Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 263#include <linux/cache.h>
 264#include <linux/err.h>
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 275#include <net/proto_memory.h>
 276#include <net/xfrm.h>
 277#include <net/ip.h>
 278#include <net/sock.h>
 279#include <net/rstreason.h>
 280
 281#include <linux/uaccess.h>
 282#include <asm/ioctls.h>
 283#include <net/busy_poll.h>
 284#include <net/hotdata.h>
 285#include <trace/events/tcp.h>
 286#include <net/rps.h>
 287
 288#include "../core/devmem.h"
 289
 290/* Track pending CMSGs. */
 291enum {
 292	TCP_CMSG_INQ = 1,
 293	TCP_CMSG_TS = 2
 294};
 295
 296DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 297EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 298
 299DEFINE_PER_CPU(u32, tcp_tw_isn);
 300EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
 301
 302long sysctl_tcp_mem[3] __read_mostly;
 303EXPORT_SYMBOL(sysctl_tcp_mem);
 304
 305atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 306EXPORT_SYMBOL(tcp_memory_allocated);
 307DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 308EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 309
 310#if IS_ENABLED(CONFIG_SMC)
 311DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 312EXPORT_SYMBOL(tcp_have_smc);
 313#endif
 314
 315/*
 316 * Current number of TCP sockets.
 317 */
 318struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 319EXPORT_SYMBOL(tcp_sockets_allocated);
 320
 321/*
 322 * TCP splice context
 323 */
 324struct tcp_splice_state {
 325	struct pipe_inode_info *pipe;
 326	size_t len;
 327	unsigned int flags;
 328};
 329
 330/*
 331 * Pressure flag: try to collapse.
 332 * Technical note: it is used by multiple contexts non atomically.
 333 * All the __sk_mem_schedule() is of this nature: accounting
 334 * is strict, actions are advisory and have some latency.
 335 */
 336unsigned long tcp_memory_pressure __read_mostly;
 337EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 338
 339void tcp_enter_memory_pressure(struct sock *sk)
 340{
 341	unsigned long val;
 342
 343	if (READ_ONCE(tcp_memory_pressure))
 344		return;
 345	val = jiffies;
 346
 347	if (!val)
 348		val--;
 349	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 350		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 351}
 352EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 353
 354void tcp_leave_memory_pressure(struct sock *sk)
 355{
 356	unsigned long val;
 357
 358	if (!READ_ONCE(tcp_memory_pressure))
 359		return;
 360	val = xchg(&tcp_memory_pressure, 0);
 361	if (val)
 362		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 363			      jiffies_to_msecs(jiffies - val));
 364}
 365EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 366
 367/* Convert seconds to retransmits based on initial and max timeout */
 368static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 369{
 370	u8 res = 0;
 371
 372	if (seconds > 0) {
 373		int period = timeout;
 374
 375		res = 1;
 376		while (seconds > period && res < 255) {
 377			res++;
 378			timeout <<= 1;
 379			if (timeout > rto_max)
 380				timeout = rto_max;
 381			period += timeout;
 382		}
 383	}
 384	return res;
 385}
 386
 387/* Convert retransmits to seconds based on initial and max timeout */
 388static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 389{
 390	int period = 0;
 391
 392	if (retrans > 0) {
 393		period = timeout;
 394		while (--retrans) {
 395			timeout <<= 1;
 396			if (timeout > rto_max)
 397				timeout = rto_max;
 398			period += timeout;
 399		}
 400	}
 401	return period;
 402}
 403
 404static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 405{
 406	u32 rate = READ_ONCE(tp->rate_delivered);
 407	u32 intv = READ_ONCE(tp->rate_interval_us);
 408	u64 rate64 = 0;
 409
 410	if (rate && intv) {
 411		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 412		do_div(rate64, intv);
 413	}
 414	return rate64;
 415}
 416
 417/* Address-family independent initialization for a tcp_sock.
 418 *
 419 * NOTE: A lot of things set to zero explicitly by call to
 420 *       sk_alloc() so need not be done here.
 421 */
 422void tcp_init_sock(struct sock *sk)
 423{
 424	struct inet_connection_sock *icsk = inet_csk(sk);
 425	struct tcp_sock *tp = tcp_sk(sk);
 426	int rto_min_us;
 427
 428	tp->out_of_order_queue = RB_ROOT;
 429	sk->tcp_rtx_queue = RB_ROOT;
 430	tcp_init_xmit_timers(sk);
 431	INIT_LIST_HEAD(&tp->tsq_node);
 432	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 433
 434	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 435	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
 436	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
 437	icsk->icsk_delack_max = TCP_DELACK_MAX;
 438	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 439	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 440
 441	/* So many TCP implementations out there (incorrectly) count the
 442	 * initial SYN frame in their delayed-ACK and congestion control
 443	 * algorithms that we must have the following bandaid to talk
 444	 * efficiently to them.  -DaveM
 445	 */
 446	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 447
 448	/* There's a bubble in the pipe until at least the first ACK. */
 449	tp->app_limited = ~0U;
 450	tp->rate_app_limited = 1;
 451
 452	/* See draft-stevens-tcpca-spec-01 for discussion of the
 453	 * initialization of these values.
 454	 */
 455	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 456	tp->snd_cwnd_clamp = ~0;
 457	tp->mss_cache = TCP_MSS_DEFAULT;
 458
 459	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 460	tcp_assign_congestion_control(sk);
 461
 462	tp->tsoffset = 0;
 463	tp->rack.reo_wnd_steps = 1;
 464
 465	sk->sk_write_space = sk_stream_write_space;
 466	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 467
 468	icsk->icsk_sync_mss = tcp_sync_mss;
 469
 470	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 471	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 472	tcp_scaling_ratio_init(sk);
 473
 474	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 475	sk_sockets_allocated_inc(sk);
 476	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
 477}
 478EXPORT_SYMBOL(tcp_init_sock);
 479
 480static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
 481{
 482	struct sk_buff *skb = tcp_write_queue_tail(sk);
 483	u32 tsflags = sockc->tsflags;
 484
 485	if (tsflags && skb) {
 486		struct skb_shared_info *shinfo = skb_shinfo(skb);
 487		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 488
 489		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
 490		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 491			tcb->txstamp_ack = 1;
 492		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 493			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 494	}
 495}
 496
 497static bool tcp_stream_is_readable(struct sock *sk, int target)
 498{
 499	if (tcp_epollin_ready(sk, target))
 500		return true;
 501	return sk_is_readable(sk);
 502}
 503
 504/*
 505 *	Wait for a TCP event.
 506 *
 507 *	Note that we don't need to lock the socket, as the upper poll layers
 508 *	take care of normal races (between the test and the event) and we don't
 509 *	go look at any of the socket buffers directly.
 510 */
 511__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 512{
 513	__poll_t mask;
 514	struct sock *sk = sock->sk;
 515	const struct tcp_sock *tp = tcp_sk(sk);
 516	u8 shutdown;
 517	int state;
 518
 519	sock_poll_wait(file, sock, wait);
 520
 521	state = inet_sk_state_load(sk);
 522	if (state == TCP_LISTEN)
 523		return inet_csk_listen_poll(sk);
 524
 525	/* Socket is not locked. We are protected from async events
 526	 * by poll logic and correct handling of state changes
 527	 * made by other threads is impossible in any case.
 528	 */
 529
 530	mask = 0;
 531
 532	/*
 533	 * EPOLLHUP is certainly not done right. But poll() doesn't
 534	 * have a notion of HUP in just one direction, and for a
 535	 * socket the read side is more interesting.
 536	 *
 537	 * Some poll() documentation says that EPOLLHUP is incompatible
 538	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 539	 * all. But careful, it tends to be safer to return too many
 540	 * bits than too few, and you can easily break real applications
 541	 * if you don't tell them that something has hung up!
 542	 *
 543	 * Check-me.
 544	 *
 545	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 546	 * our fs/select.c). It means that after we received EOF,
 547	 * poll always returns immediately, making impossible poll() on write()
 548	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 549	 * if and only if shutdown has been made in both directions.
 550	 * Actually, it is interesting to look how Solaris and DUX
 551	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 552	 * then we could set it on SND_SHUTDOWN. BTW examples given
 553	 * in Stevens' books assume exactly this behaviour, it explains
 554	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 555	 *
 556	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 557	 * blocking on fresh not-connected or disconnected socket. --ANK
 558	 */
 559	shutdown = READ_ONCE(sk->sk_shutdown);
 560	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 561		mask |= EPOLLHUP;
 562	if (shutdown & RCV_SHUTDOWN)
 563		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 564
 565	/* Connected or passive Fast Open socket? */
 566	if (state != TCP_SYN_SENT &&
 567	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 568		int target = sock_rcvlowat(sk, 0, INT_MAX);
 569		u16 urg_data = READ_ONCE(tp->urg_data);
 570
 571		if (unlikely(urg_data) &&
 572		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 573		    !sock_flag(sk, SOCK_URGINLINE))
 574			target++;
 575
 576		if (tcp_stream_is_readable(sk, target))
 577			mask |= EPOLLIN | EPOLLRDNORM;
 578
 579		if (!(shutdown & SEND_SHUTDOWN)) {
 580			if (__sk_stream_is_writeable(sk, 1)) {
 581				mask |= EPOLLOUT | EPOLLWRNORM;
 582			} else {  /* send SIGIO later */
 583				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 584				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 585
 586				/* Race breaker. If space is freed after
 587				 * wspace test but before the flags are set,
 588				 * IO signal will be lost. Memory barrier
 589				 * pairs with the input side.
 590				 */
 591				smp_mb__after_atomic();
 592				if (__sk_stream_is_writeable(sk, 1))
 593					mask |= EPOLLOUT | EPOLLWRNORM;
 594			}
 595		} else
 596			mask |= EPOLLOUT | EPOLLWRNORM;
 597
 598		if (urg_data & TCP_URG_VALID)
 599			mask |= EPOLLPRI;
 600	} else if (state == TCP_SYN_SENT &&
 601		   inet_test_bit(DEFER_CONNECT, sk)) {
 602		/* Active TCP fastopen socket with defer_connect
 603		 * Return EPOLLOUT so application can call write()
 604		 * in order for kernel to generate SYN+data
 605		 */
 606		mask |= EPOLLOUT | EPOLLWRNORM;
 607	}
 608	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
 609	smp_rmb();
 610	if (READ_ONCE(sk->sk_err) ||
 611	    !skb_queue_empty_lockless(&sk->sk_error_queue))
 612		mask |= EPOLLERR;
 613
 614	return mask;
 615}
 616EXPORT_SYMBOL(tcp_poll);
 617
 618int tcp_ioctl(struct sock *sk, int cmd, int *karg)
 619{
 620	struct tcp_sock *tp = tcp_sk(sk);
 621	int answ;
 622	bool slow;
 623
 624	switch (cmd) {
 625	case SIOCINQ:
 626		if (sk->sk_state == TCP_LISTEN)
 627			return -EINVAL;
 628
 629		slow = lock_sock_fast(sk);
 630		answ = tcp_inq(sk);
 631		unlock_sock_fast(sk, slow);
 632		break;
 633	case SIOCATMARK:
 634		answ = READ_ONCE(tp->urg_data) &&
 635		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 636		break;
 637	case SIOCOUTQ:
 638		if (sk->sk_state == TCP_LISTEN)
 639			return -EINVAL;
 640
 641		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 642			answ = 0;
 643		else
 644			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 645		break;
 646	case SIOCOUTQNSD:
 647		if (sk->sk_state == TCP_LISTEN)
 648			return -EINVAL;
 649
 650		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 651			answ = 0;
 652		else
 653			answ = READ_ONCE(tp->write_seq) -
 654			       READ_ONCE(tp->snd_nxt);
 655		break;
 656	default:
 657		return -ENOIOCTLCMD;
 658	}
 659
 660	*karg = answ;
 661	return 0;
 662}
 663EXPORT_SYMBOL(tcp_ioctl);
 664
 665void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 666{
 667	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 668	tp->pushed_seq = tp->write_seq;
 669}
 670
 671static inline bool forced_push(const struct tcp_sock *tp)
 672{
 673	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 674}
 675
 676void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 677{
 678	struct tcp_sock *tp = tcp_sk(sk);
 679	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 680
 681	tcb->seq     = tcb->end_seq = tp->write_seq;
 682	tcb->tcp_flags = TCPHDR_ACK;
 683	__skb_header_release(skb);
 684	tcp_add_write_queue_tail(sk, skb);
 685	sk_wmem_queued_add(sk, skb->truesize);
 686	sk_mem_charge(sk, skb->truesize);
 687	if (tp->nonagle & TCP_NAGLE_PUSH)
 688		tp->nonagle &= ~TCP_NAGLE_PUSH;
 689
 690	tcp_slow_start_after_idle_check(sk);
 691}
 692
 693static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 694{
 695	if (flags & MSG_OOB)
 696		tp->snd_up = tp->write_seq;
 697}
 698
 699/* If a not yet filled skb is pushed, do not send it if
 700 * we have data packets in Qdisc or NIC queues :
 701 * Because TX completion will happen shortly, it gives a chance
 702 * to coalesce future sendmsg() payload into this skb, without
 703 * need for a timer, and with no latency trade off.
 704 * As packets containing data payload have a bigger truesize
 705 * than pure acks (dataless) packets, the last checks prevent
 706 * autocorking if we only have an ACK in Qdisc/NIC queues,
 707 * or if TX completion was delayed after we processed ACK packet.
 708 */
 709static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 710				int size_goal)
 711{
 712	return skb->len < size_goal &&
 713	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 714	       !tcp_rtx_queue_empty(sk) &&
 715	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 716	       tcp_skb_can_collapse_to(skb);
 717}
 718
 719void tcp_push(struct sock *sk, int flags, int mss_now,
 720	      int nonagle, int size_goal)
 721{
 722	struct tcp_sock *tp = tcp_sk(sk);
 723	struct sk_buff *skb;
 724
 725	skb = tcp_write_queue_tail(sk);
 726	if (!skb)
 727		return;
 728	if (!(flags & MSG_MORE) || forced_push(tp))
 729		tcp_mark_push(tp, skb);
 730
 731	tcp_mark_urg(tp, flags);
 732
 733	if (tcp_should_autocork(sk, skb, size_goal)) {
 734
 735		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 736		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 737			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 738			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 739			smp_mb__after_atomic();
 740		}
 741		/* It is possible TX completion already happened
 742		 * before we set TSQ_THROTTLED.
 743		 */
 744		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 745			return;
 746	}
 747
 748	if (flags & MSG_MORE)
 749		nonagle = TCP_NAGLE_CORK;
 750
 751	__tcp_push_pending_frames(sk, mss_now, nonagle);
 752}
 753
 754static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 755				unsigned int offset, size_t len)
 756{
 757	struct tcp_splice_state *tss = rd_desc->arg.data;
 758	int ret;
 759
 760	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 761			      min(rd_desc->count, len), tss->flags);
 762	if (ret > 0)
 763		rd_desc->count -= ret;
 764	return ret;
 765}
 766
 767static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 768{
 769	/* Store TCP splice context information in read_descriptor_t. */
 770	read_descriptor_t rd_desc = {
 771		.arg.data = tss,
 772		.count	  = tss->len,
 773	};
 774
 775	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 776}
 777
 778/**
 779 *  tcp_splice_read - splice data from TCP socket to a pipe
 780 * @sock:	socket to splice from
 781 * @ppos:	position (not valid)
 782 * @pipe:	pipe to splice to
 783 * @len:	number of bytes to splice
 784 * @flags:	splice modifier flags
 785 *
 786 * Description:
 787 *    Will read pages from given socket and fill them into a pipe.
 788 *
 789 **/
 790ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 791			struct pipe_inode_info *pipe, size_t len,
 792			unsigned int flags)
 793{
 794	struct sock *sk = sock->sk;
 795	struct tcp_splice_state tss = {
 796		.pipe = pipe,
 797		.len = len,
 798		.flags = flags,
 799	};
 800	long timeo;
 801	ssize_t spliced;
 802	int ret;
 803
 804	sock_rps_record_flow(sk);
 805	/*
 806	 * We can't seek on a socket input
 807	 */
 808	if (unlikely(*ppos))
 809		return -ESPIPE;
 810
 811	ret = spliced = 0;
 812
 813	lock_sock(sk);
 814
 815	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 816	while (tss.len) {
 817		ret = __tcp_splice_read(sk, &tss);
 818		if (ret < 0)
 819			break;
 820		else if (!ret) {
 821			if (spliced)
 822				break;
 823			if (sock_flag(sk, SOCK_DONE))
 824				break;
 825			if (sk->sk_err) {
 826				ret = sock_error(sk);
 827				break;
 828			}
 829			if (sk->sk_shutdown & RCV_SHUTDOWN)
 830				break;
 831			if (sk->sk_state == TCP_CLOSE) {
 832				/*
 833				 * This occurs when user tries to read
 834				 * from never connected socket.
 835				 */
 836				ret = -ENOTCONN;
 837				break;
 838			}
 839			if (!timeo) {
 840				ret = -EAGAIN;
 841				break;
 842			}
 843			/* if __tcp_splice_read() got nothing while we have
 844			 * an skb in receive queue, we do not want to loop.
 845			 * This might happen with URG data.
 846			 */
 847			if (!skb_queue_empty(&sk->sk_receive_queue))
 848				break;
 849			ret = sk_wait_data(sk, &timeo, NULL);
 850			if (ret < 0)
 851				break;
 852			if (signal_pending(current)) {
 853				ret = sock_intr_errno(timeo);
 854				break;
 855			}
 856			continue;
 857		}
 858		tss.len -= ret;
 859		spliced += ret;
 860
 861		if (!tss.len || !timeo)
 862			break;
 863		release_sock(sk);
 864		lock_sock(sk);
 865
 866		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 867		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 868		    signal_pending(current))
 869			break;
 870	}
 871
 872	release_sock(sk);
 873
 874	if (spliced)
 875		return spliced;
 876
 877	return ret;
 878}
 879EXPORT_SYMBOL(tcp_splice_read);
 880
 881struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 882				     bool force_schedule)
 883{
 884	struct sk_buff *skb;
 885
 886	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
 887	if (likely(skb)) {
 888		bool mem_scheduled;
 889
 890		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 891		if (force_schedule) {
 892			mem_scheduled = true;
 893			sk_forced_mem_schedule(sk, skb->truesize);
 894		} else {
 895			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 896		}
 897		if (likely(mem_scheduled)) {
 898			skb_reserve(skb, MAX_TCP_HEADER);
 899			skb->ip_summed = CHECKSUM_PARTIAL;
 900			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 901			return skb;
 902		}
 903		__kfree_skb(skb);
 904	} else {
 905		sk->sk_prot->enter_memory_pressure(sk);
 906		sk_stream_moderate_sndbuf(sk);
 907	}
 908	return NULL;
 909}
 910
 911static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 912				       int large_allowed)
 913{
 914	struct tcp_sock *tp = tcp_sk(sk);
 915	u32 new_size_goal, size_goal;
 916
 917	if (!large_allowed)
 918		return mss_now;
 919
 920	/* Note : tcp_tso_autosize() will eventually split this later */
 921	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 922
 923	/* We try hard to avoid divides here */
 924	size_goal = tp->gso_segs * mss_now;
 925	if (unlikely(new_size_goal < size_goal ||
 926		     new_size_goal >= size_goal + mss_now)) {
 927		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 928				     sk->sk_gso_max_segs);
 929		size_goal = tp->gso_segs * mss_now;
 930	}
 931
 932	return max(size_goal, mss_now);
 933}
 934
 935int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 936{
 937	int mss_now;
 938
 939	mss_now = tcp_current_mss(sk);
 940	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 941
 942	return mss_now;
 943}
 944
 945/* In some cases, sendmsg() could have added an skb to the write queue,
 946 * but failed adding payload on it. We need to remove it to consume less
 947 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
 948 * epoll() users. Another reason is that tcp_write_xmit() does not like
 949 * finding an empty skb in the write queue.
 950 */
 951void tcp_remove_empty_skb(struct sock *sk)
 952{
 953	struct sk_buff *skb = tcp_write_queue_tail(sk);
 954
 955	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 956		tcp_unlink_write_queue(skb, sk);
 957		if (tcp_write_queue_empty(sk))
 958			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 959		tcp_wmem_free_skb(sk, skb);
 960	}
 961}
 962
 963/* skb changing from pure zc to mixed, must charge zc */
 964static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 965{
 966	if (unlikely(skb_zcopy_pure(skb))) {
 967		u32 extra = skb->truesize -
 968			    SKB_TRUESIZE(skb_end_offset(skb));
 969
 970		if (!sk_wmem_schedule(sk, extra))
 971			return -ENOMEM;
 972
 973		sk_mem_charge(sk, extra);
 974		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 975	}
 976	return 0;
 977}
 978
 979
 980int tcp_wmem_schedule(struct sock *sk, int copy)
 981{
 982	int left;
 983
 984	if (likely(sk_wmem_schedule(sk, copy)))
 985		return copy;
 986
 987	/* We could be in trouble if we have nothing queued.
 988	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 989	 * to guarantee some progress.
 990	 */
 991	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
 992	if (left > 0)
 993		sk_forced_mem_schedule(sk, min(left, copy));
 994	return min(copy, sk->sk_forward_alloc);
 995}
 996
 997void tcp_free_fastopen_req(struct tcp_sock *tp)
 998{
 999	if (tp->fastopen_req) {
1000		kfree(tp->fastopen_req);
1001		tp->fastopen_req = NULL;
1002	}
1003}
1004
1005int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1006			 size_t size, struct ubuf_info *uarg)
1007{
1008	struct tcp_sock *tp = tcp_sk(sk);
1009	struct inet_sock *inet = inet_sk(sk);
1010	struct sockaddr *uaddr = msg->msg_name;
1011	int err, flags;
1012
1013	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1014	      TFO_CLIENT_ENABLE) ||
1015	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1016	     uaddr->sa_family == AF_UNSPEC))
1017		return -EOPNOTSUPP;
1018	if (tp->fastopen_req)
1019		return -EALREADY; /* Another Fast Open is in progress */
1020
1021	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1022				   sk->sk_allocation);
1023	if (unlikely(!tp->fastopen_req))
1024		return -ENOBUFS;
1025	tp->fastopen_req->data = msg;
1026	tp->fastopen_req->size = size;
1027	tp->fastopen_req->uarg = uarg;
1028
1029	if (inet_test_bit(DEFER_CONNECT, sk)) {
1030		err = tcp_connect(sk);
1031		/* Same failure procedure as in tcp_v4/6_connect */
1032		if (err) {
1033			tcp_set_state(sk, TCP_CLOSE);
1034			inet->inet_dport = 0;
1035			sk->sk_route_caps = 0;
1036		}
1037	}
1038	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1039	err = __inet_stream_connect(sk->sk_socket, uaddr,
1040				    msg->msg_namelen, flags, 1);
1041	/* fastopen_req could already be freed in __inet_stream_connect
1042	 * if the connection times out or gets rst
1043	 */
1044	if (tp->fastopen_req) {
1045		*copied = tp->fastopen_req->copied;
1046		tcp_free_fastopen_req(tp);
1047		inet_clear_bit(DEFER_CONNECT, sk);
1048	}
1049	return err;
1050}
1051
1052int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1053{
1054	struct tcp_sock *tp = tcp_sk(sk);
1055	struct ubuf_info *uarg = NULL;
1056	struct sk_buff *skb;
1057	struct sockcm_cookie sockc;
1058	int flags, err, copied = 0;
1059	int mss_now = 0, size_goal, copied_syn = 0;
1060	int process_backlog = 0;
1061	int zc = 0;
1062	long timeo;
1063
1064	flags = msg->msg_flags;
1065
1066	if ((flags & MSG_ZEROCOPY) && size) {
1067		if (msg->msg_ubuf) {
1068			uarg = msg->msg_ubuf;
1069			if (sk->sk_route_caps & NETIF_F_SG)
1070				zc = MSG_ZEROCOPY;
1071		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1072			skb = tcp_write_queue_tail(sk);
1073			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1074			if (!uarg) {
1075				err = -ENOBUFS;
1076				goto out_err;
1077			}
1078			if (sk->sk_route_caps & NETIF_F_SG)
1079				zc = MSG_ZEROCOPY;
1080			else
1081				uarg_to_msgzc(uarg)->zerocopy = 0;
1082		}
1083	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1084		if (sk->sk_route_caps & NETIF_F_SG)
1085			zc = MSG_SPLICE_PAGES;
1086	}
1087
1088	if (unlikely(flags & MSG_FASTOPEN ||
1089		     inet_test_bit(DEFER_CONNECT, sk)) &&
1090	    !tp->repair) {
1091		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1092		if (err == -EINPROGRESS && copied_syn > 0)
1093			goto out;
1094		else if (err)
1095			goto out_err;
1096	}
1097
1098	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1099
1100	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1101
1102	/* Wait for a connection to finish. One exception is TCP Fast Open
1103	 * (passive side) where data is allowed to be sent before a connection
1104	 * is fully established.
1105	 */
1106	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1107	    !tcp_passive_fastopen(sk)) {
1108		err = sk_stream_wait_connect(sk, &timeo);
1109		if (err != 0)
1110			goto do_error;
1111	}
1112
1113	if (unlikely(tp->repair)) {
1114		if (tp->repair_queue == TCP_RECV_QUEUE) {
1115			copied = tcp_send_rcvq(sk, msg, size);
1116			goto out_nopush;
1117		}
1118
1119		err = -EINVAL;
1120		if (tp->repair_queue == TCP_NO_QUEUE)
1121			goto out_err;
1122
1123		/* 'common' sending to sendq */
1124	}
1125
1126	sockcm_init(&sockc, sk);
1127	if (msg->msg_controllen) {
1128		err = sock_cmsg_send(sk, msg, &sockc);
1129		if (unlikely(err)) {
1130			err = -EINVAL;
1131			goto out_err;
1132		}
1133	}
1134
1135	/* This should be in poll */
1136	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1137
1138	/* Ok commence sending. */
1139	copied = 0;
1140
1141restart:
1142	mss_now = tcp_send_mss(sk, &size_goal, flags);
1143
1144	err = -EPIPE;
1145	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146		goto do_error;
1147
1148	while (msg_data_left(msg)) {
1149		ssize_t copy = 0;
1150
1151		skb = tcp_write_queue_tail(sk);
1152		if (skb)
1153			copy = size_goal - skb->len;
1154
1155		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1156			bool first_skb;
1157
1158new_segment:
1159			if (!sk_stream_memory_free(sk))
1160				goto wait_for_space;
1161
1162			if (unlikely(process_backlog >= 16)) {
1163				process_backlog = 0;
1164				if (sk_flush_backlog(sk))
1165					goto restart;
1166			}
1167			first_skb = tcp_rtx_and_write_queues_empty(sk);
1168			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1169						   first_skb);
1170			if (!skb)
1171				goto wait_for_space;
1172
1173			process_backlog++;
1174
1175#ifdef CONFIG_SKB_DECRYPTED
1176			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1177#endif
1178			tcp_skb_entail(sk, skb);
1179			copy = size_goal;
1180
1181			/* All packets are restored as if they have
1182			 * already been sent. skb_mstamp_ns isn't set to
1183			 * avoid wrong rtt estimation.
1184			 */
1185			if (tp->repair)
1186				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1187		}
1188
1189		/* Try to append data to the end of skb. */
1190		if (copy > msg_data_left(msg))
1191			copy = msg_data_left(msg);
1192
1193		if (zc == 0) {
1194			bool merge = true;
1195			int i = skb_shinfo(skb)->nr_frags;
1196			struct page_frag *pfrag = sk_page_frag(sk);
1197
1198			if (!sk_page_frag_refill(sk, pfrag))
1199				goto wait_for_space;
1200
1201			if (!skb_can_coalesce(skb, i, pfrag->page,
1202					      pfrag->offset)) {
1203				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1204					tcp_mark_push(tp, skb);
1205					goto new_segment;
1206				}
1207				merge = false;
1208			}
1209
1210			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1211
1212			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1213				if (tcp_downgrade_zcopy_pure(sk, skb))
1214					goto wait_for_space;
1215				skb_zcopy_downgrade_managed(skb);
1216			}
1217
1218			copy = tcp_wmem_schedule(sk, copy);
1219			if (!copy)
1220				goto wait_for_space;
1221
1222			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1223						       pfrag->page,
1224						       pfrag->offset,
1225						       copy);
1226			if (err)
1227				goto do_error;
1228
1229			/* Update the skb. */
1230			if (merge) {
1231				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1232			} else {
1233				skb_fill_page_desc(skb, i, pfrag->page,
1234						   pfrag->offset, copy);
1235				page_ref_inc(pfrag->page);
1236			}
1237			pfrag->offset += copy;
1238		} else if (zc == MSG_ZEROCOPY)  {
1239			/* First append to a fragless skb builds initial
1240			 * pure zerocopy skb
1241			 */
1242			if (!skb->len)
1243				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1244
1245			if (!skb_zcopy_pure(skb)) {
1246				copy = tcp_wmem_schedule(sk, copy);
1247				if (!copy)
1248					goto wait_for_space;
1249			}
1250
1251			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1252			if (err == -EMSGSIZE || err == -EEXIST) {
1253				tcp_mark_push(tp, skb);
1254				goto new_segment;
1255			}
1256			if (err < 0)
1257				goto do_error;
1258			copy = err;
1259		} else if (zc == MSG_SPLICE_PAGES) {
1260			/* Splice in data if we can; copy if we can't. */
1261			if (tcp_downgrade_zcopy_pure(sk, skb))
1262				goto wait_for_space;
1263			copy = tcp_wmem_schedule(sk, copy);
1264			if (!copy)
1265				goto wait_for_space;
1266
1267			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1268						   sk->sk_allocation);
1269			if (err < 0) {
1270				if (err == -EMSGSIZE) {
1271					tcp_mark_push(tp, skb);
1272					goto new_segment;
1273				}
1274				goto do_error;
1275			}
1276			copy = err;
1277
1278			if (!(flags & MSG_NO_SHARED_FRAGS))
1279				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1280
1281			sk_wmem_queued_add(sk, copy);
1282			sk_mem_charge(sk, copy);
1283		}
1284
1285		if (!copied)
1286			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1287
1288		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1289		TCP_SKB_CB(skb)->end_seq += copy;
1290		tcp_skb_pcount_set(skb, 0);
1291
1292		copied += copy;
1293		if (!msg_data_left(msg)) {
1294			if (unlikely(flags & MSG_EOR))
1295				TCP_SKB_CB(skb)->eor = 1;
1296			goto out;
1297		}
1298
1299		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1300			continue;
1301
1302		if (forced_push(tp)) {
1303			tcp_mark_push(tp, skb);
1304			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1305		} else if (skb == tcp_send_head(sk))
1306			tcp_push_one(sk, mss_now);
1307		continue;
1308
1309wait_for_space:
1310		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1311		tcp_remove_empty_skb(sk);
1312		if (copied)
1313			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1314				 TCP_NAGLE_PUSH, size_goal);
1315
1316		err = sk_stream_wait_memory(sk, &timeo);
1317		if (err != 0)
1318			goto do_error;
1319
1320		mss_now = tcp_send_mss(sk, &size_goal, flags);
1321	}
1322
1323out:
1324	if (copied) {
1325		tcp_tx_timestamp(sk, &sockc);
1326		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1327	}
1328out_nopush:
1329	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1330	if (uarg && !msg->msg_ubuf)
1331		net_zcopy_put(uarg);
1332	return copied + copied_syn;
1333
1334do_error:
1335	tcp_remove_empty_skb(sk);
1336
1337	if (copied + copied_syn)
1338		goto out;
1339out_err:
1340	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1341	if (uarg && !msg->msg_ubuf)
1342		net_zcopy_put_abort(uarg, true);
1343	err = sk_stream_error(sk, flags, err);
1344	/* make sure we wake any epoll edge trigger waiter */
1345	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1346		sk->sk_write_space(sk);
1347		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1348	}
1349	return err;
1350}
1351EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1352
1353int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1354{
1355	int ret;
1356
1357	lock_sock(sk);
1358	ret = tcp_sendmsg_locked(sk, msg, size);
1359	release_sock(sk);
1360
1361	return ret;
1362}
1363EXPORT_SYMBOL(tcp_sendmsg);
1364
1365void tcp_splice_eof(struct socket *sock)
1366{
1367	struct sock *sk = sock->sk;
1368	struct tcp_sock *tp = tcp_sk(sk);
1369	int mss_now, size_goal;
1370
1371	if (!tcp_write_queue_tail(sk))
1372		return;
1373
1374	lock_sock(sk);
1375	mss_now = tcp_send_mss(sk, &size_goal, 0);
1376	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1377	release_sock(sk);
1378}
1379EXPORT_SYMBOL_GPL(tcp_splice_eof);
1380
1381/*
1382 *	Handle reading urgent data. BSD has very simple semantics for
1383 *	this, no blocking and very strange errors 8)
1384 */
1385
1386static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1387{
1388	struct tcp_sock *tp = tcp_sk(sk);
1389
1390	/* No URG data to read. */
1391	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1392	    tp->urg_data == TCP_URG_READ)
1393		return -EINVAL;	/* Yes this is right ! */
1394
1395	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1396		return -ENOTCONN;
1397
1398	if (tp->urg_data & TCP_URG_VALID) {
1399		int err = 0;
1400		char c = tp->urg_data;
1401
1402		if (!(flags & MSG_PEEK))
1403			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1404
1405		/* Read urgent data. */
1406		msg->msg_flags |= MSG_OOB;
1407
1408		if (len > 0) {
1409			if (!(flags & MSG_TRUNC))
1410				err = memcpy_to_msg(msg, &c, 1);
1411			len = 1;
1412		} else
1413			msg->msg_flags |= MSG_TRUNC;
1414
1415		return err ? -EFAULT : len;
1416	}
1417
1418	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1419		return 0;
1420
1421	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1422	 * the available implementations agree in this case:
1423	 * this call should never block, independent of the
1424	 * blocking state of the socket.
1425	 * Mike <pall@rz.uni-karlsruhe.de>
1426	 */
1427	return -EAGAIN;
1428}
1429
1430static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1431{
1432	struct sk_buff *skb;
1433	int copied = 0, err = 0;
1434
 
