page_dirty(map->pinned_page);
3079		kvm_set_page_accessed(map->pinned_page);
3080		unpin_user_page(map->pinned_page);
3081	}
3082
3083	map->hva = NULL;
3084	map->page = NULL;
3085	map->pinned_page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3086}
3087EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089static int next_segment(unsigned long len, int offset)
3090{
3091	if (len > PAGE_SIZE - offset)
3092		return PAGE_SIZE - offset;
3093	else
3094		return len;
3095}
3096
3097/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3098static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3099				 void *data, int offset, int len)
3100{
3101	int r;
3102	unsigned long addr;
3103
3104	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3105		return -EFAULT;
3106
3107	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108	if (kvm_is_error_hva(addr))
3109		return -EFAULT;
3110	r = __copy_from_user(data, (void __user *)addr + offset, len);
3111	if (r)
3112		return -EFAULT;
3113	return 0;
3114}
3115
3116int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3117			int len)
3118{
3119	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3120
3121	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3122}
3123EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3124
3125int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3126			     int offset, int len)
3127{
3128	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3129
3130	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3131}
3132EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3133
3134int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3135{
3136	gfn_t gfn = gpa >> PAGE_SHIFT;
3137	int seg;
3138	int offset = offset_in_page(gpa);
3139	int ret;
3140
3141	while ((seg = next_segment(len, offset)) != 0) {
3142		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3143		if (ret < 0)
3144			return ret;
3145		offset = 0;
3146		len -= seg;
3147		data += seg;
3148		++gfn;
3149	}
3150	return 0;
3151}
3152EXPORT_SYMBOL_GPL(kvm_read_guest);
3153
3154int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3155{
3156	gfn_t gfn = gpa >> PAGE_SHIFT;
3157	int seg;
3158	int offset = offset_in_page(gpa);
3159	int ret;
3160
3161	while ((seg = next_segment(len, offset)) != 0) {
3162		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3163		if (ret < 0)
3164			return ret;
3165		offset = 0;
3166		len -= seg;
3167		data += seg;
3168		++gfn;
3169	}
3170	return 0;
3171}
3172EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3173
3174static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3175			           void *data, int offset, unsigned long len)
3176{
3177	int r;
3178	unsigned long addr;
3179
3180	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3181		return -EFAULT;
3182
3183	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3184	if (kvm_is_error_hva(addr))
3185		return -EFAULT;
3186	pagefault_disable();
3187	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3188	pagefault_enable();
3189	if (r)
3190		return -EFAULT;
3191	return 0;
3192}
3193
3194int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3195			       void *data, unsigned long len)
3196{
3197	gfn_t gfn = gpa >> PAGE_SHIFT;
3198	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3199	int offset = offset_in_page(gpa);
3200
3201	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3202}
3203EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3204
3205/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3206static int __kvm_write_guest_page(struct kvm *kvm,
3207				  struct kvm_memory_slot *memslot, gfn_t gfn,
3208			          const void *data, int offset, int len)
3209{
3210	int r;
3211	unsigned long addr;
3212
3213	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3214		return -EFAULT;
3215
3216	addr = gfn_to_hva_memslot(memslot, gfn);
3217	if (kvm_is_error_hva(addr))
3218		return -EFAULT;
3219	r = __copy_to_user((void __user *)addr + offset, data, len);
3220	if (r)
3221		return -EFAULT;
3222	mark_page_dirty_in_slot(kvm, memslot, gfn);
3223	return 0;
3224}
3225
3226int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3227			 const void *data, int offset, int len)
3228{
3229	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3230
3231	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3232}
3233EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3234
3235int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3236			      const void *data, int offset, int len)
3237{
3238	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3239
3240	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3241}
3242EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3243
3244int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3245		    unsigned long len)
3246{
3247	gfn_t gfn = gpa >> PAGE_SHIFT;
3248	int seg;
3249	int offset = offset_in_page(gpa);
3250	int ret;
3251
3252	while ((seg = next_segment(len, offset)) != 0) {
3253		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3254		if (ret < 0)
3255			return ret;
3256		offset = 0;
3257		len -= seg;
3258		data += seg;
3259		++gfn;
3260	}
3261	return 0;
3262}
3263EXPORT_SYMBOL_GPL(kvm_write_guest);
3264
3265int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3266		         unsigned long len)
3267{
3268	gfn_t gfn = gpa >> PAGE_SHIFT;
3269	int seg;
3270	int offset = offset_in_page(gpa);
3271	int ret;
3272
3273	while ((seg = next_segment(len, offset)) != 0) {
3274		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3275		if (ret < 0)
3276			return ret;
3277		offset = 0;
3278		len -= seg;
3279		data += seg;
3280		++gfn;
3281	}
3282	return 0;
3283}
3284EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3285
3286static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3287				       struct gfn_to_hva_cache *ghc,
3288				       gpa_t gpa, unsigned long len)
3289{
3290	int offset = offset_in_page(gpa);
3291	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3292	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3293	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3294	gfn_t nr_pages_avail;
3295
3296	/* Update ghc->generation before performing any error checks. */
3297	ghc->generation = slots->generation;
3298
3299	if (start_gfn > end_gfn) {
3300		ghc->hva = KVM_HVA_ERR_BAD;
3301		return -EINVAL;
3302	}
3303
3304	/*
3305	 * If the requested region crosses two memslots, we still
3306	 * verify that the entire region is valid here.
3307	 */
3308	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3309		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3310		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3311					   &nr_pages_avail);
3312		if (kvm_is_error_hva(ghc->hva))
3313			return -EFAULT;
3314	}
3315
3316	/* Use the slow path for cross page reads and writes. */
3317	if (nr_pages_needed == 1)
3318		ghc->hva += offset;
3319	else
3320		ghc->memslot = NULL;
3321
3322	ghc->gpa = gpa;
3323	ghc->len = len;
3324	return 0;
3325}
3326
3327int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3328			      gpa_t gpa, unsigned long len)
3329{
3330	struct kvm_memslots *slots = kvm_memslots(kvm);
3331	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3332}
3333EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3334
3335int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3336				  void *data, unsigned int offset,
3337				  unsigned long len)
3338{
3339	struct kvm_memslots *slots = kvm_memslots(kvm);
3340	int r;
3341	gpa_t gpa = ghc->gpa + offset;
3342
3343	if (WARN_ON_ONCE(len + offset > ghc->len))
3344		return -EINVAL;
3345
3346	if (slots->generation != ghc->generation) {
3347		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3348			return -EFAULT;
3349	}
3350
3351	if (kvm_is_error_hva(ghc->hva))
3352		return -EFAULT;
3353
3354	if (unlikely(!ghc->memslot))
3355		return kvm_write_guest(kvm, gpa, data, len);
3356
3357	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3358	if (r)
3359		return -EFAULT;
3360	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3361
3362	return 0;
3363}
3364EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3365
3366int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3367			   void *data, unsigned long len)
3368{
3369	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3370}
3371EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3372
3373int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3374				 void *data, unsigned int offset,
3375				 unsigned long len)
3376{
3377	struct kvm_memslots *slots = kvm_memslots(kvm);
3378	int r;
3379	gpa_t gpa = ghc->gpa + offset;
3380
3381	if (WARN_ON_ONCE(len + offset > ghc->len))
3382		return -EINVAL;
3383
3384	if (slots->generation != ghc->generation) {
3385		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3386			return -EFAULT;
3387	}
3388
3389	if (kvm_is_error_hva(ghc->hva))
3390		return -EFAULT;
3391
3392	if (unlikely(!ghc->memslot))
3393		return kvm_read_guest(kvm, gpa, data, len);
3394
3395	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3396	if (r)
3397		return -EFAULT;
3398
3399	return 0;
3400}
3401EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3402
3403int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3404			  void *data, unsigned long len)
3405{
3406	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3407}
3408EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3409
3410int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3411{
3412	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
 
 
 
 
 
 
 
3413	gfn_t gfn = gpa >> PAGE_SHIFT;
3414	int seg;
3415	int offset = offset_in_page(gpa);
3416	int ret;
3417
3418	while ((seg = next_segment(len, offset)) != 0) {
3419		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3420		if (ret < 0)
3421			return ret;
3422		offset = 0;
3423		len -= seg;
3424		++gfn;
3425	}
3426	return 0;
3427}
3428EXPORT_SYMBOL_GPL(kvm_clear_guest);
3429
3430void mark_page_dirty_in_slot(struct kvm *kvm,
3431			     const struct kvm_memory_slot *memslot,
3432		 	     gfn_t gfn)
3433{
3434	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3435
3436#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3437	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3438		return;
3439
3440	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3441#endif
3442
3443	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3444		unsigned long rel_gfn = gfn - memslot->base_gfn;
3445		u32 slot = (memslot->as_id << 16) | memslot->id;
3446
3447		if (kvm->dirty_ring_size && vcpu)
3448			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3449		else if (memslot->dirty_bitmap)
3450			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3451	}
3452}
3453EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3454
3455void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3456{
3457	struct kvm_memory_slot *memslot;
3458
3459	memslot = gfn_to_memslot(kvm, gfn);
3460	mark_page_dirty_in_slot(kvm, memslot, gfn);
3461}
3462EXPORT_SYMBOL_GPL(mark_page_dirty);
3463
3464void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3465{
3466	struct kvm_memory_slot *memslot;
3467
3468	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3469	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3470}
3471EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3472
3473void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3474{
3475	if (!vcpu->sigset_active)
3476		return;
3477
3478	/*
3479	 * This does a lockless modification of ->real_blocked, which is fine
3480	 * because, only current can change ->real_blocked and all readers of
3481	 * ->real_blocked don't care as long ->real_blocked is always a subset
3482	 * of ->blocked.
3483	 */
3484	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3485}
3486
3487void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3488{
3489	if (!vcpu->sigset_active)
3490		return;
3491
3492	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3493	sigemptyset(&current->real_blocked);
3494}
3495
3496static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3497{
3498	unsigned int old, val, grow, grow_start;
3499
3500	old = val = vcpu->halt_poll_ns;
3501	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3502	grow = READ_ONCE(halt_poll_ns_grow);
3503	if (!grow)
3504		goto out;
3505
3506	val *= grow;
3507	if (val < grow_start)
3508		val = grow_start;
3509
 
 
 
3510	vcpu->halt_poll_ns = val;
3511out:
3512	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3513}
3514
3515static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3516{
3517	unsigned int old, val, shrink, grow_start;
3518
3519	old = val = vcpu->halt_poll_ns;
3520	shrink = READ_ONCE(halt_poll_ns_shrink);
3521	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3522	if (shrink == 0)
3523		val = 0;
3524	else
3525		val /= shrink;
3526
3527	if (val < grow_start)
3528		val = 0;
3529
3530	vcpu->halt_poll_ns = val;
3531	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3532}
3533
3534static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3535{
3536	int ret = -EINTR;
3537	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3538
3539	if (kvm_arch_vcpu_runnable(vcpu))
 
3540		goto out;
 
3541	if (kvm_cpu_has_pending_timer(vcpu))
3542		goto out;
3543	if (signal_pending(current))
3544		goto out;
3545	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3546		goto out;
3547
3548	ret = 0;
3549out:
3550	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3551	return ret;
3552}
3553
3554/*
3555 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3556 * pending.  This is mostly used when halting a vCPU, but may also be used
3557 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3558 */
3559bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3560{
3561	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3562	bool waited = false;
3563
3564	vcpu->stat.generic.blocking = 1;
3565
3566	preempt_disable();
3567	kvm_arch_vcpu_blocking(vcpu);
3568	prepare_to_rcuwait(wait);
3569	preempt_enable();
3570
3571	for (;;) {
3572		set_current_state(TASK_INTERRUPTIBLE);
3573
3574		if (kvm_vcpu_check_block(vcpu) < 0)
3575			break;
3576
3577		waited = true;
3578		schedule();
3579	}
3580
3581	preempt_disable();
3582	finish_rcuwait(wait);
3583	kvm_arch_vcpu_unblocking(vcpu);
3584	preempt_enable();
3585
3586	vcpu->stat.generic.blocking = 0;
3587
3588	return waited;
3589}
3590
3591static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3592					  ktime_t end, bool success)
3593{
3594	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3595	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3596
3597	++vcpu->stat.generic.halt_attempted_poll;
3598
3599	if (success) {
3600		++vcpu->stat.generic.halt_successful_poll;
3601
3602		if (!vcpu_valid_wakeup(vcpu))
3603			++vcpu->stat.generic.halt_poll_invalid;
3604
3605		stats->halt_poll_success_ns += poll_ns;
3606		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3607	} else {
3608		stats->halt_poll_fail_ns += poll_ns;
3609		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3610	}
3611}
3612
3613static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3614{
3615	struct kvm *kvm = vcpu->kvm;
3616
3617	if (kvm->override_halt_poll_ns) {
3618		/*
3619		 * Ensure kvm->max_halt_poll_ns is not read before
3620		 * kvm->override_halt_poll_ns.
3621		 *
3622		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3623		 */
3624		smp_rmb();
3625		return READ_ONCE(kvm->max_halt_poll_ns);
3626	}
3627
3628	return READ_ONCE(halt_poll_ns);
3629}
3630
3631/*
3632 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3633 * polling is enabled, busy wait for a short time before blocking to avoid the
3634 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3635 * is halted.
3636 */
3637void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3638{
3639	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3640	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3641	ktime_t start, cur, poll_end;
3642	bool waited = false;
3643	bool do_halt_poll;
3644	u64 halt_ns;
3645
3646	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3647		vcpu->halt_poll_ns = max_halt_poll_ns;
3648
3649	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3650
3651	start = cur = poll_end = ktime_get();
3652	if (do_halt_poll) {
3653		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3654
 
3655		do {
3656			if (kvm_vcpu_check_block(vcpu) < 0)
 
 
 
 
 
 
 
3657				goto out;
3658			cpu_relax();
3659			poll_end = cur = ktime_get();
3660		} while (kvm_vcpu_can_poll(cur, stop));
3661	}
3662
3663	waited = kvm_vcpu_block(vcpu);
 
 
3664
3665	cur = ktime_get();
3666	if (waited) {
3667		vcpu->stat.generic.halt_wait_ns +=
3668			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3669		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3670				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3671	}
 
 
3672out:
3673	/* The total time the vCPU was "halted", including polling time. */
3674	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3675
3676	/*
3677	 * Note, halt-polling is considered successful so long as the vCPU was
3678	 * never actually scheduled out, i.e. even if the wake event arrived
3679	 * after of the halt-polling loop itself, but before the full wait.
3680	 */
3681	if (do_halt_poll)
3682		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3683
3684	if (halt_poll_allowed) {
3685		/* Recompute the max halt poll time in case it changed. */
3686		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3687
 
3688		if (!vcpu_valid_wakeup(vcpu)) {
3689			shrink_halt_poll_ns(vcpu);
3690		} else if (max_halt_poll_ns) {
3691			if (halt_ns <= vcpu->halt_poll_ns)
3692				;
3693			/* we had a long block, shrink polling */
3694			else if (vcpu->halt_poll_ns &&
3695				 halt_ns > max_halt_poll_ns)
3696				shrink_halt_poll_ns(vcpu);
3697			/* we had a short halt and our poll time is too small */
3698			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3699				 halt_ns < max_halt_poll_ns)
3700				grow_halt_poll_ns(vcpu);
3701		} else {
3702			vcpu->halt_poll_ns = 0;
3703		}
3704	}
3705
3706	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
 
3707}
3708EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3709
3710bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3711{
3712	if (__kvm_vcpu_wake_up(vcpu)) {
 
 
 
3713		WRITE_ONCE(vcpu->ready, true);
3714		++vcpu->stat.generic.halt_wakeup;
3715		return true;
3716	}
3717
3718	return false;
3719}
3720EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3721
3722#ifndef CONFIG_S390
3723/*
3724 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3725 */
3726void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3727{
3728	int me, cpu;
 
3729
3730	if (kvm_vcpu_wake_up(vcpu))
3731		return;
3732
3733	me = get_cpu();
3734	/*
3735	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3736	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3737	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3738	 * within the vCPU thread itself.
3739	 */
3740	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3741		if (vcpu->mode == IN_GUEST_MODE)
3742			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3743		goto out;
3744	}
3745
3746	/*
3747	 * Note, the vCPU could get migrated to a different pCPU at any point
3748	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3749	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3750	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3751	 * vCPU also requires it to leave IN_GUEST_MODE.
3752	 */
3753	if (kvm_arch_vcpu_should_kick(vcpu)) {
3754		cpu = READ_ONCE(vcpu->cpu);
3755		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3756			smp_send_reschedule(cpu);
3757	}
3758out:
3759	put_cpu();
3760}
3761EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3762#endif /* !CONFIG_S390 */
3763
3764int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3765{
 
3766	struct task_struct *task = NULL;
3767	int ret;
3768
3769	if (!read_trylock(&target->pid_lock))
3770		return 0;
3771
3772	if (target->pid)
3773		task = get_pid_task(target->pid, PIDTYPE_PID);
3774
3775	read_unlock(&target->pid_lock);
3776
 
 
 
 
 
3777	if (!task)
3778		return 0;
3779	ret = yield_to(task, 1);
3780	put_task_struct(task);
3781
3782	return ret;
3783}
3784EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3785
3786/*
3787 * Helper that checks whether a VCPU is eligible for directed yield.
3788 * Most eligible candidate to yield is decided by following heuristics:
3789 *
3790 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3791 *  (preempted lock holder), indicated by @in_spin_loop.
3792 *  Set at the beginning and cleared at the end of interception/PLE handler.
3793 *
3794 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3795 *  chance last time (mostly it has become eligible now since we have probably
3796 *  yielded to lockholder in last iteration. This is done by toggling
3797 *  @dy_eligible each time a VCPU checked for eligibility.)
3798 *
3799 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3800 *  to preempted lock-holder could result in wrong VCPU selection and CPU
3801 *  burning. Giving priority for a potential lock-holder increases lock
3802 *  progress.
3803 *
3804 *  Since algorithm is based on heuristics, accessing another VCPU data without
3805 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3806 *  and continue with next VCPU and so on.
3807 */
3808static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3809{
3810#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3811	bool eligible;
3812
3813	eligible = !vcpu->spin_loop.in_spin_loop ||
3814		    vcpu->spin_loop.dy_eligible;
3815
3816	if (vcpu->spin_loop.in_spin_loop)
3817		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3818
3819	return eligible;
3820#else
3821	return true;
3822#endif
3823}
3824
3825/*
3826 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3827 * a vcpu_load/vcpu_put pair.  However, for most architectures
3828 * kvm_arch_vcpu_runnable does not require vcpu_load.
3829 */
3830bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3831{
3832	return kvm_arch_vcpu_runnable(vcpu);
3833}
3834
3835static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3836{
3837	if (kvm_arch_dy_runnable(vcpu))
3838		return true;
3839
3840#ifdef CONFIG_KVM_ASYNC_PF
3841	if (!list_empty_careful(&vcpu->async_pf.done))
3842		return true;
3843#endif
3844
3845	return false;
3846}
3847
3848/*
3849 * By default, simply query the target vCPU's current mode when checking if a
3850 * vCPU was preempted in kernel mode.  All architectures except x86 (or more
3851 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3852 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3853 * directly for cross-vCPU checks is functionally correct and accurate.
3854 */
3855bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3856{
3857	return kvm_arch_vcpu_in_kernel(vcpu);
3858}
3859
3860bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3861{
3862	return false;
3863}
3864
3865void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3866{
3867	int nr_vcpus, start, i, idx, yielded;
3868	struct kvm *kvm = me->kvm;
3869	struct kvm_vcpu *vcpu;
 
 
3870	int try = 3;
3871
3872	nr_vcpus = atomic_read(&kvm->online_vcpus);
3873	if (nr_vcpus < 2)
3874		return;
3875
3876	/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3877	smp_rmb();
3878
3879	kvm_vcpu_set_in_spin_loop(me, true);
3880
3881	/*
3882	 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3883	 * waiting for a resource to become available.  Attempt to yield to a
3884	 * vCPU that is runnable, but not currently running, e.g. because the
3885	 * vCPU was preempted by a higher priority task.  With luck, the vCPU
3886	 * that was preempted is holding a lock or some other resource that the
3887	 * current vCPU is waiting to acquire, and yielding to the other vCPU
3888	 * will allow it to make forward progress and release the lock (or kick
3889	 * the spinning vCPU, etc).
3890	 *
3891	 * Since KVM has no insight into what exactly the guest is doing,
3892	 * approximate a round-robin selection by iterating over all vCPUs,
3893	 * starting at the last boosted vCPU.  I.e. if N=kvm->last_boosted_vcpu,
3894	 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3895	 *
3896	 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3897	 * they may all try to yield to the same vCPU(s).  But as above, this
3898	 * is all best effort due to KVM's lack of visibility into the guest.
3899	 */
3900	start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3901	for (i = 0; i < nr_vcpus; i++) {
3902		idx = (start + i) % nr_vcpus;
3903		if (idx == me->vcpu_idx)
3904			continue;
3905
3906		vcpu = xa_load(&kvm->vcpu_array, idx);
3907		if (!READ_ONCE(vcpu->ready))
3908			continue;
3909		if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3910			continue;
3911
3912		/*
3913		 * Treat the target vCPU as being in-kernel if it has a pending
3914		 * interrupt, as the vCPU trying to yield may be spinning
3915		 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3916		 * for the purposes of directed yield.
3917		 */
3918		if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3919		    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3920		    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3921			continue;
3922
3923		if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3924			continue;
3925
3926		yielded = kvm_vcpu_yield_to(vcpu);
3927		if (yielded > 0) {
3928			WRITE_ONCE(kvm->last_boosted_vcpu, i);
3929			break;
3930		} else if (yielded < 0 && !--try) {
3931			break;
 
 
 
3932		}
3933	}
3934	kvm_vcpu_set_in_spin_loop(me, false);
3935
3936	/* Ensure vcpu is not eligible during next spinloop */
3937	kvm_vcpu_set_dy_eligible(me, false);
3938}
3939EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3940
3941static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3942{
3943#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3944	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3945	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3946	     kvm->dirty_ring_size / PAGE_SIZE);
3947#else
3948	return false;
3949#endif
3950}
3951
3952static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3953{
3954	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3955	struct page *page;
3956
3957	if (vmf->pgoff == 0)
3958		page = virt_to_page(vcpu->run);
3959#ifdef CONFIG_X86
3960	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3961		page = virt_to_page(vcpu->arch.pio_data);
3962#endif
3963#ifdef CONFIG_KVM_MMIO
3964	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3965		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3966#endif
3967	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3968		page = kvm_dirty_ring_get_page(
3969		    &vcpu->dirty_ring,
3970		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3971	else
3972		return kvm_arch_vcpu_fault(vcpu, vmf);
3973	get_page(page);
3974	vmf->page = page;
3975	return 0;
3976}
3977
3978static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3979	.fault = kvm_vcpu_fault,
3980};
3981
3982static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3983{
3984	struct kvm_vcpu *vcpu = file->private_data;
3985	unsigned long pages = vma_pages(vma);
3986
3987	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3988	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3989	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3990		return -EINVAL;
3991
3992	vma->vm_ops = &kvm_vcpu_vm_ops;
3993	return 0;
3994}
3995
3996static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3997{
3998	struct kvm_vcpu *vcpu = filp->private_data;
3999
4000	kvm_put_kvm(vcpu->kvm);
4001	return 0;
4002}
4003
4004static struct file_operations kvm_vcpu_fops = {
4005	.release        = kvm_vcpu_release,
4006	.unlocked_ioctl = kvm_vcpu_ioctl,
4007	.mmap           = kvm_vcpu_mmap,
4008	.llseek		= noop_llseek,
4009	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4010};
4011
4012/*
4013 * Allocates an inode for the vcpu.
4014 */
4015static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4016{
4017	char name[8 + 1 + ITOA_MAX_LEN + 1];
4018
4019	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4020	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4021}
4022
4023#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4024static int vcpu_get_pid(void *data, u64 *val)
4025{
4026	struct kvm_vcpu *vcpu = data;
4027
4028	read_lock(&vcpu->pid_lock);
4029	*val = pid_nr(vcpu->pid);
4030	read_unlock(&vcpu->pid_lock);
4031	return 0;
4032}
4033
4034DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4035
4036static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4037{
 
4038	struct dentry *debugfs_dentry;
4039	char dir_name[ITOA_MAX_LEN * 2];
4040
4041	if (!debugfs_initialized())
4042		return;
4043
4044	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4045	debugfs_dentry = debugfs_create_dir(dir_name,
4046					    vcpu->kvm->debugfs_dentry);
4047	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4048			    &vcpu_get_pid_fops);
4049
4050	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4051}
4052#endif
 
4053
4054/*
4055 * Creates some virtual cpus.  Good luck creating more than one.
4056 */
4057static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4058{
4059	int r;
4060	struct kvm_vcpu *vcpu;
4061	struct page *page;
4062
4063	/*
4064	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4065	 * too-large values instead of silently truncating.
4066	 *
4067	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4068	 * changing the storage type (at the very least, IDs should be tracked
4069	 * as unsigned ints).
4070	 */
4071	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4072	if (id >= KVM_MAX_VCPU_IDS)
4073		return -EINVAL;
4074
4075	mutex_lock(&kvm->lock);
4076	if (kvm->created_vcpus >= kvm->max_vcpus) {
4077		mutex_unlock(&kvm->lock);
4078		return -EINVAL;
4079	}
4080
4081	r = kvm_arch_vcpu_precreate(kvm, id);
4082	if (r) {
4083		mutex_unlock(&kvm->lock);
4084		return r;
4085	}
4086
4087	kvm->created_vcpus++;
4088	mutex_unlock(&kvm->lock);
4089
4090	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
 
 
 
 
4091	if (!vcpu) {
4092		r = -ENOMEM;
4093		goto vcpu_decrement;
4094	}
4095
4096	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4097	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4098	if (!page) {
4099		r = -ENOMEM;
4100		goto vcpu_free;
4101	}
4102	vcpu->run = page_address(page);
4103
4104	kvm_vcpu_init(vcpu, kvm, id);
4105
4106	r = kvm_arch_vcpu_create(vcpu);
4107	if (r)
4108		goto vcpu_free_run_page;
4109
4110	if (kvm->dirty_ring_size) {
4111		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4112					 id, kvm->dirty_ring_size);
4113		if (r)
4114			goto arch_vcpu_destroy;
4115	}
4116
4117	mutex_lock(&kvm->lock);
4118
4119#ifdef CONFIG_LOCKDEP
4120	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4121	mutex_lock(&vcpu->mutex);
4122	mutex_unlock(&vcpu->mutex);
4123#endif
4124
4125	if (kvm_get_vcpu_by_id(kvm, id)) {
4126		r = -EEXIST;
4127		goto unlock_vcpu_destroy;
4128	}
4129
4130	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4131	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4132	if (r)
4133		goto unlock_vcpu_destroy;
4134
4135	/* Now it's all set up, let userspace reach it */
4136	kvm_get_kvm(kvm);
4137	r = create_vcpu_fd(vcpu);
4138	if (r < 0)
4139		goto kvm_put_xa_release;
4140
4141	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4142		r = -EINVAL;
4143		goto kvm_put_xa_release;
4144	}
4145
 
