Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static void ext4_journalled_zero_new_buffers(handle_t *handle,
  53					    struct inode *inode,
  54					    struct folio *folio,
  55					    unsigned from, unsigned to);
  56
  57static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  58			      struct ext4_inode_info *ei)
  59{
  60	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  61	__u32 csum;
  62	__u16 dummy_csum = 0;
  63	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  64	unsigned int csum_size = sizeof(dummy_csum);
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  67	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  68	offset += csum_size;
  69	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  70			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  71
  72	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  73		offset = offsetof(struct ext4_inode, i_checksum_hi);
  74		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  75				   EXT4_GOOD_OLD_INODE_SIZE,
  76				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  77		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  78			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  79					   csum_size);
  80			offset += csum_size;
  81		}
  82		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  83				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  84	}
  85
  86	return csum;
  87}
  88
  89static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  90				  struct ext4_inode_info *ei)
  91{
  92	__u32 provided, calculated;
  93
  94	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  95	    cpu_to_le32(EXT4_OS_LINUX) ||
  96	    !ext4_has_metadata_csum(inode->i_sb))
  97		return 1;
  98
  99	provided = le16_to_cpu(raw->i_checksum_lo);
 100	calculated = ext4_inode_csum(inode, raw, ei);
 101	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 102	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 103		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 104	else
 105		calculated &= 0xFFFF;
 106
 107	return provided == calculated;
 108}
 109
 110void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 111			 struct ext4_inode_info *ei)
 112{
 113	__u32 csum;
 114
 115	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 116	    cpu_to_le32(EXT4_OS_LINUX) ||
 117	    !ext4_has_metadata_csum(inode->i_sb))
 118		return;
 119
 120	csum = ext4_inode_csum(inode, raw, ei);
 121	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 122	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 123	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 124		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 125}
 126
 127static inline int ext4_begin_ordered_truncate(struct inode *inode,
 128					      loff_t new_size)
 129{
 130	trace_ext4_begin_ordered_truncate(inode, new_size);
 131	/*
 132	 * If jinode is zero, then we never opened the file for
 133	 * writing, so there's no need to call
 134	 * jbd2_journal_begin_ordered_truncate() since there's no
 135	 * outstanding writes we need to flush.
 136	 */
 137	if (!EXT4_I(inode)->jinode)
 138		return 0;
 139	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 140						   EXT4_I(inode)->jinode,
 141						   new_size);
 142}
 143
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Called at the last iput() if i_nlink is zero.
 168 */
 169void ext4_evict_inode(struct inode *inode)
 170{
 171	handle_t *handle;
 172	int err;
 173	/*
 174	 * Credits for final inode cleanup and freeing:
 175	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 176	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 177	 */
 178	int extra_credits = 6;
 179	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 180	bool freeze_protected = false;
 181
 182	trace_ext4_evict_inode(inode);
 183
 184	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 185		ext4_evict_ea_inode(inode);
 186	if (inode->i_nlink) {
 187		truncate_inode_pages_final(&inode->i_data);
 188
 189		goto no_delete;
 190	}
 191
 192	if (is_bad_inode(inode))
 193		goto no_delete;
 194	dquot_initialize(inode);
 195
 196	if (ext4_should_order_data(inode))
 197		ext4_begin_ordered_truncate(inode, 0);
 198	truncate_inode_pages_final(&inode->i_data);
 199
 200	/*
 201	 * For inodes with journalled data, transaction commit could have
 202	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 203	 * extents converting worker could merge extents and also have dirtied
 204	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 205	 * we still need to remove the inode from the writeback lists.
 206	 */
 207	if (!list_empty_careful(&inode->i_io_list))
 208		inode_io_list_del(inode);
 209
 210	/*
 211	 * Protect us against freezing - iput() caller didn't have to have any
 212	 * protection against it. When we are in a running transaction though,
 213	 * we are already protected against freezing and we cannot grab further
 214	 * protection due to lock ordering constraints.
 215	 */
 216	if (!ext4_journal_current_handle()) {
 217		sb_start_intwrite(inode->i_sb);
 218		freeze_protected = true;
 219	}
 220
 221	if (!IS_NOQUOTA(inode))
 222		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 223
 224	/*
 225	 * Block bitmap, group descriptor, and inode are accounted in both
 226	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 227	 */
 228	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 229			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 230	if (IS_ERR(handle)) {
 231		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 232		/*
 233		 * If we're going to skip the normal cleanup, we still need to
 234		 * make sure that the in-core orphan linked list is properly
 235		 * cleaned up.
 236		 */
 237		ext4_orphan_del(NULL, inode);
 238		if (freeze_protected)
 239			sb_end_intwrite(inode->i_sb);
 240		goto no_delete;
 241	}
 242
 243	if (IS_SYNC(inode))
 244		ext4_handle_sync(handle);
 245
 246	/*
 247	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 248	 * special handling of symlinks here because i_size is used to
 249	 * determine whether ext4_inode_info->i_data contains symlink data or
 250	 * block mappings. Setting i_size to 0 will remove its fast symlink
 251	 * status. Erase i_data so that it becomes a valid empty block map.
 252	 */
 253	if (ext4_inode_is_fast_symlink(inode))
 254		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 255	inode->i_size = 0;
 256	err = ext4_mark_inode_dirty(handle, inode);
 257	if (err) {
 258		ext4_warning(inode->i_sb,
 259			     "couldn't mark inode dirty (err %d)", err);
 260		goto stop_handle;
 261	}
 262	if (inode->i_blocks) {
 263		err = ext4_truncate(inode);
 264		if (err) {
 265			ext4_error_err(inode->i_sb, -err,
 266				       "couldn't truncate inode %lu (err %d)",
 267				       inode->i_ino, err);
 268			goto stop_handle;
 269		}
 270	}
 271
 272	/* Remove xattr references. */
 273	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 274				      extra_credits);
 275	if (err) {
 276		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 277stop_handle:
 278		ext4_journal_stop(handle);
 279		ext4_orphan_del(NULL, inode);
 280		if (freeze_protected)
 281			sb_end_intwrite(inode->i_sb);
 282		ext4_xattr_inode_array_free(ea_inode_array);
 283		goto no_delete;
 284	}
 285
 286	/*
 287	 * Kill off the orphan record which ext4_truncate created.
 288	 * AKPM: I think this can be inside the above `if'.
 289	 * Note that ext4_orphan_del() has to be able to cope with the
 290	 * deletion of a non-existent orphan - this is because we don't
 291	 * know if ext4_truncate() actually created an orphan record.
 292	 * (Well, we could do this if we need to, but heck - it works)
 293	 */
 294	ext4_orphan_del(handle, inode);
 295	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 296
 297	/*
 298	 * One subtle ordering requirement: if anything has gone wrong
 299	 * (transaction abort, IO errors, whatever), then we can still
 300	 * do these next steps (the fs will already have been marked as
 301	 * having errors), but we can't free the inode if the mark_dirty
 302	 * fails.
 303	 */
 304	if (ext4_mark_inode_dirty(handle, inode))
 305		/* If that failed, just do the required in-core inode clear. */
 306		ext4_clear_inode(inode);
 307	else
 308		ext4_free_inode(handle, inode);
 309	ext4_journal_stop(handle);
 310	if (freeze_protected)
 311		sb_end_intwrite(inode->i_sb);
 312	ext4_xattr_inode_array_free(ea_inode_array);
 313	return;
 314no_delete:
 315	/*
 316	 * Check out some where else accidentally dirty the evicting inode,
 317	 * which may probably cause inode use-after-free issues later.
 318	 */
 319	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 320
 321	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 322		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 323	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 324}
 325
 326#ifdef CONFIG_QUOTA
 327qsize_t *ext4_get_reserved_space(struct inode *inode)
 328{
 329	return &EXT4_I(inode)->i_reserved_quota;
 330}
 331#endif
 332
 333/*
 334 * Called with i_data_sem down, which is important since we can call
 335 * ext4_discard_preallocations() from here.
 336 */
 337void ext4_da_update_reserve_space(struct inode *inode,
 338					int used, int quota_claim)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 341	struct ext4_inode_info *ei = EXT4_I(inode);
 342
 343	spin_lock(&ei->i_block_reservation_lock);
 344	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 345	if (unlikely(used > ei->i_reserved_data_blocks)) {
 346		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 347			 "with only %d reserved data blocks",
 348			 __func__, inode->i_ino, used,
 349			 ei->i_reserved_data_blocks);
 350		WARN_ON(1);
 351		used = ei->i_reserved_data_blocks;
 352	}
 353
 354	/* Update per-inode reservations */
 355	ei->i_reserved_data_blocks -= used;
 356	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 357
 358	spin_unlock(&ei->i_block_reservation_lock);
 359
 360	/* Update quota subsystem for data blocks */
 361	if (quota_claim)
 362		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 363	else {
 364		/*
 365		 * We did fallocate with an offset that is already delayed
 366		 * allocated. So on delayed allocated writeback we should
 367		 * not re-claim the quota for fallocated blocks.
 368		 */
 369		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 370	}
 371
 372	/*
 373	 * If we have done all the pending block allocations and if
 374	 * there aren't any writers on the inode, we can discard the
 375	 * inode's preallocations.
 376	 */
 377	if ((ei->i_reserved_data_blocks == 0) &&
 378	    !inode_is_open_for_write(inode))
 379		ext4_discard_preallocations(inode);
 380}
 381
 382static int __check_block_validity(struct inode *inode, const char *func,
 383				unsigned int line,
 384				struct ext4_map_blocks *map)
 385{
 386	if (ext4_has_feature_journal(inode->i_sb) &&
 387	    (inode->i_ino ==
 388	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 389		return 0;
 390	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 391		ext4_error_inode(inode, func, line, map->m_pblk,
 392				 "lblock %lu mapped to illegal pblock %llu "
 393				 "(length %d)", (unsigned long) map->m_lblk,
 394				 map->m_pblk, map->m_len);
 395		return -EFSCORRUPTED;
 396	}
 397	return 0;
 398}
 399
 400int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 401		       ext4_lblk_t len)
 402{
 403	int ret;
 404
 405	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 406		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 407
 408	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 409	if (ret > 0)
 410		ret = 0;
 411
 412	return ret;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418#ifdef ES_AGGRESSIVE_TEST
 419static void ext4_map_blocks_es_recheck(handle_t *handle,
 420				       struct inode *inode,
 421				       struct ext4_map_blocks *es_map,
 422				       struct ext4_map_blocks *map,
 423				       int flags)
 424{
 425	int retval;
 426
 427	map->m_flags = 0;
 428	/*
 429	 * There is a race window that the result is not the same.
 430	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 431	 * is that we lookup a block mapping in extent status tree with
 432	 * out taking i_data_sem.  So at the time the unwritten extent
 433	 * could be converted.
 434	 */
 435	down_read(&EXT4_I(inode)->i_data_sem);
 436	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 437		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 438	} else {
 439		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 440	}
 441	up_read((&EXT4_I(inode)->i_data_sem));
 442
 443	/*
 444	 * We don't check m_len because extent will be collpased in status
 445	 * tree.  So the m_len might not equal.
 446	 */
 447	if (es_map->m_lblk != map->m_lblk ||
 448	    es_map->m_flags != map->m_flags ||
 449	    es_map->m_pblk != map->m_pblk) {
 450		printk("ES cache assertion failed for inode: %lu "
 451		       "es_cached ex [%d/%d/%llu/%x] != "
 452		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 453		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 454		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 455		       map->m_len, map->m_pblk, map->m_flags,
 456		       retval, flags);
 457	}
 458}
 459#endif /* ES_AGGRESSIVE_TEST */
 460
 461static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
 462				 struct ext4_map_blocks *map)
 463{
 464	unsigned int status;
 465	int retval;
 466
 467	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 468		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 469	else
 470		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 471
 472	if (retval <= 0)
 473		return retval;
 474
 475	if (unlikely(retval != map->m_len)) {
 476		ext4_warning(inode->i_sb,
 477			     "ES len assertion failed for inode "
 478			     "%lu: retval %d != map->m_len %d",
 479			     inode->i_ino, retval, map->m_len);
 480		WARN_ON(1);
 481	}
 482
 483	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 484			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 485	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 486			      map->m_pblk, status, false);
 487	return retval;
 488}
 489
 490static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
 491				  struct ext4_map_blocks *map, int flags)
 492{
 493	struct extent_status es;
 494	unsigned int status;
 495	int err, retval = 0;
 496
 497	/*
 498	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
 499	 * indicates that the blocks and quotas has already been
 500	 * checked when the data was copied into the page cache.
 501	 */
 502	if (map->m_flags & EXT4_MAP_DELAYED)
 503		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
 504
 505	/*
 506	 * Here we clear m_flags because after allocating an new extent,
 507	 * it will be set again.
 508	 */
 509	map->m_flags &= ~EXT4_MAP_FLAGS;
 510
 511	/*
 512	 * We need to check for EXT4 here because migrate could have
 513	 * changed the inode type in between.
 514	 */
 515	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 516		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 517	} else {
 518		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 519
 520		/*
 521		 * We allocated new blocks which will result in i_data's
 522		 * format changing. Force the migrate to fail by clearing
 523		 * migrate flags.
 524		 */
 525		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
 526			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 527	}
 528	if (retval <= 0)
 529		return retval;
 530
 531	if (unlikely(retval != map->m_len)) {
 532		ext4_warning(inode->i_sb,
 533			     "ES len assertion failed for inode %lu: "
 534			     "retval %d != map->m_len %d",
 535			     inode->i_ino, retval, map->m_len);
 536		WARN_ON(1);
 537	}
 538
 539	/*
 540	 * We have to zeroout blocks before inserting them into extent
 541	 * status tree. Otherwise someone could look them up there and
 542	 * use them before they are really zeroed. We also have to
 543	 * unmap metadata before zeroing as otherwise writeback can
 544	 * overwrite zeros with stale data from block device.
 545	 */
 546	if (flags & EXT4_GET_BLOCKS_ZERO &&
 547	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
 548		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
 549					 map->m_len);
 550		if (err)
 551			return err;
 552	}
 553
 554	/*
 555	 * If the extent has been zeroed out, we don't need to update
 556	 * extent status tree.
 557	 */
 558	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
 559	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 560		if (ext4_es_is_written(&es))
 561			return retval;
 562	}
 563
 564	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 565			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 566	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
 567			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
 568
 569	return retval;
 570}
 571
 572/*
 573 * The ext4_map_blocks() function tries to look up the requested blocks,
 574 * and returns if the blocks are already mapped.
 575 *
 576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 577 * and store the allocated blocks in the result buffer head and mark it
 578 * mapped.
 579 *
 580 * If file type is extents based, it will call ext4_ext_map_blocks(),
 581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 582 * based files
 583 *
 584 * On success, it returns the number of blocks being mapped or allocated.
 585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
 586 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
 587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
 588 *
 589 * It returns 0 if plain look up failed (blocks have not been allocated), in
 590 * that case, @map is returned as unmapped but we still do fill map->m_len to
 591 * indicate the length of a hole starting at map->m_lblk.
 592 *
 593 * It returns the error in case of allocation failure.
 594 */
 595int ext4_map_blocks(handle_t *handle, struct inode *inode,
 596		    struct ext4_map_blocks *map, int flags)
 597{
 598	struct extent_status es;
 599	int retval;
 600	int ret = 0;
 601#ifdef ES_AGGRESSIVE_TEST
 602	struct ext4_map_blocks orig_map;
 603
 604	memcpy(&orig_map, map, sizeof(*map));
 605#endif
 606
 607	map->m_flags = 0;
 608	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 609		  flags, map->m_len, (unsigned long) map->m_lblk);
 610
 611	/*
 612	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 613	 */
 614	if (unlikely(map->m_len > INT_MAX))
 615		map->m_len = INT_MAX;
 616
 617	/* We can handle the block number less than EXT_MAX_BLOCKS */
 618	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 619		return -EFSCORRUPTED;
 620
 621	/* Lookup extent status tree firstly */
 622	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 623	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 624		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 625			map->m_pblk = ext4_es_pblock(&es) +
 626					map->m_lblk - es.es_lblk;
 627			map->m_flags |= ext4_es_is_written(&es) ?
 628					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 629			retval = es.es_len - (map->m_lblk - es.es_lblk);
 630			if (retval > map->m_len)
 631				retval = map->m_len;
 632			map->m_len = retval;
 633		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 634			map->m_pblk = 0;
 635			map->m_flags |= ext4_es_is_delayed(&es) ?
 636					EXT4_MAP_DELAYED : 0;
 637			retval = es.es_len - (map->m_lblk - es.es_lblk);
 638			if (retval > map->m_len)
 639				retval = map->m_len;
 640			map->m_len = retval;
 641			retval = 0;
 642		} else {
 643			BUG();
 644		}
 645
 646		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 647			return retval;
 648#ifdef ES_AGGRESSIVE_TEST
 649		ext4_map_blocks_es_recheck(handle, inode, map,
 650					   &orig_map, flags);
 651#endif
 652		goto found;
 653	}
 654	/*
 655	 * In the query cache no-wait mode, nothing we can do more if we
 656	 * cannot find extent in the cache.
 657	 */
 658	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 659		return 0;
 660
 661	/*
 662	 * Try to see if we can get the block without requesting a new
 663	 * file system block.
 664	 */
 665	down_read(&EXT4_I(inode)->i_data_sem);
 666	retval = ext4_map_query_blocks(handle, inode, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667	up_read((&EXT4_I(inode)->i_data_sem));
 668
 669found:
 670	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 671		ret = check_block_validity(inode, map);
 672		if (ret != 0)
 673			return ret;
 674	}
 675
 676	/* If it is only a block(s) look up */
 677	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 678		return retval;
 679
 680	/*
 681	 * Returns if the blocks have already allocated
 682	 *
 683	 * Note that if blocks have been preallocated
 684	 * ext4_ext_map_blocks() returns with buffer head unmapped
 685	 */
 686	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 687		/*
 688		 * If we need to convert extent to unwritten
 689		 * we continue and do the actual work in
 690		 * ext4_ext_map_blocks()
 691		 */
 692		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 693			return retval;
 694
 695	/*
 
 
 
 
 
 
 696	 * New blocks allocate and/or writing to unwritten extent
 697	 * will possibly result in updating i_data, so we take
 698	 * the write lock of i_data_sem, and call get_block()
 699	 * with create == 1 flag.
 700	 */
 701	down_write(&EXT4_I(inode)->i_data_sem);
 702	retval = ext4_map_create_blocks(handle, inode, map, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	up_write((&EXT4_I(inode)->i_data_sem));
 704	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 705		ret = check_block_validity(inode, map);
 706		if (ret != 0)
 707			return ret;
 708
 709		/*
 710		 * Inodes with freshly allocated blocks where contents will be
 711		 * visible after transaction commit must be on transaction's
 712		 * ordered data list.
 713		 */
 714		if (map->m_flags & EXT4_MAP_NEW &&
 715		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 716		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 717		    !ext4_is_quota_file(inode) &&
 718		    ext4_should_order_data(inode)) {
 719			loff_t start_byte =
 720				(loff_t)map->m_lblk << inode->i_blkbits;
 721			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 722
 723			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 724				ret = ext4_jbd2_inode_add_wait(handle, inode,
 725						start_byte, length);
 726			else
 727				ret = ext4_jbd2_inode_add_write(handle, inode,
 728						start_byte, length);
 729			if (ret)
 730				return ret;
 731		}
 732	}
 733	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 734				map->m_flags & EXT4_MAP_MAPPED))
 735		ext4_fc_track_range(handle, inode, map->m_lblk,
 736					map->m_lblk + map->m_len - 1);
 737	if (retval < 0)
 738		ext_debug(inode, "failed with err %d\n", retval);
 739	return retval;
 740}
 741
 742/*
 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 744 * we have to be careful as someone else may be manipulating b_state as well.
 745 */
 746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 747{
 748	unsigned long old_state;
 749	unsigned long new_state;
 750
 751	flags &= EXT4_MAP_FLAGS;
 752
 753	/* Dummy buffer_head? Set non-atomically. */
 754	if (!bh->b_page) {
 755		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 756		return;
 757	}
 758	/*
 759	 * Someone else may be modifying b_state. Be careful! This is ugly but
 760	 * once we get rid of using bh as a container for mapping information
 761	 * to pass to / from get_block functions, this can go away.
 762	 */
 763	old_state = READ_ONCE(bh->b_state);
 764	do {
 765		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 766	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
 767}
 768
 769static int _ext4_get_block(struct inode *inode, sector_t iblock,
 770			   struct buffer_head *bh, int flags)
 771{
 772	struct ext4_map_blocks map;
 773	int ret = 0;
 774
 775	if (ext4_has_inline_data(inode))
 776		return -ERANGE;
 777
 778	map.m_lblk = iblock;
 779	map.m_len = bh->b_size >> inode->i_blkbits;
 780
 781	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 782			      flags);
 783	if (ret > 0) {
 784		map_bh(bh, inode->i_sb, map.m_pblk);
 785		ext4_update_bh_state(bh, map.m_flags);
 786		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 787		ret = 0;
 788	} else if (ret == 0) {
 789		/* hole case, need to fill in bh->b_size */
 790		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 791	}
 792	return ret;
 793}
 794
 795int ext4_get_block(struct inode *inode, sector_t iblock,
 796		   struct buffer_head *bh, int create)
 797{
 798	return _ext4_get_block(inode, iblock, bh,
 799			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 800}
 801
 802/*
 803 * Get block function used when preparing for buffered write if we require
 804 * creating an unwritten extent if blocks haven't been allocated.  The extent
 805 * will be converted to written after the IO is complete.
 806 */
 807int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 808			     struct buffer_head *bh_result, int create)
 809{
 810	int ret = 0;
 811
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	ret = _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 816
 817	/*
 818	 * If the buffer is marked unwritten, mark it as new to make sure it is
 819	 * zeroed out correctly in case of partial writes. Otherwise, there is
 820	 * a chance of stale data getting exposed.
 821	 */
 822	if (ret == 0 && buffer_unwritten(bh_result))
 823		set_buffer_new(bh_result);
 824
 825	return ret;
 826}
 827
 828/* Maximum number of blocks we map for direct IO at once. */
 829#define DIO_MAX_BLOCKS 4096
 830
 831/*
 832 * `handle' can be NULL if create is zero
 833 */
 834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 835				ext4_lblk_t block, int map_flags)
 836{
 837	struct ext4_map_blocks map;
 838	struct buffer_head *bh;
 839	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 840	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 841	int err;
 842
 843	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 844		    || handle != NULL || create == 0);
 845	ASSERT(create == 0 || !nowait);
 846
 847	map.m_lblk = block;
 848	map.m_len = 1;
 849	err = ext4_map_blocks(handle, inode, &map, map_flags);
 850
 851	if (err == 0)
 852		return create ? ERR_PTR(-ENOSPC) : NULL;
 853	if (err < 0)
 854		return ERR_PTR(err);
 855
 856	if (nowait)
 857		return sb_find_get_block(inode->i_sb, map.m_pblk);
 858
 859	/*
 860	 * Since bh could introduce extra ref count such as referred by
 861	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
 862	 * as it may fail the migration when journal_head remains.
 863	 */
 864	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
 865				inode->i_sb->s_blocksize);
 866
 867	if (unlikely(!bh))
 868		return ERR_PTR(-ENOMEM);
 869	if (map.m_flags & EXT4_MAP_NEW) {
 870		ASSERT(create != 0);
 871		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 872			    || (handle != NULL));
 873
 874		/*
 875		 * Now that we do not always journal data, we should
 876		 * keep in mind whether this should always journal the
 877		 * new buffer as metadata.  For now, regular file
 878		 * writes use ext4_get_block instead, so it's not a
 879		 * problem.
 880		 */
 881		lock_buffer(bh);
 882		BUFFER_TRACE(bh, "call get_create_access");
 883		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 884						     EXT4_JTR_NONE);
 885		if (unlikely(err)) {
 886			unlock_buffer(bh);
 887			goto errout;
 888		}
 889		if (!buffer_uptodate(bh)) {
 890			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 891			set_buffer_uptodate(bh);
 892		}
 893		unlock_buffer(bh);
 894		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 895		err = ext4_handle_dirty_metadata(handle, inode, bh);
 896		if (unlikely(err))
 897			goto errout;
 898	} else
 899		BUFFER_TRACE(bh, "not a new buffer");
 900	return bh;
 901errout:
 902	brelse(bh);
 903	return ERR_PTR(err);
 904}
 905
 906struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 907			       ext4_lblk_t block, int map_flags)
 908{
 909	struct buffer_head *bh;
 910	int ret;
 911
 912	bh = ext4_getblk(handle, inode, block, map_flags);
 913	if (IS_ERR(bh))
 914		return bh;
 915	if (!bh || ext4_buffer_uptodate(bh))
 916		return bh;
 917
 918	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 919	if (ret) {
 920		put_bh(bh);
 921		return ERR_PTR(ret);
 922	}
 923	return bh;
 924}
 925
 926/* Read a contiguous batch of blocks. */
 927int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 928		     bool wait, struct buffer_head **bhs)
 929{
 930	int i, err;
 931
 932	for (i = 0; i < bh_count; i++) {
 933		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 934		if (IS_ERR(bhs[i])) {
 935			err = PTR_ERR(bhs[i]);
 936			bh_count = i;
 937			goto out_brelse;
 938		}
 939	}
 940
 941	for (i = 0; i < bh_count; i++)
 942		/* Note that NULL bhs[i] is valid because of holes. */
 943		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 944			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 945
 946	if (!wait)
 947		return 0;
 948
 949	for (i = 0; i < bh_count; i++)
 950		if (bhs[i])
 951			wait_on_buffer(bhs[i]);
 952
 953	for (i = 0; i < bh_count; i++) {
 954		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 955			err = -EIO;
 956			goto out_brelse;
 957		}
 958	}
 959	return 0;
 960
 961out_brelse:
 962	for (i = 0; i < bh_count; i++) {
 963		brelse(bhs[i]);
 964		bhs[i] = NULL;
 965	}
 966	return err;
 967}
 968
 969int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 970			   struct buffer_head *head,
 971			   unsigned from,
 972			   unsigned to,
 973			   int *partial,
 974			   int (*fn)(handle_t *handle, struct inode *inode,
 975				     struct buffer_head *bh))
 976{
 977	struct buffer_head *bh;
 978	unsigned block_start, block_end;
 979	unsigned blocksize = head->b_size;
 980	int err, ret = 0;
 981	struct buffer_head *next;
 982
 983	for (bh = head, block_start = 0;
 984	     ret == 0 && (bh != head || !block_start);
 985	     block_start = block_end, bh = next) {
 986		next = bh->b_this_page;
 987		block_end = block_start + blocksize;
 988		if (block_end <= from || block_start >= to) {
 989			if (partial && !buffer_uptodate(bh))
 990				*partial = 1;
 991			continue;
 992		}
 993		err = (*fn)(handle, inode, bh);
 994		if (!ret)
 995			ret = err;
 996	}
 997	return ret;
 998}
 999
1000/*
1001 * Helper for handling dirtying of journalled data. We also mark the folio as
1002 * dirty so that writeback code knows about this page (and inode) contains
1003 * dirty data. ext4_writepages() then commits appropriate transaction to
1004 * make data stable.
1005 */
1006static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007{
1008	folio_mark_dirty(bh->b_folio);
1009	return ext4_handle_dirty_metadata(handle, NULL, bh);
1010}
1011
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013				struct buffer_head *bh)
1014{
 
 
 
1015	if (!buffer_mapped(bh) || buffer_freed(bh))
1016		return 0;
 
 
 
 
 
 
 
 
 
 
1017	BUFFER_TRACE(bh, "get write access");
1018	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019					    EXT4_JTR_NONE);
 
 
 
1020}
1021
1022int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023			   loff_t pos, unsigned len,
1024			   get_block_t *get_block)
1025{
1026	unsigned from = pos & (PAGE_SIZE - 1);
1027	unsigned to = from + len;
1028	struct inode *inode = folio->mapping->host;
1029	unsigned block_start, block_end;
1030	sector_t block;
1031	int err = 0;
1032	unsigned blocksize = inode->i_sb->s_blocksize;
1033	unsigned bbits;
1034	struct buffer_head *bh, *head, *wait[2];
1035	int nr_wait = 0;
1036	int i;
1037	bool should_journal_data = ext4_should_journal_data(inode);
1038
1039	BUG_ON(!folio_test_locked(folio));
1040	BUG_ON(from > PAGE_SIZE);
1041	BUG_ON(to > PAGE_SIZE);
1042	BUG_ON(from > to);
1043
1044	head = folio_buffers(folio);
1045	if (!head)
1046		head = create_empty_buffers(folio, blocksize, 0);
1047	bbits = ilog2(blocksize);
1048	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050	for (bh = head, block_start = 0; bh != head || !block_start;
1051	    block++, block_start = block_end, bh = bh->b_this_page) {
1052		block_end = block_start + blocksize;
1053		if (block_end <= from || block_start >= to) {
1054			if (folio_test_uptodate(folio)) {
1055				set_buffer_uptodate(bh);
1056			}
1057			continue;
1058		}
1059		if (buffer_new(bh))
1060			clear_buffer_new(bh);
1061		if (!buffer_mapped(bh)) {
1062			WARN_ON(bh->b_size != blocksize);
1063			err = get_block(inode, block, bh, 1);
1064			if (err)
1065				break;
1066			if (buffer_new(bh)) {
1067				/*
1068				 * We may be zeroing partial buffers or all new
1069				 * buffers in case of failure. Prepare JBD2 for
1070				 * that.
1071				 */
1072				if (should_journal_data)
1073					do_journal_get_write_access(handle,
1074								    inode, bh);
1075				if (folio_test_uptodate(folio)) {
1076					/*
1077					 * Unlike __block_write_begin() we leave
1078					 * dirtying of new uptodate buffers to
1079					 * ->write_end() time or
1080					 * folio_zero_new_buffers().
1081					 */
1082					set_buffer_uptodate(bh);
 
1083					continue;
1084				}
1085				if (block_end > to || block_start < from)
1086					folio_zero_segments(folio, to,
1087							    block_end,
1088							    block_start, from);
1089				continue;
1090			}
1091		}
1092		if (folio_test_uptodate(folio)) {
1093			set_buffer_uptodate(bh);
1094			continue;
1095		}
1096		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097		    !buffer_unwritten(bh) &&
1098		    (block_start < from || block_end > to)) {
1099			ext4_read_bh_lock(bh, 0, false);
1100			wait[nr_wait++] = bh;
1101		}
1102	}
1103	/*
1104	 * If we issued read requests, let them complete.
1105	 */
1106	for (i = 0; i < nr_wait; i++) {
1107		wait_on_buffer(wait[i]);
1108		if (!buffer_uptodate(wait[i]))
1109			err = -EIO;
1110	}
1111	if (unlikely(err)) {
1112		if (should_journal_data)
1113			ext4_journalled_zero_new_buffers(handle, inode, folio,
1114							 from, to);
1115		else
1116			folio_zero_new_buffers(folio, from, to);
1117	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118		for (i = 0; i < nr_wait; i++) {
1119			int err2;
1120
1121			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122						blocksize, bh_offset(wait[i]));
1123			if (err2) {
1124				clear_buffer_uptodate(wait[i]);
1125				err = err2;
1126			}
1127		}
1128	}
1129
1130	return err;
1131}
 
1132
1133/*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction.  We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
1140static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141			    loff_t pos, unsigned len,
1142			    struct folio **foliop, void **fsdata)
1143{
1144	struct inode *inode = mapping->host;
1145	int ret, needed_blocks;
1146	handle_t *handle;
1147	int retries = 0;
1148	struct folio *folio;
1149	pgoff_t index;
1150	unsigned from, to;
1151
1152	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153		return -EIO;
1154
1155	trace_ext4_write_begin(inode, pos, len);
1156	/*
1157	 * Reserve one block more for addition to orphan list in case
1158	 * we allocate blocks but write fails for some reason
1159	 */
1160	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161	index = pos >> PAGE_SHIFT;
1162	from = pos & (PAGE_SIZE - 1);
1163	to = from + len;
1164
1165	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167						    foliop);
1168		if (ret < 0)
1169			return ret;
1170		if (ret == 1)
1171			return 0;
1172	}
1173
1174	/*
1175	 * __filemap_get_folio() can take a long time if the
1176	 * system is thrashing due to memory pressure, or if the folio
1177	 * is being written back.  So grab it first before we start
1178	 * the transaction handle.  This also allows us to allocate
1179	 * the folio (if needed) without using GFP_NOFS.
1180	 */
1181retry_grab:
1182	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183					mapping_gfp_mask(mapping));
1184	if (IS_ERR(folio))
1185		return PTR_ERR(folio);
1186	/*
1187	 * The same as page allocation, we prealloc buffer heads before
1188	 * starting the handle.
1189	 */
1190	if (!folio_buffers(folio))
1191		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193	folio_unlock(folio);
1194
1195retry_journal:
1196	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197	if (IS_ERR(handle)) {
1198		folio_put(folio);
1199		return PTR_ERR(handle);
1200	}
1201
1202	folio_lock(folio);
1203	if (folio->mapping != mapping) {
1204		/* The folio got truncated from under us */
1205		folio_unlock(folio);
1206		folio_put(folio);
1207		ext4_journal_stop(handle);
1208		goto retry_grab;
1209	}
1210	/* In case writeback began while the folio was unlocked */
1211	folio_wait_stable(folio);
1212
 
1213	if (ext4_should_dioread_nolock(inode))
1214		ret = ext4_block_write_begin(handle, folio, pos, len,
1215					     ext4_get_block_unwritten);
1216	else
1217		ret = ext4_block_write_begin(handle, folio, pos, len,
1218					     ext4_get_block);
 
 
 
 
 
 
1219	if (!ret && ext4_should_journal_data(inode)) {
1220		ret = ext4_walk_page_buffers(handle, inode,
1221					     folio_buffers(folio), from, to,
1222					     NULL, do_journal_get_write_access);
1223	}
1224
1225	if (ret) {
1226		bool extended = (pos + len > inode->i_size) &&
1227				!ext4_verity_in_progress(inode);
1228
1229		folio_unlock(folio);
1230		/*
1231		 * ext4_block_write_begin may have instantiated a few blocks
1232		 * outside i_size.  Trim these off again. Don't need
1233		 * i_size_read because we hold i_rwsem.
1234		 *
1235		 * Add inode to orphan list in case we crash before
1236		 * truncate finishes
1237		 */
1238		if (extended && ext4_can_truncate(inode))
1239			ext4_orphan_add(handle, inode);
1240
1241		ext4_journal_stop(handle);
1242		if (extended) {
1243			ext4_truncate_failed_write(inode);
1244			/*
1245			 * If truncate failed early the inode might
1246			 * still be on the orphan list; we need to
1247			 * make sure the inode is removed from the
1248			 * orphan list in that case.
1249			 */
1250			if (inode->i_nlink)
1251				ext4_orphan_del(NULL, inode);
1252		}
1253
1254		if (ret == -ENOSPC &&
1255		    ext4_should_retry_alloc(inode->i_sb, &retries))
1256			goto retry_journal;
1257		folio_put(folio);
1258		return ret;
1259	}
1260	*foliop = folio;
1261	return ret;
1262}
1263
1264/* For write_end() in data=journal mode */
1265static int write_end_fn(handle_t *handle, struct inode *inode,
1266			struct buffer_head *bh)
1267{
1268	int ret;
1269	if (!buffer_mapped(bh) || buffer_freed(bh))
1270		return 0;
1271	set_buffer_uptodate(bh);
1272	ret = ext4_dirty_journalled_data(handle, bh);
1273	clear_buffer_meta(bh);
1274	clear_buffer_prio(bh);
1275	return ret;
1276}
1277
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283 * buffers are managed internally.
1284 */
1285static int ext4_write_end(struct file *file,
1286			  struct address_space *mapping,
1287			  loff_t pos, unsigned len, unsigned copied,
1288			  struct folio *folio, void *fsdata)
1289{
 
1290	handle_t *handle = ext4_journal_current_handle();
1291	struct inode *inode = mapping->host;
1292	loff_t old_size = inode->i_size;
1293	int ret = 0, ret2;
1294	int i_size_changed = 0;
1295	bool verity = ext4_verity_in_progress(inode);
1296
1297	trace_ext4_write_end(inode, pos, len, copied);
1298
1299	if (ext4_has_inline_data(inode) &&
1300	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301		return ext4_write_inline_data_end(inode, pos, len, copied,
1302						  folio);
1303
1304	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305	/*
1306	 * it's important to update i_size while still holding folio lock:
1307	 * page writeout could otherwise come in and zero beyond i_size.
1308	 *
1309	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310	 * blocks are being written past EOF, so skip the i_size update.
1311	 */
1312	if (!verity)
1313		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314	folio_unlock(folio);
1315	folio_put(folio);
1316
1317	if (old_size < pos && !verity) {
1318		pagecache_isize_extended(inode, old_size, pos);
1319		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320	}
1321	/*
1322	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323	 * makes the holding time of folio lock longer. Second, it forces lock
1324	 * ordering of folio lock and transaction start for journaling
1325	 * filesystems.
1326	 */
1327	if (i_size_changed)
1328		ret = ext4_mark_inode_dirty(handle, inode);
1329
1330	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331		/* if we have allocated more blocks and copied
1332		 * less. We will have blocks allocated outside
1333		 * inode->i_size. So truncate them
1334		 */
1335		ext4_orphan_add(handle, inode);
1336
1337	ret2 = ext4_journal_stop(handle);
1338	if (!ret)
1339		ret = ret2;
1340
1341	if (pos + len > inode->i_size && !verity) {
1342		ext4_truncate_failed_write(inode);
1343		/*
1344		 * If truncate failed early the inode might still be
1345		 * on the orphan list; we need to make sure the inode
1346		 * is removed from the orphan list in that case.
1347		 */
1348		if (inode->i_nlink)
1349			ext4_orphan_del(NULL, inode);
1350	}
1351
1352	return ret ? ret : copied;
1353}
1354
1355/*
1356 * This is a private version of folio_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_dirty_journalled_data() instead.
1359 */
1360static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361					    struct inode *inode,
1362					    struct folio *folio,
1363					    unsigned from, unsigned to)
1364{
1365	unsigned int block_start = 0, block_end;
1366	struct buffer_head *head, *bh;
1367
1368	bh = head = folio_buffers(folio);
1369	do {
1370		block_end = block_start + bh->b_size;
1371		if (buffer_new(bh)) {
1372			if (block_end > from && block_start < to) {
1373				if (!folio_test_uptodate(folio)) {
1374					unsigned start, size;
1375
1376					start = max(from, block_start);
1377					size = min(to, block_end) - start;
1378
1379					folio_zero_range(folio, start, size);
 
1380				}
1381				clear_buffer_new(bh);
1382				write_end_fn(handle, inode, bh);
1383			}
1384		}
1385		block_start = block_end;
1386		bh = bh->b_this_page;
1387	} while (bh != head);
1388}
1389
1390static int ext4_journalled_write_end(struct file *file,
1391				     struct address_space *mapping,
1392				     loff_t pos, unsigned len, unsigned copied,
1393				     struct folio *folio, void *fsdata)
1394{
 
1395	handle_t *handle = ext4_journal_current_handle();
1396	struct inode *inode = mapping->host;
1397	loff_t old_size = inode->i_size;
1398	int ret = 0, ret2;
1399	int partial = 0;
1400	unsigned from, to;
1401	int size_changed = 0;
1402	bool verity = ext4_verity_in_progress(inode);
1403
1404	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405	from = pos & (PAGE_SIZE - 1);
1406	to = from + len;
1407
1408	BUG_ON(!ext4_handle_valid(handle));
1409
1410	if (ext4_has_inline_data(inode))
1411		return ext4_write_inline_data_end(inode, pos, len, copied,
1412						  folio);
1413
1414	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415		copied = 0;
1416		ext4_journalled_zero_new_buffers(handle, inode, folio,
1417						 from, to);
1418	} else {
1419		if (unlikely(copied < len))
1420			ext4_journalled_zero_new_buffers(handle, inode, folio,
1421							 from + copied, to);
1422		ret = ext4_walk_page_buffers(handle, inode,
1423					     folio_buffers(folio),
1424					     from, from + copied, &partial,
1425					     write_end_fn);
1426		if (!partial)
1427			folio_mark_uptodate(folio);
1428	}
1429	if (!verity)
1430		size_changed = ext4_update_inode_size(inode, pos + copied);
1431	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432	folio_unlock(folio);
1433	folio_put(folio);
1434
1435	if (old_size < pos && !verity) {
1436		pagecache_isize_extended(inode, old_size, pos);
1437		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438	}
1439
1440	if (size_changed) {
1441		ret2 = ext4_mark_inode_dirty(handle, inode);
1442		if (!ret)
1443			ret = ret2;
1444	}
1445
1446	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447		/* if we have allocated more blocks and copied
1448		 * less. We will have blocks allocated outside
1449		 * inode->i_size. So truncate them
1450		 */
1451		ext4_orphan_add(handle, inode);
1452
1453	ret2 = ext4_journal_stop(handle);
1454	if (!ret)
1455		ret = ret2;
1456	if (pos + len > inode->i_size && !verity) {
1457		ext4_truncate_failed_write(inode);
1458		/*
1459		 * If truncate failed early the inode might still be
1460		 * on the orphan list; we need to make sure the inode
1461		 * is removed from the orphan list in that case.
1462		 */
1463		if (inode->i_nlink)
1464			ext4_orphan_del(NULL, inode);
1465	}
1466
1467	return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for 'nr_resv' clusters
1472 */
1473static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474{
1475	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476	struct ext4_inode_info *ei = EXT4_I(inode);
1477	int ret;
1478
1479	/*
1480	 * We will charge metadata quota at writeout time; this saves
1481	 * us from metadata over-estimation, though we may go over by
1482	 * a small amount in the end.  Here we just reserve for data.
1483	 */
1484	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&ei->i_block_reservation_lock);
1489	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490		spin_unlock(&ei->i_block_reservation_lock);
1491		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492		return -ENOSPC;
1493	}
1494	ei->i_reserved_data_blocks += nr_resv;
1495	trace_ext4_da_reserve_space(inode, nr_resv);
1496	spin_unlock(&ei->i_block_reservation_lock);
1497
1498	return 0;       /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504	struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506	if (!to_free)
1507		return;		/* Nothing to release, exit */
1508
1509	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511	trace_ext4_da_release_space(inode, to_free);
1512	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513		/*
1514		 * if there aren't enough reserved blocks, then the
1515		 * counter is messed up somewhere.  Since this
1516		 * function is called from invalidate page, it's
1517		 * harmless to return without any action.
1518		 */
1519		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520			 "ino %lu, to_free %d with only %d reserved "
1521			 "data blocks", inode->i_ino, to_free,
1522			 ei->i_reserved_data_blocks);
1523		WARN_ON(1);
1524		to_free = ei->i_reserved_data_blocks;
1525	}
1526	ei->i_reserved_data_blocks -= to_free;
1527
1528	/* update fs dirty data blocks counter */
1529	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541	/* These are input fields for ext4_do_writepages() */
1542	struct inode *inode;
1543	struct writeback_control *wbc;
1544	unsigned int can_map:1;	/* Can writepages call map blocks? */
1545
1546	/* These are internal state of ext4_do_writepages() */
1547	pgoff_t first_page;	/* The first page to write */
1548	pgoff_t next_page;	/* Current page to examine */
1549	pgoff_t last_page;	/* Last page to examine */
1550	/*
1551	 * Extent to map - this can be after first_page because that can be
1552	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553	 * is delalloc or unwritten.
1554	 */
1555	struct ext4_map_blocks map;
1556	struct ext4_io_submit io_submit;	/* IO submission data */
1557	unsigned int do_map:1;
1558	unsigned int scanned_until_end:1;
1559	unsigned int journalled_more_data:1;
1560};
1561
1562static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563				       bool invalidate)
1564{
1565	unsigned nr, i;
1566	pgoff_t index, end;
1567	struct folio_batch fbatch;
1568	struct inode *inode = mpd->inode;
1569	struct address_space *mapping = inode->i_mapping;
1570
1571	/* This is necessary when next_page == 0. */
1572	if (mpd->first_page >= mpd->next_page)
1573		return;
1574
1575	mpd->scanned_until_end = 0;
1576	index = mpd->first_page;
1577	end   = mpd->next_page - 1;
1578	if (invalidate) {
1579		ext4_lblk_t start, last;
1580		start = index << (PAGE_SHIFT - inode->i_blkbits);
1581		last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583		/*
1584		 * avoid racing with extent status tree scans made by
1585		 * ext4_insert_delayed_block()
1586		 */
1587		down_write(&EXT4_I(inode)->i_data_sem);
1588		ext4_es_remove_extent(inode, start, last - start + 1);
1589		up_write(&EXT4_I(inode)->i_data_sem);
1590	}
1591
1592	folio_batch_init(&fbatch);
1593	while (index <= end) {
1594		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595		if (nr == 0)
1596			break;
1597		for (i = 0; i < nr; i++) {
1598			struct folio *folio = fbatch.folios[i];
1599
1600			if (folio->index < mpd->first_page)
1601				continue;
1602			if (folio_next_index(folio) - 1 > end)
1603				continue;
1604			BUG_ON(!folio_test_locked(folio));
1605			BUG_ON(folio_test_writeback(folio));
1606			if (invalidate) {
1607				if (folio_mapped(folio))
1608					folio_clear_dirty_for_io(folio);
1609				block_invalidate_folio(folio, 0,
1610						folio_size(folio));
1611				folio_clear_uptodate(folio);
1612			}
1613			folio_unlock(folio);
1614		}
1615		folio_batch_release(&fbatch);
1616	}
1617}
1618
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622	struct super_block *sb = inode->i_sb;
1623	struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627			ext4_count_free_clusters(sb)));
1628	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630	       (long long) EXT4_C2B(EXT4_SB(sb),
1631		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633	       (long long) EXT4_C2B(EXT4_SB(sb),
1634		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637		 ei->i_reserved_data_blocks);
1638	return;
1639}
1640
1641/*
1642 * Check whether the cluster containing lblk has been allocated or has
1643 * delalloc reservation.
1644 *
1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646 * reservation, 2 if it's already been allocated, negative error code on
1647 * failure.
1648 */
1649static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650{
1651	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652	int ret;
1653
1654	/* Has delalloc reservation? */
1655	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656		return 1;
1657
1658	/* Already been allocated? */
1659	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660		return 2;
1661	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662	if (ret < 0)
1663		return ret;
1664	if (ret > 0)
1665		return 2;
1666
1667	return 0;
1668}
1669
1670/*
1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672 *                              status tree, incrementing the reserved
1673 *                              cluster/block count or making pending
1674 *                              reservations where needed
1675 *
1676 * @inode - file containing the newly added block
1677 * @lblk - start logical block to be added
1678 * @len - length of blocks to be added
1679 *
1680 * Returns 0 on success, negative error code on failure.
1681 */
1682static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683				      ext4_lblk_t len)
1684{
1685	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686	int ret;
1687	bool lclu_allocated = false;
1688	bool end_allocated = false;
1689	ext4_lblk_t resv_clu;
1690	ext4_lblk_t end = lblk + len - 1;
1691
1692	/*
1693	 * If the cluster containing lblk or end is shared with a delayed,
1694	 * written, or unwritten extent in a bigalloc file system, it's
1695	 * already been accounted for and does not need to be reserved.
1696	 * A pending reservation must be made for the cluster if it's
1697	 * shared with a written or unwritten extent and doesn't already
1698	 * have one.  Written and unwritten extents can be purged from the
1699	 * extents status tree if the system is under memory pressure, so
1700	 * it's necessary to examine the extent tree if a search of the
1701	 * extents status tree doesn't get a match.
1702	 */
1703	if (sbi->s_cluster_ratio == 1) {
1704		ret = ext4_da_reserve_space(inode, len);
1705		if (ret != 0)   /* ENOSPC */
1706			return ret;
1707	} else {   /* bigalloc */
1708		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710		ret = ext4_clu_alloc_state(inode, lblk);
1711		if (ret < 0)
1712			return ret;
1713		if (ret > 0) {
1714			resv_clu--;
1715			lclu_allocated = (ret == 2);
1716		}
1717
1718		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719			ret = ext4_clu_alloc_state(inode, end);
1720			if (ret < 0)
1721				return ret;
1722			if (ret > 0) {
1723				resv_clu--;
1724				end_allocated = (ret == 2);
1725			}
1726		}
1727
1728		if (resv_clu) {
1729			ret = ext4_da_reserve_space(inode, resv_clu);
1730			if (ret != 0)   /* ENOSPC */
1731				return ret;
1732		}
1733	}
1734
1735	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736				      end_allocated);
1737	return 0;
1738}
1739
1740/*
1741 * Looks up the requested blocks and sets the delalloc extent map.
1742 * First try to look up for the extent entry that contains the requested
1743 * blocks in the extent status tree without i_data_sem, then try to look
1744 * up for the ondisk extent mapping with i_data_sem in read mode,
1745 * finally hold i_data_sem in write mode, looks up again and add a
1746 * delalloc extent entry if it still couldn't find any extent. Pass out
1747 * the mapped extent through @map and return 0 on success.
1748 */
1749static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750{
1751	struct extent_status es;
1752	int retval;
 
