Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 263#include <linux/cache.h>
 264#include <linux/err.h>
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 275#include <net/proto_memory.h>
 276#include <net/xfrm.h>
 277#include <net/ip.h>
 278#include <net/sock.h>
 279#include <net/rstreason.h>
 280
 281#include <linux/uaccess.h>
 282#include <asm/ioctls.h>
 283#include <net/busy_poll.h>
 284#include <net/hotdata.h>
 285#include <trace/events/tcp.h>
 286#include <net/rps.h>
 287
 288#include "../core/devmem.h"
 289
 290/* Track pending CMSGs. */
 291enum {
 292	TCP_CMSG_INQ = 1,
 293	TCP_CMSG_TS = 2
 294};
 295
 296DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 297EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 298
 299DEFINE_PER_CPU(u32, tcp_tw_isn);
 300EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
 301
 302long sysctl_tcp_mem[3] __read_mostly;
 303EXPORT_SYMBOL(sysctl_tcp_mem);
 304
 305atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 306EXPORT_SYMBOL(tcp_memory_allocated);
 307DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 308EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 309
 310#if IS_ENABLED(CONFIG_SMC)
 311DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 312EXPORT_SYMBOL(tcp_have_smc);
 313#endif
 314
 315/*
 316 * Current number of TCP sockets.
 317 */
 318struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 319EXPORT_SYMBOL(tcp_sockets_allocated);
 320
 321/*
 322 * TCP splice context
 323 */
 324struct tcp_splice_state {
 325	struct pipe_inode_info *pipe;
 326	size_t len;
 327	unsigned int flags;
 328};
 329
 330/*
 331 * Pressure flag: try to collapse.
 332 * Technical note: it is used by multiple contexts non atomically.
 333 * All the __sk_mem_schedule() is of this nature: accounting
 334 * is strict, actions are advisory and have some latency.
 335 */
 336unsigned long tcp_memory_pressure __read_mostly;
 337EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 338
 339void tcp_enter_memory_pressure(struct sock *sk)
 340{
 341	unsigned long val;
 342
 343	if (READ_ONCE(tcp_memory_pressure))
 344		return;
 345	val = jiffies;
 346
 347	if (!val)
 348		val--;
 349	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 350		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 351}
 352EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 353
 354void tcp_leave_memory_pressure(struct sock *sk)
 355{
 356	unsigned long val;
 357
 358	if (!READ_ONCE(tcp_memory_pressure))
 359		return;
 360	val = xchg(&tcp_memory_pressure, 0);
 361	if (val)
 362		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 363			      jiffies_to_msecs(jiffies - val));
 364}
 365EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 366
 367/* Convert seconds to retransmits based on initial and max timeout */
 368static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 369{
 370	u8 res = 0;
 371
 372	if (seconds > 0) {
 373		int period = timeout;
 374
 375		res = 1;
 376		while (seconds > period && res < 255) {
 377			res++;
 378			timeout <<= 1;
 379			if (timeout > rto_max)
 380				timeout = rto_max;
 381			period += timeout;
 382		}
 383	}
 384	return res;
 385}
 386
 387/* Convert retransmits to seconds based on initial and max timeout */
 388static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 389{
 390	int period = 0;
 391
 392	if (retrans > 0) {
 393		period = timeout;
 394		while (--retrans) {
 395			timeout <<= 1;
 396			if (timeout > rto_max)
 397				timeout = rto_max;
 398			period += timeout;
 399		}
 400	}
 401	return period;
 402}
 403
 404static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 405{
 406	u32 rate = READ_ONCE(tp->rate_delivered);
 407	u32 intv = READ_ONCE(tp->rate_interval_us);
 408	u64 rate64 = 0;
 409
 410	if (rate && intv) {
 411		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 412		do_div(rate64, intv);
 413	}
 414	return rate64;
 415}
 416
 417/* Address-family independent initialization for a tcp_sock.
 418 *
 419 * NOTE: A lot of things set to zero explicitly by call to
 420 *       sk_alloc() so need not be done here.
 421 */
 422void tcp_init_sock(struct sock *sk)
 423{
 424	struct inet_connection_sock *icsk = inet_csk(sk);
 425	struct tcp_sock *tp = tcp_sk(sk);
 426	int rto_min_us;
 427
 428	tp->out_of_order_queue = RB_ROOT;
 429	sk->tcp_rtx_queue = RB_ROOT;
 430	tcp_init_xmit_timers(sk);
 431	INIT_LIST_HEAD(&tp->tsq_node);
 432	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 433
 434	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 435	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
 436	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
 437	icsk->icsk_delack_max = TCP_DELACK_MAX;
 438	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 439	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 440
 441	/* So many TCP implementations out there (incorrectly) count the
 442	 * initial SYN frame in their delayed-ACK and congestion control
 443	 * algorithms that we must have the following bandaid to talk
 444	 * efficiently to them.  -DaveM
 445	 */
 446	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 447
 448	/* There's a bubble in the pipe until at least the first ACK. */
 449	tp->app_limited = ~0U;
 450	tp->rate_app_limited = 1;
 451
 452	/* See draft-stevens-tcpca-spec-01 for discussion of the
 453	 * initialization of these values.
 454	 */
 455	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 456	tp->snd_cwnd_clamp = ~0;
 457	tp->mss_cache = TCP_MSS_DEFAULT;
 458
 459	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 460	tcp_assign_congestion_control(sk);
 461
 462	tp->tsoffset = 0;
 463	tp->rack.reo_wnd_steps = 1;
 464
 465	sk->sk_write_space = sk_stream_write_space;
 466	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 467
 468	icsk->icsk_sync_mss = tcp_sync_mss;
 469
 470	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 471	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 472	tcp_scaling_ratio_init(sk);
 473
 474	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 475	sk_sockets_allocated_inc(sk);
 476	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
 477}
 478EXPORT_SYMBOL(tcp_init_sock);
 479
 480static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
 481{
 482	struct sk_buff *skb = tcp_write_queue_tail(sk);
 483	u32 tsflags = sockc->tsflags;
 484
 485	if (tsflags && skb) {
 486		struct skb_shared_info *shinfo = skb_shinfo(skb);
 487		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 488
 489		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
 490		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 491			tcb->txstamp_ack = 1;
 492		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 493			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 494	}
 495}
 496
 497static bool tcp_stream_is_readable(struct sock *sk, int target)
 498{
 499	if (tcp_epollin_ready(sk, target))
 500		return true;
 501	return sk_is_readable(sk);
 502}
 503
 504/*
 505 *	Wait for a TCP event.
 506 *
 507 *	Note that we don't need to lock the socket, as the upper poll layers
 508 *	take care of normal races (between the test and the event) and we don't
 509 *	go look at any of the socket buffers directly.
 510 */
 511__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 512{
 513	__poll_t mask;
 514	struct sock *sk = sock->sk;
 515	const struct tcp_sock *tp = tcp_sk(sk);
 516	u8 shutdown;
 517	int state;
 518
 519	sock_poll_wait(file, sock, wait);
 520
 521	state = inet_sk_state_load(sk);
 522	if (state == TCP_LISTEN)
 523		return inet_csk_listen_poll(sk);
 524
 525	/* Socket is not locked. We are protected from async events
 526	 * by poll logic and correct handling of state changes
 527	 * made by other threads is impossible in any case.
 528	 */
 529
 530	mask = 0;
 531
 532	/*
 533	 * EPOLLHUP is certainly not done right. But poll() doesn't
 534	 * have a notion of HUP in just one direction, and for a
 535	 * socket the read side is more interesting.
 536	 *
 537	 * Some poll() documentation says that EPOLLHUP is incompatible
 538	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 539	 * all. But careful, it tends to be safer to return too many
 540	 * bits than too few, and you can easily break real applications
 541	 * if you don't tell them that something has hung up!
 542	 *
 543	 * Check-me.
 544	 *
 545	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 546	 * our fs/select.c). It means that after we received EOF,
 547	 * poll always returns immediately, making impossible poll() on write()
 548	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 549	 * if and only if shutdown has been made in both directions.
 550	 * Actually, it is interesting to look how Solaris and DUX
 551	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 552	 * then we could set it on SND_SHUTDOWN. BTW examples given
 553	 * in Stevens' books assume exactly this behaviour, it explains
 554	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 555	 *
 556	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 557	 * blocking on fresh not-connected or disconnected socket. --ANK
 558	 */
 559	shutdown = READ_ONCE(sk->sk_shutdown);
 560	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 561		mask |= EPOLLHUP;
 562	if (shutdown & RCV_SHUTDOWN)
 563		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 564
 565	/* Connected or passive Fast Open socket? */
 566	if (state != TCP_SYN_SENT &&
 567	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 568		int target = sock_rcvlowat(sk, 0, INT_MAX);
 569		u16 urg_data = READ_ONCE(tp->urg_data);
 570
 571		if (unlikely(urg_data) &&
 572		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 573		    !sock_flag(sk, SOCK_URGINLINE))
 574			target++;
 575
 576		if (tcp_stream_is_readable(sk, target))
 577			mask |= EPOLLIN | EPOLLRDNORM;
 578
 579		if (!(shutdown & SEND_SHUTDOWN)) {
 580			if (__sk_stream_is_writeable(sk, 1)) {
 581				mask |= EPOLLOUT | EPOLLWRNORM;
 582			} else {  /* send SIGIO later */
 583				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 584				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 585
 586				/* Race breaker. If space is freed after
 587				 * wspace test but before the flags are set,
 588				 * IO signal will be lost. Memory barrier
 589				 * pairs with the input side.
 590				 */
 591				smp_mb__after_atomic();
 592				if (__sk_stream_is_writeable(sk, 1))
 593					mask |= EPOLLOUT | EPOLLWRNORM;
 594			}
 595		} else
 596			mask |= EPOLLOUT | EPOLLWRNORM;
 597
 598		if (urg_data & TCP_URG_VALID)
 599			mask |= EPOLLPRI;
 600	} else if (state == TCP_SYN_SENT &&
 601		   inet_test_bit(DEFER_CONNECT, sk)) {
 602		/* Active TCP fastopen socket with defer_connect
 603		 * Return EPOLLOUT so application can call write()
 604		 * in order for kernel to generate SYN+data
 605		 */
 606		mask |= EPOLLOUT | EPOLLWRNORM;
 607	}
 608	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
 609	smp_rmb();
 610	if (READ_ONCE(sk->sk_err) ||
 611	    !skb_queue_empty_lockless(&sk->sk_error_queue))
 612		mask |= EPOLLERR;
 613
 614	return mask;
 615}
 616EXPORT_SYMBOL(tcp_poll);
 617
 618int tcp_ioctl(struct sock *sk, int cmd, int *karg)
 619{
 620	struct tcp_sock *tp = tcp_sk(sk);
 621	int answ;
 622	bool slow;
 623
 624	switch (cmd) {
 625	case SIOCINQ:
 626		if (sk->sk_state == TCP_LISTEN)
 627			return -EINVAL;
 628
 629		slow = lock_sock_fast(sk);
 630		answ = tcp_inq(sk);
 631		unlock_sock_fast(sk, slow);
 632		break;
 633	case SIOCATMARK:
 634		answ = READ_ONCE(tp->urg_data) &&
 635		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 636		break;
 637	case SIOCOUTQ:
 638		if (sk->sk_state == TCP_LISTEN)
 639			return -EINVAL;
 640
 641		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 642			answ = 0;
 643		else
 644			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 645		break;
 646	case SIOCOUTQNSD:
 647		if (sk->sk_state == TCP_LISTEN)
 648			return -EINVAL;
 649
 650		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 651			answ = 0;
 652		else
 653			answ = READ_ONCE(tp->write_seq) -
 654			       READ_ONCE(tp->snd_nxt);
 655		break;
 656	default:
 657		return -ENOIOCTLCMD;
 658	}
 659
 660	*karg = answ;
 661	return 0;
 662}
 663EXPORT_SYMBOL(tcp_ioctl);
 664
 665void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 666{
 667	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 668	tp->pushed_seq = tp->write_seq;
 669}
 670
 671static inline bool forced_push(const struct tcp_sock *tp)
 672{
 673	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 674}
 675
 676void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 677{
 678	struct tcp_sock *tp = tcp_sk(sk);
 679	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 680
 681	tcb->seq     = tcb->end_seq = tp->write_seq;
 682	tcb->tcp_flags = TCPHDR_ACK;
 683	__skb_header_release(skb);
 684	tcp_add_write_queue_tail(sk, skb);
 685	sk_wmem_queued_add(sk, skb->truesize);
 686	sk_mem_charge(sk, skb->truesize);
 687	if (tp->nonagle & TCP_NAGLE_PUSH)
 688		tp->nonagle &= ~TCP_NAGLE_PUSH;
 689
 690	tcp_slow_start_after_idle_check(sk);
 691}
 692
 693static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 694{
 695	if (flags & MSG_OOB)
 696		tp->snd_up = tp->write_seq;
 697}
 698
 699/* If a not yet filled skb is pushed, do not send it if
 700 * we have data packets in Qdisc or NIC queues :
 701 * Because TX completion will happen shortly, it gives a chance
 702 * to coalesce future sendmsg() payload into this skb, without
 703 * need for a timer, and with no latency trade off.
 704 * As packets containing data payload have a bigger truesize
 705 * than pure acks (dataless) packets, the last checks prevent
 706 * autocorking if we only have an ACK in Qdisc/NIC queues,
 707 * or if TX completion was delayed after we processed ACK packet.
 708 */
 709static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 710				int size_goal)
 711{
 712	return skb->len < size_goal &&
 713	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 714	       !tcp_rtx_queue_empty(sk) &&
 715	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 716	       tcp_skb_can_collapse_to(skb);
 717}
 718
 719void tcp_push(struct sock *sk, int flags, int mss_now,
 720	      int nonagle, int size_goal)
 721{
 722	struct tcp_sock *tp = tcp_sk(sk);
 723	struct sk_buff *skb;
 724
 725	skb = tcp_write_queue_tail(sk);
 726	if (!skb)
 727		return;
 728	if (!(flags & MSG_MORE) || forced_push(tp))
 729		tcp_mark_push(tp, skb);
 730
 731	tcp_mark_urg(tp, flags);
 732
 733	if (tcp_should_autocork(sk, skb, size_goal)) {
 734
 735		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 736		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 737			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 738			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 739			smp_mb__after_atomic();
 740		}
 741		/* It is possible TX completion already happened
 742		 * before we set TSQ_THROTTLED.
 743		 */
 744		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 745			return;
 746	}
 747
 748	if (flags & MSG_MORE)
 749		nonagle = TCP_NAGLE_CORK;
 750
 751	__tcp_push_pending_frames(sk, mss_now, nonagle);
 752}
 753
 754static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 755				unsigned int offset, size_t len)
 756{
 757	struct tcp_splice_state *tss = rd_desc->arg.data;
 758	int ret;
 759
 760	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 761			      min(rd_desc->count, len), tss->flags);
 762	if (ret > 0)
 763		rd_desc->count -= ret;
 764	return ret;
 765}
 766
 767static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 768{
 769	/* Store TCP splice context information in read_descriptor_t. */
 770	read_descriptor_t rd_desc = {
 771		.arg.data = tss,
 772		.count	  = tss->len,
 773	};
 774
 775	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 776}
 777
 778/**
 779 *  tcp_splice_read - splice data from TCP socket to a pipe
 780 * @sock:	socket to splice from
 781 * @ppos:	position (not valid)
 782 * @pipe:	pipe to splice to
 783 * @len:	number of bytes to splice
 784 * @flags:	splice modifier flags
 785 *
 786 * Description:
 787 *    Will read pages from given socket and fill them into a pipe.
 788 *
 789 **/
 790ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 791			struct pipe_inode_info *pipe, size_t len,
 792			unsigned int flags)
 793{
 794	struct sock *sk = sock->sk;
 795	struct tcp_splice_state tss = {
 796		.pipe = pipe,
 797		.len = len,
 798		.flags = flags,
 799	};
 800	long timeo;
 801	ssize_t spliced;
 802	int ret;
 803
 804	sock_rps_record_flow(sk);
 805	/*
 806	 * We can't seek on a socket input
 807	 */
 808	if (unlikely(*ppos))
 809		return -ESPIPE;
 810
 811	ret = spliced = 0;
 812
 813	lock_sock(sk);
 814
 815	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 816	while (tss.len) {
 817		ret = __tcp_splice_read(sk, &tss);
 818		if (ret < 0)
 819			break;
 820		else if (!ret) {
 821			if (spliced)
 822				break;
 823			if (sock_flag(sk, SOCK_DONE))
 824				break;
 825			if (sk->sk_err) {
 826				ret = sock_error(sk);
 827				break;
 828			}
 829			if (sk->sk_shutdown & RCV_SHUTDOWN)
 830				break;
 831			if (sk->sk_state == TCP_CLOSE) {
 832				/*
 833				 * This occurs when user tries to read
 834				 * from never connected socket.
 835				 */
 836				ret = -ENOTCONN;
 837				break;
 838			}
 839			if (!timeo) {
 840				ret = -EAGAIN;
 841				break;
 842			}
 843			/* if __tcp_splice_read() got nothing while we have
 844			 * an skb in receive queue, we do not want to loop.
 845			 * This might happen with URG data.
 846			 */
 847			if (!skb_queue_empty(&sk->sk_receive_queue))
 848				break;
 849			ret = sk_wait_data(sk, &timeo, NULL);
 850			if (ret < 0)
 851				break;
 852			if (signal_pending(current)) {
 853				ret = sock_intr_errno(timeo);
 854				break;
 855			}
 856			continue;
 857		}
 858		tss.len -= ret;
 859		spliced += ret;
 860
 861		if (!tss.len || !timeo)
 862			break;
 863		release_sock(sk);
 864		lock_sock(sk);
 865
 866		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 867		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 868		    signal_pending(current))
 869			break;
 870	}
 871
 872	release_sock(sk);
 873
 874	if (spliced)
 875		return spliced;
 876
 877	return ret;
 878}
 879EXPORT_SYMBOL(tcp_splice_read);
 880
 881struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 882				     bool force_schedule)
 883{
 884	struct sk_buff *skb;
 885
 886	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
 887	if (likely(skb)) {
 888		bool mem_scheduled;
 889
 890		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 891		if (force_schedule) {
 892			mem_scheduled = true;
 893			sk_forced_mem_schedule(sk, skb->truesize);
 894		} else {
 895			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 896		}
 897		if (likely(mem_scheduled)) {
 898			skb_reserve(skb, MAX_TCP_HEADER);
 899			skb->ip_summed = CHECKSUM_PARTIAL;
 900			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 901			return skb;
 902		}
 903		__kfree_skb(skb);
 904	} else {
 905		sk->sk_prot->enter_memory_pressure(sk);
 906		sk_stream_moderate_sndbuf(sk);
 907	}
 908	return NULL;
 909}
 910
 911static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 912				       int large_allowed)
 913{
 914	struct tcp_sock *tp = tcp_sk(sk);
 915	u32 new_size_goal, size_goal;
 916
 917	if (!large_allowed)
 918		return mss_now;
 919
 920	/* Note : tcp_tso_autosize() will eventually split this later */
 921	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 922
 923	/* We try hard to avoid divides here */
 924	size_goal = tp->gso_segs * mss_now;
 925	if (unlikely(new_size_goal < size_goal ||
 926		     new_size_goal >= size_goal + mss_now)) {
 927		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 928				     sk->sk_gso_max_segs);
 929		size_goal = tp->gso_segs * mss_now;
 930	}
 931
 932	return max(size_goal, mss_now);
 933}
 934
 935int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 936{
 937	int mss_now;
 938
 939	mss_now = tcp_current_mss(sk);
 940	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 941
 942	return mss_now;
 943}
 944
 945/* In some cases, sendmsg() could have added an skb to the write queue,
 946 * but failed adding payload on it. We need to remove it to consume less
 947 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
 948 * epoll() users. Another reason is that tcp_write_xmit() does not like
 949 * finding an empty skb in the write queue.
 950 */
 951void tcp_remove_empty_skb(struct sock *sk)
 952{
 953	struct sk_buff *skb = tcp_write_queue_tail(sk);
 954
 955	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 956		tcp_unlink_write_queue(skb, sk);
 957		if (tcp_write_queue_empty(sk))
 958			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 959		tcp_wmem_free_skb(sk, skb);
 960	}
 961}
 962
 963/* skb changing from pure zc to mixed, must charge zc */
 964static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 965{
 966	if (unlikely(skb_zcopy_pure(skb))) {
 967		u32 extra = skb->truesize -
 968			    SKB_TRUESIZE(skb_end_offset(skb));
 969
 970		if (!sk_wmem_schedule(sk, extra))
 971			return -ENOMEM;
 972
 973		sk_mem_charge(sk, extra);
 974		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 975	}
 976	return 0;
 977}
 978
 979
 980int tcp_wmem_schedule(struct sock *sk, int copy)
 981{
 982	int left;
 983
 984	if (likely(sk_wmem_schedule(sk, copy)))
 985		return copy;
 986
 987	/* We could be in trouble if we have nothing queued.
 988	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 989	 * to guarantee some progress.
 990	 */
 991	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
 992	if (left > 0)
 993		sk_forced_mem_schedule(sk, min(left, copy));
 994	return min(copy, sk->sk_forward_alloc);
 995}
 996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997void tcp_free_fastopen_req(struct tcp_sock *tp)
 998{
 999	if (tp->fastopen_req) {
1000		kfree(tp->fastopen_req);
1001		tp->fastopen_req = NULL;
1002	}
1003}
1004
1005int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1006			 size_t size, struct ubuf_info *uarg)
1007{
1008	struct tcp_sock *tp = tcp_sk(sk);
1009	struct inet_sock *inet = inet_sk(sk);
1010	struct sockaddr *uaddr = msg->msg_name;
1011	int err, flags;
1012
1013	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1014	      TFO_CLIENT_ENABLE) ||
1015	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1016	     uaddr->sa_family == AF_UNSPEC))
1017		return -EOPNOTSUPP;
1018	if (tp->fastopen_req)
1019		return -EALREADY; /* Another Fast Open is in progress */
1020
1021	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1022				   sk->sk_allocation);
1023	if (unlikely(!tp->fastopen_req))
1024		return -ENOBUFS;
1025	tp->fastopen_req->data = msg;
1026	tp->fastopen_req->size = size;
1027	tp->fastopen_req->uarg = uarg;
1028
1029	if (inet_test_bit(DEFER_CONNECT, sk)) {
1030		err = tcp_connect(sk);
1031		/* Same failure procedure as in tcp_v4/6_connect */
1032		if (err) {
1033			tcp_set_state(sk, TCP_CLOSE);
1034			inet->inet_dport = 0;
1035			sk->sk_route_caps = 0;
1036		}
1037	}
1038	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1039	err = __inet_stream_connect(sk->sk_socket, uaddr,
1040				    msg->msg_namelen, flags, 1);
1041	/* fastopen_req could already be freed in __inet_stream_connect
1042	 * if the connection times out or gets rst
1043	 */
1044	if (tp->fastopen_req) {
1045		*copied = tp->fastopen_req->copied;
1046		tcp_free_fastopen_req(tp);
1047		inet_clear_bit(DEFER_CONNECT, sk);
1048	}
1049	return err;
1050}
1051
1052int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1053{
1054	struct tcp_sock *tp = tcp_sk(sk);
1055	struct ubuf_info *uarg = NULL;
1056	struct sk_buff *skb;
1057	struct sockcm_cookie sockc;
1058	int flags, err, copied = 0;
1059	int mss_now = 0, size_goal, copied_syn = 0;
1060	int process_backlog = 0;
1061	int zc = 0;
1062	long timeo;
1063
1064	flags = msg->msg_flags;
1065
1066	if ((flags & MSG_ZEROCOPY) && size) {
 
 
1067		if (msg->msg_ubuf) {
1068			uarg = msg->msg_ubuf;
1069			if (sk->sk_route_caps & NETIF_F_SG)
1070				zc = MSG_ZEROCOPY;
1071		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1072			skb = tcp_write_queue_tail(sk);
1073			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1074			if (!uarg) {
1075				err = -ENOBUFS;
1076				goto out_err;
1077			}
1078			if (sk->sk_route_caps & NETIF_F_SG)
1079				zc = MSG_ZEROCOPY;
1080			else
1081				uarg_to_msgzc(uarg)->zerocopy = 0;
1082		}
1083	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1084		if (sk->sk_route_caps & NETIF_F_SG)
1085			zc = MSG_SPLICE_PAGES;
1086	}
1087
1088	if (unlikely(flags & MSG_FASTOPEN ||
1089		     inet_test_bit(DEFER_CONNECT, sk)) &&
1090	    !tp->repair) {
1091		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1092		if (err == -EINPROGRESS && copied_syn > 0)
1093			goto out;
1094		else if (err)
1095			goto out_err;
1096	}
1097
1098	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1099
1100	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1101
1102	/* Wait for a connection to finish. One exception is TCP Fast Open
1103	 * (passive side) where data is allowed to be sent before a connection
1104	 * is fully established.
1105	 */
1106	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1107	    !tcp_passive_fastopen(sk)) {
1108		err = sk_stream_wait_connect(sk, &timeo);
1109		if (err != 0)
1110			goto do_error;
1111	}
1112
1113	if (unlikely(tp->repair)) {
1114		if (tp->repair_queue == TCP_RECV_QUEUE) {
1115			copied = tcp_send_rcvq(sk, msg, size);
1116			goto out_nopush;
1117		}
1118
1119		err = -EINVAL;
1120		if (tp->repair_queue == TCP_NO_QUEUE)
1121			goto out_err;
1122
1123		/* 'common' sending to sendq */
1124	}
1125
1126	sockcm_init(&sockc, sk);
1127	if (msg->msg_controllen) {
1128		err = sock_cmsg_send(sk, msg, &sockc);
1129		if (unlikely(err)) {
1130			err = -EINVAL;
1131			goto out_err;
1132		}
1133	}
1134
1135	/* This should be in poll */
1136	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1137
1138	/* Ok commence sending. */
1139	copied = 0;
1140
1141restart:
1142	mss_now = tcp_send_mss(sk, &size_goal, flags);
1143
1144	err = -EPIPE;
1145	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146		goto do_error;
1147
1148	while (msg_data_left(msg)) {
1149		ssize_t copy = 0;
1150
1151		skb = tcp_write_queue_tail(sk);
1152		if (skb)
1153			copy = size_goal - skb->len;
1154
1155		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1156			bool first_skb;
1157
1158new_segment:
1159			if (!sk_stream_memory_free(sk))
1160				goto wait_for_space;
1161
1162			if (unlikely(process_backlog >= 16)) {
1163				process_backlog = 0;
1164				if (sk_flush_backlog(sk))
1165					goto restart;
1166			}
1167			first_skb = tcp_rtx_and_write_queues_empty(sk);
1168			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1169						   first_skb);
1170			if (!skb)
1171				goto wait_for_space;
1172
1173			process_backlog++;
1174
1175#ifdef CONFIG_SKB_DECRYPTED
1176			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1177#endif
1178			tcp_skb_entail(sk, skb);
1179			copy = size_goal;
1180
1181			/* All packets are restored as if they have
1182			 * already been sent. skb_mstamp_ns isn't set to
1183			 * avoid wrong rtt estimation.
1184			 */
1185			if (tp->repair)
1186				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1187		}
1188
1189		/* Try to append data to the end of skb. */
1190		if (copy > msg_data_left(msg))
1191			copy = msg_data_left(msg);
1192
1193		if (zc == 0) {
1194			bool merge = true;
1195			int i = skb_shinfo(skb)->nr_frags;
1196			struct page_frag *pfrag = sk_page_frag(sk);
1197
1198			if (!sk_page_frag_refill(sk, pfrag))
1199				goto wait_for_space;
1200
1201			if (!skb_can_coalesce(skb, i, pfrag->page,
1202					      pfrag->offset)) {
1203				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1204					tcp_mark_push(tp, skb);
1205					goto new_segment;
1206				}
1207				merge = false;
1208			}
1209
1210			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1211
1212			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1213				if (tcp_downgrade_zcopy_pure(sk, skb))
1214					goto wait_for_space;
1215				skb_zcopy_downgrade_managed(skb);
1216			}
1217
1218			copy = tcp_wmem_schedule(sk, copy);
1219			if (!copy)
1220				goto wait_for_space;
1221
1222			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1223						       pfrag->page,
1224						       pfrag->offset,
1225						       copy);
1226			if (err)
1227				goto do_error;
1228
1229			/* Update the skb. */
1230			if (merge) {
1231				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1232			} else {
1233				skb_fill_page_desc(skb, i, pfrag->page,
1234						   pfrag->offset, copy);
1235				page_ref_inc(pfrag->page);
1236			}
1237			pfrag->offset += copy;
1238		} else if (zc == MSG_ZEROCOPY)  {
1239			/* First append to a fragless skb builds initial
1240			 * pure zerocopy skb
1241			 */
1242			if (!skb->len)
1243				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1244
1245			if (!skb_zcopy_pure(skb)) {
1246				copy = tcp_wmem_schedule(sk, copy);
1247				if (!copy)
1248					goto wait_for_space;
1249			}
1250
1251			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1252			if (err == -EMSGSIZE || err == -EEXIST) {
1253				tcp_mark_push(tp, skb);
1254				goto new_segment;
1255			}
1256			if (err < 0)
1257				goto do_error;
1258			copy = err;
1259		} else if (zc == MSG_SPLICE_PAGES) {
1260			/* Splice in data if we can; copy if we can't. */
1261			if (tcp_downgrade_zcopy_pure(sk, skb))
1262				goto wait_for_space;
1263			copy = tcp_wmem_schedule(sk, copy);
1264			if (!copy)
1265				goto wait_for_space;
1266
1267			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1268						   sk->sk_allocation);
1269			if (err < 0) {
1270				if (err == -EMSGSIZE) {
1271					tcp_mark_push(tp, skb);
1272					goto new_segment;
1273				}
1274				goto do_error;
1275			}
1276			copy = err;
1277
1278			if (!(flags & MSG_NO_SHARED_FRAGS))
1279				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1280
1281			sk_wmem_queued_add(sk, copy);
1282			sk_mem_charge(sk, copy);
1283		}
1284
1285		if (!copied)
1286			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1287
1288		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1289		TCP_SKB_CB(skb)->end_seq += copy;
1290		tcp_skb_pcount_set(skb, 0);
1291
1292		copied += copy;
1293		if (!msg_data_left(msg)) {
1294			if (unlikely(flags & MSG_EOR))
1295				TCP_SKB_CB(skb)->eor = 1;
1296			goto out;
1297		}
1298
1299		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1300			continue;
1301
1302		if (forced_push(tp)) {
1303			tcp_mark_push(tp, skb);
1304			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1305		} else if (skb == tcp_send_head(sk))
1306			tcp_push_one(sk, mss_now);
1307		continue;
1308
1309wait_for_space:
1310		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1311		tcp_remove_empty_skb(sk);
1312		if (copied)
1313			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1314				 TCP_NAGLE_PUSH, size_goal);
1315
1316		err = sk_stream_wait_memory(sk, &timeo);
1317		if (err != 0)
1318			goto do_error;
1319
1320		mss_now = tcp_send_mss(sk, &size_goal, flags);
1321	}
1322
1323out:
1324	if (copied) {
1325		tcp_tx_timestamp(sk, &sockc);
1326		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1327	}
1328out_nopush:
1329	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1330	if (uarg && !msg->msg_ubuf)
1331		net_zcopy_put(uarg);
1332	return copied + copied_syn;
1333
1334do_error:
1335	tcp_remove_empty_skb(sk);
1336
1337	if (copied + copied_syn)
1338		goto out;
1339out_err:
1340	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1341	if (uarg && !msg->msg_ubuf)
1342		net_zcopy_put_abort(uarg, true);
1343	err = sk_stream_error(sk, flags, err);
1344	/* make sure we wake any epoll edge trigger waiter */
1345	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1346		sk->sk_write_space(sk);
1347		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1348	}
1349	return err;
1350}
1351EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1352
1353int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1354{
1355	int ret;
1356
1357	lock_sock(sk);
1358	ret = tcp_sendmsg_locked(sk, msg, size);
1359	release_sock(sk);
1360
1361	return ret;
1362}
1363EXPORT_SYMBOL(tcp_sendmsg);
1364
1365void tcp_splice_eof(struct socket *sock)
1366{
1367	struct sock *sk = sock->sk;
1368	struct tcp_sock *tp = tcp_sk(sk);
1369	int mss_now, size_goal;
1370
1371	if (!tcp_write_queue_tail(sk))
1372		return;
1373
1374	lock_sock(sk);
1375	mss_now = tcp_send_mss(sk, &size_goal, 0);
1376	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1377	release_sock(sk);
1378}
1379EXPORT_SYMBOL_GPL(tcp_splice_eof);
1380
1381/*
1382 *	Handle reading urgent data. BSD has very simple semantics for
1383 *	this, no blocking and very strange errors 8)
1384 */
1385
1386static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1387{
1388	struct tcp_sock *tp = tcp_sk(sk);
1389
1390	/* No URG data to read. */
1391	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1392	    tp->urg_data == TCP_URG_READ)
1393		return -EINVAL;	/* Yes this is right ! */
1394
1395	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1396		return -ENOTCONN;
1397
1398	if (tp->urg_data & TCP_URG_VALID) {
1399		int err = 0;
1400		char c = tp->urg_data;
1401
1402		if (!(flags & MSG_PEEK))
1403			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1404
1405		/* Read urgent data. */
1406		msg->msg_flags |= MSG_OOB;
1407
1408		if (len > 0) {
1409			if (!(flags & MSG_TRUNC))
1410				err = memcpy_to_msg(msg, &c, 1);
1411			len = 1;
1412		} else
1413			msg->msg_flags |= MSG_TRUNC;
1414
1415		return err ? -EFAULT : len;
1416	}
1417
1418	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1419		return 0;
1420
1421	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1422	 * the available implementations agree in this case:
1423	 * this call should never block, independent of the
1424	 * blocking state of the socket.
1425	 * Mike <pall@rz.uni-karlsruhe.de>
1426	 */
1427	return -EAGAIN;
1428}
1429
1430static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1431{
1432	struct sk_buff *skb;
1433	int copied = 0, err = 0;
1434
 