 
4146	/*
4147	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4148	 * pointer before kvm->online_vcpu's incremented value.
4149	 */
4150	smp_wmb();
4151	atomic_inc(&kvm->online_vcpus);
4152
4153	mutex_unlock(&kvm->lock);
4154	kvm_arch_vcpu_postcreate(vcpu);
4155	kvm_create_vcpu_debugfs(vcpu);
4156	return r;
4157
4158kvm_put_xa_release:
4159	kvm_put_kvm_no_destroy(kvm);
4160	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4161unlock_vcpu_destroy:
4162	mutex_unlock(&kvm->lock);
4163	kvm_dirty_ring_free(&vcpu->dirty_ring);
4164arch_vcpu_destroy:
4165	kvm_arch_vcpu_destroy(vcpu);
4166vcpu_free_run_page:
4167	free_page((unsigned long)vcpu->run);
4168vcpu_free:
4169	kmem_cache_free(kvm_vcpu_cache, vcpu);
4170vcpu_decrement:
4171	mutex_lock(&kvm->lock);
4172	kvm->created_vcpus--;
4173	mutex_unlock(&kvm->lock);
4174	return r;
4175}
4176
4177static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4178{
4179	if (sigset) {
4180		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4181		vcpu->sigset_active = 1;
4182		vcpu->sigset = *sigset;
4183	} else
4184		vcpu->sigset_active = 0;
4185	return 0;
4186}
4187
4188static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4189			      size_t size, loff_t *offset)
4190{
4191	struct kvm_vcpu *vcpu = file->private_data;
4192
4193	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4194			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4195			sizeof(vcpu->stat), user_buffer, size, offset);
4196}
4197
4198static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4199{
4200	struct kvm_vcpu *vcpu = file->private_data;
4201
4202	kvm_put_kvm(vcpu->kvm);
4203	return 0;
4204}
4205
4206static const struct file_operations kvm_vcpu_stats_fops = {
4207	.owner = THIS_MODULE,
4208	.read = kvm_vcpu_stats_read,
4209	.release = kvm_vcpu_stats_release,
4210	.llseek = noop_llseek,
4211};
4212
4213static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4214{
4215	int fd;
4216	struct file *file;
4217	char name[15 + ITOA_MAX_LEN + 1];
4218
4219	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4220
4221	fd = get_unused_fd_flags(O_CLOEXEC);
4222	if (fd < 0)
4223		return fd;
4224
4225	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4226	if (IS_ERR(file)) {
4227		put_unused_fd(fd);
4228		return PTR_ERR(file);
4229	}
4230
4231	kvm_get_kvm(vcpu->kvm);
4232
4233	file->f_mode |= FMODE_PREAD;
4234	fd_install(fd, file);
4235
4236	return fd;
4237}
4238
4239#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4240static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4241				     struct kvm_pre_fault_memory *range)
4242{
4243	int idx;
4244	long r;
4245	u64 full_size;
4246
4247	if (range->flags)
4248		return -EINVAL;
4249
4250	if (!PAGE_ALIGNED(range->gpa) ||
4251	    !PAGE_ALIGNED(range->size) ||
4252	    range->gpa + range->size <= range->gpa)
4253		return -EINVAL;
4254
4255	vcpu_load(vcpu);
4256	idx = srcu_read_lock(&vcpu->kvm->srcu);
4257
4258	full_size = range->size;
4259	do {
4260		if (signal_pending(current)) {
4261			r = -EINTR;
4262			break;
4263		}
4264
4265		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4266		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4267			break;
4268
4269		if (r < 0)
4270			break;
4271
4272		range->size -= r;
4273		range->gpa += r;
4274		cond_resched();
4275	} while (range->size);
4276
4277	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4278	vcpu_put(vcpu);
4279
4280	/* Return success if at least one page was mapped successfully.  */
4281	return full_size == range->size ? r : 0;
4282}
4283#endif
4284
4285static long kvm_vcpu_ioctl(struct file *filp,
4286			   unsigned int ioctl, unsigned long arg)
4287{
4288	struct kvm_vcpu *vcpu = filp->private_data;
4289	void __user *argp = (void __user *)arg;
4290	int r;
4291	struct kvm_fpu *fpu = NULL;
4292	struct kvm_sregs *kvm_sregs = NULL;
4293
4294	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4295		return -EIO;
4296
4297	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4298		return -EINVAL;
4299
4300	/*
4301	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4302	 * execution; mutex_lock() would break them.
4303	 */
4304	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4305	if (r != -ENOIOCTLCMD)
4306		return r;
4307
4308	if (mutex_lock_killable(&vcpu->mutex))
4309		return -EINTR;
4310	switch (ioctl) {
4311	case KVM_RUN: {
4312		struct pid *oldpid;
4313		r = -EINVAL;
4314		if (arg)
4315			goto out;
4316
4317		/*
4318		 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4319		 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4320		 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4321		 * directly to this vCPU
4322		 */
4323		oldpid = vcpu->pid;
4324		if (unlikely(oldpid != task_pid(current))) {
4325			/* The thread running this VCPU changed. */
4326			struct pid *newpid;
4327
4328			r = kvm_arch_vcpu_run_pid_change(vcpu);
4329			if (r)
4330				break;
4331
4332			newpid = get_task_pid(current, PIDTYPE_PID);
4333			write_lock(&vcpu->pid_lock);
4334			vcpu->pid = newpid;
4335			write_unlock(&vcpu->pid_lock);
4336
4337			put_pid(oldpid);
4338		}
4339		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4340		r = kvm_arch_vcpu_ioctl_run(vcpu);
4341		vcpu->wants_to_run = false;
4342
4343		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4344		break;
4345	}
4346	case KVM_GET_REGS: {
4347		struct kvm_regs *kvm_regs;
4348
4349		r = -ENOMEM;
4350		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4351		if (!kvm_regs)
4352			goto out;
4353		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4354		if (r)
4355			goto out_free1;
4356		r = -EFAULT;
4357		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4358			goto out_free1;
4359		r = 0;
4360out_free1:
4361		kfree(kvm_regs);
4362		break;
4363	}
4364	case KVM_SET_REGS: {
4365		struct kvm_regs *kvm_regs;
4366
4367		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4368		if (IS_ERR(kvm_regs)) {
4369			r = PTR_ERR(kvm_regs);
4370			goto out;
4371		}
4372		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4373		kfree(kvm_regs);
4374		break;
4375	}
4376	case KVM_GET_SREGS: {
4377		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
 
4378		r = -ENOMEM;
4379		if (!kvm_sregs)
4380			goto out;
4381		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4382		if (r)
4383			goto out;
4384		r = -EFAULT;
4385		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4386			goto out;
4387		r = 0;
4388		break;
4389	}
4390	case KVM_SET_SREGS: {
4391		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4392		if (IS_ERR(kvm_sregs)) {
4393			r = PTR_ERR(kvm_sregs);
4394			kvm_sregs = NULL;
4395			goto out;
4396		}
4397		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4398		break;
4399	}
4400	case KVM_GET_MP_STATE: {
4401		struct kvm_mp_state mp_state;
4402
4403		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4404		if (r)
4405			goto out;
4406		r = -EFAULT;
4407		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4408			goto out;
4409		r = 0;
4410		break;
4411	}
4412	case KVM_SET_MP_STATE: {
4413		struct kvm_mp_state mp_state;
4414
4415		r = -EFAULT;
4416		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4417			goto out;
4418		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4419		break;
4420	}
4421	case KVM_TRANSLATE: {
4422		struct kvm_translation tr;
4423
4424		r = -EFAULT;
4425		if (copy_from_user(&tr, argp, sizeof(tr)))
4426			goto out;
4427		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4428		if (r)
4429			goto out;
4430		r = -EFAULT;
4431		if (copy_to_user(argp, &tr, sizeof(tr)))
4432			goto out;
4433		r = 0;
4434		break;
4435	}
4436	case KVM_SET_GUEST_DEBUG: {
4437		struct kvm_guest_debug dbg;
4438
4439		r = -EFAULT;
4440		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4441			goto out;
4442		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4443		break;
4444	}
4445	case KVM_SET_SIGNAL_MASK: {
4446		struct kvm_signal_mask __user *sigmask_arg = argp;
4447		struct kvm_signal_mask kvm_sigmask;
4448		sigset_t sigset, *p;
4449
4450		p = NULL;
4451		if (argp) {
4452			r = -EFAULT;
4453			if (copy_from_user(&kvm_sigmask, argp,
4454					   sizeof(kvm_sigmask)))
4455				goto out;
4456			r = -EINVAL;
4457			if (kvm_sigmask.len != sizeof(sigset))
4458				goto out;
4459			r = -EFAULT;
4460			if (copy_from_user(&sigset, sigmask_arg->sigset,
4461					   sizeof(sigset)))
4462				goto out;
4463			p = &sigset;
4464		}
4465		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4466		break;
4467	}
4468	case KVM_GET_FPU: {
4469		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4470		r = -ENOMEM;
4471		if (!fpu)
4472			goto out;
4473		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4474		if (r)
4475			goto out;
4476		r = -EFAULT;
4477		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4478			goto out;
4479		r = 0;
4480		break;
4481	}
4482	case KVM_SET_FPU: {
4483		fpu = memdup_user(argp, sizeof(*fpu));
4484		if (IS_ERR(fpu)) {
4485			r = PTR_ERR(fpu);
4486			fpu = NULL;
4487			goto out;
4488		}
4489		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4490		break;
4491	}
4492	case KVM_GET_STATS_FD: {
4493		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4494		break;
4495	}
4496#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4497	case KVM_PRE_FAULT_MEMORY: {
4498		struct kvm_pre_fault_memory range;
4499
4500		r = -EFAULT;
4501		if (copy_from_user(&range, argp, sizeof(range)))
4502			break;
4503		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4504		/* Pass back leftover range. */
4505		if (copy_to_user(argp, &range, sizeof(range)))
4506			r = -EFAULT;
4507		break;
4508	}
4509#endif
4510	default:
4511		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4512	}
4513out:
4514	mutex_unlock(&vcpu->mutex);
4515	kfree(fpu);
4516	kfree(kvm_sregs);
4517	return r;
4518}
4519
4520#ifdef CONFIG_KVM_COMPAT
4521static long kvm_vcpu_compat_ioctl(struct file *filp,
4522				  unsigned int ioctl, unsigned long arg)
4523{
4524	struct kvm_vcpu *vcpu = filp->private_data;
4525	void __user *argp = compat_ptr(arg);
4526	int r;
4527
4528	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4529		return -EIO;
4530
4531	switch (ioctl) {
4532	case KVM_SET_SIGNAL_MASK: {
4533		struct kvm_signal_mask __user *sigmask_arg = argp;
4534		struct kvm_signal_mask kvm_sigmask;
4535		sigset_t sigset;
4536
4537		if (argp) {
4538			r = -EFAULT;
4539			if (copy_from_user(&kvm_sigmask, argp,
4540					   sizeof(kvm_sigmask)))
4541				goto out;
4542			r = -EINVAL;
4543			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4544				goto out;
4545			r = -EFAULT;
4546			if (get_compat_sigset(&sigset,
4547					      (compat_sigset_t __user *)sigmask_arg->sigset))
4548				goto out;
4549			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4550		} else
4551			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4552		break;
4553	}
4554	default:
4555		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4556	}
4557
4558out:
4559	return r;
4560}
4561#endif
4562
4563static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4564{
4565	struct kvm_device *dev = filp->private_data;
4566
4567	if (dev->ops->mmap)
4568		return dev->ops->mmap(dev, vma);
4569
4570	return -ENODEV;
4571}
4572
4573static int kvm_device_ioctl_attr(struct kvm_device *dev,
4574				 int (*accessor)(struct kvm_device *dev,
4575						 struct kvm_device_attr *attr),
4576				 unsigned long arg)
4577{
4578	struct kvm_device_attr attr;
4579
4580	if (!accessor)
4581		return -EPERM;
4582
4583	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4584		return -EFAULT;
4585
4586	return accessor(dev, &attr);
4587}
4588
4589static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4590			     unsigned long arg)
4591{
4592	struct kvm_device *dev = filp->private_data;
4593
4594	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4595		return -EIO;
4596
4597	switch (ioctl) {
4598	case KVM_SET_DEVICE_ATTR:
4599		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4600	case KVM_GET_DEVICE_ATTR:
4601		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4602	case KVM_HAS_DEVICE_ATTR:
4603		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4604	default:
4605		if (dev->ops->ioctl)
4606			return dev->ops->ioctl(dev, ioctl, arg);
4607
4608		return -ENOTTY;
4609	}
4610}
4611
4612static int kvm_device_release(struct inode *inode, struct file *filp)
4613{
4614	struct kvm_device *dev = filp->private_data;
4615	struct kvm *kvm = dev->kvm;
4616
4617	if (dev->ops->release) {
4618		mutex_lock(&kvm->lock);
4619		list_del_rcu(&dev->vm_node);
4620		synchronize_rcu();
4621		dev->ops->release(dev);
4622		mutex_unlock(&kvm->lock);
4623	}
4624
4625	kvm_put_kvm(kvm);
4626	return 0;
4627}
4628
4629static struct file_operations kvm_device_fops = {
4630	.unlocked_ioctl = kvm_device_ioctl,
4631	.release = kvm_device_release,
4632	KVM_COMPAT(kvm_device_ioctl),
4633	.mmap = kvm_device_mmap,
4634};
4635
4636struct kvm_device *kvm_device_from_filp(struct file *filp)
4637{
4638	if (filp->f_op != &kvm_device_fops)
4639		return NULL;
4640
4641	return filp->private_data;
4642}
4643
4644static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4645#ifdef CONFIG_KVM_MPIC
4646	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4647	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4648#endif
4649};
4650
4651int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4652{
4653	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4654		return -ENOSPC;
4655
4656	if (kvm_device_ops_table[type] != NULL)
4657		return -EEXIST;
4658
4659	kvm_device_ops_table[type] = ops;
4660	return 0;
4661}
4662
4663void kvm_unregister_device_ops(u32 type)
4664{
4665	if (kvm_device_ops_table[type] != NULL)
4666		kvm_device_ops_table[type] = NULL;
4667}
4668
4669static int kvm_ioctl_create_device(struct kvm *kvm,
4670				   struct kvm_create_device *cd)
4671{
4672	const struct kvm_device_ops *ops;
4673	struct kvm_device *dev;
4674	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4675	int type;
4676	int ret;
4677
4678	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4679		return -ENODEV;
4680
4681	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4682	ops = kvm_device_ops_table[type];
4683	if (ops == NULL)
4684		return -ENODEV;
4685
4686	if (test)
4687		return 0;
4688
4689	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4690	if (!dev)
4691		return -ENOMEM;
4692
4693	dev->ops = ops;
4694	dev->kvm = kvm;
4695
4696	mutex_lock(&kvm->lock);
4697	ret = ops->create(dev, type);
4698	if (ret < 0) {
4699		mutex_unlock(&kvm->lock);
4700		kfree(dev);
4701		return ret;
4702	}
4703	list_add_rcu(&dev->vm_node, &kvm->devices);
4704	mutex_unlock(&kvm->lock);
4705
4706	if (ops->init)
4707		ops->init(dev);
4708
4709	kvm_get_kvm(kvm);
4710	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4711	if (ret < 0) {
4712		kvm_put_kvm_no_destroy(kvm);
4713		mutex_lock(&kvm->lock);
4714		list_del_rcu(&dev->vm_node);
4715		synchronize_rcu();
4716		if (ops->release)
4717			ops->release(dev);
4718		mutex_unlock(&kvm->lock);
4719		if (ops->destroy)
4720			ops->destroy(dev);
4721		return ret;
4722	}
4723
4724	cd->fd = ret;
4725	return 0;
4726}
4727
4728static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4729{
4730	switch (arg) {
4731	case KVM_CAP_USER_MEMORY:
4732	case KVM_CAP_USER_MEMORY2:
4733	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4734	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4735	case KVM_CAP_INTERNAL_ERROR_DATA:
4736#ifdef CONFIG_HAVE_KVM_MSI
4737	case KVM_CAP_SIGNAL_MSI:
4738#endif
4739#ifdef CONFIG_HAVE_KVM_IRQCHIP
4740	case KVM_CAP_IRQFD:
 
4741#endif
4742	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4743	case KVM_CAP_CHECK_EXTENSION_VM:
4744	case KVM_CAP_ENABLE_CAP_VM:
4745	case KVM_CAP_HALT_POLL:
4746		return 1;
4747#ifdef CONFIG_KVM_MMIO
4748	case KVM_CAP_COALESCED_MMIO:
4749		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4750	case KVM_CAP_COALESCED_PIO:
4751		return 1;
4752#endif
4753#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4754	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4755		return KVM_DIRTY_LOG_MANUAL_CAPS;
4756#endif
4757#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4758	case KVM_CAP_IRQ_ROUTING:
4759		return KVM_MAX_IRQ_ROUTES;
4760#endif
4761#if KVM_MAX_NR_ADDRESS_SPACES > 1
4762	case KVM_CAP_MULTI_ADDRESS_SPACE:
4763		if (kvm)
4764			return kvm_arch_nr_memslot_as_ids(kvm);
4765		return KVM_MAX_NR_ADDRESS_SPACES;
4766#endif
4767	case KVM_CAP_NR_MEMSLOTS:
4768		return KVM_USER_MEM_SLOTS;
4769	case KVM_CAP_DIRTY_LOG_RING:
4770#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4771		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4772#else
4773		return 0;
4774#endif
4775	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4776#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4777		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4778#else
4779		return 0;
4780#endif
4781#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4782	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4783#endif
4784	case KVM_CAP_BINARY_STATS_FD:
4785	case KVM_CAP_SYSTEM_EVENT_DATA:
4786	case KVM_CAP_DEVICE_CTRL:
4787		return 1;
4788#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4789	case KVM_CAP_MEMORY_ATTRIBUTES:
4790		return kvm_supported_mem_attributes(kvm);
4791#endif
4792#ifdef CONFIG_KVM_PRIVATE_MEM
4793	case KVM_CAP_GUEST_MEMFD:
4794		return !kvm || kvm_arch_has_private_mem(kvm);
4795#endif
4796	default:
4797		break;
4798	}
4799	return kvm_vm_ioctl_check_extension(kvm, arg);
4800}
4801
4802static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4803{
4804	int r;
4805
4806	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4807		return -EINVAL;
4808
4809	/* the size should be power of 2 */
4810	if (!size || (size & (size - 1)))
4811		return -EINVAL;
4812
4813	/* Should be bigger to keep the reserved entries, or a page */
4814	if (size < kvm_dirty_ring_get_rsvd_entries() *
4815	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4816		return -EINVAL;
4817
4818	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4819	    sizeof(struct kvm_dirty_gfn))
4820		return -E2BIG;
4821
4822	/* We only allow it to set once */
4823	if (kvm->dirty_ring_size)
4824		return -EINVAL;
4825
4826	mutex_lock(&kvm->lock);
4827
4828	if (kvm->created_vcpus) {
4829		/* We don't allow to change this value after vcpu created */
4830		r = -EINVAL;
4831	} else {
4832		kvm->dirty_ring_size = size;
4833		r = 0;
4834	}
4835
4836	mutex_unlock(&kvm->lock);
4837	return r;
4838}
4839
4840static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4841{
4842	unsigned long i;
4843	struct kvm_vcpu *vcpu;
4844	int cleared = 0;
4845
4846	if (!kvm->dirty_ring_size)
4847		return -EINVAL;
4848
4849	mutex_lock(&kvm->slots_lock);
4850
4851	kvm_for_each_vcpu(i, vcpu, kvm)
4852		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4853
4854	mutex_unlock(&kvm->slots_lock);
4855
4856	if (cleared)
4857		kvm_flush_remote_tlbs(kvm);
4858
4859	return cleared;
4860}
4861
4862int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4863						  struct kvm_enable_cap *cap)
4864{
4865	return -EINVAL;
4866}
4867
4868bool kvm_are_all_memslots_empty(struct kvm *kvm)
4869{
4870	int i;
4871
4872	lockdep_assert_held(&kvm->slots_lock);
4873
4874	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4875		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4876			return false;
4877	}
4878
4879	return true;
4880}
4881EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4882
4883static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4884					   struct kvm_enable_cap *cap)
4885{
4886	switch (cap->cap) {
4887#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4888	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4889		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4890
4891		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4892			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4893
4894		if (cap->flags || (cap->args[0] & ~allowed_options))
4895			return -EINVAL;
4896		kvm->manual_dirty_log_protect = cap->args[0];
4897		return 0;
4898	}
4899#endif
4900	case KVM_CAP_HALT_POLL: {
4901		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4902			return -EINVAL;
4903
4904		kvm->max_halt_poll_ns = cap->args[0];
4905
4906		/*
4907		 * Ensure kvm->override_halt_poll_ns does not become visible
4908		 * before kvm->max_halt_poll_ns.
4909		 *
4910		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4911		 */
4912		smp_wmb();
4913		kvm->override_halt_poll_ns = true;
4914
4915		return 0;
4916	}
4917	case KVM_CAP_DIRTY_LOG_RING:
4918	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4920			return -EINVAL;
4921
4922		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4923	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4924		int r = -EINVAL;
4925
4926		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4927		    !kvm->dirty_ring_size || cap->flags)
4928			return r;
4929
4930		mutex_lock(&kvm->slots_lock);
4931
4932		/*
4933		 * For simplicity, allow enabling ring+bitmap if and only if
4934		 * there are no memslots, e.g. to ensure all memslots allocate
4935		 * a bitmap after the capability is enabled.
4936		 */
4937		if (kvm_are_all_memslots_empty(kvm)) {
4938			kvm->dirty_ring_with_bitmap = true;
4939			r = 0;
4940		}
4941
4942		mutex_unlock(&kvm->slots_lock);
4943
4944		return r;
4945	}
4946	default:
4947		return kvm_vm_ioctl_enable_cap(kvm, cap);
4948	}
4949}
4950
4951static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4952			      size_t size, loff_t *offset)
4953{
4954	struct kvm *kvm = file->private_data;
4955
4956	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4957				&kvm_vm_stats_desc[0], &kvm->stat,
4958				sizeof(kvm->stat), user_buffer, size, offset);
4959}
4960
4961static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4962{
4963	struct kvm *kvm = file->private_data;
4964
4965	kvm_put_kvm(kvm);
4966	return 0;
4967}
4968
4969static const struct file_operations kvm_vm_stats_fops = {
4970	.owner = THIS_MODULE,
4971	.read = kvm_vm_stats_read,
4972	.release = kvm_vm_stats_release,
4973	.llseek = noop_llseek,
4974};
4975
4976static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4977{
4978	int fd;
4979	struct file *file;
4980
4981	fd = get_unused_fd_flags(O_CLOEXEC);
4982	if (fd < 0)
4983		return fd;
4984
4985	file = anon_inode_getfile("kvm-vm-stats",
4986			&kvm_vm_stats_fops, kvm, O_RDONLY);
4987	if (IS_ERR(file)) {
4988		put_unused_fd(fd);
4989		return PTR_ERR(file);
4990	}
4991
4992	kvm_get_kvm(kvm);
4993
4994	file->f_mode |= FMODE_PREAD;
4995	fd_install(fd, file);
4996
4997	return fd;
4998}
4999
5000#define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5001do {										\
5002	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5003		     offsetof(struct kvm_userspace_memory_region2, field));	\
5004	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5005		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5006} while (0)
5007
5008static long kvm_vm_ioctl(struct file *filp,
5009			   unsigned int ioctl, unsigned long arg)
5010{
5011	struct kvm *kvm = filp->private_data;
5012	void __user *argp = (void __user *)arg;
5013	int r;
5014
5015	if (kvm->mm != current->mm || kvm->vm_dead)
5016		return -EIO;
5017	switch (ioctl) {
5018	case KVM_CREATE_VCPU:
5019		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5020		break;
5021	case KVM_ENABLE_CAP: {
5022		struct kvm_enable_cap cap;
5023
5024		r = -EFAULT;
5025		if (copy_from_user(&cap, argp, sizeof(cap)))
5026			goto out;
5027		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5028		break;
5029	}
5030	case KVM_SET_USER_MEMORY_REGION2:
5031	case KVM_SET_USER_MEMORY_REGION: {
5032		struct kvm_userspace_memory_region2 mem;
5033		unsigned long size;
5034
5035		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5036			/*
5037			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5038			 * accessed, but avoid leaking kernel memory in case of a bug.
5039			 */
5040			memset(&mem, 0, sizeof(mem));
5041			size = sizeof(struct kvm_userspace_memory_region);
5042		} else {
5043			size = sizeof(struct kvm_userspace_memory_region2);
5044		}
5045
5046		/* Ensure the common parts of the two structs are identical. */
5047		SANITY_CHECK_MEM_REGION_FIELD(slot);
5048		SANITY_CHECK_MEM_REGION_FIELD(flags);
5049		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5050		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5051		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5052
5053		r = -EFAULT;
5054		if (copy_from_user(&mem, argp, size))
5055			goto out;
5056
5057		r = -EINVAL;
5058		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5059		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5060			goto out;
5061
5062		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5063		break;
5064	}
5065	case KVM_GET_DIRTY_LOG: {
5066		struct kvm_dirty_log log;
5067
5068		r = -EFAULT;
5069		if (copy_from_user(&log, argp, sizeof(log)))
5070			goto out;
5071		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5072		break;
5073	}
5074#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5075	case KVM_CLEAR_DIRTY_LOG: {
5076		struct kvm_clear_dirty_log log;
5077
5078		r = -EFAULT;
5079		if (copy_from_user(&log, argp, sizeof(log)))
5080			goto out;
5081		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5082		break;
5083	}
5084#endif
5085#ifdef CONFIG_KVM_MMIO
5086	case KVM_REGISTER_COALESCED_MMIO: {
5087		struct kvm_coalesced_mmio_zone zone;
5088
5089		r = -EFAULT;
5090		if (copy_from_user(&zone, argp, sizeof(zone)))
5091			goto out;
5092		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5093		break;
5094	}
5095	case KVM_UNREGISTER_COALESCED_MMIO: {
5096		struct kvm_coalesced_mmio_zone zone;
5097
5098		r = -EFAULT;
5099		if (copy_from_user(&zone, argp, sizeof(zone)))
5100			goto out;
5101		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5102		break;
5103	}
5104#endif
5105	case KVM_IRQFD: {
5106		struct kvm_irqfd data;
5107
5108		r = -EFAULT;
5109		if (copy_from_user(&data, argp, sizeof(data)))
5110			goto out;
5111		r = kvm_irqfd(kvm, &data);
5112		break;
5113	}
5114	case KVM_IOEVENTFD: {
5115		struct kvm_ioeventfd data;
5116
5117		r = -EFAULT;
5118		if (copy_from_user(&data, argp, sizeof(data)))
5119			goto out;
5120		r = kvm_ioeventfd(kvm, &data);
5121		break;
5122	}
5123#ifdef CONFIG_HAVE_KVM_MSI
5124	case KVM_SIGNAL_MSI: {
5125		struct kvm_msi msi;
5126
5127		r = -EFAULT;
5128		if (copy_from_user(&msi, argp, sizeof(msi)))
5129			goto out;
5130		r = kvm_send_userspace_msi(kvm, &msi);
5131		break;
5132	}
5133#endif
5134#ifdef __KVM_HAVE_IRQ_LINE
5135	case KVM_IRQ_LINE_STATUS:
5136	case KVM_IRQ_LINE: {
5137		struct kvm_irq_level irq_event;
5138
5139		r = -EFAULT;
5140		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5141			goto out;
5142
5143		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5144					ioctl == KVM_IRQ_LINE_STATUS);
5145		if (r)
5146			goto out;
5147
5148		r = -EFAULT;
5149		if (ioctl == KVM_IRQ_LINE_STATUS) {
5150			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5151				goto out;
5152		}
5153
5154		r = 0;
5155		break;
5156	}
5157#endif
5158#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5159	case KVM_SET_GSI_ROUTING: {
5160		struct kvm_irq_routing routing;
5161		struct kvm_irq_routing __user *urouting;
5162		struct kvm_irq_routing_entry *entries = NULL;
5163
5164		r = -EFAULT;
5165		if (copy_from_user(&routing, argp, sizeof(routing)))
5166			goto out;
5167		r = -EINVAL;
5168		if (!kvm_arch_can_set_irq_routing(kvm))
5169			goto out;
5170		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5171			goto out;
5172		if (routing.flags)
5173			goto out;
5174		if (routing.nr) {
5175			urouting = argp;
5176			entries = vmemdup_array_user(urouting->entries,
5177						     routing.nr, sizeof(*entries));
 