 
1435	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1436		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1437		if (err)
1438			return err;
1439		copied += skb->len;
1440	}
1441
1442	skb_queue_walk(&sk->sk_write_queue, skb) {
1443		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1444		if (err)
1445			break;
1446
1447		copied += skb->len;
1448	}
1449
1450	return err ?: copied;
1451}
1452
1453/* Clean up the receive buffer for full frames taken by the user,
1454 * then send an ACK if necessary.  COPIED is the number of bytes
1455 * tcp_recvmsg has given to the user so far, it speeds up the
1456 * calculation of whether or not we must ACK for the sake of
1457 * a window update.
1458 */
1459void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1460{
1461	struct tcp_sock *tp = tcp_sk(sk);
1462	bool time_to_ack = false;
1463
1464	if (inet_csk_ack_scheduled(sk)) {
1465		const struct inet_connection_sock *icsk = inet_csk(sk);
1466
1467		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1468		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1469		    /*
1470		     * If this read emptied read buffer, we send ACK, if
1471		     * connection is not bidirectional, user drained
1472		     * receive buffer and there was a small segment
1473		     * in queue.
1474		     */
1475		    (copied > 0 &&
1476		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1477		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1478		       !inet_csk_in_pingpong_mode(sk))) &&
1479		      !atomic_read(&sk->sk_rmem_alloc)))
1480			time_to_ack = true;
1481	}
1482
1483	/* We send an ACK if we can now advertise a non-zero window
1484	 * which has been raised "significantly".
1485	 *
1486	 * Even if window raised up to infinity, do not send window open ACK
1487	 * in states, where we will not receive more. It is useless.
1488	 */
1489	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1490		__u32 rcv_window_now = tcp_receive_window(tp);
1491
1492		/* Optimize, __tcp_select_window() is not cheap. */
1493		if (2*rcv_window_now <= tp->window_clamp) {
1494			__u32 new_window = __tcp_select_window(sk);
1495
1496			/* Send ACK now, if this read freed lots of space
1497			 * in our buffer. Certainly, new_window is new window.
1498			 * We can advertise it now, if it is not less than current one.
1499			 * "Lots" means "at least twice" here.
1500			 */
1501			if (new_window && new_window >= 2 * rcv_window_now)
1502				time_to_ack = true;
1503		}
1504	}
1505	if (time_to_ack)
1506		tcp_send_ack(sk);
1507}
1508
1509void tcp_cleanup_rbuf(struct sock *sk, int copied)
1510{
1511	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1512	struct tcp_sock *tp = tcp_sk(sk);
1513
1514	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1515	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1516	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1517	__tcp_cleanup_rbuf(sk, copied);
1518}
1519
1520static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1521{
1522	__skb_unlink(skb, &sk->sk_receive_queue);
1523	if (likely(skb->destructor == sock_rfree)) {
1524		sock_rfree(skb);
1525		skb->destructor = NULL;
1526		skb->sk = NULL;
1527		return skb_attempt_defer_free(skb);
1528	}
1529	__kfree_skb(skb);
1530}
1531
1532struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1533{
1534	struct sk_buff *skb;
1535	u32 offset;
1536
1537	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1538		offset = seq - TCP_SKB_CB(skb)->seq;
1539		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1540			pr_err_once("%s: found a SYN, please report !\n", __func__);
1541			offset--;
1542		}
1543		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1544			*off = offset;
1545			return skb;
1546		}
1547		/* This looks weird, but this can happen if TCP collapsing
1548		 * splitted a fat GRO packet, while we released socket lock
1549		 * in skb_splice_bits()
1550		 */
1551		tcp_eat_recv_skb(sk, skb);
1552	}
1553	return NULL;
1554}
1555EXPORT_SYMBOL(tcp_recv_skb);
1556
1557/*
1558 * This routine provides an alternative to tcp_recvmsg() for routines
1559 * that would like to handle copying from skbuffs directly in 'sendfile'
1560 * fashion.
1561 * Note:
1562 *	- It is assumed that the socket was locked by the caller.
1563 *	- The routine does not block.
1564 *	- At present, there is no support for reading OOB data
1565 *	  or for 'peeking' the socket using this routine
1566 *	  (although both would be easy to implement).
1567 */
1568int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1569		  sk_read_actor_t recv_actor)
1570{
1571	struct sk_buff *skb;
1572	struct tcp_sock *tp = tcp_sk(sk);
1573	u32 seq = tp->copied_seq;
1574	u32 offset;
1575	int copied = 0;
1576
1577	if (sk->sk_state == TCP_LISTEN)
1578		return -ENOTCONN;
1579	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1580		if (offset < skb->len) {
1581			int used;
1582			size_t len;
1583
1584			len = skb->len - offset;
1585			/* Stop reading if we hit a patch of urgent data */
1586			if (unlikely(tp->urg_data)) {
1587				u32 urg_offset = tp->urg_seq - seq;
1588				if (urg_offset < len)
1589					len = urg_offset;
1590				if (!len)
1591					break;
1592			}
1593			used = recv_actor(desc, skb, offset, len);
1594			if (used <= 0) {
1595				if (!copied)
1596					copied = used;
1597				break;
1598			}
1599			if (WARN_ON_ONCE(used > len))
1600				used = len;
1601			seq += used;
1602			copied += used;
1603			offset += used;
1604
1605			/* If recv_actor drops the lock (e.g. TCP splice
1606			 * receive) the skb pointer might be invalid when
1607			 * getting here: tcp_collapse might have deleted it
1608			 * while aggregating skbs from the socket queue.
1609			 */
1610			skb = tcp_recv_skb(sk, seq - 1, &offset);
1611			if (!skb)
1612				break;
1613			/* TCP coalescing might have appended data to the skb.
1614			 * Try to splice more frags
1615			 */
1616			if (offset + 1 != skb->len)
1617				continue;
1618		}
1619		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1620			tcp_eat_recv_skb(sk, skb);
1621			++seq;
1622			break;
1623		}
1624		tcp_eat_recv_skb(sk, skb);
1625		if (!desc->count)
1626			break;
1627		WRITE_ONCE(tp->copied_seq, seq);
1628	}
1629	WRITE_ONCE(tp->copied_seq, seq);
1630
1631	tcp_rcv_space_adjust(sk);
1632
1633	/* Clean up data we have read: This will do ACK frames. */
1634	if (copied > 0) {
1635		tcp_recv_skb(sk, seq, &offset);
1636		tcp_cleanup_rbuf(sk, copied);
1637	}
1638	return copied;
1639}
1640EXPORT_SYMBOL(tcp_read_sock);
1641
1642int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1643{
1644	struct sk_buff *skb;
1645	int copied = 0;
1646
1647	if (sk->sk_state == TCP_LISTEN)
1648		return -ENOTCONN;
1649
1650	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1651		u8 tcp_flags;
1652		int used;
1653
1654		__skb_unlink(skb, &sk->sk_receive_queue);
1655		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1656		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1657		used = recv_actor(sk, skb);
1658		if (used < 0) {
1659			if (!copied)
1660				copied = used;
1661			break;
1662		}
1663		copied += used;
1664
1665		if (tcp_flags & TCPHDR_FIN)
1666			break;
1667	}
1668	return copied;
1669}
1670EXPORT_SYMBOL(tcp_read_skb);
1671
1672void tcp_read_done(struct sock *sk, size_t len)
1673{
1674	struct tcp_sock *tp = tcp_sk(sk);
1675	u32 seq = tp->copied_seq;
1676	struct sk_buff *skb;
1677	size_t left;
1678	u32 offset;
1679
1680	if (sk->sk_state == TCP_LISTEN)
1681		return;
1682
1683	left = len;
1684	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1685		int used;
1686
1687		used = min_t(size_t, skb->len - offset, left);
1688		seq += used;
1689		left -= used;
1690
1691		if (skb->len > offset + used)
1692			break;
1693
1694		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1695			tcp_eat_recv_skb(sk, skb);
1696			++seq;
1697			break;
1698		}
1699		tcp_eat_recv_skb(sk, skb);
1700	}
1701	WRITE_ONCE(tp->copied_seq, seq);
1702
1703	tcp_rcv_space_adjust(sk);
1704
1705	/* Clean up data we have read: This will do ACK frames. */
1706	if (left != len)
1707		tcp_cleanup_rbuf(sk, len - left);
1708}
1709EXPORT_SYMBOL(tcp_read_done);
1710
1711int tcp_peek_len(struct socket *sock)
1712{
1713	return tcp_inq(sock->sk);
1714}
1715EXPORT_SYMBOL(tcp_peek_len);
1716
1717/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1718int tcp_set_rcvlowat(struct sock *sk, int val)
1719{
1720	int space, cap;
1721
1722	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723		cap = sk->sk_rcvbuf >> 1;
1724	else
1725		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1726	val = min(val, cap);
1727	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1728
1729	/* Check if we need to signal EPOLLIN right now */
1730	tcp_data_ready(sk);
1731
1732	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733		return 0;
1734
1735	space = tcp_space_from_win(sk, val);
1736	if (space > sk->sk_rcvbuf) {
1737		WRITE_ONCE(sk->sk_rcvbuf, space);
1738		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1739	}
1740	return 0;
1741}
1742EXPORT_SYMBOL(tcp_set_rcvlowat);
1743
1744void tcp_update_recv_tstamps(struct sk_buff *skb,
1745			     struct scm_timestamping_internal *tss)
1746{
1747	if (skb->tstamp)
1748		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1749	else
1750		tss->ts[0] = (struct timespec64) {0};
1751
1752	if (skb_hwtstamps(skb)->hwtstamp)
1753		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1754	else
1755		tss->ts[2] = (struct timespec64) {0};
1756}
1757
1758#ifdef CONFIG_MMU
1759static const struct vm_operations_struct tcp_vm_ops = {
1760};
1761
1762int tcp_mmap(struct file *file, struct socket *sock,
1763	     struct vm_area_struct *vma)
1764{
1765	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1766		return -EPERM;
1767	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1768
1769	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1770	vm_flags_set(vma, VM_MIXEDMAP);
1771
1772	vma->vm_ops = &tcp_vm_ops;
1773	return 0;
1774}
1775EXPORT_SYMBOL(tcp_mmap);
1776
1777static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1778				       u32 *offset_frag)
1779{
1780	skb_frag_t *frag;
1781
1782	if (unlikely(offset_skb >= skb->len))
1783		return NULL;
1784
1785	offset_skb -= skb_headlen(skb);
1786	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1787		return NULL;
1788
1789	frag = skb_shinfo(skb)->frags;
1790	while (offset_skb) {
1791		if (skb_frag_size(frag) > offset_skb) {
1792			*offset_frag = offset_skb;
1793			return frag;
1794		}
1795		offset_skb -= skb_frag_size(frag);
1796		++frag;
1797	}
1798	*offset_frag = 0;
1799	return frag;
1800}
1801
1802static bool can_map_frag(const skb_frag_t *frag)
1803{
1804	struct page *page;
1805
1806	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1807		return false;
1808
1809	page = skb_frag_page(frag);
1810
1811	if (PageCompound(page) || page->mapping)
1812		return false;
1813
1814	return true;
1815}
1816
1817static int find_next_mappable_frag(const skb_frag_t *frag,
1818				   int remaining_in_skb)
1819{
1820	int offset = 0;
1821
1822	if (likely(can_map_frag(frag)))
1823		return 0;
1824
1825	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1826		offset += skb_frag_size(frag);
1827		++frag;
1828	}
1829	return offset;
1830}
1831
1832static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1833					  struct tcp_zerocopy_receive *zc,
1834					  struct sk_buff *skb, u32 offset)
1835{
1836	u32 frag_offset, partial_frag_remainder = 0;
1837	int mappable_offset;
1838	skb_frag_t *frag;
1839
1840	/* worst case: skip to next skb. try to improve on this case below */
1841	zc->recv_skip_hint = skb->len - offset;
1842
1843	/* Find the frag containing this offset (and how far into that frag) */
1844	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1845	if (!frag)
1846		return;
1847
1848	if (frag_offset) {
1849		struct skb_shared_info *info = skb_shinfo(skb);
1850
1851		/* We read part of the last frag, must recvmsg() rest of skb. */
1852		if (frag == &info->frags[info->nr_frags - 1])
1853			return;
1854
1855		/* Else, we must at least read the remainder in this frag. */
1856		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1857		zc->recv_skip_hint -= partial_frag_remainder;
1858		++frag;
1859	}
1860
1861	/* partial_frag_remainder: If part way through a frag, must read rest.
1862	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1863	 * in partial_frag_remainder.
1864	 */
1865	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1866	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1867}
1868
1869static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1870			      int flags, struct scm_timestamping_internal *tss,
1871			      int *cmsg_flags);
1872static int receive_fallback_to_copy(struct sock *sk,
1873				    struct tcp_zerocopy_receive *zc, int inq,
1874				    struct scm_timestamping_internal *tss)
1875{
1876	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1877	struct msghdr msg = {};
1878	int err;
1879
1880	zc->length = 0;
1881	zc->recv_skip_hint = 0;
1882
1883	if (copy_address != zc->copybuf_address)
1884		return -EINVAL;
1885
1886	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1887			  &msg.msg_iter);
1888	if (err)
1889		return err;
1890
1891	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1892				 tss, &zc->msg_flags);
1893	if (err < 0)
1894		return err;
1895
1896	zc->copybuf_len = err;
1897	if (likely(zc->copybuf_len)) {
1898		struct sk_buff *skb;
1899		u32 offset;
1900
1901		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1902		if (skb)
1903			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1904	}
1905	return 0;
1906}
1907
1908static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1909				   struct sk_buff *skb, u32 copylen,
1910				   u32 *offset, u32 *seq)
1911{
1912	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1913	struct msghdr msg = {};
1914	int err;
1915
1916	if (copy_address != zc->copybuf_address)
1917		return -EINVAL;
1918
1919	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1920			  &msg.msg_iter);
1921	if (err)
1922		return err;
1923	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1924	if (err)
1925		return err;
1926	zc->recv_skip_hint -= copylen;
1927	*offset += copylen;
1928	*seq += copylen;
1929	return (__s32)copylen;
1930}
1931
1932static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1933				  struct sock *sk,
1934				  struct sk_buff *skb,
1935				  u32 *seq,
1936				  s32 copybuf_len,
1937				  struct scm_timestamping_internal *tss)
1938{
1939	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1940
1941	if (!copylen)
1942		return 0;
1943	/* skb is null if inq < PAGE_SIZE. */
1944	if (skb) {
1945		offset = *seq - TCP_SKB_CB(skb)->seq;
1946	} else {
1947		skb = tcp_recv_skb(sk, *seq, &offset);
1948		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1949			tcp_update_recv_tstamps(skb, tss);
1950			zc->msg_flags |= TCP_CMSG_TS;
1951		}
1952	}
1953
1954	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1955						  seq);
1956	return zc->copybuf_len < 0 ? 0 : copylen;
1957}
1958
1959static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1960					      struct page **pending_pages,
1961					      unsigned long pages_remaining,
1962					      unsigned long *address,
1963					      u32 *length,
1964					      u32 *seq,
1965					      struct tcp_zerocopy_receive *zc,
1966					      u32 total_bytes_to_map,
1967					      int err)
1968{
1969	/* At least one page did not map. Try zapping if we skipped earlier. */
1970	if (err == -EBUSY &&
1971	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1972		u32 maybe_zap_len;
1973
1974		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1975				*length + /* Mapped or pending */
1976				(pages_remaining * PAGE_SIZE); /* Failed map. */
1977		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1978		err = 0;
1979	}
1980
1981	if (!err) {
1982		unsigned long leftover_pages = pages_remaining;
1983		int bytes_mapped;
1984
1985		/* We called zap_page_range_single, try to reinsert. */
1986		err = vm_insert_pages(vma, *address,
1987				      pending_pages,
1988				      &pages_remaining);
1989		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1990		*seq += bytes_mapped;
1991		*address += bytes_mapped;
1992	}
1993	if (err) {
1994		/* Either we were unable to zap, OR we zapped, retried an
1995		 * insert, and still had an issue. Either ways, pages_remaining
1996		 * is the number of pages we were unable to map, and we unroll
1997		 * some state we speculatively touched before.
1998		 */
1999		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2000
2001		*length -= bytes_not_mapped;
2002		zc->recv_skip_hint += bytes_not_mapped;
2003	}
2004	return err;
2005}
2006
2007static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2008					struct page **pages,
2009					unsigned int pages_to_map,
2010					unsigned long *address,
2011					u32 *length,
2012					u32 *seq,
2013					struct tcp_zerocopy_receive *zc,
2014					u32 total_bytes_to_map)
2015{
2016	unsigned long pages_remaining = pages_to_map;
2017	unsigned int pages_mapped;
2018	unsigned int bytes_mapped;
2019	int err;
2020
2021	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2022	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2023	bytes_mapped = PAGE_SIZE * pages_mapped;
2024	/* Even if vm_insert_pages fails, it may have partially succeeded in
2025	 * mapping (some but not all of the pages).
2026	 */
2027	*seq += bytes_mapped;
2028	*address += bytes_mapped;
2029
2030	if (likely(!err))
2031		return 0;
2032
2033	/* Error: maybe zap and retry + rollback state for failed inserts. */
2034	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2035		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2036		err);
2037}
2038
2039#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2040static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2041				      struct tcp_zerocopy_receive *zc,
2042				      struct scm_timestamping_internal *tss)
2043{
2044	unsigned long msg_control_addr;
2045	struct msghdr cmsg_dummy;
2046
2047	msg_control_addr = (unsigned long)zc->msg_control;
2048	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2049	cmsg_dummy.msg_controllen =
2050		(__kernel_size_t)zc->msg_controllen;
2051	cmsg_dummy.msg_flags = in_compat_syscall()
2052		? MSG_CMSG_COMPAT : 0;
2053	cmsg_dummy.msg_control_is_user = true;
2054	zc->msg_flags = 0;
2055	if (zc->msg_control == msg_control_addr &&
2056	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2057		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2058		zc->msg_control = (__u64)
2059			((uintptr_t)cmsg_dummy.msg_control_user);
2060		zc->msg_controllen =
2061			(__u64)cmsg_dummy.msg_controllen;
2062		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2063	}
2064}
2065
2066static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2067					   unsigned long address,
2068					   bool *mmap_locked)
2069{
2070	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2071
2072	if (vma) {
2073		if (vma->vm_ops != &tcp_vm_ops) {
2074			vma_end_read(vma);
2075			return NULL;
2076		}
2077		*mmap_locked = false;
2078		return vma;
2079	}
2080
2081	mmap_read_lock(mm);
2082	vma = vma_lookup(mm, address);
2083	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2084		mmap_read_unlock(mm);
2085		return NULL;
2086	}
2087	*mmap_locked = true;
2088	return vma;
2089}
2090
2091#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2092static int tcp_zerocopy_receive(struct sock *sk,
2093				struct tcp_zerocopy_receive *zc,
2094				struct scm_timestamping_internal *tss)
2095{
2096	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2097	unsigned long address = (unsigned long)zc->address;
2098	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2099	s32 copybuf_len = zc->copybuf_len;
2100	struct tcp_sock *tp = tcp_sk(sk);
2101	const skb_frag_t *frags = NULL;
2102	unsigned int pages_to_map = 0;
2103	struct vm_area_struct *vma;
2104	struct sk_buff *skb = NULL;
2105	u32 seq = tp->copied_seq;
2106	u32 total_bytes_to_map;
2107	int inq = tcp_inq(sk);
2108	bool mmap_locked;
2109	int ret;
2110
2111	zc->copybuf_len = 0;
2112	zc->msg_flags = 0;
2113
2114	if (address & (PAGE_SIZE - 1) || address != zc->address)
2115		return -EINVAL;
2116
2117	if (sk->sk_state == TCP_LISTEN)
2118		return -ENOTCONN;
2119
2120	sock_rps_record_flow(sk);
2121
2122	if (inq && inq <= copybuf_len)
2123		return receive_fallback_to_copy(sk, zc, inq, tss);
2124
2125	if (inq < PAGE_SIZE) {
2126		zc->length = 0;
2127		zc->recv_skip_hint = inq;
2128		if (!inq && sock_flag(sk, SOCK_DONE))
2129			return -EIO;
2130		return 0;
2131	}
2132
2133	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2134	if (!vma)
2135		return -EINVAL;
2136
2137	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2138	avail_len = min_t(u32, vma_len, inq);
2139	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2140	if (total_bytes_to_map) {
2141		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2142			zap_page_range_single(vma, address, total_bytes_to_map,
2143					      NULL);
2144		zc->length = total_bytes_to_map;
2145		zc->recv_skip_hint = 0;
2146	} else {
2147		zc->length = avail_len;
2148		zc->recv_skip_hint = avail_len;
2149	}
2150	ret = 0;
2151	while (length + PAGE_SIZE <= zc->length) {
2152		int mappable_offset;
2153		struct page *page;
2154
2155		if (zc->recv_skip_hint < PAGE_SIZE) {
2156			u32 offset_frag;
2157
2158			if (skb) {
2159				if (zc->recv_skip_hint > 0)
2160					break;
2161				skb = skb->next;
2162				offset = seq - TCP_SKB_CB(skb)->seq;
2163			} else {
2164				skb = tcp_recv_skb(sk, seq, &offset);
2165			}
2166
2167			if (!skb_frags_readable(skb))
2168				break;
2169
2170			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2171				tcp_update_recv_tstamps(skb, tss);
2172				zc->msg_flags |= TCP_CMSG_TS;
2173			}
2174			zc->recv_skip_hint = skb->len - offset;
2175			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2176			if (!frags || offset_frag)
2177				break;
2178		}
2179
2180		mappable_offset = find_next_mappable_frag(frags,
2181							  zc->recv_skip_hint);
2182		if (mappable_offset) {
2183			zc->recv_skip_hint = mappable_offset;
2184			break;
2185		}
2186		page = skb_frag_page(frags);
2187		if (WARN_ON_ONCE(!page))
2188			break;
2189
2190		prefetchw(page);
2191		pages[pages_to_map++] = page;
2192		length += PAGE_SIZE;
2193		zc->recv_skip_hint -= PAGE_SIZE;
2194		frags++;
2195		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2196		    zc->recv_skip_hint < PAGE_SIZE) {
2197			/* Either full batch, or we're about to go to next skb
2198			 * (and we cannot unroll failed ops across skbs).
2199			 */
2200			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2201							   pages_to_map,
2202							   &address, &length,
2203							   &seq, zc,
2204							   total_bytes_to_map);
2205			if (ret)
2206				goto out;
2207			pages_to_map = 0;
2208		}
2209	}
2210	if (pages_to_map) {
2211		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2212						   &address, &length, &seq,
2213						   zc, total_bytes_to_map);
2214	}
2215out:
2216	if (mmap_locked)
2217		mmap_read_unlock(current->mm);
2218	else
2219		vma_end_read(vma);
2220	/* Try to copy straggler data. */
2221	if (!ret)
2222		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2223
2224	if (length + copylen) {
2225		WRITE_ONCE(tp->copied_seq, seq);
2226		tcp_rcv_space_adjust(sk);
2227
2228		/* Clean up data we have read: This will do ACK frames. */
2229		tcp_recv_skb(sk, seq, &offset);
2230		tcp_cleanup_rbuf(sk, length + copylen);
2231		ret = 0;
2232		if (length == zc->length)
2233			zc->recv_skip_hint = 0;
2234	} else {
2235		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2236			ret = -EIO;
2237	}
2238	zc->length = length;
2239	return ret;
2240}
2241#endif
2242
2243/* Similar to __sock_recv_timestamp, but does not require an skb */
2244void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2245			struct scm_timestamping_internal *tss)
2246{
2247	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2248	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2249	bool has_timestamping = false;
2250
2251	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2252		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2253			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2254				if (new_tstamp) {
2255					struct __kernel_timespec kts = {
2256						.tv_sec = tss->ts[0].tv_sec,
2257						.tv_nsec = tss->ts[0].tv_nsec,
2258					};
2259					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2260						 sizeof(kts), &kts);
2261				} else {
2262					struct __kernel_old_timespec ts_old = {
2263						.tv_sec = tss->ts[0].tv_sec,
2264						.tv_nsec = tss->ts[0].tv_nsec,
2265					};
2266					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2267						 sizeof(ts_old), &ts_old);
2268				}
2269			} else {
2270				if (new_tstamp) {
2271					struct __kernel_sock_timeval stv = {
2272						.tv_sec = tss->ts[0].tv_sec,
2273						.tv_usec = tss->ts[0].tv_nsec / 1000,
2274					};
2275					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2276						 sizeof(stv), &stv);
2277				} else {
2278					struct __kernel_old_timeval tv = {
2279						.tv_sec = tss->ts[0].tv_sec,
2280						.tv_usec = tss->ts[0].tv_nsec / 1000,
2281					};
2282					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2283						 sizeof(tv), &tv);
2284				}
2285			}
2286		}
2287
2288		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2289		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2290		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2291			has_timestamping = true;
2292		else
2293			tss->ts[0] = (struct timespec64) {0};
2294	}
2295
2296	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2297		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2298		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2299		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2300			has_timestamping = true;
2301		else
2302			tss->ts[2] = (struct timespec64) {0};
2303	}
2304
2305	if (has_timestamping) {
2306		tss->ts[1] = (struct timespec64) {0};
2307		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2308			put_cmsg_scm_timestamping64(msg, tss);
2309		else
2310			put_cmsg_scm_timestamping(msg, tss);
2311	}
2312}
2313
2314static int tcp_inq_hint(struct sock *sk)
2315{
2316	const struct tcp_sock *tp = tcp_sk(sk);
2317	u32 copied_seq = READ_ONCE(tp->copied_seq);
2318	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2319	int inq;
2320
2321	inq = rcv_nxt - copied_seq;
2322	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2323		lock_sock(sk);
2324		inq = tp->rcv_nxt - tp->copied_seq;
2325		release_sock(sk);
2326	}
2327	/* After receiving a FIN, tell the user-space to continue reading
2328	 * by returning a non-zero inq.
2329	 */
2330	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2331		inq = 1;
2332	return inq;
2333}
2334
2335/* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2336struct tcp_xa_pool {
2337	u8		max; /* max <= MAX_SKB_FRAGS */
2338	u8		idx; /* idx <= max */
2339	__u32		tokens[MAX_SKB_FRAGS];
2340	netmem_ref	netmems[MAX_SKB_FRAGS];
2341};
2342
2343static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2344{
2345	int i;
2346
2347	/* Commit part that has been copied to user space. */
2348	for (i = 0; i < p->idx; i++)
2349		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2350			     (__force void *)p->netmems[i], GFP_KERNEL);
2351	/* Rollback what has been pre-allocated and is no longer needed. */
2352	for (; i < p->max; i++)
2353		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2354
2355	p->max = 0;
2356	p->idx = 0;
2357}
2358
2359static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2360{
2361	if (!p->max)
2362		return;
2363
2364	xa_lock_bh(&sk->sk_user_frags);
2365
2366	tcp_xa_pool_commit_locked(sk, p);
2367
2368	xa_unlock_bh(&sk->sk_user_frags);
2369}
2370
2371static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2372			      unsigned int max_frags)
2373{
2374	int err, k;
2375
2376	if (p->idx < p->max)
2377		return 0;
2378
2379	xa_lock_bh(&sk->sk_user_frags);
2380
2381	tcp_xa_pool_commit_locked(sk, p);
2382
2383	for (k = 0; k < max_frags; k++) {
2384		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2385				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2386		if (err)
2387			break;
2388	}
2389
2390	xa_unlock_bh(&sk->sk_user_frags);
2391
2392	p->max = k;
2393	p->idx = 0;
2394	return k ? 0 : err;
2395}
2396
2397/* On error, returns the -errno. On success, returns number of bytes sent to the
2398 * user. May not consume all of @remaining_len.
2399 */
2400static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2401			      unsigned int offset, struct msghdr *msg,
2402			      int remaining_len)
2403{
2404	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2405	struct tcp_xa_pool tcp_xa_pool;
2406	unsigned int start;
2407	int i, copy, n;
2408	int sent = 0;
2409	int err = 0;
2410
2411	tcp_xa_pool.max = 0;
2412	tcp_xa_pool.idx = 0;
2413	do {
2414		start = skb_headlen(skb);
2415
2416		if (skb_frags_readable(skb)) {
2417			err = -ENODEV;
2418			goto out;
2419		}
2420
2421		/* Copy header. */
2422		copy = start - offset;
2423		if (copy > 0) {
2424			copy = min(copy, remaining_len);
2425
2426			n = copy_to_iter(skb->data + offset, copy,
2427					 &msg->msg_iter);
2428			if (n != copy) {
2429				err = -EFAULT;
2430				goto out;
2431			}
2432
2433			offset += copy;
2434			remaining_len -= copy;
2435
2436			/* First a dmabuf_cmsg for # bytes copied to user
2437			 * buffer.
2438			 */
2439			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2440			dmabuf_cmsg.frag_size = copy;
2441			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2442					       SO_DEVMEM_LINEAR,
2443					       sizeof(dmabuf_cmsg),
2444					       &dmabuf_cmsg);
2445			if (err)
2446				goto out;
2447
2448			sent += copy;
2449
2450			if (remaining_len == 0)
2451				goto out;
2452		}
2453
2454		/* after that, send information of dmabuf pages through a
2455		 * sequence of cmsg
2456		 */
2457		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2458			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2459			struct net_iov *niov;
2460			u64 frag_offset;
2461			int end;
2462
2463			/* !skb_frags_readable() should indicate that ALL the
2464			 * frags in this skb are dmabuf net_iovs. We're checking
2465			 * for that flag above, but also check individual frags
2466			 * here. If the tcp stack is not setting
2467			 * skb_frags_readable() correctly, we still don't want
2468			 * to crash here.
2469			 */
2470			if (!skb_frag_net_iov(frag)) {
2471				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2472				err = -ENODEV;
2473				goto out;
2474			}
2475
2476			niov = skb_frag_net_iov(frag);
2477			end = start + skb_frag_size(frag);
2478			copy = end - offset;
2479
2480			if (copy > 0) {
2481				copy = min(copy, remaining_len);
2482
2483				frag_offset = net_iov_virtual_addr(niov) +
2484					      skb_frag_off(frag) + offset -
2485					      start;
2486				dmabuf_cmsg.frag_offset = frag_offset;
2487				dmabuf_cmsg.frag_size = copy;
2488				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2489							 skb_shinfo(skb)->nr_frags - i);
2490				if (err)
2491					goto out;
2492
2493				/* Will perform the exchange later */
2494				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2495				dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2496
2497				offset += copy;
2498				remaining_len -= copy;
2499
2500				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2501						       SO_DEVMEM_DMABUF,
2502						       sizeof(dmabuf_cmsg),
2503						       &dmabuf_cmsg);
2504				if (err)
2505					goto out;
2506
2507				atomic_long_inc(&niov->pp_ref_count);
2508				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2509
2510				sent += copy;
2511
2512				if (remaining_len == 0)
2513					goto out;
2514			}
2515			start = end;
2516		}
2517
2518		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2519		if (!remaining_len)
2520			goto out;
2521
2522		/* if remaining_len is not satisfied yet, we need to go to the
2523		 * next frag in the frag_list to satisfy remaining_len.
2524		 */
2525		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2526
2527		offset = offset - start;
2528	} while (skb);
2529
2530	if (remaining_len) {
2531		err = -EFAULT;
2532		goto out;
2533	}
2534
2535out:
2536	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2537	if (!sent)
2538		sent = err;
2539
2540	return sent;
2541}
2542
2543/*
2544 *	This routine copies from a sock struct into the user buffer.
2545 *
2546 *	Technical note: in 2.3 we work on _locked_ socket, so that
2547 *	tricks with *seq access order and skb->users are not required.
2548 *	Probably, code can be easily improved even more.
2549 */
2550
2551static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2552			      int flags, struct scm_timestamping_internal *tss,
2553			      int *cmsg_flags)
2554{
2555	struct tcp_sock *tp = tcp_sk(sk);
2556	int last_copied_dmabuf = -1; /* uninitialized */
2557	int copied = 0;
2558	u32 peek_seq;
2559	u32 *seq;
2560	unsigned long used;
2561	int err;
2562	int target;		/* Read at least this many bytes */
2563	long timeo;
2564	struct sk_buff *skb, *last;
2565	u32 peek_offset = 0;
2566	u32 urg_hole = 0;
2567
2568	err = -ENOTCONN;
2569	if (sk->sk_state == TCP_LISTEN)
2570		goto out;
2571
2572	if (tp->recvmsg_inq) {
2573		*cmsg_flags = TCP_CMSG_INQ;
2574		msg->msg_get_inq = 1;
2575	}
2576	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2577
2578	/* Urgent data needs to be handled specially. */
2579	if (flags & MSG_OOB)
2580		goto recv_urg;
2581
2582	if (unlikely(tp->repair)) {
2583		err = -EPERM;
2584		if (!(flags & MSG_PEEK))
2585			goto out;
2586
2587		if (tp->repair_queue == TCP_SEND_QUEUE)
2588			goto recv_sndq;
2589
2590		err = -EINVAL;
2591		if (tp->repair_queue == TCP_NO_QUEUE)
2592			goto out;
2593
2594		/* 'common' recv queue MSG_PEEK-ing */
2595	}
2596
2597	seq = &tp->copied_seq;
2598	if (flags & MSG_PEEK) {
2599		peek_offset = max(sk_peek_offset(sk, flags), 0);
2600		peek_seq = tp->copied_seq + peek_offset;
2601		seq = &peek_seq;
2602	}
2603
2604	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2605
2606	do {
2607		u32 offset;
2608
2609		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2610		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2611			if (copied)
2612				break;
2613			if (signal_pending(current)) {
2614				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2615				break;
2616			}
2617		}
2618
2619		/* Next get a buffer. */
2620
2621		last = skb_peek_tail(&sk->sk_receive_queue);
2622		skb_queue_walk(&sk->sk_receive_queue, skb) {
2623			last = skb;
2624			/* Now that we have two receive queues this
2625			 * shouldn't happen.
2626			 */
2627			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2628				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2629				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2630				 flags))
2631				break;
2632
2633			offset = *seq - TCP_SKB_CB(skb)->seq;
2634			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2635				pr_err_once("%s: found a SYN, please report !\n", __func__);
2636				offset--;
2637			}
2638			if (offset < skb->len)
2639				goto found_ok_skb;
2640			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2641				goto found_fin_ok;
2642			WARN(!(flags & MSG_PEEK),
2643			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2644			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2645		}
2646
2647		/* Well, if we have backlog, try to process it now yet. */
2648
2649		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2650			break;
2651
2652		if (copied) {
2653			if (!timeo ||
2654			    sk->sk_err ||
2655			    sk->sk_state == TCP_CLOSE ||
2656			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2657			    signal_pending(current))
2658				break;
2659		} else {
2660			if (sock_flag(sk, SOCK_DONE))
2661				break;
2662
2663			if (sk->sk_err) {
2664				copied = sock_error(sk);
2665				break;
2666			}
2667
2668			if (sk->sk_shutdown & RCV_SHUTDOWN)
2669				break;
2670
2671			if (sk->sk_state == TCP_CLOSE) {
2672				/* This occurs when user tries to read
2673				 * from never connected socket.
2674				 */
2675				copied = -ENOTCONN;
2676				break;
2677			}
2678
2679			if (!timeo) {
2680				copied = -EAGAIN;
2681				break;
2682			}
2683
2684			if (signal_pending(current)) {
2685				copied = sock_intr_errno(timeo);
2686				break;
2687			}
2688		}
2689
2690		if (copied >= target) {
2691			/* Do not sleep, just process backlog. */
2692			__sk_flush_backlog(sk);
2693		} else {
2694			tcp_cleanup_rbuf(sk, copied);
2695			err = sk_wait_data(sk, &timeo, last);
2696			if (err < 0) {
2697				err = copied ? : err;
2698				goto out;
2699			}
2700		}
2701
2702		if ((flags & MSG_PEEK) &&
2703		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2704			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2705					    current->comm,
2706					    task_pid_nr(current));
2707			peek_seq = tp->copied_seq + peek_offset;
2708		}
2709		continue;
2710
2711found_ok_skb:
2712		/* Ok so how much can we use? */
2713		used = skb->len - offset;
2714		if (len < used)
2715			used = len;
2716
2717		/* Do we have urgent data here? */
2718		if (unlikely(tp->urg_data)) {
2719			u32 urg_offset = tp->urg_seq - *seq;
2720			if (urg_offset < used) {
2721				if (!urg_offset) {
2722					if (!sock_flag(sk, SOCK_URGINLINE)) {
2723						WRITE_ONCE(*seq, *seq + 1);
2724						urg_hole++;
2725						offset++;
2726						used--;
2727						if (!used)
2728							goto skip_copy;
2729					}
2730				} else
2731					used = urg_offset;
2732			}
2733		}
2734
2735		if (!(flags & MSG_TRUNC)) {
2736			if (last_copied_dmabuf != -1 &&
2737			    last_copied_dmabuf != !skb_frags_readable(skb))
 