 
1435	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1436		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1437		if (err)
1438			return err;
1439		copied += skb->len;
1440	}
1441
1442	skb_queue_walk(&sk->sk_write_queue, skb) {
1443		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1444		if (err)
1445			break;
1446
1447		copied += skb->len;
1448	}
1449
1450	return err ?: copied;
1451}
1452
1453/* Clean up the receive buffer for full frames taken by the user,
1454 * then send an ACK if necessary.  COPIED is the number of bytes
1455 * tcp_recvmsg has given to the user so far, it speeds up the
1456 * calculation of whether or not we must ACK for the sake of
1457 * a window update.
1458 */
1459void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1460{
1461	struct tcp_sock *tp = tcp_sk(sk);
1462	bool time_to_ack = false;
1463
1464	if (inet_csk_ack_scheduled(sk)) {
1465		const struct inet_connection_sock *icsk = inet_csk(sk);
1466
1467		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1468		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1469		    /*
1470		     * If this read emptied read buffer, we send ACK, if
1471		     * connection is not bidirectional, user drained
1472		     * receive buffer and there was a small segment
1473		     * in queue.
1474		     */
1475		    (copied > 0 &&
1476		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1477		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1478		       !inet_csk_in_pingpong_mode(sk))) &&
1479		      !atomic_read(&sk->sk_rmem_alloc)))
1480			time_to_ack = true;
1481	}
1482
1483	/* We send an ACK if we can now advertise a non-zero window
1484	 * which has been raised "significantly".
1485	 *
1486	 * Even if window raised up to infinity, do not send window open ACK
1487	 * in states, where we will not receive more. It is useless.
1488	 */
1489	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1490		__u32 rcv_window_now = tcp_receive_window(tp);
1491
1492		/* Optimize, __tcp_select_window() is not cheap. */
1493		if (2*rcv_window_now <= tp->window_clamp) {
1494			__u32 new_window = __tcp_select_window(sk);
1495
1496			/* Send ACK now, if this read freed lots of space
1497			 * in our buffer. Certainly, new_window is new window.
1498			 * We can advertise it now, if it is not less than current one.
1499			 * "Lots" means "at least twice" here.
1500			 */
1501			if (new_window && new_window >= 2 * rcv_window_now)
1502				time_to_ack = true;
1503		}
1504	}
1505	if (time_to_ack)
1506		tcp_send_ack(sk);
1507}
1508
1509void tcp_cleanup_rbuf(struct sock *sk, int copied)
1510{
1511	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1512	struct tcp_sock *tp = tcp_sk(sk);
1513
1514	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1515	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1516	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1517	__tcp_cleanup_rbuf(sk, copied);
1518}
1519
1520static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1521{
1522	__skb_unlink(skb, &sk->sk_receive_queue);
1523	if (likely(skb->destructor == sock_rfree)) {
1524		sock_rfree(skb);
1525		skb->destructor = NULL;
1526		skb->sk = NULL;
1527		return skb_attempt_defer_free(skb);
1528	}
1529	__kfree_skb(skb);
1530}
1531
1532struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1533{
1534	struct sk_buff *skb;
1535	u32 offset;
1536
1537	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1538		offset = seq - TCP_SKB_CB(skb)->seq;
1539		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1540			pr_err_once("%s: found a SYN, please report !\n", __func__);
1541			offset--;
1542		}
1543		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1544			*off = offset;
1545			return skb;
1546		}
1547		/* This looks weird, but this can happen if TCP collapsing
1548		 * splitted a fat GRO packet, while we released socket lock
1549		 * in skb_splice_bits()
1550		 */
1551		tcp_eat_recv_skb(sk, skb);
1552	}
1553	return NULL;
1554}
1555EXPORT_SYMBOL(tcp_recv_skb);
1556
1557/*
1558 * This routine provides an alternative to tcp_recvmsg() for routines
1559 * that would like to handle copying from skbuffs directly in 'sendfile'
1560 * fashion.
1561 * Note:
1562 *	- It is assumed that the socket was locked by the caller.
1563 *	- The routine does not block.
1564 *	- At present, there is no support for reading OOB data
1565 *	  or for 'peeking' the socket using this routine
1566 *	  (although both would be easy to implement).
1567 */
1568int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1569		  sk_read_actor_t recv_actor)
1570{
1571	struct sk_buff *skb;
1572	struct tcp_sock *tp = tcp_sk(sk);
1573	u32 seq = tp->copied_seq;
1574	u32 offset;
1575	int copied = 0;
1576
1577	if (sk->sk_state == TCP_LISTEN)
1578		return -ENOTCONN;
1579	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1580		if (offset < skb->len) {
1581			int used;
1582			size_t len;
1583
1584			len = skb->len - offset;
1585			/* Stop reading if we hit a patch of urgent data */
1586			if (unlikely(tp->urg_data)) {
1587				u32 urg_offset = tp->urg_seq - seq;
1588				if (urg_offset < len)
1589					len = urg_offset;
1590				if (!len)
1591					break;
1592			}
1593			used = recv_actor(desc, skb, offset, len);
1594			if (used <= 0) {
1595				if (!copied)
1596					copied = used;
1597				break;
1598			}
1599			if (WARN_ON_ONCE(used > len))
1600				used = len;
1601			seq += used;
1602			copied += used;
1603			offset += used;
1604
1605			/* If recv_actor drops the lock (e.g. TCP splice
1606			 * receive) the skb pointer might be invalid when
1607			 * getting here: tcp_collapse might have deleted it
1608			 * while aggregating skbs from the socket queue.
1609			 */
1610			skb = tcp_recv_skb(sk, seq - 1, &offset);
1611			if (!skb)
1612				break;
1613			/* TCP coalescing might have appended data to the skb.
1614			 * Try to splice more frags
1615			 */
1616			if (offset + 1 != skb->len)
1617				continue;
1618		}
1619		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1620			tcp_eat_recv_skb(sk, skb);
1621			++seq;
1622			break;
1623		}
1624		tcp_eat_recv_skb(sk, skb);
1625		if (!desc->count)
1626			break;
1627		WRITE_ONCE(tp->copied_seq, seq);
1628	}
1629	WRITE_ONCE(tp->copied_seq, seq);
1630
1631	tcp_rcv_space_adjust(sk);
1632
1633	/* Clean up data we have read: This will do ACK frames. */
1634	if (copied > 0) {
1635		tcp_recv_skb(sk, seq, &offset);
1636		tcp_cleanup_rbuf(sk, copied);
1637	}
1638	return copied;
1639}
1640EXPORT_SYMBOL(tcp_read_sock);
1641
1642int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1643{
 
 
1644	struct sk_buff *skb;
1645	int copied = 0;
 
1646
1647	if (sk->sk_state == TCP_LISTEN)
1648		return -ENOTCONN;
1649
1650	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1651		u8 tcp_flags;
1652		int used;
1653
1654		__skb_unlink(skb, &sk->sk_receive_queue);
1655		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1656		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1657		used = recv_actor(sk, skb);
 
1658		if (used < 0) {
1659			if (!copied)
1660				copied = used;
1661			break;
1662		}
 
1663		copied += used;
1664
1665		if (tcp_flags & TCPHDR_FIN)
 
1666			break;
 
1667	}
 
 
 
 
 
 
 
 
1668	return copied;
1669}
1670EXPORT_SYMBOL(tcp_read_skb);
1671
1672void tcp_read_done(struct sock *sk, size_t len)
1673{
1674	struct tcp_sock *tp = tcp_sk(sk);
1675	u32 seq = tp->copied_seq;
1676	struct sk_buff *skb;
1677	size_t left;
1678	u32 offset;
1679
1680	if (sk->sk_state == TCP_LISTEN)
1681		return;
1682
1683	left = len;
1684	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1685		int used;
1686
1687		used = min_t(size_t, skb->len - offset, left);
1688		seq += used;
1689		left -= used;
1690
1691		if (skb->len > offset + used)
1692			break;
1693
1694		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1695			tcp_eat_recv_skb(sk, skb);
1696			++seq;
1697			break;
1698		}
1699		tcp_eat_recv_skb(sk, skb);
1700	}
1701	WRITE_ONCE(tp->copied_seq, seq);
1702
1703	tcp_rcv_space_adjust(sk);
1704
1705	/* Clean up data we have read: This will do ACK frames. */
1706	if (left != len)
1707		tcp_cleanup_rbuf(sk, len - left);
1708}
1709EXPORT_SYMBOL(tcp_read_done);
1710
1711int tcp_peek_len(struct socket *sock)
1712{
1713	return tcp_inq(sock->sk);
1714}
1715EXPORT_SYMBOL(tcp_peek_len);
1716
1717/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1718int tcp_set_rcvlowat(struct sock *sk, int val)
1719{
1720	int space, cap;
1721
1722	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723		cap = sk->sk_rcvbuf >> 1;
1724	else
1725		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1726	val = min(val, cap);
1727	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1728
1729	/* Check if we need to signal EPOLLIN right now */
1730	tcp_data_ready(sk);
1731
1732	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733		return 0;
1734
1735	space = tcp_space_from_win(sk, val);
1736	if (space > sk->sk_rcvbuf) {
1737		WRITE_ONCE(sk->sk_rcvbuf, space);
1738		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1739	}
1740	return 0;
1741}
1742EXPORT_SYMBOL(tcp_set_rcvlowat);
1743
1744void tcp_update_recv_tstamps(struct sk_buff *skb,
1745			     struct scm_timestamping_internal *tss)
1746{
1747	if (skb->tstamp)
1748		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1749	else
1750		tss->ts[0] = (struct timespec64) {0};
1751
1752	if (skb_hwtstamps(skb)->hwtstamp)
1753		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1754	else
1755		tss->ts[2] = (struct timespec64) {0};
1756}
1757
1758#ifdef CONFIG_MMU
1759static const struct vm_operations_struct tcp_vm_ops = {
1760};
1761
1762int tcp_mmap(struct file *file, struct socket *sock,
1763	     struct vm_area_struct *vma)
1764{
1765	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1766		return -EPERM;
1767	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1768
1769	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1770	vm_flags_set(vma, VM_MIXEDMAP);
1771
1772	vma->vm_ops = &tcp_vm_ops;
1773	return 0;
1774}
1775EXPORT_SYMBOL(tcp_mmap);
1776
1777static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1778				       u32 *offset_frag)
1779{
1780	skb_frag_t *frag;
1781
1782	if (unlikely(offset_skb >= skb->len))
1783		return NULL;
1784
1785	offset_skb -= skb_headlen(skb);
1786	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1787		return NULL;
1788
1789	frag = skb_shinfo(skb)->frags;
1790	while (offset_skb) {
1791		if (skb_frag_size(frag) > offset_skb) {
1792			*offset_frag = offset_skb;
1793			return frag;
1794		}
1795		offset_skb -= skb_frag_size(frag);
1796		++frag;
1797	}
1798	*offset_frag = 0;
1799	return frag;
1800}
1801
1802static bool can_map_frag(const skb_frag_t *frag)
1803{
1804	struct page *page;
1805
1806	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1807		return false;
1808
1809	page = skb_frag_page(frag);
1810
1811	if (PageCompound(page) || page->mapping)
1812		return false;
1813
1814	return true;
1815}
1816
1817static int find_next_mappable_frag(const skb_frag_t *frag,
1818				   int remaining_in_skb)
1819{
1820	int offset = 0;
1821
1822	if (likely(can_map_frag(frag)))
1823		return 0;
1824
1825	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1826		offset += skb_frag_size(frag);
1827		++frag;
1828	}
1829	return offset;
1830}
1831
1832static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1833					  struct tcp_zerocopy_receive *zc,
1834					  struct sk_buff *skb, u32 offset)
1835{
1836	u32 frag_offset, partial_frag_remainder = 0;
1837	int mappable_offset;
1838	skb_frag_t *frag;
1839
1840	/* worst case: skip to next skb. try to improve on this case below */
1841	zc->recv_skip_hint = skb->len - offset;
1842
1843	/* Find the frag containing this offset (and how far into that frag) */
1844	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1845	if (!frag)
1846		return;
1847
1848	if (frag_offset) {
1849		struct skb_shared_info *info = skb_shinfo(skb);
1850
1851		/* We read part of the last frag, must recvmsg() rest of skb. */
1852		if (frag == &info->frags[info->nr_frags - 1])
1853			return;
1854
1855		/* Else, we must at least read the remainder in this frag. */
1856		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1857		zc->recv_skip_hint -= partial_frag_remainder;
1858		++frag;
1859	}
1860
1861	/* partial_frag_remainder: If part way through a frag, must read rest.
1862	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1863	 * in partial_frag_remainder.
1864	 */
1865	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1866	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1867}
1868
1869static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1870			      int flags, struct scm_timestamping_internal *tss,
1871			      int *cmsg_flags);
1872static int receive_fallback_to_copy(struct sock *sk,
1873				    struct tcp_zerocopy_receive *zc, int inq,
1874				    struct scm_timestamping_internal *tss)
1875{
1876	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1877	struct msghdr msg = {};
 
1878	int err;
1879
1880	zc->length = 0;
1881	zc->recv_skip_hint = 0;
1882
1883	if (copy_address != zc->copybuf_address)
1884		return -EINVAL;
1885
1886	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1887			  &msg.msg_iter);
1888	if (err)
1889		return err;
1890
1891	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1892				 tss, &zc->msg_flags);
1893	if (err < 0)
1894		return err;
1895
1896	zc->copybuf_len = err;
1897	if (likely(zc->copybuf_len)) {
1898		struct sk_buff *skb;
1899		u32 offset;
1900
1901		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1902		if (skb)
1903			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1904	}
1905	return 0;
1906}
1907
1908static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1909				   struct sk_buff *skb, u32 copylen,
1910				   u32 *offset, u32 *seq)
1911{
1912	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1913	struct msghdr msg = {};
 
1914	int err;
1915
1916	if (copy_address != zc->copybuf_address)
1917		return -EINVAL;
1918
1919	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1920			  &msg.msg_iter);
1921	if (err)
1922		return err;
1923	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1924	if (err)
1925		return err;
1926	zc->recv_skip_hint -= copylen;
1927	*offset += copylen;
1928	*seq += copylen;
1929	return (__s32)copylen;
1930}
1931
1932static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1933				  struct sock *sk,
1934				  struct sk_buff *skb,
1935				  u32 *seq,
1936				  s32 copybuf_len,
1937				  struct scm_timestamping_internal *tss)
1938{
1939	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1940
1941	if (!copylen)
1942		return 0;
1943	/* skb is null if inq < PAGE_SIZE. */
1944	if (skb) {
1945		offset = *seq - TCP_SKB_CB(skb)->seq;
1946	} else {
1947		skb = tcp_recv_skb(sk, *seq, &offset);
1948		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1949			tcp_update_recv_tstamps(skb, tss);
1950			zc->msg_flags |= TCP_CMSG_TS;
1951		}
1952	}
1953
1954	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1955						  seq);
1956	return zc->copybuf_len < 0 ? 0 : copylen;
1957}
1958
1959static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1960					      struct page **pending_pages,
1961					      unsigned long pages_remaining,
1962					      unsigned long *address,
1963					      u32 *length,
1964					      u32 *seq,
1965					      struct tcp_zerocopy_receive *zc,
1966					      u32 total_bytes_to_map,
1967					      int err)
1968{
1969	/* At least one page did not map. Try zapping if we skipped earlier. */
1970	if (err == -EBUSY &&
1971	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1972		u32 maybe_zap_len;
1973
1974		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1975				*length + /* Mapped or pending */
1976				(pages_remaining * PAGE_SIZE); /* Failed map. */
1977		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1978		err = 0;
1979	}
1980
1981	if (!err) {
1982		unsigned long leftover_pages = pages_remaining;
1983		int bytes_mapped;
1984
1985		/* We called zap_page_range_single, try to reinsert. */
1986		err = vm_insert_pages(vma, *address,
1987				      pending_pages,
1988				      &pages_remaining);
1989		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1990		*seq += bytes_mapped;
1991		*address += bytes_mapped;
1992	}
1993	if (err) {
1994		/* Either we were unable to zap, OR we zapped, retried an
1995		 * insert, and still had an issue. Either ways, pages_remaining
1996		 * is the number of pages we were unable to map, and we unroll
1997		 * some state we speculatively touched before.
1998		 */
1999		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2000
2001		*length -= bytes_not_mapped;
2002		zc->recv_skip_hint += bytes_not_mapped;
2003	}
2004	return err;
2005}
2006
2007static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2008					struct page **pages,
2009					unsigned int pages_to_map,
2010					unsigned long *address,
2011					u32 *length,
2012					u32 *seq,
2013					struct tcp_zerocopy_receive *zc,
2014					u32 total_bytes_to_map)
2015{
2016	unsigned long pages_remaining = pages_to_map;
2017	unsigned int pages_mapped;
2018	unsigned int bytes_mapped;
2019	int err;
2020
2021	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2022	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2023	bytes_mapped = PAGE_SIZE * pages_mapped;
2024	/* Even if vm_insert_pages fails, it may have partially succeeded in
2025	 * mapping (some but not all of the pages).
2026	 */
2027	*seq += bytes_mapped;
2028	*address += bytes_mapped;
2029
2030	if (likely(!err))
2031		return 0;
2032
2033	/* Error: maybe zap and retry + rollback state for failed inserts. */
2034	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2035		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2036		err);
2037}
2038
2039#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2040static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2041				      struct tcp_zerocopy_receive *zc,
2042				      struct scm_timestamping_internal *tss)
2043{
2044	unsigned long msg_control_addr;
2045	struct msghdr cmsg_dummy;
2046
2047	msg_control_addr = (unsigned long)zc->msg_control;
2048	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2049	cmsg_dummy.msg_controllen =
2050		(__kernel_size_t)zc->msg_controllen;
2051	cmsg_dummy.msg_flags = in_compat_syscall()
2052		? MSG_CMSG_COMPAT : 0;
2053	cmsg_dummy.msg_control_is_user = true;
2054	zc->msg_flags = 0;
2055	if (zc->msg_control == msg_control_addr &&
2056	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2057		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2058		zc->msg_control = (__u64)
2059			((uintptr_t)cmsg_dummy.msg_control_user);
2060		zc->msg_controllen =
2061			(__u64)cmsg_dummy.msg_controllen;
2062		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2063	}
2064}
2065
2066static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2067					   unsigned long address,
2068					   bool *mmap_locked)
2069{
2070	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2071
2072	if (vma) {
2073		if (vma->vm_ops != &tcp_vm_ops) {
2074			vma_end_read(vma);
2075			return NULL;
2076		}
2077		*mmap_locked = false;
2078		return vma;
2079	}
2080
2081	mmap_read_lock(mm);
2082	vma = vma_lookup(mm, address);
2083	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2084		mmap_read_unlock(mm);
2085		return NULL;
2086	}
2087	*mmap_locked = true;
2088	return vma;
2089}
2090
2091#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2092static int tcp_zerocopy_receive(struct sock *sk,
2093				struct tcp_zerocopy_receive *zc,
2094				struct scm_timestamping_internal *tss)
2095{
2096	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2097	unsigned long address = (unsigned long)zc->address;
2098	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2099	s32 copybuf_len = zc->copybuf_len;
2100	struct tcp_sock *tp = tcp_sk(sk);
2101	const skb_frag_t *frags = NULL;
2102	unsigned int pages_to_map = 0;
2103	struct vm_area_struct *vma;
2104	struct sk_buff *skb = NULL;
2105	u32 seq = tp->copied_seq;
2106	u32 total_bytes_to_map;
2107	int inq = tcp_inq(sk);
2108	bool mmap_locked;
2109	int ret;
2110
2111	zc->copybuf_len = 0;
2112	zc->msg_flags = 0;
2113
2114	if (address & (PAGE_SIZE - 1) || address != zc->address)
2115		return -EINVAL;
2116
2117	if (sk->sk_state == TCP_LISTEN)
2118		return -ENOTCONN;
2119
2120	sock_rps_record_flow(sk);
2121
2122	if (inq && inq <= copybuf_len)
2123		return receive_fallback_to_copy(sk, zc, inq, tss);
2124
2125	if (inq < PAGE_SIZE) {
2126		zc->length = 0;
2127		zc->recv_skip_hint = inq;
2128		if (!inq && sock_flag(sk, SOCK_DONE))
2129			return -EIO;
2130		return 0;
2131	}
2132
2133	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2134	if (!vma)
2135		return -EINVAL;
2136
 
 
 
 
 
2137	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2138	avail_len = min_t(u32, vma_len, inq);
2139	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2140	if (total_bytes_to_map) {
2141		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2142			zap_page_range_single(vma, address, total_bytes_to_map,
2143					      NULL);
2144		zc->length = total_bytes_to_map;
2145		zc->recv_skip_hint = 0;
2146	} else {
2147		zc->length = avail_len;
2148		zc->recv_skip_hint = avail_len;
2149	}
2150	ret = 0;
2151	while (length + PAGE_SIZE <= zc->length) {
2152		int mappable_offset;
2153		struct page *page;
2154
2155		if (zc->recv_skip_hint < PAGE_SIZE) {
2156			u32 offset_frag;
2157
2158			if (skb) {
2159				if (zc->recv_skip_hint > 0)
2160					break;
2161				skb = skb->next;
2162				offset = seq - TCP_SKB_CB(skb)->seq;
2163			} else {
2164				skb = tcp_recv_skb(sk, seq, &offset);
2165			}
2166
2167			if (!skb_frags_readable(skb))
2168				break;
2169
2170			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2171				tcp_update_recv_tstamps(skb, tss);
2172				zc->msg_flags |= TCP_CMSG_TS;
2173			}
2174			zc->recv_skip_hint = skb->len - offset;
2175			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2176			if (!frags || offset_frag)
2177				break;
2178		}
2179
2180		mappable_offset = find_next_mappable_frag(frags,
2181							  zc->recv_skip_hint);
2182		if (mappable_offset) {
2183			zc->recv_skip_hint = mappable_offset;
2184			break;
2185		}
2186		page = skb_frag_page(frags);
2187		if (WARN_ON_ONCE(!page))
2188			break;
2189
2190		prefetchw(page);
2191		pages[pages_to_map++] = page;
2192		length += PAGE_SIZE;
2193		zc->recv_skip_hint -= PAGE_SIZE;
2194		frags++;
2195		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2196		    zc->recv_skip_hint < PAGE_SIZE) {
2197			/* Either full batch, or we're about to go to next skb
2198			 * (and we cannot unroll failed ops across skbs).
2199			 */
2200			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2201							   pages_to_map,
2202							   &address, &length,
2203							   &seq, zc,
2204							   total_bytes_to_map);
2205			if (ret)
2206				goto out;
2207			pages_to_map = 0;
2208		}
2209	}
2210	if (pages_to_map) {
2211		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2212						   &address, &length, &seq,
2213						   zc, total_bytes_to_map);
2214	}
2215out:
2216	if (mmap_locked)
2217		mmap_read_unlock(current->mm);
2218	else
2219		vma_end_read(vma);
2220	/* Try to copy straggler data. */
2221	if (!ret)
2222		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2223
2224	if (length + copylen) {
2225		WRITE_ONCE(tp->copied_seq, seq);
2226		tcp_rcv_space_adjust(sk);
2227
2228		/* Clean up data we have read: This will do ACK frames. */
2229		tcp_recv_skb(sk, seq, &offset);
2230		tcp_cleanup_rbuf(sk, length + copylen);
2231		ret = 0;
2232		if (length == zc->length)
2233			zc->recv_skip_hint = 0;
2234	} else {
2235		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2236			ret = -EIO;
2237	}
2238	zc->length = length;
2239	return ret;
2240}
2241#endif
2242
2243/* Similar to __sock_recv_timestamp, but does not require an skb */
2244void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2245			struct scm_timestamping_internal *tss)
2246{
2247	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2248	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2249	bool has_timestamping = false;
2250
2251	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2252		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2253			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2254				if (new_tstamp) {
2255					struct __kernel_timespec kts = {
2256						.tv_sec = tss->ts[0].tv_sec,
2257						.tv_nsec = tss->ts[0].tv_nsec,
2258					};
2259					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2260						 sizeof(kts), &kts);
2261				} else {
2262					struct __kernel_old_timespec ts_old = {
2263						.tv_sec = tss->ts[0].tv_sec,
2264						.tv_nsec = tss->ts[0].tv_nsec,
2265					};
2266					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2267						 sizeof(ts_old), &ts_old);
2268				}
2269			} else {
2270				if (new_tstamp) {
2271					struct __kernel_sock_timeval stv = {
2272						.tv_sec = tss->ts[0].tv_sec,
2273						.tv_usec = tss->ts[0].tv_nsec / 1000,
2274					};
2275					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2276						 sizeof(stv), &stv);
2277				} else {
2278					struct __kernel_old_timeval tv = {
2279						.tv_sec = tss->ts[0].tv_sec,
2280						.tv_usec = tss->ts[0].tv_nsec / 1000,
2281					};
2282					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2283						 sizeof(tv), &tv);
2284				}
2285			}
2286		}
2287
2288		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2289		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2290		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2291			has_timestamping = true;
2292		else
2293			tss->ts[0] = (struct timespec64) {0};
2294	}
2295
2296	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2297		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2298		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2299		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2300			has_timestamping = true;
2301		else
2302			tss->ts[2] = (struct timespec64) {0};
2303	}
2304
2305	if (has_timestamping) {
2306		tss->ts[1] = (struct timespec64) {0};
2307		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2308			put_cmsg_scm_timestamping64(msg, tss);
2309		else
2310			put_cmsg_scm_timestamping(msg, tss);
2311	}
2312}
2313
2314static int tcp_inq_hint(struct sock *sk)
2315{
2316	const struct tcp_sock *tp = tcp_sk(sk);
2317	u32 copied_seq = READ_ONCE(tp->copied_seq);
2318	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2319	int inq;
2320
2321	inq = rcv_nxt - copied_seq;
2322	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2323		lock_sock(sk);
2324		inq = tp->rcv_nxt - tp->copied_seq;
2325		release_sock(sk);
2326	}
2327	/* After receiving a FIN, tell the user-space to continue reading
2328	 * by returning a non-zero inq.
2329	 */
2330	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2331		inq = 1;
2332	return inq;
2333}
2334
2335/* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2336struct tcp_xa_pool {
2337	u8		max; /* max <= MAX_SKB_FRAGS */
2338	u8		idx; /* idx <= max */
2339	__u32		tokens[MAX_SKB_FRAGS];
2340	netmem_ref	netmems[MAX_SKB_FRAGS];
2341};
2342
2343static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2344{
2345	int i;
2346
2347	/* Commit part that has been copied to user space. */
2348	for (i = 0; i < p->idx; i++)
2349		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2350			     (__force void *)p->netmems[i], GFP_KERNEL);
2351	/* Rollback what has been pre-allocated and is no longer needed. */
2352	for (; i < p->max; i++)
2353		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2354
2355	p->max = 0;
2356	p->idx = 0;
2357}
2358
2359static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2360{
2361	if (!p->max)
2362		return;
2363
2364	xa_lock_bh(&sk->sk_user_frags);
2365
2366	tcp_xa_pool_commit_locked(sk, p);
2367
2368	xa_unlock_bh(&sk->sk_user_frags);
2369}
2370
2371static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2372			      unsigned int max_frags)
2373{
2374	int err, k;
2375
2376	if (p->idx < p->max)
2377		return 0;
2378
2379	xa_lock_bh(&sk->sk_user_frags);
2380
2381	tcp_xa_pool_commit_locked(sk, p);
2382
2383	for (k = 0; k < max_frags; k++) {
2384		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2385				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2386		if (err)
2387			break;
2388	}
2389
2390	xa_unlock_bh(&sk->sk_user_frags);
2391
2392	p->max = k;
2393	p->idx = 0;
2394	return k ? 0 : err;
2395}
2396
2397/* On error, returns the -errno. On success, returns number of bytes sent to the
2398 * user. May not consume all of @remaining_len.
2399 */
2400static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2401			      unsigned int offset, struct msghdr *msg,
2402			      int remaining_len)
2403{
2404	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2405	struct tcp_xa_pool tcp_xa_pool;
2406	unsigned int start;
2407	int i, copy, n;
2408	int sent = 0;
2409	int err = 0;
2410
2411	tcp_xa_pool.max = 0;
2412	tcp_xa_pool.idx = 0;
2413	do {
2414		start = skb_headlen(skb);
2415
2416		if (skb_frags_readable(skb)) {
2417			err = -ENODEV;
2418			goto out;
2419		}
2420
2421		/* Copy header. */
2422		copy = start - offset;
2423		if (copy > 0) {
2424			copy = min(copy, remaining_len);
2425
2426			n = copy_to_iter(skb->data + offset, copy,
2427					 &msg->msg_iter);
2428			if (n != copy) {
2429				err = -EFAULT;
2430				goto out;
2431			}
2432
2433			offset += copy;
2434			remaining_len -= copy;
2435
2436			/* First a dmabuf_cmsg for # bytes copied to user
2437			 * buffer.
2438			 */
2439			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2440			dmabuf_cmsg.frag_size = copy;
2441			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2442					       SO_DEVMEM_LINEAR,
2443					       sizeof(dmabuf_cmsg),
2444					       &dmabuf_cmsg);
2445			if (err)
2446				goto out;
2447
2448			sent += copy;
2449
2450			if (remaining_len == 0)
2451				goto out;
2452		}
2453
2454		/* after that, send information of dmabuf pages through a
2455		 * sequence of cmsg
2456		 */
2457		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2458			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2459			struct net_iov *niov;
2460			u64 frag_offset;
2461			int end;
2462
2463			/* !skb_frags_readable() should indicate that ALL the
2464			 * frags in this skb are dmabuf net_iovs. We're checking
2465			 * for that flag above, but also check individual frags
2466			 * here. If the tcp stack is not setting
2467			 * skb_frags_readable() correctly, we still don't want
2468			 * to crash here.
2469			 */
2470			if (!skb_frag_net_iov(frag)) {
2471				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2472				err = -ENODEV;
2473				goto out;
2474			}
2475
2476			niov = skb_frag_net_iov(frag);
2477			end = start + skb_frag_size(frag);
2478			copy = end - offset;
2479
2480			if (copy > 0) {
2481				copy = min(copy, remaining_len);
2482
2483				frag_offset = net_iov_virtual_addr(niov) +
2484					      skb_frag_off(frag) + offset -
2485					      start;
2486				dmabuf_cmsg.frag_offset = frag_offset;
2487				dmabuf_cmsg.frag_size = copy;
2488				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2489							 skb_shinfo(skb)->nr_frags - i);
2490				if (err)
2491					goto out;
2492
2493				/* Will perform the exchange later */
2494				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2495				dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2496
2497				offset += copy;
2498				remaining_len -= copy;
2499
2500				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2501						       SO_DEVMEM_DMABUF,
2502						       sizeof(dmabuf_cmsg),
2503						       &dmabuf_cmsg);
2504				if (err)
2505					goto out;
2506
2507				atomic_long_inc(&niov->pp_ref_count);
2508				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2509
2510				sent += copy;
2511
2512				if (remaining_len == 0)
2513					goto out;
2514			}
2515			start = end;
2516		}
2517
2518		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2519		if (!remaining_len)
2520			goto out;
2521
2522		/* if remaining_len is not satisfied yet, we need to go to the
2523		 * next frag in the frag_list to satisfy remaining_len.
2524		 */
2525		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2526
2527		offset = offset - start;
2528	} while (skb);
2529
2530	if (remaining_len) {
2531		err = -EFAULT;
2532		goto out;
2533	}
2534
2535out:
2536	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2537	if (!sent)
2538		sent = err;
2539
2540	return sent;
2541}
2542
2543/*
2544 *	This routine copies from a sock struct into the user buffer.
2545 *
2546 *	Technical note: in 2.3 we work on _locked_ socket, so that
2547 *	tricks with *seq access order and skb->users are not required.
2548 *	Probably, code can be easily improved even more.
2549 */
2550
2551static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2552			      int flags, struct scm_timestamping_internal *tss,
2553			      int *cmsg_flags)
2554{
2555	struct tcp_sock *tp = tcp_sk(sk);
2556	int last_copied_dmabuf = -1; /* uninitialized */
2557	int copied = 0;
2558	u32 peek_seq;
2559	u32 *seq;
2560	unsigned long used;
2561	int err;
2562	int target;		/* Read at least this many bytes */
2563	long timeo;
2564	struct sk_buff *skb, *last;
2565	u32 peek_offset = 0;
2566	u32 urg_hole = 0;
2567
2568	err = -ENOTCONN;
2569	if (sk->sk_state == TCP_LISTEN)
2570		goto out;
2571
2572	if (tp->recvmsg_inq) {
2573		*cmsg_flags = TCP_CMSG_INQ;
2574		msg->msg_get_inq = 1;
2575	}
2576	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2577
2578	/* Urgent data needs to be handled specially. */
2579	if (flags & MSG_OOB)
2580		goto recv_urg;
2581
2582	if (unlikely(tp->repair)) {
2583		err = -EPERM;
2584		if (!(flags & MSG_PEEK))
2585			goto out;
2586
2587		if (tp->repair_queue == TCP_SEND_QUEUE)
2588			goto recv_sndq;
2589
2590		err = -EINVAL;
2591		if (tp->repair_queue == TCP_NO_QUEUE)
2592			goto out;
2593
2594		/* 'common' recv queue MSG_PEEK-ing */
2595	}
2596
2597	seq = &tp->copied_seq;
2598	if (flags & MSG_PEEK) {
2599		peek_offset = max(sk_peek_offset(sk, flags), 0);
2600		peek_seq = tp->copied_seq + peek_offset;
2601		seq = &peek_seq;
2602	}
2603
2604	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2605
2606	do {
2607		u32 offset;
2608
2609		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2610		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2611			if (copied)
2612				break;
2613			if (signal_pending(current)) {
2614				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2615				break;
2616			}
2617		}
2618
2619		/* Next get a buffer. */
2620
2621		last = skb_peek_tail(&sk->sk_receive_queue);
2622		skb_queue_walk(&sk->sk_receive_queue, skb) {
2623			last = skb;
2624			/* Now that we have two receive queues this
2625			 * shouldn't happen.
2626			 */
2627			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2628				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2629				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2630				 flags))
2631				break;
2632
2633			offset = *seq - TCP_SKB_CB(skb)->seq;
2634			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2635				pr_err_once("%s: found a SYN, please report !\n", __func__);
2636				offset--;
2637			}
2638			if (offset < skb->len)
2639				goto found_ok_skb;
2640			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2641				goto found_fin_ok;
2642			WARN(!(flags & MSG_PEEK),
2643			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2644			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2645		}
2646
2647		/* Well, if we have backlog, try to process it now yet. */
2648
2649		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2650			break;
2651
2652		if (copied) {
2653			if (!timeo ||
2654			    sk->sk_err ||
2655			    sk->sk_state == TCP_CLOSE ||
2656			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2657			    signal_pending(current))
2658				break;
2659		} else {
2660			if (sock_flag(sk, SOCK_DONE))
2661				break;
2662
2663			if (sk->sk_err) {
2664				copied = sock_error(sk);
2665				break;
2666			}
2667
2668			if (sk->sk_shutdown & RCV_SHUTDOWN)
2669				break;
2670
2671			if (sk->sk_state == TCP_CLOSE) {
2672				/* This occurs when user tries to read
2673				 * from never connected socket.
2674				 */
2675				copied = -ENOTCONN;
2676				break;
2677			}
2678
2679			if (!timeo) {
2680				copied = -EAGAIN;
2681				break;
2682			}
2683
2684			if (signal_pending(current)) {
2685				copied = sock_intr_errno(timeo);
2686				break;
2687			}
2688		}
2689
2690		if (copied >= target) {
2691			/* Do not sleep, just process backlog. */
2692			__sk_flush_backlog(sk);
2693		} else {
2694			tcp_cleanup_rbuf(sk, copied);
2695			err = sk_wait_data(sk, &timeo, last);
2696			if (err < 0) {
2697				err = copied ? : err;
2698				goto out;
2699			}
2700		}
2701
2702		if ((flags & MSG_PEEK) &&
2703		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2704			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2705					    current->comm,
2706					    task_pid_nr(current));
2707			peek_seq = tp->copied_seq + peek_offset;
2708		}
2709		continue;
2710
2711found_ok_skb:
2712		/* Ok so how much can we use? */
2713		used = skb->len - offset;
2714		if (len < used)
2715			used = len;
2716
2717		/* Do we have urgent data here? */
2718		if (unlikely(tp->urg_data)) {
2719			u32 urg_offset = tp->urg_seq - *seq;
2720			if (urg_offset < used) {
2721				if (!urg_offset) {
2722					if (!sock_flag(sk, SOCK_URGINLINE)) {
2723						WRITE_ONCE(*seq, *seq + 1);
2724						urg_hole++;
2725						offset++;
2726						used--;
2727						if (!used)
2728							goto skip_copy;
2729					}
2730				} else
2731					used = urg_offset;
2732			}
2733		}
2734
2735		if (!(flags & MSG_TRUNC)) {
2736			if (last_copied_dmabuf != -1 &&
2737			    last_copied_dmabuf != !skb_frags_readable(skb))
 