5178			if (IS_ERR(entries)) {
5179				r = PTR_ERR(entries);
5180				goto out;
5181			}
5182		}
5183		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5184					routing.flags);
5185		kvfree(entries);
5186		break;
5187	}
5188#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5189#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5190	case KVM_SET_MEMORY_ATTRIBUTES: {
5191		struct kvm_memory_attributes attrs;
5192
5193		r = -EFAULT;
5194		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5195			goto out;
5196
5197		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5198		break;
5199	}
5200#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5201	case KVM_CREATE_DEVICE: {
5202		struct kvm_create_device cd;
5203
5204		r = -EFAULT;
5205		if (copy_from_user(&cd, argp, sizeof(cd)))
5206			goto out;
5207
5208		r = kvm_ioctl_create_device(kvm, &cd);
5209		if (r)
5210			goto out;
5211
5212		r = -EFAULT;
5213		if (copy_to_user(argp, &cd, sizeof(cd)))
5214			goto out;
5215
5216		r = 0;
5217		break;
5218	}
5219	case KVM_CHECK_EXTENSION:
5220		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5221		break;
5222	case KVM_RESET_DIRTY_RINGS:
5223		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5224		break;
5225	case KVM_GET_STATS_FD:
5226		r = kvm_vm_ioctl_get_stats_fd(kvm);
5227		break;
5228#ifdef CONFIG_KVM_PRIVATE_MEM
5229	case KVM_CREATE_GUEST_MEMFD: {
5230		struct kvm_create_guest_memfd guest_memfd;
5231
5232		r = -EFAULT;
5233		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5234			goto out;
5235
5236		r = kvm_gmem_create(kvm, &guest_memfd);
5237		break;
5238	}
5239#endif
5240	default:
5241		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5242	}
5243out:
5244	return r;
5245}
5246
5247#ifdef CONFIG_KVM_COMPAT
5248struct compat_kvm_dirty_log {
5249	__u32 slot;
5250	__u32 padding1;
5251	union {
5252		compat_uptr_t dirty_bitmap; /* one bit per page */
5253		__u64 padding2;
5254	};
5255};
5256
5257struct compat_kvm_clear_dirty_log {
5258	__u32 slot;
5259	__u32 num_pages;
5260	__u64 first_page;
5261	union {
5262		compat_uptr_t dirty_bitmap; /* one bit per page */
5263		__u64 padding2;
5264	};
5265};
5266
5267long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5268				     unsigned long arg)
5269{
5270	return -ENOTTY;
5271}
5272
5273static long kvm_vm_compat_ioctl(struct file *filp,
5274			   unsigned int ioctl, unsigned long arg)
5275{
5276	struct kvm *kvm = filp->private_data;
5277	int r;
5278
5279	if (kvm->mm != current->mm || kvm->vm_dead)
5280		return -EIO;
5281
5282	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5283	if (r != -ENOTTY)
5284		return r;
5285
5286	switch (ioctl) {
5287#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5288	case KVM_CLEAR_DIRTY_LOG: {
5289		struct compat_kvm_clear_dirty_log compat_log;
5290		struct kvm_clear_dirty_log log;
5291
5292		if (copy_from_user(&compat_log, (void __user *)arg,
5293				   sizeof(compat_log)))
5294			return -EFAULT;
5295		log.slot	 = compat_log.slot;
5296		log.num_pages	 = compat_log.num_pages;
5297		log.first_page	 = compat_log.first_page;
5298		log.padding2	 = compat_log.padding2;
5299		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5300
5301		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5302		break;
5303	}
5304#endif
5305	case KVM_GET_DIRTY_LOG: {
5306		struct compat_kvm_dirty_log compat_log;
5307		struct kvm_dirty_log log;
5308
5309		if (copy_from_user(&compat_log, (void __user *)arg,
5310				   sizeof(compat_log)))
5311			return -EFAULT;
5312		log.slot	 = compat_log.slot;
5313		log.padding1	 = compat_log.padding1;
5314		log.padding2	 = compat_log.padding2;
5315		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5316
5317		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5318		break;
5319	}
5320	default:
5321		r = kvm_vm_ioctl(filp, ioctl, arg);
5322	}
5323	return r;
5324}
5325#endif
5326
5327static struct file_operations kvm_vm_fops = {
5328	.release        = kvm_vm_release,
5329	.unlocked_ioctl = kvm_vm_ioctl,
5330	.llseek		= noop_llseek,
5331	KVM_COMPAT(kvm_vm_compat_ioctl),
5332};
5333
5334bool file_is_kvm(struct file *file)
5335{
5336	return file && file->f_op == &kvm_vm_fops;
5337}
5338EXPORT_SYMBOL_GPL(file_is_kvm);
5339
5340static int kvm_dev_ioctl_create_vm(unsigned long type)
5341{
5342	char fdname[ITOA_MAX_LEN + 1];
5343	int r, fd;
5344	struct kvm *kvm;
5345	struct file *file;
5346
5347	fd = get_unused_fd_flags(O_CLOEXEC);
5348	if (fd < 0)
5349		return fd;
5350
5351	snprintf(fdname, sizeof(fdname), "%d", fd);
5352
5353	kvm = kvm_create_vm(type, fdname);
5354	if (IS_ERR(kvm)) {
5355		r = PTR_ERR(kvm);
5356		goto put_fd;
5357	}
5358
5359	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5360	if (IS_ERR(file)) {
 
5361		r = PTR_ERR(file);
5362		goto put_kvm;
5363	}
5364
5365	/*
5366	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5367	 * already set, with ->release() being kvm_vm_release().  In error
5368	 * cases it will be called by the final fput(file) and will take
5369	 * care of doing kvm_put_kvm(kvm).
5370	 */
 
 
 
 
 
5371	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5372
5373	fd_install(fd, file);
5374	return fd;
5375
5376put_kvm:
5377	kvm_put_kvm(kvm);
5378put_fd:
5379	put_unused_fd(fd);
5380	return r;
5381}
5382
5383static long kvm_dev_ioctl(struct file *filp,
5384			  unsigned int ioctl, unsigned long arg)
5385{
5386	int r = -EINVAL;
5387
5388	switch (ioctl) {
5389	case KVM_GET_API_VERSION:
5390		if (arg)
5391			goto out;
5392		r = KVM_API_VERSION;
5393		break;
5394	case KVM_CREATE_VM:
5395		r = kvm_dev_ioctl_create_vm(arg);
5396		break;
5397	case KVM_CHECK_EXTENSION:
5398		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5399		break;
5400	case KVM_GET_VCPU_MMAP_SIZE:
5401		if (arg)
5402			goto out;
5403		r = PAGE_SIZE;     /* struct kvm_run */
5404#ifdef CONFIG_X86
5405		r += PAGE_SIZE;    /* pio data page */
5406#endif
5407#ifdef CONFIG_KVM_MMIO
5408		r += PAGE_SIZE;    /* coalesced mmio ring page */
5409#endif
5410		break;
 
 
 
 
 
5411	default:
5412		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5413	}
5414out:
5415	return r;
5416}
5417
5418static struct file_operations kvm_chardev_ops = {
5419	.unlocked_ioctl = kvm_dev_ioctl,
5420	.llseek		= noop_llseek,
5421	KVM_COMPAT(kvm_dev_ioctl),
5422};
5423
5424static struct miscdevice kvm_dev = {
5425	KVM_MINOR,
5426	"kvm",
5427	&kvm_chardev_ops,
5428};
5429
5430#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5431static bool enable_virt_at_load = true;
5432module_param(enable_virt_at_load, bool, 0444);
5433
5434__visible bool kvm_rebooting;
5435EXPORT_SYMBOL_GPL(kvm_rebooting);
5436
5437static DEFINE_PER_CPU(bool, virtualization_enabled);
5438static DEFINE_MUTEX(kvm_usage_lock);
5439static int kvm_usage_count;
5440
5441__weak void kvm_arch_enable_virtualization(void)
5442{
 
 
5443
5444}
5445
5446__weak void kvm_arch_disable_virtualization(void)
5447{
5448
5449}
5450
5451static int kvm_enable_virtualization_cpu(void)
5452{
5453	if (__this_cpu_read(virtualization_enabled))
5454		return 0;
5455
5456	if (kvm_arch_enable_virtualization_cpu()) {
5457		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5458			raw_smp_processor_id());
5459		return -EIO;
5460	}
5461
5462	__this_cpu_write(virtualization_enabled, true);
5463	return 0;
5464}
5465
5466static int kvm_online_cpu(unsigned int cpu)
5467{
5468	/*
5469	 * Abort the CPU online process if hardware virtualization cannot
5470	 * be enabled. Otherwise running VMs would encounter unrecoverable
5471	 * errors when scheduled to this CPU.
5472	 */
5473	return kvm_enable_virtualization_cpu();
5474}
5475
5476static void kvm_disable_virtualization_cpu(void *ign)
5477{
5478	if (!__this_cpu_read(virtualization_enabled))
5479		return;
5480
5481	kvm_arch_disable_virtualization_cpu();
5482
5483	__this_cpu_write(virtualization_enabled, false);
 
5484}
5485
5486static int kvm_offline_cpu(unsigned int cpu)
5487{
5488	kvm_disable_virtualization_cpu(NULL);
 
 
 
5489	return 0;
5490}
5491
5492static void kvm_shutdown(void)
5493{
5494	/*
5495	 * Disable hardware virtualization and set kvm_rebooting to indicate
5496	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5497	 * that relevant errors and exceptions aren't entirely unexpected.
5498	 * Some flavors of hardware virtualization need to be disabled before
5499	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5500	 * on x86, virtualization can block INIT interrupts, which are used by
5501	 * firmware to pull APs back under firmware control.  Note, this path
5502	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5503	 * 100% comprehensive.
5504	 */
5505	pr_info("kvm: exiting hardware virtualization\n");
5506	kvm_rebooting = true;
5507	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5508}
5509
5510static int kvm_suspend(void)
5511{
5512	/*
5513	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5514	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5515	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5516	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5517	 * enabling can be preempted, but the task cannot be frozen until it has
5518	 * dropped all locks (userspace tasks are frozen via a fake signal).
5519	 */
5520	lockdep_assert_not_held(&kvm_usage_lock);
5521	lockdep_assert_irqs_disabled();
5522
5523	kvm_disable_virtualization_cpu(NULL);
5524	return 0;
5525}
5526
5527static void kvm_resume(void)
5528{
5529	lockdep_assert_not_held(&kvm_usage_lock);
5530	lockdep_assert_irqs_disabled();
5531
5532	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5533}
5534
5535static struct syscore_ops kvm_syscore_ops = {
5536	.suspend = kvm_suspend,
5537	.resume = kvm_resume,
5538	.shutdown = kvm_shutdown,
5539};
5540
5541static int kvm_enable_virtualization(void)
5542{
5543	int r;
5544
5545	guard(mutex)(&kvm_usage_lock);
5546
5547	if (kvm_usage_count++)
5548		return 0;
5549
5550	kvm_arch_enable_virtualization();
5551
5552	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5553			      kvm_online_cpu, kvm_offline_cpu);
5554	if (r)
5555		goto err_cpuhp;
5556
5557	register_syscore_ops(&kvm_syscore_ops);
5558
5559	/*
5560	 * Undo virtualization enabling and bail if the system is going down.
5561	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5562	 * possible for an in-flight operation to enable virtualization after
5563	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5564	 * invoked.  Note, this relies on system_state being set _before_
5565	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5566	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5567	 * a syscore ops hook instead of registering a dedicated reboot
5568	 * notifier (the latter runs before system_state is updated).
5569	 */
5570	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5571	    system_state == SYSTEM_RESTART) {
5572		r = -EBUSY;
5573		goto err_rebooting;
5574	}
5575
5576	return 0;
5577
5578err_rebooting:
5579	unregister_syscore_ops(&kvm_syscore_ops);
5580	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5581err_cpuhp:
5582	kvm_arch_disable_virtualization();
5583	--kvm_usage_count;
5584	return r;
5585}
5586
5587static void kvm_disable_virtualization(void)
5588{
5589	guard(mutex)(&kvm_usage_lock);
5590
5591	if (--kvm_usage_count)
5592		return;
5593
5594	unregister_syscore_ops(&kvm_syscore_ops);
5595	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5596	kvm_arch_disable_virtualization();
5597}
5598
5599static int kvm_init_virtualization(void)
5600{
5601	if (enable_virt_at_load)
5602		return kvm_enable_virtualization();
5603
5604	return 0;
5605}
5606
5607static void kvm_uninit_virtualization(void)
5608{
5609	if (enable_virt_at_load)
5610		kvm_disable_virtualization();
5611}
5612#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5613static int kvm_enable_virtualization(void)
5614{
5615	return 0;
5616}
5617
5618static int kvm_init_virtualization(void)
5619{
5620	return 0;
5621}
5622
5623static void kvm_disable_virtualization(void)
5624{
5625
5626}
5627
5628static void kvm_uninit_virtualization(void)
5629{
5630
 
 
 
 
5631}
5632#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5633
5634static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5635{
5636	if (dev->ops->destructor)
5637		dev->ops->destructor(dev);
5638}
5639
5640static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5641{
5642	int i;
5643
5644	for (i = 0; i < bus->dev_count; i++) {
5645		struct kvm_io_device *pos = bus->range[i].dev;
5646
5647		kvm_iodevice_destructor(pos);
5648	}
5649	kfree(bus);
5650}
5651
5652static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5653				 const struct kvm_io_range *r2)
5654{
5655	gpa_t addr1 = r1->addr;
5656	gpa_t addr2 = r2->addr;
5657
5658	if (addr1 < addr2)
5659		return -1;
5660
5661	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5662	 * accept any overlapping write.  Any order is acceptable for
5663	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5664	 * we process all of them.
5665	 */
5666	if (r2->len) {
5667		addr1 += r1->len;
5668		addr2 += r2->len;
5669	}
5670
5671	if (addr1 > addr2)
5672		return 1;
5673
5674	return 0;
5675}
5676
5677static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5678{
5679	return kvm_io_bus_cmp(p1, p2);
5680}
5681
5682static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5683			     gpa_t addr, int len)
5684{
5685	struct kvm_io_range *range, key;
5686	int off;
5687
5688	key = (struct kvm_io_range) {
5689		.addr = addr,
5690		.len = len,
5691	};
5692
5693	range = bsearch(&key, bus->range, bus->dev_count,
5694			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5695	if (range == NULL)
5696		return -ENOENT;
5697
5698	off = range - bus->range;
5699
5700	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5701		off--;
5702
5703	return off;
5704}
5705
5706static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5707			      struct kvm_io_range *range, const void *val)
5708{
5709	int idx;
5710
5711	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5712	if (idx < 0)
5713		return -EOPNOTSUPP;
5714
5715	while (idx < bus->dev_count &&
5716		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5717		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5718					range->len, val))
5719			return idx;
5720		idx++;
5721	}
5722
5723	return -EOPNOTSUPP;
5724}
5725
5726/* kvm_io_bus_write - called under kvm->slots_lock */
5727int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5728		     int len, const void *val)
5729{
5730	struct kvm_io_bus *bus;
5731	struct kvm_io_range range;
5732	int r;
5733
5734	range = (struct kvm_io_range) {
5735		.addr = addr,
5736		.len = len,
5737	};
5738
5739	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5740	if (!bus)
5741		return -ENOMEM;
5742	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5743	return r < 0 ? r : 0;
5744}
5745EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5746
5747/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5748int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5749			    gpa_t addr, int len, const void *val, long cookie)
5750{
5751	struct kvm_io_bus *bus;
5752	struct kvm_io_range range;
5753
5754	range = (struct kvm_io_range) {
5755		.addr = addr,
5756		.len = len,
5757	};
5758
5759	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5760	if (!bus)
5761		return -ENOMEM;
5762
5763	/* First try the device referenced by cookie. */
5764	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5765	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5766		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5767					val))
5768			return cookie;
5769
5770	/*
5771	 * cookie contained garbage; fall back to search and return the
5772	 * correct cookie value.
5773	 */
5774	return __kvm_io_bus_write(vcpu, bus, &range, val);
5775}
5776
5777static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5778			     struct kvm_io_range *range, void *val)
5779{
5780	int idx;
5781
5782	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5783	if (idx < 0)
5784		return -EOPNOTSUPP;
5785
5786	while (idx < bus->dev_count &&
5787		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5788		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5789				       range->len, val))
5790			return idx;
5791		idx++;
5792	}
5793
5794	return -EOPNOTSUPP;
5795}
5796
5797/* kvm_io_bus_read - called under kvm->slots_lock */
5798int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5799		    int len, void *val)
5800{
5801	struct kvm_io_bus *bus;
5802	struct kvm_io_range range;
5803	int r;
5804
5805	range = (struct kvm_io_range) {
5806		.addr = addr,
5807		.len = len,
5808	};
5809
5810	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5811	if (!bus)
5812		return -ENOMEM;
5813	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5814	return r < 0 ? r : 0;
5815}
5816
 
5817int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5818			    int len, struct kvm_io_device *dev)
5819{
5820	int i;
5821	struct kvm_io_bus *new_bus, *bus;
5822	struct kvm_io_range range;
5823
5824	lockdep_assert_held(&kvm->slots_lock);
5825
5826	bus = kvm_get_bus(kvm, bus_idx);
5827	if (!bus)
5828		return -ENOMEM;
5829
5830	/* exclude ioeventfd which is limited by maximum fd */
5831	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5832		return -ENOSPC;
5833
5834	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5835			  GFP_KERNEL_ACCOUNT);
5836	if (!new_bus)
5837		return -ENOMEM;
5838
5839	range = (struct kvm_io_range) {
5840		.addr = addr,
5841		.len = len,
5842		.dev = dev,
5843	};
5844
5845	for (i = 0; i < bus->dev_count; i++)
5846		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5847			break;
5848
5849	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5850	new_bus->dev_count++;
5851	new_bus->range[i] = range;
5852	memcpy(new_bus->range + i + 1, bus->range + i,
5853		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5854	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5855	synchronize_srcu_expedited(&kvm->srcu);
5856	kfree(bus);
5857
5858	return 0;
5859}
5860
5861int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5862			      struct kvm_io_device *dev)
 
5863{
5864	int i;
5865	struct kvm_io_bus *new_bus, *bus;
5866
5867	lockdep_assert_held(&kvm->slots_lock);
5868
5869	bus = kvm_get_bus(kvm, bus_idx);
5870	if (!bus)
5871		return 0;
5872
5873	for (i = 0; i < bus->dev_count; i++) {
5874		if (bus->range[i].dev == dev) {
5875			break;
5876		}
5877	}
5878
5879	if (i == bus->dev_count)
5880		return 0;
5881
5882	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5883			  GFP_KERNEL_ACCOUNT);
5884	if (new_bus) {
5885		memcpy(new_bus, bus, struct_size(bus, range, i));
5886		new_bus->dev_count--;
5887		memcpy(new_bus->range + i, bus->range + i + 1,
5888				flex_array_size(new_bus, range, new_bus->dev_count - i));
 
 
 
 
 
 
 
5889	}
5890
5891	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5892	synchronize_srcu_expedited(&kvm->srcu);
5893
5894	/*
5895	 * If NULL bus is installed, destroy the old bus, including all the
5896	 * attached devices. Otherwise, destroy the caller's device only.
5897	 */
5898	if (!new_bus) {
5899		pr_err("kvm: failed to shrink bus, removing it completely\n");
5900		kvm_io_bus_destroy(bus);
5901		return -ENOMEM;
5902	}
5903
5904	kvm_iodevice_destructor(dev);
5905	kfree(bus);
5906	return 0;
5907}
5908
5909struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5910					 gpa_t addr)
5911{
5912	struct kvm_io_bus *bus;
5913	int dev_idx, srcu_idx;
5914	struct kvm_io_device *iodev = NULL;
5915
5916	srcu_idx = srcu_read_lock(&kvm->srcu);
5917
5918	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5919	if (!bus)
5920		goto out_unlock;
5921
5922	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5923	if (dev_idx < 0)
5924		goto out_unlock;
5925
5926	iodev = bus->range[dev_idx].dev;
5927
5928out_unlock:
5929	srcu_read_unlock(&kvm->srcu, srcu_idx);
5930
5931	return iodev;
5932}
5933EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5934
5935static int kvm_debugfs_open(struct inode *inode, struct file *file,
5936			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5937			   const char *fmt)
5938{
5939	int ret;
5940	struct kvm_stat_data *stat_data = inode->i_private;
5941
5942	/*
5943	 * The debugfs files are a reference to the kvm struct which
5944        * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5945        * avoids the race between open and the removal of the debugfs directory.
5946	 */
5947	if (!kvm_get_kvm_safe(stat_data->kvm))
5948		return -ENOENT;
5949
5950	ret = simple_attr_open(inode, file, get,
5951			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5952			       ? set : NULL, fmt);
5953	if (ret)
5954		kvm_put_kvm(stat_data->kvm);
 
 
5955
5956	return ret;
5957}
5958
5959static int kvm_debugfs_release(struct inode *inode, struct file *file)
5960{
5961	struct kvm_stat_data *stat_data = inode->i_private;
 
5962
5963	simple_attr_release(inode, file);
5964	kvm_put_kvm(stat_data->kvm);
5965
5966	return 0;
5967}
5968
5969static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5970{
5971	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5972
5973	return 0;
5974}
5975
5976static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5977{
5978	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5979
5980	return 0;
5981}
5982
5983static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5984{
5985	unsigned long i;
5986	struct kvm_vcpu *vcpu;
5987
5988	*val = 0;
5989
5990	kvm_for_each_vcpu(i, vcpu, kvm)
5991		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5992
5993	return 0;
5994}
5995
5996static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5997{
5998	unsigned long i;
5999	struct kvm_vcpu *vcpu;
6000
6001	kvm_for_each_vcpu(i, vcpu, kvm)
6002		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6003
6004	return 0;
6005}
6006
6007static int kvm_stat_data_get(void *data, u64 *val)
6008{
6009	int r = -EFAULT;
6010	struct kvm_stat_data *stat_data = data;
6011
6012	switch (stat_data->kind) {
6013	case KVM_STAT_VM:
6014		r = kvm_get_stat_per_vm(stat_data->kvm,
6015					stat_data->desc->desc.offset, val);
6016		break;
6017	case KVM_STAT_VCPU:
6018		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6019					  stat_data->desc->desc.offset, val);
6020		break;
6021	}
6022
6023	return r;
6024}
6025
6026static int kvm_stat_data_clear(void *data, u64 val)
6027{
6028	int r = -EFAULT;
6029	struct kvm_stat_data *stat_data = data;
6030
6031	if (val)
6032		return -EINVAL;
6033
6034	switch (stat_data->kind) {
6035	case KVM_STAT_VM:
6036		r = kvm_clear_stat_per_vm(stat_data->kvm,
6037					  stat_data->desc->desc.offset);
6038		break;
6039	case KVM_STAT_VCPU:
6040		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6041					    stat_data->desc->desc.offset);
6042		break;
6043	}
6044
6045	return r;
6046}
6047
6048static int kvm_stat_data_open(struct inode *inode, struct file *file)
6049{
6050	__simple_attr_check_format("%llu\n", 0ull);
6051	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6052				kvm_stat_data_clear, "%llu\n");
6053}
6054
6055static const struct file_operations stat_fops_per_vm = {
6056	.owner = THIS_MODULE,
6057	.open = kvm_stat_data_open,
6058	.release = kvm_debugfs_release,
6059	.read = simple_attr_read,
6060	.write = simple_attr_write,
 
6061};
6062
6063static int vm_stat_get(void *_offset, u64 *val)
6064{
6065	unsigned offset = (long)_offset;
6066	struct kvm *kvm;
6067	u64 tmp_val;
6068
6069	*val = 0;
6070	mutex_lock(&kvm_lock);
6071	list_for_each_entry(kvm, &vm_list, vm_list) {
6072		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6073		*val += tmp_val;
6074	}
6075	mutex_unlock(&kvm_lock);
6076	return 0;
6077}
6078
6079static int vm_stat_clear(void *_offset, u64 val)
6080{
6081	unsigned offset = (long)_offset;
6082	struct kvm *kvm;
6083
6084	if (val)
6085		return -EINVAL;
6086
6087	mutex_lock(&kvm_lock);
6088	list_for_each_entry(kvm, &vm_list, vm_list) {
6089		kvm_clear_stat_per_vm(kvm, offset);
6090	}
6091	mutex_unlock(&kvm_lock);
6092
6093	return 0;
6094}
6095
6096DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6097DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6098
6099static int vcpu_stat_get(void *_offset, u64 *val)
6100{
6101	unsigned offset = (long)_offset;
6102	struct kvm *kvm;
6103	u64 tmp_val;
6104
6105	*val = 0;
6106	mutex_lock(&kvm_lock);
6107	list_for_each_entry(kvm, &vm_list, vm_list) {
6108		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6109		*val += tmp_val;
6110	}
6111	mutex_unlock(&kvm_lock);
6112	return 0;
6113}
6114
6115static int vcpu_stat_clear(void *_offset, u64 val)
6116{
6117	unsigned offset = (long)_offset;
6118	struct kvm *kvm;
6119
6120	if (val)
6121		return -EINVAL;
6122
6123	mutex_lock(&kvm_lock);
6124	list_for_each_entry(kvm, &vm_list, vm_list) {
6125		kvm_clear_stat_per_vcpu(kvm, offset);
6126	}
6127	mutex_unlock(&kvm_lock);
6128
6129	return 0;
6130}
6131
6132DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6133			"%llu\n");
6134DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
 
 
 
 
6135
6136static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6137{
6138	struct kobj_uevent_env *env;
6139	unsigned long long created, active;
6140
6141	if (!kvm_dev.this_device || !kvm)
6142		return;
6143
6144	mutex_lock(&kvm_lock);
6145	if (type == KVM_EVENT_CREATE_VM) {
6146		kvm_createvm_count++;
6147		kvm_active_vms++;
6148	} else if (type == KVM_EVENT_DESTROY_VM) {
6149		kvm_active_vms--;
6150	}
6151	created = kvm_createvm_count;
6152	active = kvm_active_vms;
6153	mutex_unlock(&kvm_lock);
6154
6155	env = kzalloc(sizeof(*env), GFP_KERNEL);
6156	if (!env)
6157		return;
6158
6159	add_uevent_var(env, "CREATED=%llu", created);
6160	add_uevent_var(env, "COUNT=%llu", active);
6161
6162	if (type == KVM_EVENT_CREATE_VM) {
6163		add_uevent_var(env, "EVENT=create");
6164		kvm->userspace_pid = task_pid_nr(current);
6165	} else if (type == KVM_EVENT_DESTROY_VM) {
6166		add_uevent_var(env, "EVENT=destroy");
6167	}
6168	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6169
6170	if (!IS_ERR(kvm->debugfs_dentry)) {
6171		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6172
6173		if (p) {
6174			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6175			if (!IS_ERR(tmp))
6176				add_uevent_var(env, "STATS_PATH=%s", tmp);
6177			kfree(p);
6178		}
6179	}
6180	/* no need for checks, since we are adding at most only 5 keys */
6181	env->envp[env->envp_idx++] = NULL;
6182	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6183	kfree(env);
6184}
6185
6186static void kvm_init_debug(void)
6187{
6188	const struct file_operations *fops;
6189	const struct _kvm_stats_desc *pdesc;
6190	int i;
6191
6192	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6193
6194	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6195		pdesc = &kvm_vm_stats_desc[i];
6196		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6197			fops = &vm_stat_fops;
6198		else
6199			fops = &vm_stat_readonly_fops;
6200		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6201				kvm_debugfs_dir,
6202				(void *)(long)pdesc->desc.offset, fops);
6203	}
 
6204
6205	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6206		pdesc = &kvm_vcpu_stats_desc[i];
6207		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6208			fops = &vcpu_stat_fops;
6209		else
6210			fops = &vcpu_stat_readonly_fops;
6211		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6212				kvm_debugfs_dir,
6213				(void *)(long)pdesc->desc.offset, fops);
 
 
 
 
 
6214	}
6215}
6216
 
 
 
 
 
6217static inline
6218struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6219{
6220	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6221}
6222
6223static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6224{
6225	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6226
6227	WRITE_ONCE(vcpu->preempted, false);
6228	WRITE_ONCE(vcpu->ready, false);
6229
6230	__this_cpu_write(kvm_running_vcpu, vcpu);
 