 
 
2738				break;
2739
2740			if (skb_frags_readable(skb)) {
2741				err = skb_copy_datagram_msg(skb, offset, msg,
2742							    used);
2743				if (err) {
2744					/* Exception. Bailout! */
2745					if (!copied)
2746						copied = -EFAULT;
2747					break;
2748				}
2749			} else {
2750				if (!(flags & MSG_SOCK_DEVMEM)) {
2751					/* dmabuf skbs can only be received
2752					 * with the MSG_SOCK_DEVMEM flag.
2753					 */
2754					if (!copied)
2755						copied = -EFAULT;
2756
2757					break;
2758				}
2759
2760				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2761							 used);
2762				if (err <= 0) {
2763					if (!copied)
2764						copied = -EFAULT;
2765
2766					break;
2767				}
2768				used = err;
2769			}
2770		}
2771
2772		last_copied_dmabuf = !skb_frags_readable(skb);
2773
2774		WRITE_ONCE(*seq, *seq + used);
2775		copied += used;
2776		len -= used;
2777		if (flags & MSG_PEEK)
2778			sk_peek_offset_fwd(sk, used);
2779		else
2780			sk_peek_offset_bwd(sk, used);
2781		tcp_rcv_space_adjust(sk);
2782
2783skip_copy:
2784		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2785			WRITE_ONCE(tp->urg_data, 0);
2786			tcp_fast_path_check(sk);
2787		}
2788
2789		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2790			tcp_update_recv_tstamps(skb, tss);
2791			*cmsg_flags |= TCP_CMSG_TS;
2792		}
2793
2794		if (used + offset < skb->len)
2795			continue;
2796
2797		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2798			goto found_fin_ok;
2799		if (!(flags & MSG_PEEK))
2800			tcp_eat_recv_skb(sk, skb);
2801		continue;
2802
2803found_fin_ok:
2804		/* Process the FIN. */
2805		WRITE_ONCE(*seq, *seq + 1);
2806		if (!(flags & MSG_PEEK))
2807			tcp_eat_recv_skb(sk, skb);
2808		break;
2809	} while (len > 0);
2810
2811	/* According to UNIX98, msg_name/msg_namelen are ignored
2812	 * on connected socket. I was just happy when found this 8) --ANK
2813	 */
2814
2815	/* Clean up data we have read: This will do ACK frames. */
2816	tcp_cleanup_rbuf(sk, copied);
2817	return copied;
2818
2819out:
2820	return err;
2821
2822recv_urg:
2823	err = tcp_recv_urg(sk, msg, len, flags);
2824	goto out;
2825
2826recv_sndq:
2827	err = tcp_peek_sndq(sk, msg, len);
2828	goto out;
2829}
2830
2831int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2832		int *addr_len)
2833{
2834	int cmsg_flags = 0, ret;
2835	struct scm_timestamping_internal tss;
2836
2837	if (unlikely(flags & MSG_ERRQUEUE))
2838		return inet_recv_error(sk, msg, len, addr_len);
2839
2840	if (sk_can_busy_loop(sk) &&
2841	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2842	    sk->sk_state == TCP_ESTABLISHED)
2843		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2844
2845	lock_sock(sk);
2846	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2847	release_sock(sk);
2848
2849	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2850		if (cmsg_flags & TCP_CMSG_TS)
2851			tcp_recv_timestamp(msg, sk, &tss);
2852		if (msg->msg_get_inq) {
2853			msg->msg_inq = tcp_inq_hint(sk);
2854			if (cmsg_flags & TCP_CMSG_INQ)
2855				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2856					 sizeof(msg->msg_inq), &msg->msg_inq);
2857		}
2858	}
2859	return ret;
2860}
2861EXPORT_SYMBOL(tcp_recvmsg);
2862
2863void tcp_set_state(struct sock *sk, int state)
2864{
2865	int oldstate = sk->sk_state;
2866
2867	/* We defined a new enum for TCP states that are exported in BPF
2868	 * so as not force the internal TCP states to be frozen. The
2869	 * following checks will detect if an internal state value ever
2870	 * differs from the BPF value. If this ever happens, then we will
2871	 * need to remap the internal value to the BPF value before calling
2872	 * tcp_call_bpf_2arg.
2873	 */
2874	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2875	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2876	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2877	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2878	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2879	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2880	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2881	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2882	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2883	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2884	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2885	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2886	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2887	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2888
2889	/* bpf uapi header bpf.h defines an anonymous enum with values
2890	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2891	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2892	 * But clang built vmlinux does not have this enum in DWARF
2893	 * since clang removes the above code before generating IR/debuginfo.
2894	 * Let us explicitly emit the type debuginfo to ensure the
2895	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2896	 * regardless of which compiler is used.
2897	 */
2898	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2899
2900	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2901		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2902
2903	switch (state) {
2904	case TCP_ESTABLISHED:
2905		if (oldstate != TCP_ESTABLISHED)
2906			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2907		break;
2908	case TCP_CLOSE_WAIT:
2909		if (oldstate == TCP_SYN_RECV)
2910			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2911		break;
2912
2913	case TCP_CLOSE:
2914		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2915			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2916
2917		sk->sk_prot->unhash(sk);
2918		if (inet_csk(sk)->icsk_bind_hash &&
2919		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2920			inet_put_port(sk);
2921		fallthrough;
2922	default:
2923		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2924			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2925	}
2926
2927	/* Change state AFTER socket is unhashed to avoid closed
2928	 * socket sitting in hash tables.
2929	 */
2930	inet_sk_state_store(sk, state);
2931}
2932EXPORT_SYMBOL_GPL(tcp_set_state);
2933
2934/*
2935 *	State processing on a close. This implements the state shift for
2936 *	sending our FIN frame. Note that we only send a FIN for some
2937 *	states. A shutdown() may have already sent the FIN, or we may be
2938 *	closed.
2939 */
2940
2941static const unsigned char new_state[16] = {
2942  /* current state:        new state:      action:	*/
2943  [0 /* (Invalid) */]	= TCP_CLOSE,
2944  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2945  [TCP_SYN_SENT]	= TCP_CLOSE,
2946  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2947  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2948  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2949  [TCP_TIME_WAIT]	= TCP_CLOSE,
2950  [TCP_CLOSE]		= TCP_CLOSE,
2951  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2952  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2953  [TCP_LISTEN]		= TCP_CLOSE,
2954  [TCP_CLOSING]		= TCP_CLOSING,
2955  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2956};
2957
2958static int tcp_close_state(struct sock *sk)
2959{
2960	int next = (int)new_state[sk->sk_state];
2961	int ns = next & TCP_STATE_MASK;
2962
2963	tcp_set_state(sk, ns);
2964
2965	return next & TCP_ACTION_FIN;
2966}
2967
2968/*
2969 *	Shutdown the sending side of a connection. Much like close except
2970 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2971 */
2972
2973void tcp_shutdown(struct sock *sk, int how)
2974{
2975	/*	We need to grab some memory, and put together a FIN,
2976	 *	and then put it into the queue to be sent.
2977	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2978	 */
2979	if (!(how & SEND_SHUTDOWN))
2980		return;
2981
2982	/* If we've already sent a FIN, or it's a closed state, skip this. */
2983	if ((1 << sk->sk_state) &
2984	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2985	     TCPF_CLOSE_WAIT)) {
2986		/* Clear out any half completed packets.  FIN if needed. */
2987		if (tcp_close_state(sk))
2988			tcp_send_fin(sk);
2989	}
2990}
2991EXPORT_SYMBOL(tcp_shutdown);
2992
2993int tcp_orphan_count_sum(void)
2994{
2995	int i, total = 0;
2996
2997	for_each_possible_cpu(i)
2998		total += per_cpu(tcp_orphan_count, i);
2999
3000	return max(total, 0);
3001}
3002
3003static int tcp_orphan_cache;
3004static struct timer_list tcp_orphan_timer;
3005#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3006
3007static void tcp_orphan_update(struct timer_list *unused)
3008{
3009	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3010	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3011}
3012
3013static bool tcp_too_many_orphans(int shift)
3014{
3015	return READ_ONCE(tcp_orphan_cache) << shift >
3016		READ_ONCE(sysctl_tcp_max_orphans);
3017}
3018
3019static bool tcp_out_of_memory(const struct sock *sk)
3020{
3021	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3022	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3023		return true;
3024	return false;
3025}
3026
3027bool tcp_check_oom(const struct sock *sk, int shift)
3028{
3029	bool too_many_orphans, out_of_socket_memory;
3030
3031	too_many_orphans = tcp_too_many_orphans(shift);
3032	out_of_socket_memory = tcp_out_of_memory(sk);
3033
3034	if (too_many_orphans)
3035		net_info_ratelimited("too many orphaned sockets\n");
3036	if (out_of_socket_memory)
3037		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3038	return too_many_orphans || out_of_socket_memory;
3039}
3040
3041void __tcp_close(struct sock *sk, long timeout)
3042{
3043	struct sk_buff *skb;
3044	int data_was_unread = 0;
3045	int state;
3046
3047	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3048
3049	if (sk->sk_state == TCP_LISTEN) {
3050		tcp_set_state(sk, TCP_CLOSE);
3051
3052		/* Special case. */
3053		inet_csk_listen_stop(sk);
3054
3055		goto adjudge_to_death;
3056	}
3057
3058	/*  We need to flush the recv. buffs.  We do this only on the
3059	 *  descriptor close, not protocol-sourced closes, because the
3060	 *  reader process may not have drained the data yet!
3061	 */
3062	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3063		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3064
3065		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3066			len--;
3067		data_was_unread += len;
3068		__kfree_skb(skb);
3069	}
3070
3071	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3072	if (sk->sk_state == TCP_CLOSE)
3073		goto adjudge_to_death;
3074
3075	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3076	 * data was lost. To witness the awful effects of the old behavior of
3077	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3078	 * GET in an FTP client, suspend the process, wait for the client to
3079	 * advertise a zero window, then kill -9 the FTP client, wheee...
3080	 * Note: timeout is always zero in such a case.
3081	 */
3082	if (unlikely(tcp_sk(sk)->repair)) {
3083		sk->sk_prot->disconnect(sk, 0);
3084	} else if (data_was_unread) {
3085		/* Unread data was tossed, zap the connection. */
3086		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3087		tcp_set_state(sk, TCP_CLOSE);
3088		tcp_send_active_reset(sk, sk->sk_allocation,
3089				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3090	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3091		/* Check zero linger _after_ checking for unread data. */
3092		sk->sk_prot->disconnect(sk, 0);
3093		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3094	} else if (tcp_close_state(sk)) {
3095		/* We FIN if the application ate all the data before
3096		 * zapping the connection.
3097		 */
3098
3099		/* RED-PEN. Formally speaking, we have broken TCP state
3100		 * machine. State transitions:
3101		 *
3102		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3103		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3104		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3105		 *
3106		 * are legal only when FIN has been sent (i.e. in window),
3107		 * rather than queued out of window. Purists blame.
3108		 *
3109		 * F.e. "RFC state" is ESTABLISHED,
3110		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3111		 *
3112		 * The visible declinations are that sometimes
3113		 * we enter time-wait state, when it is not required really
3114		 * (harmless), do not send active resets, when they are
3115		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3116		 * they look as CLOSING or LAST_ACK for Linux)
3117		 * Probably, I missed some more holelets.
3118		 * 						--ANK
3119		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3120		 * in a single packet! (May consider it later but will
3121		 * probably need API support or TCP_CORK SYN-ACK until
3122		 * data is written and socket is closed.)
3123		 */
3124		tcp_send_fin(sk);
3125	}
3126
3127	sk_stream_wait_close(sk, timeout);
3128
3129adjudge_to_death:
3130	state = sk->sk_state;
3131	sock_hold(sk);
3132	sock_orphan(sk);
3133
3134	local_bh_disable();
3135	bh_lock_sock(sk);
3136	/* remove backlog if any, without releasing ownership. */
3137	__release_sock(sk);
3138
3139	this_cpu_inc(tcp_orphan_count);
3140
3141	/* Have we already been destroyed by a softirq or backlog? */
3142	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3143		goto out;
3144
3145	/*	This is a (useful) BSD violating of the RFC. There is a
3146	 *	problem with TCP as specified in that the other end could
3147	 *	keep a socket open forever with no application left this end.
3148	 *	We use a 1 minute timeout (about the same as BSD) then kill
3149	 *	our end. If they send after that then tough - BUT: long enough
3150	 *	that we won't make the old 4*rto = almost no time - whoops
3151	 *	reset mistake.
3152	 *
3153	 *	Nope, it was not mistake. It is really desired behaviour
3154	 *	f.e. on http servers, when such sockets are useless, but
3155	 *	consume significant resources. Let's do it with special
3156	 *	linger2	option.					--ANK
3157	 */
3158
3159	if (sk->sk_state == TCP_FIN_WAIT2) {
3160		struct tcp_sock *tp = tcp_sk(sk);
3161		if (READ_ONCE(tp->linger2) < 0) {
3162			tcp_set_state(sk, TCP_CLOSE);
3163			tcp_send_active_reset(sk, GFP_ATOMIC,
3164					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3165			__NET_INC_STATS(sock_net(sk),
3166					LINUX_MIB_TCPABORTONLINGER);
3167		} else {
3168			const int tmo = tcp_fin_time(sk);
3169
3170			if (tmo > TCP_TIMEWAIT_LEN) {
3171				inet_csk_reset_keepalive_timer(sk,
3172						tmo - TCP_TIMEWAIT_LEN);
3173			} else {
3174				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3175				goto out;
3176			}
3177		}
3178	}
3179	if (sk->sk_state != TCP_CLOSE) {
3180		if (tcp_check_oom(sk, 0)) {
3181			tcp_set_state(sk, TCP_CLOSE);
3182			tcp_send_active_reset(sk, GFP_ATOMIC,
3183					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3184			__NET_INC_STATS(sock_net(sk),
3185					LINUX_MIB_TCPABORTONMEMORY);
3186		} else if (!check_net(sock_net(sk))) {
3187			/* Not possible to send reset; just close */
3188			tcp_set_state(sk, TCP_CLOSE);
3189		}
3190	}
3191
3192	if (sk->sk_state == TCP_CLOSE) {
3193		struct request_sock *req;
3194
3195		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3196						lockdep_sock_is_held(sk));
3197		/* We could get here with a non-NULL req if the socket is
3198		 * aborted (e.g., closed with unread data) before 3WHS
3199		 * finishes.
3200		 */
3201		if (req)
3202			reqsk_fastopen_remove(sk, req, false);
3203		inet_csk_destroy_sock(sk);
3204	}
3205	/* Otherwise, socket is reprieved until protocol close. */
3206
3207out:
3208	bh_unlock_sock(sk);
3209	local_bh_enable();
3210}
3211
3212void tcp_close(struct sock *sk, long timeout)
3213{
3214	lock_sock(sk);
3215	__tcp_close(sk, timeout);
3216	release_sock(sk);
3217	if (!sk->sk_net_refcnt)
3218		inet_csk_clear_xmit_timers_sync(sk);
3219	sock_put(sk);
3220}
3221EXPORT_SYMBOL(tcp_close);
3222
3223/* These states need RST on ABORT according to RFC793 */
3224
3225static inline bool tcp_need_reset(int state)
3226{
3227	return (1 << state) &
3228	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3229		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3230}
3231
3232static void tcp_rtx_queue_purge(struct sock *sk)
3233{
3234	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3235
3236	tcp_sk(sk)->highest_sack = NULL;
3237	while (p) {
3238		struct sk_buff *skb = rb_to_skb(p);
3239
3240		p = rb_next(p);
3241		/* Since we are deleting whole queue, no need to
3242		 * list_del(&skb->tcp_tsorted_anchor)
3243		 */
3244		tcp_rtx_queue_unlink(skb, sk);
3245		tcp_wmem_free_skb(sk, skb);
3246	}
3247}
3248
3249void tcp_write_queue_purge(struct sock *sk)
3250{
3251	struct sk_buff *skb;
3252
3253	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3254	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3255		tcp_skb_tsorted_anchor_cleanup(skb);
3256		tcp_wmem_free_skb(sk, skb);
3257	}
3258	tcp_rtx_queue_purge(sk);
3259	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3260	tcp_clear_all_retrans_hints(tcp_sk(sk));
3261	tcp_sk(sk)->packets_out = 0;
3262	inet_csk(sk)->icsk_backoff = 0;
3263}
3264
3265int tcp_disconnect(struct sock *sk, int flags)
3266{
3267	struct inet_sock *inet = inet_sk(sk);
3268	struct inet_connection_sock *icsk = inet_csk(sk);
3269	struct tcp_sock *tp = tcp_sk(sk);
3270	int old_state = sk->sk_state;
3271	u32 seq;
3272
3273	if (old_state != TCP_CLOSE)
3274		tcp_set_state(sk, TCP_CLOSE);
3275
3276	/* ABORT function of RFC793 */
3277	if (old_state == TCP_LISTEN) {
3278		inet_csk_listen_stop(sk);
3279	} else if (unlikely(tp->repair)) {
3280		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3281	} else if (tcp_need_reset(old_state)) {
3282		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3283		WRITE_ONCE(sk->sk_err, ECONNRESET);
3284	} else if (tp->snd_nxt != tp->write_seq &&
3285		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3286		/* The last check adjusts for discrepancy of Linux wrt. RFC
3287		 * states
3288		 */
3289		tcp_send_active_reset(sk, gfp_any(),
3290				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3291		WRITE_ONCE(sk->sk_err, ECONNRESET);
3292	} else if (old_state == TCP_SYN_SENT)
3293		WRITE_ONCE(sk->sk_err, ECONNRESET);
3294
3295	tcp_clear_xmit_timers(sk);
3296	__skb_queue_purge(&sk->sk_receive_queue);
3297	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3298	WRITE_ONCE(tp->urg_data, 0);
3299	sk_set_peek_off(sk, -1);
3300	tcp_write_queue_purge(sk);
3301	tcp_fastopen_active_disable_ofo_check(sk);
3302	skb_rbtree_purge(&tp->out_of_order_queue);
3303
3304	inet->inet_dport = 0;
3305
3306	inet_bhash2_reset_saddr(sk);
3307
3308	WRITE_ONCE(sk->sk_shutdown, 0);
3309	sock_reset_flag(sk, SOCK_DONE);
3310	tp->srtt_us = 0;
3311	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3312	tp->rcv_rtt_last_tsecr = 0;
3313
3314	seq = tp->write_seq + tp->max_window + 2;
3315	if (!seq)
3316		seq = 1;
3317	WRITE_ONCE(tp->write_seq, seq);
3318
3319	icsk->icsk_backoff = 0;
3320	icsk->icsk_probes_out = 0;
3321	icsk->icsk_probes_tstamp = 0;
3322	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3323	icsk->icsk_rto_min = TCP_RTO_MIN;
3324	icsk->icsk_delack_max = TCP_DELACK_MAX;
3325	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3326	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3327	tp->snd_cwnd_cnt = 0;
3328	tp->is_cwnd_limited = 0;
3329	tp->max_packets_out = 0;
3330	tp->window_clamp = 0;
3331	tp->delivered = 0;
3332	tp->delivered_ce = 0;
3333	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3334		icsk->icsk_ca_ops->release(sk);
3335	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3336	icsk->icsk_ca_initialized = 0;
3337	tcp_set_ca_state(sk, TCP_CA_Open);
3338	tp->is_sack_reneg = 0;
3339	tcp_clear_retrans(tp);
3340	tp->total_retrans = 0;
3341	inet_csk_delack_init(sk);
3342	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3343	 * issue in __tcp_select_window()
3344	 */
3345	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3346	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3347	__sk_dst_reset(sk);
3348	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3349	tcp_saved_syn_free(tp);
3350	tp->compressed_ack = 0;
3351	tp->segs_in = 0;
3352	tp->segs_out = 0;
3353	tp->bytes_sent = 0;
3354	tp->bytes_acked = 0;
3355	tp->bytes_received = 0;
3356	tp->bytes_retrans = 0;
3357	tp->data_segs_in = 0;
3358	tp->data_segs_out = 0;
3359	tp->duplicate_sack[0].start_seq = 0;
3360	tp->duplicate_sack[0].end_seq = 0;
3361	tp->dsack_dups = 0;
3362	tp->reord_seen = 0;
3363	tp->retrans_out = 0;
3364	tp->sacked_out = 0;
3365	tp->tlp_high_seq = 0;
3366	tp->last_oow_ack_time = 0;
3367	tp->plb_rehash = 0;
3368	/* There's a bubble in the pipe until at least the first ACK. */
3369	tp->app_limited = ~0U;
3370	tp->rate_app_limited = 1;
3371	tp->rack.mstamp = 0;
3372	tp->rack.advanced = 0;
3373	tp->rack.reo_wnd_steps = 1;
3374	tp->rack.last_delivered = 0;
3375	tp->rack.reo_wnd_persist = 0;
3376	tp->rack.dsack_seen = 0;
3377	tp->syn_data_acked = 0;
3378	tp->rx_opt.saw_tstamp = 0;
3379	tp->rx_opt.dsack = 0;
3380	tp->rx_opt.num_sacks = 0;
3381	tp->rcv_ooopack = 0;
3382
3383
3384	/* Clean up fastopen related fields */
3385	tcp_free_fastopen_req(tp);
3386	inet_clear_bit(DEFER_CONNECT, sk);
3387	tp->fastopen_client_fail = 0;
3388
3389	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3390
3391	if (sk->sk_frag.page) {
3392		put_page(sk->sk_frag.page);
3393		sk->sk_frag.page = NULL;
3394		sk->sk_frag.offset = 0;
3395	}
3396	sk_error_report(sk);
3397	return 0;
3398}
3399EXPORT_SYMBOL(tcp_disconnect);
3400
3401static inline bool tcp_can_repair_sock(const struct sock *sk)
3402{
3403	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3404		(sk->sk_state != TCP_LISTEN);
3405}
3406
3407static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3408{
3409	struct tcp_repair_window opt;
3410
3411	if (!tp->repair)
3412		return -EPERM;
3413
3414	if (len != sizeof(opt))
3415		return -EINVAL;
3416
3417	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3418		return -EFAULT;
3419
3420	if (opt.max_window < opt.snd_wnd)
3421		return -EINVAL;
3422
3423	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3424		return -EINVAL;
3425
3426	if (after(opt.rcv_wup, tp->rcv_nxt))
3427		return -EINVAL;
3428
3429	tp->snd_wl1	= opt.snd_wl1;
3430	tp->snd_wnd	= opt.snd_wnd;
3431	tp->max_window	= opt.max_window;
3432
3433	tp->rcv_wnd	= opt.rcv_wnd;
3434	tp->rcv_wup	= opt.rcv_wup;
3435
3436	return 0;
3437}
3438
3439static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3440		unsigned int len)
3441{
3442	struct tcp_sock *tp = tcp_sk(sk);
3443	struct tcp_repair_opt opt;
3444	size_t offset = 0;
3445
3446	while (len >= sizeof(opt)) {
3447		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3448			return -EFAULT;
3449
3450		offset += sizeof(opt);
3451		len -= sizeof(opt);
3452
3453		switch (opt.opt_code) {
3454		case TCPOPT_MSS:
3455			tp->rx_opt.mss_clamp = opt.opt_val;
3456			tcp_mtup_init(sk);
3457			break;
3458		case TCPOPT_WINDOW:
3459			{
3460				u16 snd_wscale = opt.opt_val & 0xFFFF;
3461				u16 rcv_wscale = opt.opt_val >> 16;
3462
3463				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3464					return -EFBIG;
3465
3466				tp->rx_opt.snd_wscale = snd_wscale;
3467				tp->rx_opt.rcv_wscale = rcv_wscale;
3468				tp->rx_opt.wscale_ok = 1;
3469			}
3470			break;
3471		case TCPOPT_SACK_PERM:
3472			if (opt.opt_val != 0)
3473				return -EINVAL;
3474
3475			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3476			break;
3477		case TCPOPT_TIMESTAMP:
3478			if (opt.opt_val != 0)
3479				return -EINVAL;
3480
3481			tp->rx_opt.tstamp_ok = 1;
3482			break;
3483		}
3484	}
3485
3486	return 0;
3487}
3488
3489DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3490EXPORT_SYMBOL(tcp_tx_delay_enabled);
3491
3492static void tcp_enable_tx_delay(void)
3493{
3494	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3495		static int __tcp_tx_delay_enabled = 0;
3496
3497		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3498			static_branch_enable(&tcp_tx_delay_enabled);
3499			pr_info("TCP_TX_DELAY enabled\n");
3500		}
3501	}
3502}
3503
3504/* When set indicates to always queue non-full frames.  Later the user clears
3505 * this option and we transmit any pending partial frames in the queue.  This is
3506 * meant to be used alongside sendfile() to get properly filled frames when the
3507 * user (for example) must write out headers with a write() call first and then
3508 * use sendfile to send out the data parts.
3509 *
3510 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3511 * TCP_NODELAY.
3512 */
3513void __tcp_sock_set_cork(struct sock *sk, bool on)
3514{
3515	struct tcp_sock *tp = tcp_sk(sk);
3516
3517	if (on) {
3518		tp->nonagle |= TCP_NAGLE_CORK;
3519	} else {
3520		tp->nonagle &= ~TCP_NAGLE_CORK;
3521		if (tp->nonagle & TCP_NAGLE_OFF)
3522			tp->nonagle |= TCP_NAGLE_PUSH;
3523		tcp_push_pending_frames(sk);
3524	}
3525}
3526
3527void tcp_sock_set_cork(struct sock *sk, bool on)
3528{
3529	lock_sock(sk);
3530	__tcp_sock_set_cork(sk, on);
3531	release_sock(sk);
3532}
3533EXPORT_SYMBOL(tcp_sock_set_cork);
3534
3535/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3536 * remembered, but it is not activated until cork is cleared.
3537 *
3538 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3539 * even TCP_CORK for currently queued segments.
3540 */
3541void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3542{
3543	if (on) {
3544		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3545		tcp_push_pending_frames(sk);
3546	} else {
3547		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3548	}
3549}
3550
3551void tcp_sock_set_nodelay(struct sock *sk)
3552{
3553	lock_sock(sk);
3554	__tcp_sock_set_nodelay(sk, true);
3555	release_sock(sk);
3556}
3557EXPORT_SYMBOL(tcp_sock_set_nodelay);
3558
3559static void __tcp_sock_set_quickack(struct sock *sk, int val)
3560{
3561	if (!val) {
3562		inet_csk_enter_pingpong_mode(sk);
3563		return;
3564	}
3565
3566	inet_csk_exit_pingpong_mode(sk);
3567	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3568	    inet_csk_ack_scheduled(sk)) {
3569		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3570		tcp_cleanup_rbuf(sk, 1);
3571		if (!(val & 1))
3572			inet_csk_enter_pingpong_mode(sk);
3573	}
3574}
3575
3576void tcp_sock_set_quickack(struct sock *sk, int val)
3577{
3578	lock_sock(sk);
3579	__tcp_sock_set_quickack(sk, val);
3580	release_sock(sk);
3581}
3582EXPORT_SYMBOL(tcp_sock_set_quickack);
3583
3584int tcp_sock_set_syncnt(struct sock *sk, int val)
3585{
3586	if (val < 1 || val > MAX_TCP_SYNCNT)
3587		return -EINVAL;
3588
3589	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3590	return 0;
3591}
3592EXPORT_SYMBOL(tcp_sock_set_syncnt);
3593
3594int tcp_sock_set_user_timeout(struct sock *sk, int val)
3595{
3596	/* Cap the max time in ms TCP will retry or probe the window
3597	 * before giving up and aborting (ETIMEDOUT) a connection.
3598	 */
3599	if (val < 0)
3600		return -EINVAL;
3601
3602	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3603	return 0;
3604}
3605EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3606
3607int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3608{
3609	struct tcp_sock *tp = tcp_sk(sk);
3610
3611	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3612		return -EINVAL;
3613
3614	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3615	WRITE_ONCE(tp->keepalive_time, val * HZ);
3616	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3617	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3618		u32 elapsed = keepalive_time_elapsed(tp);
3619
3620		if (tp->keepalive_time > elapsed)
3621			elapsed = tp->keepalive_time - elapsed;
3622		else
3623			elapsed = 0;
3624		inet_csk_reset_keepalive_timer(sk, elapsed);
3625	}
3626
3627	return 0;
3628}
3629
3630int tcp_sock_set_keepidle(struct sock *sk, int val)
3631{
3632	int err;
3633
3634	lock_sock(sk);
3635	err = tcp_sock_set_keepidle_locked(sk, val);
3636	release_sock(sk);
3637	return err;
3638}
3639EXPORT_SYMBOL(tcp_sock_set_keepidle);
3640
3641int tcp_sock_set_keepintvl(struct sock *sk, int val)
3642{
3643	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3644		return -EINVAL;
3645
3646	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3647	return 0;
3648}
3649EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3650
3651int tcp_sock_set_keepcnt(struct sock *sk, int val)
3652{
3653	if (val < 1 || val > MAX_TCP_KEEPCNT)
3654		return -EINVAL;
3655
3656	/* Paired with READ_ONCE() in keepalive_probes() */
3657	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3658	return 0;
3659}
3660EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3661
3662int tcp_set_window_clamp(struct sock *sk, int val)
3663{
3664	struct tcp_sock *tp = tcp_sk(sk);
3665
3666	if (!val) {
3667		if (sk->sk_state != TCP_CLOSE)
3668			return -EINVAL;
3669		WRITE_ONCE(tp->window_clamp, 0);
3670	} else {
3671		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3672		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3673						SOCK_MIN_RCVBUF / 2 : val;
3674
3675		if (new_window_clamp == old_window_clamp)
3676			return 0;
3677
3678		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3679		if (new_window_clamp < old_window_clamp) {
3680			/* need to apply the reserved mem provisioning only
3681			 * when shrinking the window clamp
3682			 */
3683			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3684
3685		} else {
3686			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3687			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3688					       tp->rcv_ssthresh);
3689		}
3690	}
3691	return 0;
3692}
3693
3694/*
3695 *	Socket option code for TCP.
3696 */
3697int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3698		      sockptr_t optval, unsigned int optlen)
3699{
3700	struct tcp_sock *tp = tcp_sk(sk);
3701	struct inet_connection_sock *icsk = inet_csk(sk);
3702	struct net *net = sock_net(sk);
3703	int val;
3704	int err = 0;
3705
3706	/* These are data/string values, all the others are ints */
3707	switch (optname) {
3708	case TCP_CONGESTION: {
3709		char name[TCP_CA_NAME_MAX];
3710
3711		if (optlen < 1)
3712			return -EINVAL;
3713
3714		val = strncpy_from_sockptr(name, optval,
3715					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3716		if (val < 0)
3717			return -EFAULT;
3718		name[val] = 0;
3719
3720		sockopt_lock_sock(sk);
3721		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3722						 sockopt_ns_capable(sock_net(sk)->user_ns,
3723								    CAP_NET_ADMIN));
3724		sockopt_release_sock(sk);
3725		return err;
3726	}
3727	case TCP_ULP: {
3728		char name[TCP_ULP_NAME_MAX];
3729
3730		if (optlen < 1)
3731			return -EINVAL;
3732
3733		val = strncpy_from_sockptr(name, optval,
3734					min_t(long, TCP_ULP_NAME_MAX - 1,
3735					      optlen));
3736		if (val < 0)
3737			return -EFAULT;
3738		name[val] = 0;
3739
3740		sockopt_lock_sock(sk);
3741		err = tcp_set_ulp(sk, name);
3742		sockopt_release_sock(sk);
3743		return err;
3744	}
3745	case TCP_FASTOPEN_KEY: {
3746		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3747		__u8 *backup_key = NULL;
3748
3749		/* Allow a backup key as well to facilitate key rotation
3750		 * First key is the active one.
3751		 */
3752		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3753		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3754			return -EINVAL;
3755
3756		if (copy_from_sockptr(key, optval, optlen))
3757			return -EFAULT;
3758
3759		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3760			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3761
3762		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3763	}
3764	default:
3765		/* fallthru */
3766		break;
3767	}
3768
3769	if (optlen < sizeof(int))
3770		return -EINVAL;
3771
3772	if (copy_from_sockptr(&val, optval, sizeof(val)))
3773		return -EFAULT;
3774
3775	/* Handle options that can be set without locking the socket. */
3776	switch (optname) {
3777	case TCP_SYNCNT:
3778		return tcp_sock_set_syncnt(sk, val);
3779	case TCP_USER_TIMEOUT:
3780		return tcp_sock_set_user_timeout(sk, val);
3781	case TCP_KEEPINTVL:
3782		return tcp_sock_set_keepintvl(sk, val);
3783	case TCP_KEEPCNT:
3784		return tcp_sock_set_keepcnt(sk, val);
3785	case TCP_LINGER2:
3786		if (val < 0)
3787			WRITE_ONCE(tp->linger2, -1);
3788		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3789			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3790		else
3791			WRITE_ONCE(tp->linger2, val * HZ);
3792		return 0;
3793	case TCP_DEFER_ACCEPT:
3794		/* Translate value in seconds to number of retransmits */
3795		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3796			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3797					   TCP_RTO_MAX / HZ));
3798		return 0;
3799	}
3800
3801	sockopt_lock_sock(sk);
3802
3803	switch (optname) {
3804	case TCP_MAXSEG:
3805		/* Values greater than interface MTU won't take effect. However
3806		 * at the point when this call is done we typically don't yet
3807		 * know which interface is going to be used
3808		 */
3809		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3810			err = -EINVAL;
3811			break;
3812		}
3813		tp->rx_opt.user_mss = val;
3814		break;
3815
3816	case TCP_NODELAY:
3817		__tcp_sock_set_nodelay(sk, val);
3818		break;
3819
3820	case TCP_THIN_LINEAR_TIMEOUTS:
3821		if (val < 0 || val > 1)
3822			err = -EINVAL;
3823		else
3824			tp->thin_lto = val;
3825		break;
3826
3827	case TCP_THIN_DUPACK:
3828		if (val < 0 || val > 1)
3829			err = -EINVAL;
3830		break;
3831
3832	case TCP_REPAIR:
3833		if (!tcp_can_repair_sock(sk))
3834			err = -EPERM;
3835		else if (val == TCP_REPAIR_ON) {
3836			tp->repair = 1;
3837			sk->sk_reuse = SK_FORCE_REUSE;
3838			tp->repair_queue = TCP_NO_QUEUE;