1753#ifdef ES_AGGRESSIVE_TEST
1754	struct ext4_map_blocks orig_map;
1755
1756	memcpy(&orig_map, map, sizeof(*map));
1757#endif
1758
 
 
 
1759	map->m_flags = 0;
1760	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1761		  (unsigned long) map->m_lblk);
1762
1763	/* Lookup extent status tree firstly */
1764	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765		map->m_len = min_t(unsigned int, map->m_len,
1766				   es.es_len - (map->m_lblk - es.es_lblk));
1767
1768		if (ext4_es_is_hole(&es))
1769			goto add_delayed;
1770
1771found:
1772		/*
1773		 * Delayed extent could be allocated by fallocate.
1774		 * So we need to check it.
1775		 */
1776		if (ext4_es_is_delayed(&es)) {
1777			map->m_flags |= EXT4_MAP_DELAYED;
 
 
1778			return 0;
1779		}
1780
1781		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
 
 
 
 
1782		if (ext4_es_is_written(&es))
1783			map->m_flags |= EXT4_MAP_MAPPED;
1784		else if (ext4_es_is_unwritten(&es))
1785			map->m_flags |= EXT4_MAP_UNWRITTEN;
1786		else
1787			BUG();
1788
1789#ifdef ES_AGGRESSIVE_TEST
1790		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791#endif
1792		return 0;
1793	}
1794
1795	/*
1796	 * Try to see if we can get the block without requesting a new
1797	 * file system block.
1798	 */
1799	down_read(&EXT4_I(inode)->i_data_sem);
1800	if (ext4_has_inline_data(inode))
1801		retval = 0;
 
 
1802	else
1803		retval = ext4_map_query_blocks(NULL, inode, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804	up_read(&EXT4_I(inode)->i_data_sem);
1805	if (retval)
1806		return retval < 0 ? retval : 0;
1807
1808add_delayed:
1809	down_write(&EXT4_I(inode)->i_data_sem);
1810	/*
1811	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812	 * and fallocate path (no folio lock) can race. Make sure we
1813	 * lookup the extent status tree here again while i_data_sem
1814	 * is held in write mode, before inserting a new da entry in
1815	 * the extent status tree.
1816	 */
1817	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818		map->m_len = min_t(unsigned int, map->m_len,
1819				   es.es_len - (map->m_lblk - es.es_lblk));
1820
1821		if (!ext4_es_is_hole(&es)) {
1822			up_write(&EXT4_I(inode)->i_data_sem);
1823			goto found;
1824		}
1825	} else if (!ext4_has_inline_data(inode)) {
1826		retval = ext4_map_query_blocks(NULL, inode, map);
1827		if (retval) {
1828			up_write(&EXT4_I(inode)->i_data_sem);
1829			return retval < 0 ? retval : 0;
1830		}
1831	}
1832
1833	map->m_flags |= EXT4_MAP_DELAYED;
1834	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835	up_write(&EXT4_I(inode)->i_data_sem);
 
 
1836
 
 
 
1837	return retval;
1838}
1839
1840/*
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin().  It will either return mapped block or
1843 * reserve space for a single block.
1844 *
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1847 *
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1851 */
1852int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853			   struct buffer_head *bh, int create)
1854{
1855	struct ext4_map_blocks map;
1856	sector_t invalid_block = ~((sector_t) 0xffff);
1857	int ret = 0;
1858
1859	BUG_ON(create == 0);
1860	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863		invalid_block = ~0;
1864
1865	map.m_lblk = iblock;
1866	map.m_len = 1;
1867
1868	/*
1869	 * first, we need to know whether the block is allocated already
1870	 * preallocated blocks are unmapped but should treated
1871	 * the same as allocated blocks.
1872	 */
1873	ret = ext4_da_map_blocks(inode, &map);
1874	if (ret < 0)
1875		return ret;
1876
1877	if (map.m_flags & EXT4_MAP_DELAYED) {
1878		map_bh(bh, inode->i_sb, invalid_block);
1879		set_buffer_new(bh);
1880		set_buffer_delay(bh);
1881		return 0;
1882	}
1883
1884	map_bh(bh, inode->i_sb, map.m_pblk);
1885	ext4_update_bh_state(bh, map.m_flags);
1886
1887	if (buffer_unwritten(bh)) {
1888		/* A delayed write to unwritten bh should be marked
1889		 * new and mapped.  Mapped ensures that we don't do
1890		 * get_block multiple times when we write to the same
1891		 * offset and new ensures that we do proper zero out
1892		 * for partial write.
1893		 */
1894		set_buffer_new(bh);
1895		set_buffer_mapped(bh);
1896	}
1897	return 0;
1898}
1899
1900static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901{
1902	mpd->first_page += folio_nr_pages(folio);
1903	folio_unlock(folio);
1904}
1905
1906static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907{
1908	size_t len;
1909	loff_t size;
1910	int err;
1911
1912	BUG_ON(folio->index != mpd->first_page);
1913	folio_clear_dirty_for_io(folio);
1914	/*
1915	 * We have to be very careful here!  Nothing protects writeback path
1916	 * against i_size changes and the page can be writeably mapped into
1917	 * page tables. So an application can be growing i_size and writing
1918	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919	 * write-protects our page in page tables and the page cannot get
1920	 * written to again until we release folio lock. So only after
1921	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923	 * on the barrier provided by folio_test_clear_dirty() in
1924	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925	 * after page tables are updated.
1926	 */
1927	size = i_size_read(mpd->inode);
1928	len = folio_size(folio);
1929	if (folio_pos(folio) + len > size &&
1930	    !ext4_verity_in_progress(mpd->inode))
1931		len = size & (len - 1);
1932	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933	if (!err)
1934		mpd->wbc->nr_to_write--;
1935
1936	return err;
1937}
1938
1939#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941/*
1942 * mballoc gives us at most this number of blocks...
1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944 * The rest of mballoc seems to handle chunks up to full group size.
1945 */
1946#define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948/*
1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950 *
1951 * @mpd - extent of blocks
1952 * @lblk - logical number of the block in the file
1953 * @bh - buffer head we want to add to the extent
1954 *
1955 * The function is used to collect contig. blocks in the same state. If the
1956 * buffer doesn't require mapping for writeback and we haven't started the
1957 * extent of buffers to map yet, the function returns 'true' immediately - the
1958 * caller can write the buffer right away. Otherwise the function returns true
1959 * if the block has been added to the extent, false if the block couldn't be
1960 * added.
1961 */
1962static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963				   struct buffer_head *bh)
1964{
1965	struct ext4_map_blocks *map = &mpd->map;
1966
1967	/* Buffer that doesn't need mapping for writeback? */
1968	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970		/* So far no extent to map => we write the buffer right away */
1971		if (map->m_len == 0)
1972			return true;
1973		return false;
1974	}
1975
1976	/* First block in the extent? */
1977	if (map->m_len == 0) {
1978		/* We cannot map unless handle is started... */
1979		if (!mpd->do_map)
1980			return false;
1981		map->m_lblk = lblk;
1982		map->m_len = 1;
1983		map->m_flags = bh->b_state & BH_FLAGS;
1984		return true;
1985	}
1986
1987	/* Don't go larger than mballoc is willing to allocate */
1988	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989		return false;
1990
1991	/* Can we merge the block to our big extent? */
1992	if (lblk == map->m_lblk + map->m_len &&
1993	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1994		map->m_len++;
1995		return true;
1996	}
1997	return false;
1998}
1999
2000/*
2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002 *
2003 * @mpd - extent of blocks for mapping
2004 * @head - the first buffer in the page
2005 * @bh - buffer we should start processing from
2006 * @lblk - logical number of the block in the file corresponding to @bh
2007 *
2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009 * the page for IO if all buffers in this page were mapped and there's no
2010 * accumulated extent of buffers to map or add buffers in the page to the
2011 * extent of buffers to map. The function returns 1 if the caller can continue
2012 * by processing the next page, 0 if it should stop adding buffers to the
2013 * extent to map because we cannot extend it anymore. It can also return value
2014 * < 0 in case of error during IO submission.
2015 */
2016static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017				   struct buffer_head *head,
2018				   struct buffer_head *bh,
2019				   ext4_lblk_t lblk)
2020{
2021	struct inode *inode = mpd->inode;
2022	int err;
2023	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024							>> inode->i_blkbits;
2025
2026	if (ext4_verity_in_progress(inode))
2027		blocks = EXT_MAX_BLOCKS;
2028
2029	do {
2030		BUG_ON(buffer_locked(bh));
2031
2032		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033			/* Found extent to map? */
2034			if (mpd->map.m_len)
2035				return 0;
2036			/* Buffer needs mapping and handle is not started? */
2037			if (!mpd->do_map)
2038				return 0;
2039			/* Everything mapped so far and we hit EOF */
2040			break;
2041		}
2042	} while (lblk++, (bh = bh->b_this_page) != head);
2043	/* So far everything mapped? Submit the page for IO. */
2044	if (mpd->map.m_len == 0) {
2045		err = mpage_submit_folio(mpd, head->b_folio);
2046		if (err < 0)
2047			return err;
2048		mpage_folio_done(mpd, head->b_folio);
2049	}
2050	if (lblk >= blocks) {
2051		mpd->scanned_until_end = 1;
2052		return 0;
2053	}
2054	return 1;
2055}
2056
2057/*
2058 * mpage_process_folio - update folio buffers corresponding to changed extent
2059 *			 and may submit fully mapped page for IO
2060 * @mpd: description of extent to map, on return next extent to map
2061 * @folio: Contains these buffers.
2062 * @m_lblk: logical block mapping.
2063 * @m_pblk: corresponding physical mapping.
2064 * @map_bh: determines on return whether this page requires any further
2065 *		  mapping or not.
2066 *
2067 * Scan given folio buffers corresponding to changed extent and update buffer
2068 * state according to new extent state.
2069 * We map delalloc buffers to their physical location, clear unwritten bits.
2070 * If the given folio is not fully mapped, we update @mpd to the next extent in
2071 * the given folio that needs mapping & return @map_bh as true.
2072 */
2073static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075			      bool *map_bh)
2076{
2077	struct buffer_head *head, *bh;
2078	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079	ext4_lblk_t lblk = *m_lblk;
2080	ext4_fsblk_t pblock = *m_pblk;
2081	int err = 0;
2082	int blkbits = mpd->inode->i_blkbits;
2083	ssize_t io_end_size = 0;
2084	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086	bh = head = folio_buffers(folio);
2087	do {
2088		if (lblk < mpd->map.m_lblk)
2089			continue;
2090		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091			/*
2092			 * Buffer after end of mapped extent.
2093			 * Find next buffer in the folio to map.
2094			 */
2095			mpd->map.m_len = 0;
2096			mpd->map.m_flags = 0;
2097			io_end_vec->size += io_end_size;
2098
2099			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100			if (err > 0)
2101				err = 0;
2102			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103				io_end_vec = ext4_alloc_io_end_vec(io_end);
2104				if (IS_ERR(io_end_vec)) {
2105					err = PTR_ERR(io_end_vec);
2106					goto out;
2107				}
2108				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109			}
2110			*map_bh = true;
2111			goto out;
2112		}
2113		if (buffer_delay(bh)) {
2114			clear_buffer_delay(bh);
2115			bh->b_blocknr = pblock++;
2116		}
2117		clear_buffer_unwritten(bh);
2118		io_end_size += (1 << blkbits);
2119	} while (lblk++, (bh = bh->b_this_page) != head);
2120
2121	io_end_vec->size += io_end_size;
2122	*map_bh = false;
2123out:
2124	*m_lblk = lblk;
2125	*m_pblk = pblock;
2126	return err;
2127}
2128
2129/*
2130 * mpage_map_buffers - update buffers corresponding to changed extent and
2131 *		       submit fully mapped pages for IO
2132 *
2133 * @mpd - description of extent to map, on return next extent to map
2134 *
2135 * Scan buffers corresponding to changed extent (we expect corresponding pages
2136 * to be already locked) and update buffer state according to new extent state.
2137 * We map delalloc buffers to their physical location, clear unwritten bits,
2138 * and mark buffers as uninit when we perform writes to unwritten extents
2139 * and do extent conversion after IO is finished. If the last page is not fully
2140 * mapped, we update @map to the next extent in the last page that needs
2141 * mapping. Otherwise we submit the page for IO.
2142 */
2143static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144{
2145	struct folio_batch fbatch;
2146	unsigned nr, i;
2147	struct inode *inode = mpd->inode;
2148	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149	pgoff_t start, end;
2150	ext4_lblk_t lblk;
2151	ext4_fsblk_t pblock;
2152	int err;
2153	bool map_bh = false;
2154
2155	start = mpd->map.m_lblk >> bpp_bits;
2156	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157	lblk = start << bpp_bits;
2158	pblock = mpd->map.m_pblk;
2159
2160	folio_batch_init(&fbatch);
2161	while (start <= end) {
2162		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163		if (nr == 0)
2164			break;
2165		for (i = 0; i < nr; i++) {
2166			struct folio *folio = fbatch.folios[i];
2167
2168			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169						 &map_bh);
2170			/*
2171			 * If map_bh is true, means page may require further bh
2172			 * mapping, or maybe the page was submitted for IO.
2173			 * So we return to call further extent mapping.
2174			 */
2175			if (err < 0 || map_bh)
2176				goto out;
2177			/* Page fully mapped - let IO run! */
2178			err = mpage_submit_folio(mpd, folio);
2179			if (err < 0)
2180				goto out;
2181			mpage_folio_done(mpd, folio);
2182		}
2183		folio_batch_release(&fbatch);
2184	}
2185	/* Extent fully mapped and matches with page boundary. We are done. */
2186	mpd->map.m_len = 0;
2187	mpd->map.m_flags = 0;
2188	return 0;
2189out:
2190	folio_batch_release(&fbatch);
2191	return err;
2192}
2193
2194static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195{
2196	struct inode *inode = mpd->inode;
2197	struct ext4_map_blocks *map = &mpd->map;
2198	int get_blocks_flags;
2199	int err, dioread_nolock;
2200
2201	trace_ext4_da_write_pages_extent(inode, map);
2202	/*
2203	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204	 * to convert an unwritten extent to be initialized (in the case
2205	 * where we have written into one or more preallocated blocks).  It is
2206	 * possible that we're going to need more metadata blocks than
2207	 * previously reserved. However we must not fail because we're in
2208	 * writeback and there is nothing we can do about it so it might result
2209	 * in data loss.  So use reserved blocks to allocate metadata if
2210	 * possible.
 
 
 
 
 
2211	 */
2212	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214			   EXT4_GET_BLOCKS_IO_SUBMIT;
2215	dioread_nolock = ext4_should_dioread_nolock(inode);
2216	if (dioread_nolock)
2217		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
 
 
2218
2219	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220	if (err < 0)
2221		return err;
2222	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223		if (!mpd->io_submit.io_end->handle &&
2224		    ext4_handle_valid(handle)) {
2225			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226			handle->h_rsv_handle = NULL;
2227		}
2228		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229	}
2230
2231	BUG_ON(map->m_len == 0);
2232	return 0;
2233}
2234
2235/*
2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237 *				 mpd->len and submit pages underlying it for IO
2238 *
2239 * @handle - handle for journal operations
2240 * @mpd - extent to map
2241 * @give_up_on_write - we set this to true iff there is a fatal error and there
2242 *                     is no hope of writing the data. The caller should discard
2243 *                     dirty pages to avoid infinite loops.
2244 *
2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247 * them to initialized or split the described range from larger unwritten
2248 * extent. Note that we need not map all the described range since allocation
2249 * can return less blocks or the range is covered by more unwritten extents. We
2250 * cannot map more because we are limited by reserved transaction credits. On
2251 * the other hand we always make sure that the last touched page is fully
2252 * mapped so that it can be written out (and thus forward progress is
2253 * guaranteed). After mapping we submit all mapped pages for IO.
2254 */
2255static int mpage_map_and_submit_extent(handle_t *handle,
2256				       struct mpage_da_data *mpd,
2257				       bool *give_up_on_write)
2258{
2259	struct inode *inode = mpd->inode;
2260	struct ext4_map_blocks *map = &mpd->map;
2261	int err;
2262	loff_t disksize;
2263	int progress = 0;
2264	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265	struct ext4_io_end_vec *io_end_vec;
2266
2267	io_end_vec = ext4_alloc_io_end_vec(io_end);
2268	if (IS_ERR(io_end_vec))
2269		return PTR_ERR(io_end_vec);
2270	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271	do {
2272		err = mpage_map_one_extent(handle, mpd);
2273		if (err < 0) {
2274			struct super_block *sb = inode->i_sb;
2275
2276			if (ext4_forced_shutdown(sb))
2277				goto invalidate_dirty_pages;
2278			/*
2279			 * Let the uper layers retry transient errors.
2280			 * In the case of ENOSPC, if ext4_count_free_blocks()
2281			 * is non-zero, a commit should free up blocks.
2282			 */
2283			if ((err == -ENOMEM) ||
2284			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285				if (progress)
2286					goto update_disksize;
2287				return err;
2288			}
2289			ext4_msg(sb, KERN_CRIT,
2290				 "Delayed block allocation failed for "
2291				 "inode %lu at logical offset %llu with"
2292				 " max blocks %u with error %d",
2293				 inode->i_ino,
2294				 (unsigned long long)map->m_lblk,
2295				 (unsigned)map->m_len, -err);
2296			ext4_msg(sb, KERN_CRIT,
2297				 "This should not happen!! Data will "
2298				 "be lost\n");
2299			if (err == -ENOSPC)
2300				ext4_print_free_blocks(inode);
2301		invalidate_dirty_pages:
2302			*give_up_on_write = true;
2303			return err;
2304		}
2305		progress = 1;
2306		/*
2307		 * Update buffer state, submit mapped pages, and get us new
2308		 * extent to map
2309		 */
2310		err = mpage_map_and_submit_buffers(mpd);
2311		if (err < 0)
2312			goto update_disksize;
2313	} while (map->m_len);
2314
2315update_disksize:
2316	/*
2317	 * Update on-disk size after IO is submitted.  Races with
2318	 * truncate are avoided by checking i_size under i_data_sem.
2319	 */
2320	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322		int err2;
2323		loff_t i_size;
2324
2325		down_write(&EXT4_I(inode)->i_data_sem);
2326		i_size = i_size_read(inode);
2327		if (disksize > i_size)
2328			disksize = i_size;
2329		if (disksize > EXT4_I(inode)->i_disksize)
2330			EXT4_I(inode)->i_disksize = disksize;
2331		up_write(&EXT4_I(inode)->i_data_sem);
2332		err2 = ext4_mark_inode_dirty(handle, inode);
2333		if (err2) {
2334			ext4_error_err(inode->i_sb, -err2,
2335				       "Failed to mark inode %lu dirty",
2336				       inode->i_ino);
2337		}
2338		if (!err)
2339			err = err2;
2340	}
2341	return err;
2342}
2343
2344/*
2345 * Calculate the total number of credits to reserve for one writepages
2346 * iteration. This is called from ext4_writepages(). We map an extent of
2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349 * bpp - 1 blocks in bpp different extents.
2350 */
2351static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352{
2353	int bpp = ext4_journal_blocks_per_page(inode);
2354
2355	return ext4_meta_trans_blocks(inode,
2356				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357}
2358
2359static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360				     size_t len)
2361{
2362	struct buffer_head *page_bufs = folio_buffers(folio);
2363	struct inode *inode = folio->mapping->host;
2364	int ret, err;
2365
2366	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367				     NULL, do_journal_get_write_access);
2368	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369				     NULL, write_end_fn);
2370	if (ret == 0)
2371		ret = err;
2372	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373	if (ret == 0)
2374		ret = err;
2375	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377	return ret;
2378}
2379
2380static int mpage_journal_page_buffers(handle_t *handle,
2381				      struct mpage_da_data *mpd,
2382				      struct folio *folio)
2383{
2384	struct inode *inode = mpd->inode;
2385	loff_t size = i_size_read(inode);
2386	size_t len = folio_size(folio);
2387
2388	folio_clear_checked(folio);
2389	mpd->wbc->nr_to_write--;
2390
2391	if (folio_pos(folio) + len > size &&
2392	    !ext4_verity_in_progress(inode))
2393		len = size & (len - 1);
2394
2395	return ext4_journal_folio_buffers(handle, folio, len);
2396}
2397
2398/*
2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400 * 				 needing mapping, submit mapped pages
2401 *
2402 * @mpd - where to look for pages
2403 *
2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405 * IO immediately. If we cannot map blocks, we submit just already mapped
2406 * buffers in the page for IO and keep page dirty. When we can map blocks and
2407 * we find a page which isn't mapped we start accumulating extent of buffers
2408 * underlying these pages that needs mapping (formed by either delayed or
2409 * unwritten buffers). We also lock the pages containing these buffers. The
2410 * extent found is returned in @mpd structure (starting at mpd->lblk with
2411 * length mpd->len blocks).
2412 *
2413 * Note that this function can attach bios to one io_end structure which are
2414 * neither logically nor physically contiguous. Although it may seem as an
2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416 * case as we need to track IO to all buffers underlying a page in one io_end.
2417 */
2418static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419{
2420	struct address_space *mapping = mpd->inode->i_mapping;
2421	struct folio_batch fbatch;
2422	unsigned int nr_folios;
2423	pgoff_t index = mpd->first_page;
2424	pgoff_t end = mpd->last_page;
2425	xa_mark_t tag;
2426	int i, err = 0;
2427	int blkbits = mpd->inode->i_blkbits;
2428	ext4_lblk_t lblk;
2429	struct buffer_head *head;
2430	handle_t *handle = NULL;
2431	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434		tag = PAGECACHE_TAG_TOWRITE;
2435	else
2436		tag = PAGECACHE_TAG_DIRTY;
2437
2438	mpd->map.m_len = 0;
2439	mpd->next_page = index;
2440	if (ext4_should_journal_data(mpd->inode)) {
2441		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442					    bpp);
2443		if (IS_ERR(handle))
2444			return PTR_ERR(handle);
2445	}
2446	folio_batch_init(&fbatch);
2447	while (index <= end) {
2448		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449				tag, &fbatch);
2450		if (nr_folios == 0)
2451			break;
2452
2453		for (i = 0; i < nr_folios; i++) {
2454			struct folio *folio = fbatch.folios[i];
2455
2456			/*
2457			 * Accumulated enough dirty pages? This doesn't apply
2458			 * to WB_SYNC_ALL mode. For integrity sync we have to
2459			 * keep going because someone may be concurrently
2460			 * dirtying pages, and we might have synced a lot of
2461			 * newly appeared dirty pages, but have not synced all
2462			 * of the old dirty pages.
2463			 */
2464			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465			    mpd->wbc->nr_to_write <=
2466			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467				goto out;
2468
2469			/* If we can't merge this page, we are done. */
2470			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471				goto out;
2472
2473			if (handle) {
2474				err = ext4_journal_ensure_credits(handle, bpp,
2475								  0);
2476				if (err < 0)
2477					goto out;
2478			}
2479
2480			folio_lock(folio);
2481			/*
2482			 * If the page is no longer dirty, or its mapping no
2483			 * longer corresponds to inode we are writing (which
2484			 * means it has been truncated or invalidated), or the
2485			 * page is already under writeback and we are not doing
2486			 * a data integrity writeback, skip the page
2487			 */
2488			if (!folio_test_dirty(folio) ||
2489			    (folio_test_writeback(folio) &&
2490			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491			    unlikely(folio->mapping != mapping)) {
2492				folio_unlock(folio);
2493				continue;
2494			}
2495
2496			folio_wait_writeback(folio);
2497			BUG_ON(folio_test_writeback(folio));
2498
2499			/*
2500			 * Should never happen but for buggy code in
2501			 * other subsystems that call
2502			 * set_page_dirty() without properly warning
2503			 * the file system first.  See [1] for more
2504			 * information.
2505			 *
2506			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507			 */
2508			if (!folio_buffers(folio)) {
2509				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510				folio_clear_dirty(folio);
2511				folio_unlock(folio);
2512				continue;
2513			}
2514
2515			if (mpd->map.m_len == 0)
2516				mpd->first_page = folio->index;
2517			mpd->next_page = folio_next_index(folio);
2518			/*
2519			 * Writeout when we cannot modify metadata is simple.
2520			 * Just submit the page. For data=journal mode we
2521			 * first handle writeout of the page for checkpoint and
2522			 * only after that handle delayed page dirtying. This
2523			 * makes sure current data is checkpointed to the final
2524			 * location before possibly journalling it again which
2525			 * is desirable when the page is frequently dirtied
2526			 * through a pin.
2527			 */
2528			if (!mpd->can_map) {
2529				err = mpage_submit_folio(mpd, folio);
2530				if (err < 0)
2531					goto out;
2532				/* Pending dirtying of journalled data? */
2533				if (folio_test_checked(folio)) {
2534					err = mpage_journal_page_buffers(handle,
2535						mpd, folio);
2536					if (err < 0)
2537						goto out;
2538					mpd->journalled_more_data = 1;
2539				}
2540				mpage_folio_done(mpd, folio);
2541			} else {
2542				/* Add all dirty buffers to mpd */
2543				lblk = ((ext4_lblk_t)folio->index) <<
2544					(PAGE_SHIFT - blkbits);
2545				head = folio_buffers(folio);
2546				err = mpage_process_page_bufs(mpd, head, head,
2547						lblk);
2548				if (err <= 0)
2549					goto out;
2550				err = 0;
2551			}
2552		}
2553		folio_batch_release(&fbatch);
2554		cond_resched();
2555	}
2556	mpd->scanned_until_end = 1;
2557	if (handle)
2558		ext4_journal_stop(handle);
2559	return 0;
2560out:
2561	folio_batch_release(&fbatch);
2562	if (handle)
2563		ext4_journal_stop(handle);
2564	return err;
2565}
2566
2567static int ext4_do_writepages(struct mpage_da_data *mpd)
2568{
2569	struct writeback_control *wbc = mpd->wbc;
2570	pgoff_t	writeback_index = 0;
2571	long nr_to_write = wbc->nr_to_write;
2572	int range_whole = 0;
2573	int cycled = 1;
2574	handle_t *handle = NULL;
2575	struct inode *inode = mpd->inode;
2576	struct address_space *mapping = inode->i_mapping;
2577	int needed_blocks, rsv_blocks = 0, ret = 0;
2578	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579	struct blk_plug plug;
2580	bool give_up_on_write = false;
2581
2582	trace_ext4_writepages(inode, wbc);
2583
2584	/*
2585	 * No pages to write? This is mainly a kludge to avoid starting
2586	 * a transaction for special inodes like journal inode on last iput()
2587	 * because that could violate lock ordering on umount
2588	 */
2589	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590		goto out_writepages;
2591
2592	/*
2593	 * If the filesystem has aborted, it is read-only, so return
2594	 * right away instead of dumping stack traces later on that
2595	 * will obscure the real source of the problem.  We test
2596	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597	 * the latter could be true if the filesystem is mounted
2598	 * read-only, and in that case, ext4_writepages should
2599	 * *never* be called, so if that ever happens, we would want
2600	 * the stack trace.
2601	 */
2602	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603		ret = -EROFS;
2604		goto out_writepages;
2605	}
2606
2607	/*
2608	 * If we have inline data and arrive here, it means that
2609	 * we will soon create the block for the 1st page, so
2610	 * we'd better clear the inline data here.
2611	 */
2612	if (ext4_has_inline_data(inode)) {
2613		/* Just inode will be modified... */
2614		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615		if (IS_ERR(handle)) {
2616			ret = PTR_ERR(handle);
2617			goto out_writepages;
2618		}
2619		BUG_ON(ext4_test_inode_state(inode,
2620				EXT4_STATE_MAY_INLINE_DATA));
2621		ext4_destroy_inline_data(handle, inode);
2622		ext4_journal_stop(handle);
2623	}
2624
2625	/*
2626	 * data=journal mode does not do delalloc so we just need to writeout /
2627	 * journal already mapped buffers. On the other hand we need to commit
2628	 * transaction to make data stable. We expect all the data to be
2629	 * already in the journal (the only exception are DMA pinned pages
2630	 * dirtied behind our back) so we commit transaction here and run the
2631	 * writeback loop to checkpoint them. The checkpointing is not actually
2632	 * necessary to make data persistent *but* quite a few places (extent
2633	 * shifting operations, fsverity, ...) depend on being able to drop
2634	 * pagecache pages after calling filemap_write_and_wait() and for that
2635	 * checkpointing needs to happen.
2636	 */
2637	if (ext4_should_journal_data(inode)) {
2638		mpd->can_map = 0;
2639		if (wbc->sync_mode == WB_SYNC_ALL)
2640			ext4_fc_commit(sbi->s_journal,
2641				       EXT4_I(inode)->i_datasync_tid);
2642	}
2643	mpd->journalled_more_data = 0;
2644
2645	if (ext4_should_dioread_nolock(inode)) {
2646		/*
2647		 * We may need to convert up to one extent per block in
2648		 * the page and we may dirty the inode.
2649		 */
2650		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651						PAGE_SIZE >> inode->i_blkbits);
2652	}
2653
2654	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655		range_whole = 1;
2656
2657	if (wbc->range_cyclic) {
2658		writeback_index = mapping->writeback_index;
2659		if (writeback_index)
2660			cycled = 0;
2661		mpd->first_page = writeback_index;
2662		mpd->last_page = -1;
2663	} else {
2664		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666	}
2667
2668	ext4_io_submit_init(&mpd->io_submit, wbc);
2669retry:
2670	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671		tag_pages_for_writeback(mapping, mpd->first_page,
2672					mpd->last_page);
2673	blk_start_plug(&plug);
2674
2675	/*
2676	 * First writeback pages that don't need mapping - we can avoid
2677	 * starting a transaction unnecessarily and also avoid being blocked
2678	 * in the block layer on device congestion while having transaction
2679	 * started.
2680	 */
2681	mpd->do_map = 0;
2682	mpd->scanned_until_end = 0;
2683	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684	if (!mpd->io_submit.io_end) {
2685		ret = -ENOMEM;
2686		goto unplug;
2687	}
2688	ret = mpage_prepare_extent_to_map(mpd);
2689	/* Unlock pages we didn't use */
2690	mpage_release_unused_pages(mpd, false);
2691	/* Submit prepared bio */
2692	ext4_io_submit(&mpd->io_submit);
2693	ext4_put_io_end_defer(mpd->io_submit.io_end);
2694	mpd->io_submit.io_end = NULL;
2695	if (ret < 0)
2696		goto unplug;
2697
2698	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699		/* For each extent of pages we use new io_end */
2700		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701		if (!mpd->io_submit.io_end) {
2702			ret = -ENOMEM;
2703			break;
2704		}
2705
2706		WARN_ON_ONCE(!mpd->can_map);
2707		/*
2708		 * We have two constraints: We find one extent to map and we
2709		 * must always write out whole page (makes a difference when
2710		 * blocksize < pagesize) so that we don't block on IO when we
2711		 * try to write out the rest of the page. Journalled mode is
2712		 * not supported by delalloc.
2713		 */
2714		BUG_ON(ext4_should_journal_data(inode));
2715		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717		/* start a new transaction */
2718		handle = ext4_journal_start_with_reserve(inode,
2719				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720		if (IS_ERR(handle)) {
2721			ret = PTR_ERR(handle);
2722			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723			       "%ld pages, ino %lu; err %d", __func__,
2724				wbc->nr_to_write, inode->i_ino, ret);
2725			/* Release allocated io_end */
2726			ext4_put_io_end(mpd->io_submit.io_end);
2727			mpd->io_submit.io_end = NULL;
2728			break;
2729		}
2730		mpd->do_map = 1;
2731
2732		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733		ret = mpage_prepare_extent_to_map(mpd);
2734		if (!ret && mpd->map.m_len)
2735			ret = mpage_map_and_submit_extent(handle, mpd,
2736					&give_up_on_write);
2737		/*
2738		 * Caution: If the handle is synchronous,
2739		 * ext4_journal_stop() can wait for transaction commit
2740		 * to finish which may depend on writeback of pages to
2741		 * complete or on page lock to be released.  In that
2742		 * case, we have to wait until after we have
2743		 * submitted all the IO, released page locks we hold,
2744		 * and dropped io_end reference (for extent conversion
2745		 * to be able to complete) before stopping the handle.
2746		 */
2747		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748			ext4_journal_stop(handle);
2749			handle = NULL;
2750			mpd->do_map = 0;
2751		}
2752		/* Unlock pages we didn't use */
2753		mpage_release_unused_pages(mpd, give_up_on_write);
2754		/* Submit prepared bio */
2755		ext4_io_submit(&mpd->io_submit);
2756
2757		/*
2758		 * Drop our io_end reference we got from init. We have
2759		 * to be careful and use deferred io_end finishing if
2760		 * we are still holding the transaction as we can
2761		 * release the last reference to io_end which may end
2762		 * up doing unwritten extent conversion.
2763		 */
2764		if (handle) {
2765			ext4_put_io_end_defer(mpd->io_submit.io_end);
2766			ext4_journal_stop(handle);
2767		} else
2768			ext4_put_io_end(mpd->io_submit.io_end);
2769		mpd->io_submit.io_end = NULL;
2770
2771		if (ret == -ENOSPC && sbi->s_journal) {
2772			/*
2773			 * Commit the transaction which would
2774			 * free blocks released in the transaction
2775			 * and try again
2776			 */
2777			jbd2_journal_force_commit_nested(sbi->s_journal);
2778			ret = 0;
2779			continue;
2780		}
2781		/* Fatal error - ENOMEM, EIO... */
2782		if (ret)
2783			break;
2784	}
2785unplug:
2786	blk_finish_plug(&plug);
2787	if (!ret && !cycled && wbc->nr_to_write > 0) {
2788		cycled = 1;
2789		mpd->last_page = writeback_index - 1;
2790		mpd->first_page = 0;
2791		goto retry;
2792	}
2793
2794	/* Update index */
2795	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796		/*
2797		 * Set the writeback_index so that range_cyclic
2798		 * mode will write it back later
2799		 */
2800		mapping->writeback_index = mpd->first_page;
2801
2802out_writepages:
2803	trace_ext4_writepages_result(inode, wbc, ret,
2804				     nr_to_write - wbc->nr_to_write);
2805	return ret;
2806}
2807
2808static int ext4_writepages(struct address_space *mapping,
2809			   struct writeback_control *wbc)
2810{
2811	struct super_block *sb = mapping->host->i_sb;
2812	struct mpage_da_data mpd = {
2813		.inode = mapping->host,
2814		.wbc = wbc,
2815		.can_map = 1,
2816	};
2817	int ret;
2818	int alloc_ctx;
2819
2820	if (unlikely(ext4_forced_shutdown(sb)))
2821		return -EIO;
2822
2823	alloc_ctx = ext4_writepages_down_read(sb);
2824	ret = ext4_do_writepages(&mpd);
2825	/*
2826	 * For data=journal writeback we could have come across pages marked
2827	 * for delayed dirtying (PageChecked) which were just added to the
2828	 * running transaction. Try once more to get them to stable storage.
2829	 */
2830	if (!ret && mpd.journalled_more_data)
2831		ret = ext4_do_writepages(&mpd);
2832	ext4_writepages_up_read(sb, alloc_ctx);
2833
2834	return ret;
2835}
2836
2837int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838{
2839	struct writeback_control wbc = {
2840		.sync_mode = WB_SYNC_ALL,
2841		.nr_to_write = LONG_MAX,
2842		.range_start = jinode->i_dirty_start,
2843		.range_end = jinode->i_dirty_end,
2844	};
2845	struct mpage_da_data mpd = {
2846		.inode = jinode->i_vfs_inode,
2847		.wbc = &wbc,
2848		.can_map = 0,
2849	};
2850	return ext4_do_writepages(&mpd);
2851}
2852
2853static int ext4_dax_writepages(struct address_space *mapping,
2854			       struct writeback_control *wbc)
2855{
2856	int ret;
2857	long nr_to_write = wbc->nr_to_write;
2858	struct inode *inode = mapping->host;
2859	int alloc_ctx;
2860
2861	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862		return -EIO;
2863
2864	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865	trace_ext4_writepages(inode, wbc);
2866
2867	ret = dax_writeback_mapping_range(mapping,
2868					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869	trace_ext4_writepages_result(inode, wbc, ret,
2870				     nr_to_write - wbc->nr_to_write);
2871	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872	return ret;
2873}
2874
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877	s64 free_clusters, dirty_clusters;
2878	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880	/*
2881	 * switch to non delalloc mode if we are running low
2882	 * on free block. The free block accounting via percpu
2883	 * counters can get slightly wrong with percpu_counter_batch getting
2884	 * accumulated on each CPU without updating global counters
2885	 * Delalloc need an accurate free block accounting. So switch
2886	 * to non delalloc when we are near to error range.
2887	 */
2888	free_clusters =
2889		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890	dirty_clusters =
2891		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892	/*
2893	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894	 */
2895	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898	if (2 * free_clusters < 3 * dirty_clusters ||
2899	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900		/*
2901		 * free block count is less than 150% of dirty blocks
2902		 * or free blocks is less than watermark
2903		 */
2904		return 1;
2905	}
2906	return 0;
2907}
2908
2909static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910			       loff_t pos, unsigned len,
2911			       struct folio **foliop, void **fsdata)
2912{
2913	int ret, retries = 0;
2914	struct folio *folio;
2915	pgoff_t index;
2916	struct inode *inode = mapping->host;
2917
2918	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919		return -EIO;
2920
2921	index = pos >> PAGE_SHIFT;
2922
2923	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925		return ext4_write_begin(file, mapping, pos,
2926					len, foliop, fsdata);
2927	}
2928	*fsdata = (void *)0;
2929	trace_ext4_da_write_begin(inode, pos, len);
2930
2931	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933						      foliop, fsdata);
2934		if (ret < 0)
2935			return ret;
2936		if (ret == 1)
2937			return 0;
2938	}
2939
2940retry:
2941	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942			mapping_gfp_mask(mapping));
2943	if (IS_ERR(folio))
2944		return PTR_ERR(folio);
2945
2946	ret = ext4_block_write_begin(NULL, folio, pos, len,
2947				     ext4_da_get_block_prep);
 
 
 
2948	if (ret < 0) {
2949		folio_unlock(folio);
2950		folio_put(folio);
2951		/*
2952		 * block_write_begin may have instantiated a few blocks
2953		 * outside i_size.  Trim these off again. Don't need
2954		 * i_size_read because we hold inode lock.
2955		 */
2956		if (pos + len > inode->i_size)
2957			ext4_truncate_failed_write(inode);
2958
2959		if (ret == -ENOSPC &&
2960		    ext4_should_retry_alloc(inode->i_sb, &retries))
2961			goto retry;
2962		return ret;
2963	}
2964
2965	*foliop = folio;
2966	return ret;
2967}
2968
2969/*
2970 * Check if we should update i_disksize
2971 * when write to the end of file but not require block allocation
2972 */
2973static int ext4_da_should_update_i_disksize(struct folio *folio,
2974					    unsigned long offset)
2975{
2976	struct buffer_head *bh;
2977	struct inode *inode = folio->mapping->host;
2978	unsigned int idx;
2979	int i;
2980
2981	bh = folio_buffers(folio);
2982	idx = offset >> inode->i_blkbits;
2983
2984	for (i = 0; i < idx; i++)
2985		bh = bh->b_this_page;
2986
2987	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988		return 0;
2989	return 1;
2990}
2991
2992static int ext4_da_do_write_end(struct address_space *mapping,
2993			loff_t pos, unsigned len, unsigned copied,
2994			struct folio *folio)
2995{
2996	struct inode *inode = mapping->host;
2997	loff_t old_size = inode->i_size;
2998	bool disksize_changed = false;
2999	loff_t new_i_size, zero_len = 0;
3000	handle_t *handle;
3001
3002	if (unlikely(!folio_buffers(folio))) {
3003		folio_unlock(folio);
3004		folio_put(folio);
3005		return -EIO;
3006	}
3007	/*
3008	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009	 * flag, which all that's needed to trigger page writeback.
3010	 */
3011	copied = block_write_end(NULL, mapping, pos, len, copied,
3012			folio, NULL);
3013	new_i_size = pos + copied;
3014
3015	/*
3016	 * It's important to update i_size while still holding folio lock,
3017	 * because folio writeout could otherwise come in and zero beyond
3018	 * i_size.
3019	 *
3020	 * Since we are holding inode lock, we are sure i_disksize <=
3021	 * i_size. We also know that if i_disksize < i_size, there are
3022	 * delalloc writes pending in the range up to i_size. If the end of
3023	 * the current write is <= i_size, there's no need to touch
3024	 * i_disksize since writeback will push i_disksize up to i_size
3025	 * eventually. If the end of the current write is > i_size and
3026	 * inside an allocated block which ext4_da_should_update_i_disksize()
3027	 * checked, we need to update i_disksize here as certain
3028	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029	 */
3030	if (new_i_size > inode->i_size) {
3031		unsigned long end;
3032
3033		i_size_write(inode, new_i_size);
3034		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036			ext4_update_i_disksize(inode, new_i_size);
3037			disksize_changed = true;
3038		}
3039	}
3040
3041	folio_unlock(folio);
3042	folio_put(folio);
3043
3044	if (pos > old_size) {
3045		pagecache_isize_extended(inode, old_size, pos);
3046		zero_len = pos - old_size;
3047	}
3048
3049	if (!disksize_changed && !zero_len)
3050		return copied;
3051
3052	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053	if (IS_ERR(handle))
3054		return PTR_ERR(handle);
3055	if (zero_len)
3056		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057	ext4_mark_inode_dirty(handle, inode);
3058	ext4_journal_stop(handle);
3059
3060	return copied;
3061}
3062
3063static int ext4_da_write_end(struct file *file,
3064			     struct address_space *mapping,
3065			     loff_t pos, unsigned len, unsigned copied,
3066			     struct folio *folio, void *fsdata)
3067{
3068	struct inode *inode = mapping->host;
3069	int write_mode = (int)(unsigned long)fsdata;
 