6231	kvm_arch_vcpu_load(vcpu, cpu);
6232
6233	WRITE_ONCE(vcpu->scheduled_out, false);
6234}
6235
6236static void kvm_sched_out(struct preempt_notifier *pn,
6237			  struct task_struct *next)
6238{
6239	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6240
6241	WRITE_ONCE(vcpu->scheduled_out, true);
6242
6243	if (task_is_runnable(current) && vcpu->wants_to_run) {
6244		WRITE_ONCE(vcpu->preempted, true);
6245		WRITE_ONCE(vcpu->ready, true);
6246	}
6247	kvm_arch_vcpu_put(vcpu);
6248	__this_cpu_write(kvm_running_vcpu, NULL);
6249}
6250
6251/**
6252 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6253 *
6254 * We can disable preemption locally around accessing the per-CPU variable,
6255 * and use the resolved vcpu pointer after enabling preemption again,
6256 * because even if the current thread is migrated to another CPU, reading
6257 * the per-CPU value later will give us the same value as we update the
6258 * per-CPU variable in the preempt notifier handlers.
6259 */
6260struct kvm_vcpu *kvm_get_running_vcpu(void)
6261{
6262	struct kvm_vcpu *vcpu;
6263
6264	preempt_disable();
6265	vcpu = __this_cpu_read(kvm_running_vcpu);
6266	preempt_enable();
6267
6268	return vcpu;
6269}
6270EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6271
6272/**
6273 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6274 */
6275struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6276{
6277        return &kvm_running_vcpu;
6278}
6279
6280#ifdef CONFIG_GUEST_PERF_EVENTS
6281static unsigned int kvm_guest_state(void)
6282{
6283	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6284	unsigned int state;
6285
6286	if (!kvm_arch_pmi_in_guest(vcpu))
6287		return 0;
6288
6289	state = PERF_GUEST_ACTIVE;
6290	if (!kvm_arch_vcpu_in_kernel(vcpu))
6291		state |= PERF_GUEST_USER;
6292
6293	return state;
6294}
6295
6296static unsigned long kvm_guest_get_ip(void)
 
6297{
6298	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
 
 
6299
6300	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6301	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6302		return 0;
6303
6304	return kvm_arch_vcpu_get_ip(vcpu);
6305}
 
 
 
 
 
 
 
 
6306
6307static struct perf_guest_info_callbacks kvm_guest_cbs = {
6308	.state			= kvm_guest_state,
6309	.get_ip			= kvm_guest_get_ip,
6310	.handle_intel_pt_intr	= NULL,
6311};
6312
6313void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6314{
6315	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6316	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6317}
6318void kvm_unregister_perf_callbacks(void)
6319{
6320	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6321}
6322#endif
6323
6324int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6325{
6326	int r;
6327	int cpu;
 
 
 
 
 
 
 
 
 
6328
6329	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6330	if (!vcpu_align)
6331		vcpu_align = __alignof__(struct kvm_vcpu);
6332	kvm_vcpu_cache =
6333		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6334					   SLAB_ACCOUNT,
6335					   offsetof(struct kvm_vcpu, arch),
6336					   offsetofend(struct kvm_vcpu, stats_id)
6337					   - offsetof(struct kvm_vcpu, arch),
6338					   NULL);
6339	if (!kvm_vcpu_cache)
6340		return -ENOMEM;
6341
6342	for_each_possible_cpu(cpu) {
6343		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6344					    GFP_KERNEL, cpu_to_node(cpu))) {
6345			r = -ENOMEM;
6346			goto err_cpu_kick_mask;
6347		}
6348	}
6349
6350	r = kvm_irqfd_init();
6351	if (r)
6352		goto err_irqfd;
6353
6354	r = kvm_async_pf_init();
6355	if (r)
6356		goto err_async_pf;
6357
6358	kvm_chardev_ops.owner = module;
6359	kvm_vm_fops.owner = module;
6360	kvm_vcpu_fops.owner = module;
6361	kvm_device_fops.owner = module;
 
 
 
 
 
 
 
6362
6363	kvm_preempt_ops.sched_in = kvm_sched_in;
6364	kvm_preempt_ops.sched_out = kvm_sched_out;
6365
6366	kvm_init_debug();
6367
6368	r = kvm_vfio_ops_init();
6369	if (WARN_ON_ONCE(r))
6370		goto err_vfio;
6371
6372	kvm_gmem_init(module);
6373
6374	r = kvm_init_virtualization();
6375	if (r)
6376		goto err_virt;
6377
6378	/*
6379	 * Registration _must_ be the very last thing done, as this exposes
6380	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6381	 */
6382	r = misc_register(&kvm_dev);
6383	if (r) {
6384		pr_err("kvm: misc device register failed\n");
6385		goto err_register;
6386	}
6387
6388	return 0;
6389
6390err_register:
6391	kvm_uninit_virtualization();
6392err_virt:
6393	kvm_vfio_ops_exit();
6394err_vfio:
6395	kvm_async_pf_deinit();
6396err_async_pf:
6397	kvm_irqfd_exit();
6398err_irqfd:
6399err_cpu_kick_mask:
6400	for_each_possible_cpu(cpu)
6401		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6402	kmem_cache_destroy(kvm_vcpu_cache);
 
 
 
 
 
 
 
 
 
 
 
 
6403	return r;
6404}
6405EXPORT_SYMBOL_GPL(kvm_init);
6406
6407void kvm_exit(void)
6408{
6409	int cpu;
6410
6411	/*
6412	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6413	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6414	 * to KVM while the module is being stopped.
6415	 */
6416	misc_deregister(&kvm_dev);
6417
6418	kvm_uninit_virtualization();
6419
6420	debugfs_remove_recursive(kvm_debugfs_dir);
6421	for_each_possible_cpu(cpu)
6422		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6423	kmem_cache_destroy(kvm_vcpu_cache);
6424	kvm_vfio_ops_exit();
6425	kvm_async_pf_deinit();
 
 
 
 
 
 
6426	kvm_irqfd_exit();
 
 
6427}
6428EXPORT_SYMBOL_GPL(kvm_exit);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53#include <linux/kthread.h>
 
  54
  55#include <asm/processor.h>
  56#include <asm/ioctl.h>
  57#include <linux/uaccess.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
 
  61#include "vfio.h"
  62
 
 
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
 
 
 
  66/* Worst case buffer size needed for holding an integer. */
  67#define ITOA_MAX_LEN 12
  68
  69MODULE_AUTHOR("Qumranet");
 
  70MODULE_LICENSE("GPL");
  71
  72/* Architectures should define their poll value according to the halt latency */
  73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  74module_param(halt_poll_ns, uint, 0644);
  75EXPORT_SYMBOL_GPL(halt_poll_ns);
  76
  77/* Default doubles per-vcpu halt_poll_ns. */
  78unsigned int halt_poll_ns_grow = 2;
  79module_param(halt_poll_ns_grow, uint, 0644);
  80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  81
  82/* The start value to grow halt_poll_ns from */
  83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  84module_param(halt_poll_ns_grow_start, uint, 0644);
  85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  86
  87/* Default resets per-vcpu halt_poll_ns . */
  88unsigned int halt_poll_ns_shrink;
  89module_param(halt_poll_ns_shrink, uint, 0644);
  90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  91
  92/*
 
 
 
 
 
 
 
  93 * Ordering of locks:
  94 *
  95 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  96 */
  97
  98DEFINE_MUTEX(kvm_lock);
  99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 100LIST_HEAD(vm_list);
 101
 102static cpumask_var_t cpus_hardware_enabled;
 103static int kvm_usage_count;
 104static atomic_t hardware_enable_failed;
 105
 106static struct kmem_cache *kvm_vcpu_cache;
 107
 108static __read_mostly struct preempt_ops kvm_preempt_ops;
 109static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 110
 111struct dentry *kvm_debugfs_dir;
 112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 113
 114static int kvm_debugfs_num_entries;
 115static const struct file_operations stat_fops_per_vm;
 116
 117static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 118			   unsigned long arg);
 119#ifdef CONFIG_KVM_COMPAT
 120static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 121				  unsigned long arg);
 122#define KVM_COMPAT(c)	.compat_ioctl	= (c)
 123#else
 124/*
 125 * For architectures that don't implement a compat infrastructure,
 126 * adopt a double line of defense:
 127 * - Prevent a compat task from opening /dev/kvm
 128 * - If the open has been done by a 64bit task, and the KVM fd
 129 *   passed to a compat task, let the ioctls fail.
 130 */
 131static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 132				unsigned long arg) { return -EINVAL; }
 133
 134static int kvm_no_compat_open(struct inode *inode, struct file *file)
 135{
 136	return is_compat_task() ? -ENODEV : 0;
 137}
 138#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
 139			.open		= kvm_no_compat_open
 140#endif
 141static int hardware_enable_all(void);
 142static void hardware_disable_all(void);
 143
 144static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 145
 146static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 147
 148__visible bool kvm_rebooting;
 149EXPORT_SYMBOL_GPL(kvm_rebooting);
 150
 151#define KVM_EVENT_CREATE_VM 0
 152#define KVM_EVENT_DESTROY_VM 1
 153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 154static unsigned long long kvm_createvm_count;
 155static unsigned long long kvm_active_vms;
 156
 157__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 158						   unsigned long start, unsigned long end)
 159{
 160}
 161
 162bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
 163{
 164	/*
 165	 * The metadata used by is_zone_device_page() to determine whether or
 166	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 167	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
 168	 * page_count() is zero to help detect bad usage of this helper.
 169	 */
 170	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
 171		return false;
 172
 173	return is_zone_device_page(pfn_to_page(pfn));
 174}
 175
 176bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 177{
 178	/*
 179	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 180	 * perspective they are "normal" pages, albeit with slightly different
 181	 * usage rules.
 182	 */
 183	if (pfn_valid(pfn))
 184		return PageReserved(pfn_to_page(pfn)) &&
 185		       !is_zero_pfn(pfn) &&
 186		       !kvm_is_zone_device_pfn(pfn);
 187
 188	return true;
 189}
 190
 191bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
 192{
 193	struct page *page = pfn_to_page(pfn);
 194
 195	if (!PageTransCompoundMap(page))
 196		return false;
 197
 198	return is_transparent_hugepage(compound_head(page));
 199}
 200
 201/*
 202 * Switches to specified vcpu, until a matching vcpu_put()
 203 */
 204void vcpu_load(struct kvm_vcpu *vcpu)
 205{
 206	int cpu = get_cpu();
 207
 208	__this_cpu_write(kvm_running_vcpu, vcpu);
 209	preempt_notifier_register(&vcpu->preempt_notifier);
 210	kvm_arch_vcpu_load(vcpu, cpu);
 211	put_cpu();
 212}
 213EXPORT_SYMBOL_GPL(vcpu_load);
 214
 215void vcpu_put(struct kvm_vcpu *vcpu)
 216{
 217	preempt_disable();
 218	kvm_arch_vcpu_put(vcpu);
 219	preempt_notifier_unregister(&vcpu->preempt_notifier);
 220	__this_cpu_write(kvm_running_vcpu, NULL);
 221	preempt_enable();
 222}
 223EXPORT_SYMBOL_GPL(vcpu_put);
 224
 225/* TODO: merge with kvm_arch_vcpu_should_kick */
 226static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 227{
 228	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 229
 230	/*
 231	 * We need to wait for the VCPU to reenable interrupts and get out of
 232	 * READING_SHADOW_PAGE_TABLES mode.
 233	 */
 234	if (req & KVM_REQUEST_WAIT)
 235		return mode != OUTSIDE_GUEST_MODE;
 236
 237	/*
 238	 * Need to kick a running VCPU, but otherwise there is nothing to do.
 239	 */
 240	return mode == IN_GUEST_MODE;
 241}
 242
 243static void ack_flush(void *_completed)
 244{
 245}
 246
 247static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 248{
 249	if (unlikely(!cpus))
 250		cpus = cpu_online_mask;
 251
 252	if (cpumask_empty(cpus))
 253		return false;
 254
 255	smp_call_function_many(cpus, ack_flush, NULL, wait);
 256	return true;
 257}
 258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 260				 struct kvm_vcpu *except,
 261				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 262{
 263	int i, cpu, me;
 264	struct kvm_vcpu *vcpu;
 
 
 265	bool called;
 266
 267	me = get_cpu();
 268
 269	kvm_for_each_vcpu(i, vcpu, kvm) {
 270		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
 271		    vcpu == except)
 272			continue;
 273
 274		kvm_make_request(req, vcpu);
 275		cpu = vcpu->cpu;
 276
 277		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 
 
 278			continue;
 279
 280		if (tmp != NULL && cpu != -1 && cpu != me &&
 281		    kvm_request_needs_ipi(vcpu, req))
 282			__cpumask_set_cpu(cpu, tmp);
 283	}
 284
 285	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 286	put_cpu();
 287
 288	return called;
 289}
 290
 291bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
 292				      struct kvm_vcpu *except)
 293{
 294	cpumask_var_t cpus;
 
 
 295	bool called;
 
 
 
 296
 297	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 
 298
 299	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
 
 
 
 
 300
 301	free_cpumask_var(cpus);
 302	return called;
 303}
 
 304
 305bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 306{
 307	return kvm_make_all_cpus_request_except(kvm, req, NULL);
 308}
 309
 310#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 311void kvm_flush_remote_tlbs(struct kvm *kvm)
 312{
 313	/*
 314	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 315	 * kvm_make_all_cpus_request.
 316	 */
 317	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 318
 319	/*
 320	 * We want to publish modifications to the page tables before reading
 321	 * mode. Pairs with a memory barrier in arch-specific code.
 322	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 323	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 324	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 325	 *
 326	 * There is already an smp_mb__after_atomic() before
 327	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 328	 * barrier here.
 329	 */
 330	if (!kvm_arch_flush_remote_tlb(kvm)
 331	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 332		++kvm->stat.remote_tlb_flush;
 333	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 334}
 335EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 336#endif
 337
 338void kvm_reload_remote_mmus(struct kvm *kvm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339{
 340	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 
 341}
 342
 343#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 344static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 345					       gfp_t gfp_flags)
 346{
 
 
 347	gfp_flags |= mc->gfp_zero;
 348
 349	if (mc->kmem_cache)
 350		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 351	else
 352		return (void *)__get_free_page(gfp_flags);
 
 
 
 353}
 354
 355int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 356{
 
 357	void *obj;
 358
 359	if (mc->nobjs >= min)
 360		return 0;
 361	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
 362		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363		if (!obj)
 364			return mc->nobjs >= min ? 0 : -ENOMEM;
 365		mc->objects[mc->nobjs++] = obj;
 366	}
 367	return 0;
 368}
 369
 
 
 
 
 
 370int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 371{
 372	return mc->nobjs;
 373}
 374
 375void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 376{
 377	while (mc->nobjs) {
 378		if (mc->kmem_cache)
 379			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 380		else
 381			free_page((unsigned long)mc->objects[--mc->nobjs]);
 382	}
 
 
 
 
 
 383}
 384
 385void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 386{
 387	void *p;
 388
 389	if (WARN_ON(!mc->nobjs))
 390		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 391	else
 392		p = mc->objects[--mc->nobjs];
 393	BUG_ON(!p);
 394	return p;
 395}
 396#endif
 397
 398static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 399{
 400	mutex_init(&vcpu->mutex);
 401	vcpu->cpu = -1;
 402	vcpu->kvm = kvm;
 403	vcpu->vcpu_id = id;
 404	vcpu->pid = NULL;
 
 
 405	rcuwait_init(&vcpu->wait);
 
 406	kvm_async_pf_vcpu_init(vcpu);
 407
 408	vcpu->pre_pcpu = -1;
 409	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 410
 411	kvm_vcpu_set_in_spin_loop(vcpu, false);
 412	kvm_vcpu_set_dy_eligible(vcpu, false);
 413	vcpu->preempted = false;
 414	vcpu->ready = false;
 415	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 
 
 
 
 
 416}
 417
 418void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 419{
 420	kvm_arch_vcpu_destroy(vcpu);
 
 421
 422	/*
 423	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 424	 * the vcpu->pid pointer, and at destruction time all file descriptors
 425	 * are already gone.
 426	 */
 427	put_pid(rcu_dereference_protected(vcpu->pid, 1));
 428
 429	free_page((unsigned long)vcpu->run);
 430	kmem_cache_free(kvm_vcpu_cache, vcpu);
 431}
 432EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
 433
 434#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 436{
 437	return container_of(mn, struct kvm, mmu_notifier);
 438}
 439
 440static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
 441					      struct mm_struct *mm,
 442					      unsigned long start, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443{
 444	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 445	int idx;
 446
 447	idx = srcu_read_lock(&kvm->srcu);
 448	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 449	srcu_read_unlock(&kvm->srcu, idx);
 450}
 
 451
 452static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 453					struct mm_struct *mm,
 454					unsigned long address,
 455					pte_t pte)
 
 
 
 
 456{
 457	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 458	int idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459
 460	idx = srcu_read_lock(&kvm->srcu);
 461	spin_lock(&kvm->mmu_lock);
 462	kvm->mmu_notifier_seq++;
 463
 464	if (kvm_set_spte_hva(kvm, address, pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465		kvm_flush_remote_tlbs(kvm);
 466
 467	spin_unlock(&kvm->mmu_lock);
 
 
 
 468	srcu_read_unlock(&kvm->srcu, idx);
 
 
 469}
 470
 471static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 472					const struct mmu_notifier_range *range)
 
 
 
 473{
 474	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 475	int need_tlb_flush = 0, idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477	idx = srcu_read_lock(&kvm->srcu);
 478	spin_lock(&kvm->mmu_lock);
 
 479	/*
 480	 * The count increase must become visible at unlock time as no
 481	 * spte can be established without taking the mmu_lock and
 482	 * count is also read inside the mmu_lock critical section.
 483	 */
 484	kvm->mmu_notifier_count++;
 485	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
 486					     range->flags);
 487	need_tlb_flush |= kvm->tlbs_dirty;
 488	/* we've to flush the tlb before the pages can be freed */
 489	if (need_tlb_flush)
 490		kvm_flush_remote_tlbs(kvm);
 
 
 
 
 
 
 491
 492	spin_unlock(&kvm->mmu_lock);
 493	srcu_read_unlock(&kvm->srcu, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494
 495	return 0;
 
 
 
 496}
 497
 498static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 499					const struct mmu_notifier_range *range)
 500{
 501	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502
 503	spin_lock(&kvm->mmu_lock);
 504	/*
 505	 * This sequence increase will notify the kvm page fault that
 506	 * the page that is going to be mapped in the spte could have
 507	 * been freed.
 508	 */
 509	kvm->mmu_notifier_seq++;
 510	smp_wmb();
 511	/*
 512	 * The above sequence increase must be visible before the
 513	 * below count decrease, which is ensured by the smp_wmb above
 514	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 
 
 
 
 
 
 
 515	 */
 516	kvm->mmu_notifier_count--;
 517	spin_unlock(&kvm->mmu_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519	BUG_ON(kvm->mmu_notifier_count < 0);
 
 
 
 
 
 520}
 521
 522static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 523					      struct mm_struct *mm,
 524					      unsigned long start,
 525					      unsigned long end)
 526{
 527	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 528	int young, idx;
 529
 530	idx = srcu_read_lock(&kvm->srcu);
 531	spin_lock(&kvm->mmu_lock);
 532
 533	young = kvm_age_hva(kvm, start, end);
 534	if (young)
 535		kvm_flush_remote_tlbs(kvm);
 536
 537	spin_unlock(&kvm->mmu_lock);
 538	srcu_read_unlock(&kvm->srcu, idx);
 539
 540	return young;
 
 541}
 542
 543static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 544					struct mm_struct *mm,
 545					unsigned long start,
 546					unsigned long end)
 547{
 548	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 549	int young, idx;
 550
 551	idx = srcu_read_lock(&kvm->srcu);
 552	spin_lock(&kvm->mmu_lock);
 553	/*
 554	 * Even though we do not flush TLB, this will still adversely
 555	 * affect performance on pre-Haswell Intel EPT, where there is
 556	 * no EPT Access Bit to clear so that we have to tear down EPT
 557	 * tables instead. If we find this unacceptable, we can always
 558	 * add a parameter to kvm_age_hva so that it effectively doesn't
 559	 * do anything on clear_young.
 560	 *
 561	 * Also note that currently we never issue secondary TLB flushes
 562	 * from clear_young, leaving this job up to the regular system
 563	 * cadence. If we find this inaccurate, we might come up with a
 564	 * more sophisticated heuristic later.
 565	 */
 566	young = kvm_age_hva(kvm, start, end);
 567	spin_unlock(&kvm->mmu_lock);
 568	srcu_read_unlock(&kvm->srcu, idx);
 569
 570	return young;
 571}
 572
 573static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 574				       struct mm_struct *mm,
 575				       unsigned long address)
 576{
 577	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 578	int young, idx;
 579
 580	idx = srcu_read_lock(&kvm->srcu);
 581	spin_lock(&kvm->mmu_lock);
 582	young = kvm_test_age_hva(kvm, address);
 583	spin_unlock(&kvm->mmu_lock);
 584	srcu_read_unlock(&kvm->srcu, idx);
 585
 586	return young;
 587}
 588
 589static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 590				     struct mm_struct *mm)
 591{
 592	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 593	int idx;
 594
 595	idx = srcu_read_lock(&kvm->srcu);
 596	kvm_arch_flush_shadow_all(kvm);
 597	srcu_read_unlock(&kvm->srcu, idx);
 598}
 599
 600static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 601	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
 602	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 603	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 604	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 605	.clear_young		= kvm_mmu_notifier_clear_young,
 606	.test_young		= kvm_mmu_notifier_test_young,
 607	.change_pte		= kvm_mmu_notifier_change_pte,
 608	.release		= kvm_mmu_notifier_release,
 609};
 610
 611static int kvm_init_mmu_notifier(struct kvm *kvm)
 612{
 613	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 614	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 615}
 616
 617#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 618
 619static int kvm_init_mmu_notifier(struct kvm *kvm)
 620{
 621	return 0;
 622}
 623
 624#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 625
 626static struct kvm_memslots *kvm_alloc_memslots(void)
 
 
 
 627{
 628	int i;
 629	struct kvm_memslots *slots;
 
 
 630
 631	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 632	if (!slots)
 633		return NULL;
 
 
 
 
 634
 635	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 636		slots->id_to_index[i] = -1;
 
 
 
 
 
 
 637
 638	return slots;
 
 639}
 
 640
 641static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 642{
 643	if (!memslot->dirty_bitmap)
 644		return;
 645
 646	kvfree(memslot->dirty_bitmap);
 647	memslot->dirty_bitmap = NULL;
 648}
 649
 
 650static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 651{
 
 
 
 652	kvm_destroy_dirty_bitmap(slot);
 653
 654	kvm_arch_free_memslot(kvm, slot);
 655
 656	slot->flags = 0;
 657	slot->npages = 0;
 658}
 659
 660static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 661{
 
 662	struct kvm_memory_slot *memslot;
 
 663
 664	if (!slots)
 
 
 
 
 
 
 665		return;
 666
 667	kvm_for_each_memslot(memslot, slots)
 668		kvm_free_memslot(kvm, memslot);
 
 669
 670	kvfree(slots);
 
 
 
 
 
 
 
 
 
 671}
 672
 
 673static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 674{
 675	int i;
 
 
 676
 677	if (!kvm->debugfs_dentry)
 678		return;
 679
 680	debugfs_remove_recursive(kvm->debugfs_dentry);
 681
 682	if (kvm->debugfs_stat_data) {
 683		for (i = 0; i < kvm_debugfs_num_entries; i++)
 684			kfree(kvm->debugfs_stat_data[i]);
 685		kfree(kvm->debugfs_stat_data);
 686	}
 687}
 688
 689static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 690{
 
 
 691	char dir_name[ITOA_MAX_LEN * 2];
 692	struct kvm_stat_data *stat_data;
 693	struct kvm_stats_debugfs_item *p;
 
 
 
 694
 695	if (!debugfs_initialized())
 696		return 0;
 697
 698	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 699	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 
 
 
 
 
 
 
 
 
 
 
 700
 
 701	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 702					 sizeof(*kvm->debugfs_stat_data),
 703					 GFP_KERNEL_ACCOUNT);
 704	if (!kvm->debugfs_stat_data)
 705		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707	for (p = debugfs_entries; p->name; p++) {
 
 708		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 709		if (!stat_data)
 710			return -ENOMEM;
 711
 712		stat_data->kvm = kvm;
 713		stat_data->dbgfs_item = p;
 714		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 715		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
 
 716				    kvm->debugfs_dentry, stat_data,
 717				    &stat_fops_per_vm);
 718	}
 
 
 719	return 0;
 
 
 
 720}
 721
 722/*
 723 * Called after the VM is otherwise initialized, but just before adding it to
 724 * the vm_list.
 725 */
 726int __weak kvm_arch_post_init_vm(struct kvm *kvm)
 727{
 728	return 0;
 729}
 730
 731/*
 732 * Called just after removing the VM from the vm_list, but before doing any
 733 * other destruction.
 734 */
 735void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
 736{
 737}
 738
 739static struct kvm *kvm_create_vm(unsigned long type)
 
 
 
 
 
 
 
 
 
 
 740{
 741	struct kvm *kvm = kvm_arch_alloc_vm();
 742	int r = -ENOMEM;
 743	int i;
 744
 745	if (!kvm)
 746		return ERR_PTR(-ENOMEM);
 747
 748	spin_lock_init(&kvm->mmu_lock);
 749	mmgrab(current->mm);
 750	kvm->mm = current->mm;
 751	kvm_eventfd_init(kvm);
 752	mutex_init(&kvm->lock);
 753	mutex_init(&kvm->irq_lock);
 754	mutex_init(&kvm->slots_lock);
 
 
 
 
 
 
 
 
 
 
 
 755	INIT_LIST_HEAD(&kvm->devices);
 
 756
 757	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 758
 
 
 
 
 
 
 
 
 
 
 759	if (init_srcu_struct(&kvm->srcu))
 760		goto out_err_no_srcu;
 761	if (init_srcu_struct(&kvm->irq_srcu))
 762		goto out_err_no_irq_srcu;
 763
 
 
 
 
 764	refcount_set(&kvm->users_count, 1);
 765	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 766		struct kvm_memslots *slots = kvm_alloc_memslots();
 767
 768		if (!slots)
 769			goto out_err_no_arch_destroy_vm;
 770		/* Generations must be different for each address space. */
 771		slots->generation = i;
 772		rcu_assign_pointer(kvm->memslots[i], slots);
 
 
 
 
 
 
 
 
 
 
 773	}
 774
 
 775	for (i = 0; i < KVM_NR_BUSES; i++) {
 776		rcu_assign_pointer(kvm->buses[i],
 777			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
 778		if (!kvm->buses[i])
 779			goto out_err_no_arch_destroy_vm;
 780	}
 781
 782	kvm->max_halt_poll_ns = halt_poll_ns;
 783
 784	r = kvm_arch_init_vm(kvm, type);
 785	if (r)
 786		goto out_err_no_arch_destroy_vm;
 787
 788	r = hardware_enable_all();
 789	if (r)
 790		goto out_err_no_disable;
 791
 792#ifdef CONFIG_HAVE_KVM_IRQFD
 793	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 794#endif
 795
 796	r = kvm_init_mmu_notifier(kvm);
 797	if (r)
 798		goto out_err_no_mmu_notifier;
 799
 
 
 
 
 
 
 
 
 800	r = kvm_arch_post_init_vm(kvm);
 801	if (r)
 802		goto out_err;
 803
 804	mutex_lock(&kvm_lock);
 805	list_add(&kvm->vm_list, &vm_list);
 806	mutex_unlock(&kvm_lock);
 807
 808	preempt_notifier_inc();
 
 809
 810	return kvm;
 811
 812out_err:
 813#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 
 
 
 
 814	if (kvm->mmu_notifier.ops)
 815		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
 816#endif
 817out_err_no_mmu_notifier:
 818	hardware_disable_all();
 819out_err_no_disable:
 820	kvm_arch_destroy_vm(kvm);
 821out_err_no_arch_destroy_vm:
 822	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
 823	for (i = 0; i < KVM_NR_BUSES; i++)
 824		kfree(kvm_get_bus(kvm, i));
 825	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 826		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 827	cleanup_srcu_struct(&kvm->irq_srcu);
 828out_err_no_irq_srcu:
 829	cleanup_srcu_struct(&kvm->srcu);
 830out_err_no_srcu:
 831	kvm_arch_free_vm(kvm);
 832	mmdrop(current->mm);
 833	return ERR_PTR(r);
 834}
 835
 836static void kvm_destroy_devices(struct kvm *kvm)
 837{
 838	struct kvm_device *dev, *tmp;
 839
 840	/*
 841	 * We do not need to take the kvm->lock here, because nobody else
 842	 * has a reference to the struct kvm at this point and therefore
 843	 * cannot access the devices list anyhow.
 
