Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static void ext4_journalled_zero_new_buffers(handle_t *handle,
  53					    struct inode *inode,
  54					    struct folio *folio,
  55					    unsigned from, unsigned to);
  56
  57static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  58			      struct ext4_inode_info *ei)
  59{
  60	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  61	__u32 csum;
  62	__u16 dummy_csum = 0;
  63	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  64	unsigned int csum_size = sizeof(dummy_csum);
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  67	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  68	offset += csum_size;
  69	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  70			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  71
  72	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  73		offset = offsetof(struct ext4_inode, i_checksum_hi);
  74		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  75				   EXT4_GOOD_OLD_INODE_SIZE,
  76				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  77		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  78			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  79					   csum_size);
  80			offset += csum_size;
  81		}
  82		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  83				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  84	}
  85
  86	return csum;
  87}
  88
  89static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  90				  struct ext4_inode_info *ei)
  91{
  92	__u32 provided, calculated;
  93
  94	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  95	    cpu_to_le32(EXT4_OS_LINUX) ||
  96	    !ext4_has_metadata_csum(inode->i_sb))
  97		return 1;
  98
  99	provided = le16_to_cpu(raw->i_checksum_lo);
 100	calculated = ext4_inode_csum(inode, raw, ei);
 101	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 102	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 103		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 104	else
 105		calculated &= 0xFFFF;
 106
 107	return provided == calculated;
 108}
 109
 110void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 111			 struct ext4_inode_info *ei)
 112{
 113	__u32 csum;
 114
 115	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 116	    cpu_to_le32(EXT4_OS_LINUX) ||
 117	    !ext4_has_metadata_csum(inode->i_sb))
 118		return;
 119
 120	csum = ext4_inode_csum(inode, raw, ei);
 121	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 122	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 123	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 124		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 125}
 126
 127static inline int ext4_begin_ordered_truncate(struct inode *inode,
 128					      loff_t new_size)
 129{
 130	trace_ext4_begin_ordered_truncate(inode, new_size);
 131	/*
 132	 * If jinode is zero, then we never opened the file for
 133	 * writing, so there's no need to call
 134	 * jbd2_journal_begin_ordered_truncate() since there's no
 135	 * outstanding writes we need to flush.
 136	 */
 137	if (!EXT4_I(inode)->jinode)
 138		return 0;
 139	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 140						   EXT4_I(inode)->jinode,
 141						   new_size);
 142}
 143
 
 
 
 
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167 * Called at the last iput() if i_nlink is zero.
 168 */
 169void ext4_evict_inode(struct inode *inode)
 170{
 171	handle_t *handle;
 172	int err;
 173	/*
 174	 * Credits for final inode cleanup and freeing:
 175	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 176	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 177	 */
 178	int extra_credits = 6;
 179	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 180	bool freeze_protected = false;
 181
 182	trace_ext4_evict_inode(inode);
 183
 184	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 185		ext4_evict_ea_inode(inode);
 186	if (inode->i_nlink) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187		truncate_inode_pages_final(&inode->i_data);
 188
 189		goto no_delete;
 190	}
 191
 192	if (is_bad_inode(inode))
 193		goto no_delete;
 194	dquot_initialize(inode);
 195
 196	if (ext4_should_order_data(inode))
 197		ext4_begin_ordered_truncate(inode, 0);
 198	truncate_inode_pages_final(&inode->i_data);
 199
 200	/*
 201	 * For inodes with journalled data, transaction commit could have
 202	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 203	 * extents converting worker could merge extents and also have dirtied
 204	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 205	 * we still need to remove the inode from the writeback lists.
 206	 */
 207	if (!list_empty_careful(&inode->i_io_list))
 208		inode_io_list_del(inode);
 209
 210	/*
 211	 * Protect us against freezing - iput() caller didn't have to have any
 212	 * protection against it. When we are in a running transaction though,
 213	 * we are already protected against freezing and we cannot grab further
 214	 * protection due to lock ordering constraints.
 215	 */
 216	if (!ext4_journal_current_handle()) {
 217		sb_start_intwrite(inode->i_sb);
 218		freeze_protected = true;
 219	}
 220
 221	if (!IS_NOQUOTA(inode))
 222		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 223
 224	/*
 225	 * Block bitmap, group descriptor, and inode are accounted in both
 226	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 227	 */
 228	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 229			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 230	if (IS_ERR(handle)) {
 231		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 232		/*
 233		 * If we're going to skip the normal cleanup, we still need to
 234		 * make sure that the in-core orphan linked list is properly
 235		 * cleaned up.
 236		 */
 237		ext4_orphan_del(NULL, inode);
 238		if (freeze_protected)
 239			sb_end_intwrite(inode->i_sb);
 240		goto no_delete;
 241	}
 242
 243	if (IS_SYNC(inode))
 244		ext4_handle_sync(handle);
 245
 246	/*
 247	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 248	 * special handling of symlinks here because i_size is used to
 249	 * determine whether ext4_inode_info->i_data contains symlink data or
 250	 * block mappings. Setting i_size to 0 will remove its fast symlink
 251	 * status. Erase i_data so that it becomes a valid empty block map.
 252	 */
 253	if (ext4_inode_is_fast_symlink(inode))
 254		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 255	inode->i_size = 0;
 256	err = ext4_mark_inode_dirty(handle, inode);
 257	if (err) {
 258		ext4_warning(inode->i_sb,
 259			     "couldn't mark inode dirty (err %d)", err);
 260		goto stop_handle;
 261	}
 262	if (inode->i_blocks) {
 263		err = ext4_truncate(inode);
 264		if (err) {
 265			ext4_error_err(inode->i_sb, -err,
 266				       "couldn't truncate inode %lu (err %d)",
 267				       inode->i_ino, err);
 268			goto stop_handle;
 269		}
 270	}
 271
 272	/* Remove xattr references. */
 273	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 274				      extra_credits);
 275	if (err) {
 276		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 277stop_handle:
 278		ext4_journal_stop(handle);
 279		ext4_orphan_del(NULL, inode);
 280		if (freeze_protected)
 281			sb_end_intwrite(inode->i_sb);
 282		ext4_xattr_inode_array_free(ea_inode_array);
 283		goto no_delete;
 284	}
 285
 286	/*
 287	 * Kill off the orphan record which ext4_truncate created.
 288	 * AKPM: I think this can be inside the above `if'.
 289	 * Note that ext4_orphan_del() has to be able to cope with the
 290	 * deletion of a non-existent orphan - this is because we don't
 291	 * know if ext4_truncate() actually created an orphan record.
 292	 * (Well, we could do this if we need to, but heck - it works)
 293	 */
 294	ext4_orphan_del(handle, inode);
 295	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 296
 297	/*
 298	 * One subtle ordering requirement: if anything has gone wrong
 299	 * (transaction abort, IO errors, whatever), then we can still
 300	 * do these next steps (the fs will already have been marked as
 301	 * having errors), but we can't free the inode if the mark_dirty
 302	 * fails.
 303	 */
 304	if (ext4_mark_inode_dirty(handle, inode))
 305		/* If that failed, just do the required in-core inode clear. */
 306		ext4_clear_inode(inode);
 307	else
 308		ext4_free_inode(handle, inode);
 309	ext4_journal_stop(handle);
 310	if (freeze_protected)
 311		sb_end_intwrite(inode->i_sb);
 312	ext4_xattr_inode_array_free(ea_inode_array);
 313	return;
 314no_delete:
 315	/*
 316	 * Check out some where else accidentally dirty the evicting inode,
 317	 * which may probably cause inode use-after-free issues later.
 318	 */
 319	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 320
 321	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 322		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 323	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 324}
 325
 326#ifdef CONFIG_QUOTA
 327qsize_t *ext4_get_reserved_space(struct inode *inode)
 328{
 329	return &EXT4_I(inode)->i_reserved_quota;
 330}
 331#endif
 332
 333/*
 334 * Called with i_data_sem down, which is important since we can call
 335 * ext4_discard_preallocations() from here.
 336 */
 337void ext4_da_update_reserve_space(struct inode *inode,
 338					int used, int quota_claim)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 341	struct ext4_inode_info *ei = EXT4_I(inode);
 342
 343	spin_lock(&ei->i_block_reservation_lock);
 344	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 345	if (unlikely(used > ei->i_reserved_data_blocks)) {
 346		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 347			 "with only %d reserved data blocks",
 348			 __func__, inode->i_ino, used,
 349			 ei->i_reserved_data_blocks);
 350		WARN_ON(1);
 351		used = ei->i_reserved_data_blocks;
 352	}
 353
 354	/* Update per-inode reservations */
 355	ei->i_reserved_data_blocks -= used;
 356	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 357
 358	spin_unlock(&ei->i_block_reservation_lock);
 359
 360	/* Update quota subsystem for data blocks */
 361	if (quota_claim)
 362		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 363	else {
 364		/*
 365		 * We did fallocate with an offset that is already delayed
 366		 * allocated. So on delayed allocated writeback we should
 367		 * not re-claim the quota for fallocated blocks.
 368		 */
 369		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 370	}
 371
 372	/*
 373	 * If we have done all the pending block allocations and if
 374	 * there aren't any writers on the inode, we can discard the
 375	 * inode's preallocations.
 376	 */
 377	if ((ei->i_reserved_data_blocks == 0) &&
 378	    !inode_is_open_for_write(inode))
 379		ext4_discard_preallocations(inode);
 380}
 381
 382static int __check_block_validity(struct inode *inode, const char *func,
 383				unsigned int line,
 384				struct ext4_map_blocks *map)
 385{
 386	if (ext4_has_feature_journal(inode->i_sb) &&
 387	    (inode->i_ino ==
 388	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 389		return 0;
 390	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 391		ext4_error_inode(inode, func, line, map->m_pblk,
 392				 "lblock %lu mapped to illegal pblock %llu "
 393				 "(length %d)", (unsigned long) map->m_lblk,
 394				 map->m_pblk, map->m_len);
 395		return -EFSCORRUPTED;
 396	}
 397	return 0;
 398}
 399
 400int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 401		       ext4_lblk_t len)
 402{
 403	int ret;
 404
 405	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 406		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 407
 408	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 409	if (ret > 0)
 410		ret = 0;
 411
 412	return ret;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418#ifdef ES_AGGRESSIVE_TEST
 419static void ext4_map_blocks_es_recheck(handle_t *handle,
 420				       struct inode *inode,
 421				       struct ext4_map_blocks *es_map,
 422				       struct ext4_map_blocks *map,
 423				       int flags)
 424{
 425	int retval;
 426
 427	map->m_flags = 0;
 428	/*
 429	 * There is a race window that the result is not the same.
 430	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 431	 * is that we lookup a block mapping in extent status tree with
 432	 * out taking i_data_sem.  So at the time the unwritten extent
 433	 * could be converted.
 434	 */
 435	down_read(&EXT4_I(inode)->i_data_sem);
 436	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 437		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 
 438	} else {
 439		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 
 440	}
 441	up_read((&EXT4_I(inode)->i_data_sem));
 442
 443	/*
 444	 * We don't check m_len because extent will be collpased in status
 445	 * tree.  So the m_len might not equal.
 446	 */
 447	if (es_map->m_lblk != map->m_lblk ||
 448	    es_map->m_flags != map->m_flags ||
 449	    es_map->m_pblk != map->m_pblk) {
 450		printk("ES cache assertion failed for inode: %lu "
 451		       "es_cached ex [%d/%d/%llu/%x] != "
 452		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 453		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 454		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 455		       map->m_len, map->m_pblk, map->m_flags,
 456		       retval, flags);
 457	}
 458}
 459#endif /* ES_AGGRESSIVE_TEST */
 460
 461static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
 462				 struct ext4_map_blocks *map)
 463{
 464	unsigned int status;
 465	int retval;
 466
 467	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 468		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 469	else
 470		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 471
 472	if (retval <= 0)
 473		return retval;
 474
 475	if (unlikely(retval != map->m_len)) {
 476		ext4_warning(inode->i_sb,
 477			     "ES len assertion failed for inode "
 478			     "%lu: retval %d != map->m_len %d",
 479			     inode->i_ino, retval, map->m_len);
 480		WARN_ON(1);
 481	}
 482
 483	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 484			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 485	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 486			      map->m_pblk, status, false);
 487	return retval;
 488}
 489
 490static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
 491				  struct ext4_map_blocks *map, int flags)
 492{
 493	struct extent_status es;
 494	unsigned int status;
 495	int err, retval = 0;
 496
 497	/*
 498	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
 499	 * indicates that the blocks and quotas has already been
 500	 * checked when the data was copied into the page cache.
 501	 */
 502	if (map->m_flags & EXT4_MAP_DELAYED)
 503		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
 504
 505	/*
 506	 * Here we clear m_flags because after allocating an new extent,
 507	 * it will be set again.
 508	 */
 509	map->m_flags &= ~EXT4_MAP_FLAGS;
 510
 511	/*
 512	 * We need to check for EXT4 here because migrate could have
 513	 * changed the inode type in between.
 514	 */
 515	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 516		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 517	} else {
 518		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 519
 520		/*
 521		 * We allocated new blocks which will result in i_data's
 522		 * format changing. Force the migrate to fail by clearing
 523		 * migrate flags.
 524		 */
 525		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
 526			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 527	}
 528	if (retval <= 0)
 529		return retval;
 530
 531	if (unlikely(retval != map->m_len)) {
 532		ext4_warning(inode->i_sb,
 533			     "ES len assertion failed for inode %lu: "
 534			     "retval %d != map->m_len %d",
 535			     inode->i_ino, retval, map->m_len);
 536		WARN_ON(1);
 537	}
 538
 539	/*
 540	 * We have to zeroout blocks before inserting them into extent
 541	 * status tree. Otherwise someone could look them up there and
 542	 * use them before they are really zeroed. We also have to
 543	 * unmap metadata before zeroing as otherwise writeback can
 544	 * overwrite zeros with stale data from block device.
 545	 */
 546	if (flags & EXT4_GET_BLOCKS_ZERO &&
 547	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
 548		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
 549					 map->m_len);
 550		if (err)
 551			return err;
 552	}
 553
 554	/*
 555	 * If the extent has been zeroed out, we don't need to update
 556	 * extent status tree.
 557	 */
 558	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
 559	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 560		if (ext4_es_is_written(&es))
 561			return retval;
 562	}
 563
 564	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 565			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 566	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
 567			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
 568
 569	return retval;
 570}
 571
 572/*
 573 * The ext4_map_blocks() function tries to look up the requested blocks,
 574 * and returns if the blocks are already mapped.
 575 *
 576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 577 * and store the allocated blocks in the result buffer head and mark it
 578 * mapped.
 579 *
 580 * If file type is extents based, it will call ext4_ext_map_blocks(),
 581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 582 * based files
 583 *
 584 * On success, it returns the number of blocks being mapped or allocated.
 585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
 586 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
 587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
 588 *
 589 * It returns 0 if plain look up failed (blocks have not been allocated), in
 590 * that case, @map is returned as unmapped but we still do fill map->m_len to
 591 * indicate the length of a hole starting at map->m_lblk.
 592 *
 593 * It returns the error in case of allocation failure.
 594 */
 595int ext4_map_blocks(handle_t *handle, struct inode *inode,
 596		    struct ext4_map_blocks *map, int flags)
 597{
 598	struct extent_status es;
 599	int retval;
 600	int ret = 0;
 601#ifdef ES_AGGRESSIVE_TEST
 602	struct ext4_map_blocks orig_map;
 603
 604	memcpy(&orig_map, map, sizeof(*map));
 605#endif
 606
 607	map->m_flags = 0;
 608	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 609		  flags, map->m_len, (unsigned long) map->m_lblk);
 
 610
 611	/*
 612	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 613	 */
 614	if (unlikely(map->m_len > INT_MAX))
 615		map->m_len = INT_MAX;
 616
 617	/* We can handle the block number less than EXT_MAX_BLOCKS */
 618	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 619		return -EFSCORRUPTED;
 620
 621	/* Lookup extent status tree firstly */
 622	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 623	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 624		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 625			map->m_pblk = ext4_es_pblock(&es) +
 626					map->m_lblk - es.es_lblk;
 627			map->m_flags |= ext4_es_is_written(&es) ?
 628					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 629			retval = es.es_len - (map->m_lblk - es.es_lblk);
 630			if (retval > map->m_len)
 631				retval = map->m_len;
 632			map->m_len = retval;
 633		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 634			map->m_pblk = 0;
 635			map->m_flags |= ext4_es_is_delayed(&es) ?
 636					EXT4_MAP_DELAYED : 0;
 637			retval = es.es_len - (map->m_lblk - es.es_lblk);
 638			if (retval > map->m_len)
 639				retval = map->m_len;
 640			map->m_len = retval;
 641			retval = 0;
 642		} else {
 643			BUG();
 644		}
 645
 646		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 647			return retval;
 648#ifdef ES_AGGRESSIVE_TEST
 649		ext4_map_blocks_es_recheck(handle, inode, map,
 650					   &orig_map, flags);
 651#endif
 652		goto found;
 653	}
 654	/*
 655	 * In the query cache no-wait mode, nothing we can do more if we
 656	 * cannot find extent in the cache.
 657	 */
 658	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 659		return 0;
 660
 661	/*
 662	 * Try to see if we can get the block without requesting a new
 663	 * file system block.
 664	 */
 665	down_read(&EXT4_I(inode)->i_data_sem);
 666	retval = ext4_map_query_blocks(handle, inode, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667	up_read((&EXT4_I(inode)->i_data_sem));
 668
 669found:
 670	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 671		ret = check_block_validity(inode, map);
 672		if (ret != 0)
 673			return ret;
 674	}
 675
 676	/* If it is only a block(s) look up */
 677	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 678		return retval;
 679
 680	/*
 681	 * Returns if the blocks have already allocated
 682	 *
 683	 * Note that if blocks have been preallocated
 684	 * ext4_ext_map_blocks() returns with buffer head unmapped
 
 685	 */
 686	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 687		/*
 688		 * If we need to convert extent to unwritten
 689		 * we continue and do the actual work in
 690		 * ext4_ext_map_blocks()
 691		 */
 692		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 693			return retval;
 694
 695	/*
 
 
 
 
 
 
 696	 * New blocks allocate and/or writing to unwritten extent
 697	 * will possibly result in updating i_data, so we take
 698	 * the write lock of i_data_sem, and call get_block()
 699	 * with create == 1 flag.
 700	 */
 701	down_write(&EXT4_I(inode)->i_data_sem);
 702	retval = ext4_map_create_blocks(handle, inode, map, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	up_write((&EXT4_I(inode)->i_data_sem));
 704	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 705		ret = check_block_validity(inode, map);
 706		if (ret != 0)
 707			return ret;
 708
 709		/*
 710		 * Inodes with freshly allocated blocks where contents will be
 711		 * visible after transaction commit must be on transaction's
 712		 * ordered data list.
 713		 */
 714		if (map->m_flags & EXT4_MAP_NEW &&
 715		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 716		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 717		    !ext4_is_quota_file(inode) &&
 718		    ext4_should_order_data(inode)) {
 719			loff_t start_byte =
 720				(loff_t)map->m_lblk << inode->i_blkbits;
 721			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 722
 723			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 724				ret = ext4_jbd2_inode_add_wait(handle, inode,
 725						start_byte, length);
 726			else
 727				ret = ext4_jbd2_inode_add_write(handle, inode,
 728						start_byte, length);
 729			if (ret)
 730				return ret;
 731		}
 732	}
 733	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 734				map->m_flags & EXT4_MAP_MAPPED))
 735		ext4_fc_track_range(handle, inode, map->m_lblk,
 736					map->m_lblk + map->m_len - 1);
 737	if (retval < 0)
 738		ext_debug(inode, "failed with err %d\n", retval);
 739	return retval;
 740}
 741
 742/*
 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 744 * we have to be careful as someone else may be manipulating b_state as well.
 745 */
 746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 747{
 748	unsigned long old_state;
 749	unsigned long new_state;
 750
 751	flags &= EXT4_MAP_FLAGS;
 752
 753	/* Dummy buffer_head? Set non-atomically. */
 754	if (!bh->b_page) {
 755		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 756		return;
 757	}
 758	/*
 759	 * Someone else may be modifying b_state. Be careful! This is ugly but
 760	 * once we get rid of using bh as a container for mapping information
 761	 * to pass to / from get_block functions, this can go away.
 762	 */
 763	old_state = READ_ONCE(bh->b_state);
 764	do {
 
 765		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 766	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
 
 767}
 768
 769static int _ext4_get_block(struct inode *inode, sector_t iblock,
 770			   struct buffer_head *bh, int flags)
 771{
 772	struct ext4_map_blocks map;
 773	int ret = 0;
 774
 775	if (ext4_has_inline_data(inode))
 776		return -ERANGE;
 777
 778	map.m_lblk = iblock;
 779	map.m_len = bh->b_size >> inode->i_blkbits;
 780
 781	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 782			      flags);
 783	if (ret > 0) {
 784		map_bh(bh, inode->i_sb, map.m_pblk);
 785		ext4_update_bh_state(bh, map.m_flags);
 786		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 787		ret = 0;
 788	} else if (ret == 0) {
 789		/* hole case, need to fill in bh->b_size */
 790		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 791	}
 792	return ret;
 793}
 794
 795int ext4_get_block(struct inode *inode, sector_t iblock,
 796		   struct buffer_head *bh, int create)
 797{
 798	return _ext4_get_block(inode, iblock, bh,
 799			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 800}
 801
 802/*
 803 * Get block function used when preparing for buffered write if we require
 804 * creating an unwritten extent if blocks haven't been allocated.  The extent
 805 * will be converted to written after the IO is complete.
 806 */
 807int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 808			     struct buffer_head *bh_result, int create)
 809{
 810	int ret = 0;
 811
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	ret = _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817	/*
 818	 * If the buffer is marked unwritten, mark it as new to make sure it is
 819	 * zeroed out correctly in case of partial writes. Otherwise, there is
 820	 * a chance of stale data getting exposed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821	 */
 822	if (ret == 0 && buffer_unwritten(bh_result))
 823		set_buffer_new(bh_result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	return ret;
 826}
 827
 828/* Maximum number of blocks we map for direct IO at once. */
 829#define DIO_MAX_BLOCKS 4096
 830
 831/*
 832 * `handle' can be NULL if create is zero
 833 */
 834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 835				ext4_lblk_t block, int map_flags)
 836{
 837	struct ext4_map_blocks map;
 838	struct buffer_head *bh;
 839	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 840	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 841	int err;
 842
 843	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 844		    || handle != NULL || create == 0);
 845	ASSERT(create == 0 || !nowait);
 846
 847	map.m_lblk = block;
 848	map.m_len = 1;
 849	err = ext4_map_blocks(handle, inode, &map, map_flags);
 850
 851	if (err == 0)
 852		return create ? ERR_PTR(-ENOSPC) : NULL;
 853	if (err < 0)
 854		return ERR_PTR(err);
 855
 856	if (nowait)
 857		return sb_find_get_block(inode->i_sb, map.m_pblk);
 858
 859	/*
 860	 * Since bh could introduce extra ref count such as referred by
 861	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
 862	 * as it may fail the migration when journal_head remains.
 863	 */
 864	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
 865				inode->i_sb->s_blocksize);
 866
 867	if (unlikely(!bh))
 868		return ERR_PTR(-ENOMEM);
 869	if (map.m_flags & EXT4_MAP_NEW) {
 870		ASSERT(create != 0);
 871		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 872			    || (handle != NULL));
 873
 874		/*
 875		 * Now that we do not always journal data, we should
 876		 * keep in mind whether this should always journal the
 877		 * new buffer as metadata.  For now, regular file
 878		 * writes use ext4_get_block instead, so it's not a
 879		 * problem.
 880		 */
 881		lock_buffer(bh);
 882		BUFFER_TRACE(bh, "call get_create_access");
 883		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 884						     EXT4_JTR_NONE);
 885		if (unlikely(err)) {
 886			unlock_buffer(bh);
 887			goto errout;
 888		}
 889		if (!buffer_uptodate(bh)) {
 890			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 891			set_buffer_uptodate(bh);
 892		}
 893		unlock_buffer(bh);
 894		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 895		err = ext4_handle_dirty_metadata(handle, inode, bh);
 896		if (unlikely(err))
 897			goto errout;
 898	} else
 899		BUFFER_TRACE(bh, "not a new buffer");
 900	return bh;
 901errout:
 902	brelse(bh);
 903	return ERR_PTR(err);
 904}
 905
 906struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 907			       ext4_lblk_t block, int map_flags)
 908{
 909	struct buffer_head *bh;
 910	int ret;
 911
 912	bh = ext4_getblk(handle, inode, block, map_flags);
 913	if (IS_ERR(bh))
 914		return bh;
 915	if (!bh || ext4_buffer_uptodate(bh))
 916		return bh;
 917
 918	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 919	if (ret) {
 920		put_bh(bh);
 921		return ERR_PTR(ret);
 922	}
 923	return bh;
 924}
 925
 926/* Read a contiguous batch of blocks. */
 927int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 928		     bool wait, struct buffer_head **bhs)
 929{
 930	int i, err;
 931
 932	for (i = 0; i < bh_count; i++) {
 933		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 934		if (IS_ERR(bhs[i])) {
 935			err = PTR_ERR(bhs[i]);
 936			bh_count = i;
 937			goto out_brelse;
 938		}
 939	}
 940
 941	for (i = 0; i < bh_count; i++)
 942		/* Note that NULL bhs[i] is valid because of holes. */
 943		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 944			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 
 945
 946	if (!wait)
 947		return 0;
 948
 949	for (i = 0; i < bh_count; i++)
 950		if (bhs[i])
 951			wait_on_buffer(bhs[i]);
 952
 953	for (i = 0; i < bh_count; i++) {
 954		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 955			err = -EIO;
 956			goto out_brelse;
 957		}
 958	}
 959	return 0;
 960
 961out_brelse:
 962	for (i = 0; i < bh_count; i++) {
 963		brelse(bhs[i]);
 964		bhs[i] = NULL;
 965	}
 966	return err;
 967}
 968
 969int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 970			   struct buffer_head *head,
 971			   unsigned from,
 972			   unsigned to,
 973			   int *partial,
 974			   int (*fn)(handle_t *handle, struct inode *inode,
 975				     struct buffer_head *bh))
 976{
 977	struct buffer_head *bh;
 978	unsigned block_start, block_end;
 979	unsigned blocksize = head->b_size;
 980	int err, ret = 0;
 981	struct buffer_head *next;
 982
 983	for (bh = head, block_start = 0;
 984	     ret == 0 && (bh != head || !block_start);
 985	     block_start = block_end, bh = next) {
 986		next = bh->b_this_page;
 987		block_end = block_start + blocksize;
 988		if (block_end <= from || block_start >= to) {
 989			if (partial && !buffer_uptodate(bh))
 990				*partial = 1;
 991			continue;
 992		}
 993		err = (*fn)(handle, inode, bh);
 994		if (!ret)
 995			ret = err;
 996	}
 997	return ret;
 998}
 999
1000/*
1001 * Helper for handling dirtying of journalled data. We also mark the folio as
1002 * dirty so that writeback code knows about this page (and inode) contains
1003 * dirty data. ext4_writepages() then commits appropriate transaction to
1004 * make data stable.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005 */
1006static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007{
1008	folio_mark_dirty(bh->b_folio);
1009	return ext4_handle_dirty_metadata(handle, NULL, bh);
1010}
1011
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013				struct buffer_head *bh)
1014{
 
 
 
1015	if (!buffer_mapped(bh) || buffer_freed(bh))
1016		return 0;
 
 
 
 
 
 
 
 
 
 
1017	BUFFER_TRACE(bh, "get write access");
1018	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019					    EXT4_JTR_NONE);
 
 
1020}
1021
1022int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023			   loff_t pos, unsigned len,
1024			   get_block_t *get_block)
1025{
1026	unsigned from = pos & (PAGE_SIZE - 1);
1027	unsigned to = from + len;
1028	struct inode *inode = folio->mapping->host;
1029	unsigned block_start, block_end;
1030	sector_t block;
1031	int err = 0;
1032	unsigned blocksize = inode->i_sb->s_blocksize;
1033	unsigned bbits;
1034	struct buffer_head *bh, *head, *wait[2];
1035	int nr_wait = 0;
1036	int i;
1037	bool should_journal_data = ext4_should_journal_data(inode);
1038
1039	BUG_ON(!folio_test_locked(folio));
1040	BUG_ON(from > PAGE_SIZE);
1041	BUG_ON(to > PAGE_SIZE);
1042	BUG_ON(from > to);
1043
1044	head = folio_buffers(folio);
1045	if (!head)
1046		head = create_empty_buffers(folio, blocksize, 0);
1047	bbits = ilog2(blocksize);
1048	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050	for (bh = head, block_start = 0; bh != head || !block_start;
1051	    block++, block_start = block_end, bh = bh->b_this_page) {
1052		block_end = block_start + blocksize;
1053		if (block_end <= from || block_start >= to) {
1054			if (folio_test_uptodate(folio)) {
1055				set_buffer_uptodate(bh);
 
1056			}
1057			continue;
1058		}
1059		if (buffer_new(bh))
1060			clear_buffer_new(bh);
1061		if (!buffer_mapped(bh)) {
1062			WARN_ON(bh->b_size != blocksize);
1063			err = get_block(inode, block, bh, 1);
1064			if (err)
1065				break;
1066			if (buffer_new(bh)) {
1067				/*
1068				 * We may be zeroing partial buffers or all new
1069				 * buffers in case of failure. Prepare JBD2 for
1070				 * that.
1071				 */
1072				if (should_journal_data)
1073					do_journal_get_write_access(handle,
1074								    inode, bh);
1075				if (folio_test_uptodate(folio)) {
1076					/*
1077					 * Unlike __block_write_begin() we leave
1078					 * dirtying of new uptodate buffers to
1079					 * ->write_end() time or
1080					 * folio_zero_new_buffers().
1081					 */
1082					set_buffer_uptodate(bh);
 
1083					continue;
1084				}
1085				if (block_end > to || block_start < from)
1086					folio_zero_segments(folio, to,
1087							    block_end,
1088							    block_start, from);
1089				continue;
1090			}
1091		}
1092		if (folio_test_uptodate(folio)) {
1093			set_buffer_uptodate(bh);
 
1094			continue;
1095		}
1096		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097		    !buffer_unwritten(bh) &&
1098		    (block_start < from || block_end > to)) {
1099			ext4_read_bh_lock(bh, 0, false);
1100			wait[nr_wait++] = bh;
 
 
1101		}
1102	}
1103	/*
1104	 * If we issued read requests, let them complete.
1105	 */
1106	for (i = 0; i < nr_wait; i++) {
1107		wait_on_buffer(wait[i]);
1108		if (!buffer_uptodate(wait[i]))
1109			err = -EIO;
1110	}
1111	if (unlikely(err)) {
1112		if (should_journal_data)
1113			ext4_journalled_zero_new_buffers(handle, inode, folio,
1114							 from, to);
1115		else
1116			folio_zero_new_buffers(folio, from, to);
1117	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118		for (i = 0; i < nr_wait; i++) {
1119			int err2;
1120
1121			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122						blocksize, bh_offset(wait[i]));
1123			if (err2) {
1124				clear_buffer_uptodate(wait[i]);
1125				err = err2;
1126			}
1127		}
1128	}
1129
1130	return err;
1131}
 
1132
1133/*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction.  We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
1140static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141			    loff_t pos, unsigned len,
1142			    struct folio **foliop, void **fsdata)
1143{
1144	struct inode *inode = mapping->host;
1145	int ret, needed_blocks;
1146	handle_t *handle;
1147	int retries = 0;
1148	struct folio *folio;
1149	pgoff_t index;
1150	unsigned from, to;
1151
1152	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153		return -EIO;
1154
1155	trace_ext4_write_begin(inode, pos, len);
1156	/*
1157	 * Reserve one block more for addition to orphan list in case
1158	 * we allocate blocks but write fails for some reason
1159	 */
1160	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161	index = pos >> PAGE_SHIFT;
1162	from = pos & (PAGE_SIZE - 1);
1163	to = from + len;
1164
1165	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167						    foliop);
1168		if (ret < 0)
1169			return ret;
1170		if (ret == 1)
1171			return 0;
1172	}
1173
1174	/*
1175	 * __filemap_get_folio() can take a long time if the
1176	 * system is thrashing due to memory pressure, or if the folio
1177	 * is being written back.  So grab it first before we start
1178	 * the transaction handle.  This also allows us to allocate
1179	 * the folio (if needed) without using GFP_NOFS.
1180	 */
1181retry_grab:
1182	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183					mapping_gfp_mask(mapping));
1184	if (IS_ERR(folio))
1185		return PTR_ERR(folio);
1186	/*
1187	 * The same as page allocation, we prealloc buffer heads before
1188	 * starting the handle.
1189	 */
1190	if (!folio_buffers(folio))
1191		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193	folio_unlock(folio);
1194
1195retry_journal:
1196	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197	if (IS_ERR(handle)) {
1198		folio_put(folio);
1199		return PTR_ERR(handle);
1200	}
1201
1202	folio_lock(folio);
1203	if (folio->mapping != mapping) {
1204		/* The folio got truncated from under us */
1205		folio_unlock(folio);
1206		folio_put(folio);
1207		ext4_journal_stop(handle);
1208		goto retry_grab;
1209	}
1210	/* In case writeback began while the folio was unlocked */
1211	folio_wait_stable(folio);
1212
 
1213	if (ext4_should_dioread_nolock(inode))
1214		ret = ext4_block_write_begin(handle, folio, pos, len,
1215					     ext4_get_block_unwritten);
1216	else
1217		ret = ext4_block_write_begin(handle, folio, pos, len,
1218					     ext4_get_block);
 
 
 
 
 
 
 
1219	if (!ret && ext4_should_journal_data(inode)) {
1220		ret = ext4_walk_page_buffers(handle, inode,
1221					     folio_buffers(folio), from, to,
1222					     NULL, do_journal_get_write_access);
1223	}
1224
1225	if (ret) {
1226		bool extended = (pos + len > inode->i_size) &&
1227				!ext4_verity_in_progress(inode);
1228
1229		folio_unlock(folio);
1230		/*
1231		 * ext4_block_write_begin may have instantiated a few blocks
1232		 * outside i_size.  Trim these off again. Don't need
1233		 * i_size_read because we hold i_rwsem.
1234		 *
1235		 * Add inode to orphan list in case we crash before
1236		 * truncate finishes
1237		 */
1238		if (extended && ext4_can_truncate(inode))
1239			ext4_orphan_add(handle, inode);
1240
1241		ext4_journal_stop(handle);
1242		if (extended) {
1243			ext4_truncate_failed_write(inode);
1244			/*
1245			 * If truncate failed early the inode might
1246			 * still be on the orphan list; we need to
1247			 * make sure the inode is removed from the
1248			 * orphan list in that case.
1249			 */
1250			if (inode->i_nlink)
1251				ext4_orphan_del(NULL, inode);
1252		}
1253
1254		if (ret == -ENOSPC &&
1255		    ext4_should_retry_alloc(inode->i_sb, &retries))
1256			goto retry_journal;
1257		folio_put(folio);
1258		return ret;
1259	}
1260	*foliop = folio;
1261	return ret;
1262}
1263
1264/* For write_end() in data=journal mode */
1265static int write_end_fn(handle_t *handle, struct inode *inode,
1266			struct buffer_head *bh)
1267{
1268	int ret;
1269	if (!buffer_mapped(bh) || buffer_freed(bh))
1270		return 0;
1271	set_buffer_uptodate(bh);
1272	ret = ext4_dirty_journalled_data(handle, bh);
1273	clear_buffer_meta(bh);
1274	clear_buffer_prio(bh);
1275	return ret;
1276}
1277
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283 * buffers are managed internally.
1284 */
1285static int ext4_write_end(struct file *file,
1286			  struct address_space *mapping,
1287			  loff_t pos, unsigned len, unsigned copied,
1288			  struct folio *folio, void *fsdata)
1289{
1290	handle_t *handle = ext4_journal_current_handle();
1291	struct inode *inode = mapping->host;
1292	loff_t old_size = inode->i_size;
1293	int ret = 0, ret2;
1294	int i_size_changed = 0;
1295	bool verity = ext4_verity_in_progress(inode);
1296
1297	trace_ext4_write_end(inode, pos, len, copied);
1298
1299	if (ext4_has_inline_data(inode) &&
1300	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301		return ext4_write_inline_data_end(inode, pos, len, copied,
1302						  folio);
1303
1304	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
 
 
 
 
 
1305	/*
1306	 * it's important to update i_size while still holding folio lock:
1307	 * page writeout could otherwise come in and zero beyond i_size.
1308	 *
1309	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310	 * blocks are being written past EOF, so skip the i_size update.
1311	 */
1312	if (!verity)
1313		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314	folio_unlock(folio);
1315	folio_put(folio);
1316
1317	if (old_size < pos && !verity) {
1318		pagecache_isize_extended(inode, old_size, pos);
1319		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320	}
1321	/*
1322	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323	 * makes the holding time of folio lock longer. Second, it forces lock
1324	 * ordering of folio lock and transaction start for journaling
1325	 * filesystems.
1326	 */
1327	if (i_size_changed)
1328		ret = ext4_mark_inode_dirty(handle, inode);
1329
1330	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331		/* if we have allocated more blocks and copied
1332		 * less. We will have blocks allocated outside
1333		 * inode->i_size. So truncate them
1334		 */
1335		ext4_orphan_add(handle, inode);
1336
1337	ret2 = ext4_journal_stop(handle);
1338	if (!ret)
1339		ret = ret2;
1340
1341	if (pos + len > inode->i_size && !verity) {
1342		ext4_truncate_failed_write(inode);
1343		/*
1344		 * If truncate failed early the inode might still be
1345		 * on the orphan list; we need to make sure the inode
1346		 * is removed from the orphan list in that case.
1347		 */
1348		if (inode->i_nlink)
1349			ext4_orphan_del(NULL, inode);
1350	}
1351
1352	return ret ? ret : copied;
1353}
1354
1355/*
1356 * This is a private version of folio_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_dirty_journalled_data() instead.
1359 */
1360static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361					    struct inode *inode,
1362					    struct folio *folio,
1363					    unsigned from, unsigned to)
1364{
1365	unsigned int block_start = 0, block_end;
1366	struct buffer_head *head, *bh;
1367
1368	bh = head = folio_buffers(folio);
1369	do {
1370		block_end = block_start + bh->b_size;
1371		if (buffer_new(bh)) {
1372			if (block_end > from && block_start < to) {
1373				if (!folio_test_uptodate(folio)) {
1374					unsigned start, size;
1375
1376					start = max(from, block_start);
1377					size = min(to, block_end) - start;
1378
1379					folio_zero_range(folio, start, size);
 
1380				}
1381				clear_buffer_new(bh);
1382				write_end_fn(handle, inode, bh);
1383			}
1384		}
1385		block_start = block_end;
1386		bh = bh->b_this_page;
1387	} while (bh != head);
1388}
1389
1390static int ext4_journalled_write_end(struct file *file,
1391				     struct address_space *mapping,
1392				     loff_t pos, unsigned len, unsigned copied,
1393				     struct folio *folio, void *fsdata)
1394{
1395	handle_t *handle = ext4_journal_current_handle();
1396	struct inode *inode = mapping->host;
1397	loff_t old_size = inode->i_size;
1398	int ret = 0, ret2;
1399	int partial = 0;
1400	unsigned from, to;
1401	int size_changed = 0;
1402	bool verity = ext4_verity_in_progress(inode);
1403
1404	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405	from = pos & (PAGE_SIZE - 1);
1406	to = from + len;
1407
1408	BUG_ON(!ext4_handle_valid(handle));
1409
1410	if (ext4_has_inline_data(inode))
1411		return ext4_write_inline_data_end(inode, pos, len, copied,
1412						  folio);
1413
1414	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
 
 
 
 
 
1415		copied = 0;
1416		ext4_journalled_zero_new_buffers(handle, inode, folio,
1417						 from, to);
1418	} else {
1419		if (unlikely(copied < len))
1420			ext4_journalled_zero_new_buffers(handle, inode, folio,
1421							 from + copied, to);
1422		ret = ext4_walk_page_buffers(handle, inode,
1423					     folio_buffers(folio),
1424					     from, from + copied, &partial,
1425					     write_end_fn);
1426		if (!partial)
1427			folio_mark_uptodate(folio);
1428	}
1429	if (!verity)
1430		size_changed = ext4_update_inode_size(inode, pos + copied);
1431	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432	folio_unlock(folio);
1433	folio_put(folio);
1434
1435	if (old_size < pos && !verity) {
1436		pagecache_isize_extended(inode, old_size, pos);
1437		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438	}
1439
1440	if (size_changed) {
1441		ret2 = ext4_mark_inode_dirty(handle, inode);
1442		if (!ret)
1443			ret = ret2;
1444	}
1445
1446	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447		/* if we have allocated more blocks and copied
1448		 * less. We will have blocks allocated outside
1449		 * inode->i_size. So truncate them
1450		 */
1451		ext4_orphan_add(handle, inode);
1452
 
1453	ret2 = ext4_journal_stop(handle);
1454	if (!ret)
1455		ret = ret2;
1456	if (pos + len > inode->i_size && !verity) {
1457		ext4_truncate_failed_write(inode);
1458		/*
1459		 * If truncate failed early the inode might still be
1460		 * on the orphan list; we need to make sure the inode
1461		 * is removed from the orphan list in that case.
1462		 */
1463		if (inode->i_nlink)
1464			ext4_orphan_del(NULL, inode);
1465	}
1466
1467	return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for 'nr_resv' clusters
1472 */
1473static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474{
1475	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476	struct ext4_inode_info *ei = EXT4_I(inode);
1477	int ret;
1478
1479	/*
1480	 * We will charge metadata quota at writeout time; this saves
1481	 * us from metadata over-estimation, though we may go over by
1482	 * a small amount in the end.  Here we just reserve for data.
1483	 */
1484	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&ei->i_block_reservation_lock);
1489	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490		spin_unlock(&ei->i_block_reservation_lock);
1491		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492		return -ENOSPC;
1493	}
1494	ei->i_reserved_data_blocks += nr_resv;
1495	trace_ext4_da_reserve_space(inode, nr_resv);
1496	spin_unlock(&ei->i_block_reservation_lock);
1497
1498	return 0;       /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504	struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506	if (!to_free)
1507		return;		/* Nothing to release, exit */
1508
1509	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511	trace_ext4_da_release_space(inode, to_free);
1512	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513		/*
1514		 * if there aren't enough reserved blocks, then the
1515		 * counter is messed up somewhere.  Since this
1516		 * function is called from invalidate page, it's
1517		 * harmless to return without any action.
1518		 */
1519		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520			 "ino %lu, to_free %d with only %d reserved "
1521			 "data blocks", inode->i_ino, to_free,
1522			 ei->i_reserved_data_blocks);
1523		WARN_ON(1);
1524		to_free = ei->i_reserved_data_blocks;
1525	}
1526	ei->i_reserved_data_blocks -= to_free;
1527
1528	/* update fs dirty data blocks counter */
1529	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541	/* These are input fields for ext4_do_writepages() */
1542	struct inode *inode;
1543	struct writeback_control *wbc;
1544	unsigned int can_map:1;	/* Can writepages call map blocks? */
1545
1546	/* These are internal state of ext4_do_writepages() */
1547	pgoff_t first_page;	/* The first page to write */
1548	pgoff_t next_page;	/* Current page to examine */
1549	pgoff_t last_page;	/* Last page to examine */
1550	/*
1551	 * Extent to map - this can be after first_page because that can be
1552	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553	 * is delalloc or unwritten.
1554	 */
1555	struct ext4_map_blocks map;
1556	struct ext4_io_submit io_submit;	/* IO submission data */
1557	unsigned int do_map:1;
1558	unsigned int scanned_until_end:1;
1559	unsigned int journalled_more_data:1;
1560};
1561
1562static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563				       bool invalidate)
1564{
1565	unsigned nr, i;
1566	pgoff_t index, end;
1567	struct folio_batch fbatch;
1568	struct inode *inode = mpd->inode;
1569	struct address_space *mapping = inode->i_mapping;
1570
1571	/* This is necessary when next_page == 0. */
1572	if (mpd->first_page >= mpd->next_page)
1573		return;
1574
1575	mpd->scanned_until_end = 0;
1576	index = mpd->first_page;
1577	end   = mpd->next_page - 1;
1578	if (invalidate) {
1579		ext4_lblk_t start, last;
1580		start = index << (PAGE_SHIFT - inode->i_blkbits);
1581		last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583		/*
1584		 * avoid racing with extent status tree scans made by
1585		 * ext4_insert_delayed_block()
1586		 */
1587		down_write(&EXT4_I(inode)->i_data_sem);
1588		ext4_es_remove_extent(inode, start, last - start + 1);
1589		up_write(&EXT4_I(inode)->i_data_sem);
1590	}
1591
1592	folio_batch_init(&fbatch);
1593	while (index <= end) {
1594		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595		if (nr == 0)
1596			break;
1597		for (i = 0; i < nr; i++) {
1598			struct folio *folio = fbatch.folios[i];
1599
1600			if (folio->index < mpd->first_page)
1601				continue;
1602			if (folio_next_index(folio) - 1 > end)
1603				continue;
1604			BUG_ON(!folio_test_locked(folio));
1605			BUG_ON(folio_test_writeback(folio));
1606			if (invalidate) {
1607				if (folio_mapped(folio))
1608					folio_clear_dirty_for_io(folio);
1609				block_invalidate_folio(folio, 0,
1610						folio_size(folio));
1611				folio_clear_uptodate(folio);
1612			}
1613			folio_unlock(folio);
1614		}
1615		folio_batch_release(&fbatch);
1616	}
1617}
1618
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622	struct super_block *sb = inode->i_sb;
1623	struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627			ext4_count_free_clusters(sb)));
1628	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630	       (long long) EXT4_C2B(EXT4_SB(sb),
1631		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633	       (long long) EXT4_C2B(EXT4_SB(sb),
1634		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637		 ei->i_reserved_data_blocks);
1638	return;
1639}
1640
1641/*
1642 * Check whether the cluster containing lblk has been allocated or has
1643 * delalloc reservation.
1644 *
1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646 * reservation, 2 if it's already been allocated, negative error code on
1647 * failure.
1648 */
1649static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650{
1651	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652	int ret;
1653
1654	/* Has delalloc reservation? */
1655	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656		return 1;
1657
1658	/* Already been allocated? */
1659	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660		return 2;
1661	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662	if (ret < 0)
1663		return ret;
1664	if (ret > 0)
1665		return 2;
1666
1667	return 0;
1668}
1669
1670/*
1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672 *                              status tree, incrementing the reserved
1673 *                              cluster/block count or making pending
1674 *                              reservations where needed
1675 *
1676 * @inode - file containing the newly added block
1677 * @lblk - start logical block to be added
1678 * @len - length of blocks to be added
1679 *
1680 * Returns 0 on success, negative error code on failure.
1681 */
1682static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683				      ext4_lblk_t len)
1684{
1685	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686	int ret;
1687	bool lclu_allocated = false;
1688	bool end_allocated = false;
1689	ext4_lblk_t resv_clu;
1690	ext4_lblk_t end = lblk + len - 1;
1691
1692	/*
1693	 * If the cluster containing lblk or end is shared with a delayed,
1694	 * written, or unwritten extent in a bigalloc file system, it's
1695	 * already been accounted for and does not need to be reserved.
1696	 * A pending reservation must be made for the cluster if it's
1697	 * shared with a written or unwritten extent and doesn't already
1698	 * have one.  Written and unwritten extents can be purged from the
1699	 * extents status tree if the system is under memory pressure, so
1700	 * it's necessary to examine the extent tree if a search of the
1701	 * extents status tree doesn't get a match.
1702	 */
1703	if (sbi->s_cluster_ratio == 1) {
1704		ret = ext4_da_reserve_space(inode, len);
1705		if (ret != 0)   /* ENOSPC */
1706			return ret;
1707	} else {   /* bigalloc */
1708		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710		ret = ext4_clu_alloc_state(inode, lblk);
1711		if (ret < 0)
1712			return ret;
1713		if (ret > 0) {
1714			resv_clu--;
1715			lclu_allocated = (ret == 2);
1716		}
1717
1718		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719			ret = ext4_clu_alloc_state(inode, end);
1720			if (ret < 0)
1721				return ret;
1722			if (ret > 0) {
1723				resv_clu--;
1724				end_allocated = (ret == 2);
1725			}
1726		}
1727
1728		if (resv_clu) {
1729			ret = ext4_da_reserve_space(inode, resv_clu);
1730			if (ret != 0)   /* ENOSPC */
1731				return ret;
1732		}
1733	}
1734
1735	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736				      end_allocated);
1737	return 0;
1738}
1739
1740/*
1741 * Looks up the requested blocks and sets the delalloc extent map.
1742 * First try to look up for the extent entry that contains the requested
1743 * blocks in the extent status tree without i_data_sem, then try to look
1744 * up for the ondisk extent mapping with i_data_sem in read mode,
1745 * finally hold i_data_sem in write mode, looks up again and add a
1746 * delalloc extent entry if it still couldn't find any extent. Pass out
1747 * the mapped extent through @map and return 0 on success.
1748 */
1749static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
 
