Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
 
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
 
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
 
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static void ext4_journalled_zero_new_buffers(handle_t *handle,
  53					    struct inode *inode,
  54					    struct folio *folio,
  55					    unsigned from, unsigned to);
  56
  57static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  58			      struct ext4_inode_info *ei)
  59{
  60	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  61	__u32 csum;
  62	__u16 dummy_csum = 0;
  63	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  64	unsigned int csum_size = sizeof(dummy_csum);
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  67	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  68	offset += csum_size;
  69	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  70			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  71
  72	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  73		offset = offsetof(struct ext4_inode, i_checksum_hi);
  74		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  75				   EXT4_GOOD_OLD_INODE_SIZE,
  76				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  77		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  78			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  79					   csum_size);
  80			offset += csum_size;
  81		}
  82		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  83				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  84	}
  85
  86	return csum;
  87}
  88
  89static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  90				  struct ext4_inode_info *ei)
  91{
  92	__u32 provided, calculated;
  93
  94	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  95	    cpu_to_le32(EXT4_OS_LINUX) ||
  96	    !ext4_has_metadata_csum(inode->i_sb))
  97		return 1;
  98
  99	provided = le16_to_cpu(raw->i_checksum_lo);
 100	calculated = ext4_inode_csum(inode, raw, ei);
 101	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 102	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 103		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 104	else
 105		calculated &= 0xFFFF;
 106
 107	return provided == calculated;
 108}
 109
 110void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 111			 struct ext4_inode_info *ei)
 112{
 113	__u32 csum;
 114
 115	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 116	    cpu_to_le32(EXT4_OS_LINUX) ||
 117	    !ext4_has_metadata_csum(inode->i_sb))
 118		return;
 119
 120	csum = ext4_inode_csum(inode, raw, ei);
 121	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 122	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 123	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 124		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 125}
 126
 127static inline int ext4_begin_ordered_truncate(struct inode *inode,
 128					      loff_t new_size)
 129{
 130	trace_ext4_begin_ordered_truncate(inode, new_size);
 131	/*
 132	 * If jinode is zero, then we never opened the file for
 133	 * writing, so there's no need to call
 134	 * jbd2_journal_begin_ordered_truncate() since there's no
 135	 * outstanding writes we need to flush.
 136	 */
 137	if (!EXT4_I(inode)->jinode)
 138		return 0;
 139	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 140						   EXT4_I(inode)->jinode,
 141						   new_size);
 142}
 143
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 
 
 
 
 
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164}
 165
 166/*
 167 * Called at the last iput() if i_nlink is zero.
 168 */
 169void ext4_evict_inode(struct inode *inode)
 170{
 171	handle_t *handle;
 172	int err;
 173	/*
 174	 * Credits for final inode cleanup and freeing:
 175	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 176	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 177	 */
 178	int extra_credits = 6;
 179	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 180	bool freeze_protected = false;
 181
 182	trace_ext4_evict_inode(inode);
 183
 184	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 185		ext4_evict_ea_inode(inode);
 186	if (inode->i_nlink) {
 187		truncate_inode_pages_final(&inode->i_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 
 
 
 
 
 189		goto no_delete;
 190	}
 191
 192	if (is_bad_inode(inode))
 193		goto no_delete;
 194	dquot_initialize(inode);
 195
 196	if (ext4_should_order_data(inode))
 197		ext4_begin_ordered_truncate(inode, 0);
 198	truncate_inode_pages_final(&inode->i_data);
 199
 200	/*
 201	 * For inodes with journalled data, transaction commit could have
 202	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 203	 * extents converting worker could merge extents and also have dirtied
 204	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 205	 * we still need to remove the inode from the writeback lists.
 206	 */
 207	if (!list_empty_careful(&inode->i_io_list))
 208		inode_io_list_del(inode);
 209
 210	/*
 211	 * Protect us against freezing - iput() caller didn't have to have any
 212	 * protection against it. When we are in a running transaction though,
 213	 * we are already protected against freezing and we cannot grab further
 214	 * protection due to lock ordering constraints.
 215	 */
 216	if (!ext4_journal_current_handle()) {
 217		sb_start_intwrite(inode->i_sb);
 218		freeze_protected = true;
 219	}
 220
 221	if (!IS_NOQUOTA(inode))
 222		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 223
 224	/*
 225	 * Block bitmap, group descriptor, and inode are accounted in both
 226	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 227	 */
 228	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 229			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 230	if (IS_ERR(handle)) {
 231		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 232		/*
 233		 * If we're going to skip the normal cleanup, we still need to
 234		 * make sure that the in-core orphan linked list is properly
 235		 * cleaned up.
 236		 */
 237		ext4_orphan_del(NULL, inode);
 238		if (freeze_protected)
 239			sb_end_intwrite(inode->i_sb);
 240		goto no_delete;
 241	}
 242
 243	if (IS_SYNC(inode))
 244		ext4_handle_sync(handle);
 245
 246	/*
 247	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 248	 * special handling of symlinks here because i_size is used to
 249	 * determine whether ext4_inode_info->i_data contains symlink data or
 250	 * block mappings. Setting i_size to 0 will remove its fast symlink
 251	 * status. Erase i_data so that it becomes a valid empty block map.
 252	 */
 253	if (ext4_inode_is_fast_symlink(inode))
 254		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 255	inode->i_size = 0;
 256	err = ext4_mark_inode_dirty(handle, inode);
 257	if (err) {
 258		ext4_warning(inode->i_sb,
 259			     "couldn't mark inode dirty (err %d)", err);
 260		goto stop_handle;
 261	}
 262	if (inode->i_blocks) {
 263		err = ext4_truncate(inode);
 264		if (err) {
 265			ext4_error_err(inode->i_sb, -err,
 266				       "couldn't truncate inode %lu (err %d)",
 267				       inode->i_ino, err);
 268			goto stop_handle;
 269		}
 270	}
 271
 272	/* Remove xattr references. */
 273	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 274				      extra_credits);
 275	if (err) {
 276		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 277stop_handle:
 278		ext4_journal_stop(handle);
 279		ext4_orphan_del(NULL, inode);
 280		if (freeze_protected)
 281			sb_end_intwrite(inode->i_sb);
 282		ext4_xattr_inode_array_free(ea_inode_array);
 283		goto no_delete;
 
 
 
 
 
 
 284	}
 285
 286	/*
 287	 * Kill off the orphan record which ext4_truncate created.
 288	 * AKPM: I think this can be inside the above `if'.
 289	 * Note that ext4_orphan_del() has to be able to cope with the
 290	 * deletion of a non-existent orphan - this is because we don't
 291	 * know if ext4_truncate() actually created an orphan record.
 292	 * (Well, we could do this if we need to, but heck - it works)
 293	 */
 294	ext4_orphan_del(handle, inode);
 295	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 296
 297	/*
 298	 * One subtle ordering requirement: if anything has gone wrong
 299	 * (transaction abort, IO errors, whatever), then we can still
 300	 * do these next steps (the fs will already have been marked as
 301	 * having errors), but we can't free the inode if the mark_dirty
 302	 * fails.
 303	 */
 304	if (ext4_mark_inode_dirty(handle, inode))
 305		/* If that failed, just do the required in-core inode clear. */
 306		ext4_clear_inode(inode);
 307	else
 308		ext4_free_inode(handle, inode);
 309	ext4_journal_stop(handle);
 310	if (freeze_protected)
 311		sb_end_intwrite(inode->i_sb);
 312	ext4_xattr_inode_array_free(ea_inode_array);
 313	return;
 314no_delete:
 315	/*
 316	 * Check out some where else accidentally dirty the evicting inode,
 317	 * which may probably cause inode use-after-free issues later.
 318	 */
 319	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 320
 321	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 322		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 323	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 324}
 325
 326#ifdef CONFIG_QUOTA
 327qsize_t *ext4_get_reserved_space(struct inode *inode)
 328{
 329	return &EXT4_I(inode)->i_reserved_quota;
 330}
 331#endif
 332
 333/*
 
 
 
 
 
 
 
 
 
 
 
 
 334 * Called with i_data_sem down, which is important since we can call
 335 * ext4_discard_preallocations() from here.
 336 */
 337void ext4_da_update_reserve_space(struct inode *inode,
 338					int used, int quota_claim)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 341	struct ext4_inode_info *ei = EXT4_I(inode);
 342
 343	spin_lock(&ei->i_block_reservation_lock);
 344	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 345	if (unlikely(used > ei->i_reserved_data_blocks)) {
 346		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 347			 "with only %d reserved data blocks",
 348			 __func__, inode->i_ino, used,
 349			 ei->i_reserved_data_blocks);
 350		WARN_ON(1);
 351		used = ei->i_reserved_data_blocks;
 352	}
 353
 354	/* Update per-inode reservations */
 355	ei->i_reserved_data_blocks -= used;
 356	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 
 
 
 357
 358	spin_unlock(&ei->i_block_reservation_lock);
 
 
 
 
 
 
 
 
 
 
 
 359
 360	/* Update quota subsystem for data blocks */
 361	if (quota_claim)
 362		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 363	else {
 364		/*
 365		 * We did fallocate with an offset that is already delayed
 366		 * allocated. So on delayed allocated writeback we should
 367		 * not re-claim the quota for fallocated blocks.
 368		 */
 369		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 370	}
 371
 372	/*
 373	 * If we have done all the pending block allocations and if
 374	 * there aren't any writers on the inode, we can discard the
 375	 * inode's preallocations.
 376	 */
 377	if ((ei->i_reserved_data_blocks == 0) &&
 378	    !inode_is_open_for_write(inode))
 379		ext4_discard_preallocations(inode);
 380}
 381
 382static int __check_block_validity(struct inode *inode, const char *func,
 383				unsigned int line,
 384				struct ext4_map_blocks *map)
 385{
 386	if (ext4_has_feature_journal(inode->i_sb) &&
 387	    (inode->i_ino ==
 388	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 389		return 0;
 390	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 391		ext4_error_inode(inode, func, line, map->m_pblk,
 392				 "lblock %lu mapped to illegal pblock %llu "
 393				 "(length %d)", (unsigned long) map->m_lblk,
 394				 map->m_pblk, map->m_len);
 395		return -EFSCORRUPTED;
 396	}
 397	return 0;
 398}
 399
 400int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 401		       ext4_lblk_t len)
 402{
 403	int ret;
 404
 405	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 406		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 407
 408	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 409	if (ret > 0)
 410		ret = 0;
 411
 412	return ret;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418#ifdef ES_AGGRESSIVE_TEST
 419static void ext4_map_blocks_es_recheck(handle_t *handle,
 420				       struct inode *inode,
 421				       struct ext4_map_blocks *es_map,
 422				       struct ext4_map_blocks *map,
 423				       int flags)
 424{
 425	int retval;
 426
 427	map->m_flags = 0;
 428	/*
 429	 * There is a race window that the result is not the same.
 430	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 431	 * is that we lookup a block mapping in extent status tree with
 432	 * out taking i_data_sem.  So at the time the unwritten extent
 433	 * could be converted.
 434	 */
 435	down_read(&EXT4_I(inode)->i_data_sem);
 436	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 437		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 438	} else {
 439		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 440	}
 441	up_read((&EXT4_I(inode)->i_data_sem));
 442
 443	/*
 444	 * We don't check m_len because extent will be collpased in status
 445	 * tree.  So the m_len might not equal.
 446	 */
 447	if (es_map->m_lblk != map->m_lblk ||
 448	    es_map->m_flags != map->m_flags ||
 449	    es_map->m_pblk != map->m_pblk) {
 450		printk("ES cache assertion failed for inode: %lu "
 451		       "es_cached ex [%d/%d/%llu/%x] != "
 452		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 453		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 454		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 455		       map->m_len, map->m_pblk, map->m_flags,
 456		       retval, flags);
 457	}
 458}
 459#endif /* ES_AGGRESSIVE_TEST */
 460
 461static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
 462				 struct ext4_map_blocks *map)
 463{
 464	unsigned int status;
 465	int retval;
 466
 467	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 468		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 469	else
 470		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 471
 472	if (retval <= 0)
 473		return retval;
 474
 475	if (unlikely(retval != map->m_len)) {
 476		ext4_warning(inode->i_sb,
 477			     "ES len assertion failed for inode "
 478			     "%lu: retval %d != map->m_len %d",
 479			     inode->i_ino, retval, map->m_len);
 480		WARN_ON(1);
 481	}
 482
 483	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 484			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 485	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 486			      map->m_pblk, status, false);
 487	return retval;
 488}
 489
 490static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
 491				  struct ext4_map_blocks *map, int flags)
 492{
 493	struct extent_status es;
 494	unsigned int status;
 495	int err, retval = 0;
 496
 497	/*
 498	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
 499	 * indicates that the blocks and quotas has already been
 500	 * checked when the data was copied into the page cache.
 501	 */
 502	if (map->m_flags & EXT4_MAP_DELAYED)
 503		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
 504
 505	/*
 506	 * Here we clear m_flags because after allocating an new extent,
 507	 * it will be set again.
 508	 */
 509	map->m_flags &= ~EXT4_MAP_FLAGS;
 510
 511	/*
 512	 * We need to check for EXT4 here because migrate could have
 513	 * changed the inode type in between.
 514	 */
 515	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 516		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 517	} else {
 518		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 519
 520		/*
 521		 * We allocated new blocks which will result in i_data's
 522		 * format changing. Force the migrate to fail by clearing
 523		 * migrate flags.
 524		 */
 525		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
 526			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 527	}
 528	if (retval <= 0)
 529		return retval;
 530
 531	if (unlikely(retval != map->m_len)) {
 532		ext4_warning(inode->i_sb,
 533			     "ES len assertion failed for inode %lu: "
 534			     "retval %d != map->m_len %d",
 535			     inode->i_ino, retval, map->m_len);
 536		WARN_ON(1);
 537	}
 538
 539	/*
 540	 * We have to zeroout blocks before inserting them into extent
 541	 * status tree. Otherwise someone could look them up there and
 542	 * use them before they are really zeroed. We also have to
 543	 * unmap metadata before zeroing as otherwise writeback can
 544	 * overwrite zeros with stale data from block device.
 545	 */
 546	if (flags & EXT4_GET_BLOCKS_ZERO &&
 547	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
 548		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
 549					 map->m_len);
 550		if (err)
 551			return err;
 552	}
 553
 554	/*
 555	 * If the extent has been zeroed out, we don't need to update
 556	 * extent status tree.
 557	 */
 558	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
 559	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 560		if (ext4_es_is_written(&es))
 561			return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562	}
 563
 564	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 565			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 566	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
 567			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
 568
 569	return retval;
 570}
 571
 572/*
 573 * The ext4_map_blocks() function tries to look up the requested blocks,
 574 * and returns if the blocks are already mapped.
 575 *
 576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 577 * and store the allocated blocks in the result buffer head and mark it
 578 * mapped.
 579 *
 580 * If file type is extents based, it will call ext4_ext_map_blocks(),
 581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 582 * based files
 583 *
 584 * On success, it returns the number of blocks being mapped or allocated.
 585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
 586 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
 587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
 588 *
 589 * It returns 0 if plain look up failed (blocks have not been allocated), in
 590 * that case, @map is returned as unmapped but we still do fill map->m_len to
 591 * indicate the length of a hole starting at map->m_lblk.
 592 *
 593 * It returns the error in case of allocation failure.
 594 */
 595int ext4_map_blocks(handle_t *handle, struct inode *inode,
 596		    struct ext4_map_blocks *map, int flags)
 597{
 598	struct extent_status es;
 599	int retval;
 600	int ret = 0;
 601#ifdef ES_AGGRESSIVE_TEST
 602	struct ext4_map_blocks orig_map;
 603
 604	memcpy(&orig_map, map, sizeof(*map));
 605#endif
 606
 607	map->m_flags = 0;
 608	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 609		  flags, map->m_len, (unsigned long) map->m_lblk);
 610
 611	/*
 612	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 613	 */
 614	if (unlikely(map->m_len > INT_MAX))
 615		map->m_len = INT_MAX;
 616
 617	/* We can handle the block number less than EXT_MAX_BLOCKS */
 618	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 619		return -EFSCORRUPTED;
 620
 621	/* Lookup extent status tree firstly */
 622	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 623	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 624		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 625			map->m_pblk = ext4_es_pblock(&es) +
 626					map->m_lblk - es.es_lblk;
 627			map->m_flags |= ext4_es_is_written(&es) ?
 628					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 629			retval = es.es_len - (map->m_lblk - es.es_lblk);
 630			if (retval > map->m_len)
 631				retval = map->m_len;
 632			map->m_len = retval;
 633		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 634			map->m_pblk = 0;
 635			map->m_flags |= ext4_es_is_delayed(&es) ?
 636					EXT4_MAP_DELAYED : 0;
 637			retval = es.es_len - (map->m_lblk - es.es_lblk);
 638			if (retval > map->m_len)
 639				retval = map->m_len;
 640			map->m_len = retval;
 641			retval = 0;
 642		} else {
 643			BUG();
 644		}
 645
 646		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 647			return retval;
 648#ifdef ES_AGGRESSIVE_TEST
 649		ext4_map_blocks_es_recheck(handle, inode, map,
 650					   &orig_map, flags);
 651#endif
 652		goto found;
 653	}
 654	/*
 655	 * In the query cache no-wait mode, nothing we can do more if we
 656	 * cannot find extent in the cache.
 657	 */
 658	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 659		return 0;
 660
 661	/*
 662	 * Try to see if we can get the block without requesting a new
 663	 * file system block.
 664	 */
 665	down_read(&EXT4_I(inode)->i_data_sem);
 666	retval = ext4_map_query_blocks(handle, inode, map);
 
 
 
 
 667	up_read((&EXT4_I(inode)->i_data_sem));
 668
 669found:
 670	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 671		ret = check_block_validity(inode, map);
 672		if (ret != 0)
 673			return ret;
 674	}
 675
 676	/* If it is only a block(s) look up */
 677	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 678		return retval;
 679
 680	/*
 681	 * Returns if the blocks have already allocated
 682	 *
 683	 * Note that if blocks have been preallocated
 684	 * ext4_ext_map_blocks() returns with buffer head unmapped
 
 685	 */
 686	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 687		/*
 688		 * If we need to convert extent to unwritten
 689		 * we continue and do the actual work in
 690		 * ext4_ext_map_blocks()
 691		 */
 692		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 693			return retval;
 
 
 
 
 
 
 694
 695	/*
 696	 * New blocks allocate and/or writing to unwritten extent
 697	 * will possibly result in updating i_data, so we take
 698	 * the write lock of i_data_sem, and call get_block()
 699	 * with create == 1 flag.
 700	 */
 701	down_write(&EXT4_I(inode)->i_data_sem);
 702	retval = ext4_map_create_blocks(handle, inode, map, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	up_write((&EXT4_I(inode)->i_data_sem));
 704	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 705		ret = check_block_validity(inode, map);
 706		if (ret != 0)
 707			return ret;
 708
 709		/*
 710		 * Inodes with freshly allocated blocks where contents will be
 711		 * visible after transaction commit must be on transaction's
 712		 * ordered data list.
 713		 */
 714		if (map->m_flags & EXT4_MAP_NEW &&
 715		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 716		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 717		    !ext4_is_quota_file(inode) &&
 718		    ext4_should_order_data(inode)) {
 719			loff_t start_byte =
 720				(loff_t)map->m_lblk << inode->i_blkbits;
 721			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 722
 723			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 724				ret = ext4_jbd2_inode_add_wait(handle, inode,
 725						start_byte, length);
 726			else
 727				ret = ext4_jbd2_inode_add_write(handle, inode,
 728						start_byte, length);
 729			if (ret)
 730				return ret;
 731		}
 732	}
 733	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 734				map->m_flags & EXT4_MAP_MAPPED))
 735		ext4_fc_track_range(handle, inode, map->m_lblk,
 736					map->m_lblk + map->m_len - 1);
 737	if (retval < 0)
 738		ext_debug(inode, "failed with err %d\n", retval);
 739	return retval;
 740}
 741
 742/*
 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 744 * we have to be careful as someone else may be manipulating b_state as well.
 745 */
 746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 747{
 748	unsigned long old_state;
 749	unsigned long new_state;
 750
 751	flags &= EXT4_MAP_FLAGS;
 752
 753	/* Dummy buffer_head? Set non-atomically. */
 754	if (!bh->b_page) {
 755		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 756		return;
 757	}
 758	/*
 759	 * Someone else may be modifying b_state. Be careful! This is ugly but
 760	 * once we get rid of using bh as a container for mapping information
 761	 * to pass to / from get_block functions, this can go away.
 762	 */
 763	old_state = READ_ONCE(bh->b_state);
 764	do {
 765		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 766	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
 767}
 768
 769static int _ext4_get_block(struct inode *inode, sector_t iblock,
 770			   struct buffer_head *bh, int flags)
 771{
 
 772	struct ext4_map_blocks map;
 773	int ret = 0;
 774
 775	if (ext4_has_inline_data(inode))
 776		return -ERANGE;
 777
 778	map.m_lblk = iblock;
 779	map.m_len = bh->b_size >> inode->i_blkbits;
 780
 781	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 782			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 783	if (ret > 0) {
 784		map_bh(bh, inode->i_sb, map.m_pblk);
 785		ext4_update_bh_state(bh, map.m_flags);
 786		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 787		ret = 0;
 788	} else if (ret == 0) {
 789		/* hole case, need to fill in bh->b_size */
 790		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 791	}
 
 
 792	return ret;
 793}
 794
 795int ext4_get_block(struct inode *inode, sector_t iblock,
 796		   struct buffer_head *bh, int create)
 797{
 798	return _ext4_get_block(inode, iblock, bh,
 799			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 800}
 801
 802/*
 803 * Get block function used when preparing for buffered write if we require
 804 * creating an unwritten extent if blocks haven't been allocated.  The extent
 805 * will be converted to written after the IO is complete.
 806 */
 807int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 808			     struct buffer_head *bh_result, int create)
 809{
 810	int ret = 0;
 811
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	ret = _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 816
 817	/*
 818	 * If the buffer is marked unwritten, mark it as new to make sure it is
 819	 * zeroed out correctly in case of partial writes. Otherwise, there is
 820	 * a chance of stale data getting exposed.
 821	 */
 822	if (ret == 0 && buffer_unwritten(bh_result))
 823		set_buffer_new(bh_result);
 824
 825	return ret;
 826}
 827
 828/* Maximum number of blocks we map for direct IO at once. */
 829#define DIO_MAX_BLOCKS 4096
 830
 831/*
 832 * `handle' can be NULL if create is zero
 833 */
 834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 835				ext4_lblk_t block, int map_flags)
 836{
 837	struct ext4_map_blocks map;
 838	struct buffer_head *bh;
 839	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 840	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 841	int err;
 842
 843	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 844		    || handle != NULL || create == 0);
 845	ASSERT(create == 0 || !nowait);
 846
 847	map.m_lblk = block;
 848	map.m_len = 1;
 849	err = ext4_map_blocks(handle, inode, &map, map_flags);
 