3070
3071	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072		return ext4_write_end(file, mapping, pos,
3073				      len, copied, folio, fsdata);
3074
3075	trace_ext4_da_write_end(inode, pos, len, copied);
3076
3077	if (write_mode != CONVERT_INLINE_DATA &&
3078	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079	    ext4_has_inline_data(inode))
3080		return ext4_write_inline_data_end(inode, pos, len, copied,
3081						  folio);
3082
3083	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084		copied = 0;
3085
3086	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087}
3088
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
3094	trace_ext4_alloc_da_blocks(inode);
3095
3096	if (!EXT4_I(inode)->i_reserved_data_blocks)
3097		return 0;
3098
3099	/*
3100	 * We do something simple for now.  The filemap_flush() will
3101	 * also start triggering a write of the data blocks, which is
3102	 * not strictly speaking necessary (and for users of
3103	 * laptop_mode, not even desirable).  However, to do otherwise
3104	 * would require replicating code paths in:
3105	 *
3106	 * ext4_writepages() ->
3107	 *    write_cache_pages() ---> (via passed in callback function)
3108	 *        __mpage_da_writepage() -->
3109	 *           mpage_add_bh_to_extent()
3110	 *           mpage_da_map_blocks()
3111	 *
3112	 * The problem is that write_cache_pages(), located in
3113	 * mm/page-writeback.c, marks pages clean in preparation for
3114	 * doing I/O, which is not desirable if we're not planning on
3115	 * doing I/O at all.
3116	 *
3117	 * We could call write_cache_pages(), and then redirty all of
3118	 * the pages by calling redirty_page_for_writepage() but that
3119	 * would be ugly in the extreme.  So instead we would need to
3120	 * replicate parts of the code in the above functions,
3121	 * simplifying them because we wouldn't actually intend to
3122	 * write out the pages, but rather only collect contiguous
3123	 * logical block extents, call the multi-block allocator, and
3124	 * then update the buffer heads with the block allocations.
3125	 *
3126	 * For now, though, we'll cheat by calling filemap_flush(),
3127	 * which will map the blocks, and start the I/O, but not
3128	 * actually wait for the I/O to complete.
3129	 */
3130	return filemap_flush(inode->i_mapping);
3131}
3132
3133/*
3134 * bmap() is special.  It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148{
3149	struct inode *inode = mapping->host;
3150	sector_t ret = 0;
3151
3152	inode_lock_shared(inode);
3153	/*
3154	 * We can get here for an inline file via the FIBMAP ioctl
3155	 */
3156	if (ext4_has_inline_data(inode))
3157		goto out;
3158
3159	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160	    (test_opt(inode->i_sb, DELALLOC) ||
3161	     ext4_should_journal_data(inode))) {
3162		/*
3163		 * With delalloc or journalled data we want to sync the file so
3164		 * that we can make sure we allocate blocks for file and data
3165		 * is in place for the user to see it
3166		 */
3167		filemap_write_and_wait(mapping);
3168	}
3169
3170	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3171
3172out:
3173	inode_unlock_shared(inode);
3174	return ret;
3175}
3176
3177static int ext4_read_folio(struct file *file, struct folio *folio)
3178{
3179	int ret = -EAGAIN;
3180	struct inode *inode = folio->mapping->host;
3181
3182	trace_ext4_read_folio(inode, folio);
3183
3184	if (ext4_has_inline_data(inode))
3185		ret = ext4_readpage_inline(inode, folio);
3186
3187	if (ret == -EAGAIN)
3188		return ext4_mpage_readpages(inode, NULL, folio);
3189
3190	return ret;
3191}
3192
3193static void ext4_readahead(struct readahead_control *rac)
3194{
3195	struct inode *inode = rac->mapping->host;
3196
3197	/* If the file has inline data, no need to do readahead. */
3198	if (ext4_has_inline_data(inode))
3199		return;
3200
3201	ext4_mpage_readpages(inode, rac, NULL);
3202}
3203
3204static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205				size_t length)
3206{
3207	trace_ext4_invalidate_folio(folio, offset, length);
3208
3209	/* No journalling happens on data buffers when this function is used */
3210	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211
3212	block_invalidate_folio(folio, offset, length);
3213}
3214
3215static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216					    size_t offset, size_t length)
3217{
3218	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222	/*
3223	 * If it's a full truncate we just forget about the pending dirtying
3224	 */
3225	if (offset == 0 && length == folio_size(folio))
3226		folio_clear_checked(folio);
3227
3228	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229}
3230
3231/* Wrapper for aops... */
3232static void ext4_journalled_invalidate_folio(struct folio *folio,
3233					   size_t offset,
3234					   size_t length)
3235{
3236	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237}
3238
3239static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240{
3241	struct inode *inode = folio->mapping->host;
3242	journal_t *journal = EXT4_JOURNAL(inode);
3243
3244	trace_ext4_release_folio(inode, folio);
3245
3246	/* Page has dirty journalled data -> cannot release */
3247	if (folio_test_checked(folio))
3248		return false;
3249	if (journal)
3250		return jbd2_journal_try_to_free_buffers(journal, folio);
3251	else
3252		return try_to_free_buffers(folio);
3253}
3254
3255static bool ext4_inode_datasync_dirty(struct inode *inode)
3256{
3257	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258
3259	if (journal) {
3260		if (jbd2_transaction_committed(journal,
3261			EXT4_I(inode)->i_datasync_tid))
3262			return false;
3263		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264			return !list_empty(&EXT4_I(inode)->i_fc_list);
3265		return true;
3266	}
3267
3268	/* Any metadata buffers to write? */
3269	if (!list_empty(&inode->i_mapping->i_private_list))
3270		return true;
3271	return inode->i_state & I_DIRTY_DATASYNC;
3272}
3273
3274static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275			   struct ext4_map_blocks *map, loff_t offset,
3276			   loff_t length, unsigned int flags)
3277{
3278	u8 blkbits = inode->i_blkbits;
3279
3280	/*
3281	 * Writes that span EOF might trigger an I/O size update on completion,
3282	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283	 * there is no other metadata changes being made or are pending.
3284	 */
3285	iomap->flags = 0;
3286	if (ext4_inode_datasync_dirty(inode) ||
3287	    offset + length > i_size_read(inode))
3288		iomap->flags |= IOMAP_F_DIRTY;
3289
3290	if (map->m_flags & EXT4_MAP_NEW)
3291		iomap->flags |= IOMAP_F_NEW;
3292
3293	if (flags & IOMAP_DAX)
3294		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295	else
3296		iomap->bdev = inode->i_sb->s_bdev;
3297	iomap->offset = (u64) map->m_lblk << blkbits;
3298	iomap->length = (u64) map->m_len << blkbits;
3299
3300	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302		iomap->flags |= IOMAP_F_MERGED;
3303
3304	/*
3305	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307	 * set. In order for any allocated unwritten extents to be converted
3308	 * into written extents correctly within the ->end_io() handler, we
3309	 * need to ensure that the iomap->type is set appropriately. Hence, the
3310	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311	 * been set first.
3312	 */
3313	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314		iomap->type = IOMAP_UNWRITTEN;
3315		iomap->addr = (u64) map->m_pblk << blkbits;
3316		if (flags & IOMAP_DAX)
3317			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3319		iomap->type = IOMAP_MAPPED;
3320		iomap->addr = (u64) map->m_pblk << blkbits;
3321		if (flags & IOMAP_DAX)
3322			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3324		iomap->type = IOMAP_DELALLOC;
3325		iomap->addr = IOMAP_NULL_ADDR;
3326	} else {
3327		iomap->type = IOMAP_HOLE;
3328		iomap->addr = IOMAP_NULL_ADDR;
3329	}
3330}
3331
3332static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333			    unsigned int flags)
3334{
3335	handle_t *handle;
3336	u8 blkbits = inode->i_blkbits;
3337	int ret, dio_credits, m_flags = 0, retries = 0;
3338
3339	/*
3340	 * Trim the mapping request to the maximum value that we can map at
3341	 * once for direct I/O.
3342	 */
3343	if (map->m_len > DIO_MAX_BLOCKS)
3344		map->m_len = DIO_MAX_BLOCKS;
3345	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347retry:
3348	/*
3349	 * Either we allocate blocks and then don't get an unwritten extent, so
3350	 * in that case we have reserved enough credits. Or, the blocks are
3351	 * already allocated and unwritten. In that case, the extent conversion
3352	 * fits into the credits as well.
3353	 */
3354	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355	if (IS_ERR(handle))
3356		return PTR_ERR(handle);
3357
3358	/*
3359	 * DAX and direct I/O are the only two operations that are currently
3360	 * supported with IOMAP_WRITE.
3361	 */
3362	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363	if (flags & IOMAP_DAX)
3364		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365	/*
3366	 * We use i_size instead of i_disksize here because delalloc writeback
3367	 * can complete at any point during the I/O and subsequently push the
3368	 * i_disksize out to i_size. This could be beyond where direct I/O is
3369	 * happening and thus expose allocated blocks to direct I/O reads.
3370	 */
3371	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372		m_flags = EXT4_GET_BLOCKS_CREATE;
3373	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375
3376	ret = ext4_map_blocks(handle, inode, map, m_flags);
3377
3378	/*
3379	 * We cannot fill holes in indirect tree based inodes as that could
3380	 * expose stale data in the case of a crash. Use the magic error code
3381	 * to fallback to buffered I/O.
3382	 */
3383	if (!m_flags && !ret)
3384		ret = -ENOTBLK;
3385
3386	ext4_journal_stop(handle);
3387	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388		goto retry;
3389
3390	return ret;
3391}
3392
3393
3394static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396{
3397	int ret;
3398	struct ext4_map_blocks map;
3399	u8 blkbits = inode->i_blkbits;
3400
3401	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402		return -EINVAL;
3403
3404	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405		return -ERANGE;
3406
3407	/*
3408	 * Calculate the first and last logical blocks respectively.
3409	 */
3410	map.m_lblk = offset >> blkbits;
3411	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413
3414	if (flags & IOMAP_WRITE) {
3415		/*
3416		 * We check here if the blocks are already allocated, then we
3417		 * don't need to start a journal txn and we can directly return
3418		 * the mapping information. This could boost performance
3419		 * especially in multi-threaded overwrite requests.
3420		 */
3421		if (offset + length <= i_size_read(inode)) {
3422			ret = ext4_map_blocks(NULL, inode, &map, 0);
3423			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424				goto out;
3425		}
3426		ret = ext4_iomap_alloc(inode, &map, flags);
3427	} else {
3428		ret = ext4_map_blocks(NULL, inode, &map, 0);
3429	}
3430
3431	if (ret < 0)
3432		return ret;
3433out:
3434	/*
3435	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3437	 * limiting the length of the mapping returned.
3438	 */
3439	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443	return 0;
3444}
3445
3446static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447		loff_t length, unsigned flags, struct iomap *iomap,
3448		struct iomap *srcmap)
3449{
3450	int ret;
3451
3452	/*
3453	 * Even for writes we don't need to allocate blocks, so just pretend
3454	 * we are reading to save overhead of starting a transaction.
3455	 */
3456	flags &= ~IOMAP_WRITE;
3457	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459	return ret;
3460}
3461
3462static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463{
3464	/* must be a directio to fall back to buffered */
3465	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466		    (IOMAP_WRITE | IOMAP_DIRECT))
3467		return false;
3468
3469	/* atomic writes are all-or-nothing */
3470	if (flags & IOMAP_ATOMIC)
3471		return false;
3472
3473	/* can only try again if we wrote nothing */
3474	return written == 0;
3475}
3476
3477static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478			  ssize_t written, unsigned flags, struct iomap *iomap)
3479{
3480	/*
3481	 * Check to see whether an error occurred while writing out the data to
3482	 * the allocated blocks. If so, return the magic error code for
3483	 * non-atomic write so that we fallback to buffered I/O and attempt to
3484	 * complete the remainder of the I/O.
3485	 * For non-atomic writes, any blocks that may have been
3486	 * allocated in preparation for the direct I/O will be reused during
3487	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488	 */
3489	if (ext4_want_directio_fallback(flags, written))
3490		return -ENOTBLK;
3491
3492	return 0;
3493}
3494
3495const struct iomap_ops ext4_iomap_ops = {
3496	.iomap_begin		= ext4_iomap_begin,
3497	.iomap_end		= ext4_iomap_end,
3498};
3499
3500const struct iomap_ops ext4_iomap_overwrite_ops = {
3501	.iomap_begin		= ext4_iomap_overwrite_begin,
3502	.iomap_end		= ext4_iomap_end,
3503};
3504
3505static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506				   loff_t length, unsigned int flags,
3507				   struct iomap *iomap, struct iomap *srcmap)
3508{
3509	int ret;
3510	struct ext4_map_blocks map;
3511	u8 blkbits = inode->i_blkbits;
3512
3513	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514		return -EINVAL;
3515
3516	if (ext4_has_inline_data(inode)) {
3517		ret = ext4_inline_data_iomap(inode, iomap);
3518		if (ret != -EAGAIN) {
3519			if (ret == 0 && offset >= iomap->length)
3520				ret = -ENOENT;
3521			return ret;
3522		}
3523	}
3524
3525	/*
3526	 * Calculate the first and last logical block respectively.
3527	 */
3528	map.m_lblk = offset >> blkbits;
3529	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531
3532	/*
3533	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534	 * So handle it here itself instead of querying ext4_map_blocks().
3535	 * Since ext4_map_blocks() will warn about it and will return
3536	 * -EIO error.
3537	 */
3538	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541		if (offset >= sbi->s_bitmap_maxbytes) {
3542			map.m_flags = 0;
3543			goto set_iomap;
3544		}
3545	}
3546
3547	ret = ext4_map_blocks(NULL, inode, &map, 0);
3548	if (ret < 0)
3549		return ret;
3550set_iomap:
3551	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553	return 0;
3554}
3555
3556const struct iomap_ops ext4_iomap_report_ops = {
3557	.iomap_begin = ext4_iomap_begin_report,
3558};
3559
3560/*
3561 * For data=journal mode, folio should be marked dirty only when it was
3562 * writeably mapped. When that happens, it was already attached to the
3563 * transaction and marked as jbddirty (we take care of this in
3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565 * so we should have nothing to do here, except for the case when someone
3566 * had the page pinned and dirtied the page through this pin (e.g. by doing
3567 * direct IO to it). In that case we'd need to attach buffers here to the
3568 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3569 * folio and leave attached buffers clean, because the buffers' dirty state is
3570 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3571 * the journalling code will explode.  So what we do is to mark the folio
3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573 * to the transaction appropriately.
3574 */
3575static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576		struct folio *folio)
3577{
3578	WARN_ON_ONCE(!folio_buffers(folio));
3579	if (folio_maybe_dma_pinned(folio))
3580		folio_set_checked(folio);
3581	return filemap_dirty_folio(mapping, folio);
3582}
3583
3584static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585{
3586	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587	WARN_ON_ONCE(!folio_buffers(folio));
3588	return block_dirty_folio(mapping, folio);
3589}
3590
3591static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592				    struct file *file, sector_t *span)
3593{
3594	return iomap_swapfile_activate(sis, file, span,
3595				       &ext4_iomap_report_ops);
3596}
3597
3598static const struct address_space_operations ext4_aops = {
3599	.read_folio		= ext4_read_folio,
3600	.readahead		= ext4_readahead,
3601	.writepages		= ext4_writepages,
3602	.write_begin		= ext4_write_begin,
3603	.write_end		= ext4_write_end,
3604	.dirty_folio		= ext4_dirty_folio,
3605	.bmap			= ext4_bmap,
3606	.invalidate_folio	= ext4_invalidate_folio,
3607	.release_folio		= ext4_release_folio,
 
3608	.migrate_folio		= buffer_migrate_folio,
3609	.is_partially_uptodate  = block_is_partially_uptodate,
3610	.error_remove_folio	= generic_error_remove_folio,
3611	.swap_activate		= ext4_iomap_swap_activate,
3612};
3613
3614static const struct address_space_operations ext4_journalled_aops = {
3615	.read_folio		= ext4_read_folio,
3616	.readahead		= ext4_readahead,
3617	.writepages		= ext4_writepages,
3618	.write_begin		= ext4_write_begin,
3619	.write_end		= ext4_journalled_write_end,
3620	.dirty_folio		= ext4_journalled_dirty_folio,
3621	.bmap			= ext4_bmap,
3622	.invalidate_folio	= ext4_journalled_invalidate_folio,
3623	.release_folio		= ext4_release_folio,
 
3624	.migrate_folio		= buffer_migrate_folio_norefs,
3625	.is_partially_uptodate  = block_is_partially_uptodate,
3626	.error_remove_folio	= generic_error_remove_folio,
3627	.swap_activate		= ext4_iomap_swap_activate,
3628};
3629
3630static const struct address_space_operations ext4_da_aops = {
3631	.read_folio		= ext4_read_folio,
3632	.readahead		= ext4_readahead,
3633	.writepages		= ext4_writepages,
3634	.write_begin		= ext4_da_write_begin,
3635	.write_end		= ext4_da_write_end,
3636	.dirty_folio		= ext4_dirty_folio,
3637	.bmap			= ext4_bmap,
3638	.invalidate_folio	= ext4_invalidate_folio,
3639	.release_folio		= ext4_release_folio,
 
3640	.migrate_folio		= buffer_migrate_folio,
3641	.is_partially_uptodate  = block_is_partially_uptodate,
3642	.error_remove_folio	= generic_error_remove_folio,
3643	.swap_activate		= ext4_iomap_swap_activate,
3644};
3645
3646static const struct address_space_operations ext4_dax_aops = {
3647	.writepages		= ext4_dax_writepages,
 
3648	.dirty_folio		= noop_dirty_folio,
3649	.bmap			= ext4_bmap,
3650	.swap_activate		= ext4_iomap_swap_activate,
3651};
3652
3653void ext4_set_aops(struct inode *inode)
3654{
3655	switch (ext4_inode_journal_mode(inode)) {
3656	case EXT4_INODE_ORDERED_DATA_MODE:
3657	case EXT4_INODE_WRITEBACK_DATA_MODE:
3658		break;
3659	case EXT4_INODE_JOURNAL_DATA_MODE:
3660		inode->i_mapping->a_ops = &ext4_journalled_aops;
3661		return;
3662	default:
3663		BUG();
3664	}
3665	if (IS_DAX(inode))
3666		inode->i_mapping->a_ops = &ext4_dax_aops;
3667	else if (test_opt(inode->i_sb, DELALLOC))
3668		inode->i_mapping->a_ops = &ext4_da_aops;
3669	else
3670		inode->i_mapping->a_ops = &ext4_aops;
3671}
3672
3673/*
3674 * Here we can't skip an unwritten buffer even though it usually reads zero
3675 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677 * racing writeback can come later and flush the stale pagecache to disk.
3678 */
3679static int __ext4_block_zero_page_range(handle_t *handle,
3680		struct address_space *mapping, loff_t from, loff_t length)
3681{
3682	ext4_fsblk_t index = from >> PAGE_SHIFT;
3683	unsigned offset = from & (PAGE_SIZE-1);
3684	unsigned blocksize, pos;
3685	ext4_lblk_t iblock;
3686	struct inode *inode = mapping->host;
3687	struct buffer_head *bh;
3688	struct folio *folio;
3689	int err = 0;
3690
3691	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3694	if (IS_ERR(folio))
3695		return PTR_ERR(folio);
3696
3697	blocksize = inode->i_sb->s_blocksize;
3698
3699	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700
3701	bh = folio_buffers(folio);
3702	if (!bh)
3703		bh = create_empty_buffers(folio, blocksize, 0);
3704
3705	/* Find the buffer that contains "offset" */
3706	pos = blocksize;
3707	while (offset >= pos) {
3708		bh = bh->b_this_page;
3709		iblock++;
3710		pos += blocksize;
3711	}
3712	if (buffer_freed(bh)) {
3713		BUFFER_TRACE(bh, "freed: skip");
3714		goto unlock;
3715	}
3716	if (!buffer_mapped(bh)) {
3717		BUFFER_TRACE(bh, "unmapped");
3718		ext4_get_block(inode, iblock, bh, 0);
3719		/* unmapped? It's a hole - nothing to do */
3720		if (!buffer_mapped(bh)) {
3721			BUFFER_TRACE(bh, "still unmapped");
3722			goto unlock;
3723		}
3724	}
3725
3726	/* Ok, it's mapped. Make sure it's up-to-date */
3727	if (folio_test_uptodate(folio))
3728		set_buffer_uptodate(bh);
3729
3730	if (!buffer_uptodate(bh)) {
3731		err = ext4_read_bh_lock(bh, 0, true);
3732		if (err)
3733			goto unlock;
3734		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3735			/* We expect the key to be set. */
3736			BUG_ON(!fscrypt_has_encryption_key(inode));
3737			err = fscrypt_decrypt_pagecache_blocks(folio,
3738							       blocksize,
3739							       bh_offset(bh));
3740			if (err) {
3741				clear_buffer_uptodate(bh);
3742				goto unlock;
3743			}
3744		}
3745	}
3746	if (ext4_should_journal_data(inode)) {
3747		BUFFER_TRACE(bh, "get write access");
3748		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749						    EXT4_JTR_NONE);
3750		if (err)
3751			goto unlock;
3752	}
3753	folio_zero_range(folio, offset, length);
3754	BUFFER_TRACE(bh, "zeroed end of block");
3755
3756	if (ext4_should_journal_data(inode)) {
3757		err = ext4_dirty_journalled_data(handle, bh);
3758	} else {
3759		err = 0;
3760		mark_buffer_dirty(bh);
3761		if (ext4_should_order_data(inode))
3762			err = ext4_jbd2_inode_add_write(handle, inode, from,
3763					length);
3764	}
3765
3766unlock:
3767	folio_unlock(folio);
3768	folio_put(folio);
3769	return err;
3770}
3771
3772/*
3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774 * starting from file offset 'from'.  The range to be zero'd must
3775 * be contained with in one block.  If the specified range exceeds
3776 * the end of the block it will be shortened to end of the block
3777 * that corresponds to 'from'
3778 */
3779static int ext4_block_zero_page_range(handle_t *handle,
3780		struct address_space *mapping, loff_t from, loff_t length)
3781{
3782	struct inode *inode = mapping->host;
3783	unsigned offset = from & (PAGE_SIZE-1);
3784	unsigned blocksize = inode->i_sb->s_blocksize;
3785	unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787	/*
3788	 * correct length if it does not fall between
3789	 * 'from' and the end of the block
3790	 */
3791	if (length > max || length < 0)
3792		length = max;
3793
3794	if (IS_DAX(inode)) {
3795		return dax_zero_range(inode, from, length, NULL,
3796				      &ext4_iomap_ops);
3797	}
3798	return __ext4_block_zero_page_range(handle, mapping, from, length);
3799}
3800
3801/*
3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803 * up to the end of the block which corresponds to `from'.
3804 * This required during truncate. We need to physically zero the tail end
3805 * of that block so it doesn't yield old data if the file is later grown.
3806 */
3807static int ext4_block_truncate_page(handle_t *handle,
3808		struct address_space *mapping, loff_t from)
3809{
3810	unsigned offset = from & (PAGE_SIZE-1);
3811	unsigned length;
3812	unsigned blocksize;
3813	struct inode *inode = mapping->host;
3814
3815	/* If we are processing an encrypted inode during orphan list handling */
3816	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817		return 0;
3818
3819	blocksize = inode->i_sb->s_blocksize;
3820	length = blocksize - (offset & (blocksize - 1));
3821
3822	return ext4_block_zero_page_range(handle, mapping, from, length);
3823}
3824
3825int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826			     loff_t lstart, loff_t length)
3827{
3828	struct super_block *sb = inode->i_sb;
3829	struct address_space *mapping = inode->i_mapping;
3830	unsigned partial_start, partial_end;
3831	ext4_fsblk_t start, end;
3832	loff_t byte_end = (lstart + length - 1);
3833	int err = 0;
3834
3835	partial_start = lstart & (sb->s_blocksize - 1);
3836	partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838	start = lstart >> sb->s_blocksize_bits;
3839	end = byte_end >> sb->s_blocksize_bits;
3840
3841	/* Handle partial zero within the single block */
3842	if (start == end &&
3843	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844		err = ext4_block_zero_page_range(handle, mapping,
3845						 lstart, length);
3846		return err;
3847	}
3848	/* Handle partial zero out on the start of the range */
3849	if (partial_start) {
3850		err = ext4_block_zero_page_range(handle, mapping,
3851						 lstart, sb->s_blocksize);
3852		if (err)
3853			return err;
3854	}
3855	/* Handle partial zero out on the end of the range */
3856	if (partial_end != sb->s_blocksize - 1)
3857		err = ext4_block_zero_page_range(handle, mapping,
3858						 byte_end - partial_end,
3859						 partial_end + 1);
3860	return err;
3861}
3862
3863int ext4_can_truncate(struct inode *inode)
3864{
3865	if (S_ISREG(inode->i_mode))
3866		return 1;
3867	if (S_ISDIR(inode->i_mode))
3868		return 1;
3869	if (S_ISLNK(inode->i_mode))
3870		return !ext4_inode_is_fast_symlink(inode);
3871	return 0;
3872}
3873
3874/*
3875 * We have to make sure i_disksize gets properly updated before we truncate
3876 * page cache due to hole punching or zero range. Otherwise i_disksize update
3877 * can get lost as it may have been postponed to submission of writeback but
3878 * that will never happen after we truncate page cache.
3879 */
3880int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881				      loff_t len)
3882{
3883	handle_t *handle;
3884	int ret;
3885
3886	loff_t size = i_size_read(inode);
3887
3888	WARN_ON(!inode_is_locked(inode));
3889	if (offset > size || offset + len < size)
3890		return 0;
3891
3892	if (EXT4_I(inode)->i_disksize >= size)
3893		return 0;
3894
3895	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896	if (IS_ERR(handle))
3897		return PTR_ERR(handle);
3898	ext4_update_i_disksize(inode, size);
3899	ret = ext4_mark_inode_dirty(handle, inode);
3900	ext4_journal_stop(handle);
3901
3902	return ret;
3903}
3904
3905static void ext4_wait_dax_page(struct inode *inode)
3906{
3907	filemap_invalidate_unlock(inode->i_mapping);
3908	schedule();
3909	filemap_invalidate_lock(inode->i_mapping);
3910}
3911
3912int ext4_break_layouts(struct inode *inode)
3913{
3914	struct page *page;
3915	int error;
3916
3917	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918		return -EINVAL;
3919
3920	do {
3921		page = dax_layout_busy_page(inode->i_mapping);
3922		if (!page)
3923			return 0;
3924
3925		error = ___wait_var_event(&page->_refcount,
3926				atomic_read(&page->_refcount) == 1,
3927				TASK_INTERRUPTIBLE, 0, 0,
3928				ext4_wait_dax_page(inode));
3929	} while (error == 0);
3930
3931	return error;
3932}
3933
3934/*
3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936 * associated with the given offset and length
3937 *
3938 * @inode:  File inode
3939 * @offset: The offset where the hole will begin
3940 * @len:    The length of the hole
3941 *
3942 * Returns: 0 on success or negative on failure
3943 */
3944
3945int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946{
3947	struct inode *inode = file_inode(file);
3948	struct super_block *sb = inode->i_sb;
3949	ext4_lblk_t first_block, stop_block;
3950	struct address_space *mapping = inode->i_mapping;
3951	loff_t first_block_offset, last_block_offset, max_length;
3952	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953	handle_t *handle;
3954	unsigned int credits;
3955	int ret = 0, ret2 = 0;
3956
3957	trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959	/*
3960	 * Write out all dirty pages to avoid race conditions
3961	 * Then release them.
3962	 */
3963	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964		ret = filemap_write_and_wait_range(mapping, offset,
3965						   offset + length - 1);
3966		if (ret)
3967			return ret;
3968	}
3969
3970	inode_lock(inode);
3971
3972	/* No need to punch hole beyond i_size */
3973	if (offset >= inode->i_size)
3974		goto out_mutex;
3975
3976	/*
3977	 * If the hole extends beyond i_size, set the hole
3978	 * to end after the page that contains i_size
3979	 */
3980	if (offset + length > inode->i_size) {
3981		length = inode->i_size +
3982		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983		   offset;
3984	}
3985
3986	/*
3987	 * For punch hole the length + offset needs to be within one block
3988	 * before last range. Adjust the length if it goes beyond that limit.
3989	 */
3990	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991	if (offset + length > max_length)
3992		length = max_length - offset;
3993
3994	if (offset & (sb->s_blocksize - 1) ||
3995	    (offset + length) & (sb->s_blocksize - 1)) {
3996		/*
3997		 * Attach jinode to inode for jbd2 if we do any zeroing of
3998		 * partial block
3999		 */
4000		ret = ext4_inode_attach_jinode(inode);
4001		if (ret < 0)
4002			goto out_mutex;
4003
4004	}
4005
4006	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4007	inode_dio_wait(inode);
4008
4009	ret = file_modified(file);
4010	if (ret)
4011		goto out_mutex;
4012
4013	/*
4014	 * Prevent page faults from reinstantiating pages we have released from
4015	 * page cache.
4016	 */
4017	filemap_invalidate_lock(mapping);
4018
4019	ret = ext4_break_layouts(inode);
4020	if (ret)
4021		goto out_dio;
4022
4023	first_block_offset = round_up(offset, sb->s_blocksize);
4024	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026	/* Now release the pages and zero block aligned part of pages*/
4027	if (last_block_offset > first_block_offset) {
4028		ret = ext4_update_disksize_before_punch(inode, offset, length);
4029		if (ret)
4030			goto out_dio;
4031		truncate_pagecache_range(inode, first_block_offset,
4032					 last_block_offset);
4033	}
4034
4035	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036		credits = ext4_writepage_trans_blocks(inode);
4037	else
4038		credits = ext4_blocks_for_truncate(inode);
4039	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040	if (IS_ERR(handle)) {
4041		ret = PTR_ERR(handle);
4042		ext4_std_error(sb, ret);
4043		goto out_dio;
4044	}
4045
4046	ret = ext4_zero_partial_blocks(handle, inode, offset,
4047				       length);
4048	if (ret)
4049		goto out_stop;
4050
4051	first_block = (offset + sb->s_blocksize - 1) >>
4052		EXT4_BLOCK_SIZE_BITS(sb);
4053	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055	/* If there are blocks to remove, do it */
4056	if (stop_block > first_block) {
4057		ext4_lblk_t hole_len = stop_block - first_block;
4058
4059		down_write(&EXT4_I(inode)->i_data_sem);
4060		ext4_discard_preallocations(inode);
4061
4062		ext4_es_remove_extent(inode, first_block, hole_len);
4063
4064		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065			ret = ext4_ext_remove_space(inode, first_block,
4066						    stop_block - 1);
4067		else
4068			ret = ext4_ind_remove_space(handle, inode, first_block,
4069						    stop_block);
4070
4071		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072				      EXTENT_STATUS_HOLE, 0);
4073		up_write(&EXT4_I(inode)->i_data_sem);
4074	}
4075	ext4_fc_track_range(handle, inode, first_block, stop_block);
4076	if (IS_SYNC(inode))
4077		ext4_handle_sync(handle);
4078
4079	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080	ret2 = ext4_mark_inode_dirty(handle, inode);
4081	if (unlikely(ret2))
4082		ret = ret2;
4083	if (ret >= 0)
4084		ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086	ext4_journal_stop(handle);
4087out_dio:
4088	filemap_invalidate_unlock(mapping);
4089out_mutex:
4090	inode_unlock(inode);
4091	return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096	struct ext4_inode_info *ei = EXT4_I(inode);
4097	struct jbd2_inode *jinode;
4098
4099	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100		return 0;
4101
4102	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103	spin_lock(&inode->i_lock);
4104	if (!ei->jinode) {
4105		if (!jinode) {
4106			spin_unlock(&inode->i_lock);
4107			return -ENOMEM;
4108		}
4109		ei->jinode = jinode;
4110		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111		jinode = NULL;
4112	}
4113	spin_unlock(&inode->i_lock);
4114	if (unlikely(jinode != NULL))
4115		jbd2_free_inode(jinode);
4116	return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk.  We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable.  It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go.  So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem.  But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149	struct ext4_inode_info *ei = EXT4_I(inode);
4150	unsigned int credits;
4151	int err = 0, err2;
4152	handle_t *handle;
4153	struct address_space *mapping = inode->i_mapping;
4154
4155	/*
4156	 * There is a possibility that we're either freeing the inode
4157	 * or it's a completely new inode. In those cases we might not
4158	 * have i_rwsem locked because it's not necessary.
4159	 */
4160	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161		WARN_ON(!inode_is_locked(inode));
4162	trace_ext4_truncate_enter(inode);
4163
4164	if (!ext4_can_truncate(inode))
4165		goto out_trace;
4166
4167	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170	if (ext4_has_inline_data(inode)) {
4171		int has_inline = 1;
4172
4173		err = ext4_inline_data_truncate(inode, &has_inline);
4174		if (err || has_inline)
4175			goto out_trace;
4176	}
4177
4178	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180		err = ext4_inode_attach_jinode(inode);
4181		if (err)
4182			goto out_trace;
4183	}
4184
4185	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186		credits = ext4_writepage_trans_blocks(inode);
4187	else
4188		credits = ext4_blocks_for_truncate(inode);
4189
4190	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191	if (IS_ERR(handle)) {
4192		err = PTR_ERR(handle);
4193		goto out_trace;
4194	}
4195
4196	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197		ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199	/*
4200	 * We add the inode to the orphan list, so that if this
4201	 * truncate spans multiple transactions, and we crash, we will
4202	 * resume the truncate when the filesystem recovers.  It also
4203	 * marks the inode dirty, to catch the new size.
4204	 *
4205	 * Implication: the file must always be in a sane, consistent
4206	 * truncatable state while each transaction commits.
4207	 */
4208	err = ext4_orphan_add(handle, inode);
4209	if (err)
4210		goto out_stop;
4211
4212	down_write(&EXT4_I(inode)->i_data_sem);
4213
4214	ext4_discard_preallocations(inode);
4215
4216	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217		err = ext4_ext_truncate(handle, inode);
4218	else
4219		ext4_ind_truncate(handle, inode);
4220
4221	up_write(&ei->i_data_sem);
4222	if (err)
4223		goto out_stop;
4224
4225	if (IS_SYNC(inode))
4226		ext4_handle_sync(handle);
4227
4228out_stop:
4229	/*
4230	 * If this was a simple ftruncate() and the file will remain alive,
4231	 * then we need to clear up the orphan record which we created above.
4232	 * However, if this was a real unlink then we were called by
4233	 * ext4_evict_inode(), and we allow that function to clean up the
4234	 * orphan info for us.
4235	 */
4236	if (inode->i_nlink)
4237		ext4_orphan_del(handle, inode);
4238
4239	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240	err2 = ext4_mark_inode_dirty(handle, inode);
4241	if (unlikely(err2 && !err))
4242		err = err2;
4243	ext4_journal_stop(handle);
4244
4245out_trace:
4246	trace_ext4_truncate_exit(inode);
4247	return err;
4248}
4249
4250static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251{
4252	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253		return inode_peek_iversion_raw(inode);
4254	else
4255		return inode_peek_iversion(inode);
4256}
4257
4258static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259				 struct ext4_inode_info *ei)
4260{
4261	struct inode *inode = &(ei->vfs_inode);
4262	u64 i_blocks = READ_ONCE(inode->i_blocks);
4263	struct super_block *sb = inode->i_sb;
4264
4265	if (i_blocks <= ~0U) {
4266		/*
4267		 * i_blocks can be represented in a 32 bit variable
4268		 * as multiple of 512 bytes
4269		 */
4270		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271		raw_inode->i_blocks_high = 0;
4272		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273		return 0;
4274	}
4275
4276	/*
4277	 * This should never happen since sb->s_maxbytes should not have
4278	 * allowed this, sb->s_maxbytes was set according to the huge_file
4279	 * feature in ext4_fill_super().
4280	 */
4281	if (!ext4_has_feature_huge_file(sb))
4282		return -EFSCORRUPTED;
4283
4284	if (i_blocks <= 0xffffffffffffULL) {
4285		/*
4286		 * i_blocks can be represented in a 48 bit variable
4287		 * as multiple of 512 bytes
4288		 */
4289		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292	} else {
4293		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294		/* i_block is stored in file system block size */
4295		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298	}
4299	return 0;
4300}
4301
4302static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303{
4304	struct ext4_inode_info *ei = EXT4_I(inode);
4305	uid_t i_uid;
4306	gid_t i_gid;
4307	projid_t i_projid;
4308	int block;
4309	int err;
4310
4311	err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314	i_uid = i_uid_read(inode);
4315	i_gid = i_gid_read(inode);
4316	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317	if (!(test_opt(inode->i_sb, NO_UID32))) {
4318		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320		/*
4321		 * Fix up interoperability with old kernels. Otherwise,
4322		 * old inodes get re-used with the upper 16 bits of the
4323		 * uid/gid intact.
4324		 */
4325		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326			raw_inode->i_uid_high = 0;
4327			raw_inode->i_gid_high = 0;
4328		} else {
4329			raw_inode->i_uid_high =
4330				cpu_to_le16(high_16_bits(i_uid));
4331			raw_inode->i_gid_high =
4332				cpu_to_le16(high_16_bits(i_gid));
4333		}
4334	} else {
4335		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337		raw_inode->i_uid_high = 0;
4338		raw_inode->i_gid_high = 0;
4339	}
4340	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342	EXT4_INODE_SET_CTIME(inode, raw_inode);
4343	EXT4_INODE_SET_MTIME(inode, raw_inode);
4344	EXT4_INODE_SET_ATIME(inode, raw_inode);
4345	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350		raw_inode->i_file_acl_high =
4351			cpu_to_le16(ei->i_file_acl >> 32);
4352	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353	ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357		if (old_valid_dev(inode->i_rdev)) {
4358			raw_inode->i_block[0] =
4359				cpu_to_le32(old_encode_dev(inode->i_rdev));
4360			raw_inode->i_block[1] = 0;
4361		} else {
4362			raw_inode->i_block[0] = 0;
4363			raw_inode->i_block[1] =
4364				cpu_to_le32(new_encode_dev(inode->i_rdev));
4365			raw_inode->i_block[2] = 0;
4366		}
4367	} else if (!ext4_has_inline_data(inode)) {
4368		for (block = 0; block < EXT4_N_BLOCKS; block++)
4369			raw_inode->i_block[block] = ei->i_data[block];
4370	}
4371
4372	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373		u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375		raw_inode->i_disk_version = cpu_to_le32(ivers);
4376		if (ei->i_extra_isize) {
4377			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378				raw_inode->i_version_hi =
4379					cpu_to_le32(ivers >> 32);
4380			raw_inode->i_extra_isize =
4381				cpu_to_le16(ei->i_extra_isize);
4382		}
4383	}
4384
4385	if (i_projid != EXT4_DEF_PROJID &&
4386	    !ext4_has_feature_project(inode->i_sb))
4387		err = err ?: -EFSCORRUPTED;
4388
4389	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391		raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393	ext4_inode_csum_set(inode, raw_inode, ei);
4394	return err;
4395}
4396
4397/*
4398 * ext4_get_inode_loc returns with an extra refcount against the inode's
4399 * underlying buffer_head on success. If we pass 'inode' and it does not
4400 * have in-inode xattr, we have all inode data in memory that is needed
4401 * to recreate the on-disk version of this inode.
4402 */
4403static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404				struct inode *inode, struct ext4_iloc *iloc,
4405				ext4_fsblk_t *ret_block)
4406{
4407	struct ext4_group_desc	*gdp;
4408	struct buffer_head	*bh;
4409	ext4_fsblk_t		block;
4410	struct blk_plug		plug;
4411	int			inodes_per_block, inode_offset;
4412
4413	iloc->bh = NULL;
4414	if (ino < EXT4_ROOT_INO ||
4415	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416		return -EFSCORRUPTED;
4417
4418	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420	if (!gdp)
4421		return -EIO;
4422
4423	/*
4424	 * Figure out the offset within the block group inode table
4425	 */
4426	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427	inode_offset = ((ino - 1) %
4428			EXT4_INODES_PER_GROUP(sb));
4429	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431	block = ext4_inode_table(sb, gdp);
4432	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434		ext4_error(sb, "Invalid inode table block %llu in "
4435			   "block_group %u", block, iloc->block_group);
4436		return -EFSCORRUPTED;
4437	}
4438	block += (inode_offset / inodes_per_block);
4439
4440	bh = sb_getblk(sb, block);
4441	if (unlikely(!bh))
4442		return -ENOMEM;
4443	if (ext4_buffer_uptodate(bh))
4444		goto has_buffer;
4445
4446	lock_buffer(bh);
4447	if (ext4_buffer_uptodate(bh)) {
4448		/* Someone brought it uptodate while we waited */
4449		unlock_buffer(bh);
4450		goto has_buffer;
4451	}
4452
4453	/*
4454	 * If we have all information of the inode in memory and this
4455	 * is the only valid inode in the block, we need not read the
4456	 * block.
4457	 */
4458	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459		struct buffer_head *bitmap_bh;
4460		int i, start;
4461
4462		start = inode_offset & ~(inodes_per_block - 1);
4463
4464		/* Is the inode bitmap in cache? */
4465		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466		if (unlikely(!bitmap_bh))
4467			goto make_io;
4468
4469		/*
4470		 * If the inode bitmap isn't in cache then the
4471		 * optimisation may end up performing two reads instead
4472		 * of one, so skip it.
4473		 */
4474		if (!buffer_uptodate(bitmap_bh)) {
4475			brelse(bitmap_bh);
4476			goto make_io;
4477		}
4478		for (i = start; i < start + inodes_per_block; i++) {
4479			if (i == inode_offset)
4480				continue;
4481			if (ext4_test_bit(i, bitmap_bh->b_data))
4482				break;
4483		}
4484		brelse(bitmap_bh);
4485		if (i == start + inodes_per_block) {
4486			struct ext4_inode *raw_inode =
4487				(struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489			/* all other inodes are free, so skip I/O */
4490			memset(bh->b_data, 0, bh->b_size);
4491			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492				ext4_fill_raw_inode(inode, raw_inode);
4493			set_buffer_uptodate(bh);
4494			unlock_buffer(bh);
4495			goto has_buffer;
4496		}
4497	}
4498
4499make_io:
4500	/*
4501	 * If we need to do any I/O, try to pre-readahead extra
4502	 * blocks from the inode table.
4503	 */
4504	blk_start_plug(&plug);
4505	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506		ext4_fsblk_t b, end, table;
4507		unsigned num;
4508		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510		table = ext4_inode_table(sb, gdp);
4511		/* s_inode_readahead_blks is always a power of 2 */
4512		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513		if (table > b)
4514			b = table;
4515		end = b + ra_blks;
4516		num = EXT4_INODES_PER_GROUP(sb);
4517		if (ext4_has_group_desc_csum(sb))
4518			num -= ext4_itable_unused_count(sb, gdp);
4519		table += num / inodes_per_block;
4520		if (end > table)
4521			end = table;
4522		while (b <= end)
4523			ext4_sb_breadahead_unmovable(sb, b++);
4524	}
4525
4526	/*
4527	 * There are other valid inodes in the buffer, this inode
4528	 * has in-inode xattrs, or we don't have this inode in memory.
4529	 * Read the block from disk.
4530	 */
4531	trace_ext4_load_inode(sb, ino);
4532	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534	blk_finish_plug(&plug);
4535	wait_on_buffer(bh);
 