 
1750{
1751	struct extent_status es;
1752	int retval;
 
1753#ifdef ES_AGGRESSIVE_TEST
1754	struct ext4_map_blocks orig_map;
1755
1756	memcpy(&orig_map, map, sizeof(*map));
1757#endif
1758
 
 
 
1759	map->m_flags = 0;
1760	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
 
1761		  (unsigned long) map->m_lblk);
1762
1763	/* Lookup extent status tree firstly */
1764	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765		map->m_len = min_t(unsigned int, map->m_len,
1766				   es.es_len - (map->m_lblk - es.es_lblk));
1767
1768		if (ext4_es_is_hole(&es))
1769			goto add_delayed;
 
1770
1771found:
1772		/*
1773		 * Delayed extent could be allocated by fallocate.
1774		 * So we need to check it.
1775		 */
1776		if (ext4_es_is_delayed(&es)) {
1777			map->m_flags |= EXT4_MAP_DELAYED;
 
 
1778			return 0;
1779		}
1780
1781		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
 
 
 
 
1782		if (ext4_es_is_written(&es))
1783			map->m_flags |= EXT4_MAP_MAPPED;
1784		else if (ext4_es_is_unwritten(&es))
1785			map->m_flags |= EXT4_MAP_UNWRITTEN;
1786		else
1787			BUG();
1788
1789#ifdef ES_AGGRESSIVE_TEST
1790		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791#endif
1792		return 0;
1793	}
1794
1795	/*
1796	 * Try to see if we can get the block without requesting a new
1797	 * file system block.
1798	 */
1799	down_read(&EXT4_I(inode)->i_data_sem);
1800	if (ext4_has_inline_data(inode))
1801		retval = 0;
 
 
1802	else
1803		retval = ext4_map_query_blocks(NULL, inode, map);
1804	up_read(&EXT4_I(inode)->i_data_sem);
1805	if (retval)
1806		return retval < 0 ? retval : 0;
1807
1808add_delayed:
1809	down_write(&EXT4_I(inode)->i_data_sem);
1810	/*
1811	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812	 * and fallocate path (no folio lock) can race. Make sure we
1813	 * lookup the extent status tree here again while i_data_sem
1814	 * is held in write mode, before inserting a new da entry in
1815	 * the extent status tree.
1816	 */
1817	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818		map->m_len = min_t(unsigned int, map->m_len,
1819				   es.es_len - (map->m_lblk - es.es_lblk));
1820
1821		if (!ext4_es_is_hole(&es)) {
1822			up_write(&EXT4_I(inode)->i_data_sem);
1823			goto found;
 
 
 
 
1824		}
1825	} else if (!ext4_has_inline_data(inode)) {
1826		retval = ext4_map_query_blocks(NULL, inode, map);
1827		if (retval) {
1828			up_write(&EXT4_I(inode)->i_data_sem);
1829			return retval < 0 ? retval : 0;
 
1830		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	}
1832
1833	map->m_flags |= EXT4_MAP_DELAYED;
1834	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835	up_write(&EXT4_I(inode)->i_data_sem);
1836
1837	return retval;
1838}
1839
1840/*
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin().  It will either return mapped block or
1843 * reserve space for a single block.
1844 *
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1847 *
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1851 */
1852int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853			   struct buffer_head *bh, int create)
1854{
1855	struct ext4_map_blocks map;
1856	sector_t invalid_block = ~((sector_t) 0xffff);
1857	int ret = 0;
1858
1859	BUG_ON(create == 0);
1860	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863		invalid_block = ~0;
1864
1865	map.m_lblk = iblock;
1866	map.m_len = 1;
1867
1868	/*
1869	 * first, we need to know whether the block is allocated already
1870	 * preallocated blocks are unmapped but should treated
1871	 * the same as allocated blocks.
1872	 */
1873	ret = ext4_da_map_blocks(inode, &map);
1874	if (ret < 0)
1875		return ret;
1876
1877	if (map.m_flags & EXT4_MAP_DELAYED) {
1878		map_bh(bh, inode->i_sb, invalid_block);
1879		set_buffer_new(bh);
1880		set_buffer_delay(bh);
1881		return 0;
1882	}
1883
1884	map_bh(bh, inode->i_sb, map.m_pblk);
1885	ext4_update_bh_state(bh, map.m_flags);
1886
1887	if (buffer_unwritten(bh)) {
1888		/* A delayed write to unwritten bh should be marked
1889		 * new and mapped.  Mapped ensures that we don't do
1890		 * get_block multiple times when we write to the same
1891		 * offset and new ensures that we do proper zero out
1892		 * for partial write.
1893		 */
1894		set_buffer_new(bh);
1895		set_buffer_mapped(bh);
1896	}
1897	return 0;
1898}
1899
1900static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
 
 
 
 
 
 
1901{
1902	mpd->first_page += folio_nr_pages(folio);
1903	folio_unlock(folio);
1904}
1905
1906static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
 
1907{
1908	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	loff_t size;
1910	int err;
1911
1912	BUG_ON(folio->index != mpd->first_page);
1913	folio_clear_dirty_for_io(folio);
1914	/*
1915	 * We have to be very careful here!  Nothing protects writeback path
1916	 * against i_size changes and the page can be writeably mapped into
1917	 * page tables. So an application can be growing i_size and writing
1918	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919	 * write-protects our page in page tables and the page cannot get
1920	 * written to again until we release folio lock. So only after
1921	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923	 * on the barrier provided by folio_test_clear_dirty() in
1924	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925	 * after page tables are updated.
1926	 */
1927	size = i_size_read(mpd->inode);
1928	len = folio_size(folio);
1929	if (folio_pos(folio) + len > size &&
1930	    !ext4_verity_in_progress(mpd->inode))
1931		len = size & (len - 1);
1932	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933	if (!err)
1934		mpd->wbc->nr_to_write--;
 
1935
1936	return err;
1937}
1938
1939#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941/*
1942 * mballoc gives us at most this number of blocks...
1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944 * The rest of mballoc seems to handle chunks up to full group size.
1945 */
1946#define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948/*
1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950 *
1951 * @mpd - extent of blocks
1952 * @lblk - logical number of the block in the file
1953 * @bh - buffer head we want to add to the extent
1954 *
1955 * The function is used to collect contig. blocks in the same state. If the
1956 * buffer doesn't require mapping for writeback and we haven't started the
1957 * extent of buffers to map yet, the function returns 'true' immediately - the
1958 * caller can write the buffer right away. Otherwise the function returns true
1959 * if the block has been added to the extent, false if the block couldn't be
1960 * added.
1961 */
1962static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963				   struct buffer_head *bh)
1964{
1965	struct ext4_map_blocks *map = &mpd->map;
1966
1967	/* Buffer that doesn't need mapping for writeback? */
1968	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970		/* So far no extent to map => we write the buffer right away */
1971		if (map->m_len == 0)
1972			return true;
1973		return false;
1974	}
1975
1976	/* First block in the extent? */
1977	if (map->m_len == 0) {
1978		/* We cannot map unless handle is started... */
1979		if (!mpd->do_map)
1980			return false;
1981		map->m_lblk = lblk;
1982		map->m_len = 1;
1983		map->m_flags = bh->b_state & BH_FLAGS;
1984		return true;
1985	}
1986
1987	/* Don't go larger than mballoc is willing to allocate */
1988	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989		return false;
1990
1991	/* Can we merge the block to our big extent? */
1992	if (lblk == map->m_lblk + map->m_len &&
1993	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1994		map->m_len++;
1995		return true;
1996	}
1997	return false;
1998}
1999
2000/*
2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002 *
2003 * @mpd - extent of blocks for mapping
2004 * @head - the first buffer in the page
2005 * @bh - buffer we should start processing from
2006 * @lblk - logical number of the block in the file corresponding to @bh
2007 *
2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009 * the page for IO if all buffers in this page were mapped and there's no
2010 * accumulated extent of buffers to map or add buffers in the page to the
2011 * extent of buffers to map. The function returns 1 if the caller can continue
2012 * by processing the next page, 0 if it should stop adding buffers to the
2013 * extent to map because we cannot extend it anymore. It can also return value
2014 * < 0 in case of error during IO submission.
2015 */
2016static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017				   struct buffer_head *head,
2018				   struct buffer_head *bh,
2019				   ext4_lblk_t lblk)
2020{
2021	struct inode *inode = mpd->inode;
2022	int err;
2023	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024							>> inode->i_blkbits;
2025
2026	if (ext4_verity_in_progress(inode))
2027		blocks = EXT_MAX_BLOCKS;
2028
2029	do {
2030		BUG_ON(buffer_locked(bh));
2031
2032		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033			/* Found extent to map? */
2034			if (mpd->map.m_len)
2035				return 0;
2036			/* Buffer needs mapping and handle is not started? */
2037			if (!mpd->do_map)
2038				return 0;
2039			/* Everything mapped so far and we hit EOF */
2040			break;
2041		}
2042	} while (lblk++, (bh = bh->b_this_page) != head);
2043	/* So far everything mapped? Submit the page for IO. */
2044	if (mpd->map.m_len == 0) {
2045		err = mpage_submit_folio(mpd, head->b_folio);
2046		if (err < 0)
2047			return err;
2048		mpage_folio_done(mpd, head->b_folio);
2049	}
2050	if (lblk >= blocks) {
2051		mpd->scanned_until_end = 1;
2052		return 0;
2053	}
2054	return 1;
2055}
2056
2057/*
2058 * mpage_process_folio - update folio buffers corresponding to changed extent
2059 *			 and may submit fully mapped page for IO
2060 * @mpd: description of extent to map, on return next extent to map
2061 * @folio: Contains these buffers.
2062 * @m_lblk: logical block mapping.
2063 * @m_pblk: corresponding physical mapping.
2064 * @map_bh: determines on return whether this page requires any further
2065 *		  mapping or not.
2066 *
2067 * Scan given folio buffers corresponding to changed extent and update buffer
2068 * state according to new extent state.
2069 * We map delalloc buffers to their physical location, clear unwritten bits.
2070 * If the given folio is not fully mapped, we update @mpd to the next extent in
2071 * the given folio that needs mapping & return @map_bh as true.
2072 */
2073static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075			      bool *map_bh)
2076{
2077	struct buffer_head *head, *bh;
2078	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079	ext4_lblk_t lblk = *m_lblk;
2080	ext4_fsblk_t pblock = *m_pblk;
2081	int err = 0;
2082	int blkbits = mpd->inode->i_blkbits;
2083	ssize_t io_end_size = 0;
2084	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086	bh = head = folio_buffers(folio);
2087	do {
2088		if (lblk < mpd->map.m_lblk)
2089			continue;
2090		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091			/*
2092			 * Buffer after end of mapped extent.
2093			 * Find next buffer in the folio to map.
2094			 */
2095			mpd->map.m_len = 0;
2096			mpd->map.m_flags = 0;
2097			io_end_vec->size += io_end_size;
2098
2099			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100			if (err > 0)
2101				err = 0;
2102			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103				io_end_vec = ext4_alloc_io_end_vec(io_end);
2104				if (IS_ERR(io_end_vec)) {
2105					err = PTR_ERR(io_end_vec);
2106					goto out;
2107				}
2108				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109			}
2110			*map_bh = true;
2111			goto out;
2112		}
2113		if (buffer_delay(bh)) {
2114			clear_buffer_delay(bh);
2115			bh->b_blocknr = pblock++;
2116		}
2117		clear_buffer_unwritten(bh);
2118		io_end_size += (1 << blkbits);
2119	} while (lblk++, (bh = bh->b_this_page) != head);
2120
2121	io_end_vec->size += io_end_size;
2122	*map_bh = false;
2123out:
2124	*m_lblk = lblk;
2125	*m_pblk = pblock;
2126	return err;
2127}
2128
2129/*
2130 * mpage_map_buffers - update buffers corresponding to changed extent and
2131 *		       submit fully mapped pages for IO
2132 *
2133 * @mpd - description of extent to map, on return next extent to map
2134 *
2135 * Scan buffers corresponding to changed extent (we expect corresponding pages
2136 * to be already locked) and update buffer state according to new extent state.
2137 * We map delalloc buffers to their physical location, clear unwritten bits,
2138 * and mark buffers as uninit when we perform writes to unwritten extents
2139 * and do extent conversion after IO is finished. If the last page is not fully
2140 * mapped, we update @map to the next extent in the last page that needs
2141 * mapping. Otherwise we submit the page for IO.
2142 */
2143static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144{
2145	struct folio_batch fbatch;
2146	unsigned nr, i;
2147	struct inode *inode = mpd->inode;
 
2148	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149	pgoff_t start, end;
2150	ext4_lblk_t lblk;
2151	ext4_fsblk_t pblock;
2152	int err;
2153	bool map_bh = false;
2154
2155	start = mpd->map.m_lblk >> bpp_bits;
2156	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157	lblk = start << bpp_bits;
2158	pblock = mpd->map.m_pblk;
2159
2160	folio_batch_init(&fbatch);
2161	while (start <= end) {
2162		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163		if (nr == 0)
 
2164			break;
2165		for (i = 0; i < nr; i++) {
2166			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169						 &map_bh);
2170			/*
2171			 * If map_bh is true, means page may require further bh
2172			 * mapping, or maybe the page was submitted for IO.
2173			 * So we return to call further extent mapping.
2174			 */
2175			if (err < 0 || map_bh)
2176				goto out;
2177			/* Page fully mapped - let IO run! */
2178			err = mpage_submit_folio(mpd, folio);
2179			if (err < 0)
2180				goto out;
2181			mpage_folio_done(mpd, folio);
 
2182		}
2183		folio_batch_release(&fbatch);
2184	}
2185	/* Extent fully mapped and matches with page boundary. We are done. */
2186	mpd->map.m_len = 0;
2187	mpd->map.m_flags = 0;
2188	return 0;
2189out:
2190	folio_batch_release(&fbatch);
2191	return err;
2192}
2193
2194static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195{
2196	struct inode *inode = mpd->inode;
2197	struct ext4_map_blocks *map = &mpd->map;
2198	int get_blocks_flags;
2199	int err, dioread_nolock;
2200
2201	trace_ext4_da_write_pages_extent(inode, map);
2202	/*
2203	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204	 * to convert an unwritten extent to be initialized (in the case
2205	 * where we have written into one or more preallocated blocks).  It is
2206	 * possible that we're going to need more metadata blocks than
2207	 * previously reserved. However we must not fail because we're in
2208	 * writeback and there is nothing we can do about it so it might result
2209	 * in data loss.  So use reserved blocks to allocate metadata if
2210	 * possible.
 
 
 
 
 
2211	 */
2212	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214			   EXT4_GET_BLOCKS_IO_SUBMIT;
2215	dioread_nolock = ext4_should_dioread_nolock(inode);
2216	if (dioread_nolock)
2217		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
 
 
2218
2219	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220	if (err < 0)
2221		return err;
2222	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223		if (!mpd->io_submit.io_end->handle &&
2224		    ext4_handle_valid(handle)) {
2225			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226			handle->h_rsv_handle = NULL;
2227		}
2228		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229	}
2230
2231	BUG_ON(map->m_len == 0);
 
 
 
 
2232	return 0;
2233}
2234
2235/*
2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237 *				 mpd->len and submit pages underlying it for IO
2238 *
2239 * @handle - handle for journal operations
2240 * @mpd - extent to map
2241 * @give_up_on_write - we set this to true iff there is a fatal error and there
2242 *                     is no hope of writing the data. The caller should discard
2243 *                     dirty pages to avoid infinite loops.
2244 *
2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247 * them to initialized or split the described range from larger unwritten
2248 * extent. Note that we need not map all the described range since allocation
2249 * can return less blocks or the range is covered by more unwritten extents. We
2250 * cannot map more because we are limited by reserved transaction credits. On
2251 * the other hand we always make sure that the last touched page is fully
2252 * mapped so that it can be written out (and thus forward progress is
2253 * guaranteed). After mapping we submit all mapped pages for IO.
2254 */
2255static int mpage_map_and_submit_extent(handle_t *handle,
2256				       struct mpage_da_data *mpd,
2257				       bool *give_up_on_write)
2258{
2259	struct inode *inode = mpd->inode;
2260	struct ext4_map_blocks *map = &mpd->map;
2261	int err;
2262	loff_t disksize;
2263	int progress = 0;
2264	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265	struct ext4_io_end_vec *io_end_vec;
2266
2267	io_end_vec = ext4_alloc_io_end_vec(io_end);
2268	if (IS_ERR(io_end_vec))
2269		return PTR_ERR(io_end_vec);
2270	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271	do {
2272		err = mpage_map_one_extent(handle, mpd);
2273		if (err < 0) {
2274			struct super_block *sb = inode->i_sb;
2275
2276			if (ext4_forced_shutdown(sb))
 
2277				goto invalidate_dirty_pages;
2278			/*
2279			 * Let the uper layers retry transient errors.
2280			 * In the case of ENOSPC, if ext4_count_free_blocks()
2281			 * is non-zero, a commit should free up blocks.
2282			 */
2283			if ((err == -ENOMEM) ||
2284			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285				if (progress)
2286					goto update_disksize;
2287				return err;
2288			}
2289			ext4_msg(sb, KERN_CRIT,
2290				 "Delayed block allocation failed for "
2291				 "inode %lu at logical offset %llu with"
2292				 " max blocks %u with error %d",
2293				 inode->i_ino,
2294				 (unsigned long long)map->m_lblk,
2295				 (unsigned)map->m_len, -err);
2296			ext4_msg(sb, KERN_CRIT,
2297				 "This should not happen!! Data will "
2298				 "be lost\n");
2299			if (err == -ENOSPC)
2300				ext4_print_free_blocks(inode);
2301		invalidate_dirty_pages:
2302			*give_up_on_write = true;
2303			return err;
2304		}
2305		progress = 1;
2306		/*
2307		 * Update buffer state, submit mapped pages, and get us new
2308		 * extent to map
2309		 */
2310		err = mpage_map_and_submit_buffers(mpd);
2311		if (err < 0)
2312			goto update_disksize;
2313	} while (map->m_len);
2314
2315update_disksize:
2316	/*
2317	 * Update on-disk size after IO is submitted.  Races with
2318	 * truncate are avoided by checking i_size under i_data_sem.
2319	 */
2320	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322		int err2;
2323		loff_t i_size;
2324
2325		down_write(&EXT4_I(inode)->i_data_sem);
2326		i_size = i_size_read(inode);
2327		if (disksize > i_size)
2328			disksize = i_size;
2329		if (disksize > EXT4_I(inode)->i_disksize)
2330			EXT4_I(inode)->i_disksize = disksize;
2331		up_write(&EXT4_I(inode)->i_data_sem);
2332		err2 = ext4_mark_inode_dirty(handle, inode);
2333		if (err2) {
2334			ext4_error_err(inode->i_sb, -err2,
2335				       "Failed to mark inode %lu dirty",
2336				       inode->i_ino);
2337		}
2338		if (!err)
2339			err = err2;
2340	}
2341	return err;
2342}
2343
2344/*
2345 * Calculate the total number of credits to reserve for one writepages
2346 * iteration. This is called from ext4_writepages(). We map an extent of
2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349 * bpp - 1 blocks in bpp different extents.
2350 */
2351static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352{
2353	int bpp = ext4_journal_blocks_per_page(inode);
2354
2355	return ext4_meta_trans_blocks(inode,
2356				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357}
2358
2359static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360				     size_t len)
2361{
2362	struct buffer_head *page_bufs = folio_buffers(folio);
2363	struct inode *inode = folio->mapping->host;
2364	int ret, err;
2365
2366	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367				     NULL, do_journal_get_write_access);
2368	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369				     NULL, write_end_fn);
2370	if (ret == 0)
2371		ret = err;
2372	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373	if (ret == 0)
2374		ret = err;
2375	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377	return ret;
2378}
2379
2380static int mpage_journal_page_buffers(handle_t *handle,
2381				      struct mpage_da_data *mpd,
2382				      struct folio *folio)
2383{
2384	struct inode *inode = mpd->inode;
2385	loff_t size = i_size_read(inode);
2386	size_t len = folio_size(folio);
2387
2388	folio_clear_checked(folio);
2389	mpd->wbc->nr_to_write--;
2390
2391	if (folio_pos(folio) + len > size &&
2392	    !ext4_verity_in_progress(inode))
2393		len = size & (len - 1);
2394
2395	return ext4_journal_folio_buffers(handle, folio, len);
2396}
2397
2398/*
2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400 * 				 needing mapping, submit mapped pages
2401 *
2402 * @mpd - where to look for pages
2403 *
2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405 * IO immediately. If we cannot map blocks, we submit just already mapped
2406 * buffers in the page for IO and keep page dirty. When we can map blocks and
2407 * we find a page which isn't mapped we start accumulating extent of buffers
2408 * underlying these pages that needs mapping (formed by either delayed or
2409 * unwritten buffers). We also lock the pages containing these buffers. The
2410 * extent found is returned in @mpd structure (starting at mpd->lblk with
2411 * length mpd->len blocks).
2412 *
2413 * Note that this function can attach bios to one io_end structure which are
2414 * neither logically nor physically contiguous. Although it may seem as an
2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416 * case as we need to track IO to all buffers underlying a page in one io_end.
2417 */
2418static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419{
2420	struct address_space *mapping = mpd->inode->i_mapping;
2421	struct folio_batch fbatch;
2422	unsigned int nr_folios;
 
2423	pgoff_t index = mpd->first_page;
2424	pgoff_t end = mpd->last_page;
2425	xa_mark_t tag;
2426	int i, err = 0;
2427	int blkbits = mpd->inode->i_blkbits;
2428	ext4_lblk_t lblk;
2429	struct buffer_head *head;
2430	handle_t *handle = NULL;
2431	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434		tag = PAGECACHE_TAG_TOWRITE;
2435	else
2436		tag = PAGECACHE_TAG_DIRTY;
2437
 
2438	mpd->map.m_len = 0;
2439	mpd->next_page = index;
2440	if (ext4_should_journal_data(mpd->inode)) {
2441		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442					    bpp);
2443		if (IS_ERR(handle))
2444			return PTR_ERR(handle);
2445	}
2446	folio_batch_init(&fbatch);
2447	while (index <= end) {
2448		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449				tag, &fbatch);
2450		if (nr_folios == 0)
2451			break;
2452
2453		for (i = 0; i < nr_folios; i++) {
2454			struct folio *folio = fbatch.folios[i];
2455
2456			/*
2457			 * Accumulated enough dirty pages? This doesn't apply
2458			 * to WB_SYNC_ALL mode. For integrity sync we have to
2459			 * keep going because someone may be concurrently
2460			 * dirtying pages, and we might have synced a lot of
2461			 * newly appeared dirty pages, but have not synced all
2462			 * of the old dirty pages.
2463			 */
2464			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465			    mpd->wbc->nr_to_write <=
2466			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467				goto out;
2468
2469			/* If we can't merge this page, we are done. */
2470			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471				goto out;
2472
2473			if (handle) {
2474				err = ext4_journal_ensure_credits(handle, bpp,
2475								  0);
2476				if (err < 0)
2477					goto out;
2478			}
2479
2480			folio_lock(folio);
2481			/*
2482			 * If the page is no longer dirty, or its mapping no
2483			 * longer corresponds to inode we are writing (which
2484			 * means it has been truncated or invalidated), or the
2485			 * page is already under writeback and we are not doing
2486			 * a data integrity writeback, skip the page
2487			 */
2488			if (!folio_test_dirty(folio) ||
2489			    (folio_test_writeback(folio) &&
2490			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491			    unlikely(folio->mapping != mapping)) {
2492				folio_unlock(folio);
2493				continue;
2494			}
2495
2496			folio_wait_writeback(folio);
2497			BUG_ON(folio_test_writeback(folio));
2498
2499			/*
2500			 * Should never happen but for buggy code in
2501			 * other subsystems that call
2502			 * set_page_dirty() without properly warning
2503			 * the file system first.  See [1] for more
2504			 * information.
2505			 *
2506			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507			 */
2508			if (!folio_buffers(folio)) {
2509				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510				folio_clear_dirty(folio);
2511				folio_unlock(folio);
2512				continue;
2513			}
2514
2515			if (mpd->map.m_len == 0)
2516				mpd->first_page = folio->index;
2517			mpd->next_page = folio_next_index(folio);
2518			/*
2519			 * Writeout when we cannot modify metadata is simple.
2520			 * Just submit the page. For data=journal mode we
2521			 * first handle writeout of the page for checkpoint and
2522			 * only after that handle delayed page dirtying. This
2523			 * makes sure current data is checkpointed to the final
2524			 * location before possibly journalling it again which
2525			 * is desirable when the page is frequently dirtied
2526			 * through a pin.
2527			 */
2528			if (!mpd->can_map) {
2529				err = mpage_submit_folio(mpd, folio);
2530				if (err < 0)
2531					goto out;
2532				/* Pending dirtying of journalled data? */
2533				if (folio_test_checked(folio)) {
2534					err = mpage_journal_page_buffers(handle,
2535						mpd, folio);
2536					if (err < 0)
2537						goto out;
2538					mpd->journalled_more_data = 1;
2539				}
2540				mpage_folio_done(mpd, folio);
2541			} else {
2542				/* Add all dirty buffers to mpd */
2543				lblk = ((ext4_lblk_t)folio->index) <<
2544					(PAGE_SHIFT - blkbits);
2545				head = folio_buffers(folio);
2546				err = mpage_process_page_bufs(mpd, head, head,
2547						lblk);
2548				if (err <= 0)
2549					goto out;
2550				err = 0;
2551			}
2552		}
2553		folio_batch_release(&fbatch);
2554		cond_resched();
2555	}
2556	mpd->scanned_until_end = 1;
2557	if (handle)
2558		ext4_journal_stop(handle);
2559	return 0;
2560out:
2561	folio_batch_release(&fbatch);
2562	if (handle)
2563		ext4_journal_stop(handle);
2564	return err;
2565}
2566
2567static int ext4_do_writepages(struct mpage_da_data *mpd)
 
2568{
2569	struct writeback_control *wbc = mpd->wbc;
2570	pgoff_t	writeback_index = 0;
2571	long nr_to_write = wbc->nr_to_write;
2572	int range_whole = 0;
2573	int cycled = 1;
2574	handle_t *handle = NULL;
2575	struct inode *inode = mpd->inode;
2576	struct address_space *mapping = inode->i_mapping;
2577	int needed_blocks, rsv_blocks = 0, ret = 0;
2578	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
 
2579	struct blk_plug plug;
2580	bool give_up_on_write = false;
2581
 
 
 
 
2582	trace_ext4_writepages(inode, wbc);
2583
2584	/*
2585	 * No pages to write? This is mainly a kludge to avoid starting
2586	 * a transaction for special inodes like journal inode on last iput()
2587	 * because that could violate lock ordering on umount
2588	 */
2589	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590		goto out_writepages;
2591
 
 
 
 
 
2592	/*
2593	 * If the filesystem has aborted, it is read-only, so return
2594	 * right away instead of dumping stack traces later on that
2595	 * will obscure the real source of the problem.  We test
2596	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597	 * the latter could be true if the filesystem is mounted
2598	 * read-only, and in that case, ext4_writepages should
2599	 * *never* be called, so if that ever happens, we would want
2600	 * the stack trace.
2601	 */
2602	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
 
2603		ret = -EROFS;
2604		goto out_writepages;
2605	}
2606
 
 
 
 
 
 
 
 
2607	/*
2608	 * If we have inline data and arrive here, it means that
2609	 * we will soon create the block for the 1st page, so
2610	 * we'd better clear the inline data here.
2611	 */
2612	if (ext4_has_inline_data(inode)) {
2613		/* Just inode will be modified... */
2614		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615		if (IS_ERR(handle)) {
2616			ret = PTR_ERR(handle);
2617			goto out_writepages;
2618		}
2619		BUG_ON(ext4_test_inode_state(inode,
2620				EXT4_STATE_MAY_INLINE_DATA));
2621		ext4_destroy_inline_data(handle, inode);
2622		ext4_journal_stop(handle);
2623	}
2624
2625	/*
2626	 * data=journal mode does not do delalloc so we just need to writeout /
2627	 * journal already mapped buffers. On the other hand we need to commit
2628	 * transaction to make data stable. We expect all the data to be
2629	 * already in the journal (the only exception are DMA pinned pages
2630	 * dirtied behind our back) so we commit transaction here and run the
2631	 * writeback loop to checkpoint them. The checkpointing is not actually
2632	 * necessary to make data persistent *but* quite a few places (extent
2633	 * shifting operations, fsverity, ...) depend on being able to drop
2634	 * pagecache pages after calling filemap_write_and_wait() and for that
2635	 * checkpointing needs to happen.
2636	 */
2637	if (ext4_should_journal_data(inode)) {
2638		mpd->can_map = 0;
2639		if (wbc->sync_mode == WB_SYNC_ALL)
2640			ext4_fc_commit(sbi->s_journal,
2641				       EXT4_I(inode)->i_datasync_tid);
2642	}
2643	mpd->journalled_more_data = 0;
2644
2645	if (ext4_should_dioread_nolock(inode)) {
2646		/*
2647		 * We may need to convert up to one extent per block in
2648		 * the page and we may dirty the inode.
2649		 */
2650		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651						PAGE_SIZE >> inode->i_blkbits);
2652	}
2653
2654	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655		range_whole = 1;
2656
2657	if (wbc->range_cyclic) {
2658		writeback_index = mapping->writeback_index;
2659		if (writeback_index)
2660			cycled = 0;
2661		mpd->first_page = writeback_index;
2662		mpd->last_page = -1;
2663	} else {
2664		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666	}
2667
2668	ext4_io_submit_init(&mpd->io_submit, wbc);
 
 
2669retry:
2670	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671		tag_pages_for_writeback(mapping, mpd->first_page,
2672					mpd->last_page);
2673	blk_start_plug(&plug);
2674
2675	/*
2676	 * First writeback pages that don't need mapping - we can avoid
2677	 * starting a transaction unnecessarily and also avoid being blocked
2678	 * in the block layer on device congestion while having transaction
2679	 * started.
2680	 */
2681	mpd->do_map = 0;
2682	mpd->scanned_until_end = 0;
2683	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684	if (!mpd->io_submit.io_end) {
2685		ret = -ENOMEM;
2686		goto unplug;
2687	}
2688	ret = mpage_prepare_extent_to_map(mpd);
2689	/* Unlock pages we didn't use */
2690	mpage_release_unused_pages(mpd, false);
2691	/* Submit prepared bio */
2692	ext4_io_submit(&mpd->io_submit);
2693	ext4_put_io_end_defer(mpd->io_submit.io_end);
2694	mpd->io_submit.io_end = NULL;
 
 
2695	if (ret < 0)
2696		goto unplug;
2697
2698	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699		/* For each extent of pages we use new io_end */
2700		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701		if (!mpd->io_submit.io_end) {
2702			ret = -ENOMEM;
2703			break;
2704		}
2705
2706		WARN_ON_ONCE(!mpd->can_map);
2707		/*
2708		 * We have two constraints: We find one extent to map and we
2709		 * must always write out whole page (makes a difference when
2710		 * blocksize < pagesize) so that we don't block on IO when we
2711		 * try to write out the rest of the page. Journalled mode is
2712		 * not supported by delalloc.
2713		 */
2714		BUG_ON(ext4_should_journal_data(inode));
2715		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717		/* start a new transaction */
2718		handle = ext4_journal_start_with_reserve(inode,
2719				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720		if (IS_ERR(handle)) {
2721			ret = PTR_ERR(handle);
2722			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723			       "%ld pages, ino %lu; err %d", __func__,
2724				wbc->nr_to_write, inode->i_ino, ret);
2725			/* Release allocated io_end */
2726			ext4_put_io_end(mpd->io_submit.io_end);
2727			mpd->io_submit.io_end = NULL;
2728			break;
2729		}
2730		mpd->do_map = 1;
2731
2732		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733		ret = mpage_prepare_extent_to_map(mpd);
2734		if (!ret && mpd->map.m_len)
2735			ret = mpage_map_and_submit_extent(handle, mpd,
 
2736					&give_up_on_write);
 
 
 
 
 
 
 
 
 
 
2737		/*
2738		 * Caution: If the handle is synchronous,
2739		 * ext4_journal_stop() can wait for transaction commit
2740		 * to finish which may depend on writeback of pages to
2741		 * complete or on page lock to be released.  In that
2742		 * case, we have to wait until after we have
2743		 * submitted all the IO, released page locks we hold,
2744		 * and dropped io_end reference (for extent conversion
2745		 * to be able to complete) before stopping the handle.
2746		 */
2747		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748			ext4_journal_stop(handle);
2749			handle = NULL;
2750			mpd->do_map = 0;
2751		}
2752		/* Unlock pages we didn't use */
2753		mpage_release_unused_pages(mpd, give_up_on_write);
2754		/* Submit prepared bio */
2755		ext4_io_submit(&mpd->io_submit);
2756
 
2757		/*
2758		 * Drop our io_end reference we got from init. We have
2759		 * to be careful and use deferred io_end finishing if
2760		 * we are still holding the transaction as we can
2761		 * release the last reference to io_end which may end
2762		 * up doing unwritten extent conversion.
2763		 */
2764		if (handle) {
2765			ext4_put_io_end_defer(mpd->io_submit.io_end);
2766			ext4_journal_stop(handle);
2767		} else
2768			ext4_put_io_end(mpd->io_submit.io_end);
2769		mpd->io_submit.io_end = NULL;
2770
2771		if (ret == -ENOSPC && sbi->s_journal) {
2772			/*
2773			 * Commit the transaction which would
2774			 * free blocks released in the transaction
2775			 * and try again
2776			 */
2777			jbd2_journal_force_commit_nested(sbi->s_journal);
2778			ret = 0;
2779			continue;
2780		}
2781		/* Fatal error - ENOMEM, EIO... */
2782		if (ret)
2783			break;
2784	}
2785unplug:
2786	blk_finish_plug(&plug);
2787	if (!ret && !cycled && wbc->nr_to_write > 0) {
2788		cycled = 1;
2789		mpd->last_page = writeback_index - 1;
2790		mpd->first_page = 0;
2791		goto retry;
2792	}
2793
2794	/* Update index */
2795	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796		/*
2797		 * Set the writeback_index so that range_cyclic
2798		 * mode will write it back later
2799		 */
2800		mapping->writeback_index = mpd->first_page;
2801
2802out_writepages:
2803	trace_ext4_writepages_result(inode, wbc, ret,
2804				     nr_to_write - wbc->nr_to_write);
 
2805	return ret;
2806}
2807
2808static int ext4_writepages(struct address_space *mapping,
2809			   struct writeback_control *wbc)
2810{
2811	struct super_block *sb = mapping->host->i_sb;
2812	struct mpage_da_data mpd = {
2813		.inode = mapping->host,
2814		.wbc = wbc,
2815		.can_map = 1,
2816	};
2817	int ret;
2818	int alloc_ctx;
2819
2820	if (unlikely(ext4_forced_shutdown(sb)))
2821		return -EIO;
2822
2823	alloc_ctx = ext4_writepages_down_read(sb);
2824	ret = ext4_do_writepages(&mpd);
2825	/*
2826	 * For data=journal writeback we could have come across pages marked
2827	 * for delayed dirtying (PageChecked) which were just added to the
2828	 * running transaction. Try once more to get them to stable storage.
2829	 */
2830	if (!ret && mpd.journalled_more_data)
2831		ret = ext4_do_writepages(&mpd);
2832	ext4_writepages_up_read(sb, alloc_ctx);
2833
2834	return ret;
2835}
2836
2837int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838{
2839	struct writeback_control wbc = {
2840		.sync_mode = WB_SYNC_ALL,
2841		.nr_to_write = LONG_MAX,
2842		.range_start = jinode->i_dirty_start,
2843		.range_end = jinode->i_dirty_end,
2844	};
2845	struct mpage_da_data mpd = {
2846		.inode = jinode->i_vfs_inode,
2847		.wbc = &wbc,
2848		.can_map = 0,
2849	};
2850	return ext4_do_writepages(&mpd);
2851}
2852
2853static int ext4_dax_writepages(struct address_space *mapping,
2854			       struct writeback_control *wbc)
2855{
2856	int ret;
2857	long nr_to_write = wbc->nr_to_write;
2858	struct inode *inode = mapping->host;
2859	int alloc_ctx;
2860
2861	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862		return -EIO;
2863
2864	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865	trace_ext4_writepages(inode, wbc);
2866
2867	ret = dax_writeback_mapping_range(mapping,
2868					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869	trace_ext4_writepages_result(inode, wbc, ret,
2870				     nr_to_write - wbc->nr_to_write);
2871	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872	return ret;
2873}
2874
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877	s64 free_clusters, dirty_clusters;
2878	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880	/*
2881	 * switch to non delalloc mode if we are running low
2882	 * on free block. The free block accounting via percpu
2883	 * counters can get slightly wrong with percpu_counter_batch getting
2884	 * accumulated on each CPU without updating global counters
2885	 * Delalloc need an accurate free block accounting. So switch
2886	 * to non delalloc when we are near to error range.
2887	 */
2888	free_clusters =
2889		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890	dirty_clusters =
2891		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892	/*
2893	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894	 */
2895	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898	if (2 * free_clusters < 3 * dirty_clusters ||
2899	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900		/*
2901		 * free block count is less than 150% of dirty blocks
2902		 * or free blocks is less than watermark
2903		 */
2904		return 1;
2905	}
2906	return 0;
2907}
2908
 
 
 
 
 
 
 
 
 
 
 
 
 
2909static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910			       loff_t pos, unsigned len,
2911			       struct folio **foliop, void **fsdata)
2912{
2913	int ret, retries = 0;
2914	struct folio *folio;
2915	pgoff_t index;
2916	struct inode *inode = mapping->host;
 
2917
2918	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919		return -EIO;
2920
2921	index = pos >> PAGE_SHIFT;
2922
2923	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
 
2924		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925		return ext4_write_begin(file, mapping, pos,
2926					len, foliop, fsdata);
2927	}
2928	*fsdata = (void *)0;
2929	trace_ext4_da_write_begin(inode, pos, len);
2930
2931	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933						      foliop, fsdata);
 
2934		if (ret < 0)
2935			return ret;
2936		if (ret == 1)
2937			return 0;
2938	}
2939
2940retry:
2941	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942			mapping_gfp_mask(mapping));
2943	if (IS_ERR(folio))
2944		return PTR_ERR(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945
2946	ret = ext4_block_write_begin(NULL, folio, pos, len,
 
 
 
 
 
 
 
 
 
 
 
 
2947				     ext4_da_get_block_prep);
 
 
 
2948	if (ret < 0) {
2949		folio_unlock(folio);
2950		folio_put(folio);
2951		/*
2952		 * block_write_begin may have instantiated a few blocks
2953		 * outside i_size.  Trim these off again. Don't need
2954		 * i_size_read because we hold inode lock.
2955		 */
2956		if (pos + len > inode->i_size)
2957			ext4_truncate_failed_write(inode);
2958
2959		if (ret == -ENOSPC &&
2960		    ext4_should_retry_alloc(inode->i_sb, &retries))
2961			goto retry;
 
 
2962		return ret;
2963	}
2964
2965	*foliop = folio;
2966	return ret;
2967}
2968
2969/*
2970 * Check if we should update i_disksize
2971 * when write to the end of file but not require block allocation
2972 */
2973static int ext4_da_should_update_i_disksize(struct folio *folio,
2974					    unsigned long offset)
2975{
2976	struct buffer_head *bh;
2977	struct inode *inode = folio->mapping->host;
2978	unsigned int idx;
2979	int i;
2980
2981	bh = folio_buffers(folio);
2982	idx = offset >> inode->i_blkbits;
2983
2984	for (i = 0; i < idx; i++)
2985		bh = bh->b_this_page;
2986
2987	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988		return 0;
2989	return 1;
2990}
2991
2992static int ext4_da_do_write_end(struct address_space *mapping,
2993			loff_t pos, unsigned len, unsigned copied,
2994			struct folio *folio)
 
2995{
2996	struct inode *inode = mapping->host;
2997	loff_t old_size = inode->i_size;
2998	bool disksize_changed = false;
2999	loff_t new_i_size, zero_len = 0;
3000	handle_t *handle;
 
 
 
 
 
 
 
 
 
3001
3002	if (unlikely(!folio_buffers(folio))) {
3003		folio_unlock(folio);
3004		folio_put(folio);
3005		return -EIO;
3006	}
3007	/*
3008	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009	 * flag, which all that's needed to trigger page writeback.
 