 
 
 
 
 
 844	 */
 845	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 846		list_del(&dev->vm_node);
 847		dev->ops->destroy(dev);
 848	}
 849}
 850
 851static void kvm_destroy_vm(struct kvm *kvm)
 852{
 853	int i;
 854	struct mm_struct *mm = kvm->mm;
 855
 
 856	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 857	kvm_destroy_vm_debugfs(kvm);
 858	kvm_arch_sync_events(kvm);
 859	mutex_lock(&kvm_lock);
 860	list_del(&kvm->vm_list);
 861	mutex_unlock(&kvm_lock);
 862	kvm_arch_pre_destroy_vm(kvm);
 863
 864	kvm_free_irq_routing(kvm);
 865	for (i = 0; i < KVM_NR_BUSES; i++) {
 866		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 867
 868		if (bus)
 869			kvm_io_bus_destroy(bus);
 870		kvm->buses[i] = NULL;
 871	}
 872	kvm_coalesced_mmio_free(kvm);
 873#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 874	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875#else
 876	kvm_arch_flush_shadow_all(kvm);
 877#endif
 878	kvm_arch_destroy_vm(kvm);
 879	kvm_destroy_devices(kvm);
 880	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 881		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 
 
 882	cleanup_srcu_struct(&kvm->irq_srcu);
 883	cleanup_srcu_struct(&kvm->srcu);
 
 
 
 884	kvm_arch_free_vm(kvm);
 885	preempt_notifier_dec();
 886	hardware_disable_all();
 887	mmdrop(mm);
 888}
 889
 890void kvm_get_kvm(struct kvm *kvm)
 891{
 892	refcount_inc(&kvm->users_count);
 893}
 894EXPORT_SYMBOL_GPL(kvm_get_kvm);
 895
 
 
 
 
 
 
 
 
 
 
 896void kvm_put_kvm(struct kvm *kvm)
 897{
 898	if (refcount_dec_and_test(&kvm->users_count))
 899		kvm_destroy_vm(kvm);
 900}
 901EXPORT_SYMBOL_GPL(kvm_put_kvm);
 902
 903/*
 904 * Used to put a reference that was taken on behalf of an object associated
 905 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
 906 * of the new file descriptor fails and the reference cannot be transferred to
 907 * its final owner.  In such cases, the caller is still actively using @kvm and
 908 * will fail miserably if the refcount unexpectedly hits zero.
 909 */
 910void kvm_put_kvm_no_destroy(struct kvm *kvm)
 911{
 912	WARN_ON(refcount_dec_and_test(&kvm->users_count));
 913}
 914EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
 915
 916static int kvm_vm_release(struct inode *inode, struct file *filp)
 917{
 918	struct kvm *kvm = filp->private_data;
 919
 920	kvm_irqfd_release(kvm);
 921
 922	kvm_put_kvm(kvm);
 923	return 0;
 924}
 925
 926/*
 927 * Allocation size is twice as large as the actual dirty bitmap size.
 928 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
 929 */
 930static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
 931{
 932	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 933
 934	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
 935	if (!memslot->dirty_bitmap)
 936		return -ENOMEM;
 937
 938	return 0;
 939}
 940
 
 
 
 
 
 
 
 
 941/*
 942 * Delete a memslot by decrementing the number of used slots and shifting all
 943 * other entries in the array forward one spot.
 
 944 */
 945static inline void kvm_memslot_delete(struct kvm_memslots *slots,
 946				      struct kvm_memory_slot *memslot)
 947{
 948	struct kvm_memory_slot *mslots = slots->memslots;
 949	int i;
 950
 951	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
 952		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953
 954	slots->used_slots--;
 955
 956	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
 957		atomic_set(&slots->lru_slot, 0);
 958
 959	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
 960		mslots[i] = mslots[i + 1];
 961		slots->id_to_index[mslots[i].id] = i;
 962	}
 963	mslots[i] = *memslot;
 964	slots->id_to_index[memslot->id] = -1;
 965}
 966
 967/*
 968 * "Insert" a new memslot by incrementing the number of used slots.  Returns
 969 * the new slot's initial index into the memslots array.
 970 */
 971static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
 972{
 973	return slots->used_slots++;
 974}
 975
 976/*
 977 * Move a changed memslot backwards in the array by shifting existing slots
 978 * with a higher GFN toward the front of the array.  Note, the changed memslot
 979 * itself is not preserved in the array, i.e. not swapped at this time, only
 980 * its new index into the array is tracked.  Returns the changed memslot's
 981 * current index into the memslots array.
 982 */
 983static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
 984					    struct kvm_memory_slot *memslot)
 985{
 986	struct kvm_memory_slot *mslots = slots->memslots;
 987	int i;
 988
 989	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
 990	    WARN_ON_ONCE(!slots->used_slots))
 991		return -1;
 992
 993	/*
 994	 * Move the target memslot backward in the array by shifting existing
 995	 * memslots with a higher GFN (than the target memslot) towards the
 996	 * front of the array.
 997	 */
 998	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
 999		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000			break;
1001
1002		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003
1004		/* Shift the next memslot forward one and update its index. */
1005		mslots[i] = mslots[i + 1];
1006		slots->id_to_index[mslots[i].id] = i;
1007	}
1008	return i;
1009}
1010
1011/*
1012 * Move a changed memslot forwards in the array by shifting existing slots with
1013 * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014 * is not preserved in the array, i.e. not swapped at this time, only its new
1015 * index into the array is tracked.  Returns the changed memslot's final index
1016 * into the memslots array.
 
 
1017 */
1018static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019					   struct kvm_memory_slot *memslot,
1020					   int start)
1021{
1022	struct kvm_memory_slot *mslots = slots->memslots;
1023	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024
1025	for (i = start; i > 0; i--) {
1026		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027			break;
 
 
 
 
1028
1029		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
 
 
 
 
 
 
1030
1031		/* Shift the next memslot back one and update its index. */
1032		mslots[i] = mslots[i - 1];
1033		slots->id_to_index[mslots[i].id] = i;
 
 
 
 
 
 
 
 
 
 
1034	}
1035	return i;
1036}
1037
1038/*
1039 * Re-sort memslots based on their GFN to account for an added, deleted, or
1040 * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041 * memslot lookup.
1042 *
1043 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044 * at memslots[0] has the highest GFN.
1045 *
1046 * The sorting algorithm takes advantage of having initially sorted memslots
1047 * and knowing the position of the changed memslot.  Sorting is also optimized
1048 * by not swapping the updated memslot and instead only shifting other memslots
1049 * and tracking the new index for the update memslot.  Only once its final
1050 * index is known is the updated memslot copied into its position in the array.
1051 *
1052 *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053 *    the end of the array.
1054 *
1055 *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056 *    end of the array and then it forward to its correct location.
1057 *
1058 *  - When moving a memslot, the algorithm first moves the updated memslot
1059 *    backward to handle the scenario where the memslot's GFN was changed to a
1060 *    lower value.  update_memslots() then falls through and runs the same flow
1061 *    as creating a memslot to move the memslot forward to handle the scenario
1062 *    where its GFN was changed to a higher value.
1063 *
1064 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065 * historical reasons.  Originally, invalid memslots where denoted by having
1066 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067 * to the end of the array.  The current algorithm uses dedicated logic to
1068 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069 *
1070 * The other historical motiviation for highest->lowest was to improve the
1071 * performance of memslot lookup.  KVM originally used a linear search starting
1072 * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074 * single memslot above the 4gb boundary.  As the largest memslot is also the
1075 * most likely to be referenced, sorting it to the front of the array was
1076 * advantageous.  The current binary search starts from the middle of the array
1077 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078 */
1079static void update_memslots(struct kvm_memslots *slots,
1080			    struct kvm_memory_slot *memslot,
1081			    enum kvm_mr_change change)
 
 
1082{
1083	int i;
1084
1085	if (change == KVM_MR_DELETE) {
1086		kvm_memslot_delete(slots, memslot);
1087	} else {
1088		if (change == KVM_MR_CREATE)
1089			i = kvm_memslot_insert_back(slots);
1090		else
1091			i = kvm_memslot_move_backward(slots, memslot);
1092		i = kvm_memslot_move_forward(slots, memslot, i);
1093
1094		/*
1095		 * Copy the memslot to its new position in memslots and update
1096		 * its index accordingly.
1097		 */
1098		slots->memslots[i] = *memslot;
1099		slots->id_to_index[memslot->id] = i;
1100	}
1101}
1102
1103static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104{
1105	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106
1107#ifdef __KVM_HAVE_READONLY_MEM
1108	valid_flags |= KVM_MEM_READONLY;
1109#endif
 
1110
1111	if (mem->flags & ~valid_flags)
1112		return -EINVAL;
1113
1114	return 0;
1115}
1116
1117static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118		int as_id, struct kvm_memslots *slots)
1119{
1120	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121	u64 gen = old_memslots->generation;
 
 
1122
1123	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126	rcu_assign_pointer(kvm->memslots[as_id], slots);
 
 
 
 
 
 
 
 
 
1127	synchronize_srcu_expedited(&kvm->srcu);
1128
1129	/*
1130	 * Increment the new memslot generation a second time, dropping the
1131	 * update in-progress flag and incrementing the generation based on
1132	 * the number of address spaces.  This provides a unique and easily
1133	 * identifiable generation number while the memslots are in flux.
1134	 */
1135	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136
1137	/*
1138	 * Generations must be unique even across address spaces.  We do not need
1139	 * a global counter for that, instead the generation space is evenly split
1140	 * across address spaces.  For example, with two address spaces, address
1141	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142	 * use generations 1, 3, 5, ...
1143	 */
1144	gen += KVM_ADDRESS_SPACE_NUM;
1145
1146	kvm_arch_memslots_updated(kvm, gen);
1147
1148	slots->generation = gen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149
1150	return old_memslots;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151}
1152
1153/*
1154 * Note, at a minimum, the current number of used slots must be allocated, even
1155 * when deleting a memslot, as we need a complete duplicate of the memslots for
1156 * use when invalidating a memslot prior to deleting/moving the memslot.
 
 
 
 
1157 */
1158static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159					     enum kvm_mr_change change)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160{
1161	struct kvm_memslots *slots;
1162	size_t old_size, new_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163
1164	old_size = sizeof(struct kvm_memslots) +
1165		   (sizeof(struct kvm_memory_slot) * old->used_slots);
 
 
 
 
 
1166
1167	if (change == KVM_MR_CREATE)
1168		new_size = old_size + sizeof(struct kvm_memory_slot);
1169	else
1170		new_size = old_size;
 
 
 
 
 
 
 
1171
1172	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173	if (likely(slots))
1174		memcpy(slots, old, old_size);
 
 
 
 
 
 
 
 
 
1175
1176	return slots;
 
 
 
 
 
 
 
 
 
 
1177}
1178
1179static int kvm_set_memslot(struct kvm *kvm,
1180			   const struct kvm_userspace_memory_region *mem,
1181			   struct kvm_memory_slot *old,
1182			   struct kvm_memory_slot *new, int as_id,
1183			   enum kvm_mr_change change)
1184{
1185	struct kvm_memory_slot *slot;
1186	struct kvm_memslots *slots;
1187	int r;
1188
1189	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190	if (!slots)
1191		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1192
 
 
 
 
 
 
 
 
 
 
 
 
 
1193	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194		/*
1195		 * Note, the INVALID flag needs to be in the appropriate entry
1196		 * in the freshly allocated memslots, not in @old or @new.
1197		 */
1198		slot = id_to_memslot(slots, old->id);
1199		slot->flags |= KVM_MEMSLOT_INVALID;
 
1200
 
 
1201		/*
1202		 * We can re-use the old memslots, the only difference from the
1203		 * newly installed memslots is the invalid flag, which will get
1204		 * dropped by update_memslots anyway.  We'll also revert to the
1205		 * old memslots if preparing the new memory region fails.
1206		 */
1207		slots = install_new_memslots(kvm, as_id, slots);
1208
1209		/* From this point no new shadow pages pointing to a deleted,
1210		 * or moved, memslot will be created.
1211		 *
1212		 * validation of sp->gfn happens in:
1213		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214		 *	- kvm_is_visible_gfn (mmu_check_root)
1215		 */
1216		kvm_arch_flush_shadow_memslot(kvm, slot);
1217	}
1218
1219	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220	if (r)
1221		goto out_slots;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222
1223	update_memslots(slots, new, change);
1224	slots = install_new_memslots(kvm, as_id, slots);
 
1225
1226	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
 
 
 
 
 
1227
1228	kvfree(slots);
1229	return 0;
1230
1231out_slots:
1232	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233		slots = install_new_memslots(kvm, as_id, slots);
1234	kvfree(slots);
1235	return r;
1236}
1237
1238static int kvm_delete_memslot(struct kvm *kvm,
1239			      const struct kvm_userspace_memory_region *mem,
1240			      struct kvm_memory_slot *old, int as_id)
1241{
1242	struct kvm_memory_slot new;
1243	int r;
1244
1245	if (!old->npages)
1246		return -EINVAL;
 
 
1247
1248	memset(&new, 0, sizeof(new));
1249	new.id = old->id;
1250
1251	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1252	if (r)
1253		return r;
1254
1255	kvm_free_memslot(kvm, old);
1256	return 0;
1257}
1258
1259/*
1260 * Allocate some memory and give it an address in the guest physical address
1261 * space.
1262 *
1263 * Discontiguous memory is allowed, mostly for framebuffers.
1264 *
1265 * Must be called holding kvm->slots_lock for write.
1266 */
1267int __kvm_set_memory_region(struct kvm *kvm,
1268			    const struct kvm_userspace_memory_region *mem)
1269{
1270	struct kvm_memory_slot old, new;
1271	struct kvm_memory_slot *tmp;
1272	enum kvm_mr_change change;
 
 
1273	int as_id, id;
1274	int r;
1275
1276	r = check_memory_region_flags(mem);
1277	if (r)
1278		return r;
1279
1280	as_id = mem->slot >> 16;
1281	id = (u16)mem->slot;
1282
1283	/* General sanity checks */
1284	if (mem->memory_size & (PAGE_SIZE - 1))
 
1285		return -EINVAL;
1286	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287		return -EINVAL;
1288	/* We can read the guest memory with __xxx_user() later on. */
1289	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 
1290	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1291			mem->memory_size))
1292		return -EINVAL;
1293	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 
 
 
 
1294		return -EINVAL;
1295	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1296		return -EINVAL;
 
 
 
 
1297
1298	/*
1299	 * Make a full copy of the old memslot, the pointer will become stale
1300	 * when the memslots are re-sorted by update_memslots(), and the old
1301	 * memslot needs to be referenced after calling update_memslots(), e.g.
1302	 * to free its resources and for arch specific behavior.
1303	 */
1304	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1305	if (tmp) {
1306		old = *tmp;
1307		tmp = NULL;
1308	} else {
1309		memset(&old, 0, sizeof(old));
1310		old.id = id;
1311	}
1312
1313	if (!mem->memory_size)
1314		return kvm_delete_memslot(kvm, mem, &old, as_id);
1315
1316	new.id = id;
1317	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1318	new.npages = mem->memory_size >> PAGE_SHIFT;
1319	new.flags = mem->flags;
1320	new.userspace_addr = mem->userspace_addr;
1321
1322	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1323		return -EINVAL;
1324
1325	if (!old.npages) {
1326		change = KVM_MR_CREATE;
1327		new.dirty_bitmap = NULL;
1328		memset(&new.arch, 0, sizeof(new.arch));
 
 
 
 
 
1329	} else { /* Modify an existing slot. */
1330		if ((new.userspace_addr != old.userspace_addr) ||
1331		    (new.npages != old.npages) ||
1332		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 
 
 
1333			return -EINVAL;
1334
1335		if (new.base_gfn != old.base_gfn)
1336			change = KVM_MR_MOVE;
1337		else if (new.flags != old.flags)
1338			change = KVM_MR_FLAGS_ONLY;
1339		else /* Nothing to change. */
1340			return 0;
 
1341
1342		/* Copy dirty_bitmap and arch from the current memslot. */
1343		new.dirty_bitmap = old.dirty_bitmap;
1344		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1345	}
1346
1347	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1348		/* Check for overlaps */
1349		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1350			if (tmp->id == id)
1351				continue;
1352			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1353			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1354				return -EEXIST;
1355		}
1356	}
1357
1358	/* Allocate/free page dirty bitmap as needed */
1359	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1360		new.dirty_bitmap = NULL;
1361	else if (!new.dirty_bitmap) {
1362		r = kvm_alloc_dirty_bitmap(&new);
 
 
 
1363		if (r)
1364			return r;
1365
1366		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1367			bitmap_set(new.dirty_bitmap, 0, new.npages);
1368	}
1369
1370	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1371	if (r)
1372		goto out_bitmap;
1373
1374	if (old.dirty_bitmap && !new.dirty_bitmap)
1375		kvm_destroy_dirty_bitmap(&old);
1376	return 0;
1377
1378out_bitmap:
1379	if (new.dirty_bitmap && !old.dirty_bitmap)
1380		kvm_destroy_dirty_bitmap(&new);
 
 
1381	return r;
1382}
1383EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384
1385int kvm_set_memory_region(struct kvm *kvm,
1386			  const struct kvm_userspace_memory_region *mem)
1387{
1388	int r;
1389
1390	mutex_lock(&kvm->slots_lock);
1391	r = __kvm_set_memory_region(kvm, mem);
1392	mutex_unlock(&kvm->slots_lock);
1393	return r;
1394}
1395EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396
1397static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1398					  struct kvm_userspace_memory_region *mem)
1399{
1400	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1401		return -EINVAL;
1402
1403	return kvm_set_memory_region(kvm, mem);
1404}
1405
1406#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407/**
1408 * kvm_get_dirty_log - get a snapshot of dirty pages
1409 * @kvm:	pointer to kvm instance
1410 * @log:	slot id and address to which we copy the log
1411 * @is_dirty:	set to '1' if any dirty pages were found
1412 * @memslot:	set to the associated memslot, always valid on success
1413 */
1414int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1415		      int *is_dirty, struct kvm_memory_slot **memslot)
1416{
1417	struct kvm_memslots *slots;
1418	int i, as_id, id;
1419	unsigned long n;
1420	unsigned long any = 0;
1421
 
 
 
 
1422	*memslot = NULL;
1423	*is_dirty = 0;
1424
1425	as_id = log->slot >> 16;
1426	id = (u16)log->slot;
1427	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1428		return -EINVAL;
1429
1430	slots = __kvm_memslots(kvm, as_id);
1431	*memslot = id_to_memslot(slots, id);
1432	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1433		return -ENOENT;
1434
1435	kvm_arch_sync_dirty_log(kvm, *memslot);
1436
1437	n = kvm_dirty_bitmap_bytes(*memslot);
1438
1439	for (i = 0; !any && i < n/sizeof(long); ++i)
1440		any = (*memslot)->dirty_bitmap[i];
1441
1442	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1443		return -EFAULT;
1444
1445	if (any)
1446		*is_dirty = 1;
1447	return 0;
1448}
1449EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450
1451#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452/**
1453 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1454 *	and reenable dirty page tracking for the corresponding pages.
1455 * @kvm:	pointer to kvm instance
1456 * @log:	slot id and address to which we copy the log
1457 *
1458 * We need to keep it in mind that VCPU threads can write to the bitmap
1459 * concurrently. So, to avoid losing track of dirty pages we keep the
1460 * following order:
1461 *
1462 *    1. Take a snapshot of the bit and clear it if needed.
1463 *    2. Write protect the corresponding page.
1464 *    3. Copy the snapshot to the userspace.
1465 *    4. Upon return caller flushes TLB's if needed.
1466 *
1467 * Between 2 and 4, the guest may write to the page using the remaining TLB
1468 * entry.  This is not a problem because the page is reported dirty using
1469 * the snapshot taken before and step 4 ensures that writes done after
1470 * exiting to userspace will be logged for the next call.
1471 *
1472 */
1473static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474{
1475	struct kvm_memslots *slots;
1476	struct kvm_memory_slot *memslot;
1477	int i, as_id, id;
1478	unsigned long n;
1479	unsigned long *dirty_bitmap;
1480	unsigned long *dirty_bitmap_buffer;
1481	bool flush;
1482
 
 
 
 
1483	as_id = log->slot >> 16;
1484	id = (u16)log->slot;
1485	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1486		return -EINVAL;
1487
1488	slots = __kvm_memslots(kvm, as_id);
1489	memslot = id_to_memslot(slots, id);
1490	if (!memslot || !memslot->dirty_bitmap)
1491		return -ENOENT;
1492
1493	dirty_bitmap = memslot->dirty_bitmap;
1494
1495	kvm_arch_sync_dirty_log(kvm, memslot);
1496
1497	n = kvm_dirty_bitmap_bytes(memslot);
1498	flush = false;
1499	if (kvm->manual_dirty_log_protect) {
1500		/*
1501		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1502		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1503		 * is some code duplication between this function and
1504		 * kvm_get_dirty_log, but hopefully all architecture
1505		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1506		 * can be eliminated.
1507		 */
1508		dirty_bitmap_buffer = dirty_bitmap;
1509	} else {
1510		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1511		memset(dirty_bitmap_buffer, 0, n);
1512
1513		spin_lock(&kvm->mmu_lock);
1514		for (i = 0; i < n / sizeof(long); i++) {
1515			unsigned long mask;
1516			gfn_t offset;
1517
1518			if (!dirty_bitmap[i])
1519				continue;
1520
1521			flush = true;
1522			mask = xchg(&dirty_bitmap[i], 0);
1523			dirty_bitmap_buffer[i] = mask;
1524
1525			offset = i * BITS_PER_LONG;
1526			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1527								offset, mask);
1528		}
1529		spin_unlock(&kvm->mmu_lock);
1530	}
1531
1532	if (flush)
1533		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534
1535	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1536		return -EFAULT;
1537	return 0;
1538}
1539
1540
1541/**
1542 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1543 * @kvm: kvm instance
1544 * @log: slot id and address to which we copy the log
1545 *
1546 * Steps 1-4 below provide general overview of dirty page logging. See
1547 * kvm_get_dirty_log_protect() function description for additional details.
1548 *
1549 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1550 * always flush the TLB (step 4) even if previous step failed  and the dirty
1551 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1552 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1553 * writes will be marked dirty for next log read.
1554 *
1555 *   1. Take a snapshot of the bit and clear it if needed.
1556 *   2. Write protect the corresponding page.
1557 *   3. Copy the snapshot to the userspace.
1558 *   4. Flush TLB's if needed.
1559 */
1560static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1561				      struct kvm_dirty_log *log)
1562{
1563	int r;
1564
1565	mutex_lock(&kvm->slots_lock);
1566
1567	r = kvm_get_dirty_log_protect(kvm, log);
1568
1569	mutex_unlock(&kvm->slots_lock);
1570	return r;
1571}
1572
1573/**
1574 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1575 *	and reenable dirty page tracking for the corresponding pages.
1576 * @kvm:	pointer to kvm instance
1577 * @log:	slot id and address from which to fetch the bitmap of dirty pages
1578 */
1579static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1580				       struct kvm_clear_dirty_log *log)
1581{
1582	struct kvm_memslots *slots;
1583	struct kvm_memory_slot *memslot;
1584	int as_id, id;
1585	gfn_t offset;
1586	unsigned long i, n;
1587	unsigned long *dirty_bitmap;
1588	unsigned long *dirty_bitmap_buffer;
1589	bool flush;
1590
 
 
 
 
1591	as_id = log->slot >> 16;
1592	id = (u16)log->slot;
1593	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1594		return -EINVAL;
1595
1596	if (log->first_page & 63)
1597		return -EINVAL;
1598
1599	slots = __kvm_memslots(kvm, as_id);
1600	memslot = id_to_memslot(slots, id);
1601	if (!memslot || !memslot->dirty_bitmap)
1602		return -ENOENT;
1603
1604	dirty_bitmap = memslot->dirty_bitmap;
1605
1606	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607
1608	if (log->first_page > memslot->npages ||
1609	    log->num_pages > memslot->npages - log->first_page ||
1610	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1611	    return -EINVAL;
1612
1613	kvm_arch_sync_dirty_log(kvm, memslot);
1614
1615	flush = false;
1616	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1617	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1618		return -EFAULT;
1619
1620	spin_lock(&kvm->mmu_lock);
1621	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1622		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1623	     i++, offset += BITS_PER_LONG) {
1624		unsigned long mask = *dirty_bitmap_buffer++;
1625		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1626		if (!mask)
1627			continue;
1628
1629		mask &= atomic_long_fetch_andnot(mask, p);
1630
1631		/*
1632		 * mask contains the bits that really have been cleared.  This
1633		 * never includes any bits beyond the length of the memslot (if
1634		 * the length is not aligned to 64 pages), therefore it is not
1635		 * a problem if userspace sets them in log->dirty_bitmap.
1636		*/
1637		if (mask) {
1638			flush = true;
1639			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1640								offset, mask);
1641		}
1642	}
1643	spin_unlock(&kvm->mmu_lock);
1644
1645	if (flush)
1646		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1647
1648	return 0;
1649}
1650
1651static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1652					struct kvm_clear_dirty_log *log)
1653{
1654	int r;
1655
1656	mutex_lock(&kvm->slots_lock);
1657
1658	r = kvm_clear_dirty_log_protect(kvm, log);
1659
1660	mutex_unlock(&kvm->slots_lock);
1661	return r;
1662}
1663#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666{
1667	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668}
1669EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670
1671struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672{
1673	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674}
1675EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676
1677bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678{
1679	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680
1681	return kvm_is_visible_memslot(memslot);
1682}
1683EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684
1685bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686{
1687	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688
1689	return kvm_is_visible_memslot(memslot);
1690}
1691EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692
1693unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694{
1695	struct vm_area_struct *vma;
1696	unsigned long addr, size;
1697
1698	size = PAGE_SIZE;
1699
1700	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1701	if (kvm_is_error_hva(addr))
1702		return PAGE_SIZE;
1703
1704	mmap_read_lock(current->mm);
1705	vma = find_vma(current->mm, addr);
1706	if (!vma)
1707		goto out;
1708
1709	size = vma_kernel_pagesize(vma);
1710
1711out:
1712	mmap_read_unlock(current->mm);
1713
1714	return size;
1715}
1716
1717static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718{
1719	return slot->flags & KVM_MEM_READONLY;
1720}
1721
1722static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1723				       gfn_t *nr_pages, bool write)
1724{
1725	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1726		return KVM_HVA_ERR_BAD;
1727
1728	if (memslot_is_readonly(slot) && write)
1729		return KVM_HVA_ERR_RO_BAD;
1730
1731	if (nr_pages)
1732		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1733
1734	return __gfn_to_hva_memslot(slot, gfn);
1735}
1736
1737static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1738				     gfn_t *nr_pages)
1739{
1740	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1741}
1742
1743unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1744					gfn_t gfn)
1745{
1746	return gfn_to_hva_many(slot, gfn, NULL);
1747}
1748EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749
1750unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751{
1752	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753}
1754EXPORT_SYMBOL_GPL(gfn_to_hva);
1755
1756unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757{
1758	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759}
1760EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1761
1762/*
1763 * Return the hva of a @gfn and the R/W attribute if possible.
1764 *
1765 * @slot: the kvm_memory_slot which contains @gfn
1766 * @gfn: the gfn to be translated
1767 * @writable: used to return the read/write attribute of the @slot if the hva
1768 * is valid and @writable is not NULL
1769 */
1770unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1771				      gfn_t gfn, bool *writable)
1772{
1773	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774
1775	if (!kvm_is_error_hva(hva) && writable)
1776		*writable = !memslot_is_readonly(slot);
1777
1778	return hva;
1779}
1780
1781unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1782{
1783	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1786}
1787
1788unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789{
1790	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791
1792	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1793}
1794
1795static inline int check_user_page_hwpoison(unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796{
1797	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
 
1798
1799	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1800	return rc == -EHWPOISON;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801}
1802
1803/*
1804 * The fast path to get the writable pfn which will be stored in @pfn,
1805 * true indicates success, otherwise false is returned.  It's also the
1806 * only part that runs if we can in atomic context.
1807 */
1808static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1809			    bool *writable, kvm_pfn_t *pfn)
1810{
1811	struct page *page[1];
 
1812
1813	/*
1814	 * Fast pin a writable pfn only if it is a write fault request
1815	 * or the caller allows to map a writable pfn for a read fault
1816	 * request.
 