3839		} else if (val == TCP_REPAIR_OFF) {
3840			tp->repair = 0;
3841			sk->sk_reuse = SK_NO_REUSE;
3842			tcp_send_window_probe(sk);
3843		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3844			tp->repair = 0;
3845			sk->sk_reuse = SK_NO_REUSE;
3846		} else
3847			err = -EINVAL;
3848
3849		break;
3850
3851	case TCP_REPAIR_QUEUE:
3852		if (!tp->repair)
3853			err = -EPERM;
3854		else if ((unsigned int)val < TCP_QUEUES_NR)
3855			tp->repair_queue = val;
3856		else
3857			err = -EINVAL;
3858		break;
3859
3860	case TCP_QUEUE_SEQ:
3861		if (sk->sk_state != TCP_CLOSE) {
3862			err = -EPERM;
3863		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3864			if (!tcp_rtx_queue_empty(sk))
3865				err = -EPERM;
3866			else
3867				WRITE_ONCE(tp->write_seq, val);
3868		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3869			if (tp->rcv_nxt != tp->copied_seq) {
3870				err = -EPERM;
3871			} else {
3872				WRITE_ONCE(tp->rcv_nxt, val);
3873				WRITE_ONCE(tp->copied_seq, val);
3874			}
3875		} else {
3876			err = -EINVAL;
3877		}
3878		break;
3879
3880	case TCP_REPAIR_OPTIONS:
3881		if (!tp->repair)
3882			err = -EINVAL;
3883		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3884			err = tcp_repair_options_est(sk, optval, optlen);
3885		else
3886			err = -EPERM;
3887		break;
3888
3889	case TCP_CORK:
3890		__tcp_sock_set_cork(sk, val);
3891		break;
3892
3893	case TCP_KEEPIDLE:
3894		err = tcp_sock_set_keepidle_locked(sk, val);
3895		break;
3896	case TCP_SAVE_SYN:
3897		/* 0: disable, 1: enable, 2: start from ether_header */
3898		if (val < 0 || val > 2)
3899			err = -EINVAL;
3900		else
3901			tp->save_syn = val;
3902		break;
3903
3904	case TCP_WINDOW_CLAMP:
3905		err = tcp_set_window_clamp(sk, val);
3906		break;
3907
3908	case TCP_QUICKACK:
3909		__tcp_sock_set_quickack(sk, val);
3910		break;
3911
3912	case TCP_AO_REPAIR:
3913		if (!tcp_can_repair_sock(sk)) {
3914			err = -EPERM;
3915			break;
3916		}
3917		err = tcp_ao_set_repair(sk, optval, optlen);
3918		break;
3919#ifdef CONFIG_TCP_AO
3920	case TCP_AO_ADD_KEY:
3921	case TCP_AO_DEL_KEY:
3922	case TCP_AO_INFO: {
3923		/* If this is the first TCP-AO setsockopt() on the socket,
3924		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3925		 * in any state.
3926		 */
3927		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3928			goto ao_parse;
3929		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3930					      lockdep_sock_is_held(sk)))
3931			goto ao_parse;
3932		if (tp->repair)
3933			goto ao_parse;
3934		err = -EISCONN;
3935		break;
3936ao_parse:
3937		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3938		break;
3939	}
3940#endif
3941#ifdef CONFIG_TCP_MD5SIG
3942	case TCP_MD5SIG:
3943	case TCP_MD5SIG_EXT:
3944		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3945		break;
3946#endif
3947	case TCP_FASTOPEN:
3948		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3949		    TCPF_LISTEN))) {
3950			tcp_fastopen_init_key_once(net);
3951
3952			fastopen_queue_tune(sk, val);
3953		} else {
3954			err = -EINVAL;
3955		}
3956		break;
3957	case TCP_FASTOPEN_CONNECT:
3958		if (val > 1 || val < 0) {
3959			err = -EINVAL;
3960		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3961			   TFO_CLIENT_ENABLE) {
3962			if (sk->sk_state == TCP_CLOSE)
3963				tp->fastopen_connect = val;
3964			else
3965				err = -EINVAL;
3966		} else {
3967			err = -EOPNOTSUPP;
3968		}
3969		break;
3970	case TCP_FASTOPEN_NO_COOKIE:
3971		if (val > 1 || val < 0)
3972			err = -EINVAL;
3973		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3974			err = -EINVAL;
3975		else
3976			tp->fastopen_no_cookie = val;
3977		break;
3978	case TCP_TIMESTAMP:
3979		if (!tp->repair) {
3980			err = -EPERM;
3981			break;
3982		}
3983		/* val is an opaque field,
3984		 * and low order bit contains usec_ts enable bit.
3985		 * Its a best effort, and we do not care if user makes an error.
3986		 */
3987		tp->tcp_usec_ts = val & 1;
3988		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3989		break;
3990	case TCP_REPAIR_WINDOW:
3991		err = tcp_repair_set_window(tp, optval, optlen);
3992		break;
3993	case TCP_NOTSENT_LOWAT:
3994		WRITE_ONCE(tp->notsent_lowat, val);
3995		sk->sk_write_space(sk);
3996		break;
3997	case TCP_INQ:
3998		if (val > 1 || val < 0)
3999			err = -EINVAL;
4000		else
4001			tp->recvmsg_inq = val;
4002		break;
4003	case TCP_TX_DELAY:
4004		if (val)
4005			tcp_enable_tx_delay();
4006		WRITE_ONCE(tp->tcp_tx_delay, val);
4007		break;
4008	default:
4009		err = -ENOPROTOOPT;
4010		break;
4011	}
4012
4013	sockopt_release_sock(sk);
4014	return err;
4015}
4016
4017int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4018		   unsigned int optlen)
4019{
4020	const struct inet_connection_sock *icsk = inet_csk(sk);
4021
4022	if (level != SOL_TCP)
4023		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4024		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4025								optval, optlen);
4026	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4027}
4028EXPORT_SYMBOL(tcp_setsockopt);
4029
4030static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4031				      struct tcp_info *info)
4032{
4033	u64 stats[__TCP_CHRONO_MAX], total = 0;
4034	enum tcp_chrono i;
4035
4036	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4037		stats[i] = tp->chrono_stat[i - 1];
4038		if (i == tp->chrono_type)
4039			stats[i] += tcp_jiffies32 - tp->chrono_start;
4040		stats[i] *= USEC_PER_SEC / HZ;
4041		total += stats[i];
4042	}
4043
4044	info->tcpi_busy_time = total;
4045	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4046	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4047}
4048
4049/* Return information about state of tcp endpoint in API format. */
4050void tcp_get_info(struct sock *sk, struct tcp_info *info)
4051{
4052	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4053	const struct inet_connection_sock *icsk = inet_csk(sk);
4054	unsigned long rate;
4055	u32 now;
4056	u64 rate64;
4057	bool slow;
4058
4059	memset(info, 0, sizeof(*info));
4060	if (sk->sk_type != SOCK_STREAM)
4061		return;
4062
4063	info->tcpi_state = inet_sk_state_load(sk);
4064
4065	/* Report meaningful fields for all TCP states, including listeners */
4066	rate = READ_ONCE(sk->sk_pacing_rate);
4067	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4068	info->tcpi_pacing_rate = rate64;
4069
4070	rate = READ_ONCE(sk->sk_max_pacing_rate);
4071	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4072	info->tcpi_max_pacing_rate = rate64;
4073
4074	info->tcpi_reordering = tp->reordering;
4075	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4076
4077	if (info->tcpi_state == TCP_LISTEN) {
4078		/* listeners aliased fields :
4079		 * tcpi_unacked -> Number of children ready for accept()
4080		 * tcpi_sacked  -> max backlog
4081		 */
4082		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4083		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4084		return;
4085	}
4086
4087	slow = lock_sock_fast(sk);
4088
4089	info->tcpi_ca_state = icsk->icsk_ca_state;
4090	info->tcpi_retransmits = icsk->icsk_retransmits;
4091	info->tcpi_probes = icsk->icsk_probes_out;
4092	info->tcpi_backoff = icsk->icsk_backoff;
4093
4094	if (tp->rx_opt.tstamp_ok)
4095		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4096	if (tcp_is_sack(tp))
4097		info->tcpi_options |= TCPI_OPT_SACK;
4098	if (tp->rx_opt.wscale_ok) {
4099		info->tcpi_options |= TCPI_OPT_WSCALE;
4100		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4101		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4102	}
4103
4104	if (tp->ecn_flags & TCP_ECN_OK)
4105		info->tcpi_options |= TCPI_OPT_ECN;
4106	if (tp->ecn_flags & TCP_ECN_SEEN)
4107		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4108	if (tp->syn_data_acked)
4109		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4110	if (tp->tcp_usec_ts)
4111		info->tcpi_options |= TCPI_OPT_USEC_TS;
4112
4113	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4114	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4115						tcp_delack_max(sk)));
4116	info->tcpi_snd_mss = tp->mss_cache;
4117	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4118
4119	info->tcpi_unacked = tp->packets_out;
4120	info->tcpi_sacked = tp->sacked_out;
4121
4122	info->tcpi_lost = tp->lost_out;
4123	info->tcpi_retrans = tp->retrans_out;
4124
4125	now = tcp_jiffies32;
4126	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4127	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4128	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4129
4130	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4131	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4132	info->tcpi_rtt = tp->srtt_us >> 3;
4133	info->tcpi_rttvar = tp->mdev_us >> 2;
4134	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4135	info->tcpi_advmss = tp->advmss;
4136
4137	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4138	info->tcpi_rcv_space = tp->rcvq_space.space;
4139
4140	info->tcpi_total_retrans = tp->total_retrans;
4141
4142	info->tcpi_bytes_acked = tp->bytes_acked;
4143	info->tcpi_bytes_received = tp->bytes_received;
4144	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4145	tcp_get_info_chrono_stats(tp, info);
4146
4147	info->tcpi_segs_out = tp->segs_out;
4148
4149	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4150	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4151	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4152
4153	info->tcpi_min_rtt = tcp_min_rtt(tp);
4154	info->tcpi_data_segs_out = tp->data_segs_out;
4155
4156	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4157	rate64 = tcp_compute_delivery_rate(tp);
4158	if (rate64)
4159		info->tcpi_delivery_rate = rate64;
4160	info->tcpi_delivered = tp->delivered;
4161	info->tcpi_delivered_ce = tp->delivered_ce;
4162	info->tcpi_bytes_sent = tp->bytes_sent;
4163	info->tcpi_bytes_retrans = tp->bytes_retrans;
4164	info->tcpi_dsack_dups = tp->dsack_dups;
4165	info->tcpi_reord_seen = tp->reord_seen;
4166	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4167	info->tcpi_snd_wnd = tp->snd_wnd;
4168	info->tcpi_rcv_wnd = tp->rcv_wnd;
4169	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4170	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4171
4172	info->tcpi_total_rto = tp->total_rto;
4173	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4174	info->tcpi_total_rto_time = tp->total_rto_time;
4175	if (tp->rto_stamp)
4176		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4177
4178	unlock_sock_fast(sk, slow);
4179}
4180EXPORT_SYMBOL_GPL(tcp_get_info);
4181
4182static size_t tcp_opt_stats_get_size(void)
4183{
4184	return
4185		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4186		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4187		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4188		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4189		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4190		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4191		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4192		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4193		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4194		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4195		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4196		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4197		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4198		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4199		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4200		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4201		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4202		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4203		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4204		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4205		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4206		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4207		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4208		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4209		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4210		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4211		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4212		0;
4213}
4214
4215/* Returns TTL or hop limit of an incoming packet from skb. */
4216static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4217{
4218	if (skb->protocol == htons(ETH_P_IP))
4219		return ip_hdr(skb)->ttl;
4220	else if (skb->protocol == htons(ETH_P_IPV6))
4221		return ipv6_hdr(skb)->hop_limit;
4222	else
4223		return 0;
4224}
4225
4226struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4227					       const struct sk_buff *orig_skb,
4228					       const struct sk_buff *ack_skb)
4229{
4230	const struct tcp_sock *tp = tcp_sk(sk);
4231	struct sk_buff *stats;
4232	struct tcp_info info;
4233	unsigned long rate;
4234	u64 rate64;
4235
4236	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4237	if (!stats)
4238		return NULL;
4239
4240	tcp_get_info_chrono_stats(tp, &info);
4241	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4242			  info.tcpi_busy_time, TCP_NLA_PAD);
4243	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4244			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4245	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4246			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4247	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4248			  tp->data_segs_out, TCP_NLA_PAD);
4249	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4250			  tp->total_retrans, TCP_NLA_PAD);
4251
4252	rate = READ_ONCE(sk->sk_pacing_rate);
4253	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4254	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4255
4256	rate64 = tcp_compute_delivery_rate(tp);
4257	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4258
4259	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4260	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4261	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4262
4263	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4264	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4265	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4266	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4267	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4268
4269	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4270	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4271
4272	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4273			  TCP_NLA_PAD);
4274	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4275			  TCP_NLA_PAD);
4276	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4277	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4278	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4279	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4280	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4281		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4282	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4283			  TCP_NLA_PAD);
4284	if (ack_skb)
4285		nla_put_u8(stats, TCP_NLA_TTL,
4286			   tcp_skb_ttl_or_hop_limit(ack_skb));
4287
4288	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4289	return stats;
4290}
4291
4292int do_tcp_getsockopt(struct sock *sk, int level,
4293		      int optname, sockptr_t optval, sockptr_t optlen)
4294{
4295	struct inet_connection_sock *icsk = inet_csk(sk);
4296	struct tcp_sock *tp = tcp_sk(sk);
4297	struct net *net = sock_net(sk);
4298	int val, len;
4299
4300	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4301		return -EFAULT;
4302
4303	if (len < 0)
4304		return -EINVAL;
4305
4306	len = min_t(unsigned int, len, sizeof(int));
4307
4308	switch (optname) {
4309	case TCP_MAXSEG:
4310		val = tp->mss_cache;
4311		if (tp->rx_opt.user_mss &&
4312		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4313			val = tp->rx_opt.user_mss;
4314		if (tp->repair)
4315			val = tp->rx_opt.mss_clamp;
4316		break;
4317	case TCP_NODELAY:
4318		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4319		break;
4320	case TCP_CORK:
4321		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4322		break;
4323	case TCP_KEEPIDLE:
4324		val = keepalive_time_when(tp) / HZ;
4325		break;
4326	case TCP_KEEPINTVL:
4327		val = keepalive_intvl_when(tp) / HZ;
4328		break;
4329	case TCP_KEEPCNT:
4330		val = keepalive_probes(tp);
4331		break;
4332	case TCP_SYNCNT:
4333		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4334			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4335		break;
4336	case TCP_LINGER2:
4337		val = READ_ONCE(tp->linger2);
4338		if (val >= 0)
4339			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4340		break;
4341	case TCP_DEFER_ACCEPT:
4342		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4343		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4344				      TCP_RTO_MAX / HZ);
4345		break;
4346	case TCP_WINDOW_CLAMP:
4347		val = READ_ONCE(tp->window_clamp);
4348		break;
4349	case TCP_INFO: {
4350		struct tcp_info info;
4351
4352		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4353			return -EFAULT;
4354
4355		tcp_get_info(sk, &info);
4356
4357		len = min_t(unsigned int, len, sizeof(info));
4358		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4359			return -EFAULT;
4360		if (copy_to_sockptr(optval, &info, len))
4361			return -EFAULT;
4362		return 0;
4363	}
4364	case TCP_CC_INFO: {
4365		const struct tcp_congestion_ops *ca_ops;
4366		union tcp_cc_info info;
4367		size_t sz = 0;
4368		int attr;
4369
4370		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4371			return -EFAULT;
4372
4373		ca_ops = icsk->icsk_ca_ops;
4374		if (ca_ops && ca_ops->get_info)
4375			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4376
4377		len = min_t(unsigned int, len, sz);
4378		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4379			return -EFAULT;
4380		if (copy_to_sockptr(optval, &info, len))
4381			return -EFAULT;
4382		return 0;
4383	}
4384	case TCP_QUICKACK:
4385		val = !inet_csk_in_pingpong_mode(sk);
4386		break;
4387
4388	case TCP_CONGESTION:
4389		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4390			return -EFAULT;
4391		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4392		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4393			return -EFAULT;
4394		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4395			return -EFAULT;
4396		return 0;
4397
4398	case TCP_ULP:
4399		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4400			return -EFAULT;
4401		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4402		if (!icsk->icsk_ulp_ops) {
4403			len = 0;
4404			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4405				return -EFAULT;
4406			return 0;
4407		}
4408		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4409			return -EFAULT;
4410		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4411			return -EFAULT;
4412		return 0;
4413
4414	case TCP_FASTOPEN_KEY: {
4415		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4416		unsigned int key_len;
4417
4418		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4419			return -EFAULT;
4420
4421		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4422				TCP_FASTOPEN_KEY_LENGTH;
4423		len = min_t(unsigned int, len, key_len);
4424		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4425			return -EFAULT;
4426		if (copy_to_sockptr(optval, key, len))
4427			return -EFAULT;
4428		return 0;
4429	}
4430	case TCP_THIN_LINEAR_TIMEOUTS:
4431		val = tp->thin_lto;
4432		break;
4433
4434	case TCP_THIN_DUPACK:
4435		val = 0;
4436		break;
4437
4438	case TCP_REPAIR:
4439		val = tp->repair;
4440		break;
4441
4442	case TCP_REPAIR_QUEUE:
4443		if (tp->repair)
4444			val = tp->repair_queue;
4445		else
4446			return -EINVAL;
4447		break;
4448
4449	case TCP_REPAIR_WINDOW: {
4450		struct tcp_repair_window opt;
4451
4452		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4453			return -EFAULT;
4454
4455		if (len != sizeof(opt))
4456			return -EINVAL;
4457
4458		if (!tp->repair)
4459			return -EPERM;
4460
4461		opt.snd_wl1	= tp->snd_wl1;
4462		opt.snd_wnd	= tp->snd_wnd;
4463		opt.max_window	= tp->max_window;
4464		opt.rcv_wnd	= tp->rcv_wnd;
4465		opt.rcv_wup	= tp->rcv_wup;
4466
4467		if (copy_to_sockptr(optval, &opt, len))
4468			return -EFAULT;
4469		return 0;
4470	}
4471	case TCP_QUEUE_SEQ:
4472		if (tp->repair_queue == TCP_SEND_QUEUE)
4473			val = tp->write_seq;
4474		else if (tp->repair_queue == TCP_RECV_QUEUE)
4475			val = tp->rcv_nxt;
4476		else
4477			return -EINVAL;
4478		break;
4479
4480	case TCP_USER_TIMEOUT:
4481		val = READ_ONCE(icsk->icsk_user_timeout);
4482		break;
4483
4484	case TCP_FASTOPEN:
4485		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4486		break;
4487
4488	case TCP_FASTOPEN_CONNECT:
4489		val = tp->fastopen_connect;
4490		break;
4491
4492	case TCP_FASTOPEN_NO_COOKIE:
4493		val = tp->fastopen_no_cookie;
4494		break;
4495
4496	case TCP_TX_DELAY:
4497		val = READ_ONCE(tp->tcp_tx_delay);
4498		break;
4499
4500	case TCP_TIMESTAMP:
4501		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4502		if (tp->tcp_usec_ts)
4503			val |= 1;
4504		else
4505			val &= ~1;
4506		break;
4507	case TCP_NOTSENT_LOWAT:
4508		val = READ_ONCE(tp->notsent_lowat);
4509		break;
4510	case TCP_INQ:
4511		val = tp->recvmsg_inq;
4512		break;
4513	case TCP_SAVE_SYN:
4514		val = tp->save_syn;
4515		break;
4516	case TCP_SAVED_SYN: {
4517		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4518			return -EFAULT;
4519
4520		sockopt_lock_sock(sk);
4521		if (tp->saved_syn) {
4522			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4523				len = tcp_saved_syn_len(tp->saved_syn);
4524				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4525					sockopt_release_sock(sk);
4526					return -EFAULT;
4527				}
4528				sockopt_release_sock(sk);
4529				return -EINVAL;
4530			}
4531			len = tcp_saved_syn_len(tp->saved_syn);
4532			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4533				sockopt_release_sock(sk);
4534				return -EFAULT;
4535			}
4536			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4537				sockopt_release_sock(sk);
4538				return -EFAULT;
4539			}
4540			tcp_saved_syn_free(tp);
4541			sockopt_release_sock(sk);
4542		} else {
4543			sockopt_release_sock(sk);
4544			len = 0;
4545			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4546				return -EFAULT;
4547		}
4548		return 0;
4549	}
4550#ifdef CONFIG_MMU
4551	case TCP_ZEROCOPY_RECEIVE: {
4552		struct scm_timestamping_internal tss;
4553		struct tcp_zerocopy_receive zc = {};
4554		int err;
4555
4556		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4557			return -EFAULT;
4558		if (len < 0 ||
4559		    len < offsetofend(struct tcp_zerocopy_receive, length))
4560			return -EINVAL;
4561		if (unlikely(len > sizeof(zc))) {
4562			err = check_zeroed_sockptr(optval, sizeof(zc),
4563						   len - sizeof(zc));
4564			if (err < 1)
4565				return err == 0 ? -EINVAL : err;
4566			len = sizeof(zc);
4567			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4568				return -EFAULT;
4569		}
4570		if (copy_from_sockptr(&zc, optval, len))
4571			return -EFAULT;
4572		if (zc.reserved)
4573			return -EINVAL;
4574		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4575			return -EINVAL;
4576		sockopt_lock_sock(sk);
4577		err = tcp_zerocopy_receive(sk, &zc, &tss);
4578		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4579							  &zc, &len, err);
4580		sockopt_release_sock(sk);
4581		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4582			goto zerocopy_rcv_cmsg;
4583		switch (len) {
4584		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4585			goto zerocopy_rcv_cmsg;
4586		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4587		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4588		case offsetofend(struct tcp_zerocopy_receive, flags):
4589		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4590		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4591		case offsetofend(struct tcp_zerocopy_receive, err):
4592			goto zerocopy_rcv_sk_err;
4593		case offsetofend(struct tcp_zerocopy_receive, inq):
4594			goto zerocopy_rcv_inq;
4595		case offsetofend(struct tcp_zerocopy_receive, length):
4596		default:
4597			goto zerocopy_rcv_out;
4598		}
4599zerocopy_rcv_cmsg:
4600		if (zc.msg_flags & TCP_CMSG_TS)
4601			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4602		else
4603			zc.msg_flags = 0;
4604zerocopy_rcv_sk_err:
4605		if (!err)
4606			zc.err = sock_error(sk);
4607zerocopy_rcv_inq:
4608		zc.inq = tcp_inq_hint(sk);
4609zerocopy_rcv_out:
4610		if (!err && copy_to_sockptr(optval, &zc, len))
4611			err = -EFAULT;
4612		return err;
4613	}
4614#endif
4615	case TCP_AO_REPAIR:
4616		if (!tcp_can_repair_sock(sk))
4617			return -EPERM;
4618		return tcp_ao_get_repair(sk, optval, optlen);
4619	case TCP_AO_GET_KEYS:
4620	case TCP_AO_INFO: {
4621		int err;
4622
4623		sockopt_lock_sock(sk);
4624		if (optname == TCP_AO_GET_KEYS)
4625			err = tcp_ao_get_mkts(sk, optval, optlen);
4626		else
4627			err = tcp_ao_get_sock_info(sk, optval, optlen);
4628		sockopt_release_sock(sk);
4629
4630		return err;
4631	}
4632	case TCP_IS_MPTCP:
4633		val = 0;
4634		break;
4635	default:
4636		return -ENOPROTOOPT;
4637	}
4638
4639	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4640		return -EFAULT;
4641	if (copy_to_sockptr(optval, &val, len))
4642		return -EFAULT;
4643	return 0;
4644}
4645
4646bool tcp_bpf_bypass_getsockopt(int level, int optname)
4647{
4648	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4649	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4650	 */
4651	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4652		return true;
4653
4654	return false;
4655}
4656EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4657
4658int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4659		   int __user *optlen)
4660{
4661	struct inet_connection_sock *icsk = inet_csk(sk);
4662
4663	if (level != SOL_TCP)
4664		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4665		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4666								optval, optlen);
4667	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4668				 USER_SOCKPTR(optlen));
4669}
4670EXPORT_SYMBOL(tcp_getsockopt);
4671
4672#ifdef CONFIG_TCP_MD5SIG
4673int tcp_md5_sigpool_id = -1;
4674EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4675
4676int tcp_md5_alloc_sigpool(void)
4677{
4678	size_t scratch_size;
4679	int ret;
4680
4681	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4682	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4683	if (ret >= 0) {
4684		/* As long as any md5 sigpool was allocated, the return
4685		 * id would stay the same. Re-write the id only for the case
4686		 * when previously all MD5 keys were deleted and this call
4687		 * allocates the first MD5 key, which may return a different
4688		 * sigpool id than was used previously.
4689		 */
4690		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4691		return 0;
4692	}
4693	return ret;
4694}
4695
4696void tcp_md5_release_sigpool(void)
4697{
4698	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4699}
4700
4701void tcp_md5_add_sigpool(void)
4702{
4703	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4704}
4705
4706int tcp_md5_hash_key(struct tcp_sigpool *hp,
4707		     const struct tcp_md5sig_key *key)
4708{
4709	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4710	struct scatterlist sg;
4711
4712	sg_init_one(&sg, key->key, keylen);
4713	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4714
4715	/* We use data_race() because tcp_md5_do_add() might change
4716	 * key->key under us
4717	 */
4718	return data_race(crypto_ahash_update(hp->req));
4719}
4720EXPORT_SYMBOL(tcp_md5_hash_key);
4721
4722/* Called with rcu_read_lock() */
4723static enum skb_drop_reason
4724tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4725		     const void *saddr, const void *daddr,
4726		     int family, int l3index, const __u8 *hash_location)
4727{
4728	/* This gets called for each TCP segment that has TCP-MD5 option.
4729	 * We have 3 drop cases:
4730	 * o No MD5 hash and one expected.
4731	 * o MD5 hash and we're not expecting one.
4732	 * o MD5 hash and its wrong.
4733	 */
4734	const struct tcp_sock *tp = tcp_sk(sk);
4735	struct tcp_md5sig_key *key;
4736	u8 newhash[16];
4737	int genhash;
4738
4739	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4740
4741	if (!key && hash_location) {
4742		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4743		trace_tcp_hash_md5_unexpected(sk, skb);
4744		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4745	}
4746
4747	/* Check the signature.
4748	 * To support dual stack listeners, we need to handle
4749	 * IPv4-mapped case.
4750	 */
4751	if (family == AF_INET)
4752		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4753	else
4754		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4755							 NULL, skb);
4756	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4757		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4758		trace_tcp_hash_md5_mismatch(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4759		return SKB_DROP_REASON_TCP_MD5FAILURE;
4760	}
4761	return SKB_NOT_DROPPED_YET;
4762}
4763#else
4764static inline enum skb_drop_reason
4765tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4766		     const void *saddr, const void *daddr,
4767		     int family, int l3index, const __u8 *hash_location)
4768{
4769	return SKB_NOT_DROPPED_YET;
4770}
4771
4772#endif
4773
4774/* Called with rcu_read_lock() */
4775enum skb_drop_reason
4776tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4777		 const struct sk_buff *skb,
4778		 const void *saddr, const void *daddr,
4779		 int family, int dif, int sdif)
4780{
4781	const struct tcphdr *th = tcp_hdr(skb);
4782	const struct tcp_ao_hdr *aoh;
4783	const __u8 *md5_location;
4784	int l3index;
4785
4786	/* Invalid option or two times meet any of auth options */
4787	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4788		trace_tcp_hash_bad_header(sk, skb);
4789		return SKB_DROP_REASON_TCP_AUTH_HDR;
4790	}
4791
4792	if (req) {
4793		if (tcp_rsk_used_ao(req) != !!aoh) {
4794			u8 keyid, rnext, maclen;
4795
4796			if (aoh) {
4797				keyid = aoh->keyid;
4798				rnext = aoh->rnext_keyid;
4799				maclen = tcp_ao_hdr_maclen(aoh);
4800			} else {
4801				keyid = rnext = maclen = 0;
4802			}
4803
4804			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4805			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4806			return SKB_DROP_REASON_TCP_AOFAILURE;
4807		}
4808	}
4809
4810	/* sdif set, means packet ingressed via a device
4811	 * in an L3 domain and dif is set to the l3mdev
4812	 */
4813	l3index = sdif ? dif : 0;
4814
4815	/* Fast path: unsigned segments */
4816	if (likely(!md5_location && !aoh)) {
4817		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4818		 * for the remote peer. On TCP-AO established connection
4819		 * the last key is impossible to remove, so there's
4820		 * always at least one current_key.
4821		 */
4822		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4823			trace_tcp_hash_ao_required(sk, skb);
4824			return SKB_DROP_REASON_TCP_AONOTFOUND;
4825		}
4826		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4827			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4828			trace_tcp_hash_md5_required(sk, skb);
4829			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4830		}
4831		return SKB_NOT_DROPPED_YET;
4832	}
4833
4834	if (aoh)
4835		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4836
4837	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4838				    l3index, md5_location);
4839}
4840EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4841
4842void tcp_done(struct sock *sk)
4843{
4844	struct request_sock *req;
4845
4846	/* We might be called with a new socket, after
4847	 * inet_csk_prepare_forced_close() has been called
4848	 * so we can not use lockdep_sock_is_held(sk)
4849	 */
4850	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4851
4852	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4853		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4854
4855	tcp_set_state(sk, TCP_CLOSE);
4856	tcp_clear_xmit_timers(sk);
4857	if (req)
4858		reqsk_fastopen_remove(sk, req, false);
4859
4860	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4861
4862	if (!sock_flag(sk, SOCK_DEAD))
4863		sk->sk_state_change(sk);
4864	else
4865		inet_csk_destroy_sock(sk);
4866}
4867EXPORT_SYMBOL_GPL(tcp_done);
4868
4869int tcp_abort(struct sock *sk, int err)
4870{
4871	int state = inet_sk_state_load(sk);
4872
4873	if (state == TCP_NEW_SYN_RECV) {
4874		struct request_sock *req = inet_reqsk(sk);
4875
4876		local_bh_disable();
4877		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4878		local_bh_enable();
4879		return 0;
4880	}
4881	if (state == TCP_TIME_WAIT) {
4882		struct inet_timewait_sock *tw = inet_twsk(sk);
4883
4884		refcount_inc(&tw->tw_refcnt);
4885		local_bh_disable();
4886		inet_twsk_deschedule_put(tw);
4887		local_bh_enable();
4888		return 0;
4889	}
4890
4891	/* BPF context ensures sock locking. */
4892	if (!has_current_bpf_ctx())
4893		/* Don't race with userspace socket closes such as tcp_close. */
4894		lock_sock(sk);
4895
4896	/* Avoid closing the same socket twice. */
4897	if (sk->sk_state == TCP_CLOSE) {
4898		if (!has_current_bpf_ctx())
4899			release_sock(sk);
4900		return -ENOENT;
4901	}
4902
4903	if (sk->sk_state == TCP_LISTEN) {
4904		tcp_set_state(sk, TCP_CLOSE);
4905		inet_csk_listen_stop(sk);
4906	}
4907
4908	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4909	local_bh_disable();
4910	bh_lock_sock(sk);
4911
4912	if (tcp_need_reset(sk->sk_state))
4913		tcp_send_active_reset(sk, GFP_ATOMIC,
4914				      SK_RST_REASON_TCP_STATE);
4915	tcp_done_with_error(sk, err);
 
 
 
 
 
4916
4917	bh_unlock_sock(sk);
4918	local_bh_enable();
 