4536	if (!buffer_uptodate(bh)) {
4537		if (ret_block)
4538			*ret_block = block;
4539		brelse(bh);
4540		return -EIO;
4541	}
4542has_buffer:
4543	iloc->bh = bh;
4544	return 0;
4545}
4546
4547static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548					struct ext4_iloc *iloc)
4549{
4550	ext4_fsblk_t err_blk = 0;
4551	int ret;
4552
4553	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554					&err_blk);
4555
4556	if (ret == -EIO)
4557		ext4_error_inode_block(inode, err_blk, EIO,
4558					"unable to read itable block");
4559
4560	return ret;
4561}
4562
4563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564{
4565	ext4_fsblk_t err_blk = 0;
4566	int ret;
4567
4568	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569					&err_blk);
4570
4571	if (ret == -EIO)
4572		ext4_error_inode_block(inode, err_blk, EIO,
4573					"unable to read itable block");
4574
4575	return ret;
4576}
4577
4578
4579int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580			  struct ext4_iloc *iloc)
4581{
4582	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583}
4584
4585static bool ext4_should_enable_dax(struct inode *inode)
4586{
4587	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589	if (test_opt2(inode->i_sb, DAX_NEVER))
4590		return false;
4591	if (!S_ISREG(inode->i_mode))
4592		return false;
4593	if (ext4_should_journal_data(inode))
4594		return false;
4595	if (ext4_has_inline_data(inode))
4596		return false;
4597	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598		return false;
4599	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600		return false;
4601	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602		return false;
4603	if (test_opt(inode->i_sb, DAX_ALWAYS))
4604		return true;
4605
4606	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607}
4608
4609void ext4_set_inode_flags(struct inode *inode, bool init)
4610{
4611	unsigned int flags = EXT4_I(inode)->i_flags;
4612	unsigned int new_fl = 0;
4613
4614	WARN_ON_ONCE(IS_DAX(inode) && init);
4615
4616	if (flags & EXT4_SYNC_FL)
4617		new_fl |= S_SYNC;
4618	if (flags & EXT4_APPEND_FL)
4619		new_fl |= S_APPEND;
4620	if (flags & EXT4_IMMUTABLE_FL)
4621		new_fl |= S_IMMUTABLE;
4622	if (flags & EXT4_NOATIME_FL)
4623		new_fl |= S_NOATIME;
4624	if (flags & EXT4_DIRSYNC_FL)
4625		new_fl |= S_DIRSYNC;
4626
4627	/* Because of the way inode_set_flags() works we must preserve S_DAX
4628	 * here if already set. */
4629	new_fl |= (inode->i_flags & S_DAX);
4630	if (init && ext4_should_enable_dax(inode))
4631		new_fl |= S_DAX;
4632
4633	if (flags & EXT4_ENCRYPT_FL)
4634		new_fl |= S_ENCRYPTED;
4635	if (flags & EXT4_CASEFOLD_FL)
4636		new_fl |= S_CASEFOLD;
4637	if (flags & EXT4_VERITY_FL)
4638		new_fl |= S_VERITY;
4639	inode_set_flags(inode, new_fl,
4640			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4642}
4643
4644static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645				  struct ext4_inode_info *ei)
4646{
4647	blkcnt_t i_blocks ;
4648	struct inode *inode = &(ei->vfs_inode);
4649	struct super_block *sb = inode->i_sb;
4650
4651	if (ext4_has_feature_huge_file(sb)) {
4652		/* we are using combined 48 bit field */
4653		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654					le32_to_cpu(raw_inode->i_blocks_lo);
4655		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656			/* i_blocks represent file system block size */
4657			return i_blocks  << (inode->i_blkbits - 9);
4658		} else {
4659			return i_blocks;
4660		}
4661	} else {
4662		return le32_to_cpu(raw_inode->i_blocks_lo);
4663	}
4664}
4665
4666static inline int ext4_iget_extra_inode(struct inode *inode,
4667					 struct ext4_inode *raw_inode,
4668					 struct ext4_inode_info *ei)
4669{
4670	__le32 *magic = (void *)raw_inode +
4671			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4674	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675		int err;
4676
4677		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678		err = ext4_find_inline_data_nolock(inode);
4679		if (!err && ext4_has_inline_data(inode))
4680			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681		return err;
4682	} else
4683		EXT4_I(inode)->i_inline_off = 0;
4684	return 0;
4685}
4686
4687int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688{
4689	if (!ext4_has_feature_project(inode->i_sb))
4690		return -EOPNOTSUPP;
4691	*projid = EXT4_I(inode)->i_projid;
4692	return 0;
4693}
4694
4695/*
4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698 * set.
4699 */
4700static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701{
4702	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703		inode_set_iversion_raw(inode, val);
4704	else
4705		inode_set_iversion_queried(inode, val);
4706}
4707
4708static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710{
4711	if (flags & EXT4_IGET_EA_INODE) {
4712		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713			return "missing EA_INODE flag";
4714		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715		    EXT4_I(inode)->i_file_acl)
4716			return "ea_inode with extended attributes";
4717	} else {
4718		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719			return "unexpected EA_INODE flag";
4720	}
4721	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722		return "unexpected bad inode w/o EXT4_IGET_BAD";
4723	return NULL;
4724}
4725
4726struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727			  ext4_iget_flags flags, const char *function,
4728			  unsigned int line)
4729{
4730	struct ext4_iloc iloc;
4731	struct ext4_inode *raw_inode;
4732	struct ext4_inode_info *ei;
4733	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734	struct inode *inode;
4735	const char *err_str;
4736	journal_t *journal = EXT4_SB(sb)->s_journal;
4737	long ret;
4738	loff_t size;
4739	int block;
4740	uid_t i_uid;
4741	gid_t i_gid;
4742	projid_t i_projid;
4743
4744	if ((!(flags & EXT4_IGET_SPECIAL) &&
4745	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750	    (ino < EXT4_ROOT_INO) ||
4751	    (ino > le32_to_cpu(es->s_inodes_count))) {
4752		if (flags & EXT4_IGET_HANDLE)
4753			return ERR_PTR(-ESTALE);
4754		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755			     "inode #%lu: comm %s: iget: illegal inode #",
4756			     ino, current->comm);
4757		return ERR_PTR(-EFSCORRUPTED);
4758	}
4759
4760	inode = iget_locked(sb, ino);
4761	if (!inode)
4762		return ERR_PTR(-ENOMEM);
4763	if (!(inode->i_state & I_NEW)) {
4764		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765			ext4_error_inode(inode, function, line, 0, err_str);
4766			iput(inode);
4767			return ERR_PTR(-EFSCORRUPTED);
4768		}
4769		return inode;
4770	}
4771
4772	ei = EXT4_I(inode);
4773	iloc.bh = NULL;
4774
4775	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776	if (ret < 0)
4777		goto bad_inode;
4778	raw_inode = ext4_raw_inode(&iloc);
4779
4780	if ((flags & EXT4_IGET_HANDLE) &&
4781	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782		ret = -ESTALE;
4783		goto bad_inode;
4784	}
4785
4786	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789			EXT4_INODE_SIZE(inode->i_sb) ||
4790		    (ei->i_extra_isize & 3)) {
4791			ext4_error_inode(inode, function, line, 0,
4792					 "iget: bad extra_isize %u "
4793					 "(inode size %u)",
4794					 ei->i_extra_isize,
4795					 EXT4_INODE_SIZE(inode->i_sb));
4796			ret = -EFSCORRUPTED;
4797			goto bad_inode;
4798		}
4799	} else
4800		ei->i_extra_isize = 0;
4801
4802	/* Precompute checksum seed for inode metadata */
4803	if (ext4_has_metadata_csum(sb)) {
4804		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805		__u32 csum;
4806		__le32 inum = cpu_to_le32(inode->i_ino);
4807		__le32 gen = raw_inode->i_generation;
4808		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809				   sizeof(inum));
4810		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811					      sizeof(gen));
4812	}
4813
4814	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817		ext4_error_inode_err(inode, function, line, 0,
4818				EFSBADCRC, "iget: checksum invalid");
4819		ret = -EFSBADCRC;
4820		goto bad_inode;
4821	}
4822
4823	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826	if (ext4_has_feature_project(sb) &&
4827	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830	else
4831		i_projid = EXT4_DEF_PROJID;
4832
4833	if (!(test_opt(inode->i_sb, NO_UID32))) {
4834		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836	}
4837	i_uid_write(inode, i_uid);
4838	i_gid_write(inode, i_gid);
4839	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4843	ei->i_inline_off = 0;
4844	ei->i_dir_start_lookup = 0;
4845	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846	/* We now have enough fields to check if the inode was active or not.
4847	 * This is needed because nfsd might try to access dead inodes
4848	 * the test is that same one that e2fsck uses
4849	 * NeilBrown 1999oct15
4850	 */
4851	if (inode->i_nlink == 0) {
4852		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854		    ino != EXT4_BOOT_LOADER_INO) {
4855			/* this inode is deleted or unallocated */
4856			if (flags & EXT4_IGET_SPECIAL) {
4857				ext4_error_inode(inode, function, line, 0,
4858						 "iget: special inode unallocated");
4859				ret = -EFSCORRUPTED;
4860			} else
4861				ret = -ESTALE;
4862			goto bad_inode;
4863		}
4864		/* The only unlinked inodes we let through here have
4865		 * valid i_mode and are being read by the orphan
4866		 * recovery code: that's fine, we're about to complete
4867		 * the process of deleting those.
4868		 * OR it is the EXT4_BOOT_LOADER_INO which is
4869		 * not initialized on a new filesystem. */
4870	}
4871	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872	ext4_set_inode_flags(inode, true);
4873	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875	if (ext4_has_feature_64bit(sb))
4876		ei->i_file_acl |=
4877			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878	inode->i_size = ext4_isize(sb, raw_inode);
4879	if ((size = i_size_read(inode)) < 0) {
4880		ext4_error_inode(inode, function, line, 0,
4881				 "iget: bad i_size value: %lld", size);
4882		ret = -EFSCORRUPTED;
4883		goto bad_inode;
4884	}
4885	/*
4886	 * If dir_index is not enabled but there's dir with INDEX flag set,
4887	 * we'd normally treat htree data as empty space. But with metadata
4888	 * checksumming that corrupts checksums so forbid that.
4889	 */
4890	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892		ext4_error_inode(inode, function, line, 0,
4893			 "iget: Dir with htree data on filesystem without dir_index feature.");
4894		ret = -EFSCORRUPTED;
4895		goto bad_inode;
4896	}
4897	ei->i_disksize = inode->i_size;
4898#ifdef CONFIG_QUOTA
4899	ei->i_reserved_quota = 0;
4900#endif
4901	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902	ei->i_block_group = iloc.block_group;
4903	ei->i_last_alloc_group = ~0;
4904	/*
4905	 * NOTE! The in-memory inode i_data array is in little-endian order
4906	 * even on big-endian machines: we do NOT byteswap the block numbers!
4907	 */
4908	for (block = 0; block < EXT4_N_BLOCKS; block++)
4909		ei->i_data[block] = raw_inode->i_block[block];
4910	INIT_LIST_HEAD(&ei->i_orphan);
4911	ext4_fc_init_inode(&ei->vfs_inode);
4912
4913	/*
4914	 * Set transaction id's of transactions that have to be committed
4915	 * to finish f[data]sync. We set them to currently running transaction
4916	 * as we cannot be sure that the inode or some of its metadata isn't
4917	 * part of the transaction - the inode could have been reclaimed and
4918	 * now it is reread from disk.
4919	 */
4920	if (journal) {
4921		transaction_t *transaction;
4922		tid_t tid;
4923
4924		read_lock(&journal->j_state_lock);
4925		if (journal->j_running_transaction)
4926			transaction = journal->j_running_transaction;
4927		else
4928			transaction = journal->j_committing_transaction;
4929		if (transaction)
4930			tid = transaction->t_tid;
4931		else
4932			tid = journal->j_commit_sequence;
4933		read_unlock(&journal->j_state_lock);
4934		ei->i_sync_tid = tid;
4935		ei->i_datasync_tid = tid;
4936	}
4937
4938	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939		if (ei->i_extra_isize == 0) {
4940			/* The extra space is currently unused. Use it. */
4941			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942			ei->i_extra_isize = sizeof(struct ext4_inode) -
4943					    EXT4_GOOD_OLD_INODE_SIZE;
4944		} else {
4945			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946			if (ret)
4947				goto bad_inode;
4948		}
4949	}
4950
4951	EXT4_INODE_GET_CTIME(inode, raw_inode);
4952	EXT4_INODE_GET_ATIME(inode, raw_inode);
4953	EXT4_INODE_GET_MTIME(inode, raw_inode);
4954	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961				ivers |=
4962		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963		}
4964		ext4_inode_set_iversion_queried(inode, ivers);
4965	}
4966
4967	ret = 0;
4968	if (ei->i_file_acl &&
4969	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970		ext4_error_inode(inode, function, line, 0,
4971				 "iget: bad extended attribute block %llu",
4972				 ei->i_file_acl);
4973		ret = -EFSCORRUPTED;
4974		goto bad_inode;
4975	} else if (!ext4_has_inline_data(inode)) {
4976		/* validate the block references in the inode */
4977		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979			(S_ISLNK(inode->i_mode) &&
4980			!ext4_inode_is_fast_symlink(inode)))) {
4981			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982				ret = ext4_ext_check_inode(inode);
4983			else
4984				ret = ext4_ind_check_inode(inode);
4985		}
4986	}
4987	if (ret)
4988		goto bad_inode;
4989
4990	if (S_ISREG(inode->i_mode)) {
4991		inode->i_op = &ext4_file_inode_operations;
4992		inode->i_fop = &ext4_file_operations;
4993		ext4_set_aops(inode);
4994	} else if (S_ISDIR(inode->i_mode)) {
4995		inode->i_op = &ext4_dir_inode_operations;
4996		inode->i_fop = &ext4_dir_operations;
4997	} else if (S_ISLNK(inode->i_mode)) {
4998		/* VFS does not allow setting these so must be corruption */
4999		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000			ext4_error_inode(inode, function, line, 0,
5001					 "iget: immutable or append flags "
5002					 "not allowed on symlinks");
5003			ret = -EFSCORRUPTED;
5004			goto bad_inode;
5005		}
5006		if (IS_ENCRYPTED(inode)) {
5007			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5008		} else if (ext4_inode_is_fast_symlink(inode)) {
5009			inode->i_link = (char *)ei->i_data;
5010			inode->i_op = &ext4_fast_symlink_inode_operations;
5011			nd_terminate_link(ei->i_data, inode->i_size,
5012				sizeof(ei->i_data) - 1);
5013		} else {
5014			inode->i_op = &ext4_symlink_inode_operations;
5015		}
5016	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018		inode->i_op = &ext4_special_inode_operations;
5019		if (raw_inode->i_block[0])
5020			init_special_inode(inode, inode->i_mode,
5021			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022		else
5023			init_special_inode(inode, inode->i_mode,
5024			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025	} else if (ino == EXT4_BOOT_LOADER_INO) {
5026		make_bad_inode(inode);
5027	} else {
5028		ret = -EFSCORRUPTED;
5029		ext4_error_inode(inode, function, line, 0,
5030				 "iget: bogus i_mode (%o)", inode->i_mode);
5031		goto bad_inode;
5032	}
5033	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034		ext4_error_inode(inode, function, line, 0,
5035				 "casefold flag without casefold feature");
5036		ret = -EFSCORRUPTED;
5037		goto bad_inode;
5038	}
5039	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040		ext4_error_inode(inode, function, line, 0, err_str);
5041		ret = -EFSCORRUPTED;
5042		goto bad_inode;
5043	}
5044
5045	brelse(iloc.bh);
5046	unlock_new_inode(inode);
5047	return inode;
5048
5049bad_inode:
5050	brelse(iloc.bh);
5051	iget_failed(inode);
5052	return ERR_PTR(ret);
5053}
5054
5055static void __ext4_update_other_inode_time(struct super_block *sb,
5056					   unsigned long orig_ino,
5057					   unsigned long ino,
5058					   struct ext4_inode *raw_inode)
5059{
5060	struct inode *inode;
5061
5062	inode = find_inode_by_ino_rcu(sb, ino);
5063	if (!inode)
5064		return;
5065
5066	if (!inode_is_dirtytime_only(inode))
5067		return;
5068
5069	spin_lock(&inode->i_lock);
5070	if (inode_is_dirtytime_only(inode)) {
5071		struct ext4_inode_info	*ei = EXT4_I(inode);
5072
5073		inode->i_state &= ~I_DIRTY_TIME;
5074		spin_unlock(&inode->i_lock);
5075
5076		spin_lock(&ei->i_raw_lock);
5077		EXT4_INODE_SET_CTIME(inode, raw_inode);
5078		EXT4_INODE_SET_MTIME(inode, raw_inode);
5079		EXT4_INODE_SET_ATIME(inode, raw_inode);
5080		ext4_inode_csum_set(inode, raw_inode, ei);
5081		spin_unlock(&ei->i_raw_lock);
5082		trace_ext4_other_inode_update_time(inode, orig_ino);
5083		return;
5084	}
5085	spin_unlock(&inode->i_lock);
5086}
5087
5088/*
5089 * Opportunistically update the other time fields for other inodes in
5090 * the same inode table block.
5091 */
5092static void ext4_update_other_inodes_time(struct super_block *sb,
5093					  unsigned long orig_ino, char *buf)
5094{
5095	unsigned long ino;
5096	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097	int inode_size = EXT4_INODE_SIZE(sb);
5098
5099	/*
5100	 * Calculate the first inode in the inode table block.  Inode
5101	 * numbers are one-based.  That is, the first inode in a block
5102	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103	 */
5104	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105	rcu_read_lock();
5106	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107		if (ino == orig_ino)
5108			continue;
5109		__ext4_update_other_inode_time(sb, orig_ino, ino,
5110					       (struct ext4_inode *)buf);
5111	}
5112	rcu_read_unlock();
5113}
5114
5115/*
5116 * Post the struct inode info into an on-disk inode location in the
5117 * buffer-cache.  This gobbles the caller's reference to the
5118 * buffer_head in the inode location struct.
5119 *
5120 * The caller must have write access to iloc->bh.
5121 */
5122static int ext4_do_update_inode(handle_t *handle,
5123				struct inode *inode,
5124				struct ext4_iloc *iloc)
5125{
5126	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127	struct ext4_inode_info *ei = EXT4_I(inode);
5128	struct buffer_head *bh = iloc->bh;
5129	struct super_block *sb = inode->i_sb;
5130	int err;
5131	int need_datasync = 0, set_large_file = 0;
5132
5133	spin_lock(&ei->i_raw_lock);
5134
5135	/*
5136	 * For fields not tracked in the in-memory inode, initialise them
5137	 * to zero for new inodes.
5138	 */
5139	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141
5142	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5143		need_datasync = 1;
5144	if (ei->i_disksize > 0x7fffffffULL) {
5145		if (!ext4_has_feature_large_file(sb) ||
5146		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5147			set_large_file = 1;
5148	}
5149
5150	err = ext4_fill_raw_inode(inode, raw_inode);
5151	spin_unlock(&ei->i_raw_lock);
5152	if (err) {
5153		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5154		goto out_brelse;
5155	}
5156
5157	if (inode->i_sb->s_flags & SB_LAZYTIME)
5158		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159					      bh->b_data);
5160
5161	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163	if (err)
5164		goto out_error;
5165	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166	if (set_large_file) {
5167		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168		err = ext4_journal_get_write_access(handle, sb,
5169						    EXT4_SB(sb)->s_sbh,
5170						    EXT4_JTR_NONE);
5171		if (err)
5172			goto out_error;
5173		lock_buffer(EXT4_SB(sb)->s_sbh);
5174		ext4_set_feature_large_file(sb);
5175		ext4_superblock_csum_set(sb);
5176		unlock_buffer(EXT4_SB(sb)->s_sbh);
5177		ext4_handle_sync(handle);
5178		err = ext4_handle_dirty_metadata(handle, NULL,
5179						 EXT4_SB(sb)->s_sbh);
5180	}
5181	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182out_error:
5183	ext4_std_error(inode->i_sb, err);
5184out_brelse:
5185	brelse(bh);
5186	return err;
5187}
5188
5189/*
5190 * ext4_write_inode()
5191 *
5192 * We are called from a few places:
5193 *
5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195 *   Here, there will be no transaction running. We wait for any running
5196 *   transaction to commit.
5197 *
5198 * - Within flush work (sys_sync(), kupdate and such).
5199 *   We wait on commit, if told to.
5200 *
5201 * - Within iput_final() -> write_inode_now()
5202 *   We wait on commit, if told to.
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
5206 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5207 * writeback.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this.  The code:
5214 *
5215 *	mark_inode_dirty(inode)
5216 *	stuff();
5217 *	inode->i_size = expr;
5218 *
5219 * is in error because write_inode() could occur while `stuff()' is running,
5220 * and the new i_size will be lost.  Plus the inode will no longer be on the
5221 * superblock's dirty inode list.
5222 */
5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224{
5225	int err;
5226
5227	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228		return 0;
5229
5230	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231		return -EIO;
5232
5233	if (EXT4_SB(inode->i_sb)->s_journal) {
5234		if (ext4_journal_current_handle()) {
5235			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236			dump_stack();
5237			return -EIO;
5238		}
5239
5240		/*
5241		 * No need to force transaction in WB_SYNC_NONE mode. Also
5242		 * ext4_sync_fs() will force the commit after everything is
5243		 * written.
5244		 */
5245		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246			return 0;
5247
5248		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249						EXT4_I(inode)->i_sync_tid);
5250	} else {
5251		struct ext4_iloc iloc;
5252
5253		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254		if (err)
5255			return err;
5256		/*
5257		 * sync(2) will flush the whole buffer cache. No need to do
5258		 * it here separately for each inode.
5259		 */
5260		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261			sync_dirty_buffer(iloc.bh);
5262		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264					       "IO error syncing inode");
5265			err = -EIO;
5266		}
5267		brelse(iloc.bh);
5268	}
5269	return err;
5270}
5271
5272/*
5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274 * buffers that are attached to a folio straddling i_size and are undergoing
5275 * commit. In that case we have to wait for commit to finish and try again.
5276 */
5277static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278{
5279	unsigned offset;
5280	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281	tid_t commit_tid;
5282	int ret;
5283	bool has_transaction;
5284
5285	offset = inode->i_size & (PAGE_SIZE - 1);
5286	/*
5287	 * If the folio is fully truncated, we don't need to wait for any commit
5288	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289	 * strip all buffers from the folio but keep the folio dirty which can then
5290	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291	 * buffers). Also we don't need to wait for any commit if all buffers in
5292	 * the folio remain valid. This is most beneficial for the common case of
5293	 * blocksize == PAGESIZE.
5294	 */
5295	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296		return;
5297	while (1) {
5298		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299				      inode->i_size >> PAGE_SHIFT);
5300		if (IS_ERR(folio))
5301			return;
5302		ret = __ext4_journalled_invalidate_folio(folio, offset,
5303						folio_size(folio) - offset);
5304		folio_unlock(folio);
5305		folio_put(folio);
5306		if (ret != -EBUSY)
5307			return;
5308		has_transaction = false;
5309		read_lock(&journal->j_state_lock);
5310		if (journal->j_committing_transaction) {
5311			commit_tid = journal->j_committing_transaction->t_tid;
5312			has_transaction = true;
5313		}
5314		read_unlock(&journal->j_state_lock);
5315		if (has_transaction)
5316			jbd2_log_wait_commit(journal, commit_tid);
5317	}
5318}
5319
5320/*
5321 * ext4_setattr()
5322 *
5323 * Called from notify_change.
5324 *
5325 * We want to trap VFS attempts to truncate the file as soon as
5326 * possible.  In particular, we want to make sure that when the VFS
5327 * shrinks i_size, we put the inode on the orphan list and modify
5328 * i_disksize immediately, so that during the subsequent flushing of
5329 * dirty pages and freeing of disk blocks, we can guarantee that any
5330 * commit will leave the blocks being flushed in an unused state on
5331 * disk.  (On recovery, the inode will get truncated and the blocks will
5332 * be freed, so we have a strong guarantee that no future commit will
5333 * leave these blocks visible to the user.)
5334 *
5335 * Another thing we have to assure is that if we are in ordered mode
5336 * and inode is still attached to the committing transaction, we must
5337 * we start writeout of all the dirty pages which are being truncated.
5338 * This way we are sure that all the data written in the previous
5339 * transaction are already on disk (truncate waits for pages under
5340 * writeback).
5341 *
5342 * Called with inode->i_rwsem down.
5343 */
5344int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345		 struct iattr *attr)
5346{
5347	struct inode *inode = d_inode(dentry);
5348	int error, rc = 0;
5349	int orphan = 0;
5350	const unsigned int ia_valid = attr->ia_valid;
5351	bool inc_ivers = true;
5352
5353	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354		return -EIO;
5355
5356	if (unlikely(IS_IMMUTABLE(inode)))
5357		return -EPERM;
5358
5359	if (unlikely(IS_APPEND(inode) &&
5360		     (ia_valid & (ATTR_MODE | ATTR_UID |
5361				  ATTR_GID | ATTR_TIMES_SET))))
5362		return -EPERM;
5363
5364	error = setattr_prepare(idmap, dentry, attr);
5365	if (error)
5366		return error;
5367
5368	error = fscrypt_prepare_setattr(dentry, attr);
5369	if (error)
5370		return error;
5371
5372	error = fsverity_prepare_setattr(dentry, attr);
5373	if (error)
5374		return error;
5375
5376	if (is_quota_modification(idmap, inode, attr)) {
5377		error = dquot_initialize(inode);
5378		if (error)
5379			return error;
5380	}
5381
5382	if (i_uid_needs_update(idmap, attr, inode) ||
5383	    i_gid_needs_update(idmap, attr, inode)) {
5384		handle_t *handle;
5385
5386		/* (user+group)*(old+new) structure, inode write (sb,
5387		 * inode block, ? - but truncate inode update has it) */
5388		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391		if (IS_ERR(handle)) {
5392			error = PTR_ERR(handle);
5393			goto err_out;
5394		}
5395
5396		/* dquot_transfer() calls back ext4_get_inode_usage() which
5397		 * counts xattr inode references.
5398		 */
5399		down_read(&EXT4_I(inode)->xattr_sem);
5400		error = dquot_transfer(idmap, inode, attr);
5401		up_read(&EXT4_I(inode)->xattr_sem);
5402
5403		if (error) {
5404			ext4_journal_stop(handle);
5405			return error;
5406		}
5407		/* Update corresponding info in inode so that everything is in
5408		 * one transaction */
5409		i_uid_update(idmap, attr, inode);
5410		i_gid_update(idmap, attr, inode);
5411		error = ext4_mark_inode_dirty(handle, inode);
5412		ext4_journal_stop(handle);
5413		if (unlikely(error)) {
5414			return error;
5415		}
5416	}
5417
5418	if (attr->ia_valid & ATTR_SIZE) {
5419		handle_t *handle;
5420		loff_t oldsize = inode->i_size;
5421		loff_t old_disksize;
5422		int shrink = (attr->ia_size < inode->i_size);
5423
5424		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426
5427			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428				return -EFBIG;
5429			}
5430		}
5431		if (!S_ISREG(inode->i_mode)) {
5432			return -EINVAL;
5433		}
5434
5435		if (attr->ia_size == inode->i_size)
5436			inc_ivers = false;
5437
5438		if (shrink) {
5439			if (ext4_should_order_data(inode)) {
5440				error = ext4_begin_ordered_truncate(inode,
5441							    attr->ia_size);
5442				if (error)
5443					goto err_out;
5444			}
5445			/*
5446			 * Blocks are going to be removed from the inode. Wait
5447			 * for dio in flight.
5448			 */
5449			inode_dio_wait(inode);
5450		}
5451
5452		filemap_invalidate_lock(inode->i_mapping);
5453
5454		rc = ext4_break_layouts(inode);
5455		if (rc) {
5456			filemap_invalidate_unlock(inode->i_mapping);
5457			goto err_out;
5458		}
5459
5460		if (attr->ia_size != inode->i_size) {
5461			/* attach jbd2 jinode for EOF folio tail zeroing */
5462			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5464				error = ext4_inode_attach_jinode(inode);
5465				if (error)
5466					goto err_out;
5467			}
5468
5469			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470			if (IS_ERR(handle)) {
5471				error = PTR_ERR(handle);
5472				goto out_mmap_sem;
5473			}
5474			if (ext4_handle_valid(handle) && shrink) {
5475				error = ext4_orphan_add(handle, inode);
5476				orphan = 1;
5477			}
5478			/*
5479			 * Update c/mtime and tail zero the EOF folio on
5480			 * truncate up. ext4_truncate() handles the shrink case
5481			 * below.
5482			 */
5483			if (!shrink) {
5484				inode_set_mtime_to_ts(inode,
5485						      inode_set_ctime_current(inode));
5486				if (oldsize & (inode->i_sb->s_blocksize - 1))
5487					ext4_block_truncate_page(handle,
5488							inode->i_mapping, oldsize);
5489			}
5490
5491			if (shrink)
5492				ext4_fc_track_range(handle, inode,
5493					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494					inode->i_sb->s_blocksize_bits,
5495					EXT_MAX_BLOCKS - 1);
5496			else
5497				ext4_fc_track_range(
5498					handle, inode,
5499					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5500					inode->i_sb->s_blocksize_bits,
5501					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502					inode->i_sb->s_blocksize_bits);
5503
5504			down_write(&EXT4_I(inode)->i_data_sem);
5505			old_disksize = EXT4_I(inode)->i_disksize;
5506			EXT4_I(inode)->i_disksize = attr->ia_size;
5507			rc = ext4_mark_inode_dirty(handle, inode);
5508			if (!error)
5509				error = rc;
5510			/*
5511			 * We have to update i_size under i_data_sem together
5512			 * with i_disksize to avoid races with writeback code
5513			 * running ext4_wb_update_i_disksize().
5514			 */
5515			if (!error)
5516				i_size_write(inode, attr->ia_size);
5517			else
5518				EXT4_I(inode)->i_disksize = old_disksize;
5519			up_write(&EXT4_I(inode)->i_data_sem);
5520			ext4_journal_stop(handle);
5521			if (error)
5522				goto out_mmap_sem;
5523			if (!shrink) {
5524				pagecache_isize_extended(inode, oldsize,
5525							 inode->i_size);
5526			} else if (ext4_should_journal_data(inode)) {
5527				ext4_wait_for_tail_page_commit(inode);
5528			}
5529		}
5530
5531		/*
5532		 * Truncate pagecache after we've waited for commit
5533		 * in data=journal mode to make pages freeable.
5534		 */
5535		truncate_pagecache(inode, inode->i_size);
5536		/*
5537		 * Call ext4_truncate() even if i_size didn't change to
5538		 * truncate possible preallocated blocks.
5539		 */
5540		if (attr->ia_size <= oldsize) {
5541			rc = ext4_truncate(inode);
5542			if (rc)
5543				error = rc;
5544		}
5545out_mmap_sem:
5546		filemap_invalidate_unlock(inode->i_mapping);
5547	}
5548
5549	if (!error) {
5550		if (inc_ivers)
5551			inode_inc_iversion(inode);
5552		setattr_copy(idmap, inode, attr);
5553		mark_inode_dirty(inode);
5554	}
5555
5556	/*
5557	 * If the call to ext4_truncate failed to get a transaction handle at
5558	 * all, we need to clean up the in-core orphan list manually.
5559	 */
5560	if (orphan && inode->i_nlink)
5561		ext4_orphan_del(NULL, inode);
5562
5563	if (!error && (ia_valid & ATTR_MODE))
5564		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565
5566err_out:
5567	if  (error)
5568		ext4_std_error(inode->i_sb, error);
5569	if (!error)
5570		error = rc;
5571	return error;
5572}
5573
5574u32 ext4_dio_alignment(struct inode *inode)
5575{
5576	if (fsverity_active(inode))
5577		return 0;
5578	if (ext4_should_journal_data(inode))
5579		return 0;
5580	if (ext4_has_inline_data(inode))
5581		return 0;
5582	if (IS_ENCRYPTED(inode)) {
5583		if (!fscrypt_dio_supported(inode))
5584			return 0;
5585		return i_blocksize(inode);
5586	}
5587	return 1; /* use the iomap defaults */
5588}
5589
5590int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592{
5593	struct inode *inode = d_inode(path->dentry);
5594	struct ext4_inode *raw_inode;
5595	struct ext4_inode_info *ei = EXT4_I(inode);
5596	unsigned int flags;
5597
5598	if ((request_mask & STATX_BTIME) &&
5599	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600		stat->result_mask |= STATX_BTIME;
5601		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603	}
5604
5605	/*
5606	 * Return the DIO alignment restrictions if requested.  We only return
5607	 * this information when requested, since on encrypted files it might
5608	 * take a fair bit of work to get if the file wasn't opened recently.
5609	 */
5610	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611		u32 dio_align = ext4_dio_alignment(inode);
5612
5613		stat->result_mask |= STATX_DIOALIGN;
5614		if (dio_align == 1) {
5615			struct block_device *bdev = inode->i_sb->s_bdev;
5616
5617			/* iomap defaults */
5618			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619			stat->dio_offset_align = bdev_logical_block_size(bdev);
5620		} else {
5621			stat->dio_mem_align = dio_align;
5622			stat->dio_offset_align = dio_align;
5623		}
5624	}
5625
5626	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628		unsigned int awu_min = 0, awu_max = 0;
5629
5630		if (ext4_inode_can_atomic_write(inode)) {
5631			awu_min = sbi->s_awu_min;
5632			awu_max = sbi->s_awu_max;
5633		}
5634
5635		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636	}
5637
5638	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639	if (flags & EXT4_APPEND_FL)
5640		stat->attributes |= STATX_ATTR_APPEND;
5641	if (flags & EXT4_COMPR_FL)
5642		stat->attributes |= STATX_ATTR_COMPRESSED;
5643	if (flags & EXT4_ENCRYPT_FL)
5644		stat->attributes |= STATX_ATTR_ENCRYPTED;
5645	if (flags & EXT4_IMMUTABLE_FL)
5646		stat->attributes |= STATX_ATTR_IMMUTABLE;
5647	if (flags & EXT4_NODUMP_FL)
5648		stat->attributes |= STATX_ATTR_NODUMP;
5649	if (flags & EXT4_VERITY_FL)
5650		stat->attributes |= STATX_ATTR_VERITY;
5651
5652	stat->attributes_mask |= (STATX_ATTR_APPEND |
5653				  STATX_ATTR_COMPRESSED |
5654				  STATX_ATTR_ENCRYPTED |
5655				  STATX_ATTR_IMMUTABLE |
5656				  STATX_ATTR_NODUMP |
5657				  STATX_ATTR_VERITY);
5658
5659	generic_fillattr(idmap, request_mask, inode, stat);
5660	return 0;
5661}
5662
5663int ext4_file_getattr(struct mnt_idmap *idmap,
5664		      const struct path *path, struct kstat *stat,
5665		      u32 request_mask, unsigned int query_flags)
5666{
5667	struct inode *inode = d_inode(path->dentry);
5668	u64 delalloc_blocks;
5669
5670	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5671
5672	/*
5673	 * If there is inline data in the inode, the inode will normally not
5674	 * have data blocks allocated (it may have an external xattr block).
5675	 * Report at least one sector for such files, so tools like tar, rsync,
5676	 * others don't incorrectly think the file is completely sparse.
5677	 */
5678	if (unlikely(ext4_has_inline_data(inode)))
5679		stat->blocks += (stat->size + 511) >> 9;
5680
5681	/*
5682	 * We can't update i_blocks if the block allocation is delayed
5683	 * otherwise in the case of system crash before the real block
5684	 * allocation is done, we will have i_blocks inconsistent with
5685	 * on-disk file blocks.
5686	 * We always keep i_blocks updated together with real
5687	 * allocation. But to not confuse with user, stat
5688	 * will return the blocks that include the delayed allocation
5689	 * blocks for this file.
5690	 */
5691	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692				   EXT4_I(inode)->i_reserved_data_blocks);
5693	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694	return 0;
5695}
5696
5697static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698				   int pextents)
5699{
5700	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701		return ext4_ind_trans_blocks(inode, lblocks);
5702	return ext4_ext_index_trans_blocks(inode, pextents);
5703}
5704
5705/*
5706 * Account for index blocks, block groups bitmaps and block group
5707 * descriptor blocks if modify datablocks and index blocks
5708 * worse case, the indexs blocks spread over different block groups
5709 *
5710 * If datablocks are discontiguous, they are possible to spread over
5711 * different block groups too. If they are contiguous, with flexbg,
5712 * they could still across block group boundary.
5713 *
5714 * Also account for superblock, inode, quota and xattr blocks
5715 */
5716static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717				  int pextents)
5718{
5719	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720	int gdpblocks;
5721	int idxblocks;
5722	int ret;
5723
5724	/*
5725	 * How many index blocks need to touch to map @lblocks logical blocks
5726	 * to @pextents physical extents?
5727	 */
5728	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729
5730	ret = idxblocks;
5731
5732	/*
5733	 * Now let's see how many group bitmaps and group descriptors need
5734	 * to account
5735	 */
5736	groups = idxblocks + pextents;
5737	gdpblocks = groups;
5738	if (groups > ngroups)
5739		groups = ngroups;
5740	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742
5743	/* bitmaps and block group descriptor blocks */
5744	ret += groups + gdpblocks;
5745
5746	/* Blocks for super block, inode, quota and xattr blocks */
5747	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748
5749	return ret;
5750}
5751
5752/*
5753 * Calculate the total number of credits to reserve to fit
5754 * the modification of a single pages into a single transaction,
5755 * which may include multiple chunks of block allocations.
5756 *
5757 * This could be called via ext4_write_begin()
5758 *
5759 * We need to consider the worse case, when
5760 * one new block per extent.
5761 */
5762int ext4_writepage_trans_blocks(struct inode *inode)
5763{
5764	int bpp = ext4_journal_blocks_per_page(inode);
5765	int ret;
5766
5767	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768
5769	/* Account for data blocks for journalled mode */
5770	if (ext4_should_journal_data(inode))
5771		ret += bpp;
5772	return ret;
5773}
5774
5775/*
5776 * Calculate the journal credits for a chunk of data modification.
5777 *
5778 * This is called from DIO, fallocate or whoever calling
5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780 *
5781 * journal buffers for data blocks are not included here, as DIO
5782 * and fallocate do no need to journal data buffers.
5783 */
5784int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785{
5786	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787}
5788
5789/*
5790 * The caller must have previously called ext4_reserve_inode_write().
5791 * Give this, we know that the caller already has write access to iloc->bh.
5792 */
5793int ext4_mark_iloc_dirty(handle_t *handle,
5794			 struct inode *inode, struct ext4_iloc *iloc)
5795{
5796	int err = 0;
5797
5798	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799		put_bh(iloc->bh);
5800		return -EIO;
5801	}
5802	ext4_fc_track_inode(handle, inode);
5803
5804	/* the do_update_inode consumes one bh->b_count */
5805	get_bh(iloc->bh);
5806
5807	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808	err = ext4_do_update_inode(handle, inode, iloc);
5809	put_bh(iloc->bh);
5810	return err;
5811}
5812
5813/*
5814 * On success, We end up with an outstanding reference count against
5815 * iloc->bh.  This _must_ be cleaned up later.
5816 */
5817
5818int
5819ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820			 struct ext4_iloc *iloc)
5821{
5822	int err;
5823
5824	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825		return -EIO;
5826
5827	err = ext4_get_inode_loc(inode, iloc);
5828	if (!err) {
5829		BUFFER_TRACE(iloc->bh, "get_write_access");
5830		err = ext4_journal_get_write_access(handle, inode->i_sb,
5831						    iloc->bh, EXT4_JTR_NONE);
5832		if (err) {
5833			brelse(iloc->bh);
5834			iloc->bh = NULL;
5835		}
5836	}
5837	ext4_std_error(inode->i_sb, err);
5838	return err;
5839}
5840
5841static int __ext4_expand_extra_isize(struct inode *inode,
5842				     unsigned int new_extra_isize,
5843				     struct ext4_iloc *iloc,
5844				     handle_t *handle, int *no_expand)
5845{
5846	struct ext4_inode *raw_inode;
5847	struct ext4_xattr_ibody_header *header;
5848	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849	struct ext4_inode_info *ei = EXT4_I(inode);
5850	int error;
5851
5852	/* this was checked at iget time, but double check for good measure */
5853	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854	    (ei->i_extra_isize & 3)) {
5855		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856				 ei->i_extra_isize,
5857				 EXT4_INODE_SIZE(inode->i_sb));
5858		return -EFSCORRUPTED;
5859	}
5860	if ((new_extra_isize < ei->i_extra_isize) ||
5861	    (new_extra_isize < 4) ||
5862	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863		return -EINVAL;	/* Should never happen */
5864
5865	raw_inode = ext4_raw_inode(iloc);
5866
5867	header = IHDR(inode, raw_inode);
5868
5869	/* No extended attributes present */
5870	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873		       EXT4_I(inode)->i_extra_isize, 0,
5874		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876		return 0;
5877	}
5878
5879	/*
5880	 * We may need to allocate external xattr block so we need quotas
5881	 * initialized. Here we can be called with various locks held so we
5882	 * cannot affort to initialize quotas ourselves. So just bail.
5883	 */
5884	if (dquot_initialize_needed(inode))
5885		return -EAGAIN;
5886
5887	/* try to expand with EAs present */
5888	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889					   raw_inode, handle);
5890	if (error) {
5891		/*
5892		 * Inode size expansion failed; don't try again
5893		 */
5894		*no_expand = 1;
5895	}
5896
5897	return error;
5898}
5899
5900/*
5901 * Expand an inode by new_extra_isize bytes.
5902 * Returns 0 on success or negative error number on failure.
5903 */
5904static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905					  unsigned int new_extra_isize,
5906					  struct ext4_iloc iloc,
5907					  handle_t *handle)
5908{
5909	int no_expand;
5910	int error;
5911
5912	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913		return -EOVERFLOW;
5914
5915	/*
5916	 * In nojournal mode, we can immediately attempt to expand
5917	 * the inode.  When journaled, we first need to obtain extra
5918	 * buffer credits since we may write into the EA block
5919	 * with this same handle. If journal_extend fails, then it will
5920	 * only result in a minor loss of functionality for that inode.
5921	 * If this is felt to be critical, then e2fsck should be run to
5922	 * force a large enough s_min_extra_isize.
5923	 */
5924	if (ext4_journal_extend(handle,
5925				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5926		return -ENOSPC;
5927
5928	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929		return -EBUSY;
5930
5931	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932					  handle, &no_expand);
5933	ext4_write_unlock_xattr(inode, &no_expand);
5934
5935	return error;
5936}
5937
5938int ext4_expand_extra_isize(struct inode *inode,
5939			    unsigned int new_extra_isize,
5940			    struct ext4_iloc *iloc)
5941{
5942	handle_t *handle;
5943	int no_expand;
5944	int error, rc;
5945
5946	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947		brelse(iloc->bh);
5948		return -EOVERFLOW;
5949	}
5950
5951	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953	if (IS_ERR(handle)) {
5954		error = PTR_ERR(handle);
5955		brelse(iloc->bh);
5956		return error;
5957	}
5958
5959	ext4_write_lock_xattr(inode, &no_expand);
5960
5961	BUFFER_TRACE(iloc->bh, "get_write_access");
5962	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963					      EXT4_JTR_NONE);
5964	if (error) {
5965		brelse(iloc->bh);
5966		goto out_unlock;
5967	}
5968
5969	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970					  handle, &no_expand);
5971
5972	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973	if (!error)
5974		error = rc;
5975
5976out_unlock:
5977	ext4_write_unlock_xattr(inode, &no_expand);
5978	ext4_journal_stop(handle);
5979	return error;
5980}
5981
5982/*
5983 * What we do here is to mark the in-core inode as clean with respect to inode
5984 * dirtiness (it may still be data-dirty).
5985 * This means that the in-core inode may be reaped by prune_icache
5986 * without having to perform any I/O.  This is a very good thing,
5987 * because *any* task may call prune_icache - even ones which
5988 * have a transaction open against a different journal.
5989 *
5990 * Is this cheating?  Not really.  Sure, we haven't written the
5991 * inode out, but prune_icache isn't a user-visible syncing function.
5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993 * we start and wait on commits.
5994 */
5995int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996				const char *func, unsigned int line)
5997{
5998	struct ext4_iloc iloc;
5999	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000	int err;
6001
6002	might_sleep();
6003	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004	err = ext4_reserve_inode_write(handle, inode, &iloc);
6005	if (err)
6006		goto out;
6007
6008	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010					       iloc, handle);
6011
6012	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013out:
6014	if (unlikely(err))
6015		ext4_error_inode_err(inode, func, line, 0, err,
6016					"mark_inode_dirty error");
6017	return err;
6018}
6019
6020/*
6021 * ext4_dirty_inode() is called from __mark_inode_dirty()
6022 *
6023 * We're really interested in the case where a file is being extended.
6024 * i_size has been changed by generic_commit_write() and we thus need
6025 * to include the updated inode in the current transaction.
6026 *
6027 * Also, dquot_alloc_block() will always dirty the inode when blocks
6028 * are allocated to the file.
6029 *
6030 * If the inode is marked synchronous, we don't honour that here - doing
6031 * so would cause a commit on atime updates, which we don't bother doing.
6032 * We handle synchronous inodes at the highest possible level.
6033 */
6034void ext4_dirty_inode(struct inode *inode, int flags)
6035{
6036	handle_t *handle;
6037
6038	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039	if (IS_ERR(handle))
6040		return;
6041	ext4_mark_inode_dirty(handle, inode);
6042	ext4_journal_stop(handle);
6043}
6044
6045int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046{
6047	journal_t *journal;
6048	handle_t *handle;
6049	int err;
6050	int alloc_ctx;
6051
6052	/*
6053	 * We have to be very careful here: changing a data block's
6054	 * journaling status dynamically is dangerous.  If we write a
6055	 * data block to the journal, change the status and then delete
6056	 * that block, we risk forgetting to revoke the old log record
6057	 * from the journal and so a subsequent replay can corrupt data.
6058	 * So, first we make sure that the journal is empty and that
6059	 * nobody is changing anything.
6060	 */
6061
6062	journal = EXT4_JOURNAL(inode);
6063	if (!journal)
6064		return 0;
6065	if (is_journal_aborted(journal))
6066		return -EROFS;
6067
6068	/* Wait for all existing dio workers */
6069	inode_dio_wait(inode);
6070
6071	/*
6072	 * Before flushing the journal and switching inode's aops, we have
6073	 * to flush all dirty data the inode has. There can be outstanding
6074	 * delayed allocations, there can be unwritten extents created by
6075	 * fallocate or buffered writes in dioread_nolock mode covered by
6076	 * dirty data which can be converted only after flushing the dirty
6077	 * data (and journalled aops don't know how to handle these cases).
6078	 */
6079	if (val) {
6080		filemap_invalidate_lock(inode->i_mapping);
6081		err = filemap_write_and_wait(inode->i_mapping);
6082		if (err < 0) {
6083			filemap_invalidate_unlock(inode->i_mapping);
6084			return err;
6085		}
6086	}
6087
6088	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089	jbd2_journal_lock_updates(journal);
6090
6091	/*
6092	 * OK, there are no updates running now, and all cached data is
6093	 * synced to disk.  We are now in a completely consistent state
6094	 * which doesn't have anything in the journal, and we know that
6095	 * no filesystem updates are running, so it is safe to modify
6096	 * the inode's in-core data-journaling state flag now.
6097	 */
6098
6099	if (val)
6100		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101	else {
6102		err = jbd2_journal_flush(journal, 0);
6103		if (err < 0) {
6104			jbd2_journal_unlock_updates(journal);
6105			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6106			return err;
6107		}
6108		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109	}
6110	ext4_set_aops(inode);
6111
6112	jbd2_journal_unlock_updates(journal);
6113	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114
6115	if (val)
6116		filemap_invalidate_unlock(inode->i_mapping);
6117
6118	/* Finally we can mark the inode as dirty. */
6119
6120	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121	if (IS_ERR(handle))
6122		return PTR_ERR(handle);
6123
6124	ext4_fc_mark_ineligible(inode->i_sb,
6125		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126	err = ext4_mark_inode_dirty(handle, inode);
6127	ext4_handle_sync(handle);
6128	ext4_journal_stop(handle);
6129	ext4_std_error(inode->i_sb, err);
6130
6131	return err;
6132}
6133
6134static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135			    struct buffer_head *bh)
6136{
6137	return !buffer_mapped(bh);
6138}
6139
6140vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141{
6142	struct vm_area_struct *vma = vmf->vma;
6143	struct folio *folio = page_folio(vmf->page);
6144	loff_t size;
6145	unsigned long len;
6146	int err;
6147	vm_fault_t ret;
6148	struct file *file = vma->vm_file;
6149	struct inode *inode = file_inode(file);
6150	struct address_space *mapping = inode->i_mapping;
6151	handle_t *handle;
6152	get_block_t *get_block;
6153	int retries = 0;
6154
6155	if (unlikely(IS_IMMUTABLE(inode)))
6156		return VM_FAULT_SIGBUS;
6157
6158	sb_start_pagefault(inode->i_sb);
6159	file_update_time(vma->vm_file);
6160
6161	filemap_invalidate_lock_shared(mapping);
6162
6163	err = ext4_convert_inline_data(inode);
6164	if (err)
6165		goto out_ret;
6166
6167	/*
6168	 * On data journalling we skip straight to the transaction handle:
6169	 * there's no delalloc; page truncated will be checked later; the
6170	 * early return w/ all buffers mapped (calculates size/len) can't
6171	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172	 */
6173	if (ext4_should_journal_data(inode))
6174		goto retry_alloc;
6175
6176	/* Delalloc case is easy... */
6177	if (test_opt(inode->i_sb, DELALLOC) &&
6178	    !ext4_nonda_switch(inode->i_sb)) {
6179		do {
6180			err = block_page_mkwrite(vma, vmf,
6181						   ext4_da_get_block_prep);
6182		} while (err == -ENOSPC &&
6183		       ext4_should_retry_alloc(inode->i_sb, &retries));
6184		goto out_ret;
6185	}
6186
6187	folio_lock(folio);
6188	size = i_size_read(inode);
6189	/* Page got truncated from under us? */
6190	if (folio->mapping != mapping || folio_pos(folio) > size) {
6191		folio_unlock(folio);
6192		ret = VM_FAULT_NOPAGE;
6193		goto out;
6194	}
6195
6196	len = folio_size(folio);
6197	if (folio_pos(folio) + len > size)
6198		len = size - folio_pos(folio);
6199	/*
6200	 * Return if we have all the buffers mapped. This avoids the need to do
6201	 * journal_start/journal_stop which can block and take a long time
6202	 *
6203	 * This cannot be done for data journalling, as we have to add the
6204	 * inode to the transaction's list to writeprotect pages on commit.
6205	 */
6206	if (folio_buffers(folio)) {
6207		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208					    0, len, NULL,
6209					    ext4_bh_unmapped)) {
6210			/* Wait so that we don't change page under IO */
6211			folio_wait_stable(folio);
6212			ret = VM_FAULT_LOCKED;
6213			goto out;
6214		}
6215	}
6216	folio_unlock(folio);
6217	/* OK, we need to fill the hole... */
6218	if (ext4_should_dioread_nolock(inode))
6219		get_block = ext4_get_block_unwritten;
6220	else
6221		get_block = ext4_get_block;
6222retry_alloc:
6223	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224				    ext4_writepage_trans_blocks(inode));
6225	if (IS_ERR(handle)) {
6226		ret = VM_FAULT_SIGBUS;
6227		goto out;
6228	}
6229	/*
6230	 * Data journalling can't use block_page_mkwrite() because it
6231	 * will set_buffer_dirty() before do_journal_get_write_access()
6232	 * thus might hit warning messages for dirty metadata buffers.
6233	 */
6234	if (!ext4_should_journal_data(inode)) {
6235		err = block_page_mkwrite(vma, vmf, get_block);
6236	} else {
6237		folio_lock(folio);
6238		size = i_size_read(inode);
6239		/* Page got truncated from under us? */
6240		if (folio->mapping != mapping || folio_pos(folio) > size) {
6241			ret = VM_FAULT_NOPAGE;
6242			goto out_error;
6243		}
6244
6245		len = folio_size(folio);
6246		if (folio_pos(folio) + len > size)
6247			len = size - folio_pos(folio);
6248
6249		err = ext4_block_write_begin(handle, folio, 0, len,
6250					     ext4_get_block);
6251		if (!err) {
6252			ret = VM_FAULT_SIGBUS;
6253			if (ext4_journal_folio_buffers(handle, folio, len))
6254				goto out_error;
6255		} else {
6256			folio_unlock(folio);
6257		}
6258	}
6259	ext4_journal_stop(handle);
6260	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261		goto retry_alloc;
6262out_ret:
6263	ret = vmf_fs_error(err);
6264out:
6265	filemap_invalidate_unlock_shared(mapping);
6266	sb_end_pagefault(inode->i_sb);
6267	return ret;
6268out_error:
6269	folio_unlock(folio);
6270	ext4_journal_stop(handle);
6271	goto out;
6272}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
 
 
 
 
 