 850
 851	if (err == 0)
 852		return create ? ERR_PTR(-ENOSPC) : NULL;
 853	if (err < 0)
 854		return ERR_PTR(err);
 855
 856	if (nowait)
 857		return sb_find_get_block(inode->i_sb, map.m_pblk);
 858
 859	/*
 860	 * Since bh could introduce extra ref count such as referred by
 861	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
 862	 * as it may fail the migration when journal_head remains.
 863	 */
 864	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
 865				inode->i_sb->s_blocksize);
 866
 867	if (unlikely(!bh))
 868		return ERR_PTR(-ENOMEM);
 869	if (map.m_flags & EXT4_MAP_NEW) {
 870		ASSERT(create != 0);
 871		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 872			    || (handle != NULL));
 873
 874		/*
 875		 * Now that we do not always journal data, we should
 876		 * keep in mind whether this should always journal the
 877		 * new buffer as metadata.  For now, regular file
 878		 * writes use ext4_get_block instead, so it's not a
 879		 * problem.
 880		 */
 881		lock_buffer(bh);
 882		BUFFER_TRACE(bh, "call get_create_access");
 883		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 884						     EXT4_JTR_NONE);
 885		if (unlikely(err)) {
 886			unlock_buffer(bh);
 887			goto errout;
 888		}
 889		if (!buffer_uptodate(bh)) {
 890			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 891			set_buffer_uptodate(bh);
 892		}
 893		unlock_buffer(bh);
 894		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 895		err = ext4_handle_dirty_metadata(handle, inode, bh);
 896		if (unlikely(err))
 897			goto errout;
 898	} else
 899		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
 900	return bh;
 901errout:
 902	brelse(bh);
 903	return ERR_PTR(err);
 904}
 905
 906struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 907			       ext4_lblk_t block, int map_flags)
 908{
 909	struct buffer_head *bh;
 910	int ret;
 911
 912	bh = ext4_getblk(handle, inode, block, map_flags);
 913	if (IS_ERR(bh))
 914		return bh;
 915	if (!bh || ext4_buffer_uptodate(bh))
 916		return bh;
 917
 918	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 919	if (ret) {
 920		put_bh(bh);
 921		return ERR_PTR(ret);
 922	}
 923	return bh;
 924}
 925
 926/* Read a contiguous batch of blocks. */
 927int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 928		     bool wait, struct buffer_head **bhs)
 929{
 930	int i, err;
 931
 932	for (i = 0; i < bh_count; i++) {
 933		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 934		if (IS_ERR(bhs[i])) {
 935			err = PTR_ERR(bhs[i]);
 936			bh_count = i;
 937			goto out_brelse;
 938		}
 939	}
 940
 941	for (i = 0; i < bh_count; i++)
 942		/* Note that NULL bhs[i] is valid because of holes. */
 943		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 944			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 945
 946	if (!wait)
 947		return 0;
 948
 949	for (i = 0; i < bh_count; i++)
 950		if (bhs[i])
 951			wait_on_buffer(bhs[i]);
 952
 953	for (i = 0; i < bh_count; i++) {
 954		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 955			err = -EIO;
 956			goto out_brelse;
 957		}
 958	}
 959	return 0;
 960
 961out_brelse:
 962	for (i = 0; i < bh_count; i++) {
 963		brelse(bhs[i]);
 964		bhs[i] = NULL;
 965	}
 966	return err;
 967}
 968
 969int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 970			   struct buffer_head *head,
 971			   unsigned from,
 972			   unsigned to,
 973			   int *partial,
 974			   int (*fn)(handle_t *handle, struct inode *inode,
 975				     struct buffer_head *bh))
 976{
 977	struct buffer_head *bh;
 978	unsigned block_start, block_end;
 979	unsigned blocksize = head->b_size;
 980	int err, ret = 0;
 981	struct buffer_head *next;
 982
 983	for (bh = head, block_start = 0;
 984	     ret == 0 && (bh != head || !block_start);
 985	     block_start = block_end, bh = next) {
 986		next = bh->b_this_page;
 987		block_end = block_start + blocksize;
 988		if (block_end <= from || block_start >= to) {
 989			if (partial && !buffer_uptodate(bh))
 990				*partial = 1;
 991			continue;
 992		}
 993		err = (*fn)(handle, inode, bh);
 994		if (!ret)
 995			ret = err;
 996	}
 997	return ret;
 998}
 999
1000/*
1001 * Helper for handling dirtying of journalled data. We also mark the folio as
1002 * dirty so that writeback code knows about this page (and inode) contains
1003 * dirty data. ext4_writepages() then commits appropriate transaction to
1004 * make data stable.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005 */
1006static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
 
1007{
1008	folio_mark_dirty(bh->b_folio);
1009	return ext4_handle_dirty_metadata(handle, NULL, bh);
1010}
1011
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013				struct buffer_head *bh)
1014{
1015	if (!buffer_mapped(bh) || buffer_freed(bh))
1016		return 0;
1017	BUFFER_TRACE(bh, "get write access");
1018	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019					    EXT4_JTR_NONE);
1020}
1021
1022int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023			   loff_t pos, unsigned len,
1024			   get_block_t *get_block)
1025{
1026	unsigned from = pos & (PAGE_SIZE - 1);
1027	unsigned to = from + len;
1028	struct inode *inode = folio->mapping->host;
1029	unsigned block_start, block_end;
1030	sector_t block;
1031	int err = 0;
1032	unsigned blocksize = inode->i_sb->s_blocksize;
1033	unsigned bbits;
1034	struct buffer_head *bh, *head, *wait[2];
1035	int nr_wait = 0;
1036	int i;
1037	bool should_journal_data = ext4_should_journal_data(inode);
1038
1039	BUG_ON(!folio_test_locked(folio));
1040	BUG_ON(from > PAGE_SIZE);
1041	BUG_ON(to > PAGE_SIZE);
1042	BUG_ON(from > to);
1043
1044	head = folio_buffers(folio);
1045	if (!head)
1046		head = create_empty_buffers(folio, blocksize, 0);
1047	bbits = ilog2(blocksize);
1048	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050	for (bh = head, block_start = 0; bh != head || !block_start;
1051	    block++, block_start = block_end, bh = bh->b_this_page) {
1052		block_end = block_start + blocksize;
1053		if (block_end <= from || block_start >= to) {
1054			if (folio_test_uptodate(folio)) {
1055				set_buffer_uptodate(bh);
1056			}
1057			continue;
1058		}
1059		if (buffer_new(bh))
1060			clear_buffer_new(bh);
1061		if (!buffer_mapped(bh)) {
1062			WARN_ON(bh->b_size != blocksize);
1063			err = get_block(inode, block, bh, 1);
1064			if (err)
1065				break;
1066			if (buffer_new(bh)) {
1067				/*
1068				 * We may be zeroing partial buffers or all new
1069				 * buffers in case of failure. Prepare JBD2 for
1070				 * that.
1071				 */
1072				if (should_journal_data)
1073					do_journal_get_write_access(handle,
1074								    inode, bh);
1075				if (folio_test_uptodate(folio)) {
1076					/*
1077					 * Unlike __block_write_begin() we leave
1078					 * dirtying of new uptodate buffers to
1079					 * ->write_end() time or
1080					 * folio_zero_new_buffers().
1081					 */
1082					set_buffer_uptodate(bh);
1083					continue;
1084				}
1085				if (block_end > to || block_start < from)
1086					folio_zero_segments(folio, to,
1087							    block_end,
1088							    block_start, from);
1089				continue;
1090			}
1091		}
1092		if (folio_test_uptodate(folio)) {
1093			set_buffer_uptodate(bh);
1094			continue;
1095		}
1096		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097		    !buffer_unwritten(bh) &&
1098		    (block_start < from || block_end > to)) {
1099			ext4_read_bh_lock(bh, 0, false);
1100			wait[nr_wait++] = bh;
1101		}
1102	}
1103	/*
1104	 * If we issued read requests, let them complete.
1105	 */
1106	for (i = 0; i < nr_wait; i++) {
1107		wait_on_buffer(wait[i]);
1108		if (!buffer_uptodate(wait[i]))
1109			err = -EIO;
1110	}
1111	if (unlikely(err)) {
1112		if (should_journal_data)
1113			ext4_journalled_zero_new_buffers(handle, inode, folio,
1114							 from, to);
1115		else
1116			folio_zero_new_buffers(folio, from, to);
1117	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118		for (i = 0; i < nr_wait; i++) {
1119			int err2;
1120
1121			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122						blocksize, bh_offset(wait[i]));
1123			if (err2) {
1124				clear_buffer_uptodate(wait[i]);
1125				err = err2;
1126			}
1127		}
1128	}
1129
1130	return err;
1131}
1132
1133/*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction.  We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
1140static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141			    loff_t pos, unsigned len,
1142			    struct folio **foliop, void **fsdata)
1143{
1144	struct inode *inode = mapping->host;
1145	int ret, needed_blocks;
1146	handle_t *handle;
1147	int retries = 0;
1148	struct folio *folio;
1149	pgoff_t index;
1150	unsigned from, to;
1151
1152	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153		return -EIO;
1154
1155	trace_ext4_write_begin(inode, pos, len);
1156	/*
1157	 * Reserve one block more for addition to orphan list in case
1158	 * we allocate blocks but write fails for some reason
1159	 */
1160	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161	index = pos >> PAGE_SHIFT;
1162	from = pos & (PAGE_SIZE - 1);
1163	to = from + len;
1164
1165	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167						    foliop);
1168		if (ret < 0)
1169			return ret;
1170		if (ret == 1)
1171			return 0;
1172	}
1173
1174	/*
1175	 * __filemap_get_folio() can take a long time if the
1176	 * system is thrashing due to memory pressure, or if the folio
1177	 * is being written back.  So grab it first before we start
1178	 * the transaction handle.  This also allows us to allocate
1179	 * the folio (if needed) without using GFP_NOFS.
1180	 */
1181retry_grab:
1182	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183					mapping_gfp_mask(mapping));
1184	if (IS_ERR(folio))
1185		return PTR_ERR(folio);
1186	/*
1187	 * The same as page allocation, we prealloc buffer heads before
1188	 * starting the handle.
1189	 */
1190	if (!folio_buffers(folio))
1191		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193	folio_unlock(folio);
1194
1195retry_journal:
1196	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197	if (IS_ERR(handle)) {
1198		folio_put(folio);
1199		return PTR_ERR(handle);
1200	}
1201
1202	folio_lock(folio);
1203	if (folio->mapping != mapping) {
1204		/* The folio got truncated from under us */
1205		folio_unlock(folio);
1206		folio_put(folio);
 
1207		ext4_journal_stop(handle);
1208		goto retry_grab;
 
1209	}
1210	/* In case writeback began while the folio was unlocked */
1211	folio_wait_stable(folio);
1212
1213	if (ext4_should_dioread_nolock(inode))
1214		ret = ext4_block_write_begin(handle, folio, pos, len,
1215					     ext4_get_block_unwritten);
1216	else
1217		ret = ext4_block_write_begin(handle, folio, pos, len,
1218					     ext4_get_block);
1219	if (!ret && ext4_should_journal_data(inode)) {
1220		ret = ext4_walk_page_buffers(handle, inode,
1221					     folio_buffers(folio), from, to,
1222					     NULL, do_journal_get_write_access);
1223	}
1224
1225	if (ret) {
1226		bool extended = (pos + len > inode->i_size) &&
1227				!ext4_verity_in_progress(inode);
1228
1229		folio_unlock(folio);
1230		/*
1231		 * ext4_block_write_begin may have instantiated a few blocks
1232		 * outside i_size.  Trim these off again. Don't need
1233		 * i_size_read because we hold i_rwsem.
1234		 *
1235		 * Add inode to orphan list in case we crash before
1236		 * truncate finishes
1237		 */
1238		if (extended && ext4_can_truncate(inode))
1239			ext4_orphan_add(handle, inode);
1240
1241		ext4_journal_stop(handle);
1242		if (extended) {
1243			ext4_truncate_failed_write(inode);
1244			/*
1245			 * If truncate failed early the inode might
1246			 * still be on the orphan list; we need to
1247			 * make sure the inode is removed from the
1248			 * orphan list in that case.
1249			 */
1250			if (inode->i_nlink)
1251				ext4_orphan_del(NULL, inode);
1252		}
1253
1254		if (ret == -ENOSPC &&
1255		    ext4_should_retry_alloc(inode->i_sb, &retries))
1256			goto retry_journal;
1257		folio_put(folio);
1258		return ret;
1259	}
1260	*foliop = folio;
 
 
 
1261	return ret;
1262}
1263
1264/* For write_end() in data=journal mode */
1265static int write_end_fn(handle_t *handle, struct inode *inode,
1266			struct buffer_head *bh)
1267{
1268	int ret;
1269	if (!buffer_mapped(bh) || buffer_freed(bh))
1270		return 0;
1271	set_buffer_uptodate(bh);
1272	ret = ext4_dirty_journalled_data(handle, bh);
1273	clear_buffer_meta(bh);
1274	clear_buffer_prio(bh);
1275	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276}
1277
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283 * buffers are managed internally.
1284 */
1285static int ext4_write_end(struct file *file,
1286			  struct address_space *mapping,
1287			  loff_t pos, unsigned len, unsigned copied,
1288			  struct folio *folio, void *fsdata)
1289{
1290	handle_t *handle = ext4_journal_current_handle();
1291	struct inode *inode = mapping->host;
1292	loff_t old_size = inode->i_size;
1293	int ret = 0, ret2;
1294	int i_size_changed = 0;
1295	bool verity = ext4_verity_in_progress(inode);
1296
1297	trace_ext4_write_end(inode, pos, len, copied);
 
1298
1299	if (ext4_has_inline_data(inode) &&
1300	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301		return ext4_write_inline_data_end(inode, pos, len, copied,
1302						  folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305	/*
1306	 * it's important to update i_size while still holding folio lock:
1307	 * page writeout could otherwise come in and zero beyond i_size.
1308	 *
1309	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310	 * blocks are being written past EOF, so skip the i_size update.
1311	 */
1312	if (!verity)
1313		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314	folio_unlock(folio);
1315	folio_put(folio);
1316
1317	if (old_size < pos && !verity) {
1318		pagecache_isize_extended(inode, old_size, pos);
1319		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320	}
1321	/*
1322	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323	 * makes the holding time of folio lock longer. Second, it forces lock
1324	 * ordering of folio lock and transaction start for journaling
1325	 * filesystems.
1326	 */
1327	if (i_size_changed)
1328		ret = ext4_mark_inode_dirty(handle, inode);
1329
1330	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331		/* if we have allocated more blocks and copied
1332		 * less. We will have blocks allocated outside
1333		 * inode->i_size. So truncate them
1334		 */
1335		ext4_orphan_add(handle, inode);
1336
 
 
 
1337	ret2 = ext4_journal_stop(handle);
1338	if (!ret)
1339		ret = ret2;
1340
1341	if (pos + len > inode->i_size && !verity) {
1342		ext4_truncate_failed_write(inode);
1343		/*
1344		 * If truncate failed early the inode might still be
1345		 * on the orphan list; we need to make sure the inode
1346		 * is removed from the orphan list in that case.
1347		 */
1348		if (inode->i_nlink)
1349			ext4_orphan_del(NULL, inode);
1350	}
1351
1352	return ret ? ret : copied;
1353}
1354
1355/*
1356 * This is a private version of folio_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_dirty_journalled_data() instead.
1359 */
1360static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361					    struct inode *inode,
1362					    struct folio *folio,
1363					    unsigned from, unsigned to)
1364{
1365	unsigned int block_start = 0, block_end;
1366	struct buffer_head *head, *bh;
1367
1368	bh = head = folio_buffers(folio);
1369	do {
1370		block_end = block_start + bh->b_size;
1371		if (buffer_new(bh)) {
1372			if (block_end > from && block_start < to) {
1373				if (!folio_test_uptodate(folio)) {
1374					unsigned start, size;
1375
1376					start = max(from, block_start);
1377					size = min(to, block_end) - start;
1378
1379					folio_zero_range(folio, start, size);
1380				}
1381				clear_buffer_new(bh);
1382				write_end_fn(handle, inode, bh);
1383			}
1384		}
1385		block_start = block_end;
1386		bh = bh->b_this_page;
1387	} while (bh != head);
1388}
1389
1390static int ext4_journalled_write_end(struct file *file,
1391				     struct address_space *mapping,
1392				     loff_t pos, unsigned len, unsigned copied,
1393				     struct folio *folio, void *fsdata)
1394{
1395	handle_t *handle = ext4_journal_current_handle();
1396	struct inode *inode = mapping->host;
1397	loff_t old_size = inode->i_size;
1398	int ret = 0, ret2;
1399	int partial = 0;
1400	unsigned from, to;
1401	int size_changed = 0;
1402	bool verity = ext4_verity_in_progress(inode);
1403
1404	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405	from = pos & (PAGE_SIZE - 1);
1406	to = from + len;
1407
1408	BUG_ON(!ext4_handle_valid(handle));
1409
1410	if (ext4_has_inline_data(inode))
1411		return ext4_write_inline_data_end(inode, pos, len, copied,
1412						  folio);
1413
1414	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415		copied = 0;
1416		ext4_journalled_zero_new_buffers(handle, inode, folio,
1417						 from, to);
1418	} else {
1419		if (unlikely(copied < len))
1420			ext4_journalled_zero_new_buffers(handle, inode, folio,
1421							 from + copied, to);
1422		ret = ext4_walk_page_buffers(handle, inode,
1423					     folio_buffers(folio),
1424					     from, from + copied, &partial,
1425					     write_end_fn);
1426		if (!partial)
1427			folio_mark_uptodate(folio);
1428	}
1429	if (!verity)
1430		size_changed = ext4_update_inode_size(inode, pos + copied);
1431	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432	folio_unlock(folio);
1433	folio_put(folio);
1434
1435	if (old_size < pos && !verity) {
1436		pagecache_isize_extended(inode, old_size, pos);
1437		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438	}
1439
1440	if (size_changed) {
 
 
 
 
 
 
 
 
 
 
1441		ret2 = ext4_mark_inode_dirty(handle, inode);
1442		if (!ret)
1443			ret = ret2;
1444	}
1445
1446	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
 
 
1447		/* if we have allocated more blocks and copied
1448		 * less. We will have blocks allocated outside
1449		 * inode->i_size. So truncate them
1450		 */
1451		ext4_orphan_add(handle, inode);
1452
1453	ret2 = ext4_journal_stop(handle);
1454	if (!ret)
1455		ret = ret2;
1456	if (pos + len > inode->i_size && !verity) {
1457		ext4_truncate_failed_write(inode);
1458		/*
1459		 * If truncate failed early the inode might still be
1460		 * on the orphan list; we need to make sure the inode
1461		 * is removed from the orphan list in that case.
1462		 */
1463		if (inode->i_nlink)
1464			ext4_orphan_del(NULL, inode);
1465	}
1466
1467	return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for 'nr_resv' clusters
1472 */
1473static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474{
 
1475	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476	struct ext4_inode_info *ei = EXT4_I(inode);
 
1477	int ret;
1478
1479	/*
 
 
 
 
 
 
 
 
 
 
 
1480	 * We will charge metadata quota at writeout time; this saves
1481	 * us from metadata over-estimation, though we may go over by
1482	 * a small amount in the end.  Here we just reserve for data.
1483	 */
1484	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&ei->i_block_reservation_lock);
1489	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490		spin_unlock(&ei->i_block_reservation_lock);
1491		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
 
 
 
 
 
1492		return -ENOSPC;
1493	}
1494	ei->i_reserved_data_blocks += nr_resv;
1495	trace_ext4_da_reserve_space(inode, nr_resv);
 
1496	spin_unlock(&ei->i_block_reservation_lock);
1497
1498	return 0;       /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504	struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506	if (!to_free)
1507		return;		/* Nothing to release, exit */
1508
1509	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511	trace_ext4_da_release_space(inode, to_free);
1512	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513		/*
1514		 * if there aren't enough reserved blocks, then the
1515		 * counter is messed up somewhere.  Since this
1516		 * function is called from invalidate page, it's
1517		 * harmless to return without any action.
1518		 */
1519		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520			 "ino %lu, to_free %d with only %d reserved "
1521			 "data blocks", inode->i_ino, to_free,
1522			 ei->i_reserved_data_blocks);
1523		WARN_ON(1);
1524		to_free = ei->i_reserved_data_blocks;
1525	}
1526	ei->i_reserved_data_blocks -= to_free;
1527
 
 
 
 
 
 
 
 
 
 
 
 
1528	/* update fs dirty data blocks counter */
1529	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534}
1535
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541	/* These are input fields for ext4_do_writepages() */
1542	struct inode *inode;
1543	struct writeback_control *wbc;
1544	unsigned int can_map:1;	/* Can writepages call map blocks? */
1545
1546	/* These are internal state of ext4_do_writepages() */
1547	pgoff_t first_page;	/* The first page to write */
1548	pgoff_t next_page;	/* Current page to examine */
1549	pgoff_t last_page;	/* Last page to examine */
1550	/*
1551	 * Extent to map - this can be after first_page because that can be
1552	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553	 * is delalloc or unwritten.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	 */
1555	struct ext4_map_blocks map;
1556	struct ext4_io_submit io_submit;	/* IO submission data */
1557	unsigned int do_map:1;
1558	unsigned int scanned_until_end:1;
1559	unsigned int journalled_more_data:1;
1560};
 
 
 
 
 
 
 
 
 
1561
1562static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563				       bool invalidate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564{
1565	unsigned nr, i;
1566	pgoff_t index, end;
1567	struct folio_batch fbatch;
1568	struct inode *inode = mpd->inode;
1569	struct address_space *mapping = inode->i_mapping;
1570
1571	/* This is necessary when next_page == 0. */
1572	if (mpd->first_page >= mpd->next_page)
1573		return;
1574
1575	mpd->scanned_until_end = 0;
1576	index = mpd->first_page;
1577	end   = mpd->next_page - 1;
1578	if (invalidate) {
1579		ext4_lblk_t start, last;
1580		start = index << (PAGE_SHIFT - inode->i_blkbits);
1581		last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583		/*
1584		 * avoid racing with extent status tree scans made by
1585		 * ext4_insert_delayed_block()
1586		 */
1587		down_write(&EXT4_I(inode)->i_data_sem);
1588		ext4_es_remove_extent(inode, start, last - start + 1);
1589		up_write(&EXT4_I(inode)->i_data_sem);
1590	}
1591
1592	folio_batch_init(&fbatch);
1593	while (index <= end) {
1594		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595		if (nr == 0)
1596			break;
1597		for (i = 0; i < nr; i++) {
1598			struct folio *folio = fbatch.folios[i];
1599
1600			if (folio->index < mpd->first_page)
1601				continue;
1602			if (folio_next_index(folio) - 1 > end)
1603				continue;
1604			BUG_ON(!folio_test_locked(folio));
1605			BUG_ON(folio_test_writeback(folio));
1606			if (invalidate) {
1607				if (folio_mapped(folio))
1608					folio_clear_dirty_for_io(folio);
1609				block_invalidate_folio(folio, 0,
1610						folio_size(folio));
1611				folio_clear_uptodate(folio);
1612			}
1613			folio_unlock(folio);
1614		}
1615		folio_batch_release(&fbatch);
 
1616	}
 
1617}
1618
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622	struct super_block *sb = inode->i_sb;
1623	struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627			ext4_count_free_clusters(sb)));
1628	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630	       (long long) EXT4_C2B(EXT4_SB(sb),
1631		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633	       (long long) EXT4_C2B(EXT4_SB(sb),
1634		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637		 ei->i_reserved_data_blocks);
1638	return;
1639}
1640
1641/*
1642 * Check whether the cluster containing lblk has been allocated or has
1643 * delalloc reservation.
 