3010	 */
3011	copied = block_write_end(NULL, mapping, pos, len, copied,
3012			folio, NULL);
3013	new_i_size = pos + copied;
3014
3015	/*
3016	 * It's important to update i_size while still holding folio lock,
3017	 * because folio writeout could otherwise come in and zero beyond
3018	 * i_size.
3019	 *
3020	 * Since we are holding inode lock, we are sure i_disksize <=
3021	 * i_size. We also know that if i_disksize < i_size, there are
3022	 * delalloc writes pending in the range up to i_size. If the end of
3023	 * the current write is <= i_size, there's no need to touch
3024	 * i_disksize since writeback will push i_disksize up to i_size
3025	 * eventually. If the end of the current write is > i_size and
3026	 * inside an allocated block which ext4_da_should_update_i_disksize()
3027	 * checked, we need to update i_disksize here as certain
3028	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029	 */
3030	if (new_i_size > inode->i_size) {
3031		unsigned long end;
3032
3033		i_size_write(inode, new_i_size);
3034		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036			ext4_update_i_disksize(inode, new_i_size);
3037			disksize_changed = true;
 
 
 
 
3038		}
3039	}
3040
3041	folio_unlock(folio);
3042	folio_put(folio);
3043
3044	if (pos > old_size) {
3045		pagecache_isize_extended(inode, old_size, pos);
3046		zero_len = pos - old_size;
3047	}
3048
3049	if (!disksize_changed && !zero_len)
3050		return copied;
3051
3052	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053	if (IS_ERR(handle))
3054		return PTR_ERR(handle);
3055	if (zero_len)
3056		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057	ext4_mark_inode_dirty(handle, inode);
3058	ext4_journal_stop(handle);
3059
3060	return copied;
3061}
3062
3063static int ext4_da_write_end(struct file *file,
3064			     struct address_space *mapping,
3065			     loff_t pos, unsigned len, unsigned copied,
3066			     struct folio *folio, void *fsdata)
3067{
3068	struct inode *inode = mapping->host;
3069	int write_mode = (int)(unsigned long)fsdata;
3070
3071	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072		return ext4_write_end(file, mapping, pos,
3073				      len, copied, folio, fsdata);
3074
3075	trace_ext4_da_write_end(inode, pos, len, copied);
3076
3077	if (write_mode != CONVERT_INLINE_DATA &&
3078	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079	    ext4_has_inline_data(inode))
3080		return ext4_write_inline_data_end(inode, pos, len, copied,
3081						  folio);
3082
3083	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084		copied = 0;
3085
3086	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087}
3088
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
3094	trace_ext4_alloc_da_blocks(inode);
3095
3096	if (!EXT4_I(inode)->i_reserved_data_blocks)
3097		return 0;
3098
3099	/*
3100	 * We do something simple for now.  The filemap_flush() will
3101	 * also start triggering a write of the data blocks, which is
3102	 * not strictly speaking necessary (and for users of
3103	 * laptop_mode, not even desirable).  However, to do otherwise
3104	 * would require replicating code paths in:
3105	 *
3106	 * ext4_writepages() ->
3107	 *    write_cache_pages() ---> (via passed in callback function)
3108	 *        __mpage_da_writepage() -->
3109	 *           mpage_add_bh_to_extent()
3110	 *           mpage_da_map_blocks()
3111	 *
3112	 * The problem is that write_cache_pages(), located in
3113	 * mm/page-writeback.c, marks pages clean in preparation for
3114	 * doing I/O, which is not desirable if we're not planning on
3115	 * doing I/O at all.
3116	 *
3117	 * We could call write_cache_pages(), and then redirty all of
3118	 * the pages by calling redirty_page_for_writepage() but that
3119	 * would be ugly in the extreme.  So instead we would need to
3120	 * replicate parts of the code in the above functions,
3121	 * simplifying them because we wouldn't actually intend to
3122	 * write out the pages, but rather only collect contiguous
3123	 * logical block extents, call the multi-block allocator, and
3124	 * then update the buffer heads with the block allocations.
3125	 *
3126	 * For now, though, we'll cheat by calling filemap_flush(),
3127	 * which will map the blocks, and start the I/O, but not
3128	 * actually wait for the I/O to complete.
3129	 */
3130	return filemap_flush(inode->i_mapping);
3131}
3132
3133/*
3134 * bmap() is special.  It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148{
3149	struct inode *inode = mapping->host;
3150	sector_t ret = 0;
 
3151
3152	inode_lock_shared(inode);
3153	/*
3154	 * We can get here for an inline file via the FIBMAP ioctl
3155	 */
3156	if (ext4_has_inline_data(inode))
3157		goto out;
3158
3159	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160	    (test_opt(inode->i_sb, DELALLOC) ||
3161	     ext4_should_journal_data(inode))) {
3162		/*
3163		 * With delalloc or journalled data we want to sync the file so
3164		 * that we can make sure we allocate blocks for file and data
3165		 * is in place for the user to see it
3166		 */
3167		filemap_write_and_wait(mapping);
3168	}
3169
3170	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3171
3172out:
3173	inode_unlock_shared(inode);
3174	return ret;
 
 
 
 
 
 
 
 
3175}
3176
3177static int ext4_read_folio(struct file *file, struct folio *folio)
3178{
3179	int ret = -EAGAIN;
3180	struct inode *inode = folio->mapping->host;
3181
3182	trace_ext4_read_folio(inode, folio);
3183
3184	if (ext4_has_inline_data(inode))
3185		ret = ext4_readpage_inline(inode, folio);
3186
3187	if (ret == -EAGAIN)
3188		return ext4_mpage_readpages(inode, NULL, folio);
3189
3190	return ret;
3191}
3192
3193static void ext4_readahead(struct readahead_control *rac)
 
 
3194{
3195	struct inode *inode = rac->mapping->host;
3196
3197	/* If the file has inline data, no need to do readahead. */
3198	if (ext4_has_inline_data(inode))
3199		return;
3200
3201	ext4_mpage_readpages(inode, rac, NULL);
3202}
3203
3204static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205				size_t length)
3206{
3207	trace_ext4_invalidate_folio(folio, offset, length);
3208
3209	/* No journalling happens on data buffers when this function is used */
3210	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211
3212	block_invalidate_folio(folio, offset, length);
3213}
3214
3215static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216					    size_t offset, size_t length)
 
3217{
3218	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222	/*
3223	 * If it's a full truncate we just forget about the pending dirtying
3224	 */
3225	if (offset == 0 && length == folio_size(folio))
3226		folio_clear_checked(folio);
3227
3228	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229}
3230
3231/* Wrapper for aops... */
3232static void ext4_journalled_invalidate_folio(struct folio *folio,
3233					   size_t offset,
3234					   size_t length)
3235{
3236	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237}
3238
3239static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240{
3241	struct inode *inode = folio->mapping->host;
3242	journal_t *journal = EXT4_JOURNAL(inode);
3243
3244	trace_ext4_release_folio(inode, folio);
3245
3246	/* Page has dirty journalled data -> cannot release */
3247	if (folio_test_checked(folio))
3248		return false;
3249	if (journal)
3250		return jbd2_journal_try_to_free_buffers(journal, folio);
3251	else
3252		return try_to_free_buffers(folio);
3253}
3254
3255static bool ext4_inode_datasync_dirty(struct inode *inode)
3256{
3257	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258
3259	if (journal) {
3260		if (jbd2_transaction_committed(journal,
3261			EXT4_I(inode)->i_datasync_tid))
3262			return false;
3263		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264			return !list_empty(&EXT4_I(inode)->i_fc_list);
3265		return true;
3266	}
3267
3268	/* Any metadata buffers to write? */
3269	if (!list_empty(&inode->i_mapping->i_private_list))
3270		return true;
3271	return inode->i_state & I_DIRTY_DATASYNC;
3272}
3273
3274static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275			   struct ext4_map_blocks *map, loff_t offset,
3276			   loff_t length, unsigned int flags)
3277{
3278	u8 blkbits = inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3279
3280	/*
3281	 * Writes that span EOF might trigger an I/O size update on completion,
3282	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283	 * there is no other metadata changes being made or are pending.
3284	 */
3285	iomap->flags = 0;
3286	if (ext4_inode_datasync_dirty(inode) ||
3287	    offset + length > i_size_read(inode))
3288		iomap->flags |= IOMAP_F_DIRTY;
 
 
 
 
3289
3290	if (map->m_flags & EXT4_MAP_NEW)
3291		iomap->flags |= IOMAP_F_NEW;
3292
3293	if (flags & IOMAP_DAX)
3294		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295	else
3296		iomap->bdev = inode->i_sb->s_bdev;
3297	iomap->offset = (u64) map->m_lblk << blkbits;
3298	iomap->length = (u64) map->m_len << blkbits;
3299
3300	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302		iomap->flags |= IOMAP_F_MERGED;
3303
3304	/*
3305	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307	 * set. In order for any allocated unwritten extents to be converted
3308	 * into written extents correctly within the ->end_io() handler, we
3309	 * need to ensure that the iomap->type is set appropriately. Hence, the
3310	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311	 * been set first.
3312	 */
3313	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314		iomap->type = IOMAP_UNWRITTEN;
3315		iomap->addr = (u64) map->m_pblk << blkbits;
3316		if (flags & IOMAP_DAX)
3317			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3319		iomap->type = IOMAP_MAPPED;
3320		iomap->addr = (u64) map->m_pblk << blkbits;
3321		if (flags & IOMAP_DAX)
3322			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3324		iomap->type = IOMAP_DELALLOC;
3325		iomap->addr = IOMAP_NULL_ADDR;
3326	} else {
3327		iomap->type = IOMAP_HOLE;
3328		iomap->addr = IOMAP_NULL_ADDR;
 
 
 
 
 
 
 
3329	}
 
 
 
 
 
3330}
3331
3332static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333			    unsigned int flags)
3334{
 
3335	handle_t *handle;
3336	u8 blkbits = inode->i_blkbits;
3337	int ret, dio_credits, m_flags = 0, retries = 0;
3338
3339	/*
3340	 * Trim the mapping request to the maximum value that we can map at
3341	 * once for direct I/O.
3342	 */
3343	if (map->m_len > DIO_MAX_BLOCKS)
3344		map->m_len = DIO_MAX_BLOCKS;
3345	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347retry:
3348	/*
3349	 * Either we allocate blocks and then don't get an unwritten extent, so
3350	 * in that case we have reserved enough credits. Or, the blocks are
3351	 * already allocated and unwritten. In that case, the extent conversion
3352	 * fits into the credits as well.
3353	 */
3354	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355	if (IS_ERR(handle))
3356		return PTR_ERR(handle);
3357
 
 
 
 
 
 
 
3358	/*
3359	 * DAX and direct I/O are the only two operations that are currently
3360	 * supported with IOMAP_WRITE.
3361	 */
3362	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363	if (flags & IOMAP_DAX)
3364		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365	/*
3366	 * We use i_size instead of i_disksize here because delalloc writeback
3367	 * can complete at any point during the I/O and subsequently push the
3368	 * i_disksize out to i_size. This could be beyond where direct I/O is
3369	 * happening and thus expose allocated blocks to direct I/O reads.
3370	 */
3371	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372		m_flags = EXT4_GET_BLOCKS_CREATE;
3373	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375
3376	ret = ext4_map_blocks(handle, inode, map, m_flags);
3377
 
 
 
 
 
3378	/*
3379	 * We cannot fill holes in indirect tree based inodes as that could
3380	 * expose stale data in the case of a crash. Use the magic error code
3381	 * to fallback to buffered I/O.
3382	 */
3383	if (!m_flags && !ret)
3384		ret = -ENOTBLK;
3385
3386	ext4_journal_stop(handle);
3387	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388		goto retry;
3389
 
 
 
 
 
 
 
 
3390	return ret;
3391}
3392
 
 
 
 
3393
3394static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396{
3397	int ret;
3398	struct ext4_map_blocks map;
3399	u8 blkbits = inode->i_blkbits;
3400
3401	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402		return -EINVAL;
 
3403
3404	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405		return -ERANGE;
 
3406
3407	/*
3408	 * Calculate the first and last logical blocks respectively.
 
3409	 */
3410	map.m_lblk = offset >> blkbits;
3411	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413
3414	if (flags & IOMAP_WRITE) {
3415		/*
3416		 * We check here if the blocks are already allocated, then we
3417		 * don't need to start a journal txn and we can directly return
3418		 * the mapping information. This could boost performance
3419		 * especially in multi-threaded overwrite requests.
3420		 */
3421		if (offset + length <= i_size_read(inode)) {
3422			ret = ext4_map_blocks(NULL, inode, &map, 0);
3423			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424				goto out;
3425		}
3426		ret = ext4_iomap_alloc(inode, &map, flags);
3427	} else {
3428		ret = ext4_map_blocks(NULL, inode, &map, 0);
3429	}
3430
3431	if (ret < 0)
3432		return ret;
3433out:
3434	/*
3435	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3437	 * limiting the length of the mapping returned.
3438	 */
3439	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443	return 0;
3444}
3445
3446static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447		loff_t length, unsigned flags, struct iomap *iomap,
3448		struct iomap *srcmap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3449{
3450	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451
3452	/*
3453	 * Even for writes we don't need to allocate blocks, so just pretend
3454	 * we are reading to save overhead of starting a transaction.
 
3455	 */
3456	flags &= ~IOMAP_WRITE;
3457	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459	return ret;
3460}
3461
3462static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463{
3464	/* must be a directio to fall back to buffered */
3465	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466		    (IOMAP_WRITE | IOMAP_DIRECT))
3467		return false;
3468
3469	/* atomic writes are all-or-nothing */
3470	if (flags & IOMAP_ATOMIC)
3471		return false;
3472
3473	/* can only try again if we wrote nothing */
3474	return written == 0;
3475}
3476
3477static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478			  ssize_t written, unsigned flags, struct iomap *iomap)
3479{
3480	/*
3481	 * Check to see whether an error occurred while writing out the data to
3482	 * the allocated blocks. If so, return the magic error code for
3483	 * non-atomic write so that we fallback to buffered I/O and attempt to
3484	 * complete the remainder of the I/O.
3485	 * For non-atomic writes, any blocks that may have been
3486	 * allocated in preparation for the direct I/O will be reused during
3487	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488	 */
3489	if (ext4_want_directio_fallback(flags, written))
3490		return -ENOTBLK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3491
3492	return 0;
3493}
 
 
 
 
 
 
 
 
 
 
 
3494
3495const struct iomap_ops ext4_iomap_ops = {
3496	.iomap_begin		= ext4_iomap_begin,
3497	.iomap_end		= ext4_iomap_end,
3498};
3499
3500const struct iomap_ops ext4_iomap_overwrite_ops = {
3501	.iomap_begin		= ext4_iomap_overwrite_begin,
3502	.iomap_end		= ext4_iomap_end,
3503};
3504
3505static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506				   loff_t length, unsigned int flags,
3507				   struct iomap *iomap, struct iomap *srcmap)
3508{
3509	int ret;
3510	struct ext4_map_blocks map;
3511	u8 blkbits = inode->i_blkbits;
3512
3513	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3515
3516	if (ext4_has_inline_data(inode)) {
3517		ret = ext4_inline_data_iomap(inode, iomap);
3518		if (ret != -EAGAIN) {
3519			if (ret == 0 && offset >= iomap->length)
3520				ret = -ENOENT;
3521			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
3522		}
 
 
 
3523	}
 
 
 
 
 
 
 
 
 
 
3524
3525	/*
3526	 * Calculate the first and last logical block respectively.
 
 
3527	 */
3528	map.m_lblk = offset >> blkbits;
3529	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531
3532	/*
3533	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534	 * So handle it here itself instead of querying ext4_map_blocks().
3535	 * Since ext4_map_blocks() will warn about it and will return
3536	 * -EIO error.
3537	 */
3538	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541		if (offset >= sbi->s_bitmap_maxbytes) {
3542			map.m_flags = 0;
3543			goto set_iomap;
3544		}
3545	}
3546
3547	ret = ext4_map_blocks(NULL, inode, &map, 0);
3548	if (ret < 0)
3549		return ret;
3550set_iomap:
3551	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553	return 0;
 
 
 
 
 
 
3554}
3555
3556const struct iomap_ops ext4_iomap_report_ops = {
3557	.iomap_begin = ext4_iomap_begin_report,
3558};
3559
3560/*
3561 * For data=journal mode, folio should be marked dirty only when it was
3562 * writeably mapped. When that happens, it was already attached to the
3563 * transaction and marked as jbddirty (we take care of this in
3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565 * so we should have nothing to do here, except for the case when someone
3566 * had the page pinned and dirtied the page through this pin (e.g. by doing
3567 * direct IO to it). In that case we'd need to attach buffers here to the
3568 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3569 * folio and leave attached buffers clean, because the buffers' dirty state is
3570 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3571 * the journalling code will explode.  So what we do is to mark the folio
3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573 * to the transaction appropriately.
3574 */
3575static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576		struct folio *folio)
3577{
3578	WARN_ON_ONCE(!folio_buffers(folio));
3579	if (folio_maybe_dma_pinned(folio))
3580		folio_set_checked(folio);
3581	return filemap_dirty_folio(mapping, folio);
3582}
3583
3584static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585{
3586	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587	WARN_ON_ONCE(!folio_buffers(folio));
3588	return block_dirty_folio(mapping, folio);
3589}
3590
3591static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592				    struct file *file, sector_t *span)
3593{
3594	return iomap_swapfile_activate(sis, file, span,
3595				       &ext4_iomap_report_ops);
 
3596}
3597
3598static const struct address_space_operations ext4_aops = {
3599	.read_folio		= ext4_read_folio,
3600	.readahead		= ext4_readahead,
 
3601	.writepages		= ext4_writepages,
3602	.write_begin		= ext4_write_begin,
3603	.write_end		= ext4_write_end,
3604	.dirty_folio		= ext4_dirty_folio,
3605	.bmap			= ext4_bmap,
3606	.invalidate_folio	= ext4_invalidate_folio,
3607	.release_folio		= ext4_release_folio,
3608	.migrate_folio		= buffer_migrate_folio,
 
3609	.is_partially_uptodate  = block_is_partially_uptodate,
3610	.error_remove_folio	= generic_error_remove_folio,
3611	.swap_activate		= ext4_iomap_swap_activate,
3612};
3613
3614static const struct address_space_operations ext4_journalled_aops = {
3615	.read_folio		= ext4_read_folio,
3616	.readahead		= ext4_readahead,
 
3617	.writepages		= ext4_writepages,
3618	.write_begin		= ext4_write_begin,
3619	.write_end		= ext4_journalled_write_end,
3620	.dirty_folio		= ext4_journalled_dirty_folio,
3621	.bmap			= ext4_bmap,
3622	.invalidate_folio	= ext4_journalled_invalidate_folio,
3623	.release_folio		= ext4_release_folio,
3624	.migrate_folio		= buffer_migrate_folio_norefs,
3625	.is_partially_uptodate  = block_is_partially_uptodate,
3626	.error_remove_folio	= generic_error_remove_folio,
3627	.swap_activate		= ext4_iomap_swap_activate,
3628};
3629
3630static const struct address_space_operations ext4_da_aops = {
3631	.read_folio		= ext4_read_folio,
3632	.readahead		= ext4_readahead,
 
3633	.writepages		= ext4_writepages,
3634	.write_begin		= ext4_da_write_begin,
3635	.write_end		= ext4_da_write_end,
3636	.dirty_folio		= ext4_dirty_folio,
3637	.bmap			= ext4_bmap,
3638	.invalidate_folio	= ext4_invalidate_folio,
3639	.release_folio		= ext4_release_folio,
3640	.migrate_folio		= buffer_migrate_folio,
 
3641	.is_partially_uptodate  = block_is_partially_uptodate,
3642	.error_remove_folio	= generic_error_remove_folio,
3643	.swap_activate		= ext4_iomap_swap_activate,
3644};
3645
3646static const struct address_space_operations ext4_dax_aops = {
3647	.writepages		= ext4_dax_writepages,
3648	.dirty_folio		= noop_dirty_folio,
3649	.bmap			= ext4_bmap,
3650	.swap_activate		= ext4_iomap_swap_activate,
3651};
3652
3653void ext4_set_aops(struct inode *inode)
3654{
3655	switch (ext4_inode_journal_mode(inode)) {
3656	case EXT4_INODE_ORDERED_DATA_MODE:
3657	case EXT4_INODE_WRITEBACK_DATA_MODE:
3658		break;
3659	case EXT4_INODE_JOURNAL_DATA_MODE:
3660		inode->i_mapping->a_ops = &ext4_journalled_aops;
3661		return;
3662	default:
3663		BUG();
3664	}
3665	if (IS_DAX(inode))
3666		inode->i_mapping->a_ops = &ext4_dax_aops;
3667	else if (test_opt(inode->i_sb, DELALLOC))
3668		inode->i_mapping->a_ops = &ext4_da_aops;
3669	else
3670		inode->i_mapping->a_ops = &ext4_aops;
3671}
3672
3673/*
3674 * Here we can't skip an unwritten buffer even though it usually reads zero
3675 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677 * racing writeback can come later and flush the stale pagecache to disk.
3678 */
3679static int __ext4_block_zero_page_range(handle_t *handle,
3680		struct address_space *mapping, loff_t from, loff_t length)
3681{
3682	ext4_fsblk_t index = from >> PAGE_SHIFT;
3683	unsigned offset = from & (PAGE_SIZE-1);
3684	unsigned blocksize, pos;
3685	ext4_lblk_t iblock;
3686	struct inode *inode = mapping->host;
3687	struct buffer_head *bh;
3688	struct folio *folio;
3689	int err = 0;
3690
3691	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3694	if (IS_ERR(folio))
3695		return PTR_ERR(folio);
3696
3697	blocksize = inode->i_sb->s_blocksize;
3698
3699	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700
3701	bh = folio_buffers(folio);
3702	if (!bh)
3703		bh = create_empty_buffers(folio, blocksize, 0);
3704
3705	/* Find the buffer that contains "offset" */
 
3706	pos = blocksize;
3707	while (offset >= pos) {
3708		bh = bh->b_this_page;
3709		iblock++;
3710		pos += blocksize;
3711	}
3712	if (buffer_freed(bh)) {
3713		BUFFER_TRACE(bh, "freed: skip");
3714		goto unlock;
3715	}
3716	if (!buffer_mapped(bh)) {
3717		BUFFER_TRACE(bh, "unmapped");
3718		ext4_get_block(inode, iblock, bh, 0);
3719		/* unmapped? It's a hole - nothing to do */
3720		if (!buffer_mapped(bh)) {
3721			BUFFER_TRACE(bh, "still unmapped");
3722			goto unlock;
3723		}
3724	}
3725
3726	/* Ok, it's mapped. Make sure it's up-to-date */
3727	if (folio_test_uptodate(folio))
3728		set_buffer_uptodate(bh);
3729
3730	if (!buffer_uptodate(bh)) {
3731		err = ext4_read_bh_lock(bh, 0, true);
3732		if (err)
 
 
 
3733			goto unlock;
3734		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
 
3735			/* We expect the key to be set. */
3736			BUG_ON(!fscrypt_has_encryption_key(inode));
3737			err = fscrypt_decrypt_pagecache_blocks(folio,
3738							       blocksize,
3739							       bh_offset(bh));
3740			if (err) {
3741				clear_buffer_uptodate(bh);
3742				goto unlock;
3743			}
3744		}
3745	}
3746	if (ext4_should_journal_data(inode)) {
3747		BUFFER_TRACE(bh, "get write access");
3748		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749						    EXT4_JTR_NONE);
3750		if (err)
3751			goto unlock;
3752	}
3753	folio_zero_range(folio, offset, length);
3754	BUFFER_TRACE(bh, "zeroed end of block");
3755
3756	if (ext4_should_journal_data(inode)) {
3757		err = ext4_dirty_journalled_data(handle, bh);
3758	} else {
3759		err = 0;
3760		mark_buffer_dirty(bh);
3761		if (ext4_should_order_data(inode))
3762			err = ext4_jbd2_inode_add_write(handle, inode, from,
3763					length);
3764	}
3765
3766unlock:
3767	folio_unlock(folio);
3768	folio_put(folio);
3769	return err;
3770}
3771
3772/*
3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774 * starting from file offset 'from'.  The range to be zero'd must
3775 * be contained with in one block.  If the specified range exceeds
3776 * the end of the block it will be shortened to end of the block
3777 * that corresponds to 'from'
3778 */
3779static int ext4_block_zero_page_range(handle_t *handle,
3780		struct address_space *mapping, loff_t from, loff_t length)
3781{
3782	struct inode *inode = mapping->host;
3783	unsigned offset = from & (PAGE_SIZE-1);
3784	unsigned blocksize = inode->i_sb->s_blocksize;
3785	unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787	/*
3788	 * correct length if it does not fall between
3789	 * 'from' and the end of the block
3790	 */
3791	if (length > max || length < 0)
3792		length = max;
3793
3794	if (IS_DAX(inode)) {
3795		return dax_zero_range(inode, from, length, NULL,
3796				      &ext4_iomap_ops);
3797	}
3798	return __ext4_block_zero_page_range(handle, mapping, from, length);
3799}
3800
3801/*
3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803 * up to the end of the block which corresponds to `from'.
3804 * This required during truncate. We need to physically zero the tail end
3805 * of that block so it doesn't yield old data if the file is later grown.
3806 */
3807static int ext4_block_truncate_page(handle_t *handle,
3808		struct address_space *mapping, loff_t from)
3809{
3810	unsigned offset = from & (PAGE_SIZE-1);
3811	unsigned length;
3812	unsigned blocksize;
3813	struct inode *inode = mapping->host;
3814
3815	/* If we are processing an encrypted inode during orphan list handling */
3816	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817		return 0;
3818
3819	blocksize = inode->i_sb->s_blocksize;
3820	length = blocksize - (offset & (blocksize - 1));
3821
3822	return ext4_block_zero_page_range(handle, mapping, from, length);
3823}
3824
3825int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826			     loff_t lstart, loff_t length)
3827{
3828	struct super_block *sb = inode->i_sb;
3829	struct address_space *mapping = inode->i_mapping;
3830	unsigned partial_start, partial_end;
3831	ext4_fsblk_t start, end;
3832	loff_t byte_end = (lstart + length - 1);
3833	int err = 0;
3834
3835	partial_start = lstart & (sb->s_blocksize - 1);
3836	partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838	start = lstart >> sb->s_blocksize_bits;
3839	end = byte_end >> sb->s_blocksize_bits;
3840
3841	/* Handle partial zero within the single block */
3842	if (start == end &&
3843	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844		err = ext4_block_zero_page_range(handle, mapping,
3845						 lstart, length);
3846		return err;
3847	}
3848	/* Handle partial zero out on the start of the range */
3849	if (partial_start) {
3850		err = ext4_block_zero_page_range(handle, mapping,
3851						 lstart, sb->s_blocksize);
3852		if (err)
3853			return err;
3854	}
3855	/* Handle partial zero out on the end of the range */
3856	if (partial_end != sb->s_blocksize - 1)
3857		err = ext4_block_zero_page_range(handle, mapping,
3858						 byte_end - partial_end,
3859						 partial_end + 1);
3860	return err;
3861}
3862
3863int ext4_can_truncate(struct inode *inode)
3864{
3865	if (S_ISREG(inode->i_mode))
3866		return 1;
3867	if (S_ISDIR(inode->i_mode))
3868		return 1;
3869	if (S_ISLNK(inode->i_mode))
3870		return !ext4_inode_is_fast_symlink(inode);
3871	return 0;
3872}
3873
3874/*
3875 * We have to make sure i_disksize gets properly updated before we truncate
3876 * page cache due to hole punching or zero range. Otherwise i_disksize update
3877 * can get lost as it may have been postponed to submission of writeback but
3878 * that will never happen after we truncate page cache.
3879 */
3880int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881				      loff_t len)
3882{
3883	handle_t *handle;
3884	int ret;
3885
3886	loff_t size = i_size_read(inode);
3887
3888	WARN_ON(!inode_is_locked(inode));
3889	if (offset > size || offset + len < size)
3890		return 0;
3891
3892	if (EXT4_I(inode)->i_disksize >= size)
3893		return 0;
3894
3895	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896	if (IS_ERR(handle))
3897		return PTR_ERR(handle);
3898	ext4_update_i_disksize(inode, size);
3899	ret = ext4_mark_inode_dirty(handle, inode);
3900	ext4_journal_stop(handle);
3901
3902	return ret;
3903}
3904
3905static void ext4_wait_dax_page(struct inode *inode)
3906{
3907	filemap_invalidate_unlock(inode->i_mapping);
3908	schedule();
3909	filemap_invalidate_lock(inode->i_mapping);
3910}
3911
3912int ext4_break_layouts(struct inode *inode)
3913{
3914	struct page *page;
3915	int error;
3916
3917	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918		return -EINVAL;
3919
3920	do {
3921		page = dax_layout_busy_page(inode->i_mapping);
3922		if (!page)
3923			return 0;
3924
3925		error = ___wait_var_event(&page->_refcount,
3926				atomic_read(&page->_refcount) == 1,
3927				TASK_INTERRUPTIBLE, 0, 0,
3928				ext4_wait_dax_page(inode));
3929	} while (error == 0);
3930
3931	return error;
3932}
3933
3934/*
3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936 * associated with the given offset and length
3937 *
3938 * @inode:  File inode
3939 * @offset: The offset where the hole will begin
3940 * @len:    The length of the hole
3941 *
3942 * Returns: 0 on success or negative on failure
3943 */
3944
3945int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946{
3947	struct inode *inode = file_inode(file);
3948	struct super_block *sb = inode->i_sb;
3949	ext4_lblk_t first_block, stop_block;
3950	struct address_space *mapping = inode->i_mapping;
3951	loff_t first_block_offset, last_block_offset, max_length;
3952	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953	handle_t *handle;
3954	unsigned int credits;
3955	int ret = 0, ret2 = 0;
 
 
 
3956
3957	trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959	/*
3960	 * Write out all dirty pages to avoid race conditions
3961	 * Then release them.
3962	 */
3963	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964		ret = filemap_write_and_wait_range(mapping, offset,
3965						   offset + length - 1);
3966		if (ret)
3967			return ret;
3968	}
3969
3970	inode_lock(inode);
3971
3972	/* No need to punch hole beyond i_size */
3973	if (offset >= inode->i_size)
3974		goto out_mutex;
3975
3976	/*
3977	 * If the hole extends beyond i_size, set the hole
3978	 * to end after the page that contains i_size
3979	 */
3980	if (offset + length > inode->i_size) {
3981		length = inode->i_size +
3982		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983		   offset;
3984	}
3985
3986	/*
3987	 * For punch hole the length + offset needs to be within one block
3988	 * before last range. Adjust the length if it goes beyond that limit.
3989	 */
3990	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991	if (offset + length > max_length)
3992		length = max_length - offset;
3993
3994	if (offset & (sb->s_blocksize - 1) ||
3995	    (offset + length) & (sb->s_blocksize - 1)) {
3996		/*
3997		 * Attach jinode to inode for jbd2 if we do any zeroing of
3998		 * partial block
3999		 */
4000		ret = ext4_inode_attach_jinode(inode);
4001		if (ret < 0)
4002			goto out_mutex;
4003
4004	}
4005
4006	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4007	inode_dio_wait(inode);
4008
4009	ret = file_modified(file);
4010	if (ret)
4011		goto out_mutex;
4012
4013	/*
4014	 * Prevent page faults from reinstantiating pages we have released from
4015	 * page cache.
4016	 */
4017	filemap_invalidate_lock(mapping);
4018
4019	ret = ext4_break_layouts(inode);
4020	if (ret)
4021		goto out_dio;
4022
4023	first_block_offset = round_up(offset, sb->s_blocksize);
4024	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026	/* Now release the pages and zero block aligned part of pages*/
4027	if (last_block_offset > first_block_offset) {
4028		ret = ext4_update_disksize_before_punch(inode, offset, length);
4029		if (ret)
4030			goto out_dio;
4031		truncate_pagecache_range(inode, first_block_offset,
4032					 last_block_offset);
4033	}
4034
4035	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036		credits = ext4_writepage_trans_blocks(inode);
4037	else
4038		credits = ext4_blocks_for_truncate(inode);
4039	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040	if (IS_ERR(handle)) {
4041		ret = PTR_ERR(handle);
4042		ext4_std_error(sb, ret);
4043		goto out_dio;
4044	}
4045
4046	ret = ext4_zero_partial_blocks(handle, inode, offset,
4047				       length);
4048	if (ret)
4049		goto out_stop;
4050
4051	first_block = (offset + sb->s_blocksize - 1) >>
4052		EXT4_BLOCK_SIZE_BITS(sb);
4053	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055	/* If there are blocks to remove, do it */
4056	if (stop_block > first_block) {
4057		ext4_lblk_t hole_len = stop_block - first_block;
4058
4059		down_write(&EXT4_I(inode)->i_data_sem);
4060		ext4_discard_preallocations(inode);
4061
4062		ext4_es_remove_extent(inode, first_block, hole_len);
4063
4064		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065			ret = ext4_ext_remove_space(inode, first_block,
4066						    stop_block - 1);
4067		else
4068			ret = ext4_ind_remove_space(handle, inode, first_block,
4069						    stop_block);
4070
4071		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072				      EXTENT_STATUS_HOLE, 0);
 
4073		up_write(&EXT4_I(inode)->i_data_sem);
 
4074	}
4075	ext4_fc_track_range(handle, inode, first_block, stop_block);
 
 
 
 
 
 
 
 
4076	if (IS_SYNC(inode))
4077		ext4_handle_sync(handle);
4078
4079	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080	ret2 = ext4_mark_inode_dirty(handle, inode);
4081	if (unlikely(ret2))
4082		ret = ret2;
4083	if (ret >= 0)
4084		ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086	ext4_journal_stop(handle);
4087out_dio:
4088	filemap_invalidate_unlock(mapping);
4089out_mutex:
4090	inode_unlock(inode);
4091	return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096	struct ext4_inode_info *ei = EXT4_I(inode);
4097	struct jbd2_inode *jinode;
4098
4099	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100		return 0;
4101
4102	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103	spin_lock(&inode->i_lock);
4104	if (!ei->jinode) {
4105		if (!jinode) {
4106			spin_unlock(&inode->i_lock);
4107			return -ENOMEM;
4108		}
4109		ei->jinode = jinode;
4110		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111		jinode = NULL;
4112	}
4113	spin_unlock(&inode->i_lock);
4114	if (unlikely(jinode != NULL))
4115		jbd2_free_inode(jinode);
4116	return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk.  We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable.  It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go.  So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem.  But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149	struct ext4_inode_info *ei = EXT4_I(inode);
4150	unsigned int credits;
4151	int err = 0, err2;
4152	handle_t *handle;
4153	struct address_space *mapping = inode->i_mapping;
4154
4155	/*
4156	 * There is a possibility that we're either freeing the inode
4157	 * or it's a completely new inode. In those cases we might not
4158	 * have i_rwsem locked because it's not necessary.
4159	 */
4160	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161		WARN_ON(!inode_is_locked(inode));
4162	trace_ext4_truncate_enter(inode);
4163
4164	if (!ext4_can_truncate(inode))
4165		goto out_trace;
 
 
4166
4167	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170	if (ext4_has_inline_data(inode)) {
4171		int has_inline = 1;
4172
4173		err = ext4_inline_data_truncate(inode, &has_inline);
4174		if (err || has_inline)
4175			goto out_trace;
 
 
4176	}
4177
4178	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180		err = ext4_inode_attach_jinode(inode);
4181		if (err)
4182			goto out_trace;
4183	}
4184
4185	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186		credits = ext4_writepage_trans_blocks(inode);
4187	else
4188		credits = ext4_blocks_for_truncate(inode);
4189
4190	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191	if (IS_ERR(handle)) {
4192		err = PTR_ERR(handle);
4193		goto out_trace;
4194	}
4195
4196	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197		ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199	/*
4200	 * We add the inode to the orphan list, so that if this
4201	 * truncate spans multiple transactions, and we crash, we will
4202	 * resume the truncate when the filesystem recovers.  It also
4203	 * marks the inode dirty, to catch the new size.
4204	 *
4205	 * Implication: the file must always be in a sane, consistent
4206	 * truncatable state while each transaction commits.
4207	 */
4208	err = ext4_orphan_add(handle, inode);
4209	if (err)
4210		goto out_stop;
4211
4212	down_write(&EXT4_I(inode)->i_data_sem);
4213
4214	ext4_discard_preallocations(inode);
4215
4216	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217		err = ext4_ext_truncate(handle, inode);
4218	else
4219		ext4_ind_truncate(handle, inode);
4220
4221	up_write(&ei->i_data_sem);
4222	if (err)
4223		goto out_stop;
4224
4225	if (IS_SYNC(inode))
4226		ext4_handle_sync(handle);
4227
4228out_stop:
4229	/*
4230	 * If this was a simple ftruncate() and the file will remain alive,
4231	 * then we need to clear up the orphan record which we created above.
4232	 * However, if this was a real unlink then we were called by
4233	 * ext4_evict_inode(), and we allow that function to clean up the
4234	 * orphan info for us.
4235	 */
4236	if (inode->i_nlink)
4237		ext4_orphan_del(handle, inode);
4238
4239	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240	err2 = ext4_mark_inode_dirty(handle, inode);
4241	if (unlikely(err2 && !err))
4242		err = err2;
4243	ext4_journal_stop(handle);
4244
4245out_trace:
4246	trace_ext4_truncate_exit(inode);
4247	return err;
4248}
4249
4250static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251{
4252	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253		return inode_peek_iversion_raw(inode);
4254	else
4255		return inode_peek_iversion(inode);
4256}
4257
4258static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259				 struct ext4_inode_info *ei)
4260{
4261	struct inode *inode = &(ei->vfs_inode);
4262	u64 i_blocks = READ_ONCE(inode->i_blocks);
4263	struct super_block *sb = inode->i_sb;
4264
4265	if (i_blocks <= ~0U) {
4266		/*
4267		 * i_blocks can be represented in a 32 bit variable
4268		 * as multiple of 512 bytes
4269		 */
4270		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271		raw_inode->i_blocks_high = 0;
4272		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273		return 0;
4274	}
4275
4276	/*
4277	 * This should never happen since sb->s_maxbytes should not have
4278	 * allowed this, sb->s_maxbytes was set according to the huge_file
4279	 * feature in ext4_fill_super().
4280	 */
4281	if (!ext4_has_feature_huge_file(sb))
4282		return -EFSCORRUPTED;
4283
4284	if (i_blocks <= 0xffffffffffffULL) {
4285		/*
4286		 * i_blocks can be represented in a 48 bit variable
4287		 * as multiple of 512 bytes
4288		 */
4289		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292	} else {
4293		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294		/* i_block is stored in file system block size */
4295		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298	}
4299	return 0;
4300}
4301
4302static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303{
4304	struct ext4_inode_info *ei = EXT4_I(inode);
4305	uid_t i_uid;
4306	gid_t i_gid;
4307	projid_t i_projid;
4308	int block;
4309	int err;
4310
4311	err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314	i_uid = i_uid_read(inode);
4315	i_gid = i_gid_read(inode);
4316	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317	if (!(test_opt(inode->i_sb, NO_UID32))) {
4318		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320		/*
4321		 * Fix up interoperability with old kernels. Otherwise,
4322		 * old inodes get re-used with the upper 16 bits of the
4323		 * uid/gid intact.
4324		 */
4325		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326			raw_inode->i_uid_high = 0;
4327			raw_inode->i_gid_high = 0;
4328		} else {
4329			raw_inode->i_uid_high =
4330				cpu_to_le16(high_16_bits(i_uid));
4331			raw_inode->i_gid_high =
4332				cpu_to_le16(high_16_bits(i_gid));
4333		}
4334	} else {
4335		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337		raw_inode->i_uid_high = 0;
4338		raw_inode->i_gid_high = 0;
4339	}
4340	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342	EXT4_INODE_SET_CTIME(inode, raw_inode);
4343	EXT4_INODE_SET_MTIME(inode, raw_inode);
4344	EXT4_INODE_SET_ATIME(inode, raw_inode);
4345	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350		raw_inode->i_file_acl_high =
4351			cpu_to_le16(ei->i_file_acl >> 32);
4352	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353	ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357		if (old_valid_dev(inode->i_rdev)) {
4358			raw_inode->i_block[0] =
4359				cpu_to_le32(old_encode_dev(inode->i_rdev));
4360			raw_inode->i_block[1] = 0;
4361		} else {
4362			raw_inode->i_block[0] = 0;
4363			raw_inode->i_block[1] =
4364				cpu_to_le32(new_encode_dev(inode->i_rdev));
4365			raw_inode->i_block[2] = 0;
4366		}
4367	} else if (!ext4_has_inline_data(inode)) {
4368		for (block = 0; block < EXT4_N_BLOCKS; block++)
4369			raw_inode->i_block[block] = ei->i_data[block];
4370	}
4371
4372	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373		u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375		raw_inode->i_disk_version = cpu_to_le32(ivers);
4376		if (ei->i_extra_isize) {
4377			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378				raw_inode->i_version_hi =
4379					cpu_to_le32(ivers >> 32);
4380			raw_inode->i_extra_isize =
4381				cpu_to_le16(ei->i_extra_isize);
4382		}
4383	}
4384
4385	if (i_projid != EXT4_DEF_PROJID &&
4386	    !ext4_has_feature_project(inode->i_sb))
4387		err = err ?: -EFSCORRUPTED;
4388
4389	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391		raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393	ext4_inode_csum_set(inode, raw_inode, ei);
4394	return err;
4395}
4396
4397/*
4398 * ext4_get_inode_loc returns with an extra refcount against the inode's
4399 * underlying buffer_head on success. If we pass 'inode' and it does not
4400 * have in-inode xattr, we have all inode data in memory that is needed
4401 * to recreate the on-disk version of this inode.
4402 */
4403static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404				struct inode *inode, struct ext4_iloc *iloc,
4405				ext4_fsblk_t *ret_block)
4406{
4407	struct ext4_group_desc	*gdp;
4408	struct buffer_head	*bh;
 
4409	ext4_fsblk_t		block;
4410	struct blk_plug		plug;
4411	int			inodes_per_block, inode_offset;
4412
4413	iloc->bh = NULL;
4414	if (ino < EXT4_ROOT_INO ||
4415	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416		return -EFSCORRUPTED;
4417
4418	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420	if (!gdp)
4421		return -EIO;
4422
4423	/*
4424	 * Figure out the offset within the block group inode table
4425	 */
4426	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427	inode_offset = ((ino - 1) %
4428			EXT4_INODES_PER_GROUP(sb));
 
4429	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431	block = ext4_inode_table(sb, gdp);
4432	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434		ext4_error(sb, "Invalid inode table block %llu in "
4435			   "block_group %u", block, iloc->block_group);
4436		return -EFSCORRUPTED;
4437	}
4438	block += (inode_offset / inodes_per_block);
4439
4440	bh = sb_getblk(sb, block);
4441	if (unlikely(!bh))
4442		return -ENOMEM;
4443	if (ext4_buffer_uptodate(bh))
4444		goto has_buffer;
4445
4446	lock_buffer(bh);
4447	if (ext4_buffer_uptodate(bh)) {
4448		/* Someone brought it uptodate while we waited */
4449		unlock_buffer(bh);
4450		goto has_buffer;
4451	}
4452
4453	/*
4454	 * If we have all information of the inode in memory and this
4455	 * is the only valid inode in the block, we need not read the
4456	 * block.
4457	 */
4458	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459		struct buffer_head *bitmap_bh;
4460		int i, start;
4461
4462		start = inode_offset & ~(inodes_per_block - 1);
4463
4464		/* Is the inode bitmap in cache? */
4465		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466		if (unlikely(!bitmap_bh))
4467			goto make_io;
4468
4469		/*
4470		 * If the inode bitmap isn't in cache then the
4471		 * optimisation may end up performing two reads instead
4472		 * of one, so skip it.
 
4473		 */
4474		if (!buffer_uptodate(bitmap_bh)) {
4475			brelse(bitmap_bh);
4476			goto make_io;
4477		}
4478		for (i = start; i < start + inodes_per_block; i++) {
4479			if (i == inode_offset)
4480				continue;
4481			if (ext4_test_bit(i, bitmap_bh->b_data))
4482				break;
4483		}
4484		brelse(bitmap_bh);
4485		if (i == start + inodes_per_block) {
4486			struct ext4_inode *raw_inode =
4487				(struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489			/* all other inodes are free, so skip I/O */
4490			memset(bh->b_data, 0, bh->b_size);
4491			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492				ext4_fill_raw_inode(inode, raw_inode);
4493			set_buffer_uptodate(bh);
 
 
 
4494			unlock_buffer(bh);
4495			goto has_buffer;
4496		}
4497	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4498
4499make_io:
4500	/*
4501	 * If we need to do any I/O, try to pre-readahead extra
4502	 * blocks from the inode table.
4503	 */
4504	blk_start_plug(&plug);
4505	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506		ext4_fsblk_t b, end, table;
4507		unsigned num;
4508		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510		table = ext4_inode_table(sb, gdp);
4511		/* s_inode_readahead_blks is always a power of 2 */
4512		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513		if (table > b)
4514			b = table;
4515		end = b + ra_blks;
4516		num = EXT4_INODES_PER_GROUP(sb);
4517		if (ext4_has_group_desc_csum(sb))
4518			num -= ext4_itable_unused_count(sb, gdp);
4519		table += num / inodes_per_block;
4520		if (end > table)
4521			end = table;
4522		while (b <= end)
4523			ext4_sb_breadahead_unmovable(sb, b++);
4524	}
4525
4526	/*
4527	 * There are other valid inodes in the buffer, this inode
4528	 * has in-inode xattrs, or we don't have this inode in memory.
4529	 * Read the block from disk.
4530	 */
4531	trace_ext4_load_inode(sb, ino);
4532	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534	blk_finish_plug(&plug);
4535	wait_on_buffer(bh);
4536	if (!buffer_uptodate(bh)) {
4537		if (ret_block)
4538			*ret_block = block;
4539		brelse(bh);
4540		return -EIO;
 