 
 
2738				break;
2739
2740			if (skb_frags_readable(skb)) {
2741				err = skb_copy_datagram_msg(skb, offset, msg,
2742							    used);
2743				if (err) {
2744					/* Exception. Bailout! */
2745					if (!copied)
2746						copied = -EFAULT;
2747					break;
2748				}
2749			} else {
2750				if (!(flags & MSG_SOCK_DEVMEM)) {
2751					/* dmabuf skbs can only be received
2752					 * with the MSG_SOCK_DEVMEM flag.
2753					 */
2754					if (!copied)
2755						copied = -EFAULT;
2756
2757					break;
2758				}
2759
2760				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2761							 used);
2762				if (err <= 0) {
2763					if (!copied)
2764						copied = -EFAULT;
2765
2766					break;
2767				}
2768				used = err;
2769			}
2770		}
2771
2772		last_copied_dmabuf = !skb_frags_readable(skb);
2773
2774		WRITE_ONCE(*seq, *seq + used);
2775		copied += used;
2776		len -= used;
2777		if (flags & MSG_PEEK)
2778			sk_peek_offset_fwd(sk, used);
2779		else
2780			sk_peek_offset_bwd(sk, used);
2781		tcp_rcv_space_adjust(sk);
2782
2783skip_copy:
2784		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2785			WRITE_ONCE(tp->urg_data, 0);
2786			tcp_fast_path_check(sk);
2787		}
2788
2789		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2790			tcp_update_recv_tstamps(skb, tss);
2791			*cmsg_flags |= TCP_CMSG_TS;
2792		}
2793
2794		if (used + offset < skb->len)
2795			continue;
2796
2797		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2798			goto found_fin_ok;
2799		if (!(flags & MSG_PEEK))
2800			tcp_eat_recv_skb(sk, skb);
2801		continue;
2802
2803found_fin_ok:
2804		/* Process the FIN. */
2805		WRITE_ONCE(*seq, *seq + 1);
2806		if (!(flags & MSG_PEEK))
2807			tcp_eat_recv_skb(sk, skb);
2808		break;
2809	} while (len > 0);
2810
2811	/* According to UNIX98, msg_name/msg_namelen are ignored
2812	 * on connected socket. I was just happy when found this 8) --ANK
2813	 */
2814
2815	/* Clean up data we have read: This will do ACK frames. */
2816	tcp_cleanup_rbuf(sk, copied);
2817	return copied;
2818
2819out:
2820	return err;
2821
2822recv_urg:
2823	err = tcp_recv_urg(sk, msg, len, flags);
2824	goto out;
2825
2826recv_sndq:
2827	err = tcp_peek_sndq(sk, msg, len);
2828	goto out;
2829}
2830
2831int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2832		int *addr_len)
2833{
2834	int cmsg_flags = 0, ret;
2835	struct scm_timestamping_internal tss;
2836
2837	if (unlikely(flags & MSG_ERRQUEUE))
2838		return inet_recv_error(sk, msg, len, addr_len);
2839
2840	if (sk_can_busy_loop(sk) &&
2841	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2842	    sk->sk_state == TCP_ESTABLISHED)
2843		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2844
2845	lock_sock(sk);
2846	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2847	release_sock(sk);
2848
2849	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2850		if (cmsg_flags & TCP_CMSG_TS)
2851			tcp_recv_timestamp(msg, sk, &tss);
2852		if (msg->msg_get_inq) {
2853			msg->msg_inq = tcp_inq_hint(sk);
2854			if (cmsg_flags & TCP_CMSG_INQ)
2855				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2856					 sizeof(msg->msg_inq), &msg->msg_inq);
2857		}
2858	}
2859	return ret;
2860}
2861EXPORT_SYMBOL(tcp_recvmsg);
2862
2863void tcp_set_state(struct sock *sk, int state)
2864{
2865	int oldstate = sk->sk_state;
2866
2867	/* We defined a new enum for TCP states that are exported in BPF
2868	 * so as not force the internal TCP states to be frozen. The
2869	 * following checks will detect if an internal state value ever
2870	 * differs from the BPF value. If this ever happens, then we will
2871	 * need to remap the internal value to the BPF value before calling
2872	 * tcp_call_bpf_2arg.
2873	 */
2874	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2875	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2876	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2877	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2878	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2879	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2880	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2881	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2882	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2883	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2884	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2885	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2886	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2887	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2888
2889	/* bpf uapi header bpf.h defines an anonymous enum with values
2890	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2891	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2892	 * But clang built vmlinux does not have this enum in DWARF
2893	 * since clang removes the above code before generating IR/debuginfo.
2894	 * Let us explicitly emit the type debuginfo to ensure the
2895	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2896	 * regardless of which compiler is used.
2897	 */
2898	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2899
2900	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2901		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2902
2903	switch (state) {
2904	case TCP_ESTABLISHED:
2905		if (oldstate != TCP_ESTABLISHED)
2906			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2907		break;
2908	case TCP_CLOSE_WAIT:
2909		if (oldstate == TCP_SYN_RECV)
2910			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2911		break;
2912
2913	case TCP_CLOSE:
2914		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2915			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2916
2917		sk->sk_prot->unhash(sk);
2918		if (inet_csk(sk)->icsk_bind_hash &&
2919		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2920			inet_put_port(sk);
2921		fallthrough;
2922	default:
2923		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2924			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2925	}
2926
2927	/* Change state AFTER socket is unhashed to avoid closed
2928	 * socket sitting in hash tables.
2929	 */
2930	inet_sk_state_store(sk, state);
2931}
2932EXPORT_SYMBOL_GPL(tcp_set_state);
2933
2934/*
2935 *	State processing on a close. This implements the state shift for
2936 *	sending our FIN frame. Note that we only send a FIN for some
2937 *	states. A shutdown() may have already sent the FIN, or we may be
2938 *	closed.
2939 */
2940
2941static const unsigned char new_state[16] = {
2942  /* current state:        new state:      action:	*/
2943  [0 /* (Invalid) */]	= TCP_CLOSE,
2944  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2945  [TCP_SYN_SENT]	= TCP_CLOSE,
2946  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2947  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2948  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2949  [TCP_TIME_WAIT]	= TCP_CLOSE,
2950  [TCP_CLOSE]		= TCP_CLOSE,
2951  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2952  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2953  [TCP_LISTEN]		= TCP_CLOSE,
2954  [TCP_CLOSING]		= TCP_CLOSING,
2955  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2956};
2957
2958static int tcp_close_state(struct sock *sk)
2959{
2960	int next = (int)new_state[sk->sk_state];
2961	int ns = next & TCP_STATE_MASK;
2962
2963	tcp_set_state(sk, ns);
2964
2965	return next & TCP_ACTION_FIN;
2966}
2967
2968/*
2969 *	Shutdown the sending side of a connection. Much like close except
2970 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2971 */
2972
2973void tcp_shutdown(struct sock *sk, int how)
2974{
2975	/*	We need to grab some memory, and put together a FIN,
2976	 *	and then put it into the queue to be sent.
2977	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2978	 */
2979	if (!(how & SEND_SHUTDOWN))
2980		return;
2981
2982	/* If we've already sent a FIN, or it's a closed state, skip this. */
2983	if ((1 << sk->sk_state) &
2984	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2985	     TCPF_CLOSE_WAIT)) {
2986		/* Clear out any half completed packets.  FIN if needed. */
2987		if (tcp_close_state(sk))
2988			tcp_send_fin(sk);
2989	}
2990}
2991EXPORT_SYMBOL(tcp_shutdown);
2992
2993int tcp_orphan_count_sum(void)
2994{
2995	int i, total = 0;
2996
2997	for_each_possible_cpu(i)
2998		total += per_cpu(tcp_orphan_count, i);
2999
3000	return max(total, 0);
3001}
3002
3003static int tcp_orphan_cache;
3004static struct timer_list tcp_orphan_timer;
3005#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3006
3007static void tcp_orphan_update(struct timer_list *unused)
3008{
3009	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3010	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3011}
3012
3013static bool tcp_too_many_orphans(int shift)
3014{
3015	return READ_ONCE(tcp_orphan_cache) << shift >
3016		READ_ONCE(sysctl_tcp_max_orphans);
3017}
3018
3019static bool tcp_out_of_memory(const struct sock *sk)
3020{
3021	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3022	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3023		return true;
3024	return false;
3025}
3026
3027bool tcp_check_oom(const struct sock *sk, int shift)
3028{
3029	bool too_many_orphans, out_of_socket_memory;
3030
3031	too_many_orphans = tcp_too_many_orphans(shift);
3032	out_of_socket_memory = tcp_out_of_memory(sk);
3033
3034	if (too_many_orphans)
3035		net_info_ratelimited("too many orphaned sockets\n");
3036	if (out_of_socket_memory)
3037		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3038	return too_many_orphans || out_of_socket_memory;
3039}
3040
3041void __tcp_close(struct sock *sk, long timeout)
3042{
3043	struct sk_buff *skb;
3044	int data_was_unread = 0;
3045	int state;
3046
3047	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3048
3049	if (sk->sk_state == TCP_LISTEN) {
3050		tcp_set_state(sk, TCP_CLOSE);
3051
3052		/* Special case. */
3053		inet_csk_listen_stop(sk);
3054
3055		goto adjudge_to_death;
3056	}
3057
3058	/*  We need to flush the recv. buffs.  We do this only on the
3059	 *  descriptor close, not protocol-sourced closes, because the
3060	 *  reader process may not have drained the data yet!
3061	 */
3062	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3063		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3064
3065		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3066			len--;
3067		data_was_unread += len;
3068		__kfree_skb(skb);
3069	}
3070
3071	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3072	if (sk->sk_state == TCP_CLOSE)
3073		goto adjudge_to_death;
3074
3075	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3076	 * data was lost. To witness the awful effects of the old behavior of
3077	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3078	 * GET in an FTP client, suspend the process, wait for the client to
3079	 * advertise a zero window, then kill -9 the FTP client, wheee...
3080	 * Note: timeout is always zero in such a case.
3081	 */
3082	if (unlikely(tcp_sk(sk)->repair)) {
3083		sk->sk_prot->disconnect(sk, 0);
3084	} else if (data_was_unread) {
3085		/* Unread data was tossed, zap the connection. */
3086		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3087		tcp_set_state(sk, TCP_CLOSE);
3088		tcp_send_active_reset(sk, sk->sk_allocation,
3089				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3090	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3091		/* Check zero linger _after_ checking for unread data. */
3092		sk->sk_prot->disconnect(sk, 0);
3093		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3094	} else if (tcp_close_state(sk)) {
3095		/* We FIN if the application ate all the data before
3096		 * zapping the connection.
3097		 */
3098
3099		/* RED-PEN. Formally speaking, we have broken TCP state
3100		 * machine. State transitions:
3101		 *
3102		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3103		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3104		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3105		 *
3106		 * are legal only when FIN has been sent (i.e. in window),
3107		 * rather than queued out of window. Purists blame.
3108		 *
3109		 * F.e. "RFC state" is ESTABLISHED,
3110		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3111		 *
3112		 * The visible declinations are that sometimes
3113		 * we enter time-wait state, when it is not required really
3114		 * (harmless), do not send active resets, when they are
3115		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3116		 * they look as CLOSING or LAST_ACK for Linux)
3117		 * Probably, I missed some more holelets.
3118		 * 						--ANK
3119		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3120		 * in a single packet! (May consider it later but will
3121		 * probably need API support or TCP_CORK SYN-ACK until
3122		 * data is written and socket is closed.)
3123		 */
3124		tcp_send_fin(sk);
3125	}
3126
3127	sk_stream_wait_close(sk, timeout);
3128
3129adjudge_to_death:
3130	state = sk->sk_state;
3131	sock_hold(sk);
3132	sock_orphan(sk);
3133
3134	local_bh_disable();
3135	bh_lock_sock(sk);
3136	/* remove backlog if any, without releasing ownership. */
3137	__release_sock(sk);
3138
3139	this_cpu_inc(tcp_orphan_count);
3140
3141	/* Have we already been destroyed by a softirq or backlog? */
3142	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3143		goto out;
3144
3145	/*	This is a (useful) BSD violating of the RFC. There is a
3146	 *	problem with TCP as specified in that the other end could
3147	 *	keep a socket open forever with no application left this end.
3148	 *	We use a 1 minute timeout (about the same as BSD) then kill
3149	 *	our end. If they send after that then tough - BUT: long enough
3150	 *	that we won't make the old 4*rto = almost no time - whoops
3151	 *	reset mistake.
3152	 *
3153	 *	Nope, it was not mistake. It is really desired behaviour
3154	 *	f.e. on http servers, when such sockets are useless, but
3155	 *	consume significant resources. Let's do it with special
3156	 *	linger2	option.					--ANK
3157	 */
3158
3159	if (sk->sk_state == TCP_FIN_WAIT2) {
3160		struct tcp_sock *tp = tcp_sk(sk);
3161		if (READ_ONCE(tp->linger2) < 0) {
3162			tcp_set_state(sk, TCP_CLOSE);
3163			tcp_send_active_reset(sk, GFP_ATOMIC,
3164					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3165			__NET_INC_STATS(sock_net(sk),
3166					LINUX_MIB_TCPABORTONLINGER);
3167		} else {
3168			const int tmo = tcp_fin_time(sk);
3169
3170			if (tmo > TCP_TIMEWAIT_LEN) {
3171				inet_csk_reset_keepalive_timer(sk,
3172						tmo - TCP_TIMEWAIT_LEN);
3173			} else {
3174				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3175				goto out;
3176			}
3177		}
3178	}
3179	if (sk->sk_state != TCP_CLOSE) {
3180		if (tcp_check_oom(sk, 0)) {
3181			tcp_set_state(sk, TCP_CLOSE);
3182			tcp_send_active_reset(sk, GFP_ATOMIC,
3183					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3184			__NET_INC_STATS(sock_net(sk),
3185					LINUX_MIB_TCPABORTONMEMORY);
3186		} else if (!check_net(sock_net(sk))) {
3187			/* Not possible to send reset; just close */
3188			tcp_set_state(sk, TCP_CLOSE);
3189		}
3190	}
3191
3192	if (sk->sk_state == TCP_CLOSE) {
3193		struct request_sock *req;
3194
3195		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3196						lockdep_sock_is_held(sk));
3197		/* We could get here with a non-NULL req if the socket is
3198		 * aborted (e.g., closed with unread data) before 3WHS
3199		 * finishes.
3200		 */
3201		if (req)
3202			reqsk_fastopen_remove(sk, req, false);
3203		inet_csk_destroy_sock(sk);
3204	}
3205	/* Otherwise, socket is reprieved until protocol close. */
3206
3207out:
3208	bh_unlock_sock(sk);
3209	local_bh_enable();
3210}
3211
3212void tcp_close(struct sock *sk, long timeout)
3213{
3214	lock_sock(sk);
3215	__tcp_close(sk, timeout);
3216	release_sock(sk);
3217	if (!sk->sk_net_refcnt)
3218		inet_csk_clear_xmit_timers_sync(sk);
3219	sock_put(sk);
3220}
3221EXPORT_SYMBOL(tcp_close);
3222
3223/* These states need RST on ABORT according to RFC793 */
3224
3225static inline bool tcp_need_reset(int state)
3226{
3227	return (1 << state) &
3228	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3229		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3230}
3231
3232static void tcp_rtx_queue_purge(struct sock *sk)
3233{
3234	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3235
3236	tcp_sk(sk)->highest_sack = NULL;
3237	while (p) {
3238		struct sk_buff *skb = rb_to_skb(p);
3239
3240		p = rb_next(p);
3241		/* Since we are deleting whole queue, no need to
3242		 * list_del(&skb->tcp_tsorted_anchor)
3243		 */
3244		tcp_rtx_queue_unlink(skb, sk);
3245		tcp_wmem_free_skb(sk, skb);
3246	}
3247}
3248
3249void tcp_write_queue_purge(struct sock *sk)
3250{
3251	struct sk_buff *skb;
3252
3253	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3254	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3255		tcp_skb_tsorted_anchor_cleanup(skb);
3256		tcp_wmem_free_skb(sk, skb);
3257	}
3258	tcp_rtx_queue_purge(sk);
3259	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3260	tcp_clear_all_retrans_hints(tcp_sk(sk));
3261	tcp_sk(sk)->packets_out = 0;
3262	inet_csk(sk)->icsk_backoff = 0;
3263}
3264
3265int tcp_disconnect(struct sock *sk, int flags)
3266{
3267	struct inet_sock *inet = inet_sk(sk);
3268	struct inet_connection_sock *icsk = inet_csk(sk);
3269	struct tcp_sock *tp = tcp_sk(sk);
3270	int old_state = sk->sk_state;
3271	u32 seq;
3272
3273	if (old_state != TCP_CLOSE)
3274		tcp_set_state(sk, TCP_CLOSE);
3275
3276	/* ABORT function of RFC793 */
3277	if (old_state == TCP_LISTEN) {
3278		inet_csk_listen_stop(sk);
3279	} else if (unlikely(tp->repair)) {
3280		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3281	} else if (tcp_need_reset(old_state)) {
3282		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3283		WRITE_ONCE(sk->sk_err, ECONNRESET);
3284	} else if (tp->snd_nxt != tp->write_seq &&
3285		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3286		/* The last check adjusts for discrepancy of Linux wrt. RFC
3287		 * states
3288		 */
3289		tcp_send_active_reset(sk, gfp_any(),
3290				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3291		WRITE_ONCE(sk->sk_err, ECONNRESET);
3292	} else if (old_state == TCP_SYN_SENT)
3293		WRITE_ONCE(sk->sk_err, ECONNRESET);
3294
3295	tcp_clear_xmit_timers(sk);
3296	__skb_queue_purge(&sk->sk_receive_queue);
3297	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3298	WRITE_ONCE(tp->urg_data, 0);
3299	sk_set_peek_off(sk, -1);
3300	tcp_write_queue_purge(sk);
3301	tcp_fastopen_active_disable_ofo_check(sk);
3302	skb_rbtree_purge(&tp->out_of_order_queue);
3303
3304	inet->inet_dport = 0;
3305
3306	inet_bhash2_reset_saddr(sk);
3307
3308	WRITE_ONCE(sk->sk_shutdown, 0);
3309	sock_reset_flag(sk, SOCK_DONE);
3310	tp->srtt_us = 0;
3311	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3312	tp->rcv_rtt_last_tsecr = 0;
3313
3314	seq = tp->write_seq + tp->max_window + 2;
3315	if (!seq)
3316		seq = 1;
3317	WRITE_ONCE(tp->write_seq, seq);
3318
3319	icsk->icsk_backoff = 0;
3320	icsk->icsk_probes_out = 0;
3321	icsk->icsk_probes_tstamp = 0;
3322	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3323	icsk->icsk_rto_min = TCP_RTO_MIN;
3324	icsk->icsk_delack_max = TCP_DELACK_MAX;
3325	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3326	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3327	tp->snd_cwnd_cnt = 0;
3328	tp->is_cwnd_limited = 0;
3329	tp->max_packets_out = 0;
3330	tp->window_clamp = 0;
3331	tp->delivered = 0;
3332	tp->delivered_ce = 0;
3333	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3334		icsk->icsk_ca_ops->release(sk);
3335	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3336	icsk->icsk_ca_initialized = 0;
3337	tcp_set_ca_state(sk, TCP_CA_Open);
3338	tp->is_sack_reneg = 0;
3339	tcp_clear_retrans(tp);
3340	tp->total_retrans = 0;
3341	inet_csk_delack_init(sk);
3342	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3343	 * issue in __tcp_select_window()
3344	 */
3345	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3346	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3347	__sk_dst_reset(sk);
3348	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3349	tcp_saved_syn_free(tp);
3350	tp->compressed_ack = 0;
3351	tp->segs_in = 0;
3352	tp->segs_out = 0;
3353	tp->bytes_sent = 0;
3354	tp->bytes_acked = 0;
3355	tp->bytes_received = 0;
3356	tp->bytes_retrans = 0;
3357	tp->data_segs_in = 0;
3358	tp->data_segs_out = 0;
3359	tp->duplicate_sack[0].start_seq = 0;
3360	tp->duplicate_sack[0].end_seq = 0;
3361	tp->dsack_dups = 0;
3362	tp->reord_seen = 0;
3363	tp->retrans_out = 0;
3364	tp->sacked_out = 0;
3365	tp->tlp_high_seq = 0;
3366	tp->last_oow_ack_time = 0;
3367	tp->plb_rehash = 0;
3368	/* There's a bubble in the pipe until at least the first ACK. */
3369	tp->app_limited = ~0U;
3370	tp->rate_app_limited = 1;
3371	tp->rack.mstamp = 0;
3372	tp->rack.advanced = 0;
3373	tp->rack.reo_wnd_steps = 1;
3374	tp->rack.last_delivered = 0;
3375	tp->rack.reo_wnd_persist = 0;
3376	tp->rack.dsack_seen = 0;
3377	tp->syn_data_acked = 0;
3378	tp->rx_opt.saw_tstamp = 0;
3379	tp->rx_opt.dsack = 0;
3380	tp->rx_opt.num_sacks = 0;
3381	tp->rcv_ooopack = 0;
3382
3383
3384	/* Clean up fastopen related fields */
3385	tcp_free_fastopen_req(tp);
3386	inet_clear_bit(DEFER_CONNECT, sk);
3387	tp->fastopen_client_fail = 0;
3388
3389	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3390
3391	if (sk->sk_frag.page) {
3392		put_page(sk->sk_frag.page);
3393		sk->sk_frag.page = NULL;
3394		sk->sk_frag.offset = 0;
3395	}
3396	sk_error_report(sk);
3397	return 0;
3398}
3399EXPORT_SYMBOL(tcp_disconnect);
3400
3401static inline bool tcp_can_repair_sock(const struct sock *sk)
3402{
3403	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3404		(sk->sk_state != TCP_LISTEN);
3405}
3406
3407static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3408{
3409	struct tcp_repair_window opt;
3410
3411	if (!tp->repair)
3412		return -EPERM;
3413
3414	if (len != sizeof(opt))
3415		return -EINVAL;
3416
3417	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3418		return -EFAULT;
3419
3420	if (opt.max_window < opt.snd_wnd)
3421		return -EINVAL;
3422
3423	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3424		return -EINVAL;
3425
3426	if (after(opt.rcv_wup, tp->rcv_nxt))
3427		return -EINVAL;
3428
3429	tp->snd_wl1	= opt.snd_wl1;
3430	tp->snd_wnd	= opt.snd_wnd;
3431	tp->max_window	= opt.max_window;
3432
3433	tp->rcv_wnd	= opt.rcv_wnd;
3434	tp->rcv_wup	= opt.rcv_wup;
3435
3436	return 0;
3437}
3438
3439static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3440		unsigned int len)
3441{
3442	struct tcp_sock *tp = tcp_sk(sk);
3443	struct tcp_repair_opt opt;
3444	size_t offset = 0;
3445
3446	while (len >= sizeof(opt)) {
3447		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3448			return -EFAULT;
3449
3450		offset += sizeof(opt);
3451		len -= sizeof(opt);
3452
3453		switch (opt.opt_code) {
3454		case TCPOPT_MSS:
3455			tp->rx_opt.mss_clamp = opt.opt_val;
3456			tcp_mtup_init(sk);
3457			break;
3458		case TCPOPT_WINDOW:
3459			{
3460				u16 snd_wscale = opt.opt_val & 0xFFFF;
3461				u16 rcv_wscale = opt.opt_val >> 16;
3462
3463				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3464					return -EFBIG;
3465
3466				tp->rx_opt.snd_wscale = snd_wscale;
3467				tp->rx_opt.rcv_wscale = rcv_wscale;
3468				tp->rx_opt.wscale_ok = 1;
3469			}
3470			break;
3471		case TCPOPT_SACK_PERM:
3472			if (opt.opt_val != 0)
3473				return -EINVAL;
3474
3475			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3476			break;
3477		case TCPOPT_TIMESTAMP:
3478			if (opt.opt_val != 0)
3479				return -EINVAL;
3480
3481			tp->rx_opt.tstamp_ok = 1;
3482			break;
3483		}
3484	}
3485
3486	return 0;
3487}
3488
3489DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3490EXPORT_SYMBOL(tcp_tx_delay_enabled);
3491
3492static void tcp_enable_tx_delay(void)
3493{
3494	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3495		static int __tcp_tx_delay_enabled = 0;
3496
3497		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3498			static_branch_enable(&tcp_tx_delay_enabled);
3499			pr_info("TCP_TX_DELAY enabled\n");
3500		}
3501	}
3502}
3503
3504/* When set indicates to always queue non-full frames.  Later the user clears
3505 * this option and we transmit any pending partial frames in the queue.  This is
3506 * meant to be used alongside sendfile() to get properly filled frames when the
3507 * user (for example) must write out headers with a write() call first and then
3508 * use sendfile to send out the data parts.
3509 *
3510 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3511 * TCP_NODELAY.
3512 */
3513void __tcp_sock_set_cork(struct sock *sk, bool on)
3514{
3515	struct tcp_sock *tp = tcp_sk(sk);
3516
3517	if (on) {
3518		tp->nonagle |= TCP_NAGLE_CORK;
3519	} else {
3520		tp->nonagle &= ~TCP_NAGLE_CORK;
3521		if (tp->nonagle & TCP_NAGLE_OFF)
3522			tp->nonagle |= TCP_NAGLE_PUSH;
3523		tcp_push_pending_frames(sk);
3524	}
3525}
3526
3527void tcp_sock_set_cork(struct sock *sk, bool on)
3528{
3529	lock_sock(sk);
3530	__tcp_sock_set_cork(sk, on);
3531	release_sock(sk);
3532}
3533EXPORT_SYMBOL(tcp_sock_set_cork);
3534
3535/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3536 * remembered, but it is not activated until cork is cleared.
3537 *
3538 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3539 * even TCP_CORK for currently queued segments.
3540 */
3541void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3542{
3543	if (on) {
3544		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3545		tcp_push_pending_frames(sk);
3546	} else {
3547		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3548	}
3549}
3550
3551void tcp_sock_set_nodelay(struct sock *sk)
3552{
3553	lock_sock(sk);
3554	__tcp_sock_set_nodelay(sk, true);
3555	release_sock(sk);
3556}
3557EXPORT_SYMBOL(tcp_sock_set_nodelay);
3558
3559static void __tcp_sock_set_quickack(struct sock *sk, int val)
3560{
3561	if (!val) {
3562		inet_csk_enter_pingpong_mode(sk);
3563		return;
3564	}
3565
3566	inet_csk_exit_pingpong_mode(sk);
3567	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3568	    inet_csk_ack_scheduled(sk)) {
3569		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3570		tcp_cleanup_rbuf(sk, 1);
3571		if (!(val & 1))
3572			inet_csk_enter_pingpong_mode(sk);
3573	}
3574}
3575
3576void tcp_sock_set_quickack(struct sock *sk, int val)
3577{
3578	lock_sock(sk);
3579	__tcp_sock_set_quickack(sk, val);
3580	release_sock(sk);
3581}
3582EXPORT_SYMBOL(tcp_sock_set_quickack);
3583
3584int tcp_sock_set_syncnt(struct sock *sk, int val)
3585{
3586	if (val < 1 || val > MAX_TCP_SYNCNT)
3587		return -EINVAL;
3588
3589	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
 
 
3590	return 0;
3591}
3592EXPORT_SYMBOL(tcp_sock_set_syncnt);
3593
3594int tcp_sock_set_user_timeout(struct sock *sk, int val)
3595{
3596	/* Cap the max time in ms TCP will retry or probe the window
3597	 * before giving up and aborting (ETIMEDOUT) a connection.
3598	 */
3599	if (val < 0)
3600		return -EINVAL;
3601
3602	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3603	return 0;
3604}
3605EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3606
3607int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3608{
3609	struct tcp_sock *tp = tcp_sk(sk);
3610
3611	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3612		return -EINVAL;
3613
3614	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3615	WRITE_ONCE(tp->keepalive_time, val * HZ);
3616	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3617	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3618		u32 elapsed = keepalive_time_elapsed(tp);
3619
3620		if (tp->keepalive_time > elapsed)
3621			elapsed = tp->keepalive_time - elapsed;
3622		else
3623			elapsed = 0;
3624		inet_csk_reset_keepalive_timer(sk, elapsed);
3625	}
3626
3627	return 0;
3628}
3629
3630int tcp_sock_set_keepidle(struct sock *sk, int val)
3631{
3632	int err;
3633
3634	lock_sock(sk);
3635	err = tcp_sock_set_keepidle_locked(sk, val);
3636	release_sock(sk);
3637	return err;
3638}
3639EXPORT_SYMBOL(tcp_sock_set_keepidle);
3640
3641int tcp_sock_set_keepintvl(struct sock *sk, int val)
3642{
3643	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3644		return -EINVAL;
3645
3646	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
 
 
3647	return 0;
3648}
3649EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3650
3651int tcp_sock_set_keepcnt(struct sock *sk, int val)
3652{
3653	if (val < 1 || val > MAX_TCP_KEEPCNT)
3654		return -EINVAL;
3655
3656	/* Paired with READ_ONCE() in keepalive_probes() */
3657	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
 