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53			      struct ext4_inode_info *ei)
  54{
  55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56	__u32 csum;
  57	__u16 dummy_csum = 0;
  58	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  59	unsigned int csum_size = sizeof(dummy_csum);
  60
  61	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  62	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  63	offset += csum_size;
  64	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  65			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  66
  67	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  68		offset = offsetof(struct ext4_inode, i_checksum_hi);
  69		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  70				   EXT4_GOOD_OLD_INODE_SIZE,
  71				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  72		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  73			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  74					   csum_size);
  75			offset += csum_size;
  76		}
  77		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  78				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  79	}
  80
  81	return csum;
  82}
  83
  84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  85				  struct ext4_inode_info *ei)
  86{
  87	__u32 provided, calculated;
  88
  89	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90	    cpu_to_le32(EXT4_OS_LINUX) ||
  91	    !ext4_has_metadata_csum(inode->i_sb))
  92		return 1;
  93
  94	provided = le16_to_cpu(raw->i_checksum_lo);
  95	calculated = ext4_inode_csum(inode, raw, ei);
  96	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  99	else
 100		calculated &= 0xFFFF;
 101
 102	return provided == calculated;
 103}
 104
 105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 106			 struct ext4_inode_info *ei)
 107{
 108	__u32 csum;
 109
 110	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 111	    cpu_to_le32(EXT4_OS_LINUX) ||
 112	    !ext4_has_metadata_csum(inode->i_sb))
 113		return;
 114
 115	csum = ext4_inode_csum(inode, raw, ei);
 116	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 117	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 118	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 119		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 120}
 121
 122static inline int ext4_begin_ordered_truncate(struct inode *inode,
 123					      loff_t new_size)
 124{
 125	trace_ext4_begin_ordered_truncate(inode, new_size);
 126	/*
 127	 * If jinode is zero, then we never opened the file for
 128	 * writing, so there's no need to call
 129	 * jbd2_journal_begin_ordered_truncate() since there's no
 130	 * outstanding writes we need to flush.
 131	 */
 132	if (!EXT4_I(inode)->jinode)
 133		return 0;
 134	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 135						   EXT4_I(inode)->jinode,
 136						   new_size);
 137}
 138
 139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 140				  int pextents);
 141
 142/*
 143 * Test whether an inode is a fast symlink.
 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 145 */
 146int ext4_inode_is_fast_symlink(struct inode *inode)
 147{
 148	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 149		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 150				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 151
 152		if (ext4_has_inline_data(inode))
 153			return 0;
 154
 155		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 156	}
 157	return S_ISLNK(inode->i_mode) && inode->i_size &&
 158	       (inode->i_size < EXT4_N_BLOCKS * 4);
 159}
 160
 161/*
 162 * Called at the last iput() if i_nlink is zero.
 163 */
 164void ext4_evict_inode(struct inode *inode)
 165{
 166	handle_t *handle;
 167	int err;
 168	/*
 169	 * Credits for final inode cleanup and freeing:
 170	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 171	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 172	 */
 173	int extra_credits = 6;
 174	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 175	bool freeze_protected = false;
 176
 177	trace_ext4_evict_inode(inode);
 178
 179	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 180		ext4_evict_ea_inode(inode);
 181	if (inode->i_nlink) {
 182		truncate_inode_pages_final(&inode->i_data);
 183
 184		goto no_delete;
 185	}
 186
 187	if (is_bad_inode(inode))
 188		goto no_delete;
 189	dquot_initialize(inode);
 190
 191	if (ext4_should_order_data(inode))
 192		ext4_begin_ordered_truncate(inode, 0);
 193	truncate_inode_pages_final(&inode->i_data);
 194
 195	/*
 196	 * For inodes with journalled data, transaction commit could have
 197	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 198	 * extents converting worker could merge extents and also have dirtied
 199	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 200	 * we still need to remove the inode from the writeback lists.
 201	 */
 202	if (!list_empty_careful(&inode->i_io_list))
 203		inode_io_list_del(inode);
 204
 205	/*
 206	 * Protect us against freezing - iput() caller didn't have to have any
 207	 * protection against it. When we are in a running transaction though,
 208	 * we are already protected against freezing and we cannot grab further
 209	 * protection due to lock ordering constraints.
 210	 */
 211	if (!ext4_journal_current_handle()) {
 212		sb_start_intwrite(inode->i_sb);
 213		freeze_protected = true;
 214	}
 215
 216	if (!IS_NOQUOTA(inode))
 217		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 218
 219	/*
 220	 * Block bitmap, group descriptor, and inode are accounted in both
 221	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 222	 */
 223	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 224			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 225	if (IS_ERR(handle)) {
 226		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 227		/*
 228		 * If we're going to skip the normal cleanup, we still need to
 229		 * make sure that the in-core orphan linked list is properly
 230		 * cleaned up.
 231		 */
 232		ext4_orphan_del(NULL, inode);
 233		if (freeze_protected)
 234			sb_end_intwrite(inode->i_sb);
 235		goto no_delete;
 236	}
 237
 238	if (IS_SYNC(inode))
 239		ext4_handle_sync(handle);
 240
 241	/*
 242	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 243	 * special handling of symlinks here because i_size is used to
 244	 * determine whether ext4_inode_info->i_data contains symlink data or
 245	 * block mappings. Setting i_size to 0 will remove its fast symlink
 246	 * status. Erase i_data so that it becomes a valid empty block map.
 247	 */
 248	if (ext4_inode_is_fast_symlink(inode))
 249		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 250	inode->i_size = 0;
 251	err = ext4_mark_inode_dirty(handle, inode);
 252	if (err) {
 253		ext4_warning(inode->i_sb,
 254			     "couldn't mark inode dirty (err %d)", err);
 255		goto stop_handle;
 256	}
 257	if (inode->i_blocks) {
 258		err = ext4_truncate(inode);
 259		if (err) {
 260			ext4_error_err(inode->i_sb, -err,
 261				       "couldn't truncate inode %lu (err %d)",
 262				       inode->i_ino, err);
 263			goto stop_handle;
 264		}
 265	}
 266
 267	/* Remove xattr references. */
 268	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 269				      extra_credits);
 270	if (err) {
 271		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 272stop_handle:
 273		ext4_journal_stop(handle);
 274		ext4_orphan_del(NULL, inode);
 275		if (freeze_protected)
 276			sb_end_intwrite(inode->i_sb);
 277		ext4_xattr_inode_array_free(ea_inode_array);
 278		goto no_delete;
 279	}
 280
 281	/*
 282	 * Kill off the orphan record which ext4_truncate created.
 283	 * AKPM: I think this can be inside the above `if'.
 284	 * Note that ext4_orphan_del() has to be able to cope with the
 285	 * deletion of a non-existent orphan - this is because we don't
 286	 * know if ext4_truncate() actually created an orphan record.
 287	 * (Well, we could do this if we need to, but heck - it works)
 288	 */
 289	ext4_orphan_del(handle, inode);
 290	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 291
 292	/*
 293	 * One subtle ordering requirement: if anything has gone wrong
 294	 * (transaction abort, IO errors, whatever), then we can still
 295	 * do these next steps (the fs will already have been marked as
 296	 * having errors), but we can't free the inode if the mark_dirty
 297	 * fails.
 298	 */
 299	if (ext4_mark_inode_dirty(handle, inode))
 300		/* If that failed, just do the required in-core inode clear. */
 301		ext4_clear_inode(inode);
 302	else
 303		ext4_free_inode(handle, inode);
 304	ext4_journal_stop(handle);
 305	if (freeze_protected)
 306		sb_end_intwrite(inode->i_sb);
 307	ext4_xattr_inode_array_free(ea_inode_array);
 308	return;
 309no_delete:
 310	/*
 311	 * Check out some where else accidentally dirty the evicting inode,
 312	 * which may probably cause inode use-after-free issues later.
 313	 */
 314	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 315
 316	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 317		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 318	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 319}
 320
 321#ifdef CONFIG_QUOTA
 322qsize_t *ext4_get_reserved_space(struct inode *inode)
 323{
 324	return &EXT4_I(inode)->i_reserved_quota;
 325}
 326#endif
 327
 328/*
 329 * Called with i_data_sem down, which is important since we can call
 330 * ext4_discard_preallocations() from here.
 331 */
 332void ext4_da_update_reserve_space(struct inode *inode,
 333					int used, int quota_claim)
 334{
 335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 336	struct ext4_inode_info *ei = EXT4_I(inode);
 337
 338	spin_lock(&ei->i_block_reservation_lock);
 339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 340	if (unlikely(used > ei->i_reserved_data_blocks)) {
 341		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 342			 "with only %d reserved data blocks",
 343			 __func__, inode->i_ino, used,
 344			 ei->i_reserved_data_blocks);
 345		WARN_ON(1);
 346		used = ei->i_reserved_data_blocks;
 347	}
 348
 349	/* Update per-inode reservations */
 350	ei->i_reserved_data_blocks -= used;
 351	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 352
 353	spin_unlock(&ei->i_block_reservation_lock);
 354
 355	/* Update quota subsystem for data blocks */
 356	if (quota_claim)
 357		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 358	else {
 359		/*
 360		 * We did fallocate with an offset that is already delayed
 361		 * allocated. So on delayed allocated writeback we should
 362		 * not re-claim the quota for fallocated blocks.
 363		 */
 364		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 365	}
 366
 367	/*
 368	 * If we have done all the pending block allocations and if
 369	 * there aren't any writers on the inode, we can discard the
 370	 * inode's preallocations.
 371	 */
 372	if ((ei->i_reserved_data_blocks == 0) &&
 373	    !inode_is_open_for_write(inode))
 374		ext4_discard_preallocations(inode);
 375}
 376
 377static int __check_block_validity(struct inode *inode, const char *func,
 378				unsigned int line,
 379				struct ext4_map_blocks *map)
 380{
 381	if (ext4_has_feature_journal(inode->i_sb) &&
 382	    (inode->i_ino ==
 383	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 384		return 0;
 385	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 386		ext4_error_inode(inode, func, line, map->m_pblk,
 387				 "lblock %lu mapped to illegal pblock %llu "
 388				 "(length %d)", (unsigned long) map->m_lblk,
 389				 map->m_pblk, map->m_len);
 390		return -EFSCORRUPTED;
 391	}
 392	return 0;
 393}
 394
 395int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 396		       ext4_lblk_t len)
 397{
 398	int ret;
 399
 400	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 401		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 402
 403	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 404	if (ret > 0)
 405		ret = 0;
 406
 407	return ret;
 408}
 409
 410#define check_block_validity(inode, map)	\
 411	__check_block_validity((inode), __func__, __LINE__, (map))
 412
 413#ifdef ES_AGGRESSIVE_TEST
 414static void ext4_map_blocks_es_recheck(handle_t *handle,
 415				       struct inode *inode,
 416				       struct ext4_map_blocks *es_map,
 417				       struct ext4_map_blocks *map,
 418				       int flags)
 419{
 420	int retval;
 421
 422	map->m_flags = 0;
 423	/*
 424	 * There is a race window that the result is not the same.
 425	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 426	 * is that we lookup a block mapping in extent status tree with
 427	 * out taking i_data_sem.  So at the time the unwritten extent
 428	 * could be converted.
 429	 */
 430	down_read(&EXT4_I(inode)->i_data_sem);
 431	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 432		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 433	} else {
 434		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 435	}
 436	up_read((&EXT4_I(inode)->i_data_sem));
 437
 438	/*
 439	 * We don't check m_len because extent will be collpased in status
 440	 * tree.  So the m_len might not equal.
 441	 */
 442	if (es_map->m_lblk != map->m_lblk ||
 443	    es_map->m_flags != map->m_flags ||
 444	    es_map->m_pblk != map->m_pblk) {
 445		printk("ES cache assertion failed for inode: %lu "
 446		       "es_cached ex [%d/%d/%llu/%x] != "
 447		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 448		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 449		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 450		       map->m_len, map->m_pblk, map->m_flags,
 451		       retval, flags);
 452	}
 453}
 454#endif /* ES_AGGRESSIVE_TEST */
 455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456/*
 457 * The ext4_map_blocks() function tries to look up the requested blocks,
 458 * and returns if the blocks are already mapped.
 459 *
 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 461 * and store the allocated blocks in the result buffer head and mark it
 462 * mapped.
 463 *
 464 * If file type is extents based, it will call ext4_ext_map_blocks(),
 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 466 * based files
 467 *
 468 * On success, it returns the number of blocks being mapped or allocated.
 469 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
 470 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
 471 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
 472 *
 473 * It returns 0 if plain look up failed (blocks have not been allocated), in
 474 * that case, @map is returned as unmapped but we still do fill map->m_len to
 475 * indicate the length of a hole starting at map->m_lblk.
 476 *
 477 * It returns the error in case of allocation failure.
 478 */
 479int ext4_map_blocks(handle_t *handle, struct inode *inode,
 480		    struct ext4_map_blocks *map, int flags)
 481{
 482	struct extent_status es;
 483	int retval;
 484	int ret = 0;
 485#ifdef ES_AGGRESSIVE_TEST
 486	struct ext4_map_blocks orig_map;
 487
 488	memcpy(&orig_map, map, sizeof(*map));
 489#endif
 490
 491	map->m_flags = 0;
 492	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 493		  flags, map->m_len, (unsigned long) map->m_lblk);
 494
 495	/*
 496	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 497	 */
 498	if (unlikely(map->m_len > INT_MAX))
 499		map->m_len = INT_MAX;
 500
 501	/* We can handle the block number less than EXT_MAX_BLOCKS */
 502	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 503		return -EFSCORRUPTED;
 504
 505	/* Lookup extent status tree firstly */
 506	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 507	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 508		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 509			map->m_pblk = ext4_es_pblock(&es) +
 510					map->m_lblk - es.es_lblk;
 511			map->m_flags |= ext4_es_is_written(&es) ?
 512					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 513			retval = es.es_len - (map->m_lblk - es.es_lblk);
 514			if (retval > map->m_len)
 515				retval = map->m_len;
 516			map->m_len = retval;
 517		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 518			map->m_pblk = 0;
 519			map->m_flags |= ext4_es_is_delayed(&es) ?
 520					EXT4_MAP_DELAYED : 0;
 521			retval = es.es_len - (map->m_lblk - es.es_lblk);
 522			if (retval > map->m_len)
 523				retval = map->m_len;
 524			map->m_len = retval;
 525			retval = 0;
 526		} else {
 527			BUG();
 528		}
 529
 530		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 531			return retval;
 532#ifdef ES_AGGRESSIVE_TEST
 533		ext4_map_blocks_es_recheck(handle, inode, map,
 534					   &orig_map, flags);
 535#endif
 536		goto found;
 537	}
 538	/*
 539	 * In the query cache no-wait mode, nothing we can do more if we
 540	 * cannot find extent in the cache.
 541	 */
 542	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 543		return 0;
 544
 545	/*
 546	 * Try to see if we can get the block without requesting a new
 547	 * file system block.
 548	 */
 549	down_read(&EXT4_I(inode)->i_data_sem);
 550	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 551		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 552	} else {
 553		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 554	}
 555	if (retval > 0) {
 556		unsigned int status;
 557
 558		if (unlikely(retval != map->m_len)) {
 559			ext4_warning(inode->i_sb,
 560				     "ES len assertion failed for inode "
 561				     "%lu: retval %d != map->m_len %d",
 562				     inode->i_ino, retval, map->m_len);
 563			WARN_ON(1);
 564		}
 565
 566		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 567				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 568		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 569		    !(status & EXTENT_STATUS_WRITTEN) &&
 570		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 571				       map->m_lblk + map->m_len - 1))
 572			status |= EXTENT_STATUS_DELAYED;
 573		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 574				      map->m_pblk, status);
 575	}
 576	up_read((&EXT4_I(inode)->i_data_sem));
 577
 578found:
 579	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 580		ret = check_block_validity(inode, map);
 581		if (ret != 0)
 582			return ret;
 583	}
 584
 585	/* If it is only a block(s) look up */
 586	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 587		return retval;
 588
 589	/*
 590	 * Returns if the blocks have already allocated
 591	 *
 592	 * Note that if blocks have been preallocated
 593	 * ext4_ext_map_blocks() returns with buffer head unmapped
 594	 */
 595	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 596		/*
 597		 * If we need to convert extent to unwritten
 598		 * we continue and do the actual work in
 599		 * ext4_ext_map_blocks()
 600		 */
 601		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 602			return retval;
 603
 604	/*
 605	 * Here we clear m_flags because after allocating an new extent,
 606	 * it will be set again.
 607	 */
 608	map->m_flags &= ~EXT4_MAP_FLAGS;
 609
 610	/*
 611	 * New blocks allocate and/or writing to unwritten extent
 612	 * will possibly result in updating i_data, so we take
 613	 * the write lock of i_data_sem, and call get_block()
 614	 * with create == 1 flag.
 615	 */
 616	down_write(&EXT4_I(inode)->i_data_sem);
 617
 618	/*
 619	 * We need to check for EXT4 here because migrate
 620	 * could have changed the inode type in between
 621	 */
 622	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 623		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 624	} else {
 625		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 626
 627		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 628			/*
 629			 * We allocated new blocks which will result in
 630			 * i_data's format changing.  Force the migrate
 631			 * to fail by clearing migrate flags
 632			 */
 633			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 634		}
 635	}
 636
 637	if (retval > 0) {
 638		unsigned int status;
 639
 640		if (unlikely(retval != map->m_len)) {
 641			ext4_warning(inode->i_sb,
 642				     "ES len assertion failed for inode "
 643				     "%lu: retval %d != map->m_len %d",
 644				     inode->i_ino, retval, map->m_len);
 645			WARN_ON(1);
 646		}
 647
 648		/*
 649		 * We have to zeroout blocks before inserting them into extent
 650		 * status tree. Otherwise someone could look them up there and
 651		 * use them before they are really zeroed. We also have to
 652		 * unmap metadata before zeroing as otherwise writeback can
 653		 * overwrite zeros with stale data from block device.
 654		 */
 655		if (flags & EXT4_GET_BLOCKS_ZERO &&
 656		    map->m_flags & EXT4_MAP_MAPPED &&
 657		    map->m_flags & EXT4_MAP_NEW) {
 658			ret = ext4_issue_zeroout(inode, map->m_lblk,
 659						 map->m_pblk, map->m_len);
 660			if (ret) {
 661				retval = ret;
 662				goto out_sem;
 663			}
 664		}
 665
 666		/*
 667		 * If the extent has been zeroed out, we don't need to update
 668		 * extent status tree.
 669		 */
 670		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 671		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 672			if (ext4_es_is_written(&es))
 673				goto out_sem;
 674		}
 675		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 676				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 677		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 678		    !(status & EXTENT_STATUS_WRITTEN) &&
 679		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 680				       map->m_lblk + map->m_len - 1))
 681			status |= EXTENT_STATUS_DELAYED;
 682		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 683				      map->m_pblk, status);
 684	}
 685
 686out_sem:
 687	up_write((&EXT4_I(inode)->i_data_sem));
 688	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 689		ret = check_block_validity(inode, map);
 690		if (ret != 0)
 691			return ret;
 692
 693		/*
 694		 * Inodes with freshly allocated blocks where contents will be
 695		 * visible after transaction commit must be on transaction's
 696		 * ordered data list.
 697		 */
 698		if (map->m_flags & EXT4_MAP_NEW &&
 699		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 700		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 701		    !ext4_is_quota_file(inode) &&
 702		    ext4_should_order_data(inode)) {
 703			loff_t start_byte =
 704				(loff_t)map->m_lblk << inode->i_blkbits;
 705			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 706
 707			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 708				ret = ext4_jbd2_inode_add_wait(handle, inode,
 709						start_byte, length);
 710			else
 711				ret = ext4_jbd2_inode_add_write(handle, inode,
 712						start_byte, length);
 713			if (ret)
 714				return ret;
 715		}
 716	}
 717	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 718				map->m_flags & EXT4_MAP_MAPPED))
 719		ext4_fc_track_range(handle, inode, map->m_lblk,
 720					map->m_lblk + map->m_len - 1);
 721	if (retval < 0)
 722		ext_debug(inode, "failed with err %d\n", retval);
 723	return retval;
 724}
 725
 726/*
 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 728 * we have to be careful as someone else may be manipulating b_state as well.
 729 */
 730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 731{
 732	unsigned long old_state;
 733	unsigned long new_state;
 734
 735	flags &= EXT4_MAP_FLAGS;
 736
 737	/* Dummy buffer_head? Set non-atomically. */
 738	if (!bh->b_page) {
 739		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 740		return;
 741	}
 742	/*
 743	 * Someone else may be modifying b_state. Be careful! This is ugly but
 744	 * once we get rid of using bh as a container for mapping information
 745	 * to pass to / from get_block functions, this can go away.
 746	 */
 747	old_state = READ_ONCE(bh->b_state);
 748	do {
 749		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 750	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
 751}
 752
 753static int _ext4_get_block(struct inode *inode, sector_t iblock,
 754			   struct buffer_head *bh, int flags)
 755{
 756	struct ext4_map_blocks map;
 757	int ret = 0;
 758
 759	if (ext4_has_inline_data(inode))
 760		return -ERANGE;
 761
 762	map.m_lblk = iblock;
 763	map.m_len = bh->b_size >> inode->i_blkbits;
 764
 765	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 766			      flags);
 767	if (ret > 0) {
 768		map_bh(bh, inode->i_sb, map.m_pblk);
 769		ext4_update_bh_state(bh, map.m_flags);
 770		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 771		ret = 0;
 772	} else if (ret == 0) {
 773		/* hole case, need to fill in bh->b_size */
 774		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 775	}
 776	return ret;
 777}
 778
 779int ext4_get_block(struct inode *inode, sector_t iblock,
 780		   struct buffer_head *bh, int create)
 781{
 782	return _ext4_get_block(inode, iblock, bh,
 783			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 784}
 785
 786/*
 787 * Get block function used when preparing for buffered write if we require
 788 * creating an unwritten extent if blocks haven't been allocated.  The extent
 789 * will be converted to written after the IO is complete.
 790 */
 791int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 792			     struct buffer_head *bh_result, int create)
 793{
 794	int ret = 0;
 795
 796	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 797		   inode->i_ino, create);
 798	ret = _ext4_get_block(inode, iblock, bh_result,
 799			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 800
 801	/*
 802	 * If the buffer is marked unwritten, mark it as new to make sure it is
 803	 * zeroed out correctly in case of partial writes. Otherwise, there is
 804	 * a chance of stale data getting exposed.
 805	 */
 806	if (ret == 0 && buffer_unwritten(bh_result))
 807		set_buffer_new(bh_result);
 808
 809	return ret;
 810}
 811
 812/* Maximum number of blocks we map for direct IO at once. */
 813#define DIO_MAX_BLOCKS 4096
 814
 815/*
 816 * `handle' can be NULL if create is zero
 817 */
 818struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 819				ext4_lblk_t block, int map_flags)
 820{
 821	struct ext4_map_blocks map;
 822	struct buffer_head *bh;
 823	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 824	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 825	int err;
 826
 827	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 828		    || handle != NULL || create == 0);
 829	ASSERT(create == 0 || !nowait);
 830
 831	map.m_lblk = block;
 832	map.m_len = 1;
 833	err = ext4_map_blocks(handle, inode, &map, map_flags);
 834
 835	if (err == 0)
 836		return create ? ERR_PTR(-ENOSPC) : NULL;
 837	if (err < 0)
 838		return ERR_PTR(err);
 839
 840	if (nowait)
 841		return sb_find_get_block(inode->i_sb, map.m_pblk);
 842
 843	bh = sb_getblk(inode->i_sb, map.m_pblk);
 
 
 
 
 
 
 
 844	if (unlikely(!bh))
 845		return ERR_PTR(-ENOMEM);
 846	if (map.m_flags & EXT4_MAP_NEW) {
 847		ASSERT(create != 0);
 848		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 849			    || (handle != NULL));
 850
 851		/*
 852		 * Now that we do not always journal data, we should
 853		 * keep in mind whether this should always journal the
 854		 * new buffer as metadata.  For now, regular file
 855		 * writes use ext4_get_block instead, so it's not a
 856		 * problem.
 857		 */
 858		lock_buffer(bh);
 859		BUFFER_TRACE(bh, "call get_create_access");
 860		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 861						     EXT4_JTR_NONE);
 862		if (unlikely(err)) {
 863			unlock_buffer(bh);
 864			goto errout;
 865		}
 866		if (!buffer_uptodate(bh)) {
 867			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 868			set_buffer_uptodate(bh);
 869		}
 870		unlock_buffer(bh);
 871		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 872		err = ext4_handle_dirty_metadata(handle, inode, bh);
 873		if (unlikely(err))
 874			goto errout;
 875	} else
 876		BUFFER_TRACE(bh, "not a new buffer");
 877	return bh;
 878errout:
 879	brelse(bh);
 880	return ERR_PTR(err);
 881}
 882
 883struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 884			       ext4_lblk_t block, int map_flags)
 885{
 886	struct buffer_head *bh;
 887	int ret;
 888
 889	bh = ext4_getblk(handle, inode, block, map_flags);
 890	if (IS_ERR(bh))
 891		return bh;
 892	if (!bh || ext4_buffer_uptodate(bh))
 893		return bh;
 894
 895	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 896	if (ret) {
 897		put_bh(bh);
 898		return ERR_PTR(ret);
 899	}
 900	return bh;
 901}
 902
 903/* Read a contiguous batch of blocks. */
 904int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 905		     bool wait, struct buffer_head **bhs)
 906{
 907	int i, err;
 908
 909	for (i = 0; i < bh_count; i++) {
 910		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 911		if (IS_ERR(bhs[i])) {
 912			err = PTR_ERR(bhs[i]);
 913			bh_count = i;
 914			goto out_brelse;
 915		}
 916	}
 917
 918	for (i = 0; i < bh_count; i++)
 919		/* Note that NULL bhs[i] is valid because of holes. */
 920		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 921			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 922
 923	if (!wait)
 924		return 0;
 925
 926	for (i = 0; i < bh_count; i++)
 927		if (bhs[i])
 928			wait_on_buffer(bhs[i]);
 929
 930	for (i = 0; i < bh_count; i++) {
 931		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 932			err = -EIO;
 933			goto out_brelse;
 934		}
 935	}
 936	return 0;
 937
 938out_brelse:
 939	for (i = 0; i < bh_count; i++) {
 940		brelse(bhs[i]);
 941		bhs[i] = NULL;
 942	}
 943	return err;
 944}
 945
 946int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 947			   struct buffer_head *head,
 948			   unsigned from,
 949			   unsigned to,
 950			   int *partial,
 951			   int (*fn)(handle_t *handle, struct inode *inode,
 952				     struct buffer_head *bh))
 953{
 954	struct buffer_head *bh;
 955	unsigned block_start, block_end;
 956	unsigned blocksize = head->b_size;
 957	int err, ret = 0;
 958	struct buffer_head *next;
 959
 960	for (bh = head, block_start = 0;
 961	     ret == 0 && (bh != head || !block_start);
 962	     block_start = block_end, bh = next) {
 963		next = bh->b_this_page;
 964		block_end = block_start + blocksize;
 965		if (block_end <= from || block_start >= to) {
 966			if (partial && !buffer_uptodate(bh))
 967				*partial = 1;
 968			continue;
 969		}
 970		err = (*fn)(handle, inode, bh);
 971		if (!ret)
 972			ret = err;
 973	}
 974	return ret;
 975}
 976
 977/*
 978 * Helper for handling dirtying of journalled data. We also mark the folio as
 979 * dirty so that writeback code knows about this page (and inode) contains
 980 * dirty data. ext4_writepages() then commits appropriate transaction to
 981 * make data stable.
 982 */
 983static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
 984{
 985	folio_mark_dirty(bh->b_folio);
 986	return ext4_handle_dirty_metadata(handle, NULL, bh);
 987}
 988
 989int do_journal_get_write_access(handle_t *handle, struct inode *inode,
 990				struct buffer_head *bh)
 991{
 992	int dirty = buffer_dirty(bh);
 993	int ret;
 994
 995	if (!buffer_mapped(bh) || buffer_freed(bh))
 996		return 0;
 997	/*
 998	 * __block_write_begin() could have dirtied some buffers. Clean
 999	 * the dirty bit as jbd2_journal_get_write_access() could complain
1000	 * otherwise about fs integrity issues. Setting of the dirty bit
1001	 * by __block_write_begin() isn't a real problem here as we clear
1002	 * the bit before releasing a page lock and thus writeback cannot
1003	 * ever write the buffer.
1004	 */
1005	if (dirty)
1006		clear_buffer_dirty(bh);
1007	BUFFER_TRACE(bh, "get write access");
1008	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1009					    EXT4_JTR_NONE);
1010	if (!ret && dirty)
1011		ret = ext4_dirty_journalled_data(handle, bh);
1012	return ret;
1013}
1014
1015#ifdef CONFIG_FS_ENCRYPTION
1016static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1017				  get_block_t *get_block)
1018{
1019	unsigned from = pos & (PAGE_SIZE - 1);
1020	unsigned to = from + len;
1021	struct inode *inode = folio->mapping->host;
1022	unsigned block_start, block_end;
1023	sector_t block;
1024	int err = 0;
1025	unsigned blocksize = inode->i_sb->s_blocksize;
1026	unsigned bbits;
1027	struct buffer_head *bh, *head, *wait[2];
1028	int nr_wait = 0;
1029	int i;
 
1030
1031	BUG_ON(!folio_test_locked(folio));
1032	BUG_ON(from > PAGE_SIZE);
1033	BUG_ON(to > PAGE_SIZE);
1034	BUG_ON(from > to);
1035
1036	head = folio_buffers(folio);
1037	if (!head)
1038		head = create_empty_buffers(folio, blocksize, 0);
1039	bbits = ilog2(blocksize);
1040	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042	for (bh = head, block_start = 0; bh != head || !block_start;
1043	    block++, block_start = block_end, bh = bh->b_this_page) {
1044		block_end = block_start + blocksize;
1045		if (block_end <= from || block_start >= to) {
1046			if (folio_test_uptodate(folio)) {
1047				set_buffer_uptodate(bh);
1048			}
1049			continue;
1050		}
1051		if (buffer_new(bh))
1052			clear_buffer_new(bh);
1053		if (!buffer_mapped(bh)) {
1054			WARN_ON(bh->b_size != blocksize);
1055			err = get_block(inode, block, bh, 1);
1056			if (err)
1057				break;
1058			if (buffer_new(bh)) {
 
 
 
 
 
 
 
 
1059				if (folio_test_uptodate(folio)) {
1060					clear_buffer_new(bh);
 
 
 
 
 
1061					set_buffer_uptodate(bh);
1062					mark_buffer_dirty(bh);
1063					continue;
1064				}
1065				if (block_end > to || block_start < from)
1066					folio_zero_segments(folio, to,
1067							    block_end,
1068							    block_start, from);
1069				continue;
1070			}
1071		}
1072		if (folio_test_uptodate(folio)) {
1073			set_buffer_uptodate(bh);
1074			continue;
1075		}
1076		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077		    !buffer_unwritten(bh) &&
1078		    (block_start < from || block_end > to)) {
1079			ext4_read_bh_lock(bh, 0, false);
1080			wait[nr_wait++] = bh;
1081		}
1082	}
1083	/*
1084	 * If we issued read requests, let them complete.
1085	 */
1086	for (i = 0; i < nr_wait; i++) {
1087		wait_on_buffer(wait[i]);
1088		if (!buffer_uptodate(wait[i]))
1089			err = -EIO;
1090	}
1091	if (unlikely(err)) {
1092		folio_zero_new_buffers(folio, from, to);
 
 
 
 
1093	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094		for (i = 0; i < nr_wait; i++) {
1095			int err2;
1096
1097			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098						blocksize, bh_offset(wait[i]));
1099			if (err2) {
1100				clear_buffer_uptodate(wait[i]);
1101				err = err2;
1102			}
1103		}
1104	}
1105
1106	return err;
1107}
1108#endif
1109
1110/*
1111 * To preserve ordering, it is essential that the hole instantiation and
1112 * the data write be encapsulated in a single transaction.  We cannot
1113 * close off a transaction and start a new one between the ext4_get_block()
1114 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115 * ext4_write_begin() is the right place.
1116 */
1117static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118			    loff_t pos, unsigned len,
1119			    struct page **pagep, void **fsdata)
1120{
1121	struct inode *inode = mapping->host;
1122	int ret, needed_blocks;
1123	handle_t *handle;
1124	int retries = 0;
1125	struct folio *folio;
1126	pgoff_t index;
1127	unsigned from, to;
1128
1129	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130		return -EIO;
1131
1132	trace_ext4_write_begin(inode, pos, len);
1133	/*
1134	 * Reserve one block more for addition to orphan list in case
1135	 * we allocate blocks but write fails for some reason
1136	 */
1137	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138	index = pos >> PAGE_SHIFT;
1139	from = pos & (PAGE_SIZE - 1);
1140	to = from + len;
1141
1142	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144						    pagep);
1145		if (ret < 0)
1146			return ret;
1147		if (ret == 1)
1148			return 0;
1149	}
1150
1151	/*
1152	 * __filemap_get_folio() can take a long time if the
1153	 * system is thrashing due to memory pressure, or if the folio
1154	 * is being written back.  So grab it first before we start
1155	 * the transaction handle.  This also allows us to allocate
1156	 * the folio (if needed) without using GFP_NOFS.
1157	 */
1158retry_grab:
1159	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160					mapping_gfp_mask(mapping));
1161	if (IS_ERR(folio))
1162		return PTR_ERR(folio);
1163	/*
1164	 * The same as page allocation, we prealloc buffer heads before
1165	 * starting the handle.
1166	 */
1167	if (!folio_buffers(folio))
1168		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1169
1170	folio_unlock(folio);
1171
1172retry_journal:
1173	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174	if (IS_ERR(handle)) {
1175		folio_put(folio);
1176		return PTR_ERR(handle);
1177	}
1178
1179	folio_lock(folio);
1180	if (folio->mapping != mapping) {
1181		/* The folio got truncated from under us */
1182		folio_unlock(folio);
1183		folio_put(folio);
1184		ext4_journal_stop(handle);
1185		goto retry_grab;
1186	}
1187	/* In case writeback began while the folio was unlocked */
1188	folio_wait_stable(folio);
1189
1190#ifdef CONFIG_FS_ENCRYPTION
1191	if (ext4_should_dioread_nolock(inode))
1192		ret = ext4_block_write_begin(folio, pos, len,
1193					     ext4_get_block_unwritten);
1194	else
1195		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196#else
1197	if (ext4_should_dioread_nolock(inode))
1198		ret = __block_write_begin(&folio->page, pos, len,
1199					  ext4_get_block_unwritten);
1200	else
1201		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202#endif
1203	if (!ret && ext4_should_journal_data(inode)) {
1204		ret = ext4_walk_page_buffers(handle, inode,
1205					     folio_buffers(folio), from, to,
1206					     NULL, do_journal_get_write_access);
1207	}
1208
1209	if (ret) {
1210		bool extended = (pos + len > inode->i_size) &&
1211				!ext4_verity_in_progress(inode);
1212
1213		folio_unlock(folio);
1214		/*
1215		 * __block_write_begin may have instantiated a few blocks
1216		 * outside i_size.  Trim these off again. Don't need
1217		 * i_size_read because we hold i_rwsem.
1218		 *
1219		 * Add inode to orphan list in case we crash before
1220		 * truncate finishes
1221		 */
1222		if (extended && ext4_can_truncate(inode))
1223			ext4_orphan_add(handle, inode);
1224
1225		ext4_journal_stop(handle);
1226		if (extended) {
1227			ext4_truncate_failed_write(inode);
1228			/*
1229			 * If truncate failed early the inode might
1230			 * still be on the orphan list; we need to
1231			 * make sure the inode is removed from the
1232			 * orphan list in that case.
1233			 */
1234			if (inode->i_nlink)
1235				ext4_orphan_del(NULL, inode);
1236		}
1237
1238		if (ret == -ENOSPC &&
1239		    ext4_should_retry_alloc(inode->i_sb, &retries))
1240			goto retry_journal;
1241		folio_put(folio);
1242		return ret;
1243	}
1244	*pagep = &folio->page;
1245	return ret;
1246}
1247
1248/* For write_end() in data=journal mode */
1249static int write_end_fn(handle_t *handle, struct inode *inode,
1250			struct buffer_head *bh)
1251{
1252	int ret;
1253	if (!buffer_mapped(bh) || buffer_freed(bh))
1254		return 0;
1255	set_buffer_uptodate(bh);
1256	ret = ext4_dirty_journalled_data(handle, bh);
1257	clear_buffer_meta(bh);
1258	clear_buffer_prio(bh);
1259	return ret;
1260}
1261
1262/*
1263 * We need to pick up the new inode size which generic_commit_write gave us
1264 * `file' can be NULL - eg, when called from page_symlink().
1265 *
1266 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1267 * buffers are managed internally.
1268 */
1269static int ext4_write_end(struct file *file,
1270			  struct address_space *mapping,
1271			  loff_t pos, unsigned len, unsigned copied,
1272			  struct page *page, void *fsdata)
1273{
1274	struct folio *folio = page_folio(page);
1275	handle_t *handle = ext4_journal_current_handle();
1276	struct inode *inode = mapping->host;
1277	loff_t old_size = inode->i_size;
1278	int ret = 0, ret2;
1279	int i_size_changed = 0;
1280	bool verity = ext4_verity_in_progress(inode);
1281
1282	trace_ext4_write_end(inode, pos, len, copied);
1283
1284	if (ext4_has_inline_data(inode) &&
1285	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286		return ext4_write_inline_data_end(inode, pos, len, copied,
1287						  folio);
1288
1289	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290	/*
1291	 * it's important to update i_size while still holding folio lock:
1292	 * page writeout could otherwise come in and zero beyond i_size.
1293	 *
1294	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295	 * blocks are being written past EOF, so skip the i_size update.
1296	 */
1297	if (!verity)
1298		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299	folio_unlock(folio);
1300	folio_put(folio);
1301
1302	if (old_size < pos && !verity)
1303		pagecache_isize_extended(inode, old_size, pos);
 
 
1304	/*
1305	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306	 * makes the holding time of folio lock longer. Second, it forces lock
1307	 * ordering of folio lock and transaction start for journaling
1308	 * filesystems.
1309	 */
1310	if (i_size_changed)
1311		ret = ext4_mark_inode_dirty(handle, inode);
1312
1313	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314		/* if we have allocated more blocks and copied
1315		 * less. We will have blocks allocated outside
1316		 * inode->i_size. So truncate them
1317		 */
1318		ext4_orphan_add(handle, inode);
1319
1320	ret2 = ext4_journal_stop(handle);
1321	if (!ret)
1322		ret = ret2;
1323
1324	if (pos + len > inode->i_size && !verity) {
1325		ext4_truncate_failed_write(inode);
1326		/*
1327		 * If truncate failed early the inode might still be
1328		 * on the orphan list; we need to make sure the inode
1329		 * is removed from the orphan list in that case.
1330		 */
1331		if (inode->i_nlink)
1332			ext4_orphan_del(NULL, inode);
1333	}
1334
1335	return ret ? ret : copied;
1336}
1337
1338/*
1339 * This is a private version of folio_zero_new_buffers() which doesn't
1340 * set the buffer to be dirty, since in data=journalled mode we need
1341 * to call ext4_dirty_journalled_data() instead.
1342 */
1343static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344					    struct inode *inode,
1345					    struct folio *folio,
1346					    unsigned from, unsigned to)
1347{
1348	unsigned int block_start = 0, block_end;
1349	struct buffer_head *head, *bh;
1350
1351	bh = head = folio_buffers(folio);
1352	do {
1353		block_end = block_start + bh->b_size;
1354		if (buffer_new(bh)) {
1355			if (block_end > from && block_start < to) {
1356				if (!folio_test_uptodate(folio)) {
1357					unsigned start, size;
1358
1359					start = max(from, block_start);
1360					size = min(to, block_end) - start;
1361
1362					folio_zero_range(folio, start, size);
1363					write_end_fn(handle, inode, bh);
1364				}
1365				clear_buffer_new(bh);
 
1366			}
1367		}
1368		block_start = block_end;
1369		bh = bh->b_this_page;
1370	} while (bh != head);
1371}
1372
1373static int ext4_journalled_write_end(struct file *file,
1374				     struct address_space *mapping,
1375				     loff_t pos, unsigned len, unsigned copied,
1376				     struct page *page, void *fsdata)
1377{
1378	struct folio *folio = page_folio(page);
1379	handle_t *handle = ext4_journal_current_handle();
1380	struct inode *inode = mapping->host;
1381	loff_t old_size = inode->i_size;
1382	int ret = 0, ret2;
1383	int partial = 0;
1384	unsigned from, to;
1385	int size_changed = 0;
1386	bool verity = ext4_verity_in_progress(inode);
1387
1388	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389	from = pos & (PAGE_SIZE - 1);
1390	to = from + len;
1391
1392	BUG_ON(!ext4_handle_valid(handle));
1393
1394	if (ext4_has_inline_data(inode))
1395		return ext4_write_inline_data_end(inode, pos, len, copied,
1396						  folio);
1397
1398	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399		copied = 0;
1400		ext4_journalled_zero_new_buffers(handle, inode, folio,
1401						 from, to);
1402	} else {
1403		if (unlikely(copied < len))
1404			ext4_journalled_zero_new_buffers(handle, inode, folio,
1405							 from + copied, to);
1406		ret = ext4_walk_page_buffers(handle, inode,
1407					     folio_buffers(folio),
1408					     from, from + copied, &partial,
1409					     write_end_fn);
1410		if (!partial)
1411			folio_mark_uptodate(folio);
1412	}
1413	if (!verity)
1414		size_changed = ext4_update_inode_size(inode, pos + copied);
1415	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416	folio_unlock(folio);
1417	folio_put(folio);
1418
1419	if (old_size < pos && !verity)
1420		pagecache_isize_extended(inode, old_size, pos);
 
 
1421
1422	if (size_changed) {
1423		ret2 = ext4_mark_inode_dirty(handle, inode);
1424		if (!ret)
1425			ret = ret2;
1426	}
1427
1428	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429		/* if we have allocated more blocks and copied
1430		 * less. We will have blocks allocated outside
1431		 * inode->i_size. So truncate them
1432		 */
1433		ext4_orphan_add(handle, inode);
1434
1435	ret2 = ext4_journal_stop(handle);
1436	if (!ret)
1437		ret = ret2;
1438	if (pos + len > inode->i_size && !verity) {
1439		ext4_truncate_failed_write(inode);
1440		/*
1441		 * If truncate failed early the inode might still be
1442		 * on the orphan list; we need to make sure the inode
1443		 * is removed from the orphan list in that case.
1444		 */
1445		if (inode->i_nlink)
1446			ext4_orphan_del(NULL, inode);
1447	}
1448
1449	return ret ? ret : copied;
1450}
1451
1452/*
1453 * Reserve space for a single cluster
1454 */
1455static int ext4_da_reserve_space(struct inode *inode)
1456{
1457	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458	struct ext4_inode_info *ei = EXT4_I(inode);
1459	int ret;
1460
1461	/*
1462	 * We will charge metadata quota at writeout time; this saves
1463	 * us from metadata over-estimation, though we may go over by
1464	 * a small amount in the end.  Here we just reserve for data.
1465	 */
1466	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467	if (ret)
1468		return ret;
1469
1470	spin_lock(&ei->i_block_reservation_lock);
1471	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472		spin_unlock(&ei->i_block_reservation_lock);
1473		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474		return -ENOSPC;
1475	}
1476	ei->i_reserved_data_blocks++;
1477	trace_ext4_da_reserve_space(inode);
1478	spin_unlock(&ei->i_block_reservation_lock);
1479
1480	return 0;       /* success */
1481}
1482
1483void ext4_da_release_space(struct inode *inode, int to_free)
1484{
1485	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486	struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488	if (!to_free)
1489		return;		/* Nothing to release, exit */
1490
1491	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493	trace_ext4_da_release_space(inode, to_free);
1494	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495		/*
1496		 * if there aren't enough reserved blocks, then the
1497		 * counter is messed up somewhere.  Since this
1498		 * function is called from invalidate page, it's
1499		 * harmless to return without any action.
1500		 */
1501		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502			 "ino %lu, to_free %d with only %d reserved "
1503			 "data blocks", inode->i_ino, to_free,
1504			 ei->i_reserved_data_blocks);
1505		WARN_ON(1);
1506		to_free = ei->i_reserved_data_blocks;
1507	}
1508	ei->i_reserved_data_blocks -= to_free;
1509
1510	/* update fs dirty data blocks counter */
1511	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516}
1517
1518/*
1519 * Delayed allocation stuff
1520 */
1521
1522struct mpage_da_data {
1523	/* These are input fields for ext4_do_writepages() */
1524	struct inode *inode;
1525	struct writeback_control *wbc;
1526	unsigned int can_map:1;	/* Can writepages call map blocks? */
1527
1528	/* These are internal state of ext4_do_writepages() */
1529	pgoff_t first_page;	/* The first page to write */
1530	pgoff_t next_page;	/* Current page to examine */
1531	pgoff_t last_page;	/* Last page to examine */
1532	/*
1533	 * Extent to map - this can be after first_page because that can be
1534	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535	 * is delalloc or unwritten.
1536	 */
1537	struct ext4_map_blocks map;
1538	struct ext4_io_submit io_submit;	/* IO submission data */
1539	unsigned int do_map:1;
1540	unsigned int scanned_until_end:1;
1541	unsigned int journalled_more_data:1;
1542};
1543
1544static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545				       bool invalidate)
1546{
1547	unsigned nr, i;
1548	pgoff_t index, end;
1549	struct folio_batch fbatch;
1550	struct inode *inode = mpd->inode;
1551	struct address_space *mapping = inode->i_mapping;
1552
1553	/* This is necessary when next_page == 0. */
1554	if (mpd->first_page >= mpd->next_page)
1555		return;
1556
1557	mpd->scanned_until_end = 0;
1558	index = mpd->first_page;
1559	end   = mpd->next_page - 1;
1560	if (invalidate) {
1561		ext4_lblk_t start, last;
1562		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565		/*
1566		 * avoid racing with extent status tree scans made by
1567		 * ext4_insert_delayed_block()
1568		 */
1569		down_write(&EXT4_I(inode)->i_data_sem);
1570		ext4_es_remove_extent(inode, start, last - start + 1);
1571		up_write(&EXT4_I(inode)->i_data_sem);
1572	}
1573
1574	folio_batch_init(&fbatch);
1575	while (index <= end) {
1576		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577		if (nr == 0)
1578			break;
1579		for (i = 0; i < nr; i++) {
1580			struct folio *folio = fbatch.folios[i];
1581
1582			if (folio->index < mpd->first_page)
1583				continue;
1584			if (folio_next_index(folio) - 1 > end)
1585				continue;
1586			BUG_ON(!folio_test_locked(folio));
1587			BUG_ON(folio_test_writeback(folio));
1588			if (invalidate) {
1589				if (folio_mapped(folio))
1590					folio_clear_dirty_for_io(folio);
1591				block_invalidate_folio(folio, 0,
1592						folio_size(folio));
1593				folio_clear_uptodate(folio);
1594			}
1595			folio_unlock(folio);
1596		}
1597		folio_batch_release(&fbatch);
1598	}
1599}
1600
1601static void ext4_print_free_blocks(struct inode *inode)
1602{
1603	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604	struct super_block *sb = inode->i_sb;
1605	struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609			ext4_count_free_clusters(sb)));
1610	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612	       (long long) EXT4_C2B(EXT4_SB(sb),
1613		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615	       (long long) EXT4_C2B(EXT4_SB(sb),
1616		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619		 ei->i_reserved_data_blocks);
1620	return;
1621}
1622
1623/*
1624 * ext4_insert_delayed_block - adds a delayed block to the extents status
1625 *                             tree, incrementing the reserved cluster/block
1626 *                             count or making a pending reservation
1627 *                             where needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628 *
1629 * @inode - file containing the newly added block
1630 * @lblk - logical block to be added
 
1631 *
1632 * Returns 0 on success, negative error code on failure.
1633 */
1634static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
 
1635{
1636	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637	int ret;
1638	bool allocated = false;
 
 
 
1639
1640	/*
1641	 * If the cluster containing lblk is shared with a delayed,
1642	 * written, or unwritten extent in a bigalloc file system, it's
1643	 * already been accounted for and does not need to be reserved.
1644	 * A pending reservation must be made for the cluster if it's
1645	 * shared with a written or unwritten extent and doesn't already
1646	 * have one.  Written and unwritten extents can be purged from the
1647	 * extents status tree if the system is under memory pressure, so
1648	 * it's necessary to examine the extent tree if a search of the
1649	 * extents status tree doesn't get a match.
1650	 */
1651	if (sbi->s_cluster_ratio == 1) {
1652		ret = ext4_da_reserve_space(inode);
1653		if (ret != 0)   /* ENOSPC */
1654			return ret;
1655	} else {   /* bigalloc */
1656		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657			if (!ext4_es_scan_clu(inode,
1658					      &ext4_es_is_mapped, lblk)) {
1659				ret = ext4_clu_mapped(inode,
1660						      EXT4_B2C(sbi, lblk));
1661				if (ret < 0)
1662					return ret;
1663				if (ret == 0) {
1664					ret = ext4_da_reserve_space(inode);
1665					if (ret != 0)   /* ENOSPC */
1666						return ret;
1667				} else {
1668					allocated = true;
1669				}
1670			} else {
1671				allocated = true;
 