 
 
 
1644 *
1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646 * reservation, 2 if it's already been allocated, negative error code on
1647 * failure.
1648 */
1649static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650{
1651	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652	int ret;
 
 
 
 
1653
1654	/* Has delalloc reservation? */
1655	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657
1658	/* Already been allocated? */
1659	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660		return 2;
1661	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662	if (ret < 0)
1663		return ret;
1664	if (ret > 0)
1665		return 2;
1666
1667	return 0;
1668}
1669
1670/*
1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672 *                              status tree, incrementing the reserved
1673 *                              cluster/block count or making pending
1674 *                              reservations where needed
1675 *
1676 * @inode - file containing the newly added block
1677 * @lblk - start logical block to be added
1678 * @len - length of blocks to be added
1679 *
1680 * Returns 0 on success, negative error code on failure.
1681 */
1682static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683				      ext4_lblk_t len)
1684{
1685	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686	int ret;
1687	bool lclu_allocated = false;
1688	bool end_allocated = false;
1689	ext4_lblk_t resv_clu;
1690	ext4_lblk_t end = lblk + len - 1;
1691
1692	/*
1693	 * If the cluster containing lblk or end is shared with a delayed,
1694	 * written, or unwritten extent in a bigalloc file system, it's
1695	 * already been accounted for and does not need to be reserved.
1696	 * A pending reservation must be made for the cluster if it's
1697	 * shared with a written or unwritten extent and doesn't already
1698	 * have one.  Written and unwritten extents can be purged from the
1699	 * extents status tree if the system is under memory pressure, so
1700	 * it's necessary to examine the extent tree if a search of the
1701	 * extents status tree doesn't get a match.
1702	 */
1703	if (sbi->s_cluster_ratio == 1) {
1704		ret = ext4_da_reserve_space(inode, len);
1705		if (ret != 0)   /* ENOSPC */
1706			return ret;
1707	} else {   /* bigalloc */
1708		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710		ret = ext4_clu_alloc_state(inode, lblk);
1711		if (ret < 0)
1712			return ret;
1713		if (ret > 0) {
1714			resv_clu--;
1715			lclu_allocated = (ret == 2);
1716		}
1717
1718		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719			ret = ext4_clu_alloc_state(inode, end);
1720			if (ret < 0)
1721				return ret;
1722			if (ret > 0) {
1723				resv_clu--;
1724				end_allocated = (ret == 2);
1725			}
 
 
 
 
 
 
 
 
 
 
1726		}
 
 
1727
1728		if (resv_clu) {
1729			ret = ext4_da_reserve_space(inode, resv_clu);
1730			if (ret != 0)   /* ENOSPC */
1731				return ret;
1732		}
1733	}
 
1734
1735	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736				      end_allocated);
1737	return 0;
1738}
1739
1740/*
1741 * Looks up the requested blocks and sets the delalloc extent map.
1742 * First try to look up for the extent entry that contains the requested
1743 * blocks in the extent status tree without i_data_sem, then try to look
1744 * up for the ondisk extent mapping with i_data_sem in read mode,
1745 * finally hold i_data_sem in write mode, looks up again and add a
1746 * delalloc extent entry if it still couldn't find any extent. Pass out
1747 * the mapped extent through @map and return 0 on success.
1748 */
1749static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750{
1751	struct extent_status es;
1752	int retval;
1753#ifdef ES_AGGRESSIVE_TEST
1754	struct ext4_map_blocks orig_map;
1755
1756	memcpy(&orig_map, map, sizeof(*map));
1757#endif
 
 
 
 
1758
1759	map->m_flags = 0;
1760	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1761		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
1762
1763	/* Lookup extent status tree firstly */
1764	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765		map->m_len = min_t(unsigned int, map->m_len,
1766				   es.es_len - (map->m_lblk - es.es_lblk));
1767
1768		if (ext4_es_is_hole(&es))
1769			goto add_delayed;
1770
1771found:
1772		/*
1773		 * Delayed extent could be allocated by fallocate.
1774		 * So we need to check it.
1775		 */
1776		if (ext4_es_is_delayed(&es)) {
1777			map->m_flags |= EXT4_MAP_DELAYED;
1778			return 0;
1779		}
 
 
 
 
 
 
1780
1781		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1782		if (ext4_es_is_written(&es))
1783			map->m_flags |= EXT4_MAP_MAPPED;
1784		else if (ext4_es_is_unwritten(&es))
1785			map->m_flags |= EXT4_MAP_UNWRITTEN;
1786		else
1787			BUG();
 
1788
1789#ifdef ES_AGGRESSIVE_TEST
1790		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791#endif
1792		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793	}
1794
1795	/*
1796	 * Try to see if we can get the block without requesting a new
1797	 * file system block.
1798	 */
1799	down_read(&EXT4_I(inode)->i_data_sem);
1800	if (ext4_has_inline_data(inode))
1801		retval = 0;
1802	else
1803		retval = ext4_map_query_blocks(NULL, inode, map);
1804	up_read(&EXT4_I(inode)->i_data_sem);
1805	if (retval)
1806		return retval < 0 ? retval : 0;
1807
1808add_delayed:
1809	down_write(&EXT4_I(inode)->i_data_sem);
1810	/*
1811	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812	 * and fallocate path (no folio lock) can race. Make sure we
1813	 * lookup the extent status tree here again while i_data_sem
1814	 * is held in write mode, before inserting a new da entry in
1815	 * the extent status tree.
1816	 */
1817	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818		map->m_len = min_t(unsigned int, map->m_len,
1819				   es.es_len - (map->m_lblk - es.es_lblk));
1820
1821		if (!ext4_es_is_hole(&es)) {
1822			up_write(&EXT4_I(inode)->i_data_sem);
1823			goto found;
1824		}
1825	} else if (!ext4_has_inline_data(inode)) {
1826		retval = ext4_map_query_blocks(NULL, inode, map);
1827		if (retval) {
1828			up_write(&EXT4_I(inode)->i_data_sem);
1829			return retval < 0 ? retval : 0;
1830		}
1831	}
1832
1833	map->m_flags |= EXT4_MAP_DELAYED;
1834	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835	up_write(&EXT4_I(inode)->i_data_sem);
 
 
 
 
 
1836
1837	return retval;
 
 
1838}
1839
1840/*
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin().  It will either return mapped block or
1843 * reserve space for a single block.
1844 *
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1847 *
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1851 */
1852int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853			   struct buffer_head *bh, int create)
1854{
1855	struct ext4_map_blocks map;
1856	sector_t invalid_block = ~((sector_t) 0xffff);
1857	int ret = 0;
1858
1859	BUG_ON(create == 0);
1860	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863		invalid_block = ~0;
1864
 
 
 
1865	map.m_lblk = iblock;
1866	map.m_len = 1;
1867
1868	/*
1869	 * first, we need to know whether the block is allocated already
1870	 * preallocated blocks are unmapped but should treated
1871	 * the same as allocated blocks.
1872	 */
1873	ret = ext4_da_map_blocks(inode, &map);
1874	if (ret < 0)
1875		return ret;
 
 
 
 
 
 
 
 
 
 
1876
1877	if (map.m_flags & EXT4_MAP_DELAYED) {
1878		map_bh(bh, inode->i_sb, invalid_block);
1879		set_buffer_new(bh);
1880		set_buffer_delay(bh);
1881		return 0;
1882	}
1883
1884	map_bh(bh, inode->i_sb, map.m_pblk);
1885	ext4_update_bh_state(bh, map.m_flags);
1886
1887	if (buffer_unwritten(bh)) {
1888		/* A delayed write to unwritten bh should be marked
1889		 * new and mapped.  Mapped ensures that we don't do
1890		 * get_block multiple times when we write to the same
1891		 * offset and new ensures that we do proper zero out
1892		 * for partial write.
1893		 */
1894		set_buffer_new(bh);
1895		set_buffer_mapped(bh);
1896	}
1897	return 0;
1898}
1899
1900static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901{
1902	mpd->first_page += folio_nr_pages(folio);
1903	folio_unlock(folio);
1904}
1905
1906static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907{
1908	size_t len;
1909	loff_t size;
1910	int err;
1911
1912	BUG_ON(folio->index != mpd->first_page);
1913	folio_clear_dirty_for_io(folio);
1914	/*
1915	 * We have to be very careful here!  Nothing protects writeback path
1916	 * against i_size changes and the page can be writeably mapped into
1917	 * page tables. So an application can be growing i_size and writing
1918	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919	 * write-protects our page in page tables and the page cannot get
1920	 * written to again until we release folio lock. So only after
1921	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923	 * on the barrier provided by folio_test_clear_dirty() in
1924	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925	 * after page tables are updated.
1926	 */
1927	size = i_size_read(mpd->inode);
1928	len = folio_size(folio);
1929	if (folio_pos(folio) + len > size &&
1930	    !ext4_verity_in_progress(mpd->inode))
1931		len = size & (len - 1);
1932	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933	if (!err)
1934		mpd->wbc->nr_to_write--;
1935
1936	return err;
1937}
1938
1939#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941/*
1942 * mballoc gives us at most this number of blocks...
1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944 * The rest of mballoc seems to handle chunks up to full group size.
1945 */
1946#define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948/*
1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950 *
1951 * @mpd - extent of blocks
1952 * @lblk - logical number of the block in the file
1953 * @bh - buffer head we want to add to the extent
1954 *
1955 * The function is used to collect contig. blocks in the same state. If the
1956 * buffer doesn't require mapping for writeback and we haven't started the
1957 * extent of buffers to map yet, the function returns 'true' immediately - the
1958 * caller can write the buffer right away. Otherwise the function returns true
1959 * if the block has been added to the extent, false if the block couldn't be
1960 * added.
1961 */
1962static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963				   struct buffer_head *bh)
1964{
1965	struct ext4_map_blocks *map = &mpd->map;
1966
1967	/* Buffer that doesn't need mapping for writeback? */
1968	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970		/* So far no extent to map => we write the buffer right away */
1971		if (map->m_len == 0)
1972			return true;
1973		return false;
1974	}
1975
1976	/* First block in the extent? */
1977	if (map->m_len == 0) {
1978		/* We cannot map unless handle is started... */
1979		if (!mpd->do_map)
1980			return false;
1981		map->m_lblk = lblk;
1982		map->m_len = 1;
1983		map->m_flags = bh->b_state & BH_FLAGS;
1984		return true;
1985	}
1986
1987	/* Don't go larger than mballoc is willing to allocate */
1988	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989		return false;
1990
1991	/* Can we merge the block to our big extent? */
1992	if (lblk == map->m_lblk + map->m_len &&
1993	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1994		map->m_len++;
1995		return true;
1996	}
1997	return false;
1998}
1999
2000/*
2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002 *
2003 * @mpd - extent of blocks for mapping
2004 * @head - the first buffer in the page
2005 * @bh - buffer we should start processing from
2006 * @lblk - logical number of the block in the file corresponding to @bh
2007 *
2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009 * the page for IO if all buffers in this page were mapped and there's no
2010 * accumulated extent of buffers to map or add buffers in the page to the
2011 * extent of buffers to map. The function returns 1 if the caller can continue
2012 * by processing the next page, 0 if it should stop adding buffers to the
2013 * extent to map because we cannot extend it anymore. It can also return value
2014 * < 0 in case of error during IO submission.
2015 */
2016static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017				   struct buffer_head *head,
2018				   struct buffer_head *bh,
2019				   ext4_lblk_t lblk)
2020{
2021	struct inode *inode = mpd->inode;
 
 
 
 
2022	int err;
2023	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024							>> inode->i_blkbits;
2025
2026	if (ext4_verity_in_progress(inode))
2027		blocks = EXT_MAX_BLOCKS;
2028
2029	do {
2030		BUG_ON(buffer_locked(bh));
 
 
2031
2032		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033			/* Found extent to map? */
2034			if (mpd->map.m_len)
2035				return 0;
2036			/* Buffer needs mapping and handle is not started? */
2037			if (!mpd->do_map)
2038				return 0;
2039			/* Everything mapped so far and we hit EOF */
2040			break;
2041		}
2042	} while (lblk++, (bh = bh->b_this_page) != head);
2043	/* So far everything mapped? Submit the page for IO. */
2044	if (mpd->map.m_len == 0) {
2045		err = mpage_submit_folio(mpd, head->b_folio);
2046		if (err < 0)
2047			return err;
2048		mpage_folio_done(mpd, head->b_folio);
2049	}
2050	if (lblk >= blocks) {
2051		mpd->scanned_until_end = 1;
2052		return 0;
2053	}
2054	return 1;
2055}
2056
2057/*
2058 * mpage_process_folio - update folio buffers corresponding to changed extent
2059 *			 and may submit fully mapped page for IO
2060 * @mpd: description of extent to map, on return next extent to map
2061 * @folio: Contains these buffers.
2062 * @m_lblk: logical block mapping.
2063 * @m_pblk: corresponding physical mapping.
2064 * @map_bh: determines on return whether this page requires any further
2065 *		  mapping or not.
2066 *
2067 * Scan given folio buffers corresponding to changed extent and update buffer
2068 * state according to new extent state.
2069 * We map delalloc buffers to their physical location, clear unwritten bits.
2070 * If the given folio is not fully mapped, we update @mpd to the next extent in
2071 * the given folio that needs mapping & return @map_bh as true.
2072 */
2073static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075			      bool *map_bh)
2076{
2077	struct buffer_head *head, *bh;
2078	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079	ext4_lblk_t lblk = *m_lblk;
2080	ext4_fsblk_t pblock = *m_pblk;
2081	int err = 0;
2082	int blkbits = mpd->inode->i_blkbits;
2083	ssize_t io_end_size = 0;
2084	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086	bh = head = folio_buffers(folio);
2087	do {
2088		if (lblk < mpd->map.m_lblk)
2089			continue;
2090		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091			/*
2092			 * Buffer after end of mapped extent.
2093			 * Find next buffer in the folio to map.
2094			 */
2095			mpd->map.m_len = 0;
2096			mpd->map.m_flags = 0;
2097			io_end_vec->size += io_end_size;
2098
2099			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100			if (err > 0)
2101				err = 0;
2102			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103				io_end_vec = ext4_alloc_io_end_vec(io_end);
2104				if (IS_ERR(io_end_vec)) {
2105					err = PTR_ERR(io_end_vec);
2106					goto out;
2107				}
2108				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109			}
2110			*map_bh = true;
2111			goto out;
2112		}
2113		if (buffer_delay(bh)) {
2114			clear_buffer_delay(bh);
2115			bh->b_blocknr = pblock++;
2116		}
2117		clear_buffer_unwritten(bh);
2118		io_end_size += (1 << blkbits);
2119	} while (lblk++, (bh = bh->b_this_page) != head);
2120
2121	io_end_vec->size += io_end_size;
2122	*map_bh = false;
 
 
 
 
 
 
 
 
 
2123out:
2124	*m_lblk = lblk;
2125	*m_pblk = pblock;
2126	return err;
2127}
2128
 
 
 
2129/*
2130 * mpage_map_buffers - update buffers corresponding to changed extent and
2131 *		       submit fully mapped pages for IO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2132 *
2133 * @mpd - description of extent to map, on return next extent to map
2134 *
2135 * Scan buffers corresponding to changed extent (we expect corresponding pages
2136 * to be already locked) and update buffer state according to new extent state.
2137 * We map delalloc buffers to their physical location, clear unwritten bits,
2138 * and mark buffers as uninit when we perform writes to unwritten extents
2139 * and do extent conversion after IO is finished. If the last page is not fully
2140 * mapped, we update @map to the next extent in the last page that needs
2141 * mapping. Otherwise we submit the page for IO.
2142 */
2143static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
 
2144{
2145	struct folio_batch fbatch;
2146	unsigned nr, i;
2147	struct inode *inode = mpd->inode;
2148	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149	pgoff_t start, end;
2150	ext4_lblk_t lblk;
2151	ext4_fsblk_t pblock;
2152	int err;
2153	bool map_bh = false;
2154
2155	start = mpd->map.m_lblk >> bpp_bits;
2156	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157	lblk = start << bpp_bits;
2158	pblock = mpd->map.m_pblk;
2159
2160	folio_batch_init(&fbatch);
2161	while (start <= end) {
2162		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163		if (nr == 0)
2164			break;
2165		for (i = 0; i < nr; i++) {
2166			struct folio *folio = fbatch.folios[i];
2167
2168			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169						 &map_bh);
2170			/*
2171			 * If map_bh is true, means page may require further bh
2172			 * mapping, or maybe the page was submitted for IO.
2173			 * So we return to call further extent mapping.
2174			 */
2175			if (err < 0 || map_bh)
2176				goto out;
2177			/* Page fully mapped - let IO run! */
2178			err = mpage_submit_folio(mpd, folio);
2179			if (err < 0)
2180				goto out;
2181			mpage_folio_done(mpd, folio);
2182		}
2183		folio_batch_release(&fbatch);
2184	}
2185	/* Extent fully mapped and matches with page boundary. We are done. */
2186	mpd->map.m_len = 0;
2187	mpd->map.m_flags = 0;
2188	return 0;
2189out:
2190	folio_batch_release(&fbatch);
2191	return err;
2192}
2193
2194static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195{
2196	struct inode *inode = mpd->inode;
2197	struct ext4_map_blocks *map = &mpd->map;
2198	int get_blocks_flags;
2199	int err, dioread_nolock;
2200
2201	trace_ext4_da_write_pages_extent(inode, map);
2202	/*
2203	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204	 * to convert an unwritten extent to be initialized (in the case
2205	 * where we have written into one or more preallocated blocks).  It is
2206	 * possible that we're going to need more metadata blocks than
2207	 * previously reserved. However we must not fail because we're in
2208	 * writeback and there is nothing we can do about it so it might result
2209	 * in data loss.  So use reserved blocks to allocate metadata if
2210	 * possible.
2211	 */
2212	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214			   EXT4_GET_BLOCKS_IO_SUBMIT;
2215	dioread_nolock = ext4_should_dioread_nolock(inode);
2216	if (dioread_nolock)
2217		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2218
2219	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220	if (err < 0)
2221		return err;
2222	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223		if (!mpd->io_submit.io_end->handle &&
2224		    ext4_handle_valid(handle)) {
2225			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226			handle->h_rsv_handle = NULL;
 
 
 
 
2227		}
2228		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229	}
2230
2231	BUG_ON(map->m_len == 0);
2232	return 0;
2233}
2234
2235/*
2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237 *				 mpd->len and submit pages underlying it for IO
2238 *
2239 * @handle - handle for journal operations
2240 * @mpd - extent to map
2241 * @give_up_on_write - we set this to true iff there is a fatal error and there
2242 *                     is no hope of writing the data. The caller should discard
2243 *                     dirty pages to avoid infinite loops.
2244 *
2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247 * them to initialized or split the described range from larger unwritten
2248 * extent. Note that we need not map all the described range since allocation
2249 * can return less blocks or the range is covered by more unwritten extents. We
2250 * cannot map more because we are limited by reserved transaction credits. On
2251 * the other hand we always make sure that the last touched page is fully
2252 * mapped so that it can be written out (and thus forward progress is
2253 * guaranteed). After mapping we submit all mapped pages for IO.
2254 */
2255static int mpage_map_and_submit_extent(handle_t *handle,
2256				       struct mpage_da_data *mpd,
2257				       bool *give_up_on_write)
2258{
2259	struct inode *inode = mpd->inode;
2260	struct ext4_map_blocks *map = &mpd->map;
2261	int err;
2262	loff_t disksize;
2263	int progress = 0;
2264	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265	struct ext4_io_end_vec *io_end_vec;
2266
2267	io_end_vec = ext4_alloc_io_end_vec(io_end);
2268	if (IS_ERR(io_end_vec))
2269		return PTR_ERR(io_end_vec);
2270	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271	do {
2272		err = mpage_map_one_extent(handle, mpd);
2273		if (err < 0) {
2274			struct super_block *sb = inode->i_sb;
2275
2276			if (ext4_forced_shutdown(sb))
2277				goto invalidate_dirty_pages;
2278			/*
2279			 * Let the uper layers retry transient errors.
2280			 * In the case of ENOSPC, if ext4_count_free_blocks()
2281			 * is non-zero, a commit should free up blocks.
2282			 */
2283			if ((err == -ENOMEM) ||
2284			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285				if (progress)
2286					goto update_disksize;
2287				return err;
2288			}
2289			ext4_msg(sb, KERN_CRIT,
2290				 "Delayed block allocation failed for "
2291				 "inode %lu at logical offset %llu with"
2292				 " max blocks %u with error %d",
2293				 inode->i_ino,
2294				 (unsigned long long)map->m_lblk,
2295				 (unsigned)map->m_len, -err);
2296			ext4_msg(sb, KERN_CRIT,
2297				 "This should not happen!! Data will "
2298				 "be lost\n");
2299			if (err == -ENOSPC)
2300				ext4_print_free_blocks(inode);
2301		invalidate_dirty_pages:
2302			*give_up_on_write = true;
2303			return err;
2304		}
2305		progress = 1;
2306		/*
2307		 * Update buffer state, submit mapped pages, and get us new
2308		 * extent to map
 