4541	}
4542has_buffer:
4543	iloc->bh = bh;
4544	return 0;
4545}
4546
4547static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548					struct ext4_iloc *iloc)
4549{
4550	ext4_fsblk_t err_blk = 0;
4551	int ret;
4552
4553	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554					&err_blk);
4555
4556	if (ret == -EIO)
4557		ext4_error_inode_block(inode, err_blk, EIO,
4558					"unable to read itable block");
4559
4560	return ret;
4561}
4562
4563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564{
4565	ext4_fsblk_t err_blk = 0;
4566	int ret;
4567
4568	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569					&err_blk);
4570
4571	if (ret == -EIO)
4572		ext4_error_inode_block(inode, err_blk, EIO,
4573					"unable to read itable block");
4574
4575	return ret;
4576}
4577
4578
4579int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580			  struct ext4_iloc *iloc)
4581{
4582	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583}
4584
4585static bool ext4_should_enable_dax(struct inode *inode)
4586{
4587	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589	if (test_opt2(inode->i_sb, DAX_NEVER))
4590		return false;
4591	if (!S_ISREG(inode->i_mode))
4592		return false;
4593	if (ext4_should_journal_data(inode))
4594		return false;
4595	if (ext4_has_inline_data(inode))
4596		return false;
4597	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598		return false;
4599	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600		return false;
4601	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602		return false;
4603	if (test_opt(inode->i_sb, DAX_ALWAYS))
4604		return true;
4605
4606	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607}
4608
4609void ext4_set_inode_flags(struct inode *inode, bool init)
4610{
4611	unsigned int flags = EXT4_I(inode)->i_flags;
4612	unsigned int new_fl = 0;
4613
4614	WARN_ON_ONCE(IS_DAX(inode) && init);
4615
4616	if (flags & EXT4_SYNC_FL)
4617		new_fl |= S_SYNC;
4618	if (flags & EXT4_APPEND_FL)
4619		new_fl |= S_APPEND;
4620	if (flags & EXT4_IMMUTABLE_FL)
4621		new_fl |= S_IMMUTABLE;
4622	if (flags & EXT4_NOATIME_FL)
4623		new_fl |= S_NOATIME;
4624	if (flags & EXT4_DIRSYNC_FL)
4625		new_fl |= S_DIRSYNC;
4626
4627	/* Because of the way inode_set_flags() works we must preserve S_DAX
4628	 * here if already set. */
4629	new_fl |= (inode->i_flags & S_DAX);
4630	if (init && ext4_should_enable_dax(inode))
4631		new_fl |= S_DAX;
4632
4633	if (flags & EXT4_ENCRYPT_FL)
4634		new_fl |= S_ENCRYPTED;
4635	if (flags & EXT4_CASEFOLD_FL)
4636		new_fl |= S_CASEFOLD;
4637	if (flags & EXT4_VERITY_FL)
4638		new_fl |= S_VERITY;
4639	inode_set_flags(inode, new_fl,
4640			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4642}
4643
4644static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645				  struct ext4_inode_info *ei)
4646{
4647	blkcnt_t i_blocks ;
4648	struct inode *inode = &(ei->vfs_inode);
4649	struct super_block *sb = inode->i_sb;
4650
4651	if (ext4_has_feature_huge_file(sb)) {
4652		/* we are using combined 48 bit field */
4653		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654					le32_to_cpu(raw_inode->i_blocks_lo);
4655		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656			/* i_blocks represent file system block size */
4657			return i_blocks  << (inode->i_blkbits - 9);
4658		} else {
4659			return i_blocks;
4660		}
4661	} else {
4662		return le32_to_cpu(raw_inode->i_blocks_lo);
4663	}
4664}
4665
4666static inline int ext4_iget_extra_inode(struct inode *inode,
4667					 struct ext4_inode *raw_inode,
4668					 struct ext4_inode_info *ei)
4669{
4670	__le32 *magic = (void *)raw_inode +
4671			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4674	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675		int err;
4676
4677		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678		err = ext4_find_inline_data_nolock(inode);
4679		if (!err && ext4_has_inline_data(inode))
4680			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681		return err;
4682	} else
4683		EXT4_I(inode)->i_inline_off = 0;
4684	return 0;
4685}
4686
4687int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688{
4689	if (!ext4_has_feature_project(inode->i_sb))
4690		return -EOPNOTSUPP;
4691	*projid = EXT4_I(inode)->i_projid;
4692	return 0;
4693}
4694
4695/*
4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698 * set.
4699 */
4700static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701{
4702	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703		inode_set_iversion_raw(inode, val);
4704	else
4705		inode_set_iversion_queried(inode, val);
4706}
4707
4708static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710{
4711	if (flags & EXT4_IGET_EA_INODE) {
4712		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713			return "missing EA_INODE flag";
4714		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715		    EXT4_I(inode)->i_file_acl)
4716			return "ea_inode with extended attributes";
4717	} else {
4718		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719			return "unexpected EA_INODE flag";
4720	}
4721	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722		return "unexpected bad inode w/o EXT4_IGET_BAD";
4723	return NULL;
4724}
4725
4726struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727			  ext4_iget_flags flags, const char *function,
4728			  unsigned int line)
4729{
4730	struct ext4_iloc iloc;
4731	struct ext4_inode *raw_inode;
4732	struct ext4_inode_info *ei;
4733	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734	struct inode *inode;
4735	const char *err_str;
4736	journal_t *journal = EXT4_SB(sb)->s_journal;
4737	long ret;
4738	loff_t size;
4739	int block;
4740	uid_t i_uid;
4741	gid_t i_gid;
4742	projid_t i_projid;
4743
4744	if ((!(flags & EXT4_IGET_SPECIAL) &&
4745	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750	    (ino < EXT4_ROOT_INO) ||
4751	    (ino > le32_to_cpu(es->s_inodes_count))) {
4752		if (flags & EXT4_IGET_HANDLE)
4753			return ERR_PTR(-ESTALE);
4754		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755			     "inode #%lu: comm %s: iget: illegal inode #",
4756			     ino, current->comm);
4757		return ERR_PTR(-EFSCORRUPTED);
4758	}
4759
4760	inode = iget_locked(sb, ino);
4761	if (!inode)
4762		return ERR_PTR(-ENOMEM);
4763	if (!(inode->i_state & I_NEW)) {
4764		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765			ext4_error_inode(inode, function, line, 0, err_str);
4766			iput(inode);
4767			return ERR_PTR(-EFSCORRUPTED);
4768		}
4769		return inode;
4770	}
4771
4772	ei = EXT4_I(inode);
4773	iloc.bh = NULL;
4774
4775	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776	if (ret < 0)
4777		goto bad_inode;
4778	raw_inode = ext4_raw_inode(&iloc);
4779
4780	if ((flags & EXT4_IGET_HANDLE) &&
4781	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782		ret = -ESTALE;
4783		goto bad_inode;
4784	}
4785
4786	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789			EXT4_INODE_SIZE(inode->i_sb) ||
4790		    (ei->i_extra_isize & 3)) {
4791			ext4_error_inode(inode, function, line, 0,
4792					 "iget: bad extra_isize %u "
4793					 "(inode size %u)",
4794					 ei->i_extra_isize,
4795					 EXT4_INODE_SIZE(inode->i_sb));
4796			ret = -EFSCORRUPTED;
4797			goto bad_inode;
4798		}
4799	} else
4800		ei->i_extra_isize = 0;
4801
4802	/* Precompute checksum seed for inode metadata */
4803	if (ext4_has_metadata_csum(sb)) {
4804		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805		__u32 csum;
4806		__le32 inum = cpu_to_le32(inode->i_ino);
4807		__le32 gen = raw_inode->i_generation;
4808		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809				   sizeof(inum));
4810		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811					      sizeof(gen));
4812	}
4813
4814	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817		ext4_error_inode_err(inode, function, line, 0,
4818				EFSBADCRC, "iget: checksum invalid");
4819		ret = -EFSBADCRC;
4820		goto bad_inode;
4821	}
4822
4823	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826	if (ext4_has_feature_project(sb) &&
4827	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830	else
4831		i_projid = EXT4_DEF_PROJID;
4832
4833	if (!(test_opt(inode->i_sb, NO_UID32))) {
4834		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836	}
4837	i_uid_write(inode, i_uid);
4838	i_gid_write(inode, i_gid);
4839	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4843	ei->i_inline_off = 0;
4844	ei->i_dir_start_lookup = 0;
4845	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846	/* We now have enough fields to check if the inode was active or not.
4847	 * This is needed because nfsd might try to access dead inodes
4848	 * the test is that same one that e2fsck uses
4849	 * NeilBrown 1999oct15
4850	 */
4851	if (inode->i_nlink == 0) {
4852		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854		    ino != EXT4_BOOT_LOADER_INO) {
4855			/* this inode is deleted or unallocated */
4856			if (flags & EXT4_IGET_SPECIAL) {
4857				ext4_error_inode(inode, function, line, 0,
4858						 "iget: special inode unallocated");
4859				ret = -EFSCORRUPTED;
4860			} else
4861				ret = -ESTALE;
4862			goto bad_inode;
4863		}
4864		/* The only unlinked inodes we let through here have
4865		 * valid i_mode and are being read by the orphan
4866		 * recovery code: that's fine, we're about to complete
4867		 * the process of deleting those.
4868		 * OR it is the EXT4_BOOT_LOADER_INO which is
4869		 * not initialized on a new filesystem. */
4870	}
4871	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872	ext4_set_inode_flags(inode, true);
4873	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875	if (ext4_has_feature_64bit(sb))
4876		ei->i_file_acl |=
4877			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878	inode->i_size = ext4_isize(sb, raw_inode);
4879	if ((size = i_size_read(inode)) < 0) {
4880		ext4_error_inode(inode, function, line, 0,
4881				 "iget: bad i_size value: %lld", size);
4882		ret = -EFSCORRUPTED;
4883		goto bad_inode;
4884	}
4885	/*
4886	 * If dir_index is not enabled but there's dir with INDEX flag set,
4887	 * we'd normally treat htree data as empty space. But with metadata
4888	 * checksumming that corrupts checksums so forbid that.
4889	 */
4890	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892		ext4_error_inode(inode, function, line, 0,
4893			 "iget: Dir with htree data on filesystem without dir_index feature.");
4894		ret = -EFSCORRUPTED;
4895		goto bad_inode;
4896	}
4897	ei->i_disksize = inode->i_size;
4898#ifdef CONFIG_QUOTA
4899	ei->i_reserved_quota = 0;
4900#endif
4901	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902	ei->i_block_group = iloc.block_group;
4903	ei->i_last_alloc_group = ~0;
4904	/*
4905	 * NOTE! The in-memory inode i_data array is in little-endian order
4906	 * even on big-endian machines: we do NOT byteswap the block numbers!
4907	 */
4908	for (block = 0; block < EXT4_N_BLOCKS; block++)
4909		ei->i_data[block] = raw_inode->i_block[block];
4910	INIT_LIST_HEAD(&ei->i_orphan);
4911	ext4_fc_init_inode(&ei->vfs_inode);
4912
4913	/*
4914	 * Set transaction id's of transactions that have to be committed
4915	 * to finish f[data]sync. We set them to currently running transaction
4916	 * as we cannot be sure that the inode or some of its metadata isn't
4917	 * part of the transaction - the inode could have been reclaimed and
4918	 * now it is reread from disk.
4919	 */
4920	if (journal) {
4921		transaction_t *transaction;
4922		tid_t tid;
4923
4924		read_lock(&journal->j_state_lock);
4925		if (journal->j_running_transaction)
4926			transaction = journal->j_running_transaction;
4927		else
4928			transaction = journal->j_committing_transaction;
4929		if (transaction)
4930			tid = transaction->t_tid;
4931		else
4932			tid = journal->j_commit_sequence;
4933		read_unlock(&journal->j_state_lock);
4934		ei->i_sync_tid = tid;
4935		ei->i_datasync_tid = tid;
4936	}
4937
4938	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939		if (ei->i_extra_isize == 0) {
4940			/* The extra space is currently unused. Use it. */
4941			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942			ei->i_extra_isize = sizeof(struct ext4_inode) -
4943					    EXT4_GOOD_OLD_INODE_SIZE;
4944		} else {
4945			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946			if (ret)
4947				goto bad_inode;
4948		}
4949	}
4950
4951	EXT4_INODE_GET_CTIME(inode, raw_inode);
4952	EXT4_INODE_GET_ATIME(inode, raw_inode);
4953	EXT4_INODE_GET_MTIME(inode, raw_inode);
4954	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961				ivers |=
4962		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963		}
4964		ext4_inode_set_iversion_queried(inode, ivers);
4965	}
4966
4967	ret = 0;
4968	if (ei->i_file_acl &&
4969	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970		ext4_error_inode(inode, function, line, 0,
4971				 "iget: bad extended attribute block %llu",
4972				 ei->i_file_acl);
4973		ret = -EFSCORRUPTED;
4974		goto bad_inode;
4975	} else if (!ext4_has_inline_data(inode)) {
4976		/* validate the block references in the inode */
4977		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979			(S_ISLNK(inode->i_mode) &&
4980			!ext4_inode_is_fast_symlink(inode)))) {
4981			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982				ret = ext4_ext_check_inode(inode);
4983			else
4984				ret = ext4_ind_check_inode(inode);
 
 
 
4985		}
4986	}
4987	if (ret)
4988		goto bad_inode;
4989
4990	if (S_ISREG(inode->i_mode)) {
4991		inode->i_op = &ext4_file_inode_operations;
4992		inode->i_fop = &ext4_file_operations;
4993		ext4_set_aops(inode);
4994	} else if (S_ISDIR(inode->i_mode)) {
4995		inode->i_op = &ext4_dir_inode_operations;
4996		inode->i_fop = &ext4_dir_operations;
4997	} else if (S_ISLNK(inode->i_mode)) {
4998		/* VFS does not allow setting these so must be corruption */
4999		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000			ext4_error_inode(inode, function, line, 0,
5001					 "iget: immutable or append flags "
5002					 "not allowed on symlinks");
5003			ret = -EFSCORRUPTED;
5004			goto bad_inode;
5005		}
5006		if (IS_ENCRYPTED(inode)) {
5007			inode->i_op = &ext4_encrypted_symlink_inode_operations;
 
5008		} else if (ext4_inode_is_fast_symlink(inode)) {
5009			inode->i_link = (char *)ei->i_data;
5010			inode->i_op = &ext4_fast_symlink_inode_operations;
5011			nd_terminate_link(ei->i_data, inode->i_size,
5012				sizeof(ei->i_data) - 1);
5013		} else {
5014			inode->i_op = &ext4_symlink_inode_operations;
 
5015		}
 
5016	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018		inode->i_op = &ext4_special_inode_operations;
5019		if (raw_inode->i_block[0])
5020			init_special_inode(inode, inode->i_mode,
5021			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022		else
5023			init_special_inode(inode, inode->i_mode,
5024			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025	} else if (ino == EXT4_BOOT_LOADER_INO) {
5026		make_bad_inode(inode);
5027	} else {
5028		ret = -EFSCORRUPTED;
5029		ext4_error_inode(inode, function, line, 0,
5030				 "iget: bogus i_mode (%o)", inode->i_mode);
5031		goto bad_inode;
5032	}
5033	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034		ext4_error_inode(inode, function, line, 0,
5035				 "casefold flag without casefold feature");
5036		ret = -EFSCORRUPTED;
5037		goto bad_inode;
5038	}
5039	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040		ext4_error_inode(inode, function, line, 0, err_str);
5041		ret = -EFSCORRUPTED;
5042		goto bad_inode;
5043	}
5044
5045	brelse(iloc.bh);
 
 
5046	unlock_new_inode(inode);
5047	return inode;
5048
5049bad_inode:
5050	brelse(iloc.bh);
5051	iget_failed(inode);
5052	return ERR_PTR(ret);
5053}
5054
5055static void __ext4_update_other_inode_time(struct super_block *sb,
5056					   unsigned long orig_ino,
5057					   unsigned long ino,
5058					   struct ext4_inode *raw_inode)
5059{
5060	struct inode *inode;
 
 
 
5061
5062	inode = find_inode_by_ino_rcu(sb, ino);
5063	if (!inode)
5064		return;
 
 
 
 
5065
5066	if (!inode_is_dirtytime_only(inode))
5067		return;
 
 
 
 
 
 
 
 
 
 
5068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5069	spin_lock(&inode->i_lock);
5070	if (inode_is_dirtytime_only(inode)) {
 
 
5071		struct ext4_inode_info	*ei = EXT4_I(inode);
5072
5073		inode->i_state &= ~I_DIRTY_TIME;
5074		spin_unlock(&inode->i_lock);
5075
5076		spin_lock(&ei->i_raw_lock);
5077		EXT4_INODE_SET_CTIME(inode, raw_inode);
5078		EXT4_INODE_SET_MTIME(inode, raw_inode);
5079		EXT4_INODE_SET_ATIME(inode, raw_inode);
5080		ext4_inode_csum_set(inode, raw_inode, ei);
5081		spin_unlock(&ei->i_raw_lock);
5082		trace_ext4_other_inode_update_time(inode, orig_ino);
5083		return;
5084	}
5085	spin_unlock(&inode->i_lock);
 
5086}
5087
5088/*
5089 * Opportunistically update the other time fields for other inodes in
5090 * the same inode table block.
5091 */
5092static void ext4_update_other_inodes_time(struct super_block *sb,
5093					  unsigned long orig_ino, char *buf)
5094{
 
5095	unsigned long ino;
5096	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097	int inode_size = EXT4_INODE_SIZE(sb);
5098
 
5099	/*
5100	 * Calculate the first inode in the inode table block.  Inode
5101	 * numbers are one-based.  That is, the first inode in a block
5102	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103	 */
5104	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105	rcu_read_lock();
5106	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107		if (ino == orig_ino)
5108			continue;
5109		__ext4_update_other_inode_time(sb, orig_ino, ino,
5110					       (struct ext4_inode *)buf);
5111	}
5112	rcu_read_unlock();
5113}
5114
5115/*
5116 * Post the struct inode info into an on-disk inode location in the
5117 * buffer-cache.  This gobbles the caller's reference to the
5118 * buffer_head in the inode location struct.
5119 *
5120 * The caller must have write access to iloc->bh.
5121 */
5122static int ext4_do_update_inode(handle_t *handle,
5123				struct inode *inode,
5124				struct ext4_iloc *iloc)
5125{
5126	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127	struct ext4_inode_info *ei = EXT4_I(inode);
5128	struct buffer_head *bh = iloc->bh;
5129	struct super_block *sb = inode->i_sb;
5130	int err;
5131	int need_datasync = 0, set_large_file = 0;
 
 
 
5132
5133	spin_lock(&ei->i_raw_lock);
5134
5135	/*
5136	 * For fields not tracked in the in-memory inode, initialise them
5137	 * to zero for new inodes.
5138	 */
5139	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141
5142	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5143		need_datasync = 1;
 
5144	if (ei->i_disksize > 0x7fffffffULL) {
5145		if (!ext4_has_feature_large_file(sb) ||
5146		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
 
5147			set_large_file = 1;
5148	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5149
5150	err = ext4_fill_raw_inode(inode, raw_inode);
5151	spin_unlock(&ei->i_raw_lock);
5152	if (err) {
5153		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5154		goto out_brelse;
 
 
 
 
 
 
5155	}
5156
 
 
 
 
 
 
 
 
 
5157	if (inode->i_sb->s_flags & SB_LAZYTIME)
5158		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159					      bh->b_data);
5160
5161	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163	if (err)
5164		goto out_error;
5165	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166	if (set_large_file) {
5167		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168		err = ext4_journal_get_write_access(handle, sb,
5169						    EXT4_SB(sb)->s_sbh,
5170						    EXT4_JTR_NONE);
5171		if (err)
5172			goto out_error;
5173		lock_buffer(EXT4_SB(sb)->s_sbh);
5174		ext4_set_feature_large_file(sb);
5175		ext4_superblock_csum_set(sb);
5176		unlock_buffer(EXT4_SB(sb)->s_sbh);
5177		ext4_handle_sync(handle);
5178		err = ext4_handle_dirty_metadata(handle, NULL,
5179						 EXT4_SB(sb)->s_sbh);
5180	}
5181	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182out_error:
5183	ext4_std_error(inode->i_sb, err);
5184out_brelse:
5185	brelse(bh);
 
5186	return err;
5187}
5188
5189/*
5190 * ext4_write_inode()
5191 *
5192 * We are called from a few places:
5193 *
5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195 *   Here, there will be no transaction running. We wait for any running
5196 *   transaction to commit.
5197 *
5198 * - Within flush work (sys_sync(), kupdate and such).
5199 *   We wait on commit, if told to.
5200 *
5201 * - Within iput_final() -> write_inode_now()
5202 *   We wait on commit, if told to.
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
5206 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5207 * writeback.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this.  The code:
5214 *
5215 *	mark_inode_dirty(inode)
5216 *	stuff();
5217 *	inode->i_size = expr;
5218 *
5219 * is in error because write_inode() could occur while `stuff()' is running,
5220 * and the new i_size will be lost.  Plus the inode will no longer be on the
5221 * superblock's dirty inode list.
5222 */
5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224{
5225	int err;
5226
5227	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228		return 0;
5229
5230	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231		return -EIO;
5232
5233	if (EXT4_SB(inode->i_sb)->s_journal) {
5234		if (ext4_journal_current_handle()) {
5235			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236			dump_stack();
5237			return -EIO;
5238		}
5239
5240		/*
5241		 * No need to force transaction in WB_SYNC_NONE mode. Also
5242		 * ext4_sync_fs() will force the commit after everything is
5243		 * written.
5244		 */
5245		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246			return 0;
5247
5248		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249						EXT4_I(inode)->i_sync_tid);
5250	} else {
5251		struct ext4_iloc iloc;
5252
5253		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254		if (err)
5255			return err;
5256		/*
5257		 * sync(2) will flush the whole buffer cache. No need to do
5258		 * it here separately for each inode.
5259		 */
5260		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261			sync_dirty_buffer(iloc.bh);
5262		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264					       "IO error syncing inode");
5265			err = -EIO;
5266		}
5267		brelse(iloc.bh);
5268	}
5269	return err;
5270}
5271
5272/*
5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274 * buffers that are attached to a folio straddling i_size and are undergoing
5275 * commit. In that case we have to wait for commit to finish and try again.
5276 */
5277static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278{
 
5279	unsigned offset;
5280	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281	tid_t commit_tid;
5282	int ret;
5283	bool has_transaction;
5284
5285	offset = inode->i_size & (PAGE_SIZE - 1);
5286	/*
5287	 * If the folio is fully truncated, we don't need to wait for any commit
5288	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289	 * strip all buffers from the folio but keep the folio dirty which can then
5290	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291	 * buffers). Also we don't need to wait for any commit if all buffers in
5292	 * the folio remain valid. This is most beneficial for the common case of
5293	 * blocksize == PAGESIZE.
5294	 */
5295	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296		return;
5297	while (1) {
5298		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299				      inode->i_size >> PAGE_SHIFT);
5300		if (IS_ERR(folio))
5301			return;
5302		ret = __ext4_journalled_invalidate_folio(folio, offset,
5303						folio_size(folio) - offset);
5304		folio_unlock(folio);
5305		folio_put(folio);
5306		if (ret != -EBUSY)
5307			return;
5308		has_transaction = false;
5309		read_lock(&journal->j_state_lock);
5310		if (journal->j_committing_transaction) {
5311			commit_tid = journal->j_committing_transaction->t_tid;
5312			has_transaction = true;
5313		}
5314		read_unlock(&journal->j_state_lock);
5315		if (has_transaction)
5316			jbd2_log_wait_commit(journal, commit_tid);
5317	}
5318}
5319
5320/*
5321 * ext4_setattr()
5322 *
5323 * Called from notify_change.
5324 *
5325 * We want to trap VFS attempts to truncate the file as soon as
5326 * possible.  In particular, we want to make sure that when the VFS
5327 * shrinks i_size, we put the inode on the orphan list and modify
5328 * i_disksize immediately, so that during the subsequent flushing of
5329 * dirty pages and freeing of disk blocks, we can guarantee that any
5330 * commit will leave the blocks being flushed in an unused state on
5331 * disk.  (On recovery, the inode will get truncated and the blocks will
5332 * be freed, so we have a strong guarantee that no future commit will
5333 * leave these blocks visible to the user.)
5334 *
5335 * Another thing we have to assure is that if we are in ordered mode
5336 * and inode is still attached to the committing transaction, we must
5337 * we start writeout of all the dirty pages which are being truncated.
5338 * This way we are sure that all the data written in the previous
5339 * transaction are already on disk (truncate waits for pages under
5340 * writeback).
5341 *
5342 * Called with inode->i_rwsem down.
5343 */
5344int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345		 struct iattr *attr)
5346{
5347	struct inode *inode = d_inode(dentry);
5348	int error, rc = 0;
5349	int orphan = 0;
5350	const unsigned int ia_valid = attr->ia_valid;
5351	bool inc_ivers = true;
5352
5353	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354		return -EIO;
5355
5356	if (unlikely(IS_IMMUTABLE(inode)))
5357		return -EPERM;
5358
5359	if (unlikely(IS_APPEND(inode) &&
5360		     (ia_valid & (ATTR_MODE | ATTR_UID |
5361				  ATTR_GID | ATTR_TIMES_SET))))
5362		return -EPERM;
5363
5364	error = setattr_prepare(idmap, dentry, attr);
5365	if (error)
5366		return error;
5367
5368	error = fscrypt_prepare_setattr(dentry, attr);
5369	if (error)
5370		return error;
5371
5372	error = fsverity_prepare_setattr(dentry, attr);
5373	if (error)
5374		return error;
5375
5376	if (is_quota_modification(idmap, inode, attr)) {
5377		error = dquot_initialize(inode);
5378		if (error)
5379			return error;
5380	}
5381
5382	if (i_uid_needs_update(idmap, attr, inode) ||
5383	    i_gid_needs_update(idmap, attr, inode)) {
5384		handle_t *handle;
5385
5386		/* (user+group)*(old+new) structure, inode write (sb,
5387		 * inode block, ? - but truncate inode update has it) */
5388		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391		if (IS_ERR(handle)) {
5392			error = PTR_ERR(handle);
5393			goto err_out;
5394		}
5395
5396		/* dquot_transfer() calls back ext4_get_inode_usage() which
5397		 * counts xattr inode references.
5398		 */
5399		down_read(&EXT4_I(inode)->xattr_sem);
5400		error = dquot_transfer(idmap, inode, attr);
5401		up_read(&EXT4_I(inode)->xattr_sem);
5402
5403		if (error) {
5404			ext4_journal_stop(handle);
5405			return error;
5406		}
5407		/* Update corresponding info in inode so that everything is in
5408		 * one transaction */
5409		i_uid_update(idmap, attr, inode);
5410		i_gid_update(idmap, attr, inode);
 
 
5411		error = ext4_mark_inode_dirty(handle, inode);
5412		ext4_journal_stop(handle);
5413		if (unlikely(error)) {
5414			return error;
5415		}
5416	}
5417
5418	if (attr->ia_valid & ATTR_SIZE) {
5419		handle_t *handle;
5420		loff_t oldsize = inode->i_size;
5421		loff_t old_disksize;
5422		int shrink = (attr->ia_size < inode->i_size);
5423
5424		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426
5427			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428				return -EFBIG;
5429			}
5430		}
5431		if (!S_ISREG(inode->i_mode)) {
5432			return -EINVAL;
5433		}
5434
5435		if (attr->ia_size == inode->i_size)
5436			inc_ivers = false;
5437
5438		if (shrink) {
5439			if (ext4_should_order_data(inode)) {
5440				error = ext4_begin_ordered_truncate(inode,
5441							    attr->ia_size);
5442				if (error)
5443					goto err_out;
5444			}
5445			/*
5446			 * Blocks are going to be removed from the inode. Wait
5447			 * for dio in flight.
5448			 */
5449			inode_dio_wait(inode);
5450		}
5451
5452		filemap_invalidate_lock(inode->i_mapping);
5453
5454		rc = ext4_break_layouts(inode);
5455		if (rc) {
5456			filemap_invalidate_unlock(inode->i_mapping);
5457			goto err_out;
5458		}
5459
5460		if (attr->ia_size != inode->i_size) {
5461			/* attach jbd2 jinode for EOF folio tail zeroing */
5462			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5464				error = ext4_inode_attach_jinode(inode);
5465				if (error)
5466					goto err_out;
5467			}
5468
5469			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470			if (IS_ERR(handle)) {
5471				error = PTR_ERR(handle);
5472				goto out_mmap_sem;
5473			}
5474			if (ext4_handle_valid(handle) && shrink) {
5475				error = ext4_orphan_add(handle, inode);
5476				orphan = 1;
5477			}
5478			/*
5479			 * Update c/mtime and tail zero the EOF folio on
5480			 * truncate up. ext4_truncate() handles the shrink case
5481			 * below.
5482			 */
5483			if (!shrink) {
5484				inode_set_mtime_to_ts(inode,
5485						      inode_set_ctime_current(inode));
5486				if (oldsize & (inode->i_sb->s_blocksize - 1))
5487					ext4_block_truncate_page(handle,
5488							inode->i_mapping, oldsize);
5489			}
5490
5491			if (shrink)
5492				ext4_fc_track_range(handle, inode,
5493					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494					inode->i_sb->s_blocksize_bits,
5495					EXT_MAX_BLOCKS - 1);
5496			else
5497				ext4_fc_track_range(
5498					handle, inode,
5499					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5500					inode->i_sb->s_blocksize_bits,
5501					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502					inode->i_sb->s_blocksize_bits);
5503
5504			down_write(&EXT4_I(inode)->i_data_sem);
5505			old_disksize = EXT4_I(inode)->i_disksize;
5506			EXT4_I(inode)->i_disksize = attr->ia_size;
5507			rc = ext4_mark_inode_dirty(handle, inode);
5508			if (!error)
5509				error = rc;
5510			/*
5511			 * We have to update i_size under i_data_sem together
5512			 * with i_disksize to avoid races with writeback code
5513			 * running ext4_wb_update_i_disksize().
5514			 */
5515			if (!error)
5516				i_size_write(inode, attr->ia_size);
5517			else
5518				EXT4_I(inode)->i_disksize = old_disksize;
5519			up_write(&EXT4_I(inode)->i_data_sem);
5520			ext4_journal_stop(handle);
5521			if (error)
5522				goto out_mmap_sem;
5523			if (!shrink) {
5524				pagecache_isize_extended(inode, oldsize,
5525							 inode->i_size);
5526			} else if (ext4_should_journal_data(inode)) {
5527				ext4_wait_for_tail_page_commit(inode);
5528			}
5529		}
 
 
5530
5531		/*
 
 
 
 
 
 
 
 
 
 
 
 
5532		 * Truncate pagecache after we've waited for commit
5533		 * in data=journal mode to make pages freeable.
5534		 */
5535		truncate_pagecache(inode, inode->i_size);
5536		/*
5537		 * Call ext4_truncate() even if i_size didn't change to
5538		 * truncate possible preallocated blocks.
5539		 */
5540		if (attr->ia_size <= oldsize) {
5541			rc = ext4_truncate(inode);
5542			if (rc)
5543				error = rc;
5544		}
5545out_mmap_sem:
5546		filemap_invalidate_unlock(inode->i_mapping);
5547	}
5548
5549	if (!error) {
5550		if (inc_ivers)
5551			inode_inc_iversion(inode);
5552		setattr_copy(idmap, inode, attr);
5553		mark_inode_dirty(inode);
5554	}
5555
5556	/*
5557	 * If the call to ext4_truncate failed to get a transaction handle at
5558	 * all, we need to clean up the in-core orphan list manually.
5559	 */
5560	if (orphan && inode->i_nlink)
5561		ext4_orphan_del(NULL, inode);
5562
5563	if (!error && (ia_valid & ATTR_MODE))
5564		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565
5566err_out:
5567	if  (error)
5568		ext4_std_error(inode->i_sb, error);
5569	if (!error)
5570		error = rc;
5571	return error;
5572}
5573
5574u32 ext4_dio_alignment(struct inode *inode)
5575{
5576	if (fsverity_active(inode))
5577		return 0;
5578	if (ext4_should_journal_data(inode))
5579		return 0;
5580	if (ext4_has_inline_data(inode))
5581		return 0;
5582	if (IS_ENCRYPTED(inode)) {
5583		if (!fscrypt_dio_supported(inode))
5584			return 0;
5585		return i_blocksize(inode);
5586	}
5587	return 1; /* use the iomap defaults */
5588}
5589
5590int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592{
5593	struct inode *inode = d_inode(path->dentry);
5594	struct ext4_inode *raw_inode;
5595	struct ext4_inode_info *ei = EXT4_I(inode);
5596	unsigned int flags;
5597
5598	if ((request_mask & STATX_BTIME) &&
5599	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600		stat->result_mask |= STATX_BTIME;
5601		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603	}
5604
5605	/*
5606	 * Return the DIO alignment restrictions if requested.  We only return
5607	 * this information when requested, since on encrypted files it might
5608	 * take a fair bit of work to get if the file wasn't opened recently.
5609	 */
5610	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611		u32 dio_align = ext4_dio_alignment(inode);
5612
5613		stat->result_mask |= STATX_DIOALIGN;
5614		if (dio_align == 1) {
5615			struct block_device *bdev = inode->i_sb->s_bdev;
5616
5617			/* iomap defaults */
5618			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619			stat->dio_offset_align = bdev_logical_block_size(bdev);
5620		} else {
5621			stat->dio_mem_align = dio_align;
5622			stat->dio_offset_align = dio_align;
5623		}
5624	}
5625
5626	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628		unsigned int awu_min = 0, awu_max = 0;
5629
5630		if (ext4_inode_can_atomic_write(inode)) {
5631			awu_min = sbi->s_awu_min;
5632			awu_max = sbi->s_awu_max;
5633		}
5634
5635		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636	}
5637
5638	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639	if (flags & EXT4_APPEND_FL)
5640		stat->attributes |= STATX_ATTR_APPEND;
5641	if (flags & EXT4_COMPR_FL)
5642		stat->attributes |= STATX_ATTR_COMPRESSED;
5643	if (flags & EXT4_ENCRYPT_FL)
5644		stat->attributes |= STATX_ATTR_ENCRYPTED;
5645	if (flags & EXT4_IMMUTABLE_FL)
5646		stat->attributes |= STATX_ATTR_IMMUTABLE;
5647	if (flags & EXT4_NODUMP_FL)
5648		stat->attributes |= STATX_ATTR_NODUMP;
5649	if (flags & EXT4_VERITY_FL)
5650		stat->attributes |= STATX_ATTR_VERITY;
5651
5652	stat->attributes_mask |= (STATX_ATTR_APPEND |
5653				  STATX_ATTR_COMPRESSED |
5654				  STATX_ATTR_ENCRYPTED |
5655				  STATX_ATTR_IMMUTABLE |
5656				  STATX_ATTR_NODUMP |
5657				  STATX_ATTR_VERITY);
5658
5659	generic_fillattr(idmap, request_mask, inode, stat);
5660	return 0;
5661}
5662
5663int ext4_file_getattr(struct mnt_idmap *idmap,
5664		      const struct path *path, struct kstat *stat,
5665		      u32 request_mask, unsigned int query_flags)
5666{
5667	struct inode *inode = d_inode(path->dentry);
5668	u64 delalloc_blocks;
5669
5670	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5671
5672	/*
5673	 * If there is inline data in the inode, the inode will normally not
5674	 * have data blocks allocated (it may have an external xattr block).
5675	 * Report at least one sector for such files, so tools like tar, rsync,
5676	 * others don't incorrectly think the file is completely sparse.
5677	 */
5678	if (unlikely(ext4_has_inline_data(inode)))
5679		stat->blocks += (stat->size + 511) >> 9;
5680
5681	/*
5682	 * We can't update i_blocks if the block allocation is delayed
5683	 * otherwise in the case of system crash before the real block
5684	 * allocation is done, we will have i_blocks inconsistent with
5685	 * on-disk file blocks.
5686	 * We always keep i_blocks updated together with real
5687	 * allocation. But to not confuse with user, stat
5688	 * will return the blocks that include the delayed allocation
5689	 * blocks for this file.
5690	 */
5691	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692				   EXT4_I(inode)->i_reserved_data_blocks);
5693	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694	return 0;
5695}
5696
5697static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698				   int pextents)
5699{
5700	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701		return ext4_ind_trans_blocks(inode, lblocks);
5702	return ext4_ext_index_trans_blocks(inode, pextents);
5703}
5704
5705/*
5706 * Account for index blocks, block groups bitmaps and block group
5707 * descriptor blocks if modify datablocks and index blocks
5708 * worse case, the indexs blocks spread over different block groups
5709 *
5710 * If datablocks are discontiguous, they are possible to spread over
5711 * different block groups too. If they are contiguous, with flexbg,
5712 * they could still across block group boundary.
5713 *
5714 * Also account for superblock, inode, quota and xattr blocks
5715 */
5716static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717				  int pextents)
5718{
5719	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720	int gdpblocks;
5721	int idxblocks;
5722	int ret;
5723
5724	/*
5725	 * How many index blocks need to touch to map @lblocks logical blocks
5726	 * to @pextents physical extents?
5727	 */
5728	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729
5730	ret = idxblocks;
5731
5732	/*
5733	 * Now let's see how many group bitmaps and group descriptors need
5734	 * to account
5735	 */
5736	groups = idxblocks + pextents;
5737	gdpblocks = groups;
5738	if (groups > ngroups)
5739		groups = ngroups;
5740	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742
5743	/* bitmaps and block group descriptor blocks */
5744	ret += groups + gdpblocks;
5745
5746	/* Blocks for super block, inode, quota and xattr blocks */
5747	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748
5749	return ret;
5750}
5751
5752/*
5753 * Calculate the total number of credits to reserve to fit
5754 * the modification of a single pages into a single transaction,
5755 * which may include multiple chunks of block allocations.
5756 *
5757 * This could be called via ext4_write_begin()
5758 *
5759 * We need to consider the worse case, when
5760 * one new block per extent.
5761 */
5762int ext4_writepage_trans_blocks(struct inode *inode)
5763{
5764	int bpp = ext4_journal_blocks_per_page(inode);
5765	int ret;
5766
5767	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768
5769	/* Account for data blocks for journalled mode */
5770	if (ext4_should_journal_data(inode))
5771		ret += bpp;
5772	return ret;
5773}
5774
5775/*
5776 * Calculate the journal credits for a chunk of data modification.
5777 *
5778 * This is called from DIO, fallocate or whoever calling
5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780 *
5781 * journal buffers for data blocks are not included here, as DIO
5782 * and fallocate do no need to journal data buffers.
5783 */
5784int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785{
5786	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787}
5788
5789/*
5790 * The caller must have previously called ext4_reserve_inode_write().
5791 * Give this, we know that the caller already has write access to iloc->bh.
5792 */
5793int ext4_mark_iloc_dirty(handle_t *handle,
5794			 struct inode *inode, struct ext4_iloc *iloc)
5795{
5796	int err = 0;
5797
5798	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799		put_bh(iloc->bh);
5800		return -EIO;
5801	}
5802	ext4_fc_track_inode(handle, inode);
 
5803
5804	/* the do_update_inode consumes one bh->b_count */
5805	get_bh(iloc->bh);
5806
5807	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808	err = ext4_do_update_inode(handle, inode, iloc);
5809	put_bh(iloc->bh);
5810	return err;
5811}
5812
5813/*
5814 * On success, We end up with an outstanding reference count against
5815 * iloc->bh.  This _must_ be cleaned up later.
5816 */
5817
5818int
5819ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820			 struct ext4_iloc *iloc)
5821{
5822	int err;
5823
5824	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825		return -EIO;
5826
5827	err = ext4_get_inode_loc(inode, iloc);
5828	if (!err) {
5829		BUFFER_TRACE(iloc->bh, "get_write_access");
5830		err = ext4_journal_get_write_access(handle, inode->i_sb,
5831						    iloc->bh, EXT4_JTR_NONE);
5832		if (err) {
5833			brelse(iloc->bh);
5834			iloc->bh = NULL;
5835		}
5836	}
5837	ext4_std_error(inode->i_sb, err);
5838	return err;
5839}
5840
5841static int __ext4_expand_extra_isize(struct inode *inode,
5842				     unsigned int new_extra_isize,
5843				     struct ext4_iloc *iloc,
5844				     handle_t *handle, int *no_expand)
5845{
5846	struct ext4_inode *raw_inode;
5847	struct ext4_xattr_ibody_header *header;
5848	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849	struct ext4_inode_info *ei = EXT4_I(inode);
5850	int error;
5851
5852	/* this was checked at iget time, but double check for good measure */
5853	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854	    (ei->i_extra_isize & 3)) {
5855		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856				 ei->i_extra_isize,
5857				 EXT4_INODE_SIZE(inode->i_sb));
5858		return -EFSCORRUPTED;
5859	}
5860	if ((new_extra_isize < ei->i_extra_isize) ||
5861	    (new_extra_isize < 4) ||
5862	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863		return -EINVAL;	/* Should never happen */
5864
5865	raw_inode = ext4_raw_inode(iloc);
5866
5867	header = IHDR(inode, raw_inode);
5868
5869	/* No extended attributes present */
5870	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873		       EXT4_I(inode)->i_extra_isize, 0,
5874		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876		return 0;
5877	}
5878
5879	/*
5880	 * We may need to allocate external xattr block so we need quotas
5881	 * initialized. Here we can be called with various locks held so we
5882	 * cannot affort to initialize quotas ourselves. So just bail.
5883	 */
5884	if (dquot_initialize_needed(inode))
5885		return -EAGAIN;
5886
5887	/* try to expand with EAs present */
5888	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889					   raw_inode, handle);
5890	if (error) {
5891		/*
5892		 * Inode size expansion failed; don't try again
5893		 */
5894		*no_expand = 1;
5895	}
5896
5897	return error;
5898}
5899
5900/*
5901 * Expand an inode by new_extra_isize bytes.
5902 * Returns 0 on success or negative error number on failure.
5903 */
5904static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905					  unsigned int new_extra_isize,
5906					  struct ext4_iloc iloc,
5907					  handle_t *handle)
5908{
5909	int no_expand;
5910	int error;
5911
5912	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913		return -EOVERFLOW;
5914
5915	/*
5916	 * In nojournal mode, we can immediately attempt to expand
5917	 * the inode.  When journaled, we first need to obtain extra
5918	 * buffer credits since we may write into the EA block
5919	 * with this same handle. If journal_extend fails, then it will
5920	 * only result in a minor loss of functionality for that inode.
5921	 * If this is felt to be critical, then e2fsck should be run to
5922	 * force a large enough s_min_extra_isize.
5923	 */
5924	if (ext4_journal_extend(handle,
5925				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
 
5926		return -ENOSPC;
5927
5928	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929		return -EBUSY;
5930
5931	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932					  handle, &no_expand);
5933	ext4_write_unlock_xattr(inode, &no_expand);
5934
5935	return error;
5936}
5937
5938int ext4_expand_extra_isize(struct inode *inode,
5939			    unsigned int new_extra_isize,
5940			    struct ext4_iloc *iloc)
5941{
5942	handle_t *handle;
5943	int no_expand;
5944	int error, rc;
5945
5946	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947		brelse(iloc->bh);
5948		return -EOVERFLOW;
5949	}
5950
5951	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953	if (IS_ERR(handle)) {
5954		error = PTR_ERR(handle);
5955		brelse(iloc->bh);
5956		return error;
5957	}
5958
5959	ext4_write_lock_xattr(inode, &no_expand);
5960
5961	BUFFER_TRACE(iloc->bh, "get_write_access");
5962	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963					      EXT4_JTR_NONE);
5964	if (error) {
5965		brelse(iloc->bh);
5966		goto out_unlock;
5967	}
5968
5969	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970					  handle, &no_expand);
5971
5972	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973	if (!error)
5974		error = rc;
5975
5976out_unlock:
5977	ext4_write_unlock_xattr(inode, &no_expand);
 
5978	ext4_journal_stop(handle);
5979	return error;
5980}
5981
5982/*
5983 * What we do here is to mark the in-core inode as clean with respect to inode
5984 * dirtiness (it may still be data-dirty).
5985 * This means that the in-core inode may be reaped by prune_icache
5986 * without having to perform any I/O.  This is a very good thing,
5987 * because *any* task may call prune_icache - even ones which
5988 * have a transaction open against a different journal.
5989 *
5990 * Is this cheating?  Not really.  Sure, we haven't written the
5991 * inode out, but prune_icache isn't a user-visible syncing function.
5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993 * we start and wait on commits.
5994 */
5995int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996				const char *func, unsigned int line)
5997{
5998	struct ext4_iloc iloc;
5999	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000	int err;
6001
6002	might_sleep();
6003	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004	err = ext4_reserve_inode_write(handle, inode, &iloc);
6005	if (err)
6006		goto out;
6007
6008	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010					       iloc, handle);
6011
6012	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013out:
6014	if (unlikely(err))
6015		ext4_error_inode_err(inode, func, line, 0, err,
6016					"mark_inode_dirty error");
6017	return err;
6018}
6019
6020/*
6021 * ext4_dirty_inode() is called from __mark_inode_dirty()
6022 *
6023 * We're really interested in the case where a file is being extended.
6024 * i_size has been changed by generic_commit_write() and we thus need
6025 * to include the updated inode in the current transaction.
6026 *
6027 * Also, dquot_alloc_block() will always dirty the inode when blocks
6028 * are allocated to the file.
6029 *
6030 * If the inode is marked synchronous, we don't honour that here - doing
6031 * so would cause a commit on atime updates, which we don't bother doing.
6032 * We handle synchronous inodes at the highest possible level.
 