3658	return 0;
3659}
3660EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3661
3662int tcp_set_window_clamp(struct sock *sk, int val)
3663{
3664	struct tcp_sock *tp = tcp_sk(sk);
3665
3666	if (!val) {
3667		if (sk->sk_state != TCP_CLOSE)
3668			return -EINVAL;
3669		WRITE_ONCE(tp->window_clamp, 0);
3670	} else {
3671		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3672		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3673						SOCK_MIN_RCVBUF / 2 : val;
3674
3675		if (new_window_clamp == old_window_clamp)
3676			return 0;
3677
3678		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3679		if (new_window_clamp < old_window_clamp) {
3680			/* need to apply the reserved mem provisioning only
3681			 * when shrinking the window clamp
3682			 */
3683			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3684
3685		} else {
3686			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3687			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3688					       tp->rcv_ssthresh);
3689		}
3690	}
3691	return 0;
3692}
3693
3694/*
3695 *	Socket option code for TCP.
3696 */
3697int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3698		      sockptr_t optval, unsigned int optlen)
3699{
3700	struct tcp_sock *tp = tcp_sk(sk);
3701	struct inet_connection_sock *icsk = inet_csk(sk);
3702	struct net *net = sock_net(sk);
3703	int val;
3704	int err = 0;
3705
3706	/* These are data/string values, all the others are ints */
3707	switch (optname) {
3708	case TCP_CONGESTION: {
3709		char name[TCP_CA_NAME_MAX];
3710
3711		if (optlen < 1)
3712			return -EINVAL;
3713
3714		val = strncpy_from_sockptr(name, optval,
3715					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3716		if (val < 0)
3717			return -EFAULT;
3718		name[val] = 0;
3719
3720		sockopt_lock_sock(sk);
3721		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3722						 sockopt_ns_capable(sock_net(sk)->user_ns,
3723								    CAP_NET_ADMIN));
3724		sockopt_release_sock(sk);
3725		return err;
3726	}
3727	case TCP_ULP: {
3728		char name[TCP_ULP_NAME_MAX];
3729
3730		if (optlen < 1)
3731			return -EINVAL;
3732
3733		val = strncpy_from_sockptr(name, optval,
3734					min_t(long, TCP_ULP_NAME_MAX - 1,
3735					      optlen));
3736		if (val < 0)
3737			return -EFAULT;
3738		name[val] = 0;
3739
3740		sockopt_lock_sock(sk);
3741		err = tcp_set_ulp(sk, name);
3742		sockopt_release_sock(sk);
3743		return err;
3744	}
3745	case TCP_FASTOPEN_KEY: {
3746		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3747		__u8 *backup_key = NULL;
3748
3749		/* Allow a backup key as well to facilitate key rotation
3750		 * First key is the active one.
3751		 */
3752		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3753		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3754			return -EINVAL;
3755
3756		if (copy_from_sockptr(key, optval, optlen))
3757			return -EFAULT;
3758
3759		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3760			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3761
3762		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3763	}
3764	default:
3765		/* fallthru */
3766		break;
3767	}
3768
3769	if (optlen < sizeof(int))
3770		return -EINVAL;
3771
3772	if (copy_from_sockptr(&val, optval, sizeof(val)))
3773		return -EFAULT;
3774
3775	/* Handle options that can be set without locking the socket. */
3776	switch (optname) {
3777	case TCP_SYNCNT:
3778		return tcp_sock_set_syncnt(sk, val);
3779	case TCP_USER_TIMEOUT:
3780		return tcp_sock_set_user_timeout(sk, val);
3781	case TCP_KEEPINTVL:
3782		return tcp_sock_set_keepintvl(sk, val);
3783	case TCP_KEEPCNT:
3784		return tcp_sock_set_keepcnt(sk, val);
3785	case TCP_LINGER2:
3786		if (val < 0)
3787			WRITE_ONCE(tp->linger2, -1);
3788		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3789			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3790		else
3791			WRITE_ONCE(tp->linger2, val * HZ);
3792		return 0;
3793	case TCP_DEFER_ACCEPT:
3794		/* Translate value in seconds to number of retransmits */
3795		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3796			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3797					   TCP_RTO_MAX / HZ));
3798		return 0;
3799	}
3800
3801	sockopt_lock_sock(sk);
3802
3803	switch (optname) {
3804	case TCP_MAXSEG:
3805		/* Values greater than interface MTU won't take effect. However
3806		 * at the point when this call is done we typically don't yet
3807		 * know which interface is going to be used
3808		 */
3809		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3810			err = -EINVAL;
3811			break;
3812		}
3813		tp->rx_opt.user_mss = val;
3814		break;
3815
3816	case TCP_NODELAY:
3817		__tcp_sock_set_nodelay(sk, val);
3818		break;
3819
3820	case TCP_THIN_LINEAR_TIMEOUTS:
3821		if (val < 0 || val > 1)
3822			err = -EINVAL;
3823		else
3824			tp->thin_lto = val;
3825		break;
3826
3827	case TCP_THIN_DUPACK:
3828		if (val < 0 || val > 1)
3829			err = -EINVAL;
3830		break;
3831
3832	case TCP_REPAIR:
3833		if (!tcp_can_repair_sock(sk))
3834			err = -EPERM;
3835		else if (val == TCP_REPAIR_ON) {
3836			tp->repair = 1;
3837			sk->sk_reuse = SK_FORCE_REUSE;
3838			tp->repair_queue = TCP_NO_QUEUE;
3839		} else if (val == TCP_REPAIR_OFF) {
3840			tp->repair = 0;
3841			sk->sk_reuse = SK_NO_REUSE;
3842			tcp_send_window_probe(sk);
3843		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3844			tp->repair = 0;
3845			sk->sk_reuse = SK_NO_REUSE;
3846		} else
3847			err = -EINVAL;
3848
3849		break;
3850
3851	case TCP_REPAIR_QUEUE:
3852		if (!tp->repair)
3853			err = -EPERM;
3854		else if ((unsigned int)val < TCP_QUEUES_NR)
3855			tp->repair_queue = val;
3856		else
3857			err = -EINVAL;
3858		break;
3859
3860	case TCP_QUEUE_SEQ:
3861		if (sk->sk_state != TCP_CLOSE) {
3862			err = -EPERM;
3863		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3864			if (!tcp_rtx_queue_empty(sk))
3865				err = -EPERM;
3866			else
3867				WRITE_ONCE(tp->write_seq, val);
3868		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3869			if (tp->rcv_nxt != tp->copied_seq) {
3870				err = -EPERM;
3871			} else {
3872				WRITE_ONCE(tp->rcv_nxt, val);
3873				WRITE_ONCE(tp->copied_seq, val);
3874			}
3875		} else {
3876			err = -EINVAL;
3877		}
3878		break;
3879
3880	case TCP_REPAIR_OPTIONS:
3881		if (!tp->repair)
3882			err = -EINVAL;
3883		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3884			err = tcp_repair_options_est(sk, optval, optlen);
3885		else
3886			err = -EPERM;
3887		break;
3888
3889	case TCP_CORK:
3890		__tcp_sock_set_cork(sk, val);
3891		break;
3892
3893	case TCP_KEEPIDLE:
3894		err = tcp_sock_set_keepidle_locked(sk, val);
3895		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3896	case TCP_SAVE_SYN:
3897		/* 0: disable, 1: enable, 2: start from ether_header */
3898		if (val < 0 || val > 2)
3899			err = -EINVAL;
3900		else
3901			tp->save_syn = val;
3902		break;
3903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3904	case TCP_WINDOW_CLAMP:
3905		err = tcp_set_window_clamp(sk, val);
3906		break;
3907
3908	case TCP_QUICKACK:
3909		__tcp_sock_set_quickack(sk, val);
3910		break;
3911
3912	case TCP_AO_REPAIR:
3913		if (!tcp_can_repair_sock(sk)) {
3914			err = -EPERM;
3915			break;
3916		}
3917		err = tcp_ao_set_repair(sk, optval, optlen);
3918		break;
3919#ifdef CONFIG_TCP_AO
3920	case TCP_AO_ADD_KEY:
3921	case TCP_AO_DEL_KEY:
3922	case TCP_AO_INFO: {
3923		/* If this is the first TCP-AO setsockopt() on the socket,
3924		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3925		 * in any state.
3926		 */
3927		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3928			goto ao_parse;
3929		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3930					      lockdep_sock_is_held(sk)))
3931			goto ao_parse;
3932		if (tp->repair)
3933			goto ao_parse;
3934		err = -EISCONN;
3935		break;
3936ao_parse:
3937		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3938		break;
3939	}
3940#endif
3941#ifdef CONFIG_TCP_MD5SIG
3942	case TCP_MD5SIG:
3943	case TCP_MD5SIG_EXT:
3944		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3945		break;
3946#endif
 
 
 
 
 
 
 
 
 
 
3947	case TCP_FASTOPEN:
3948		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3949		    TCPF_LISTEN))) {
3950			tcp_fastopen_init_key_once(net);
3951
3952			fastopen_queue_tune(sk, val);
3953		} else {
3954			err = -EINVAL;
3955		}
3956		break;
3957	case TCP_FASTOPEN_CONNECT:
3958		if (val > 1 || val < 0) {
3959			err = -EINVAL;
3960		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3961			   TFO_CLIENT_ENABLE) {
3962			if (sk->sk_state == TCP_CLOSE)
3963				tp->fastopen_connect = val;
3964			else
3965				err = -EINVAL;
3966		} else {
3967			err = -EOPNOTSUPP;
3968		}
3969		break;
3970	case TCP_FASTOPEN_NO_COOKIE:
3971		if (val > 1 || val < 0)
3972			err = -EINVAL;
3973		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3974			err = -EINVAL;
3975		else
3976			tp->fastopen_no_cookie = val;
3977		break;
3978	case TCP_TIMESTAMP:
3979		if (!tp->repair) {
3980			err = -EPERM;
3981			break;
3982		}
3983		/* val is an opaque field,
3984		 * and low order bit contains usec_ts enable bit.
3985		 * Its a best effort, and we do not care if user makes an error.
3986		 */
3987		tp->tcp_usec_ts = val & 1;
3988		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3989		break;
3990	case TCP_REPAIR_WINDOW:
3991		err = tcp_repair_set_window(tp, optval, optlen);
3992		break;
3993	case TCP_NOTSENT_LOWAT:
3994		WRITE_ONCE(tp->notsent_lowat, val);
3995		sk->sk_write_space(sk);
3996		break;
3997	case TCP_INQ:
3998		if (val > 1 || val < 0)
3999			err = -EINVAL;
4000		else
4001			tp->recvmsg_inq = val;
4002		break;
4003	case TCP_TX_DELAY:
4004		if (val)
4005			tcp_enable_tx_delay();
4006		WRITE_ONCE(tp->tcp_tx_delay, val);
4007		break;
4008	default:
4009		err = -ENOPROTOOPT;
4010		break;
4011	}
4012
4013	sockopt_release_sock(sk);
4014	return err;
4015}
4016
4017int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4018		   unsigned int optlen)
4019{
4020	const struct inet_connection_sock *icsk = inet_csk(sk);
4021
4022	if (level != SOL_TCP)
4023		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4024		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4025								optval, optlen);
4026	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4027}
4028EXPORT_SYMBOL(tcp_setsockopt);
4029
4030static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4031				      struct tcp_info *info)
4032{
4033	u64 stats[__TCP_CHRONO_MAX], total = 0;
4034	enum tcp_chrono i;
4035
4036	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4037		stats[i] = tp->chrono_stat[i - 1];
4038		if (i == tp->chrono_type)
4039			stats[i] += tcp_jiffies32 - tp->chrono_start;
4040		stats[i] *= USEC_PER_SEC / HZ;
4041		total += stats[i];
4042	}
4043
4044	info->tcpi_busy_time = total;
4045	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4046	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4047}
4048
4049/* Return information about state of tcp endpoint in API format. */
4050void tcp_get_info(struct sock *sk, struct tcp_info *info)
4051{
4052	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4053	const struct inet_connection_sock *icsk = inet_csk(sk);
4054	unsigned long rate;
4055	u32 now;
4056	u64 rate64;
4057	bool slow;
4058
4059	memset(info, 0, sizeof(*info));
4060	if (sk->sk_type != SOCK_STREAM)
4061		return;
4062
4063	info->tcpi_state = inet_sk_state_load(sk);
4064
4065	/* Report meaningful fields for all TCP states, including listeners */
4066	rate = READ_ONCE(sk->sk_pacing_rate);
4067	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4068	info->tcpi_pacing_rate = rate64;
4069
4070	rate = READ_ONCE(sk->sk_max_pacing_rate);
4071	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4072	info->tcpi_max_pacing_rate = rate64;
4073
4074	info->tcpi_reordering = tp->reordering;
4075	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4076
4077	if (info->tcpi_state == TCP_LISTEN) {
4078		/* listeners aliased fields :
4079		 * tcpi_unacked -> Number of children ready for accept()
4080		 * tcpi_sacked  -> max backlog
4081		 */
4082		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4083		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4084		return;
4085	}
4086
4087	slow = lock_sock_fast(sk);
4088
4089	info->tcpi_ca_state = icsk->icsk_ca_state;
4090	info->tcpi_retransmits = icsk->icsk_retransmits;
4091	info->tcpi_probes = icsk->icsk_probes_out;
4092	info->tcpi_backoff = icsk->icsk_backoff;
4093
4094	if (tp->rx_opt.tstamp_ok)
4095		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4096	if (tcp_is_sack(tp))
4097		info->tcpi_options |= TCPI_OPT_SACK;
4098	if (tp->rx_opt.wscale_ok) {
4099		info->tcpi_options |= TCPI_OPT_WSCALE;
4100		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4101		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4102	}
4103
4104	if (tp->ecn_flags & TCP_ECN_OK)
4105		info->tcpi_options |= TCPI_OPT_ECN;
4106	if (tp->ecn_flags & TCP_ECN_SEEN)
4107		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4108	if (tp->syn_data_acked)
4109		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4110	if (tp->tcp_usec_ts)
4111		info->tcpi_options |= TCPI_OPT_USEC_TS;
4112
4113	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4114	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4115						tcp_delack_max(sk)));
4116	info->tcpi_snd_mss = tp->mss_cache;
4117	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4118
4119	info->tcpi_unacked = tp->packets_out;
4120	info->tcpi_sacked = tp->sacked_out;
4121
4122	info->tcpi_lost = tp->lost_out;
4123	info->tcpi_retrans = tp->retrans_out;
4124
4125	now = tcp_jiffies32;
4126	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4127	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4128	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4129
4130	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4131	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4132	info->tcpi_rtt = tp->srtt_us >> 3;
4133	info->tcpi_rttvar = tp->mdev_us >> 2;
4134	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4135	info->tcpi_advmss = tp->advmss;
4136
4137	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4138	info->tcpi_rcv_space = tp->rcvq_space.space;
4139
4140	info->tcpi_total_retrans = tp->total_retrans;
4141
4142	info->tcpi_bytes_acked = tp->bytes_acked;
4143	info->tcpi_bytes_received = tp->bytes_received;
4144	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4145	tcp_get_info_chrono_stats(tp, info);
4146
4147	info->tcpi_segs_out = tp->segs_out;
4148
4149	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4150	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4151	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4152
4153	info->tcpi_min_rtt = tcp_min_rtt(tp);
4154	info->tcpi_data_segs_out = tp->data_segs_out;
4155
4156	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4157	rate64 = tcp_compute_delivery_rate(tp);
4158	if (rate64)
4159		info->tcpi_delivery_rate = rate64;
4160	info->tcpi_delivered = tp->delivered;
4161	info->tcpi_delivered_ce = tp->delivered_ce;
4162	info->tcpi_bytes_sent = tp->bytes_sent;
4163	info->tcpi_bytes_retrans = tp->bytes_retrans;
4164	info->tcpi_dsack_dups = tp->dsack_dups;
4165	info->tcpi_reord_seen = tp->reord_seen;
4166	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4167	info->tcpi_snd_wnd = tp->snd_wnd;
4168	info->tcpi_rcv_wnd = tp->rcv_wnd;
4169	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4170	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4171
4172	info->tcpi_total_rto = tp->total_rto;
4173	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4174	info->tcpi_total_rto_time = tp->total_rto_time;
4175	if (tp->rto_stamp)
4176		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4177
4178	unlock_sock_fast(sk, slow);
4179}
4180EXPORT_SYMBOL_GPL(tcp_get_info);
4181
4182static size_t tcp_opt_stats_get_size(void)
4183{
4184	return
4185		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4186		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4187		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4188		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4189		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4190		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4191		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4192		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4193		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4194		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4195		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4196		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4197		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4198		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4199		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4200		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4201		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4202		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4203		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4204		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4205		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4206		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4207		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4208		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4209		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4210		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4211		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4212		0;
4213}
4214
4215/* Returns TTL or hop limit of an incoming packet from skb. */
4216static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4217{
4218	if (skb->protocol == htons(ETH_P_IP))
4219		return ip_hdr(skb)->ttl;
4220	else if (skb->protocol == htons(ETH_P_IPV6))
4221		return ipv6_hdr(skb)->hop_limit;
4222	else
4223		return 0;
4224}
4225
4226struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4227					       const struct sk_buff *orig_skb,
4228					       const struct sk_buff *ack_skb)
4229{
4230	const struct tcp_sock *tp = tcp_sk(sk);
4231	struct sk_buff *stats;
4232	struct tcp_info info;
4233	unsigned long rate;
4234	u64 rate64;
4235
4236	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4237	if (!stats)
4238		return NULL;
4239
4240	tcp_get_info_chrono_stats(tp, &info);
4241	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4242			  info.tcpi_busy_time, TCP_NLA_PAD);
4243	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4244			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4245	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4246			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4247	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4248			  tp->data_segs_out, TCP_NLA_PAD);
4249	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4250			  tp->total_retrans, TCP_NLA_PAD);
4251
4252	rate = READ_ONCE(sk->sk_pacing_rate);
4253	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4254	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4255
4256	rate64 = tcp_compute_delivery_rate(tp);
4257	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4258
4259	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4260	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4261	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4262
4263	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4264	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4265	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4266	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4267	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4268
4269	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4270	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4271
4272	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4273			  TCP_NLA_PAD);
4274	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4275			  TCP_NLA_PAD);
4276	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4277	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4278	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4279	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4280	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4281		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4282	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4283			  TCP_NLA_PAD);
4284	if (ack_skb)
4285		nla_put_u8(stats, TCP_NLA_TTL,
4286			   tcp_skb_ttl_or_hop_limit(ack_skb));
4287
4288	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4289	return stats;
4290}
4291
4292int do_tcp_getsockopt(struct sock *sk, int level,
4293		      int optname, sockptr_t optval, sockptr_t optlen)
4294{
4295	struct inet_connection_sock *icsk = inet_csk(sk);
4296	struct tcp_sock *tp = tcp_sk(sk);
4297	struct net *net = sock_net(sk);
4298	int val, len;
4299
4300	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4301		return -EFAULT;
4302
 
 
4303	if (len < 0)
4304		return -EINVAL;
4305
4306	len = min_t(unsigned int, len, sizeof(int));
4307
4308	switch (optname) {
4309	case TCP_MAXSEG:
4310		val = tp->mss_cache;
4311		if (tp->rx_opt.user_mss &&
4312		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4313			val = tp->rx_opt.user_mss;
4314		if (tp->repair)
4315			val = tp->rx_opt.mss_clamp;
4316		break;
4317	case TCP_NODELAY:
4318		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4319		break;
4320	case TCP_CORK:
4321		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4322		break;
4323	case TCP_KEEPIDLE:
4324		val = keepalive_time_when(tp) / HZ;
4325		break;
4326	case TCP_KEEPINTVL:
4327		val = keepalive_intvl_when(tp) / HZ;
4328		break;
4329	case TCP_KEEPCNT:
4330		val = keepalive_probes(tp);
4331		break;
4332	case TCP_SYNCNT:
4333		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4334			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4335		break;
4336	case TCP_LINGER2:
4337		val = READ_ONCE(tp->linger2);
4338		if (val >= 0)
4339			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4340		break;
4341	case TCP_DEFER_ACCEPT:
4342		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4343		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4344				      TCP_RTO_MAX / HZ);
4345		break;
4346	case TCP_WINDOW_CLAMP:
4347		val = READ_ONCE(tp->window_clamp);
4348		break;
4349	case TCP_INFO: {
4350		struct tcp_info info;
4351
4352		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4353			return -EFAULT;
4354
4355		tcp_get_info(sk, &info);
4356
4357		len = min_t(unsigned int, len, sizeof(info));
4358		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4359			return -EFAULT;
4360		if (copy_to_sockptr(optval, &info, len))
4361			return -EFAULT;
4362		return 0;
4363	}
4364	case TCP_CC_INFO: {
4365		const struct tcp_congestion_ops *ca_ops;
4366		union tcp_cc_info info;
4367		size_t sz = 0;
4368		int attr;
4369
4370		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4371			return -EFAULT;
4372
4373		ca_ops = icsk->icsk_ca_ops;
4374		if (ca_ops && ca_ops->get_info)
4375			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4376
4377		len = min_t(unsigned int, len, sz);
4378		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4379			return -EFAULT;
4380		if (copy_to_sockptr(optval, &info, len))
4381			return -EFAULT;
4382		return 0;
4383	}
4384	case TCP_QUICKACK:
4385		val = !inet_csk_in_pingpong_mode(sk);
4386		break;
4387
4388	case TCP_CONGESTION:
4389		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4390			return -EFAULT;
4391		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4392		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4393			return -EFAULT;
4394		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4395			return -EFAULT;
4396		return 0;
4397
4398	case TCP_ULP:
4399		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4400			return -EFAULT;
4401		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4402		if (!icsk->icsk_ulp_ops) {
4403			len = 0;
4404			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4405				return -EFAULT;
4406			return 0;
4407		}
4408		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4409			return -EFAULT;
4410		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4411			return -EFAULT;
4412		return 0;
4413
4414	case TCP_FASTOPEN_KEY: {
4415		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4416		unsigned int key_len;
4417
4418		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4419			return -EFAULT;
4420
4421		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4422				TCP_FASTOPEN_KEY_LENGTH;
4423		len = min_t(unsigned int, len, key_len);
4424		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4425			return -EFAULT;
4426		if (copy_to_sockptr(optval, key, len))
4427			return -EFAULT;
4428		return 0;
4429	}
4430	case TCP_THIN_LINEAR_TIMEOUTS:
4431		val = tp->thin_lto;
4432		break;
4433
4434	case TCP_THIN_DUPACK:
4435		val = 0;
4436		break;
4437
4438	case TCP_REPAIR:
4439		val = tp->repair;
4440		break;
4441
4442	case TCP_REPAIR_QUEUE:
4443		if (tp->repair)
4444			val = tp->repair_queue;
4445		else
4446			return -EINVAL;
4447		break;
4448
4449	case TCP_REPAIR_WINDOW: {
4450		struct tcp_repair_window opt;
4451
4452		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4453			return -EFAULT;
4454
4455		if (len != sizeof(opt))
4456			return -EINVAL;
4457
4458		if (!tp->repair)
4459			return -EPERM;
4460
4461		opt.snd_wl1	= tp->snd_wl1;
4462		opt.snd_wnd	= tp->snd_wnd;
4463		opt.max_window	= tp->max_window;
4464		opt.rcv_wnd	= tp->rcv_wnd;
4465		opt.rcv_wup	= tp->rcv_wup;
4466
4467		if (copy_to_sockptr(optval, &opt, len))
4468			return -EFAULT;
4469		return 0;
4470	}
4471	case TCP_QUEUE_SEQ:
4472		if (tp->repair_queue == TCP_SEND_QUEUE)
4473			val = tp->write_seq;
4474		else if (tp->repair_queue == TCP_RECV_QUEUE)
4475			val = tp->rcv_nxt;
4476		else
4477			return -EINVAL;
4478		break;
4479
4480	case TCP_USER_TIMEOUT:
4481		val = READ_ONCE(icsk->icsk_user_timeout);
4482		break;
4483
4484	case TCP_FASTOPEN:
4485		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4486		break;
4487
4488	case TCP_FASTOPEN_CONNECT:
4489		val = tp->fastopen_connect;
4490		break;
4491
4492	case TCP_FASTOPEN_NO_COOKIE:
4493		val = tp->fastopen_no_cookie;
4494		break;
4495
4496	case TCP_TX_DELAY:
4497		val = READ_ONCE(tp->tcp_tx_delay);
4498		break;
4499
4500	case TCP_TIMESTAMP:
4501		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4502		if (tp->tcp_usec_ts)
4503			val |= 1;
4504		else
4505			val &= ~1;
4506		break;
4507	case TCP_NOTSENT_LOWAT:
4508		val = READ_ONCE(tp->notsent_lowat);
4509		break;
4510	case TCP_INQ:
4511		val = tp->recvmsg_inq;
4512		break;
4513	case TCP_SAVE_SYN:
4514		val = tp->save_syn;
4515		break;
4516	case TCP_SAVED_SYN: {
4517		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4518			return -EFAULT;
4519
4520		sockopt_lock_sock(sk);
4521		if (tp->saved_syn) {
4522			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4523				len = tcp_saved_syn_len(tp->saved_syn);
4524				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4525					sockopt_release_sock(sk);
4526					return -EFAULT;
4527				}
4528				sockopt_release_sock(sk);
4529				return -EINVAL;
4530			}
4531			len = tcp_saved_syn_len(tp->saved_syn);
4532			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4533				sockopt_release_sock(sk);
4534				return -EFAULT;
4535			}
4536			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4537				sockopt_release_sock(sk);
4538				return -EFAULT;
4539			}
4540			tcp_saved_syn_free(tp);
4541			sockopt_release_sock(sk);
4542		} else {
4543			sockopt_release_sock(sk);
4544			len = 0;
4545			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4546				return -EFAULT;
4547		}
4548		return 0;
4549	}
4550#ifdef CONFIG_MMU
4551	case TCP_ZEROCOPY_RECEIVE: {
4552		struct scm_timestamping_internal tss;
4553		struct tcp_zerocopy_receive zc = {};
4554		int err;
4555
4556		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4557			return -EFAULT;
4558		if (len < 0 ||
4559		    len < offsetofend(struct tcp_zerocopy_receive, length))
4560			return -EINVAL;
4561		if (unlikely(len > sizeof(zc))) {
4562			err = check_zeroed_sockptr(optval, sizeof(zc),
4563						   len - sizeof(zc));
4564			if (err < 1)
4565				return err == 0 ? -EINVAL : err;
4566			len = sizeof(zc);
4567			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4568				return -EFAULT;
4569		}
4570		if (copy_from_sockptr(&zc, optval, len))
4571			return -EFAULT;
4572		if (zc.reserved)
4573			return -EINVAL;
4574		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4575			return -EINVAL;
4576		sockopt_lock_sock(sk);
4577		err = tcp_zerocopy_receive(sk, &zc, &tss);
4578		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4579							  &zc, &len, err);
4580		sockopt_release_sock(sk);
4581		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4582			goto zerocopy_rcv_cmsg;
4583		switch (len) {
4584		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4585			goto zerocopy_rcv_cmsg;
4586		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4587		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4588		case offsetofend(struct tcp_zerocopy_receive, flags):
4589		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4590		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4591		case offsetofend(struct tcp_zerocopy_receive, err):
4592			goto zerocopy_rcv_sk_err;
4593		case offsetofend(struct tcp_zerocopy_receive, inq):
4594			goto zerocopy_rcv_inq;
4595		case offsetofend(struct tcp_zerocopy_receive, length):
4596		default:
4597			goto zerocopy_rcv_out;
4598		}
4599zerocopy_rcv_cmsg:
4600		if (zc.msg_flags & TCP_CMSG_TS)
4601			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4602		else
4603			zc.msg_flags = 0;
4604zerocopy_rcv_sk_err:
4605		if (!err)
4606			zc.err = sock_error(sk);
4607zerocopy_rcv_inq:
4608		zc.inq = tcp_inq_hint(sk);
4609zerocopy_rcv_out:
4610		if (!err && copy_to_sockptr(optval, &zc, len))
4611			err = -EFAULT;
4612		return err;
4613	}
4614#endif
4615	case TCP_AO_REPAIR:
4616		if (!tcp_can_repair_sock(sk))
4617			return -EPERM;
4618		return tcp_ao_get_repair(sk, optval, optlen);
4619	case TCP_AO_GET_KEYS:
4620	case TCP_AO_INFO: {
4621		int err;
4622
4623		sockopt_lock_sock(sk);
4624		if (optname == TCP_AO_GET_KEYS)
4625			err = tcp_ao_get_mkts(sk, optval, optlen);
4626		else
4627			err = tcp_ao_get_sock_info(sk, optval, optlen);
4628		sockopt_release_sock(sk);
4629
4630		return err;
4631	}
4632	case TCP_IS_MPTCP:
4633		val = 0;
4634		break;
4635	default:
4636		return -ENOPROTOOPT;
4637	}
4638
4639	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4640		return -EFAULT;
4641	if (copy_to_sockptr(optval, &val, len))
4642		return -EFAULT;
4643	return 0;
4644}
4645
4646bool tcp_bpf_bypass_getsockopt(int level, int optname)
4647{
4648	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4649	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4650	 */
4651	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4652		return true;
4653
4654	return false;
4655}
4656EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4657
4658int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4659		   int __user *optlen)
4660{
4661	struct inet_connection_sock *icsk = inet_csk(sk);
4662
4663	if (level != SOL_TCP)
4664		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4665		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4666								optval, optlen);
4667	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4668				 USER_SOCKPTR(optlen));
4669}
4670EXPORT_SYMBOL(tcp_getsockopt);
4671
4672#ifdef CONFIG_TCP_MD5SIG
4673int tcp_md5_sigpool_id = -1;
4674EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
 
4675
4676int tcp_md5_alloc_sigpool(void)
4677{
4678	size_t scratch_size;
4679	int ret;
4680
4681	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4682	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4683	if (ret >= 0) {
4684		/* As long as any md5 sigpool was allocated, the return
4685		 * id would stay the same. Re-write the id only for the case
4686		 * when previously all MD5 keys were deleted and this call
4687		 * allocates the first MD5 key, which may return a different
4688		 * sigpool id than was used previously.
4689		 */
4690		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4691		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4692	}
4693	return ret;
 
 
 
 
 
 
 
4694}
4695
4696void tcp_md5_release_sigpool(void)
4697{
4698	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
 
 
 
 
 
 
 
 
 
 
4699}
 
 
4700
4701void tcp_md5_add_sigpool(void)
 
 
 
 
 
 
 
4702{
4703	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4704}
 
4705
4706int tcp_md5_hash_key(struct tcp_sigpool *hp,
4707		     const struct tcp_md5sig_key *key)
4708{
4709	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4710	struct scatterlist sg;
4711
4712	sg_init_one(&sg, key->key, keylen);
4713	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4714
4715	/* We use data_race() because tcp_md5_do_add() might change
4716	 * key->key under us
4717	 */
4718	return data_race(crypto_ahash_update(hp->req));
4719}
4720EXPORT_SYMBOL(tcp_md5_hash_key);
4721
4722/* Called with rcu_read_lock() */
4723static enum skb_drop_reason
4724tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4725		     const void *saddr, const void *daddr,
4726		     int family, int l3index, const __u8 *hash_location)
4727{
4728	/* This gets called for each TCP segment that has TCP-MD5 option.
 
 
4729	 * We have 3 drop cases:
4730	 * o No MD5 hash and one expected.
4731	 * o MD5 hash and we're not expecting one.
4732	 * o MD5 hash and its wrong.
4733	 */
4734	const struct tcp_sock *tp = tcp_sk(sk);
4735	struct tcp_md5sig_key *key;
 
 
 
4736	u8 newhash[16];
4737	int genhash;
4738
4739	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
 
 
 
 
 
 
4740
4741	if (!key && hash_location) {
 
 
 
 
 
 
 
 
 
4742		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4743		trace_tcp_hash_md5_unexpected(sk, skb);
4744		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4745	}
4746
4747	/* Check the signature.
4748	 * To support dual stack listeners, we need to handle
4749	 * IPv4-mapped case.
4750	 */
4751	if (family == AF_INET)
4752		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 
 
4753	else
4754		genhash = tp->af_specific->calc_md5_hash(newhash, key,
 
4755							 NULL, skb);
 
4756	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4757		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4758		trace_tcp_hash_md5_mismatch(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
4759		return SKB_DROP_REASON_TCP_MD5FAILURE;
4760	}
4761	return SKB_NOT_DROPPED_YET;
4762}
4763#else
4764static inline enum skb_drop_reason
4765tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4766		     const void *saddr, const void *daddr,
4767		     int family, int l3index, const __u8 *hash_location)
4768{
4769	return SKB_NOT_DROPPED_YET;
4770}
4771
4772#endif
4773
4774/* Called with rcu_read_lock() */
4775enum skb_drop_reason
4776tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4777		 const struct sk_buff *skb,
4778		 const void *saddr, const void *daddr,
4779		 int family, int dif, int sdif)
4780{
4781	const struct tcphdr *th = tcp_hdr(skb);
4782	const struct tcp_ao_hdr *aoh;
4783	const __u8 *md5_location;
4784	int l3index;
4785
4786	/* Invalid option or two times meet any of auth options */
4787	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4788		trace_tcp_hash_bad_header(sk, skb);
4789		return SKB_DROP_REASON_TCP_AUTH_HDR;
4790	}
4791
4792	if (req) {
4793		if (tcp_rsk_used_ao(req) != !!aoh) {
4794			u8 keyid, rnext, maclen;
4795
4796			if (aoh) {
4797				keyid = aoh->keyid;
4798				rnext = aoh->rnext_keyid;
4799				maclen = tcp_ao_hdr_maclen(aoh);
4800			} else {
4801				keyid = rnext = maclen = 0;
4802			}
4803
4804			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4805			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4806			return SKB_DROP_REASON_TCP_AOFAILURE;
4807		}
4808	}
4809
4810	/* sdif set, means packet ingressed via a device
4811	 * in an L3 domain and dif is set to the l3mdev
4812	 */
4813	l3index = sdif ? dif : 0;
4814
4815	/* Fast path: unsigned segments */
4816	if (likely(!md5_location && !aoh)) {
4817		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4818		 * for the remote peer. On TCP-AO established connection
4819		 * the last key is impossible to remove, so there's
4820		 * always at least one current_key.
4821		 */
4822		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4823			trace_tcp_hash_ao_required(sk, skb);
4824			return SKB_DROP_REASON_TCP_AONOTFOUND;
4825		}
4826		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4827			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4828			trace_tcp_hash_md5_required(sk, skb);
4829			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4830		}
4831		return SKB_NOT_DROPPED_YET;
4832	}
4833
4834	if (aoh)
4835		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4836
4837	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4838				    l3index, md5_location);
4839}
4840EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4841
4842void tcp_done(struct sock *sk)
4843{
4844	struct request_sock *req;
4845
4846	/* We might be called with a new socket, after
4847	 * inet_csk_prepare_forced_close() has been called
4848	 * so we can not use lockdep_sock_is_held(sk)
4849	 */
4850	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4851
4852	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4853		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4854
4855	tcp_set_state(sk, TCP_CLOSE);
4856	tcp_clear_xmit_timers(sk);
4857	if (req)
4858		reqsk_fastopen_remove(sk, req, false);
4859
4860	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4861
4862	if (!sock_flag(sk, SOCK_DEAD))
4863		sk->sk_state_change(sk);
4864	else
4865		inet_csk_destroy_sock(sk);
4866}
4867EXPORT_SYMBOL_GPL(tcp_done);
4868
4869int tcp_abort(struct sock *sk, int err)
4870{
4871	int state = inet_sk_state_load(sk);
4872
4873	if (state == TCP_NEW_SYN_RECV) {
4874		struct request_sock *req = inet_reqsk(sk);
4875
4876		local_bh_disable();
4877		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4878		local_bh_enable();
4879		return 0;
4880	}
4881	if (state == TCP_TIME_WAIT) {
4882		struct inet_timewait_sock *tw = inet_twsk(sk);
4883
4884		refcount_inc(&tw->tw_refcnt);
4885		local_bh_disable();
4886		inet_twsk_deschedule_put(tw);
4887		local_bh_enable();
4888		return 0;
4889	}
4890
4891	/* BPF context ensures sock locking. */
4892	if (!has_current_bpf_ctx())
4893		/* Don't race with userspace socket closes such as tcp_close. */
4894		lock_sock(sk);
4895
4896	/* Avoid closing the same socket twice. */
4897	if (sk->sk_state == TCP_CLOSE) {
4898		if (!has_current_bpf_ctx())
4899			release_sock(sk);
4900		return -ENOENT;
4901	}
4902
4903	if (sk->sk_state == TCP_LISTEN) {
4904		tcp_set_state(sk, TCP_CLOSE);
4905		inet_csk_listen_stop(sk);
4906	}
4907
4908	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4909	local_bh_disable();
4910	bh_lock_sock(sk);
4911
4912	if (tcp_need_reset(sk->sk_state))
4913		tcp_send_active_reset(sk, GFP_ATOMIC,
4914				      SK_RST_REASON_TCP_STATE);
4915	tcp_done_with_error(sk, err);
 
 
 
 
 