 
2309		 */
2310		err = mpage_map_and_submit_buffers(mpd);
2311		if (err < 0)
2312			goto update_disksize;
2313	} while (map->m_len);
2314
2315update_disksize:
2316	/*
2317	 * Update on-disk size after IO is submitted.  Races with
2318	 * truncate are avoided by checking i_size under i_data_sem.
2319	 */
2320	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322		int err2;
2323		loff_t i_size;
2324
2325		down_write(&EXT4_I(inode)->i_data_sem);
2326		i_size = i_size_read(inode);
2327		if (disksize > i_size)
2328			disksize = i_size;
2329		if (disksize > EXT4_I(inode)->i_disksize)
2330			EXT4_I(inode)->i_disksize = disksize;
2331		up_write(&EXT4_I(inode)->i_data_sem);
2332		err2 = ext4_mark_inode_dirty(handle, inode);
2333		if (err2) {
2334			ext4_error_err(inode->i_sb, -err2,
2335				       "Failed to mark inode %lu dirty",
2336				       inode->i_ino);
2337		}
2338		if (!err)
2339			err = err2;
2340	}
2341	return err;
2342}
2343
2344/*
2345 * Calculate the total number of credits to reserve for one writepages
2346 * iteration. This is called from ext4_writepages(). We map an extent of
2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349 * bpp - 1 blocks in bpp different extents.
2350 */
2351static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352{
2353	int bpp = ext4_journal_blocks_per_page(inode);
2354
2355	return ext4_meta_trans_blocks(inode,
2356				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357}
2358
2359static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360				     size_t len)
2361{
2362	struct buffer_head *page_bufs = folio_buffers(folio);
2363	struct inode *inode = folio->mapping->host;
2364	int ret, err;
2365
2366	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367				     NULL, do_journal_get_write_access);
2368	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369				     NULL, write_end_fn);
2370	if (ret == 0)
2371		ret = err;
2372	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373	if (ret == 0)
2374		ret = err;
2375	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377	return ret;
2378}
2379
2380static int mpage_journal_page_buffers(handle_t *handle,
2381				      struct mpage_da_data *mpd,
2382				      struct folio *folio)
2383{
2384	struct inode *inode = mpd->inode;
2385	loff_t size = i_size_read(inode);
2386	size_t len = folio_size(folio);
2387
2388	folio_clear_checked(folio);
2389	mpd->wbc->nr_to_write--;
 
2390
2391	if (folio_pos(folio) + len > size &&
2392	    !ext4_verity_in_progress(inode))
2393		len = size & (len - 1);
2394
2395	return ext4_journal_folio_buffers(handle, folio, len);
 
 
 
 
 
 
2396}
2397
2398/*
2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400 * 				 needing mapping, submit mapped pages
2401 *
2402 * @mpd - where to look for pages
2403 *
2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405 * IO immediately. If we cannot map blocks, we submit just already mapped
2406 * buffers in the page for IO and keep page dirty. When we can map blocks and
2407 * we find a page which isn't mapped we start accumulating extent of buffers
2408 * underlying these pages that needs mapping (formed by either delayed or
2409 * unwritten buffers). We also lock the pages containing these buffers. The
2410 * extent found is returned in @mpd structure (starting at mpd->lblk with
2411 * length mpd->len blocks).
2412 *
2413 * Note that this function can attach bios to one io_end structure which are
2414 * neither logically nor physically contiguous. Although it may seem as an
2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416 * case as we need to track IO to all buffers underlying a page in one io_end.
2417 */
2418static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419{
2420	struct address_space *mapping = mpd->inode->i_mapping;
2421	struct folio_batch fbatch;
2422	unsigned int nr_folios;
2423	pgoff_t index = mpd->first_page;
2424	pgoff_t end = mpd->last_page;
2425	xa_mark_t tag;
2426	int i, err = 0;
2427	int blkbits = mpd->inode->i_blkbits;
2428	ext4_lblk_t lblk;
2429	struct buffer_head *head;
2430	handle_t *handle = NULL;
2431	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434		tag = PAGECACHE_TAG_TOWRITE;
2435	else
2436		tag = PAGECACHE_TAG_DIRTY;
2437
2438	mpd->map.m_len = 0;
2439	mpd->next_page = index;
2440	if (ext4_should_journal_data(mpd->inode)) {
2441		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442					    bpp);
2443		if (IS_ERR(handle))
2444			return PTR_ERR(handle);
2445	}
2446	folio_batch_init(&fbatch);
2447	while (index <= end) {
2448		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449				tag, &fbatch);
2450		if (nr_folios == 0)
2451			break;
2452
2453		for (i = 0; i < nr_folios; i++) {
2454			struct folio *folio = fbatch.folios[i];
2455
2456			/*
2457			 * Accumulated enough dirty pages? This doesn't apply
2458			 * to WB_SYNC_ALL mode. For integrity sync we have to
2459			 * keep going because someone may be concurrently
2460			 * dirtying pages, and we might have synced a lot of
2461			 * newly appeared dirty pages, but have not synced all
2462			 * of the old dirty pages.
2463			 */
2464			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465			    mpd->wbc->nr_to_write <=
2466			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467				goto out;
2468
2469			/* If we can't merge this page, we are done. */
2470			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471				goto out;
2472
2473			if (handle) {
2474				err = ext4_journal_ensure_credits(handle, bpp,
2475								  0);
2476				if (err < 0)
2477					goto out;
2478			}
2479
2480			folio_lock(folio);
2481			/*
2482			 * If the page is no longer dirty, or its mapping no
2483			 * longer corresponds to inode we are writing (which
2484			 * means it has been truncated or invalidated), or the
2485			 * page is already under writeback and we are not doing
2486			 * a data integrity writeback, skip the page
2487			 */
2488			if (!folio_test_dirty(folio) ||
2489			    (folio_test_writeback(folio) &&
2490			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491			    unlikely(folio->mapping != mapping)) {
2492				folio_unlock(folio);
2493				continue;
2494			}
2495
2496			folio_wait_writeback(folio);
2497			BUG_ON(folio_test_writeback(folio));
2498
2499			/*
2500			 * Should never happen but for buggy code in
2501			 * other subsystems that call
2502			 * set_page_dirty() without properly warning
2503			 * the file system first.  See [1] for more
2504			 * information.
2505			 *
2506			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507			 */
2508			if (!folio_buffers(folio)) {
2509				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510				folio_clear_dirty(folio);
2511				folio_unlock(folio);
 
2512				continue;
2513			}
2514
2515			if (mpd->map.m_len == 0)
2516				mpd->first_page = folio->index;
2517			mpd->next_page = folio_next_index(folio);
2518			/*
2519			 * Writeout when we cannot modify metadata is simple.
2520			 * Just submit the page. For data=journal mode we
2521			 * first handle writeout of the page for checkpoint and
2522			 * only after that handle delayed page dirtying. This
2523			 * makes sure current data is checkpointed to the final
2524			 * location before possibly journalling it again which
2525			 * is desirable when the page is frequently dirtied
2526			 * through a pin.
2527			 */
2528			if (!mpd->can_map) {
2529				err = mpage_submit_folio(mpd, folio);
2530				if (err < 0)
2531					goto out;
2532				/* Pending dirtying of journalled data? */
2533				if (folio_test_checked(folio)) {
2534					err = mpage_journal_page_buffers(handle,
2535						mpd, folio);
2536					if (err < 0)
2537						goto out;
2538					mpd->journalled_more_data = 1;
2539				}
2540				mpage_folio_done(mpd, folio);
2541			} else {
2542				/* Add all dirty buffers to mpd */
2543				lblk = ((ext4_lblk_t)folio->index) <<
2544					(PAGE_SHIFT - blkbits);
2545				head = folio_buffers(folio);
2546				err = mpage_process_page_bufs(mpd, head, head,
2547						lblk);
2548				if (err <= 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549					goto out;
2550				err = 0;
2551			}
2552		}
2553		folio_batch_release(&fbatch);
2554		cond_resched();
2555	}
2556	mpd->scanned_until_end = 1;
2557	if (handle)
2558		ext4_journal_stop(handle);
2559	return 0;
 
 
2560out:
2561	folio_batch_release(&fbatch);
2562	if (handle)
2563		ext4_journal_stop(handle);
2564	return err;
2565}
2566
2567static int ext4_do_writepages(struct mpage_da_data *mpd)
 
 
2568{
2569	struct writeback_control *wbc = mpd->wbc;
2570	pgoff_t	writeback_index = 0;
2571	long nr_to_write = wbc->nr_to_write;
2572	int range_whole = 0;
2573	int cycled = 1;
2574	handle_t *handle = NULL;
2575	struct inode *inode = mpd->inode;
2576	struct address_space *mapping = inode->i_mapping;
2577	int needed_blocks, rsv_blocks = 0, ret = 0;
 
 
 
 
 
2578	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579	struct blk_plug plug;
2580	bool give_up_on_write = false;
2581
2582	trace_ext4_writepages(inode, wbc);
2583
2584	/*
2585	 * No pages to write? This is mainly a kludge to avoid starting
2586	 * a transaction for special inodes like journal inode on last iput()
2587	 * because that could violate lock ordering on umount
2588	 */
2589	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590		goto out_writepages;
2591
2592	/*
2593	 * If the filesystem has aborted, it is read-only, so return
2594	 * right away instead of dumping stack traces later on that
2595	 * will obscure the real source of the problem.  We test
2596	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597	 * the latter could be true if the filesystem is mounted
2598	 * read-only, and in that case, ext4_writepages should
2599	 * *never* be called, so if that ever happens, we would want
2600	 * the stack trace.
2601	 */
2602	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603		ret = -EROFS;
2604		goto out_writepages;
2605	}
2606
2607	/*
2608	 * If we have inline data and arrive here, it means that
2609	 * we will soon create the block for the 1st page, so
2610	 * we'd better clear the inline data here.
2611	 */
2612	if (ext4_has_inline_data(inode)) {
2613		/* Just inode will be modified... */
2614		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615		if (IS_ERR(handle)) {
2616			ret = PTR_ERR(handle);
2617			goto out_writepages;
2618		}
2619		BUG_ON(ext4_test_inode_state(inode,
2620				EXT4_STATE_MAY_INLINE_DATA));
2621		ext4_destroy_inline_data(handle, inode);
2622		ext4_journal_stop(handle);
2623	}
2624
2625	/*
2626	 * data=journal mode does not do delalloc so we just need to writeout /
2627	 * journal already mapped buffers. On the other hand we need to commit
2628	 * transaction to make data stable. We expect all the data to be
2629	 * already in the journal (the only exception are DMA pinned pages
2630	 * dirtied behind our back) so we commit transaction here and run the
2631	 * writeback loop to checkpoint them. The checkpointing is not actually
2632	 * necessary to make data persistent *but* quite a few places (extent
2633	 * shifting operations, fsverity, ...) depend on being able to drop
2634	 * pagecache pages after calling filemap_write_and_wait() and for that
2635	 * checkpointing needs to happen.
2636	 */
2637	if (ext4_should_journal_data(inode)) {
2638		mpd->can_map = 0;
2639		if (wbc->sync_mode == WB_SYNC_ALL)
2640			ext4_fc_commit(sbi->s_journal,
2641				       EXT4_I(inode)->i_datasync_tid);
2642	}
2643	mpd->journalled_more_data = 0;
2644
2645	if (ext4_should_dioread_nolock(inode)) {
2646		/*
2647		 * We may need to convert up to one extent per block in
2648		 * the page and we may dirty the inode.
2649		 */
2650		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651						PAGE_SIZE >> inode->i_blkbits);
2652	}
2653
2654	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655		range_whole = 1;
2656
 
2657	if (wbc->range_cyclic) {
2658		writeback_index = mapping->writeback_index;
2659		if (writeback_index)
2660			cycled = 0;
2661		mpd->first_page = writeback_index;
2662		mpd->last_page = -1;
 
 
2663	} else {
2664		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666	}
2667
2668	ext4_io_submit_init(&mpd->io_submit, wbc);
2669retry:
2670	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671		tag_pages_for_writeback(mapping, mpd->first_page,
2672					mpd->last_page);
2673	blk_start_plug(&plug);
2674
2675	/*
2676	 * First writeback pages that don't need mapping - we can avoid
2677	 * starting a transaction unnecessarily and also avoid being blocked
2678	 * in the block layer on device congestion while having transaction
2679	 * started.
2680	 */
2681	mpd->do_map = 0;
2682	mpd->scanned_until_end = 0;
2683	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684	if (!mpd->io_submit.io_end) {
2685		ret = -ENOMEM;
2686		goto unplug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687	}
2688	ret = mpage_prepare_extent_to_map(mpd);
2689	/* Unlock pages we didn't use */
2690	mpage_release_unused_pages(mpd, false);
2691	/* Submit prepared bio */
2692	ext4_io_submit(&mpd->io_submit);
2693	ext4_put_io_end_defer(mpd->io_submit.io_end);
2694	mpd->io_submit.io_end = NULL;
2695	if (ret < 0)
2696		goto unplug;
2697
2698	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699		/* For each extent of pages we use new io_end */
2700		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701		if (!mpd->io_submit.io_end) {
2702			ret = -ENOMEM;
2703			break;
2704		}
2705
2706		WARN_ON_ONCE(!mpd->can_map);
2707		/*
2708		 * We have two constraints: We find one extent to map and we
2709		 * must always write out whole page (makes a difference when
2710		 * blocksize < pagesize) so that we don't block on IO when we
2711		 * try to write out the rest of the page. Journalled mode is
2712		 * not supported by delalloc.
2713		 */
2714		BUG_ON(ext4_should_journal_data(inode));
2715		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717		/* start a new transaction */
2718		handle = ext4_journal_start_with_reserve(inode,
2719				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720		if (IS_ERR(handle)) {
2721			ret = PTR_ERR(handle);
2722			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723			       "%ld pages, ino %lu; err %d", __func__,
2724				wbc->nr_to_write, inode->i_ino, ret);
2725			/* Release allocated io_end */
2726			ext4_put_io_end(mpd->io_submit.io_end);
2727			mpd->io_submit.io_end = NULL;
2728			break;
2729		}
2730		mpd->do_map = 1;
2731
2732		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733		ret = mpage_prepare_extent_to_map(mpd);
2734		if (!ret && mpd->map.m_len)
2735			ret = mpage_map_and_submit_extent(handle, mpd,
2736					&give_up_on_write);
2737		/*
2738		 * Caution: If the handle is synchronous,
2739		 * ext4_journal_stop() can wait for transaction commit
2740		 * to finish which may depend on writeback of pages to
2741		 * complete or on page lock to be released.  In that
2742		 * case, we have to wait until after we have
2743		 * submitted all the IO, released page locks we hold,
2744		 * and dropped io_end reference (for extent conversion
2745		 * to be able to complete) before stopping the handle.
2746		 */
2747		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748			ext4_journal_stop(handle);
2749			handle = NULL;
2750			mpd->do_map = 0;
2751		}
2752		/* Unlock pages we didn't use */
2753		mpage_release_unused_pages(mpd, give_up_on_write);
2754		/* Submit prepared bio */
2755		ext4_io_submit(&mpd->io_submit);
2756
2757		/*
2758		 * Drop our io_end reference we got from init. We have
2759		 * to be careful and use deferred io_end finishing if
2760		 * we are still holding the transaction as we can
2761		 * release the last reference to io_end which may end
2762		 * up doing unwritten extent conversion.
2763		 */
2764		if (handle) {
2765			ext4_put_io_end_defer(mpd->io_submit.io_end);
2766			ext4_journal_stop(handle);
2767		} else
2768			ext4_put_io_end(mpd->io_submit.io_end);
2769		mpd->io_submit.io_end = NULL;
2770
2771		if (ret == -ENOSPC && sbi->s_journal) {
2772			/*
2773			 * Commit the transaction which would
 
2774			 * free blocks released in the transaction
2775			 * and try again
2776			 */
2777			jbd2_journal_force_commit_nested(sbi->s_journal);
2778			ret = 0;
2779			continue;
2780		}
2781		/* Fatal error - ENOMEM, EIO... */
2782		if (ret)
 
 
 
 
 
 
 
 
 
 
2783			break;
2784	}
2785unplug:
2786	blk_finish_plug(&plug);
2787	if (!ret && !cycled && wbc->nr_to_write > 0) {
2788		cycled = 1;
2789		mpd->last_page = writeback_index - 1;
2790		mpd->first_page = 0;
 
2791		goto retry;
2792	}
2793
2794	/* Update index */
 
2795	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796		/*
2797		 * Set the writeback_index so that range_cyclic
2798		 * mode will write it back later
2799		 */
2800		mapping->writeback_index = mpd->first_page;
2801
2802out_writepages:
2803	trace_ext4_writepages_result(inode, wbc, ret,
2804				     nr_to_write - wbc->nr_to_write);
2805	return ret;
2806}
2807
2808static int ext4_writepages(struct address_space *mapping,
2809			   struct writeback_control *wbc)
2810{
2811	struct super_block *sb = mapping->host->i_sb;
2812	struct mpage_da_data mpd = {
2813		.inode = mapping->host,
2814		.wbc = wbc,
2815		.can_map = 1,
2816	};
2817	int ret;
2818	int alloc_ctx;
2819
2820	if (unlikely(ext4_forced_shutdown(sb)))
2821		return -EIO;
2822
2823	alloc_ctx = ext4_writepages_down_read(sb);
2824	ret = ext4_do_writepages(&mpd);
2825	/*
2826	 * For data=journal writeback we could have come across pages marked
2827	 * for delayed dirtying (PageChecked) which were just added to the
2828	 * running transaction. Try once more to get them to stable storage.
2829	 */
2830	if (!ret && mpd.journalled_more_data)
2831		ret = ext4_do_writepages(&mpd);
2832	ext4_writepages_up_read(sb, alloc_ctx);
2833
2834	return ret;
2835}
2836
2837int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838{
2839	struct writeback_control wbc = {
2840		.sync_mode = WB_SYNC_ALL,
2841		.nr_to_write = LONG_MAX,
2842		.range_start = jinode->i_dirty_start,
2843		.range_end = jinode->i_dirty_end,
2844	};
2845	struct mpage_da_data mpd = {
2846		.inode = jinode->i_vfs_inode,
2847		.wbc = &wbc,
2848		.can_map = 0,
2849	};
2850	return ext4_do_writepages(&mpd);
2851}
2852
2853static int ext4_dax_writepages(struct address_space *mapping,
2854			       struct writeback_control *wbc)
2855{
2856	int ret;
2857	long nr_to_write = wbc->nr_to_write;
2858	struct inode *inode = mapping->host;
2859	int alloc_ctx;
2860
2861	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862		return -EIO;
2863
2864	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865	trace_ext4_writepages(inode, wbc);
2866
2867	ret = dax_writeback_mapping_range(mapping,
2868					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869	trace_ext4_writepages_result(inode, wbc, ret,
2870				     nr_to_write - wbc->nr_to_write);
2871	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872	return ret;
2873}
2874
 
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877	s64 free_clusters, dirty_clusters;
2878	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880	/*
2881	 * switch to non delalloc mode if we are running low
2882	 * on free block. The free block accounting via percpu
2883	 * counters can get slightly wrong with percpu_counter_batch getting
2884	 * accumulated on each CPU without updating global counters
2885	 * Delalloc need an accurate free block accounting. So switch
2886	 * to non delalloc when we are near to error range.
2887	 */
2888	free_clusters =
2889		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890	dirty_clusters =
2891		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892	/*
2893	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894	 */
2895	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898	if (2 * free_clusters < 3 * dirty_clusters ||
2899	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900		/*
2901		 * free block count is less than 150% of dirty blocks
2902		 * or free blocks is less than watermark
2903		 */
2904		return 1;
2905	}
 
 
 
 
 
 
 
2906	return 0;
2907}
2908
2909static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910			       loff_t pos, unsigned len,
2911			       struct folio **foliop, void **fsdata)
2912{
2913	int ret, retries = 0;
2914	struct folio *folio;
2915	pgoff_t index;
2916	struct inode *inode = mapping->host;
 
2917
2918	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919		return -EIO;
2920
2921	index = pos >> PAGE_SHIFT;
2922
2923	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925		return ext4_write_begin(file, mapping, pos,
2926					len, foliop, fsdata);
2927	}
2928	*fsdata = (void *)0;
2929	trace_ext4_da_write_begin(inode, pos, len);
2930
2931	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933						      foliop, fsdata);
2934		if (ret < 0)
2935			return ret;
2936		if (ret == 1)
2937			return 0;
 
 
 
2938	}
 
 
 
2939
2940retry:
2941	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942			mapping_gfp_mask(mapping));
2943	if (IS_ERR(folio))
2944		return PTR_ERR(folio);
 
 
2945
2946	ret = ext4_block_write_begin(NULL, folio, pos, len,
2947				     ext4_da_get_block_prep);
2948	if (ret < 0) {
2949		folio_unlock(folio);
2950		folio_put(folio);
 
2951		/*
2952		 * block_write_begin may have instantiated a few blocks
2953		 * outside i_size.  Trim these off again. Don't need
2954		 * i_size_read because we hold inode lock.
2955		 */
2956		if (pos + len > inode->i_size)
2957			ext4_truncate_failed_write(inode);
2958
2959		if (ret == -ENOSPC &&
2960		    ext4_should_retry_alloc(inode->i_sb, &retries))
2961			goto retry;
2962		return ret;
2963	}
2964
2965	*foliop = folio;
 
 
2966	return ret;
2967}
2968
2969/*
2970 * Check if we should update i_disksize
2971 * when write to the end of file but not require block allocation
2972 */
2973static int ext4_da_should_update_i_disksize(struct folio *folio,
2974					    unsigned long offset)
2975{
2976	struct buffer_head *bh;
2977	struct inode *inode = folio->mapping->host;
2978	unsigned int idx;
2979	int i;
2980
2981	bh = folio_buffers(folio);
2982	idx = offset >> inode->i_blkbits;
2983
2984	for (i = 0; i < idx; i++)
2985		bh = bh->b_this_page;
2986
2987	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988		return 0;
2989	return 1;
2990}
2991
2992static int ext4_da_do_write_end(struct address_space *mapping,
2993			loff_t pos, unsigned len, unsigned copied,
2994			struct folio *folio)
 
2995{
2996	struct inode *inode = mapping->host;
2997	loff_t old_size = inode->i_size;
2998	bool disksize_changed = false;
2999	loff_t new_i_size, zero_len = 0;
3000	handle_t *handle;
 
3001
3002	if (unlikely(!folio_buffers(folio))) {
3003		folio_unlock(folio);
3004		folio_put(folio);
3005		return -EIO;
 
 
 
 
 
 
3006	}
3007	/*
3008	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009	 * flag, which all that's needed to trigger page writeback.
3010	 */
3011	copied = block_write_end(NULL, mapping, pos, len, copied,
3012			folio, NULL);
3013	new_i_size = pos + copied;
3014
3015	/*
3016	 * It's important to update i_size while still holding folio lock,
3017	 * because folio writeout could otherwise come in and zero beyond
3018	 * i_size.
3019	 *
3020	 * Since we are holding inode lock, we are sure i_disksize <=
3021	 * i_size. We also know that if i_disksize < i_size, there are
3022	 * delalloc writes pending in the range up to i_size. If the end of
3023	 * the current write is <= i_size, there's no need to touch
3024	 * i_disksize since writeback will push i_disksize up to i_size
3025	 * eventually. If the end of the current write is > i_size and
3026	 * inside an allocated block which ext4_da_should_update_i_disksize()
3027	 * checked, we need to update i_disksize here as certain
3028	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029	 */
3030	if (new_i_size > inode->i_size) {
3031		unsigned long end;
3032
3033		i_size_write(inode, new_i_size);
3034		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036			ext4_update_i_disksize(inode, new_i_size);
3037			disksize_changed = true;
3038		}
3039	}
3040
3041	folio_unlock(folio);
3042	folio_put(folio);
 