1672			}
1673		}
 
 
 
 
 
 
1674	}
1675
1676	ext4_es_insert_delayed_block(inode, lblk, allocated);
 
1677	return 0;
1678}
1679
1680/*
1681 * This function is grabs code from the very beginning of
1682 * ext4_map_blocks, but assumes that the caller is from delayed write
1683 * time. This function looks up the requested blocks and sets the
1684 * buffer delay bit under the protection of i_data_sem.
1685 */
1686static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687			      struct ext4_map_blocks *map,
1688			      struct buffer_head *bh)
 
1689{
1690	struct extent_status es;
1691	int retval;
1692	sector_t invalid_block = ~((sector_t) 0xffff);
1693#ifdef ES_AGGRESSIVE_TEST
1694	struct ext4_map_blocks orig_map;
1695
1696	memcpy(&orig_map, map, sizeof(*map));
1697#endif
1698
1699	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700		invalid_block = ~0;
1701
1702	map->m_flags = 0;
1703	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704		  (unsigned long) map->m_lblk);
1705
1706	/* Lookup extent status tree firstly */
1707	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
 
 
 
1708		if (ext4_es_is_hole(&es))
1709			goto add_delayed;
1710
 
1711		/*
1712		 * Delayed extent could be allocated by fallocate.
1713		 * So we need to check it.
1714		 */
1715		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716			map_bh(bh, inode->i_sb, invalid_block);
1717			set_buffer_new(bh);
1718			set_buffer_delay(bh);
1719			return 0;
1720		}
1721
1722		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723		retval = es.es_len - (iblock - es.es_lblk);
1724		if (retval > map->m_len)
1725			retval = map->m_len;
1726		map->m_len = retval;
1727		if (ext4_es_is_written(&es))
1728			map->m_flags |= EXT4_MAP_MAPPED;
1729		else if (ext4_es_is_unwritten(&es))
1730			map->m_flags |= EXT4_MAP_UNWRITTEN;
1731		else
1732			BUG();
1733
1734#ifdef ES_AGGRESSIVE_TEST
1735		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736#endif
1737		return retval;
1738	}
1739
1740	/*
1741	 * Try to see if we can get the block without requesting a new
1742	 * file system block.
1743	 */
1744	down_read(&EXT4_I(inode)->i_data_sem);
1745	if (ext4_has_inline_data(inode))
1746		retval = 0;
1747	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749	else
1750		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751	if (retval < 0) {
1752		up_read(&EXT4_I(inode)->i_data_sem);
1753		return retval;
1754	}
1755	if (retval > 0) {
1756		unsigned int status;
1757
1758		if (unlikely(retval != map->m_len)) {
1759			ext4_warning(inode->i_sb,
1760				     "ES len assertion failed for inode "
1761				     "%lu: retval %d != map->m_len %d",
1762				     inode->i_ino, retval, map->m_len);
1763			WARN_ON(1);
1764		}
1765
1766		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1769				      map->m_pblk, status);
1770		up_read(&EXT4_I(inode)->i_data_sem);
1771		return retval;
1772	}
1773	up_read(&EXT4_I(inode)->i_data_sem);
 
 
1774
1775add_delayed:
1776	down_write(&EXT4_I(inode)->i_data_sem);
1777	retval = ext4_insert_delayed_block(inode, map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778	up_write(&EXT4_I(inode)->i_data_sem);
1779	if (retval)
1780		return retval;
1781
1782	map_bh(bh, inode->i_sb, invalid_block);
1783	set_buffer_new(bh);
1784	set_buffer_delay(bh);
1785	return retval;
1786}
1787
1788/*
1789 * This is a special get_block_t callback which is used by
1790 * ext4_da_write_begin().  It will either return mapped block or
1791 * reserve space for a single block.
1792 *
1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794 * We also have b_blocknr = -1 and b_bdev initialized properly
1795 *
1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798 * initialized properly.
1799 */
1800int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801			   struct buffer_head *bh, int create)
1802{
1803	struct ext4_map_blocks map;
 
1804	int ret = 0;
1805
1806	BUG_ON(create == 0);
1807	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808
 
 
 
1809	map.m_lblk = iblock;
1810	map.m_len = 1;
1811
1812	/*
1813	 * first, we need to know whether the block is allocated already
1814	 * preallocated blocks are unmapped but should treated
1815	 * the same as allocated blocks.
1816	 */
1817	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1818	if (ret <= 0)
1819		return ret;
1820
 
 
 
 
 
 
 
1821	map_bh(bh, inode->i_sb, map.m_pblk);
1822	ext4_update_bh_state(bh, map.m_flags);
1823
1824	if (buffer_unwritten(bh)) {
1825		/* A delayed write to unwritten bh should be marked
1826		 * new and mapped.  Mapped ensures that we don't do
1827		 * get_block multiple times when we write to the same
1828		 * offset and new ensures that we do proper zero out
1829		 * for partial write.
1830		 */
1831		set_buffer_new(bh);
1832		set_buffer_mapped(bh);
1833	}
1834	return 0;
1835}
1836
1837static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1838{
1839	mpd->first_page += folio_nr_pages(folio);
1840	folio_unlock(folio);
1841}
1842
1843static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1844{
1845	size_t len;
1846	loff_t size;
1847	int err;
1848
1849	BUG_ON(folio->index != mpd->first_page);
1850	folio_clear_dirty_for_io(folio);
1851	/*
1852	 * We have to be very careful here!  Nothing protects writeback path
1853	 * against i_size changes and the page can be writeably mapped into
1854	 * page tables. So an application can be growing i_size and writing
1855	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1856	 * write-protects our page in page tables and the page cannot get
1857	 * written to again until we release folio lock. So only after
1858	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1859	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1860	 * on the barrier provided by folio_test_clear_dirty() in
1861	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1862	 * after page tables are updated.
1863	 */
1864	size = i_size_read(mpd->inode);
1865	len = folio_size(folio);
1866	if (folio_pos(folio) + len > size &&
1867	    !ext4_verity_in_progress(mpd->inode))
1868		len = size & ~PAGE_MASK;
1869	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1870	if (!err)
1871		mpd->wbc->nr_to_write--;
1872
1873	return err;
1874}
1875
1876#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1877
1878/*
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1882 */
1883#define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885/*
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887 *
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1891 *
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1897 * added.
1898 */
1899static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900				   struct buffer_head *bh)
1901{
1902	struct ext4_map_blocks *map = &mpd->map;
1903
1904	/* Buffer that doesn't need mapping for writeback? */
1905	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907		/* So far no extent to map => we write the buffer right away */
1908		if (map->m_len == 0)
1909			return true;
1910		return false;
1911	}
1912
1913	/* First block in the extent? */
1914	if (map->m_len == 0) {
1915		/* We cannot map unless handle is started... */
1916		if (!mpd->do_map)
1917			return false;
1918		map->m_lblk = lblk;
1919		map->m_len = 1;
1920		map->m_flags = bh->b_state & BH_FLAGS;
1921		return true;
1922	}
1923
1924	/* Don't go larger than mballoc is willing to allocate */
1925	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926		return false;
1927
1928	/* Can we merge the block to our big extent? */
1929	if (lblk == map->m_lblk + map->m_len &&
1930	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1931		map->m_len++;
1932		return true;
1933	}
1934	return false;
1935}
1936
1937/*
1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1939 *
1940 * @mpd - extent of blocks for mapping
1941 * @head - the first buffer in the page
1942 * @bh - buffer we should start processing from
1943 * @lblk - logical number of the block in the file corresponding to @bh
1944 *
1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1946 * the page for IO if all buffers in this page were mapped and there's no
1947 * accumulated extent of buffers to map or add buffers in the page to the
1948 * extent of buffers to map. The function returns 1 if the caller can continue
1949 * by processing the next page, 0 if it should stop adding buffers to the
1950 * extent to map because we cannot extend it anymore. It can also return value
1951 * < 0 in case of error during IO submission.
1952 */
1953static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1954				   struct buffer_head *head,
1955				   struct buffer_head *bh,
1956				   ext4_lblk_t lblk)
1957{
1958	struct inode *inode = mpd->inode;
1959	int err;
1960	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1961							>> inode->i_blkbits;
1962
1963	if (ext4_verity_in_progress(inode))
1964		blocks = EXT_MAX_BLOCKS;
1965
1966	do {
1967		BUG_ON(buffer_locked(bh));
1968
1969		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1970			/* Found extent to map? */
1971			if (mpd->map.m_len)
1972				return 0;
1973			/* Buffer needs mapping and handle is not started? */
1974			if (!mpd->do_map)
1975				return 0;
1976			/* Everything mapped so far and we hit EOF */
1977			break;
1978		}
1979	} while (lblk++, (bh = bh->b_this_page) != head);
1980	/* So far everything mapped? Submit the page for IO. */
1981	if (mpd->map.m_len == 0) {
1982		err = mpage_submit_folio(mpd, head->b_folio);
1983		if (err < 0)
1984			return err;
1985		mpage_folio_done(mpd, head->b_folio);
1986	}
1987	if (lblk >= blocks) {
1988		mpd->scanned_until_end = 1;
1989		return 0;
1990	}
1991	return 1;
1992}
1993
1994/*
1995 * mpage_process_folio - update folio buffers corresponding to changed extent
1996 *			 and may submit fully mapped page for IO
1997 * @mpd: description of extent to map, on return next extent to map
1998 * @folio: Contains these buffers.
1999 * @m_lblk: logical block mapping.
2000 * @m_pblk: corresponding physical mapping.
2001 * @map_bh: determines on return whether this page requires any further
2002 *		  mapping or not.
2003 *
2004 * Scan given folio buffers corresponding to changed extent and update buffer
2005 * state according to new extent state.
2006 * We map delalloc buffers to their physical location, clear unwritten bits.
2007 * If the given folio is not fully mapped, we update @mpd to the next extent in
2008 * the given folio that needs mapping & return @map_bh as true.
2009 */
2010static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2011			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2012			      bool *map_bh)
2013{
2014	struct buffer_head *head, *bh;
2015	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2016	ext4_lblk_t lblk = *m_lblk;
2017	ext4_fsblk_t pblock = *m_pblk;
2018	int err = 0;
2019	int blkbits = mpd->inode->i_blkbits;
2020	ssize_t io_end_size = 0;
2021	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2022
2023	bh = head = folio_buffers(folio);
2024	do {
2025		if (lblk < mpd->map.m_lblk)
2026			continue;
2027		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2028			/*
2029			 * Buffer after end of mapped extent.
2030			 * Find next buffer in the folio to map.
2031			 */
2032			mpd->map.m_len = 0;
2033			mpd->map.m_flags = 0;
2034			io_end_vec->size += io_end_size;
2035
2036			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2037			if (err > 0)
2038				err = 0;
2039			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2040				io_end_vec = ext4_alloc_io_end_vec(io_end);
2041				if (IS_ERR(io_end_vec)) {
2042					err = PTR_ERR(io_end_vec);
2043					goto out;
2044				}
2045				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046			}
2047			*map_bh = true;
2048			goto out;
2049		}
2050		if (buffer_delay(bh)) {
2051			clear_buffer_delay(bh);
2052			bh->b_blocknr = pblock++;
2053		}
2054		clear_buffer_unwritten(bh);
2055		io_end_size += (1 << blkbits);
2056	} while (lblk++, (bh = bh->b_this_page) != head);
2057
2058	io_end_vec->size += io_end_size;
2059	*map_bh = false;
2060out:
2061	*m_lblk = lblk;
2062	*m_pblk = pblock;
2063	return err;
2064}
2065
2066/*
2067 * mpage_map_buffers - update buffers corresponding to changed extent and
2068 *		       submit fully mapped pages for IO
2069 *
2070 * @mpd - description of extent to map, on return next extent to map
2071 *
2072 * Scan buffers corresponding to changed extent (we expect corresponding pages
2073 * to be already locked) and update buffer state according to new extent state.
2074 * We map delalloc buffers to their physical location, clear unwritten bits,
2075 * and mark buffers as uninit when we perform writes to unwritten extents
2076 * and do extent conversion after IO is finished. If the last page is not fully
2077 * mapped, we update @map to the next extent in the last page that needs
2078 * mapping. Otherwise we submit the page for IO.
2079 */
2080static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2081{
2082	struct folio_batch fbatch;
2083	unsigned nr, i;
2084	struct inode *inode = mpd->inode;
2085	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2086	pgoff_t start, end;
2087	ext4_lblk_t lblk;
2088	ext4_fsblk_t pblock;
2089	int err;
2090	bool map_bh = false;
2091
2092	start = mpd->map.m_lblk >> bpp_bits;
2093	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2094	lblk = start << bpp_bits;
2095	pblock = mpd->map.m_pblk;
2096
2097	folio_batch_init(&fbatch);
2098	while (start <= end) {
2099		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2100		if (nr == 0)
2101			break;
2102		for (i = 0; i < nr; i++) {
2103			struct folio *folio = fbatch.folios[i];
2104
2105			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2106						 &map_bh);
2107			/*
2108			 * If map_bh is true, means page may require further bh
2109			 * mapping, or maybe the page was submitted for IO.
2110			 * So we return to call further extent mapping.
2111			 */
2112			if (err < 0 || map_bh)
2113				goto out;
2114			/* Page fully mapped - let IO run! */
2115			err = mpage_submit_folio(mpd, folio);
2116			if (err < 0)
2117				goto out;
2118			mpage_folio_done(mpd, folio);
2119		}
2120		folio_batch_release(&fbatch);
2121	}
2122	/* Extent fully mapped and matches with page boundary. We are done. */
2123	mpd->map.m_len = 0;
2124	mpd->map.m_flags = 0;
2125	return 0;
2126out:
2127	folio_batch_release(&fbatch);
2128	return err;
2129}
2130
2131static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132{
2133	struct inode *inode = mpd->inode;
2134	struct ext4_map_blocks *map = &mpd->map;
2135	int get_blocks_flags;
2136	int err, dioread_nolock;
2137
2138	trace_ext4_da_write_pages_extent(inode, map);
2139	/*
2140	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141	 * to convert an unwritten extent to be initialized (in the case
2142	 * where we have written into one or more preallocated blocks).  It is
2143	 * possible that we're going to need more metadata blocks than
2144	 * previously reserved. However we must not fail because we're in
2145	 * writeback and there is nothing we can do about it so it might result
2146	 * in data loss.  So use reserved blocks to allocate metadata if
2147	 * possible.
2148	 *
2149	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2150	 * the blocks in question are delalloc blocks.  This indicates
2151	 * that the blocks and quotas has already been checked when
2152	 * the data was copied into the page cache.
2153	 */
2154	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2155			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2156			   EXT4_GET_BLOCKS_IO_SUBMIT;
2157	dioread_nolock = ext4_should_dioread_nolock(inode);
2158	if (dioread_nolock)
2159		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2160	if (map->m_flags & BIT(BH_Delay))
2161		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2162
2163	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2164	if (err < 0)
2165		return err;
2166	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2167		if (!mpd->io_submit.io_end->handle &&
2168		    ext4_handle_valid(handle)) {
2169			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2170			handle->h_rsv_handle = NULL;
2171		}
2172		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2173	}
2174
2175	BUG_ON(map->m_len == 0);
2176	return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 *				 mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 *                     is no hope of writing the data. The caller should discard
2187 *                     dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200				       struct mpage_da_data *mpd,
2201				       bool *give_up_on_write)
2202{
2203	struct inode *inode = mpd->inode;
2204	struct ext4_map_blocks *map = &mpd->map;
2205	int err;
2206	loff_t disksize;
2207	int progress = 0;
2208	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2209	struct ext4_io_end_vec *io_end_vec;
2210
2211	io_end_vec = ext4_alloc_io_end_vec(io_end);
2212	if (IS_ERR(io_end_vec))
2213		return PTR_ERR(io_end_vec);
2214	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2215	do {
2216		err = mpage_map_one_extent(handle, mpd);
2217		if (err < 0) {
2218			struct super_block *sb = inode->i_sb;
2219
2220			if (ext4_forced_shutdown(sb))
2221				goto invalidate_dirty_pages;
2222			/*
2223			 * Let the uper layers retry transient errors.
2224			 * In the case of ENOSPC, if ext4_count_free_blocks()
2225			 * is non-zero, a commit should free up blocks.
2226			 */
2227			if ((err == -ENOMEM) ||
2228			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2229				if (progress)
2230					goto update_disksize;
2231				return err;
2232			}
2233			ext4_msg(sb, KERN_CRIT,
2234				 "Delayed block allocation failed for "
2235				 "inode %lu at logical offset %llu with"
2236				 " max blocks %u with error %d",
2237				 inode->i_ino,
2238				 (unsigned long long)map->m_lblk,
2239				 (unsigned)map->m_len, -err);
2240			ext4_msg(sb, KERN_CRIT,
2241				 "This should not happen!! Data will "
2242				 "be lost\n");
2243			if (err == -ENOSPC)
2244				ext4_print_free_blocks(inode);
2245		invalidate_dirty_pages:
2246			*give_up_on_write = true;
2247			return err;
2248		}
2249		progress = 1;
2250		/*
2251		 * Update buffer state, submit mapped pages, and get us new
2252		 * extent to map
2253		 */
2254		err = mpage_map_and_submit_buffers(mpd);
2255		if (err < 0)
2256			goto update_disksize;
2257	} while (map->m_len);
2258
2259update_disksize:
2260	/*
2261	 * Update on-disk size after IO is submitted.  Races with
2262	 * truncate are avoided by checking i_size under i_data_sem.
2263	 */
2264	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2265	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2266		int err2;
2267		loff_t i_size;
2268
2269		down_write(&EXT4_I(inode)->i_data_sem);
2270		i_size = i_size_read(inode);
2271		if (disksize > i_size)
2272			disksize = i_size;
2273		if (disksize > EXT4_I(inode)->i_disksize)
2274			EXT4_I(inode)->i_disksize = disksize;
2275		up_write(&EXT4_I(inode)->i_data_sem);
2276		err2 = ext4_mark_inode_dirty(handle, inode);
2277		if (err2) {
2278			ext4_error_err(inode->i_sb, -err2,
2279				       "Failed to mark inode %lu dirty",
2280				       inode->i_ino);
2281		}
2282		if (!err)
2283			err = err2;
2284	}
2285	return err;
2286}
2287
2288/*
2289 * Calculate the total number of credits to reserve for one writepages
2290 * iteration. This is called from ext4_writepages(). We map an extent of
2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293 * bpp - 1 blocks in bpp different extents.
2294 */
2295static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296{
2297	int bpp = ext4_journal_blocks_per_page(inode);
2298
2299	return ext4_meta_trans_blocks(inode,
2300				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2301}
2302
2303static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2304				     size_t len)
2305{
2306	struct buffer_head *page_bufs = folio_buffers(folio);
2307	struct inode *inode = folio->mapping->host;
2308	int ret, err;
2309
2310	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2311				     NULL, do_journal_get_write_access);
2312	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2313				     NULL, write_end_fn);
2314	if (ret == 0)
2315		ret = err;
2316	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2317	if (ret == 0)
2318		ret = err;
2319	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320
2321	return ret;
2322}
2323
2324static int mpage_journal_page_buffers(handle_t *handle,
2325				      struct mpage_da_data *mpd,
2326				      struct folio *folio)
2327{
2328	struct inode *inode = mpd->inode;
2329	loff_t size = i_size_read(inode);
2330	size_t len = folio_size(folio);
2331
2332	folio_clear_checked(folio);
2333	mpd->wbc->nr_to_write--;
2334
2335	if (folio_pos(folio) + len > size &&
2336	    !ext4_verity_in_progress(inode))
2337		len = size - folio_pos(folio);
2338
2339	return ext4_journal_folio_buffers(handle, folio, len);
2340}
2341
2342/*
2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2344 * 				 needing mapping, submit mapped pages
2345 *
2346 * @mpd - where to look for pages
2347 *
2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2349 * IO immediately. If we cannot map blocks, we submit just already mapped
2350 * buffers in the page for IO and keep page dirty. When we can map blocks and
2351 * we find a page which isn't mapped we start accumulating extent of buffers
2352 * underlying these pages that needs mapping (formed by either delayed or
2353 * unwritten buffers). We also lock the pages containing these buffers. The
2354 * extent found is returned in @mpd structure (starting at mpd->lblk with
2355 * length mpd->len blocks).
2356 *
2357 * Note that this function can attach bios to one io_end structure which are
2358 * neither logically nor physically contiguous. Although it may seem as an
2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2360 * case as we need to track IO to all buffers underlying a page in one io_end.
2361 */
2362static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2363{
2364	struct address_space *mapping = mpd->inode->i_mapping;
2365	struct folio_batch fbatch;
2366	unsigned int nr_folios;
2367	pgoff_t index = mpd->first_page;
2368	pgoff_t end = mpd->last_page;
2369	xa_mark_t tag;
2370	int i, err = 0;
2371	int blkbits = mpd->inode->i_blkbits;
2372	ext4_lblk_t lblk;
2373	struct buffer_head *head;
2374	handle_t *handle = NULL;
2375	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2376
2377	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2378		tag = PAGECACHE_TAG_TOWRITE;
2379	else
2380		tag = PAGECACHE_TAG_DIRTY;
2381
2382	mpd->map.m_len = 0;
2383	mpd->next_page = index;
2384	if (ext4_should_journal_data(mpd->inode)) {
2385		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2386					    bpp);
2387		if (IS_ERR(handle))
2388			return PTR_ERR(handle);
2389	}
2390	folio_batch_init(&fbatch);
2391	while (index <= end) {
2392		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2393				tag, &fbatch);
2394		if (nr_folios == 0)
2395			break;
2396
2397		for (i = 0; i < nr_folios; i++) {
2398			struct folio *folio = fbatch.folios[i];
2399
2400			/*
2401			 * Accumulated enough dirty pages? This doesn't apply
2402			 * to WB_SYNC_ALL mode. For integrity sync we have to
2403			 * keep going because someone may be concurrently
2404			 * dirtying pages, and we might have synced a lot of
2405			 * newly appeared dirty pages, but have not synced all
2406			 * of the old dirty pages.
2407			 */
2408			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2409			    mpd->wbc->nr_to_write <=
2410			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2411				goto out;
2412
2413			/* If we can't merge this page, we are done. */
2414			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2415				goto out;
2416
2417			if (handle) {
2418				err = ext4_journal_ensure_credits(handle, bpp,
2419								  0);
2420				if (err < 0)
2421					goto out;
2422			}
2423
2424			folio_lock(folio);
2425			/*
2426			 * If the page is no longer dirty, or its mapping no
2427			 * longer corresponds to inode we are writing (which
2428			 * means it has been truncated or invalidated), or the
2429			 * page is already under writeback and we are not doing
2430			 * a data integrity writeback, skip the page
2431			 */
2432			if (!folio_test_dirty(folio) ||
2433			    (folio_test_writeback(folio) &&
2434			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2435			    unlikely(folio->mapping != mapping)) {
2436				folio_unlock(folio);
2437				continue;
2438			}
2439
2440			folio_wait_writeback(folio);
2441			BUG_ON(folio_test_writeback(folio));
2442
2443			/*
2444			 * Should never happen but for buggy code in
2445			 * other subsystems that call
2446			 * set_page_dirty() without properly warning
2447			 * the file system first.  See [1] for more
2448			 * information.
2449			 *
2450			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2451			 */
2452			if (!folio_buffers(folio)) {
2453				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2454				folio_clear_dirty(folio);
2455				folio_unlock(folio);
2456				continue;
2457			}
2458
2459			if (mpd->map.m_len == 0)
2460				mpd->first_page = folio->index;
2461			mpd->next_page = folio_next_index(folio);
2462			/*
2463			 * Writeout when we cannot modify metadata is simple.
2464			 * Just submit the page. For data=journal mode we
2465			 * first handle writeout of the page for checkpoint and
2466			 * only after that handle delayed page dirtying. This
2467			 * makes sure current data is checkpointed to the final
2468			 * location before possibly journalling it again which
2469			 * is desirable when the page is frequently dirtied
2470			 * through a pin.
2471			 */
2472			if (!mpd->can_map) {
2473				err = mpage_submit_folio(mpd, folio);
2474				if (err < 0)
2475					goto out;
2476				/* Pending dirtying of journalled data? */
2477				if (folio_test_checked(folio)) {
2478					err = mpage_journal_page_buffers(handle,
2479						mpd, folio);
2480					if (err < 0)
2481						goto out;
2482					mpd->journalled_more_data = 1;
2483				}
2484				mpage_folio_done(mpd, folio);
2485			} else {
2486				/* Add all dirty buffers to mpd */
2487				lblk = ((ext4_lblk_t)folio->index) <<
2488					(PAGE_SHIFT - blkbits);
2489				head = folio_buffers(folio);
2490				err = mpage_process_page_bufs(mpd, head, head,
2491						lblk);
2492				if (err <= 0)
2493					goto out;
2494				err = 0;
2495			}
2496		}
2497		folio_batch_release(&fbatch);
2498		cond_resched();
2499	}
2500	mpd->scanned_until_end = 1;
2501	if (handle)
2502		ext4_journal_stop(handle);
2503	return 0;
2504out:
2505	folio_batch_release(&fbatch);
2506	if (handle)
2507		ext4_journal_stop(handle);
2508	return err;
2509}
2510
2511static int ext4_do_writepages(struct mpage_da_data *mpd)
2512{
2513	struct writeback_control *wbc = mpd->wbc;
2514	pgoff_t	writeback_index = 0;
2515	long nr_to_write = wbc->nr_to_write;
2516	int range_whole = 0;
2517	int cycled = 1;
2518	handle_t *handle = NULL;
2519	struct inode *inode = mpd->inode;
2520	struct address_space *mapping = inode->i_mapping;
2521	int needed_blocks, rsv_blocks = 0, ret = 0;
2522	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2523	struct blk_plug plug;
2524	bool give_up_on_write = false;
2525
2526	trace_ext4_writepages(inode, wbc);
2527
2528	/*
2529	 * No pages to write? This is mainly a kludge to avoid starting
2530	 * a transaction for special inodes like journal inode on last iput()
2531	 * because that could violate lock ordering on umount
2532	 */
2533	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2534		goto out_writepages;
2535
2536	/*
2537	 * If the filesystem has aborted, it is read-only, so return
2538	 * right away instead of dumping stack traces later on that
2539	 * will obscure the real source of the problem.  We test
2540	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2541	 * the latter could be true if the filesystem is mounted
2542	 * read-only, and in that case, ext4_writepages should
2543	 * *never* be called, so if that ever happens, we would want
2544	 * the stack trace.
2545	 */
2546	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2547		ret = -EROFS;
2548		goto out_writepages;
2549	}
2550
2551	/*
2552	 * If we have inline data and arrive here, it means that
2553	 * we will soon create the block for the 1st page, so
2554	 * we'd better clear the inline data here.
2555	 */
2556	if (ext4_has_inline_data(inode)) {
2557		/* Just inode will be modified... */
2558		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2559		if (IS_ERR(handle)) {
2560			ret = PTR_ERR(handle);
2561			goto out_writepages;
2562		}
2563		BUG_ON(ext4_test_inode_state(inode,
2564				EXT4_STATE_MAY_INLINE_DATA));
2565		ext4_destroy_inline_data(handle, inode);
2566		ext4_journal_stop(handle);
2567	}
2568
2569	/*
2570	 * data=journal mode does not do delalloc so we just need to writeout /
2571	 * journal already mapped buffers. On the other hand we need to commit
2572	 * transaction to make data stable. We expect all the data to be
2573	 * already in the journal (the only exception are DMA pinned pages
2574	 * dirtied behind our back) so we commit transaction here and run the
2575	 * writeback loop to checkpoint them. The checkpointing is not actually
2576	 * necessary to make data persistent *but* quite a few places (extent
2577	 * shifting operations, fsverity, ...) depend on being able to drop
2578	 * pagecache pages after calling filemap_write_and_wait() and for that
2579	 * checkpointing needs to happen.
2580	 */
2581	if (ext4_should_journal_data(inode)) {
2582		mpd->can_map = 0;
2583		if (wbc->sync_mode == WB_SYNC_ALL)
2584			ext4_fc_commit(sbi->s_journal,
2585				       EXT4_I(inode)->i_datasync_tid);
2586	}
2587	mpd->journalled_more_data = 0;
2588
2589	if (ext4_should_dioread_nolock(inode)) {
2590		/*
2591		 * We may need to convert up to one extent per block in
2592		 * the page and we may dirty the inode.
2593		 */
2594		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2595						PAGE_SIZE >> inode->i_blkbits);
2596	}
2597
2598	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2599		range_whole = 1;
2600
2601	if (wbc->range_cyclic) {
2602		writeback_index = mapping->writeback_index;
2603		if (writeback_index)
2604			cycled = 0;
2605		mpd->first_page = writeback_index;
2606		mpd->last_page = -1;
2607	} else {
2608		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2609		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2610	}
2611
2612	ext4_io_submit_init(&mpd->io_submit, wbc);
2613retry:
2614	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2615		tag_pages_for_writeback(mapping, mpd->first_page,
2616					mpd->last_page);
2617	blk_start_plug(&plug);
2618
2619	/*
2620	 * First writeback pages that don't need mapping - we can avoid
2621	 * starting a transaction unnecessarily and also avoid being blocked
2622	 * in the block layer on device congestion while having transaction
2623	 * started.
2624	 */
2625	mpd->do_map = 0;
2626	mpd->scanned_until_end = 0;
2627	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2628	if (!mpd->io_submit.io_end) {
2629		ret = -ENOMEM;
2630		goto unplug;
2631	}
2632	ret = mpage_prepare_extent_to_map(mpd);
2633	/* Unlock pages we didn't use */
2634	mpage_release_unused_pages(mpd, false);
2635	/* Submit prepared bio */
2636	ext4_io_submit(&mpd->io_submit);
2637	ext4_put_io_end_defer(mpd->io_submit.io_end);
2638	mpd->io_submit.io_end = NULL;
2639	if (ret < 0)
2640		goto unplug;
2641
2642	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2643		/* For each extent of pages we use new io_end */
2644		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2645		if (!mpd->io_submit.io_end) {
2646			ret = -ENOMEM;
2647			break;
2648		}
2649
2650		WARN_ON_ONCE(!mpd->can_map);
2651		/*
2652		 * We have two constraints: We find one extent to map and we
2653		 * must always write out whole page (makes a difference when
2654		 * blocksize < pagesize) so that we don't block on IO when we
2655		 * try to write out the rest of the page. Journalled mode is
2656		 * not supported by delalloc.
2657		 */
2658		BUG_ON(ext4_should_journal_data(inode));
2659		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2660
2661		/* start a new transaction */
2662		handle = ext4_journal_start_with_reserve(inode,
2663				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2664		if (IS_ERR(handle)) {
2665			ret = PTR_ERR(handle);
2666			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2667			       "%ld pages, ino %lu; err %d", __func__,
2668				wbc->nr_to_write, inode->i_ino, ret);
2669			/* Release allocated io_end */
2670			ext4_put_io_end(mpd->io_submit.io_end);
2671			mpd->io_submit.io_end = NULL;
2672			break;
2673		}
2674		mpd->do_map = 1;
2675
2676		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2677		ret = mpage_prepare_extent_to_map(mpd);
2678		if (!ret && mpd->map.m_len)
2679			ret = mpage_map_and_submit_extent(handle, mpd,
2680					&give_up_on_write);
2681		/*
2682		 * Caution: If the handle is synchronous,
2683		 * ext4_journal_stop() can wait for transaction commit
2684		 * to finish which may depend on writeback of pages to
2685		 * complete or on page lock to be released.  In that
2686		 * case, we have to wait until after we have
2687		 * submitted all the IO, released page locks we hold,
2688		 * and dropped io_end reference (for extent conversion
2689		 * to be able to complete) before stopping the handle.
2690		 */
2691		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2692			ext4_journal_stop(handle);
2693			handle = NULL;
2694			mpd->do_map = 0;
2695		}
2696		/* Unlock pages we didn't use */
2697		mpage_release_unused_pages(mpd, give_up_on_write);
2698		/* Submit prepared bio */
2699		ext4_io_submit(&mpd->io_submit);
2700
2701		/*
2702		 * Drop our io_end reference we got from init. We have
2703		 * to be careful and use deferred io_end finishing if
2704		 * we are still holding the transaction as we can
2705		 * release the last reference to io_end which may end
2706		 * up doing unwritten extent conversion.
2707		 */
2708		if (handle) {
2709			ext4_put_io_end_defer(mpd->io_submit.io_end);
2710			ext4_journal_stop(handle);
2711		} else
2712			ext4_put_io_end(mpd->io_submit.io_end);
2713		mpd->io_submit.io_end = NULL;
2714
2715		if (ret == -ENOSPC && sbi->s_journal) {
2716			/*
2717			 * Commit the transaction which would
2718			 * free blocks released in the transaction
2719			 * and try again
2720			 */
2721			jbd2_journal_force_commit_nested(sbi->s_journal);
2722			ret = 0;
2723			continue;
2724		}
2725		/* Fatal error - ENOMEM, EIO... */
2726		if (ret)
2727			break;
2728	}
2729unplug:
2730	blk_finish_plug(&plug);
2731	if (!ret && !cycled && wbc->nr_to_write > 0) {
2732		cycled = 1;
2733		mpd->last_page = writeback_index - 1;
2734		mpd->first_page = 0;
2735		goto retry;
2736	}
2737
2738	/* Update index */
2739	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2740		/*
2741		 * Set the writeback_index so that range_cyclic
2742		 * mode will write it back later
2743		 */
2744		mapping->writeback_index = mpd->first_page;
2745
2746out_writepages:
2747	trace_ext4_writepages_result(inode, wbc, ret,
2748				     nr_to_write - wbc->nr_to_write);
2749	return ret;
2750}
2751
2752static int ext4_writepages(struct address_space *mapping,
2753			   struct writeback_control *wbc)
2754{
2755	struct super_block *sb = mapping->host->i_sb;
2756	struct mpage_da_data mpd = {
2757		.inode = mapping->host,
2758		.wbc = wbc,
2759		.can_map = 1,
2760	};
2761	int ret;
2762	int alloc_ctx;
2763
2764	if (unlikely(ext4_forced_shutdown(sb)))
2765		return -EIO;
2766
2767	alloc_ctx = ext4_writepages_down_read(sb);
2768	ret = ext4_do_writepages(&mpd);
2769	/*
2770	 * For data=journal writeback we could have come across pages marked
2771	 * for delayed dirtying (PageChecked) which were just added to the
2772	 * running transaction. Try once more to get them to stable storage.
2773	 */
2774	if (!ret && mpd.journalled_more_data)
2775		ret = ext4_do_writepages(&mpd);
2776	ext4_writepages_up_read(sb, alloc_ctx);
2777
2778	return ret;
2779}
2780
2781int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2782{
2783	struct writeback_control wbc = {
2784		.sync_mode = WB_SYNC_ALL,
2785		.nr_to_write = LONG_MAX,
2786		.range_start = jinode->i_dirty_start,
2787		.range_end = jinode->i_dirty_end,
2788	};
2789	struct mpage_da_data mpd = {
2790		.inode = jinode->i_vfs_inode,
2791		.wbc = &wbc,
2792		.can_map = 0,
2793	};
2794	return ext4_do_writepages(&mpd);
2795}
2796
2797static int ext4_dax_writepages(struct address_space *mapping,
2798			       struct writeback_control *wbc)
2799{
2800	int ret;
2801	long nr_to_write = wbc->nr_to_write;
2802	struct inode *inode = mapping->host;
2803	int alloc_ctx;
2804
2805	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2806		return -EIO;
2807
2808	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2809	trace_ext4_writepages(inode, wbc);
2810
2811	ret = dax_writeback_mapping_range(mapping,
2812					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2813	trace_ext4_writepages_result(inode, wbc, ret,
2814				     nr_to_write - wbc->nr_to_write);
2815	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2816	return ret;
2817}
2818
2819static int ext4_nonda_switch(struct super_block *sb)
2820{
2821	s64 free_clusters, dirty_clusters;
2822	struct ext4_sb_info *sbi = EXT4_SB(sb);
2823
2824	/*
2825	 * switch to non delalloc mode if we are running low
2826	 * on free block. The free block accounting via percpu
2827	 * counters can get slightly wrong with percpu_counter_batch getting
2828	 * accumulated on each CPU without updating global counters
2829	 * Delalloc need an accurate free block accounting. So switch
2830	 * to non delalloc when we are near to error range.
2831	 */
2832	free_clusters =
2833		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2834	dirty_clusters =
2835		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2836	/*
2837	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2838	 */
2839	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2840		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2841
2842	if (2 * free_clusters < 3 * dirty_clusters ||
2843	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2844		/*
2845		 * free block count is less than 150% of dirty blocks
2846		 * or free blocks is less than watermark
2847		 */
2848		return 1;
2849	}
2850	return 0;
2851}
2852
2853static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2854			       loff_t pos, unsigned len,
2855			       struct page **pagep, void **fsdata)
2856{
2857	int ret, retries = 0;
2858	struct folio *folio;
2859	pgoff_t index;
2860	struct inode *inode = mapping->host;
2861
2862	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863		return -EIO;
2864
2865	index = pos >> PAGE_SHIFT;
2866
2867	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2868		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869		return ext4_write_begin(file, mapping, pos,
2870					len, pagep, fsdata);
2871	}
2872	*fsdata = (void *)0;
2873	trace_ext4_da_write_begin(inode, pos, len);
2874
2875	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2876		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2877						      pagep, fsdata);
2878		if (ret < 0)
2879			return ret;
2880		if (ret == 1)
2881			return 0;
2882	}
2883
2884retry:
2885	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2886			mapping_gfp_mask(mapping));
2887	if (IS_ERR(folio))
2888		return PTR_ERR(folio);
2889
2890#ifdef CONFIG_FS_ENCRYPTION
2891	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2892#else
2893	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2894#endif
2895	if (ret < 0) {
2896		folio_unlock(folio);
2897		folio_put(folio);
2898		/*
2899		 * block_write_begin may have instantiated a few blocks
2900		 * outside i_size.  Trim these off again. Don't need
2901		 * i_size_read because we hold inode lock.
2902		 */
2903		if (pos + len > inode->i_size)
2904			ext4_truncate_failed_write(inode);
2905
2906		if (ret == -ENOSPC &&
2907		    ext4_should_retry_alloc(inode->i_sb, &retries))
2908			goto retry;
2909		return ret;
2910	}
2911
2912	*pagep = &folio->page;
2913	return ret;
2914}
2915
2916/*
2917 * Check if we should update i_disksize
2918 * when write to the end of file but not require block allocation
2919 */
2920static int ext4_da_should_update_i_disksize(struct folio *folio,
2921					    unsigned long offset)
2922{
2923	struct buffer_head *bh;
2924	struct inode *inode = folio->mapping->host;
2925	unsigned int idx;
2926	int i;
2927
2928	bh = folio_buffers(folio);
2929	idx = offset >> inode->i_blkbits;
2930
2931	for (i = 0; i < idx; i++)
2932		bh = bh->b_this_page;
2933
2934	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2935		return 0;
2936	return 1;
2937}
2938
2939static int ext4_da_do_write_end(struct address_space *mapping,
2940			loff_t pos, unsigned len, unsigned copied,
2941			struct folio *folio)
2942{
2943	struct inode *inode = mapping->host;
2944	loff_t old_size = inode->i_size;
2945	bool disksize_changed = false;
2946	loff_t new_i_size;
 
2947
 
 
 
 
 
2948	/*
2949	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2950	 * flag, which all that's needed to trigger page writeback.
2951	 */
2952	copied = block_write_end(NULL, mapping, pos, len, copied,
2953			&folio->page, NULL);
2954	new_i_size = pos + copied;
2955
2956	/*
2957	 * It's important to update i_size while still holding folio lock,
2958	 * because folio writeout could otherwise come in and zero beyond
2959	 * i_size.
2960	 *
2961	 * Since we are holding inode lock, we are sure i_disksize <=
2962	 * i_size. We also know that if i_disksize < i_size, there are
2963	 * delalloc writes pending in the range up to i_size. If the end of
2964	 * the current write is <= i_size, there's no need to touch
2965	 * i_disksize since writeback will push i_disksize up to i_size
2966	 * eventually. If the end of the current write is > i_size and
2967	 * inside an allocated block which ext4_da_should_update_i_disksize()
2968	 * checked, we need to update i_disksize here as certain
2969	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2970	 */
2971	if (new_i_size > inode->i_size) {
2972		unsigned long end;
2973
2974		i_size_write(inode, new_i_size);
2975		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2976		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
2977			ext4_update_i_disksize(inode, new_i_size);
2978			disksize_changed = true;
2979		}
2980	}
2981
2982	folio_unlock(folio);
2983	folio_put(folio);
2984
2985	if (old_size < pos)
2986		pagecache_isize_extended(inode, old_size, pos);
 
 
2987
2988	if (disksize_changed) {
2989		handle_t *handle;
2990
2991		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2992		if (IS_ERR(handle))
2993			return PTR_ERR(handle);
2994		ext4_mark_inode_dirty(handle, inode);
2995		ext4_journal_stop(handle);
2996	}
 
2997
2998	return copied;
2999}
3000
3001static int ext4_da_write_end(struct file *file,
3002			     struct address_space *mapping,
3003			     loff_t pos, unsigned len, unsigned copied,
3004			     struct page *page, void *fsdata)
3005{
3006	struct inode *inode = mapping->host;
3007	int write_mode = (int)(unsigned long)fsdata;
3008	struct folio *folio = page_folio(page);
3009
3010	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3011		return ext4_write_end(file, mapping, pos,
3012				      len, copied, &folio->page, fsdata);
3013
3014	trace_ext4_da_write_end(inode, pos, len, copied);
3015
3016	if (write_mode != CONVERT_INLINE_DATA &&
3017	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3018	    ext4_has_inline_data(inode))
3019		return ext4_write_inline_data_end(inode, pos, len, copied,
3020						  folio);
3021
3022	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3023		copied = 0;
3024
3025	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3026}
3027
3028/*
3029 * Force all delayed allocation blocks to be allocated for a given inode.
3030 */
3031int ext4_alloc_da_blocks(struct inode *inode)
3032{
3033	trace_ext4_alloc_da_blocks(inode);
3034
3035	if (!EXT4_I(inode)->i_reserved_data_blocks)
3036		return 0;
3037
3038	/*
3039	 * We do something simple for now.  The filemap_flush() will
3040	 * also start triggering a write of the data blocks, which is
3041	 * not strictly speaking necessary (and for users of
3042	 * laptop_mode, not even desirable).  However, to do otherwise
3043	 * would require replicating code paths in:
3044	 *
3045	 * ext4_writepages() ->
3046	 *    write_cache_pages() ---> (via passed in callback function)
3047	 *        __mpage_da_writepage() -->
3048	 *           mpage_add_bh_to_extent()
3049	 *           mpage_da_map_blocks()
3050	 *
3051	 * The problem is that write_cache_pages(), located in
3052	 * mm/page-writeback.c, marks pages clean in preparation for
3053	 * doing I/O, which is not desirable if we're not planning on
3054	 * doing I/O at all.
3055	 *
3056	 * We could call write_cache_pages(), and then redirty all of
3057	 * the pages by calling redirty_page_for_writepage() but that
3058	 * would be ugly in the extreme.  So instead we would need to
3059	 * replicate parts of the code in the above functions,
3060	 * simplifying them because we wouldn't actually intend to
3061	 * write out the pages, but rather only collect contiguous
3062	 * logical block extents, call the multi-block allocator, and
3063	 * then update the buffer heads with the block allocations.
3064	 *
3065	 * For now, though, we'll cheat by calling filemap_flush(),
3066	 * which will map the blocks, and start the I/O, but not
3067	 * actually wait for the I/O to complete.
3068	 */
3069	return filemap_flush(inode->i_mapping);
3070}
3071
3072/*
3073 * bmap() is special.  It gets used by applications such as lilo and by
3074 * the swapper to find the on-disk block of a specific piece of data.
3075 *
3076 * Naturally, this is dangerous if the block concerned is still in the
3077 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3078 * filesystem and enables swap, then they may get a nasty shock when the
3079 * data getting swapped to that swapfile suddenly gets overwritten by
3080 * the original zero's written out previously to the journal and
3081 * awaiting writeback in the kernel's buffer cache.
3082 *
3083 * So, if we see any bmap calls here on a modified, data-journaled file,
3084 * take extra steps to flush any blocks which might be in the cache.
3085 */
3086static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3087{
3088	struct inode *inode = mapping->host;
3089	sector_t ret = 0;
3090
3091	inode_lock_shared(inode);
3092	/*
3093	 * We can get here for an inline file via the FIBMAP ioctl
3094	 */
3095	if (ext4_has_inline_data(inode))
3096		goto out;
3097
3098	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3099	    (test_opt(inode->i_sb, DELALLOC) ||
3100	     ext4_should_journal_data(inode))) {
3101		/*
3102		 * With delalloc or journalled data we want to sync the file so
3103		 * that we can make sure we allocate blocks for file and data
3104		 * is in place for the user to see it
3105		 */
3106		filemap_write_and_wait(mapping);
3107	}
3108
3109	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3110
3111out:
3112	inode_unlock_shared(inode);
3113	return ret;
3114}
3115
3116static int ext4_read_folio(struct file *file, struct folio *folio)
3117{
3118	int ret = -EAGAIN;
3119	struct inode *inode = folio->mapping->host;
3120
3121	trace_ext4_read_folio(inode, folio);
3122
3123	if (ext4_has_inline_data(inode))
3124		ret = ext4_readpage_inline(inode, folio);
3125
3126	if (ret == -EAGAIN)
3127		return ext4_mpage_readpages(inode, NULL, folio);
3128
3129	return ret;
3130}
3131
3132static void ext4_readahead(struct readahead_control *rac)
3133{
3134	struct inode *inode = rac->mapping->host;
3135
3136	/* If the file has inline data, no need to do readahead. */
3137	if (ext4_has_inline_data(inode))
3138		return;
3139
3140	ext4_mpage_readpages(inode, rac, NULL);
3141}
3142
3143static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3144				size_t length)
3145{
3146	trace_ext4_invalidate_folio(folio, offset, length);
3147
3148	/* No journalling happens on data buffers when this function is used */
3149	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3150
3151	block_invalidate_folio(folio, offset, length);
3152}
3153
3154static int __ext4_journalled_invalidate_folio(struct folio *folio,
3155					    size_t offset, size_t length)
3156{
3157	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3158
3159	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3160
3161	/*
3162	 * If it's a full truncate we just forget about the pending dirtying
3163	 */
3164	if (offset == 0 && length == folio_size(folio))
3165		folio_clear_checked(folio);
3166
3167	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3168}
3169
3170/* Wrapper for aops... */
3171static void ext4_journalled_invalidate_folio(struct folio *folio,
3172					   size_t offset,
3173					   size_t length)
3174{
3175	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3176}
3177
3178static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3179{
3180	struct inode *inode = folio->mapping->host;
3181	journal_t *journal = EXT4_JOURNAL(inode);
3182
3183	trace_ext4_release_folio(inode, folio);
3184
3185	/* Page has dirty journalled data -> cannot release */
3186	if (folio_test_checked(folio))
3187		return false;
3188	if (journal)
3189		return jbd2_journal_try_to_free_buffers(journal, folio);
3190	else
3191		return try_to_free_buffers(folio);
3192}
3193
3194static bool ext4_inode_datasync_dirty(struct inode *inode)
3195{
3196	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3197
3198	if (journal) {
3199		if (jbd2_transaction_committed(journal,
3200			EXT4_I(inode)->i_datasync_tid))
3201			return false;
3202		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3203			return !list_empty(&EXT4_I(inode)->i_fc_list);
3204		return true;
3205	}
3206
3207	/* Any metadata buffers to write? */
3208	if (!list_empty(&inode->i_mapping->i_private_list))
3209		return true;
3210	return inode->i_state & I_DIRTY_DATASYNC;
3211}
3212
3213static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3214			   struct ext4_map_blocks *map, loff_t offset,
3215			   loff_t length, unsigned int flags)
3216{
3217	u8 blkbits = inode->i_blkbits;
3218
3219	/*
3220	 * Writes that span EOF might trigger an I/O size update on completion,
3221	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3222	 * there is no other metadata changes being made or are pending.
3223	 */
3224	iomap->flags = 0;
3225	if (ext4_inode_datasync_dirty(inode) ||
3226	    offset + length > i_size_read(inode))
3227		iomap->flags |= IOMAP_F_DIRTY;
3228
3229	if (map->m_flags & EXT4_MAP_NEW)
3230		iomap->flags |= IOMAP_F_NEW;
3231
3232	if (flags & IOMAP_DAX)
3233		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3234	else
3235		iomap->bdev = inode->i_sb->s_bdev;
3236	iomap->offset = (u64) map->m_lblk << blkbits;
3237	iomap->length = (u64) map->m_len << blkbits;
3238
3239	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3240	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3241		iomap->flags |= IOMAP_F_MERGED;
3242
3243	/*
3244	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3245	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3246	 * set. In order for any allocated unwritten extents to be converted
3247	 * into written extents correctly within the ->end_io() handler, we
3248	 * need to ensure that the iomap->type is set appropriately. Hence, the
3249	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3250	 * been set first.
3251	 */
3252	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3253		iomap->type = IOMAP_UNWRITTEN;
3254		iomap->addr = (u64) map->m_pblk << blkbits;
3255		if (flags & IOMAP_DAX)
3256			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3257	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3258		iomap->type = IOMAP_MAPPED;
3259		iomap->addr = (u64) map->m_pblk << blkbits;
3260		if (flags & IOMAP_DAX)
3261			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3262	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3263		iomap->type = IOMAP_DELALLOC;
3264		iomap->addr = IOMAP_NULL_ADDR;
3265	} else {
3266		iomap->type = IOMAP_HOLE;
3267		iomap->addr = IOMAP_NULL_ADDR;
3268	}
3269}
3270
3271static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3272			    unsigned int flags)
3273{
3274	handle_t *handle;
3275	u8 blkbits = inode->i_blkbits;
3276	int ret, dio_credits, m_flags = 0, retries = 0;
3277
3278	/*
3279	 * Trim the mapping request to the maximum value that we can map at
3280	 * once for direct I/O.
3281	 */
3282	if (map->m_len > DIO_MAX_BLOCKS)
3283		map->m_len = DIO_MAX_BLOCKS;
3284	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3285
3286retry:
3287	/*
3288	 * Either we allocate blocks and then don't get an unwritten extent, so
3289	 * in that case we have reserved enough credits. Or, the blocks are
3290	 * already allocated and unwritten. In that case, the extent conversion
3291	 * fits into the credits as well.
3292	 */
3293	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3294	if (IS_ERR(handle))
3295		return PTR_ERR(handle);
3296
3297	/*
3298	 * DAX and direct I/O are the only two operations that are currently
3299	 * supported with IOMAP_WRITE.
3300	 */
3301	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3302	if (flags & IOMAP_DAX)
3303		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3304	/*
3305	 * We use i_size instead of i_disksize here because delalloc writeback
3306	 * can complete at any point during the I/O and subsequently push the
3307	 * i_disksize out to i_size. This could be beyond where direct I/O is
3308	 * happening and thus expose allocated blocks to direct I/O reads.
3309	 */
3310	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3311		m_flags = EXT4_GET_BLOCKS_CREATE;
3312	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3314
3315	ret = ext4_map_blocks(handle, inode, map, m_flags);
3316
3317	/*
3318	 * We cannot fill holes in indirect tree based inodes as that could
3319	 * expose stale data in the case of a crash. Use the magic error code
3320	 * to fallback to buffered I/O.
3321	 */
3322	if (!m_flags && !ret)
3323		ret = -ENOTBLK;
3324
3325	ext4_journal_stop(handle);
3326	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3327		goto retry;
3328
3329	return ret;
3330}
3331
3332
3333static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3334		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3335{
3336	int ret;
3337	struct ext4_map_blocks map;
3338	u8 blkbits = inode->i_blkbits;
3339
3340	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3341		return -EINVAL;
3342
3343	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3344		return -ERANGE;
3345
3346	/*
3347	 * Calculate the first and last logical blocks respectively.
3348	 */
3349	map.m_lblk = offset >> blkbits;
3350	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3351			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3352
3353	if (flags & IOMAP_WRITE) {
3354		/*
3355		 * We check here if the blocks are already allocated, then we
3356		 * don't need to start a journal txn and we can directly return
3357		 * the mapping information. This could boost performance
3358		 * especially in multi-threaded overwrite requests.
3359		 */
3360		if (offset + length <= i_size_read(inode)) {
3361			ret = ext4_map_blocks(NULL, inode, &map, 0);
3362			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3363				goto out;
3364		}
3365		ret = ext4_iomap_alloc(inode, &map, flags);
3366	} else {
3367		ret = ext4_map_blocks(NULL, inode, &map, 0);
3368	}
3369
3370	if (ret < 0)
3371		return ret;
3372out:
3373	/*
3374	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3375	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3376	 * limiting the length of the mapping returned.
3377	 */
3378	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3379
3380	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3381
3382	return 0;
3383}
3384
3385static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3386		loff_t length, unsigned flags, struct iomap *iomap,
3387		struct iomap *srcmap)
3388{
3389	int ret;
3390
3391	/*
3392	 * Even for writes we don't need to allocate blocks, so just pretend
3393	 * we are reading to save overhead of starting a transaction.
3394	 */
3395	flags &= ~IOMAP_WRITE;
3396	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3397	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3398	return ret;
3399}
3400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3401static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402			  ssize_t written, unsigned flags, struct iomap *iomap)
3403{
3404	/*
3405	 * Check to see whether an error occurred while writing out the data to
3406	 * the allocated blocks. If so, return the magic error code so that we
3407	 * fallback to buffered I/O and attempt to complete the remainder of
3408	 * the I/O. Any blocks that may have been allocated in preparation for
3409	 * the direct I/O will be reused during buffered I/O.
 