 
 
 
6033 */
6034void ext4_dirty_inode(struct inode *inode, int flags)
6035{
6036	handle_t *handle;
6037
 
 
6038	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039	if (IS_ERR(handle))
6040		return;
 
6041	ext4_mark_inode_dirty(handle, inode);
 
6042	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6043}
 
6044
6045int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046{
6047	journal_t *journal;
6048	handle_t *handle;
6049	int err;
6050	int alloc_ctx;
6051
6052	/*
6053	 * We have to be very careful here: changing a data block's
6054	 * journaling status dynamically is dangerous.  If we write a
6055	 * data block to the journal, change the status and then delete
6056	 * that block, we risk forgetting to revoke the old log record
6057	 * from the journal and so a subsequent replay can corrupt data.
6058	 * So, first we make sure that the journal is empty and that
6059	 * nobody is changing anything.
6060	 */
6061
6062	journal = EXT4_JOURNAL(inode);
6063	if (!journal)
6064		return 0;
6065	if (is_journal_aborted(journal))
6066		return -EROFS;
6067
6068	/* Wait for all existing dio workers */
6069	inode_dio_wait(inode);
6070
6071	/*
6072	 * Before flushing the journal and switching inode's aops, we have
6073	 * to flush all dirty data the inode has. There can be outstanding
6074	 * delayed allocations, there can be unwritten extents created by
6075	 * fallocate or buffered writes in dioread_nolock mode covered by
6076	 * dirty data which can be converted only after flushing the dirty
6077	 * data (and journalled aops don't know how to handle these cases).
6078	 */
6079	if (val) {
6080		filemap_invalidate_lock(inode->i_mapping);
6081		err = filemap_write_and_wait(inode->i_mapping);
6082		if (err < 0) {
6083			filemap_invalidate_unlock(inode->i_mapping);
6084			return err;
6085		}
6086	}
6087
6088	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089	jbd2_journal_lock_updates(journal);
6090
6091	/*
6092	 * OK, there are no updates running now, and all cached data is
6093	 * synced to disk.  We are now in a completely consistent state
6094	 * which doesn't have anything in the journal, and we know that
6095	 * no filesystem updates are running, so it is safe to modify
6096	 * the inode's in-core data-journaling state flag now.
6097	 */
6098
6099	if (val)
6100		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101	else {
6102		err = jbd2_journal_flush(journal, 0);
6103		if (err < 0) {
6104			jbd2_journal_unlock_updates(journal);
6105			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6106			return err;
6107		}
6108		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109	}
6110	ext4_set_aops(inode);
6111
6112	jbd2_journal_unlock_updates(journal);
6113	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114
6115	if (val)
6116		filemap_invalidate_unlock(inode->i_mapping);
6117
6118	/* Finally we can mark the inode as dirty. */
6119
6120	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121	if (IS_ERR(handle))
6122		return PTR_ERR(handle);
6123
6124	ext4_fc_mark_ineligible(inode->i_sb,
6125		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126	err = ext4_mark_inode_dirty(handle, inode);
6127	ext4_handle_sync(handle);
6128	ext4_journal_stop(handle);
6129	ext4_std_error(inode->i_sb, err);
6130
6131	return err;
6132}
6133
6134static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135			    struct buffer_head *bh)
6136{
6137	return !buffer_mapped(bh);
6138}
6139
6140vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141{
6142	struct vm_area_struct *vma = vmf->vma;
6143	struct folio *folio = page_folio(vmf->page);
6144	loff_t size;
6145	unsigned long len;
6146	int err;
6147	vm_fault_t ret;
6148	struct file *file = vma->vm_file;
6149	struct inode *inode = file_inode(file);
6150	struct address_space *mapping = inode->i_mapping;
6151	handle_t *handle;
6152	get_block_t *get_block;
6153	int retries = 0;
6154
6155	if (unlikely(IS_IMMUTABLE(inode)))
6156		return VM_FAULT_SIGBUS;
6157
6158	sb_start_pagefault(inode->i_sb);
6159	file_update_time(vma->vm_file);
6160
6161	filemap_invalidate_lock_shared(mapping);
6162
6163	err = ext4_convert_inline_data(inode);
6164	if (err)
6165		goto out_ret;
6166
6167	/*
6168	 * On data journalling we skip straight to the transaction handle:
6169	 * there's no delalloc; page truncated will be checked later; the
6170	 * early return w/ all buffers mapped (calculates size/len) can't
6171	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172	 */
6173	if (ext4_should_journal_data(inode))
6174		goto retry_alloc;
6175
6176	/* Delalloc case is easy... */
6177	if (test_opt(inode->i_sb, DELALLOC) &&
 
6178	    !ext4_nonda_switch(inode->i_sb)) {
6179		do {
6180			err = block_page_mkwrite(vma, vmf,
6181						   ext4_da_get_block_prep);
6182		} while (err == -ENOSPC &&
6183		       ext4_should_retry_alloc(inode->i_sb, &retries));
6184		goto out_ret;
6185	}
6186
6187	folio_lock(folio);
6188	size = i_size_read(inode);
6189	/* Page got truncated from under us? */
6190	if (folio->mapping != mapping || folio_pos(folio) > size) {
6191		folio_unlock(folio);
6192		ret = VM_FAULT_NOPAGE;
6193		goto out;
6194	}
6195
6196	len = folio_size(folio);
6197	if (folio_pos(folio) + len > size)
6198		len = size - folio_pos(folio);
 
6199	/*
6200	 * Return if we have all the buffers mapped. This avoids the need to do
6201	 * journal_start/journal_stop which can block and take a long time
6202	 *
6203	 * This cannot be done for data journalling, as we have to add the
6204	 * inode to the transaction's list to writeprotect pages on commit.
6205	 */
6206	if (folio_buffers(folio)) {
6207		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208					    0, len, NULL,
6209					    ext4_bh_unmapped)) {
6210			/* Wait so that we don't change page under IO */
6211			folio_wait_stable(folio);
6212			ret = VM_FAULT_LOCKED;
6213			goto out;
6214		}
6215	}
6216	folio_unlock(folio);
6217	/* OK, we need to fill the hole... */
6218	if (ext4_should_dioread_nolock(inode))
6219		get_block = ext4_get_block_unwritten;
6220	else
6221		get_block = ext4_get_block;
6222retry_alloc:
6223	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224				    ext4_writepage_trans_blocks(inode));
6225	if (IS_ERR(handle)) {
6226		ret = VM_FAULT_SIGBUS;
6227		goto out;
6228	}
6229	/*
6230	 * Data journalling can't use block_page_mkwrite() because it
6231	 * will set_buffer_dirty() before do_journal_get_write_access()
6232	 * thus might hit warning messages for dirty metadata buffers.
6233	 */
6234	if (!ext4_should_journal_data(inode)) {
6235		err = block_page_mkwrite(vma, vmf, get_block);
6236	} else {
6237		folio_lock(folio);
6238		size = i_size_read(inode);
6239		/* Page got truncated from under us? */
6240		if (folio->mapping != mapping || folio_pos(folio) > size) {
6241			ret = VM_FAULT_NOPAGE;
6242			goto out_error;
6243		}
6244
6245		len = folio_size(folio);
6246		if (folio_pos(folio) + len > size)
6247			len = size - folio_pos(folio);
6248
6249		err = ext4_block_write_begin(handle, folio, 0, len,
6250					     ext4_get_block);
6251		if (!err) {
6252			ret = VM_FAULT_SIGBUS;
6253			if (ext4_journal_folio_buffers(handle, folio, len))
6254				goto out_error;
6255		} else {
6256			folio_unlock(folio);
6257		}
 
6258	}
6259	ext4_journal_stop(handle);
6260	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261		goto retry_alloc;
6262out_ret:
6263	ret = vmf_fs_error(err);
6264out:
6265	filemap_invalidate_unlock_shared(mapping);
6266	sb_end_pagefault(inode->i_sb);
6267	return ret;
6268out_error:
6269	folio_unlock(folio);
6270	ext4_journal_stop(handle);
6271	goto out;
 
 
 
 
 
 
 
 
6272}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
 
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51#define MPAGE_DA_EXTENT_TAIL 0x01
 
 
 
  52
  53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  54			      struct ext4_inode_info *ei)
  55{
  56	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  57	__u32 csum;
  58	__u16 dummy_csum = 0;
  59	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  60	unsigned int csum_size = sizeof(dummy_csum);
  61
  62	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  63	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  64	offset += csum_size;
  65	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  66			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  67
  68	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  69		offset = offsetof(struct ext4_inode, i_checksum_hi);
  70		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  71				   EXT4_GOOD_OLD_INODE_SIZE,
  72				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  73		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  74			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  75					   csum_size);
  76			offset += csum_size;
  77		}
  78		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  79				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  80	}
  81
  82	return csum;
  83}
  84
  85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  86				  struct ext4_inode_info *ei)
  87{
  88	__u32 provided, calculated;
  89
  90	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  91	    cpu_to_le32(EXT4_OS_LINUX) ||
  92	    !ext4_has_metadata_csum(inode->i_sb))
  93		return 1;
  94
  95	provided = le16_to_cpu(raw->i_checksum_lo);
  96	calculated = ext4_inode_csum(inode, raw, ei);
  97	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  98	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  99		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 100	else
 101		calculated &= 0xFFFF;
 102
 103	return provided == calculated;
 104}
 105
 106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 107				struct ext4_inode_info *ei)
 108{
 109	__u32 csum;
 110
 111	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 112	    cpu_to_le32(EXT4_OS_LINUX) ||
 113	    !ext4_has_metadata_csum(inode->i_sb))
 114		return;
 115
 116	csum = ext4_inode_csum(inode, raw, ei);
 117	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 118	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 119	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 120		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 121}
 122
 123static inline int ext4_begin_ordered_truncate(struct inode *inode,
 124					      loff_t new_size)
 125{
 126	trace_ext4_begin_ordered_truncate(inode, new_size);
 127	/*
 128	 * If jinode is zero, then we never opened the file for
 129	 * writing, so there's no need to call
 130	 * jbd2_journal_begin_ordered_truncate() since there's no
 131	 * outstanding writes we need to flush.
 132	 */
 133	if (!EXT4_I(inode)->jinode)
 134		return 0;
 135	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 136						   EXT4_I(inode)->jinode,
 137						   new_size);
 138}
 139
 140static void ext4_invalidatepage(struct page *page, unsigned int offset,
 141				unsigned int length);
 142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 172				 int nblocks)
 173{
 174	int ret;
 175
 176	/*
 177	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 178	 * moment, get_block can be called only for blocks inside i_size since
 179	 * page cache has been already dropped and writes are blocked by
 180	 * i_mutex. So we can safely drop the i_data_sem here.
 181	 */
 182	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 183	jbd_debug(2, "restarting handle %p\n", handle);
 184	up_write(&EXT4_I(inode)->i_data_sem);
 185	ret = ext4_journal_restart(handle, nblocks);
 186	down_write(&EXT4_I(inode)->i_data_sem);
 187	ext4_discard_preallocations(inode);
 188
 189	return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext4_evict_inode(struct inode *inode)
 196{
 197	handle_t *handle;
 198	int err;
 199	int extra_credits = 3;
 
 
 
 
 
 200	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 
 201
 202	trace_ext4_evict_inode(inode);
 203
 
 
 204	if (inode->i_nlink) {
 205		/*
 206		 * When journalling data dirty buffers are tracked only in the
 207		 * journal. So although mm thinks everything is clean and
 208		 * ready for reaping the inode might still have some pages to
 209		 * write in the running transaction or waiting to be
 210		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 211		 * (via truncate_inode_pages()) to discard these buffers can
 212		 * cause data loss. Also even if we did not discard these
 213		 * buffers, we would have no way to find them after the inode
 214		 * is reaped and thus user could see stale data if he tries to
 215		 * read them before the transaction is checkpointed. So be
 216		 * careful and force everything to disk here... We use
 217		 * ei->i_datasync_tid to store the newest transaction
 218		 * containing inode's data.
 219		 *
 220		 * Note that directories do not have this problem because they
 221		 * don't use page cache.
 222		 */
 223		if (inode->i_ino != EXT4_JOURNAL_INO &&
 224		    ext4_should_journal_data(inode) &&
 225		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 226		    inode->i_data.nrpages) {
 227			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 228			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 229
 230			jbd2_complete_transaction(journal, commit_tid);
 231			filemap_write_and_wait(&inode->i_data);
 232		}
 233		truncate_inode_pages_final(&inode->i_data);
 234
 235		goto no_delete;
 236	}
 237
 238	if (is_bad_inode(inode))
 239		goto no_delete;
 240	dquot_initialize(inode);
 241
 242	if (ext4_should_order_data(inode))
 243		ext4_begin_ordered_truncate(inode, 0);
 244	truncate_inode_pages_final(&inode->i_data);
 245
 246	/*
 
 
 
 
 
 
 
 
 
 
 247	 * Protect us against freezing - iput() caller didn't have to have any
 248	 * protection against it
 249	 */
 250	sb_start_intwrite(inode->i_sb);
 
 
 
 
 
 251
 252	if (!IS_NOQUOTA(inode))
 253		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 254
 
 
 
 
 255	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 256				 ext4_blocks_for_truncate(inode)+extra_credits);
 257	if (IS_ERR(handle)) {
 258		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 259		/*
 260		 * If we're going to skip the normal cleanup, we still need to
 261		 * make sure that the in-core orphan linked list is properly
 262		 * cleaned up.
 263		 */
 264		ext4_orphan_del(NULL, inode);
 265		sb_end_intwrite(inode->i_sb);
 
 266		goto no_delete;
 267	}
 268
 269	if (IS_SYNC(inode))
 270		ext4_handle_sync(handle);
 271
 272	/*
 273	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 274	 * special handling of symlinks here because i_size is used to
 275	 * determine whether ext4_inode_info->i_data contains symlink data or
 276	 * block mappings. Setting i_size to 0 will remove its fast symlink
 277	 * status. Erase i_data so that it becomes a valid empty block map.
 278	 */
 279	if (ext4_inode_is_fast_symlink(inode))
 280		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 281	inode->i_size = 0;
 282	err = ext4_mark_inode_dirty(handle, inode);
 283	if (err) {
 284		ext4_warning(inode->i_sb,
 285			     "couldn't mark inode dirty (err %d)", err);
 286		goto stop_handle;
 287	}
 288	if (inode->i_blocks) {
 289		err = ext4_truncate(inode);
 290		if (err) {
 291			ext4_error(inode->i_sb,
 292				   "couldn't truncate inode %lu (err %d)",
 293				   inode->i_ino, err);
 294			goto stop_handle;
 295		}
 296	}
 297
 298	/* Remove xattr references. */
 299	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 300				      extra_credits);
 301	if (err) {
 302		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 303stop_handle:
 304		ext4_journal_stop(handle);
 305		ext4_orphan_del(NULL, inode);
 306		sb_end_intwrite(inode->i_sb);
 
 307		ext4_xattr_inode_array_free(ea_inode_array);
 308		goto no_delete;
 309	}
 310
 311	/*
 312	 * Kill off the orphan record which ext4_truncate created.
 313	 * AKPM: I think this can be inside the above `if'.
 314	 * Note that ext4_orphan_del() has to be able to cope with the
 315	 * deletion of a non-existent orphan - this is because we don't
 316	 * know if ext4_truncate() actually created an orphan record.
 317	 * (Well, we could do this if we need to, but heck - it works)
 318	 */
 319	ext4_orphan_del(handle, inode);
 320	EXT4_I(inode)->i_dtime	= get_seconds();
 321
 322	/*
 323	 * One subtle ordering requirement: if anything has gone wrong
 324	 * (transaction abort, IO errors, whatever), then we can still
 325	 * do these next steps (the fs will already have been marked as
 326	 * having errors), but we can't free the inode if the mark_dirty
 327	 * fails.
 328	 */
 329	if (ext4_mark_inode_dirty(handle, inode))
 330		/* If that failed, just do the required in-core inode clear. */
 331		ext4_clear_inode(inode);
 332	else
 333		ext4_free_inode(handle, inode);
 334	ext4_journal_stop(handle);
 335	sb_end_intwrite(inode->i_sb);
 
 336	ext4_xattr_inode_array_free(ea_inode_array);
 337	return;
 338no_delete:
 
 
 
 
 
 
 
 
 339	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 340}
 341
 342#ifdef CONFIG_QUOTA
 343qsize_t *ext4_get_reserved_space(struct inode *inode)
 344{
 345	return &EXT4_I(inode)->i_reserved_quota;
 346}
 347#endif
 348
 349/*
 350 * Called with i_data_sem down, which is important since we can call
 351 * ext4_discard_preallocations() from here.
 352 */
 353void ext4_da_update_reserve_space(struct inode *inode,
 354					int used, int quota_claim)
 355{
 356	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 357	struct ext4_inode_info *ei = EXT4_I(inode);
 358
 359	spin_lock(&ei->i_block_reservation_lock);
 360	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 361	if (unlikely(used > ei->i_reserved_data_blocks)) {
 362		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 363			 "with only %d reserved data blocks",
 364			 __func__, inode->i_ino, used,
 365			 ei->i_reserved_data_blocks);
 366		WARN_ON(1);
 367		used = ei->i_reserved_data_blocks;
 368	}
 369
 370	/* Update per-inode reservations */
 371	ei->i_reserved_data_blocks -= used;
 372	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 373
 374	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 375
 376	/* Update quota subsystem for data blocks */
 377	if (quota_claim)
 378		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 379	else {
 380		/*
 381		 * We did fallocate with an offset that is already delayed
 382		 * allocated. So on delayed allocated writeback we should
 383		 * not re-claim the quota for fallocated blocks.
 384		 */
 385		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 386	}
 387
 388	/*
 389	 * If we have done all the pending block allocations and if
 390	 * there aren't any writers on the inode, we can discard the
 391	 * inode's preallocations.
 392	 */
 393	if ((ei->i_reserved_data_blocks == 0) &&
 394	    (atomic_read(&inode->i_writecount) == 0))
 395		ext4_discard_preallocations(inode);
 396}
 397
 398static int __check_block_validity(struct inode *inode, const char *func,
 399				unsigned int line,
 400				struct ext4_map_blocks *map)
 401{
 402	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 403				   map->m_len)) {
 
 
 
 404		ext4_error_inode(inode, func, line, map->m_pblk,
 405				 "lblock %lu mapped to illegal pblock "
 406				 "(length %d)", (unsigned long) map->m_lblk,
 407				 map->m_len);
 408		return -EFSCORRUPTED;
 409	}
 410	return 0;
 411}
 412
 413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 414		       ext4_lblk_t len)
 415{
 416	int ret;
 417
 418	if (ext4_encrypted_inode(inode))
 419		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 420
 421	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 422	if (ret > 0)
 423		ret = 0;
 424
 425	return ret;
 426}
 427
 428#define check_block_validity(inode, map)	\
 429	__check_block_validity((inode), __func__, __LINE__, (map))
 430
 431#ifdef ES_AGGRESSIVE_TEST
 432static void ext4_map_blocks_es_recheck(handle_t *handle,
 433				       struct inode *inode,
 434				       struct ext4_map_blocks *es_map,
 435				       struct ext4_map_blocks *map,
 436				       int flags)
 437{
 438	int retval;
 439
 440	map->m_flags = 0;
 441	/*
 442	 * There is a race window that the result is not the same.
 443	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 444	 * is that we lookup a block mapping in extent status tree with
 445	 * out taking i_data_sem.  So at the time the unwritten extent
 446	 * could be converted.
 447	 */
 448	down_read(&EXT4_I(inode)->i_data_sem);
 449	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 450		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 451					     EXT4_GET_BLOCKS_KEEP_SIZE);
 452	} else {
 453		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 454					     EXT4_GET_BLOCKS_KEEP_SIZE);
 455	}
 456	up_read((&EXT4_I(inode)->i_data_sem));
 457
 458	/*
 459	 * We don't check m_len because extent will be collpased in status
 460	 * tree.  So the m_len might not equal.
 461	 */
 462	if (es_map->m_lblk != map->m_lblk ||
 463	    es_map->m_flags != map->m_flags ||
 464	    es_map->m_pblk != map->m_pblk) {
 465		printk("ES cache assertion failed for inode: %lu "
 466		       "es_cached ex [%d/%d/%llu/%x] != "
 467		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 468		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 469		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 470		       map->m_len, map->m_pblk, map->m_flags,
 471		       retval, flags);
 472	}
 473}
 474#endif /* ES_AGGRESSIVE_TEST */
 475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476/*
 477 * The ext4_map_blocks() function tries to look up the requested blocks,
 478 * and returns if the blocks are already mapped.
 479 *
 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 481 * and store the allocated blocks in the result buffer head and mark it
 482 * mapped.
 483 *
 484 * If file type is extents based, it will call ext4_ext_map_blocks(),
 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 486 * based files
 487 *
 488 * On success, it returns the number of blocks being mapped or allocated.  if
 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 
 491 *
 492 * It returns 0 if plain look up failed (blocks have not been allocated), in
 493 * that case, @map is returned as unmapped but we still do fill map->m_len to
 494 * indicate the length of a hole starting at map->m_lblk.
 495 *
 496 * It returns the error in case of allocation failure.
 497 */
 498int ext4_map_blocks(handle_t *handle, struct inode *inode,
 499		    struct ext4_map_blocks *map, int flags)
 500{
 501	struct extent_status es;
 502	int retval;
 503	int ret = 0;
 504#ifdef ES_AGGRESSIVE_TEST
 505	struct ext4_map_blocks orig_map;
 506
 507	memcpy(&orig_map, map, sizeof(*map));
 508#endif
 509
 510	map->m_flags = 0;
 511	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 512		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 513		  (unsigned long) map->m_lblk);
 514
 515	/*
 516	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 517	 */
 518	if (unlikely(map->m_len > INT_MAX))
 519		map->m_len = INT_MAX;
 520
 521	/* We can handle the block number less than EXT_MAX_BLOCKS */
 522	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 523		return -EFSCORRUPTED;
 524
 525	/* Lookup extent status tree firstly */
 526	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 
 527		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 528			map->m_pblk = ext4_es_pblock(&es) +
 529					map->m_lblk - es.es_lblk;
 530			map->m_flags |= ext4_es_is_written(&es) ?
 531					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 532			retval = es.es_len - (map->m_lblk - es.es_lblk);
 533			if (retval > map->m_len)
 534				retval = map->m_len;
 535			map->m_len = retval;
 536		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 537			map->m_pblk = 0;
 
 
 538			retval = es.es_len - (map->m_lblk - es.es_lblk);
 539			if (retval > map->m_len)
 540				retval = map->m_len;
 541			map->m_len = retval;
 542			retval = 0;
 543		} else {
 544			BUG_ON(1);
 545		}
 
 
 
 546#ifdef ES_AGGRESSIVE_TEST
 547		ext4_map_blocks_es_recheck(handle, inode, map,
 548					   &orig_map, flags);
 549#endif
 550		goto found;
 551	}
 
 
 
 
 
 
 552
 553	/*
 554	 * Try to see if we can get the block without requesting a new
 555	 * file system block.
 556	 */
 557	down_read(&EXT4_I(inode)->i_data_sem);
 558	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 559		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 560					     EXT4_GET_BLOCKS_KEEP_SIZE);
 561	} else {
 562		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 563					     EXT4_GET_BLOCKS_KEEP_SIZE);
 564	}
 565	if (retval > 0) {
 566		unsigned int status;
 567
 568		if (unlikely(retval != map->m_len)) {
 569			ext4_warning(inode->i_sb,
 570				     "ES len assertion failed for inode "
 571				     "%lu: retval %d != map->m_len %d",
 572				     inode->i_ino, retval, map->m_len);
 573			WARN_ON(1);
 574		}
 575
 576		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 577				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 578		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 579		    !(status & EXTENT_STATUS_WRITTEN) &&
 580		    ext4_find_delalloc_range(inode, map->m_lblk,
 581					     map->m_lblk + map->m_len - 1))
 582			status |= EXTENT_STATUS_DELAYED;
 583		ret = ext4_es_insert_extent(inode, map->m_lblk,
 584					    map->m_len, map->m_pblk, status);
 585		if (ret < 0)
 586			retval = ret;
 587	}
 588	up_read((&EXT4_I(inode)->i_data_sem));
 589
 590found:
 591	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 592		ret = check_block_validity(inode, map);
 593		if (ret != 0)
 594			return ret;
 595	}
 596
 597	/* If it is only a block(s) look up */
 598	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 599		return retval;
 600
 601	/*
 602	 * Returns if the blocks have already allocated
 603	 *
 604	 * Note that if blocks have been preallocated
 605	 * ext4_ext_get_block() returns the create = 0
 606	 * with buffer head unmapped.
 607	 */
 608	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 609		/*
 610		 * If we need to convert extent to unwritten
 611		 * we continue and do the actual work in
 612		 * ext4_ext_map_blocks()
 613		 */
 614		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 615			return retval;
 616
 617	/*
 618	 * Here we clear m_flags because after allocating an new extent,
 619	 * it will be set again.
 620	 */
 621	map->m_flags &= ~EXT4_MAP_FLAGS;
 622
 623	/*
 624	 * New blocks allocate and/or writing to unwritten extent
 625	 * will possibly result in updating i_data, so we take
 626	 * the write lock of i_data_sem, and call get_block()
 627	 * with create == 1 flag.
 628	 */
 629	down_write(&EXT4_I(inode)->i_data_sem);
 630
 631	/*
 632	 * We need to check for EXT4 here because migrate
 633	 * could have changed the inode type in between
 634	 */
 635	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 636		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 637	} else {
 638		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 639
 640		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 641			/*
 642			 * We allocated new blocks which will result in
 643			 * i_data's format changing.  Force the migrate
 644			 * to fail by clearing migrate flags
 645			 */
 646			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 647		}
 648
 649		/*
 650		 * Update reserved blocks/metadata blocks after successful
 651		 * block allocation which had been deferred till now. We don't
 652		 * support fallocate for non extent files. So we can update
 653		 * reserve space here.
 654		 */
 655		if ((retval > 0) &&
 656			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 657			ext4_da_update_reserve_space(inode, retval, 1);
 658	}
 659
 660	if (retval > 0) {
 661		unsigned int status;
 662
 663		if (unlikely(retval != map->m_len)) {
 664			ext4_warning(inode->i_sb,
 665				     "ES len assertion failed for inode "
 666				     "%lu: retval %d != map->m_len %d",
 667				     inode->i_ino, retval, map->m_len);
 668			WARN_ON(1);
 669		}
 670
 671		/*
 672		 * We have to zeroout blocks before inserting them into extent
 673		 * status tree. Otherwise someone could look them up there and
 674		 * use them before they are really zeroed. We also have to
 675		 * unmap metadata before zeroing as otherwise writeback can
 676		 * overwrite zeros with stale data from block device.
 677		 */
 678		if (flags & EXT4_GET_BLOCKS_ZERO &&
 679		    map->m_flags & EXT4_MAP_MAPPED &&
 680		    map->m_flags & EXT4_MAP_NEW) {
 681			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 682					   map->m_len);
 683			ret = ext4_issue_zeroout(inode, map->m_lblk,
 684						 map->m_pblk, map->m_len);
 685			if (ret) {
 686				retval = ret;
 687				goto out_sem;
 688			}
 689		}
 690
 691		/*
 692		 * If the extent has been zeroed out, we don't need to update
 693		 * extent status tree.
 694		 */
 695		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 697			if (ext4_es_is_written(&es))
 698				goto out_sem;
 699		}
 700		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703		    !(status & EXTENT_STATUS_WRITTEN) &&
 704		    ext4_find_delalloc_range(inode, map->m_lblk,
 705					     map->m_lblk + map->m_len - 1))
 706			status |= EXTENT_STATUS_DELAYED;
 707		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708					    map->m_pblk, status);
 709		if (ret < 0) {
 710			retval = ret;
 711			goto out_sem;
 712		}
 713	}
 714
 715out_sem:
 716	up_write((&EXT4_I(inode)->i_data_sem));
 717	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718		ret = check_block_validity(inode, map);
 719		if (ret != 0)
 720			return ret;
 721
 722		/*
 723		 * Inodes with freshly allocated blocks where contents will be
 724		 * visible after transaction commit must be on transaction's
 725		 * ordered data list.
 726		 */
 727		if (map->m_flags & EXT4_MAP_NEW &&
 728		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730		    !ext4_is_quota_file(inode) &&
 731		    ext4_should_order_data(inode)) {
 
 
 
 
 732			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 733				ret = ext4_jbd2_inode_add_wait(handle, inode);
 
 734			else
 735				ret = ext4_jbd2_inode_add_write(handle, inode);
 
 736			if (ret)
 737				return ret;
 738		}
 739	}
 
 
 
 
 
 
 740	return retval;
 741}
 742
 743/*
 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 745 * we have to be careful as someone else may be manipulating b_state as well.
 746 */
 747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 748{
 749	unsigned long old_state;
 750	unsigned long new_state;
 751
 752	flags &= EXT4_MAP_FLAGS;
 753
 754	/* Dummy buffer_head? Set non-atomically. */
 755	if (!bh->b_page) {
 756		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 757		return;
 758	}
 759	/*
 760	 * Someone else may be modifying b_state. Be careful! This is ugly but
 761	 * once we get rid of using bh as a container for mapping information
 762	 * to pass to / from get_block functions, this can go away.
 763	 */
 
 764	do {
 765		old_state = READ_ONCE(bh->b_state);
 766		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 767	} while (unlikely(
 768		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 769}
 770
 771static int _ext4_get_block(struct inode *inode, sector_t iblock,
 772			   struct buffer_head *bh, int flags)
 773{
 774	struct ext4_map_blocks map;
 775	int ret = 0;
 776
 777	if (ext4_has_inline_data(inode))
 778		return -ERANGE;
 779
 780	map.m_lblk = iblock;
 781	map.m_len = bh->b_size >> inode->i_blkbits;
 782
 783	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 784			      flags);
 785	if (ret > 0) {
 786		map_bh(bh, inode->i_sb, map.m_pblk);
 787		ext4_update_bh_state(bh, map.m_flags);
 788		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 789		ret = 0;
 790	} else if (ret == 0) {
 791		/* hole case, need to fill in bh->b_size */
 792		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 793	}
 794	return ret;
 795}
 796
 797int ext4_get_block(struct inode *inode, sector_t iblock,
 798		   struct buffer_head *bh, int create)
 799{
 800	return _ext4_get_block(inode, iblock, bh,
 801			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 802}
 803
 804/*
 805 * Get block function used when preparing for buffered write if we require
 806 * creating an unwritten extent if blocks haven't been allocated.  The extent
 807 * will be converted to written after the IO is complete.
 808 */
 809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 810			     struct buffer_head *bh_result, int create)
 811{
 
 
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	return _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 816}
 817
 818/* Maximum number of blocks we map for direct IO at once. */
 819#define DIO_MAX_BLOCKS 4096
 820
 821/*
 822 * Get blocks function for the cases that need to start a transaction -
 823 * generally difference cases of direct IO and DAX IO. It also handles retries
 824 * in case of ENOSPC.
 825 */
 826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 827				struct buffer_head *bh_result, int flags)
 828{
 829	int dio_credits;
 830	handle_t *handle;
 831	int retries = 0;
 832	int ret;
 833
 834	/* Trim mapping request to maximum we can map at once for DIO */
 835	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 836		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 837	dio_credits = ext4_chunk_trans_blocks(inode,
 838				      bh_result->b_size >> inode->i_blkbits);
 839retry:
 840	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 841	if (IS_ERR(handle))
 842		return PTR_ERR(handle);
 843
 844	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 845	ext4_journal_stop(handle);
 846
 847	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 848		goto retry;
 849	return ret;
 850}
 851
 852/* Get block function for DIO reads and writes to inodes without extents */
 853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 854		       struct buffer_head *bh, int create)
 855{
 856	/* We don't expect handle for direct IO */
 857	WARN_ON_ONCE(ext4_journal_current_handle());
 858
 859	if (!create)
 860		return _ext4_get_block(inode, iblock, bh, 0);
 861	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 862}
 863
 864/*
 865 * Get block function for AIO DIO writes when we create unwritten extent if
 866 * blocks are not allocated yet. The extent will be converted to written
 867 * after IO is complete.
 868 */
 869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 870		sector_t iblock, struct buffer_head *bh_result,	int create)
 871{
 872	int ret;
 873
 874	/* We don't expect handle for direct IO */
 875	WARN_ON_ONCE(ext4_journal_current_handle());
 876
 877	ret = ext4_get_block_trans(inode, iblock, bh_result,
 878				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 879
 880	/*
 881	 * When doing DIO using unwritten extents, we need io_end to convert
 882	 * unwritten extents to written on IO completion. We allocate io_end
 883	 * once we spot unwritten extent and store it in b_private. Generic
 884	 * DIO code keeps b_private set and furthermore passes the value to
 885	 * our completion callback in 'private' argument.
 886	 */
 887	if (!ret && buffer_unwritten(bh_result)) {
 888		if (!bh_result->b_private) {
 889			ext4_io_end_t *io_end;
 890
 891			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 892			if (!io_end)
 893				return -ENOMEM;
 894			bh_result->b_private = io_end;
 895			ext4_set_io_unwritten_flag(inode, io_end);
 896		}
 897		set_buffer_defer_completion(bh_result);
 898	}
 899
 900	return ret;
 901}
 902
 903/*
 904 * Get block function for non-AIO DIO writes when we create unwritten extent if
 905 * blocks are not allocated yet. The extent will be converted to written
 906 * after IO is complete by ext4_direct_IO_write().
 907 */
 908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 909		sector_t iblock, struct buffer_head *bh_result,	int create)
 910{
 911	int ret;
 912
 913	/* We don't expect handle for direct IO */
 914	WARN_ON_ONCE(ext4_journal_current_handle());
 915
 916	ret = ext4_get_block_trans(inode, iblock, bh_result,
 917				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 918
 919	/*
 920	 * Mark inode as having pending DIO writes to unwritten extents.
 921	 * ext4_direct_IO_write() checks this flag and converts extents to
 922	 * written.
 923	 */
 924	if (!ret && buffer_unwritten(bh_result))
 925		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 926
 927	return ret;
 928}
 929
 930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 931		   struct buffer_head *bh_result, int create)
 932{
 933	int ret;
 934
 935	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 936		   inode->i_ino, create);
 937	/* We don't expect handle for direct IO */
 938	WARN_ON_ONCE(ext4_journal_current_handle());
 939
 940	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 941	/*
 942	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 943	 * that.
 944	 */
 945	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 946
 947	return ret;
 948}
 949
 
 
 950
 951/*
 952 * `handle' can be NULL if create is zero
 953 */
 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 955				ext4_lblk_t block, int map_flags)
 956{
 957	struct ext4_map_blocks map;
 958	struct buffer_head *bh;
 959	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 
 960	int err;
 961
 962	J_ASSERT(handle != NULL || create == 0);
 
 
 963
 964	map.m_lblk = block;
 965	map.m_len = 1;
 966	err = ext4_map_blocks(handle, inode, &map, map_flags);
 967
 968	if (err == 0)
 969		return create ? ERR_PTR(-ENOSPC) : NULL;
 970	if (err < 0)
 971		return ERR_PTR(err);
 972
 973	bh = sb_getblk(inode->i_sb, map.m_pblk);
 
 
 
 
 
 
 
 
 
 
 974	if (unlikely(!bh))
 975		return ERR_PTR(-ENOMEM);
 976	if (map.m_flags & EXT4_MAP_NEW) {
 977		J_ASSERT(create != 0);
 978		J_ASSERT(handle != NULL);
 
 979
 980		/*
 981		 * Now that we do not always journal data, we should
 982		 * keep in mind whether this should always journal the
 983		 * new buffer as metadata.  For now, regular file
 984		 * writes use ext4_get_block instead, so it's not a
 985		 * problem.
 986		 */
 987		lock_buffer(bh);
 988		BUFFER_TRACE(bh, "call get_create_access");
 989		err = ext4_journal_get_create_access(handle, bh);
 
 990		if (unlikely(err)) {
 991			unlock_buffer(bh);
 992			goto errout;
 993		}
 994		if (!buffer_uptodate(bh)) {
 995			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 996			set_buffer_uptodate(bh);
 997		}
 998		unlock_buffer(bh);
 999		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000		err = ext4_handle_dirty_metadata(handle, inode, bh);
1001		if (unlikely(err))
1002			goto errout;
1003	} else
1004		BUFFER_TRACE(bh, "not a new buffer");
1005	return bh;
1006errout:
1007	brelse(bh);
1008	return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012			       ext4_lblk_t block, int map_flags)
1013{
1014	struct buffer_head *bh;
 
1015
1016	bh = ext4_getblk(handle, inode, block, map_flags);
1017	if (IS_ERR(bh))
1018		return bh;
1019	if (!bh || buffer_uptodate(bh))
1020		return bh;
1021	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022	wait_on_buffer(bh);
1023	if (buffer_uptodate(bh))
1024		return bh;
1025	put_bh(bh);
1026	return ERR_PTR(-EIO);
 
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031		     bool wait, struct buffer_head **bhs)
1032{
1033	int i, err;
1034
1035	for (i = 0; i < bh_count; i++) {
1036		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037		if (IS_ERR(bhs[i])) {
1038			err = PTR_ERR(bhs[i]);
1039			bh_count = i;
1040			goto out_brelse;
1041		}
1042	}
1043
1044	for (i = 0; i < bh_count; i++)
1045		/* Note that NULL bhs[i] is valid because of holes. */
1046		if (bhs[i] && !buffer_uptodate(bhs[i]))
1047			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048				    &bhs[i]);
1049
1050	if (!wait)
1051		return 0;
1052
1053	for (i = 0; i < bh_count; i++)
1054		if (bhs[i])
1055			wait_on_buffer(bhs[i]);
1056
1057	for (i = 0; i < bh_count; i++) {
1058		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059			err = -EIO;
1060			goto out_brelse;
1061		}
1062	}
1063	return 0;
1064
1065out_brelse:
1066	for (i = 0; i < bh_count; i++) {
1067		brelse(bhs[i]);
1068		bhs[i] = NULL;
1069	}
1070	return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074			   struct buffer_head *head,
1075			   unsigned from,
1076			   unsigned to,
1077			   int *partial,
1078			   int (*fn)(handle_t *handle,
1079				     struct buffer_head *bh))
1080{
1081	struct buffer_head *bh;
1082	unsigned block_start, block_end;
1083	unsigned blocksize = head->b_size;
1084	int err, ret = 0;
1085	struct buffer_head *next;
1086
1087	for (bh = head, block_start = 0;
1088	     ret == 0 && (bh != head || !block_start);
1089	     block_start = block_end, bh = next) {
1090		next = bh->b_this_page;
1091		block_end = block_start + blocksize;
1092		if (block_end <= from || block_start >= to) {
1093			if (partial && !buffer_uptodate(bh))
1094				*partial = 1;
1095			continue;
1096		}
1097		err = (*fn)(handle, bh);
1098		if (!ret)
1099			ret = err;
1100	}
1101	return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction.  We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write().  So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage().  In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page.  So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes.  If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated.  We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
 
 
 
 
 
 
1129				struct buffer_head *bh)
1130{
1131	int dirty = buffer_dirty(bh);
1132	int ret;
1133
1134	if (!buffer_mapped(bh) || buffer_freed(bh))
1135		return 0;
1136	/*
1137	 * __block_write_begin() could have dirtied some buffers. Clean
1138	 * the dirty bit as jbd2_journal_get_write_access() could complain
1139	 * otherwise about fs integrity issues. Setting of the dirty bit
1140	 * by __block_write_begin() isn't a real problem here as we clear
1141	 * the bit before releasing a page lock and thus writeback cannot
1142	 * ever write the buffer.
1143	 */
1144	if (dirty)
1145		clear_buffer_dirty(bh);
1146	BUFFER_TRACE(bh, "get write access");
1147	ret = ext4_journal_get_write_access(handle, bh);
1148	if (!ret && dirty)
1149		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150	return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155				  get_block_t *get_block)
1156{
1157	unsigned from = pos & (PAGE_SIZE - 1);
1158	unsigned to = from + len;
1159	struct inode *inode = page->mapping->host;
1160	unsigned block_start, block_end;
1161	sector_t block;
1162	int err = 0;
1163	unsigned blocksize = inode->i_sb->s_blocksize;
1164	unsigned bbits;
1165	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166	bool decrypt = false;
 
 
1167
1168	BUG_ON(!PageLocked(page));
1169	BUG_ON(from > PAGE_SIZE);
1170	BUG_ON(to > PAGE_SIZE);
1171	BUG_ON(from > to);
1172
1173	if (!page_has_buffers(page))
1174		create_empty_buffers(page, blocksize, 0);
1175	head = page_buffers(page);
1176	bbits = ilog2(blocksize);
1177	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179	for (bh = head, block_start = 0; bh != head || !block_start;
1180	    block++, block_start = block_end, bh = bh->b_this_page) {
1181		block_end = block_start + blocksize;
1182		if (block_end <= from || block_start >= to) {
1183			if (PageUptodate(page)) {
1184				if (!buffer_uptodate(bh))
1185					set_buffer_uptodate(bh);
1186			}
1187			continue;
1188		}
1189		if (buffer_new(bh))
1190			clear_buffer_new(bh);
1191		if (!buffer_mapped(bh)) {
1192			WARN_ON(bh->b_size != blocksize);
1193			err = get_block(inode, block, bh, 1);
1194			if (err)
1195				break;
1196			if (buffer_new(bh)) {
1197				clean_bdev_bh_alias(bh);
1198				if (PageUptodate(page)) {
1199					clear_buffer_new(bh);
 
 
 
 
 
 
 
 
 
 
 
 
1200					set_buffer_uptodate(bh);
1201					mark_buffer_dirty(bh);
1202					continue;
1203				}
1204				if (block_end > to || block_start < from)
1205					zero_user_segments(page, to, block_end,
1206							   block_start, from);
 
1207				continue;
1208			}
1209		}
1210		if (PageUptodate(page)) {
1211			if (!buffer_uptodate(bh))
1212				set_buffer_uptodate(bh);
1213			continue;
1214		}
1215		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216		    !buffer_unwritten(bh) &&
1217		    (block_start < from || block_end > to)) {
1218			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219			*wait_bh++ = bh;
1220			decrypt = ext4_encrypted_inode(inode) &&
1221				S_ISREG(inode->i_mode);
1222		}
1223	}
1224	/*
1225	 * If we issued read requests, let them complete.
1226	 */
1227	while (wait_bh > wait) {
1228		wait_on_buffer(*--wait_bh);
1229		if (!buffer_uptodate(*wait_bh))
1230			err = -EIO;
1231	}
1232	if (unlikely(err))
1233		page_zero_new_buffers(page, from, to);
1234	else if (decrypt)
1235		err = fscrypt_decrypt_page(page->mapping->host, page,
1236				PAGE_SIZE, 0, page->index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237	return err;
1238}
1239#endif
1240
 
 
 
 
 
 
 
1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242			    loff_t pos, unsigned len, unsigned flags,
1243			    struct page **pagep, void **fsdata)
1244{
1245	struct inode *inode = mapping->host;
1246	int ret, needed_blocks;
1247	handle_t *handle;
1248	int retries = 0;
1249	struct page *page;
1250	pgoff_t index;
1251	unsigned from, to;
1252
1253	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254		return -EIO;
1255
1256	trace_ext4_write_begin(inode, pos, len, flags);
1257	/*
1258	 * Reserve one block more for addition to orphan list in case
1259	 * we allocate blocks but write fails for some reason
1260	 */
1261	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262	index = pos >> PAGE_SHIFT;
1263	from = pos & (PAGE_SIZE - 1);
1264	to = from + len;
1265
1266	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268						    flags, pagep);
1269		if (ret < 0)
1270			return ret;
1271		if (ret == 1)
1272			return 0;
1273	}
1274
1275	/*
1276	 * grab_cache_page_write_begin() can take a long time if the
1277	 * system is thrashing due to memory pressure, or if the page
1278	 * is being written back.  So grab it first before we start
1279	 * the transaction handle.  This also allows us to allocate
1280	 * the page (if needed) without using GFP_NOFS.
1281	 */
1282retry_grab:
1283	page = grab_cache_page_write_begin(mapping, index, flags);
1284	if (!page)
1285		return -ENOMEM;
1286	unlock_page(page);
 
 
 
 
 
 
 
 
1287
1288retry_journal:
1289	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290	if (IS_ERR(handle)) {
1291		put_page(page);
1292		return PTR_ERR(handle);
1293	}
1294
1295	lock_page(page);
1296	if (page->mapping != mapping) {
1297		/* The page got truncated from under us */
1298		unlock_page(page);
1299		put_page(page);
1300		ext4_journal_stop(handle);
1301		goto retry_grab;
1302	}
1303	/* In case writeback began while the page was unlocked */
1304	wait_for_stable_page(page);
1305
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307	if (ext4_should_dioread_nolock(inode))
1308		ret = ext4_block_write_begin(page, pos, len,
1309					     ext4_get_block_unwritten);
1310	else
1311		ret = ext4_block_write_begin(page, pos, len,
1312					     ext4_get_block);
1313#else
1314	if (ext4_should_dioread_nolock(inode))
1315		ret = __block_write_begin(page, pos, len,
1316					  ext4_get_block_unwritten);
1317	else
1318		ret = __block_write_begin(page, pos, len, ext4_get_block);
1319#endif
1320	if (!ret && ext4_should_journal_data(inode)) {
1321		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322					     from, to, NULL,
1323					     do_journal_get_write_access);
1324	}
1325
1326	if (ret) {
1327		unlock_page(page);
 
 
 
1328		/*
1329		 * __block_write_begin may have instantiated a few blocks
1330		 * outside i_size.  Trim these off again. Don't need
1331		 * i_size_read because we hold i_mutex.
1332		 *
1333		 * Add inode to orphan list in case we crash before
1334		 * truncate finishes
1335		 */
1336		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337			ext4_orphan_add(handle, inode);
1338
1339		ext4_journal_stop(handle);
1340		if (pos + len > inode->i_size) {
1341			ext4_truncate_failed_write(inode);
1342			/*
1343			 * If truncate failed early the inode might
1344			 * still be on the orphan list; we need to
1345			 * make sure the inode is removed from the
1346			 * orphan list in that case.
1347			 */
1348			if (inode->i_nlink)
1349				ext4_orphan_del(NULL, inode);
1350		}
1351
1352		if (ret == -ENOSPC &&
1353		    ext4_should_retry_alloc(inode->i_sb, &retries))
1354			goto retry_journal;
1355		put_page(page);
1356		return ret;
1357	}
1358	*pagep = page;
1359	return ret;
1360}
1361
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 
1364{
1365	int ret;
1366	if (!buffer_mapped(bh) || buffer_freed(bh))
1367		return 0;
1368	set_buffer_uptodate(bh);
1369	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370	clear_buffer_meta(bh);
1371	clear_buffer_prio(bh);
1372	return ret;
1373}
1374
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383			  struct address_space *mapping,
1384			  loff_t pos, unsigned len, unsigned copied,
1385			  struct page *page, void *fsdata)
1386{
1387	handle_t *handle = ext4_journal_current_handle();
1388	struct inode *inode = mapping->host;
1389	loff_t old_size = inode->i_size;
1390	int ret = 0, ret2;
1391	int i_size_changed = 0;
 
1392
1393	trace_ext4_write_end(inode, pos, len, copied);
1394	if (ext4_has_inline_data(inode)) {
1395		ret = ext4_write_inline_data_end(inode, pos, len,
1396						 copied, page);
1397		if (ret < 0) {
1398			unlock_page(page);
1399			put_page(page);
1400			goto errout;
1401		}
1402		copied = ret;
1403	} else
1404		copied = block_write_end(file, mapping, pos,
1405					 len, copied, page, fsdata);
1406	/*
1407	 * it's important to update i_size while still holding page lock:
1408	 * page writeout could otherwise come in and zero beyond i_size.
 