 
 
 
 
 
 
 
 
 
3043
3044	if (pos > old_size) {
3045		pagecache_isize_extended(inode, old_size, pos);
3046		zero_len = pos - old_size;
 
 
 
 
 
 
3047	}
 
 
 
 
 
 
 
 
3048
3049	if (!disksize_changed && !zero_len)
3050		return copied;
3051
3052	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053	if (IS_ERR(handle))
3054		return PTR_ERR(handle);
3055	if (zero_len)
3056		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057	ext4_mark_inode_dirty(handle, inode);
3058	ext4_journal_stop(handle);
3059
3060	return copied;
3061}
3062
3063static int ext4_da_write_end(struct file *file,
3064			     struct address_space *mapping,
3065			     loff_t pos, unsigned len, unsigned copied,
3066			     struct folio *folio, void *fsdata)
3067{
3068	struct inode *inode = mapping->host;
3069	int write_mode = (int)(unsigned long)fsdata;
3070
3071	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072		return ext4_write_end(file, mapping, pos,
3073				      len, copied, folio, fsdata);
3074
3075	trace_ext4_da_write_end(inode, pos, len, copied);
3076
3077	if (write_mode != CONVERT_INLINE_DATA &&
3078	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079	    ext4_has_inline_data(inode))
3080		return ext4_write_inline_data_end(inode, pos, len, copied,
3081						  folio);
3082
3083	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084		copied = 0;
3085
3086	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087}
3088
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
3094	trace_ext4_alloc_da_blocks(inode);
3095
3096	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3097		return 0;
3098
3099	/*
3100	 * We do something simple for now.  The filemap_flush() will
3101	 * also start triggering a write of the data blocks, which is
3102	 * not strictly speaking necessary (and for users of
3103	 * laptop_mode, not even desirable).  However, to do otherwise
3104	 * would require replicating code paths in:
3105	 *
3106	 * ext4_writepages() ->
3107	 *    write_cache_pages() ---> (via passed in callback function)
3108	 *        __mpage_da_writepage() -->
3109	 *           mpage_add_bh_to_extent()
3110	 *           mpage_da_map_blocks()
3111	 *
3112	 * The problem is that write_cache_pages(), located in
3113	 * mm/page-writeback.c, marks pages clean in preparation for
3114	 * doing I/O, which is not desirable if we're not planning on
3115	 * doing I/O at all.
3116	 *
3117	 * We could call write_cache_pages(), and then redirty all of
3118	 * the pages by calling redirty_page_for_writepage() but that
3119	 * would be ugly in the extreme.  So instead we would need to
3120	 * replicate parts of the code in the above functions,
3121	 * simplifying them because we wouldn't actually intend to
3122	 * write out the pages, but rather only collect contiguous
3123	 * logical block extents, call the multi-block allocator, and
3124	 * then update the buffer heads with the block allocations.
3125	 *
3126	 * For now, though, we'll cheat by calling filemap_flush(),
3127	 * which will map the blocks, and start the I/O, but not
3128	 * actually wait for the I/O to complete.
3129	 */
3130	return filemap_flush(inode->i_mapping);
3131}
3132
3133/*
3134 * bmap() is special.  It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148{
3149	struct inode *inode = mapping->host;
3150	sector_t ret = 0;
3151
3152	inode_lock_shared(inode);
3153	/*
3154	 * We can get here for an inline file via the FIBMAP ioctl
3155	 */
3156	if (ext4_has_inline_data(inode))
3157		goto out;
3158
3159	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160	    (test_opt(inode->i_sb, DELALLOC) ||
3161	     ext4_should_journal_data(inode))) {
3162		/*
3163		 * With delalloc or journalled data we want to sync the file so
3164		 * that we can make sure we allocate blocks for file and data
3165		 * is in place for the user to see it
3166		 */
3167		filemap_write_and_wait(mapping);
3168	}
3169
3170	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3171
3172out:
3173	inode_unlock_shared(inode);
3174	return ret;
3175}
3176
3177static int ext4_read_folio(struct file *file, struct folio *folio)
3178{
3179	int ret = -EAGAIN;
3180	struct inode *inode = folio->mapping->host;
3181
3182	trace_ext4_read_folio(inode, folio);
 
 
 
 
 
 
3183
3184	if (ext4_has_inline_data(inode))
3185		ret = ext4_readpage_inline(inode, folio);
 
 
 
3186
3187	if (ret == -EAGAIN)
3188		return ext4_mpage_readpages(inode, NULL, folio);
 
3189
3190	return ret;
3191}
3192
3193static void ext4_readahead(struct readahead_control *rac)
3194{
3195	struct inode *inode = rac->mapping->host;
3196
3197	/* If the file has inline data, no need to do readahead. */
3198	if (ext4_has_inline_data(inode))
3199		return;
3200
3201	ext4_mpage_readpages(inode, rac, NULL);
3202}
3203
3204static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205				size_t length)
 
3206{
3207	trace_ext4_invalidate_folio(folio, offset, length);
 
3208
3209	/* No journalling happens on data buffers when this function is used */
3210	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
 
 
3211
3212	block_invalidate_folio(folio, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
3213}
3214
3215static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216					    size_t offset, size_t length)
3217{
3218	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222	/*
 
 
 
 
 
3223	 * If it's a full truncate we just forget about the pending dirtying
3224	 */
3225	if (offset == 0 && length == folio_size(folio))
3226		folio_clear_checked(folio);
3227
3228	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229}
3230
3231/* Wrapper for aops... */
3232static void ext4_journalled_invalidate_folio(struct folio *folio,
3233					   size_t offset,
3234					   size_t length)
3235{
3236	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237}
3238
3239static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240{
3241	struct inode *inode = folio->mapping->host;
3242	journal_t *journal = EXT4_JOURNAL(inode);
3243
3244	trace_ext4_release_folio(inode, folio);
3245
3246	/* Page has dirty journalled data -> cannot release */
3247	if (folio_test_checked(folio))
3248		return false;
3249	if (journal)
3250		return jbd2_journal_try_to_free_buffers(journal, folio);
3251	else
3252		return try_to_free_buffers(folio);
3253}
3254
3255static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
 
 
 
 
3256{
3257	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258
3259	if (journal) {
3260		if (jbd2_transaction_committed(journal,
3261			EXT4_I(inode)->i_datasync_tid))
3262			return false;
3263		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264			return !list_empty(&EXT4_I(inode)->i_fc_list);
3265		return true;
3266	}
3267
3268	/* Any metadata buffers to write? */
3269	if (!list_empty(&inode->i_mapping->i_private_list))
3270		return true;
3271	return inode->i_state & I_DIRTY_DATASYNC;
3272}
3273
3274static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275			   struct ext4_map_blocks *map, loff_t offset,
3276			   loff_t length, unsigned int flags)
3277{
3278	u8 blkbits = inode->i_blkbits;
 
 
 
 
3279
3280	/*
3281	 * Writes that span EOF might trigger an I/O size update on completion,
3282	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283	 * there is no other metadata changes being made or are pending.
3284	 */
3285	iomap->flags = 0;
3286	if (ext4_inode_datasync_dirty(inode) ||
3287	    offset + length > i_size_read(inode))
3288		iomap->flags |= IOMAP_F_DIRTY;
3289
3290	if (map->m_flags & EXT4_MAP_NEW)
3291		iomap->flags |= IOMAP_F_NEW;
 
 
 
 
 
 
 
 
 
 
 
 
 
3292
3293	if (flags & IOMAP_DAX)
3294		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295	else
3296		iomap->bdev = inode->i_sb->s_bdev;
3297	iomap->offset = (u64) map->m_lblk << blkbits;
3298	iomap->length = (u64) map->m_len << blkbits;
3299
3300	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302		iomap->flags |= IOMAP_F_MERGED;
3303
3304	/*
3305	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307	 * set. In order for any allocated unwritten extents to be converted
3308	 * into written extents correctly within the ->end_io() handler, we
3309	 * need to ensure that the iomap->type is set appropriately. Hence, the
3310	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311	 * been set first.
3312	 */
3313	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314		iomap->type = IOMAP_UNWRITTEN;
3315		iomap->addr = (u64) map->m_pblk << blkbits;
3316		if (flags & IOMAP_DAX)
3317			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3319		iomap->type = IOMAP_MAPPED;
3320		iomap->addr = (u64) map->m_pblk << blkbits;
3321		if (flags & IOMAP_DAX)
3322			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3324		iomap->type = IOMAP_DELALLOC;
3325		iomap->addr = IOMAP_NULL_ADDR;
3326	} else {
3327		iomap->type = IOMAP_HOLE;
3328		iomap->addr = IOMAP_NULL_ADDR;
3329	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3330}
3331
3332static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333			    unsigned int flags)
3334{
3335	handle_t *handle;
3336	u8 blkbits = inode->i_blkbits;
3337	int ret, dio_credits, m_flags = 0, retries = 0;
 
3338
3339	/*
3340	 * Trim the mapping request to the maximum value that we can map at
3341	 * once for direct I/O.
3342	 */
3343	if (map->m_len > DIO_MAX_BLOCKS)
3344		map->m_len = DIO_MAX_BLOCKS;
3345	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347retry:
3348	/*
3349	 * Either we allocate blocks and then don't get an unwritten extent, so
3350	 * in that case we have reserved enough credits. Or, the blocks are
3351	 * already allocated and unwritten. In that case, the extent conversion
3352	 * fits into the credits as well.
3353	 */
3354	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355	if (IS_ERR(handle))
3356		return PTR_ERR(handle);
3357
3358	/*
3359	 * DAX and direct I/O are the only two operations that are currently
3360	 * supported with IOMAP_WRITE.
3361	 */
3362	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363	if (flags & IOMAP_DAX)
3364		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365	/*
3366	 * We use i_size instead of i_disksize here because delalloc writeback
3367	 * can complete at any point during the I/O and subsequently push the
3368	 * i_disksize out to i_size. This could be beyond where direct I/O is
3369	 * happening and thus expose allocated blocks to direct I/O reads.
3370	 */
3371	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372		m_flags = EXT4_GET_BLOCKS_CREATE;
3373	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
 
 
 
 
 
 
 
3375
3376	ret = ext4_map_blocks(handle, inode, map, m_flags);
 
 
 
 
 
3377
 
 
 
 
 
 
 
 
 
3378	/*
3379	 * We cannot fill holes in indirect tree based inodes as that could
3380	 * expose stale data in the case of a crash. Use the magic error code
3381	 * to fallback to buffered I/O.
3382	 */
3383	if (!m_flags && !ret)
3384		ret = -ENOTBLK;
3385
3386	ext4_journal_stop(handle);
3387	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388		goto retry;
3389
3390	return ret;
3391}
3392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3393
3394static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396{
3397	int ret;
3398	struct ext4_map_blocks map;
3399	u8 blkbits = inode->i_blkbits;
3400
3401	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402		return -EINVAL;
3403
3404	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405		return -ERANGE;
3406
3407	/*
3408	 * Calculate the first and last logical blocks respectively.
3409	 */
3410	map.m_lblk = offset >> blkbits;
3411	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3413
3414	if (flags & IOMAP_WRITE) {
 
 
 
 
 
 
 
 
3415		/*
3416		 * We check here if the blocks are already allocated, then we
3417		 * don't need to start a journal txn and we can directly return
3418		 * the mapping information. This could boost performance
3419		 * especially in multi-threaded overwrite requests.
 
 
 
 
 
 
 
 
3420		 */
3421		if (offset + length <= i_size_read(inode)) {
3422			ret = ext4_map_blocks(NULL, inode, &map, 0);
3423			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424				goto out;
 
 
 
 
 
 
 
 
 
 
 
3425		}
3426		ret = ext4_iomap_alloc(inode, &map, flags);
3427	} else {
3428		ret = ext4_map_blocks(NULL, inode, &map, 0);
3429	}
3430
3431	if (ret < 0)
3432		return ret;
3433out:
3434	/*
3435	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3437	 * limiting the length of the mapping returned.
3438	 */
3439	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443	return 0;
 
3444}
3445
3446static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447		loff_t length, unsigned flags, struct iomap *iomap,
3448		struct iomap *srcmap)
3449{
3450	int ret;
 
 
3451
3452	/*
3453	 * Even for writes we don't need to allocate blocks, so just pretend
3454	 * we are reading to save overhead of starting a transaction.
3455	 */
3456	flags &= ~IOMAP_WRITE;
3457	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459	return ret;
3460}
3461
3462static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463{
3464	/* must be a directio to fall back to buffered */
3465	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466		    (IOMAP_WRITE | IOMAP_DIRECT))
3467		return false;
3468
3469	/* atomic writes are all-or-nothing */
3470	if (flags & IOMAP_ATOMIC)
3471		return false;
3472
3473	/* can only try again if we wrote nothing */
3474	return written == 0;
3475}
3476
3477static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478			  ssize_t written, unsigned flags, struct iomap *iomap)
3479{
3480	/*
3481	 * Check to see whether an error occurred while writing out the data to
3482	 * the allocated blocks. If so, return the magic error code for
3483	 * non-atomic write so that we fallback to buffered I/O and attempt to
3484	 * complete the remainder of the I/O.
3485	 * For non-atomic writes, any blocks that may have been
3486	 * allocated in preparation for the direct I/O will be reused during
3487	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488	 */
3489	if (ext4_want_directio_fallback(flags, written))
3490		return -ENOTBLK;
3491
3492	return 0;
3493}
3494
3495const struct iomap_ops ext4_iomap_ops = {
3496	.iomap_begin		= ext4_iomap_begin,
3497	.iomap_end		= ext4_iomap_end,
3498};
3499
3500const struct iomap_ops ext4_iomap_overwrite_ops = {
3501	.iomap_begin		= ext4_iomap_overwrite_begin,
3502	.iomap_end		= ext4_iomap_end,
3503};
3504
3505static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506				   loff_t length, unsigned int flags,
3507				   struct iomap *iomap, struct iomap *srcmap)
3508{
3509	int ret;
3510	struct ext4_map_blocks map;
3511	u8 blkbits = inode->i_blkbits;
3512
3513	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514		return -EINVAL;
3515
3516	if (ext4_has_inline_data(inode)) {
3517		ret = ext4_inline_data_iomap(inode, iomap);
3518		if (ret != -EAGAIN) {
3519			if (ret == 0 && offset >= iomap->length)
3520				ret = -ENOENT;
3521			return ret;
3522		}
3523	}
3524
3525	/*
3526	 * Calculate the first and last logical block respectively.
3527	 */
3528	map.m_lblk = offset >> blkbits;
3529	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531
3532	/*
3533	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534	 * So handle it here itself instead of querying ext4_map_blocks().
3535	 * Since ext4_map_blocks() will warn about it and will return
3536	 * -EIO error.
3537	 */
3538	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541		if (offset >= sbi->s_bitmap_maxbytes) {
3542			map.m_flags = 0;
3543			goto set_iomap;
3544		}
3545	}
3546
3547	ret = ext4_map_blocks(NULL, inode, &map, 0);
3548	if (ret < 0)
3549		return ret;
3550set_iomap:
3551	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553	return 0;
3554}
3555
3556const struct iomap_ops ext4_iomap_report_ops = {
3557	.iomap_begin = ext4_iomap_begin_report,
3558};
3559
3560/*
3561 * For data=journal mode, folio should be marked dirty only when it was
3562 * writeably mapped. When that happens, it was already attached to the
3563 * transaction and marked as jbddirty (we take care of this in
3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565 * so we should have nothing to do here, except for the case when someone
3566 * had the page pinned and dirtied the page through this pin (e.g. by doing
3567 * direct IO to it). In that case we'd need to attach buffers here to the
3568 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3569 * folio and leave attached buffers clean, because the buffers' dirty state is
3570 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3571 * the journalling code will explode.  So what we do is to mark the folio
3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573 * to the transaction appropriately.
3574 */
3575static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576		struct folio *folio)
3577{
3578	WARN_ON_ONCE(!folio_buffers(folio));
3579	if (folio_maybe_dma_pinned(folio))
3580		folio_set_checked(folio);
3581	return filemap_dirty_folio(mapping, folio);
3582}
3583
3584static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585{
3586	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587	WARN_ON_ONCE(!folio_buffers(folio));
3588	return block_dirty_folio(mapping, folio);
3589}
3590
3591static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592				    struct file *file, sector_t *span)
3593{
3594	return iomap_swapfile_activate(sis, file, span,
3595				       &ext4_iomap_report_ops);
3596}
3597
3598static const struct address_space_operations ext4_aops = {
3599	.read_folio		= ext4_read_folio,
3600	.readahead		= ext4_readahead,
3601	.writepages		= ext4_writepages,
3602	.write_begin		= ext4_write_begin,
3603	.write_end		= ext4_write_end,
3604	.dirty_folio		= ext4_dirty_folio,
3605	.bmap			= ext4_bmap,
3606	.invalidate_folio	= ext4_invalidate_folio,
3607	.release_folio		= ext4_release_folio,
3608	.migrate_folio		= buffer_migrate_folio,
 
3609	.is_partially_uptodate  = block_is_partially_uptodate,
3610	.error_remove_folio	= generic_error_remove_folio,
3611	.swap_activate		= ext4_iomap_swap_activate,
3612};
3613
3614static const struct address_space_operations ext4_journalled_aops = {
3615	.read_folio		= ext4_read_folio,
3616	.readahead		= ext4_readahead,
3617	.writepages		= ext4_writepages,
3618	.write_begin		= ext4_write_begin,
3619	.write_end		= ext4_journalled_write_end,
3620	.dirty_folio		= ext4_journalled_dirty_folio,
3621	.bmap			= ext4_bmap,
3622	.invalidate_folio	= ext4_journalled_invalidate_folio,
3623	.release_folio		= ext4_release_folio,
3624	.migrate_folio		= buffer_migrate_folio_norefs,
3625	.is_partially_uptodate  = block_is_partially_uptodate,
3626	.error_remove_folio	= generic_error_remove_folio,
3627	.swap_activate		= ext4_iomap_swap_activate,
3628};
3629
3630static const struct address_space_operations ext4_da_aops = {
3631	.read_folio		= ext4_read_folio,
3632	.readahead		= ext4_readahead,
3633	.writepages		= ext4_writepages,
 
3634	.write_begin		= ext4_da_write_begin,
3635	.write_end		= ext4_da_write_end,
3636	.dirty_folio		= ext4_dirty_folio,
3637	.bmap			= ext4_bmap,
3638	.invalidate_folio	= ext4_invalidate_folio,
3639	.release_folio		= ext4_release_folio,
3640	.migrate_folio		= buffer_migrate_folio,
 
3641	.is_partially_uptodate  = block_is_partially_uptodate,
3642	.error_remove_folio	= generic_error_remove_folio,
3643	.swap_activate		= ext4_iomap_swap_activate,
3644};
3645
3646static const struct address_space_operations ext4_dax_aops = {
3647	.writepages		= ext4_dax_writepages,
3648	.dirty_folio		= noop_dirty_folio,
3649	.bmap			= ext4_bmap,
3650	.swap_activate		= ext4_iomap_swap_activate,
3651};
3652
3653void ext4_set_aops(struct inode *inode)
3654{
3655	switch (ext4_inode_journal_mode(inode)) {
3656	case EXT4_INODE_ORDERED_DATA_MODE:
3657	case EXT4_INODE_WRITEBACK_DATA_MODE:
3658		break;
3659	case EXT4_INODE_JOURNAL_DATA_MODE:
3660		inode->i_mapping->a_ops = &ext4_journalled_aops;
3661		return;
3662	default:
3663		BUG();
3664	}
3665	if (IS_DAX(inode))
3666		inode->i_mapping->a_ops = &ext4_dax_aops;
3667	else if (test_opt(inode->i_sb, DELALLOC))
3668		inode->i_mapping->a_ops = &ext4_da_aops;
 
 
3669	else
3670		inode->i_mapping->a_ops = &ext4_aops;
3671}
3672
3673/*
3674 * Here we can't skip an unwritten buffer even though it usually reads zero
3675 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677 * racing writeback can come later and flush the stale pagecache to disk.
3678 */
3679static int __ext4_block_zero_page_range(handle_t *handle,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3680		struct address_space *mapping, loff_t from, loff_t length)
3681{
3682	ext4_fsblk_t index = from >> PAGE_SHIFT;
3683	unsigned offset = from & (PAGE_SIZE-1);
3684	unsigned blocksize, pos;
3685	ext4_lblk_t iblock;
3686	struct inode *inode = mapping->host;
3687	struct buffer_head *bh;
3688	struct folio *folio;
3689	int err = 0;
3690
3691	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3694	if (IS_ERR(folio))
3695		return PTR_ERR(folio);
3696
3697	blocksize = inode->i_sb->s_blocksize;
 
3698
3699	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
 
 
 
 
 
3700
3701	bh = folio_buffers(folio);
3702	if (!bh)
3703		bh = create_empty_buffers(folio, blocksize, 0);
 
3704
3705	/* Find the buffer that contains "offset" */
 
3706	pos = blocksize;
3707	while (offset >= pos) {
3708		bh = bh->b_this_page;
3709		iblock++;
3710		pos += blocksize;
3711	}
 
 
3712	if (buffer_freed(bh)) {
3713		BUFFER_TRACE(bh, "freed: skip");
3714		goto unlock;
3715	}
 
3716	if (!buffer_mapped(bh)) {
3717		BUFFER_TRACE(bh, "unmapped");
3718		ext4_get_block(inode, iblock, bh, 0);
3719		/* unmapped? It's a hole - nothing to do */
3720		if (!buffer_mapped(bh)) {
3721			BUFFER_TRACE(bh, "still unmapped");
3722			goto unlock;
3723		}
3724	}
3725
3726	/* Ok, it's mapped. Make sure it's up-to-date */
3727	if (folio_test_uptodate(folio))
3728		set_buffer_uptodate(bh);
3729
3730	if (!buffer_uptodate(bh)) {
3731		err = ext4_read_bh_lock(bh, 0, true);
3732		if (err)
 
 
 
3733			goto unlock;
3734		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3735			/* We expect the key to be set. */
3736			BUG_ON(!fscrypt_has_encryption_key(inode));
3737			err = fscrypt_decrypt_pagecache_blocks(folio,
3738							       blocksize,
3739							       bh_offset(bh));
3740			if (err) {
3741				clear_buffer_uptodate(bh);
3742				goto unlock;
3743			}
3744		}
3745	}
 