4916
4917	bh_unlock_sock(sk);
4918	local_bh_enable();
4919	if (!has_current_bpf_ctx())
4920		release_sock(sk);
4921	return 0;
4922}
4923EXPORT_SYMBOL_GPL(tcp_abort);
4924
4925extern struct tcp_congestion_ops tcp_reno;
4926
4927static __initdata unsigned long thash_entries;
4928static int __init set_thash_entries(char *str)
4929{
4930	ssize_t ret;
4931
4932	if (!str)
4933		return 0;
4934
4935	ret = kstrtoul(str, 0, &thash_entries);
4936	if (ret)
4937		return 0;
4938
4939	return 1;
4940}
4941__setup("thash_entries=", set_thash_entries);
4942
4943static void __init tcp_init_mem(void)
4944{
4945	unsigned long limit = nr_free_buffer_pages() / 16;
4946
4947	limit = max(limit, 128UL);
4948	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4949	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4950	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4951}
4952
4953static void __init tcp_struct_check(void)
4954{
4955	/* TX read-mostly hotpath cache lines */
4956	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4957	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4958	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4959	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4960	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4961	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4962	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4963	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4964
4965	/* TXRX read-mostly hotpath cache lines */
4966	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4967	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4968	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4969	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4970	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4971	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4972	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4973	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4974	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4975
4976	/* RX read-mostly hotpath cache lines */
4977	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4978	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4979	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4980	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4981	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4982	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4983	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4984	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4985	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4986	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4987	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4988	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4989	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4990
4991	/* TX read-write hotpath cache lines */
4992	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4993	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4994	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4995	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4996	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4997	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4998	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4999	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5000	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5001	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5002	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5003	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5004	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5005	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5006	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5007	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5008
5009	/* TXRX read-write hotpath cache lines */
5010	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5011	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5012	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5013	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5014	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5015	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5016	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5017	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5018	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5019	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5020	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5021	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5022	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5023	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5024	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5025
5026	/* 32bit arches with 8byte alignment on u64 fields might need padding
5027	 * before tcp_clock_cache.
5028	 */
5029	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5030
5031	/* RX read-write hotpath cache lines */
5032	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5033	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5034	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5035	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5036	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5037	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5038	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5039	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5040	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5041	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5042	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5043	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5044	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5045	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5046	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5047}
5048
5049void __init tcp_init(void)
5050{
5051	int max_rshare, max_wshare, cnt;
5052	unsigned long limit;
5053	unsigned int i;
5054
5055	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5056	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5057		     sizeof_field(struct sk_buff, cb));
5058
5059	tcp_struct_check();
5060
5061	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5062
5063	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5064	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5065
5066	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5067			    thash_entries, 21,  /* one slot per 2 MB*/
5068			    0, 64 * 1024);
5069	tcp_hashinfo.bind_bucket_cachep =
5070		kmem_cache_create("tcp_bind_bucket",
5071				  sizeof(struct inet_bind_bucket), 0,
5072				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5073				  SLAB_ACCOUNT,
5074				  NULL);
5075	tcp_hashinfo.bind2_bucket_cachep =
5076		kmem_cache_create("tcp_bind2_bucket",
5077				  sizeof(struct inet_bind2_bucket), 0,
5078				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5079				  SLAB_ACCOUNT,
5080				  NULL);
5081
5082	/* Size and allocate the main established and bind bucket
5083	 * hash tables.
5084	 *
5085	 * The methodology is similar to that of the buffer cache.
5086	 */
5087	tcp_hashinfo.ehash =
5088		alloc_large_system_hash("TCP established",
5089					sizeof(struct inet_ehash_bucket),
5090					thash_entries,
5091					17, /* one slot per 128 KB of memory */
5092					0,
5093					NULL,
5094					&tcp_hashinfo.ehash_mask,
5095					0,
5096					thash_entries ? 0 : 512 * 1024);
5097	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5098		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5099
5100	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5101		panic("TCP: failed to alloc ehash_locks");
5102	tcp_hashinfo.bhash =
5103		alloc_large_system_hash("TCP bind",
5104					2 * sizeof(struct inet_bind_hashbucket),
5105					tcp_hashinfo.ehash_mask + 1,
5106					17, /* one slot per 128 KB of memory */
5107					0,
5108					&tcp_hashinfo.bhash_size,
5109					NULL,
5110					0,
5111					64 * 1024);
5112	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5113	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5114	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5115		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5116		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5117		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5118		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5119	}
5120
5121	tcp_hashinfo.pernet = false;
5122
5123	cnt = tcp_hashinfo.ehash_mask + 1;
5124	sysctl_tcp_max_orphans = cnt / 2;
5125
5126	tcp_init_mem();
5127	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5128	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5129	max_wshare = min(4UL*1024*1024, limit);
5130	max_rshare = min(6UL*1024*1024, limit);
5131
5132	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5133	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5134	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5135
5136	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5137	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5138	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5139
5140	pr_info("Hash tables configured (established %u bind %u)\n",
5141		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5142
5143	tcp_v4_init();
5144	tcp_metrics_init();
5145	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5146	tcp_tasklet_init();
5147	mptcp_init();
5148}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 263#include <linux/cache.h>
 264#include <linux/err.h>
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 277#include <net/sock.h>
 
 278
 279#include <linux/uaccess.h>
 280#include <asm/ioctls.h>
 281#include <net/busy_poll.h>
 
 
 
 
 
 282
 283/* Track pending CMSGs. */
 284enum {
 285	TCP_CMSG_INQ = 1,
 286	TCP_CMSG_TS = 2
 287};
 288
 289DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 291
 
 
 
 292long sysctl_tcp_mem[3] __read_mostly;
 293EXPORT_SYMBOL(sysctl_tcp_mem);
 294
 295atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 296EXPORT_SYMBOL(tcp_memory_allocated);
 297DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 298EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 299
 300#if IS_ENABLED(CONFIG_SMC)
 301DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 302EXPORT_SYMBOL(tcp_have_smc);
 303#endif
 304
 305/*
 306 * Current number of TCP sockets.
 307 */
 308struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 309EXPORT_SYMBOL(tcp_sockets_allocated);
 310
 311/*
 312 * TCP splice context
 313 */
 314struct tcp_splice_state {
 315	struct pipe_inode_info *pipe;
 316	size_t len;
 317	unsigned int flags;
 318};
 319
 320/*
 321 * Pressure flag: try to collapse.
 322 * Technical note: it is used by multiple contexts non atomically.
 323 * All the __sk_mem_schedule() is of this nature: accounting
 324 * is strict, actions are advisory and have some latency.
 325 */
 326unsigned long tcp_memory_pressure __read_mostly;
 327EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 328
 329void tcp_enter_memory_pressure(struct sock *sk)
 330{
 331	unsigned long val;
 332
 333	if (READ_ONCE(tcp_memory_pressure))
 334		return;
 335	val = jiffies;
 336
 337	if (!val)
 338		val--;
 339	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 340		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 341}
 342EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 343
 344void tcp_leave_memory_pressure(struct sock *sk)
 345{
 346	unsigned long val;
 347
 348	if (!READ_ONCE(tcp_memory_pressure))
 349		return;
 350	val = xchg(&tcp_memory_pressure, 0);
 351	if (val)
 352		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 353			      jiffies_to_msecs(jiffies - val));
 354}
 355EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 356
 357/* Convert seconds to retransmits based on initial and max timeout */
 358static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 359{
 360	u8 res = 0;
 361
 362	if (seconds > 0) {
 363		int period = timeout;
 364
 365		res = 1;
 366		while (seconds > period && res < 255) {
 367			res++;
 368			timeout <<= 1;
 369			if (timeout > rto_max)
 370				timeout = rto_max;
 371			period += timeout;
 372		}
 373	}
 374	return res;
 375}
 376
 377/* Convert retransmits to seconds based on initial and max timeout */
 378static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 379{
 380	int period = 0;
 381
 382	if (retrans > 0) {
 383		period = timeout;
 384		while (--retrans) {
 385			timeout <<= 1;
 386			if (timeout > rto_max)
 387				timeout = rto_max;
 388			period += timeout;
 389		}
 390	}
 391	return period;
 392}
 393
 394static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 395{
 396	u32 rate = READ_ONCE(tp->rate_delivered);
 397	u32 intv = READ_ONCE(tp->rate_interval_us);
 398	u64 rate64 = 0;
 399
 400	if (rate && intv) {
 401		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 402		do_div(rate64, intv);
 403	}
 404	return rate64;
 405}
 406
 407/* Address-family independent initialization for a tcp_sock.
 408 *
 409 * NOTE: A lot of things set to zero explicitly by call to
 410 *       sk_alloc() so need not be done here.
 411 */
 412void tcp_init_sock(struct sock *sk)
 413{
 414	struct inet_connection_sock *icsk = inet_csk(sk);
 415	struct tcp_sock *tp = tcp_sk(sk);
 
 416
 417	tp->out_of_order_queue = RB_ROOT;
 418	sk->tcp_rtx_queue = RB_ROOT;
 419	tcp_init_xmit_timers(sk);
 420	INIT_LIST_HEAD(&tp->tsq_node);
 421	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 422
 423	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 424	icsk->icsk_rto_min = TCP_RTO_MIN;
 
 425	icsk->icsk_delack_max = TCP_DELACK_MAX;
 426	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 427	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 428
 429	/* So many TCP implementations out there (incorrectly) count the
 430	 * initial SYN frame in their delayed-ACK and congestion control
 431	 * algorithms that we must have the following bandaid to talk
 432	 * efficiently to them.  -DaveM
 433	 */
 434	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 435
 436	/* There's a bubble in the pipe until at least the first ACK. */
 437	tp->app_limited = ~0U;
 438	tp->rate_app_limited = 1;
 439
 440	/* See draft-stevens-tcpca-spec-01 for discussion of the
 441	 * initialization of these values.
 442	 */
 443	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 444	tp->snd_cwnd_clamp = ~0;
 445	tp->mss_cache = TCP_MSS_DEFAULT;
 446
 447	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 448	tcp_assign_congestion_control(sk);
 449
 450	tp->tsoffset = 0;
 451	tp->rack.reo_wnd_steps = 1;
 452
 453	sk->sk_write_space = sk_stream_write_space;
 454	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 455
 456	icsk->icsk_sync_mss = tcp_sync_mss;
 457
 458	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 459	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 
 460
 461	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 462	sk_sockets_allocated_inc(sk);
 
 463}
 464EXPORT_SYMBOL(tcp_init_sock);
 465
 466static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 467{
 468	struct sk_buff *skb = tcp_write_queue_tail(sk);
 
 469
 470	if (tsflags && skb) {
 471		struct skb_shared_info *shinfo = skb_shinfo(skb);
 472		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 473
 474		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 475		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 476			tcb->txstamp_ack = 1;
 477		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 478			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 479	}
 480}
 481
 482static bool tcp_stream_is_readable(struct sock *sk, int target)
 483{
 484	if (tcp_epollin_ready(sk, target))
 485		return true;
 486	return sk_is_readable(sk);
 487}
 488
 489/*
 490 *	Wait for a TCP event.
 491 *
 492 *	Note that we don't need to lock the socket, as the upper poll layers
 493 *	take care of normal races (between the test and the event) and we don't
 494 *	go look at any of the socket buffers directly.
 495 */
 496__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 497{
 498	__poll_t mask;
 499	struct sock *sk = sock->sk;
 500	const struct tcp_sock *tp = tcp_sk(sk);
 
 501	int state;
 502
 503	sock_poll_wait(file, sock, wait);
 504
 505	state = inet_sk_state_load(sk);
 506	if (state == TCP_LISTEN)
 507		return inet_csk_listen_poll(sk);
 508
 509	/* Socket is not locked. We are protected from async events
 510	 * by poll logic and correct handling of state changes
 511	 * made by other threads is impossible in any case.
 512	 */
 513
 514	mask = 0;
 515
 516	/*
 517	 * EPOLLHUP is certainly not done right. But poll() doesn't
 518	 * have a notion of HUP in just one direction, and for a
 519	 * socket the read side is more interesting.
 520	 *
 521	 * Some poll() documentation says that EPOLLHUP is incompatible
 522	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 523	 * all. But careful, it tends to be safer to return too many
 524	 * bits than too few, and you can easily break real applications
 525	 * if you don't tell them that something has hung up!
 526	 *
 527	 * Check-me.
 528	 *
 529	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 530	 * our fs/select.c). It means that after we received EOF,
 531	 * poll always returns immediately, making impossible poll() on write()
 532	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 533	 * if and only if shutdown has been made in both directions.
 534	 * Actually, it is interesting to look how Solaris and DUX
 535	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 536	 * then we could set it on SND_SHUTDOWN. BTW examples given
 537	 * in Stevens' books assume exactly this behaviour, it explains
 538	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 539	 *
 540	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 541	 * blocking on fresh not-connected or disconnected socket. --ANK
 542	 */
 543	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 
 544		mask |= EPOLLHUP;
 545	if (sk->sk_shutdown & RCV_SHUTDOWN)
 546		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 547
 548	/* Connected or passive Fast Open socket? */
 549	if (state != TCP_SYN_SENT &&
 550	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 551		int target = sock_rcvlowat(sk, 0, INT_MAX);
 552		u16 urg_data = READ_ONCE(tp->urg_data);
 553
 554		if (unlikely(urg_data) &&
 555		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 556		    !sock_flag(sk, SOCK_URGINLINE))
 557			target++;
 558
 559		if (tcp_stream_is_readable(sk, target))
 560			mask |= EPOLLIN | EPOLLRDNORM;
 561
 562		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 563			if (__sk_stream_is_writeable(sk, 1)) {
 564				mask |= EPOLLOUT | EPOLLWRNORM;
 565			} else {  /* send SIGIO later */
 566				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 567				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 568
 569				/* Race breaker. If space is freed after
 570				 * wspace test but before the flags are set,
 571				 * IO signal will be lost. Memory barrier
 572				 * pairs with the input side.
 573				 */
 574				smp_mb__after_atomic();
 575				if (__sk_stream_is_writeable(sk, 1))
 576					mask |= EPOLLOUT | EPOLLWRNORM;
 577			}
 578		} else
 579			mask |= EPOLLOUT | EPOLLWRNORM;
 580
 581		if (urg_data & TCP_URG_VALID)
 582			mask |= EPOLLPRI;
 583	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
 
 584		/* Active TCP fastopen socket with defer_connect
 585		 * Return EPOLLOUT so application can call write()
 586		 * in order for kernel to generate SYN+data
 587		 */
 588		mask |= EPOLLOUT | EPOLLWRNORM;
 589	}
 590	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 591	smp_rmb();
 592	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
 
 593		mask |= EPOLLERR;
 594
 595	return mask;
 596}
 597EXPORT_SYMBOL(tcp_poll);
 598
 599int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 600{
 601	struct tcp_sock *tp = tcp_sk(sk);
 602	int answ;
 603	bool slow;
 604
 605	switch (cmd) {
 606	case SIOCINQ:
 607		if (sk->sk_state == TCP_LISTEN)
 608			return -EINVAL;
 609
 610		slow = lock_sock_fast(sk);
 611		answ = tcp_inq(sk);
 612		unlock_sock_fast(sk, slow);
 613		break;
 614	case SIOCATMARK:
 615		answ = READ_ONCE(tp->urg_data) &&
 616		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 617		break;
 618	case SIOCOUTQ:
 619		if (sk->sk_state == TCP_LISTEN)
 620			return -EINVAL;
 621
 622		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 623			answ = 0;
 624		else
 625			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 626		break;
 627	case SIOCOUTQNSD:
 628		if (sk->sk_state == TCP_LISTEN)
 629			return -EINVAL;
 630
 631		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 632			answ = 0;
 633		else
 634			answ = READ_ONCE(tp->write_seq) -
 635			       READ_ONCE(tp->snd_nxt);
 636		break;
 637	default:
 638		return -ENOIOCTLCMD;
 639	}
 640
 641	return put_user(answ, (int __user *)arg);
 
 642}
 643EXPORT_SYMBOL(tcp_ioctl);
 644
 645void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 646{
 647	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 648	tp->pushed_seq = tp->write_seq;
 649}
 650
 651static inline bool forced_push(const struct tcp_sock *tp)
 652{
 653	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 654}
 655
 656void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 657{
 658	struct tcp_sock *tp = tcp_sk(sk);
 659	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 660
 661	tcb->seq     = tcb->end_seq = tp->write_seq;
 662	tcb->tcp_flags = TCPHDR_ACK;
 663	__skb_header_release(skb);
 664	tcp_add_write_queue_tail(sk, skb);
 665	sk_wmem_queued_add(sk, skb->truesize);
 666	sk_mem_charge(sk, skb->truesize);
 667	if (tp->nonagle & TCP_NAGLE_PUSH)
 668		tp->nonagle &= ~TCP_NAGLE_PUSH;
 669
 670	tcp_slow_start_after_idle_check(sk);
 671}
 672
 673static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 674{
 675	if (flags & MSG_OOB)
 676		tp->snd_up = tp->write_seq;
 677}
 678
 679/* If a not yet filled skb is pushed, do not send it if
 680 * we have data packets in Qdisc or NIC queues :
 681 * Because TX completion will happen shortly, it gives a chance
 682 * to coalesce future sendmsg() payload into this skb, without
 683 * need for a timer, and with no latency trade off.
 684 * As packets containing data payload have a bigger truesize
 685 * than pure acks (dataless) packets, the last checks prevent
 686 * autocorking if we only have an ACK in Qdisc/NIC queues,
 687 * or if TX completion was delayed after we processed ACK packet.
 688 */
 689static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 690				int size_goal)
 691{
 692	return skb->len < size_goal &&
 693	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 694	       !tcp_rtx_queue_empty(sk) &&
 695	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 696	       tcp_skb_can_collapse_to(skb);
 697}
 698
 699void tcp_push(struct sock *sk, int flags, int mss_now,
 700	      int nonagle, int size_goal)
 701{
 702	struct tcp_sock *tp = tcp_sk(sk);
 703	struct sk_buff *skb;
 704
 705	skb = tcp_write_queue_tail(sk);
 706	if (!skb)
 707		return;
 708	if (!(flags & MSG_MORE) || forced_push(tp))
 709		tcp_mark_push(tp, skb);
 710
 711	tcp_mark_urg(tp, flags);
 712
 713	if (tcp_should_autocork(sk, skb, size_goal)) {
 714
 715		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 716		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 717			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 718			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 
 719		}
 720		/* It is possible TX completion already happened
 721		 * before we set TSQ_THROTTLED.
 722		 */
 723		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 724			return;
 725	}
 726
 727	if (flags & MSG_MORE)
 728		nonagle = TCP_NAGLE_CORK;
 729
 730	__tcp_push_pending_frames(sk, mss_now, nonagle);
 731}
 732
 733static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 734				unsigned int offset, size_t len)
 735{
 736	struct tcp_splice_state *tss = rd_desc->arg.data;
 737	int ret;
 738
 739	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 740			      min(rd_desc->count, len), tss->flags);
 741	if (ret > 0)
 742		rd_desc->count -= ret;
 743	return ret;
 744}
 745
 746static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 747{
 748	/* Store TCP splice context information in read_descriptor_t. */
 749	read_descriptor_t rd_desc = {
 750		.arg.data = tss,
 751		.count	  = tss->len,
 752	};
 753
 754	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 755}
 756
 757/**
 758 *  tcp_splice_read - splice data from TCP socket to a pipe
 759 * @sock:	socket to splice from
 760 * @ppos:	position (not valid)
 761 * @pipe:	pipe to splice to
 762 * @len:	number of bytes to splice
 763 * @flags:	splice modifier flags
 764 *
 765 * Description:
 766 *    Will read pages from given socket and fill them into a pipe.
 767 *
 768 **/
 769ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 770			struct pipe_inode_info *pipe, size_t len,
 771			unsigned int flags)
 772{
 773	struct sock *sk = sock->sk;
 774	struct tcp_splice_state tss = {
 775		.pipe = pipe,
 776		.len = len,
 777		.flags = flags,
 778	};
 779	long timeo;
 780	ssize_t spliced;
 781	int ret;
 782
 783	sock_rps_record_flow(sk);
 784	/*
 785	 * We can't seek on a socket input
 786	 */
 787	if (unlikely(*ppos))
 788		return -ESPIPE;
 789
 790	ret = spliced = 0;
 791
 792	lock_sock(sk);
 793
 794	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 795	while (tss.len) {
 796		ret = __tcp_splice_read(sk, &tss);
 797		if (ret < 0)
 798			break;
 799		else if (!ret) {
 800			if (spliced)
 801				break;
 802			if (sock_flag(sk, SOCK_DONE))
 803				break;
 804			if (sk->sk_err) {
 805				ret = sock_error(sk);
 806				break;
 807			}
 808			if (sk->sk_shutdown & RCV_SHUTDOWN)
 809				break;
 810			if (sk->sk_state == TCP_CLOSE) {
 811				/*
 812				 * This occurs when user tries to read
 813				 * from never connected socket.
 814				 */
 815				ret = -ENOTCONN;
 816				break;
 817			}
 818			if (!timeo) {
 819				ret = -EAGAIN;
 820				break;
 821			}
 822			/* if __tcp_splice_read() got nothing while we have
 823			 * an skb in receive queue, we do not want to loop.
 824			 * This might happen with URG data.
 825			 */
 826			if (!skb_queue_empty(&sk->sk_receive_queue))
 827				break;
 828			sk_wait_data(sk, &timeo, NULL);
 
 
 829			if (signal_pending(current)) {
 830				ret = sock_intr_errno(timeo);
 831				break;
 832			}
 833			continue;
 834		}
 835		tss.len -= ret;
 836		spliced += ret;
 837
 838		if (!timeo)
 839			break;
 840		release_sock(sk);
 841		lock_sock(sk);
 842
 843		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 844		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 845		    signal_pending(current))
 846			break;
 847	}
 848
 849	release_sock(sk);
 850
 851	if (spliced)
 852		return spliced;
 853
 854	return ret;
 855}
 856EXPORT_SYMBOL(tcp_splice_read);
 857
 858struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 859				     bool force_schedule)
 860{
 861	struct sk_buff *skb;
 862
 863	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
 864	if (likely(skb)) {
 865		bool mem_scheduled;
 866
 867		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 868		if (force_schedule) {
 869			mem_scheduled = true;
 870			sk_forced_mem_schedule(sk, skb->truesize);
 871		} else {
 872			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 873		}
 874		if (likely(mem_scheduled)) {
 875			skb_reserve(skb, MAX_TCP_HEADER);
 876			skb->ip_summed = CHECKSUM_PARTIAL;
 877			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 878			return skb;
 879		}
 880		__kfree_skb(skb);
 881	} else {
 882		sk->sk_prot->enter_memory_pressure(sk);
 883		sk_stream_moderate_sndbuf(sk);
 884	}
 885	return NULL;
 886}
 887
 888static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 889				       int large_allowed)
 890{
 891	struct tcp_sock *tp = tcp_sk(sk);
 892	u32 new_size_goal, size_goal;
 893
 894	if (!large_allowed)
 895		return mss_now;
 896
 897	/* Note : tcp_tso_autosize() will eventually split this later */
 898	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 899
 900	/* We try hard to avoid divides here */
 901	size_goal = tp->gso_segs * mss_now;
 902	if (unlikely(new_size_goal < size_goal ||
 903		     new_size_goal >= size_goal + mss_now)) {
 904		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 905				     sk->sk_gso_max_segs);
 906		size_goal = tp->gso_segs * mss_now;
 907	}
 908
 909	return max(size_goal, mss_now);
 910}
 911
 912int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 913{
 914	int mss_now;
 915
 916	mss_now = tcp_current_mss(sk);
 917	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 918
 919	return mss_now;
 920}
 921
 922/* In some cases, both sendpage() and sendmsg() could have added
 923 * an skb to the write queue, but failed adding payload on it.
 924 * We need to remove it to consume less memory, but more
 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
 926 * users.
 927 */
 928void tcp_remove_empty_skb(struct sock *sk)
 929{
 930	struct sk_buff *skb = tcp_write_queue_tail(sk);
 931
 932	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 933		tcp_unlink_write_queue(skb, sk);
 934		if (tcp_write_queue_empty(sk))
 935			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 936		tcp_wmem_free_skb(sk, skb);
 937	}
 938}
 939
 940/* skb changing from pure zc to mixed, must charge zc */
 941static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 942{
 943	if (unlikely(skb_zcopy_pure(skb))) {
 944		u32 extra = skb->truesize -
 945			    SKB_TRUESIZE(skb_end_offset(skb));
 946
 947		if (!sk_wmem_schedule(sk, extra))
 948			return -ENOMEM;
 949
 950		sk_mem_charge(sk, extra);
 951		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 952	}
 953	return 0;
 954}
 955
 956
 957static int tcp_wmem_schedule(struct sock *sk, int copy)
 958{
 959	int left;
 960
 961	if (likely(sk_wmem_schedule(sk, copy)))
 962		return copy;
 963
 964	/* We could be in trouble if we have nothing queued.
 965	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 966	 * to guarantee some progress.
 967	 */
 968	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
 969	if (left > 0)
 970		sk_forced_mem_schedule(sk, min(left, copy));
 971	return min(copy, sk->sk_forward_alloc);
 972}
 973
 974static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
 975				      struct page *page, int offset, size_t *size)
 976{
 977	struct sk_buff *skb = tcp_write_queue_tail(sk);
 978	struct tcp_sock *tp = tcp_sk(sk);
 979	bool can_coalesce;
 980	int copy, i;
 981
 982	if (!skb || (copy = size_goal - skb->len) <= 0 ||
 983	    !tcp_skb_can_collapse_to(skb)) {
 984new_segment:
 985		if (!sk_stream_memory_free(sk))
 986			return NULL;
 987
 988		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
 989					   tcp_rtx_and_write_queues_empty(sk));
 990		if (!skb)
 991			return NULL;
 992
 993#ifdef CONFIG_TLS_DEVICE
 994		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
 995#endif
 996		tcp_skb_entail(sk, skb);
 997		copy = size_goal;
 998	}
 999
1000	if (copy > *size)
1001		copy = *size;
1002
1003	i = skb_shinfo(skb)->nr_frags;
1004	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1005	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1006		tcp_mark_push(tp, skb);
1007		goto new_segment;
1008	}
1009	if (tcp_downgrade_zcopy_pure(sk, skb))
1010		return NULL;
1011
1012	copy = tcp_wmem_schedule(sk, copy);
1013	if (!copy)
1014		return NULL;
1015
1016	if (can_coalesce) {
1017		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1018	} else {
1019		get_page(page);
1020		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1021	}
1022
1023	if (!(flags & MSG_NO_SHARED_FRAGS))
1024		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1025
1026	skb->len += copy;
1027	skb->data_len += copy;
1028	skb->truesize += copy;
1029	sk_wmem_queued_add(sk, copy);
1030	sk_mem_charge(sk, copy);
1031	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1032	TCP_SKB_CB(skb)->end_seq += copy;
1033	tcp_skb_pcount_set(skb, 0);
1034
1035	*size = copy;
1036	return skb;
1037}
1038
1039ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1040			 size_t size, int flags)
1041{
1042	struct tcp_sock *tp = tcp_sk(sk);
1043	int mss_now, size_goal;
1044	int err;
1045	ssize_t copied;
1046	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1047
1048	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1049	    WARN_ONCE(!sendpage_ok(page),
1050		      "page must not be a Slab one and have page_count > 0"))
1051		return -EINVAL;
1052
1053	/* Wait for a connection to finish. One exception is TCP Fast Open
1054	 * (passive side) where data is allowed to be sent before a connection
1055	 * is fully established.
1056	 */
1057	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1058	    !tcp_passive_fastopen(sk)) {
1059		err = sk_stream_wait_connect(sk, &timeo);
1060		if (err != 0)
1061			goto out_err;
1062	}
1063
1064	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1065
1066	mss_now = tcp_send_mss(sk, &size_goal, flags);
1067	copied = 0;
1068
1069	err = -EPIPE;
1070	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1071		goto out_err;
1072
1073	while (size > 0) {
1074		struct sk_buff *skb;
1075		size_t copy = size;
1076
1077		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1078		if (!skb)
1079			goto wait_for_space;
1080
1081		if (!copied)
1082			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1083
1084		copied += copy;
1085		offset += copy;
1086		size -= copy;
1087		if (!size)
1088			goto out;
1089
1090		if (skb->len < size_goal || (flags & MSG_OOB))
1091			continue;
1092
1093		if (forced_push(tp)) {
1094			tcp_mark_push(tp, skb);
1095			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1096		} else if (skb == tcp_send_head(sk))
1097			tcp_push_one(sk, mss_now);
1098		continue;
1099
1100wait_for_space:
1101		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1102		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1103			 TCP_NAGLE_PUSH, size_goal);
1104
1105		err = sk_stream_wait_memory(sk, &timeo);
1106		if (err != 0)
1107			goto do_error;
1108
1109		mss_now = tcp_send_mss(sk, &size_goal, flags);
1110	}
1111
1112out:
1113	if (copied) {
1114		tcp_tx_timestamp(sk, sk->sk_tsflags);
1115		if (!(flags & MSG_SENDPAGE_NOTLAST))
1116			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1117	}
1118	return copied;
1119
1120do_error:
1121	tcp_remove_empty_skb(sk);
1122	if (copied)
1123		goto out;
1124out_err:
1125	/* make sure we wake any epoll edge trigger waiter */
1126	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1127		sk->sk_write_space(sk);
1128		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1129	}
1130	return sk_stream_error(sk, flags, err);
1131}
1132EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1133
1134int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1135			size_t size, int flags)
1136{
1137	if (!(sk->sk_route_caps & NETIF_F_SG))
1138		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1139
1140	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1141
1142	return do_tcp_sendpages(sk, page, offset, size, flags);
1143}
1144EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1145
1146int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1147		 size_t size, int flags)
1148{
1149	int ret;
1150
1151	lock_sock(sk);
1152	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1153	release_sock(sk);
1154
1155	return ret;
1156}
1157EXPORT_SYMBOL(tcp_sendpage);
1158
1159void tcp_free_fastopen_req(struct tcp_sock *tp)
1160{
1161	if (tp->fastopen_req) {
1162		kfree(tp->fastopen_req);
1163		tp->fastopen_req = NULL;
1164	}
1165}
1166
1167int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1168			 size_t size, struct ubuf_info *uarg)
1169{
1170	struct tcp_sock *tp = tcp_sk(sk);
1171	struct inet_sock *inet = inet_sk(sk);
1172	struct sockaddr *uaddr = msg->msg_name;
1173	int err, flags;
1174
1175	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1176	      TFO_CLIENT_ENABLE) ||
1177	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1178	     uaddr->sa_family == AF_UNSPEC))
1179		return -EOPNOTSUPP;
1180	if (tp->fastopen_req)
1181		return -EALREADY; /* Another Fast Open is in progress */
1182
1183	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1184				   sk->sk_allocation);
1185	if (unlikely(!tp->fastopen_req))
1186		return -ENOBUFS;
1187	tp->fastopen_req->data = msg;
1188	tp->fastopen_req->size = size;
1189	tp->fastopen_req->uarg = uarg;
1190
1191	if (inet->defer_connect) {
1192		err = tcp_connect(sk);
1193		/* Same failure procedure as in tcp_v4/6_connect */
1194		if (err) {
1195			tcp_set_state(sk, TCP_CLOSE);
1196			inet->inet_dport = 0;
1197			sk->sk_route_caps = 0;
1198		}
1199	}
1200	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1201	err = __inet_stream_connect(sk->sk_socket, uaddr,
1202				    msg->msg_namelen, flags, 1);
1203	/* fastopen_req could already be freed in __inet_stream_connect
1204	 * if the connection times out or gets rst
1205	 */
1206	if (tp->fastopen_req) {
1207		*copied = tp->fastopen_req->copied;
1208		tcp_free_fastopen_req(tp);
1209		inet->defer_connect = 0;
1210	}
1211	return err;
1212}
1213
1214int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1215{
1216	struct tcp_sock *tp = tcp_sk(sk);
1217	struct ubuf_info *uarg = NULL;
1218	struct sk_buff *skb;
1219	struct sockcm_cookie sockc;
1220	int flags, err, copied = 0;
1221	int mss_now = 0, size_goal, copied_syn = 0;
1222	int process_backlog = 0;
1223	bool zc = false;
1224	long timeo;
1225
1226	flags = msg->msg_flags;
1227
1228	if ((flags & MSG_ZEROCOPY) && size) {
1229		skb = tcp_write_queue_tail(sk);
1230
1231		if (msg->msg_ubuf) {
1232			uarg = msg->msg_ubuf;
1233			net_zcopy_get(uarg);
1234			zc = sk->sk_route_caps & NETIF_F_SG;
1235		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
 
1236			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1237			if (!uarg) {
1238				err = -ENOBUFS;
1239				goto out_err;
1240			}
1241			zc = sk->sk_route_caps & NETIF_F_SG;
1242			if (!zc)
 
1243				uarg_to_msgzc(uarg)->zerocopy = 0;
1244		}
 
 
 
1245	}
1246
1247	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
 
1248	    !tp->repair) {
1249		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1250		if (err == -EINPROGRESS && copied_syn > 0)
1251			goto out;
1252		else if (err)
1253			goto out_err;
1254	}
1255
1256	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1257
1258	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1259
1260	/* Wait for a connection to finish. One exception is TCP Fast Open
1261	 * (passive side) where data is allowed to be sent before a connection
1262	 * is fully established.
1263	 */
1264	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1265	    !tcp_passive_fastopen(sk)) {
1266		err = sk_stream_wait_connect(sk, &timeo);
1267		if (err != 0)
1268			goto do_error;
1269	}
1270
1271	if (unlikely(tp->repair)) {
1272		if (tp->repair_queue == TCP_RECV_QUEUE) {
1273			copied = tcp_send_rcvq(sk, msg, size);
1274			goto out_nopush;
1275		}
1276
1277		err = -EINVAL;
1278		if (tp->repair_queue == TCP_NO_QUEUE)
1279			goto out_err;
1280
1281		/* 'common' sending to sendq */
1282	}
1283
1284	sockcm_init(&sockc, sk);
1285	if (msg->msg_controllen) {
1286		err = sock_cmsg_send(sk, msg, &sockc);
1287		if (unlikely(err)) {
1288			err = -EINVAL;
1289			goto out_err;
1290		}
1291	}
1292
1293	/* This should be in poll */
1294	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1295
1296	/* Ok commence sending. */
1297	copied = 0;
1298
1299restart:
1300	mss_now = tcp_send_mss(sk, &size_goal, flags);
1301
1302	err = -EPIPE;
1303	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1304		goto do_error;
1305
1306	while (msg_data_left(msg)) {
1307		int copy = 0;
1308
1309		skb = tcp_write_queue_tail(sk);
1310		if (skb)
1311			copy = size_goal - skb->len;
1312
1313		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1314			bool first_skb;
1315
1316new_segment:
1317			if (!sk_stream_memory_free(sk))
1318				goto wait_for_space;
1319
1320			if (unlikely(process_backlog >= 16)) {
1321				process_backlog = 0;
1322				if (sk_flush_backlog(sk))
1323					goto restart;
1324			}
1325			first_skb = tcp_rtx_and_write_queues_empty(sk);
1326			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1327						   first_skb);
1328			if (!skb)
1329				goto wait_for_space;
1330
1331			process_backlog++;
1332
 
 
 