 
3410	 */
3411	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3412		return -ENOTBLK;
3413
3414	return 0;
3415}
3416
3417const struct iomap_ops ext4_iomap_ops = {
3418	.iomap_begin		= ext4_iomap_begin,
3419	.iomap_end		= ext4_iomap_end,
3420};
3421
3422const struct iomap_ops ext4_iomap_overwrite_ops = {
3423	.iomap_begin		= ext4_iomap_overwrite_begin,
3424	.iomap_end		= ext4_iomap_end,
3425};
3426
3427static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3428				   loff_t length, unsigned int flags,
3429				   struct iomap *iomap, struct iomap *srcmap)
3430{
3431	int ret;
3432	struct ext4_map_blocks map;
3433	u8 blkbits = inode->i_blkbits;
3434
3435	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3436		return -EINVAL;
3437
3438	if (ext4_has_inline_data(inode)) {
3439		ret = ext4_inline_data_iomap(inode, iomap);
3440		if (ret != -EAGAIN) {
3441			if (ret == 0 && offset >= iomap->length)
3442				ret = -ENOENT;
3443			return ret;
3444		}
3445	}
3446
3447	/*
3448	 * Calculate the first and last logical block respectively.
3449	 */
3450	map.m_lblk = offset >> blkbits;
3451	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3452			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3453
3454	/*
3455	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3456	 * So handle it here itself instead of querying ext4_map_blocks().
3457	 * Since ext4_map_blocks() will warn about it and will return
3458	 * -EIO error.
3459	 */
3460	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3461		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3462
3463		if (offset >= sbi->s_bitmap_maxbytes) {
3464			map.m_flags = 0;
3465			goto set_iomap;
3466		}
3467	}
3468
3469	ret = ext4_map_blocks(NULL, inode, &map, 0);
3470	if (ret < 0)
3471		return ret;
3472set_iomap:
3473	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3474
3475	return 0;
3476}
3477
3478const struct iomap_ops ext4_iomap_report_ops = {
3479	.iomap_begin = ext4_iomap_begin_report,
3480};
3481
3482/*
3483 * For data=journal mode, folio should be marked dirty only when it was
3484 * writeably mapped. When that happens, it was already attached to the
3485 * transaction and marked as jbddirty (we take care of this in
3486 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3487 * so we should have nothing to do here, except for the case when someone
3488 * had the page pinned and dirtied the page through this pin (e.g. by doing
3489 * direct IO to it). In that case we'd need to attach buffers here to the
3490 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3491 * folio and leave attached buffers clean, because the buffers' dirty state is
3492 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3493 * the journalling code will explode.  So what we do is to mark the folio
3494 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3495 * to the transaction appropriately.
3496 */
3497static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3498		struct folio *folio)
3499{
3500	WARN_ON_ONCE(!folio_buffers(folio));
3501	if (folio_maybe_dma_pinned(folio))
3502		folio_set_checked(folio);
3503	return filemap_dirty_folio(mapping, folio);
3504}
3505
3506static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3507{
3508	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3509	WARN_ON_ONCE(!folio_buffers(folio));
3510	return block_dirty_folio(mapping, folio);
3511}
3512
3513static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3514				    struct file *file, sector_t *span)
3515{
3516	return iomap_swapfile_activate(sis, file, span,
3517				       &ext4_iomap_report_ops);
3518}
3519
3520static const struct address_space_operations ext4_aops = {
3521	.read_folio		= ext4_read_folio,
3522	.readahead		= ext4_readahead,
3523	.writepages		= ext4_writepages,
3524	.write_begin		= ext4_write_begin,
3525	.write_end		= ext4_write_end,
3526	.dirty_folio		= ext4_dirty_folio,
3527	.bmap			= ext4_bmap,
3528	.invalidate_folio	= ext4_invalidate_folio,
3529	.release_folio		= ext4_release_folio,
3530	.direct_IO		= noop_direct_IO,
3531	.migrate_folio		= buffer_migrate_folio,
3532	.is_partially_uptodate  = block_is_partially_uptodate,
3533	.error_remove_folio	= generic_error_remove_folio,
3534	.swap_activate		= ext4_iomap_swap_activate,
3535};
3536
3537static const struct address_space_operations ext4_journalled_aops = {
3538	.read_folio		= ext4_read_folio,
3539	.readahead		= ext4_readahead,
3540	.writepages		= ext4_writepages,
3541	.write_begin		= ext4_write_begin,
3542	.write_end		= ext4_journalled_write_end,
3543	.dirty_folio		= ext4_journalled_dirty_folio,
3544	.bmap			= ext4_bmap,
3545	.invalidate_folio	= ext4_journalled_invalidate_folio,
3546	.release_folio		= ext4_release_folio,
3547	.direct_IO		= noop_direct_IO,
3548	.migrate_folio		= buffer_migrate_folio_norefs,
3549	.is_partially_uptodate  = block_is_partially_uptodate,
3550	.error_remove_folio	= generic_error_remove_folio,
3551	.swap_activate		= ext4_iomap_swap_activate,
3552};
3553
3554static const struct address_space_operations ext4_da_aops = {
3555	.read_folio		= ext4_read_folio,
3556	.readahead		= ext4_readahead,
3557	.writepages		= ext4_writepages,
3558	.write_begin		= ext4_da_write_begin,
3559	.write_end		= ext4_da_write_end,
3560	.dirty_folio		= ext4_dirty_folio,
3561	.bmap			= ext4_bmap,
3562	.invalidate_folio	= ext4_invalidate_folio,
3563	.release_folio		= ext4_release_folio,
3564	.direct_IO		= noop_direct_IO,
3565	.migrate_folio		= buffer_migrate_folio,
3566	.is_partially_uptodate  = block_is_partially_uptodate,
3567	.error_remove_folio	= generic_error_remove_folio,
3568	.swap_activate		= ext4_iomap_swap_activate,
3569};
3570
3571static const struct address_space_operations ext4_dax_aops = {
3572	.writepages		= ext4_dax_writepages,
3573	.direct_IO		= noop_direct_IO,
3574	.dirty_folio		= noop_dirty_folio,
3575	.bmap			= ext4_bmap,
3576	.swap_activate		= ext4_iomap_swap_activate,
3577};
3578
3579void ext4_set_aops(struct inode *inode)
3580{
3581	switch (ext4_inode_journal_mode(inode)) {
3582	case EXT4_INODE_ORDERED_DATA_MODE:
3583	case EXT4_INODE_WRITEBACK_DATA_MODE:
3584		break;
3585	case EXT4_INODE_JOURNAL_DATA_MODE:
3586		inode->i_mapping->a_ops = &ext4_journalled_aops;
3587		return;
3588	default:
3589		BUG();
3590	}
3591	if (IS_DAX(inode))
3592		inode->i_mapping->a_ops = &ext4_dax_aops;
3593	else if (test_opt(inode->i_sb, DELALLOC))
3594		inode->i_mapping->a_ops = &ext4_da_aops;
3595	else
3596		inode->i_mapping->a_ops = &ext4_aops;
3597}
3598
3599/*
3600 * Here we can't skip an unwritten buffer even though it usually reads zero
3601 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3602 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3603 * racing writeback can come later and flush the stale pagecache to disk.
3604 */
3605static int __ext4_block_zero_page_range(handle_t *handle,
3606		struct address_space *mapping, loff_t from, loff_t length)
3607{
3608	ext4_fsblk_t index = from >> PAGE_SHIFT;
3609	unsigned offset = from & (PAGE_SIZE-1);
3610	unsigned blocksize, pos;
3611	ext4_lblk_t iblock;
3612	struct inode *inode = mapping->host;
3613	struct buffer_head *bh;
3614	struct folio *folio;
3615	int err = 0;
3616
3617	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3618				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3619				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3620	if (IS_ERR(folio))
3621		return PTR_ERR(folio);
3622
3623	blocksize = inode->i_sb->s_blocksize;
3624
3625	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3626
3627	bh = folio_buffers(folio);
3628	if (!bh)
3629		bh = create_empty_buffers(folio, blocksize, 0);
3630
3631	/* Find the buffer that contains "offset" */
3632	pos = blocksize;
3633	while (offset >= pos) {
3634		bh = bh->b_this_page;
3635		iblock++;
3636		pos += blocksize;
3637	}
3638	if (buffer_freed(bh)) {
3639		BUFFER_TRACE(bh, "freed: skip");
3640		goto unlock;
3641	}
3642	if (!buffer_mapped(bh)) {
3643		BUFFER_TRACE(bh, "unmapped");
3644		ext4_get_block(inode, iblock, bh, 0);
3645		/* unmapped? It's a hole - nothing to do */
3646		if (!buffer_mapped(bh)) {
3647			BUFFER_TRACE(bh, "still unmapped");
3648			goto unlock;
3649		}
3650	}
3651
3652	/* Ok, it's mapped. Make sure it's up-to-date */
3653	if (folio_test_uptodate(folio))
3654		set_buffer_uptodate(bh);
3655
3656	if (!buffer_uptodate(bh)) {
3657		err = ext4_read_bh_lock(bh, 0, true);
3658		if (err)
3659			goto unlock;
3660		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3661			/* We expect the key to be set. */
3662			BUG_ON(!fscrypt_has_encryption_key(inode));
3663			err = fscrypt_decrypt_pagecache_blocks(folio,
3664							       blocksize,
3665							       bh_offset(bh));
3666			if (err) {
3667				clear_buffer_uptodate(bh);
3668				goto unlock;
3669			}
3670		}
3671	}
3672	if (ext4_should_journal_data(inode)) {
3673		BUFFER_TRACE(bh, "get write access");
3674		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3675						    EXT4_JTR_NONE);
3676		if (err)
3677			goto unlock;
3678	}
3679	folio_zero_range(folio, offset, length);
3680	BUFFER_TRACE(bh, "zeroed end of block");
3681
3682	if (ext4_should_journal_data(inode)) {
3683		err = ext4_dirty_journalled_data(handle, bh);
3684	} else {
3685		err = 0;
3686		mark_buffer_dirty(bh);
3687		if (ext4_should_order_data(inode))
3688			err = ext4_jbd2_inode_add_write(handle, inode, from,
3689					length);
3690	}
3691
3692unlock:
3693	folio_unlock(folio);
3694	folio_put(folio);
3695	return err;
3696}
3697
3698/*
3699 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3700 * starting from file offset 'from'.  The range to be zero'd must
3701 * be contained with in one block.  If the specified range exceeds
3702 * the end of the block it will be shortened to end of the block
3703 * that corresponds to 'from'
3704 */
3705static int ext4_block_zero_page_range(handle_t *handle,
3706		struct address_space *mapping, loff_t from, loff_t length)
3707{
3708	struct inode *inode = mapping->host;
3709	unsigned offset = from & (PAGE_SIZE-1);
3710	unsigned blocksize = inode->i_sb->s_blocksize;
3711	unsigned max = blocksize - (offset & (blocksize - 1));
3712
3713	/*
3714	 * correct length if it does not fall between
3715	 * 'from' and the end of the block
3716	 */
3717	if (length > max || length < 0)
3718		length = max;
3719
3720	if (IS_DAX(inode)) {
3721		return dax_zero_range(inode, from, length, NULL,
3722				      &ext4_iomap_ops);
3723	}
3724	return __ext4_block_zero_page_range(handle, mapping, from, length);
3725}
3726
3727/*
3728 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3729 * up to the end of the block which corresponds to `from'.
3730 * This required during truncate. We need to physically zero the tail end
3731 * of that block so it doesn't yield old data if the file is later grown.
3732 */
3733static int ext4_block_truncate_page(handle_t *handle,
3734		struct address_space *mapping, loff_t from)
3735{
3736	unsigned offset = from & (PAGE_SIZE-1);
3737	unsigned length;
3738	unsigned blocksize;
3739	struct inode *inode = mapping->host;
3740
3741	/* If we are processing an encrypted inode during orphan list handling */
3742	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3743		return 0;
3744
3745	blocksize = inode->i_sb->s_blocksize;
3746	length = blocksize - (offset & (blocksize - 1));
3747
3748	return ext4_block_zero_page_range(handle, mapping, from, length);
3749}
3750
3751int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3752			     loff_t lstart, loff_t length)
3753{
3754	struct super_block *sb = inode->i_sb;
3755	struct address_space *mapping = inode->i_mapping;
3756	unsigned partial_start, partial_end;
3757	ext4_fsblk_t start, end;
3758	loff_t byte_end = (lstart + length - 1);
3759	int err = 0;
3760
3761	partial_start = lstart & (sb->s_blocksize - 1);
3762	partial_end = byte_end & (sb->s_blocksize - 1);
3763
3764	start = lstart >> sb->s_blocksize_bits;
3765	end = byte_end >> sb->s_blocksize_bits;
3766
3767	/* Handle partial zero within the single block */
3768	if (start == end &&
3769	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3770		err = ext4_block_zero_page_range(handle, mapping,
3771						 lstart, length);
3772		return err;
3773	}
3774	/* Handle partial zero out on the start of the range */
3775	if (partial_start) {
3776		err = ext4_block_zero_page_range(handle, mapping,
3777						 lstart, sb->s_blocksize);
3778		if (err)
3779			return err;
3780	}
3781	/* Handle partial zero out on the end of the range */
3782	if (partial_end != sb->s_blocksize - 1)
3783		err = ext4_block_zero_page_range(handle, mapping,
3784						 byte_end - partial_end,
3785						 partial_end + 1);
3786	return err;
3787}
3788
3789int ext4_can_truncate(struct inode *inode)
3790{
3791	if (S_ISREG(inode->i_mode))
3792		return 1;
3793	if (S_ISDIR(inode->i_mode))
3794		return 1;
3795	if (S_ISLNK(inode->i_mode))
3796		return !ext4_inode_is_fast_symlink(inode);
3797	return 0;
3798}
3799
3800/*
3801 * We have to make sure i_disksize gets properly updated before we truncate
3802 * page cache due to hole punching or zero range. Otherwise i_disksize update
3803 * can get lost as it may have been postponed to submission of writeback but
3804 * that will never happen after we truncate page cache.
3805 */
3806int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3807				      loff_t len)
3808{
3809	handle_t *handle;
3810	int ret;
3811
3812	loff_t size = i_size_read(inode);
3813
3814	WARN_ON(!inode_is_locked(inode));
3815	if (offset > size || offset + len < size)
3816		return 0;
3817
3818	if (EXT4_I(inode)->i_disksize >= size)
3819		return 0;
3820
3821	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3822	if (IS_ERR(handle))
3823		return PTR_ERR(handle);
3824	ext4_update_i_disksize(inode, size);
3825	ret = ext4_mark_inode_dirty(handle, inode);
3826	ext4_journal_stop(handle);
3827
3828	return ret;
3829}
3830
3831static void ext4_wait_dax_page(struct inode *inode)
3832{
3833	filemap_invalidate_unlock(inode->i_mapping);
3834	schedule();
3835	filemap_invalidate_lock(inode->i_mapping);
3836}
3837
3838int ext4_break_layouts(struct inode *inode)
3839{
3840	struct page *page;
3841	int error;
3842
3843	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3844		return -EINVAL;
3845
3846	do {
3847		page = dax_layout_busy_page(inode->i_mapping);
3848		if (!page)
3849			return 0;
3850
3851		error = ___wait_var_event(&page->_refcount,
3852				atomic_read(&page->_refcount) == 1,
3853				TASK_INTERRUPTIBLE, 0, 0,
3854				ext4_wait_dax_page(inode));
3855	} while (error == 0);
3856
3857	return error;
3858}
3859
3860/*
3861 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3862 * associated with the given offset and length
3863 *
3864 * @inode:  File inode
3865 * @offset: The offset where the hole will begin
3866 * @len:    The length of the hole
3867 *
3868 * Returns: 0 on success or negative on failure
3869 */
3870
3871int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3872{
3873	struct inode *inode = file_inode(file);
3874	struct super_block *sb = inode->i_sb;
3875	ext4_lblk_t first_block, stop_block;
3876	struct address_space *mapping = inode->i_mapping;
3877	loff_t first_block_offset, last_block_offset, max_length;
3878	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3879	handle_t *handle;
3880	unsigned int credits;
3881	int ret = 0, ret2 = 0;
3882
3883	trace_ext4_punch_hole(inode, offset, length, 0);
3884
3885	/*
3886	 * Write out all dirty pages to avoid race conditions
3887	 * Then release them.
3888	 */
3889	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3890		ret = filemap_write_and_wait_range(mapping, offset,
3891						   offset + length - 1);
3892		if (ret)
3893			return ret;
3894	}
3895
3896	inode_lock(inode);
3897
3898	/* No need to punch hole beyond i_size */
3899	if (offset >= inode->i_size)
3900		goto out_mutex;
3901
3902	/*
3903	 * If the hole extends beyond i_size, set the hole
3904	 * to end after the page that contains i_size
3905	 */
3906	if (offset + length > inode->i_size) {
3907		length = inode->i_size +
3908		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3909		   offset;
3910	}
3911
3912	/*
3913	 * For punch hole the length + offset needs to be within one block
3914	 * before last range. Adjust the length if it goes beyond that limit.
3915	 */
3916	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3917	if (offset + length > max_length)
3918		length = max_length - offset;
3919
3920	if (offset & (sb->s_blocksize - 1) ||
3921	    (offset + length) & (sb->s_blocksize - 1)) {
3922		/*
3923		 * Attach jinode to inode for jbd2 if we do any zeroing of
3924		 * partial block
3925		 */
3926		ret = ext4_inode_attach_jinode(inode);
3927		if (ret < 0)
3928			goto out_mutex;
3929
3930	}
3931
3932	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3933	inode_dio_wait(inode);
3934
3935	ret = file_modified(file);
3936	if (ret)
3937		goto out_mutex;
3938
3939	/*
3940	 * Prevent page faults from reinstantiating pages we have released from
3941	 * page cache.
3942	 */
3943	filemap_invalidate_lock(mapping);
3944
3945	ret = ext4_break_layouts(inode);
3946	if (ret)
3947		goto out_dio;
3948
3949	first_block_offset = round_up(offset, sb->s_blocksize);
3950	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3951
3952	/* Now release the pages and zero block aligned part of pages*/
3953	if (last_block_offset > first_block_offset) {
3954		ret = ext4_update_disksize_before_punch(inode, offset, length);
3955		if (ret)
3956			goto out_dio;
3957		truncate_pagecache_range(inode, first_block_offset,
3958					 last_block_offset);
3959	}
3960
3961	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3962		credits = ext4_writepage_trans_blocks(inode);
3963	else
3964		credits = ext4_blocks_for_truncate(inode);
3965	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3966	if (IS_ERR(handle)) {
3967		ret = PTR_ERR(handle);
3968		ext4_std_error(sb, ret);
3969		goto out_dio;
3970	}
3971
3972	ret = ext4_zero_partial_blocks(handle, inode, offset,
3973				       length);
3974	if (ret)
3975		goto out_stop;
3976
3977	first_block = (offset + sb->s_blocksize - 1) >>
3978		EXT4_BLOCK_SIZE_BITS(sb);
3979	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3980
3981	/* If there are blocks to remove, do it */
3982	if (stop_block > first_block) {
3983		ext4_lblk_t hole_len = stop_block - first_block;
3984
3985		down_write(&EXT4_I(inode)->i_data_sem);
3986		ext4_discard_preallocations(inode);
3987
3988		ext4_es_remove_extent(inode, first_block, hole_len);
3989
3990		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3991			ret = ext4_ext_remove_space(inode, first_block,
3992						    stop_block - 1);
3993		else
3994			ret = ext4_ind_remove_space(handle, inode, first_block,
3995						    stop_block);
3996
3997		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
3998				      EXTENT_STATUS_HOLE);
3999		up_write(&EXT4_I(inode)->i_data_sem);
4000	}
4001	ext4_fc_track_range(handle, inode, first_block, stop_block);
4002	if (IS_SYNC(inode))
4003		ext4_handle_sync(handle);
4004
4005	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4006	ret2 = ext4_mark_inode_dirty(handle, inode);
4007	if (unlikely(ret2))
4008		ret = ret2;
4009	if (ret >= 0)
4010		ext4_update_inode_fsync_trans(handle, inode, 1);
4011out_stop:
4012	ext4_journal_stop(handle);
4013out_dio:
4014	filemap_invalidate_unlock(mapping);
4015out_mutex:
4016	inode_unlock(inode);
4017	return ret;
4018}
4019
4020int ext4_inode_attach_jinode(struct inode *inode)
4021{
4022	struct ext4_inode_info *ei = EXT4_I(inode);
4023	struct jbd2_inode *jinode;
4024
4025	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4026		return 0;
4027
4028	jinode = jbd2_alloc_inode(GFP_KERNEL);
4029	spin_lock(&inode->i_lock);
4030	if (!ei->jinode) {
4031		if (!jinode) {
4032			spin_unlock(&inode->i_lock);
4033			return -ENOMEM;
4034		}
4035		ei->jinode = jinode;
4036		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4037		jinode = NULL;
4038	}
4039	spin_unlock(&inode->i_lock);
4040	if (unlikely(jinode != NULL))
4041		jbd2_free_inode(jinode);
4042	return 0;
4043}
4044
4045/*
4046 * ext4_truncate()
4047 *
4048 * We block out ext4_get_block() block instantiations across the entire
4049 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4050 * simultaneously on behalf of the same inode.
4051 *
4052 * As we work through the truncate and commit bits of it to the journal there
4053 * is one core, guiding principle: the file's tree must always be consistent on
4054 * disk.  We must be able to restart the truncate after a crash.
4055 *
4056 * The file's tree may be transiently inconsistent in memory (although it
4057 * probably isn't), but whenever we close off and commit a journal transaction,
4058 * the contents of (the filesystem + the journal) must be consistent and
4059 * restartable.  It's pretty simple, really: bottom up, right to left (although
4060 * left-to-right works OK too).
4061 *
4062 * Note that at recovery time, journal replay occurs *before* the restart of
4063 * truncate against the orphan inode list.
4064 *
4065 * The committed inode has the new, desired i_size (which is the same as
4066 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4067 * that this inode's truncate did not complete and it will again call
4068 * ext4_truncate() to have another go.  So there will be instantiated blocks
4069 * to the right of the truncation point in a crashed ext4 filesystem.  But
4070 * that's fine - as long as they are linked from the inode, the post-crash
4071 * ext4_truncate() run will find them and release them.
4072 */
4073int ext4_truncate(struct inode *inode)
4074{
4075	struct ext4_inode_info *ei = EXT4_I(inode);
4076	unsigned int credits;
4077	int err = 0, err2;
4078	handle_t *handle;
4079	struct address_space *mapping = inode->i_mapping;
4080
4081	/*
4082	 * There is a possibility that we're either freeing the inode
4083	 * or it's a completely new inode. In those cases we might not
4084	 * have i_rwsem locked because it's not necessary.
4085	 */
4086	if (!(inode->i_state & (I_NEW|I_FREEING)))
4087		WARN_ON(!inode_is_locked(inode));
4088	trace_ext4_truncate_enter(inode);
4089
4090	if (!ext4_can_truncate(inode))
4091		goto out_trace;
4092
4093	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4094		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4095
4096	if (ext4_has_inline_data(inode)) {
4097		int has_inline = 1;
4098
4099		err = ext4_inline_data_truncate(inode, &has_inline);
4100		if (err || has_inline)
4101			goto out_trace;
4102	}
4103
4104	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4105	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4106		err = ext4_inode_attach_jinode(inode);
4107		if (err)
4108			goto out_trace;
4109	}
4110
4111	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4112		credits = ext4_writepage_trans_blocks(inode);
4113	else
4114		credits = ext4_blocks_for_truncate(inode);
4115
4116	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4117	if (IS_ERR(handle)) {
4118		err = PTR_ERR(handle);
4119		goto out_trace;
4120	}
4121
4122	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4123		ext4_block_truncate_page(handle, mapping, inode->i_size);
4124
4125	/*
4126	 * We add the inode to the orphan list, so that if this
4127	 * truncate spans multiple transactions, and we crash, we will
4128	 * resume the truncate when the filesystem recovers.  It also
4129	 * marks the inode dirty, to catch the new size.
4130	 *
4131	 * Implication: the file must always be in a sane, consistent
4132	 * truncatable state while each transaction commits.
4133	 */
4134	err = ext4_orphan_add(handle, inode);
4135	if (err)
4136		goto out_stop;
4137
4138	down_write(&EXT4_I(inode)->i_data_sem);
4139
4140	ext4_discard_preallocations(inode);
4141
4142	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4143		err = ext4_ext_truncate(handle, inode);
4144	else
4145		ext4_ind_truncate(handle, inode);
4146
4147	up_write(&ei->i_data_sem);
4148	if (err)
4149		goto out_stop;
4150
4151	if (IS_SYNC(inode))
4152		ext4_handle_sync(handle);
4153
4154out_stop:
4155	/*
4156	 * If this was a simple ftruncate() and the file will remain alive,
4157	 * then we need to clear up the orphan record which we created above.
4158	 * However, if this was a real unlink then we were called by
4159	 * ext4_evict_inode(), and we allow that function to clean up the
4160	 * orphan info for us.
4161	 */
4162	if (inode->i_nlink)
4163		ext4_orphan_del(handle, inode);
4164
4165	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4166	err2 = ext4_mark_inode_dirty(handle, inode);
4167	if (unlikely(err2 && !err))
4168		err = err2;
4169	ext4_journal_stop(handle);
4170
4171out_trace:
4172	trace_ext4_truncate_exit(inode);
4173	return err;
4174}
4175
4176static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4177{
4178	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4179		return inode_peek_iversion_raw(inode);
4180	else
4181		return inode_peek_iversion(inode);
4182}
4183
4184static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4185				 struct ext4_inode_info *ei)
4186{
4187	struct inode *inode = &(ei->vfs_inode);
4188	u64 i_blocks = READ_ONCE(inode->i_blocks);
4189	struct super_block *sb = inode->i_sb;
4190
4191	if (i_blocks <= ~0U) {
4192		/*
4193		 * i_blocks can be represented in a 32 bit variable
4194		 * as multiple of 512 bytes
4195		 */
4196		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4197		raw_inode->i_blocks_high = 0;
4198		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4199		return 0;
4200	}
4201
4202	/*
4203	 * This should never happen since sb->s_maxbytes should not have
4204	 * allowed this, sb->s_maxbytes was set according to the huge_file
4205	 * feature in ext4_fill_super().
4206	 */
4207	if (!ext4_has_feature_huge_file(sb))
4208		return -EFSCORRUPTED;
4209
4210	if (i_blocks <= 0xffffffffffffULL) {
4211		/*
4212		 * i_blocks can be represented in a 48 bit variable
4213		 * as multiple of 512 bytes
4214		 */
4215		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4216		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4217		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4218	} else {
4219		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4220		/* i_block is stored in file system block size */
4221		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4222		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4223		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4224	}
4225	return 0;
4226}
4227
4228static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4229{
4230	struct ext4_inode_info *ei = EXT4_I(inode);
4231	uid_t i_uid;
4232	gid_t i_gid;
4233	projid_t i_projid;
4234	int block;
4235	int err;
4236
4237	err = ext4_inode_blocks_set(raw_inode, ei);
4238
4239	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4240	i_uid = i_uid_read(inode);
4241	i_gid = i_gid_read(inode);
4242	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4243	if (!(test_opt(inode->i_sb, NO_UID32))) {
4244		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4245		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4246		/*
4247		 * Fix up interoperability with old kernels. Otherwise,
4248		 * old inodes get re-used with the upper 16 bits of the
4249		 * uid/gid intact.
4250		 */
4251		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4252			raw_inode->i_uid_high = 0;
4253			raw_inode->i_gid_high = 0;
4254		} else {
4255			raw_inode->i_uid_high =
4256				cpu_to_le16(high_16_bits(i_uid));
4257			raw_inode->i_gid_high =
4258				cpu_to_le16(high_16_bits(i_gid));
4259		}
4260	} else {
4261		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4262		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4263		raw_inode->i_uid_high = 0;
4264		raw_inode->i_gid_high = 0;
4265	}
4266	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4267
4268	EXT4_INODE_SET_CTIME(inode, raw_inode);
4269	EXT4_INODE_SET_MTIME(inode, raw_inode);
4270	EXT4_INODE_SET_ATIME(inode, raw_inode);
4271	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4272
4273	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4274	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4275	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4276		raw_inode->i_file_acl_high =
4277			cpu_to_le16(ei->i_file_acl >> 32);
4278	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4279	ext4_isize_set(raw_inode, ei->i_disksize);
4280
4281	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4282	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4283		if (old_valid_dev(inode->i_rdev)) {
4284			raw_inode->i_block[0] =
4285				cpu_to_le32(old_encode_dev(inode->i_rdev));
4286			raw_inode->i_block[1] = 0;
4287		} else {
4288			raw_inode->i_block[0] = 0;
4289			raw_inode->i_block[1] =
4290				cpu_to_le32(new_encode_dev(inode->i_rdev));
4291			raw_inode->i_block[2] = 0;
4292		}
4293	} else if (!ext4_has_inline_data(inode)) {
4294		for (block = 0; block < EXT4_N_BLOCKS; block++)
4295			raw_inode->i_block[block] = ei->i_data[block];
4296	}
4297
4298	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4299		u64 ivers = ext4_inode_peek_iversion(inode);
4300
4301		raw_inode->i_disk_version = cpu_to_le32(ivers);
4302		if (ei->i_extra_isize) {
4303			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4304				raw_inode->i_version_hi =
4305					cpu_to_le32(ivers >> 32);
4306			raw_inode->i_extra_isize =
4307				cpu_to_le16(ei->i_extra_isize);
4308		}
4309	}
4310
4311	if (i_projid != EXT4_DEF_PROJID &&
4312	    !ext4_has_feature_project(inode->i_sb))
4313		err = err ?: -EFSCORRUPTED;
4314
4315	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4316	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4317		raw_inode->i_projid = cpu_to_le32(i_projid);
4318
4319	ext4_inode_csum_set(inode, raw_inode, ei);
4320	return err;
4321}
4322
4323/*
4324 * ext4_get_inode_loc returns with an extra refcount against the inode's
4325 * underlying buffer_head on success. If we pass 'inode' and it does not
4326 * have in-inode xattr, we have all inode data in memory that is needed
4327 * to recreate the on-disk version of this inode.
4328 */
4329static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4330				struct inode *inode, struct ext4_iloc *iloc,
4331				ext4_fsblk_t *ret_block)
4332{
4333	struct ext4_group_desc	*gdp;
4334	struct buffer_head	*bh;
4335	ext4_fsblk_t		block;
4336	struct blk_plug		plug;
4337	int			inodes_per_block, inode_offset;
4338
4339	iloc->bh = NULL;
4340	if (ino < EXT4_ROOT_INO ||
4341	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4342		return -EFSCORRUPTED;
4343
4344	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4345	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4346	if (!gdp)
4347		return -EIO;
4348
4349	/*
4350	 * Figure out the offset within the block group inode table
4351	 */
4352	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4353	inode_offset = ((ino - 1) %
4354			EXT4_INODES_PER_GROUP(sb));
4355	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4356
4357	block = ext4_inode_table(sb, gdp);
4358	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4359	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4360		ext4_error(sb, "Invalid inode table block %llu in "
4361			   "block_group %u", block, iloc->block_group);
4362		return -EFSCORRUPTED;
4363	}
4364	block += (inode_offset / inodes_per_block);
4365
4366	bh = sb_getblk(sb, block);
4367	if (unlikely(!bh))
4368		return -ENOMEM;
4369	if (ext4_buffer_uptodate(bh))
4370		goto has_buffer;
4371
4372	lock_buffer(bh);
4373	if (ext4_buffer_uptodate(bh)) {
4374		/* Someone brought it uptodate while we waited */
4375		unlock_buffer(bh);
4376		goto has_buffer;
4377	}
4378
4379	/*
4380	 * If we have all information of the inode in memory and this
4381	 * is the only valid inode in the block, we need not read the
4382	 * block.
4383	 */
4384	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4385		struct buffer_head *bitmap_bh;
4386		int i, start;
4387
4388		start = inode_offset & ~(inodes_per_block - 1);
4389
4390		/* Is the inode bitmap in cache? */
4391		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4392		if (unlikely(!bitmap_bh))
4393			goto make_io;
4394
4395		/*
4396		 * If the inode bitmap isn't in cache then the
4397		 * optimisation may end up performing two reads instead
4398		 * of one, so skip it.
4399		 */
4400		if (!buffer_uptodate(bitmap_bh)) {
4401			brelse(bitmap_bh);
4402			goto make_io;
4403		}
4404		for (i = start; i < start + inodes_per_block; i++) {
4405			if (i == inode_offset)
4406				continue;
4407			if (ext4_test_bit(i, bitmap_bh->b_data))
4408				break;
4409		}
4410		brelse(bitmap_bh);
4411		if (i == start + inodes_per_block) {
4412			struct ext4_inode *raw_inode =
4413				(struct ext4_inode *) (bh->b_data + iloc->offset);
4414
4415			/* all other inodes are free, so skip I/O */
4416			memset(bh->b_data, 0, bh->b_size);
4417			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4418				ext4_fill_raw_inode(inode, raw_inode);
4419			set_buffer_uptodate(bh);
4420			unlock_buffer(bh);
4421			goto has_buffer;
4422		}
4423	}
4424
4425make_io:
4426	/*
4427	 * If we need to do any I/O, try to pre-readahead extra
4428	 * blocks from the inode table.
4429	 */
4430	blk_start_plug(&plug);
4431	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4432		ext4_fsblk_t b, end, table;
4433		unsigned num;
4434		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4435
4436		table = ext4_inode_table(sb, gdp);
4437		/* s_inode_readahead_blks is always a power of 2 */
4438		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4439		if (table > b)
4440			b = table;
4441		end = b + ra_blks;
4442		num = EXT4_INODES_PER_GROUP(sb);
4443		if (ext4_has_group_desc_csum(sb))
4444			num -= ext4_itable_unused_count(sb, gdp);
4445		table += num / inodes_per_block;
4446		if (end > table)
4447			end = table;
4448		while (b <= end)
4449			ext4_sb_breadahead_unmovable(sb, b++);
4450	}
4451
4452	/*
4453	 * There are other valid inodes in the buffer, this inode
4454	 * has in-inode xattrs, or we don't have this inode in memory.
4455	 * Read the block from disk.
4456	 */
4457	trace_ext4_load_inode(sb, ino);
4458	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
 