 
 
1409	 */
1410	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1411	unlock_page(page);
1412	put_page(page);
 
1413
1414	if (old_size < pos)
1415		pagecache_isize_extended(inode, old_size, pos);
 
 
1416	/*
1417	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418	 * makes the holding time of page lock longer. Second, it forces lock
1419	 * ordering of page lock and transaction start for journaling
1420	 * filesystems.
1421	 */
1422	if (i_size_changed)
1423		ext4_mark_inode_dirty(handle, inode);
1424
1425	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426		/* if we have allocated more blocks and copied
1427		 * less. We will have blocks allocated outside
1428		 * inode->i_size. So truncate them
1429		 */
1430		ext4_orphan_add(handle, inode);
1431errout:
1432	ret2 = ext4_journal_stop(handle);
1433	if (!ret)
1434		ret = ret2;
1435
1436	if (pos + len > inode->i_size) {
1437		ext4_truncate_failed_write(inode);
1438		/*
1439		 * If truncate failed early the inode might still be
1440		 * on the orphan list; we need to make sure the inode
1441		 * is removed from the orphan list in that case.
1442		 */
1443		if (inode->i_nlink)
1444			ext4_orphan_del(NULL, inode);
1445	}
1446
1447	return ret ? ret : copied;
1448}
1449
1450/*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
1455static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456					    struct page *page,
 
1457					    unsigned from, unsigned to)
1458{
1459	unsigned int block_start = 0, block_end;
1460	struct buffer_head *head, *bh;
1461
1462	bh = head = page_buffers(page);
1463	do {
1464		block_end = block_start + bh->b_size;
1465		if (buffer_new(bh)) {
1466			if (block_end > from && block_start < to) {
1467				if (!PageUptodate(page)) {
1468					unsigned start, size;
1469
1470					start = max(from, block_start);
1471					size = min(to, block_end) - start;
1472
1473					zero_user(page, start, size);
1474					write_end_fn(handle, bh);
1475				}
1476				clear_buffer_new(bh);
 
1477			}
1478		}
1479		block_start = block_end;
1480		bh = bh->b_this_page;
1481	} while (bh != head);
1482}
1483
1484static int ext4_journalled_write_end(struct file *file,
1485				     struct address_space *mapping,
1486				     loff_t pos, unsigned len, unsigned copied,
1487				     struct page *page, void *fsdata)
1488{
1489	handle_t *handle = ext4_journal_current_handle();
1490	struct inode *inode = mapping->host;
1491	loff_t old_size = inode->i_size;
1492	int ret = 0, ret2;
1493	int partial = 0;
1494	unsigned from, to;
1495	int size_changed = 0;
 
1496
1497	trace_ext4_journalled_write_end(inode, pos, len, copied);
1498	from = pos & (PAGE_SIZE - 1);
1499	to = from + len;
1500
1501	BUG_ON(!ext4_handle_valid(handle));
1502
1503	if (ext4_has_inline_data(inode)) {
1504		ret = ext4_write_inline_data_end(inode, pos, len,
1505						 copied, page);
1506		if (ret < 0) {
1507			unlock_page(page);
1508			put_page(page);
1509			goto errout;
1510		}
1511		copied = ret;
1512	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1513		copied = 0;
1514		ext4_journalled_zero_new_buffers(handle, page, from, to);
 
1515	} else {
1516		if (unlikely(copied < len))
1517			ext4_journalled_zero_new_buffers(handle, page,
1518							 from + copied, to);
1519		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520					     from + copied, &partial,
 
1521					     write_end_fn);
1522		if (!partial)
1523			SetPageUptodate(page);
1524	}
1525	size_changed = ext4_update_inode_size(inode, pos + copied);
1526	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528	unlock_page(page);
1529	put_page(page);
1530
1531	if (old_size < pos)
1532		pagecache_isize_extended(inode, old_size, pos);
 
 
1533
1534	if (size_changed) {
1535		ret2 = ext4_mark_inode_dirty(handle, inode);
1536		if (!ret)
1537			ret = ret2;
1538	}
1539
1540	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541		/* if we have allocated more blocks and copied
1542		 * less. We will have blocks allocated outside
1543		 * inode->i_size. So truncate them
1544		 */
1545		ext4_orphan_add(handle, inode);
1546
1547errout:
1548	ret2 = ext4_journal_stop(handle);
1549	if (!ret)
1550		ret = ret2;
1551	if (pos + len > inode->i_size) {
1552		ext4_truncate_failed_write(inode);
1553		/*
1554		 * If truncate failed early the inode might still be
1555		 * on the orphan list; we need to make sure the inode
1556		 * is removed from the orphan list in that case.
1557		 */
1558		if (inode->i_nlink)
1559			ext4_orphan_del(NULL, inode);
1560	}
1561
1562	return ret ? ret : copied;
1563}
1564
1565/*
1566 * Reserve space for a single cluster
1567 */
1568static int ext4_da_reserve_space(struct inode *inode)
1569{
1570	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571	struct ext4_inode_info *ei = EXT4_I(inode);
1572	int ret;
1573
1574	/*
1575	 * We will charge metadata quota at writeout time; this saves
1576	 * us from metadata over-estimation, though we may go over by
1577	 * a small amount in the end.  Here we just reserve for data.
1578	 */
1579	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580	if (ret)
1581		return ret;
1582
1583	spin_lock(&ei->i_block_reservation_lock);
1584	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585		spin_unlock(&ei->i_block_reservation_lock);
1586		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587		return -ENOSPC;
1588	}
1589	ei->i_reserved_data_blocks++;
1590	trace_ext4_da_reserve_space(inode);
1591	spin_unlock(&ei->i_block_reservation_lock);
1592
1593	return 0;       /* success */
1594}
1595
1596static void ext4_da_release_space(struct inode *inode, int to_free)
1597{
1598	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599	struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601	if (!to_free)
1602		return;		/* Nothing to release, exit */
1603
1604	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606	trace_ext4_da_release_space(inode, to_free);
1607	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608		/*
1609		 * if there aren't enough reserved blocks, then the
1610		 * counter is messed up somewhere.  Since this
1611		 * function is called from invalidate page, it's
1612		 * harmless to return without any action.
1613		 */
1614		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615			 "ino %lu, to_free %d with only %d reserved "
1616			 "data blocks", inode->i_ino, to_free,
1617			 ei->i_reserved_data_blocks);
1618		WARN_ON(1);
1619		to_free = ei->i_reserved_data_blocks;
1620	}
1621	ei->i_reserved_data_blocks -= to_free;
1622
1623	/* update fs dirty data blocks counter */
1624	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629}
1630
1631static void ext4_da_page_release_reservation(struct page *page,
1632					     unsigned int offset,
1633					     unsigned int length)
1634{
1635	int to_release = 0, contiguous_blks = 0;
1636	struct buffer_head *head, *bh;
1637	unsigned int curr_off = 0;
1638	struct inode *inode = page->mapping->host;
1639	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640	unsigned int stop = offset + length;
1641	int num_clusters;
1642	ext4_fsblk_t lblk;
1643
1644	BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646	head = page_buffers(page);
1647	bh = head;
1648	do {
1649		unsigned int next_off = curr_off + bh->b_size;
1650
1651		if (next_off > stop)
1652			break;
1653
1654		if ((offset <= curr_off) && (buffer_delay(bh))) {
1655			to_release++;
1656			contiguous_blks++;
1657			clear_buffer_delay(bh);
1658		} else if (contiguous_blks) {
1659			lblk = page->index <<
1660			       (PAGE_SHIFT - inode->i_blkbits);
1661			lblk += (curr_off >> inode->i_blkbits) -
1662				contiguous_blks;
1663			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664			contiguous_blks = 0;
1665		}
1666		curr_off = next_off;
1667	} while ((bh = bh->b_this_page) != head);
1668
1669	if (contiguous_blks) {
1670		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673	}
1674
1675	/* If we have released all the blocks belonging to a cluster, then we
1676	 * need to release the reserved space for that cluster. */
1677	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678	while (num_clusters > 0) {
1679		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680			((num_clusters - 1) << sbi->s_cluster_bits);
1681		if (sbi->s_cluster_ratio == 1 ||
1682		    !ext4_find_delalloc_cluster(inode, lblk))
1683			ext4_da_release_space(inode, 1);
1684
1685		num_clusters--;
1686	}
1687}
1688
1689/*
1690 * Delayed allocation stuff
1691 */
1692
1693struct mpage_da_data {
 
1694	struct inode *inode;
1695	struct writeback_control *wbc;
 
1696
 
1697	pgoff_t first_page;	/* The first page to write */
1698	pgoff_t next_page;	/* Current page to examine */
1699	pgoff_t last_page;	/* Last page to examine */
1700	/*
1701	 * Extent to map - this can be after first_page because that can be
1702	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703	 * is delalloc or unwritten.
1704	 */
1705	struct ext4_map_blocks map;
1706	struct ext4_io_submit io_submit;	/* IO submission data */
1707	unsigned int do_map:1;
 
 
1708};
1709
1710static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711				       bool invalidate)
1712{
1713	int nr_pages, i;
1714	pgoff_t index, end;
1715	struct pagevec pvec;
1716	struct inode *inode = mpd->inode;
1717	struct address_space *mapping = inode->i_mapping;
1718
1719	/* This is necessary when next_page == 0. */
1720	if (mpd->first_page >= mpd->next_page)
1721		return;
1722
 
1723	index = mpd->first_page;
1724	end   = mpd->next_page - 1;
1725	if (invalidate) {
1726		ext4_lblk_t start, last;
1727		start = index << (PAGE_SHIFT - inode->i_blkbits);
1728		last = end << (PAGE_SHIFT - inode->i_blkbits);
 
 
 
 
 
 
1729		ext4_es_remove_extent(inode, start, last - start + 1);
 
1730	}
1731
1732	pagevec_init(&pvec);
1733	while (index <= end) {
1734		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735		if (nr_pages == 0)
1736			break;
1737		for (i = 0; i < nr_pages; i++) {
1738			struct page *page = pvec.pages[i];
1739
1740			BUG_ON(!PageLocked(page));
1741			BUG_ON(PageWriteback(page));
 
 
 
 
1742			if (invalidate) {
1743				if (page_mapped(page))
1744					clear_page_dirty_for_io(page);
1745				block_invalidatepage(page, 0, PAGE_SIZE);
1746				ClearPageUptodate(page);
 
1747			}
1748			unlock_page(page);
1749		}
1750		pagevec_release(&pvec);
1751	}
1752}
1753
1754static void ext4_print_free_blocks(struct inode *inode)
1755{
1756	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757	struct super_block *sb = inode->i_sb;
1758	struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761	       EXT4_C2B(EXT4_SB(inode->i_sb),
1762			ext4_count_free_clusters(sb)));
1763	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765	       (long long) EXT4_C2B(EXT4_SB(sb),
1766		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768	       (long long) EXT4_C2B(EXT4_SB(sb),
1769		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772		 ei->i_reserved_data_blocks);
1773	return;
1774}
1775
1776static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
 
 
 
 
 
 
 
 
1777{
1778	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779}
1780
1781/*
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
 
 
 
1786 */
1787static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788			      struct ext4_map_blocks *map,
1789			      struct buffer_head *bh)
1790{
1791	struct extent_status es;
1792	int retval;
1793	sector_t invalid_block = ~((sector_t) 0xffff);
1794#ifdef ES_AGGRESSIVE_TEST
1795	struct ext4_map_blocks orig_map;
1796
1797	memcpy(&orig_map, map, sizeof(*map));
1798#endif
1799
1800	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801		invalid_block = ~0;
1802
1803	map->m_flags = 0;
1804	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805		  "logical block %lu\n", inode->i_ino, map->m_len,
1806		  (unsigned long) map->m_lblk);
1807
1808	/* Lookup extent status tree firstly */
1809	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810		if (ext4_es_is_hole(&es)) {
1811			retval = 0;
1812			down_read(&EXT4_I(inode)->i_data_sem);
 
1813			goto add_delayed;
1814		}
1815
 
1816		/*
1817		 * Delayed extent could be allocated by fallocate.
1818		 * So we need to check it.
1819		 */
1820		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821			map_bh(bh, inode->i_sb, invalid_block);
1822			set_buffer_new(bh);
1823			set_buffer_delay(bh);
1824			return 0;
1825		}
1826
1827		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828		retval = es.es_len - (iblock - es.es_lblk);
1829		if (retval > map->m_len)
1830			retval = map->m_len;
1831		map->m_len = retval;
1832		if (ext4_es_is_written(&es))
1833			map->m_flags |= EXT4_MAP_MAPPED;
1834		else if (ext4_es_is_unwritten(&es))
1835			map->m_flags |= EXT4_MAP_UNWRITTEN;
1836		else
1837			BUG_ON(1);
1838
1839#ifdef ES_AGGRESSIVE_TEST
1840		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841#endif
1842		return retval;
1843	}
1844
1845	/*
1846	 * Try to see if we can get the block without requesting a new
1847	 * file system block.
1848	 */
1849	down_read(&EXT4_I(inode)->i_data_sem);
1850	if (ext4_has_inline_data(inode))
1851		retval = 0;
1852	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854	else
1855		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
 
 
 
1856
1857add_delayed:
1858	if (retval == 0) {
1859		int ret;
1860		/*
1861		 * XXX: __block_prepare_write() unmaps passed block,
1862		 * is it OK?
1863		 */
1864		/*
1865		 * If the block was allocated from previously allocated cluster,
1866		 * then we don't need to reserve it again. However we still need
1867		 * to reserve metadata for every block we're going to write.
1868		 */
1869		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871			ret = ext4_da_reserve_space(inode);
1872			if (ret) {
1873				/* not enough space to reserve */
1874				retval = ret;
1875				goto out_unlock;
1876			}
1877		}
1878
1879		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880					    ~0, EXTENT_STATUS_DELAYED);
1881		if (ret) {
1882			retval = ret;
1883			goto out_unlock;
1884		}
1885
1886		map_bh(bh, inode->i_sb, invalid_block);
1887		set_buffer_new(bh);
1888		set_buffer_delay(bh);
1889	} else if (retval > 0) {
1890		int ret;
1891		unsigned int status;
1892
1893		if (unlikely(retval != map->m_len)) {
1894			ext4_warning(inode->i_sb,
1895				     "ES len assertion failed for inode "
1896				     "%lu: retval %d != map->m_len %d",
1897				     inode->i_ino, retval, map->m_len);
1898			WARN_ON(1);
1899		}
1900
1901		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904					    map->m_pblk, status);
1905		if (ret != 0)
1906			retval = ret;
1907	}
1908
1909out_unlock:
1910	up_read((&EXT4_I(inode)->i_data_sem));
 
1911
1912	return retval;
1913}
1914
1915/*
1916 * This is a special get_block_t callback which is used by
1917 * ext4_da_write_begin().  It will either return mapped block or
1918 * reserve space for a single block.
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
1926 */
1927int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928			   struct buffer_head *bh, int create)
1929{
1930	struct ext4_map_blocks map;
 
1931	int ret = 0;
1932
1933	BUG_ON(create == 0);
1934	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
 
 
 
1936	map.m_lblk = iblock;
1937	map.m_len = 1;
1938
1939	/*
1940	 * first, we need to know whether the block is allocated already
1941	 * preallocated blocks are unmapped but should treated
1942	 * the same as allocated blocks.
1943	 */
1944	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945	if (ret <= 0)
1946		return ret;
1947
 
 
 
 
 
 
 
1948	map_bh(bh, inode->i_sb, map.m_pblk);
1949	ext4_update_bh_state(bh, map.m_flags);
1950
1951	if (buffer_unwritten(bh)) {
1952		/* A delayed write to unwritten bh should be marked
1953		 * new and mapped.  Mapped ensures that we don't do
1954		 * get_block multiple times when we write to the same
1955		 * offset and new ensures that we do proper zero out
1956		 * for partial write.
1957		 */
1958		set_buffer_new(bh);
1959		set_buffer_mapped(bh);
1960	}
1961	return 0;
1962}
1963
1964static int bget_one(handle_t *handle, struct buffer_head *bh)
1965{
1966	get_bh(bh);
1967	return 0;
1968}
1969
1970static int bput_one(handle_t *handle, struct buffer_head *bh)
1971{
1972	put_bh(bh);
1973	return 0;
1974}
1975
1976static int __ext4_journalled_writepage(struct page *page,
1977				       unsigned int len)
1978{
1979	struct address_space *mapping = page->mapping;
1980	struct inode *inode = mapping->host;
1981	struct buffer_head *page_bufs = NULL;
1982	handle_t *handle = NULL;
1983	int ret = 0, err = 0;
1984	int inline_data = ext4_has_inline_data(inode);
1985	struct buffer_head *inode_bh = NULL;
1986
1987	ClearPageChecked(page);
1988
1989	if (inline_data) {
1990		BUG_ON(page->index != 0);
1991		BUG_ON(len > ext4_get_max_inline_size(inode));
1992		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993		if (inode_bh == NULL)
1994			goto out;
1995	} else {
1996		page_bufs = page_buffers(page);
1997		if (!page_bufs) {
1998			BUG();
1999			goto out;
2000		}
2001		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002				       NULL, bget_one);
2003	}
2004	/*
2005	 * We need to release the page lock before we start the
2006	 * journal, so grab a reference so the page won't disappear
2007	 * out from under us.
2008	 */
2009	get_page(page);
2010	unlock_page(page);
2011
2012	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013				    ext4_writepage_trans_blocks(inode));
2014	if (IS_ERR(handle)) {
2015		ret = PTR_ERR(handle);
2016		put_page(page);
2017		goto out_no_pagelock;
2018	}
2019	BUG_ON(!ext4_handle_valid(handle));
2020
2021	lock_page(page);
2022	put_page(page);
2023	if (page->mapping != mapping) {
2024		/* The page got truncated from under us */
2025		ext4_journal_stop(handle);
2026		ret = 0;
2027		goto out;
2028	}
2029
2030	if (inline_data) {
2031		BUFFER_TRACE(inode_bh, "get write access");
2032		ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036	} else {
2037		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038					     do_journal_get_write_access);
2039
2040		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041					     write_end_fn);
2042	}
2043	if (ret == 0)
2044		ret = err;
2045	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046	err = ext4_journal_stop(handle);
2047	if (!ret)
2048		ret = err;
2049
2050	if (!ext4_has_inline_data(inode))
2051		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052				       NULL, bput_one);
2053	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054out:
2055	unlock_page(page);
2056out_no_pagelock:
2057	brelse(inode_bh);
2058	return ret;
2059}
2060
2061/*
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
2066 * we are writing back data modified via mmap(), no one guarantees in which
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
2071 * This function can get called via...
2072 *   - ext4_writepages after taking page lock (have journal handle)
2073 *   - journal_submit_inode_data_buffers (no journal handle)
2074 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075 *   - grab_page_cache when doing write_begin (have journal handle)
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 *		ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101 */
2102static int ext4_writepage(struct page *page,
2103			  struct writeback_control *wbc)
2104{
2105	int ret = 0;
2106	loff_t size;
2107	unsigned int len;
2108	struct buffer_head *page_bufs = NULL;
2109	struct inode *inode = page->mapping->host;
2110	struct ext4_io_submit io_submit;
2111	bool keep_towrite = false;
2112
2113	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114		ext4_invalidatepage(page, 0, PAGE_SIZE);
2115		unlock_page(page);
2116		return -EIO;
2117	}
2118
2119	trace_ext4_writepage(page);
2120	size = i_size_read(inode);
2121	if (page->index == size >> PAGE_SHIFT)
2122		len = size & ~PAGE_MASK;
2123	else
2124		len = PAGE_SIZE;
2125
2126	page_bufs = page_buffers(page);
2127	/*
2128	 * We cannot do block allocation or other extent handling in this
2129	 * function. If there are buffers needing that, we have to redirty
2130	 * the page. But we may reach here when we do a journal commit via
2131	 * journal_submit_inode_data_buffers() and in that case we must write
2132	 * allocated buffers to achieve data=ordered mode guarantees.
2133	 *
2134	 * Also, if there is only one buffer per page (the fs block
2135	 * size == the page size), if one buffer needs block
2136	 * allocation or needs to modify the extent tree to clear the
2137	 * unwritten flag, we know that the page can't be written at
2138	 * all, so we might as well refuse the write immediately.
2139	 * Unfortunately if the block size != page size, we can't as
2140	 * easily detect this case using ext4_walk_page_buffers(), but
2141	 * for the extremely common case, this is an optimization that
2142	 * skips a useless round trip through ext4_bio_write_page().
2143	 */
2144	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145				   ext4_bh_delay_or_unwritten)) {
2146		redirty_page_for_writepage(wbc, page);
2147		if ((current->flags & PF_MEMALLOC) ||
2148		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149			/*
2150			 * For memory cleaning there's no point in writing only
2151			 * some buffers. So just bail out. Warn if we came here
2152			 * from direct reclaim.
2153			 */
2154			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155							== PF_MEMALLOC);
2156			unlock_page(page);
2157			return 0;
2158		}
2159		keep_towrite = true;
2160	}
2161
2162	if (PageChecked(page) && ext4_should_journal_data(inode))
2163		/*
2164		 * It's mmapped pagecache.  Add buffers and journal it.  There
2165		 * doesn't seem much point in redirtying the page here.
2166		 */
2167		return __ext4_journalled_writepage(page, len);
2168
2169	ext4_io_submit_init(&io_submit, wbc);
2170	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171	if (!io_submit.io_end) {
2172		redirty_page_for_writepage(wbc, page);
2173		unlock_page(page);
2174		return -ENOMEM;
2175	}
2176	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177	ext4_io_submit(&io_submit);
2178	/* Drop io_end reference we got from init */
2179	ext4_put_io_end_defer(io_submit.io_end);
2180	return ret;
2181}
2182
2183static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184{
2185	int len;
2186	loff_t size;
2187	int err;
2188
2189	BUG_ON(page->index != mpd->first_page);
2190	clear_page_dirty_for_io(page);
2191	/*
2192	 * We have to be very careful here!  Nothing protects writeback path
2193	 * against i_size changes and the page can be writeably mapped into
2194	 * page tables. So an application can be growing i_size and writing
2195	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196	 * write-protects our page in page tables and the page cannot get
2197	 * written to again until we release page lock. So only after
2198	 * clear_page_dirty_for_io() we are safe to sample i_size for
2199	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200	 * on the barrier provided by TestClearPageDirty in
2201	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202	 * after page tables are updated.
2203	 */
2204	size = i_size_read(mpd->inode);
2205	if (page->index == size >> PAGE_SHIFT)
2206		len = size & ~PAGE_MASK;
2207	else
2208		len = PAGE_SIZE;
2209	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210	if (!err)
2211		mpd->wbc->nr_to_write--;
2212	mpd->first_page++;
2213
2214	return err;
2215}
2216
2217#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219/*
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222 * The rest of mballoc seems to handle chunks up to full group size.
2223 */
2224#define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226/*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
2231 * @bh - buffer head we want to add to the extent
2232 *
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
2239 */
2240static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241				   struct buffer_head *bh)
2242{
2243	struct ext4_map_blocks *map = &mpd->map;
2244
2245	/* Buffer that doesn't need mapping for writeback? */
2246	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248		/* So far no extent to map => we write the buffer right away */
2249		if (map->m_len == 0)
2250			return true;
2251		return false;
2252	}
2253
2254	/* First block in the extent? */
2255	if (map->m_len == 0) {
2256		/* We cannot map unless handle is started... */
2257		if (!mpd->do_map)
2258			return false;
2259		map->m_lblk = lblk;
2260		map->m_len = 1;
2261		map->m_flags = bh->b_state & BH_FLAGS;
2262		return true;
2263	}
2264
2265	/* Don't go larger than mballoc is willing to allocate */
2266	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267		return false;
2268
2269	/* Can we merge the block to our big extent? */
2270	if (lblk == map->m_lblk + map->m_len &&
2271	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2272		map->m_len++;
2273		return true;
2274	}
2275	return false;
2276}
2277
2278/*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295				   struct buffer_head *head,
2296				   struct buffer_head *bh,
2297				   ext4_lblk_t lblk)
2298{
2299	struct inode *inode = mpd->inode;
2300	int err;
2301	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302							>> inode->i_blkbits;
2303
 
 
 
2304	do {
2305		BUG_ON(buffer_locked(bh));
2306
2307		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308			/* Found extent to map? */
2309			if (mpd->map.m_len)
2310				return 0;
2311			/* Buffer needs mapping and handle is not started? */
2312			if (!mpd->do_map)
2313				return 0;
2314			/* Everything mapped so far and we hit EOF */
2315			break;
2316		}
2317	} while (lblk++, (bh = bh->b_this_page) != head);
2318	/* So far everything mapped? Submit the page for IO. */
2319	if (mpd->map.m_len == 0) {
2320		err = mpage_submit_page(mpd, head->b_page);
2321		if (err < 0)
2322			return err;
 
 
 
 
 
2323	}
2324	return lblk < blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325}
2326
2327/*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 *		       submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342{
2343	struct pagevec pvec;
2344	int nr_pages, i;
2345	struct inode *inode = mpd->inode;
2346	struct buffer_head *head, *bh;
2347	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348	pgoff_t start, end;
2349	ext4_lblk_t lblk;
2350	sector_t pblock;
2351	int err;
 
2352
2353	start = mpd->map.m_lblk >> bpp_bits;
2354	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355	lblk = start << bpp_bits;
2356	pblock = mpd->map.m_pblk;
2357
2358	pagevec_init(&pvec);
2359	while (start <= end) {
2360		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361						&start, end);
2362		if (nr_pages == 0)
2363			break;
2364		for (i = 0; i < nr_pages; i++) {
2365			struct page *page = pvec.pages[i];
2366
2367			bh = head = page_buffers(page);
2368			do {
2369				if (lblk < mpd->map.m_lblk)
2370					continue;
2371				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372					/*
2373					 * Buffer after end of mapped extent.
2374					 * Find next buffer in the page to map.
2375					 */
2376					mpd->map.m_len = 0;
2377					mpd->map.m_flags = 0;
2378					/*
2379					 * FIXME: If dioread_nolock supports
2380					 * blocksize < pagesize, we need to make
2381					 * sure we add size mapped so far to
2382					 * io_end->size as the following call
2383					 * can submit the page for IO.
2384					 */
2385					err = mpage_process_page_bufs(mpd, head,
2386								      bh, lblk);
2387					pagevec_release(&pvec);
2388					if (err > 0)
2389						err = 0;
2390					return err;
2391				}
2392				if (buffer_delay(bh)) {
2393					clear_buffer_delay(bh);
2394					bh->b_blocknr = pblock++;
2395				}
2396				clear_buffer_unwritten(bh);
2397			} while (lblk++, (bh = bh->b_this_page) != head);
2398
 
 
2399			/*
2400			 * FIXME: This is going to break if dioread_nolock
2401			 * supports blocksize < pagesize as we will try to
2402			 * convert potentially unmapped parts of inode.
2403			 */
2404			mpd->io_submit.io_end->size += PAGE_SIZE;
 
2405			/* Page fully mapped - let IO run! */
2406			err = mpage_submit_page(mpd, page);
2407			if (err < 0) {
2408				pagevec_release(&pvec);
2409				return err;
2410			}
2411		}
2412		pagevec_release(&pvec);
2413	}
2414	/* Extent fully mapped and matches with page boundary. We are done. */
2415	mpd->map.m_len = 0;
2416	mpd->map.m_flags = 0;
2417	return 0;
 
 
 
2418}
2419
2420static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421{
2422	struct inode *inode = mpd->inode;
2423	struct ext4_map_blocks *map = &mpd->map;
2424	int get_blocks_flags;
2425	int err, dioread_nolock;
2426
2427	trace_ext4_da_write_pages_extent(inode, map);
2428	/*
2429	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430	 * to convert an unwritten extent to be initialized (in the case
2431	 * where we have written into one or more preallocated blocks).  It is
2432	 * possible that we're going to need more metadata blocks than
2433	 * previously reserved. However we must not fail because we're in
2434	 * writeback and there is nothing we can do about it so it might result
2435	 * in data loss.  So use reserved blocks to allocate metadata if
2436	 * possible.
2437	 *
2438	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439	 * the blocks in question are delalloc blocks.  This indicates
2440	 * that the blocks and quotas has already been checked when
2441	 * the data was copied into the page cache.
2442	 */
2443	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445			   EXT4_GET_BLOCKS_IO_SUBMIT;
2446	dioread_nolock = ext4_should_dioread_nolock(inode);
2447	if (dioread_nolock)
2448		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449	if (map->m_flags & (1 << BH_Delay))
2450		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453	if (err < 0)
2454		return err;
2455	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456		if (!mpd->io_submit.io_end->handle &&
2457		    ext4_handle_valid(handle)) {
2458			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459			handle->h_rsv_handle = NULL;
2460		}
2461		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462	}
2463
2464	BUG_ON(map->m_len == 0);
2465	if (map->m_flags & EXT4_MAP_NEW) {
2466		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467				   map->m_len);
2468	}
2469	return 0;
2470}
2471
2472/*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 *				 mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 *                     is no hope of writing the data. The caller should discard
2480 *                     dirty pages to avoid infinite loops.
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492static int mpage_map_and_submit_extent(handle_t *handle,
2493				       struct mpage_da_data *mpd,
2494				       bool *give_up_on_write)
2495{
2496	struct inode *inode = mpd->inode;
2497	struct ext4_map_blocks *map = &mpd->map;
2498	int err;
2499	loff_t disksize;
2500	int progress = 0;
 
 
2501
2502	mpd->io_submit.io_end->offset =
2503				((loff_t)map->m_lblk) << inode->i_blkbits;
 
 
2504	do {
2505		err = mpage_map_one_extent(handle, mpd);
2506		if (err < 0) {
2507			struct super_block *sb = inode->i_sb;
2508
2509			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511				goto invalidate_dirty_pages;
2512			/*
2513			 * Let the uper layers retry transient errors.
2514			 * In the case of ENOSPC, if ext4_count_free_blocks()
2515			 * is non-zero, a commit should free up blocks.
2516			 */
2517			if ((err == -ENOMEM) ||
2518			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519				if (progress)
2520					goto update_disksize;
2521				return err;
2522			}
2523			ext4_msg(sb, KERN_CRIT,
2524				 "Delayed block allocation failed for "
2525				 "inode %lu at logical offset %llu with"
2526				 " max blocks %u with error %d",
2527				 inode->i_ino,
2528				 (unsigned long long)map->m_lblk,
2529				 (unsigned)map->m_len, -err);
2530			ext4_msg(sb, KERN_CRIT,
2531				 "This should not happen!! Data will "
2532				 "be lost\n");
2533			if (err == -ENOSPC)
2534				ext4_print_free_blocks(inode);
2535		invalidate_dirty_pages:
2536			*give_up_on_write = true;
2537			return err;
2538		}
2539		progress = 1;
2540		/*
2541		 * Update buffer state, submit mapped pages, and get us new
2542		 * extent to map
2543		 */
2544		err = mpage_map_and_submit_buffers(mpd);
2545		if (err < 0)
2546			goto update_disksize;
2547	} while (map->m_len);
2548
2549update_disksize:
2550	/*
2551	 * Update on-disk size after IO is submitted.  Races with
2552	 * truncate are avoided by checking i_size under i_data_sem.
2553	 */
2554	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555	if (disksize > EXT4_I(inode)->i_disksize) {
2556		int err2;
2557		loff_t i_size;
2558
2559		down_write(&EXT4_I(inode)->i_data_sem);
2560		i_size = i_size_read(inode);
2561		if (disksize > i_size)
2562			disksize = i_size;
2563		if (disksize > EXT4_I(inode)->i_disksize)
2564			EXT4_I(inode)->i_disksize = disksize;
2565		up_write(&EXT4_I(inode)->i_data_sem);
2566		err2 = ext4_mark_inode_dirty(handle, inode);
2567		if (err2)
2568			ext4_error(inode->i_sb,
2569				   "Failed to mark inode %lu dirty",
2570				   inode->i_ino);
 
2571		if (!err)
2572			err = err2;
2573	}
2574	return err;
2575}
2576
2577/*
2578 * Calculate the total number of credits to reserve for one writepages
2579 * iteration. This is called from ext4_writepages(). We map an extent of
2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
2584static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585{
2586	int bpp = ext4_journal_blocks_per_page(inode);
2587
2588	return ext4_meta_trans_blocks(inode,
2589				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590}
2591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2592/*
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 * 				 and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
 
 
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
2609 */
2610static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611{
2612	struct address_space *mapping = mpd->inode->i_mapping;
2613	struct pagevec pvec;
2614	unsigned int nr_pages;
2615	long left = mpd->wbc->nr_to_write;
2616	pgoff_t index = mpd->first_page;
2617	pgoff_t end = mpd->last_page;
2618	int tag;
2619	int i, err = 0;
2620	int blkbits = mpd->inode->i_blkbits;
2621	ext4_lblk_t lblk;
2622	struct buffer_head *head;
 
 
2623
2624	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625		tag = PAGECACHE_TAG_TOWRITE;
2626	else
2627		tag = PAGECACHE_TAG_DIRTY;
2628
2629	pagevec_init(&pvec);
2630	mpd->map.m_len = 0;
2631	mpd->next_page = index;
 
 
 
 
 
 
 
2632	while (index <= end) {
2633		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634				tag);
2635		if (nr_pages == 0)
2636			goto out;
2637
2638		for (i = 0; i < nr_pages; i++) {
2639			struct page *page = pvec.pages[i];
2640
2641			/*
2642			 * Accumulated enough dirty pages? This doesn't apply
2643			 * to WB_SYNC_ALL mode. For integrity sync we have to
2644			 * keep going because someone may be concurrently
2645			 * dirtying pages, and we might have synced a lot of
2646			 * newly appeared dirty pages, but have not synced all
2647			 * of the old dirty pages.
2648			 */
2649			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
 
 
2650				goto out;
2651
2652			/* If we can't merge this page, we are done. */
2653			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654				goto out;
2655
2656			lock_page(page);
 
 
 
 
 
 
 
2657			/*
2658			 * If the page is no longer dirty, or its mapping no
2659			 * longer corresponds to inode we are writing (which
2660			 * means it has been truncated or invalidated), or the
2661			 * page is already under writeback and we are not doing
2662			 * a data integrity writeback, skip the page
2663			 */
2664			if (!PageDirty(page) ||
2665			    (PageWriteback(page) &&
2666			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667			    unlikely(page->mapping != mapping)) {
2668				unlock_page(page);
2669				continue;
2670			}
2671
2672			wait_on_page_writeback(page);
2673			BUG_ON(PageWriteback(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674
2675			if (mpd->map.m_len == 0)
2676				mpd->first_page = page->index;
2677			mpd->next_page = page->index + 1;
2678			/* Add all dirty buffers to mpd */
2679			lblk = ((ext4_lblk_t)page->index) <<
2680				(PAGE_SHIFT - blkbits);
2681			head = page_buffers(page);
2682			err = mpage_process_page_bufs(mpd, head, head, lblk);
2683			if (err <= 0)
2684				goto out;
2685			err = 0;
2686			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687		}
2688		pagevec_release(&pvec);
2689		cond_resched();
2690	}
 
 
 
2691	return 0;
2692out:
2693	pagevec_release(&pvec);
 
 
2694	return err;
2695}
2696
2697static int ext4_writepages(struct address_space *mapping,
2698			   struct writeback_control *wbc)
2699{
 
2700	pgoff_t	writeback_index = 0;
2701	long nr_to_write = wbc->nr_to_write;
2702	int range_whole = 0;
2703	int cycled = 1;
2704	handle_t *handle = NULL;
2705	struct mpage_da_data mpd;
2706	struct inode *inode = mapping->host;
2707	int needed_blocks, rsv_blocks = 0, ret = 0;
2708	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709	bool done;
2710	struct blk_plug plug;
2711	bool give_up_on_write = false;
2712
2713	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714		return -EIO;
2715
2716	percpu_down_read(&sbi->s_journal_flag_rwsem);
2717	trace_ext4_writepages(inode, wbc);
2718
2719	/*
2720	 * No pages to write? This is mainly a kludge to avoid starting
2721	 * a transaction for special inodes like journal inode on last iput()
2722	 * because that could violate lock ordering on umount
2723	 */
2724	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2725		goto out_writepages;
2726
2727	if (ext4_should_journal_data(inode)) {
2728		ret = generic_writepages(mapping, wbc);
2729		goto out_writepages;
2730	}
2731
2732	/*
2733	 * If the filesystem has aborted, it is read-only, so return
2734	 * right away instead of dumping stack traces later on that
2735	 * will obscure the real source of the problem.  We test
2736	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2737	 * the latter could be true if the filesystem is mounted
2738	 * read-only, and in that case, ext4_writepages should
2739	 * *never* be called, so if that ever happens, we would want
2740	 * the stack trace.
2741	 */
2742	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2744		ret = -EROFS;
2745		goto out_writepages;
2746	}
2747
2748	if (ext4_should_dioread_nolock(inode)) {
2749		/*
2750		 * We may need to convert up to one extent per block in
2751		 * the page and we may dirty the inode.
2752		 */
2753		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2754	}
2755
2756	/*
2757	 * If we have inline data and arrive here, it means that
2758	 * we will soon create the block for the 1st page, so
2759	 * we'd better clear the inline data here.
2760	 */
2761	if (ext4_has_inline_data(inode)) {
2762		/* Just inode will be modified... */
2763		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764		if (IS_ERR(handle)) {
2765			ret = PTR_ERR(handle);
2766			goto out_writepages;
2767		}
2768		BUG_ON(ext4_test_inode_state(inode,
2769				EXT4_STATE_MAY_INLINE_DATA));
2770		ext4_destroy_inline_data(handle, inode);
2771		ext4_journal_stop(handle);
2772	}
2773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775		range_whole = 1;
2776
2777	if (wbc->range_cyclic) {
2778		writeback_index = mapping->writeback_index;
2779		if (writeback_index)
2780			cycled = 0;
2781		mpd.first_page = writeback_index;
2782		mpd.last_page = -1;
2783	} else {
2784		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786	}
2787
2788	mpd.inode = inode;
2789	mpd.wbc = wbc;
2790	ext4_io_submit_init(&mpd.io_submit, wbc);
2791retry:
2792	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794	done = false;
2795	blk_start_plug(&plug);
2796
2797	/*
2798	 * First writeback pages that don't need mapping - we can avoid
2799	 * starting a transaction unnecessarily and also avoid being blocked
2800	 * in the block layer on device congestion while having transaction
2801	 * started.
2802	 */
2803	mpd.do_map = 0;
2804	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805	if (!mpd.io_submit.io_end) {
 
2806		ret = -ENOMEM;
2807		goto unplug;
2808	}
2809	ret = mpage_prepare_extent_to_map(&mpd);
 
 
2810	/* Submit prepared bio */
2811	ext4_io_submit(&mpd.io_submit);
2812	ext4_put_io_end_defer(mpd.io_submit.io_end);
2813	mpd.io_submit.io_end = NULL;
2814	/* Unlock pages we didn't use */
2815	mpage_release_unused_pages(&mpd, false);
2816	if (ret < 0)
2817		goto unplug;
2818
2819	while (!done && mpd.first_page <= mpd.last_page) {
2820		/* For each extent of pages we use new io_end */
2821		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822		if (!mpd.io_submit.io_end) {
2823			ret = -ENOMEM;
2824			break;
2825		}
2826
 
2827		/*
2828		 * We have two constraints: We find one extent to map and we
2829		 * must always write out whole page (makes a difference when
2830		 * blocksize < pagesize) so that we don't block on IO when we
2831		 * try to write out the rest of the page. Journalled mode is
2832		 * not supported by delalloc.
2833		 */
2834		BUG_ON(ext4_should_journal_data(inode));
2835		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837		/* start a new transaction */
2838		handle = ext4_journal_start_with_reserve(inode,
2839				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840		if (IS_ERR(handle)) {
2841			ret = PTR_ERR(handle);
2842			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843			       "%ld pages, ino %lu; err %d", __func__,
2844				wbc->nr_to_write, inode->i_ino, ret);
2845			/* Release allocated io_end */
2846			ext4_put_io_end(mpd.io_submit.io_end);
2847			mpd.io_submit.io_end = NULL;
2848			break;
2849		}
2850		mpd.do_map = 1;
2851
2852		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853		ret = mpage_prepare_extent_to_map(&mpd);
2854		if (!ret) {
2855			if (mpd.map.m_len)
2856				ret = mpage_map_and_submit_extent(handle, &mpd,
2857					&give_up_on_write);
2858			else {
2859				/*
2860				 * We scanned the whole range (or exhausted
2861				 * nr_to_write), submitted what was mapped and
2862				 * didn't find anything needing mapping. We are
2863				 * done.
2864				 */
2865				done = true;
2866			}
2867		}
2868		/*
2869		 * Caution: If the handle is synchronous,
2870		 * ext4_journal_stop() can wait for transaction commit
2871		 * to finish which may depend on writeback of pages to
2872		 * complete or on page lock to be released.  In that
2873		 * case, we have to wait until after after we have
2874		 * submitted all the IO, released page locks we hold,
2875		 * and dropped io_end reference (for extent conversion
2876		 * to be able to complete) before stopping the handle.
2877		 */
2878		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879			ext4_journal_stop(handle);
2880			handle = NULL;
2881			mpd.do_map = 0;
2882		}
 
 
2883		/* Submit prepared bio */
2884		ext4_io_submit(&mpd.io_submit);
2885		/* Unlock pages we didn't use */
2886		mpage_release_unused_pages(&mpd, give_up_on_write);
2887		/*
2888		 * Drop our io_end reference we got from init. We have
2889		 * to be careful and use deferred io_end finishing if
2890		 * we are still holding the transaction as we can
2891		 * release the last reference to io_end which may end
2892		 * up doing unwritten extent conversion.
2893		 */
2894		if (handle) {
2895			ext4_put_io_end_defer(mpd.io_submit.io_end);
2896			ext4_journal_stop(handle);
2897		} else
2898			ext4_put_io_end(mpd.io_submit.io_end);
2899		mpd.io_submit.io_end = NULL;
2900
2901		if (ret == -ENOSPC && sbi->s_journal) {
2902			/*
2903			 * Commit the transaction which would
2904			 * free blocks released in the transaction
2905			 * and try again
2906			 */
2907			jbd2_journal_force_commit_nested(sbi->s_journal);
2908			ret = 0;
2909			continue;
2910		}
2911		/* Fatal error - ENOMEM, EIO... */
2912		if (ret)
2913			break;
2914	}
2915unplug:
2916	blk_finish_plug(&plug);
2917	if (!ret && !cycled && wbc->nr_to_write > 0) {
2918		cycled = 1;
2919		mpd.last_page = writeback_index - 1;
2920		mpd.first_page = 0;
2921		goto retry;
2922	}
2923
2924	/* Update index */
2925	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926		/*
2927		 * Set the writeback_index so that range_cyclic
2928		 * mode will write it back later
2929		 */
2930		mapping->writeback_index = mpd.first_page;
2931
2932out_writepages:
2933	trace_ext4_writepages_result(inode, wbc, ret,
2934				     nr_to_write - wbc->nr_to_write);
2935	percpu_up_read(&sbi->s_journal_flag_rwsem);
2936	return ret;
2937}
2938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939static int ext4_dax_writepages(struct address_space *mapping,
2940			       struct writeback_control *wbc)
2941{
2942	int ret;
2943	long nr_to_write = wbc->nr_to_write;
2944	struct inode *inode = mapping->host;
2945	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948		return -EIO;
2949
2950	percpu_down_read(&sbi->s_journal_flag_rwsem);
2951	trace_ext4_writepages(inode, wbc);
2952
2953	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
 
2954	trace_ext4_writepages_result(inode, wbc, ret,
2955				     nr_to_write - wbc->nr_to_write);
2956	percpu_up_read(&sbi->s_journal_flag_rwsem);
2957	return ret;
2958}
2959
2960static int ext4_nonda_switch(struct super_block *sb)
2961{
2962	s64 free_clusters, dirty_clusters;
2963	struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965	/*
2966	 * switch to non delalloc mode if we are running low
2967	 * on free block. The free block accounting via percpu
2968	 * counters can get slightly wrong with percpu_counter_batch getting
2969	 * accumulated on each CPU without updating global counters
2970	 * Delalloc need an accurate free block accounting. So switch
2971	 * to non delalloc when we are near to error range.
2972	 */
2973	free_clusters =
2974		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975	dirty_clusters =
2976		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977	/*
2978	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2979	 */
2980	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983	if (2 * free_clusters < 3 * dirty_clusters ||
2984	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985		/*
2986		 * free block count is less than 150% of dirty blocks
2987		 * or free blocks is less than watermark
2988		 */
2989		return 1;
2990	}
2991	return 0;
2992}
2993
2994/* We always reserve for an inode update; the superblock could be there too */
2995static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996{
2997	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998		return 1;
2999
3000	if (pos + len <= 0x7fffffffULL)
3001		return 1;
3002
3003	/* We might need to update the superblock to set LARGE_FILE */
3004	return 2;
3005}
3006
3007static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008			       loff_t pos, unsigned len, unsigned flags,
3009			       struct page **pagep, void **fsdata)
3010{
3011	int ret, retries = 0;
3012	struct page *page;
3013	pgoff_t index;
3014	struct inode *inode = mapping->host;
3015	handle_t *handle;
3016
3017	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018		return -EIO;
3019
3020	index = pos >> PAGE_SHIFT;
3021
3022	if (ext4_nonda_switch(inode->i_sb) ||
3023	    S_ISLNK(inode->i_mode)) {
3024		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025		return ext4_write_begin(file, mapping, pos,
3026					len, flags, pagep, fsdata);
3027	}
3028	*fsdata = (void *)0;
3029	trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032		ret = ext4_da_write_inline_data_begin(mapping, inode,
3033						      pos, len, flags,
3034						      pagep, fsdata);
3035		if (ret < 0)
3036			return ret;
3037		if (ret == 1)
3038			return 0;
3039	}
3040
3041	/*
3042	 * grab_cache_page_write_begin() can take a long time if the
3043	 * system is thrashing due to memory pressure, or if the page
3044	 * is being written back.  So grab it first before we start
3045	 * the transaction handle.  This also allows us to allocate
3046	 * the page (if needed) without using GFP_NOFS.
3047	 */
3048retry_grab:
3049	page = grab_cache_page_write_begin(mapping, index, flags);
3050	if (!page)
3051		return -ENOMEM;
3052	unlock_page(page);
3053
3054	/*
3055	 * With delayed allocation, we don't log the i_disksize update
3056	 * if there is delayed block allocation. But we still need
3057	 * to journalling the i_disksize update if writes to the end
3058	 * of file which has an already mapped buffer.
3059	 */
3060retry_journal:
3061	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062				ext4_da_write_credits(inode, pos, len));
3063	if (IS_ERR(handle)) {
3064		put_page(page);
3065		return PTR_ERR(handle);
3066	}
3067
3068	lock_page(page);
3069	if (page->mapping != mapping) {
3070		/* The page got truncated from under us */
3071		unlock_page(page);
3072		put_page(page);
3073		ext4_journal_stop(handle);
3074		goto retry_grab;
3075	}
3076	/* In case writeback began while the page was unlocked */
3077	wait_for_stable_page(page);
3078
3079#ifdef CONFIG_EXT4_FS_ENCRYPTION
3080	ret = ext4_block_write_begin(page, pos, len,
3081				     ext4_da_get_block_prep);
3082#else
3083	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084#endif
3085	if (ret < 0) {
3086		unlock_page(page);
3087		ext4_journal_stop(handle);
3088		/*
3089		 * block_write_begin may have instantiated a few blocks
3090		 * outside i_size.  Trim these off again. Don't need
3091		 * i_size_read because we hold i_mutex.
3092		 */
3093		if (pos + len > inode->i_size)
3094			ext4_truncate_failed_write(inode);
3095
3096		if (ret == -ENOSPC &&
3097		    ext4_should_retry_alloc(inode->i_sb, &retries))
3098			goto retry_journal;
3099
3100		put_page(page);
3101		return ret;
3102	}
3103
3104	*pagep = page;
3105	return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113					    unsigned long offset)
3114{
3115	struct buffer_head *bh;
3116	struct inode *inode = page->mapping->host;
3117	unsigned int idx;
3118	int i;
3119
3120	bh = page_buffers(page);
3121	idx = offset >> inode->i_blkbits;
3122
3123	for (i = 0; i < idx; i++)
3124		bh = bh->b_this_page;
3125
3126	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127		return 0;
3128	return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132			     struct address_space *mapping,
3133			     loff_t pos, unsigned len, unsigned copied,
3134			     struct page *page, void *fsdata)
3135{
3136	struct inode *inode = mapping->host;
3137	int ret = 0, ret2;
3138	handle_t *handle = ext4_journal_current_handle();
3139	loff_t new_i_size;
3140	unsigned long start, end;
3141	int write_mode = (int)(unsigned long)fsdata;
3142
3143	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144		return ext4_write_end(file, mapping, pos,
3145				      len, copied, page, fsdata);
3146
3147	trace_ext4_da_write_end(inode, pos, len, copied);
3148	start = pos & (PAGE_SIZE - 1);
3149	end = start + copied - 1;
3150
 
 
 
 
 
3151	/*
3152	 * generic_write_end() will run mark_inode_dirty() if i_size
3153	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3154	 * into that.
3155	 */
 
 
3156	new_i_size = pos + copied;
3157	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158		if (ext4_has_inline_data(inode) ||
3159		    ext4_da_should_update_i_disksize(page, end)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160			ext4_update_i_disksize(inode, new_i_size);
3161			/* We need to mark inode dirty even if
3162			 * new_i_size is less that inode->i_size
3163			 * bu greater than i_disksize.(hint delalloc)
3164			 */
3165			ext4_mark_inode_dirty(handle, inode);
3166		}
3167	}
3168
3169	if (write_mode != CONVERT_INLINE_DATA &&
3170	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171	    ext4_has_inline_data(inode))
3172		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173						     page);
3174	else
3175		ret2 = generic_write_end(file, mapping, pos, len, copied,
3176							page, fsdata);
 
 
3177
3178	copied = ret2;
3179	if (ret2 < 0)
3180		ret = ret2;
3181	ret2 = ext4_journal_stop(handle);
3182	if (!ret)
3183		ret = ret2;
 
3184
3185	return ret ? ret : copied;
3186}
3187
3188static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189				   unsigned int length)
 
 
3190{
3191	/*
3192	 * Drop reserved blocks
3193	 */
3194	BUG_ON(!PageLocked(page));
3195	if (!page_has_buffers(page))
3196		goto out;
 
 
3197
3198	ext4_da_page_release_reservation(page, offset, length);
 
 
 
 
3199
3200out:
3201	ext4_invalidatepage(page, offset, length);
3202
3203	return;
3204}
3205
3206/*
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3208 */
3209int ext4_alloc_da_blocks(struct inode *inode)
3210{
3211	trace_ext4_alloc_da_blocks(inode);
3212
3213	if (!EXT4_I(inode)->i_reserved_data_blocks)
3214		return 0;
3215
3216	/*
3217	 * We do something simple for now.  The filemap_flush() will
3218	 * also start triggering a write of the data blocks, which is
3219	 * not strictly speaking necessary (and for users of
3220	 * laptop_mode, not even desirable).  However, to do otherwise
3221	 * would require replicating code paths in:
3222	 *
3223	 * ext4_writepages() ->
3224	 *    write_cache_pages() ---> (via passed in callback function)
3225	 *        __mpage_da_writepage() -->
3226	 *           mpage_add_bh_to_extent()
3227	 *           mpage_da_map_blocks()
3228	 *
3229	 * The problem is that write_cache_pages(), located in
3230	 * mm/page-writeback.c, marks pages clean in preparation for
3231	 * doing I/O, which is not desirable if we're not planning on
3232	 * doing I/O at all.
3233	 *
3234	 * We could call write_cache_pages(), and then redirty all of
3235	 * the pages by calling redirty_page_for_writepage() but that
3236	 * would be ugly in the extreme.  So instead we would need to
3237	 * replicate parts of the code in the above functions,
3238	 * simplifying them because we wouldn't actually intend to
3239	 * write out the pages, but rather only collect contiguous
3240	 * logical block extents, call the multi-block allocator, and
3241	 * then update the buffer heads with the block allocations.
3242	 *
3243	 * For now, though, we'll cheat by calling filemap_flush(),
3244	 * which will map the blocks, and start the I/O, but not
3245	 * actually wait for the I/O to complete.
3246	 */
3247	return filemap_flush(inode->i_mapping);
3248}
3249
3250/*
3251 * bmap() is special.  It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3253 *
3254 * Naturally, this is dangerous if the block concerned is still in the
3255 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3260 *
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3263 */
3264static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265{
3266	struct inode *inode = mapping->host;
3267	journal_t *journal;
3268	int err;
3269
 
3270	/*
3271	 * We can get here for an inline file via the FIBMAP ioctl
3272	 */
3273	if (ext4_has_inline_data(inode))
3274		return 0;
3275
3276	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277			test_opt(inode->i_sb, DELALLOC)) {
 