 
1817	 */
1818	if (!(write_fault || writable))
1819		return false;
1820
1821	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1822		*pfn = page_to_pfn(page[0]);
 
 
1823
1824		if (writable)
1825			*writable = true;
1826		return true;
1827	}
1828
1829	return false;
1830}
1831
1832/*
1833 * The slow path to get the pfn of the specified host virtual address,
1834 * 1 indicates success, -errno is returned if error is detected.
1835 */
1836static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1837			   bool *writable, kvm_pfn_t *pfn)
1838{
1839	unsigned int flags = FOLL_HWPOISON;
1840	struct page *page;
1841	int npages = 0;
 
 
 
 
 
 
 
 
 
 
 
1842
1843	might_sleep();
1844
1845	if (writable)
1846		*writable = write_fault;
1847
1848	if (write_fault)
1849		flags |= FOLL_WRITE;
1850	if (async)
1851		flags |= FOLL_NOWAIT;
1852
1853	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1854	if (npages != 1)
1855		return npages;
1856
 
 
 
 
 
 
 
 
1857	/* map read fault as writable if possible */
1858	if (unlikely(!write_fault) && writable) {
1859		struct page *wpage;
 
 
 
 
1860
1861		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1862			*writable = true;
1863			put_page(page);
1864			page = wpage;
1865		}
1866	}
1867	*pfn = page_to_pfn(page);
1868	return npages;
1869}
1870
1871static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872{
1873	if (unlikely(!(vma->vm_flags & VM_READ)))
1874		return false;
1875
1876	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1877		return false;
1878
1879	return true;
1880}
1881
1882static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1883			       unsigned long addr, bool *async,
1884			       bool write_fault, bool *writable,
1885			       kvm_pfn_t *p_pfn)
1886{
1887	unsigned long pfn;
 
1888	int r;
1889
1890	r = follow_pfn(vma, addr, &pfn);
 
 
 
 
 
 
 
 
1891	if (r) {
1892		/*
1893		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1894		 * not call the fault handler, so do it here.
1895		 */
1896		bool unlocked = false;
1897		r = fixup_user_fault(current->mm, addr,
1898				     (write_fault ? FAULT_FLAG_WRITE : 0),
1899				     &unlocked);
1900		if (unlocked)
1901			return -EAGAIN;
1902		if (r)
1903			return r;
1904
1905		r = follow_pfn(vma, addr, &pfn);
1906		if (r)
1907			return r;
 
1908
 
 
 
1909	}
1910
1911	if (writable)
1912		*writable = true;
1913
1914	/*
1915	 * Get a reference here because callers of *hva_to_pfn* and
1916	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1917	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1918	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1919	 * simply do nothing for reserved pfns.
1920	 *
1921	 * Whoever called remap_pfn_range is also going to call e.g.
1922	 * unmap_mapping_range before the underlying pages are freed,
1923	 * causing a call to our MMU notifier.
1924	 */ 
1925	kvm_get_pfn(pfn);
1926
1927	*p_pfn = pfn;
1928	return 0;
1929}
1930
1931/*
1932 * Pin guest page in memory and return its pfn.
1933 * @addr: host virtual address which maps memory to the guest
1934 * @atomic: whether this function can sleep
1935 * @async: whether this function need to wait IO complete if the
1936 *         host page is not in the memory
1937 * @write_fault: whether we should get a writable host page
1938 * @writable: whether it allows to map a writable host page for !@write_fault
1939 *
1940 * The function will map a writable host page for these two cases:
1941 * 1): @write_fault = true
1942 * 2): @write_fault = false && @writable, @writable will tell the caller
1943 *     whether the mapping is writable.
1944 */
1945static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1946			bool write_fault, bool *writable)
1947{
1948	struct vm_area_struct *vma;
1949	kvm_pfn_t pfn = 0;
1950	int npages, r;
1951
1952	/* we can do it either atomically or asynchronously, not both */
1953	BUG_ON(atomic && async);
1954
1955	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
 
 
 
1956		return pfn;
1957
1958	if (atomic)
1959		return KVM_PFN_ERR_FAULT;
1960
1961	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1962	if (npages == 1)
1963		return pfn;
 
 
 
 
1964
1965	mmap_read_lock(current->mm);
1966	if (npages == -EHWPOISON ||
1967	      (!async && check_user_page_hwpoison(addr))) {
1968		pfn = KVM_PFN_ERR_HWPOISON;
1969		goto exit;
1970	}
1971
1972retry:
1973	vma = find_vma_intersection(current->mm, addr, addr + 1);
1974
1975	if (vma == NULL)
1976		pfn = KVM_PFN_ERR_FAULT;
1977	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1978		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1979		if (r == -EAGAIN)
1980			goto retry;
1981		if (r < 0)
1982			pfn = KVM_PFN_ERR_FAULT;
1983	} else {
1984		if (async && vma_is_valid(vma, write_fault))
1985			*async = true;
1986		pfn = KVM_PFN_ERR_FAULT;
 
 
1987	}
1988exit:
1989	mmap_read_unlock(current->mm);
1990	return pfn;
1991}
1992
1993kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1994			       bool atomic, bool *async, bool write_fault,
1995			       bool *writable)
1996{
1997	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998
1999	if (addr == KVM_HVA_ERR_RO_BAD) {
2000		if (writable)
2001			*writable = false;
2002		return KVM_PFN_ERR_RO_FAULT;
2003	}
2004
2005	if (kvm_is_error_hva(addr)) {
2006		if (writable)
2007			*writable = false;
2008		return KVM_PFN_NOSLOT;
2009	}
2010
2011	/* Do not map writable pfn in the readonly memslot. */
2012	if (writable && memslot_is_readonly(slot)) {
2013		*writable = false;
2014		writable = NULL;
2015	}
2016
2017	return hva_to_pfn(addr, atomic, async, write_fault,
2018			  writable);
2019}
2020EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021
2022kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2023		      bool *writable)
 
2024{
2025	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2026				    write_fault, writable);
2027}
2028EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
 
 
 
2029
2030kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2031{
2032	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2033}
2034EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035
2036kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037{
2038	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2039}
2040EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041
2042kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2043{
2044	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045}
2046EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047
2048kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049{
2050	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051}
2052EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053
2054kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2055{
2056	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2057}
2058EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059
2060int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2061			    struct page **pages, int nr_pages)
2062{
2063	unsigned long addr;
2064	gfn_t entry = 0;
2065
2066	addr = gfn_to_hva_many(slot, gfn, &entry);
2067	if (kvm_is_error_hva(addr))
2068		return -1;
2069
2070	if (entry < nr_pages)
2071		return 0;
2072
2073	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074}
2075EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076
2077static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
 
 
 
 
 
 
 
2078{
2079	if (is_error_noslot_pfn(pfn))
2080		return KVM_ERR_PTR_BAD_PAGE;
2081
2082	if (kvm_is_reserved_pfn(pfn)) {
2083		WARN_ON(1);
2084		return KVM_ERR_PTR_BAD_PAGE;
2085	}
2086
2087	return pfn_to_page(pfn);
 
2088}
 
2089
2090struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
 
2091{
2092	kvm_pfn_t pfn;
 
 
 
 
 
 
2093
2094	pfn = gfn_to_pfn(kvm, gfn);
2095
2096	return kvm_pfn_to_page(pfn);
2097}
2098EXPORT_SYMBOL_GPL(gfn_to_page);
2099
2100void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2101{
2102	if (pfn == 0)
2103		return;
2104
2105	if (cache)
2106		cache->pfn = cache->gfn = 0;
2107
2108	if (dirty)
2109		kvm_release_pfn_dirty(pfn);
2110	else
2111		kvm_release_pfn_clean(pfn);
2112}
2113
2114static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2115				 struct gfn_to_pfn_cache *cache, u64 gen)
2116{
2117	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118
2119	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120	cache->gfn = gfn;
2121	cache->dirty = false;
2122	cache->generation = gen;
2123}
2124
2125static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2126			 struct kvm_host_map *map,
2127			 struct gfn_to_pfn_cache *cache,
2128			 bool atomic)
2129{
2130	kvm_pfn_t pfn;
2131	void *hva = NULL;
2132	struct page *page = KVM_UNMAPPED_PAGE;
2133	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2134	u64 gen = slots->generation;
2135
2136	if (!map)
2137		return -EINVAL;
2138
2139	if (cache) {
2140		if (!cache->pfn || cache->gfn != gfn ||
2141			cache->generation != gen) {
2142			if (atomic)
2143				return -EAGAIN;
2144			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2145		}
2146		pfn = cache->pfn;
2147	} else {
2148		if (atomic)
2149			return -EAGAIN;
2150		pfn = gfn_to_pfn_memslot(slot, gfn);
2151	}
2152	if (is_error_noslot_pfn(pfn))
2153		return -EINVAL;
2154
2155	if (pfn_valid(pfn)) {
2156		page = pfn_to_page(pfn);
2157		if (atomic)
2158			hva = kmap_atomic(page);
2159		else
2160			hva = kmap(page);
2161#ifdef CONFIG_HAS_IOMEM
2162	} else if (!atomic) {
2163		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2164	} else {
2165		return -EINVAL;
2166#endif
2167	}
2168
2169	if (!hva)
2170		return -EFAULT;
2171
2172	map->page = page;
2173	map->hva = hva;
2174	map->pfn = pfn;
2175	map->gfn = gfn;
2176
2177	return 0;
2178}
2179
2180int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2181		struct gfn_to_pfn_cache *cache, bool atomic)
2182{
2183	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2184			cache, atomic);
2185}
2186EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187
2188int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189{
2190	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2191		NULL, false);
2192}
2193EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194
2195static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2196			struct kvm_host_map *map,
2197			struct gfn_to_pfn_cache *cache,
2198			bool dirty, bool atomic)
2199{
2200	if (!map)
2201		return;
2202
2203	if (!map->hva)
2204		return;
2205
2206	if (map->page != KVM_UNMAPPED_PAGE) {
2207		if (atomic)
2208			kunmap_atomic(map->hva);
2209		else
2210			kunmap(map->page);
2211	}
2212#ifdef CONFIG_HAS_IOMEM
2213	else if (!atomic)
2214		memunmap(map->hva);
2215	else
2216		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2217#endif
2218
2219	if (dirty)
2220		mark_page_dirty_in_slot(memslot, map->gfn);
2221
2222	if (cache)
2223		cache->dirty |= dirty;
2224	else
2225		kvm_release_pfn(map->pfn, dirty, NULL);
 
 
2226
2227	map->hva = NULL;
2228	map->page = NULL;
2229}
2230
2231int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2232		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233{
2234	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2235			cache, dirty, atomic);
2236	return 0;
2237}
2238EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239
2240void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241{
2242	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2243			dirty, false);
2244}
2245EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246
2247struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2248{
2249	kvm_pfn_t pfn;
2250
2251	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252
2253	return kvm_pfn_to_page(pfn);
2254}
2255EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256
2257void kvm_release_page_clean(struct page *page)
2258{
2259	WARN_ON(is_error_page(page));
2260
2261	kvm_release_pfn_clean(page_to_pfn(page));
2262}
2263EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264
2265void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266{
2267	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2268		put_page(pfn_to_page(pfn));
2269}
2270EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271
2272void kvm_release_page_dirty(struct page *page)
2273{
2274	WARN_ON(is_error_page(page));
2275
2276	kvm_release_pfn_dirty(page_to_pfn(page));
2277}
2278EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279
2280void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281{
2282	kvm_set_pfn_dirty(pfn);
2283	kvm_release_pfn_clean(pfn);
2284}
2285EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286
2287void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288{
2289	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2290		SetPageDirty(pfn_to_page(pfn));
2291}
2292EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293
2294void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295{
2296	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2297		mark_page_accessed(pfn_to_page(pfn));
2298}
2299EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300
2301void kvm_get_pfn(kvm_pfn_t pfn)
2302{
2303	if (!kvm_is_reserved_pfn(pfn))
2304		get_page(pfn_to_page(pfn));
2305}
2306EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307
2308static int next_segment(unsigned long len, int offset)
2309{
2310	if (len > PAGE_SIZE - offset)
2311		return PAGE_SIZE - offset;
2312	else
2313		return len;
2314}
2315
 
2316static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2317				 void *data, int offset, int len)
2318{
2319	int r;
2320	unsigned long addr;
2321
 
 
 
2322	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323	if (kvm_is_error_hva(addr))
2324		return -EFAULT;
2325	r = __copy_from_user(data, (void __user *)addr + offset, len);
2326	if (r)
2327		return -EFAULT;
2328	return 0;
2329}
2330
2331int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2332			int len)
2333{
2334	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335
2336	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337}
2338EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339
2340int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2341			     int offset, int len)
2342{
2343	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344
2345	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346}
2347EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348
2349int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350{
2351	gfn_t gfn = gpa >> PAGE_SHIFT;
2352	int seg;
2353	int offset = offset_in_page(gpa);
2354	int ret;
2355
2356	while ((seg = next_segment(len, offset)) != 0) {
2357		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2358		if (ret < 0)
2359			return ret;
2360		offset = 0;
2361		len -= seg;
2362		data += seg;
2363		++gfn;
2364	}
2365	return 0;
2366}
2367EXPORT_SYMBOL_GPL(kvm_read_guest);
2368
2369int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2370{
2371	gfn_t gfn = gpa >> PAGE_SHIFT;
2372	int seg;
2373	int offset = offset_in_page(gpa);
2374	int ret;
2375
2376	while ((seg = next_segment(len, offset)) != 0) {
2377		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2378		if (ret < 0)
2379			return ret;
2380		offset = 0;
2381		len -= seg;
2382		data += seg;
2383		++gfn;
2384	}
2385	return 0;
2386}
2387EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388
2389static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2390			           void *data, int offset, unsigned long len)
2391{
2392	int r;
2393	unsigned long addr;
2394
 
 
 
2395	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2396	if (kvm_is_error_hva(addr))
2397		return -EFAULT;
2398	pagefault_disable();
2399	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2400	pagefault_enable();
2401	if (r)
2402		return -EFAULT;
2403	return 0;
2404}
2405
2406int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2407			       void *data, unsigned long len)
2408{
2409	gfn_t gfn = gpa >> PAGE_SHIFT;
2410	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411	int offset = offset_in_page(gpa);
2412
2413	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414}
2415EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416
2417static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
 
 
2418			          const void *data, int offset, int len)
2419{
2420	int r;
2421	unsigned long addr;
2422
 
 
 
2423	addr = gfn_to_hva_memslot(memslot, gfn);
2424	if (kvm_is_error_hva(addr))
2425		return -EFAULT;
2426	r = __copy_to_user((void __user *)addr + offset, data, len);
2427	if (r)
2428		return -EFAULT;
2429	mark_page_dirty_in_slot(memslot, gfn);
2430	return 0;
2431}
2432
2433int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2434			 const void *data, int offset, int len)
2435{
2436	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437
2438	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439}
2440EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441
2442int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2443			      const void *data, int offset, int len)
2444{
2445	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446
2447	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448}
2449EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450
2451int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2452		    unsigned long len)
2453{
2454	gfn_t gfn = gpa >> PAGE_SHIFT;
2455	int seg;
2456	int offset = offset_in_page(gpa);
2457	int ret;
2458
2459	while ((seg = next_segment(len, offset)) != 0) {
2460		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2461		if (ret < 0)
2462			return ret;
2463		offset = 0;
2464		len -= seg;
2465		data += seg;
2466		++gfn;
2467	}
2468	return 0;
2469}
2470EXPORT_SYMBOL_GPL(kvm_write_guest);
2471
2472int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2473		         unsigned long len)
2474{
2475	gfn_t gfn = gpa >> PAGE_SHIFT;
2476	int seg;
2477	int offset = offset_in_page(gpa);
2478	int ret;
2479
2480	while ((seg = next_segment(len, offset)) != 0) {
2481		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2482		if (ret < 0)
2483			return ret;
2484		offset = 0;
2485		len -= seg;
2486		data += seg;
2487		++gfn;
2488	}
2489	return 0;
2490}
2491EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492
2493static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2494				       struct gfn_to_hva_cache *ghc,
2495				       gpa_t gpa, unsigned long len)
2496{
2497	int offset = offset_in_page(gpa);
2498	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2499	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2500	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2501	gfn_t nr_pages_avail;
2502
2503	/* Update ghc->generation before performing any error checks. */
2504	ghc->generation = slots->generation;
2505
2506	if (start_gfn > end_gfn) {
2507		ghc->hva = KVM_HVA_ERR_BAD;
2508		return -EINVAL;
2509	}
2510
2511	/*
2512	 * If the requested region crosses two memslots, we still
2513	 * verify that the entire region is valid here.
2514	 */
2515	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2516		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2517		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518					   &nr_pages_avail);
2519		if (kvm_is_error_hva(ghc->hva))
2520			return -EFAULT;
2521	}
2522
2523	/* Use the slow path for cross page reads and writes. */
2524	if (nr_pages_needed == 1)
2525		ghc->hva += offset;
2526	else
2527		ghc->memslot = NULL;
2528
2529	ghc->gpa = gpa;
2530	ghc->len = len;
2531	return 0;
2532}
2533
2534int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2535			      gpa_t gpa, unsigned long len)
2536{
2537	struct kvm_memslots *slots = kvm_memslots(kvm);
2538	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539}
2540EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541
2542int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2543				  void *data, unsigned int offset,
2544				  unsigned long len)
2545{
2546	struct kvm_memslots *slots = kvm_memslots(kvm);
2547	int r;
2548	gpa_t gpa = ghc->gpa + offset;
2549
2550	BUG_ON(len + offset > ghc->len);
 
2551
2552	if (slots->generation != ghc->generation) {
2553		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2554			return -EFAULT;
2555	}
2556
2557	if (kvm_is_error_hva(ghc->hva))
2558		return -EFAULT;
2559
2560	if (unlikely(!ghc->memslot))
2561		return kvm_write_guest(kvm, gpa, data, len);
2562
2563	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2564	if (r)
2565		return -EFAULT;
2566	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2567
2568	return 0;
2569}
2570EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571
2572int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2573			   void *data, unsigned long len)
2574{
2575	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576}
2577EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578
2579int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2580				 void *data, unsigned int offset,
2581				 unsigned long len)
2582{
2583	struct kvm_memslots *slots = kvm_memslots(kvm);
2584	int r;
2585	gpa_t gpa = ghc->gpa + offset;
2586
2587	BUG_ON(len + offset > ghc->len);
 
2588
2589	if (slots->generation != ghc->generation) {
2590		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2591			return -EFAULT;
2592	}
2593
2594	if (kvm_is_error_hva(ghc->hva))
2595		return -EFAULT;
2596
2597	if (unlikely(!ghc->memslot))
2598		return kvm_read_guest(kvm, gpa, data, len);
2599
2600	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2601	if (r)
2602		return -EFAULT;
2603
2604	return 0;
2605}
2606EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607
2608int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2609			  void *data, unsigned long len)
2610{
2611	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612}
2613EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614
2615int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616{
2617	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618
2619	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620}
2621EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622
2623int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624{
2625	gfn_t gfn = gpa >> PAGE_SHIFT;
2626	int seg;
2627	int offset = offset_in_page(gpa);
2628	int ret;
2629
2630	while ((seg = next_segment(len, offset)) != 0) {
2631		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2632		if (ret < 0)
2633			return ret;
2634		offset = 0;
2635		len -= seg;
2636		++gfn;
2637	}
2638	return 0;
2639}
2640EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641
2642static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2643				    gfn_t gfn)
 
2644{
2645	if (memslot && memslot->dirty_bitmap) {
 
 
 
 
 
 
 
 
 
2646		unsigned long rel_gfn = gfn - memslot->base_gfn;
 
2647
2648		set_bit_le(rel_gfn, memslot->dirty_bitmap);
 
 
 
2649	}
2650}
 
2651
2652void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653{
2654	struct kvm_memory_slot *memslot;
2655
2656	memslot = gfn_to_memslot(kvm, gfn);
2657	mark_page_dirty_in_slot(memslot, gfn);
2658}
2659EXPORT_SYMBOL_GPL(mark_page_dirty);
2660
2661void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662{
2663	struct kvm_memory_slot *memslot;
2664
2665	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2666	mark_page_dirty_in_slot(memslot, gfn);
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669
2670void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671{
2672	if (!vcpu->sigset_active)
2673		return;
2674
2675	/*
2676	 * This does a lockless modification of ->real_blocked, which is fine
2677	 * because, only current can change ->real_blocked and all readers of
2678	 * ->real_blocked don't care as long ->real_blocked is always a subset
2679	 * of ->blocked.
2680	 */
2681	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2682}
2683
2684void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685{
2686	if (!vcpu->sigset_active)
2687		return;
2688
2689	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2690	sigemptyset(&current->real_blocked);
2691}
2692
2693static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694{
2695	unsigned int old, val, grow, grow_start;
2696
2697	old = val = vcpu->halt_poll_ns;
2698	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2699	grow = READ_ONCE(halt_poll_ns_grow);
2700	if (!grow)
2701		goto out;
2702
2703	val *= grow;
2704	if (val < grow_start)
2705		val = grow_start;
2706
2707	if (val > halt_poll_ns)
2708		val = halt_poll_ns;
2709
2710	vcpu->halt_poll_ns = val;
2711out:
2712	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2713}
2714
2715static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716{
2717	unsigned int old, val, shrink;
2718
2719	old = val = vcpu->halt_poll_ns;
2720	shrink = READ_ONCE(halt_poll_ns_shrink);
 
2721	if (shrink == 0)
2722		val = 0;
2723	else
2724		val /= shrink;
2725
 
 
 
2726	vcpu->halt_poll_ns = val;
2727	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2728}
2729
2730static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2731{
2732	int ret = -EINTR;
2733	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734
2735	if (kvm_arch_vcpu_runnable(vcpu)) {
2736		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2737		goto out;
2738	}
2739	if (kvm_cpu_has_pending_timer(vcpu))
2740		goto out;
2741	if (signal_pending(current))
2742		goto out;
 
 
2743
2744	ret = 0;
2745out:
2746	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2747	return ret;
2748}
2749
2750static inline void
2751update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752{
2753	if (waited)
2754		vcpu->stat.halt_poll_fail_ns += poll_ns;
2755	else
2756		vcpu->stat.halt_poll_success_ns += poll_ns;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757}
2758
2759/*
2760 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
 
 
 
2761 */
2762void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763{
 
 
2764	ktime_t start, cur, poll_end;
2765	bool waited = false;
2766	u64 block_ns;
 
 
 
 
2767
2768	kvm_arch_vcpu_blocking(vcpu);
2769
2770	start = cur = poll_end = ktime_get();
2771	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2772		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773
2774		++vcpu->stat.halt_attempted_poll;
2775		do {
2776			/*
2777			 * This sets KVM_REQ_UNHALT if an interrupt
2778			 * arrives.
2779			 */
2780			if (kvm_vcpu_check_block(vcpu) < 0) {
2781				++vcpu->stat.halt_successful_poll;
2782				if (!vcpu_valid_wakeup(vcpu))
2783					++vcpu->stat.halt_poll_invalid;
2784				goto out;
2785			}
2786			poll_end = cur = ktime_get();
2787		} while (single_task_running() && ktime_before(cur, stop));
2788	}
2789
2790	prepare_to_rcuwait(&vcpu->wait);
2791	for (;;) {
2792		set_current_state(TASK_INTERRUPTIBLE);
2793
2794		if (kvm_vcpu_check_block(vcpu) < 0)
2795			break;
2796
2797		waited = true;
2798		schedule();
 
2799	}
2800	finish_rcuwait(&vcpu->wait);
2801	cur = ktime_get();
2802out:
2803	kvm_arch_vcpu_unblocking(vcpu);
2804	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
 
 
 
 
 
 
 
 
2805
2806	update_halt_poll_stats(
2807		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
 
2808
2809	if (!kvm_arch_no_poll(vcpu)) {
2810		if (!vcpu_valid_wakeup(vcpu)) {
2811			shrink_halt_poll_ns(vcpu);
2812		} else if (vcpu->kvm->max_halt_poll_ns) {
2813			if (block_ns <= vcpu->halt_poll_ns)
2814				;
2815			/* we had a long block, shrink polling */
2816			else if (vcpu->halt_poll_ns &&
2817					block_ns > vcpu->kvm->max_halt_poll_ns)
2818				shrink_halt_poll_ns(vcpu);
2819			/* we had a short halt and our poll time is too small */
2820			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2821					block_ns < vcpu->kvm->max_halt_poll_ns)
2822				grow_halt_poll_ns(vcpu);
2823		} else {
2824			vcpu->halt_poll_ns = 0;
2825		}
2826	}
2827
2828	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2829	kvm_arch_vcpu_block_finish(vcpu);
2830}
2831EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832
2833bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834{
2835	struct rcuwait *waitp;
2836
2837	waitp = kvm_arch_vcpu_get_wait(vcpu);
2838	if (rcuwait_wake_up(waitp)) {
2839		WRITE_ONCE(vcpu->ready, true);
2840		++vcpu->stat.halt_wakeup;
2841		return true;
2842	}
2843
2844	return false;
2845}
2846EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2847
2848#ifndef CONFIG_S390
2849/*
2850 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851 */
2852void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2853{
2854	int me;
2855	int cpu = vcpu->cpu;
2856
2857	if (kvm_vcpu_wake_up(vcpu))
2858		return;
2859
2860	me = get_cpu();
2861	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2862		if (kvm_arch_vcpu_should_kick(vcpu))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863			smp_send_reschedule(cpu);
 
 
2864	put_cpu();
2865}
2866EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2867#endif /* !CONFIG_S390 */
2868
2869int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2870{
2871	struct pid *pid;
2872	struct task_struct *task = NULL;
2873	int ret = 0;
 
 
 
 
 
 
 
 
2874
2875	rcu_read_lock();
2876	pid = rcu_dereference(target->pid);
2877	if (pid)
2878		task = get_pid_task(pid, PIDTYPE_PID);
2879	rcu_read_unlock();
2880	if (!task)
2881		return ret;
2882	ret = yield_to(task, 1);
2883	put_task_struct(task);
2884
2885	return ret;
2886}
2887EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2888
2889/*
2890 * Helper that checks whether a VCPU is eligible for directed yield.
2891 * Most eligible candidate to yield is decided by following heuristics:
2892 *
2893 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2894 *  (preempted lock holder), indicated by @in_spin_loop.
2895 *  Set at the beginning and cleared at the end of interception/PLE handler.
2896 *
2897 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2898 *  chance last time (mostly it has become eligible now since we have probably
2899 *  yielded to lockholder in last iteration. This is done by toggling
2900 *  @dy_eligible each time a VCPU checked for eligibility.)
2901 *
2902 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2903 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2904 *  burning. Giving priority for a potential lock-holder increases lock
2905 *  progress.
2906 *
2907 *  Since algorithm is based on heuristics, accessing another VCPU data without
2908 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2909 *  and continue with next VCPU and so on.
2910 */
2911static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912{
2913#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2914	bool eligible;
2915
2916	eligible = !vcpu->spin_loop.in_spin_loop ||
2917		    vcpu->spin_loop.dy_eligible;
2918
2919	if (vcpu->spin_loop.in_spin_loop)
2920		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2921
2922	return eligible;
2923#else
2924	return true;
2925#endif
2926}
2927
2928/*
2929 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2930 * a vcpu_load/vcpu_put pair.  However, for most architectures
2931 * kvm_arch_vcpu_runnable does not require vcpu_load.
2932 */
2933bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934{
2935	return kvm_arch_vcpu_runnable(vcpu);
2936}
2937
2938static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939{
2940	if (kvm_arch_dy_runnable(vcpu))
2941		return true;
2942
2943#ifdef CONFIG_KVM_ASYNC_PF
2944	if (!list_empty_careful(&vcpu->async_pf.done))
2945		return true;
2946#endif
2947
2948	return false;
2949}
2950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2951void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952{
 
2953	struct kvm *kvm = me->kvm;
2954	struct kvm_vcpu *vcpu;
2955	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2956	int yielded = 0;
2957	int try = 3;
2958	int pass;
2959	int i;
 
 
 
 
 
2960
2961	kvm_vcpu_set_in_spin_loop(me, true);
 