1333			tcp_skb_entail(sk, skb);
1334			copy = size_goal;
1335
1336			/* All packets are restored as if they have
1337			 * already been sent. skb_mstamp_ns isn't set to
1338			 * avoid wrong rtt estimation.
1339			 */
1340			if (tp->repair)
1341				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1342		}
1343
1344		/* Try to append data to the end of skb. */
1345		if (copy > msg_data_left(msg))
1346			copy = msg_data_left(msg);
1347
1348		if (!zc) {
1349			bool merge = true;
1350			int i = skb_shinfo(skb)->nr_frags;
1351			struct page_frag *pfrag = sk_page_frag(sk);
1352
1353			if (!sk_page_frag_refill(sk, pfrag))
1354				goto wait_for_space;
1355
1356			if (!skb_can_coalesce(skb, i, pfrag->page,
1357					      pfrag->offset)) {
1358				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1359					tcp_mark_push(tp, skb);
1360					goto new_segment;
1361				}
1362				merge = false;
1363			}
1364
1365			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1366
1367			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1368				if (tcp_downgrade_zcopy_pure(sk, skb))
1369					goto wait_for_space;
1370				skb_zcopy_downgrade_managed(skb);
1371			}
1372
1373			copy = tcp_wmem_schedule(sk, copy);
1374			if (!copy)
1375				goto wait_for_space;
1376
1377			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1378						       pfrag->page,
1379						       pfrag->offset,
1380						       copy);
1381			if (err)
1382				goto do_error;
1383
1384			/* Update the skb. */
1385			if (merge) {
1386				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1387			} else {
1388				skb_fill_page_desc(skb, i, pfrag->page,
1389						   pfrag->offset, copy);
1390				page_ref_inc(pfrag->page);
1391			}
1392			pfrag->offset += copy;
1393		} else {
1394			/* First append to a fragless skb builds initial
1395			 * pure zerocopy skb
1396			 */
1397			if (!skb->len)
1398				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1399
1400			if (!skb_zcopy_pure(skb)) {
1401				copy = tcp_wmem_schedule(sk, copy);
1402				if (!copy)
1403					goto wait_for_space;
1404			}
1405
1406			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1407			if (err == -EMSGSIZE || err == -EEXIST) {
1408				tcp_mark_push(tp, skb);
1409				goto new_segment;
1410			}
1411			if (err < 0)
1412				goto do_error;
1413			copy = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414		}
1415
1416		if (!copied)
1417			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1418
1419		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1420		TCP_SKB_CB(skb)->end_seq += copy;
1421		tcp_skb_pcount_set(skb, 0);
1422
1423		copied += copy;
1424		if (!msg_data_left(msg)) {
1425			if (unlikely(flags & MSG_EOR))
1426				TCP_SKB_CB(skb)->eor = 1;
1427			goto out;
1428		}
1429
1430		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1431			continue;
1432
1433		if (forced_push(tp)) {
1434			tcp_mark_push(tp, skb);
1435			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1436		} else if (skb == tcp_send_head(sk))
1437			tcp_push_one(sk, mss_now);
1438		continue;
1439
1440wait_for_space:
1441		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 
1442		if (copied)
1443			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1444				 TCP_NAGLE_PUSH, size_goal);
1445
1446		err = sk_stream_wait_memory(sk, &timeo);
1447		if (err != 0)
1448			goto do_error;
1449
1450		mss_now = tcp_send_mss(sk, &size_goal, flags);
1451	}
1452
1453out:
1454	if (copied) {
1455		tcp_tx_timestamp(sk, sockc.tsflags);
1456		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1457	}
1458out_nopush:
1459	net_zcopy_put(uarg);
 
 
1460	return copied + copied_syn;
1461
1462do_error:
1463	tcp_remove_empty_skb(sk);
1464
1465	if (copied + copied_syn)
1466		goto out;
1467out_err:
1468	net_zcopy_put_abort(uarg, true);
 
 
1469	err = sk_stream_error(sk, flags, err);
1470	/* make sure we wake any epoll edge trigger waiter */
1471	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1472		sk->sk_write_space(sk);
1473		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1474	}
1475	return err;
1476}
1477EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1478
1479int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1480{
1481	int ret;
1482
1483	lock_sock(sk);
1484	ret = tcp_sendmsg_locked(sk, msg, size);
1485	release_sock(sk);
1486
1487	return ret;
1488}
1489EXPORT_SYMBOL(tcp_sendmsg);
1490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491/*
1492 *	Handle reading urgent data. BSD has very simple semantics for
1493 *	this, no blocking and very strange errors 8)
1494 */
1495
1496static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1497{
1498	struct tcp_sock *tp = tcp_sk(sk);
1499
1500	/* No URG data to read. */
1501	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1502	    tp->urg_data == TCP_URG_READ)
1503		return -EINVAL;	/* Yes this is right ! */
1504
1505	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1506		return -ENOTCONN;
1507
1508	if (tp->urg_data & TCP_URG_VALID) {
1509		int err = 0;
1510		char c = tp->urg_data;
1511
1512		if (!(flags & MSG_PEEK))
1513			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1514
1515		/* Read urgent data. */
1516		msg->msg_flags |= MSG_OOB;
1517
1518		if (len > 0) {
1519			if (!(flags & MSG_TRUNC))
1520				err = memcpy_to_msg(msg, &c, 1);
1521			len = 1;
1522		} else
1523			msg->msg_flags |= MSG_TRUNC;
1524
1525		return err ? -EFAULT : len;
1526	}
1527
1528	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1529		return 0;
1530
1531	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1532	 * the available implementations agree in this case:
1533	 * this call should never block, independent of the
1534	 * blocking state of the socket.
1535	 * Mike <pall@rz.uni-karlsruhe.de>
1536	 */
1537	return -EAGAIN;
1538}
1539
1540static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1541{
1542	struct sk_buff *skb;
1543	int copied = 0, err = 0;
1544
1545	/* XXX -- need to support SO_PEEK_OFF */
1546
1547	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1548		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1549		if (err)
1550			return err;
1551		copied += skb->len;
1552	}
1553
1554	skb_queue_walk(&sk->sk_write_queue, skb) {
1555		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1556		if (err)
1557			break;
1558
1559		copied += skb->len;
1560	}
1561
1562	return err ?: copied;
1563}
1564
1565/* Clean up the receive buffer for full frames taken by the user,
1566 * then send an ACK if necessary.  COPIED is the number of bytes
1567 * tcp_recvmsg has given to the user so far, it speeds up the
1568 * calculation of whether or not we must ACK for the sake of
1569 * a window update.
1570 */
1571static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1572{
1573	struct tcp_sock *tp = tcp_sk(sk);
1574	bool time_to_ack = false;
1575
1576	if (inet_csk_ack_scheduled(sk)) {
1577		const struct inet_connection_sock *icsk = inet_csk(sk);
1578
1579		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1580		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1581		    /*
1582		     * If this read emptied read buffer, we send ACK, if
1583		     * connection is not bidirectional, user drained
1584		     * receive buffer and there was a small segment
1585		     * in queue.
1586		     */
1587		    (copied > 0 &&
1588		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1589		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1590		       !inet_csk_in_pingpong_mode(sk))) &&
1591		      !atomic_read(&sk->sk_rmem_alloc)))
1592			time_to_ack = true;
1593	}
1594
1595	/* We send an ACK if we can now advertise a non-zero window
1596	 * which has been raised "significantly".
1597	 *
1598	 * Even if window raised up to infinity, do not send window open ACK
1599	 * in states, where we will not receive more. It is useless.
1600	 */
1601	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1602		__u32 rcv_window_now = tcp_receive_window(tp);
1603
1604		/* Optimize, __tcp_select_window() is not cheap. */
1605		if (2*rcv_window_now <= tp->window_clamp) {
1606			__u32 new_window = __tcp_select_window(sk);
1607
1608			/* Send ACK now, if this read freed lots of space
1609			 * in our buffer. Certainly, new_window is new window.
1610			 * We can advertise it now, if it is not less than current one.
1611			 * "Lots" means "at least twice" here.
1612			 */
1613			if (new_window && new_window >= 2 * rcv_window_now)
1614				time_to_ack = true;
1615		}
1616	}
1617	if (time_to_ack)
1618		tcp_send_ack(sk);
1619}
1620
1621void tcp_cleanup_rbuf(struct sock *sk, int copied)
1622{
1623	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1624	struct tcp_sock *tp = tcp_sk(sk);
1625
1626	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1627	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1628	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1629	__tcp_cleanup_rbuf(sk, copied);
1630}
1631
1632static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1633{
1634	__skb_unlink(skb, &sk->sk_receive_queue);
1635	if (likely(skb->destructor == sock_rfree)) {
1636		sock_rfree(skb);
1637		skb->destructor = NULL;
1638		skb->sk = NULL;
1639		return skb_attempt_defer_free(skb);
1640	}
1641	__kfree_skb(skb);
1642}
1643
1644struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1645{
1646	struct sk_buff *skb;
1647	u32 offset;
1648
1649	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1650		offset = seq - TCP_SKB_CB(skb)->seq;
1651		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1652			pr_err_once("%s: found a SYN, please report !\n", __func__);
1653			offset--;
1654		}
1655		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1656			*off = offset;
1657			return skb;
1658		}
1659		/* This looks weird, but this can happen if TCP collapsing
1660		 * splitted a fat GRO packet, while we released socket lock
1661		 * in skb_splice_bits()
1662		 */
1663		tcp_eat_recv_skb(sk, skb);
1664	}
1665	return NULL;
1666}
1667EXPORT_SYMBOL(tcp_recv_skb);
1668
1669/*
1670 * This routine provides an alternative to tcp_recvmsg() for routines
1671 * that would like to handle copying from skbuffs directly in 'sendfile'
1672 * fashion.
1673 * Note:
1674 *	- It is assumed that the socket was locked by the caller.
1675 *	- The routine does not block.
1676 *	- At present, there is no support for reading OOB data
1677 *	  or for 'peeking' the socket using this routine
1678 *	  (although both would be easy to implement).
1679 */
1680int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1681		  sk_read_actor_t recv_actor)
1682{
1683	struct sk_buff *skb;
1684	struct tcp_sock *tp = tcp_sk(sk);
1685	u32 seq = tp->copied_seq;
1686	u32 offset;
1687	int copied = 0;
1688
1689	if (sk->sk_state == TCP_LISTEN)
1690		return -ENOTCONN;
1691	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1692		if (offset < skb->len) {
1693			int used;
1694			size_t len;
1695
1696			len = skb->len - offset;
1697			/* Stop reading if we hit a patch of urgent data */
1698			if (unlikely(tp->urg_data)) {
1699				u32 urg_offset = tp->urg_seq - seq;
1700				if (urg_offset < len)
1701					len = urg_offset;
1702				if (!len)
1703					break;
1704			}
1705			used = recv_actor(desc, skb, offset, len);
1706			if (used <= 0) {
1707				if (!copied)
1708					copied = used;
1709				break;
1710			}
1711			if (WARN_ON_ONCE(used > len))
1712				used = len;
1713			seq += used;
1714			copied += used;
1715			offset += used;
1716
1717			/* If recv_actor drops the lock (e.g. TCP splice
1718			 * receive) the skb pointer might be invalid when
1719			 * getting here: tcp_collapse might have deleted it
1720			 * while aggregating skbs from the socket queue.
1721			 */
1722			skb = tcp_recv_skb(sk, seq - 1, &offset);
1723			if (!skb)
1724				break;
1725			/* TCP coalescing might have appended data to the skb.
1726			 * Try to splice more frags
1727			 */
1728			if (offset + 1 != skb->len)
1729				continue;
1730		}
1731		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1732			tcp_eat_recv_skb(sk, skb);
1733			++seq;
1734			break;
1735		}
1736		tcp_eat_recv_skb(sk, skb);
1737		if (!desc->count)
1738			break;
1739		WRITE_ONCE(tp->copied_seq, seq);
1740	}
1741	WRITE_ONCE(tp->copied_seq, seq);
1742
1743	tcp_rcv_space_adjust(sk);
1744
1745	/* Clean up data we have read: This will do ACK frames. */
1746	if (copied > 0) {
1747		tcp_recv_skb(sk, seq, &offset);
1748		tcp_cleanup_rbuf(sk, copied);
1749	}
1750	return copied;
1751}
1752EXPORT_SYMBOL(tcp_read_sock);
1753
1754int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1755{
1756	struct tcp_sock *tp = tcp_sk(sk);
1757	u32 seq = tp->copied_seq;
1758	struct sk_buff *skb;
1759	int copied = 0;
1760	u32 offset;
1761
1762	if (sk->sk_state == TCP_LISTEN)
1763		return -ENOTCONN;
1764
1765	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1766		u8 tcp_flags;
1767		int used;
1768
1769		__skb_unlink(skb, &sk->sk_receive_queue);
1770		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1771		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1772		used = recv_actor(sk, skb);
1773		consume_skb(skb);
1774		if (used < 0) {
1775			if (!copied)
1776				copied = used;
1777			break;
1778		}
1779		seq += used;
1780		copied += used;
1781
1782		if (tcp_flags & TCPHDR_FIN) {
1783			++seq;
1784			break;
1785		}
1786	}
1787	WRITE_ONCE(tp->copied_seq, seq);
1788
1789	tcp_rcv_space_adjust(sk);
1790
1791	/* Clean up data we have read: This will do ACK frames. */
1792	if (copied > 0)
1793		__tcp_cleanup_rbuf(sk, copied);
1794
1795	return copied;
1796}
1797EXPORT_SYMBOL(tcp_read_skb);
1798
1799void tcp_read_done(struct sock *sk, size_t len)
1800{
1801	struct tcp_sock *tp = tcp_sk(sk);
1802	u32 seq = tp->copied_seq;
1803	struct sk_buff *skb;
1804	size_t left;
1805	u32 offset;
1806
1807	if (sk->sk_state == TCP_LISTEN)
1808		return;
1809
1810	left = len;
1811	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1812		int used;
1813
1814		used = min_t(size_t, skb->len - offset, left);
1815		seq += used;
1816		left -= used;
1817
1818		if (skb->len > offset + used)
1819			break;
1820
1821		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1822			tcp_eat_recv_skb(sk, skb);
1823			++seq;
1824			break;
1825		}
1826		tcp_eat_recv_skb(sk, skb);
1827	}
1828	WRITE_ONCE(tp->copied_seq, seq);
1829
1830	tcp_rcv_space_adjust(sk);
1831
1832	/* Clean up data we have read: This will do ACK frames. */
1833	if (left != len)
1834		tcp_cleanup_rbuf(sk, len - left);
1835}
1836EXPORT_SYMBOL(tcp_read_done);
1837
1838int tcp_peek_len(struct socket *sock)
1839{
1840	return tcp_inq(sock->sk);
1841}
1842EXPORT_SYMBOL(tcp_peek_len);
1843
1844/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1845int tcp_set_rcvlowat(struct sock *sk, int val)
1846{
1847	int cap;
1848
1849	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1850		cap = sk->sk_rcvbuf >> 1;
1851	else
1852		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1853	val = min(val, cap);
1854	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1855
1856	/* Check if we need to signal EPOLLIN right now */
1857	tcp_data_ready(sk);
1858
1859	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1860		return 0;
1861
1862	val <<= 1;
1863	if (val > sk->sk_rcvbuf) {
1864		WRITE_ONCE(sk->sk_rcvbuf, val);
1865		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1866	}
1867	return 0;
1868}
1869EXPORT_SYMBOL(tcp_set_rcvlowat);
1870
1871void tcp_update_recv_tstamps(struct sk_buff *skb,
1872			     struct scm_timestamping_internal *tss)
1873{
1874	if (skb->tstamp)
1875		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1876	else
1877		tss->ts[0] = (struct timespec64) {0};
1878
1879	if (skb_hwtstamps(skb)->hwtstamp)
1880		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1881	else
1882		tss->ts[2] = (struct timespec64) {0};
1883}
1884
1885#ifdef CONFIG_MMU
1886static const struct vm_operations_struct tcp_vm_ops = {
1887};
1888
1889int tcp_mmap(struct file *file, struct socket *sock,
1890	     struct vm_area_struct *vma)
1891{
1892	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1893		return -EPERM;
1894	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1895
1896	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1897	vma->vm_flags |= VM_MIXEDMAP;
1898
1899	vma->vm_ops = &tcp_vm_ops;
1900	return 0;
1901}
1902EXPORT_SYMBOL(tcp_mmap);
1903
1904static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1905				       u32 *offset_frag)
1906{
1907	skb_frag_t *frag;
1908
1909	if (unlikely(offset_skb >= skb->len))
1910		return NULL;
1911
1912	offset_skb -= skb_headlen(skb);
1913	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1914		return NULL;
1915
1916	frag = skb_shinfo(skb)->frags;
1917	while (offset_skb) {
1918		if (skb_frag_size(frag) > offset_skb) {
1919			*offset_frag = offset_skb;
1920			return frag;
1921		}
1922		offset_skb -= skb_frag_size(frag);
1923		++frag;
1924	}
1925	*offset_frag = 0;
1926	return frag;
1927}
1928
1929static bool can_map_frag(const skb_frag_t *frag)
1930{
1931	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
 
 
 
 
 
 
 
 
 
 
1932}
1933
1934static int find_next_mappable_frag(const skb_frag_t *frag,
1935				   int remaining_in_skb)
1936{
1937	int offset = 0;
1938
1939	if (likely(can_map_frag(frag)))
1940		return 0;
1941
1942	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1943		offset += skb_frag_size(frag);
1944		++frag;
1945	}
1946	return offset;
1947}
1948
1949static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1950					  struct tcp_zerocopy_receive *zc,
1951					  struct sk_buff *skb, u32 offset)
1952{
1953	u32 frag_offset, partial_frag_remainder = 0;
1954	int mappable_offset;
1955	skb_frag_t *frag;
1956
1957	/* worst case: skip to next skb. try to improve on this case below */
1958	zc->recv_skip_hint = skb->len - offset;
1959
1960	/* Find the frag containing this offset (and how far into that frag) */
1961	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1962	if (!frag)
1963		return;
1964
1965	if (frag_offset) {
1966		struct skb_shared_info *info = skb_shinfo(skb);
1967
1968		/* We read part of the last frag, must recvmsg() rest of skb. */
1969		if (frag == &info->frags[info->nr_frags - 1])
1970			return;
1971
1972		/* Else, we must at least read the remainder in this frag. */
1973		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1974		zc->recv_skip_hint -= partial_frag_remainder;
1975		++frag;
1976	}
1977
1978	/* partial_frag_remainder: If part way through a frag, must read rest.
1979	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1980	 * in partial_frag_remainder.
1981	 */
1982	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1983	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1984}
1985
1986static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1987			      int flags, struct scm_timestamping_internal *tss,
1988			      int *cmsg_flags);
1989static int receive_fallback_to_copy(struct sock *sk,
1990				    struct tcp_zerocopy_receive *zc, int inq,
1991				    struct scm_timestamping_internal *tss)
1992{
1993	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1994	struct msghdr msg = {};
1995	struct iovec iov;
1996	int err;
1997
1998	zc->length = 0;
1999	zc->recv_skip_hint = 0;
2000
2001	if (copy_address != zc->copybuf_address)
2002		return -EINVAL;
2003
2004	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2005				  inq, &iov, &msg.msg_iter);
2006	if (err)
2007		return err;
2008
2009	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2010				 tss, &zc->msg_flags);
2011	if (err < 0)
2012		return err;
2013
2014	zc->copybuf_len = err;
2015	if (likely(zc->copybuf_len)) {
2016		struct sk_buff *skb;
2017		u32 offset;
2018
2019		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2020		if (skb)
2021			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2022	}
2023	return 0;
2024}
2025
2026static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2027				   struct sk_buff *skb, u32 copylen,
2028				   u32 *offset, u32 *seq)
2029{
2030	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2031	struct msghdr msg = {};
2032	struct iovec iov;
2033	int err;
2034
2035	if (copy_address != zc->copybuf_address)
2036		return -EINVAL;
2037
2038	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2039				  copylen, &iov, &msg.msg_iter);
2040	if (err)
2041		return err;
2042	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2043	if (err)
2044		return err;
2045	zc->recv_skip_hint -= copylen;
2046	*offset += copylen;
2047	*seq += copylen;
2048	return (__s32)copylen;
2049}
2050
2051static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2052				  struct sock *sk,
2053				  struct sk_buff *skb,
2054				  u32 *seq,
2055				  s32 copybuf_len,
2056				  struct scm_timestamping_internal *tss)
2057{
2058	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2059
2060	if (!copylen)
2061		return 0;
2062	/* skb is null if inq < PAGE_SIZE. */
2063	if (skb) {
2064		offset = *seq - TCP_SKB_CB(skb)->seq;
2065	} else {
2066		skb = tcp_recv_skb(sk, *seq, &offset);
2067		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2068			tcp_update_recv_tstamps(skb, tss);
2069			zc->msg_flags |= TCP_CMSG_TS;
2070		}
2071	}
2072
2073	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2074						  seq);
2075	return zc->copybuf_len < 0 ? 0 : copylen;
2076}
2077
2078static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2079					      struct page **pending_pages,
2080					      unsigned long pages_remaining,
2081					      unsigned long *address,
2082					      u32 *length,
2083					      u32 *seq,
2084					      struct tcp_zerocopy_receive *zc,
2085					      u32 total_bytes_to_map,
2086					      int err)
2087{
2088	/* At least one page did not map. Try zapping if we skipped earlier. */
2089	if (err == -EBUSY &&
2090	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2091		u32 maybe_zap_len;
2092
2093		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2094				*length + /* Mapped or pending */
2095				(pages_remaining * PAGE_SIZE); /* Failed map. */
2096		zap_page_range(vma, *address, maybe_zap_len);
2097		err = 0;
2098	}
2099
2100	if (!err) {
2101		unsigned long leftover_pages = pages_remaining;
2102		int bytes_mapped;
2103
2104		/* We called zap_page_range, try to reinsert. */
2105		err = vm_insert_pages(vma, *address,
2106				      pending_pages,
2107				      &pages_remaining);
2108		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2109		*seq += bytes_mapped;
2110		*address += bytes_mapped;
2111	}
2112	if (err) {
2113		/* Either we were unable to zap, OR we zapped, retried an
2114		 * insert, and still had an issue. Either ways, pages_remaining
2115		 * is the number of pages we were unable to map, and we unroll
2116		 * some state we speculatively touched before.
2117		 */
2118		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2119
2120		*length -= bytes_not_mapped;
2121		zc->recv_skip_hint += bytes_not_mapped;
2122	}
2123	return err;
2124}
2125
2126static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2127					struct page **pages,
2128					unsigned int pages_to_map,
2129					unsigned long *address,
2130					u32 *length,
2131					u32 *seq,
2132					struct tcp_zerocopy_receive *zc,
2133					u32 total_bytes_to_map)
2134{
2135	unsigned long pages_remaining = pages_to_map;
2136	unsigned int pages_mapped;
2137	unsigned int bytes_mapped;
2138	int err;
2139
2140	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2141	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2142	bytes_mapped = PAGE_SIZE * pages_mapped;
2143	/* Even if vm_insert_pages fails, it may have partially succeeded in
2144	 * mapping (some but not all of the pages).
2145	 */
2146	*seq += bytes_mapped;
2147	*address += bytes_mapped;
2148
2149	if (likely(!err))
2150		return 0;
2151
2152	/* Error: maybe zap and retry + rollback state for failed inserts. */
2153	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2154		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2155		err);
2156}
2157
2158#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2159static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2160				      struct tcp_zerocopy_receive *zc,
2161				      struct scm_timestamping_internal *tss)
2162{
2163	unsigned long msg_control_addr;
2164	struct msghdr cmsg_dummy;
2165
2166	msg_control_addr = (unsigned long)zc->msg_control;
2167	cmsg_dummy.msg_control = (void *)msg_control_addr;
2168	cmsg_dummy.msg_controllen =
2169		(__kernel_size_t)zc->msg_controllen;
2170	cmsg_dummy.msg_flags = in_compat_syscall()
2171		? MSG_CMSG_COMPAT : 0;
2172	cmsg_dummy.msg_control_is_user = true;
2173	zc->msg_flags = 0;
2174	if (zc->msg_control == msg_control_addr &&
2175	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2176		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2177		zc->msg_control = (__u64)
2178			((uintptr_t)cmsg_dummy.msg_control);
2179		zc->msg_controllen =
2180			(__u64)cmsg_dummy.msg_controllen;
2181		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2182	}
2183}
2184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2186static int tcp_zerocopy_receive(struct sock *sk,
2187				struct tcp_zerocopy_receive *zc,
2188				struct scm_timestamping_internal *tss)
2189{
2190	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2191	unsigned long address = (unsigned long)zc->address;
2192	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2193	s32 copybuf_len = zc->copybuf_len;
2194	struct tcp_sock *tp = tcp_sk(sk);
2195	const skb_frag_t *frags = NULL;
2196	unsigned int pages_to_map = 0;
2197	struct vm_area_struct *vma;
2198	struct sk_buff *skb = NULL;
2199	u32 seq = tp->copied_seq;
2200	u32 total_bytes_to_map;
2201	int inq = tcp_inq(sk);
 
2202	int ret;
2203
2204	zc->copybuf_len = 0;
2205	zc->msg_flags = 0;
2206
2207	if (address & (PAGE_SIZE - 1) || address != zc->address)
2208		return -EINVAL;
2209
2210	if (sk->sk_state == TCP_LISTEN)
2211		return -ENOTCONN;
2212
2213	sock_rps_record_flow(sk);
2214
2215	if (inq && inq <= copybuf_len)
2216		return receive_fallback_to_copy(sk, zc, inq, tss);
2217
2218	if (inq < PAGE_SIZE) {
2219		zc->length = 0;
2220		zc->recv_skip_hint = inq;
2221		if (!inq && sock_flag(sk, SOCK_DONE))
2222			return -EIO;
2223		return 0;
2224	}
2225
2226	mmap_read_lock(current->mm);
 
 
2227
2228	vma = vma_lookup(current->mm, address);
2229	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2230		mmap_read_unlock(current->mm);
2231		return -EINVAL;
2232	}
2233	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2234	avail_len = min_t(u32, vma_len, inq);
2235	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2236	if (total_bytes_to_map) {
2237		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2238			zap_page_range(vma, address, total_bytes_to_map);
 
2239		zc->length = total_bytes_to_map;
2240		zc->recv_skip_hint = 0;
2241	} else {
2242		zc->length = avail_len;
2243		zc->recv_skip_hint = avail_len;
2244	}
2245	ret = 0;
2246	while (length + PAGE_SIZE <= zc->length) {
2247		int mappable_offset;
2248		struct page *page;
2249
2250		if (zc->recv_skip_hint < PAGE_SIZE) {
2251			u32 offset_frag;
2252
2253			if (skb) {
2254				if (zc->recv_skip_hint > 0)
2255					break;
2256				skb = skb->next;
2257				offset = seq - TCP_SKB_CB(skb)->seq;
2258			} else {
2259				skb = tcp_recv_skb(sk, seq, &offset);
2260			}
2261
 
 
 
2262			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2263				tcp_update_recv_tstamps(skb, tss);
2264				zc->msg_flags |= TCP_CMSG_TS;
2265			}
2266			zc->recv_skip_hint = skb->len - offset;
2267			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2268			if (!frags || offset_frag)
2269				break;
2270		}
2271
2272		mappable_offset = find_next_mappable_frag(frags,
2273							  zc->recv_skip_hint);
2274		if (mappable_offset) {
2275			zc->recv_skip_hint = mappable_offset;
2276			break;
2277		}
2278		page = skb_frag_page(frags);
 
 
 
2279		prefetchw(page);
2280		pages[pages_to_map++] = page;
2281		length += PAGE_SIZE;
2282		zc->recv_skip_hint -= PAGE_SIZE;
2283		frags++;
2284		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2285		    zc->recv_skip_hint < PAGE_SIZE) {
2286			/* Either full batch, or we're about to go to next skb
2287			 * (and we cannot unroll failed ops across skbs).
2288			 */
2289			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2290							   pages_to_map,
2291							   &address, &length,
2292							   &seq, zc,
2293							   total_bytes_to_map);
2294			if (ret)
2295				goto out;
2296			pages_to_map = 0;
2297		}
2298	}
2299	if (pages_to_map) {
2300		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2301						   &address, &length, &seq,
2302						   zc, total_bytes_to_map);
2303	}
2304out:
2305	mmap_read_unlock(current->mm);
 
 
 
2306	/* Try to copy straggler data. */
2307	if (!ret)
2308		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2309
2310	if (length + copylen) {
2311		WRITE_ONCE(tp->copied_seq, seq);
2312		tcp_rcv_space_adjust(sk);
2313
2314		/* Clean up data we have read: This will do ACK frames. */
2315		tcp_recv_skb(sk, seq, &offset);
2316		tcp_cleanup_rbuf(sk, length + copylen);
2317		ret = 0;
2318		if (length == zc->length)
2319			zc->recv_skip_hint = 0;
2320	} else {
2321		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2322			ret = -EIO;
2323	}
2324	zc->length = length;
2325	return ret;
2326}
2327#endif
2328
2329/* Similar to __sock_recv_timestamp, but does not require an skb */
2330void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2331			struct scm_timestamping_internal *tss)
2332{
2333	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 
2334	bool has_timestamping = false;
2335
2336	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2337		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2338			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2339				if (new_tstamp) {
2340					struct __kernel_timespec kts = {
2341						.tv_sec = tss->ts[0].tv_sec,
2342						.tv_nsec = tss->ts[0].tv_nsec,
2343					};
2344					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2345						 sizeof(kts), &kts);
2346				} else {
2347					struct __kernel_old_timespec ts_old = {
2348						.tv_sec = tss->ts[0].tv_sec,
2349						.tv_nsec = tss->ts[0].tv_nsec,
2350					};
2351					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2352						 sizeof(ts_old), &ts_old);
2353				}
2354			} else {
2355				if (new_tstamp) {
2356					struct __kernel_sock_timeval stv = {
2357						.tv_sec = tss->ts[0].tv_sec,
2358						.tv_usec = tss->ts[0].tv_nsec / 1000,
2359					};
2360					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2361						 sizeof(stv), &stv);
2362				} else {
2363					struct __kernel_old_timeval tv = {
2364						.tv_sec = tss->ts[0].tv_sec,
2365						.tv_usec = tss->ts[0].tv_nsec / 1000,
2366					};
2367					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2368						 sizeof(tv), &tv);
2369				}
2370			}
2371		}
2372
2373		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
 
 
2374			has_timestamping = true;
2375		else
2376			tss->ts[0] = (struct timespec64) {0};
2377	}
2378
2379	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2380		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
 
 
2381			has_timestamping = true;
2382		else
2383			tss->ts[2] = (struct timespec64) {0};
2384	}
2385
2386	if (has_timestamping) {
2387		tss->ts[1] = (struct timespec64) {0};
2388		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2389			put_cmsg_scm_timestamping64(msg, tss);
2390		else
2391			put_cmsg_scm_timestamping(msg, tss);
2392	}
2393}
2394
2395static int tcp_inq_hint(struct sock *sk)
2396{
2397	const struct tcp_sock *tp = tcp_sk(sk);
2398	u32 copied_seq = READ_ONCE(tp->copied_seq);
2399	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2400	int inq;
2401
2402	inq = rcv_nxt - copied_seq;
2403	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2404		lock_sock(sk);
2405		inq = tp->rcv_nxt - tp->copied_seq;
2406		release_sock(sk);
2407	}
2408	/* After receiving a FIN, tell the user-space to continue reading
2409	 * by returning a non-zero inq.
2410	 */
2411	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2412		inq = 1;
2413	return inq;
2414}
2415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2416/*
2417 *	This routine copies from a sock struct into the user buffer.
2418 *
2419 *	Technical note: in 2.3 we work on _locked_ socket, so that
2420 *	tricks with *seq access order and skb->users are not required.
2421 *	Probably, code can be easily improved even more.
2422 */
2423
2424static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2425			      int flags, struct scm_timestamping_internal *tss,
2426			      int *cmsg_flags)
2427{
2428	struct tcp_sock *tp = tcp_sk(sk);
 
2429	int copied = 0;
2430	u32 peek_seq;
2431	u32 *seq;
2432	unsigned long used;
2433	int err;
2434	int target;		/* Read at least this many bytes */
2435	long timeo;
2436	struct sk_buff *skb, *last;
 
2437	u32 urg_hole = 0;
2438
2439	err = -ENOTCONN;
2440	if (sk->sk_state == TCP_LISTEN)
2441		goto out;
2442
2443	if (tp->recvmsg_inq) {
2444		*cmsg_flags = TCP_CMSG_INQ;
2445		msg->msg_get_inq = 1;
2446	}
2447	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2448
2449	/* Urgent data needs to be handled specially. */
2450	if (flags & MSG_OOB)
2451		goto recv_urg;
2452
2453	if (unlikely(tp->repair)) {
2454		err = -EPERM;
2455		if (!(flags & MSG_PEEK))
2456			goto out;
2457
2458		if (tp->repair_queue == TCP_SEND_QUEUE)
2459			goto recv_sndq;
2460
2461		err = -EINVAL;
2462		if (tp->repair_queue == TCP_NO_QUEUE)
2463			goto out;
2464
2465		/* 'common' recv queue MSG_PEEK-ing */
2466	}
2467
2468	seq = &tp->copied_seq;
2469	if (flags & MSG_PEEK) {
2470		peek_seq = tp->copied_seq;
 
2471		seq = &peek_seq;
2472	}
2473
2474	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2475
2476	do {
2477		u32 offset;
2478
2479		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2480		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2481			if (copied)
2482				break;
2483			if (signal_pending(current)) {
2484				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2485				break;
2486			}
2487		}
2488
2489		/* Next get a buffer. */
2490
2491		last = skb_peek_tail(&sk->sk_receive_queue);
2492		skb_queue_walk(&sk->sk_receive_queue, skb) {
2493			last = skb;
2494			/* Now that we have two receive queues this
2495			 * shouldn't happen.
2496			 */
2497			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2498				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2499				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2500				 flags))
2501				break;
2502
2503			offset = *seq - TCP_SKB_CB(skb)->seq;
2504			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2505				pr_err_once("%s: found a SYN, please report !\n", __func__);
2506				offset--;
2507			}
2508			if (offset < skb->len)
2509				goto found_ok_skb;
2510			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2511				goto found_fin_ok;
2512			WARN(!(flags & MSG_PEEK),
2513			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2514			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2515		}
2516
2517		/* Well, if we have backlog, try to process it now yet. */
2518
2519		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2520			break;
2521
2522		if (copied) {
2523			if (!timeo ||
2524			    sk->sk_err ||
2525			    sk->sk_state == TCP_CLOSE ||
2526			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2527			    signal_pending(current))
2528				break;
2529		} else {
2530			if (sock_flag(sk, SOCK_DONE))
2531				break;
2532
2533			if (sk->sk_err) {
2534				copied = sock_error(sk);
2535				break;
2536			}
2537
2538			if (sk->sk_shutdown & RCV_SHUTDOWN)
2539				break;
2540
2541			if (sk->sk_state == TCP_CLOSE) {
2542				/* This occurs when user tries to read
2543				 * from never connected socket.
2544				 */
2545				copied = -ENOTCONN;
2546				break;
2547			}
2548
2549			if (!timeo) {
2550				copied = -EAGAIN;
2551				break;
2552			}
2553
2554			if (signal_pending(current)) {
2555				copied = sock_intr_errno(timeo);
2556				break;
2557			}
2558		}
2559
2560		if (copied >= target) {
2561			/* Do not sleep, just process backlog. */
2562			__sk_flush_backlog(sk);
2563		} else {
2564			tcp_cleanup_rbuf(sk, copied);
2565			sk_wait_data(sk, &timeo, last);
 