3746	if (ext4_should_journal_data(inode)) {
3747		BUFFER_TRACE(bh, "get write access");
3748		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749						    EXT4_JTR_NONE);
3750		if (err)
3751			goto unlock;
3752	}
3753	folio_zero_range(folio, offset, length);
 
 
3754	BUFFER_TRACE(bh, "zeroed end of block");
3755
 
3756	if (ext4_should_journal_data(inode)) {
3757		err = ext4_dirty_journalled_data(handle, bh);
3758	} else {
3759		err = 0;
 
3760		mark_buffer_dirty(bh);
3761		if (ext4_should_order_data(inode))
3762			err = ext4_jbd2_inode_add_write(handle, inode, from,
3763					length);
3764	}
3765
3766unlock:
3767	folio_unlock(folio);
3768	folio_put(folio);
3769	return err;
3770}
3771
3772/*
3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774 * starting from file offset 'from'.  The range to be zero'd must
3775 * be contained with in one block.  If the specified range exceeds
3776 * the end of the block it will be shortened to end of the block
3777 * that corresponds to 'from'
3778 */
3779static int ext4_block_zero_page_range(handle_t *handle,
3780		struct address_space *mapping, loff_t from, loff_t length)
3781{
3782	struct inode *inode = mapping->host;
3783	unsigned offset = from & (PAGE_SIZE-1);
3784	unsigned blocksize = inode->i_sb->s_blocksize;
3785	unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787	/*
3788	 * correct length if it does not fall between
3789	 * 'from' and the end of the block
3790	 */
3791	if (length > max || length < 0)
3792		length = max;
3793
3794	if (IS_DAX(inode)) {
3795		return dax_zero_range(inode, from, length, NULL,
3796				      &ext4_iomap_ops);
3797	}
3798	return __ext4_block_zero_page_range(handle, mapping, from, length);
3799}
3800
3801/*
3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803 * up to the end of the block which corresponds to `from'.
3804 * This required during truncate. We need to physically zero the tail end
3805 * of that block so it doesn't yield old data if the file is later grown.
3806 */
3807static int ext4_block_truncate_page(handle_t *handle,
3808		struct address_space *mapping, loff_t from)
3809{
3810	unsigned offset = from & (PAGE_SIZE-1);
3811	unsigned length;
3812	unsigned blocksize;
3813	struct inode *inode = mapping->host;
3814
3815	/* If we are processing an encrypted inode during orphan list handling */
3816	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817		return 0;
3818
3819	blocksize = inode->i_sb->s_blocksize;
3820	length = blocksize - (offset & (blocksize - 1));
3821
3822	return ext4_block_zero_page_range(handle, mapping, from, length);
3823}
3824
3825int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826			     loff_t lstart, loff_t length)
3827{
3828	struct super_block *sb = inode->i_sb;
3829	struct address_space *mapping = inode->i_mapping;
3830	unsigned partial_start, partial_end;
3831	ext4_fsblk_t start, end;
3832	loff_t byte_end = (lstart + length - 1);
3833	int err = 0;
3834
3835	partial_start = lstart & (sb->s_blocksize - 1);
3836	partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838	start = lstart >> sb->s_blocksize_bits;
3839	end = byte_end >> sb->s_blocksize_bits;
3840
3841	/* Handle partial zero within the single block */
3842	if (start == end &&
3843	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844		err = ext4_block_zero_page_range(handle, mapping,
3845						 lstart, length);
3846		return err;
3847	}
3848	/* Handle partial zero out on the start of the range */
3849	if (partial_start) {
3850		err = ext4_block_zero_page_range(handle, mapping,
3851						 lstart, sb->s_blocksize);
3852		if (err)
3853			return err;
3854	}
3855	/* Handle partial zero out on the end of the range */
3856	if (partial_end != sb->s_blocksize - 1)
3857		err = ext4_block_zero_page_range(handle, mapping,
3858						 byte_end - partial_end,
3859						 partial_end + 1);
3860	return err;
3861}
3862
3863int ext4_can_truncate(struct inode *inode)
3864{
3865	if (S_ISREG(inode->i_mode))
3866		return 1;
3867	if (S_ISDIR(inode->i_mode))
3868		return 1;
3869	if (S_ISLNK(inode->i_mode))
3870		return !ext4_inode_is_fast_symlink(inode);
3871	return 0;
3872}
3873
3874/*
3875 * We have to make sure i_disksize gets properly updated before we truncate
3876 * page cache due to hole punching or zero range. Otherwise i_disksize update
3877 * can get lost as it may have been postponed to submission of writeback but
3878 * that will never happen after we truncate page cache.
3879 */
3880int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881				      loff_t len)
3882{
3883	handle_t *handle;
3884	int ret;
3885
3886	loff_t size = i_size_read(inode);
3887
3888	WARN_ON(!inode_is_locked(inode));
3889	if (offset > size || offset + len < size)
3890		return 0;
3891
3892	if (EXT4_I(inode)->i_disksize >= size)
3893		return 0;
3894
3895	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896	if (IS_ERR(handle))
3897		return PTR_ERR(handle);
3898	ext4_update_i_disksize(inode, size);
3899	ret = ext4_mark_inode_dirty(handle, inode);
3900	ext4_journal_stop(handle);
3901
3902	return ret;
3903}
3904
3905static void ext4_wait_dax_page(struct inode *inode)
3906{
3907	filemap_invalidate_unlock(inode->i_mapping);
3908	schedule();
3909	filemap_invalidate_lock(inode->i_mapping);
3910}
3911
3912int ext4_break_layouts(struct inode *inode)
3913{
3914	struct page *page;
3915	int error;
3916
3917	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918		return -EINVAL;
3919
3920	do {
3921		page = dax_layout_busy_page(inode->i_mapping);
3922		if (!page)
3923			return 0;
3924
3925		error = ___wait_var_event(&page->_refcount,
3926				atomic_read(&page->_refcount) == 1,
3927				TASK_INTERRUPTIBLE, 0, 0,
3928				ext4_wait_dax_page(inode));
3929	} while (error == 0);
3930
3931	return error;
3932}
3933
3934/*
3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936 * associated with the given offset and length
3937 *
3938 * @inode:  File inode
3939 * @offset: The offset where the hole will begin
3940 * @len:    The length of the hole
3941 *
3942 * Returns: 0 on success or negative on failure
3943 */
3944
3945int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946{
3947	struct inode *inode = file_inode(file);
3948	struct super_block *sb = inode->i_sb;
3949	ext4_lblk_t first_block, stop_block;
3950	struct address_space *mapping = inode->i_mapping;
3951	loff_t first_block_offset, last_block_offset, max_length;
3952	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953	handle_t *handle;
3954	unsigned int credits;
3955	int ret = 0, ret2 = 0;
3956
3957	trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959	/*
3960	 * Write out all dirty pages to avoid race conditions
3961	 * Then release them.
3962	 */
3963	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964		ret = filemap_write_and_wait_range(mapping, offset,
3965						   offset + length - 1);
3966		if (ret)
3967			return ret;
3968	}
3969
3970	inode_lock(inode);
3971
3972	/* No need to punch hole beyond i_size */
3973	if (offset >= inode->i_size)
3974		goto out_mutex;
3975
3976	/*
3977	 * If the hole extends beyond i_size, set the hole
3978	 * to end after the page that contains i_size
3979	 */
3980	if (offset + length > inode->i_size) {
3981		length = inode->i_size +
3982		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983		   offset;
3984	}
3985
3986	/*
3987	 * For punch hole the length + offset needs to be within one block
3988	 * before last range. Adjust the length if it goes beyond that limit.
3989	 */
3990	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991	if (offset + length > max_length)
3992		length = max_length - offset;
3993
3994	if (offset & (sb->s_blocksize - 1) ||
3995	    (offset + length) & (sb->s_blocksize - 1)) {
3996		/*
3997		 * Attach jinode to inode for jbd2 if we do any zeroing of
3998		 * partial block
3999		 */
4000		ret = ext4_inode_attach_jinode(inode);
4001		if (ret < 0)
4002			goto out_mutex;
4003
4004	}
4005
4006	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4007	inode_dio_wait(inode);
4008
4009	ret = file_modified(file);
4010	if (ret)
4011		goto out_mutex;
4012
4013	/*
4014	 * Prevent page faults from reinstantiating pages we have released from
4015	 * page cache.
4016	 */
4017	filemap_invalidate_lock(mapping);
4018
4019	ret = ext4_break_layouts(inode);
4020	if (ret)
4021		goto out_dio;
4022
4023	first_block_offset = round_up(offset, sb->s_blocksize);
4024	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026	/* Now release the pages and zero block aligned part of pages*/
4027	if (last_block_offset > first_block_offset) {
4028		ret = ext4_update_disksize_before_punch(inode, offset, length);
4029		if (ret)
4030			goto out_dio;
4031		truncate_pagecache_range(inode, first_block_offset,
4032					 last_block_offset);
4033	}
4034
4035	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036		credits = ext4_writepage_trans_blocks(inode);
4037	else
4038		credits = ext4_blocks_for_truncate(inode);
4039	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040	if (IS_ERR(handle)) {
4041		ret = PTR_ERR(handle);
4042		ext4_std_error(sb, ret);
4043		goto out_dio;
4044	}
4045
4046	ret = ext4_zero_partial_blocks(handle, inode, offset,
4047				       length);
4048	if (ret)
4049		goto out_stop;
4050
4051	first_block = (offset + sb->s_blocksize - 1) >>
4052		EXT4_BLOCK_SIZE_BITS(sb);
4053	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055	/* If there are blocks to remove, do it */
4056	if (stop_block > first_block) {
4057		ext4_lblk_t hole_len = stop_block - first_block;
4058
4059		down_write(&EXT4_I(inode)->i_data_sem);
4060		ext4_discard_preallocations(inode);
4061
4062		ext4_es_remove_extent(inode, first_block, hole_len);
4063
4064		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065			ret = ext4_ext_remove_space(inode, first_block,
4066						    stop_block - 1);
4067		else
4068			ret = ext4_ind_remove_space(handle, inode, first_block,
4069						    stop_block);
4070
4071		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072				      EXTENT_STATUS_HOLE, 0);
4073		up_write(&EXT4_I(inode)->i_data_sem);
4074	}
4075	ext4_fc_track_range(handle, inode, first_block, stop_block);
4076	if (IS_SYNC(inode))
4077		ext4_handle_sync(handle);
4078
4079	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080	ret2 = ext4_mark_inode_dirty(handle, inode);
4081	if (unlikely(ret2))
4082		ret = ret2;
4083	if (ret >= 0)
4084		ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086	ext4_journal_stop(handle);
4087out_dio:
4088	filemap_invalidate_unlock(mapping);
4089out_mutex:
4090	inode_unlock(inode);
4091	return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096	struct ext4_inode_info *ei = EXT4_I(inode);
4097	struct jbd2_inode *jinode;
4098
4099	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100		return 0;
4101
4102	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103	spin_lock(&inode->i_lock);
4104	if (!ei->jinode) {
4105		if (!jinode) {
4106			spin_unlock(&inode->i_lock);
4107			return -ENOMEM;
4108		}
4109		ei->jinode = jinode;
4110		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111		jinode = NULL;
4112	}
4113	spin_unlock(&inode->i_lock);
4114	if (unlikely(jinode != NULL))
4115		jbd2_free_inode(jinode);
4116	return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk.  We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable.  It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go.  So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem.  But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149	struct ext4_inode_info *ei = EXT4_I(inode);
4150	unsigned int credits;
4151	int err = 0, err2;
4152	handle_t *handle;
4153	struct address_space *mapping = inode->i_mapping;
4154
4155	/*
4156	 * There is a possibility that we're either freeing the inode
4157	 * or it's a completely new inode. In those cases we might not
4158	 * have i_rwsem locked because it's not necessary.
4159	 */
4160	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161		WARN_ON(!inode_is_locked(inode));
4162	trace_ext4_truncate_enter(inode);
4163
4164	if (!ext4_can_truncate(inode))
4165		goto out_trace;
 
 
4166
4167	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170	if (ext4_has_inline_data(inode)) {
4171		int has_inline = 1;
4172
4173		err = ext4_inline_data_truncate(inode, &has_inline);
4174		if (err || has_inline)
4175			goto out_trace;
4176	}
4177
4178	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180		err = ext4_inode_attach_jinode(inode);
4181		if (err)
4182			goto out_trace;
4183	}
4184
4185	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186		credits = ext4_writepage_trans_blocks(inode);
4187	else
4188		credits = ext4_blocks_for_truncate(inode);
4189
4190	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191	if (IS_ERR(handle)) {
4192		err = PTR_ERR(handle);
4193		goto out_trace;
4194	}
4195
4196	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197		ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199	/*
4200	 * We add the inode to the orphan list, so that if this
4201	 * truncate spans multiple transactions, and we crash, we will
4202	 * resume the truncate when the filesystem recovers.  It also
4203	 * marks the inode dirty, to catch the new size.
4204	 *
4205	 * Implication: the file must always be in a sane, consistent
4206	 * truncatable state while each transaction commits.
4207	 */
4208	err = ext4_orphan_add(handle, inode);
4209	if (err)
4210		goto out_stop;
4211
4212	down_write(&EXT4_I(inode)->i_data_sem);
4213
4214	ext4_discard_preallocations(inode);
4215
4216	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217		err = ext4_ext_truncate(handle, inode);
4218	else
4219		ext4_ind_truncate(handle, inode);
4220
4221	up_write(&ei->i_data_sem);
4222	if (err)
4223		goto out_stop;
4224
4225	if (IS_SYNC(inode))
4226		ext4_handle_sync(handle);
4227
4228out_stop:
4229	/*
4230	 * If this was a simple ftruncate() and the file will remain alive,
4231	 * then we need to clear up the orphan record which we created above.
4232	 * However, if this was a real unlink then we were called by
4233	 * ext4_evict_inode(), and we allow that function to clean up the
4234	 * orphan info for us.
4235	 */
4236	if (inode->i_nlink)
4237		ext4_orphan_del(handle, inode);
4238
4239	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240	err2 = ext4_mark_inode_dirty(handle, inode);
4241	if (unlikely(err2 && !err))
4242		err = err2;
4243	ext4_journal_stop(handle);
4244
4245out_trace:
4246	trace_ext4_truncate_exit(inode);
4247	return err;
4248}
4249
4250static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251{
4252	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253		return inode_peek_iversion_raw(inode);
4254	else
4255		return inode_peek_iversion(inode);
4256}
4257
4258static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259				 struct ext4_inode_info *ei)
4260{
4261	struct inode *inode = &(ei->vfs_inode);
4262	u64 i_blocks = READ_ONCE(inode->i_blocks);
4263	struct super_block *sb = inode->i_sb;
4264
4265	if (i_blocks <= ~0U) {
4266		/*
4267		 * i_blocks can be represented in a 32 bit variable
4268		 * as multiple of 512 bytes
4269		 */
4270		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271		raw_inode->i_blocks_high = 0;
4272		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273		return 0;
4274	}
4275
4276	/*
4277	 * This should never happen since sb->s_maxbytes should not have
4278	 * allowed this, sb->s_maxbytes was set according to the huge_file
4279	 * feature in ext4_fill_super().
4280	 */
4281	if (!ext4_has_feature_huge_file(sb))
4282		return -EFSCORRUPTED;
4283
4284	if (i_blocks <= 0xffffffffffffULL) {
4285		/*
4286		 * i_blocks can be represented in a 48 bit variable
4287		 * as multiple of 512 bytes
4288		 */
4289		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292	} else {
4293		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294		/* i_block is stored in file system block size */
4295		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298	}
4299	return 0;
4300}
4301
4302static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303{
4304	struct ext4_inode_info *ei = EXT4_I(inode);
4305	uid_t i_uid;
4306	gid_t i_gid;
4307	projid_t i_projid;
4308	int block;
4309	int err;
4310
4311	err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314	i_uid = i_uid_read(inode);
4315	i_gid = i_gid_read(inode);
4316	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317	if (!(test_opt(inode->i_sb, NO_UID32))) {
4318		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320		/*
4321		 * Fix up interoperability with old kernels. Otherwise,
4322		 * old inodes get re-used with the upper 16 bits of the
4323		 * uid/gid intact.
4324		 */
4325		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326			raw_inode->i_uid_high = 0;
4327			raw_inode->i_gid_high = 0;
4328		} else {
4329			raw_inode->i_uid_high =
4330				cpu_to_le16(high_16_bits(i_uid));
4331			raw_inode->i_gid_high =
4332				cpu_to_le16(high_16_bits(i_gid));
4333		}
4334	} else {
4335		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337		raw_inode->i_uid_high = 0;
4338		raw_inode->i_gid_high = 0;
4339	}
4340	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342	EXT4_INODE_SET_CTIME(inode, raw_inode);
4343	EXT4_INODE_SET_MTIME(inode, raw_inode);
4344	EXT4_INODE_SET_ATIME(inode, raw_inode);
4345	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350		raw_inode->i_file_acl_high =
4351			cpu_to_le16(ei->i_file_acl >> 32);
4352	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353	ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357		if (old_valid_dev(inode->i_rdev)) {
4358			raw_inode->i_block[0] =
4359				cpu_to_le32(old_encode_dev(inode->i_rdev));
4360			raw_inode->i_block[1] = 0;
4361		} else {
4362			raw_inode->i_block[0] = 0;
4363			raw_inode->i_block[1] =
4364				cpu_to_le32(new_encode_dev(inode->i_rdev));
4365			raw_inode->i_block[2] = 0;
4366		}
4367	} else if (!ext4_has_inline_data(inode)) {
4368		for (block = 0; block < EXT4_N_BLOCKS; block++)
4369			raw_inode->i_block[block] = ei->i_data[block];
4370	}
4371
4372	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373		u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375		raw_inode->i_disk_version = cpu_to_le32(ivers);
4376		if (ei->i_extra_isize) {
4377			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378				raw_inode->i_version_hi =
4379					cpu_to_le32(ivers >> 32);
4380			raw_inode->i_extra_isize =
4381				cpu_to_le16(ei->i_extra_isize);
4382		}
4383	}
4384
4385	if (i_projid != EXT4_DEF_PROJID &&
4386	    !ext4_has_feature_project(inode->i_sb))
4387		err = err ?: -EFSCORRUPTED;
4388
4389	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391		raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393	ext4_inode_csum_set(inode, raw_inode, ei);
4394	return err;
4395}
4396
4397/*
4398 * ext4_get_inode_loc returns with an extra refcount against the inode's
4399 * underlying buffer_head on success. If we pass 'inode' and it does not
4400 * have in-inode xattr, we have all inode data in memory that is needed
4401 * to recreate the on-disk version of this inode.
4402 */
4403static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404				struct inode *inode, struct ext4_iloc *iloc,
4405				ext4_fsblk_t *ret_block)
4406{
4407	struct ext4_group_desc	*gdp;
4408	struct buffer_head	*bh;
 
4409	ext4_fsblk_t		block;
4410	struct blk_plug		plug;
4411	int			inodes_per_block, inode_offset;
4412
4413	iloc->bh = NULL;
4414	if (ino < EXT4_ROOT_INO ||
4415	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416		return -EFSCORRUPTED;
4417
4418	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420	if (!gdp)
4421		return -EIO;
4422
4423	/*
4424	 * Figure out the offset within the block group inode table
4425	 */
4426	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427	inode_offset = ((ino - 1) %
4428			EXT4_INODES_PER_GROUP(sb));
 
4429	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431	block = ext4_inode_table(sb, gdp);
4432	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434		ext4_error(sb, "Invalid inode table block %llu in "
4435			   "block_group %u", block, iloc->block_group);
4436		return -EFSCORRUPTED;
4437	}
4438	block += (inode_offset / inodes_per_block);
4439
4440	bh = sb_getblk(sb, block);
4441	if (unlikely(!bh))
4442		return -ENOMEM;
4443	if (ext4_buffer_uptodate(bh))
4444		goto has_buffer;
4445
4446	lock_buffer(bh);
4447	if (ext4_buffer_uptodate(bh)) {
4448		/* Someone brought it uptodate while we waited */
4449		unlock_buffer(bh);
4450		goto has_buffer;
4451	}
4452
4453	/*
4454	 * If we have all information of the inode in memory and this
4455	 * is the only valid inode in the block, we need not read the
4456	 * block.
4457	 */
4458	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459		struct buffer_head *bitmap_bh;
4460		int i, start;
4461
4462		start = inode_offset & ~(inodes_per_block - 1);
4463
4464		/* Is the inode bitmap in cache? */
4465		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466		if (unlikely(!bitmap_bh))
4467			goto make_io;
4468
4469		/*
4470		 * If the inode bitmap isn't in cache then the
4471		 * optimisation may end up performing two reads instead
4472		 * of one, so skip it.
 