2962	/*
2963	 * We boost the priority of a VCPU that is runnable but not
2964	 * currently running, because it got preempted by something
2965	 * else and called schedule in __vcpu_run.  Hopefully that
2966	 * VCPU is holding the lock that we need and will release it.
2967	 * We approximate round-robin by starting at the last boosted VCPU.
2968	 */
2969	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2970		kvm_for_each_vcpu(i, vcpu, kvm) {
2971			if (!pass && i <= last_boosted_vcpu) {
2972				i = last_boosted_vcpu;
2973				continue;
2974			} else if (pass && i > last_boosted_vcpu)
2975				break;
2976			if (!READ_ONCE(vcpu->ready))
2977				continue;
2978			if (vcpu == me)
2979				continue;
2980			if (rcuwait_active(&vcpu->wait) &&
2981			    !vcpu_dy_runnable(vcpu))
2982				continue;
2983			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2984				!kvm_arch_vcpu_in_kernel(vcpu))
2985				continue;
2986			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2987				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2988
2989			yielded = kvm_vcpu_yield_to(vcpu);
2990			if (yielded > 0) {
2991				kvm->last_boosted_vcpu = i;
2992				break;
2993			} else if (yielded < 0) {
2994				try--;
2995				if (!try)
2996					break;
2997			}
2998		}
2999	}
3000	kvm_vcpu_set_in_spin_loop(me, false);
3001
3002	/* Ensure vcpu is not eligible during next spinloop */
3003	kvm_vcpu_set_dy_eligible(me, false);
3004}
3005EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006
 
 
 
 
 
 
 
 
 
 
 
3007static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008{
3009	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3010	struct page *page;
3011
3012	if (vmf->pgoff == 0)
3013		page = virt_to_page(vcpu->run);
3014#ifdef CONFIG_X86
3015	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3016		page = virt_to_page(vcpu->arch.pio_data);
3017#endif
3018#ifdef CONFIG_KVM_MMIO
3019	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3020		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3021#endif
 
 
 
 
3022	else
3023		return kvm_arch_vcpu_fault(vcpu, vmf);
3024	get_page(page);
3025	vmf->page = page;
3026	return 0;
3027}
3028
3029static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3030	.fault = kvm_vcpu_fault,
3031};
3032
3033static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034{
 
 
 
 
 
 
 
 
3035	vma->vm_ops = &kvm_vcpu_vm_ops;
3036	return 0;
3037}
3038
3039static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040{
3041	struct kvm_vcpu *vcpu = filp->private_data;
3042
3043	kvm_put_kvm(vcpu->kvm);
3044	return 0;
3045}
3046
3047static struct file_operations kvm_vcpu_fops = {
3048	.release        = kvm_vcpu_release,
3049	.unlocked_ioctl = kvm_vcpu_ioctl,
3050	.mmap           = kvm_vcpu_mmap,
3051	.llseek		= noop_llseek,
3052	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3053};
3054
3055/*
3056 * Allocates an inode for the vcpu.
3057 */
3058static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059{
3060	char name[8 + 1 + ITOA_MAX_LEN + 1];
3061
3062	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3063	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3064}
3065
 
 
 
 
 
 
 
 
 
 
 
 
 
3066static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067{
3068#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3069	struct dentry *debugfs_dentry;
3070	char dir_name[ITOA_MAX_LEN * 2];
3071
3072	if (!debugfs_initialized())
3073		return;
3074
3075	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3076	debugfs_dentry = debugfs_create_dir(dir_name,
3077					    vcpu->kvm->debugfs_dentry);
 
 
3078
3079	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
 
3080#endif
3081}
3082
3083/*
3084 * Creates some virtual cpus.  Good luck creating more than one.
3085 */
3086static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3087{
3088	int r;
3089	struct kvm_vcpu *vcpu;
3090	struct page *page;
3091
3092	if (id >= KVM_MAX_VCPU_ID)
 
 
 
 
 
 
 
 
 
3093		return -EINVAL;
3094
3095	mutex_lock(&kvm->lock);
3096	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3097		mutex_unlock(&kvm->lock);
3098		return -EINVAL;
3099	}
3100
 
 
 
 
 
 
3101	kvm->created_vcpus++;
3102	mutex_unlock(&kvm->lock);
3103
3104	r = kvm_arch_vcpu_precreate(kvm, id);
3105	if (r)
3106		goto vcpu_decrement;
3107
3108	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3109	if (!vcpu) {
3110		r = -ENOMEM;
3111		goto vcpu_decrement;
3112	}
3113
3114	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3115	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3116	if (!page) {
3117		r = -ENOMEM;
3118		goto vcpu_free;
3119	}
3120	vcpu->run = page_address(page);
3121
3122	kvm_vcpu_init(vcpu, kvm, id);
3123
3124	r = kvm_arch_vcpu_create(vcpu);
3125	if (r)
3126		goto vcpu_free_run_page;
3127
 
 
 
 
 
 
 
3128	mutex_lock(&kvm->lock);
 
 
 
 
 
 
 
3129	if (kvm_get_vcpu_by_id(kvm, id)) {
3130		r = -EEXIST;
3131		goto unlock_vcpu_destroy;
3132	}
3133
3134	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3135	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
 
 
3136
3137	/* Now it's all set up, let userspace reach it */
3138	kvm_get_kvm(kvm);
3139	r = create_vcpu_fd(vcpu);
3140	if (r < 0) {
3141		kvm_put_kvm_no_destroy(kvm);
3142		goto unlock_vcpu_destroy;
 
 
 
3143	}
3144
3145	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3146
3147	/*
3148	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3149	 * before kvm->online_vcpu's incremented value.
3150	 */
3151	smp_wmb();
3152	atomic_inc(&kvm->online_vcpus);
3153
3154	mutex_unlock(&kvm->lock);
3155	kvm_arch_vcpu_postcreate(vcpu);
3156	kvm_create_vcpu_debugfs(vcpu);
3157	return r;
3158
 
 
 
3159unlock_vcpu_destroy:
3160	mutex_unlock(&kvm->lock);
 
 
3161	kvm_arch_vcpu_destroy(vcpu);
3162vcpu_free_run_page:
3163	free_page((unsigned long)vcpu->run);
3164vcpu_free:
3165	kmem_cache_free(kvm_vcpu_cache, vcpu);
3166vcpu_decrement:
3167	mutex_lock(&kvm->lock);
3168	kvm->created_vcpus--;
3169	mutex_unlock(&kvm->lock);
3170	return r;
3171}
3172
3173static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3174{
3175	if (sigset) {
3176		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177		vcpu->sigset_active = 1;
3178		vcpu->sigset = *sigset;
3179	} else
3180		vcpu->sigset_active = 0;
3181	return 0;
3182}
3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184static long kvm_vcpu_ioctl(struct file *filp,
3185			   unsigned int ioctl, unsigned long arg)
3186{
3187	struct kvm_vcpu *vcpu = filp->private_data;
3188	void __user *argp = (void __user *)arg;
3189	int r;
3190	struct kvm_fpu *fpu = NULL;
3191	struct kvm_sregs *kvm_sregs = NULL;
3192
3193	if (vcpu->kvm->mm != current->mm)
3194		return -EIO;
3195
3196	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3197		return -EINVAL;
3198
3199	/*
3200	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3201	 * execution; mutex_lock() would break them.
3202	 */
3203	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3204	if (r != -ENOIOCTLCMD)
3205		return r;
3206
3207	if (mutex_lock_killable(&vcpu->mutex))
3208		return -EINTR;
3209	switch (ioctl) {
3210	case KVM_RUN: {
3211		struct pid *oldpid;
3212		r = -EINVAL;
3213		if (arg)
3214			goto out;
3215		oldpid = rcu_access_pointer(vcpu->pid);
 
 
 
 
 
 
 
3216		if (unlikely(oldpid != task_pid(current))) {
3217			/* The thread running this VCPU changed. */
3218			struct pid *newpid;
3219
3220			r = kvm_arch_vcpu_run_pid_change(vcpu);
3221			if (r)
3222				break;
3223
3224			newpid = get_task_pid(current, PIDTYPE_PID);
3225			rcu_assign_pointer(vcpu->pid, newpid);
3226			if (oldpid)
3227				synchronize_rcu();
 
3228			put_pid(oldpid);
3229		}
 
3230		r = kvm_arch_vcpu_ioctl_run(vcpu);
 
 
3231		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3232		break;
3233	}
3234	case KVM_GET_REGS: {
3235		struct kvm_regs *kvm_regs;
3236
3237		r = -ENOMEM;
3238		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3239		if (!kvm_regs)
3240			goto out;
3241		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3242		if (r)
3243			goto out_free1;
3244		r = -EFAULT;
3245		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3246			goto out_free1;
3247		r = 0;
3248out_free1:
3249		kfree(kvm_regs);
3250		break;
3251	}
3252	case KVM_SET_REGS: {
3253		struct kvm_regs *kvm_regs;
3254
3255		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3256		if (IS_ERR(kvm_regs)) {
3257			r = PTR_ERR(kvm_regs);
3258			goto out;
3259		}
3260		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3261		kfree(kvm_regs);
3262		break;
3263	}
3264	case KVM_GET_SREGS: {
3265		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3266				    GFP_KERNEL_ACCOUNT);
3267		r = -ENOMEM;
3268		if (!kvm_sregs)
3269			goto out;
3270		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3271		if (r)
3272			goto out;
3273		r = -EFAULT;
3274		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3275			goto out;
3276		r = 0;
3277		break;
3278	}
3279	case KVM_SET_SREGS: {
3280		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3281		if (IS_ERR(kvm_sregs)) {
3282			r = PTR_ERR(kvm_sregs);
3283			kvm_sregs = NULL;
3284			goto out;
3285		}
3286		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3287		break;
3288	}
3289	case KVM_GET_MP_STATE: {
3290		struct kvm_mp_state mp_state;
3291
3292		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3293		if (r)
3294			goto out;
3295		r = -EFAULT;
3296		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3297			goto out;
3298		r = 0;
3299		break;
3300	}
3301	case KVM_SET_MP_STATE: {
3302		struct kvm_mp_state mp_state;
3303
3304		r = -EFAULT;
3305		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306			goto out;
3307		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3308		break;
3309	}
3310	case KVM_TRANSLATE: {
3311		struct kvm_translation tr;
3312
3313		r = -EFAULT;
3314		if (copy_from_user(&tr, argp, sizeof(tr)))
3315			goto out;
3316		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3317		if (r)
3318			goto out;
3319		r = -EFAULT;
3320		if (copy_to_user(argp, &tr, sizeof(tr)))
3321			goto out;
3322		r = 0;
3323		break;
3324	}
3325	case KVM_SET_GUEST_DEBUG: {
3326		struct kvm_guest_debug dbg;
3327
3328		r = -EFAULT;
3329		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330			goto out;
3331		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3332		break;
3333	}
3334	case KVM_SET_SIGNAL_MASK: {
3335		struct kvm_signal_mask __user *sigmask_arg = argp;
3336		struct kvm_signal_mask kvm_sigmask;
3337		sigset_t sigset, *p;
3338
3339		p = NULL;
3340		if (argp) {
3341			r = -EFAULT;
3342			if (copy_from_user(&kvm_sigmask, argp,
3343					   sizeof(kvm_sigmask)))
3344				goto out;
3345			r = -EINVAL;
3346			if (kvm_sigmask.len != sizeof(sigset))
3347				goto out;
3348			r = -EFAULT;
3349			if (copy_from_user(&sigset, sigmask_arg->sigset,
3350					   sizeof(sigset)))
3351				goto out;
3352			p = &sigset;
3353		}
3354		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3355		break;
3356	}
3357	case KVM_GET_FPU: {
3358		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3359		r = -ENOMEM;
3360		if (!fpu)
3361			goto out;
3362		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3363		if (r)
3364			goto out;
3365		r = -EFAULT;
3366		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3367			goto out;
3368		r = 0;
3369		break;
3370	}
3371	case KVM_SET_FPU: {
3372		fpu = memdup_user(argp, sizeof(*fpu));
3373		if (IS_ERR(fpu)) {
3374			r = PTR_ERR(fpu);
3375			fpu = NULL;
3376			goto out;
3377		}
3378		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3379		break;
3380	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3381	default:
3382		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3383	}
3384out:
3385	mutex_unlock(&vcpu->mutex);
3386	kfree(fpu);
3387	kfree(kvm_sregs);
3388	return r;
3389}
3390
3391#ifdef CONFIG_KVM_COMPAT
3392static long kvm_vcpu_compat_ioctl(struct file *filp,
3393				  unsigned int ioctl, unsigned long arg)
3394{
3395	struct kvm_vcpu *vcpu = filp->private_data;
3396	void __user *argp = compat_ptr(arg);
3397	int r;
3398
3399	if (vcpu->kvm->mm != current->mm)
3400		return -EIO;
3401
3402	switch (ioctl) {
3403	case KVM_SET_SIGNAL_MASK: {
3404		struct kvm_signal_mask __user *sigmask_arg = argp;
3405		struct kvm_signal_mask kvm_sigmask;
3406		sigset_t sigset;
3407
3408		if (argp) {
3409			r = -EFAULT;
3410			if (copy_from_user(&kvm_sigmask, argp,
3411					   sizeof(kvm_sigmask)))
3412				goto out;
3413			r = -EINVAL;
3414			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3415				goto out;
3416			r = -EFAULT;
3417			if (get_compat_sigset(&sigset,
3418					      (compat_sigset_t __user *)sigmask_arg->sigset))
3419				goto out;
3420			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421		} else
3422			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3423		break;
3424	}
3425	default:
3426		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3427	}
3428
3429out:
3430	return r;
3431}
3432#endif
3433
3434static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435{
3436	struct kvm_device *dev = filp->private_data;
3437
3438	if (dev->ops->mmap)
3439		return dev->ops->mmap(dev, vma);
3440
3441	return -ENODEV;
3442}
3443
3444static int kvm_device_ioctl_attr(struct kvm_device *dev,
3445				 int (*accessor)(struct kvm_device *dev,
3446						 struct kvm_device_attr *attr),
3447				 unsigned long arg)
3448{
3449	struct kvm_device_attr attr;
3450
3451	if (!accessor)
3452		return -EPERM;
3453
3454	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3455		return -EFAULT;
3456
3457	return accessor(dev, &attr);
3458}
3459
3460static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3461			     unsigned long arg)
3462{
3463	struct kvm_device *dev = filp->private_data;
3464
3465	if (dev->kvm->mm != current->mm)
3466		return -EIO;
3467
3468	switch (ioctl) {
3469	case KVM_SET_DEVICE_ATTR:
3470		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3471	case KVM_GET_DEVICE_ATTR:
3472		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3473	case KVM_HAS_DEVICE_ATTR:
3474		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475	default:
3476		if (dev->ops->ioctl)
3477			return dev->ops->ioctl(dev, ioctl, arg);
3478
3479		return -ENOTTY;
3480	}
3481}
3482
3483static int kvm_device_release(struct inode *inode, struct file *filp)
3484{
3485	struct kvm_device *dev = filp->private_data;
3486	struct kvm *kvm = dev->kvm;
3487
3488	if (dev->ops->release) {
3489		mutex_lock(&kvm->lock);
3490		list_del(&dev->vm_node);
 
3491		dev->ops->release(dev);
3492		mutex_unlock(&kvm->lock);
3493	}
3494
3495	kvm_put_kvm(kvm);
3496	return 0;
3497}
3498
3499static const struct file_operations kvm_device_fops = {
3500	.unlocked_ioctl = kvm_device_ioctl,
3501	.release = kvm_device_release,
3502	KVM_COMPAT(kvm_device_ioctl),
3503	.mmap = kvm_device_mmap,
3504};
3505
3506struct kvm_device *kvm_device_from_filp(struct file *filp)
3507{
3508	if (filp->f_op != &kvm_device_fops)
3509		return NULL;
3510
3511	return filp->private_data;
3512}
3513
3514static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3515#ifdef CONFIG_KVM_MPIC
3516	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3517	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3518#endif
3519};
3520
3521int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522{
3523	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3524		return -ENOSPC;
3525
3526	if (kvm_device_ops_table[type] != NULL)
3527		return -EEXIST;
3528
3529	kvm_device_ops_table[type] = ops;
3530	return 0;
3531}
3532
3533void kvm_unregister_device_ops(u32 type)
3534{
3535	if (kvm_device_ops_table[type] != NULL)
3536		kvm_device_ops_table[type] = NULL;
3537}
3538
3539static int kvm_ioctl_create_device(struct kvm *kvm,
3540				   struct kvm_create_device *cd)
3541{
3542	const struct kvm_device_ops *ops = NULL;
3543	struct kvm_device *dev;
3544	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3545	int type;
3546	int ret;
3547
3548	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3549		return -ENODEV;
3550
3551	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3552	ops = kvm_device_ops_table[type];
3553	if (ops == NULL)
3554		return -ENODEV;
3555
3556	if (test)
3557		return 0;
3558
3559	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3560	if (!dev)
3561		return -ENOMEM;
3562
3563	dev->ops = ops;
3564	dev->kvm = kvm;
3565
3566	mutex_lock(&kvm->lock);
3567	ret = ops->create(dev, type);
3568	if (ret < 0) {
3569		mutex_unlock(&kvm->lock);
3570		kfree(dev);
3571		return ret;
3572	}
3573	list_add(&dev->vm_node, &kvm->devices);
3574	mutex_unlock(&kvm->lock);
3575
3576	if (ops->init)
3577		ops->init(dev);
3578
3579	kvm_get_kvm(kvm);
3580	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581	if (ret < 0) {
3582		kvm_put_kvm_no_destroy(kvm);
3583		mutex_lock(&kvm->lock);
3584		list_del(&dev->vm_node);
 
 
 
3585		mutex_unlock(&kvm->lock);
3586		ops->destroy(dev);
 
3587		return ret;
3588	}
3589
3590	cd->fd = ret;
3591	return 0;
3592}
3593
3594static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3595{
3596	switch (arg) {
3597	case KVM_CAP_USER_MEMORY:
 
3598	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3599	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3600	case KVM_CAP_INTERNAL_ERROR_DATA:
3601#ifdef CONFIG_HAVE_KVM_MSI
3602	case KVM_CAP_SIGNAL_MSI:
3603#endif
3604#ifdef CONFIG_HAVE_KVM_IRQFD
3605	case KVM_CAP_IRQFD:
3606	case KVM_CAP_IRQFD_RESAMPLE:
3607#endif
3608	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3609	case KVM_CAP_CHECK_EXTENSION_VM:
3610	case KVM_CAP_ENABLE_CAP_VM:
3611	case KVM_CAP_HALT_POLL:
3612		return 1;
3613#ifdef CONFIG_KVM_MMIO
3614	case KVM_CAP_COALESCED_MMIO:
3615		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3616	case KVM_CAP_COALESCED_PIO:
3617		return 1;
3618#endif
3619#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3620	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3621		return KVM_DIRTY_LOG_MANUAL_CAPS;
3622#endif
3623#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3624	case KVM_CAP_IRQ_ROUTING:
3625		return KVM_MAX_IRQ_ROUTES;
3626#endif
3627#if KVM_ADDRESS_SPACE_NUM > 1
3628	case KVM_CAP_MULTI_ADDRESS_SPACE:
3629		return KVM_ADDRESS_SPACE_NUM;
 
 
3630#endif
3631	case KVM_CAP_NR_MEMSLOTS:
3632		return KVM_USER_MEM_SLOTS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3633	default:
3634		break;
3635	}
3636	return kvm_vm_ioctl_check_extension(kvm, arg);
3637}
3638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3639int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3640						  struct kvm_enable_cap *cap)
3641{
3642	return -EINVAL;
3643}
3644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3646					   struct kvm_enable_cap *cap)
3647{
3648	switch (cap->cap) {
3649#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3650	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3651		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652
3653		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3654			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655
3656		if (cap->flags || (cap->args[0] & ~allowed_options))
3657			return -EINVAL;
3658		kvm->manual_dirty_log_protect = cap->args[0];
3659		return 0;
3660	}
3661#endif
3662	case KVM_CAP_HALT_POLL: {
3663		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3664			return -EINVAL;
3665
3666		kvm->max_halt_poll_ns = cap->args[0];
 
 
 
 
 
 
 
 
 
 
3667		return 0;
3668	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669	default:
3670		return kvm_vm_ioctl_enable_cap(kvm, cap);
3671	}
3672}
3673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3674static long kvm_vm_ioctl(struct file *filp,
3675			   unsigned int ioctl, unsigned long arg)
3676{
3677	struct kvm *kvm = filp->private_data;
3678	void __user *argp = (void __user *)arg;
3679	int r;
3680
3681	if (kvm->mm != current->mm)
3682		return -EIO;
3683	switch (ioctl) {
3684	case KVM_CREATE_VCPU:
3685		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686		break;
3687	case KVM_ENABLE_CAP: {
3688		struct kvm_enable_cap cap;
3689
3690		r = -EFAULT;
3691		if (copy_from_user(&cap, argp, sizeof(cap)))
3692			goto out;
3693		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3694		break;
3695	}
 
3696	case KVM_SET_USER_MEMORY_REGION: {
3697		struct kvm_userspace_memory_region kvm_userspace_mem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3698
3699		r = -EFAULT;
3700		if (copy_from_user(&kvm_userspace_mem, argp,
3701						sizeof(kvm_userspace_mem)))
 
 
 
 
3702			goto out;
3703
3704		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3705		break;
3706	}
3707	case KVM_GET_DIRTY_LOG: {
3708		struct kvm_dirty_log log;
3709
3710		r = -EFAULT;
3711		if (copy_from_user(&log, argp, sizeof(log)))
3712			goto out;
3713		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3714		break;
3715	}
3716#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3717	case KVM_CLEAR_DIRTY_LOG: {
3718		struct kvm_clear_dirty_log log;
3719
3720		r = -EFAULT;
3721		if (copy_from_user(&log, argp, sizeof(log)))
3722			goto out;
3723		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3724		break;
3725	}
3726#endif
3727#ifdef CONFIG_KVM_MMIO
3728	case KVM_REGISTER_COALESCED_MMIO: {
3729		struct kvm_coalesced_mmio_zone zone;
3730
3731		r = -EFAULT;
3732		if (copy_from_user(&zone, argp, sizeof(zone)))
3733			goto out;
3734		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3735		break;
3736	}
3737	case KVM_UNREGISTER_COALESCED_MMIO: {
3738		struct kvm_coalesced_mmio_zone zone;
3739
3740		r = -EFAULT;
3741		if (copy_from_user(&zone, argp, sizeof(zone)))
3742			goto out;
3743		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3744		break;
3745	}
3746#endif
3747	case KVM_IRQFD: {
3748		struct kvm_irqfd data;
3749
3750		r = -EFAULT;
3751		if (copy_from_user(&data, argp, sizeof(data)))
3752			goto out;
3753		r = kvm_irqfd(kvm, &data);
3754		break;
3755	}
3756	case KVM_IOEVENTFD: {
3757		struct kvm_ioeventfd data;
3758
3759		r = -EFAULT;
3760		if (copy_from_user(&data, argp, sizeof(data)))
3761			goto out;
3762		r = kvm_ioeventfd(kvm, &data);
3763		break;
3764	}
3765#ifdef CONFIG_HAVE_KVM_MSI
3766	case KVM_SIGNAL_MSI: {
3767		struct kvm_msi msi;
3768
3769		r = -EFAULT;
3770		if (copy_from_user(&msi, argp, sizeof(msi)))
3771			goto out;
3772		r = kvm_send_userspace_msi(kvm, &msi);
3773		break;
3774	}
3775#endif
3776#ifdef __KVM_HAVE_IRQ_LINE
3777	case KVM_IRQ_LINE_STATUS:
3778	case KVM_IRQ_LINE: {
3779		struct kvm_irq_level irq_event;
3780
3781		r = -EFAULT;
3782		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3783			goto out;
3784
3785		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3786					ioctl == KVM_IRQ_LINE_STATUS);
3787		if (r)
3788			goto out;
3789
3790		r = -EFAULT;
3791		if (ioctl == KVM_IRQ_LINE_STATUS) {
3792			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3793				goto out;
3794		}
3795
3796		r = 0;
3797		break;
3798	}
3799#endif
3800#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3801	case KVM_SET_GSI_ROUTING: {
3802		struct kvm_irq_routing routing;
3803		struct kvm_irq_routing __user *urouting;
3804		struct kvm_irq_routing_entry *entries = NULL;
3805
3806		r = -EFAULT;
3807		if (copy_from_user(&routing, argp, sizeof(routing)))
3808			goto out;
3809		r = -EINVAL;
3810		if (!kvm_arch_can_set_irq_routing(kvm))
3811			goto out;
3812		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3813			goto out;
3814		if (routing.flags)
3815			goto out;
3816		if (routing.nr) {
3817			urouting = argp;
3818			entries = vmemdup_user(urouting->entries,
3819					       array_size(sizeof(*entries),
3820							  routing.nr));
3821			if (IS_ERR(entries)) {
3822				r = PTR_ERR(entries);
3823				goto out;
3824			}
3825		}
3826		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3827					routing.flags);
3828		kvfree(entries);
3829		break;
3830	}
3831#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
 
 
 
 
 
 
 
 
 
 
 
 
3832	case KVM_CREATE_DEVICE: {
3833		struct kvm_create_device cd;
3834
3835		r = -EFAULT;
3836		if (copy_from_user(&cd, argp, sizeof(cd)))
3837			goto out;
3838
3839		r = kvm_ioctl_create_device(kvm, &cd);
3840		if (r)
3841			goto out;
3842
3843		r = -EFAULT;
3844		if (copy_to_user(argp, &cd, sizeof(cd)))
3845			goto out;
3846
3847		r = 0;
3848		break;
3849	}
3850	case KVM_CHECK_EXTENSION:
3851		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3852		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3853	default:
3854		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3855	}
3856out:
3857	return r;
3858}
3859
3860#ifdef CONFIG_KVM_COMPAT
3861struct compat_kvm_dirty_log {
3862	__u32 slot;
3863	__u32 padding1;
3864	union {
3865		compat_uptr_t dirty_bitmap; /* one bit per page */
3866		__u64 padding2;
3867	};
3868};
3869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3870static long kvm_vm_compat_ioctl(struct file *filp,
3871			   unsigned int ioctl, unsigned long arg)
3872{
3873	struct kvm *kvm = filp->private_data;
3874	int r;
3875
3876	if (kvm->mm != current->mm)
3877		return -EIO;
 
 
 
 
 
3878	switch (ioctl) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3879	case KVM_GET_DIRTY_LOG: {
3880		struct compat_kvm_dirty_log compat_log;
3881		struct kvm_dirty_log log;
3882
3883		if (copy_from_user(&compat_log, (void __user *)arg,
3884				   sizeof(compat_log)))
3885			return -EFAULT;
3886		log.slot	 = compat_log.slot;
3887		log.padding1	 = compat_log.padding1;
3888		log.padding2	 = compat_log.padding2;
3889		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890
3891		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3892		break;
3893	}
3894	default:
3895		r = kvm_vm_ioctl(filp, ioctl, arg);
3896	}
3897	return r;
3898}
3899#endif
3900
3901static struct file_operations kvm_vm_fops = {
3902	.release        = kvm_vm_release,
3903	.unlocked_ioctl = kvm_vm_ioctl,
3904	.llseek		= noop_llseek,
3905	KVM_COMPAT(kvm_vm_compat_ioctl),
3906};
3907
 
 
 
 
 
 
3908static int kvm_dev_ioctl_create_vm(unsigned long type)
3909{
3910	int r;
 
3911	struct kvm *kvm;
3912	struct file *file;
3913
3914	kvm = kvm_create_vm(type);
3915	if (IS_ERR(kvm))
3916		return PTR_ERR(kvm);
3917#ifdef CONFIG_KVM_MMIO
3918	r = kvm_coalesced_mmio_init(kvm);
3919	if (r < 0)
3920		goto put_kvm;
3921#endif
3922	r = get_unused_fd_flags(O_CLOEXEC);
3923	if (r < 0)
3924		goto put_kvm;
3925
3926	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3927	if (IS_ERR(file)) {
3928		put_unused_fd(r);
3929		r = PTR_ERR(file);
3930		goto put_kvm;
3931	}
3932
3933	/*
3934	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3935	 * already set, with ->release() being kvm_vm_release().  In error
3936	 * cases it will be called by the final fput(file) and will take
3937	 * care of doing kvm_put_kvm(kvm).
3938	 */
3939	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3940		put_unused_fd(r);
3941		fput(file);
3942		return -ENOMEM;
3943	}
3944	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945
3946	fd_install(r, file);
3947	return r;
3948
3949put_kvm:
3950	kvm_put_kvm(kvm);
 