 
 
 
2566		}
2567
2568		if ((flags & MSG_PEEK) &&
2569		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2570			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2571					    current->comm,
2572					    task_pid_nr(current));
2573			peek_seq = tp->copied_seq;
2574		}
2575		continue;
2576
2577found_ok_skb:
2578		/* Ok so how much can we use? */
2579		used = skb->len - offset;
2580		if (len < used)
2581			used = len;
2582
2583		/* Do we have urgent data here? */
2584		if (unlikely(tp->urg_data)) {
2585			u32 urg_offset = tp->urg_seq - *seq;
2586			if (urg_offset < used) {
2587				if (!urg_offset) {
2588					if (!sock_flag(sk, SOCK_URGINLINE)) {
2589						WRITE_ONCE(*seq, *seq + 1);
2590						urg_hole++;
2591						offset++;
2592						used--;
2593						if (!used)
2594							goto skip_copy;
2595					}
2596				} else
2597					used = urg_offset;
2598			}
2599		}
2600
2601		if (!(flags & MSG_TRUNC)) {
2602			err = skb_copy_datagram_msg(skb, offset, msg, used);
2603			if (err) {
2604				/* Exception. Bailout! */
2605				if (!copied)
2606					copied = -EFAULT;
2607				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608			}
2609		}
2610
 
 
2611		WRITE_ONCE(*seq, *seq + used);
2612		copied += used;
2613		len -= used;
2614
 
 
 
2615		tcp_rcv_space_adjust(sk);
2616
2617skip_copy:
2618		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2619			WRITE_ONCE(tp->urg_data, 0);
2620			tcp_fast_path_check(sk);
2621		}
2622
2623		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2624			tcp_update_recv_tstamps(skb, tss);
2625			*cmsg_flags |= TCP_CMSG_TS;
2626		}
2627
2628		if (used + offset < skb->len)
2629			continue;
2630
2631		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2632			goto found_fin_ok;
2633		if (!(flags & MSG_PEEK))
2634			tcp_eat_recv_skb(sk, skb);
2635		continue;
2636
2637found_fin_ok:
2638		/* Process the FIN. */
2639		WRITE_ONCE(*seq, *seq + 1);
2640		if (!(flags & MSG_PEEK))
2641			tcp_eat_recv_skb(sk, skb);
2642		break;
2643	} while (len > 0);
2644
2645	/* According to UNIX98, msg_name/msg_namelen are ignored
2646	 * on connected socket. I was just happy when found this 8) --ANK
2647	 */
2648
2649	/* Clean up data we have read: This will do ACK frames. */
2650	tcp_cleanup_rbuf(sk, copied);
2651	return copied;
2652
2653out:
2654	return err;
2655
2656recv_urg:
2657	err = tcp_recv_urg(sk, msg, len, flags);
2658	goto out;
2659
2660recv_sndq:
2661	err = tcp_peek_sndq(sk, msg, len);
2662	goto out;
2663}
2664
2665int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2666		int *addr_len)
2667{
2668	int cmsg_flags = 0, ret;
2669	struct scm_timestamping_internal tss;
2670
2671	if (unlikely(flags & MSG_ERRQUEUE))
2672		return inet_recv_error(sk, msg, len, addr_len);
2673
2674	if (sk_can_busy_loop(sk) &&
2675	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2676	    sk->sk_state == TCP_ESTABLISHED)
2677		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2678
2679	lock_sock(sk);
2680	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2681	release_sock(sk);
2682
2683	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2684		if (cmsg_flags & TCP_CMSG_TS)
2685			tcp_recv_timestamp(msg, sk, &tss);
2686		if (msg->msg_get_inq) {
2687			msg->msg_inq = tcp_inq_hint(sk);
2688			if (cmsg_flags & TCP_CMSG_INQ)
2689				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2690					 sizeof(msg->msg_inq), &msg->msg_inq);
2691		}
2692	}
2693	return ret;
2694}
2695EXPORT_SYMBOL(tcp_recvmsg);
2696
2697void tcp_set_state(struct sock *sk, int state)
2698{
2699	int oldstate = sk->sk_state;
2700
2701	/* We defined a new enum for TCP states that are exported in BPF
2702	 * so as not force the internal TCP states to be frozen. The
2703	 * following checks will detect if an internal state value ever
2704	 * differs from the BPF value. If this ever happens, then we will
2705	 * need to remap the internal value to the BPF value before calling
2706	 * tcp_call_bpf_2arg.
2707	 */
2708	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2709	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2710	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2711	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2712	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2713	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2714	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2715	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2716	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2717	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2718	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2719	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
 
2720	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2721
2722	/* bpf uapi header bpf.h defines an anonymous enum with values
2723	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2724	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2725	 * But clang built vmlinux does not have this enum in DWARF
2726	 * since clang removes the above code before generating IR/debuginfo.
2727	 * Let us explicitly emit the type debuginfo to ensure the
2728	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2729	 * regardless of which compiler is used.
2730	 */
2731	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2732
2733	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2734		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2735
2736	switch (state) {
2737	case TCP_ESTABLISHED:
2738		if (oldstate != TCP_ESTABLISHED)
2739			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2740		break;
 
 
 
 
2741
2742	case TCP_CLOSE:
2743		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2744			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2745
2746		sk->sk_prot->unhash(sk);
2747		if (inet_csk(sk)->icsk_bind_hash &&
2748		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2749			inet_put_port(sk);
2750		fallthrough;
2751	default:
2752		if (oldstate == TCP_ESTABLISHED)
2753			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2754	}
2755
2756	/* Change state AFTER socket is unhashed to avoid closed
2757	 * socket sitting in hash tables.
2758	 */
2759	inet_sk_state_store(sk, state);
2760}
2761EXPORT_SYMBOL_GPL(tcp_set_state);
2762
2763/*
2764 *	State processing on a close. This implements the state shift for
2765 *	sending our FIN frame. Note that we only send a FIN for some
2766 *	states. A shutdown() may have already sent the FIN, or we may be
2767 *	closed.
2768 */
2769
2770static const unsigned char new_state[16] = {
2771  /* current state:        new state:      action:	*/
2772  [0 /* (Invalid) */]	= TCP_CLOSE,
2773  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2774  [TCP_SYN_SENT]	= TCP_CLOSE,
2775  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2776  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2777  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2778  [TCP_TIME_WAIT]	= TCP_CLOSE,
2779  [TCP_CLOSE]		= TCP_CLOSE,
2780  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2781  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2782  [TCP_LISTEN]		= TCP_CLOSE,
2783  [TCP_CLOSING]		= TCP_CLOSING,
2784  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2785};
2786
2787static int tcp_close_state(struct sock *sk)
2788{
2789	int next = (int)new_state[sk->sk_state];
2790	int ns = next & TCP_STATE_MASK;
2791
2792	tcp_set_state(sk, ns);
2793
2794	return next & TCP_ACTION_FIN;
2795}
2796
2797/*
2798 *	Shutdown the sending side of a connection. Much like close except
2799 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2800 */
2801
2802void tcp_shutdown(struct sock *sk, int how)
2803{
2804	/*	We need to grab some memory, and put together a FIN,
2805	 *	and then put it into the queue to be sent.
2806	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2807	 */
2808	if (!(how & SEND_SHUTDOWN))
2809		return;
2810
2811	/* If we've already sent a FIN, or it's a closed state, skip this. */
2812	if ((1 << sk->sk_state) &
2813	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2814	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2815		/* Clear out any half completed packets.  FIN if needed. */
2816		if (tcp_close_state(sk))
2817			tcp_send_fin(sk);
2818	}
2819}
2820EXPORT_SYMBOL(tcp_shutdown);
2821
2822int tcp_orphan_count_sum(void)
2823{
2824	int i, total = 0;
2825
2826	for_each_possible_cpu(i)
2827		total += per_cpu(tcp_orphan_count, i);
2828
2829	return max(total, 0);
2830}
2831
2832static int tcp_orphan_cache;
2833static struct timer_list tcp_orphan_timer;
2834#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2835
2836static void tcp_orphan_update(struct timer_list *unused)
2837{
2838	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2839	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2840}
2841
2842static bool tcp_too_many_orphans(int shift)
2843{
2844	return READ_ONCE(tcp_orphan_cache) << shift >
2845		READ_ONCE(sysctl_tcp_max_orphans);
2846}
2847
2848bool tcp_check_oom(struct sock *sk, int shift)
 
 
 
 
 
 
 
 
2849{
2850	bool too_many_orphans, out_of_socket_memory;
2851
2852	too_many_orphans = tcp_too_many_orphans(shift);
2853	out_of_socket_memory = tcp_out_of_memory(sk);
2854
2855	if (too_many_orphans)
2856		net_info_ratelimited("too many orphaned sockets\n");
2857	if (out_of_socket_memory)
2858		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2859	return too_many_orphans || out_of_socket_memory;
2860}
2861
2862void __tcp_close(struct sock *sk, long timeout)
2863{
2864	struct sk_buff *skb;
2865	int data_was_unread = 0;
2866	int state;
2867
2868	sk->sk_shutdown = SHUTDOWN_MASK;
2869
2870	if (sk->sk_state == TCP_LISTEN) {
2871		tcp_set_state(sk, TCP_CLOSE);
2872
2873		/* Special case. */
2874		inet_csk_listen_stop(sk);
2875
2876		goto adjudge_to_death;
2877	}
2878
2879	/*  We need to flush the recv. buffs.  We do this only on the
2880	 *  descriptor close, not protocol-sourced closes, because the
2881	 *  reader process may not have drained the data yet!
2882	 */
2883	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2884		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2885
2886		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2887			len--;
2888		data_was_unread += len;
2889		__kfree_skb(skb);
2890	}
2891
2892	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2893	if (sk->sk_state == TCP_CLOSE)
2894		goto adjudge_to_death;
2895
2896	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2897	 * data was lost. To witness the awful effects of the old behavior of
2898	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2899	 * GET in an FTP client, suspend the process, wait for the client to
2900	 * advertise a zero window, then kill -9 the FTP client, wheee...
2901	 * Note: timeout is always zero in such a case.
2902	 */
2903	if (unlikely(tcp_sk(sk)->repair)) {
2904		sk->sk_prot->disconnect(sk, 0);
2905	} else if (data_was_unread) {
2906		/* Unread data was tossed, zap the connection. */
2907		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2908		tcp_set_state(sk, TCP_CLOSE);
2909		tcp_send_active_reset(sk, sk->sk_allocation);
 
2910	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2911		/* Check zero linger _after_ checking for unread data. */
2912		sk->sk_prot->disconnect(sk, 0);
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2914	} else if (tcp_close_state(sk)) {
2915		/* We FIN if the application ate all the data before
2916		 * zapping the connection.
2917		 */
2918
2919		/* RED-PEN. Formally speaking, we have broken TCP state
2920		 * machine. State transitions:
2921		 *
2922		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2923		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2924		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2925		 *
2926		 * are legal only when FIN has been sent (i.e. in window),
2927		 * rather than queued out of window. Purists blame.
2928		 *
2929		 * F.e. "RFC state" is ESTABLISHED,
2930		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2931		 *
2932		 * The visible declinations are that sometimes
2933		 * we enter time-wait state, when it is not required really
2934		 * (harmless), do not send active resets, when they are
2935		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2936		 * they look as CLOSING or LAST_ACK for Linux)
2937		 * Probably, I missed some more holelets.
2938		 * 						--ANK
2939		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2940		 * in a single packet! (May consider it later but will
2941		 * probably need API support or TCP_CORK SYN-ACK until
2942		 * data is written and socket is closed.)
2943		 */
2944		tcp_send_fin(sk);
2945	}
2946
2947	sk_stream_wait_close(sk, timeout);
2948
2949adjudge_to_death:
2950	state = sk->sk_state;
2951	sock_hold(sk);
2952	sock_orphan(sk);
2953
2954	local_bh_disable();
2955	bh_lock_sock(sk);
2956	/* remove backlog if any, without releasing ownership. */
2957	__release_sock(sk);
2958
2959	this_cpu_inc(tcp_orphan_count);
2960
2961	/* Have we already been destroyed by a softirq or backlog? */
2962	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2963		goto out;
2964
2965	/*	This is a (useful) BSD violating of the RFC. There is a
2966	 *	problem with TCP as specified in that the other end could
2967	 *	keep a socket open forever with no application left this end.
2968	 *	We use a 1 minute timeout (about the same as BSD) then kill
2969	 *	our end. If they send after that then tough - BUT: long enough
2970	 *	that we won't make the old 4*rto = almost no time - whoops
2971	 *	reset mistake.
2972	 *
2973	 *	Nope, it was not mistake. It is really desired behaviour
2974	 *	f.e. on http servers, when such sockets are useless, but
2975	 *	consume significant resources. Let's do it with special
2976	 *	linger2	option.					--ANK
2977	 */
2978
2979	if (sk->sk_state == TCP_FIN_WAIT2) {
2980		struct tcp_sock *tp = tcp_sk(sk);
2981		if (tp->linger2 < 0) {
2982			tcp_set_state(sk, TCP_CLOSE);
2983			tcp_send_active_reset(sk, GFP_ATOMIC);
 
2984			__NET_INC_STATS(sock_net(sk),
2985					LINUX_MIB_TCPABORTONLINGER);
2986		} else {
2987			const int tmo = tcp_fin_time(sk);
2988
2989			if (tmo > TCP_TIMEWAIT_LEN) {
2990				inet_csk_reset_keepalive_timer(sk,
2991						tmo - TCP_TIMEWAIT_LEN);
2992			} else {
2993				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2994				goto out;
2995			}
2996		}
2997	}
2998	if (sk->sk_state != TCP_CLOSE) {
2999		if (tcp_check_oom(sk, 0)) {
3000			tcp_set_state(sk, TCP_CLOSE);
3001			tcp_send_active_reset(sk, GFP_ATOMIC);
 
3002			__NET_INC_STATS(sock_net(sk),
3003					LINUX_MIB_TCPABORTONMEMORY);
3004		} else if (!check_net(sock_net(sk))) {
3005			/* Not possible to send reset; just close */
3006			tcp_set_state(sk, TCP_CLOSE);
3007		}
3008	}
3009
3010	if (sk->sk_state == TCP_CLOSE) {
3011		struct request_sock *req;
3012
3013		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3014						lockdep_sock_is_held(sk));
3015		/* We could get here with a non-NULL req if the socket is
3016		 * aborted (e.g., closed with unread data) before 3WHS
3017		 * finishes.
3018		 */
3019		if (req)
3020			reqsk_fastopen_remove(sk, req, false);
3021		inet_csk_destroy_sock(sk);
3022	}
3023	/* Otherwise, socket is reprieved until protocol close. */
3024
3025out:
3026	bh_unlock_sock(sk);
3027	local_bh_enable();
3028}
3029
3030void tcp_close(struct sock *sk, long timeout)
3031{
3032	lock_sock(sk);
3033	__tcp_close(sk, timeout);
3034	release_sock(sk);
 
 
3035	sock_put(sk);
3036}
3037EXPORT_SYMBOL(tcp_close);
3038
3039/* These states need RST on ABORT according to RFC793 */
3040
3041static inline bool tcp_need_reset(int state)
3042{
3043	return (1 << state) &
3044	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3045		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3046}
3047
3048static void tcp_rtx_queue_purge(struct sock *sk)
3049{
3050	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3051
3052	tcp_sk(sk)->highest_sack = NULL;
3053	while (p) {
3054		struct sk_buff *skb = rb_to_skb(p);
3055
3056		p = rb_next(p);
3057		/* Since we are deleting whole queue, no need to
3058		 * list_del(&skb->tcp_tsorted_anchor)
3059		 */
3060		tcp_rtx_queue_unlink(skb, sk);
3061		tcp_wmem_free_skb(sk, skb);
3062	}
3063}
3064
3065void tcp_write_queue_purge(struct sock *sk)
3066{
3067	struct sk_buff *skb;
3068
3069	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3070	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3071		tcp_skb_tsorted_anchor_cleanup(skb);
3072		tcp_wmem_free_skb(sk, skb);
3073	}
3074	tcp_rtx_queue_purge(sk);
3075	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3076	tcp_clear_all_retrans_hints(tcp_sk(sk));
3077	tcp_sk(sk)->packets_out = 0;
3078	inet_csk(sk)->icsk_backoff = 0;
3079}
3080
3081int tcp_disconnect(struct sock *sk, int flags)
3082{
3083	struct inet_sock *inet = inet_sk(sk);
3084	struct inet_connection_sock *icsk = inet_csk(sk);
3085	struct tcp_sock *tp = tcp_sk(sk);
3086	int old_state = sk->sk_state;
3087	u32 seq;
3088
3089	if (old_state != TCP_CLOSE)
3090		tcp_set_state(sk, TCP_CLOSE);
3091
3092	/* ABORT function of RFC793 */
3093	if (old_state == TCP_LISTEN) {
3094		inet_csk_listen_stop(sk);
3095	} else if (unlikely(tp->repair)) {
3096		sk->sk_err = ECONNABORTED;
3097	} else if (tcp_need_reset(old_state) ||
3098		   (tp->snd_nxt != tp->write_seq &&
3099		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
 
 
3100		/* The last check adjusts for discrepancy of Linux wrt. RFC
3101		 * states
3102		 */
3103		tcp_send_active_reset(sk, gfp_any());
3104		sk->sk_err = ECONNRESET;
 
3105	} else if (old_state == TCP_SYN_SENT)
3106		sk->sk_err = ECONNRESET;
3107
3108	tcp_clear_xmit_timers(sk);
3109	__skb_queue_purge(&sk->sk_receive_queue);
3110	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3111	WRITE_ONCE(tp->urg_data, 0);
 
3112	tcp_write_queue_purge(sk);
3113	tcp_fastopen_active_disable_ofo_check(sk);
3114	skb_rbtree_purge(&tp->out_of_order_queue);
3115
3116	inet->inet_dport = 0;
3117
3118	inet_bhash2_reset_saddr(sk);
3119
3120	sk->sk_shutdown = 0;
3121	sock_reset_flag(sk, SOCK_DONE);
3122	tp->srtt_us = 0;
3123	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3124	tp->rcv_rtt_last_tsecr = 0;
3125
3126	seq = tp->write_seq + tp->max_window + 2;
3127	if (!seq)
3128		seq = 1;
3129	WRITE_ONCE(tp->write_seq, seq);
3130
3131	icsk->icsk_backoff = 0;
3132	icsk->icsk_probes_out = 0;
3133	icsk->icsk_probes_tstamp = 0;
3134	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3135	icsk->icsk_rto_min = TCP_RTO_MIN;
3136	icsk->icsk_delack_max = TCP_DELACK_MAX;
3137	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3138	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3139	tp->snd_cwnd_cnt = 0;
3140	tp->is_cwnd_limited = 0;
3141	tp->max_packets_out = 0;
3142	tp->window_clamp = 0;
3143	tp->delivered = 0;
3144	tp->delivered_ce = 0;
3145	if (icsk->icsk_ca_ops->release)
3146		icsk->icsk_ca_ops->release(sk);
3147	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3148	icsk->icsk_ca_initialized = 0;
3149	tcp_set_ca_state(sk, TCP_CA_Open);
3150	tp->is_sack_reneg = 0;
3151	tcp_clear_retrans(tp);
3152	tp->total_retrans = 0;
3153	inet_csk_delack_init(sk);
3154	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3155	 * issue in __tcp_select_window()
3156	 */
3157	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3158	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3159	__sk_dst_reset(sk);
3160	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3161	tcp_saved_syn_free(tp);
3162	tp->compressed_ack = 0;
3163	tp->segs_in = 0;
3164	tp->segs_out = 0;
3165	tp->bytes_sent = 0;
3166	tp->bytes_acked = 0;
3167	tp->bytes_received = 0;
3168	tp->bytes_retrans = 0;
3169	tp->data_segs_in = 0;
3170	tp->data_segs_out = 0;
3171	tp->duplicate_sack[0].start_seq = 0;
3172	tp->duplicate_sack[0].end_seq = 0;
3173	tp->dsack_dups = 0;
3174	tp->reord_seen = 0;
3175	tp->retrans_out = 0;
3176	tp->sacked_out = 0;
3177	tp->tlp_high_seq = 0;
3178	tp->last_oow_ack_time = 0;
3179	tp->plb_rehash = 0;
3180	/* There's a bubble in the pipe until at least the first ACK. */
3181	tp->app_limited = ~0U;
3182	tp->rate_app_limited = 1;
3183	tp->rack.mstamp = 0;
3184	tp->rack.advanced = 0;
3185	tp->rack.reo_wnd_steps = 1;
3186	tp->rack.last_delivered = 0;
3187	tp->rack.reo_wnd_persist = 0;
3188	tp->rack.dsack_seen = 0;
3189	tp->syn_data_acked = 0;
3190	tp->rx_opt.saw_tstamp = 0;
3191	tp->rx_opt.dsack = 0;
3192	tp->rx_opt.num_sacks = 0;
3193	tp->rcv_ooopack = 0;
3194
3195
3196	/* Clean up fastopen related fields */
3197	tcp_free_fastopen_req(tp);
3198	inet->defer_connect = 0;
3199	tp->fastopen_client_fail = 0;
3200
3201	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3202
3203	if (sk->sk_frag.page) {
3204		put_page(sk->sk_frag.page);
3205		sk->sk_frag.page = NULL;
3206		sk->sk_frag.offset = 0;
3207	}
3208	sk_error_report(sk);
3209	return 0;
3210}
3211EXPORT_SYMBOL(tcp_disconnect);
3212
3213static inline bool tcp_can_repair_sock(const struct sock *sk)
3214{
3215	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3216		(sk->sk_state != TCP_LISTEN);
3217}
3218
3219static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3220{
3221	struct tcp_repair_window opt;
3222
3223	if (!tp->repair)
3224		return -EPERM;
3225
3226	if (len != sizeof(opt))
3227		return -EINVAL;
3228
3229	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3230		return -EFAULT;
3231
3232	if (opt.max_window < opt.snd_wnd)
3233		return -EINVAL;
3234
3235	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3236		return -EINVAL;
3237
3238	if (after(opt.rcv_wup, tp->rcv_nxt))
3239		return -EINVAL;
3240
3241	tp->snd_wl1	= opt.snd_wl1;
3242	tp->snd_wnd	= opt.snd_wnd;
3243	tp->max_window	= opt.max_window;
3244
3245	tp->rcv_wnd	= opt.rcv_wnd;
3246	tp->rcv_wup	= opt.rcv_wup;
3247
3248	return 0;
3249}
3250
3251static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3252		unsigned int len)
3253{
3254	struct tcp_sock *tp = tcp_sk(sk);
3255	struct tcp_repair_opt opt;
3256	size_t offset = 0;
3257
3258	while (len >= sizeof(opt)) {
3259		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3260			return -EFAULT;
3261
3262		offset += sizeof(opt);
3263		len -= sizeof(opt);
3264
3265		switch (opt.opt_code) {
3266		case TCPOPT_MSS:
3267			tp->rx_opt.mss_clamp = opt.opt_val;
3268			tcp_mtup_init(sk);
3269			break;
3270		case TCPOPT_WINDOW:
3271			{
3272				u16 snd_wscale = opt.opt_val & 0xFFFF;
3273				u16 rcv_wscale = opt.opt_val >> 16;
3274
3275				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3276					return -EFBIG;
3277
3278				tp->rx_opt.snd_wscale = snd_wscale;
3279				tp->rx_opt.rcv_wscale = rcv_wscale;
3280				tp->rx_opt.wscale_ok = 1;
3281			}
3282			break;
3283		case TCPOPT_SACK_PERM:
3284			if (opt.opt_val != 0)
3285				return -EINVAL;
3286
3287			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3288			break;
3289		case TCPOPT_TIMESTAMP:
3290			if (opt.opt_val != 0)
3291				return -EINVAL;
3292
3293			tp->rx_opt.tstamp_ok = 1;
3294			break;
3295		}
3296	}
3297
3298	return 0;
3299}
3300
3301DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3302EXPORT_SYMBOL(tcp_tx_delay_enabled);
3303
3304static void tcp_enable_tx_delay(void)
3305{
3306	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3307		static int __tcp_tx_delay_enabled = 0;
3308
3309		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3310			static_branch_enable(&tcp_tx_delay_enabled);
3311			pr_info("TCP_TX_DELAY enabled\n");
3312		}
3313	}
3314}
3315
3316/* When set indicates to always queue non-full frames.  Later the user clears
3317 * this option and we transmit any pending partial frames in the queue.  This is
3318 * meant to be used alongside sendfile() to get properly filled frames when the
3319 * user (for example) must write out headers with a write() call first and then
3320 * use sendfile to send out the data parts.
3321 *
3322 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3323 * TCP_NODELAY.
3324 */
3325void __tcp_sock_set_cork(struct sock *sk, bool on)
3326{
3327	struct tcp_sock *tp = tcp_sk(sk);
3328
3329	if (on) {
3330		tp->nonagle |= TCP_NAGLE_CORK;
3331	} else {
3332		tp->nonagle &= ~TCP_NAGLE_CORK;
3333		if (tp->nonagle & TCP_NAGLE_OFF)
3334			tp->nonagle |= TCP_NAGLE_PUSH;
3335		tcp_push_pending_frames(sk);
3336	}
3337}
3338
3339void tcp_sock_set_cork(struct sock *sk, bool on)
3340{
3341	lock_sock(sk);
3342	__tcp_sock_set_cork(sk, on);
3343	release_sock(sk);
3344}
3345EXPORT_SYMBOL(tcp_sock_set_cork);
3346
3347/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3348 * remembered, but it is not activated until cork is cleared.
3349 *
3350 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3351 * even TCP_CORK for currently queued segments.
3352 */
3353void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3354{
3355	if (on) {
3356		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3357		tcp_push_pending_frames(sk);
3358	} else {
3359		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3360	}
3361}
3362
3363void tcp_sock_set_nodelay(struct sock *sk)
3364{
3365	lock_sock(sk);
3366	__tcp_sock_set_nodelay(sk, true);
3367	release_sock(sk);
3368}
3369EXPORT_SYMBOL(tcp_sock_set_nodelay);
3370
3371static void __tcp_sock_set_quickack(struct sock *sk, int val)
3372{
3373	if (!val) {
3374		inet_csk_enter_pingpong_mode(sk);
3375		return;
3376	}
3377
3378	inet_csk_exit_pingpong_mode(sk);
3379	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3380	    inet_csk_ack_scheduled(sk)) {
3381		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3382		tcp_cleanup_rbuf(sk, 1);
3383		if (!(val & 1))
3384			inet_csk_enter_pingpong_mode(sk);
3385	}
3386}
3387
3388void tcp_sock_set_quickack(struct sock *sk, int val)
3389{
3390	lock_sock(sk);
3391	__tcp_sock_set_quickack(sk, val);
3392	release_sock(sk);
3393}
3394EXPORT_SYMBOL(tcp_sock_set_quickack);
3395
3396int tcp_sock_set_syncnt(struct sock *sk, int val)
3397{
3398	if (val < 1 || val > MAX_TCP_SYNCNT)
3399		return -EINVAL;
3400
3401	lock_sock(sk);
3402	inet_csk(sk)->icsk_syn_retries = val;
3403	release_sock(sk);
3404	return 0;
3405}
3406EXPORT_SYMBOL(tcp_sock_set_syncnt);
3407
3408void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3409{
3410	lock_sock(sk);
3411	inet_csk(sk)->icsk_user_timeout = val;
3412	release_sock(sk);
 
 
 
 
 
3413}
3414EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3415
3416int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3417{
3418	struct tcp_sock *tp = tcp_sk(sk);
3419
3420	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3421		return -EINVAL;
3422
3423	tp->keepalive_time = val * HZ;
 
3424	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3425	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3426		u32 elapsed = keepalive_time_elapsed(tp);
3427
3428		if (tp->keepalive_time > elapsed)
3429			elapsed = tp->keepalive_time - elapsed;
3430		else
3431			elapsed = 0;
3432		inet_csk_reset_keepalive_timer(sk, elapsed);
3433	}
3434
3435	return 0;
3436}
3437
3438int tcp_sock_set_keepidle(struct sock *sk, int val)
3439{
3440	int err;
3441
3442	lock_sock(sk);
3443	err = tcp_sock_set_keepidle_locked(sk, val);
3444	release_sock(sk);
3445	return err;
3446}
3447EXPORT_SYMBOL(tcp_sock_set_keepidle);
3448
3449int tcp_sock_set_keepintvl(struct sock *sk, int val)
3450{
3451	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3452		return -EINVAL;
3453
3454	lock_sock(sk);
3455	tcp_sk(sk)->keepalive_intvl = val * HZ;
3456	release_sock(sk);
3457	return 0;
3458}
3459EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3460
3461int tcp_sock_set_keepcnt(struct sock *sk, int val)
3462{
3463	if (val < 1 || val > MAX_TCP_KEEPCNT)
3464		return -EINVAL;
3465
3466	lock_sock(sk);
3467	tcp_sk(sk)->keepalive_probes = val;
3468	release_sock(sk);
3469	return 0;
3470}
3471EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3472
3473int tcp_set_window_clamp(struct sock *sk, int val)
3474{
3475	struct tcp_sock *tp = tcp_sk(sk);
3476
3477	if (!val) {
3478		if (sk->sk_state != TCP_CLOSE)
3479			return -EINVAL;
3480		tp->window_clamp = 0;
3481	} else {
3482		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3483			SOCK_MIN_RCVBUF / 2 : val;
3484		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3485	}
3486	return 0;
3487}
3488
3489/*
3490 *	Socket option code for TCP.
3491 */
3492int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3493		      sockptr_t optval, unsigned int optlen)
3494{
3495	struct tcp_sock *tp = tcp_sk(sk);
3496	struct inet_connection_sock *icsk = inet_csk(sk);
3497	struct net *net = sock_net(sk);
3498	int val;
3499	int err = 0;
3500
3501	/* These are data/string values, all the others are ints */
3502	switch (optname) {
3503	case TCP_CONGESTION: {
3504		char name[TCP_CA_NAME_MAX];
3505
3506		if (optlen < 1)
3507			return -EINVAL;
3508
3509		val = strncpy_from_sockptr(name, optval,
3510					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3511		if (val < 0)
3512			return -EFAULT;
3513		name[val] = 0;
3514
3515		sockopt_lock_sock(sk);
3516		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3517						 sockopt_ns_capable(sock_net(sk)->user_ns,
3518								    CAP_NET_ADMIN));
3519		sockopt_release_sock(sk);
3520		return err;
3521	}
3522	case TCP_ULP: {
3523		char name[TCP_ULP_NAME_MAX];
3524
3525		if (optlen < 1)
3526			return -EINVAL;
3527
3528		val = strncpy_from_sockptr(name, optval,
3529					min_t(long, TCP_ULP_NAME_MAX - 1,
3530					      optlen));
3531		if (val < 0)
3532			return -EFAULT;
3533		name[val] = 0;
3534
3535		sockopt_lock_sock(sk);
3536		err = tcp_set_ulp(sk, name);
3537		sockopt_release_sock(sk);
3538		return err;
3539	}
3540	case TCP_FASTOPEN_KEY: {
3541		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3542		__u8 *backup_key = NULL;
3543
3544		/* Allow a backup key as well to facilitate key rotation
3545		 * First key is the active one.
3546		 */
3547		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3548		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3549			return -EINVAL;
3550
3551		if (copy_from_sockptr(key, optval, optlen))
3552			return -EFAULT;
3553
3554		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3555			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3556
3557		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3558	}
3559	default:
3560		/* fallthru */
3561		break;
3562	}
3563
3564	if (optlen < sizeof(int))
3565		return -EINVAL;
3566
3567	if (copy_from_sockptr(&val, optval, sizeof(val)))
3568		return -EFAULT;
3569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3570	sockopt_lock_sock(sk);
3571
3572	switch (optname) {
3573	case TCP_MAXSEG:
3574		/* Values greater than interface MTU won't take effect. However
3575		 * at the point when this call is done we typically don't yet
3576		 * know which interface is going to be used
3577		 */
3578		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3579			err = -EINVAL;
3580			break;
3581		}
3582		tp->rx_opt.user_mss = val;
3583		break;
3584
3585	case TCP_NODELAY:
3586		__tcp_sock_set_nodelay(sk, val);
3587		break;
3588
3589	case TCP_THIN_LINEAR_TIMEOUTS:
3590		if (val < 0 || val > 1)
3591			err = -EINVAL;
3592		else
3593			tp->thin_lto = val;
3594		break;
3595
3596	case TCP_THIN_DUPACK:
3597		if (val < 0 || val > 1)
3598			err = -EINVAL;
3599		break;
3600
3601	case TCP_REPAIR:
3602		if (!tcp_can_repair_sock(sk))
3603			err = -EPERM;
3604		else if (val == TCP_REPAIR_ON) {
3605			tp->repair = 1;
3606			sk->sk_reuse = SK_FORCE_REUSE;
3607			tp->repair_queue = TCP_NO_QUEUE;
3608		} else if (val == TCP_REPAIR_OFF) {
3609			tp->repair = 0;
3610			sk->sk_reuse = SK_NO_REUSE;
3611			tcp_send_window_probe(sk);
3612		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3613			tp->repair = 0;
3614			sk->sk_reuse = SK_NO_REUSE;
3615		} else
3616			err = -EINVAL;
3617
3618		break;
3619
3620	case TCP_REPAIR_QUEUE:
3621		if (!tp->repair)
3622			err = -EPERM;
3623		else if ((unsigned int)val < TCP_QUEUES_NR)
3624			tp->repair_queue = val;
3625		else
3626			err = -EINVAL;
3627		break;
3628
3629	case TCP_QUEUE_SEQ:
3630		if (sk->sk_state != TCP_CLOSE) {
3631			err = -EPERM;
3632		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3633			if (!tcp_rtx_queue_empty(sk))
3634				err = -EPERM;
3635			else
3636				WRITE_ONCE(tp->write_seq, val);
3637		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3638			if (tp->rcv_nxt != tp->copied_seq) {
3639				err = -EPERM;
3640			} else {
3641				WRITE_ONCE(tp->rcv_nxt, val);
3642				WRITE_ONCE(tp->copied_seq, val);
3643			}
3644		} else {
3645			err = -EINVAL;
3646		}
3647		break;
3648
3649	case TCP_REPAIR_OPTIONS:
3650		if (!tp->repair)
3651			err = -EINVAL;
3652		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3653			err = tcp_repair_options_est(sk, optval, optlen);
3654		else
3655			err = -EPERM;
3656		break;
3657
3658	case TCP_CORK:
3659		__tcp_sock_set_cork(sk, val);
3660		break;
3661
3662	case TCP_KEEPIDLE:
3663		err = tcp_sock_set_keepidle_locked(sk, val);
3664		break;
3665	case TCP_KEEPINTVL:
3666		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3667			err = -EINVAL;
3668		else
3669			tp->keepalive_intvl = val * HZ;
3670		break;
3671	case TCP_KEEPCNT:
3672		if (val < 1 || val > MAX_TCP_KEEPCNT)
3673			err = -EINVAL;
3674		else
3675			tp->keepalive_probes = val;
3676		break;
3677	case TCP_SYNCNT:
3678		if (val < 1 || val > MAX_TCP_SYNCNT)
3679			err = -EINVAL;
3680		else
3681			icsk->icsk_syn_retries = val;
3682		break;
3683
3684	case TCP_SAVE_SYN:
3685		/* 0: disable, 1: enable, 2: start from ether_header */
3686		if (val < 0 || val > 2)
3687			err = -EINVAL;
3688		else
3689			tp->save_syn = val;
3690		break;
3691
3692	case TCP_LINGER2:
3693		if (val < 0)
3694			tp->linger2 = -1;
3695		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3696			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3697		else
3698			tp->linger2 = val * HZ;
3699		break;
3700
3701	case TCP_DEFER_ACCEPT:
3702		/* Translate value in seconds to number of retransmits */
3703		icsk->icsk_accept_queue.rskq_defer_accept =
3704			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3705					TCP_RTO_MAX / HZ);
3706		break;
3707
3708	case TCP_WINDOW_CLAMP:
3709		err = tcp_set_window_clamp(sk, val);
3710		break;
3711
3712	case TCP_QUICKACK:
3713		__tcp_sock_set_quickack(sk, val);
3714		break;
3715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3716#ifdef CONFIG_TCP_MD5SIG
3717	case TCP_MD5SIG:
3718	case TCP_MD5SIG_EXT:
3719		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3720		break;
3721#endif
3722	case TCP_USER_TIMEOUT:
3723		/* Cap the max time in ms TCP will retry or probe the window
3724		 * before giving up and aborting (ETIMEDOUT) a connection.
3725		 */
3726		if (val < 0)
3727			err = -EINVAL;
3728		else
3729			icsk->icsk_user_timeout = val;
3730		break;
3731
3732	case TCP_FASTOPEN:
3733		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3734		    TCPF_LISTEN))) {
3735			tcp_fastopen_init_key_once(net);
3736
3737			fastopen_queue_tune(sk, val);
3738		} else {
3739			err = -EINVAL;
3740		}
3741		break;
3742	case TCP_FASTOPEN_CONNECT:
3743		if (val > 1 || val < 0) {
3744			err = -EINVAL;
3745		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3746			   TFO_CLIENT_ENABLE) {
3747			if (sk->sk_state == TCP_CLOSE)
3748				tp->fastopen_connect = val;
3749			else
3750				err = -EINVAL;
3751		} else {
3752			err = -EOPNOTSUPP;
3753		}
3754		break;
3755	case TCP_FASTOPEN_NO_COOKIE:
3756		if (val > 1 || val < 0)
3757			err = -EINVAL;
3758		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3759			err = -EINVAL;
3760		else
3761			tp->fastopen_no_cookie = val;
3762		break;
3763	case TCP_TIMESTAMP:
3764		if (!tp->repair)
3765			err = -EPERM;
3766		else
3767			tp->tsoffset = val - tcp_time_stamp_raw();
 