4919	if (!has_current_bpf_ctx())
4920		release_sock(sk);
4921	return 0;
4922}
4923EXPORT_SYMBOL_GPL(tcp_abort);
4924
4925extern struct tcp_congestion_ops tcp_reno;
4926
4927static __initdata unsigned long thash_entries;
4928static int __init set_thash_entries(char *str)
4929{
4930	ssize_t ret;
4931
4932	if (!str)
4933		return 0;
4934
4935	ret = kstrtoul(str, 0, &thash_entries);
4936	if (ret)
4937		return 0;
4938
4939	return 1;
4940}
4941__setup("thash_entries=", set_thash_entries);
4942
4943static void __init tcp_init_mem(void)
4944{
4945	unsigned long limit = nr_free_buffer_pages() / 16;
4946
4947	limit = max(limit, 128UL);
4948	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4949	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4950	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4951}
4952
4953static void __init tcp_struct_check(void)
4954{
4955	/* TX read-mostly hotpath cache lines */
4956	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4957	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4958	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4959	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4960	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4961	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4962	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4963	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4964
4965	/* TXRX read-mostly hotpath cache lines */
4966	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4967	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4968	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4969	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4970	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4971	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4972	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4973	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4974	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4975
4976	/* RX read-mostly hotpath cache lines */
4977	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4978	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4979	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4980	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4981	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4982	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4983	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4984	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4985	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4986	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4987	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4988	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4989	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4990
4991	/* TX read-write hotpath cache lines */
4992	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4993	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4994	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4995	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4996	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4997	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4998	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4999	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5000	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5001	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5002	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
 
 
5003	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5004	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5005	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5006	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5007	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5008
5009	/* TXRX read-write hotpath cache lines */
5010	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5011	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5012	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5013	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5014	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5015	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5016	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5017	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5018	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5019	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5020	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5021	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5022	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5023	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5024	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5025
5026	/* 32bit arches with 8byte alignment on u64 fields might need padding
5027	 * before tcp_clock_cache.
5028	 */
5029	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5030
5031	/* RX read-write hotpath cache lines */
5032	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5033	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5034	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5035	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5036	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5037	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5038	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5039	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5040	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5041	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5042	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5043	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5044	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5045	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5046	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5047}
5048
5049void __init tcp_init(void)
5050{
5051	int max_rshare, max_wshare, cnt;
5052	unsigned long limit;
5053	unsigned int i;
5054
5055	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5056	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5057		     sizeof_field(struct sk_buff, cb));
5058
5059	tcp_struct_check();
5060
5061	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5062
5063	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5064	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5065
5066	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5067			    thash_entries, 21,  /* one slot per 2 MB*/
5068			    0, 64 * 1024);
5069	tcp_hashinfo.bind_bucket_cachep =
5070		kmem_cache_create("tcp_bind_bucket",
5071				  sizeof(struct inet_bind_bucket), 0,
5072				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5073				  SLAB_ACCOUNT,
5074				  NULL);
5075	tcp_hashinfo.bind2_bucket_cachep =
5076		kmem_cache_create("tcp_bind2_bucket",
5077				  sizeof(struct inet_bind2_bucket), 0,
5078				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5079				  SLAB_ACCOUNT,
5080				  NULL);
5081
5082	/* Size and allocate the main established and bind bucket
5083	 * hash tables.
5084	 *
5085	 * The methodology is similar to that of the buffer cache.
5086	 */
5087	tcp_hashinfo.ehash =
5088		alloc_large_system_hash("TCP established",
5089					sizeof(struct inet_ehash_bucket),
5090					thash_entries,
5091					17, /* one slot per 128 KB of memory */
5092					0,
5093					NULL,
5094					&tcp_hashinfo.ehash_mask,
5095					0,
5096					thash_entries ? 0 : 512 * 1024);
5097	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5098		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5099
5100	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5101		panic("TCP: failed to alloc ehash_locks");
5102	tcp_hashinfo.bhash =
5103		alloc_large_system_hash("TCP bind",
5104					2 * sizeof(struct inet_bind_hashbucket),
5105					tcp_hashinfo.ehash_mask + 1,
5106					17, /* one slot per 128 KB of memory */
5107					0,
5108					&tcp_hashinfo.bhash_size,
5109					NULL,
5110					0,
5111					64 * 1024);
5112	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5113	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5114	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5115		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5116		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5117		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5118		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5119	}
5120
5121	tcp_hashinfo.pernet = false;
5122
5123	cnt = tcp_hashinfo.ehash_mask + 1;
5124	sysctl_tcp_max_orphans = cnt / 2;
5125
5126	tcp_init_mem();
5127	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5128	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5129	max_wshare = min(4UL*1024*1024, limit);
5130	max_rshare = min(6UL*1024*1024, limit);
5131
5132	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5133	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5134	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5135
5136	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5137	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5138	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5139
5140	pr_info("Hash tables configured (established %u bind %u)\n",
5141		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5142
5143	tcp_v4_init();
5144	tcp_metrics_init();
5145	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5146	tcp_tasklet_init();
5147	mptcp_init();
5148}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 263#include <linux/cache.h>
 264#include <linux/err.h>
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 277#include <net/sock.h>
 
 278
 279#include <linux/uaccess.h>
 280#include <asm/ioctls.h>
 281#include <net/busy_poll.h>
 
 
 282#include <net/rps.h>
 283
 
 
 284/* Track pending CMSGs. */
 285enum {
 286	TCP_CMSG_INQ = 1,
 287	TCP_CMSG_TS = 2
 288};
 289
 290DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 291EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 292
 
 
 
 293long sysctl_tcp_mem[3] __read_mostly;
 294EXPORT_SYMBOL(sysctl_tcp_mem);
 295
 296atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 297EXPORT_SYMBOL(tcp_memory_allocated);
 298DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 299EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 300
 301#if IS_ENABLED(CONFIG_SMC)
 302DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 303EXPORT_SYMBOL(tcp_have_smc);
 304#endif
 305
 306/*
 307 * Current number of TCP sockets.
 308 */
 309struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 310EXPORT_SYMBOL(tcp_sockets_allocated);
 311
 312/*
 313 * TCP splice context
 314 */
 315struct tcp_splice_state {
 316	struct pipe_inode_info *pipe;
 317	size_t len;
 318	unsigned int flags;
 319};
 320
 321/*
 322 * Pressure flag: try to collapse.
 323 * Technical note: it is used by multiple contexts non atomically.
 324 * All the __sk_mem_schedule() is of this nature: accounting
 325 * is strict, actions are advisory and have some latency.
 326 */
 327unsigned long tcp_memory_pressure __read_mostly;
 328EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 329
 330void tcp_enter_memory_pressure(struct sock *sk)
 331{
 332	unsigned long val;
 333
 334	if (READ_ONCE(tcp_memory_pressure))
 335		return;
 336	val = jiffies;
 337
 338	if (!val)
 339		val--;
 340	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 341		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 342}
 343EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 344
 345void tcp_leave_memory_pressure(struct sock *sk)
 346{
 347	unsigned long val;
 348
 349	if (!READ_ONCE(tcp_memory_pressure))
 350		return;
 351	val = xchg(&tcp_memory_pressure, 0);
 352	if (val)
 353		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 354			      jiffies_to_msecs(jiffies - val));
 355}
 356EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 357
 358/* Convert seconds to retransmits based on initial and max timeout */
 359static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 360{
 361	u8 res = 0;
 362
 363	if (seconds > 0) {
 364		int period = timeout;
 365
 366		res = 1;
 367		while (seconds > period && res < 255) {
 368			res++;
 369			timeout <<= 1;
 370			if (timeout > rto_max)
 371				timeout = rto_max;
 372			period += timeout;
 373		}
 374	}
 375	return res;
 376}
 377
 378/* Convert retransmits to seconds based on initial and max timeout */
 379static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 380{
 381	int period = 0;
 382
 383	if (retrans > 0) {
 384		period = timeout;
 385		while (--retrans) {
 386			timeout <<= 1;
 387			if (timeout > rto_max)
 388				timeout = rto_max;
 389			period += timeout;
 390		}
 391	}
 392	return period;
 393}
 394
 395static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 396{
 397	u32 rate = READ_ONCE(tp->rate_delivered);
 398	u32 intv = READ_ONCE(tp->rate_interval_us);
 399	u64 rate64 = 0;
 400
 401	if (rate && intv) {
 402		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 403		do_div(rate64, intv);
 404	}
 405	return rate64;
 406}
 407
 408/* Address-family independent initialization for a tcp_sock.
 409 *
 410 * NOTE: A lot of things set to zero explicitly by call to
 411 *       sk_alloc() so need not be done here.
 412 */
 413void tcp_init_sock(struct sock *sk)
 414{
 415	struct inet_connection_sock *icsk = inet_csk(sk);
 416	struct tcp_sock *tp = tcp_sk(sk);
 
 417
 418	tp->out_of_order_queue = RB_ROOT;
 419	sk->tcp_rtx_queue = RB_ROOT;
 420	tcp_init_xmit_timers(sk);
 421	INIT_LIST_HEAD(&tp->tsq_node);
 422	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 423
 424	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 425	icsk->icsk_rto_min = TCP_RTO_MIN;
 
 426	icsk->icsk_delack_max = TCP_DELACK_MAX;
 427	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 428	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 429
 430	/* So many TCP implementations out there (incorrectly) count the
 431	 * initial SYN frame in their delayed-ACK and congestion control
 432	 * algorithms that we must have the following bandaid to talk
 433	 * efficiently to them.  -DaveM
 434	 */
 435	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 436
 437	/* There's a bubble in the pipe until at least the first ACK. */
 438	tp->app_limited = ~0U;
 439	tp->rate_app_limited = 1;
 440
 441	/* See draft-stevens-tcpca-spec-01 for discussion of the
 442	 * initialization of these values.
 443	 */
 444	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 445	tp->snd_cwnd_clamp = ~0;
 446	tp->mss_cache = TCP_MSS_DEFAULT;
 447
 448	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 449	tcp_assign_congestion_control(sk);
 450
 451	tp->tsoffset = 0;
 452	tp->rack.reo_wnd_steps = 1;
 453
 454	sk->sk_write_space = sk_stream_write_space;
 455	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 456
 457	icsk->icsk_sync_mss = tcp_sync_mss;
 458
 459	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 460	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 461	tcp_scaling_ratio_init(sk);
 462
 463	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 464	sk_sockets_allocated_inc(sk);
 
 465}
 466EXPORT_SYMBOL(tcp_init_sock);
 467
 468static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 469{
 470	struct sk_buff *skb = tcp_write_queue_tail(sk);
 
 471
 472	if (tsflags && skb) {
 473		struct skb_shared_info *shinfo = skb_shinfo(skb);
 474		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 475
 476		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 477		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 478			tcb->txstamp_ack = 1;
 479		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 480			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 481	}
 482}
 483
 484static bool tcp_stream_is_readable(struct sock *sk, int target)
 485{
 486	if (tcp_epollin_ready(sk, target))
 487		return true;
 488	return sk_is_readable(sk);
 489}
 490
 491/*
 492 *	Wait for a TCP event.
 493 *
 494 *	Note that we don't need to lock the socket, as the upper poll layers
 495 *	take care of normal races (between the test and the event) and we don't
 496 *	go look at any of the socket buffers directly.
 497 */
 498__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 499{
 500	__poll_t mask;
 501	struct sock *sk = sock->sk;
 502	const struct tcp_sock *tp = tcp_sk(sk);
 503	u8 shutdown;
 504	int state;
 505
 506	sock_poll_wait(file, sock, wait);
 507
 508	state = inet_sk_state_load(sk);
 509	if (state == TCP_LISTEN)
 510		return inet_csk_listen_poll(sk);
 511
 512	/* Socket is not locked. We are protected from async events
 513	 * by poll logic and correct handling of state changes
 514	 * made by other threads is impossible in any case.
 515	 */
 516
 517	mask = 0;
 518
 519	/*
 520	 * EPOLLHUP is certainly not done right. But poll() doesn't
 521	 * have a notion of HUP in just one direction, and for a
 522	 * socket the read side is more interesting.
 523	 *
 524	 * Some poll() documentation says that EPOLLHUP is incompatible
 525	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 526	 * all. But careful, it tends to be safer to return too many
 527	 * bits than too few, and you can easily break real applications
 528	 * if you don't tell them that something has hung up!
 529	 *
 530	 * Check-me.
 531	 *
 532	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 533	 * our fs/select.c). It means that after we received EOF,
 534	 * poll always returns immediately, making impossible poll() on write()
 535	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 536	 * if and only if shutdown has been made in both directions.
 537	 * Actually, it is interesting to look how Solaris and DUX
 538	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 539	 * then we could set it on SND_SHUTDOWN. BTW examples given
 540	 * in Stevens' books assume exactly this behaviour, it explains
 541	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 542	 *
 543	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 544	 * blocking on fresh not-connected or disconnected socket. --ANK
 545	 */
 546	shutdown = READ_ONCE(sk->sk_shutdown);
 547	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 548		mask |= EPOLLHUP;
 549	if (shutdown & RCV_SHUTDOWN)
 550		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 551
 552	/* Connected or passive Fast Open socket? */
 553	if (state != TCP_SYN_SENT &&
 554	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 555		int target = sock_rcvlowat(sk, 0, INT_MAX);
 556		u16 urg_data = READ_ONCE(tp->urg_data);
 557
 558		if (unlikely(urg_data) &&
 559		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 560		    !sock_flag(sk, SOCK_URGINLINE))
 561			target++;
 562
 563		if (tcp_stream_is_readable(sk, target))
 564			mask |= EPOLLIN | EPOLLRDNORM;
 565
 566		if (!(shutdown & SEND_SHUTDOWN)) {
 567			if (__sk_stream_is_writeable(sk, 1)) {
 568				mask |= EPOLLOUT | EPOLLWRNORM;
 569			} else {  /* send SIGIO later */
 570				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 571				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 572
 573				/* Race breaker. If space is freed after
 574				 * wspace test but before the flags are set,
 575				 * IO signal will be lost. Memory barrier
 576				 * pairs with the input side.
 577				 */
 578				smp_mb__after_atomic();
 579				if (__sk_stream_is_writeable(sk, 1))
 580					mask |= EPOLLOUT | EPOLLWRNORM;
 581			}
 582		} else
 583			mask |= EPOLLOUT | EPOLLWRNORM;
 584
 585		if (urg_data & TCP_URG_VALID)
 586			mask |= EPOLLPRI;
 587	} else if (state == TCP_SYN_SENT &&
 588		   inet_test_bit(DEFER_CONNECT, sk)) {
 589		/* Active TCP fastopen socket with defer_connect
 590		 * Return EPOLLOUT so application can call write()
 591		 * in order for kernel to generate SYN+data
 592		 */
 593		mask |= EPOLLOUT | EPOLLWRNORM;
 594	}
 595	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 596	smp_rmb();
 597	if (READ_ONCE(sk->sk_err) ||
 598	    !skb_queue_empty_lockless(&sk->sk_error_queue))
 599		mask |= EPOLLERR;
 600
 601	return mask;
 602}
 603EXPORT_SYMBOL(tcp_poll);
 604
 605int tcp_ioctl(struct sock *sk, int cmd, int *karg)
 606{
 607	struct tcp_sock *tp = tcp_sk(sk);
 608	int answ;
 609	bool slow;
 610
 611	switch (cmd) {
 612	case SIOCINQ:
 613		if (sk->sk_state == TCP_LISTEN)
 614			return -EINVAL;
 615
 616		slow = lock_sock_fast(sk);
 617		answ = tcp_inq(sk);
 618		unlock_sock_fast(sk, slow);
 619		break;
 620	case SIOCATMARK:
 621		answ = READ_ONCE(tp->urg_data) &&
 622		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 623		break;
 624	case SIOCOUTQ:
 625		if (sk->sk_state == TCP_LISTEN)
 626			return -EINVAL;
 627
 628		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 629			answ = 0;
 630		else
 631			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 632		break;
 633	case SIOCOUTQNSD:
 634		if (sk->sk_state == TCP_LISTEN)
 635			return -EINVAL;
 636
 637		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 638			answ = 0;
 639		else
 640			answ = READ_ONCE(tp->write_seq) -
 641			       READ_ONCE(tp->snd_nxt);
 642		break;
 643	default:
 644		return -ENOIOCTLCMD;
 645	}
 646
 647	*karg = answ;
 648	return 0;
 649}
 650EXPORT_SYMBOL(tcp_ioctl);
 651
 652void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 653{
 654	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 655	tp->pushed_seq = tp->write_seq;
 656}
 657
 658static inline bool forced_push(const struct tcp_sock *tp)
 659{
 660	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 661}
 662
 663void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 664{
 665	struct tcp_sock *tp = tcp_sk(sk);
 666	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 667
 668	tcb->seq     = tcb->end_seq = tp->write_seq;
 669	tcb->tcp_flags = TCPHDR_ACK;
 670	__skb_header_release(skb);
 671	tcp_add_write_queue_tail(sk, skb);
 672	sk_wmem_queued_add(sk, skb->truesize);
 673	sk_mem_charge(sk, skb->truesize);
 674	if (tp->nonagle & TCP_NAGLE_PUSH)
 675		tp->nonagle &= ~TCP_NAGLE_PUSH;
 676
 677	tcp_slow_start_after_idle_check(sk);
 678}
 679
 680static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 681{
 682	if (flags & MSG_OOB)
 683		tp->snd_up = tp->write_seq;
 684}
 685
 686/* If a not yet filled skb is pushed, do not send it if
 687 * we have data packets in Qdisc or NIC queues :
 688 * Because TX completion will happen shortly, it gives a chance
 689 * to coalesce future sendmsg() payload into this skb, without
 690 * need for a timer, and with no latency trade off.
 691 * As packets containing data payload have a bigger truesize
 692 * than pure acks (dataless) packets, the last checks prevent
 693 * autocorking if we only have an ACK in Qdisc/NIC queues,
 694 * or if TX completion was delayed after we processed ACK packet.
 695 */
 696static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 697				int size_goal)
 698{
 699	return skb->len < size_goal &&
 700	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 701	       !tcp_rtx_queue_empty(sk) &&
 702	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 703	       tcp_skb_can_collapse_to(skb);
 704}
 705
 706void tcp_push(struct sock *sk, int flags, int mss_now,
 707	      int nonagle, int size_goal)
 708{
 709	struct tcp_sock *tp = tcp_sk(sk);
 710	struct sk_buff *skb;
 711
 712	skb = tcp_write_queue_tail(sk);
 713	if (!skb)
 714		return;
 715	if (!(flags & MSG_MORE) || forced_push(tp))
 716		tcp_mark_push(tp, skb);
 717
 718	tcp_mark_urg(tp, flags);
 719
 720	if (tcp_should_autocork(sk, skb, size_goal)) {
 721
 722		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 723		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 724			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 725			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 726			smp_mb__after_atomic();
 727		}
 728		/* It is possible TX completion already happened
 729		 * before we set TSQ_THROTTLED.
 730		 */
 731		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 732			return;
 733	}
 734
 735	if (flags & MSG_MORE)
 736		nonagle = TCP_NAGLE_CORK;
 737
 738	__tcp_push_pending_frames(sk, mss_now, nonagle);
 739}
 740
 741static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 742				unsigned int offset, size_t len)
 743{
 744	struct tcp_splice_state *tss = rd_desc->arg.data;
 745	int ret;
 746
 747	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 748			      min(rd_desc->count, len), tss->flags);
 749	if (ret > 0)
 750		rd_desc->count -= ret;
 751	return ret;
 752}
 753
 754static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 755{
 756	/* Store TCP splice context information in read_descriptor_t. */
 757	read_descriptor_t rd_desc = {
 758		.arg.data = tss,
 759		.count	  = tss->len,
 760	};
 761
 762	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 763}
 764
 765/**
 766 *  tcp_splice_read - splice data from TCP socket to a pipe
 767 * @sock:	socket to splice from
 768 * @ppos:	position (not valid)
 769 * @pipe:	pipe to splice to
 770 * @len:	number of bytes to splice
 771 * @flags:	splice modifier flags
 772 *
 773 * Description:
 774 *    Will read pages from given socket and fill them into a pipe.
 775 *
 776 **/
 777ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 778			struct pipe_inode_info *pipe, size_t len,
 779			unsigned int flags)
 780{
 781	struct sock *sk = sock->sk;
 782	struct tcp_splice_state tss = {
 783		.pipe = pipe,
 784		.len = len,
 785		.flags = flags,
 786	};
 787	long timeo;
 788	ssize_t spliced;
 789	int ret;
 790
 791	sock_rps_record_flow(sk);
 792	/*
 793	 * We can't seek on a socket input
 794	 */
 795	if (unlikely(*ppos))
 796		return -ESPIPE;
 797
 798	ret = spliced = 0;
 799
 800	lock_sock(sk);
 801
 802	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 803	while (tss.len) {
 804		ret = __tcp_splice_read(sk, &tss);
 805		if (ret < 0)
 806			break;
 807		else if (!ret) {
 808			if (spliced)
 809				break;
 810			if (sock_flag(sk, SOCK_DONE))
 811				break;
 812			if (sk->sk_err) {
 813				ret = sock_error(sk);
 814				break;
 815			}
 816			if (sk->sk_shutdown & RCV_SHUTDOWN)
 817				break;
 818			if (sk->sk_state == TCP_CLOSE) {
 819				/*
 820				 * This occurs when user tries to read
 821				 * from never connected socket.
 822				 */
 823				ret = -ENOTCONN;
 824				break;
 825			}
 826			if (!timeo) {
 827				ret = -EAGAIN;
 828				break;
 829			}
 830			/* if __tcp_splice_read() got nothing while we have
 831			 * an skb in receive queue, we do not want to loop.
 832			 * This might happen with URG data.
 833			 */
 834			if (!skb_queue_empty(&sk->sk_receive_queue))
 835				break;
 836			ret = sk_wait_data(sk, &timeo, NULL);
 837			if (ret < 0)
 838				break;
 839			if (signal_pending(current)) {
 840				ret = sock_intr_errno(timeo);
 841				break;
 842			}
 843			continue;
 844		}
 845		tss.len -= ret;
 846		spliced += ret;
 847
 848		if (!tss.len || !timeo)
 849			break;
 850		release_sock(sk);
 851		lock_sock(sk);
 852
 853		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 854		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 855		    signal_pending(current))
 856			break;
 857	}
 858
 859	release_sock(sk);
 860
 861	if (spliced)
 862		return spliced;
 863
 864	return ret;
 865}
 866EXPORT_SYMBOL(tcp_splice_read);
 867
 868struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 869				     bool force_schedule)
 870{
 871	struct sk_buff *skb;
 872
 873	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
 874	if (likely(skb)) {
 875		bool mem_scheduled;
 876
 877		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 878		if (force_schedule) {
 879			mem_scheduled = true;
 880			sk_forced_mem_schedule(sk, skb->truesize);
 881		} else {
 882			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 883		}
 884		if (likely(mem_scheduled)) {
 885			skb_reserve(skb, MAX_TCP_HEADER);
 886			skb->ip_summed = CHECKSUM_PARTIAL;
 887			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 888			return skb;
 889		}
 890		__kfree_skb(skb);
 891	} else {
 892		sk->sk_prot->enter_memory_pressure(sk);
 893		sk_stream_moderate_sndbuf(sk);
 894	}
 895	return NULL;
 896}
 897
 898static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 899				       int large_allowed)
 900{
 901	struct tcp_sock *tp = tcp_sk(sk);
 902	u32 new_size_goal, size_goal;
 903
 904	if (!large_allowed)
 905		return mss_now;
 906
 907	/* Note : tcp_tso_autosize() will eventually split this later */
 908	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 909
 910	/* We try hard to avoid divides here */
 911	size_goal = tp->gso_segs * mss_now;
 912	if (unlikely(new_size_goal < size_goal ||
 913		     new_size_goal >= size_goal + mss_now)) {
 914		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 915				     sk->sk_gso_max_segs);
 916		size_goal = tp->gso_segs * mss_now;
 917	}
 918
 919	return max(size_goal, mss_now);
 920}
 921
 922int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 923{
 924	int mss_now;
 925
 926	mss_now = tcp_current_mss(sk);
 927	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 928
 929	return mss_now;
 930}
 931
 932/* In some cases, sendmsg() could have added an skb to the write queue,
 933 * but failed adding payload on it. We need to remove it to consume less
 934 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
 935 * epoll() users. Another reason is that tcp_write_xmit() does not like
 936 * finding an empty skb in the write queue.
 937 */
 938void tcp_remove_empty_skb(struct sock *sk)
 939{
 940	struct sk_buff *skb = tcp_write_queue_tail(sk);
 941
 942	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 943		tcp_unlink_write_queue(skb, sk);
 944		if (tcp_write_queue_empty(sk))
 945			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 946		tcp_wmem_free_skb(sk, skb);
 947	}
 948}
 949
 950/* skb changing from pure zc to mixed, must charge zc */
 951static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 952{
 953	if (unlikely(skb_zcopy_pure(skb))) {
 954		u32 extra = skb->truesize -
 955			    SKB_TRUESIZE(skb_end_offset(skb));
 956
 957		if (!sk_wmem_schedule(sk, extra))
 958			return -ENOMEM;
 959
 960		sk_mem_charge(sk, extra);
 961		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 962	}
 963	return 0;
 964}
 965
 966
 967int tcp_wmem_schedule(struct sock *sk, int copy)
 968{
 969	int left;
 970
 971	if (likely(sk_wmem_schedule(sk, copy)))
 972		return copy;
 973
 974	/* We could be in trouble if we have nothing queued.
 975	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 976	 * to guarantee some progress.
 977	 */
 978	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
 979	if (left > 0)
 980		sk_forced_mem_schedule(sk, min(left, copy));
 981	return min(copy, sk->sk_forward_alloc);
 982}
 983
 984void tcp_free_fastopen_req(struct tcp_sock *tp)
 985{
 986	if (tp->fastopen_req) {
 987		kfree(tp->fastopen_req);
 988		tp->fastopen_req = NULL;
 989	}
 990}
 991
 992int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 993			 size_t size, struct ubuf_info *uarg)
 994{
 995	struct tcp_sock *tp = tcp_sk(sk);
 996	struct inet_sock *inet = inet_sk(sk);
 997	struct sockaddr *uaddr = msg->msg_name;
 998	int err, flags;
 999
1000	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1001	      TFO_CLIENT_ENABLE) ||
1002	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1003	     uaddr->sa_family == AF_UNSPEC))
1004		return -EOPNOTSUPP;
1005	if (tp->fastopen_req)
1006		return -EALREADY; /* Another Fast Open is in progress */
1007
1008	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009				   sk->sk_allocation);
1010	if (unlikely(!tp->fastopen_req))
1011		return -ENOBUFS;
1012	tp->fastopen_req->data = msg;
1013	tp->fastopen_req->size = size;
1014	tp->fastopen_req->uarg = uarg;
1015
1016	if (inet_test_bit(DEFER_CONNECT, sk)) {
1017		err = tcp_connect(sk);
1018		/* Same failure procedure as in tcp_v4/6_connect */
1019		if (err) {
1020			tcp_set_state(sk, TCP_CLOSE);
1021			inet->inet_dport = 0;
1022			sk->sk_route_caps = 0;
1023		}
1024	}
1025	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1026	err = __inet_stream_connect(sk->sk_socket, uaddr,
1027				    msg->msg_namelen, flags, 1);
1028	/* fastopen_req could already be freed in __inet_stream_connect
1029	 * if the connection times out or gets rst
1030	 */
1031	if (tp->fastopen_req) {
1032		*copied = tp->fastopen_req->copied;
1033		tcp_free_fastopen_req(tp);
1034		inet_clear_bit(DEFER_CONNECT, sk);
1035	}
1036	return err;
1037}
1038
1039int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1040{
1041	struct tcp_sock *tp = tcp_sk(sk);
1042	struct ubuf_info *uarg = NULL;
1043	struct sk_buff *skb;
1044	struct sockcm_cookie sockc;
1045	int flags, err, copied = 0;
1046	int mss_now = 0, size_goal, copied_syn = 0;
1047	int process_backlog = 0;
1048	int zc = 0;
1049	long timeo;
1050
1051	flags = msg->msg_flags;
1052
1053	if ((flags & MSG_ZEROCOPY) && size) {
1054		if (msg->msg_ubuf) {
1055			uarg = msg->msg_ubuf;
1056			if (sk->sk_route_caps & NETIF_F_SG)
1057				zc = MSG_ZEROCOPY;
1058		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1059			skb = tcp_write_queue_tail(sk);
1060			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1061			if (!uarg) {
1062				err = -ENOBUFS;
1063				goto out_err;
1064			}
1065			if (sk->sk_route_caps & NETIF_F_SG)
1066				zc = MSG_ZEROCOPY;
1067			else
1068				uarg_to_msgzc(uarg)->zerocopy = 0;
1069		}
1070	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1071		if (sk->sk_route_caps & NETIF_F_SG)
1072			zc = MSG_SPLICE_PAGES;
1073	}
1074
1075	if (unlikely(flags & MSG_FASTOPEN ||
1076		     inet_test_bit(DEFER_CONNECT, sk)) &&
1077	    !tp->repair) {
1078		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1079		if (err == -EINPROGRESS && copied_syn > 0)
1080			goto out;
1081		else if (err)
1082			goto out_err;
1083	}
1084
1085	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086
1087	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1088
1089	/* Wait for a connection to finish. One exception is TCP Fast Open
1090	 * (passive side) where data is allowed to be sent before a connection
1091	 * is fully established.
1092	 */
1093	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1094	    !tcp_passive_fastopen(sk)) {
1095		err = sk_stream_wait_connect(sk, &timeo);
1096		if (err != 0)
1097			goto do_error;
1098	}
1099
1100	if (unlikely(tp->repair)) {
1101		if (tp->repair_queue == TCP_RECV_QUEUE) {
1102			copied = tcp_send_rcvq(sk, msg, size);
1103			goto out_nopush;
1104		}
1105
1106		err = -EINVAL;
1107		if (tp->repair_queue == TCP_NO_QUEUE)
1108			goto out_err;
1109
1110		/* 'common' sending to sendq */
1111	}
1112
1113	sockcm_init(&sockc, sk);
1114	if (msg->msg_controllen) {
1115		err = sock_cmsg_send(sk, msg, &sockc);
1116		if (unlikely(err)) {
1117			err = -EINVAL;
1118			goto out_err;
1119		}
1120	}
1121
1122	/* This should be in poll */
1123	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1124
1125	/* Ok commence sending. */
1126	copied = 0;
1127
1128restart:
1129	mss_now = tcp_send_mss(sk, &size_goal, flags);
1130
1131	err = -EPIPE;
1132	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1133		goto do_error;
1134
1135	while (msg_data_left(msg)) {
1136		ssize_t copy = 0;
1137
1138		skb = tcp_write_queue_tail(sk);
1139		if (skb)
1140			copy = size_goal - skb->len;
1141
1142		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1143			bool first_skb;
1144
1145new_segment:
1146			if (!sk_stream_memory_free(sk))
1147				goto wait_for_space;
1148
1149			if (unlikely(process_backlog >= 16)) {
1150				process_backlog = 0;
1151				if (sk_flush_backlog(sk))
1152					goto restart;
1153			}
1154			first_skb = tcp_rtx_and_write_queues_empty(sk);
1155			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1156						   first_skb);
1157			if (!skb)
1158				goto wait_for_space;
1159
1160			process_backlog++;
1161
 
 
 