4473		 */
4474		if (!buffer_uptodate(bitmap_bh)) {
4475			brelse(bitmap_bh);
4476			goto make_io;
4477		}
4478		for (i = start; i < start + inodes_per_block; i++) {
4479			if (i == inode_offset)
4480				continue;
4481			if (ext4_test_bit(i, bitmap_bh->b_data))
4482				break;
4483		}
4484		brelse(bitmap_bh);
4485		if (i == start + inodes_per_block) {
4486			struct ext4_inode *raw_inode =
4487				(struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489			/* all other inodes are free, so skip I/O */
4490			memset(bh->b_data, 0, bh->b_size);
4491			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492				ext4_fill_raw_inode(inode, raw_inode);
4493			set_buffer_uptodate(bh);
 
 
 
4494			unlock_buffer(bh);
4495			goto has_buffer;
4496		}
4497	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4498
4499make_io:
4500	/*
4501	 * If we need to do any I/O, try to pre-readahead extra
4502	 * blocks from the inode table.
4503	 */
4504	blk_start_plug(&plug);
4505	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506		ext4_fsblk_t b, end, table;
4507		unsigned num;
4508		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510		table = ext4_inode_table(sb, gdp);
4511		/* s_inode_readahead_blks is always a power of 2 */
4512		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513		if (table > b)
4514			b = table;
4515		end = b + ra_blks;
4516		num = EXT4_INODES_PER_GROUP(sb);
4517		if (ext4_has_group_desc_csum(sb))
4518			num -= ext4_itable_unused_count(sb, gdp);
4519		table += num / inodes_per_block;
4520		if (end > table)
4521			end = table;
4522		while (b <= end)
4523			ext4_sb_breadahead_unmovable(sb, b++);
4524	}
4525
4526	/*
4527	 * There are other valid inodes in the buffer, this inode
4528	 * has in-inode xattrs, or we don't have this inode in memory.
4529	 * Read the block from disk.
4530	 */
4531	trace_ext4_load_inode(sb, ino);
4532	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534	blk_finish_plug(&plug);
4535	wait_on_buffer(bh);
4536	if (!buffer_uptodate(bh)) {
4537		if (ret_block)
4538			*ret_block = block;
4539		brelse(bh);
4540		return -EIO;
 
4541	}
4542has_buffer:
4543	iloc->bh = bh;
4544	return 0;
4545}
4546
4547static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548					struct ext4_iloc *iloc)
4549{
4550	ext4_fsblk_t err_blk = 0;
4551	int ret;
4552
4553	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554					&err_blk);
4555
4556	if (ret == -EIO)
4557		ext4_error_inode_block(inode, err_blk, EIO,
4558					"unable to read itable block");
4559
4560	return ret;
4561}
4562
4563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564{
4565	ext4_fsblk_t err_blk = 0;
4566	int ret;
4567
4568	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569					&err_blk);
4570
4571	if (ret == -EIO)
4572		ext4_error_inode_block(inode, err_blk, EIO,
4573					"unable to read itable block");
4574
4575	return ret;
4576}
4577
4578
4579int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580			  struct ext4_iloc *iloc)
4581{
4582	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583}
4584
4585static bool ext4_should_enable_dax(struct inode *inode)
4586{
4587	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589	if (test_opt2(inode->i_sb, DAX_NEVER))
4590		return false;
4591	if (!S_ISREG(inode->i_mode))
4592		return false;
4593	if (ext4_should_journal_data(inode))
4594		return false;
4595	if (ext4_has_inline_data(inode))
4596		return false;
4597	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598		return false;
4599	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600		return false;
4601	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602		return false;
4603	if (test_opt(inode->i_sb, DAX_ALWAYS))
4604		return true;
4605
4606	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607}
4608
4609void ext4_set_inode_flags(struct inode *inode, bool init)
4610{
4611	unsigned int flags = EXT4_I(inode)->i_flags;
4612	unsigned int new_fl = 0;
4613
4614	WARN_ON_ONCE(IS_DAX(inode) && init);
4615
 
4616	if (flags & EXT4_SYNC_FL)
4617		new_fl |= S_SYNC;
4618	if (flags & EXT4_APPEND_FL)
4619		new_fl |= S_APPEND;
4620	if (flags & EXT4_IMMUTABLE_FL)
4621		new_fl |= S_IMMUTABLE;
4622	if (flags & EXT4_NOATIME_FL)
4623		new_fl |= S_NOATIME;
4624	if (flags & EXT4_DIRSYNC_FL)
4625		new_fl |= S_DIRSYNC;
 
4626
4627	/* Because of the way inode_set_flags() works we must preserve S_DAX
4628	 * here if already set. */
4629	new_fl |= (inode->i_flags & S_DAX);
4630	if (init && ext4_should_enable_dax(inode))
4631		new_fl |= S_DAX;
4632
4633	if (flags & EXT4_ENCRYPT_FL)
4634		new_fl |= S_ENCRYPTED;
4635	if (flags & EXT4_CASEFOLD_FL)
4636		new_fl |= S_CASEFOLD;
4637	if (flags & EXT4_VERITY_FL)
4638		new_fl |= S_VERITY;
4639	inode_set_flags(inode, new_fl,
4640			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
 
 
 
 
 
 
 
 
4642}
4643
4644static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645				  struct ext4_inode_info *ei)
4646{
4647	blkcnt_t i_blocks ;
4648	struct inode *inode = &(ei->vfs_inode);
4649	struct super_block *sb = inode->i_sb;
4650
4651	if (ext4_has_feature_huge_file(sb)) {
 
4652		/* we are using combined 48 bit field */
4653		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654					le32_to_cpu(raw_inode->i_blocks_lo);
4655		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656			/* i_blocks represent file system block size */
4657			return i_blocks  << (inode->i_blkbits - 9);
4658		} else {
4659			return i_blocks;
4660		}
4661	} else {
4662		return le32_to_cpu(raw_inode->i_blocks_lo);
4663	}
4664}
4665
4666static inline int ext4_iget_extra_inode(struct inode *inode,
4667					 struct ext4_inode *raw_inode,
4668					 struct ext4_inode_info *ei)
4669{
4670	__le32 *magic = (void *)raw_inode +
4671			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4674	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675		int err;
4676
4677		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678		err = ext4_find_inline_data_nolock(inode);
4679		if (!err && ext4_has_inline_data(inode))
4680			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681		return err;
4682	} else
4683		EXT4_I(inode)->i_inline_off = 0;
4684	return 0;
4685}
4686
4687int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688{
4689	if (!ext4_has_feature_project(inode->i_sb))
4690		return -EOPNOTSUPP;
4691	*projid = EXT4_I(inode)->i_projid;
4692	return 0;
4693}
4694
4695/*
4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698 * set.
4699 */
4700static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701{
4702	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703		inode_set_iversion_raw(inode, val);
4704	else
4705		inode_set_iversion_queried(inode, val);
4706}
4707
4708static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710{
4711	if (flags & EXT4_IGET_EA_INODE) {
4712		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713			return "missing EA_INODE flag";
4714		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715		    EXT4_I(inode)->i_file_acl)
4716			return "ea_inode with extended attributes";
4717	} else {
4718		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719			return "unexpected EA_INODE flag";
4720	}
4721	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722		return "unexpected bad inode w/o EXT4_IGET_BAD";
4723	return NULL;
4724}
4725
4726struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727			  ext4_iget_flags flags, const char *function,
4728			  unsigned int line)
4729{
4730	struct ext4_iloc iloc;
4731	struct ext4_inode *raw_inode;
4732	struct ext4_inode_info *ei;
4733	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734	struct inode *inode;
4735	const char *err_str;
4736	journal_t *journal = EXT4_SB(sb)->s_journal;
4737	long ret;
4738	loff_t size;
4739	int block;
4740	uid_t i_uid;
4741	gid_t i_gid;
4742	projid_t i_projid;
4743
4744	if ((!(flags & EXT4_IGET_SPECIAL) &&
4745	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750	    (ino < EXT4_ROOT_INO) ||
4751	    (ino > le32_to_cpu(es->s_inodes_count))) {
4752		if (flags & EXT4_IGET_HANDLE)
4753			return ERR_PTR(-ESTALE);
4754		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755			     "inode #%lu: comm %s: iget: illegal inode #",
4756			     ino, current->comm);
4757		return ERR_PTR(-EFSCORRUPTED);
4758	}
4759
4760	inode = iget_locked(sb, ino);
4761	if (!inode)
4762		return ERR_PTR(-ENOMEM);
4763	if (!(inode->i_state & I_NEW)) {
4764		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765			ext4_error_inode(inode, function, line, 0, err_str);
4766			iput(inode);
4767			return ERR_PTR(-EFSCORRUPTED);
4768		}
4769		return inode;
4770	}
4771
4772	ei = EXT4_I(inode);
4773	iloc.bh = NULL;
4774
4775	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776	if (ret < 0)
4777		goto bad_inode;
4778	raw_inode = ext4_raw_inode(&iloc);
4779
4780	if ((flags & EXT4_IGET_HANDLE) &&
4781	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782		ret = -ESTALE;
4783		goto bad_inode;
4784	}
4785
4786	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789			EXT4_INODE_SIZE(inode->i_sb) ||
4790		    (ei->i_extra_isize & 3)) {
4791			ext4_error_inode(inode, function, line, 0,
4792					 "iget: bad extra_isize %u "
4793					 "(inode size %u)",
4794					 ei->i_extra_isize,
4795					 EXT4_INODE_SIZE(inode->i_sb));
4796			ret = -EFSCORRUPTED;
4797			goto bad_inode;
4798		}
4799	} else
4800		ei->i_extra_isize = 0;
4801
4802	/* Precompute checksum seed for inode metadata */
4803	if (ext4_has_metadata_csum(sb)) {
4804		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805		__u32 csum;
4806		__le32 inum = cpu_to_le32(inode->i_ino);
4807		__le32 gen = raw_inode->i_generation;
4808		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809				   sizeof(inum));
4810		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811					      sizeof(gen));
4812	}
4813
4814	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817		ext4_error_inode_err(inode, function, line, 0,
4818				EFSBADCRC, "iget: checksum invalid");
4819		ret = -EFSBADCRC;
4820		goto bad_inode;
4821	}
4822
4823	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826	if (ext4_has_feature_project(sb) &&
4827	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830	else
4831		i_projid = EXT4_DEF_PROJID;
4832
4833	if (!(test_opt(inode->i_sb, NO_UID32))) {
4834		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836	}
4837	i_uid_write(inode, i_uid);
4838	i_gid_write(inode, i_gid);
4839	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4843	ei->i_inline_off = 0;
4844	ei->i_dir_start_lookup = 0;
4845	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846	/* We now have enough fields to check if the inode was active or not.
4847	 * This is needed because nfsd might try to access dead inodes
4848	 * the test is that same one that e2fsck uses
4849	 * NeilBrown 1999oct15
4850	 */
4851	if (inode->i_nlink == 0) {
4852		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854		    ino != EXT4_BOOT_LOADER_INO) {
4855			/* this inode is deleted or unallocated */
4856			if (flags & EXT4_IGET_SPECIAL) {
4857				ext4_error_inode(inode, function, line, 0,
4858						 "iget: special inode unallocated");
4859				ret = -EFSCORRUPTED;
4860			} else
4861				ret = -ESTALE;
4862			goto bad_inode;
4863		}
4864		/* The only unlinked inodes we let through here have
4865		 * valid i_mode and are being read by the orphan
4866		 * recovery code: that's fine, we're about to complete
4867		 * the process of deleting those.
4868		 * OR it is the EXT4_BOOT_LOADER_INO which is
4869		 * not initialized on a new filesystem. */
4870	}
4871	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872	ext4_set_inode_flags(inode, true);
4873	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875	if (ext4_has_feature_64bit(sb))
4876		ei->i_file_acl |=
4877			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878	inode->i_size = ext4_isize(sb, raw_inode);
4879	if ((size = i_size_read(inode)) < 0) {
4880		ext4_error_inode(inode, function, line, 0,
4881				 "iget: bad i_size value: %lld", size);
4882		ret = -EFSCORRUPTED;
4883		goto bad_inode;
4884	}
4885	/*
4886	 * If dir_index is not enabled but there's dir with INDEX flag set,
4887	 * we'd normally treat htree data as empty space. But with metadata
4888	 * checksumming that corrupts checksums so forbid that.
4889	 */
4890	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892		ext4_error_inode(inode, function, line, 0,
4893			 "iget: Dir with htree data on filesystem without dir_index feature.");
4894		ret = -EFSCORRUPTED;
4895		goto bad_inode;
4896	}
4897	ei->i_disksize = inode->i_size;
4898#ifdef CONFIG_QUOTA
4899	ei->i_reserved_quota = 0;
4900#endif
4901	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902	ei->i_block_group = iloc.block_group;
4903	ei->i_last_alloc_group = ~0;
4904	/*
4905	 * NOTE! The in-memory inode i_data array is in little-endian order
4906	 * even on big-endian machines: we do NOT byteswap the block numbers!
4907	 */
4908	for (block = 0; block < EXT4_N_BLOCKS; block++)
4909		ei->i_data[block] = raw_inode->i_block[block];
4910	INIT_LIST_HEAD(&ei->i_orphan);
4911	ext4_fc_init_inode(&ei->vfs_inode);
4912
4913	/*
4914	 * Set transaction id's of transactions that have to be committed
4915	 * to finish f[data]sync. We set them to currently running transaction
4916	 * as we cannot be sure that the inode or some of its metadata isn't
4917	 * part of the transaction - the inode could have been reclaimed and
4918	 * now it is reread from disk.
4919	 */
4920	if (journal) {
4921		transaction_t *transaction;
4922		tid_t tid;
4923
4924		read_lock(&journal->j_state_lock);
4925		if (journal->j_running_transaction)
4926			transaction = journal->j_running_transaction;
4927		else
4928			transaction = journal->j_committing_transaction;
4929		if (transaction)
4930			tid = transaction->t_tid;
4931		else
4932			tid = journal->j_commit_sequence;
4933		read_unlock(&journal->j_state_lock);
4934		ei->i_sync_tid = tid;
4935		ei->i_datasync_tid = tid;
4936	}
4937
4938	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
 
 
 
 
 
 
4939		if (ei->i_extra_isize == 0) {
4940			/* The extra space is currently unused. Use it. */
4941			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942			ei->i_extra_isize = sizeof(struct ext4_inode) -
4943					    EXT4_GOOD_OLD_INODE_SIZE;
4944		} else {
4945			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946			if (ret)
4947				goto bad_inode;
 
 
4948		}
4949	}
 
4950
4951	EXT4_INODE_GET_CTIME(inode, raw_inode);
4952	EXT4_INODE_GET_ATIME(inode, raw_inode);
4953	EXT4_INODE_GET_MTIME(inode, raw_inode);
4954	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961				ivers |=
4962		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963		}
4964		ext4_inode_set_iversion_queried(inode, ivers);
4965	}
4966
4967	ret = 0;
4968	if (ei->i_file_acl &&
4969	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970		ext4_error_inode(inode, function, line, 0,
4971				 "iget: bad extended attribute block %llu",
4972				 ei->i_file_acl);
4973		ret = -EFSCORRUPTED;
4974		goto bad_inode;
4975	} else if (!ext4_has_inline_data(inode)) {
4976		/* validate the block references in the inode */
4977		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979			(S_ISLNK(inode->i_mode) &&
4980			!ext4_inode_is_fast_symlink(inode)))) {
4981			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982				ret = ext4_ext_check_inode(inode);
4983			else
4984				ret = ext4_ind_check_inode(inode);
4985		}
4986	}
4987	if (ret)
4988		goto bad_inode;
4989
4990	if (S_ISREG(inode->i_mode)) {
4991		inode->i_op = &ext4_file_inode_operations;
4992		inode->i_fop = &ext4_file_operations;
4993		ext4_set_aops(inode);
4994	} else if (S_ISDIR(inode->i_mode)) {
4995		inode->i_op = &ext4_dir_inode_operations;
4996		inode->i_fop = &ext4_dir_operations;
4997	} else if (S_ISLNK(inode->i_mode)) {
4998		/* VFS does not allow setting these so must be corruption */
4999		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000			ext4_error_inode(inode, function, line, 0,
5001					 "iget: immutable or append flags "
5002					 "not allowed on symlinks");
5003			ret = -EFSCORRUPTED;
5004			goto bad_inode;
5005		}
5006		if (IS_ENCRYPTED(inode)) {
5007			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5008		} else if (ext4_inode_is_fast_symlink(inode)) {
5009			inode->i_link = (char *)ei->i_data;
5010			inode->i_op = &ext4_fast_symlink_inode_operations;
5011			nd_terminate_link(ei->i_data, inode->i_size,
5012				sizeof(ei->i_data) - 1);
5013		} else {
5014			inode->i_op = &ext4_symlink_inode_operations;
 
5015		}
5016	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018		inode->i_op = &ext4_special_inode_operations;
5019		if (raw_inode->i_block[0])
5020			init_special_inode(inode, inode->i_mode,
5021			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022		else
5023			init_special_inode(inode, inode->i_mode,
5024			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025	} else if (ino == EXT4_BOOT_LOADER_INO) {
5026		make_bad_inode(inode);
5027	} else {
5028		ret = -EFSCORRUPTED;
5029		ext4_error_inode(inode, function, line, 0,
5030				 "iget: bogus i_mode (%o)", inode->i_mode);
5031		goto bad_inode;
5032	}
5033	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034		ext4_error_inode(inode, function, line, 0,
5035				 "casefold flag without casefold feature");
5036		ret = -EFSCORRUPTED;
5037		goto bad_inode;
5038	}
5039	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040		ext4_error_inode(inode, function, line, 0, err_str);
5041		ret = -EFSCORRUPTED;
5042		goto bad_inode;
5043	}
5044
5045	brelse(iloc.bh);
 
5046	unlock_new_inode(inode);
5047	return inode;
5048
5049bad_inode:
5050	brelse(iloc.bh);
5051	iget_failed(inode);
5052	return ERR_PTR(ret);
5053}
5054
5055static void __ext4_update_other_inode_time(struct super_block *sb,
5056					   unsigned long orig_ino,
5057					   unsigned long ino,
5058					   struct ext4_inode *raw_inode)
5059{
5060	struct inode *inode;
5061
5062	inode = find_inode_by_ino_rcu(sb, ino);
5063	if (!inode)
5064		return;
5065
5066	if (!inode_is_dirtytime_only(inode))
5067		return;
5068
5069	spin_lock(&inode->i_lock);
5070	if (inode_is_dirtytime_only(inode)) {
5071		struct ext4_inode_info	*ei = EXT4_I(inode);
5072
5073		inode->i_state &= ~I_DIRTY_TIME;
5074		spin_unlock(&inode->i_lock);
5075
5076		spin_lock(&ei->i_raw_lock);
5077		EXT4_INODE_SET_CTIME(inode, raw_inode);
5078		EXT4_INODE_SET_MTIME(inode, raw_inode);
5079		EXT4_INODE_SET_ATIME(inode, raw_inode);
5080		ext4_inode_csum_set(inode, raw_inode, ei);
5081		spin_unlock(&ei->i_raw_lock);
5082		trace_ext4_other_inode_update_time(inode, orig_ino);
5083		return;
5084	}
5085	spin_unlock(&inode->i_lock);
5086}
5087
5088/*
5089 * Opportunistically update the other time fields for other inodes in
5090 * the same inode table block.
5091 */
5092static void ext4_update_other_inodes_time(struct super_block *sb,
5093					  unsigned long orig_ino, char *buf)
5094{
5095	unsigned long ino;
5096	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097	int inode_size = EXT4_INODE_SIZE(sb);
5098
5099	/*
5100	 * Calculate the first inode in the inode table block.  Inode
5101	 * numbers are one-based.  That is, the first inode in a block
5102	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103	 */
5104	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105	rcu_read_lock();
5106	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107		if (ino == orig_ino)
5108			continue;
5109		__ext4_update_other_inode_time(sb, orig_ino, ino,
5110					       (struct ext4_inode *)buf);
 
 
5111	}
5112	rcu_read_unlock();
5113}
5114
5115/*
5116 * Post the struct inode info into an on-disk inode location in the
5117 * buffer-cache.  This gobbles the caller's reference to the
5118 * buffer_head in the inode location struct.
5119 *
5120 * The caller must have write access to iloc->bh.
5121 */
5122static int ext4_do_update_inode(handle_t *handle,
5123				struct inode *inode,
5124				struct ext4_iloc *iloc)
5125{
5126	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127	struct ext4_inode_info *ei = EXT4_I(inode);
5128	struct buffer_head *bh = iloc->bh;
5129	struct super_block *sb = inode->i_sb;
5130	int err;
5131	int need_datasync = 0, set_large_file = 0;
5132
5133	spin_lock(&ei->i_raw_lock);
5134
5135	/*
5136	 * For fields not tracked in the in-memory inode, initialise them
5137	 * to zero for new inodes.
5138	 */
5139	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141
5142	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5143		need_datasync = 1;
5144	if (ei->i_disksize > 0x7fffffffULL) {
5145		if (!ext4_has_feature_large_file(sb) ||
5146		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5147			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5148	}
 
5149
5150	err = ext4_fill_raw_inode(inode, raw_inode);
5151	spin_unlock(&ei->i_raw_lock);
5152	if (err) {
5153		EXT4_ERROR_INODE(inode, "corrupted inode contents");
 
 
5154		goto out_brelse;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5155	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5156
5157	if (inode->i_sb->s_flags & SB_LAZYTIME)
5158		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159					      bh->b_data);
 
 
 
 
5160
5161	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163	if (err)
5164		goto out_error;
5165	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166	if (set_large_file) {
5167		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168		err = ext4_journal_get_write_access(handle, sb,
5169						    EXT4_SB(sb)->s_sbh,
5170						    EXT4_JTR_NONE);
5171		if (err)
5172			goto out_error;
5173		lock_buffer(EXT4_SB(sb)->s_sbh);
5174		ext4_set_feature_large_file(sb);
5175		ext4_superblock_csum_set(sb);
5176		unlock_buffer(EXT4_SB(sb)->s_sbh);
5177		ext4_handle_sync(handle);
5178		err = ext4_handle_dirty_metadata(handle, NULL,
5179						 EXT4_SB(sb)->s_sbh);
5180	}
5181	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182out_error:
5183	ext4_std_error(inode->i_sb, err);
5184out_brelse:
5185	brelse(bh);
 
5186	return err;
5187}
5188
5189/*
5190 * ext4_write_inode()
5191 *
5192 * We are called from a few places:
5193 *
5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195 *   Here, there will be no transaction running. We wait for any running
5196 *   transaction to commit.
5197 *
5198 * - Within flush work (sys_sync(), kupdate and such).
5199 *   We wait on commit, if told to.
5200 *
5201 * - Within iput_final() -> write_inode_now()
5202 *   We wait on commit, if told to.
 