 
3951	return r;
3952}
3953
3954static long kvm_dev_ioctl(struct file *filp,
3955			  unsigned int ioctl, unsigned long arg)
3956{
3957	long r = -EINVAL;
3958
3959	switch (ioctl) {
3960	case KVM_GET_API_VERSION:
3961		if (arg)
3962			goto out;
3963		r = KVM_API_VERSION;
3964		break;
3965	case KVM_CREATE_VM:
3966		r = kvm_dev_ioctl_create_vm(arg);
3967		break;
3968	case KVM_CHECK_EXTENSION:
3969		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970		break;
3971	case KVM_GET_VCPU_MMAP_SIZE:
3972		if (arg)
3973			goto out;
3974		r = PAGE_SIZE;     /* struct kvm_run */
3975#ifdef CONFIG_X86
3976		r += PAGE_SIZE;    /* pio data page */
3977#endif
3978#ifdef CONFIG_KVM_MMIO
3979		r += PAGE_SIZE;    /* coalesced mmio ring page */
3980#endif
3981		break;
3982	case KVM_TRACE_ENABLE:
3983	case KVM_TRACE_PAUSE:
3984	case KVM_TRACE_DISABLE:
3985		r = -EOPNOTSUPP;
3986		break;
3987	default:
3988		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3989	}
3990out:
3991	return r;
3992}
3993
3994static struct file_operations kvm_chardev_ops = {
3995	.unlocked_ioctl = kvm_dev_ioctl,
3996	.llseek		= noop_llseek,
3997	KVM_COMPAT(kvm_dev_ioctl),
3998};
3999
4000static struct miscdevice kvm_dev = {
4001	KVM_MINOR,
4002	"kvm",
4003	&kvm_chardev_ops,
4004};
4005
4006static void hardware_enable_nolock(void *junk)
 
 
 
 
 
 
 
 
 
 
 
4007{
4008	int cpu = raw_smp_processor_id();
4009	int r;
4010
4011	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4012		return;
 
 
4013
4014	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015
4016	r = kvm_arch_hardware_enable();
 
 
 
4017
4018	if (r) {
4019		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4020		atomic_inc(&hardware_enable_failed);
4021		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4022	}
 
 
 
4023}
4024
4025static int kvm_starting_cpu(unsigned int cpu)
4026{
4027	raw_spin_lock(&kvm_count_lock);
4028	if (kvm_usage_count)
4029		hardware_enable_nolock(NULL);
4030	raw_spin_unlock(&kvm_count_lock);
4031	return 0;
 
4032}
4033
4034static void hardware_disable_nolock(void *junk)
4035{
4036	int cpu = raw_smp_processor_id();
 
4037
4038	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039		return;
4040	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4041	kvm_arch_hardware_disable();
4042}
4043
4044static int kvm_dying_cpu(unsigned int cpu)
4045{
4046	raw_spin_lock(&kvm_count_lock);
4047	if (kvm_usage_count)
4048		hardware_disable_nolock(NULL);
4049	raw_spin_unlock(&kvm_count_lock);
4050	return 0;
4051}
4052
4053static void hardware_disable_all_nolock(void)
4054{
4055	BUG_ON(!kvm_usage_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4056
4057	kvm_usage_count--;
4058	if (!kvm_usage_count)
4059		on_each_cpu(hardware_disable_nolock, NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
4060}
4061
4062static void hardware_disable_all(void)
4063{
4064	raw_spin_lock(&kvm_count_lock);
4065	hardware_disable_all_nolock();
4066	raw_spin_unlock(&kvm_count_lock);
 
4067}
4068
4069static int hardware_enable_all(void)
 
 
 
 
 
 
4070{
4071	int r = 0;
 
 
 
 
 
 
 
4072
4073	raw_spin_lock(&kvm_count_lock);
 
 
 
4074
4075	kvm_usage_count++;
4076	if (kvm_usage_count == 1) {
4077		atomic_set(&hardware_enable_failed, 0);
4078		on_each_cpu(hardware_enable_nolock, NULL, 1);
4079
4080		if (atomic_read(&hardware_enable_failed)) {
4081			hardware_disable_all_nolock();
4082			r = -EBUSY;
4083		}
 
 
 
 
 
 
 
 
4084	}
4085
4086	raw_spin_unlock(&kvm_count_lock);
4087
 
 
 
 
 
 
4088	return r;
4089}
4090
4091static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4092		      void *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4093{
4094	/*
4095	 * Some (well, at least mine) BIOSes hang on reboot if
4096	 * in vmx root mode.
4097	 *
4098	 * And Intel TXT required VMX off for all cpu when system shutdown.
4099	 */
4100	pr_info("kvm: exiting hardware virtualization\n");
4101	kvm_rebooting = true;
4102	on_each_cpu(hardware_disable_nolock, NULL, 1);
4103	return NOTIFY_OK;
4104}
 
4105
4106static struct notifier_block kvm_reboot_notifier = {
4107	.notifier_call = kvm_reboot,
4108	.priority = 0,
4109};
 
4110
4111static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4112{
4113	int i;
4114
4115	for (i = 0; i < bus->dev_count; i++) {
4116		struct kvm_io_device *pos = bus->range[i].dev;
4117
4118		kvm_iodevice_destructor(pos);
4119	}
4120	kfree(bus);
4121}
4122
4123static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4124				 const struct kvm_io_range *r2)
4125{
4126	gpa_t addr1 = r1->addr;
4127	gpa_t addr2 = r2->addr;
4128
4129	if (addr1 < addr2)
4130		return -1;
4131
4132	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4133	 * accept any overlapping write.  Any order is acceptable for
4134	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4135	 * we process all of them.
4136	 */
4137	if (r2->len) {
4138		addr1 += r1->len;
4139		addr2 += r2->len;
4140	}
4141
4142	if (addr1 > addr2)
4143		return 1;
4144
4145	return 0;
4146}
4147
4148static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4149{
4150	return kvm_io_bus_cmp(p1, p2);
4151}
4152
4153static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4154			     gpa_t addr, int len)
4155{
4156	struct kvm_io_range *range, key;
4157	int off;
4158
4159	key = (struct kvm_io_range) {
4160		.addr = addr,
4161		.len = len,
4162	};
4163
4164	range = bsearch(&key, bus->range, bus->dev_count,
4165			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4166	if (range == NULL)
4167		return -ENOENT;
4168
4169	off = range - bus->range;
4170
4171	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4172		off--;
4173
4174	return off;
4175}
4176
4177static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4178			      struct kvm_io_range *range, const void *val)
4179{
4180	int idx;
4181
4182	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4183	if (idx < 0)
4184		return -EOPNOTSUPP;
4185
4186	while (idx < bus->dev_count &&
4187		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4188		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4189					range->len, val))
4190			return idx;
4191		idx++;
4192	}
4193
4194	return -EOPNOTSUPP;
4195}
4196
4197/* kvm_io_bus_write - called under kvm->slots_lock */
4198int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4199		     int len, const void *val)
4200{
4201	struct kvm_io_bus *bus;
4202	struct kvm_io_range range;
4203	int r;
4204
4205	range = (struct kvm_io_range) {
4206		.addr = addr,
4207		.len = len,
4208	};
4209
4210	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4211	if (!bus)
4212		return -ENOMEM;
4213	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4214	return r < 0 ? r : 0;
4215}
4216EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217
4218/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4219int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4220			    gpa_t addr, int len, const void *val, long cookie)
4221{
4222	struct kvm_io_bus *bus;
4223	struct kvm_io_range range;
4224
4225	range = (struct kvm_io_range) {
4226		.addr = addr,
4227		.len = len,
4228	};
4229
4230	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4231	if (!bus)
4232		return -ENOMEM;
4233
4234	/* First try the device referenced by cookie. */
4235	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4236	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4237		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4238					val))
4239			return cookie;
4240
4241	/*
4242	 * cookie contained garbage; fall back to search and return the
4243	 * correct cookie value.
4244	 */
4245	return __kvm_io_bus_write(vcpu, bus, &range, val);
4246}
4247
4248static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4249			     struct kvm_io_range *range, void *val)
4250{
4251	int idx;
4252
4253	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4254	if (idx < 0)
4255		return -EOPNOTSUPP;
4256
4257	while (idx < bus->dev_count &&
4258		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4259		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4260				       range->len, val))
4261			return idx;
4262		idx++;
4263	}
4264
4265	return -EOPNOTSUPP;
4266}
4267
4268/* kvm_io_bus_read - called under kvm->slots_lock */
4269int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4270		    int len, void *val)
4271{
4272	struct kvm_io_bus *bus;
4273	struct kvm_io_range range;
4274	int r;
4275
4276	range = (struct kvm_io_range) {
4277		.addr = addr,
4278		.len = len,
4279	};
4280
4281	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4282	if (!bus)
4283		return -ENOMEM;
4284	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4285	return r < 0 ? r : 0;
4286}
4287
4288/* Caller must hold slots_lock. */
4289int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4290			    int len, struct kvm_io_device *dev)
4291{
4292	int i;
4293	struct kvm_io_bus *new_bus, *bus;
4294	struct kvm_io_range range;
4295
 
 
4296	bus = kvm_get_bus(kvm, bus_idx);
4297	if (!bus)
4298		return -ENOMEM;
4299
4300	/* exclude ioeventfd which is limited by maximum fd */
4301	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4302		return -ENOSPC;
4303
4304	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4305			  GFP_KERNEL_ACCOUNT);
4306	if (!new_bus)
4307		return -ENOMEM;
4308
4309	range = (struct kvm_io_range) {
4310		.addr = addr,
4311		.len = len,
4312		.dev = dev,
4313	};
4314
4315	for (i = 0; i < bus->dev_count; i++)
4316		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4317			break;
4318
4319	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4320	new_bus->dev_count++;
4321	new_bus->range[i] = range;
4322	memcpy(new_bus->range + i + 1, bus->range + i,
4323		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4324	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4325	synchronize_srcu_expedited(&kvm->srcu);
4326	kfree(bus);
4327
4328	return 0;
4329}
4330
4331/* Caller must hold slots_lock. */
4332void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4333			       struct kvm_io_device *dev)
4334{
4335	int i, j;
4336	struct kvm_io_bus *new_bus, *bus;
4337
 
 
4338	bus = kvm_get_bus(kvm, bus_idx);
4339	if (!bus)
4340		return;
4341
4342	for (i = 0; i < bus->dev_count; i++)
4343		if (bus->range[i].dev == dev) {
4344			break;
4345		}
 
4346
4347	if (i == bus->dev_count)
4348		return;
4349
4350	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4351			  GFP_KERNEL_ACCOUNT);
4352	if (new_bus) {
4353		memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4354		new_bus->dev_count--;
4355		memcpy(new_bus->range + i, bus->range + i + 1,
4356		       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4357	} else {
4358		pr_err("kvm: failed to shrink bus, removing it completely\n");
4359		for (j = 0; j < bus->dev_count; j++) {
4360			if (j == i)
4361				continue;
4362			kvm_iodevice_destructor(bus->range[j].dev);
4363		}
4364	}
4365
4366	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4367	synchronize_srcu_expedited(&kvm->srcu);
 
 
 
 
 
 
 
 
 
 
 
 
4368	kfree(bus);
4369	return;
4370}
4371
4372struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4373					 gpa_t addr)
4374{
4375	struct kvm_io_bus *bus;
4376	int dev_idx, srcu_idx;
4377	struct kvm_io_device *iodev = NULL;
4378
4379	srcu_idx = srcu_read_lock(&kvm->srcu);
4380
4381	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4382	if (!bus)
4383		goto out_unlock;
4384
4385	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4386	if (dev_idx < 0)
4387		goto out_unlock;
4388
4389	iodev = bus->range[dev_idx].dev;
4390
4391out_unlock:
4392	srcu_read_unlock(&kvm->srcu, srcu_idx);
4393
4394	return iodev;
4395}
4396EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4397
4398static int kvm_debugfs_open(struct inode *inode, struct file *file,
4399			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4400			   const char *fmt)
4401{
4402	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4403					  inode->i_private;
4404
4405	/* The debugfs files are a reference to the kvm struct which
4406	 * is still valid when kvm_destroy_vm is called.
4407	 * To avoid the race between open and the removal of the debugfs
4408	 * directory we test against the users count.
4409	 */
4410	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4411		return -ENOENT;
4412
4413	if (simple_attr_open(inode, file, get,
4414		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4415		    ? set : NULL,
4416		    fmt)) {
4417		kvm_put_kvm(stat_data->kvm);
4418		return -ENOMEM;
4419	}
4420
4421	return 0;
4422}
4423
4424static int kvm_debugfs_release(struct inode *inode, struct file *file)
4425{
4426	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4427					  inode->i_private;
4428
4429	simple_attr_release(inode, file);
4430	kvm_put_kvm(stat_data->kvm);
4431
4432	return 0;
4433}
4434
4435static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4436{
4437	*val = *(ulong *)((void *)kvm + offset);
4438
4439	return 0;
4440}
4441
4442static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4443{
4444	*(ulong *)((void *)kvm + offset) = 0;
4445
4446	return 0;
4447}
4448
4449static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4450{
4451	int i;
4452	struct kvm_vcpu *vcpu;
4453
4454	*val = 0;
4455
4456	kvm_for_each_vcpu(i, vcpu, kvm)
4457		*val += *(u64 *)((void *)vcpu + offset);
4458
4459	return 0;
4460}
4461
4462static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4463{
4464	int i;
4465	struct kvm_vcpu *vcpu;
4466
4467	kvm_for_each_vcpu(i, vcpu, kvm)
4468		*(u64 *)((void *)vcpu + offset) = 0;
4469
4470	return 0;
4471}
4472
4473static int kvm_stat_data_get(void *data, u64 *val)
4474{
4475	int r = -EFAULT;
4476	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4477
4478	switch (stat_data->dbgfs_item->kind) {
4479	case KVM_STAT_VM:
4480		r = kvm_get_stat_per_vm(stat_data->kvm,
4481					stat_data->dbgfs_item->offset, val);
4482		break;
4483	case KVM_STAT_VCPU:
4484		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4485					  stat_data->dbgfs_item->offset, val);
4486		break;
4487	}
4488
4489	return r;
4490}
4491
4492static int kvm_stat_data_clear(void *data, u64 val)
4493{
4494	int r = -EFAULT;
4495	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4496
4497	if (val)
4498		return -EINVAL;
4499
4500	switch (stat_data->dbgfs_item->kind) {
4501	case KVM_STAT_VM:
4502		r = kvm_clear_stat_per_vm(stat_data->kvm,
4503					  stat_data->dbgfs_item->offset);
4504		break;
4505	case KVM_STAT_VCPU:
4506		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4507					    stat_data->dbgfs_item->offset);
4508		break;
4509	}
4510
4511	return r;
4512}
4513
4514static int kvm_stat_data_open(struct inode *inode, struct file *file)
4515{
4516	__simple_attr_check_format("%llu\n", 0ull);
4517	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4518				kvm_stat_data_clear, "%llu\n");
4519}
4520
4521static const struct file_operations stat_fops_per_vm = {
4522	.owner = THIS_MODULE,
4523	.open = kvm_stat_data_open,
4524	.release = kvm_debugfs_release,
4525	.read = simple_attr_read,
4526	.write = simple_attr_write,
4527	.llseek = no_llseek,
4528};
4529
4530static int vm_stat_get(void *_offset, u64 *val)
4531{
4532	unsigned offset = (long)_offset;
4533	struct kvm *kvm;
4534	u64 tmp_val;
4535
4536	*val = 0;
4537	mutex_lock(&kvm_lock);
4538	list_for_each_entry(kvm, &vm_list, vm_list) {
4539		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4540		*val += tmp_val;
4541	}
4542	mutex_unlock(&kvm_lock);
4543	return 0;
4544}
4545
4546static int vm_stat_clear(void *_offset, u64 val)
4547{
4548	unsigned offset = (long)_offset;
4549	struct kvm *kvm;
4550
4551	if (val)
4552		return -EINVAL;
4553
4554	mutex_lock(&kvm_lock);
4555	list_for_each_entry(kvm, &vm_list, vm_list) {
4556		kvm_clear_stat_per_vm(kvm, offset);
4557	}
4558	mutex_unlock(&kvm_lock);
4559
4560	return 0;
4561}
4562
4563DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
 
4564
4565static int vcpu_stat_get(void *_offset, u64 *val)
4566{
4567	unsigned offset = (long)_offset;
4568	struct kvm *kvm;
4569	u64 tmp_val;
4570
4571	*val = 0;
4572	mutex_lock(&kvm_lock);
4573	list_for_each_entry(kvm, &vm_list, vm_list) {
4574		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4575		*val += tmp_val;
4576	}
4577	mutex_unlock(&kvm_lock);
4578	return 0;
4579}
4580
4581static int vcpu_stat_clear(void *_offset, u64 val)
4582{
4583	unsigned offset = (long)_offset;
4584	struct kvm *kvm;
4585
4586	if (val)
4587		return -EINVAL;
4588
4589	mutex_lock(&kvm_lock);
4590	list_for_each_entry(kvm, &vm_list, vm_list) {
4591		kvm_clear_stat_per_vcpu(kvm, offset);
4592	}
4593	mutex_unlock(&kvm_lock);
4594
4595	return 0;
4596}
4597
4598DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4599			"%llu\n");
4600
4601static const struct file_operations *stat_fops[] = {
4602	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4603	[KVM_STAT_VM]   = &vm_stat_fops,
4604};
4605
4606static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4607{
4608	struct kobj_uevent_env *env;
4609	unsigned long long created, active;
4610
4611	if (!kvm_dev.this_device || !kvm)
4612		return;
4613
4614	mutex_lock(&kvm_lock);
4615	if (type == KVM_EVENT_CREATE_VM) {
4616		kvm_createvm_count++;
4617		kvm_active_vms++;
4618	} else if (type == KVM_EVENT_DESTROY_VM) {
4619		kvm_active_vms--;
4620	}
4621	created = kvm_createvm_count;
4622	active = kvm_active_vms;
4623	mutex_unlock(&kvm_lock);
4624
4625	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4626	if (!env)
4627		return;
4628
4629	add_uevent_var(env, "CREATED=%llu", created);
4630	add_uevent_var(env, "COUNT=%llu", active);
4631
4632	if (type == KVM_EVENT_CREATE_VM) {
4633		add_uevent_var(env, "EVENT=create");
4634		kvm->userspace_pid = task_pid_nr(current);
4635	} else if (type == KVM_EVENT_DESTROY_VM) {
4636		add_uevent_var(env, "EVENT=destroy");
4637	}
4638	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4639
4640	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4641		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4642
4643		if (p) {
4644			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4645			if (!IS_ERR(tmp))
4646				add_uevent_var(env, "STATS_PATH=%s", tmp);
4647			kfree(p);
4648		}
4649	}
4650	/* no need for checks, since we are adding at most only 5 keys */
4651	env->envp[env->envp_idx++] = NULL;
4652	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4653	kfree(env);
4654}
4655
4656static void kvm_init_debug(void)
4657{
4658	struct kvm_stats_debugfs_item *p;
 
 
4659
4660	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4661
4662	kvm_debugfs_num_entries = 0;
4663	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4664		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4665				    kvm_debugfs_dir, (void *)(long)p->offset,
4666				    stat_fops[p->kind]);
 
 
 
 
4667	}
4668}
4669
4670static int kvm_suspend(void)
4671{
4672	if (kvm_usage_count)
4673		hardware_disable_nolock(NULL);
4674	return 0;
4675}
4676
4677static void kvm_resume(void)
4678{
4679	if (kvm_usage_count) {
4680#ifdef CONFIG_LOCKDEP
4681		WARN_ON(lockdep_is_held(&kvm_count_lock));
4682#endif
4683		hardware_enable_nolock(NULL);
4684	}
4685}
4686
4687static struct syscore_ops kvm_syscore_ops = {
4688	.suspend = kvm_suspend,
4689	.resume = kvm_resume,
4690};
4691
4692static inline
4693struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4694{
4695	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4696}
4697
4698static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4699{
4700	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4701
4702	WRITE_ONCE(vcpu->preempted, false);
4703	WRITE_ONCE(vcpu->ready, false);
4704
4705	__this_cpu_write(kvm_running_vcpu, vcpu);
4706	kvm_arch_sched_in(vcpu, cpu);
4707	kvm_arch_vcpu_load(vcpu, cpu);
 
 
4708}
4709
4710static void kvm_sched_out(struct preempt_notifier *pn,
4711			  struct task_struct *next)
4712{
4713	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4714
4715	if (current->state == TASK_RUNNING) {
 
 
4716		WRITE_ONCE(vcpu->preempted, true);
4717		WRITE_ONCE(vcpu->ready, true);
4718	}
4719	kvm_arch_vcpu_put(vcpu);
4720	__this_cpu_write(kvm_running_vcpu, NULL);
4721}
4722
4723/**
4724 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4725 *
4726 * We can disable preemption locally around accessing the per-CPU variable,
4727 * and use the resolved vcpu pointer after enabling preemption again,
4728 * because even if the current thread is migrated to another CPU, reading
4729 * the per-CPU value later will give us the same value as we update the
4730 * per-CPU variable in the preempt notifier handlers.
4731 */
4732struct kvm_vcpu *kvm_get_running_vcpu(void)
4733{
4734	struct kvm_vcpu *vcpu;
4735
4736	preempt_disable();
4737	vcpu = __this_cpu_read(kvm_running_vcpu);
4738	preempt_enable();
4739
4740	return vcpu;
4741}
4742EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4743
4744/**
4745 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4746 */
4747struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4748{
4749        return &kvm_running_vcpu;
4750}
4751
4752struct kvm_cpu_compat_check {
4753	void *opaque;
4754	int *ret;
4755};
 
 
 
 
4756
4757static void check_processor_compat(void *data)
4758{
4759	struct kvm_cpu_compat_check *c = data;
4760
4761	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4762}
4763
4764int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4765		  struct module *module)
4766{
4767	struct kvm_cpu_compat_check c;
4768	int r;
4769	int cpu;
4770
4771	r = kvm_arch_init(opaque);
4772	if (r)
4773		goto out_fail;
4774
4775	/*
4776	 * kvm_arch_init makes sure there's at most one caller
4777	 * for architectures that support multiple implementations,
4778	 * like intel and amd on x86.
4779	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4780	 * conflicts in case kvm is already setup for another implementation.
4781	 */
4782	r = kvm_irqfd_init();
4783	if (r)
4784		goto out_irqfd;
4785
4786	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4787		r = -ENOMEM;
4788		goto out_free_0;
4789	}
 
4790
4791	r = kvm_arch_hardware_setup(opaque);
4792	if (r < 0)
4793		goto out_free_1;
 
 
 
 
 
 
 
4794
4795	c.ret = &r;
4796	c.opaque = opaque;
4797	for_each_online_cpu(cpu) {
4798		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4799		if (r < 0)
4800			goto out_free_2;
4801	}
4802
4803	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4804				      kvm_starting_cpu, kvm_dying_cpu);
4805	if (r)
4806		goto out_free_2;
4807	register_reboot_notifier(&kvm_reboot_notifier);
4808
4809	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4810	if (!vcpu_align)
4811		vcpu_align = __alignof__(struct kvm_vcpu);
4812	kvm_vcpu_cache =
4813		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4814					   SLAB_ACCOUNT,
4815					   offsetof(struct kvm_vcpu, arch),
4816					   sizeof_field(struct kvm_vcpu, arch),
 
4817					   NULL);
4818	if (!kvm_vcpu_cache) {
4819		r = -ENOMEM;
4820		goto out_free_3;
 
 
 
 
 
 
4821	}
4822
 
 
 
 
4823	r = kvm_async_pf_init();
4824	if (r)
4825		goto out_free;
4826
4827	kvm_chardev_ops.owner = module;
4828	kvm_vm_fops.owner = module;
4829	kvm_vcpu_fops.owner = module;
4830
4831	r = misc_register(&kvm_dev);
4832	if (r) {
4833		pr_err("kvm: misc device register failed\n");
4834		goto out_unreg;
4835	}
4836
4837	register_syscore_ops(&kvm_syscore_ops);
4838
4839	kvm_preempt_ops.sched_in = kvm_sched_in;
4840	kvm_preempt_ops.sched_out = kvm_sched_out;
4841
4842	kvm_init_debug();
4843
4844	r = kvm_vfio_ops_init();
4845	WARN_ON(r);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4846
4847	return 0;
4848
4849out_unreg:
 
 
 
 
4850	kvm_async_pf_deinit();
4851out_free:
 
 
 
 
 
4852	kmem_cache_destroy(kvm_vcpu_cache);
4853out_free_3:
4854	unregister_reboot_notifier(&kvm_reboot_notifier);
4855	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4856out_free_2:
4857	kvm_arch_hardware_unsetup();
4858out_free_1:
4859	free_cpumask_var(cpus_hardware_enabled);
4860out_free_0:
4861	kvm_irqfd_exit();
4862out_irqfd:
4863	kvm_arch_exit();
4864out_fail:
4865	return r;
4866}
4867EXPORT_SYMBOL_GPL(kvm_init);
4868
4869void kvm_exit(void)
4870{
 
 
 
 
 
 
 
 
 
 
 
4871	debugfs_remove_recursive(kvm_debugfs_dir);
4872	misc_deregister(&kvm_dev);
 
4873	kmem_cache_destroy(kvm_vcpu_cache);
 
4874	kvm_async_pf_deinit();
4875	unregister_syscore_ops(&kvm_syscore_ops);
4876	unregister_reboot_notifier(&kvm_reboot_notifier);
4877	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4878	on_each_cpu(hardware_disable_nolock, NULL, 1);
4879	kvm_arch_hardware_unsetup();
4880	kvm_arch_exit();
4881	kvm_irqfd_exit();
4882	free_cpumask_var(cpus_hardware_enabled);
4883	kvm_vfio_ops_exit();
4884}
4885EXPORT_SYMBOL_GPL(kvm_exit);
4886
4887struct kvm_vm_worker_thread_context {
4888	struct kvm *kvm;
4889	struct task_struct *parent;
4890	struct completion init_done;
4891	kvm_vm_thread_fn_t thread_fn;
4892	uintptr_t data;
4893	int err;
4894};
4895
4896static int kvm_vm_worker_thread(void *context)
4897{
4898	/*
4899	 * The init_context is allocated on the stack of the parent thread, so
4900	 * we have to locally copy anything that is needed beyond initialization
4901	 */
4902	struct kvm_vm_worker_thread_context *init_context = context;
4903	struct kvm *kvm = init_context->kvm;
4904	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4905	uintptr_t data = init_context->data;
4906	int err;
4907
4908	err = kthread_park(current);
4909	/* kthread_park(current) is never supposed to return an error */
4910	WARN_ON(err != 0);
4911	if (err)
4912		goto init_complete;
4913
4914	err = cgroup_attach_task_all(init_context->parent, current);
4915	if (err) {
4916		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4917			__func__, err);
4918		goto init_complete;
4919	}
4920
4921	set_user_nice(current, task_nice(init_context->parent));
4922
4923init_complete:
4924	init_context->err = err;
4925	complete(&init_context->init_done);
4926	init_context = NULL;
4927
4928	if (err)
4929		return err;
4930
4931	/* Wait to be woken up by the spawner before proceeding. */
4932	kthread_parkme();
4933
4934	if (!kthread_should_stop())
4935		err = thread_fn(kvm, data);
4936
4937	return err;
4938}
4939
4940int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4941				uintptr_t data, const char *name,
4942				struct task_struct **thread_ptr)
4943{
4944	struct kvm_vm_worker_thread_context init_context = {};
4945	struct task_struct *thread;
4946
4947	*thread_ptr = NULL;
4948	init_context.kvm = kvm;
4949	init_context.parent = current;
4950	init_context.thread_fn = thread_fn;
4951	init_context.data = data;
4952	init_completion(&init_context.init_done);
4953
4954	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4955			     "%s-%d", name, task_pid_nr(current));
4956	if (IS_ERR(thread))
4957		return PTR_ERR(thread);
4958
4959	/* kthread_run is never supposed to return NULL */
4960	WARN_ON(thread == NULL);
4961
4962	wait_for_completion(&init_context.init_done);
4963
4964	if (!init_context.err)
4965		*thread_ptr = thread;
4966
4967	return init_context.err;
4968}