1162			tcp_skb_entail(sk, skb);
1163			copy = size_goal;
1164
1165			/* All packets are restored as if they have
1166			 * already been sent. skb_mstamp_ns isn't set to
1167			 * avoid wrong rtt estimation.
1168			 */
1169			if (tp->repair)
1170				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1171		}
1172
1173		/* Try to append data to the end of skb. */
1174		if (copy > msg_data_left(msg))
1175			copy = msg_data_left(msg);
1176
1177		if (zc == 0) {
1178			bool merge = true;
1179			int i = skb_shinfo(skb)->nr_frags;
1180			struct page_frag *pfrag = sk_page_frag(sk);
1181
1182			if (!sk_page_frag_refill(sk, pfrag))
1183				goto wait_for_space;
1184
1185			if (!skb_can_coalesce(skb, i, pfrag->page,
1186					      pfrag->offset)) {
1187				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1188					tcp_mark_push(tp, skb);
1189					goto new_segment;
1190				}
1191				merge = false;
1192			}
1193
1194			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1195
1196			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1197				if (tcp_downgrade_zcopy_pure(sk, skb))
1198					goto wait_for_space;
1199				skb_zcopy_downgrade_managed(skb);
1200			}
1201
1202			copy = tcp_wmem_schedule(sk, copy);
1203			if (!copy)
1204				goto wait_for_space;
1205
1206			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1207						       pfrag->page,
1208						       pfrag->offset,
1209						       copy);
1210			if (err)
1211				goto do_error;
1212
1213			/* Update the skb. */
1214			if (merge) {
1215				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1216			} else {
1217				skb_fill_page_desc(skb, i, pfrag->page,
1218						   pfrag->offset, copy);
1219				page_ref_inc(pfrag->page);
1220			}
1221			pfrag->offset += copy;
1222		} else if (zc == MSG_ZEROCOPY)  {
1223			/* First append to a fragless skb builds initial
1224			 * pure zerocopy skb
1225			 */
1226			if (!skb->len)
1227				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1228
1229			if (!skb_zcopy_pure(skb)) {
1230				copy = tcp_wmem_schedule(sk, copy);
1231				if (!copy)
1232					goto wait_for_space;
1233			}
1234
1235			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1236			if (err == -EMSGSIZE || err == -EEXIST) {
1237				tcp_mark_push(tp, skb);
1238				goto new_segment;
1239			}
1240			if (err < 0)
1241				goto do_error;
1242			copy = err;
1243		} else if (zc == MSG_SPLICE_PAGES) {
1244			/* Splice in data if we can; copy if we can't. */
1245			if (tcp_downgrade_zcopy_pure(sk, skb))
1246				goto wait_for_space;
1247			copy = tcp_wmem_schedule(sk, copy);
1248			if (!copy)
1249				goto wait_for_space;
1250
1251			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1252						   sk->sk_allocation);
1253			if (err < 0) {
1254				if (err == -EMSGSIZE) {
1255					tcp_mark_push(tp, skb);
1256					goto new_segment;
1257				}
1258				goto do_error;
1259			}
1260			copy = err;
1261
1262			if (!(flags & MSG_NO_SHARED_FRAGS))
1263				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1264
1265			sk_wmem_queued_add(sk, copy);
1266			sk_mem_charge(sk, copy);
1267		}
1268
1269		if (!copied)
1270			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1271
1272		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1273		TCP_SKB_CB(skb)->end_seq += copy;
1274		tcp_skb_pcount_set(skb, 0);
1275
1276		copied += copy;
1277		if (!msg_data_left(msg)) {
1278			if (unlikely(flags & MSG_EOR))
1279				TCP_SKB_CB(skb)->eor = 1;
1280			goto out;
1281		}
1282
1283		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1284			continue;
1285
1286		if (forced_push(tp)) {
1287			tcp_mark_push(tp, skb);
1288			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1289		} else if (skb == tcp_send_head(sk))
1290			tcp_push_one(sk, mss_now);
1291		continue;
1292
1293wait_for_space:
1294		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1295		tcp_remove_empty_skb(sk);
1296		if (copied)
1297			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1298				 TCP_NAGLE_PUSH, size_goal);
1299
1300		err = sk_stream_wait_memory(sk, &timeo);
1301		if (err != 0)
1302			goto do_error;
1303
1304		mss_now = tcp_send_mss(sk, &size_goal, flags);
1305	}
1306
1307out:
1308	if (copied) {
1309		tcp_tx_timestamp(sk, sockc.tsflags);
1310		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1311	}
1312out_nopush:
1313	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1314	if (uarg && !msg->msg_ubuf)
1315		net_zcopy_put(uarg);
1316	return copied + copied_syn;
1317
1318do_error:
1319	tcp_remove_empty_skb(sk);
1320
1321	if (copied + copied_syn)
1322		goto out;
1323out_err:
1324	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1325	if (uarg && !msg->msg_ubuf)
1326		net_zcopy_put_abort(uarg, true);
1327	err = sk_stream_error(sk, flags, err);
1328	/* make sure we wake any epoll edge trigger waiter */
1329	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1330		sk->sk_write_space(sk);
1331		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1332	}
1333	return err;
1334}
1335EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1336
1337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1338{
1339	int ret;
1340
1341	lock_sock(sk);
1342	ret = tcp_sendmsg_locked(sk, msg, size);
1343	release_sock(sk);
1344
1345	return ret;
1346}
1347EXPORT_SYMBOL(tcp_sendmsg);
1348
1349void tcp_splice_eof(struct socket *sock)
1350{
1351	struct sock *sk = sock->sk;
1352	struct tcp_sock *tp = tcp_sk(sk);
1353	int mss_now, size_goal;
1354
1355	if (!tcp_write_queue_tail(sk))
1356		return;
1357
1358	lock_sock(sk);
1359	mss_now = tcp_send_mss(sk, &size_goal, 0);
1360	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1361	release_sock(sk);
1362}
1363EXPORT_SYMBOL_GPL(tcp_splice_eof);
1364
1365/*
1366 *	Handle reading urgent data. BSD has very simple semantics for
1367 *	this, no blocking and very strange errors 8)
1368 */
1369
1370static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1371{
1372	struct tcp_sock *tp = tcp_sk(sk);
1373
1374	/* No URG data to read. */
1375	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1376	    tp->urg_data == TCP_URG_READ)
1377		return -EINVAL;	/* Yes this is right ! */
1378
1379	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1380		return -ENOTCONN;
1381
1382	if (tp->urg_data & TCP_URG_VALID) {
1383		int err = 0;
1384		char c = tp->urg_data;
1385
1386		if (!(flags & MSG_PEEK))
1387			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1388
1389		/* Read urgent data. */
1390		msg->msg_flags |= MSG_OOB;
1391
1392		if (len > 0) {
1393			if (!(flags & MSG_TRUNC))
1394				err = memcpy_to_msg(msg, &c, 1);
1395			len = 1;
1396		} else
1397			msg->msg_flags |= MSG_TRUNC;
1398
1399		return err ? -EFAULT : len;
1400	}
1401
1402	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1403		return 0;
1404
1405	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1406	 * the available implementations agree in this case:
1407	 * this call should never block, independent of the
1408	 * blocking state of the socket.
1409	 * Mike <pall@rz.uni-karlsruhe.de>
1410	 */
1411	return -EAGAIN;
1412}
1413
1414static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1415{
1416	struct sk_buff *skb;
1417	int copied = 0, err = 0;
1418
1419	/* XXX -- need to support SO_PEEK_OFF */
1420
1421	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1422		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1423		if (err)
1424			return err;
1425		copied += skb->len;
1426	}
1427
1428	skb_queue_walk(&sk->sk_write_queue, skb) {
1429		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1430		if (err)
1431			break;
1432
1433		copied += skb->len;
1434	}
1435
1436	return err ?: copied;
1437}
1438
1439/* Clean up the receive buffer for full frames taken by the user,
1440 * then send an ACK if necessary.  COPIED is the number of bytes
1441 * tcp_recvmsg has given to the user so far, it speeds up the
1442 * calculation of whether or not we must ACK for the sake of
1443 * a window update.
1444 */
1445void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1446{
1447	struct tcp_sock *tp = tcp_sk(sk);
1448	bool time_to_ack = false;
1449
1450	if (inet_csk_ack_scheduled(sk)) {
1451		const struct inet_connection_sock *icsk = inet_csk(sk);
1452
1453		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1454		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1455		    /*
1456		     * If this read emptied read buffer, we send ACK, if
1457		     * connection is not bidirectional, user drained
1458		     * receive buffer and there was a small segment
1459		     * in queue.
1460		     */
1461		    (copied > 0 &&
1462		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1463		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1464		       !inet_csk_in_pingpong_mode(sk))) &&
1465		      !atomic_read(&sk->sk_rmem_alloc)))
1466			time_to_ack = true;
1467	}
1468
1469	/* We send an ACK if we can now advertise a non-zero window
1470	 * which has been raised "significantly".
1471	 *
1472	 * Even if window raised up to infinity, do not send window open ACK
1473	 * in states, where we will not receive more. It is useless.
1474	 */
1475	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1476		__u32 rcv_window_now = tcp_receive_window(tp);
1477
1478		/* Optimize, __tcp_select_window() is not cheap. */
1479		if (2*rcv_window_now <= tp->window_clamp) {
1480			__u32 new_window = __tcp_select_window(sk);
1481
1482			/* Send ACK now, if this read freed lots of space
1483			 * in our buffer. Certainly, new_window is new window.
1484			 * We can advertise it now, if it is not less than current one.
1485			 * "Lots" means "at least twice" here.
1486			 */
1487			if (new_window && new_window >= 2 * rcv_window_now)
1488				time_to_ack = true;
1489		}
1490	}
1491	if (time_to_ack)
1492		tcp_send_ack(sk);
1493}
1494
1495void tcp_cleanup_rbuf(struct sock *sk, int copied)
1496{
1497	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1498	struct tcp_sock *tp = tcp_sk(sk);
1499
1500	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1501	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1502	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1503	__tcp_cleanup_rbuf(sk, copied);
1504}
1505
1506static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1507{
1508	__skb_unlink(skb, &sk->sk_receive_queue);
1509	if (likely(skb->destructor == sock_rfree)) {
1510		sock_rfree(skb);
1511		skb->destructor = NULL;
1512		skb->sk = NULL;
1513		return skb_attempt_defer_free(skb);
1514	}
1515	__kfree_skb(skb);
1516}
1517
1518struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1519{
1520	struct sk_buff *skb;
1521	u32 offset;
1522
1523	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1524		offset = seq - TCP_SKB_CB(skb)->seq;
1525		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1526			pr_err_once("%s: found a SYN, please report !\n", __func__);
1527			offset--;
1528		}
1529		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1530			*off = offset;
1531			return skb;
1532		}
1533		/* This looks weird, but this can happen if TCP collapsing
1534		 * splitted a fat GRO packet, while we released socket lock
1535		 * in skb_splice_bits()
1536		 */
1537		tcp_eat_recv_skb(sk, skb);
1538	}
1539	return NULL;
1540}
1541EXPORT_SYMBOL(tcp_recv_skb);
1542
1543/*
1544 * This routine provides an alternative to tcp_recvmsg() for routines
1545 * that would like to handle copying from skbuffs directly in 'sendfile'
1546 * fashion.
1547 * Note:
1548 *	- It is assumed that the socket was locked by the caller.
1549 *	- The routine does not block.
1550 *	- At present, there is no support for reading OOB data
1551 *	  or for 'peeking' the socket using this routine
1552 *	  (although both would be easy to implement).
1553 */
1554int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1555		  sk_read_actor_t recv_actor)
1556{
1557	struct sk_buff *skb;
1558	struct tcp_sock *tp = tcp_sk(sk);
1559	u32 seq = tp->copied_seq;
1560	u32 offset;
1561	int copied = 0;
1562
1563	if (sk->sk_state == TCP_LISTEN)
1564		return -ENOTCONN;
1565	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1566		if (offset < skb->len) {
1567			int used;
1568			size_t len;
1569
1570			len = skb->len - offset;
1571			/* Stop reading if we hit a patch of urgent data */
1572			if (unlikely(tp->urg_data)) {
1573				u32 urg_offset = tp->urg_seq - seq;
1574				if (urg_offset < len)
1575					len = urg_offset;
1576				if (!len)
1577					break;
1578			}
1579			used = recv_actor(desc, skb, offset, len);
1580			if (used <= 0) {
1581				if (!copied)
1582					copied = used;
1583				break;
1584			}
1585			if (WARN_ON_ONCE(used > len))
1586				used = len;
1587			seq += used;
1588			copied += used;
1589			offset += used;
1590
1591			/* If recv_actor drops the lock (e.g. TCP splice
1592			 * receive) the skb pointer might be invalid when
1593			 * getting here: tcp_collapse might have deleted it
1594			 * while aggregating skbs from the socket queue.
1595			 */
1596			skb = tcp_recv_skb(sk, seq - 1, &offset);
1597			if (!skb)
1598				break;
1599			/* TCP coalescing might have appended data to the skb.
1600			 * Try to splice more frags
1601			 */
1602			if (offset + 1 != skb->len)
1603				continue;
1604		}
1605		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1606			tcp_eat_recv_skb(sk, skb);
1607			++seq;
1608			break;
1609		}
1610		tcp_eat_recv_skb(sk, skb);
1611		if (!desc->count)
1612			break;
1613		WRITE_ONCE(tp->copied_seq, seq);
1614	}
1615	WRITE_ONCE(tp->copied_seq, seq);
1616
1617	tcp_rcv_space_adjust(sk);
1618
1619	/* Clean up data we have read: This will do ACK frames. */
1620	if (copied > 0) {
1621		tcp_recv_skb(sk, seq, &offset);
1622		tcp_cleanup_rbuf(sk, copied);
1623	}
1624	return copied;
1625}
1626EXPORT_SYMBOL(tcp_read_sock);
1627
1628int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1629{
1630	struct sk_buff *skb;
1631	int copied = 0;
1632
1633	if (sk->sk_state == TCP_LISTEN)
1634		return -ENOTCONN;
1635
1636	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1637		u8 tcp_flags;
1638		int used;
1639
1640		__skb_unlink(skb, &sk->sk_receive_queue);
1641		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1642		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1643		used = recv_actor(sk, skb);
1644		if (used < 0) {
1645			if (!copied)
1646				copied = used;
1647			break;
1648		}
1649		copied += used;
1650
1651		if (tcp_flags & TCPHDR_FIN)
1652			break;
1653	}
1654	return copied;
1655}
1656EXPORT_SYMBOL(tcp_read_skb);
1657
1658void tcp_read_done(struct sock *sk, size_t len)
1659{
1660	struct tcp_sock *tp = tcp_sk(sk);
1661	u32 seq = tp->copied_seq;
1662	struct sk_buff *skb;
1663	size_t left;
1664	u32 offset;
1665
1666	if (sk->sk_state == TCP_LISTEN)
1667		return;
1668
1669	left = len;
1670	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1671		int used;
1672
1673		used = min_t(size_t, skb->len - offset, left);
1674		seq += used;
1675		left -= used;
1676
1677		if (skb->len > offset + used)
1678			break;
1679
1680		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681			tcp_eat_recv_skb(sk, skb);
1682			++seq;
1683			break;
1684		}
1685		tcp_eat_recv_skb(sk, skb);
1686	}
1687	WRITE_ONCE(tp->copied_seq, seq);
1688
1689	tcp_rcv_space_adjust(sk);
1690
1691	/* Clean up data we have read: This will do ACK frames. */
1692	if (left != len)
1693		tcp_cleanup_rbuf(sk, len - left);
1694}
1695EXPORT_SYMBOL(tcp_read_done);
1696
1697int tcp_peek_len(struct socket *sock)
1698{
1699	return tcp_inq(sock->sk);
1700}
1701EXPORT_SYMBOL(tcp_peek_len);
1702
1703/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1704int tcp_set_rcvlowat(struct sock *sk, int val)
1705{
1706	int space, cap;
1707
1708	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709		cap = sk->sk_rcvbuf >> 1;
1710	else
1711		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1712	val = min(val, cap);
1713	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714
1715	/* Check if we need to signal EPOLLIN right now */
1716	tcp_data_ready(sk);
1717
1718	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719		return 0;
1720
1721	space = tcp_space_from_win(sk, val);
1722	if (space > sk->sk_rcvbuf) {
1723		WRITE_ONCE(sk->sk_rcvbuf, space);
1724		tcp_sk(sk)->window_clamp = val;
1725	}
1726	return 0;
1727}
1728EXPORT_SYMBOL(tcp_set_rcvlowat);
1729
1730void tcp_update_recv_tstamps(struct sk_buff *skb,
1731			     struct scm_timestamping_internal *tss)
1732{
1733	if (skb->tstamp)
1734		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1735	else
1736		tss->ts[0] = (struct timespec64) {0};
1737
1738	if (skb_hwtstamps(skb)->hwtstamp)
1739		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1740	else
1741		tss->ts[2] = (struct timespec64) {0};
1742}
1743
1744#ifdef CONFIG_MMU
1745static const struct vm_operations_struct tcp_vm_ops = {
1746};
1747
1748int tcp_mmap(struct file *file, struct socket *sock,
1749	     struct vm_area_struct *vma)
1750{
1751	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1752		return -EPERM;
1753	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1754
1755	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1756	vm_flags_set(vma, VM_MIXEDMAP);
1757
1758	vma->vm_ops = &tcp_vm_ops;
1759	return 0;
1760}
1761EXPORT_SYMBOL(tcp_mmap);
1762
1763static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1764				       u32 *offset_frag)
1765{
1766	skb_frag_t *frag;
1767
1768	if (unlikely(offset_skb >= skb->len))
1769		return NULL;
1770
1771	offset_skb -= skb_headlen(skb);
1772	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1773		return NULL;
1774
1775	frag = skb_shinfo(skb)->frags;
1776	while (offset_skb) {
1777		if (skb_frag_size(frag) > offset_skb) {
1778			*offset_frag = offset_skb;
1779			return frag;
1780		}
1781		offset_skb -= skb_frag_size(frag);
1782		++frag;
1783	}
1784	*offset_frag = 0;
1785	return frag;
1786}
1787
1788static bool can_map_frag(const skb_frag_t *frag)
1789{
1790	struct page *page;
1791
1792	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1793		return false;
1794
1795	page = skb_frag_page(frag);
1796
1797	if (PageCompound(page) || page->mapping)
1798		return false;
1799
1800	return true;
1801}
1802
1803static int find_next_mappable_frag(const skb_frag_t *frag,
1804				   int remaining_in_skb)
1805{
1806	int offset = 0;
1807
1808	if (likely(can_map_frag(frag)))
1809		return 0;
1810
1811	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1812		offset += skb_frag_size(frag);
1813		++frag;
1814	}
1815	return offset;
1816}
1817
1818static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1819					  struct tcp_zerocopy_receive *zc,
1820					  struct sk_buff *skb, u32 offset)
1821{
1822	u32 frag_offset, partial_frag_remainder = 0;
1823	int mappable_offset;
1824	skb_frag_t *frag;
1825
1826	/* worst case: skip to next skb. try to improve on this case below */
1827	zc->recv_skip_hint = skb->len - offset;
1828
1829	/* Find the frag containing this offset (and how far into that frag) */
1830	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1831	if (!frag)
1832		return;
1833
1834	if (frag_offset) {
1835		struct skb_shared_info *info = skb_shinfo(skb);
1836
1837		/* We read part of the last frag, must recvmsg() rest of skb. */
1838		if (frag == &info->frags[info->nr_frags - 1])
1839			return;
1840
1841		/* Else, we must at least read the remainder in this frag. */
1842		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1843		zc->recv_skip_hint -= partial_frag_remainder;
1844		++frag;
1845	}
1846
1847	/* partial_frag_remainder: If part way through a frag, must read rest.
1848	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1849	 * in partial_frag_remainder.
1850	 */
1851	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1852	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1853}
1854
1855static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1856			      int flags, struct scm_timestamping_internal *tss,
1857			      int *cmsg_flags);
1858static int receive_fallback_to_copy(struct sock *sk,
1859				    struct tcp_zerocopy_receive *zc, int inq,
1860				    struct scm_timestamping_internal *tss)
1861{
1862	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1863	struct msghdr msg = {};
1864	int err;
1865
1866	zc->length = 0;
1867	zc->recv_skip_hint = 0;
1868
1869	if (copy_address != zc->copybuf_address)
1870		return -EINVAL;
1871
1872	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1873			  &msg.msg_iter);
1874	if (err)
1875		return err;
1876
1877	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1878				 tss, &zc->msg_flags);
1879	if (err < 0)
1880		return err;
1881
1882	zc->copybuf_len = err;
1883	if (likely(zc->copybuf_len)) {
1884		struct sk_buff *skb;
1885		u32 offset;
1886
1887		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1888		if (skb)
1889			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1890	}
1891	return 0;
1892}
1893
1894static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1895				   struct sk_buff *skb, u32 copylen,
1896				   u32 *offset, u32 *seq)
1897{
1898	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899	struct msghdr msg = {};
1900	int err;
1901
1902	if (copy_address != zc->copybuf_address)
1903		return -EINVAL;
1904
1905	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1906			  &msg.msg_iter);
1907	if (err)
1908		return err;
1909	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1910	if (err)
1911		return err;
1912	zc->recv_skip_hint -= copylen;
1913	*offset += copylen;
1914	*seq += copylen;
1915	return (__s32)copylen;
1916}
1917
1918static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1919				  struct sock *sk,
1920				  struct sk_buff *skb,
1921				  u32 *seq,
1922				  s32 copybuf_len,
1923				  struct scm_timestamping_internal *tss)
1924{
1925	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1926
1927	if (!copylen)
1928		return 0;
1929	/* skb is null if inq < PAGE_SIZE. */
1930	if (skb) {
1931		offset = *seq - TCP_SKB_CB(skb)->seq;
1932	} else {
1933		skb = tcp_recv_skb(sk, *seq, &offset);
1934		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1935			tcp_update_recv_tstamps(skb, tss);
1936			zc->msg_flags |= TCP_CMSG_TS;
1937		}
1938	}
1939
1940	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1941						  seq);
1942	return zc->copybuf_len < 0 ? 0 : copylen;
1943}
1944
1945static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1946					      struct page **pending_pages,
1947					      unsigned long pages_remaining,
1948					      unsigned long *address,
1949					      u32 *length,
1950					      u32 *seq,
1951					      struct tcp_zerocopy_receive *zc,
1952					      u32 total_bytes_to_map,
1953					      int err)
1954{
1955	/* At least one page did not map. Try zapping if we skipped earlier. */
1956	if (err == -EBUSY &&
1957	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1958		u32 maybe_zap_len;
1959
1960		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1961				*length + /* Mapped or pending */
1962				(pages_remaining * PAGE_SIZE); /* Failed map. */
1963		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1964		err = 0;
1965	}
1966
1967	if (!err) {
1968		unsigned long leftover_pages = pages_remaining;
1969		int bytes_mapped;
1970
1971		/* We called zap_page_range_single, try to reinsert. */
1972		err = vm_insert_pages(vma, *address,
1973				      pending_pages,
1974				      &pages_remaining);
1975		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1976		*seq += bytes_mapped;
1977		*address += bytes_mapped;
1978	}
1979	if (err) {
1980		/* Either we were unable to zap, OR we zapped, retried an
1981		 * insert, and still had an issue. Either ways, pages_remaining
1982		 * is the number of pages we were unable to map, and we unroll
1983		 * some state we speculatively touched before.
1984		 */
1985		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1986
1987		*length -= bytes_not_mapped;
1988		zc->recv_skip_hint += bytes_not_mapped;
1989	}
1990	return err;
1991}
1992
1993static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1994					struct page **pages,
1995					unsigned int pages_to_map,
1996					unsigned long *address,
1997					u32 *length,
1998					u32 *seq,
1999					struct tcp_zerocopy_receive *zc,
2000					u32 total_bytes_to_map)
2001{
2002	unsigned long pages_remaining = pages_to_map;
2003	unsigned int pages_mapped;
2004	unsigned int bytes_mapped;
2005	int err;
2006
2007	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2008	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2009	bytes_mapped = PAGE_SIZE * pages_mapped;
2010	/* Even if vm_insert_pages fails, it may have partially succeeded in
2011	 * mapping (some but not all of the pages).
2012	 */
2013	*seq += bytes_mapped;
2014	*address += bytes_mapped;
2015
2016	if (likely(!err))
2017		return 0;
2018
2019	/* Error: maybe zap and retry + rollback state for failed inserts. */
2020	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2021		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2022		err);
2023}
2024
2025#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2026static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2027				      struct tcp_zerocopy_receive *zc,
2028				      struct scm_timestamping_internal *tss)
2029{
2030	unsigned long msg_control_addr;
2031	struct msghdr cmsg_dummy;
2032
2033	msg_control_addr = (unsigned long)zc->msg_control;
2034	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2035	cmsg_dummy.msg_controllen =
2036		(__kernel_size_t)zc->msg_controllen;
2037	cmsg_dummy.msg_flags = in_compat_syscall()
2038		? MSG_CMSG_COMPAT : 0;
2039	cmsg_dummy.msg_control_is_user = true;
2040	zc->msg_flags = 0;
2041	if (zc->msg_control == msg_control_addr &&
2042	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2043		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2044		zc->msg_control = (__u64)
2045			((uintptr_t)cmsg_dummy.msg_control_user);
2046		zc->msg_controllen =
2047			(__u64)cmsg_dummy.msg_controllen;
2048		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2049	}
2050}
2051
2052static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2053					   unsigned long address,
2054					   bool *mmap_locked)
2055{
2056	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2057
2058	if (vma) {
2059		if (vma->vm_ops != &tcp_vm_ops) {
2060			vma_end_read(vma);
2061			return NULL;
2062		}
2063		*mmap_locked = false;
2064		return vma;
2065	}
2066
2067	mmap_read_lock(mm);
2068	vma = vma_lookup(mm, address);
2069	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2070		mmap_read_unlock(mm);
2071		return NULL;
2072	}
2073	*mmap_locked = true;
2074	return vma;
2075}
2076
2077#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2078static int tcp_zerocopy_receive(struct sock *sk,
2079				struct tcp_zerocopy_receive *zc,
2080				struct scm_timestamping_internal *tss)
2081{
2082	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2083	unsigned long address = (unsigned long)zc->address;
2084	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2085	s32 copybuf_len = zc->copybuf_len;
2086	struct tcp_sock *tp = tcp_sk(sk);
2087	const skb_frag_t *frags = NULL;
2088	unsigned int pages_to_map = 0;
2089	struct vm_area_struct *vma;
2090	struct sk_buff *skb = NULL;
2091	u32 seq = tp->copied_seq;
2092	u32 total_bytes_to_map;
2093	int inq = tcp_inq(sk);
2094	bool mmap_locked;
2095	int ret;
2096
2097	zc->copybuf_len = 0;
2098	zc->msg_flags = 0;
2099
2100	if (address & (PAGE_SIZE - 1) || address != zc->address)
2101		return -EINVAL;
2102
2103	if (sk->sk_state == TCP_LISTEN)
2104		return -ENOTCONN;
2105
2106	sock_rps_record_flow(sk);
2107
2108	if (inq && inq <= copybuf_len)
2109		return receive_fallback_to_copy(sk, zc, inq, tss);
2110
2111	if (inq < PAGE_SIZE) {
2112		zc->length = 0;
2113		zc->recv_skip_hint = inq;
2114		if (!inq && sock_flag(sk, SOCK_DONE))
2115			return -EIO;
2116		return 0;
2117	}
2118
2119	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2120	if (!vma)
2121		return -EINVAL;
2122
2123	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2124	avail_len = min_t(u32, vma_len, inq);
2125	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2126	if (total_bytes_to_map) {
2127		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2128			zap_page_range_single(vma, address, total_bytes_to_map,
2129					      NULL);
2130		zc->length = total_bytes_to_map;
2131		zc->recv_skip_hint = 0;
2132	} else {
2133		zc->length = avail_len;
2134		zc->recv_skip_hint = avail_len;
2135	}
2136	ret = 0;
2137	while (length + PAGE_SIZE <= zc->length) {
2138		int mappable_offset;
2139		struct page *page;
2140
2141		if (zc->recv_skip_hint < PAGE_SIZE) {
2142			u32 offset_frag;
2143
2144			if (skb) {
2145				if (zc->recv_skip_hint > 0)
2146					break;
2147				skb = skb->next;
2148				offset = seq - TCP_SKB_CB(skb)->seq;
2149			} else {
2150				skb = tcp_recv_skb(sk, seq, &offset);
2151			}
2152
 
 
 
2153			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2154				tcp_update_recv_tstamps(skb, tss);
2155				zc->msg_flags |= TCP_CMSG_TS;
2156			}
2157			zc->recv_skip_hint = skb->len - offset;
2158			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2159			if (!frags || offset_frag)
2160				break;
2161		}
2162
2163		mappable_offset = find_next_mappable_frag(frags,
2164							  zc->recv_skip_hint);
2165		if (mappable_offset) {
2166			zc->recv_skip_hint = mappable_offset;
2167			break;
2168		}
2169		page = skb_frag_page(frags);
 
 
 
2170		prefetchw(page);
2171		pages[pages_to_map++] = page;
2172		length += PAGE_SIZE;
2173		zc->recv_skip_hint -= PAGE_SIZE;
2174		frags++;
2175		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2176		    zc->recv_skip_hint < PAGE_SIZE) {
2177			/* Either full batch, or we're about to go to next skb
2178			 * (and we cannot unroll failed ops across skbs).
2179			 */
2180			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2181							   pages_to_map,
2182							   &address, &length,
2183							   &seq, zc,
2184							   total_bytes_to_map);
2185			if (ret)
2186				goto out;
2187			pages_to_map = 0;
2188		}
2189	}
2190	if (pages_to_map) {
2191		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2192						   &address, &length, &seq,
2193						   zc, total_bytes_to_map);
2194	}
2195out:
2196	if (mmap_locked)
2197		mmap_read_unlock(current->mm);
2198	else
2199		vma_end_read(vma);
2200	/* Try to copy straggler data. */
2201	if (!ret)
2202		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2203
2204	if (length + copylen) {
2205		WRITE_ONCE(tp->copied_seq, seq);
2206		tcp_rcv_space_adjust(sk);
2207
2208		/* Clean up data we have read: This will do ACK frames. */
2209		tcp_recv_skb(sk, seq, &offset);
2210		tcp_cleanup_rbuf(sk, length + copylen);
2211		ret = 0;
2212		if (length == zc->length)
2213			zc->recv_skip_hint = 0;
2214	} else {
2215		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2216			ret = -EIO;
2217	}
2218	zc->length = length;
2219	return ret;
2220}
2221#endif
2222
2223/* Similar to __sock_recv_timestamp, but does not require an skb */
2224void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2225			struct scm_timestamping_internal *tss)
2226{
2227	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 
2228	bool has_timestamping = false;
2229
2230	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2231		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2232			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2233				if (new_tstamp) {
2234					struct __kernel_timespec kts = {
2235						.tv_sec = tss->ts[0].tv_sec,
2236						.tv_nsec = tss->ts[0].tv_nsec,
2237					};
2238					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2239						 sizeof(kts), &kts);
2240				} else {
2241					struct __kernel_old_timespec ts_old = {
2242						.tv_sec = tss->ts[0].tv_sec,
2243						.tv_nsec = tss->ts[0].tv_nsec,
2244					};
2245					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2246						 sizeof(ts_old), &ts_old);
2247				}
2248			} else {
2249				if (new_tstamp) {
2250					struct __kernel_sock_timeval stv = {
2251						.tv_sec = tss->ts[0].tv_sec,
2252						.tv_usec = tss->ts[0].tv_nsec / 1000,
2253					};
2254					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2255						 sizeof(stv), &stv);
2256				} else {
2257					struct __kernel_old_timeval tv = {
2258						.tv_sec = tss->ts[0].tv_sec,
2259						.tv_usec = tss->ts[0].tv_nsec / 1000,
2260					};
2261					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2262						 sizeof(tv), &tv);
2263				}
2264			}
2265		}
2266
2267		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
 
 
2268			has_timestamping = true;
2269		else
2270			tss->ts[0] = (struct timespec64) {0};
2271	}
2272
2273	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2274		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
 
 
2275			has_timestamping = true;
2276		else
2277			tss->ts[2] = (struct timespec64) {0};
2278	}
2279
2280	if (has_timestamping) {
2281		tss->ts[1] = (struct timespec64) {0};
2282		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2283			put_cmsg_scm_timestamping64(msg, tss);
2284		else
2285			put_cmsg_scm_timestamping(msg, tss);
2286	}
2287}
2288
2289static int tcp_inq_hint(struct sock *sk)
2290{
2291	const struct tcp_sock *tp = tcp_sk(sk);
2292	u32 copied_seq = READ_ONCE(tp->copied_seq);
2293	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2294	int inq;
2295
2296	inq = rcv_nxt - copied_seq;
2297	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2298		lock_sock(sk);
2299		inq = tp->rcv_nxt - tp->copied_seq;
2300		release_sock(sk);
2301	}
2302	/* After receiving a FIN, tell the user-space to continue reading
2303	 * by returning a non-zero inq.
2304	 */
2305	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2306		inq = 1;
2307	return inq;
2308}
2309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310/*
2311 *	This routine copies from a sock struct into the user buffer.
2312 *
2313 *	Technical note: in 2.3 we work on _locked_ socket, so that
2314 *	tricks with *seq access order and skb->users are not required.
2315 *	Probably, code can be easily improved even more.
2316 */
2317
2318static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2319			      int flags, struct scm_timestamping_internal *tss,
2320			      int *cmsg_flags)
2321{
2322	struct tcp_sock *tp = tcp_sk(sk);
 
2323	int copied = 0;
2324	u32 peek_seq;
2325	u32 *seq;
2326	unsigned long used;
2327	int err;
2328	int target;		/* Read at least this many bytes */
2329	long timeo;
2330	struct sk_buff *skb, *last;
 
2331	u32 urg_hole = 0;
2332
2333	err = -ENOTCONN;
2334	if (sk->sk_state == TCP_LISTEN)
2335		goto out;
2336
2337	if (tp->recvmsg_inq) {
2338		*cmsg_flags = TCP_CMSG_INQ;
2339		msg->msg_get_inq = 1;
2340	}
2341	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2342
2343	/* Urgent data needs to be handled specially. */
2344	if (flags & MSG_OOB)
2345		goto recv_urg;
2346
2347	if (unlikely(tp->repair)) {
2348		err = -EPERM;
2349		if (!(flags & MSG_PEEK))
2350			goto out;
2351
2352		if (tp->repair_queue == TCP_SEND_QUEUE)
2353			goto recv_sndq;
2354
2355		err = -EINVAL;
2356		if (tp->repair_queue == TCP_NO_QUEUE)
2357			goto out;
2358
2359		/* 'common' recv queue MSG_PEEK-ing */
2360	}
2361
2362	seq = &tp->copied_seq;
2363	if (flags & MSG_PEEK) {
2364		peek_seq = tp->copied_seq;
 
2365		seq = &peek_seq;
2366	}
2367
2368	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2369
2370	do {
2371		u32 offset;
2372
2373		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2374		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2375			if (copied)
2376				break;
2377			if (signal_pending(current)) {
2378				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2379				break;
2380			}
2381		}
2382
2383		/* Next get a buffer. */
2384
2385		last = skb_peek_tail(&sk->sk_receive_queue);
2386		skb_queue_walk(&sk->sk_receive_queue, skb) {
2387			last = skb;
2388			/* Now that we have two receive queues this
2389			 * shouldn't happen.
2390			 */
2391			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2392				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2393				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2394				 flags))
2395				break;
2396
2397			offset = *seq - TCP_SKB_CB(skb)->seq;
2398			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2399				pr_err_once("%s: found a SYN, please report !\n", __func__);
2400				offset--;
2401			}
2402			if (offset < skb->len)
2403				goto found_ok_skb;
2404			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2405				goto found_fin_ok;
2406			WARN(!(flags & MSG_PEEK),
2407			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2408			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2409		}
2410
2411		/* Well, if we have backlog, try to process it now yet. */
2412
2413		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2414			break;
2415
2416		if (copied) {
2417			if (!timeo ||
2418			    sk->sk_err ||
2419			    sk->sk_state == TCP_CLOSE ||
2420			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2421			    signal_pending(current))
2422				break;
2423		} else {
2424			if (sock_flag(sk, SOCK_DONE))
2425				break;
2426
2427			if (sk->sk_err) {
2428				copied = sock_error(sk);
2429				break;
2430			}
2431
2432			if (sk->sk_shutdown & RCV_SHUTDOWN)
2433				break;
2434
2435			if (sk->sk_state == TCP_CLOSE) {
2436				/* This occurs when user tries to read
2437				 * from never connected socket.
2438				 */
2439				copied = -ENOTCONN;
2440				break;
2441			}
2442
2443			if (!timeo) {
2444				copied = -EAGAIN;
2445				break;
2446			}
2447
2448			if (signal_pending(current)) {
2449				copied = sock_intr_errno(timeo);
2450				break;
2451			}
2452		}
2453
2454		if (copied >= target) {
2455			/* Do not sleep, just process backlog. */
2456			__sk_flush_backlog(sk);
2457		} else {
2458			tcp_cleanup_rbuf(sk, copied);
2459			err = sk_wait_data(sk, &timeo, last);
2460			if (err < 0) {
2461				err = copied ? : err;
2462				goto out;
2463			}
2464		}
2465
2466		if ((flags & MSG_PEEK) &&
2467		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2468			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2469					    current->comm,
2470					    task_pid_nr(current));
2471			peek_seq = tp->copied_seq;
2472		}
2473		continue;
2474
2475found_ok_skb:
2476		/* Ok so how much can we use? */
2477		used = skb->len - offset;
2478		if (len < used)
2479			used = len;
2480
2481		/* Do we have urgent data here? */
2482		if (unlikely(tp->urg_data)) {
2483			u32 urg_offset = tp->urg_seq - *seq;
2484			if (urg_offset < used) {
2485				if (!urg_offset) {
2486					if (!sock_flag(sk, SOCK_URGINLINE)) {
2487						WRITE_ONCE(*seq, *seq + 1);
2488						urg_hole++;
2489						offset++;
2490						used--;
2491						if (!used)
2492							goto skip_copy;
2493					}
2494				} else
2495					used = urg_offset;
2496			}
2497		}
2498
2499		if (!(flags & MSG_TRUNC)) {
2500			err = skb_copy_datagram_msg(skb, offset, msg, used);
2501			if (err) {
2502				/* Exception. Bailout! */
2503				if (!copied)
2504					copied = -EFAULT;
2505				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506			}
2507		}
2508
 