4459	blk_finish_plug(&plug);
4460	wait_on_buffer(bh);
4461	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4462	if (!buffer_uptodate(bh)) {
4463		if (ret_block)
4464			*ret_block = block;
4465		brelse(bh);
4466		return -EIO;
4467	}
4468has_buffer:
4469	iloc->bh = bh;
4470	return 0;
4471}
4472
4473static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4474					struct ext4_iloc *iloc)
4475{
4476	ext4_fsblk_t err_blk = 0;
4477	int ret;
4478
4479	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4480					&err_blk);
4481
4482	if (ret == -EIO)
4483		ext4_error_inode_block(inode, err_blk, EIO,
4484					"unable to read itable block");
4485
4486	return ret;
4487}
4488
4489int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4490{
4491	ext4_fsblk_t err_blk = 0;
4492	int ret;
4493
4494	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4495					&err_blk);
4496
4497	if (ret == -EIO)
4498		ext4_error_inode_block(inode, err_blk, EIO,
4499					"unable to read itable block");
4500
4501	return ret;
4502}
4503
4504
4505int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4506			  struct ext4_iloc *iloc)
4507{
4508	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4509}
4510
4511static bool ext4_should_enable_dax(struct inode *inode)
4512{
4513	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4514
4515	if (test_opt2(inode->i_sb, DAX_NEVER))
4516		return false;
4517	if (!S_ISREG(inode->i_mode))
4518		return false;
4519	if (ext4_should_journal_data(inode))
4520		return false;
4521	if (ext4_has_inline_data(inode))
4522		return false;
4523	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4524		return false;
4525	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4526		return false;
4527	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4528		return false;
4529	if (test_opt(inode->i_sb, DAX_ALWAYS))
4530		return true;
4531
4532	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4533}
4534
4535void ext4_set_inode_flags(struct inode *inode, bool init)
4536{
4537	unsigned int flags = EXT4_I(inode)->i_flags;
4538	unsigned int new_fl = 0;
4539
4540	WARN_ON_ONCE(IS_DAX(inode) && init);
4541
4542	if (flags & EXT4_SYNC_FL)
4543		new_fl |= S_SYNC;
4544	if (flags & EXT4_APPEND_FL)
4545		new_fl |= S_APPEND;
4546	if (flags & EXT4_IMMUTABLE_FL)
4547		new_fl |= S_IMMUTABLE;
4548	if (flags & EXT4_NOATIME_FL)
4549		new_fl |= S_NOATIME;
4550	if (flags & EXT4_DIRSYNC_FL)
4551		new_fl |= S_DIRSYNC;
4552
4553	/* Because of the way inode_set_flags() works we must preserve S_DAX
4554	 * here if already set. */
4555	new_fl |= (inode->i_flags & S_DAX);
4556	if (init && ext4_should_enable_dax(inode))
4557		new_fl |= S_DAX;
4558
4559	if (flags & EXT4_ENCRYPT_FL)
4560		new_fl |= S_ENCRYPTED;
4561	if (flags & EXT4_CASEFOLD_FL)
4562		new_fl |= S_CASEFOLD;
4563	if (flags & EXT4_VERITY_FL)
4564		new_fl |= S_VERITY;
4565	inode_set_flags(inode, new_fl,
4566			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4567			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4568}
4569
4570static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4571				  struct ext4_inode_info *ei)
4572{
4573	blkcnt_t i_blocks ;
4574	struct inode *inode = &(ei->vfs_inode);
4575	struct super_block *sb = inode->i_sb;
4576
4577	if (ext4_has_feature_huge_file(sb)) {
4578		/* we are using combined 48 bit field */
4579		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4580					le32_to_cpu(raw_inode->i_blocks_lo);
4581		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4582			/* i_blocks represent file system block size */
4583			return i_blocks  << (inode->i_blkbits - 9);
4584		} else {
4585			return i_blocks;
4586		}
4587	} else {
4588		return le32_to_cpu(raw_inode->i_blocks_lo);
4589	}
4590}
4591
4592static inline int ext4_iget_extra_inode(struct inode *inode,
4593					 struct ext4_inode *raw_inode,
4594					 struct ext4_inode_info *ei)
4595{
4596	__le32 *magic = (void *)raw_inode +
4597			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4598
4599	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4600	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4601		int err;
4602
4603		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4604		err = ext4_find_inline_data_nolock(inode);
4605		if (!err && ext4_has_inline_data(inode))
4606			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4607		return err;
4608	} else
4609		EXT4_I(inode)->i_inline_off = 0;
4610	return 0;
4611}
4612
4613int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4614{
4615	if (!ext4_has_feature_project(inode->i_sb))
4616		return -EOPNOTSUPP;
4617	*projid = EXT4_I(inode)->i_projid;
4618	return 0;
4619}
4620
4621/*
4622 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4623 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4624 * set.
4625 */
4626static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4627{
4628	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4629		inode_set_iversion_raw(inode, val);
4630	else
4631		inode_set_iversion_queried(inode, val);
4632}
4633
4634static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4635
4636{
4637	if (flags & EXT4_IGET_EA_INODE) {
4638		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4639			return "missing EA_INODE flag";
4640		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4641		    EXT4_I(inode)->i_file_acl)
4642			return "ea_inode with extended attributes";
4643	} else {
4644		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4645			return "unexpected EA_INODE flag";
4646	}
4647	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4648		return "unexpected bad inode w/o EXT4_IGET_BAD";
4649	return NULL;
4650}
4651
4652struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4653			  ext4_iget_flags flags, const char *function,
4654			  unsigned int line)
4655{
4656	struct ext4_iloc iloc;
4657	struct ext4_inode *raw_inode;
4658	struct ext4_inode_info *ei;
4659	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4660	struct inode *inode;
4661	const char *err_str;
4662	journal_t *journal = EXT4_SB(sb)->s_journal;
4663	long ret;
4664	loff_t size;
4665	int block;
4666	uid_t i_uid;
4667	gid_t i_gid;
4668	projid_t i_projid;
4669
4670	if ((!(flags & EXT4_IGET_SPECIAL) &&
4671	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4672	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4673	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4674	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4675	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4676	    (ino < EXT4_ROOT_INO) ||
4677	    (ino > le32_to_cpu(es->s_inodes_count))) {
4678		if (flags & EXT4_IGET_HANDLE)
4679			return ERR_PTR(-ESTALE);
4680		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4681			     "inode #%lu: comm %s: iget: illegal inode #",
4682			     ino, current->comm);
4683		return ERR_PTR(-EFSCORRUPTED);
4684	}
4685
4686	inode = iget_locked(sb, ino);
4687	if (!inode)
4688		return ERR_PTR(-ENOMEM);
4689	if (!(inode->i_state & I_NEW)) {
4690		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4691			ext4_error_inode(inode, function, line, 0, err_str);
4692			iput(inode);
4693			return ERR_PTR(-EFSCORRUPTED);
4694		}
4695		return inode;
4696	}
4697
4698	ei = EXT4_I(inode);
4699	iloc.bh = NULL;
4700
4701	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4702	if (ret < 0)
4703		goto bad_inode;
4704	raw_inode = ext4_raw_inode(&iloc);
4705
4706	if ((flags & EXT4_IGET_HANDLE) &&
4707	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4708		ret = -ESTALE;
4709		goto bad_inode;
4710	}
4711
4712	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4713		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4714		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4715			EXT4_INODE_SIZE(inode->i_sb) ||
4716		    (ei->i_extra_isize & 3)) {
4717			ext4_error_inode(inode, function, line, 0,
4718					 "iget: bad extra_isize %u "
4719					 "(inode size %u)",
4720					 ei->i_extra_isize,
4721					 EXT4_INODE_SIZE(inode->i_sb));
4722			ret = -EFSCORRUPTED;
4723			goto bad_inode;
4724		}
4725	} else
4726		ei->i_extra_isize = 0;
4727
4728	/* Precompute checksum seed for inode metadata */
4729	if (ext4_has_metadata_csum(sb)) {
4730		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4731		__u32 csum;
4732		__le32 inum = cpu_to_le32(inode->i_ino);
4733		__le32 gen = raw_inode->i_generation;
4734		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4735				   sizeof(inum));
4736		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4737					      sizeof(gen));
4738	}
4739
4740	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4741	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4742	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4743		ext4_error_inode_err(inode, function, line, 0,
4744				EFSBADCRC, "iget: checksum invalid");
4745		ret = -EFSBADCRC;
4746		goto bad_inode;
4747	}
4748
4749	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4750	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4751	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4752	if (ext4_has_feature_project(sb) &&
4753	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4754	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4755		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4756	else
4757		i_projid = EXT4_DEF_PROJID;
4758
4759	if (!(test_opt(inode->i_sb, NO_UID32))) {
4760		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4761		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4762	}
4763	i_uid_write(inode, i_uid);
4764	i_gid_write(inode, i_gid);
4765	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4766	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4767
4768	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4769	ei->i_inline_off = 0;
4770	ei->i_dir_start_lookup = 0;
4771	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4772	/* We now have enough fields to check if the inode was active or not.
4773	 * This is needed because nfsd might try to access dead inodes
4774	 * the test is that same one that e2fsck uses
4775	 * NeilBrown 1999oct15
4776	 */
4777	if (inode->i_nlink == 0) {
4778		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4779		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4780		    ino != EXT4_BOOT_LOADER_INO) {
4781			/* this inode is deleted or unallocated */
4782			if (flags & EXT4_IGET_SPECIAL) {
4783				ext4_error_inode(inode, function, line, 0,
4784						 "iget: special inode unallocated");
4785				ret = -EFSCORRUPTED;
4786			} else
4787				ret = -ESTALE;
4788			goto bad_inode;
4789		}
4790		/* The only unlinked inodes we let through here have
4791		 * valid i_mode and are being read by the orphan
4792		 * recovery code: that's fine, we're about to complete
4793		 * the process of deleting those.
4794		 * OR it is the EXT4_BOOT_LOADER_INO which is
4795		 * not initialized on a new filesystem. */
4796	}
4797	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4798	ext4_set_inode_flags(inode, true);
4799	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4800	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4801	if (ext4_has_feature_64bit(sb))
4802		ei->i_file_acl |=
4803			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4804	inode->i_size = ext4_isize(sb, raw_inode);
4805	if ((size = i_size_read(inode)) < 0) {
4806		ext4_error_inode(inode, function, line, 0,
4807				 "iget: bad i_size value: %lld", size);
4808		ret = -EFSCORRUPTED;
4809		goto bad_inode;
4810	}
4811	/*
4812	 * If dir_index is not enabled but there's dir with INDEX flag set,
4813	 * we'd normally treat htree data as empty space. But with metadata
4814	 * checksumming that corrupts checksums so forbid that.
4815	 */
4816	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4817	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4818		ext4_error_inode(inode, function, line, 0,
4819			 "iget: Dir with htree data on filesystem without dir_index feature.");
4820		ret = -EFSCORRUPTED;
4821		goto bad_inode;
4822	}
4823	ei->i_disksize = inode->i_size;
4824#ifdef CONFIG_QUOTA
4825	ei->i_reserved_quota = 0;
4826#endif
4827	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4828	ei->i_block_group = iloc.block_group;
4829	ei->i_last_alloc_group = ~0;
4830	/*
4831	 * NOTE! The in-memory inode i_data array is in little-endian order
4832	 * even on big-endian machines: we do NOT byteswap the block numbers!
4833	 */
4834	for (block = 0; block < EXT4_N_BLOCKS; block++)
4835		ei->i_data[block] = raw_inode->i_block[block];
4836	INIT_LIST_HEAD(&ei->i_orphan);
4837	ext4_fc_init_inode(&ei->vfs_inode);
4838
4839	/*
4840	 * Set transaction id's of transactions that have to be committed
4841	 * to finish f[data]sync. We set them to currently running transaction
4842	 * as we cannot be sure that the inode or some of its metadata isn't
4843	 * part of the transaction - the inode could have been reclaimed and
4844	 * now it is reread from disk.
4845	 */
4846	if (journal) {
4847		transaction_t *transaction;
4848		tid_t tid;
4849
4850		read_lock(&journal->j_state_lock);
4851		if (journal->j_running_transaction)
4852			transaction = journal->j_running_transaction;
4853		else
4854			transaction = journal->j_committing_transaction;
4855		if (transaction)
4856			tid = transaction->t_tid;
4857		else
4858			tid = journal->j_commit_sequence;
4859		read_unlock(&journal->j_state_lock);
4860		ei->i_sync_tid = tid;
4861		ei->i_datasync_tid = tid;
4862	}
4863
4864	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4865		if (ei->i_extra_isize == 0) {
4866			/* The extra space is currently unused. Use it. */
4867			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4868			ei->i_extra_isize = sizeof(struct ext4_inode) -
4869					    EXT4_GOOD_OLD_INODE_SIZE;
4870		} else {
4871			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4872			if (ret)
4873				goto bad_inode;
4874		}
4875	}
4876
4877	EXT4_INODE_GET_CTIME(inode, raw_inode);
4878	EXT4_INODE_GET_ATIME(inode, raw_inode);
4879	EXT4_INODE_GET_MTIME(inode, raw_inode);
4880	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4881
4882	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4883		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4884
4885		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4886			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4887				ivers |=
4888		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4889		}
4890		ext4_inode_set_iversion_queried(inode, ivers);
4891	}
4892
4893	ret = 0;
4894	if (ei->i_file_acl &&
4895	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4896		ext4_error_inode(inode, function, line, 0,
4897				 "iget: bad extended attribute block %llu",
4898				 ei->i_file_acl);
4899		ret = -EFSCORRUPTED;
4900		goto bad_inode;
4901	} else if (!ext4_has_inline_data(inode)) {
4902		/* validate the block references in the inode */
4903		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4904			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4905			(S_ISLNK(inode->i_mode) &&
4906			!ext4_inode_is_fast_symlink(inode)))) {
4907			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4908				ret = ext4_ext_check_inode(inode);
4909			else
4910				ret = ext4_ind_check_inode(inode);
4911		}
4912	}
4913	if (ret)
4914		goto bad_inode;
4915
4916	if (S_ISREG(inode->i_mode)) {
4917		inode->i_op = &ext4_file_inode_operations;
4918		inode->i_fop = &ext4_file_operations;
4919		ext4_set_aops(inode);
4920	} else if (S_ISDIR(inode->i_mode)) {
4921		inode->i_op = &ext4_dir_inode_operations;
4922		inode->i_fop = &ext4_dir_operations;
4923	} else if (S_ISLNK(inode->i_mode)) {
4924		/* VFS does not allow setting these so must be corruption */
4925		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4926			ext4_error_inode(inode, function, line, 0,
4927					 "iget: immutable or append flags "
4928					 "not allowed on symlinks");
4929			ret = -EFSCORRUPTED;
4930			goto bad_inode;
4931		}
4932		if (IS_ENCRYPTED(inode)) {
4933			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4934		} else if (ext4_inode_is_fast_symlink(inode)) {
4935			inode->i_link = (char *)ei->i_data;
4936			inode->i_op = &ext4_fast_symlink_inode_operations;
4937			nd_terminate_link(ei->i_data, inode->i_size,
4938				sizeof(ei->i_data) - 1);
4939		} else {
4940			inode->i_op = &ext4_symlink_inode_operations;
4941		}
4942	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4943	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4944		inode->i_op = &ext4_special_inode_operations;
4945		if (raw_inode->i_block[0])
4946			init_special_inode(inode, inode->i_mode,
4947			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4948		else
4949			init_special_inode(inode, inode->i_mode,
4950			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4951	} else if (ino == EXT4_BOOT_LOADER_INO) {
4952		make_bad_inode(inode);
4953	} else {
4954		ret = -EFSCORRUPTED;
4955		ext4_error_inode(inode, function, line, 0,
4956				 "iget: bogus i_mode (%o)", inode->i_mode);
4957		goto bad_inode;
4958	}
4959	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4960		ext4_error_inode(inode, function, line, 0,
4961				 "casefold flag without casefold feature");
4962		ret = -EFSCORRUPTED;
4963		goto bad_inode;
4964	}
4965	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4966		ext4_error_inode(inode, function, line, 0, err_str);
4967		ret = -EFSCORRUPTED;
4968		goto bad_inode;
4969	}
4970
4971	brelse(iloc.bh);
4972	unlock_new_inode(inode);
4973	return inode;
4974
4975bad_inode:
4976	brelse(iloc.bh);
4977	iget_failed(inode);
4978	return ERR_PTR(ret);
4979}
4980
4981static void __ext4_update_other_inode_time(struct super_block *sb,
4982					   unsigned long orig_ino,
4983					   unsigned long ino,
4984					   struct ext4_inode *raw_inode)
4985{
4986	struct inode *inode;
4987
4988	inode = find_inode_by_ino_rcu(sb, ino);
4989	if (!inode)
4990		return;
4991
4992	if (!inode_is_dirtytime_only(inode))
4993		return;
4994
4995	spin_lock(&inode->i_lock);
4996	if (inode_is_dirtytime_only(inode)) {
4997		struct ext4_inode_info	*ei = EXT4_I(inode);
4998
4999		inode->i_state &= ~I_DIRTY_TIME;
5000		spin_unlock(&inode->i_lock);
5001
5002		spin_lock(&ei->i_raw_lock);
5003		EXT4_INODE_SET_CTIME(inode, raw_inode);
5004		EXT4_INODE_SET_MTIME(inode, raw_inode);
5005		EXT4_INODE_SET_ATIME(inode, raw_inode);
5006		ext4_inode_csum_set(inode, raw_inode, ei);
5007		spin_unlock(&ei->i_raw_lock);
5008		trace_ext4_other_inode_update_time(inode, orig_ino);
5009		return;
5010	}
5011	spin_unlock(&inode->i_lock);
5012}
5013
5014/*
5015 * Opportunistically update the other time fields for other inodes in
5016 * the same inode table block.
5017 */
5018static void ext4_update_other_inodes_time(struct super_block *sb,
5019					  unsigned long orig_ino, char *buf)
5020{
5021	unsigned long ino;
5022	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5023	int inode_size = EXT4_INODE_SIZE(sb);
5024
5025	/*
5026	 * Calculate the first inode in the inode table block.  Inode
5027	 * numbers are one-based.  That is, the first inode in a block
5028	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5029	 */
5030	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5031	rcu_read_lock();
5032	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5033		if (ino == orig_ino)
5034			continue;
5035		__ext4_update_other_inode_time(sb, orig_ino, ino,
5036					       (struct ext4_inode *)buf);
5037	}
5038	rcu_read_unlock();
5039}
5040
5041/*
5042 * Post the struct inode info into an on-disk inode location in the
5043 * buffer-cache.  This gobbles the caller's reference to the
5044 * buffer_head in the inode location struct.
5045 *
5046 * The caller must have write access to iloc->bh.
5047 */
5048static int ext4_do_update_inode(handle_t *handle,
5049				struct inode *inode,
5050				struct ext4_iloc *iloc)
5051{
5052	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5053	struct ext4_inode_info *ei = EXT4_I(inode);
5054	struct buffer_head *bh = iloc->bh;
5055	struct super_block *sb = inode->i_sb;
5056	int err;
5057	int need_datasync = 0, set_large_file = 0;
5058
5059	spin_lock(&ei->i_raw_lock);
5060
5061	/*
5062	 * For fields not tracked in the in-memory inode, initialise them
5063	 * to zero for new inodes.
5064	 */
5065	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5066		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5067
5068	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5069		need_datasync = 1;
5070	if (ei->i_disksize > 0x7fffffffULL) {
5071		if (!ext4_has_feature_large_file(sb) ||
5072		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5073			set_large_file = 1;
5074	}
5075
5076	err = ext4_fill_raw_inode(inode, raw_inode);
5077	spin_unlock(&ei->i_raw_lock);
5078	if (err) {
5079		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5080		goto out_brelse;
5081	}
5082
5083	if (inode->i_sb->s_flags & SB_LAZYTIME)
5084		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5085					      bh->b_data);
5086
5087	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5088	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5089	if (err)
5090		goto out_error;
5091	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5092	if (set_large_file) {
5093		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5094		err = ext4_journal_get_write_access(handle, sb,
5095						    EXT4_SB(sb)->s_sbh,
5096						    EXT4_JTR_NONE);
5097		if (err)
5098			goto out_error;
5099		lock_buffer(EXT4_SB(sb)->s_sbh);
5100		ext4_set_feature_large_file(sb);
5101		ext4_superblock_csum_set(sb);
5102		unlock_buffer(EXT4_SB(sb)->s_sbh);
5103		ext4_handle_sync(handle);
5104		err = ext4_handle_dirty_metadata(handle, NULL,
5105						 EXT4_SB(sb)->s_sbh);
5106	}
5107	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5108out_error:
5109	ext4_std_error(inode->i_sb, err);
5110out_brelse:
5111	brelse(bh);
5112	return err;
5113}
5114
5115/*
5116 * ext4_write_inode()
5117 *
5118 * We are called from a few places:
5119 *
5120 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5121 *   Here, there will be no transaction running. We wait for any running
5122 *   transaction to commit.
5123 *
5124 * - Within flush work (sys_sync(), kupdate and such).
5125 *   We wait on commit, if told to.
5126 *
5127 * - Within iput_final() -> write_inode_now()
5128 *   We wait on commit, if told to.
5129 *
5130 * In all cases it is actually safe for us to return without doing anything,
5131 * because the inode has been copied into a raw inode buffer in
5132 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5133 * writeback.
5134 *
5135 * Note that we are absolutely dependent upon all inode dirtiers doing the
5136 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5137 * which we are interested.
5138 *
5139 * It would be a bug for them to not do this.  The code:
5140 *
5141 *	mark_inode_dirty(inode)
5142 *	stuff();
5143 *	inode->i_size = expr;
5144 *
5145 * is in error because write_inode() could occur while `stuff()' is running,
5146 * and the new i_size will be lost.  Plus the inode will no longer be on the
5147 * superblock's dirty inode list.
5148 */
5149int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5150{
5151	int err;
5152
5153	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5154		return 0;
5155
5156	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5157		return -EIO;
5158
5159	if (EXT4_SB(inode->i_sb)->s_journal) {
5160		if (ext4_journal_current_handle()) {
5161			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5162			dump_stack();
5163			return -EIO;
5164		}
5165
5166		/*
5167		 * No need to force transaction in WB_SYNC_NONE mode. Also
5168		 * ext4_sync_fs() will force the commit after everything is
5169		 * written.
5170		 */
5171		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5172			return 0;
5173
5174		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5175						EXT4_I(inode)->i_sync_tid);
5176	} else {
5177		struct ext4_iloc iloc;
5178
5179		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5180		if (err)
5181			return err;
5182		/*
5183		 * sync(2) will flush the whole buffer cache. No need to do
5184		 * it here separately for each inode.
5185		 */
5186		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5187			sync_dirty_buffer(iloc.bh);
5188		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5189			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5190					       "IO error syncing inode");
5191			err = -EIO;
5192		}
5193		brelse(iloc.bh);
5194	}
5195	return err;
5196}
5197
5198/*
5199 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5200 * buffers that are attached to a folio straddling i_size and are undergoing
5201 * commit. In that case we have to wait for commit to finish and try again.
5202 */
5203static void ext4_wait_for_tail_page_commit(struct inode *inode)
5204{
5205	unsigned offset;
5206	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5207	tid_t commit_tid = 0;
5208	int ret;
 
5209
5210	offset = inode->i_size & (PAGE_SIZE - 1);
5211	/*
5212	 * If the folio is fully truncated, we don't need to wait for any commit
5213	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5214	 * strip all buffers from the folio but keep the folio dirty which can then
5215	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5216	 * buffers). Also we don't need to wait for any commit if all buffers in
5217	 * the folio remain valid. This is most beneficial for the common case of
5218	 * blocksize == PAGESIZE.
5219	 */
5220	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5221		return;
5222	while (1) {
5223		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5224				      inode->i_size >> PAGE_SHIFT);
5225		if (IS_ERR(folio))
5226			return;
5227		ret = __ext4_journalled_invalidate_folio(folio, offset,
5228						folio_size(folio) - offset);
5229		folio_unlock(folio);
5230		folio_put(folio);
5231		if (ret != -EBUSY)
5232			return;
5233		commit_tid = 0;
5234		read_lock(&journal->j_state_lock);
5235		if (journal->j_committing_transaction)
5236			commit_tid = journal->j_committing_transaction->t_tid;
 
 
5237		read_unlock(&journal->j_state_lock);
5238		if (commit_tid)
5239			jbd2_log_wait_commit(journal, commit_tid);
5240	}
5241}
5242
5243/*
5244 * ext4_setattr()
5245 *
5246 * Called from notify_change.
5247 *
5248 * We want to trap VFS attempts to truncate the file as soon as
5249 * possible.  In particular, we want to make sure that when the VFS
5250 * shrinks i_size, we put the inode on the orphan list and modify
5251 * i_disksize immediately, so that during the subsequent flushing of
5252 * dirty pages and freeing of disk blocks, we can guarantee that any
5253 * commit will leave the blocks being flushed in an unused state on
5254 * disk.  (On recovery, the inode will get truncated and the blocks will
5255 * be freed, so we have a strong guarantee that no future commit will
5256 * leave these blocks visible to the user.)
5257 *
5258 * Another thing we have to assure is that if we are in ordered mode
5259 * and inode is still attached to the committing transaction, we must
5260 * we start writeout of all the dirty pages which are being truncated.
5261 * This way we are sure that all the data written in the previous
5262 * transaction are already on disk (truncate waits for pages under
5263 * writeback).
5264 *
5265 * Called with inode->i_rwsem down.
5266 */
5267int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5268		 struct iattr *attr)
5269{
5270	struct inode *inode = d_inode(dentry);
5271	int error, rc = 0;
5272	int orphan = 0;
5273	const unsigned int ia_valid = attr->ia_valid;
5274	bool inc_ivers = true;
5275
5276	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5277		return -EIO;
5278
5279	if (unlikely(IS_IMMUTABLE(inode)))
5280		return -EPERM;
5281
5282	if (unlikely(IS_APPEND(inode) &&
5283		     (ia_valid & (ATTR_MODE | ATTR_UID |
5284				  ATTR_GID | ATTR_TIMES_SET))))
5285		return -EPERM;
5286
5287	error = setattr_prepare(idmap, dentry, attr);
5288	if (error)
5289		return error;
5290
5291	error = fscrypt_prepare_setattr(dentry, attr);
5292	if (error)
5293		return error;
5294
5295	error = fsverity_prepare_setattr(dentry, attr);
5296	if (error)
5297		return error;
5298
5299	if (is_quota_modification(idmap, inode, attr)) {
5300		error = dquot_initialize(inode);
5301		if (error)
5302			return error;
5303	}
5304
5305	if (i_uid_needs_update(idmap, attr, inode) ||
5306	    i_gid_needs_update(idmap, attr, inode)) {
5307		handle_t *handle;
5308
5309		/* (user+group)*(old+new) structure, inode write (sb,
5310		 * inode block, ? - but truncate inode update has it) */
5311		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5312			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5313			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5314		if (IS_ERR(handle)) {
5315			error = PTR_ERR(handle);
5316			goto err_out;
5317		}
5318
5319		/* dquot_transfer() calls back ext4_get_inode_usage() which
5320		 * counts xattr inode references.
5321		 */
5322		down_read(&EXT4_I(inode)->xattr_sem);
5323		error = dquot_transfer(idmap, inode, attr);
5324		up_read(&EXT4_I(inode)->xattr_sem);
5325
5326		if (error) {
5327			ext4_journal_stop(handle);
5328			return error;
5329		}
5330		/* Update corresponding info in inode so that everything is in
5331		 * one transaction */
5332		i_uid_update(idmap, attr, inode);
5333		i_gid_update(idmap, attr, inode);
5334		error = ext4_mark_inode_dirty(handle, inode);
5335		ext4_journal_stop(handle);
5336		if (unlikely(error)) {
5337			return error;
5338		}
5339	}
5340
5341	if (attr->ia_valid & ATTR_SIZE) {
5342		handle_t *handle;
5343		loff_t oldsize = inode->i_size;
5344		loff_t old_disksize;
5345		int shrink = (attr->ia_size < inode->i_size);
5346
5347		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5348			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5349
5350			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5351				return -EFBIG;
5352			}
5353		}
5354		if (!S_ISREG(inode->i_mode)) {
5355			return -EINVAL;
5356		}
5357
5358		if (attr->ia_size == inode->i_size)
5359			inc_ivers = false;
5360
5361		if (shrink) {
5362			if (ext4_should_order_data(inode)) {
5363				error = ext4_begin_ordered_truncate(inode,
5364							    attr->ia_size);
5365				if (error)
5366					goto err_out;
5367			}
5368			/*
5369			 * Blocks are going to be removed from the inode. Wait
5370			 * for dio in flight.
5371			 */
5372			inode_dio_wait(inode);
5373		}
5374
5375		filemap_invalidate_lock(inode->i_mapping);
5376
5377		rc = ext4_break_layouts(inode);
5378		if (rc) {
5379			filemap_invalidate_unlock(inode->i_mapping);
5380			goto err_out;
5381		}
5382
5383		if (attr->ia_size != inode->i_size) {
 
 
 
 
 
 
 
 
5384			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5385			if (IS_ERR(handle)) {
5386				error = PTR_ERR(handle);
5387				goto out_mmap_sem;
5388			}
5389			if (ext4_handle_valid(handle) && shrink) {
5390				error = ext4_orphan_add(handle, inode);
5391				orphan = 1;
5392			}
5393			/*
5394			 * Update c/mtime on truncate up, ext4_truncate() will
5395			 * update c/mtime in shrink case below
 
5396			 */
5397			if (!shrink)
5398				inode_set_mtime_to_ts(inode,
5399						      inode_set_ctime_current(inode));
 
 
 
 
5400
5401			if (shrink)
5402				ext4_fc_track_range(handle, inode,
5403					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5404					inode->i_sb->s_blocksize_bits,
5405					EXT_MAX_BLOCKS - 1);
5406			else
5407				ext4_fc_track_range(
5408					handle, inode,
5409					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5410					inode->i_sb->s_blocksize_bits,
5411					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5412					inode->i_sb->s_blocksize_bits);
5413
5414			down_write(&EXT4_I(inode)->i_data_sem);
5415			old_disksize = EXT4_I(inode)->i_disksize;
5416			EXT4_I(inode)->i_disksize = attr->ia_size;
5417			rc = ext4_mark_inode_dirty(handle, inode);
5418			if (!error)
5419				error = rc;
5420			/*
5421			 * We have to update i_size under i_data_sem together
5422			 * with i_disksize to avoid races with writeback code
5423			 * running ext4_wb_update_i_disksize().
5424			 */
5425			if (!error)
5426				i_size_write(inode, attr->ia_size);
5427			else
5428				EXT4_I(inode)->i_disksize = old_disksize;
5429			up_write(&EXT4_I(inode)->i_data_sem);
5430			ext4_journal_stop(handle);
5431			if (error)
5432				goto out_mmap_sem;
5433			if (!shrink) {
5434				pagecache_isize_extended(inode, oldsize,
5435							 inode->i_size);
5436			} else if (ext4_should_journal_data(inode)) {
5437				ext4_wait_for_tail_page_commit(inode);
5438			}
5439		}
5440
5441		/*
5442		 * Truncate pagecache after we've waited for commit
5443		 * in data=journal mode to make pages freeable.
5444		 */
5445		truncate_pagecache(inode, inode->i_size);
5446		/*
5447		 * Call ext4_truncate() even if i_size didn't change to
5448		 * truncate possible preallocated blocks.
5449		 */
5450		if (attr->ia_size <= oldsize) {
5451			rc = ext4_truncate(inode);
5452			if (rc)
5453				error = rc;
5454		}
5455out_mmap_sem:
5456		filemap_invalidate_unlock(inode->i_mapping);
5457	}
5458
5459	if (!error) {
5460		if (inc_ivers)
5461			inode_inc_iversion(inode);
5462		setattr_copy(idmap, inode, attr);
5463		mark_inode_dirty(inode);
5464	}
5465
5466	/*
5467	 * If the call to ext4_truncate failed to get a transaction handle at
5468	 * all, we need to clean up the in-core orphan list manually.
5469	 */
5470	if (orphan && inode->i_nlink)
5471		ext4_orphan_del(NULL, inode);
5472
5473	if (!error && (ia_valid & ATTR_MODE))
5474		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5475
5476err_out:
5477	if  (error)
5478		ext4_std_error(inode->i_sb, error);
5479	if (!error)
5480		error = rc;
5481	return error;
5482}
5483
5484u32 ext4_dio_alignment(struct inode *inode)
5485{
5486	if (fsverity_active(inode))
5487		return 0;
5488	if (ext4_should_journal_data(inode))
5489		return 0;
5490	if (ext4_has_inline_data(inode))
5491		return 0;
5492	if (IS_ENCRYPTED(inode)) {
5493		if (!fscrypt_dio_supported(inode))
5494			return 0;
5495		return i_blocksize(inode);
5496	}
5497	return 1; /* use the iomap defaults */
5498}
5499
5500int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5501		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5502{
5503	struct inode *inode = d_inode(path->dentry);
5504	struct ext4_inode *raw_inode;
5505	struct ext4_inode_info *ei = EXT4_I(inode);
5506	unsigned int flags;
5507
5508	if ((request_mask & STATX_BTIME) &&
5509	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5510		stat->result_mask |= STATX_BTIME;
5511		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5512		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5513	}
5514
5515	/*
5516	 * Return the DIO alignment restrictions if requested.  We only return
5517	 * this information when requested, since on encrypted files it might
5518	 * take a fair bit of work to get if the file wasn't opened recently.
5519	 */
5520	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5521		u32 dio_align = ext4_dio_alignment(inode);
5522
5523		stat->result_mask |= STATX_DIOALIGN;
5524		if (dio_align == 1) {
5525			struct block_device *bdev = inode->i_sb->s_bdev;
5526
5527			/* iomap defaults */
5528			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5529			stat->dio_offset_align = bdev_logical_block_size(bdev);
5530		} else {
5531			stat->dio_mem_align = dio_align;
5532			stat->dio_offset_align = dio_align;
5533		}
5534	}
5535
 
 
 
 
 
 
 
 
 
 
 
 
5536	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5537	if (flags & EXT4_APPEND_FL)
5538		stat->attributes |= STATX_ATTR_APPEND;
5539	if (flags & EXT4_COMPR_FL)
5540		stat->attributes |= STATX_ATTR_COMPRESSED;
5541	if (flags & EXT4_ENCRYPT_FL)
5542		stat->attributes |= STATX_ATTR_ENCRYPTED;
5543	if (flags & EXT4_IMMUTABLE_FL)
5544		stat->attributes |= STATX_ATTR_IMMUTABLE;
5545	if (flags & EXT4_NODUMP_FL)
5546		stat->attributes |= STATX_ATTR_NODUMP;
5547	if (flags & EXT4_VERITY_FL)
5548		stat->attributes |= STATX_ATTR_VERITY;
5549
5550	stat->attributes_mask |= (STATX_ATTR_APPEND |
5551				  STATX_ATTR_COMPRESSED |
5552				  STATX_ATTR_ENCRYPTED |
5553				  STATX_ATTR_IMMUTABLE |
5554				  STATX_ATTR_NODUMP |
5555				  STATX_ATTR_VERITY);
5556
5557	generic_fillattr(idmap, request_mask, inode, stat);
5558	return 0;
5559}
5560
5561int ext4_file_getattr(struct mnt_idmap *idmap,
5562		      const struct path *path, struct kstat *stat,
5563		      u32 request_mask, unsigned int query_flags)
5564{
5565	struct inode *inode = d_inode(path->dentry);
5566	u64 delalloc_blocks;
5567
5568	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5569
5570	/*
5571	 * If there is inline data in the inode, the inode will normally not
5572	 * have data blocks allocated (it may have an external xattr block).
5573	 * Report at least one sector for such files, so tools like tar, rsync,
5574	 * others don't incorrectly think the file is completely sparse.
5575	 */
5576	if (unlikely(ext4_has_inline_data(inode)))
5577		stat->blocks += (stat->size + 511) >> 9;
5578
5579	/*
5580	 * We can't update i_blocks if the block allocation is delayed
5581	 * otherwise in the case of system crash before the real block
5582	 * allocation is done, we will have i_blocks inconsistent with
5583	 * on-disk file blocks.
5584	 * We always keep i_blocks updated together with real
5585	 * allocation. But to not confuse with user, stat
5586	 * will return the blocks that include the delayed allocation
5587	 * blocks for this file.
5588	 */
5589	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5590				   EXT4_I(inode)->i_reserved_data_blocks);
5591	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5592	return 0;
5593}
5594
5595static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5596				   int pextents)
5597{
5598	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5599		return ext4_ind_trans_blocks(inode, lblocks);
5600	return ext4_ext_index_trans_blocks(inode, pextents);
5601}
5602
5603/*
5604 * Account for index blocks, block groups bitmaps and block group
5605 * descriptor blocks if modify datablocks and index blocks
5606 * worse case, the indexs blocks spread over different block groups
5607 *
5608 * If datablocks are discontiguous, they are possible to spread over
5609 * different block groups too. If they are contiguous, with flexbg,
5610 * they could still across block group boundary.
5611 *
5612 * Also account for superblock, inode, quota and xattr blocks
5613 */
5614static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5615				  int pextents)
5616{
5617	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5618	int gdpblocks;
5619	int idxblocks;
5620	int ret;
5621
5622	/*
5623	 * How many index blocks need to touch to map @lblocks logical blocks
5624	 * to @pextents physical extents?
5625	 */
5626	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5627
5628	ret = idxblocks;
5629
5630	/*
5631	 * Now let's see how many group bitmaps and group descriptors need
5632	 * to account
5633	 */
5634	groups = idxblocks + pextents;
5635	gdpblocks = groups;
5636	if (groups > ngroups)
5637		groups = ngroups;
5638	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5639		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5640
5641	/* bitmaps and block group descriptor blocks */
5642	ret += groups + gdpblocks;
5643
5644	/* Blocks for super block, inode, quota and xattr blocks */
5645	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5646
5647	return ret;
5648}
5649
5650/*
5651 * Calculate the total number of credits to reserve to fit
5652 * the modification of a single pages into a single transaction,
5653 * which may include multiple chunks of block allocations.
5654 *
5655 * This could be called via ext4_write_begin()
5656 *
5657 * We need to consider the worse case, when
5658 * one new block per extent.
5659 */
5660int ext4_writepage_trans_blocks(struct inode *inode)
5661{
5662	int bpp = ext4_journal_blocks_per_page(inode);
5663	int ret;
5664
5665	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5666
5667	/* Account for data blocks for journalled mode */
5668	if (ext4_should_journal_data(inode))
5669		ret += bpp;
5670	return ret;
5671}
5672
5673/*
5674 * Calculate the journal credits for a chunk of data modification.
5675 *
5676 * This is called from DIO, fallocate or whoever calling
5677 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5678 *
5679 * journal buffers for data blocks are not included here, as DIO
5680 * and fallocate do no need to journal data buffers.
5681 */
5682int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5683{
5684	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5685}
5686
5687/*
5688 * The caller must have previously called ext4_reserve_inode_write().
5689 * Give this, we know that the caller already has write access to iloc->bh.
5690 */
5691int ext4_mark_iloc_dirty(handle_t *handle,
5692			 struct inode *inode, struct ext4_iloc *iloc)
5693{
5694	int err = 0;
5695
5696	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5697		put_bh(iloc->bh);
5698		return -EIO;
5699	}
5700	ext4_fc_track_inode(handle, inode);
5701
5702	/* the do_update_inode consumes one bh->b_count */
5703	get_bh(iloc->bh);
5704
5705	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5706	err = ext4_do_update_inode(handle, inode, iloc);
5707	put_bh(iloc->bh);
5708	return err;
5709}
5710
5711/*
5712 * On success, We end up with an outstanding reference count against
5713 * iloc->bh.  This _must_ be cleaned up later.
5714 */
5715
5716int
5717ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5718			 struct ext4_iloc *iloc)
5719{
5720	int err;
5721
5722	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5723		return -EIO;
5724
5725	err = ext4_get_inode_loc(inode, iloc);
5726	if (!err) {
5727		BUFFER_TRACE(iloc->bh, "get_write_access");
5728		err = ext4_journal_get_write_access(handle, inode->i_sb,
5729						    iloc->bh, EXT4_JTR_NONE);
5730		if (err) {
5731			brelse(iloc->bh);
5732			iloc->bh = NULL;
5733		}
5734	}
5735	ext4_std_error(inode->i_sb, err);
5736	return err;
5737}
5738
5739static int __ext4_expand_extra_isize(struct inode *inode,
5740				     unsigned int new_extra_isize,
5741				     struct ext4_iloc *iloc,
5742				     handle_t *handle, int *no_expand)
5743{
5744	struct ext4_inode *raw_inode;
5745	struct ext4_xattr_ibody_header *header;
5746	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5747	struct ext4_inode_info *ei = EXT4_I(inode);
5748	int error;
5749
5750	/* this was checked at iget time, but double check for good measure */
5751	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5752	    (ei->i_extra_isize & 3)) {
5753		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5754				 ei->i_extra_isize,
5755				 EXT4_INODE_SIZE(inode->i_sb));
5756		return -EFSCORRUPTED;
5757	}
5758	if ((new_extra_isize < ei->i_extra_isize) ||
5759	    (new_extra_isize < 4) ||
5760	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5761		return -EINVAL;	/* Should never happen */
5762
5763	raw_inode = ext4_raw_inode(iloc);
5764
5765	header = IHDR(inode, raw_inode);
5766
5767	/* No extended attributes present */
5768	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5769	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5770		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5771		       EXT4_I(inode)->i_extra_isize, 0,
5772		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5773		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5774		return 0;
5775	}
5776
5777	/*
5778	 * We may need to allocate external xattr block so we need quotas
5779	 * initialized. Here we can be called with various locks held so we
5780	 * cannot affort to initialize quotas ourselves. So just bail.
5781	 */
5782	if (dquot_initialize_needed(inode))
5783		return -EAGAIN;
5784
5785	/* try to expand with EAs present */
5786	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5787					   raw_inode, handle);
5788	if (error) {
5789		/*
5790		 * Inode size expansion failed; don't try again
5791		 */
5792		*no_expand = 1;
5793	}
5794
5795	return error;
5796}
5797
5798/*
5799 * Expand an inode by new_extra_isize bytes.
5800 * Returns 0 on success or negative error number on failure.
5801 */
5802static int ext4_try_to_expand_extra_isize(struct inode *inode,
5803					  unsigned int new_extra_isize,
5804					  struct ext4_iloc iloc,
5805					  handle_t *handle)
5806{
5807	int no_expand;
5808	int error;
5809
5810	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5811		return -EOVERFLOW;
5812
5813	/*
5814	 * In nojournal mode, we can immediately attempt to expand
5815	 * the inode.  When journaled, we first need to obtain extra
5816	 * buffer credits since we may write into the EA block
5817	 * with this same handle. If journal_extend fails, then it will
5818	 * only result in a minor loss of functionality for that inode.
5819	 * If this is felt to be critical, then e2fsck should be run to
5820	 * force a large enough s_min_extra_isize.
5821	 */
5822	if (ext4_journal_extend(handle,
5823				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5824		return -ENOSPC;
5825
5826	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5827		return -EBUSY;
5828
5829	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5830					  handle, &no_expand);
5831	ext4_write_unlock_xattr(inode, &no_expand);
5832
5833	return error;
5834}
5835
5836int ext4_expand_extra_isize(struct inode *inode,
5837			    unsigned int new_extra_isize,
5838			    struct ext4_iloc *iloc)
5839{
5840	handle_t *handle;
5841	int no_expand;
5842	int error, rc;
5843
5844	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5845		brelse(iloc->bh);
5846		return -EOVERFLOW;
5847	}
5848
5849	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5850				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5851	if (IS_ERR(handle)) {
5852		error = PTR_ERR(handle);
5853		brelse(iloc->bh);
5854		return error;
5855	}
5856
5857	ext4_write_lock_xattr(inode, &no_expand);
5858
5859	BUFFER_TRACE(iloc->bh, "get_write_access");
5860	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5861					      EXT4_JTR_NONE);
5862	if (error) {
5863		brelse(iloc->bh);
5864		goto out_unlock;
5865	}
5866
5867	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5868					  handle, &no_expand);
5869
5870	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5871	if (!error)
5872		error = rc;
5873
5874out_unlock:
5875	ext4_write_unlock_xattr(inode, &no_expand);
5876	ext4_journal_stop(handle);
5877	return error;
5878}
5879
5880/*
5881 * What we do here is to mark the in-core inode as clean with respect to inode
5882 * dirtiness (it may still be data-dirty).
5883 * This means that the in-core inode may be reaped by prune_icache
5884 * without having to perform any I/O.  This is a very good thing,
5885 * because *any* task may call prune_icache - even ones which
5886 * have a transaction open against a different journal.
5887 *
5888 * Is this cheating?  Not really.  Sure, we haven't written the
5889 * inode out, but prune_icache isn't a user-visible syncing function.
5890 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5891 * we start and wait on commits.
5892 */
5893int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5894				const char *func, unsigned int line)
5895{
5896	struct ext4_iloc iloc;
5897	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5898	int err;
5899
5900	might_sleep();
5901	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5902	err = ext4_reserve_inode_write(handle, inode, &iloc);
5903	if (err)
5904		goto out;
5905
5906	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5907		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5908					       iloc, handle);
5909
5910	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5911out:
5912	if (unlikely(err))
5913		ext4_error_inode_err(inode, func, line, 0, err,
5914					"mark_inode_dirty error");
5915	return err;
5916}
5917
5918/*
5919 * ext4_dirty_inode() is called from __mark_inode_dirty()
5920 *
5921 * We're really interested in the case where a file is being extended.
5922 * i_size has been changed by generic_commit_write() and we thus need
5923 * to include the updated inode in the current transaction.
5924 *
5925 * Also, dquot_alloc_block() will always dirty the inode when blocks
5926 * are allocated to the file.
5927 *
5928 * If the inode is marked synchronous, we don't honour that here - doing
5929 * so would cause a commit on atime updates, which we don't bother doing.
5930 * We handle synchronous inodes at the highest possible level.
5931 */
5932void ext4_dirty_inode(struct inode *inode, int flags)
5933{
5934	handle_t *handle;
5935
5936	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5937	if (IS_ERR(handle))
5938		return;
5939	ext4_mark_inode_dirty(handle, inode);
5940	ext4_journal_stop(handle);
5941}
5942
5943int ext4_change_inode_journal_flag(struct inode *inode, int val)
5944{
5945	journal_t *journal;
5946	handle_t *handle;
5947	int err;
5948	int alloc_ctx;
5949
5950	/*
5951	 * We have to be very careful here: changing a data block's
5952	 * journaling status dynamically is dangerous.  If we write a
5953	 * data block to the journal, change the status and then delete
5954	 * that block, we risk forgetting to revoke the old log record
5955	 * from the journal and so a subsequent replay can corrupt data.
5956	 * So, first we make sure that the journal is empty and that
5957	 * nobody is changing anything.
5958	 */
5959
5960	journal = EXT4_JOURNAL(inode);
5961	if (!journal)
5962		return 0;
5963	if (is_journal_aborted(journal))
5964		return -EROFS;
5965
5966	/* Wait for all existing dio workers */
5967	inode_dio_wait(inode);
5968
5969	/*
5970	 * Before flushing the journal and switching inode's aops, we have
5971	 * to flush all dirty data the inode has. There can be outstanding
5972	 * delayed allocations, there can be unwritten extents created by
5973	 * fallocate or buffered writes in dioread_nolock mode covered by
5974	 * dirty data which can be converted only after flushing the dirty
5975	 * data (and journalled aops don't know how to handle these cases).
5976	 */
5977	if (val) {
5978		filemap_invalidate_lock(inode->i_mapping);
5979		err = filemap_write_and_wait(inode->i_mapping);
5980		if (err < 0) {
5981			filemap_invalidate_unlock(inode->i_mapping);
5982			return err;
5983		}
5984	}
5985
5986	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
5987	jbd2_journal_lock_updates(journal);
5988
5989	/*
5990	 * OK, there are no updates running now, and all cached data is
5991	 * synced to disk.  We are now in a completely consistent state
5992	 * which doesn't have anything in the journal, and we know that
5993	 * no filesystem updates are running, so it is safe to modify
5994	 * the inode's in-core data-journaling state flag now.
5995	 */
5996
5997	if (val)
5998		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5999	else {
6000		err = jbd2_journal_flush(journal, 0);
6001		if (err < 0) {
6002			jbd2_journal_unlock_updates(journal);
6003			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6004			return err;
6005		}
6006		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6007	}
6008	ext4_set_aops(inode);
6009
6010	jbd2_journal_unlock_updates(journal);
6011	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6012
6013	if (val)
6014		filemap_invalidate_unlock(inode->i_mapping);
6015
6016	/* Finally we can mark the inode as dirty. */
6017
6018	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6019	if (IS_ERR(handle))
6020		return PTR_ERR(handle);
6021
6022	ext4_fc_mark_ineligible(inode->i_sb,
6023		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6024	err = ext4_mark_inode_dirty(handle, inode);
6025	ext4_handle_sync(handle);
6026	ext4_journal_stop(handle);
6027	ext4_std_error(inode->i_sb, err);
6028
6029	return err;
6030}
6031
6032static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6033			    struct buffer_head *bh)
6034{
6035	return !buffer_mapped(bh);
6036}
6037
6038vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6039{
6040	struct vm_area_struct *vma = vmf->vma;
6041	struct folio *folio = page_folio(vmf->page);
6042	loff_t size;
6043	unsigned long len;
6044	int err;
6045	vm_fault_t ret;
6046	struct file *file = vma->vm_file;
6047	struct inode *inode = file_inode(file);
6048	struct address_space *mapping = inode->i_mapping;
6049	handle_t *handle;
6050	get_block_t *get_block;
6051	int retries = 0;
6052
6053	if (unlikely(IS_IMMUTABLE(inode)))
6054		return VM_FAULT_SIGBUS;
6055
6056	sb_start_pagefault(inode->i_sb);
6057	file_update_time(vma->vm_file);
6058
6059	filemap_invalidate_lock_shared(mapping);
6060
6061	err = ext4_convert_inline_data(inode);
6062	if (err)
6063		goto out_ret;
6064
6065	/*
6066	 * On data journalling we skip straight to the transaction handle:
6067	 * there's no delalloc; page truncated will be checked later; the
6068	 * early return w/ all buffers mapped (calculates size/len) can't
6069	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6070	 */
6071	if (ext4_should_journal_data(inode))
6072		goto retry_alloc;
6073
6074	/* Delalloc case is easy... */
6075	if (test_opt(inode->i_sb, DELALLOC) &&
6076	    !ext4_nonda_switch(inode->i_sb)) {
6077		do {
6078			err = block_page_mkwrite(vma, vmf,
6079						   ext4_da_get_block_prep);
6080		} while (err == -ENOSPC &&
6081		       ext4_should_retry_alloc(inode->i_sb, &retries));
6082		goto out_ret;
6083	}
6084
6085	folio_lock(folio);
6086	size = i_size_read(inode);
6087	/* Page got truncated from under us? */
6088	if (folio->mapping != mapping || folio_pos(folio) > size) {
6089		folio_unlock(folio);
6090		ret = VM_FAULT_NOPAGE;
6091		goto out;
6092	}
6093
6094	len = folio_size(folio);
6095	if (folio_pos(folio) + len > size)
6096		len = size - folio_pos(folio);
6097	/*
6098	 * Return if we have all the buffers mapped. This avoids the need to do
6099	 * journal_start/journal_stop which can block and take a long time
6100	 *
6101	 * This cannot be done for data journalling, as we have to add the
6102	 * inode to the transaction's list to writeprotect pages on commit.
6103	 */
6104	if (folio_buffers(folio)) {
6105		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6106					    0, len, NULL,
6107					    ext4_bh_unmapped)) {
6108			/* Wait so that we don't change page under IO */
6109			folio_wait_stable(folio);
6110			ret = VM_FAULT_LOCKED;
6111			goto out;
6112		}
6113	}
6114	folio_unlock(folio);
6115	/* OK, we need to fill the hole... */
6116	if (ext4_should_dioread_nolock(inode))
6117		get_block = ext4_get_block_unwritten;
6118	else
6119		get_block = ext4_get_block;
6120retry_alloc:
6121	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6122				    ext4_writepage_trans_blocks(inode));
6123	if (IS_ERR(handle)) {
6124		ret = VM_FAULT_SIGBUS;
6125		goto out;
6126	}
6127	/*
6128	 * Data journalling can't use block_page_mkwrite() because it
6129	 * will set_buffer_dirty() before do_journal_get_write_access()
6130	 * thus might hit warning messages for dirty metadata buffers.
6131	 */
6132	if (!ext4_should_journal_data(inode)) {
6133		err = block_page_mkwrite(vma, vmf, get_block);
6134	} else {
6135		folio_lock(folio);
6136		size = i_size_read(inode);
6137		/* Page got truncated from under us? */
6138		if (folio->mapping != mapping || folio_pos(folio) > size) {
6139			ret = VM_FAULT_NOPAGE;
6140			goto out_error;
6141		}
6142
6143		len = folio_size(folio);
6144		if (folio_pos(folio) + len > size)
6145			len = size - folio_pos(folio);
6146
6147		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
 
6148		if (!err) {
6149			ret = VM_FAULT_SIGBUS;
6150			if (ext4_journal_folio_buffers(handle, folio, len))
6151				goto out_error;
6152		} else {
6153			folio_unlock(folio);
6154		}
6155	}
6156	ext4_journal_stop(handle);
6157	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6158		goto retry_alloc;
6159out_ret:
6160	ret = vmf_fs_error(err);
6161out:
6162	filemap_invalidate_unlock_shared(mapping);
6163	sb_end_pagefault(inode->i_sb);
6164	return ret;
6165out_error:
6166	folio_unlock(folio);
6167	ext4_journal_stop(handle);
6168	goto out;
6169}