3278		/*
3279		 * With delalloc we want to sync the file
3280		 * so that we can make sure we allocate
3281		 * blocks for file
3282		 */
3283		filemap_write_and_wait(mapping);
3284	}
3285
3286	if (EXT4_JOURNAL(inode) &&
3287	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288		/*
3289		 * This is a REALLY heavyweight approach, but the use of
3290		 * bmap on dirty files is expected to be extremely rare:
3291		 * only if we run lilo or swapon on a freshly made file
3292		 * do we expect this to happen.
3293		 *
3294		 * (bmap requires CAP_SYS_RAWIO so this does not
3295		 * represent an unprivileged user DOS attack --- we'd be
3296		 * in trouble if mortal users could trigger this path at
3297		 * will.)
3298		 *
3299		 * NB. EXT4_STATE_JDATA is not set on files other than
3300		 * regular files.  If somebody wants to bmap a directory
3301		 * or symlink and gets confused because the buffer
3302		 * hasn't yet been flushed to disk, they deserve
3303		 * everything they get.
3304		 */
3305
3306		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307		journal = EXT4_JOURNAL(inode);
3308		jbd2_journal_lock_updates(journal);
3309		err = jbd2_journal_flush(journal);
3310		jbd2_journal_unlock_updates(journal);
3311
3312		if (err)
3313			return 0;
3314	}
3315
3316	return generic_block_bmap(mapping, block, ext4_get_block);
3317}
3318
3319static int ext4_readpage(struct file *file, struct page *page)
3320{
3321	int ret = -EAGAIN;
3322	struct inode *inode = page->mapping->host;
3323
3324	trace_ext4_readpage(page);
3325
3326	if (ext4_has_inline_data(inode))
3327		ret = ext4_readpage_inline(inode, page);
3328
3329	if (ret == -EAGAIN)
3330		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332	return ret;
3333}
3334
3335static int
3336ext4_readpages(struct file *file, struct address_space *mapping,
3337		struct list_head *pages, unsigned nr_pages)
3338{
3339	struct inode *inode = mapping->host;
3340
3341	/* If the file has inline data, no need to do readpages. */
3342	if (ext4_has_inline_data(inode))
3343		return 0;
3344
3345	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346}
3347
3348static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349				unsigned int length)
3350{
3351	trace_ext4_invalidatepage(page, offset, length);
3352
3353	/* No journalling happens on data buffers when this function is used */
3354	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356	block_invalidatepage(page, offset, length);
3357}
3358
3359static int __ext4_journalled_invalidatepage(struct page *page,
3360					    unsigned int offset,
3361					    unsigned int length)
3362{
3363	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365	trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367	/*
3368	 * If it's a full truncate we just forget about the pending dirtying
3369	 */
3370	if (offset == 0 && length == PAGE_SIZE)
3371		ClearPageChecked(page);
3372
3373	return jbd2_journal_invalidatepage(journal, page, offset, length);
3374}
3375
3376/* Wrapper for aops... */
3377static void ext4_journalled_invalidatepage(struct page *page,
3378					   unsigned int offset,
3379					   unsigned int length)
3380{
3381	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382}
3383
3384static int ext4_releasepage(struct page *page, gfp_t wait)
3385{
3386	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
 
3387
3388	trace_ext4_releasepage(page);
3389
3390	/* Page has dirty journalled data -> cannot release */
3391	if (PageChecked(page))
3392		return 0;
3393	if (journal)
3394		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395	else
3396		return try_to_free_buffers(page);
3397}
3398
3399static bool ext4_inode_datasync_dirty(struct inode *inode)
3400{
3401	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403	if (journal)
3404		return !jbd2_transaction_committed(journal,
3405					EXT4_I(inode)->i_datasync_tid);
 
 
 
 
 
 
3406	/* Any metadata buffers to write? */
3407	if (!list_empty(&inode->i_mapping->private_list))
3408		return true;
3409	return inode->i_state & I_DIRTY_DATASYNC;
3410}
3411
3412static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413			    unsigned flags, struct iomap *iomap)
 
3414{
3415	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3416	unsigned int blkbits = inode->i_blkbits;
3417	unsigned long first_block = offset >> blkbits;
3418	unsigned long last_block = (offset + length - 1) >> blkbits;
3419	struct ext4_map_blocks map;
3420	bool delalloc = false;
3421	int ret;
3422
3423
3424	if (flags & IOMAP_REPORT) {
3425		if (ext4_has_inline_data(inode)) {
3426			ret = ext4_inline_data_iomap(inode, iomap);
3427			if (ret != -EAGAIN) {
3428				if (ret == 0 && offset >= iomap->length)
3429					ret = -ENOENT;
3430				return ret;
3431			}
3432		}
3433	} else {
3434		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435			return -ERANGE;
3436	}
3437
3438	map.m_lblk = first_block;
3439	map.m_len = last_block - first_block + 1;
3440
3441	if (flags & IOMAP_REPORT) {
3442		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443		if (ret < 0)
3444			return ret;
3445
3446		if (ret == 0) {
3447			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448			struct extent_status es;
3449
3450			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452			if (!es.es_len || es.es_lblk > end) {
3453				/* entire range is a hole */
3454			} else if (es.es_lblk > map.m_lblk) {
3455				/* range starts with a hole */
3456				map.m_len = es.es_lblk - map.m_lblk;
3457			} else {
3458				ext4_lblk_t offs = 0;
3459
3460				if (es.es_lblk < map.m_lblk)
3461					offs = map.m_lblk - es.es_lblk;
3462				map.m_lblk = es.es_lblk + offs;
3463				map.m_len = es.es_len - offs;
3464				delalloc = true;
3465			}
3466		}
3467	} else if (flags & IOMAP_WRITE) {
3468		int dio_credits;
3469		handle_t *handle;
3470		int retries = 0;
3471
3472		/* Trim mapping request to maximum we can map at once for DIO */
3473		if (map.m_len > DIO_MAX_BLOCKS)
3474			map.m_len = DIO_MAX_BLOCKS;
3475		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476retry:
3477		/*
3478		 * Either we allocate blocks and then we don't get unwritten
3479		 * extent so we have reserved enough credits, or the blocks
3480		 * are already allocated and unwritten and in that case
3481		 * extent conversion fits in the credits as well.
3482		 */
3483		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484					    dio_credits);
3485		if (IS_ERR(handle))
3486			return PTR_ERR(handle);
3487
3488		ret = ext4_map_blocks(handle, inode, &map,
3489				      EXT4_GET_BLOCKS_CREATE_ZERO);
3490		if (ret < 0) {
3491			ext4_journal_stop(handle);
3492			if (ret == -ENOSPC &&
3493			    ext4_should_retry_alloc(inode->i_sb, &retries))
3494				goto retry;
3495			return ret;
3496		}
3497
3498		/*
3499		 * If we added blocks beyond i_size, we need to make sure they
3500		 * will get truncated if we crash before updating i_size in
3501		 * ext4_iomap_end(). For faults we don't need to do that (and
3502		 * even cannot because for orphan list operations inode_lock is
3503		 * required) - if we happen to instantiate block beyond i_size,
3504		 * it is because we race with truncate which has already added
3505		 * the inode to the orphan list.
3506		 */
3507		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3509			int err;
3510
3511			err = ext4_orphan_add(handle, inode);
3512			if (err < 0) {
3513				ext4_journal_stop(handle);
3514				return err;
3515			}
3516		}
3517		ext4_journal_stop(handle);
3518	} else {
3519		ret = ext4_map_blocks(NULL, inode, &map, 0);
3520		if (ret < 0)
3521			return ret;
3522	}
3523
 
 
 
 
 
3524	iomap->flags = 0;
3525	if (ext4_inode_datasync_dirty(inode))
 
3526		iomap->flags |= IOMAP_F_DIRTY;
3527	iomap->bdev = inode->i_sb->s_bdev;
3528	iomap->dax_dev = sbi->s_daxdev;
3529	iomap->offset = (u64)first_block << blkbits;
3530	iomap->length = (u64)map.m_len << blkbits;
3531
3532	if (ret == 0) {
3533		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3534		iomap->addr = IOMAP_NULL_ADDR;
3535	} else {
3536		if (map.m_flags & EXT4_MAP_MAPPED) {
3537			iomap->type = IOMAP_MAPPED;
3538		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539			iomap->type = IOMAP_UNWRITTEN;
3540		} else {
3541			WARN_ON_ONCE(1);
3542			return -EIO;
3543		}
3544		iomap->addr = (u64)map.m_pblk << blkbits;
3545	}
3546
3547	if (map.m_flags & EXT4_MAP_NEW)
3548		iomap->flags |= IOMAP_F_NEW;
3549
3550	return 0;
3551}
3552
3553static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554			  ssize_t written, unsigned flags, struct iomap *iomap)
3555{
3556	int ret = 0;
3557	handle_t *handle;
3558	int blkbits = inode->i_blkbits;
3559	bool truncate = false;
 
 
 
 
 
 
 
 
3560
3561	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3562		return 0;
 
 
 
 
 
 
 
 
3563
3564	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565	if (IS_ERR(handle)) {
3566		ret = PTR_ERR(handle);
3567		goto orphan_del;
3568	}
3569	if (ext4_update_inode_size(inode, offset + written))
3570		ext4_mark_inode_dirty(handle, inode);
3571	/*
3572	 * We may need to truncate allocated but not written blocks beyond EOF.
 
 
 
 
 
 
 
 
 
 
3573	 */
3574	if (iomap->offset + iomap->length > 
3575	    ALIGN(inode->i_size, 1 << blkbits)) {
3576		ext4_lblk_t written_blk, end_blk;
 
 
 
3577
3578		written_blk = (offset + written) >> blkbits;
3579		end_blk = (offset + length) >> blkbits;
3580		if (written_blk < end_blk && ext4_can_truncate(inode))
3581			truncate = true;
3582	}
3583	/*
3584	 * Remove inode from orphan list if we were extending a inode and
3585	 * everything went fine.
 
3586	 */
3587	if (!truncate && inode->i_nlink &&
3588	    !list_empty(&EXT4_I(inode)->i_orphan))
3589		ext4_orphan_del(handle, inode);
3590	ext4_journal_stop(handle);
3591	if (truncate) {
3592		ext4_truncate_failed_write(inode);
3593orphan_del:
3594		/*
3595		 * If truncate failed early the inode might still be on the
3596		 * orphan list; we need to make sure the inode is removed from
3597		 * the orphan list in that case.
3598		 */
3599		if (inode->i_nlink)
3600			ext4_orphan_del(NULL, inode);
3601	}
3602	return ret;
3603}
3604
3605const struct iomap_ops ext4_iomap_ops = {
3606	.iomap_begin		= ext4_iomap_begin,
3607	.iomap_end		= ext4_iomap_end,
3608};
3609
3610static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3611			    ssize_t size, void *private)
3612{
3613        ext4_io_end_t *io_end = private;
 
 
3614
3615	/* if not async direct IO just return */
3616	if (!io_end)
3617		return 0;
3618
3619	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3620		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3621		  io_end, io_end->inode->i_ino, iocb, offset, size);
3622
3623	/*
3624	 * Error during AIO DIO. We cannot convert unwritten extents as the
3625	 * data was not written. Just clear the unwritten flag and drop io_end.
3626	 */
3627	if (size <= 0) {
3628		ext4_clear_io_unwritten_flag(io_end);
3629		size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3630	}
3631	io_end->offset = offset;
3632	io_end->size = size;
3633	ext4_put_io_end(io_end);
 
 
 
 
 
 
 
 
 
3634
3635	return 0;
3636}
3637
3638/*
3639 * Handling of direct IO writes.
3640 *
3641 * For ext4 extent files, ext4 will do direct-io write even to holes,
3642 * preallocated extents, and those write extend the file, no need to
3643 * fall back to buffered IO.
3644 *
3645 * For holes, we fallocate those blocks, mark them as unwritten
3646 * If those blocks were preallocated, we mark sure they are split, but
3647 * still keep the range to write as unwritten.
3648 *
3649 * The unwritten extents will be converted to written when DIO is completed.
3650 * For async direct IO, since the IO may still pending when return, we
3651 * set up an end_io call back function, which will do the conversion
3652 * when async direct IO completed.
3653 *
3654 * If the O_DIRECT write will extend the file then add this inode to the
3655 * orphan list.  So recovery will truncate it back to the original size
3656 * if the machine crashes during the write.
3657 *
3658 */
3659static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3660{
3661	struct file *file = iocb->ki_filp;
3662	struct inode *inode = file->f_mapping->host;
3663	struct ext4_inode_info *ei = EXT4_I(inode);
3664	ssize_t ret;
3665	loff_t offset = iocb->ki_pos;
3666	size_t count = iov_iter_count(iter);
3667	int overwrite = 0;
3668	get_block_t *get_block_func = NULL;
3669	int dio_flags = 0;
3670	loff_t final_size = offset + count;
3671	int orphan = 0;
3672	handle_t *handle;
3673
3674	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3675		/* Credits for sb + inode write */
3676		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677		if (IS_ERR(handle)) {
3678			ret = PTR_ERR(handle);
3679			goto out;
3680		}
3681		ret = ext4_orphan_add(handle, inode);
3682		if (ret) {
3683			ext4_journal_stop(handle);
3684			goto out;
3685		}
3686		orphan = 1;
3687		ext4_update_i_disksize(inode, inode->i_size);
3688		ext4_journal_stop(handle);
3689	}
3690
3691	BUG_ON(iocb->private == NULL);
3692
3693	/*
3694	 * Make all waiters for direct IO properly wait also for extent
3695	 * conversion. This also disallows race between truncate() and
3696	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697	 */
3698	inode_dio_begin(inode);
 
 
 
 
3699
3700	/* If we do a overwrite dio, i_mutex locking can be released */
3701	overwrite = *((int *)iocb->private);
 
 
 
 
 
 
 
 
3702
3703	if (overwrite)
3704		inode_unlock(inode);
 
3705
 
 
 
3706	/*
3707	 * For extent mapped files we could direct write to holes and fallocate.
3708	 *
3709	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3710	 * parallel buffered read to expose the stale data before DIO complete
3711	 * the data IO.
3712	 *
3713	 * As to previously fallocated extents, ext4 get_block will just simply
3714	 * mark the buffer mapped but still keep the extents unwritten.
3715	 *
3716	 * For non AIO case, we will convert those unwritten extents to written
3717	 * after return back from blockdev_direct_IO. That way we save us from
3718	 * allocating io_end structure and also the overhead of offloading
3719	 * the extent convertion to a workqueue.
3720	 *
3721	 * For async DIO, the conversion needs to be deferred when the
3722	 * IO is completed. The ext4 end_io callback function will be
3723	 * called to take care of the conversion work.  Here for async
3724	 * case, we allocate an io_end structure to hook to the iocb.
3725	 */
3726	iocb->private = NULL;
3727	if (overwrite)
3728		get_block_func = ext4_dio_get_block_overwrite;
3729	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3730		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3731		get_block_func = ext4_dio_get_block;
3732		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733	} else if (is_sync_kiocb(iocb)) {
3734		get_block_func = ext4_dio_get_block_unwritten_sync;
3735		dio_flags = DIO_LOCKING;
3736	} else {
3737		get_block_func = ext4_dio_get_block_unwritten_async;
3738		dio_flags = DIO_LOCKING;
3739	}
3740	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741				   get_block_func, ext4_end_io_dio, NULL,
3742				   dio_flags);
3743
3744	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3745						EXT4_STATE_DIO_UNWRITTEN)) {
3746		int err;
3747		/*
3748		 * for non AIO case, since the IO is already
3749		 * completed, we could do the conversion right here
3750		 */
3751		err = ext4_convert_unwritten_extents(NULL, inode,
3752						     offset, ret);
3753		if (err < 0)
3754			ret = err;
3755		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756	}
3757
3758	inode_dio_end(inode);
3759	/* take i_mutex locking again if we do a ovewrite dio */
3760	if (overwrite)
3761		inode_lock(inode);
3762
3763	if (ret < 0 && final_size > inode->i_size)
3764		ext4_truncate_failed_write(inode);
 
 
3765
3766	/* Handle extending of i_size after direct IO write */
3767	if (orphan) {
3768		int err;
 
 
 
 
3769
3770		/* Credits for sb + inode write */
3771		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772		if (IS_ERR(handle)) {
3773			/*
3774			 * We wrote the data but cannot extend
3775			 * i_size. Bail out. In async io case, we do
3776			 * not return error here because we have
3777			 * already submmitted the corresponding
3778			 * bio. Returning error here makes the caller
3779			 * think that this IO is done and failed
3780			 * resulting in race with bio's completion
3781			 * handler.
3782			 */
3783			if (!ret)
3784				ret = PTR_ERR(handle);
3785			if (inode->i_nlink)
3786				ext4_orphan_del(NULL, inode);
3787
3788			goto out;
3789		}
3790		if (inode->i_nlink)
3791			ext4_orphan_del(handle, inode);
3792		if (ret > 0) {
3793			loff_t end = offset + ret;
3794			if (end > inode->i_size || end > ei->i_disksize) {
3795				ext4_update_i_disksize(inode, end);
3796				if (end > inode->i_size)
3797					i_size_write(inode, end);
3798				/*
3799				 * We're going to return a positive `ret'
3800				 * here due to non-zero-length I/O, so there's
3801				 * no way of reporting error returns from
3802				 * ext4_mark_inode_dirty() to userspace.  So
3803				 * ignore it.
3804				 */
3805				ext4_mark_inode_dirty(handle, inode);
3806			}
3807		}
3808		err = ext4_journal_stop(handle);
3809		if (ret == 0)
3810			ret = err;
3811	}
3812out:
3813	return ret;
3814}
3815
3816static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817{
3818	struct address_space *mapping = iocb->ki_filp->f_mapping;
3819	struct inode *inode = mapping->host;
3820	size_t count = iov_iter_count(iter);
3821	ssize_t ret;
3822
3823	/*
3824	 * Shared inode_lock is enough for us - it protects against concurrent
3825	 * writes & truncates and since we take care of writing back page cache,
3826	 * we are protected against page writeback as well.
3827	 */
3828	inode_lock_shared(inode);
3829	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3830					   iocb->ki_pos + count - 1);
3831	if (ret)
3832		goto out_unlock;
3833	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834				   iter, ext4_dio_get_block, NULL, NULL, 0);
3835out_unlock:
3836	inode_unlock_shared(inode);
3837	return ret;
3838}
3839
3840static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3841{
3842	struct file *file = iocb->ki_filp;
3843	struct inode *inode = file->f_mapping->host;
3844	size_t count = iov_iter_count(iter);
3845	loff_t offset = iocb->ki_pos;
3846	ssize_t ret;
3847
3848#ifdef CONFIG_EXT4_FS_ENCRYPTION
3849	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850		return 0;
3851#endif
3852
3853	/*
3854	 * If we are doing data journalling we don't support O_DIRECT
 
 
 
3855	 */
3856	if (ext4_should_journal_data(inode))
3857		return 0;
 
 
 
 
 
 
3858
3859	/* Let buffer I/O handle the inline data case. */
3860	if (ext4_has_inline_data(inode))
3861		return 0;
 
 
3862
3863	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864	if (iov_iter_rw(iter) == READ)
3865		ret = ext4_direct_IO_read(iocb, iter);
3866	else
3867		ret = ext4_direct_IO_write(iocb, iter);
3868	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3869	return ret;
3870}
3871
 
 
 
 
3872/*
3873 * Pages can be marked dirty completely asynchronously from ext4's journalling
3874 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3875 * much here because ->set_page_dirty is called under VFS locks.  The page is
3876 * not necessarily locked.
3877 *
3878 * We cannot just dirty the page and leave attached buffers clean, because the
3879 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3880 * or jbddirty because all the journalling code will explode.
3881 *
3882 * So what we do is to mark the page "pending dirty" and next time writepage
3883 * is called, propagate that into the buffers appropriately.
3884 */
3885static int ext4_journalled_set_page_dirty(struct page *page)
3886{
3887	SetPageChecked(page);
3888	return __set_page_dirty_nobuffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
3889}
3890
3891static int ext4_set_page_dirty(struct page *page)
 
3892{
3893	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894	WARN_ON_ONCE(!page_has_buffers(page));
3895	return __set_page_dirty_buffers(page);
3896}
3897
3898static const struct address_space_operations ext4_aops = {
3899	.readpage		= ext4_readpage,
3900	.readpages		= ext4_readpages,
3901	.writepage		= ext4_writepage,
3902	.writepages		= ext4_writepages,
3903	.write_begin		= ext4_write_begin,
3904	.write_end		= ext4_write_end,
3905	.set_page_dirty		= ext4_set_page_dirty,
3906	.bmap			= ext4_bmap,
3907	.invalidatepage		= ext4_invalidatepage,
3908	.releasepage		= ext4_releasepage,
3909	.direct_IO		= ext4_direct_IO,
3910	.migratepage		= buffer_migrate_page,
3911	.is_partially_uptodate  = block_is_partially_uptodate,
3912	.error_remove_page	= generic_error_remove_page,
 
3913};
3914
3915static const struct address_space_operations ext4_journalled_aops = {
3916	.readpage		= ext4_readpage,
3917	.readpages		= ext4_readpages,
3918	.writepage		= ext4_writepage,
3919	.writepages		= ext4_writepages,
3920	.write_begin		= ext4_write_begin,
3921	.write_end		= ext4_journalled_write_end,
3922	.set_page_dirty		= ext4_journalled_set_page_dirty,
3923	.bmap			= ext4_bmap,
3924	.invalidatepage		= ext4_journalled_invalidatepage,
3925	.releasepage		= ext4_releasepage,
3926	.direct_IO		= ext4_direct_IO,
3927	.is_partially_uptodate  = block_is_partially_uptodate,
3928	.error_remove_page	= generic_error_remove_page,
 
3929};
3930
3931static const struct address_space_operations ext4_da_aops = {
3932	.readpage		= ext4_readpage,
3933	.readpages		= ext4_readpages,
3934	.writepage		= ext4_writepage,
3935	.writepages		= ext4_writepages,
3936	.write_begin		= ext4_da_write_begin,
3937	.write_end		= ext4_da_write_end,
3938	.set_page_dirty		= ext4_set_page_dirty,
3939	.bmap			= ext4_bmap,
3940	.invalidatepage		= ext4_da_invalidatepage,
3941	.releasepage		= ext4_releasepage,
3942	.direct_IO		= ext4_direct_IO,
3943	.migratepage		= buffer_migrate_page,
3944	.is_partially_uptodate  = block_is_partially_uptodate,
3945	.error_remove_page	= generic_error_remove_page,
 
3946};
3947
3948static const struct address_space_operations ext4_dax_aops = {
3949	.writepages		= ext4_dax_writepages,
3950	.direct_IO		= noop_direct_IO,
3951	.set_page_dirty		= noop_set_page_dirty,
3952	.invalidatepage		= noop_invalidatepage,
3953};
3954
3955void ext4_set_aops(struct inode *inode)
3956{
3957	switch (ext4_inode_journal_mode(inode)) {
3958	case EXT4_INODE_ORDERED_DATA_MODE:
3959	case EXT4_INODE_WRITEBACK_DATA_MODE:
3960		break;
3961	case EXT4_INODE_JOURNAL_DATA_MODE:
3962		inode->i_mapping->a_ops = &ext4_journalled_aops;
3963		return;
3964	default:
3965		BUG();
3966	}
3967	if (IS_DAX(inode))
3968		inode->i_mapping->a_ops = &ext4_dax_aops;
3969	else if (test_opt(inode->i_sb, DELALLOC))
3970		inode->i_mapping->a_ops = &ext4_da_aops;
3971	else
3972		inode->i_mapping->a_ops = &ext4_aops;
3973}
3974
 
 
 
 
 
 
3975static int __ext4_block_zero_page_range(handle_t *handle,
3976		struct address_space *mapping, loff_t from, loff_t length)
3977{
3978	ext4_fsblk_t index = from >> PAGE_SHIFT;
3979	unsigned offset = from & (PAGE_SIZE-1);
3980	unsigned blocksize, pos;
3981	ext4_lblk_t iblock;
3982	struct inode *inode = mapping->host;
3983	struct buffer_head *bh;
3984	struct page *page;
3985	int err = 0;
3986
3987	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3988				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3989	if (!page)
3990		return -ENOMEM;
 
3991
3992	blocksize = inode->i_sb->s_blocksize;
3993
3994	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3995
3996	if (!page_has_buffers(page))
3997		create_empty_buffers(page, blocksize, 0);
 
3998
3999	/* Find the buffer that contains "offset" */
4000	bh = page_buffers(page);
4001	pos = blocksize;
4002	while (offset >= pos) {
4003		bh = bh->b_this_page;
4004		iblock++;
4005		pos += blocksize;
4006	}
4007	if (buffer_freed(bh)) {
4008		BUFFER_TRACE(bh, "freed: skip");
4009		goto unlock;
4010	}
4011	if (!buffer_mapped(bh)) {
4012		BUFFER_TRACE(bh, "unmapped");
4013		ext4_get_block(inode, iblock, bh, 0);
4014		/* unmapped? It's a hole - nothing to do */
4015		if (!buffer_mapped(bh)) {
4016			BUFFER_TRACE(bh, "still unmapped");
4017			goto unlock;
4018		}
4019	}
4020
4021	/* Ok, it's mapped. Make sure it's up-to-date */
4022	if (PageUptodate(page))
4023		set_buffer_uptodate(bh);
4024
4025	if (!buffer_uptodate(bh)) {
4026		err = -EIO;
4027		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4028		wait_on_buffer(bh);
4029		/* Uhhuh. Read error. Complain and punt. */
4030		if (!buffer_uptodate(bh))
4031			goto unlock;
4032		if (S_ISREG(inode->i_mode) &&
4033		    ext4_encrypted_inode(inode)) {
4034			/* We expect the key to be set. */
4035			BUG_ON(!fscrypt_has_encryption_key(inode));
4036			BUG_ON(blocksize != PAGE_SIZE);
4037			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4038						page, PAGE_SIZE, 0, page->index));
 
 
 
 
4039		}
4040	}
4041	if (ext4_should_journal_data(inode)) {
4042		BUFFER_TRACE(bh, "get write access");
4043		err = ext4_journal_get_write_access(handle, bh);
 
4044		if (err)
4045			goto unlock;
4046	}
4047	zero_user(page, offset, length);
4048	BUFFER_TRACE(bh, "zeroed end of block");
4049
4050	if (ext4_should_journal_data(inode)) {
4051		err = ext4_handle_dirty_metadata(handle, inode, bh);
4052	} else {
4053		err = 0;
4054		mark_buffer_dirty(bh);
4055		if (ext4_should_order_data(inode))
4056			err = ext4_jbd2_inode_add_write(handle, inode);
 
4057	}
4058
4059unlock:
4060	unlock_page(page);
4061	put_page(page);
4062	return err;
4063}
4064
4065/*
4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067 * starting from file offset 'from'.  The range to be zero'd must
4068 * be contained with in one block.  If the specified range exceeds
4069 * the end of the block it will be shortened to end of the block
4070 * that cooresponds to 'from'
4071 */
4072static int ext4_block_zero_page_range(handle_t *handle,
4073		struct address_space *mapping, loff_t from, loff_t length)
4074{
4075	struct inode *inode = mapping->host;
4076	unsigned offset = from & (PAGE_SIZE-1);
4077	unsigned blocksize = inode->i_sb->s_blocksize;
4078	unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080	/*
4081	 * correct length if it does not fall between
4082	 * 'from' and the end of the block
4083	 */
4084	if (length > max || length < 0)
4085		length = max;
4086
4087	if (IS_DAX(inode)) {
4088		return iomap_zero_range(inode, from, length, NULL,
4089					&ext4_iomap_ops);
4090	}
4091	return __ext4_block_zero_page_range(handle, mapping, from, length);
4092}
4093
4094/*
4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096 * up to the end of the block which corresponds to `from'.
4097 * This required during truncate. We need to physically zero the tail end
4098 * of that block so it doesn't yield old data if the file is later grown.
4099 */
4100static int ext4_block_truncate_page(handle_t *handle,
4101		struct address_space *mapping, loff_t from)
4102{
4103	unsigned offset = from & (PAGE_SIZE-1);
4104	unsigned length;
4105	unsigned blocksize;
4106	struct inode *inode = mapping->host;
4107
4108	/* If we are processing an encrypted inode during orphan list handling */
4109	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110		return 0;
4111
4112	blocksize = inode->i_sb->s_blocksize;
4113	length = blocksize - (offset & (blocksize - 1));
4114
4115	return ext4_block_zero_page_range(handle, mapping, from, length);
4116}
4117
4118int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119			     loff_t lstart, loff_t length)
4120{
4121	struct super_block *sb = inode->i_sb;
4122	struct address_space *mapping = inode->i_mapping;
4123	unsigned partial_start, partial_end;
4124	ext4_fsblk_t start, end;
4125	loff_t byte_end = (lstart + length - 1);
4126	int err = 0;
4127
4128	partial_start = lstart & (sb->s_blocksize - 1);
4129	partial_end = byte_end & (sb->s_blocksize - 1);
4130
4131	start = lstart >> sb->s_blocksize_bits;
4132	end = byte_end >> sb->s_blocksize_bits;
4133
4134	/* Handle partial zero within the single block */
4135	if (start == end &&
4136	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4137		err = ext4_block_zero_page_range(handle, mapping,
4138						 lstart, length);
4139		return err;
4140	}
4141	/* Handle partial zero out on the start of the range */
4142	if (partial_start) {
4143		err = ext4_block_zero_page_range(handle, mapping,
4144						 lstart, sb->s_blocksize);
4145		if (err)
4146			return err;
4147	}
4148	/* Handle partial zero out on the end of the range */
4149	if (partial_end != sb->s_blocksize - 1)
4150		err = ext4_block_zero_page_range(handle, mapping,
4151						 byte_end - partial_end,
4152						 partial_end + 1);
4153	return err;
4154}
4155
4156int ext4_can_truncate(struct inode *inode)
4157{
4158	if (S_ISREG(inode->i_mode))
4159		return 1;
4160	if (S_ISDIR(inode->i_mode))
4161		return 1;
4162	if (S_ISLNK(inode->i_mode))
4163		return !ext4_inode_is_fast_symlink(inode);
4164	return 0;
4165}
4166
4167/*
4168 * We have to make sure i_disksize gets properly updated before we truncate
4169 * page cache due to hole punching or zero range. Otherwise i_disksize update
4170 * can get lost as it may have been postponed to submission of writeback but
4171 * that will never happen after we truncate page cache.
4172 */
4173int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174				      loff_t len)
4175{
4176	handle_t *handle;
 
 
4177	loff_t size = i_size_read(inode);
4178
4179	WARN_ON(!inode_is_locked(inode));
4180	if (offset > size || offset + len < size)
4181		return 0;
4182
4183	if (EXT4_I(inode)->i_disksize >= size)
4184		return 0;
4185
4186	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187	if (IS_ERR(handle))
4188		return PTR_ERR(handle);
4189	ext4_update_i_disksize(inode, size);
4190	ext4_mark_inode_dirty(handle, inode);
4191	ext4_journal_stop(handle);
4192
4193	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4194}
4195
4196/*
4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4198 * associated with the given offset and length
4199 *
4200 * @inode:  File inode
4201 * @offset: The offset where the hole will begin
4202 * @len:    The length of the hole
4203 *
4204 * Returns: 0 on success or negative on failure
4205 */
4206
4207int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4208{
 
4209	struct super_block *sb = inode->i_sb;
4210	ext4_lblk_t first_block, stop_block;
4211	struct address_space *mapping = inode->i_mapping;
4212	loff_t first_block_offset, last_block_offset;
 
4213	handle_t *handle;
4214	unsigned int credits;
4215	int ret = 0;
4216
4217	if (!S_ISREG(inode->i_mode))
4218		return -EOPNOTSUPP;
4219
4220	trace_ext4_punch_hole(inode, offset, length, 0);
4221
4222	/*
4223	 * Write out all dirty pages to avoid race conditions
4224	 * Then release them.
4225	 */
4226	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4227		ret = filemap_write_and_wait_range(mapping, offset,
4228						   offset + length - 1);
4229		if (ret)
4230			return ret;
4231	}
4232
4233	inode_lock(inode);
4234
4235	/* No need to punch hole beyond i_size */
4236	if (offset >= inode->i_size)
4237		goto out_mutex;
4238
4239	/*
4240	 * If the hole extends beyond i_size, set the hole
4241	 * to end after the page that contains i_size
4242	 */
4243	if (offset + length > inode->i_size) {
4244		length = inode->i_size +
4245		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4246		   offset;
4247	}
4248
 
 
 
 
 
 
 
 
4249	if (offset & (sb->s_blocksize - 1) ||
4250	    (offset + length) & (sb->s_blocksize - 1)) {
4251		/*
4252		 * Attach jinode to inode for jbd2 if we do any zeroing of
4253		 * partial block
4254		 */
4255		ret = ext4_inode_attach_jinode(inode);
4256		if (ret < 0)
4257			goto out_mutex;
4258
4259	}
4260
4261	/* Wait all existing dio workers, newcomers will block on i_mutex */
4262	inode_dio_wait(inode);
4263
 
 
 
 
4264	/*
4265	 * Prevent page faults from reinstantiating pages we have released from
4266	 * page cache.
4267	 */
4268	down_write(&EXT4_I(inode)->i_mmap_sem);
 
 
 
 
 
4269	first_block_offset = round_up(offset, sb->s_blocksize);
4270	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4271
4272	/* Now release the pages and zero block aligned part of pages*/
4273	if (last_block_offset > first_block_offset) {
4274		ret = ext4_update_disksize_before_punch(inode, offset, length);
4275		if (ret)
4276			goto out_dio;
4277		truncate_pagecache_range(inode, first_block_offset,
4278					 last_block_offset);
4279	}
4280
4281	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282		credits = ext4_writepage_trans_blocks(inode);
4283	else
4284		credits = ext4_blocks_for_truncate(inode);
4285	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286	if (IS_ERR(handle)) {
4287		ret = PTR_ERR(handle);
4288		ext4_std_error(sb, ret);
4289		goto out_dio;
4290	}
4291
4292	ret = ext4_zero_partial_blocks(handle, inode, offset,
4293				       length);
4294	if (ret)
4295		goto out_stop;
4296
4297	first_block = (offset + sb->s_blocksize - 1) >>
4298		EXT4_BLOCK_SIZE_BITS(sb);
4299	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
4301	/* If there are no blocks to remove, return now */
4302	if (first_block >= stop_block)
4303		goto out_stop;
 
 
 
 
 
4304
4305	down_write(&EXT4_I(inode)->i_data_sem);
4306	ext4_discard_preallocations(inode);
 
 
 
 
4307
4308	ret = ext4_es_remove_extent(inode, first_block,
4309				    stop_block - first_block);
4310	if (ret) {
4311		up_write(&EXT4_I(inode)->i_data_sem);
4312		goto out_stop;
4313	}
4314
4315	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4316		ret = ext4_ext_remove_space(inode, first_block,
4317					    stop_block - 1);
4318	else
4319		ret = ext4_ind_remove_space(handle, inode, first_block,
4320					    stop_block);
4321
4322	up_write(&EXT4_I(inode)->i_data_sem);
4323	if (IS_SYNC(inode))
4324		ext4_handle_sync(handle);
4325
4326	inode->i_mtime = inode->i_ctime = current_time(inode);
4327	ext4_mark_inode_dirty(handle, inode);
 
 
4328	if (ret >= 0)
4329		ext4_update_inode_fsync_trans(handle, inode, 1);
4330out_stop:
4331	ext4_journal_stop(handle);
4332out_dio:
4333	up_write(&EXT4_I(inode)->i_mmap_sem);
4334out_mutex:
4335	inode_unlock(inode);
4336	return ret;
4337}
4338
4339int ext4_inode_attach_jinode(struct inode *inode)
4340{
4341	struct ext4_inode_info *ei = EXT4_I(inode);
4342	struct jbd2_inode *jinode;
4343
4344	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345		return 0;
4346
4347	jinode = jbd2_alloc_inode(GFP_KERNEL);
4348	spin_lock(&inode->i_lock);
4349	if (!ei->jinode) {
4350		if (!jinode) {
4351			spin_unlock(&inode->i_lock);
4352			return -ENOMEM;
4353		}
4354		ei->jinode = jinode;
4355		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356		jinode = NULL;
4357	}
4358	spin_unlock(&inode->i_lock);
4359	if (unlikely(jinode != NULL))
4360		jbd2_free_inode(jinode);
4361	return 0;
4362}
4363
4364/*
4365 * ext4_truncate()
4366 *
4367 * We block out ext4_get_block() block instantiations across the entire
4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4369 * simultaneously on behalf of the same inode.
4370 *
4371 * As we work through the truncate and commit bits of it to the journal there
4372 * is one core, guiding principle: the file's tree must always be consistent on
4373 * disk.  We must be able to restart the truncate after a crash.
4374 *
4375 * The file's tree may be transiently inconsistent in memory (although it
4376 * probably isn't), but whenever we close off and commit a journal transaction,
4377 * the contents of (the filesystem + the journal) must be consistent and
4378 * restartable.  It's pretty simple, really: bottom up, right to left (although
4379 * left-to-right works OK too).
4380 *
4381 * Note that at recovery time, journal replay occurs *before* the restart of
4382 * truncate against the orphan inode list.
4383 *
4384 * The committed inode has the new, desired i_size (which is the same as
4385 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4386 * that this inode's truncate did not complete and it will again call
4387 * ext4_truncate() to have another go.  So there will be instantiated blocks
4388 * to the right of the truncation point in a crashed ext4 filesystem.  But
4389 * that's fine - as long as they are linked from the inode, the post-crash
4390 * ext4_truncate() run will find them and release them.
4391 */
4392int ext4_truncate(struct inode *inode)
4393{
4394	struct ext4_inode_info *ei = EXT4_I(inode);
4395	unsigned int credits;
4396	int err = 0;
4397	handle_t *handle;
4398	struct address_space *mapping = inode->i_mapping;
4399
4400	/*
4401	 * There is a possibility that we're either freeing the inode
4402	 * or it's a completely new inode. In those cases we might not
4403	 * have i_mutex locked because it's not necessary.
4404	 */
4405	if (!(inode->i_state & (I_NEW|I_FREEING)))
4406		WARN_ON(!inode_is_locked(inode));
4407	trace_ext4_truncate_enter(inode);
4408
4409	if (!ext4_can_truncate(inode))
4410		return 0;
4411
4412	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4413
4414	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4416
4417	if (ext4_has_inline_data(inode)) {
4418		int has_inline = 1;
4419
4420		err = ext4_inline_data_truncate(inode, &has_inline);
4421		if (err)
4422			return err;
4423		if (has_inline)
4424			return 0;
4425	}
4426
4427	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429		if (ext4_inode_attach_jinode(inode) < 0)
4430			return 0;
 
4431	}
4432
4433	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434		credits = ext4_writepage_trans_blocks(inode);
4435	else
4436		credits = ext4_blocks_for_truncate(inode);
4437
4438	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4439	if (IS_ERR(handle))
4440		return PTR_ERR(handle);
 
 
4441
4442	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443		ext4_block_truncate_page(handle, mapping, inode->i_size);
4444
4445	/*
4446	 * We add the inode to the orphan list, so that if this
4447	 * truncate spans multiple transactions, and we crash, we will
4448	 * resume the truncate when the filesystem recovers.  It also
4449	 * marks the inode dirty, to catch the new size.
4450	 *
4451	 * Implication: the file must always be in a sane, consistent
4452	 * truncatable state while each transaction commits.
4453	 */
4454	err = ext4_orphan_add(handle, inode);
4455	if (err)
4456		goto out_stop;
4457
4458	down_write(&EXT4_I(inode)->i_data_sem);
4459
4460	ext4_discard_preallocations(inode);
4461
4462	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4463		err = ext4_ext_truncate(handle, inode);
4464	else
4465		ext4_ind_truncate(handle, inode);
4466
4467	up_write(&ei->i_data_sem);
4468	if (err)
4469		goto out_stop;
4470
4471	if (IS_SYNC(inode))
4472		ext4_handle_sync(handle);
4473
4474out_stop:
4475	/*
4476	 * If this was a simple ftruncate() and the file will remain alive,
4477	 * then we need to clear up the orphan record which we created above.
4478	 * However, if this was a real unlink then we were called by
4479	 * ext4_evict_inode(), and we allow that function to clean up the
4480	 * orphan info for us.
4481	 */
4482	if (inode->i_nlink)
4483		ext4_orphan_del(handle, inode);
4484
4485	inode->i_mtime = inode->i_ctime = current_time(inode);
4486	ext4_mark_inode_dirty(handle, inode);
 
 
4487	ext4_journal_stop(handle);
4488
 
4489	trace_ext4_truncate_exit(inode);
4490	return err;
4491}
4492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4493/*
4494 * ext4_get_inode_loc returns with an extra refcount against the inode's
4495 * underlying buffer_head on success. If 'in_mem' is true, we have all
4496 * data in memory that is needed to recreate the on-disk version of this
4497 * inode.
4498 */
4499static int __ext4_get_inode_loc(struct inode *inode,
4500				struct ext4_iloc *iloc, int in_mem)
 
4501{
4502	struct ext4_group_desc	*gdp;
4503	struct buffer_head	*bh;
4504	struct super_block	*sb = inode->i_sb;
4505	ext4_fsblk_t		block;
 
4506	int			inodes_per_block, inode_offset;
4507
4508	iloc->bh = NULL;
4509	if (!ext4_valid_inum(sb, inode->i_ino))
 
4510		return -EFSCORRUPTED;
4511
4512	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4513	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4514	if (!gdp)
4515		return -EIO;
4516
4517	/*
4518	 * Figure out the offset within the block group inode table
4519	 */
4520	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4521	inode_offset = ((inode->i_ino - 1) %
4522			EXT4_INODES_PER_GROUP(sb));
4523	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4524	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4525
 
 
 
 
 
 
 
 
 
4526	bh = sb_getblk(sb, block);
4527	if (unlikely(!bh))
4528		return -ENOMEM;
4529	if (!buffer_uptodate(bh)) {
4530		lock_buffer(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4531
4532		/*
4533		 * If the buffer has the write error flag, we have failed
4534		 * to write out another inode in the same block.  In this
4535		 * case, we don't have to read the block because we may
4536		 * read the old inode data successfully.
4537		 */
4538		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4539			set_buffer_uptodate(bh);
4540
4541		if (buffer_uptodate(bh)) {
4542			/* someone brought it uptodate while we waited */
4543			unlock_buffer(bh);
4544			goto has_buffer;
4545		}
4546
4547		/*
4548		 * If we have all information of the inode in memory and this
4549		 * is the only valid inode in the block, we need not read the
4550		 * block.
4551		 */
4552		if (in_mem) {
4553			struct buffer_head *bitmap_bh;
4554			int i, start;
4555
4556			start = inode_offset & ~(inodes_per_block - 1);
4557
4558			/* Is the inode bitmap in cache? */
4559			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4560			if (unlikely(!bitmap_bh))
4561				goto make_io;
4562
4563			/*
4564			 * If the inode bitmap isn't in cache then the
4565			 * optimisation may end up performing two reads instead
4566			 * of one, so skip it.
4567			 */
4568			if (!buffer_uptodate(bitmap_bh)) {
4569				brelse(bitmap_bh);
4570				goto make_io;
4571			}
4572			for (i = start; i < start + inodes_per_block; i++) {
4573				if (i == inode_offset)
4574					continue;
4575				if (ext4_test_bit(i, bitmap_bh->b_data))
4576					break;
4577			}
4578			brelse(bitmap_bh);
4579			if (i == start + inodes_per_block) {
4580				/* all other inodes are free, so skip I/O */
4581				memset(bh->b_data, 0, bh->b_size);
4582				set_buffer_uptodate(bh);
4583				unlock_buffer(bh);
4584				goto has_buffer;
4585			}
4586		}
4587
4588make_io:
4589		/*
4590		 * If we need to do any I/O, try to pre-readahead extra
4591		 * blocks from the inode table.
4592		 */
4593		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4594			ext4_fsblk_t b, end, table;
4595			unsigned num;
4596			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4597
4598			table = ext4_inode_table(sb, gdp);
4599			/* s_inode_readahead_blks is always a power of 2 */
4600			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4601			if (table > b)
4602				b = table;
4603			end = b + ra_blks;
4604			num = EXT4_INODES_PER_GROUP(sb);
4605			if (ext4_has_group_desc_csum(sb))
4606				num -= ext4_itable_unused_count(sb, gdp);
4607			table += num / inodes_per_block;
4608			if (end > table)
4609				end = table;
4610			while (b <= end)
4611				sb_breadahead(sb, b++);
4612		}
 
4613
4614		/*
4615		 * There are other valid inodes in the buffer, this inode
4616		 * has in-inode xattrs, or we don't have this inode in memory.
4617		 * Read the block from disk.
4618		 */
4619		trace_ext4_load_inode(inode);
4620		get_bh(bh);
4621		bh->b_end_io = end_buffer_read_sync;
4622		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4623		wait_on_buffer(bh);
4624		if (!buffer_uptodate(bh)) {
4625			EXT4_ERROR_INODE_BLOCK(inode, block,
4626					       "unable to read itable block");
4627			brelse(bh);
4628			return -EIO;
4629		}
4630	}
4631has_buffer:
4632	iloc->bh = bh;
4633	return 0;
4634}
4635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4636int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4637{
4638	/* We have all inode data except xattrs in memory here. */
4639	return __ext4_get_inode_loc(inode, iloc,
4640		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4641}
4642
4643static bool ext4_should_use_dax(struct inode *inode)
4644{
4645	if (!test_opt(inode->i_sb, DAX))
 
 
4646		return false;
4647	if (!S_ISREG(inode->i_mode))
4648		return false;
4649	if (ext4_should_journal_data(inode))
4650		return false;
4651	if (ext4_has_inline_data(inode))
4652		return false;
4653	if (ext4_encrypted_inode(inode))
4654		return false;
4655	return true;
 
 
 
 
 
 
 
4656}
4657
4658void ext4_set_inode_flags(struct inode *inode)
4659{
4660	unsigned int flags = EXT4_I(inode)->i_flags;
4661	unsigned int new_fl = 0;
4662
 
 
4663	if (flags & EXT4_SYNC_FL)
4664		new_fl |= S_SYNC;
4665	if (flags & EXT4_APPEND_FL)
4666		new_fl |= S_APPEND;
4667	if (flags & EXT4_IMMUTABLE_FL)
4668		new_fl |= S_IMMUTABLE;
4669	if (flags & EXT4_NOATIME_FL)
4670		new_fl |= S_NOATIME;
4671	if (flags & EXT4_DIRSYNC_FL)
4672		new_fl |= S_DIRSYNC;
4673	if (ext4_should_use_dax(inode))
 
 
 
 
4674		new_fl |= S_DAX;
 
4675	if (flags & EXT4_ENCRYPT_FL)
4676		new_fl |= S_ENCRYPTED;
 