 
2509		WRITE_ONCE(*seq, *seq + used);
2510		copied += used;
2511		len -= used;
2512
 
 
 
2513		tcp_rcv_space_adjust(sk);
2514
2515skip_copy:
2516		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2517			WRITE_ONCE(tp->urg_data, 0);
2518			tcp_fast_path_check(sk);
2519		}
2520
2521		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2522			tcp_update_recv_tstamps(skb, tss);
2523			*cmsg_flags |= TCP_CMSG_TS;
2524		}
2525
2526		if (used + offset < skb->len)
2527			continue;
2528
2529		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2530			goto found_fin_ok;
2531		if (!(flags & MSG_PEEK))
2532			tcp_eat_recv_skb(sk, skb);
2533		continue;
2534
2535found_fin_ok:
2536		/* Process the FIN. */
2537		WRITE_ONCE(*seq, *seq + 1);
2538		if (!(flags & MSG_PEEK))
2539			tcp_eat_recv_skb(sk, skb);
2540		break;
2541	} while (len > 0);
2542
2543	/* According to UNIX98, msg_name/msg_namelen are ignored
2544	 * on connected socket. I was just happy when found this 8) --ANK
2545	 */
2546
2547	/* Clean up data we have read: This will do ACK frames. */
2548	tcp_cleanup_rbuf(sk, copied);
2549	return copied;
2550
2551out:
2552	return err;
2553
2554recv_urg:
2555	err = tcp_recv_urg(sk, msg, len, flags);
2556	goto out;
2557
2558recv_sndq:
2559	err = tcp_peek_sndq(sk, msg, len);
2560	goto out;
2561}
2562
2563int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2564		int *addr_len)
2565{
2566	int cmsg_flags = 0, ret;
2567	struct scm_timestamping_internal tss;
2568
2569	if (unlikely(flags & MSG_ERRQUEUE))
2570		return inet_recv_error(sk, msg, len, addr_len);
2571
2572	if (sk_can_busy_loop(sk) &&
2573	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2574	    sk->sk_state == TCP_ESTABLISHED)
2575		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2576
2577	lock_sock(sk);
2578	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2579	release_sock(sk);
2580
2581	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2582		if (cmsg_flags & TCP_CMSG_TS)
2583			tcp_recv_timestamp(msg, sk, &tss);
2584		if (msg->msg_get_inq) {
2585			msg->msg_inq = tcp_inq_hint(sk);
2586			if (cmsg_flags & TCP_CMSG_INQ)
2587				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2588					 sizeof(msg->msg_inq), &msg->msg_inq);
2589		}
2590	}
2591	return ret;
2592}
2593EXPORT_SYMBOL(tcp_recvmsg);
2594
2595void tcp_set_state(struct sock *sk, int state)
2596{
2597	int oldstate = sk->sk_state;
2598
2599	/* We defined a new enum for TCP states that are exported in BPF
2600	 * so as not force the internal TCP states to be frozen. The
2601	 * following checks will detect if an internal state value ever
2602	 * differs from the BPF value. If this ever happens, then we will
2603	 * need to remap the internal value to the BPF value before calling
2604	 * tcp_call_bpf_2arg.
2605	 */
2606	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2607	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2608	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2609	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2610	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2611	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2612	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2613	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2614	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2615	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2616	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2617	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2618	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2619	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2620
2621	/* bpf uapi header bpf.h defines an anonymous enum with values
2622	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2623	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2624	 * But clang built vmlinux does not have this enum in DWARF
2625	 * since clang removes the above code before generating IR/debuginfo.
2626	 * Let us explicitly emit the type debuginfo to ensure the
2627	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2628	 * regardless of which compiler is used.
2629	 */
2630	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2631
2632	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2633		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2634
2635	switch (state) {
2636	case TCP_ESTABLISHED:
2637		if (oldstate != TCP_ESTABLISHED)
2638			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2639		break;
 
 
 
 
2640
2641	case TCP_CLOSE:
2642		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2643			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2644
2645		sk->sk_prot->unhash(sk);
2646		if (inet_csk(sk)->icsk_bind_hash &&
2647		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2648			inet_put_port(sk);
2649		fallthrough;
2650	default:
2651		if (oldstate == TCP_ESTABLISHED)
2652			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2653	}
2654
2655	/* Change state AFTER socket is unhashed to avoid closed
2656	 * socket sitting in hash tables.
2657	 */
2658	inet_sk_state_store(sk, state);
2659}
2660EXPORT_SYMBOL_GPL(tcp_set_state);
2661
2662/*
2663 *	State processing on a close. This implements the state shift for
2664 *	sending our FIN frame. Note that we only send a FIN for some
2665 *	states. A shutdown() may have already sent the FIN, or we may be
2666 *	closed.
2667 */
2668
2669static const unsigned char new_state[16] = {
2670  /* current state:        new state:      action:	*/
2671  [0 /* (Invalid) */]	= TCP_CLOSE,
2672  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2673  [TCP_SYN_SENT]	= TCP_CLOSE,
2674  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2675  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2676  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2677  [TCP_TIME_WAIT]	= TCP_CLOSE,
2678  [TCP_CLOSE]		= TCP_CLOSE,
2679  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2680  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2681  [TCP_LISTEN]		= TCP_CLOSE,
2682  [TCP_CLOSING]		= TCP_CLOSING,
2683  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2684};
2685
2686static int tcp_close_state(struct sock *sk)
2687{
2688	int next = (int)new_state[sk->sk_state];
2689	int ns = next & TCP_STATE_MASK;
2690
2691	tcp_set_state(sk, ns);
2692
2693	return next & TCP_ACTION_FIN;
2694}
2695
2696/*
2697 *	Shutdown the sending side of a connection. Much like close except
2698 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2699 */
2700
2701void tcp_shutdown(struct sock *sk, int how)
2702{
2703	/*	We need to grab some memory, and put together a FIN,
2704	 *	and then put it into the queue to be sent.
2705	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2706	 */
2707	if (!(how & SEND_SHUTDOWN))
2708		return;
2709
2710	/* If we've already sent a FIN, or it's a closed state, skip this. */
2711	if ((1 << sk->sk_state) &
2712	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2713	     TCPF_CLOSE_WAIT)) {
2714		/* Clear out any half completed packets.  FIN if needed. */
2715		if (tcp_close_state(sk))
2716			tcp_send_fin(sk);
2717	}
2718}
2719EXPORT_SYMBOL(tcp_shutdown);
2720
2721int tcp_orphan_count_sum(void)
2722{
2723	int i, total = 0;
2724
2725	for_each_possible_cpu(i)
2726		total += per_cpu(tcp_orphan_count, i);
2727
2728	return max(total, 0);
2729}
2730
2731static int tcp_orphan_cache;
2732static struct timer_list tcp_orphan_timer;
2733#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2734
2735static void tcp_orphan_update(struct timer_list *unused)
2736{
2737	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2738	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2739}
2740
2741static bool tcp_too_many_orphans(int shift)
2742{
2743	return READ_ONCE(tcp_orphan_cache) << shift >
2744		READ_ONCE(sysctl_tcp_max_orphans);
2745}
2746
2747bool tcp_check_oom(struct sock *sk, int shift)
 
 
 
 
 
 
 
 
2748{
2749	bool too_many_orphans, out_of_socket_memory;
2750
2751	too_many_orphans = tcp_too_many_orphans(shift);
2752	out_of_socket_memory = tcp_out_of_memory(sk);
2753
2754	if (too_many_orphans)
2755		net_info_ratelimited("too many orphaned sockets\n");
2756	if (out_of_socket_memory)
2757		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2758	return too_many_orphans || out_of_socket_memory;
2759}
2760
2761void __tcp_close(struct sock *sk, long timeout)
2762{
2763	struct sk_buff *skb;
2764	int data_was_unread = 0;
2765	int state;
2766
2767	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2768
2769	if (sk->sk_state == TCP_LISTEN) {
2770		tcp_set_state(sk, TCP_CLOSE);
2771
2772		/* Special case. */
2773		inet_csk_listen_stop(sk);
2774
2775		goto adjudge_to_death;
2776	}
2777
2778	/*  We need to flush the recv. buffs.  We do this only on the
2779	 *  descriptor close, not protocol-sourced closes, because the
2780	 *  reader process may not have drained the data yet!
2781	 */
2782	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2783		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2784
2785		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2786			len--;
2787		data_was_unread += len;
2788		__kfree_skb(skb);
2789	}
2790
2791	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2792	if (sk->sk_state == TCP_CLOSE)
2793		goto adjudge_to_death;
2794
2795	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2796	 * data was lost. To witness the awful effects of the old behavior of
2797	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2798	 * GET in an FTP client, suspend the process, wait for the client to
2799	 * advertise a zero window, then kill -9 the FTP client, wheee...
2800	 * Note: timeout is always zero in such a case.
2801	 */
2802	if (unlikely(tcp_sk(sk)->repair)) {
2803		sk->sk_prot->disconnect(sk, 0);
2804	} else if (data_was_unread) {
2805		/* Unread data was tossed, zap the connection. */
2806		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2807		tcp_set_state(sk, TCP_CLOSE);
2808		tcp_send_active_reset(sk, sk->sk_allocation);
 
2809	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2810		/* Check zero linger _after_ checking for unread data. */
2811		sk->sk_prot->disconnect(sk, 0);
2812		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2813	} else if (tcp_close_state(sk)) {
2814		/* We FIN if the application ate all the data before
2815		 * zapping the connection.
2816		 */
2817
2818		/* RED-PEN. Formally speaking, we have broken TCP state
2819		 * machine. State transitions:
2820		 *
2821		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2822		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2823		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2824		 *
2825		 * are legal only when FIN has been sent (i.e. in window),
2826		 * rather than queued out of window. Purists blame.
2827		 *
2828		 * F.e. "RFC state" is ESTABLISHED,
2829		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2830		 *
2831		 * The visible declinations are that sometimes
2832		 * we enter time-wait state, when it is not required really
2833		 * (harmless), do not send active resets, when they are
2834		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2835		 * they look as CLOSING or LAST_ACK for Linux)
2836		 * Probably, I missed some more holelets.
2837		 * 						--ANK
2838		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2839		 * in a single packet! (May consider it later but will
2840		 * probably need API support or TCP_CORK SYN-ACK until
2841		 * data is written and socket is closed.)
2842		 */
2843		tcp_send_fin(sk);
2844	}
2845
2846	sk_stream_wait_close(sk, timeout);
2847
2848adjudge_to_death:
2849	state = sk->sk_state;
2850	sock_hold(sk);
2851	sock_orphan(sk);
2852
2853	local_bh_disable();
2854	bh_lock_sock(sk);
2855	/* remove backlog if any, without releasing ownership. */
2856	__release_sock(sk);
2857
2858	this_cpu_inc(tcp_orphan_count);
2859
2860	/* Have we already been destroyed by a softirq or backlog? */
2861	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2862		goto out;
2863
2864	/*	This is a (useful) BSD violating of the RFC. There is a
2865	 *	problem with TCP as specified in that the other end could
2866	 *	keep a socket open forever with no application left this end.
2867	 *	We use a 1 minute timeout (about the same as BSD) then kill
2868	 *	our end. If they send after that then tough - BUT: long enough
2869	 *	that we won't make the old 4*rto = almost no time - whoops
2870	 *	reset mistake.
2871	 *
2872	 *	Nope, it was not mistake. It is really desired behaviour
2873	 *	f.e. on http servers, when such sockets are useless, but
2874	 *	consume significant resources. Let's do it with special
2875	 *	linger2	option.					--ANK
2876	 */
2877
2878	if (sk->sk_state == TCP_FIN_WAIT2) {
2879		struct tcp_sock *tp = tcp_sk(sk);
2880		if (READ_ONCE(tp->linger2) < 0) {
2881			tcp_set_state(sk, TCP_CLOSE);
2882			tcp_send_active_reset(sk, GFP_ATOMIC);
 
2883			__NET_INC_STATS(sock_net(sk),
2884					LINUX_MIB_TCPABORTONLINGER);
2885		} else {
2886			const int tmo = tcp_fin_time(sk);
2887
2888			if (tmo > TCP_TIMEWAIT_LEN) {
2889				inet_csk_reset_keepalive_timer(sk,
2890						tmo - TCP_TIMEWAIT_LEN);
2891			} else {
2892				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2893				goto out;
2894			}
2895		}
2896	}
2897	if (sk->sk_state != TCP_CLOSE) {
2898		if (tcp_check_oom(sk, 0)) {
2899			tcp_set_state(sk, TCP_CLOSE);
2900			tcp_send_active_reset(sk, GFP_ATOMIC);
 
2901			__NET_INC_STATS(sock_net(sk),
2902					LINUX_MIB_TCPABORTONMEMORY);
2903		} else if (!check_net(sock_net(sk))) {
2904			/* Not possible to send reset; just close */
2905			tcp_set_state(sk, TCP_CLOSE);
2906		}
2907	}
2908
2909	if (sk->sk_state == TCP_CLOSE) {
2910		struct request_sock *req;
2911
2912		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2913						lockdep_sock_is_held(sk));
2914		/* We could get here with a non-NULL req if the socket is
2915		 * aborted (e.g., closed with unread data) before 3WHS
2916		 * finishes.
2917		 */
2918		if (req)
2919			reqsk_fastopen_remove(sk, req, false);
2920		inet_csk_destroy_sock(sk);
2921	}
2922	/* Otherwise, socket is reprieved until protocol close. */
2923
2924out:
2925	bh_unlock_sock(sk);
2926	local_bh_enable();
2927}
2928
2929void tcp_close(struct sock *sk, long timeout)
2930{
2931	lock_sock(sk);
2932	__tcp_close(sk, timeout);
2933	release_sock(sk);
2934	if (!sk->sk_net_refcnt)
2935		inet_csk_clear_xmit_timers_sync(sk);
2936	sock_put(sk);
2937}
2938EXPORT_SYMBOL(tcp_close);
2939
2940/* These states need RST on ABORT according to RFC793 */
2941
2942static inline bool tcp_need_reset(int state)
2943{
2944	return (1 << state) &
2945	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2946		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2947}
2948
2949static void tcp_rtx_queue_purge(struct sock *sk)
2950{
2951	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2952
2953	tcp_sk(sk)->highest_sack = NULL;
2954	while (p) {
2955		struct sk_buff *skb = rb_to_skb(p);
2956
2957		p = rb_next(p);
2958		/* Since we are deleting whole queue, no need to
2959		 * list_del(&skb->tcp_tsorted_anchor)
2960		 */
2961		tcp_rtx_queue_unlink(skb, sk);
2962		tcp_wmem_free_skb(sk, skb);
2963	}
2964}
2965
2966void tcp_write_queue_purge(struct sock *sk)
2967{
2968	struct sk_buff *skb;
2969
2970	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2971	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2972		tcp_skb_tsorted_anchor_cleanup(skb);
2973		tcp_wmem_free_skb(sk, skb);
2974	}
2975	tcp_rtx_queue_purge(sk);
2976	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2977	tcp_clear_all_retrans_hints(tcp_sk(sk));
2978	tcp_sk(sk)->packets_out = 0;
2979	inet_csk(sk)->icsk_backoff = 0;
2980}
2981
2982int tcp_disconnect(struct sock *sk, int flags)
2983{
2984	struct inet_sock *inet = inet_sk(sk);
2985	struct inet_connection_sock *icsk = inet_csk(sk);
2986	struct tcp_sock *tp = tcp_sk(sk);
2987	int old_state = sk->sk_state;
2988	u32 seq;
2989
2990	if (old_state != TCP_CLOSE)
2991		tcp_set_state(sk, TCP_CLOSE);
2992
2993	/* ABORT function of RFC793 */
2994	if (old_state == TCP_LISTEN) {
2995		inet_csk_listen_stop(sk);
2996	} else if (unlikely(tp->repair)) {
2997		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2998	} else if (tcp_need_reset(old_state) ||
2999		   (tp->snd_nxt != tp->write_seq &&
3000		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
 
 
3001		/* The last check adjusts for discrepancy of Linux wrt. RFC
3002		 * states
3003		 */
3004		tcp_send_active_reset(sk, gfp_any());
 
3005		WRITE_ONCE(sk->sk_err, ECONNRESET);
3006	} else if (old_state == TCP_SYN_SENT)
3007		WRITE_ONCE(sk->sk_err, ECONNRESET);
3008
3009	tcp_clear_xmit_timers(sk);
3010	__skb_queue_purge(&sk->sk_receive_queue);
3011	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3012	WRITE_ONCE(tp->urg_data, 0);
 