 
 
 
 
 
3768		break;
3769	case TCP_REPAIR_WINDOW:
3770		err = tcp_repair_set_window(tp, optval, optlen);
3771		break;
3772	case TCP_NOTSENT_LOWAT:
3773		tp->notsent_lowat = val;
3774		sk->sk_write_space(sk);
3775		break;
3776	case TCP_INQ:
3777		if (val > 1 || val < 0)
3778			err = -EINVAL;
3779		else
3780			tp->recvmsg_inq = val;
3781		break;
3782	case TCP_TX_DELAY:
3783		if (val)
3784			tcp_enable_tx_delay();
3785		tp->tcp_tx_delay = val;
3786		break;
3787	default:
3788		err = -ENOPROTOOPT;
3789		break;
3790	}
3791
3792	sockopt_release_sock(sk);
3793	return err;
3794}
3795
3796int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3797		   unsigned int optlen)
3798{
3799	const struct inet_connection_sock *icsk = inet_csk(sk);
3800
3801	if (level != SOL_TCP)
3802		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3803		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3804								optval, optlen);
3805	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3806}
3807EXPORT_SYMBOL(tcp_setsockopt);
3808
3809static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3810				      struct tcp_info *info)
3811{
3812	u64 stats[__TCP_CHRONO_MAX], total = 0;
3813	enum tcp_chrono i;
3814
3815	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3816		stats[i] = tp->chrono_stat[i - 1];
3817		if (i == tp->chrono_type)
3818			stats[i] += tcp_jiffies32 - tp->chrono_start;
3819		stats[i] *= USEC_PER_SEC / HZ;
3820		total += stats[i];
3821	}
3822
3823	info->tcpi_busy_time = total;
3824	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3825	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3826}
3827
3828/* Return information about state of tcp endpoint in API format. */
3829void tcp_get_info(struct sock *sk, struct tcp_info *info)
3830{
3831	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3832	const struct inet_connection_sock *icsk = inet_csk(sk);
3833	unsigned long rate;
3834	u32 now;
3835	u64 rate64;
3836	bool slow;
3837
3838	memset(info, 0, sizeof(*info));
3839	if (sk->sk_type != SOCK_STREAM)
3840		return;
3841
3842	info->tcpi_state = inet_sk_state_load(sk);
3843
3844	/* Report meaningful fields for all TCP states, including listeners */
3845	rate = READ_ONCE(sk->sk_pacing_rate);
3846	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3847	info->tcpi_pacing_rate = rate64;
3848
3849	rate = READ_ONCE(sk->sk_max_pacing_rate);
3850	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3851	info->tcpi_max_pacing_rate = rate64;
3852
3853	info->tcpi_reordering = tp->reordering;
3854	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3855
3856	if (info->tcpi_state == TCP_LISTEN) {
3857		/* listeners aliased fields :
3858		 * tcpi_unacked -> Number of children ready for accept()
3859		 * tcpi_sacked  -> max backlog
3860		 */
3861		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3862		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3863		return;
3864	}
3865
3866	slow = lock_sock_fast(sk);
3867
3868	info->tcpi_ca_state = icsk->icsk_ca_state;
3869	info->tcpi_retransmits = icsk->icsk_retransmits;
3870	info->tcpi_probes = icsk->icsk_probes_out;
3871	info->tcpi_backoff = icsk->icsk_backoff;
3872
3873	if (tp->rx_opt.tstamp_ok)
3874		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3875	if (tcp_is_sack(tp))
3876		info->tcpi_options |= TCPI_OPT_SACK;
3877	if (tp->rx_opt.wscale_ok) {
3878		info->tcpi_options |= TCPI_OPT_WSCALE;
3879		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3880		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3881	}
3882
3883	if (tp->ecn_flags & TCP_ECN_OK)
3884		info->tcpi_options |= TCPI_OPT_ECN;
3885	if (tp->ecn_flags & TCP_ECN_SEEN)
3886		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3887	if (tp->syn_data_acked)
3888		info->tcpi_options |= TCPI_OPT_SYN_DATA;
 
 
3889
3890	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3891	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
 
3892	info->tcpi_snd_mss = tp->mss_cache;
3893	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3894
3895	info->tcpi_unacked = tp->packets_out;
3896	info->tcpi_sacked = tp->sacked_out;
3897
3898	info->tcpi_lost = tp->lost_out;
3899	info->tcpi_retrans = tp->retrans_out;
3900
3901	now = tcp_jiffies32;
3902	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3903	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3904	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3905
3906	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3907	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3908	info->tcpi_rtt = tp->srtt_us >> 3;
3909	info->tcpi_rttvar = tp->mdev_us >> 2;
3910	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3911	info->tcpi_advmss = tp->advmss;
3912
3913	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3914	info->tcpi_rcv_space = tp->rcvq_space.space;
3915
3916	info->tcpi_total_retrans = tp->total_retrans;
3917
3918	info->tcpi_bytes_acked = tp->bytes_acked;
3919	info->tcpi_bytes_received = tp->bytes_received;
3920	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3921	tcp_get_info_chrono_stats(tp, info);
3922
3923	info->tcpi_segs_out = tp->segs_out;
3924
3925	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3926	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3927	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3928
3929	info->tcpi_min_rtt = tcp_min_rtt(tp);
3930	info->tcpi_data_segs_out = tp->data_segs_out;
3931
3932	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3933	rate64 = tcp_compute_delivery_rate(tp);
3934	if (rate64)
3935		info->tcpi_delivery_rate = rate64;
3936	info->tcpi_delivered = tp->delivered;
3937	info->tcpi_delivered_ce = tp->delivered_ce;
3938	info->tcpi_bytes_sent = tp->bytes_sent;
3939	info->tcpi_bytes_retrans = tp->bytes_retrans;
3940	info->tcpi_dsack_dups = tp->dsack_dups;
3941	info->tcpi_reord_seen = tp->reord_seen;
3942	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3943	info->tcpi_snd_wnd = tp->snd_wnd;
3944	info->tcpi_rcv_wnd = tp->rcv_wnd;
3945	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3946	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
 
 
 
 
 
 
 
3947	unlock_sock_fast(sk, slow);
3948}
3949EXPORT_SYMBOL_GPL(tcp_get_info);
3950
3951static size_t tcp_opt_stats_get_size(void)
3952{
3953	return
3954		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3955		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3956		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3957		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3958		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3959		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3960		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3961		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3962		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3963		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3964		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3965		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3966		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3967		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3968		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3969		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3970		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3971		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3972		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3973		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3974		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3975		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3976		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3977		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3978		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3979		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3980		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3981		0;
3982}
3983
3984/* Returns TTL or hop limit of an incoming packet from skb. */
3985static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3986{
3987	if (skb->protocol == htons(ETH_P_IP))
3988		return ip_hdr(skb)->ttl;
3989	else if (skb->protocol == htons(ETH_P_IPV6))
3990		return ipv6_hdr(skb)->hop_limit;
3991	else
3992		return 0;
3993}
3994
3995struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3996					       const struct sk_buff *orig_skb,
3997					       const struct sk_buff *ack_skb)
3998{
3999	const struct tcp_sock *tp = tcp_sk(sk);
4000	struct sk_buff *stats;
4001	struct tcp_info info;
4002	unsigned long rate;
4003	u64 rate64;
4004
4005	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4006	if (!stats)
4007		return NULL;
4008
4009	tcp_get_info_chrono_stats(tp, &info);
4010	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4011			  info.tcpi_busy_time, TCP_NLA_PAD);
4012	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4013			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4014	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4015			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4016	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4017			  tp->data_segs_out, TCP_NLA_PAD);
4018	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4019			  tp->total_retrans, TCP_NLA_PAD);
4020
4021	rate = READ_ONCE(sk->sk_pacing_rate);
4022	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4023	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4024
4025	rate64 = tcp_compute_delivery_rate(tp);
4026	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4027
4028	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4029	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4030	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4031
4032	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4033	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4034	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4035	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4036	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4037
4038	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4039	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4040
4041	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4042			  TCP_NLA_PAD);
4043	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4044			  TCP_NLA_PAD);
4045	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4046	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4047	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4048	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4049	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4050		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4051	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4052			  TCP_NLA_PAD);
4053	if (ack_skb)
4054		nla_put_u8(stats, TCP_NLA_TTL,
4055			   tcp_skb_ttl_or_hop_limit(ack_skb));
4056
4057	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4058	return stats;
4059}
4060
4061int do_tcp_getsockopt(struct sock *sk, int level,
4062		      int optname, sockptr_t optval, sockptr_t optlen)
4063{
4064	struct inet_connection_sock *icsk = inet_csk(sk);
4065	struct tcp_sock *tp = tcp_sk(sk);
4066	struct net *net = sock_net(sk);
4067	int val, len;
4068
4069	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4070		return -EFAULT;
4071
4072	len = min_t(unsigned int, len, sizeof(int));
4073
4074	if (len < 0)
4075		return -EINVAL;
4076
 
 
4077	switch (optname) {
4078	case TCP_MAXSEG:
4079		val = tp->mss_cache;
4080		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
 
4081			val = tp->rx_opt.user_mss;
4082		if (tp->repair)
4083			val = tp->rx_opt.mss_clamp;
4084		break;
4085	case TCP_NODELAY:
4086		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4087		break;
4088	case TCP_CORK:
4089		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4090		break;
4091	case TCP_KEEPIDLE:
4092		val = keepalive_time_when(tp) / HZ;
4093		break;
4094	case TCP_KEEPINTVL:
4095		val = keepalive_intvl_when(tp) / HZ;
4096		break;
4097	case TCP_KEEPCNT:
4098		val = keepalive_probes(tp);
4099		break;
4100	case TCP_SYNCNT:
4101		val = icsk->icsk_syn_retries ? :
4102			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4103		break;
4104	case TCP_LINGER2:
4105		val = tp->linger2;
4106		if (val >= 0)
4107			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4108		break;
4109	case TCP_DEFER_ACCEPT:
4110		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4111				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
 
4112		break;
4113	case TCP_WINDOW_CLAMP:
4114		val = tp->window_clamp;
4115		break;
4116	case TCP_INFO: {
4117		struct tcp_info info;
4118
4119		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4120			return -EFAULT;
4121
4122		tcp_get_info(sk, &info);
4123
4124		len = min_t(unsigned int, len, sizeof(info));
4125		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4126			return -EFAULT;
4127		if (copy_to_sockptr(optval, &info, len))
4128			return -EFAULT;
4129		return 0;
4130	}
4131	case TCP_CC_INFO: {
4132		const struct tcp_congestion_ops *ca_ops;
4133		union tcp_cc_info info;
4134		size_t sz = 0;
4135		int attr;
4136
4137		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4138			return -EFAULT;
4139
4140		ca_ops = icsk->icsk_ca_ops;
4141		if (ca_ops && ca_ops->get_info)
4142			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4143
4144		len = min_t(unsigned int, len, sz);
4145		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4146			return -EFAULT;
4147		if (copy_to_sockptr(optval, &info, len))
4148			return -EFAULT;
4149		return 0;
4150	}
4151	case TCP_QUICKACK:
4152		val = !inet_csk_in_pingpong_mode(sk);
4153		break;
4154
4155	case TCP_CONGESTION:
4156		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157			return -EFAULT;
4158		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4159		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4160			return -EFAULT;
4161		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4162			return -EFAULT;
4163		return 0;
4164
4165	case TCP_ULP:
4166		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4167			return -EFAULT;
4168		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4169		if (!icsk->icsk_ulp_ops) {
4170			len = 0;
4171			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4172				return -EFAULT;
4173			return 0;
4174		}
4175		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4176			return -EFAULT;
4177		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4178			return -EFAULT;
4179		return 0;
4180
4181	case TCP_FASTOPEN_KEY: {
4182		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4183		unsigned int key_len;
4184
4185		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4186			return -EFAULT;
4187
4188		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4189				TCP_FASTOPEN_KEY_LENGTH;
4190		len = min_t(unsigned int, len, key_len);
4191		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4192			return -EFAULT;
4193		if (copy_to_sockptr(optval, key, len))
4194			return -EFAULT;
4195		return 0;
4196	}
4197	case TCP_THIN_LINEAR_TIMEOUTS:
4198		val = tp->thin_lto;
4199		break;
4200
4201	case TCP_THIN_DUPACK:
4202		val = 0;
4203		break;
4204
4205	case TCP_REPAIR:
4206		val = tp->repair;
4207		break;
4208
4209	case TCP_REPAIR_QUEUE:
4210		if (tp->repair)
4211			val = tp->repair_queue;
4212		else
4213			return -EINVAL;
4214		break;
4215
4216	case TCP_REPAIR_WINDOW: {
4217		struct tcp_repair_window opt;
4218
4219		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4220			return -EFAULT;
4221
4222		if (len != sizeof(opt))
4223			return -EINVAL;
4224
4225		if (!tp->repair)
4226			return -EPERM;
4227
4228		opt.snd_wl1	= tp->snd_wl1;
4229		opt.snd_wnd	= tp->snd_wnd;
4230		opt.max_window	= tp->max_window;
4231		opt.rcv_wnd	= tp->rcv_wnd;
4232		opt.rcv_wup	= tp->rcv_wup;
4233
4234		if (copy_to_sockptr(optval, &opt, len))
4235			return -EFAULT;
4236		return 0;
4237	}
4238	case TCP_QUEUE_SEQ:
4239		if (tp->repair_queue == TCP_SEND_QUEUE)
4240			val = tp->write_seq;
4241		else if (tp->repair_queue == TCP_RECV_QUEUE)
4242			val = tp->rcv_nxt;
4243		else
4244			return -EINVAL;
4245		break;
4246
4247	case TCP_USER_TIMEOUT:
4248		val = icsk->icsk_user_timeout;
4249		break;
4250
4251	case TCP_FASTOPEN:
4252		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4253		break;
4254
4255	case TCP_FASTOPEN_CONNECT:
4256		val = tp->fastopen_connect;
4257		break;
4258
4259	case TCP_FASTOPEN_NO_COOKIE:
4260		val = tp->fastopen_no_cookie;
4261		break;
4262
4263	case TCP_TX_DELAY:
4264		val = tp->tcp_tx_delay;
4265		break;
4266
4267	case TCP_TIMESTAMP:
4268		val = tcp_time_stamp_raw() + tp->tsoffset;
 
 
 
 
4269		break;
4270	case TCP_NOTSENT_LOWAT:
4271		val = tp->notsent_lowat;
4272		break;
4273	case TCP_INQ:
4274		val = tp->recvmsg_inq;
4275		break;
4276	case TCP_SAVE_SYN:
4277		val = tp->save_syn;
4278		break;
4279	case TCP_SAVED_SYN: {
4280		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4281			return -EFAULT;
4282
4283		sockopt_lock_sock(sk);
4284		if (tp->saved_syn) {
4285			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4286				len = tcp_saved_syn_len(tp->saved_syn);
4287				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4288					sockopt_release_sock(sk);
4289					return -EFAULT;
4290				}
4291				sockopt_release_sock(sk);
4292				return -EINVAL;
4293			}
4294			len = tcp_saved_syn_len(tp->saved_syn);
4295			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4296				sockopt_release_sock(sk);
4297				return -EFAULT;
4298			}
4299			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4300				sockopt_release_sock(sk);
4301				return -EFAULT;
4302			}
4303			tcp_saved_syn_free(tp);
4304			sockopt_release_sock(sk);
4305		} else {
4306			sockopt_release_sock(sk);
4307			len = 0;
4308			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4309				return -EFAULT;
4310		}
4311		return 0;
4312	}
4313#ifdef CONFIG_MMU
4314	case TCP_ZEROCOPY_RECEIVE: {
4315		struct scm_timestamping_internal tss;
4316		struct tcp_zerocopy_receive zc = {};
4317		int err;
4318
4319		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4320			return -EFAULT;
4321		if (len < 0 ||
4322		    len < offsetofend(struct tcp_zerocopy_receive, length))
4323			return -EINVAL;
4324		if (unlikely(len > sizeof(zc))) {
4325			err = check_zeroed_sockptr(optval, sizeof(zc),
4326						   len - sizeof(zc));
4327			if (err < 1)
4328				return err == 0 ? -EINVAL : err;
4329			len = sizeof(zc);
4330			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4331				return -EFAULT;
4332		}
4333		if (copy_from_sockptr(&zc, optval, len))
4334			return -EFAULT;
4335		if (zc.reserved)
4336			return -EINVAL;
4337		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4338			return -EINVAL;
4339		sockopt_lock_sock(sk);
4340		err = tcp_zerocopy_receive(sk, &zc, &tss);
4341		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4342							  &zc, &len, err);
4343		sockopt_release_sock(sk);
4344		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4345			goto zerocopy_rcv_cmsg;
4346		switch (len) {
4347		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4348			goto zerocopy_rcv_cmsg;
4349		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4350		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4351		case offsetofend(struct tcp_zerocopy_receive, flags):
4352		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4353		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4354		case offsetofend(struct tcp_zerocopy_receive, err):
4355			goto zerocopy_rcv_sk_err;
4356		case offsetofend(struct tcp_zerocopy_receive, inq):
4357			goto zerocopy_rcv_inq;
4358		case offsetofend(struct tcp_zerocopy_receive, length):
4359		default:
4360			goto zerocopy_rcv_out;
4361		}
4362zerocopy_rcv_cmsg:
4363		if (zc.msg_flags & TCP_CMSG_TS)
4364			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4365		else
4366			zc.msg_flags = 0;
4367zerocopy_rcv_sk_err:
4368		if (!err)
4369			zc.err = sock_error(sk);
4370zerocopy_rcv_inq:
4371		zc.inq = tcp_inq_hint(sk);
4372zerocopy_rcv_out:
4373		if (!err && copy_to_sockptr(optval, &zc, len))
4374			err = -EFAULT;
4375		return err;
4376	}
4377#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4378	default:
4379		return -ENOPROTOOPT;
4380	}
4381
4382	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4383		return -EFAULT;
4384	if (copy_to_sockptr(optval, &val, len))
4385		return -EFAULT;
4386	return 0;
4387}
4388
4389bool tcp_bpf_bypass_getsockopt(int level, int optname)
4390{
4391	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4392	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4393	 */
4394	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4395		return true;
4396
4397	return false;
4398}
4399EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4400
4401int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4402		   int __user *optlen)
4403{
4404	struct inet_connection_sock *icsk = inet_csk(sk);
4405
4406	if (level != SOL_TCP)
4407		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4408		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4409								optval, optlen);
4410	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4411				 USER_SOCKPTR(optlen));
4412}
4413EXPORT_SYMBOL(tcp_getsockopt);
4414
4415#ifdef CONFIG_TCP_MD5SIG
4416static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4417static DEFINE_MUTEX(tcp_md5sig_mutex);
4418static bool tcp_md5sig_pool_populated = false;
4419
4420static void __tcp_alloc_md5sig_pool(void)
4421{
4422	struct crypto_ahash *hash;
4423	int cpu;
4424
4425	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4426	if (IS_ERR(hash))
4427		return;
4428
4429	for_each_possible_cpu(cpu) {
4430		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4431		struct ahash_request *req;
4432
4433		if (!scratch) {
4434			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4435					       sizeof(struct tcphdr),
4436					       GFP_KERNEL,
4437					       cpu_to_node(cpu));
4438			if (!scratch)
4439				return;
4440			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4441		}
4442		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4443			continue;
4444
4445		req = ahash_request_alloc(hash, GFP_KERNEL);
4446		if (!req)
4447			return;
4448
4449		ahash_request_set_callback(req, 0, NULL, NULL);
4450
4451		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4452	}
4453	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4454	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4455	 */
4456	smp_wmb();
4457	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4458	 * and tcp_get_md5sig_pool().
4459	*/
4460	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4461}
4462
4463bool tcp_alloc_md5sig_pool(void)
4464{
4465	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4466	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4467		mutex_lock(&tcp_md5sig_mutex);
4468
4469		if (!tcp_md5sig_pool_populated)
4470			__tcp_alloc_md5sig_pool();
4471
4472		mutex_unlock(&tcp_md5sig_mutex);
4473	}
4474	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4475	return READ_ONCE(tcp_md5sig_pool_populated);
4476}
4477EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4478
4479
4480/**
4481 *	tcp_get_md5sig_pool - get md5sig_pool for this user
4482 *
4483 *	We use percpu structure, so if we succeed, we exit with preemption
4484 *	and BH disabled, to make sure another thread or softirq handling
4485 *	wont try to get same context.
4486 */
4487struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4488{
4489	local_bh_disable();
4490
4491	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4492	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4493		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4494		smp_rmb();
4495		return this_cpu_ptr(&tcp_md5sig_pool);
4496	}
4497	local_bh_enable();
4498	return NULL;
4499}
4500EXPORT_SYMBOL(tcp_get_md5sig_pool);
4501
4502int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4503			  const struct sk_buff *skb, unsigned int header_len)
4504{
4505	struct scatterlist sg;
4506	const struct tcphdr *tp = tcp_hdr(skb);
4507	struct ahash_request *req = hp->md5_req;
4508	unsigned int i;
4509	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4510					   skb_headlen(skb) - header_len : 0;
4511	const struct skb_shared_info *shi = skb_shinfo(skb);
4512	struct sk_buff *frag_iter;
4513
4514	sg_init_table(&sg, 1);
4515
4516	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4517	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4518	if (crypto_ahash_update(req))
4519		return 1;
4520
4521	for (i = 0; i < shi->nr_frags; ++i) {
4522		const skb_frag_t *f = &shi->frags[i];
4523		unsigned int offset = skb_frag_off(f);
4524		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4525
4526		sg_set_page(&sg, page, skb_frag_size(f),
4527			    offset_in_page(offset));
4528		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4529		if (crypto_ahash_update(req))
4530			return 1;
4531	}
4532
4533	skb_walk_frags(skb, frag_iter)
4534		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4535			return 1;
4536
4537	return 0;
4538}
4539EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4540
4541int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
 
4542{
4543	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4544	struct scatterlist sg;
4545
4546	sg_init_one(&sg, key->key, keylen);
4547	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4548
4549	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4550	return data_race(crypto_ahash_update(hp->md5_req));
 
 
4551}
4552EXPORT_SYMBOL(tcp_md5_hash_key);
4553
4554/* Called with rcu_read_lock() */
4555enum skb_drop_reason
4556tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4557		     const void *saddr, const void *daddr,
4558		     int family, int dif, int sdif)
4559{
4560	/*
4561	 * This gets called for each TCP segment that arrives
4562	 * so we want to be efficient.
4563	 * We have 3 drop cases:
4564	 * o No MD5 hash and one expected.
4565	 * o MD5 hash and we're not expecting one.
4566	 * o MD5 hash and its wrong.
4567	 */
4568	const __u8 *hash_location = NULL;
4569	struct tcp_md5sig_key *hash_expected;
4570	const struct tcphdr *th = tcp_hdr(skb);
4571	struct tcp_sock *tp = tcp_sk(sk);
4572	int genhash, l3index;
4573	u8 newhash[16];
 
4574
4575	/* sdif set, means packet ingressed via a device
4576	 * in an L3 domain and dif is set to the l3mdev
4577	 */
4578	l3index = sdif ? dif : 0;
4579
4580	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4581	hash_location = tcp_parse_md5sig_option(th);
4582
4583	/* We've parsed the options - do we have a hash? */
4584	if (!hash_expected && !hash_location)
4585		return SKB_NOT_DROPPED_YET;
4586
4587	if (hash_expected && !hash_location) {
4588		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4589		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4590	}
4591
4592	if (!hash_expected && hash_location) {
4593		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
 
4594		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4595	}
4596
4597	/* Check the signature.
4598	 * To support dual stack listeners, we need to handle
4599	 * IPv4-mapped case.
4600	 */
4601	if (family == AF_INET)
4602		genhash = tcp_v4_md5_hash_skb(newhash,
4603					      hash_expected,
4604					      NULL, skb);
4605	else
4606		genhash = tp->af_specific->calc_md5_hash(newhash,
4607							 hash_expected,
4608							 NULL, skb);
4609
4610	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4611		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4612		if (family == AF_INET) {
4613			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4614					saddr, ntohs(th->source),
4615					daddr, ntohs(th->dest),
4616					genhash ? " tcp_v4_calc_md5_hash failed"
4617					: "", l3index);
4618		} else {
4619			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4620					genhash ? "failed" : "mismatch",
4621					saddr, ntohs(th->source),
4622					daddr, ntohs(th->dest), l3index);
4623		}
4624		return SKB_DROP_REASON_TCP_MD5FAILURE;
4625	}
4626	return SKB_NOT_DROPPED_YET;
4627}
4628EXPORT_SYMBOL(tcp_inbound_md5_hash);
 
 
 
 
 
 
 
4629
4630#endif
4631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632void tcp_done(struct sock *sk)
4633{
4634	struct request_sock *req;
4635
4636	/* We might be called with a new socket, after
4637	 * inet_csk_prepare_forced_close() has been called
4638	 * so we can not use lockdep_sock_is_held(sk)
4639	 */
4640	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4641
4642	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4643		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4644
4645	tcp_set_state(sk, TCP_CLOSE);
4646	tcp_clear_xmit_timers(sk);
4647	if (req)
4648		reqsk_fastopen_remove(sk, req, false);
4649
4650	sk->sk_shutdown = SHUTDOWN_MASK;
4651
4652	if (!sock_flag(sk, SOCK_DEAD))
4653		sk->sk_state_change(sk);
4654	else
4655		inet_csk_destroy_sock(sk);
4656}
4657EXPORT_SYMBOL_GPL(tcp_done);
4658
4659int tcp_abort(struct sock *sk, int err)
4660{
4661	int state = inet_sk_state_load(sk);
4662
4663	if (state == TCP_NEW_SYN_RECV) {
4664		struct request_sock *req = inet_reqsk(sk);
4665
4666		local_bh_disable();
4667		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4668		local_bh_enable();
4669		return 0;
4670	}
4671	if (state == TCP_TIME_WAIT) {
4672		struct inet_timewait_sock *tw = inet_twsk(sk);
4673
4674		refcount_inc(&tw->tw_refcnt);
4675		local_bh_disable();
4676		inet_twsk_deschedule_put(tw);
4677		local_bh_enable();
4678		return 0;
4679	}
4680
4681	/* Don't race with userspace socket closes such as tcp_close. */
4682	lock_sock(sk);
 
 
 
 
 
 
 
 
 
4683
4684	if (sk->sk_state == TCP_LISTEN) {
4685		tcp_set_state(sk, TCP_CLOSE);
4686		inet_csk_listen_stop(sk);
4687	}
4688
4689	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4690	local_bh_disable();
4691	bh_lock_sock(sk);
4692
4693	if (!sock_flag(sk, SOCK_DEAD)) {
4694		sk->sk_err = err;
4695		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4696		smp_wmb();
4697		sk_error_report(sk);
4698		if (tcp_need_reset(sk->sk_state))
4699			tcp_send_active_reset(sk, GFP_ATOMIC);
4700		tcp_done(sk);
4701	}
4702
4703	bh_unlock_sock(sk);
4704	local_bh_enable();
4705	tcp_write_queue_purge(sk);
4706	release_sock(sk);
4707	return 0;
4708}
4709EXPORT_SYMBOL_GPL(tcp_abort);
4710
4711extern struct tcp_congestion_ops tcp_reno;
4712
4713static __initdata unsigned long thash_entries;
4714static int __init set_thash_entries(char *str)
4715{
4716	ssize_t ret;
4717
4718	if (!str)
4719		return 0;
4720
4721	ret = kstrtoul(str, 0, &thash_entries);
4722	if (ret)
4723		return 0;
4724
4725	return 1;
4726}
4727__setup("thash_entries=", set_thash_entries);
4728
4729static void __init tcp_init_mem(void)
4730{
4731	unsigned long limit = nr_free_buffer_pages() / 16;
4732
4733	limit = max(limit, 128UL);
4734	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4735	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4736	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4737}
4738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4739void __init tcp_init(void)
4740{
4741	int max_rshare, max_wshare, cnt;
4742	unsigned long limit;
4743	unsigned int i;
4744
4745	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4746	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4747		     sizeof_field(struct sk_buff, cb));
 
 
4748
4749	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4750
4751	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4752	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4753
4754	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4755			    thash_entries, 21,  /* one slot per 2 MB*/
4756			    0, 64 * 1024);
4757	tcp_hashinfo.bind_bucket_cachep =
4758		kmem_cache_create("tcp_bind_bucket",
4759				  sizeof(struct inet_bind_bucket), 0,
4760				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4761				  SLAB_ACCOUNT,
4762				  NULL);
4763	tcp_hashinfo.bind2_bucket_cachep =
4764		kmem_cache_create("tcp_bind2_bucket",
4765				  sizeof(struct inet_bind2_bucket), 0,
4766				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4767				  SLAB_ACCOUNT,
4768				  NULL);
4769
4770	/* Size and allocate the main established and bind bucket
4771	 * hash tables.
4772	 *
4773	 * The methodology is similar to that of the buffer cache.
4774	 */
4775	tcp_hashinfo.ehash =
4776		alloc_large_system_hash("TCP established",
4777					sizeof(struct inet_ehash_bucket),
4778					thash_entries,
4779					17, /* one slot per 128 KB of memory */
4780					0,
4781					NULL,
4782					&tcp_hashinfo.ehash_mask,
4783					0,
4784					thash_entries ? 0 : 512 * 1024);
4785	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4786		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4787
4788	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4789		panic("TCP: failed to alloc ehash_locks");
4790	tcp_hashinfo.bhash =
4791		alloc_large_system_hash("TCP bind",
4792					2 * sizeof(struct inet_bind_hashbucket),
4793					tcp_hashinfo.ehash_mask + 1,
4794					17, /* one slot per 128 KB of memory */
4795					0,
4796					&tcp_hashinfo.bhash_size,
4797					NULL,
4798					0,
4799					64 * 1024);
4800	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4801	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4802	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4803		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4804		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4805		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4806		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4807	}
4808
4809	tcp_hashinfo.pernet = false;
4810
4811	cnt = tcp_hashinfo.ehash_mask + 1;
4812	sysctl_tcp_max_orphans = cnt / 2;
4813
4814	tcp_init_mem();
4815	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4816	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4817	max_wshare = min(4UL*1024*1024, limit);
4818	max_rshare = min(6UL*1024*1024, limit);
4819
4820	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4821	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4822	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4823
4824	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4825	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4826	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4827
4828	pr_info("Hash tables configured (established %u bind %u)\n",
4829		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4830
4831	tcp_v4_init();
4832	tcp_metrics_init();
4833	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4834	tcp_tasklet_init();
4835	mptcp_init();
4836}