 
 
 
4677	inode_set_flags(inode, new_fl,
4678			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4679			S_ENCRYPTED);
4680}
4681
4682static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4683				  struct ext4_inode_info *ei)
4684{
4685	blkcnt_t i_blocks ;
4686	struct inode *inode = &(ei->vfs_inode);
4687	struct super_block *sb = inode->i_sb;
4688
4689	if (ext4_has_feature_huge_file(sb)) {
4690		/* we are using combined 48 bit field */
4691		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4692					le32_to_cpu(raw_inode->i_blocks_lo);
4693		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4694			/* i_blocks represent file system block size */
4695			return i_blocks  << (inode->i_blkbits - 9);
4696		} else {
4697			return i_blocks;
4698		}
4699	} else {
4700		return le32_to_cpu(raw_inode->i_blocks_lo);
4701	}
4702}
4703
4704static inline void ext4_iget_extra_inode(struct inode *inode,
4705					 struct ext4_inode *raw_inode,
4706					 struct ext4_inode_info *ei)
4707{
4708	__le32 *magic = (void *)raw_inode +
4709			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4710	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711	    EXT4_INODE_SIZE(inode->i_sb) &&
4712	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
 
 
4713		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714		ext4_find_inline_data_nolock(inode);
 
 
 
4715	} else
4716		EXT4_I(inode)->i_inline_off = 0;
 
4717}
4718
4719int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4720{
4721	if (!ext4_has_feature_project(inode->i_sb))
4722		return -EOPNOTSUPP;
4723	*projid = EXT4_I(inode)->i_projid;
4724	return 0;
4725}
4726
4727struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4728{
4729	struct ext4_iloc iloc;
4730	struct ext4_inode *raw_inode;
4731	struct ext4_inode_info *ei;
 
4732	struct inode *inode;
 
4733	journal_t *journal = EXT4_SB(sb)->s_journal;
4734	long ret;
4735	loff_t size;
4736	int block;
4737	uid_t i_uid;
4738	gid_t i_gid;
4739	projid_t i_projid;
4740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741	inode = iget_locked(sb, ino);
4742	if (!inode)
4743		return ERR_PTR(-ENOMEM);
4744	if (!(inode->i_state & I_NEW))
 
 
 
 
 
4745		return inode;
 
4746
4747	ei = EXT4_I(inode);
4748	iloc.bh = NULL;
4749
4750	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4751	if (ret < 0)
4752		goto bad_inode;
4753	raw_inode = ext4_raw_inode(&iloc);
4754
4755	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4756		EXT4_ERROR_INODE(inode, "root inode unallocated");
4757		ret = -EFSCORRUPTED;
4758		goto bad_inode;
4759	}
4760
4761	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4762		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4763		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4764			EXT4_INODE_SIZE(inode->i_sb) ||
4765		    (ei->i_extra_isize & 3)) {
4766			EXT4_ERROR_INODE(inode,
4767					 "bad extra_isize %u (inode size %u)",
 
4768					 ei->i_extra_isize,
4769					 EXT4_INODE_SIZE(inode->i_sb));
4770			ret = -EFSCORRUPTED;
4771			goto bad_inode;
4772		}
4773	} else
4774		ei->i_extra_isize = 0;
4775
4776	/* Precompute checksum seed for inode metadata */
4777	if (ext4_has_metadata_csum(sb)) {
4778		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4779		__u32 csum;
4780		__le32 inum = cpu_to_le32(inode->i_ino);
4781		__le32 gen = raw_inode->i_generation;
4782		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4783				   sizeof(inum));
4784		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4785					      sizeof(gen));
4786	}
4787
4788	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4789		EXT4_ERROR_INODE(inode, "checksum invalid");
 
 
 
4790		ret = -EFSBADCRC;
4791		goto bad_inode;
4792	}
4793
4794	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4795	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4796	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4797	if (ext4_has_feature_project(sb) &&
4798	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4799	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4800		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4801	else
4802		i_projid = EXT4_DEF_PROJID;
4803
4804	if (!(test_opt(inode->i_sb, NO_UID32))) {
4805		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4806		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4807	}
4808	i_uid_write(inode, i_uid);
4809	i_gid_write(inode, i_gid);
4810	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4811	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4812
4813	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4814	ei->i_inline_off = 0;
4815	ei->i_dir_start_lookup = 0;
4816	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4817	/* We now have enough fields to check if the inode was active or not.
4818	 * This is needed because nfsd might try to access dead inodes
4819	 * the test is that same one that e2fsck uses
4820	 * NeilBrown 1999oct15
4821	 */
4822	if (inode->i_nlink == 0) {
4823		if ((inode->i_mode == 0 ||
4824		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4825		    ino != EXT4_BOOT_LOADER_INO) {
4826			/* this inode is deleted */
4827			ret = -ESTALE;
 
 
 
 
 
4828			goto bad_inode;
4829		}
4830		/* The only unlinked inodes we let through here have
4831		 * valid i_mode and are being read by the orphan
4832		 * recovery code: that's fine, we're about to complete
4833		 * the process of deleting those.
4834		 * OR it is the EXT4_BOOT_LOADER_INO which is
4835		 * not initialized on a new filesystem. */
4836	}
4837	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
4838	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840	if (ext4_has_feature_64bit(sb))
4841		ei->i_file_acl |=
4842			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843	inode->i_size = ext4_isize(sb, raw_inode);
4844	if ((size = i_size_read(inode)) < 0) {
4845		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
 
 
 
 
 
 
 
 
 
 
 
 
 
4846		ret = -EFSCORRUPTED;
4847		goto bad_inode;
4848	}
4849	ei->i_disksize = inode->i_size;
4850#ifdef CONFIG_QUOTA
4851	ei->i_reserved_quota = 0;
4852#endif
4853	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854	ei->i_block_group = iloc.block_group;
4855	ei->i_last_alloc_group = ~0;
4856	/*
4857	 * NOTE! The in-memory inode i_data array is in little-endian order
4858	 * even on big-endian machines: we do NOT byteswap the block numbers!
4859	 */
4860	for (block = 0; block < EXT4_N_BLOCKS; block++)
4861		ei->i_data[block] = raw_inode->i_block[block];
4862	INIT_LIST_HEAD(&ei->i_orphan);
 
4863
4864	/*
4865	 * Set transaction id's of transactions that have to be committed
4866	 * to finish f[data]sync. We set them to currently running transaction
4867	 * as we cannot be sure that the inode or some of its metadata isn't
4868	 * part of the transaction - the inode could have been reclaimed and
4869	 * now it is reread from disk.
4870	 */
4871	if (journal) {
4872		transaction_t *transaction;
4873		tid_t tid;
4874
4875		read_lock(&journal->j_state_lock);
4876		if (journal->j_running_transaction)
4877			transaction = journal->j_running_transaction;
4878		else
4879			transaction = journal->j_committing_transaction;
4880		if (transaction)
4881			tid = transaction->t_tid;
4882		else
4883			tid = journal->j_commit_sequence;
4884		read_unlock(&journal->j_state_lock);
4885		ei->i_sync_tid = tid;
4886		ei->i_datasync_tid = tid;
4887	}
4888
4889	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890		if (ei->i_extra_isize == 0) {
4891			/* The extra space is currently unused. Use it. */
4892			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4893			ei->i_extra_isize = sizeof(struct ext4_inode) -
4894					    EXT4_GOOD_OLD_INODE_SIZE;
4895		} else {
4896			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
4897		}
4898	}
4899
4900	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907
4908		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910				ivers |=
4911		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912		}
4913		inode_set_iversion_queried(inode, ivers);
4914	}
4915
4916	ret = 0;
4917	if (ei->i_file_acl &&
4918	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4919		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
4920				 ei->i_file_acl);
4921		ret = -EFSCORRUPTED;
4922		goto bad_inode;
4923	} else if (!ext4_has_inline_data(inode)) {
4924		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4925			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4926			    (S_ISLNK(inode->i_mode) &&
4927			     !ext4_inode_is_fast_symlink(inode))))
4928				/* Validate extent which is part of inode */
 
4929				ret = ext4_ext_check_inode(inode);
4930		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4931			   (S_ISLNK(inode->i_mode) &&
4932			    !ext4_inode_is_fast_symlink(inode))) {
4933			/* Validate block references which are part of inode */
4934			ret = ext4_ind_check_inode(inode);
4935		}
4936	}
4937	if (ret)
4938		goto bad_inode;
4939
4940	if (S_ISREG(inode->i_mode)) {
4941		inode->i_op = &ext4_file_inode_operations;
4942		inode->i_fop = &ext4_file_operations;
4943		ext4_set_aops(inode);
4944	} else if (S_ISDIR(inode->i_mode)) {
4945		inode->i_op = &ext4_dir_inode_operations;
4946		inode->i_fop = &ext4_dir_operations;
4947	} else if (S_ISLNK(inode->i_mode)) {
4948		if (ext4_encrypted_inode(inode)) {
 
 
 
 
 
 
 
 
4949			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4950			ext4_set_aops(inode);
4951		} else if (ext4_inode_is_fast_symlink(inode)) {
4952			inode->i_link = (char *)ei->i_data;
4953			inode->i_op = &ext4_fast_symlink_inode_operations;
4954			nd_terminate_link(ei->i_data, inode->i_size,
4955				sizeof(ei->i_data) - 1);
4956		} else {
4957			inode->i_op = &ext4_symlink_inode_operations;
4958			ext4_set_aops(inode);
4959		}
4960		inode_nohighmem(inode);
4961	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963		inode->i_op = &ext4_special_inode_operations;
4964		if (raw_inode->i_block[0])
4965			init_special_inode(inode, inode->i_mode,
4966			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967		else
4968			init_special_inode(inode, inode->i_mode,
4969			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970	} else if (ino == EXT4_BOOT_LOADER_INO) {
4971		make_bad_inode(inode);
4972	} else {
4973		ret = -EFSCORRUPTED;
4974		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
 
 
 
 
 
 
 
 
 
 
 
4975		goto bad_inode;
4976	}
 
4977	brelse(iloc.bh);
4978	ext4_set_inode_flags(inode);
4979
4980	unlock_new_inode(inode);
4981	return inode;
4982
4983bad_inode:
4984	brelse(iloc.bh);
4985	iget_failed(inode);
4986	return ERR_PTR(ret);
4987}
4988
4989struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
 
 
 
4990{
4991	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4992		return ERR_PTR(-EFSCORRUPTED);
4993	return ext4_iget(sb, ino);
4994}
4995
4996static int ext4_inode_blocks_set(handle_t *handle,
4997				struct ext4_inode *raw_inode,
4998				struct ext4_inode_info *ei)
4999{
5000	struct inode *inode = &(ei->vfs_inode);
5001	u64 i_blocks = inode->i_blocks;
5002	struct super_block *sb = inode->i_sb;
5003
5004	if (i_blocks <= ~0U) {
5005		/*
5006		 * i_blocks can be represented in a 32 bit variable
5007		 * as multiple of 512 bytes
5008		 */
5009		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010		raw_inode->i_blocks_high = 0;
5011		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012		return 0;
5013	}
5014	if (!ext4_has_feature_huge_file(sb))
5015		return -EFBIG;
5016
5017	if (i_blocks <= 0xffffffffffffULL) {
5018		/*
5019		 * i_blocks can be represented in a 48 bit variable
5020		 * as multiple of 512 bytes
5021		 */
5022		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5023		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5024		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5025	} else {
5026		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5027		/* i_block is stored in file system block size */
5028		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5029		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5030		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5031	}
5032	return 0;
5033}
5034
5035struct other_inode {
5036	unsigned long		orig_ino;
5037	struct ext4_inode	*raw_inode;
5038};
5039
5040static int other_inode_match(struct inode * inode, unsigned long ino,
5041			     void *data)
5042{
5043	struct other_inode *oi = (struct other_inode *) data;
5044
5045	if ((inode->i_ino != ino) ||
5046	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5047			       I_DIRTY_INODE)) ||
5048	    ((inode->i_state & I_DIRTY_TIME) == 0))
5049		return 0;
5050	spin_lock(&inode->i_lock);
5051	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5052				I_DIRTY_INODE)) == 0) &&
5053	    (inode->i_state & I_DIRTY_TIME)) {
5054		struct ext4_inode_info	*ei = EXT4_I(inode);
5055
5056		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5057		spin_unlock(&inode->i_lock);
5058
5059		spin_lock(&ei->i_raw_lock);
5060		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5061		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5062		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5063		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5064		spin_unlock(&ei->i_raw_lock);
5065		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5066		return -1;
5067	}
5068	spin_unlock(&inode->i_lock);
5069	return -1;
5070}
5071
5072/*
5073 * Opportunistically update the other time fields for other inodes in
5074 * the same inode table block.
5075 */
5076static void ext4_update_other_inodes_time(struct super_block *sb,
5077					  unsigned long orig_ino, char *buf)
5078{
5079	struct other_inode oi;
5080	unsigned long ino;
5081	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5082	int inode_size = EXT4_INODE_SIZE(sb);
5083
5084	oi.orig_ino = orig_ino;
5085	/*
5086	 * Calculate the first inode in the inode table block.  Inode
5087	 * numbers are one-based.  That is, the first inode in a block
5088	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5089	 */
5090	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
 
5091	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5092		if (ino == orig_ino)
5093			continue;
5094		oi.raw_inode = (struct ext4_inode *) buf;
5095		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5096	}
 
5097}
5098
5099/*
5100 * Post the struct inode info into an on-disk inode location in the
5101 * buffer-cache.  This gobbles the caller's reference to the
5102 * buffer_head in the inode location struct.
5103 *
5104 * The caller must have write access to iloc->bh.
5105 */
5106static int ext4_do_update_inode(handle_t *handle,
5107				struct inode *inode,
5108				struct ext4_iloc *iloc)
5109{
5110	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5111	struct ext4_inode_info *ei = EXT4_I(inode);
5112	struct buffer_head *bh = iloc->bh;
5113	struct super_block *sb = inode->i_sb;
5114	int err = 0, rc, block;
5115	int need_datasync = 0, set_large_file = 0;
5116	uid_t i_uid;
5117	gid_t i_gid;
5118	projid_t i_projid;
5119
5120	spin_lock(&ei->i_raw_lock);
5121
5122	/* For fields not tracked in the in-memory inode,
5123	 * initialise them to zero for new inodes. */
 
 
5124	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5125		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5126
5127	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5128	i_uid = i_uid_read(inode);
5129	i_gid = i_gid_read(inode);
5130	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5131	if (!(test_opt(inode->i_sb, NO_UID32))) {
5132		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5133		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5134/*
5135 * Fix up interoperability with old kernels. Otherwise, old inodes get
5136 * re-used with the upper 16 bits of the uid/gid intact
5137 */
5138		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5139			raw_inode->i_uid_high = 0;
5140			raw_inode->i_gid_high = 0;
5141		} else {
5142			raw_inode->i_uid_high =
5143				cpu_to_le16(high_16_bits(i_uid));
5144			raw_inode->i_gid_high =
5145				cpu_to_le16(high_16_bits(i_gid));
5146		}
5147	} else {
5148		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5149		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5150		raw_inode->i_uid_high = 0;
5151		raw_inode->i_gid_high = 0;
5152	}
5153	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5154
5155	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5156	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5157	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5158	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5159
5160	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5161	if (err) {
5162		spin_unlock(&ei->i_raw_lock);
5163		goto out_brelse;
5164	}
5165	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5166	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5167	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5168		raw_inode->i_file_acl_high =
5169			cpu_to_le16(ei->i_file_acl >> 32);
5170	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5171	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5172		ext4_isize_set(raw_inode, ei->i_disksize);
5173		need_datasync = 1;
5174	}
5175	if (ei->i_disksize > 0x7fffffffULL) {
5176		if (!ext4_has_feature_large_file(sb) ||
5177				EXT4_SB(sb)->s_es->s_rev_level ==
5178		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5179			set_large_file = 1;
5180	}
5181	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183		if (old_valid_dev(inode->i_rdev)) {
5184			raw_inode->i_block[0] =
5185				cpu_to_le32(old_encode_dev(inode->i_rdev));
5186			raw_inode->i_block[1] = 0;
5187		} else {
5188			raw_inode->i_block[0] = 0;
5189			raw_inode->i_block[1] =
5190				cpu_to_le32(new_encode_dev(inode->i_rdev));
5191			raw_inode->i_block[2] = 0;
5192		}
5193	} else if (!ext4_has_inline_data(inode)) {
5194		for (block = 0; block < EXT4_N_BLOCKS; block++)
5195			raw_inode->i_block[block] = ei->i_data[block];
5196	}
5197
5198	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5199		u64 ivers = inode_peek_iversion(inode);
5200
5201		raw_inode->i_disk_version = cpu_to_le32(ivers);
5202		if (ei->i_extra_isize) {
5203			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5204				raw_inode->i_version_hi =
5205					cpu_to_le32(ivers >> 32);
5206			raw_inode->i_extra_isize =
5207				cpu_to_le16(ei->i_extra_isize);
5208		}
5209	}
5210
5211	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5212	       i_projid != EXT4_DEF_PROJID);
5213
5214	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5215	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5216		raw_inode->i_projid = cpu_to_le32(i_projid);
5217
5218	ext4_inode_csum_set(inode, raw_inode, ei);
5219	spin_unlock(&ei->i_raw_lock);
5220	if (inode->i_sb->s_flags & SB_LAZYTIME)
5221		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5222					      bh->b_data);
5223
5224	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5225	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5226	if (!err)
5227		err = rc;
5228	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5229	if (set_large_file) {
5230		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5231		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
 
 
5232		if (err)
5233			goto out_brelse;
5234		ext4_update_dynamic_rev(sb);
5235		ext4_set_feature_large_file(sb);
 
 
5236		ext4_handle_sync(handle);
5237		err = ext4_handle_dirty_super(handle, sb);
 
5238	}
5239	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
 
 
5240out_brelse:
5241	brelse(bh);
5242	ext4_std_error(inode->i_sb, err);
5243	return err;
5244}
5245
5246/*
5247 * ext4_write_inode()
5248 *
5249 * We are called from a few places:
5250 *
5251 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5252 *   Here, there will be no transaction running. We wait for any running
5253 *   transaction to commit.
5254 *
5255 * - Within flush work (sys_sync(), kupdate and such).
5256 *   We wait on commit, if told to.
5257 *
5258 * - Within iput_final() -> write_inode_now()
5259 *   We wait on commit, if told to.
5260 *
5261 * In all cases it is actually safe for us to return without doing anything,
5262 * because the inode has been copied into a raw inode buffer in
5263 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5264 * writeback.
5265 *
5266 * Note that we are absolutely dependent upon all inode dirtiers doing the
5267 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5268 * which we are interested.
5269 *
5270 * It would be a bug for them to not do this.  The code:
5271 *
5272 *	mark_inode_dirty(inode)
5273 *	stuff();
5274 *	inode->i_size = expr;
5275 *
5276 * is in error because write_inode() could occur while `stuff()' is running,
5277 * and the new i_size will be lost.  Plus the inode will no longer be on the
5278 * superblock's dirty inode list.
5279 */
5280int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5281{
5282	int err;
5283
5284	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5285		return 0;
5286
 
 
 
5287	if (EXT4_SB(inode->i_sb)->s_journal) {
5288		if (ext4_journal_current_handle()) {
5289			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290			dump_stack();
5291			return -EIO;
5292		}
5293
5294		/*
5295		 * No need to force transaction in WB_SYNC_NONE mode. Also
5296		 * ext4_sync_fs() will force the commit after everything is
5297		 * written.
5298		 */
5299		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300			return 0;
5301
5302		err = ext4_force_commit(inode->i_sb);
 
5303	} else {
5304		struct ext4_iloc iloc;
5305
5306		err = __ext4_get_inode_loc(inode, &iloc, 0);
5307		if (err)
5308			return err;
5309		/*
5310		 * sync(2) will flush the whole buffer cache. No need to do
5311		 * it here separately for each inode.
5312		 */
5313		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5314			sync_dirty_buffer(iloc.bh);
5315		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5316			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5317					 "IO error syncing inode");
5318			err = -EIO;
5319		}
5320		brelse(iloc.bh);
5321	}
5322	return err;
5323}
5324
5325/*
5326 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5327 * buffers that are attached to a page stradding i_size and are undergoing
5328 * commit. In that case we have to wait for commit to finish and try again.
5329 */
5330static void ext4_wait_for_tail_page_commit(struct inode *inode)
5331{
5332	struct page *page;
5333	unsigned offset;
5334	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5335	tid_t commit_tid = 0;
5336	int ret;
 
5337
5338	offset = inode->i_size & (PAGE_SIZE - 1);
5339	/*
5340	 * All buffers in the last page remain valid? Then there's nothing to
5341	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5342	 * blocksize case
 
 
 
 
5343	 */
5344	if (offset > PAGE_SIZE - i_blocksize(inode))
5345		return;
5346	while (1) {
5347		page = find_lock_page(inode->i_mapping,
5348				      inode->i_size >> PAGE_SHIFT);
5349		if (!page)
5350			return;
5351		ret = __ext4_journalled_invalidatepage(page, offset,
5352						PAGE_SIZE - offset);
5353		unlock_page(page);
5354		put_page(page);
5355		if (ret != -EBUSY)
5356			return;
5357		commit_tid = 0;
5358		read_lock(&journal->j_state_lock);
5359		if (journal->j_committing_transaction)
5360			commit_tid = journal->j_committing_transaction->t_tid;
 
 
5361		read_unlock(&journal->j_state_lock);
5362		if (commit_tid)
5363			jbd2_log_wait_commit(journal, commit_tid);
5364	}
5365}
5366
5367/*
5368 * ext4_setattr()
5369 *
5370 * Called from notify_change.
5371 *
5372 * We want to trap VFS attempts to truncate the file as soon as
5373 * possible.  In particular, we want to make sure that when the VFS
5374 * shrinks i_size, we put the inode on the orphan list and modify
5375 * i_disksize immediately, so that during the subsequent flushing of
5376 * dirty pages and freeing of disk blocks, we can guarantee that any
5377 * commit will leave the blocks being flushed in an unused state on
5378 * disk.  (On recovery, the inode will get truncated and the blocks will
5379 * be freed, so we have a strong guarantee that no future commit will
5380 * leave these blocks visible to the user.)
5381 *
5382 * Another thing we have to assure is that if we are in ordered mode
5383 * and inode is still attached to the committing transaction, we must
5384 * we start writeout of all the dirty pages which are being truncated.
5385 * This way we are sure that all the data written in the previous
5386 * transaction are already on disk (truncate waits for pages under
5387 * writeback).
5388 *
5389 * Called with inode->i_mutex down.
5390 */
5391int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 
5392{
5393	struct inode *inode = d_inode(dentry);
5394	int error, rc = 0;
5395	int orphan = 0;
5396	const unsigned int ia_valid = attr->ia_valid;
 
5397
5398	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5399		return -EIO;
5400
5401	error = setattr_prepare(dentry, attr);
 
 
 
 
 
 
 
 
5402	if (error)
5403		return error;
5404
5405	error = fscrypt_prepare_setattr(dentry, attr);
5406	if (error)
5407		return error;
5408
5409	if (is_quota_modification(inode, attr)) {
 
 
 
 
5410		error = dquot_initialize(inode);
5411		if (error)
5412			return error;
5413	}
5414	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5415	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
 
5416		handle_t *handle;
5417
5418		/* (user+group)*(old+new) structure, inode write (sb,
5419		 * inode block, ? - but truncate inode update has it) */
5420		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5421			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5422			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5423		if (IS_ERR(handle)) {
5424			error = PTR_ERR(handle);
5425			goto err_out;
5426		}
5427
5428		/* dquot_transfer() calls back ext4_get_inode_usage() which
5429		 * counts xattr inode references.
5430		 */
5431		down_read(&EXT4_I(inode)->xattr_sem);
5432		error = dquot_transfer(inode, attr);
5433		up_read(&EXT4_I(inode)->xattr_sem);
5434
5435		if (error) {
5436			ext4_journal_stop(handle);
5437			return error;
5438		}
5439		/* Update corresponding info in inode so that everything is in
5440		 * one transaction */
5441		if (attr->ia_valid & ATTR_UID)
5442			inode->i_uid = attr->ia_uid;
5443		if (attr->ia_valid & ATTR_GID)
5444			inode->i_gid = attr->ia_gid;
5445		error = ext4_mark_inode_dirty(handle, inode);
5446		ext4_journal_stop(handle);
 
 
 
5447	}
5448
5449	if (attr->ia_valid & ATTR_SIZE) {
5450		handle_t *handle;
5451		loff_t oldsize = inode->i_size;
5452		int shrink = (attr->ia_size <= inode->i_size);
 
5453
5454		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5455			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5456
5457			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5458				return -EFBIG;
 
5459		}
5460		if (!S_ISREG(inode->i_mode))
5461			return -EINVAL;
 
5462
5463		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5464			inode_inc_iversion(inode);
5465
5466		if (ext4_should_order_data(inode) &&
5467		    (attr->ia_size < inode->i_size)) {
5468			error = ext4_begin_ordered_truncate(inode,
5469							    attr->ia_size);
5470			if (error)
5471				goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5472		}
 
5473		if (attr->ia_size != inode->i_size) {
 
 
 
 
 
 
 
 
5474			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5475			if (IS_ERR(handle)) {
5476				error = PTR_ERR(handle);
5477				goto err_out;
5478			}
5479			if (ext4_handle_valid(handle) && shrink) {
5480				error = ext4_orphan_add(handle, inode);
5481				orphan = 1;
5482			}
5483			/*
5484			 * Update c/mtime on truncate up, ext4_truncate() will
5485			 * update c/mtime in shrink case below
 
5486			 */
5487			if (!shrink) {
5488				inode->i_mtime = current_time(inode);
5489				inode->i_ctime = inode->i_mtime;
 
 
 
5490			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5491			down_write(&EXT4_I(inode)->i_data_sem);
 
5492			EXT4_I(inode)->i_disksize = attr->ia_size;
5493			rc = ext4_mark_inode_dirty(handle, inode);
5494			if (!error)
5495				error = rc;
5496			/*
5497			 * We have to update i_size under i_data_sem together
5498			 * with i_disksize to avoid races with writeback code
5499			 * running ext4_wb_update_i_disksize().
5500			 */
5501			if (!error)
5502				i_size_write(inode, attr->ia_size);
 
 
5503			up_write(&EXT4_I(inode)->i_data_sem);
5504			ext4_journal_stop(handle);
5505			if (error) {
5506				if (orphan)
5507					ext4_orphan_del(NULL, inode);
5508				goto err_out;
 
 
 
5509			}
5510		}
5511		if (!shrink)
5512			pagecache_isize_extended(inode, oldsize, inode->i_size);
5513
5514		/*
5515		 * Blocks are going to be removed from the inode. Wait
5516		 * for dio in flight.  Temporarily disable
5517		 * dioread_nolock to prevent livelock.
5518		 */
5519		if (orphan) {
5520			if (!ext4_should_journal_data(inode)) {
5521				inode_dio_wait(inode);
5522			} else
5523				ext4_wait_for_tail_page_commit(inode);
5524		}
5525		down_write(&EXT4_I(inode)->i_mmap_sem);
5526		/*
5527		 * Truncate pagecache after we've waited for commit
5528		 * in data=journal mode to make pages freeable.
5529		 */
5530		truncate_pagecache(inode, inode->i_size);
5531		if (shrink) {
 
 
 
 
5532			rc = ext4_truncate(inode);
5533			if (rc)
5534				error = rc;
5535		}
5536		up_write(&EXT4_I(inode)->i_mmap_sem);
 
5537	}
5538
5539	if (!error) {
5540		setattr_copy(inode, attr);
 
 
5541		mark_inode_dirty(inode);
5542	}
5543
5544	/*
5545	 * If the call to ext4_truncate failed to get a transaction handle at
5546	 * all, we need to clean up the in-core orphan list manually.
5547	 */
5548	if (orphan && inode->i_nlink)
5549		ext4_orphan_del(NULL, inode);
5550
5551	if (!error && (ia_valid & ATTR_MODE))
5552		rc = posix_acl_chmod(inode, inode->i_mode);
5553
5554err_out:
5555	ext4_std_error(inode->i_sb, error);
 
5556	if (!error)
5557		error = rc;
5558	return error;
5559}
5560
5561int ext4_getattr(const struct path *path, struct kstat *stat,
5562		 u32 request_mask, unsigned int query_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5563{
5564	struct inode *inode = d_inode(path->dentry);
5565	struct ext4_inode *raw_inode;
5566	struct ext4_inode_info *ei = EXT4_I(inode);
5567	unsigned int flags;
5568
5569	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
 
5570		stat->result_mask |= STATX_BTIME;
5571		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5572		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5573	}
5574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5575	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5576	if (flags & EXT4_APPEND_FL)
5577		stat->attributes |= STATX_ATTR_APPEND;
5578	if (flags & EXT4_COMPR_FL)
5579		stat->attributes |= STATX_ATTR_COMPRESSED;
5580	if (flags & EXT4_ENCRYPT_FL)
5581		stat->attributes |= STATX_ATTR_ENCRYPTED;
5582	if (flags & EXT4_IMMUTABLE_FL)
5583		stat->attributes |= STATX_ATTR_IMMUTABLE;
5584	if (flags & EXT4_NODUMP_FL)
5585		stat->attributes |= STATX_ATTR_NODUMP;
 
 
5586
5587	stat->attributes_mask |= (STATX_ATTR_APPEND |
5588				  STATX_ATTR_COMPRESSED |
5589				  STATX_ATTR_ENCRYPTED |
5590				  STATX_ATTR_IMMUTABLE |
5591				  STATX_ATTR_NODUMP);
 
5592
5593	generic_fillattr(inode, stat);
5594	return 0;
5595}
5596
5597int ext4_file_getattr(const struct path *path, struct kstat *stat,
 
5598		      u32 request_mask, unsigned int query_flags)
5599{
5600	struct inode *inode = d_inode(path->dentry);
5601	u64 delalloc_blocks;
5602
5603	ext4_getattr(path, stat, request_mask, query_flags);
5604
5605	/*
5606	 * If there is inline data in the inode, the inode will normally not
5607	 * have data blocks allocated (it may have an external xattr block).
5608	 * Report at least one sector for such files, so tools like tar, rsync,
5609	 * others don't incorrectly think the file is completely sparse.
5610	 */
5611	if (unlikely(ext4_has_inline_data(inode)))
5612		stat->blocks += (stat->size + 511) >> 9;
5613
5614	/*
5615	 * We can't update i_blocks if the block allocation is delayed
5616	 * otherwise in the case of system crash before the real block
5617	 * allocation is done, we will have i_blocks inconsistent with
5618	 * on-disk file blocks.
5619	 * We always keep i_blocks updated together with real
5620	 * allocation. But to not confuse with user, stat
5621	 * will return the blocks that include the delayed allocation
5622	 * blocks for this file.
5623	 */
5624	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5625				   EXT4_I(inode)->i_reserved_data_blocks);
5626	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5627	return 0;
5628}
5629
5630static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5631				   int pextents)
5632{
5633	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5634		return ext4_ind_trans_blocks(inode, lblocks);
5635	return ext4_ext_index_trans_blocks(inode, pextents);
5636}
5637
5638/*
5639 * Account for index blocks, block groups bitmaps and block group
5640 * descriptor blocks if modify datablocks and index blocks
5641 * worse case, the indexs blocks spread over different block groups
5642 *
5643 * If datablocks are discontiguous, they are possible to spread over
5644 * different block groups too. If they are contiguous, with flexbg,
5645 * they could still across block group boundary.
5646 *
5647 * Also account for superblock, inode, quota and xattr blocks
5648 */
5649static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5650				  int pextents)
5651{
5652	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5653	int gdpblocks;
5654	int idxblocks;
5655	int ret = 0;
5656
5657	/*
5658	 * How many index blocks need to touch to map @lblocks logical blocks
5659	 * to @pextents physical extents?
5660	 */
5661	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5662
5663	ret = idxblocks;
5664
5665	/*
5666	 * Now let's see how many group bitmaps and group descriptors need
5667	 * to account
5668	 */
5669	groups = idxblocks + pextents;
5670	gdpblocks = groups;
5671	if (groups > ngroups)
5672		groups = ngroups;
5673	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5674		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5675
5676	/* bitmaps and block group descriptor blocks */
5677	ret += groups + gdpblocks;
5678
5679	/* Blocks for super block, inode, quota and xattr blocks */
5680	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5681
5682	return ret;
5683}
5684
5685/*
5686 * Calculate the total number of credits to reserve to fit
5687 * the modification of a single pages into a single transaction,
5688 * which may include multiple chunks of block allocations.
5689 *
5690 * This could be called via ext4_write_begin()
5691 *
5692 * We need to consider the worse case, when
5693 * one new block per extent.
5694 */
5695int ext4_writepage_trans_blocks(struct inode *inode)
5696{
5697	int bpp = ext4_journal_blocks_per_page(inode);
5698	int ret;
5699
5700	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5701
5702	/* Account for data blocks for journalled mode */
5703	if (ext4_should_journal_data(inode))
5704		ret += bpp;
5705	return ret;
5706}
5707
5708/*
5709 * Calculate the journal credits for a chunk of data modification.
5710 *
5711 * This is called from DIO, fallocate or whoever calling
5712 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5713 *
5714 * journal buffers for data blocks are not included here, as DIO
5715 * and fallocate do no need to journal data buffers.
5716 */
5717int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5718{
5719	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5720}
5721
5722/*
5723 * The caller must have previously called ext4_reserve_inode_write().
5724 * Give this, we know that the caller already has write access to iloc->bh.
5725 */
5726int ext4_mark_iloc_dirty(handle_t *handle,
5727			 struct inode *inode, struct ext4_iloc *iloc)
5728{
5729	int err = 0;
5730
5731	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 
5732		return -EIO;
5733
5734	if (IS_I_VERSION(inode))
5735		inode_inc_iversion(inode);
5736
5737	/* the do_update_inode consumes one bh->b_count */
5738	get_bh(iloc->bh);
5739
5740	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741	err = ext4_do_update_inode(handle, inode, iloc);
5742	put_bh(iloc->bh);
5743	return err;
5744}
5745
5746/*
5747 * On success, We end up with an outstanding reference count against
5748 * iloc->bh.  This _must_ be cleaned up later.
5749 */
5750
5751int
5752ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753			 struct ext4_iloc *iloc)
5754{
5755	int err;
5756
5757	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758		return -EIO;
5759
5760	err = ext4_get_inode_loc(inode, iloc);
5761	if (!err) {
5762		BUFFER_TRACE(iloc->bh, "get_write_access");
5763		err = ext4_journal_get_write_access(handle, iloc->bh);
 
5764		if (err) {
5765			brelse(iloc->bh);
5766			iloc->bh = NULL;
5767		}
5768	}
5769	ext4_std_error(inode->i_sb, err);
5770	return err;
5771}
5772
5773static int __ext4_expand_extra_isize(struct inode *inode,
5774				     unsigned int new_extra_isize,
5775				     struct ext4_iloc *iloc,
5776				     handle_t *handle, int *no_expand)
5777{
5778	struct ext4_inode *raw_inode;
5779	struct ext4_xattr_ibody_header *header;
 
 
5780	int error;
5781
 
 
 
 
 
 
 
 
 
 
 
 
 
5782	raw_inode = ext4_raw_inode(iloc);
5783
5784	header = IHDR(inode, raw_inode);
5785
5786	/* No extended attributes present */
5787	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790		       EXT4_I(inode)->i_extra_isize, 0,
5791		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793		return 0;
5794	}
5795
 
 
 
 
 
 
 
 
5796	/* try to expand with EAs present */
5797	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798					   raw_inode, handle);
5799	if (error) {
5800		/*
5801		 * Inode size expansion failed; don't try again
5802		 */
5803		*no_expand = 1;
5804	}
5805
5806	return error;
5807}
5808
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814					  unsigned int new_extra_isize,
5815					  struct ext4_iloc iloc,
5816					  handle_t *handle)
5817{
5818	int no_expand;
5819	int error;
5820
5821	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822		return -EOVERFLOW;
5823
5824	/*
5825	 * In nojournal mode, we can immediately attempt to expand
5826	 * the inode.  When journaled, we first need to obtain extra
5827	 * buffer credits since we may write into the EA block
5828	 * with this same handle. If journal_extend fails, then it will
5829	 * only result in a minor loss of functionality for that inode.
5830	 * If this is felt to be critical, then e2fsck should be run to
5831	 * force a large enough s_min_extra_isize.
5832	 */
5833	if (ext4_handle_valid(handle) &&
5834	    jbd2_journal_extend(handle,
5835				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5836		return -ENOSPC;
5837
5838	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5839		return -EBUSY;
5840
5841	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5842					  handle, &no_expand);
5843	ext4_write_unlock_xattr(inode, &no_expand);
5844
5845	return error;
5846}
5847
5848int ext4_expand_extra_isize(struct inode *inode,
5849			    unsigned int new_extra_isize,
5850			    struct ext4_iloc *iloc)
5851{
5852	handle_t *handle;
5853	int no_expand;
5854	int error, rc;
5855
5856	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5857		brelse(iloc->bh);
5858		return -EOVERFLOW;
5859	}
5860
5861	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5862				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5863	if (IS_ERR(handle)) {
5864		error = PTR_ERR(handle);
5865		brelse(iloc->bh);
5866		return error;
5867	}
5868
5869	ext4_write_lock_xattr(inode, &no_expand);
5870
5871	BUFFER_TRACE(iloc.bh, "get_write_access");
5872	error = ext4_journal_get_write_access(handle, iloc->bh);
 
5873	if (error) {
5874		brelse(iloc->bh);
5875		goto out_stop;
5876	}
5877
5878	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5879					  handle, &no_expand);
5880
5881	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5882	if (!error)
5883		error = rc;
5884
 
5885	ext4_write_unlock_xattr(inode, &no_expand);
5886out_stop:
5887	ext4_journal_stop(handle);
5888	return error;
5889}
5890
5891/*
5892 * What we do here is to mark the in-core inode as clean with respect to inode
5893 * dirtiness (it may still be data-dirty).
5894 * This means that the in-core inode may be reaped by prune_icache
5895 * without having to perform any I/O.  This is a very good thing,
5896 * because *any* task may call prune_icache - even ones which
5897 * have a transaction open against a different journal.
5898 *
5899 * Is this cheating?  Not really.  Sure, we haven't written the
5900 * inode out, but prune_icache isn't a user-visible syncing function.
5901 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5902 * we start and wait on commits.
5903 */
5904int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
5905{
5906	struct ext4_iloc iloc;
5907	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908	int err;
5909
5910	might_sleep();
5911	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912	err = ext4_reserve_inode_write(handle, inode, &iloc);
5913	if (err)
5914		return err;
5915
5916	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918					       iloc, handle);
5919
5920	return ext4_mark_iloc_dirty(handle, inode, &iloc);
 
 
 
 
 
5921}
5922
5923/*
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5925 *
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5929 *
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5932 *
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5936 *
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5940 */
5941void ext4_dirty_inode(struct inode *inode, int flags)
5942{
5943	handle_t *handle;
5944
5945	if (flags == I_DIRTY_TIME)
5946		return;
5947	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948	if (IS_ERR(handle))
5949		goto out;
5950
5951	ext4_mark_inode_dirty(handle, inode);
5952
5953	ext4_journal_stop(handle);
5954out:
5955	return;
5956}
5957
5958#if 0
5959/*
5960 * Bind an inode's backing buffer_head into this transaction, to prevent
5961 * it from being flushed to disk early.  Unlike
5962 * ext4_reserve_inode_write, this leaves behind no bh reference and
5963 * returns no iloc structure, so the caller needs to repeat the iloc
5964 * lookup to mark the inode dirty later.
5965 */
5966static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5967{
5968	struct ext4_iloc iloc;
5969
5970	int err = 0;
5971	if (handle) {
5972		err = ext4_get_inode_loc(inode, &iloc);
5973		if (!err) {
5974			BUFFER_TRACE(iloc.bh, "get_write_access");
5975			err = jbd2_journal_get_write_access(handle, iloc.bh);
5976			if (!err)
5977				err = ext4_handle_dirty_metadata(handle,
5978								 NULL,
5979								 iloc.bh);
5980			brelse(iloc.bh);
5981		}
5982	}
5983	ext4_std_error(inode->i_sb, err);
5984	return err;
5985}
5986#endif
5987
5988int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989{
5990	journal_t *journal;
5991	handle_t *handle;
5992	int err;
5993	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994
5995	/*
5996	 * We have to be very careful here: changing a data block's
5997	 * journaling status dynamically is dangerous.  If we write a
5998	 * data block to the journal, change the status and then delete
5999	 * that block, we risk forgetting to revoke the old log record
6000	 * from the journal and so a subsequent replay can corrupt data.
6001	 * So, first we make sure that the journal is empty and that
6002	 * nobody is changing anything.
6003	 */
6004
6005	journal = EXT4_JOURNAL(inode);
6006	if (!journal)
6007		return 0;
6008	if (is_journal_aborted(journal))
6009		return -EROFS;
6010
6011	/* Wait for all existing dio workers */
6012	inode_dio_wait(inode);
6013
6014	/*
6015	 * Before flushing the journal and switching inode's aops, we have
6016	 * to flush all dirty data the inode has. There can be outstanding
6017	 * delayed allocations, there can be unwritten extents created by
6018	 * fallocate or buffered writes in dioread_nolock mode covered by
6019	 * dirty data which can be converted only after flushing the dirty
6020	 * data (and journalled aops don't know how to handle these cases).
6021	 */
6022	if (val) {
6023		down_write(&EXT4_I(inode)->i_mmap_sem);
6024		err = filemap_write_and_wait(inode->i_mapping);
6025		if (err < 0) {
6026			up_write(&EXT4_I(inode)->i_mmap_sem);
6027			return err;
6028		}
6029	}
6030
6031	percpu_down_write(&sbi->s_journal_flag_rwsem);
6032	jbd2_journal_lock_updates(journal);
6033
6034	/*
6035	 * OK, there are no updates running now, and all cached data is
6036	 * synced to disk.  We are now in a completely consistent state
6037	 * which doesn't have anything in the journal, and we know that
6038	 * no filesystem updates are running, so it is safe to modify
6039	 * the inode's in-core data-journaling state flag now.
6040	 */
6041
6042	if (val)
6043		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044	else {
6045		err = jbd2_journal_flush(journal);
6046		if (err < 0) {
6047			jbd2_journal_unlock_updates(journal);
6048			percpu_up_write(&sbi->s_journal_flag_rwsem);
6049			return err;
6050		}
6051		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052	}
6053	ext4_set_aops(inode);
6054
6055	jbd2_journal_unlock_updates(journal);
6056	percpu_up_write(&sbi->s_journal_flag_rwsem);
6057
6058	if (val)
6059		up_write(&EXT4_I(inode)->i_mmap_sem);
6060
6061	/* Finally we can mark the inode as dirty. */
6062
6063	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064	if (IS_ERR(handle))
6065		return PTR_ERR(handle);
6066
 
 
6067	err = ext4_mark_inode_dirty(handle, inode);
6068	ext4_handle_sync(handle);
6069	ext4_journal_stop(handle);
6070	ext4_std_error(inode->i_sb, err);
6071
6072	return err;
6073}
6074
6075static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
 
6076{
6077	return !buffer_mapped(bh);
6078}
6079
6080int ext4_page_mkwrite(struct vm_fault *vmf)
6081{
6082	struct vm_area_struct *vma = vmf->vma;
6083	struct page *page = vmf->page;
6084	loff_t size;
6085	unsigned long len;
6086	int ret;
 
6087	struct file *file = vma->vm_file;
6088	struct inode *inode = file_inode(file);
6089	struct address_space *mapping = inode->i_mapping;
6090	handle_t *handle;
6091	get_block_t *get_block;
6092	int retries = 0;
6093
 
 
 
6094	sb_start_pagefault(inode->i_sb);
6095	file_update_time(vma->vm_file);
6096
6097	down_read(&EXT4_I(inode)->i_mmap_sem);
6098
6099	ret = ext4_convert_inline_data(inode);
6100	if (ret)
6101		goto out_ret;
6102
 
 
 
 
 
 
 
 
 
6103	/* Delalloc case is easy... */
6104	if (test_opt(inode->i_sb, DELALLOC) &&
6105	    !ext4_should_journal_data(inode) &&
6106	    !ext4_nonda_switch(inode->i_sb)) {
6107		do {
6108			ret = block_page_mkwrite(vma, vmf,
6109						   ext4_da_get_block_prep);
6110		} while (ret == -ENOSPC &&
6111		       ext4_should_retry_alloc(inode->i_sb, &retries));
6112		goto out_ret;
6113	}
6114
6115	lock_page(page);
6116	size = i_size_read(inode);
6117	/* Page got truncated from under us? */
6118	if (page->mapping != mapping || page_offset(page) > size) {
6119		unlock_page(page);
6120		ret = VM_FAULT_NOPAGE;
6121		goto out;
6122	}
6123
6124	if (page->index == size >> PAGE_SHIFT)
6125		len = size & ~PAGE_MASK;
6126	else
6127		len = PAGE_SIZE;
6128	/*
6129	 * Return if we have all the buffers mapped. This avoids the need to do
6130	 * journal_start/journal_stop which can block and take a long time
 
 
 
6131	 */
6132	if (page_has_buffers(page)) {
6133		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6134					    0, len, NULL,
6135					    ext4_bh_unmapped)) {
6136			/* Wait so that we don't change page under IO */
6137			wait_for_stable_page(page);
6138			ret = VM_FAULT_LOCKED;
6139			goto out;
6140		}
6141	}
6142	unlock_page(page);
6143	/* OK, we need to fill the hole... */
6144	if (ext4_should_dioread_nolock(inode))
6145		get_block = ext4_get_block_unwritten;
6146	else
6147		get_block = ext4_get_block;
6148retry_alloc:
6149	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150				    ext4_writepage_trans_blocks(inode));
6151	if (IS_ERR(handle)) {
6152		ret = VM_FAULT_SIGBUS;
6153		goto out;
6154	}
6155	ret = block_page_mkwrite(vma, vmf, get_block);
6156	if (!ret && ext4_should_journal_data(inode)) {
6157		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6158			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6159			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6160			ret = VM_FAULT_SIGBUS;
6161			ext4_journal_stop(handle);
6162			goto out;
 
 
6163		}
6164		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165	}
6166	ext4_journal_stop(handle);
6167	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6168		goto retry_alloc;
6169out_ret:
6170	ret = block_page_mkwrite_return(ret);
6171out:
6172	up_read(&EXT4_I(inode)->i_mmap_sem);
6173	sb_end_pagefault(inode->i_sb);
6174	return ret;
6175}
6176
6177int ext4_filemap_fault(struct vm_fault *vmf)
6178{
6179	struct inode *inode = file_inode(vmf->vma->vm_file);
6180	int err;
6181
6182	down_read(&EXT4_I(inode)->i_mmap_sem);
6183	err = filemap_fault(vmf);
6184	up_read(&EXT4_I(inode)->i_mmap_sem);
6185
6186	return err;
6187}