3013	tcp_write_queue_purge(sk);
3014	tcp_fastopen_active_disable_ofo_check(sk);
3015	skb_rbtree_purge(&tp->out_of_order_queue);
3016
3017	inet->inet_dport = 0;
3018
3019	inet_bhash2_reset_saddr(sk);
3020
3021	WRITE_ONCE(sk->sk_shutdown, 0);
3022	sock_reset_flag(sk, SOCK_DONE);
3023	tp->srtt_us = 0;
3024	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3025	tp->rcv_rtt_last_tsecr = 0;
3026
3027	seq = tp->write_seq + tp->max_window + 2;
3028	if (!seq)
3029		seq = 1;
3030	WRITE_ONCE(tp->write_seq, seq);
3031
3032	icsk->icsk_backoff = 0;
3033	icsk->icsk_probes_out = 0;
3034	icsk->icsk_probes_tstamp = 0;
3035	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3036	icsk->icsk_rto_min = TCP_RTO_MIN;
3037	icsk->icsk_delack_max = TCP_DELACK_MAX;
3038	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3039	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3040	tp->snd_cwnd_cnt = 0;
3041	tp->is_cwnd_limited = 0;
3042	tp->max_packets_out = 0;
3043	tp->window_clamp = 0;
3044	tp->delivered = 0;
3045	tp->delivered_ce = 0;
3046	if (icsk->icsk_ca_ops->release)
3047		icsk->icsk_ca_ops->release(sk);
3048	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3049	icsk->icsk_ca_initialized = 0;
3050	tcp_set_ca_state(sk, TCP_CA_Open);
3051	tp->is_sack_reneg = 0;
3052	tcp_clear_retrans(tp);
3053	tp->total_retrans = 0;
3054	inet_csk_delack_init(sk);
3055	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3056	 * issue in __tcp_select_window()
3057	 */
3058	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3059	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3060	__sk_dst_reset(sk);
3061	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3062	tcp_saved_syn_free(tp);
3063	tp->compressed_ack = 0;
3064	tp->segs_in = 0;
3065	tp->segs_out = 0;
3066	tp->bytes_sent = 0;
3067	tp->bytes_acked = 0;
3068	tp->bytes_received = 0;
3069	tp->bytes_retrans = 0;
3070	tp->data_segs_in = 0;
3071	tp->data_segs_out = 0;
3072	tp->duplicate_sack[0].start_seq = 0;
3073	tp->duplicate_sack[0].end_seq = 0;
3074	tp->dsack_dups = 0;
3075	tp->reord_seen = 0;
3076	tp->retrans_out = 0;
3077	tp->sacked_out = 0;
3078	tp->tlp_high_seq = 0;
3079	tp->last_oow_ack_time = 0;
3080	tp->plb_rehash = 0;
3081	/* There's a bubble in the pipe until at least the first ACK. */
3082	tp->app_limited = ~0U;
3083	tp->rate_app_limited = 1;
3084	tp->rack.mstamp = 0;
3085	tp->rack.advanced = 0;
3086	tp->rack.reo_wnd_steps = 1;
3087	tp->rack.last_delivered = 0;
3088	tp->rack.reo_wnd_persist = 0;
3089	tp->rack.dsack_seen = 0;
3090	tp->syn_data_acked = 0;
3091	tp->rx_opt.saw_tstamp = 0;
3092	tp->rx_opt.dsack = 0;
3093	tp->rx_opt.num_sacks = 0;
3094	tp->rcv_ooopack = 0;
3095
3096
3097	/* Clean up fastopen related fields */
3098	tcp_free_fastopen_req(tp);
3099	inet_clear_bit(DEFER_CONNECT, sk);
3100	tp->fastopen_client_fail = 0;
3101
3102	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3103
3104	if (sk->sk_frag.page) {
3105		put_page(sk->sk_frag.page);
3106		sk->sk_frag.page = NULL;
3107		sk->sk_frag.offset = 0;
3108	}
3109	sk_error_report(sk);
3110	return 0;
3111}
3112EXPORT_SYMBOL(tcp_disconnect);
3113
3114static inline bool tcp_can_repair_sock(const struct sock *sk)
3115{
3116	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3117		(sk->sk_state != TCP_LISTEN);
3118}
3119
3120static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3121{
3122	struct tcp_repair_window opt;
3123
3124	if (!tp->repair)
3125		return -EPERM;
3126
3127	if (len != sizeof(opt))
3128		return -EINVAL;
3129
3130	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3131		return -EFAULT;
3132
3133	if (opt.max_window < opt.snd_wnd)
3134		return -EINVAL;
3135
3136	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3137		return -EINVAL;
3138
3139	if (after(opt.rcv_wup, tp->rcv_nxt))
3140		return -EINVAL;
3141
3142	tp->snd_wl1	= opt.snd_wl1;
3143	tp->snd_wnd	= opt.snd_wnd;
3144	tp->max_window	= opt.max_window;
3145
3146	tp->rcv_wnd	= opt.rcv_wnd;
3147	tp->rcv_wup	= opt.rcv_wup;
3148
3149	return 0;
3150}
3151
3152static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3153		unsigned int len)
3154{
3155	struct tcp_sock *tp = tcp_sk(sk);
3156	struct tcp_repair_opt opt;
3157	size_t offset = 0;
3158
3159	while (len >= sizeof(opt)) {
3160		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3161			return -EFAULT;
3162
3163		offset += sizeof(opt);
3164		len -= sizeof(opt);
3165
3166		switch (opt.opt_code) {
3167		case TCPOPT_MSS:
3168			tp->rx_opt.mss_clamp = opt.opt_val;
3169			tcp_mtup_init(sk);
3170			break;
3171		case TCPOPT_WINDOW:
3172			{
3173				u16 snd_wscale = opt.opt_val & 0xFFFF;
3174				u16 rcv_wscale = opt.opt_val >> 16;
3175
3176				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3177					return -EFBIG;
3178
3179				tp->rx_opt.snd_wscale = snd_wscale;
3180				tp->rx_opt.rcv_wscale = rcv_wscale;
3181				tp->rx_opt.wscale_ok = 1;
3182			}
3183			break;
3184		case TCPOPT_SACK_PERM:
3185			if (opt.opt_val != 0)
3186				return -EINVAL;
3187
3188			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3189			break;
3190		case TCPOPT_TIMESTAMP:
3191			if (opt.opt_val != 0)
3192				return -EINVAL;
3193
3194			tp->rx_opt.tstamp_ok = 1;
3195			break;
3196		}
3197	}
3198
3199	return 0;
3200}
3201
3202DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3203EXPORT_SYMBOL(tcp_tx_delay_enabled);
3204
3205static void tcp_enable_tx_delay(void)
3206{
3207	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3208		static int __tcp_tx_delay_enabled = 0;
3209
3210		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3211			static_branch_enable(&tcp_tx_delay_enabled);
3212			pr_info("TCP_TX_DELAY enabled\n");
3213		}
3214	}
3215}
3216
3217/* When set indicates to always queue non-full frames.  Later the user clears
3218 * this option and we transmit any pending partial frames in the queue.  This is
3219 * meant to be used alongside sendfile() to get properly filled frames when the
3220 * user (for example) must write out headers with a write() call first and then
3221 * use sendfile to send out the data parts.
3222 *
3223 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3224 * TCP_NODELAY.
3225 */
3226void __tcp_sock_set_cork(struct sock *sk, bool on)
3227{
3228	struct tcp_sock *tp = tcp_sk(sk);
3229
3230	if (on) {
3231		tp->nonagle |= TCP_NAGLE_CORK;
3232	} else {
3233		tp->nonagle &= ~TCP_NAGLE_CORK;
3234		if (tp->nonagle & TCP_NAGLE_OFF)
3235			tp->nonagle |= TCP_NAGLE_PUSH;
3236		tcp_push_pending_frames(sk);
3237	}
3238}
3239
3240void tcp_sock_set_cork(struct sock *sk, bool on)
3241{
3242	lock_sock(sk);
3243	__tcp_sock_set_cork(sk, on);
3244	release_sock(sk);
3245}
3246EXPORT_SYMBOL(tcp_sock_set_cork);
3247
3248/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3249 * remembered, but it is not activated until cork is cleared.
3250 *
3251 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3252 * even TCP_CORK for currently queued segments.
3253 */
3254void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3255{
3256	if (on) {
3257		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3258		tcp_push_pending_frames(sk);
3259	} else {
3260		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3261	}
3262}
3263
3264void tcp_sock_set_nodelay(struct sock *sk)
3265{
3266	lock_sock(sk);
3267	__tcp_sock_set_nodelay(sk, true);
3268	release_sock(sk);
3269}
3270EXPORT_SYMBOL(tcp_sock_set_nodelay);
3271
3272static void __tcp_sock_set_quickack(struct sock *sk, int val)
3273{
3274	if (!val) {
3275		inet_csk_enter_pingpong_mode(sk);
3276		return;
3277	}
3278
3279	inet_csk_exit_pingpong_mode(sk);
3280	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3281	    inet_csk_ack_scheduled(sk)) {
3282		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3283		tcp_cleanup_rbuf(sk, 1);
3284		if (!(val & 1))
3285			inet_csk_enter_pingpong_mode(sk);
3286	}
3287}
3288
3289void tcp_sock_set_quickack(struct sock *sk, int val)
3290{
3291	lock_sock(sk);
3292	__tcp_sock_set_quickack(sk, val);
3293	release_sock(sk);
3294}
3295EXPORT_SYMBOL(tcp_sock_set_quickack);
3296
3297int tcp_sock_set_syncnt(struct sock *sk, int val)
3298{
3299	if (val < 1 || val > MAX_TCP_SYNCNT)
3300		return -EINVAL;
3301
3302	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3303	return 0;
3304}
3305EXPORT_SYMBOL(tcp_sock_set_syncnt);
3306
3307int tcp_sock_set_user_timeout(struct sock *sk, int val)
3308{
3309	/* Cap the max time in ms TCP will retry or probe the window
3310	 * before giving up and aborting (ETIMEDOUT) a connection.
3311	 */
3312	if (val < 0)
3313		return -EINVAL;
3314
3315	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3316	return 0;
3317}
3318EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3319
3320int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3321{
3322	struct tcp_sock *tp = tcp_sk(sk);
3323
3324	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3325		return -EINVAL;
3326
3327	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3328	WRITE_ONCE(tp->keepalive_time, val * HZ);
3329	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3330	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3331		u32 elapsed = keepalive_time_elapsed(tp);
3332
3333		if (tp->keepalive_time > elapsed)
3334			elapsed = tp->keepalive_time - elapsed;
3335		else
3336			elapsed = 0;
3337		inet_csk_reset_keepalive_timer(sk, elapsed);
3338	}
3339
3340	return 0;
3341}
3342
3343int tcp_sock_set_keepidle(struct sock *sk, int val)
3344{
3345	int err;
3346
3347	lock_sock(sk);
3348	err = tcp_sock_set_keepidle_locked(sk, val);
3349	release_sock(sk);
3350	return err;
3351}
3352EXPORT_SYMBOL(tcp_sock_set_keepidle);
3353
3354int tcp_sock_set_keepintvl(struct sock *sk, int val)
3355{
3356	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3357		return -EINVAL;
3358
3359	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3360	return 0;
3361}
3362EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3363
3364int tcp_sock_set_keepcnt(struct sock *sk, int val)
3365{
3366	if (val < 1 || val > MAX_TCP_KEEPCNT)
3367		return -EINVAL;
3368
3369	/* Paired with READ_ONCE() in keepalive_probes() */
3370	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3371	return 0;
3372}
3373EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3374
3375int tcp_set_window_clamp(struct sock *sk, int val)
3376{
3377	struct tcp_sock *tp = tcp_sk(sk);
3378
3379	if (!val) {
3380		if (sk->sk_state != TCP_CLOSE)
3381			return -EINVAL;
3382		tp->window_clamp = 0;
3383	} else {
3384		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3385		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3386						SOCK_MIN_RCVBUF / 2 : val;
3387
3388		if (new_window_clamp == old_window_clamp)
3389			return 0;
3390
3391		tp->window_clamp = new_window_clamp;
3392		if (new_window_clamp < old_window_clamp) {
3393			/* need to apply the reserved mem provisioning only
3394			 * when shrinking the window clamp
3395			 */
3396			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3397
3398		} else {
3399			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3400			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3401					       tp->rcv_ssthresh);
3402		}
3403	}
3404	return 0;
3405}
3406
3407/*
3408 *	Socket option code for TCP.
3409 */
3410int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3411		      sockptr_t optval, unsigned int optlen)
3412{
3413	struct tcp_sock *tp = tcp_sk(sk);
3414	struct inet_connection_sock *icsk = inet_csk(sk);
3415	struct net *net = sock_net(sk);
3416	int val;
3417	int err = 0;
3418
3419	/* These are data/string values, all the others are ints */
3420	switch (optname) {
3421	case TCP_CONGESTION: {
3422		char name[TCP_CA_NAME_MAX];
3423
3424		if (optlen < 1)
3425			return -EINVAL;
3426
3427		val = strncpy_from_sockptr(name, optval,
3428					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3429		if (val < 0)
3430			return -EFAULT;
3431		name[val] = 0;
3432
3433		sockopt_lock_sock(sk);
3434		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3435						 sockopt_ns_capable(sock_net(sk)->user_ns,
3436								    CAP_NET_ADMIN));
3437		sockopt_release_sock(sk);
3438		return err;
3439	}
3440	case TCP_ULP: {
3441		char name[TCP_ULP_NAME_MAX];
3442
3443		if (optlen < 1)
3444			return -EINVAL;
3445
3446		val = strncpy_from_sockptr(name, optval,
3447					min_t(long, TCP_ULP_NAME_MAX - 1,
3448					      optlen));
3449		if (val < 0)
3450			return -EFAULT;
3451		name[val] = 0;
3452
3453		sockopt_lock_sock(sk);
3454		err = tcp_set_ulp(sk, name);
3455		sockopt_release_sock(sk);
3456		return err;
3457	}
3458	case TCP_FASTOPEN_KEY: {
3459		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3460		__u8 *backup_key = NULL;
3461
3462		/* Allow a backup key as well to facilitate key rotation
3463		 * First key is the active one.
3464		 */
3465		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3466		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3467			return -EINVAL;
3468
3469		if (copy_from_sockptr(key, optval, optlen))
3470			return -EFAULT;
3471
3472		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3473			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3474
3475		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3476	}
3477	default:
3478		/* fallthru */
3479		break;
3480	}
3481
3482	if (optlen < sizeof(int))
3483		return -EINVAL;
3484
3485	if (copy_from_sockptr(&val, optval, sizeof(val)))
3486		return -EFAULT;
3487
3488	/* Handle options that can be set without locking the socket. */
3489	switch (optname) {
3490	case TCP_SYNCNT:
3491		return tcp_sock_set_syncnt(sk, val);
3492	case TCP_USER_TIMEOUT:
3493		return tcp_sock_set_user_timeout(sk, val);
3494	case TCP_KEEPINTVL:
3495		return tcp_sock_set_keepintvl(sk, val);
3496	case TCP_KEEPCNT:
3497		return tcp_sock_set_keepcnt(sk, val);
3498	case TCP_LINGER2:
3499		if (val < 0)
3500			WRITE_ONCE(tp->linger2, -1);
3501		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3502			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3503		else
3504			WRITE_ONCE(tp->linger2, val * HZ);
3505		return 0;
3506	case TCP_DEFER_ACCEPT:
3507		/* Translate value in seconds to number of retransmits */
3508		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3509			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3510					   TCP_RTO_MAX / HZ));
3511		return 0;
3512	}
3513
3514	sockopt_lock_sock(sk);
3515
3516	switch (optname) {
3517	case TCP_MAXSEG:
3518		/* Values greater than interface MTU won't take effect. However
3519		 * at the point when this call is done we typically don't yet
3520		 * know which interface is going to be used
3521		 */
3522		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3523			err = -EINVAL;
3524			break;
3525		}
3526		tp->rx_opt.user_mss = val;
3527		break;
3528
3529	case TCP_NODELAY:
3530		__tcp_sock_set_nodelay(sk, val);
3531		break;
3532
3533	case TCP_THIN_LINEAR_TIMEOUTS:
3534		if (val < 0 || val > 1)
3535			err = -EINVAL;
3536		else
3537			tp->thin_lto = val;
3538		break;
3539
3540	case TCP_THIN_DUPACK:
3541		if (val < 0 || val > 1)
3542			err = -EINVAL;
3543		break;
3544
3545	case TCP_REPAIR:
3546		if (!tcp_can_repair_sock(sk))
3547			err = -EPERM;
3548		else if (val == TCP_REPAIR_ON) {
3549			tp->repair = 1;
3550			sk->sk_reuse = SK_FORCE_REUSE;
3551			tp->repair_queue = TCP_NO_QUEUE;
3552		} else if (val == TCP_REPAIR_OFF) {
3553			tp->repair = 0;
3554			sk->sk_reuse = SK_NO_REUSE;
3555			tcp_send_window_probe(sk);
3556		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3557			tp->repair = 0;
3558			sk->sk_reuse = SK_NO_REUSE;
3559		} else
3560			err = -EINVAL;
3561
3562		break;
3563
3564	case TCP_REPAIR_QUEUE:
3565		if (!tp->repair)
3566			err = -EPERM;
3567		else if ((unsigned int)val < TCP_QUEUES_NR)
3568			tp->repair_queue = val;
3569		else
3570			err = -EINVAL;
3571		break;
3572
3573	case TCP_QUEUE_SEQ:
3574		if (sk->sk_state != TCP_CLOSE) {
3575			err = -EPERM;
3576		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3577			if (!tcp_rtx_queue_empty(sk))
3578				err = -EPERM;
3579			else
3580				WRITE_ONCE(tp->write_seq, val);
3581		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3582			if (tp->rcv_nxt != tp->copied_seq) {
3583				err = -EPERM;
3584			} else {
3585				WRITE_ONCE(tp->rcv_nxt, val);
3586				WRITE_ONCE(tp->copied_seq, val);
3587			}
3588		} else {
3589			err = -EINVAL;
3590		}
3591		break;
3592
3593	case TCP_REPAIR_OPTIONS:
3594		if (!tp->repair)
3595			err = -EINVAL;
3596		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3597			err = tcp_repair_options_est(sk, optval, optlen);
3598		else
3599			err = -EPERM;
3600		break;
3601
3602	case TCP_CORK:
3603		__tcp_sock_set_cork(sk, val);
3604		break;
3605
3606	case TCP_KEEPIDLE:
3607		err = tcp_sock_set_keepidle_locked(sk, val);
3608		break;
3609	case TCP_SAVE_SYN:
3610		/* 0: disable, 1: enable, 2: start from ether_header */
3611		if (val < 0 || val > 2)
3612			err = -EINVAL;
3613		else
3614			tp->save_syn = val;
3615		break;
3616
3617	case TCP_WINDOW_CLAMP:
3618		err = tcp_set_window_clamp(sk, val);
3619		break;
3620
3621	case TCP_QUICKACK:
3622		__tcp_sock_set_quickack(sk, val);
3623		break;
3624
3625	case TCP_AO_REPAIR:
3626		if (!tcp_can_repair_sock(sk)) {
3627			err = -EPERM;
3628			break;
3629		}
3630		err = tcp_ao_set_repair(sk, optval, optlen);
3631		break;
3632#ifdef CONFIG_TCP_AO
3633	case TCP_AO_ADD_KEY:
3634	case TCP_AO_DEL_KEY:
3635	case TCP_AO_INFO: {
3636		/* If this is the first TCP-AO setsockopt() on the socket,
3637		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3638		 * in any state.
3639		 */
3640		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3641			goto ao_parse;
3642		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3643					      lockdep_sock_is_held(sk)))
3644			goto ao_parse;
3645		if (tp->repair)
3646			goto ao_parse;
3647		err = -EISCONN;
3648		break;
3649ao_parse:
3650		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3651		break;
3652	}
3653#endif
3654#ifdef CONFIG_TCP_MD5SIG
3655	case TCP_MD5SIG:
3656	case TCP_MD5SIG_EXT:
3657		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3658		break;
3659#endif
3660	case TCP_FASTOPEN:
3661		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3662		    TCPF_LISTEN))) {
3663			tcp_fastopen_init_key_once(net);
3664
3665			fastopen_queue_tune(sk, val);
3666		} else {
3667			err = -EINVAL;
3668		}
3669		break;
3670	case TCP_FASTOPEN_CONNECT:
3671		if (val > 1 || val < 0) {
3672			err = -EINVAL;
3673		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3674			   TFO_CLIENT_ENABLE) {
3675			if (sk->sk_state == TCP_CLOSE)
3676				tp->fastopen_connect = val;
3677			else
3678				err = -EINVAL;
3679		} else {
3680			err = -EOPNOTSUPP;
3681		}
3682		break;
3683	case TCP_FASTOPEN_NO_COOKIE:
3684		if (val > 1 || val < 0)
3685			err = -EINVAL;
3686		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3687			err = -EINVAL;
3688		else
3689			tp->fastopen_no_cookie = val;
3690		break;
3691	case TCP_TIMESTAMP:
3692		if (!tp->repair) {
3693			err = -EPERM;
3694			break;
3695		}
3696		/* val is an opaque field,
3697		 * and low order bit contains usec_ts enable bit.
3698		 * Its a best effort, and we do not care if user makes an error.
3699		 */
3700		tp->tcp_usec_ts = val & 1;
3701		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3702		break;
3703	case TCP_REPAIR_WINDOW:
3704		err = tcp_repair_set_window(tp, optval, optlen);
3705		break;
3706	case TCP_NOTSENT_LOWAT:
3707		WRITE_ONCE(tp->notsent_lowat, val);
3708		sk->sk_write_space(sk);
3709		break;
3710	case TCP_INQ:
3711		if (val > 1 || val < 0)
3712			err = -EINVAL;
3713		else
3714			tp->recvmsg_inq = val;
3715		break;
3716	case TCP_TX_DELAY:
3717		if (val)
3718			tcp_enable_tx_delay();
3719		WRITE_ONCE(tp->tcp_tx_delay, val);
3720		break;
3721	default:
3722		err = -ENOPROTOOPT;
3723		break;
3724	}
3725
3726	sockopt_release_sock(sk);
3727	return err;
3728}
3729
3730int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3731		   unsigned int optlen)
3732{
3733	const struct inet_connection_sock *icsk = inet_csk(sk);
3734
3735	if (level != SOL_TCP)
3736		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3737		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3738								optval, optlen);
3739	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3740}
3741EXPORT_SYMBOL(tcp_setsockopt);
3742
3743static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3744				      struct tcp_info *info)
3745{
3746	u64 stats[__TCP_CHRONO_MAX], total = 0;
3747	enum tcp_chrono i;
3748
3749	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3750		stats[i] = tp->chrono_stat[i - 1];
3751		if (i == tp->chrono_type)
3752			stats[i] += tcp_jiffies32 - tp->chrono_start;
3753		stats[i] *= USEC_PER_SEC / HZ;
3754		total += stats[i];
3755	}
3756
3757	info->tcpi_busy_time = total;
3758	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3759	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3760}
3761
3762/* Return information about state of tcp endpoint in API format. */
3763void tcp_get_info(struct sock *sk, struct tcp_info *info)
3764{
3765	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3766	const struct inet_connection_sock *icsk = inet_csk(sk);
3767	unsigned long rate;
3768	u32 now;
3769	u64 rate64;
3770	bool slow;
3771
3772	memset(info, 0, sizeof(*info));
3773	if (sk->sk_type != SOCK_STREAM)
3774		return;
3775
3776	info->tcpi_state = inet_sk_state_load(sk);
3777
3778	/* Report meaningful fields for all TCP states, including listeners */
3779	rate = READ_ONCE(sk->sk_pacing_rate);
3780	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3781	info->tcpi_pacing_rate = rate64;
3782
3783	rate = READ_ONCE(sk->sk_max_pacing_rate);
3784	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3785	info->tcpi_max_pacing_rate = rate64;
3786
3787	info->tcpi_reordering = tp->reordering;
3788	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3789
3790	if (info->tcpi_state == TCP_LISTEN) {
3791		/* listeners aliased fields :
3792		 * tcpi_unacked -> Number of children ready for accept()
3793		 * tcpi_sacked  -> max backlog
3794		 */
3795		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3796		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3797		return;
3798	}
3799
3800	slow = lock_sock_fast(sk);
3801
3802	info->tcpi_ca_state = icsk->icsk_ca_state;
3803	info->tcpi_retransmits = icsk->icsk_retransmits;
3804	info->tcpi_probes = icsk->icsk_probes_out;
3805	info->tcpi_backoff = icsk->icsk_backoff;
3806
3807	if (tp->rx_opt.tstamp_ok)
3808		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3809	if (tcp_is_sack(tp))
3810		info->tcpi_options |= TCPI_OPT_SACK;
3811	if (tp->rx_opt.wscale_ok) {
3812		info->tcpi_options |= TCPI_OPT_WSCALE;
3813		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3814		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3815	}
3816
3817	if (tp->ecn_flags & TCP_ECN_OK)
3818		info->tcpi_options |= TCPI_OPT_ECN;
3819	if (tp->ecn_flags & TCP_ECN_SEEN)
3820		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3821	if (tp->syn_data_acked)
3822		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3823	if (tp->tcp_usec_ts)
3824		info->tcpi_options |= TCPI_OPT_USEC_TS;
3825
3826	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3827	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3828						tcp_delack_max(sk)));
3829	info->tcpi_snd_mss = tp->mss_cache;
3830	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3831
3832	info->tcpi_unacked = tp->packets_out;
3833	info->tcpi_sacked = tp->sacked_out;
3834
3835	info->tcpi_lost = tp->lost_out;
3836	info->tcpi_retrans = tp->retrans_out;
3837
3838	now = tcp_jiffies32;
3839	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3840	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3841	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3842
3843	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3844	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3845	info->tcpi_rtt = tp->srtt_us >> 3;
3846	info->tcpi_rttvar = tp->mdev_us >> 2;
3847	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3848	info->tcpi_advmss = tp->advmss;
3849
3850	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3851	info->tcpi_rcv_space = tp->rcvq_space.space;
3852
3853	info->tcpi_total_retrans = tp->total_retrans;
3854
3855	info->tcpi_bytes_acked = tp->bytes_acked;
3856	info->tcpi_bytes_received = tp->bytes_received;
3857	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3858	tcp_get_info_chrono_stats(tp, info);
3859
3860	info->tcpi_segs_out = tp->segs_out;
3861
3862	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3863	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3864	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3865
3866	info->tcpi_min_rtt = tcp_min_rtt(tp);
3867	info->tcpi_data_segs_out = tp->data_segs_out;
3868
3869	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3870	rate64 = tcp_compute_delivery_rate(tp);
3871	if (rate64)
3872		info->tcpi_delivery_rate = rate64;
3873	info->tcpi_delivered = tp->delivered;
3874	info->tcpi_delivered_ce = tp->delivered_ce;
3875	info->tcpi_bytes_sent = tp->bytes_sent;
3876	info->tcpi_bytes_retrans = tp->bytes_retrans;
3877	info->tcpi_dsack_dups = tp->dsack_dups;
3878	info->tcpi_reord_seen = tp->reord_seen;
3879	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3880	info->tcpi_snd_wnd = tp->snd_wnd;
3881	info->tcpi_rcv_wnd = tp->rcv_wnd;
3882	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3883	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3884
3885	info->tcpi_total_rto = tp->total_rto;
3886	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3887	info->tcpi_total_rto_time = tp->total_rto_time;
3888	if (tp->rto_stamp)
3889		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3890
3891	unlock_sock_fast(sk, slow);
3892}
3893EXPORT_SYMBOL_GPL(tcp_get_info);
3894
3895static size_t tcp_opt_stats_get_size(void)
3896{
3897	return
3898		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3899		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3900		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3901		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3902		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3903		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3904		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3905		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3906		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3907		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3908		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3909		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3910		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3911		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3912		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3913		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3914		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3915		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3916		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3917		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3918		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3919		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3920		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3921		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3922		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3923		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3924		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3925		0;
3926}
3927
3928/* Returns TTL or hop limit of an incoming packet from skb. */
3929static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3930{
3931	if (skb->protocol == htons(ETH_P_IP))
3932		return ip_hdr(skb)->ttl;
3933	else if (skb->protocol == htons(ETH_P_IPV6))
3934		return ipv6_hdr(skb)->hop_limit;
3935	else
3936		return 0;
3937}
3938
3939struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3940					       const struct sk_buff *orig_skb,
3941					       const struct sk_buff *ack_skb)
3942{
3943	const struct tcp_sock *tp = tcp_sk(sk);
3944	struct sk_buff *stats;
3945	struct tcp_info info;
3946	unsigned long rate;
3947	u64 rate64;
3948
3949	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3950	if (!stats)
3951		return NULL;
3952
3953	tcp_get_info_chrono_stats(tp, &info);
3954	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3955			  info.tcpi_busy_time, TCP_NLA_PAD);
3956	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3957			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3958	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3959			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3960	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3961			  tp->data_segs_out, TCP_NLA_PAD);
3962	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3963			  tp->total_retrans, TCP_NLA_PAD);
3964
3965	rate = READ_ONCE(sk->sk_pacing_rate);
3966	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3967	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3968
3969	rate64 = tcp_compute_delivery_rate(tp);
3970	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3971
3972	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3973	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3974	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3975
3976	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3977	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3978	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3979	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3980	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3981
3982	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3983	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3984
3985	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3986			  TCP_NLA_PAD);
3987	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3988			  TCP_NLA_PAD);
3989	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3990	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3991	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3992	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3993	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3994		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3995	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3996			  TCP_NLA_PAD);
3997	if (ack_skb)
3998		nla_put_u8(stats, TCP_NLA_TTL,
3999			   tcp_skb_ttl_or_hop_limit(ack_skb));
4000
4001	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4002	return stats;
4003}
4004
4005int do_tcp_getsockopt(struct sock *sk, int level,
4006		      int optname, sockptr_t optval, sockptr_t optlen)
4007{
4008	struct inet_connection_sock *icsk = inet_csk(sk);
4009	struct tcp_sock *tp = tcp_sk(sk);
4010	struct net *net = sock_net(sk);
4011	int val, len;
4012
4013	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4014		return -EFAULT;
4015
4016	if (len < 0)
4017		return -EINVAL;
4018
4019	len = min_t(unsigned int, len, sizeof(int));
4020
4021	switch (optname) {
4022	case TCP_MAXSEG:
4023		val = tp->mss_cache;
4024		if (tp->rx_opt.user_mss &&
4025		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4026			val = tp->rx_opt.user_mss;
4027		if (tp->repair)
4028			val = tp->rx_opt.mss_clamp;
4029		break;
4030	case TCP_NODELAY:
4031		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4032		break;
4033	case TCP_CORK:
4034		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4035		break;
4036	case TCP_KEEPIDLE:
4037		val = keepalive_time_when(tp) / HZ;
4038		break;
4039	case TCP_KEEPINTVL:
4040		val = keepalive_intvl_when(tp) / HZ;
4041		break;
4042	case TCP_KEEPCNT:
4043		val = keepalive_probes(tp);
4044		break;
4045	case TCP_SYNCNT:
4046		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4047			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4048		break;
4049	case TCP_LINGER2:
4050		val = READ_ONCE(tp->linger2);
4051		if (val >= 0)
4052			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4053		break;
4054	case TCP_DEFER_ACCEPT:
4055		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4056		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4057				      TCP_RTO_MAX / HZ);
4058		break;
4059	case TCP_WINDOW_CLAMP:
4060		val = tp->window_clamp;
4061		break;
4062	case TCP_INFO: {
4063		struct tcp_info info;
4064
4065		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4066			return -EFAULT;
4067
4068		tcp_get_info(sk, &info);
4069
4070		len = min_t(unsigned int, len, sizeof(info));
4071		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4072			return -EFAULT;
4073		if (copy_to_sockptr(optval, &info, len))
4074			return -EFAULT;
4075		return 0;
4076	}
4077	case TCP_CC_INFO: {
4078		const struct tcp_congestion_ops *ca_ops;
4079		union tcp_cc_info info;
4080		size_t sz = 0;
4081		int attr;
4082
4083		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4084			return -EFAULT;
4085
4086		ca_ops = icsk->icsk_ca_ops;
4087		if (ca_ops && ca_ops->get_info)
4088			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4089
4090		len = min_t(unsigned int, len, sz);
4091		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4092			return -EFAULT;
4093		if (copy_to_sockptr(optval, &info, len))
4094			return -EFAULT;
4095		return 0;
4096	}
4097	case TCP_QUICKACK:
4098		val = !inet_csk_in_pingpong_mode(sk);
4099		break;
4100
4101	case TCP_CONGESTION:
4102		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4103			return -EFAULT;
4104		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4105		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4106			return -EFAULT;
4107		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4108			return -EFAULT;
4109		return 0;
4110
4111	case TCP_ULP:
4112		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4113			return -EFAULT;
4114		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4115		if (!icsk->icsk_ulp_ops) {
4116			len = 0;
4117			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4118				return -EFAULT;
4119			return 0;
4120		}
4121		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4122			return -EFAULT;
4123		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4124			return -EFAULT;
4125		return 0;
4126
4127	case TCP_FASTOPEN_KEY: {
4128		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4129		unsigned int key_len;
4130
4131		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4132			return -EFAULT;
4133
4134		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4135				TCP_FASTOPEN_KEY_LENGTH;
4136		len = min_t(unsigned int, len, key_len);
4137		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4138			return -EFAULT;
4139		if (copy_to_sockptr(optval, key, len))
4140			return -EFAULT;
4141		return 0;
4142	}
4143	case TCP_THIN_LINEAR_TIMEOUTS:
4144		val = tp->thin_lto;
4145		break;
4146
4147	case TCP_THIN_DUPACK:
4148		val = 0;
4149		break;
4150
4151	case TCP_REPAIR:
4152		val = tp->repair;
4153		break;
4154
4155	case TCP_REPAIR_QUEUE:
4156		if (tp->repair)
4157			val = tp->repair_queue;
4158		else
4159			return -EINVAL;
4160		break;
4161
4162	case TCP_REPAIR_WINDOW: {
4163		struct tcp_repair_window opt;
4164
4165		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4166			return -EFAULT;
4167
4168		if (len != sizeof(opt))
4169			return -EINVAL;
4170
4171		if (!tp->repair)
4172			return -EPERM;
4173
4174		opt.snd_wl1	= tp->snd_wl1;
4175		opt.snd_wnd	= tp->snd_wnd;
4176		opt.max_window	= tp->max_window;
4177		opt.rcv_wnd	= tp->rcv_wnd;
4178		opt.rcv_wup	= tp->rcv_wup;
4179
4180		if (copy_to_sockptr(optval, &opt, len))
4181			return -EFAULT;
4182		return 0;
4183	}
4184	case TCP_QUEUE_SEQ:
4185		if (tp->repair_queue == TCP_SEND_QUEUE)
4186			val = tp->write_seq;
4187		else if (tp->repair_queue == TCP_RECV_QUEUE)
4188			val = tp->rcv_nxt;
4189		else
4190			return -EINVAL;
4191		break;
4192
4193	case TCP_USER_TIMEOUT:
4194		val = READ_ONCE(icsk->icsk_user_timeout);
4195		break;
4196
4197	case TCP_FASTOPEN:
4198		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4199		break;
4200
4201	case TCP_FASTOPEN_CONNECT:
4202		val = tp->fastopen_connect;
4203		break;
4204
4205	case TCP_FASTOPEN_NO_COOKIE:
4206		val = tp->fastopen_no_cookie;
4207		break;
4208
4209	case TCP_TX_DELAY:
4210		val = READ_ONCE(tp->tcp_tx_delay);
4211		break;
4212
4213	case TCP_TIMESTAMP:
4214		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4215		if (tp->tcp_usec_ts)
4216			val |= 1;
4217		else
4218			val &= ~1;
4219		break;
4220	case TCP_NOTSENT_LOWAT:
4221		val = READ_ONCE(tp->notsent_lowat);
4222		break;
4223	case TCP_INQ:
4224		val = tp->recvmsg_inq;
4225		break;
4226	case TCP_SAVE_SYN:
4227		val = tp->save_syn;
4228		break;
4229	case TCP_SAVED_SYN: {
4230		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4231			return -EFAULT;
4232
4233		sockopt_lock_sock(sk);
4234		if (tp->saved_syn) {
4235			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4236				len = tcp_saved_syn_len(tp->saved_syn);
4237				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4238					sockopt_release_sock(sk);
4239					return -EFAULT;
4240				}
4241				sockopt_release_sock(sk);
4242				return -EINVAL;
4243			}
4244			len = tcp_saved_syn_len(tp->saved_syn);
4245			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4246				sockopt_release_sock(sk);
4247				return -EFAULT;
4248			}
4249			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4250				sockopt_release_sock(sk);
4251				return -EFAULT;
4252			}
4253			tcp_saved_syn_free(tp);
4254			sockopt_release_sock(sk);
4255		} else {
4256			sockopt_release_sock(sk);
4257			len = 0;
4258			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4259				return -EFAULT;
4260		}
4261		return 0;
4262	}
4263#ifdef CONFIG_MMU
4264	case TCP_ZEROCOPY_RECEIVE: {
4265		struct scm_timestamping_internal tss;
4266		struct tcp_zerocopy_receive zc = {};
4267		int err;
4268
4269		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4270			return -EFAULT;
4271		if (len < 0 ||
4272		    len < offsetofend(struct tcp_zerocopy_receive, length))
4273			return -EINVAL;
4274		if (unlikely(len > sizeof(zc))) {
4275			err = check_zeroed_sockptr(optval, sizeof(zc),
4276						   len - sizeof(zc));
4277			if (err < 1)
4278				return err == 0 ? -EINVAL : err;
4279			len = sizeof(zc);
4280			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4281				return -EFAULT;
4282		}
4283		if (copy_from_sockptr(&zc, optval, len))
4284			return -EFAULT;
4285		if (zc.reserved)
4286			return -EINVAL;
4287		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4288			return -EINVAL;
4289		sockopt_lock_sock(sk);
4290		err = tcp_zerocopy_receive(sk, &zc, &tss);
4291		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4292							  &zc, &len, err);
4293		sockopt_release_sock(sk);
4294		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4295			goto zerocopy_rcv_cmsg;
4296		switch (len) {
4297		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4298			goto zerocopy_rcv_cmsg;
4299		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4300		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4301		case offsetofend(struct tcp_zerocopy_receive, flags):
4302		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4303		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4304		case offsetofend(struct tcp_zerocopy_receive, err):
4305			goto zerocopy_rcv_sk_err;
4306		case offsetofend(struct tcp_zerocopy_receive, inq):
4307			goto zerocopy_rcv_inq;
4308		case offsetofend(struct tcp_zerocopy_receive, length):
4309		default:
4310			goto zerocopy_rcv_out;
4311		}
4312zerocopy_rcv_cmsg:
4313		if (zc.msg_flags & TCP_CMSG_TS)
4314			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4315		else
4316			zc.msg_flags = 0;
4317zerocopy_rcv_sk_err:
4318		if (!err)
4319			zc.err = sock_error(sk);
4320zerocopy_rcv_inq:
4321		zc.inq = tcp_inq_hint(sk);
4322zerocopy_rcv_out:
4323		if (!err && copy_to_sockptr(optval, &zc, len))
4324			err = -EFAULT;
4325		return err;
4326	}
4327#endif
4328	case TCP_AO_REPAIR:
4329		if (!tcp_can_repair_sock(sk))
4330			return -EPERM;
4331		return tcp_ao_get_repair(sk, optval, optlen);
4332	case TCP_AO_GET_KEYS:
4333	case TCP_AO_INFO: {
4334		int err;
4335
4336		sockopt_lock_sock(sk);
4337		if (optname == TCP_AO_GET_KEYS)
4338			err = tcp_ao_get_mkts(sk, optval, optlen);
4339		else
4340			err = tcp_ao_get_sock_info(sk, optval, optlen);
4341		sockopt_release_sock(sk);
4342
4343		return err;
4344	}
 
 
 
4345	default:
4346		return -ENOPROTOOPT;
4347	}
4348
4349	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4350		return -EFAULT;
4351	if (copy_to_sockptr(optval, &val, len))
4352		return -EFAULT;
4353	return 0;
4354}
4355
4356bool tcp_bpf_bypass_getsockopt(int level, int optname)
4357{
4358	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4359	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4360	 */
4361	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4362		return true;
4363
4364	return false;
4365}
4366EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4367
4368int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4369		   int __user *optlen)
4370{
4371	struct inet_connection_sock *icsk = inet_csk(sk);
4372
4373	if (level != SOL_TCP)
4374		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4375		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4376								optval, optlen);
4377	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4378				 USER_SOCKPTR(optlen));
4379}
4380EXPORT_SYMBOL(tcp_getsockopt);
4381
4382#ifdef CONFIG_TCP_MD5SIG
4383int tcp_md5_sigpool_id = -1;
4384EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4385
4386int tcp_md5_alloc_sigpool(void)
4387{
4388	size_t scratch_size;
4389	int ret;
4390
4391	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4392	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4393	if (ret >= 0) {
4394		/* As long as any md5 sigpool was allocated, the return
4395		 * id would stay the same. Re-write the id only for the case
4396		 * when previously all MD5 keys were deleted and this call
4397		 * allocates the first MD5 key, which may return a different
4398		 * sigpool id than was used previously.
4399		 */
4400		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4401		return 0;
4402	}
4403	return ret;
4404}
4405
4406void tcp_md5_release_sigpool(void)
4407{
4408	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4409}
4410
4411void tcp_md5_add_sigpool(void)
4412{
4413	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4414}
4415
4416int tcp_md5_hash_key(struct tcp_sigpool *hp,
4417		     const struct tcp_md5sig_key *key)
4418{
4419	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4420	struct scatterlist sg;
4421
4422	sg_init_one(&sg, key->key, keylen);
4423	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4424
4425	/* We use data_race() because tcp_md5_do_add() might change
4426	 * key->key under us
4427	 */
4428	return data_race(crypto_ahash_update(hp->req));
4429}
4430EXPORT_SYMBOL(tcp_md5_hash_key);
4431
4432/* Called with rcu_read_lock() */
4433enum skb_drop_reason
4434tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4435		     const void *saddr, const void *daddr,
4436		     int family, int l3index, const __u8 *hash_location)
4437{
4438	/* This gets called for each TCP segment that has TCP-MD5 option.
4439	 * We have 3 drop cases:
4440	 * o No MD5 hash and one expected.
4441	 * o MD5 hash and we're not expecting one.
4442	 * o MD5 hash and its wrong.
4443	 */
4444	const struct tcp_sock *tp = tcp_sk(sk);
4445	struct tcp_md5sig_key *key;
4446	u8 newhash[16];
4447	int genhash;
4448
4449	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4450
4451	if (!key && hash_location) {
4452		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4453		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4454		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4455	}
4456
4457	/* Check the signature.
4458	 * To support dual stack listeners, we need to handle
4459	 * IPv4-mapped case.
4460	 */
4461	if (family == AF_INET)
4462		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4463	else
4464		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4465							 NULL, skb);
4466	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4467		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4468		if (family == AF_INET) {
4469			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4470				      genhash ? "tcp_v4_calc_md5_hash failed"
4471				      : "", l3index);
4472		} else {
4473			if (genhash) {
4474				tcp_hash_fail("MD5 Hash failed",
4475					      AF_INET6, skb, "L3 index %d",
4476					      l3index);
4477			} else {
4478				tcp_hash_fail("MD5 Hash mismatch",
4479					      AF_INET6, skb, "L3 index %d",
4480					      l3index);
4481			}
4482		}
4483		return SKB_DROP_REASON_TCP_MD5FAILURE;
4484	}
4485	return SKB_NOT_DROPPED_YET;
4486}
4487EXPORT_SYMBOL(tcp_inbound_md5_hash);
 
 
 
 
 
 
 
4488
4489#endif
4490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4491void tcp_done(struct sock *sk)
4492{
4493	struct request_sock *req;
4494
4495	/* We might be called with a new socket, after
4496	 * inet_csk_prepare_forced_close() has been called
4497	 * so we can not use lockdep_sock_is_held(sk)
4498	 */
4499	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4500
4501	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4502		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4503
4504	tcp_set_state(sk, TCP_CLOSE);
4505	tcp_clear_xmit_timers(sk);
4506	if (req)
4507		reqsk_fastopen_remove(sk, req, false);
4508
4509	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4510
4511	if (!sock_flag(sk, SOCK_DEAD))
4512		sk->sk_state_change(sk);
4513	else
4514		inet_csk_destroy_sock(sk);
4515}
4516EXPORT_SYMBOL_GPL(tcp_done);
4517
4518int tcp_abort(struct sock *sk, int err)
4519{
4520	int state = inet_sk_state_load(sk);
4521
4522	if (state == TCP_NEW_SYN_RECV) {
4523		struct request_sock *req = inet_reqsk(sk);
4524
4525		local_bh_disable();
4526		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4527		local_bh_enable();
4528		return 0;
4529	}
4530	if (state == TCP_TIME_WAIT) {
4531		struct inet_timewait_sock *tw = inet_twsk(sk);
4532
4533		refcount_inc(&tw->tw_refcnt);
4534		local_bh_disable();
4535		inet_twsk_deschedule_put(tw);
4536		local_bh_enable();
4537		return 0;
4538	}
4539
4540	/* BPF context ensures sock locking. */
4541	if (!has_current_bpf_ctx())
4542		/* Don't race with userspace socket closes such as tcp_close. */
4543		lock_sock(sk);
4544
 
 
 
 
 
 
 
4545	if (sk->sk_state == TCP_LISTEN) {
4546		tcp_set_state(sk, TCP_CLOSE);
4547		inet_csk_listen_stop(sk);
4548	}
4549
4550	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4551	local_bh_disable();
4552	bh_lock_sock(sk);
4553
4554	if (!sock_flag(sk, SOCK_DEAD)) {
4555		WRITE_ONCE(sk->sk_err, err);
4556		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4557		smp_wmb();
4558		sk_error_report(sk);
4559		if (tcp_need_reset(sk->sk_state))
4560			tcp_send_active_reset(sk, GFP_ATOMIC);
4561		tcp_done(sk);
4562	}
4563
4564	bh_unlock_sock(sk);
4565	local_bh_enable();
4566	tcp_write_queue_purge(sk);
4567	if (!has_current_bpf_ctx())
4568		release_sock(sk);
4569	return 0;
4570}
4571EXPORT_SYMBOL_GPL(tcp_abort);
4572
4573extern struct tcp_congestion_ops tcp_reno;
4574
4575static __initdata unsigned long thash_entries;
4576static int __init set_thash_entries(char *str)
4577{
4578	ssize_t ret;
4579
4580	if (!str)
4581		return 0;
4582
4583	ret = kstrtoul(str, 0, &thash_entries);
4584	if (ret)
4585		return 0;
4586
4587	return 1;
4588}
4589__setup("thash_entries=", set_thash_entries);
4590
4591static void __init tcp_init_mem(void)
4592{
4593	unsigned long limit = nr_free_buffer_pages() / 16;
4594
4595	limit = max(limit, 128UL);
4596	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4597	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4598	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4599}
4600
4601static void __init tcp_struct_check(void)
4602{
4603	/* TX read-mostly hotpath cache lines */
4604	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4605	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4606	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4607	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4608	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4609	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4610	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4611	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4612
4613	/* TXRX read-mostly hotpath cache lines */
4614	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4615	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4616	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4617	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4618	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4619	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4620	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4621	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4622	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4623
4624	/* RX read-mostly hotpath cache lines */
4625	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4626	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4627	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4628	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4629	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4630	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4631	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4632	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4633	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4634	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4635	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4636	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4637	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4638
4639	/* TX read-write hotpath cache lines */
4640	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4641	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4642	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4643	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4644	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4645	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4646	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4647	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4648	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4649	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4650	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4651	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache);
4652	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp);
4653	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4654	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4655	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4656	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4657	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 105);
4658
4659	/* TXRX read-write hotpath cache lines */
4660	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
 
 
4661	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4662	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4663	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4664	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4665	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4666	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4667	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4668	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4669	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4670	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4671	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4672	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4673	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76);
 
 
 
 
4674
4675	/* RX read-write hotpath cache lines */
4676	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4677	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4678	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4679	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4680	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4681	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4682	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4683	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4684	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4685	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4686	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4687	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4688	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4689	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4690	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4691}
4692
4693void __init tcp_init(void)
4694{
4695	int max_rshare, max_wshare, cnt;
4696	unsigned long limit;
4697	unsigned int i;
4698
4699	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4700	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4701		     sizeof_field(struct sk_buff, cb));
4702
4703	tcp_struct_check();
4704
4705	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4706
4707	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4708	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4709
4710	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4711			    thash_entries, 21,  /* one slot per 2 MB*/
4712			    0, 64 * 1024);
4713	tcp_hashinfo.bind_bucket_cachep =
4714		kmem_cache_create("tcp_bind_bucket",
4715				  sizeof(struct inet_bind_bucket), 0,
4716				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4717				  SLAB_ACCOUNT,
4718				  NULL);
4719	tcp_hashinfo.bind2_bucket_cachep =
4720		kmem_cache_create("tcp_bind2_bucket",
4721				  sizeof(struct inet_bind2_bucket), 0,
4722				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4723				  SLAB_ACCOUNT,
4724				  NULL);
4725
4726	/* Size and allocate the main established and bind bucket
4727	 * hash tables.
4728	 *
4729	 * The methodology is similar to that of the buffer cache.
4730	 */
4731	tcp_hashinfo.ehash =
4732		alloc_large_system_hash("TCP established",
4733					sizeof(struct inet_ehash_bucket),
4734					thash_entries,
4735					17, /* one slot per 128 KB of memory */
4736					0,
4737					NULL,
4738					&tcp_hashinfo.ehash_mask,
4739					0,
4740					thash_entries ? 0 : 512 * 1024);
4741	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4742		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4743
4744	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4745		panic("TCP: failed to alloc ehash_locks");
4746	tcp_hashinfo.bhash =
4747		alloc_large_system_hash("TCP bind",
4748					2 * sizeof(struct inet_bind_hashbucket),
4749					tcp_hashinfo.ehash_mask + 1,
4750					17, /* one slot per 128 KB of memory */
4751					0,
4752					&tcp_hashinfo.bhash_size,
4753					NULL,
4754					0,
4755					64 * 1024);
4756	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4757	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4758	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4759		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4760		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4761		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4762		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4763	}
4764
4765	tcp_hashinfo.pernet = false;
4766
4767	cnt = tcp_hashinfo.ehash_mask + 1;
4768	sysctl_tcp_max_orphans = cnt / 2;
4769
4770	tcp_init_mem();
4771	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4772	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4773	max_wshare = min(4UL*1024*1024, limit);
4774	max_rshare = min(6UL*1024*1024, limit);
4775
4776	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4777	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4778	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4779
4780	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4781	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4782	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4783
4784	pr_info("Hash tables configured (established %u bind %u)\n",
4785		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4786
4787	tcp_v4_init();
4788	tcp_metrics_init();
4789	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4790	tcp_tasklet_init();
4791	mptcp_init();
4792}