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
5206 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5207 * writeback.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this.  The code:
5214 *
5215 *	mark_inode_dirty(inode)
5216 *	stuff();
5217 *	inode->i_size = expr;
5218 *
5219 * is in error because write_inode() could occur while `stuff()' is running,
5220 * and the new i_size will be lost.  Plus the inode will no longer be on the
5221 * superblock's dirty inode list.
5222 */
5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224{
5225	int err;
5226
5227	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228		return 0;
5229
5230	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231		return -EIO;
5232
5233	if (EXT4_SB(inode->i_sb)->s_journal) {
5234		if (ext4_journal_current_handle()) {
5235			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236			dump_stack();
5237			return -EIO;
5238		}
5239
5240		/*
5241		 * No need to force transaction in WB_SYNC_NONE mode. Also
5242		 * ext4_sync_fs() will force the commit after everything is
5243		 * written.
5244		 */
5245		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246			return 0;
5247
5248		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249						EXT4_I(inode)->i_sync_tid);
5250	} else {
5251		struct ext4_iloc iloc;
5252
5253		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254		if (err)
5255			return err;
5256		/*
5257		 * sync(2) will flush the whole buffer cache. No need to do
5258		 * it here separately for each inode.
5259		 */
5260		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261			sync_dirty_buffer(iloc.bh);
5262		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264					       "IO error syncing inode");
5265			err = -EIO;
5266		}
5267		brelse(iloc.bh);
5268	}
5269	return err;
5270}
5271
5272/*
5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274 * buffers that are attached to a folio straddling i_size and are undergoing
5275 * commit. In that case we have to wait for commit to finish and try again.
5276 */
5277static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278{
5279	unsigned offset;
5280	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281	tid_t commit_tid;
5282	int ret;
5283	bool has_transaction;
5284
5285	offset = inode->i_size & (PAGE_SIZE - 1);
5286	/*
5287	 * If the folio is fully truncated, we don't need to wait for any commit
5288	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289	 * strip all buffers from the folio but keep the folio dirty which can then
5290	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291	 * buffers). Also we don't need to wait for any commit if all buffers in
5292	 * the folio remain valid. This is most beneficial for the common case of
5293	 * blocksize == PAGESIZE.
5294	 */
5295	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296		return;
5297	while (1) {
5298		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299				      inode->i_size >> PAGE_SHIFT);
5300		if (IS_ERR(folio))
5301			return;
5302		ret = __ext4_journalled_invalidate_folio(folio, offset,
5303						folio_size(folio) - offset);
5304		folio_unlock(folio);
5305		folio_put(folio);
5306		if (ret != -EBUSY)
5307			return;
5308		has_transaction = false;
5309		read_lock(&journal->j_state_lock);
5310		if (journal->j_committing_transaction) {
5311			commit_tid = journal->j_committing_transaction->t_tid;
5312			has_transaction = true;
5313		}
5314		read_unlock(&journal->j_state_lock);
5315		if (has_transaction)
5316			jbd2_log_wait_commit(journal, commit_tid);
5317	}
5318}
5319
5320/*
5321 * ext4_setattr()
5322 *
5323 * Called from notify_change.
5324 *
5325 * We want to trap VFS attempts to truncate the file as soon as
5326 * possible.  In particular, we want to make sure that when the VFS
5327 * shrinks i_size, we put the inode on the orphan list and modify
5328 * i_disksize immediately, so that during the subsequent flushing of
5329 * dirty pages and freeing of disk blocks, we can guarantee that any
5330 * commit will leave the blocks being flushed in an unused state on
5331 * disk.  (On recovery, the inode will get truncated and the blocks will
5332 * be freed, so we have a strong guarantee that no future commit will
5333 * leave these blocks visible to the user.)
5334 *
5335 * Another thing we have to assure is that if we are in ordered mode
5336 * and inode is still attached to the committing transaction, we must
5337 * we start writeout of all the dirty pages which are being truncated.
5338 * This way we are sure that all the data written in the previous
5339 * transaction are already on disk (truncate waits for pages under
5340 * writeback).
5341 *
5342 * Called with inode->i_rwsem down.
5343 */
5344int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345		 struct iattr *attr)
5346{
5347	struct inode *inode = d_inode(dentry);
5348	int error, rc = 0;
5349	int orphan = 0;
5350	const unsigned int ia_valid = attr->ia_valid;
5351	bool inc_ivers = true;
5352
5353	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354		return -EIO;
5355
5356	if (unlikely(IS_IMMUTABLE(inode)))
5357		return -EPERM;
5358
5359	if (unlikely(IS_APPEND(inode) &&
5360		     (ia_valid & (ATTR_MODE | ATTR_UID |
5361				  ATTR_GID | ATTR_TIMES_SET))))
5362		return -EPERM;
5363
5364	error = setattr_prepare(idmap, dentry, attr);
5365	if (error)
5366		return error;
5367
5368	error = fscrypt_prepare_setattr(dentry, attr);
5369	if (error)
5370		return error;
5371
5372	error = fsverity_prepare_setattr(dentry, attr);
5373	if (error)
5374		return error;
5375
5376	if (is_quota_modification(idmap, inode, attr)) {
5377		error = dquot_initialize(inode);
5378		if (error)
5379			return error;
5380	}
5381
5382	if (i_uid_needs_update(idmap, attr, inode) ||
5383	    i_gid_needs_update(idmap, attr, inode)) {
5384		handle_t *handle;
5385
5386		/* (user+group)*(old+new) structure, inode write (sb,
5387		 * inode block, ? - but truncate inode update has it) */
5388		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391		if (IS_ERR(handle)) {
5392			error = PTR_ERR(handle);
5393			goto err_out;
5394		}
5395
5396		/* dquot_transfer() calls back ext4_get_inode_usage() which
5397		 * counts xattr inode references.
5398		 */
5399		down_read(&EXT4_I(inode)->xattr_sem);
5400		error = dquot_transfer(idmap, inode, attr);
5401		up_read(&EXT4_I(inode)->xattr_sem);
5402
5403		if (error) {
5404			ext4_journal_stop(handle);
5405			return error;
5406		}
5407		/* Update corresponding info in inode so that everything is in
5408		 * one transaction */
5409		i_uid_update(idmap, attr, inode);
5410		i_gid_update(idmap, attr, inode);
 
 
5411		error = ext4_mark_inode_dirty(handle, inode);
5412		ext4_journal_stop(handle);
5413		if (unlikely(error)) {
5414			return error;
5415		}
5416	}
5417
5418	if (attr->ia_valid & ATTR_SIZE) {
5419		handle_t *handle;
5420		loff_t oldsize = inode->i_size;
5421		loff_t old_disksize;
5422		int shrink = (attr->ia_size < inode->i_size);
5423
5424		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426
5427			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428				return -EFBIG;
5429			}
5430		}
5431		if (!S_ISREG(inode->i_mode)) {
5432			return -EINVAL;
5433		}
5434
5435		if (attr->ia_size == inode->i_size)
5436			inc_ivers = false;
5437
5438		if (shrink) {
5439			if (ext4_should_order_data(inode)) {
5440				error = ext4_begin_ordered_truncate(inode,
5441							    attr->ia_size);
5442				if (error)
5443					goto err_out;
5444			}
5445			/*
5446			 * Blocks are going to be removed from the inode. Wait
5447			 * for dio in flight.
5448			 */
5449			inode_dio_wait(inode);
5450		}
 
5451
5452		filemap_invalidate_lock(inode->i_mapping);
 
 
 
5453
5454		rc = ext4_break_layouts(inode);
5455		if (rc) {
5456			filemap_invalidate_unlock(inode->i_mapping);
5457			goto err_out;
5458		}
 
 
 
 
 
 
 
 
 
5459
5460		if (attr->ia_size != inode->i_size) {
5461			/* attach jbd2 jinode for EOF folio tail zeroing */
5462			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5464				error = ext4_inode_attach_jinode(inode);
5465				if (error)
 
 
5466					goto err_out;
5467			}
5468
5469			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470			if (IS_ERR(handle)) {
5471				error = PTR_ERR(handle);
5472				goto out_mmap_sem;
5473			}
5474			if (ext4_handle_valid(handle) && shrink) {
5475				error = ext4_orphan_add(handle, inode);
5476				orphan = 1;
5477			}
5478			/*
5479			 * Update c/mtime and tail zero the EOF folio on
5480			 * truncate up. ext4_truncate() handles the shrink case
5481			 * below.
5482			 */
5483			if (!shrink) {
5484				inode_set_mtime_to_ts(inode,
5485						      inode_set_ctime_current(inode));
5486				if (oldsize & (inode->i_sb->s_blocksize - 1))
5487					ext4_block_truncate_page(handle,
5488							inode->i_mapping, oldsize);
5489			}
5490
5491			if (shrink)
5492				ext4_fc_track_range(handle, inode,
5493					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494					inode->i_sb->s_blocksize_bits,
5495					EXT_MAX_BLOCKS - 1);
5496			else
5497				ext4_fc_track_range(
5498					handle, inode,
5499					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5500					inode->i_sb->s_blocksize_bits,
5501					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502					inode->i_sb->s_blocksize_bits);
5503
5504			down_write(&EXT4_I(inode)->i_data_sem);
5505			old_disksize = EXT4_I(inode)->i_disksize;
5506			EXT4_I(inode)->i_disksize = attr->ia_size;
5507			rc = ext4_mark_inode_dirty(handle, inode);
5508			if (!error)
5509				error = rc;
5510			/*
5511			 * We have to update i_size under i_data_sem together
5512			 * with i_disksize to avoid races with writeback code
5513			 * running ext4_wb_update_i_disksize().
5514			 */
5515			if (!error)
5516				i_size_write(inode, attr->ia_size);
5517			else
5518				EXT4_I(inode)->i_disksize = old_disksize;
5519			up_write(&EXT4_I(inode)->i_data_sem);
5520			ext4_journal_stop(handle);
5521			if (error)
5522				goto out_mmap_sem;
5523			if (!shrink) {
5524				pagecache_isize_extended(inode, oldsize,
5525							 inode->i_size);
5526			} else if (ext4_should_journal_data(inode)) {
5527				ext4_wait_for_tail_page_commit(inode);
5528			}
5529		}
 
5530
5531		/*
5532		 * Truncate pagecache after we've waited for commit
5533		 * in data=journal mode to make pages freeable.
5534		 */
5535		truncate_pagecache(inode, inode->i_size);
5536		/*
5537		 * Call ext4_truncate() even if i_size didn't change to
5538		 * truncate possible preallocated blocks.
5539		 */
5540		if (attr->ia_size <= oldsize) {
5541			rc = ext4_truncate(inode);
5542			if (rc)
5543				error = rc;
5544		}
5545out_mmap_sem:
5546		filemap_invalidate_unlock(inode->i_mapping);
5547	}
5548
5549	if (!error) {
5550		if (inc_ivers)
5551			inode_inc_iversion(inode);
5552		setattr_copy(idmap, inode, attr);
5553		mark_inode_dirty(inode);
5554	}
5555
5556	/*
5557	 * If the call to ext4_truncate failed to get a transaction handle at
5558	 * all, we need to clean up the in-core orphan list manually.
5559	 */
5560	if (orphan && inode->i_nlink)
5561		ext4_orphan_del(NULL, inode);
5562
5563	if (!error && (ia_valid & ATTR_MODE))
5564		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565
5566err_out:
5567	if  (error)
5568		ext4_std_error(inode->i_sb, error);
5569	if (!error)
5570		error = rc;
5571	return error;
5572}
5573
5574u32 ext4_dio_alignment(struct inode *inode)
5575{
5576	if (fsverity_active(inode))
5577		return 0;
5578	if (ext4_should_journal_data(inode))
5579		return 0;
5580	if (ext4_has_inline_data(inode))
5581		return 0;
5582	if (IS_ENCRYPTED(inode)) {
5583		if (!fscrypt_dio_supported(inode))
5584			return 0;
5585		return i_blocksize(inode);
5586	}
5587	return 1; /* use the iomap defaults */
5588}
5589
5590int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592{
5593	struct inode *inode = d_inode(path->dentry);
5594	struct ext4_inode *raw_inode;
5595	struct ext4_inode_info *ei = EXT4_I(inode);
5596	unsigned int flags;
5597
5598	if ((request_mask & STATX_BTIME) &&
5599	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600		stat->result_mask |= STATX_BTIME;
5601		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603	}
5604
5605	/*
5606	 * Return the DIO alignment restrictions if requested.  We only return
5607	 * this information when requested, since on encrypted files it might
5608	 * take a fair bit of work to get if the file wasn't opened recently.
5609	 */
5610	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611		u32 dio_align = ext4_dio_alignment(inode);
5612
5613		stat->result_mask |= STATX_DIOALIGN;
5614		if (dio_align == 1) {
5615			struct block_device *bdev = inode->i_sb->s_bdev;
5616
5617			/* iomap defaults */
5618			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619			stat->dio_offset_align = bdev_logical_block_size(bdev);
5620		} else {
5621			stat->dio_mem_align = dio_align;
5622			stat->dio_offset_align = dio_align;
5623		}
5624	}
5625
5626	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628		unsigned int awu_min = 0, awu_max = 0;
5629
5630		if (ext4_inode_can_atomic_write(inode)) {
5631			awu_min = sbi->s_awu_min;
5632			awu_max = sbi->s_awu_max;
5633		}
5634
5635		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636	}
5637
5638	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639	if (flags & EXT4_APPEND_FL)
5640		stat->attributes |= STATX_ATTR_APPEND;
5641	if (flags & EXT4_COMPR_FL)
5642		stat->attributes |= STATX_ATTR_COMPRESSED;
5643	if (flags & EXT4_ENCRYPT_FL)
5644		stat->attributes |= STATX_ATTR_ENCRYPTED;
5645	if (flags & EXT4_IMMUTABLE_FL)
5646		stat->attributes |= STATX_ATTR_IMMUTABLE;
5647	if (flags & EXT4_NODUMP_FL)
5648		stat->attributes |= STATX_ATTR_NODUMP;
5649	if (flags & EXT4_VERITY_FL)
5650		stat->attributes |= STATX_ATTR_VERITY;
5651
5652	stat->attributes_mask |= (STATX_ATTR_APPEND |
5653				  STATX_ATTR_COMPRESSED |
5654				  STATX_ATTR_ENCRYPTED |
5655				  STATX_ATTR_IMMUTABLE |
5656				  STATX_ATTR_NODUMP |
5657				  STATX_ATTR_VERITY);
5658
5659	generic_fillattr(idmap, request_mask, inode, stat);
5660	return 0;
5661}
5662
5663int ext4_file_getattr(struct mnt_idmap *idmap,
5664		      const struct path *path, struct kstat *stat,
5665		      u32 request_mask, unsigned int query_flags)
5666{
5667	struct inode *inode = d_inode(path->dentry);
5668	u64 delalloc_blocks;
5669
5670	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5671
5672	/*
5673	 * If there is inline data in the inode, the inode will normally not
5674	 * have data blocks allocated (it may have an external xattr block).
5675	 * Report at least one sector for such files, so tools like tar, rsync,
5676	 * others don't incorrectly think the file is completely sparse.
5677	 */
5678	if (unlikely(ext4_has_inline_data(inode)))
5679		stat->blocks += (stat->size + 511) >> 9;
5680
5681	/*
5682	 * We can't update i_blocks if the block allocation is delayed
5683	 * otherwise in the case of system crash before the real block
5684	 * allocation is done, we will have i_blocks inconsistent with
5685	 * on-disk file blocks.
5686	 * We always keep i_blocks updated together with real
5687	 * allocation. But to not confuse with user, stat
5688	 * will return the blocks that include the delayed allocation
5689	 * blocks for this file.
5690	 */
5691	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692				   EXT4_I(inode)->i_reserved_data_blocks);
5693	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694	return 0;
5695}
5696
5697static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698				   int pextents)
5699{
5700	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701		return ext4_ind_trans_blocks(inode, lblocks);
5702	return ext4_ext_index_trans_blocks(inode, pextents);
5703}
5704
5705/*
5706 * Account for index blocks, block groups bitmaps and block group
5707 * descriptor blocks if modify datablocks and index blocks
5708 * worse case, the indexs blocks spread over different block groups
5709 *
5710 * If datablocks are discontiguous, they are possible to spread over
5711 * different block groups too. If they are contiguous, with flexbg,
5712 * they could still across block group boundary.
5713 *
5714 * Also account for superblock, inode, quota and xattr blocks
5715 */
5716static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717				  int pextents)
5718{
5719	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720	int gdpblocks;
5721	int idxblocks;
5722	int ret;
5723
5724	/*
5725	 * How many index blocks need to touch to map @lblocks logical blocks
5726	 * to @pextents physical extents?
 
 
 
 
5727	 */
5728	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729
5730	ret = idxblocks;
5731
5732	/*
5733	 * Now let's see how many group bitmaps and group descriptors need
5734	 * to account
5735	 */
5736	groups = idxblocks + pextents;
 
 
 
 
 
5737	gdpblocks = groups;
5738	if (groups > ngroups)
5739		groups = ngroups;
5740	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742
5743	/* bitmaps and block group descriptor blocks */
5744	ret += groups + gdpblocks;
5745
5746	/* Blocks for super block, inode, quota and xattr blocks */
5747	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748
5749	return ret;
5750}
5751
5752/*
5753 * Calculate the total number of credits to reserve to fit
5754 * the modification of a single pages into a single transaction,
5755 * which may include multiple chunks of block allocations.
5756 *
5757 * This could be called via ext4_write_begin()
5758 *
5759 * We need to consider the worse case, when
5760 * one new block per extent.
5761 */
5762int ext4_writepage_trans_blocks(struct inode *inode)
5763{
5764	int bpp = ext4_journal_blocks_per_page(inode);
5765	int ret;
5766
5767	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768
5769	/* Account for data blocks for journalled mode */
5770	if (ext4_should_journal_data(inode))
5771		ret += bpp;
5772	return ret;
5773}
5774
5775/*
5776 * Calculate the journal credits for a chunk of data modification.
5777 *
5778 * This is called from DIO, fallocate or whoever calling
5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780 *
5781 * journal buffers for data blocks are not included here, as DIO
5782 * and fallocate do no need to journal data buffers.
5783 */
5784int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785{
5786	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787}
5788
5789/*
5790 * The caller must have previously called ext4_reserve_inode_write().
5791 * Give this, we know that the caller already has write access to iloc->bh.
5792 */
5793int ext4_mark_iloc_dirty(handle_t *handle,
5794			 struct inode *inode, struct ext4_iloc *iloc)
5795{
5796	int err = 0;
5797
5798	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799		put_bh(iloc->bh);
5800		return -EIO;
5801	}
5802	ext4_fc_track_inode(handle, inode);
5803
5804	/* the do_update_inode consumes one bh->b_count */
5805	get_bh(iloc->bh);
5806
5807	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808	err = ext4_do_update_inode(handle, inode, iloc);
5809	put_bh(iloc->bh);
5810	return err;
5811}
5812
5813/*
5814 * On success, We end up with an outstanding reference count against
5815 * iloc->bh.  This _must_ be cleaned up later.
5816 */
5817
5818int
5819ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820			 struct ext4_iloc *iloc)
5821{
5822	int err;
5823
5824	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825		return -EIO;
5826
5827	err = ext4_get_inode_loc(inode, iloc);
5828	if (!err) {
5829		BUFFER_TRACE(iloc->bh, "get_write_access");
5830		err = ext4_journal_get_write_access(handle, inode->i_sb,
5831						    iloc->bh, EXT4_JTR_NONE);
5832		if (err) {
5833			brelse(iloc->bh);
5834			iloc->bh = NULL;
5835		}
5836	}
5837	ext4_std_error(inode->i_sb, err);
5838	return err;
5839}
5840
5841static int __ext4_expand_extra_isize(struct inode *inode,
5842				     unsigned int new_extra_isize,
5843				     struct ext4_iloc *iloc,
5844				     handle_t *handle, int *no_expand)
 
 
 
 
5845{
5846	struct ext4_inode *raw_inode;
5847	struct ext4_xattr_ibody_header *header;
5848	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849	struct ext4_inode_info *ei = EXT4_I(inode);
5850	int error;
5851
5852	/* this was checked at iget time, but double check for good measure */
5853	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854	    (ei->i_extra_isize & 3)) {
5855		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856				 ei->i_extra_isize,
5857				 EXT4_INODE_SIZE(inode->i_sb));
5858		return -EFSCORRUPTED;
5859	}
5860	if ((new_extra_isize < ei->i_extra_isize) ||
5861	    (new_extra_isize < 4) ||
5862	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863		return -EINVAL;	/* Should never happen */
5864
5865	raw_inode = ext4_raw_inode(iloc);
5866
5867	header = IHDR(inode, raw_inode);
5868
5869	/* No extended attributes present */
5870	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873		       EXT4_I(inode)->i_extra_isize, 0,
5874		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876		return 0;
5877	}
5878
5879	/*
5880	 * We may need to allocate external xattr block so we need quotas
5881	 * initialized. Here we can be called with various locks held so we
5882	 * cannot affort to initialize quotas ourselves. So just bail.
5883	 */
5884	if (dquot_initialize_needed(inode))
5885		return -EAGAIN;
5886
5887	/* try to expand with EAs present */
5888	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889					   raw_inode, handle);
5890	if (error) {
5891		/*
5892		 * Inode size expansion failed; don't try again
5893		 */
5894		*no_expand = 1;
5895	}
5896
5897	return error;
5898}
5899
5900/*
5901 * Expand an inode by new_extra_isize bytes.
5902 * Returns 0 on success or negative error number on failure.
5903 */
5904static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905					  unsigned int new_extra_isize,
5906					  struct ext4_iloc iloc,
5907					  handle_t *handle)
5908{
5909	int no_expand;
5910	int error;
5911
5912	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913		return -EOVERFLOW;
5914
5915	/*
5916	 * In nojournal mode, we can immediately attempt to expand
5917	 * the inode.  When journaled, we first need to obtain extra
5918	 * buffer credits since we may write into the EA block
5919	 * with this same handle. If journal_extend fails, then it will
5920	 * only result in a minor loss of functionality for that inode.
5921	 * If this is felt to be critical, then e2fsck should be run to
5922	 * force a large enough s_min_extra_isize.
5923	 */
5924	if (ext4_journal_extend(handle,
5925				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5926		return -ENOSPC;
5927
5928	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929		return -EBUSY;
5930
5931	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932					  handle, &no_expand);
5933	ext4_write_unlock_xattr(inode, &no_expand);
5934
5935	return error;
5936}
5937
5938int ext4_expand_extra_isize(struct inode *inode,
5939			    unsigned int new_extra_isize,
5940			    struct ext4_iloc *iloc)
5941{
5942	handle_t *handle;
5943	int no_expand;
5944	int error, rc;
5945
5946	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947		brelse(iloc->bh);
5948		return -EOVERFLOW;
5949	}
5950
5951	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953	if (IS_ERR(handle)) {
5954		error = PTR_ERR(handle);
5955		brelse(iloc->bh);
5956		return error;
5957	}
5958
5959	ext4_write_lock_xattr(inode, &no_expand);
5960
5961	BUFFER_TRACE(iloc->bh, "get_write_access");
5962	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963					      EXT4_JTR_NONE);
5964	if (error) {
5965		brelse(iloc->bh);
5966		goto out_unlock;
5967	}
5968
5969	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970					  handle, &no_expand);
5971
5972	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973	if (!error)
5974		error = rc;
5975
5976out_unlock:
5977	ext4_write_unlock_xattr(inode, &no_expand);
5978	ext4_journal_stop(handle);
5979	return error;
5980}
5981
5982/*
5983 * What we do here is to mark the in-core inode as clean with respect to inode
5984 * dirtiness (it may still be data-dirty).
5985 * This means that the in-core inode may be reaped by prune_icache
5986 * without having to perform any I/O.  This is a very good thing,
5987 * because *any* task may call prune_icache - even ones which
5988 * have a transaction open against a different journal.
5989 *
5990 * Is this cheating?  Not really.  Sure, we haven't written the
5991 * inode out, but prune_icache isn't a user-visible syncing function.
5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993 * we start and wait on commits.
 
 
 
 
 
 
 
 
5994 */
5995int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996				const char *func, unsigned int line)
5997{
5998	struct ext4_iloc iloc;
5999	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000	int err;
 
6001
6002	might_sleep();
6003	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004	err = ext4_reserve_inode_write(handle, inode, &iloc);
6005	if (err)
6006		goto out;
6007
6008	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010					       iloc, handle);
6011
6012	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013out:
6014	if (unlikely(err))
6015		ext4_error_inode_err(inode, func, line, 0, err,
6016					"mark_inode_dirty error");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6017	return err;
6018}
6019
6020/*
6021 * ext4_dirty_inode() is called from __mark_inode_dirty()
6022 *
6023 * We're really interested in the case where a file is being extended.
6024 * i_size has been changed by generic_commit_write() and we thus need
6025 * to include the updated inode in the current transaction.
6026 *
6027 * Also, dquot_alloc_block() will always dirty the inode when blocks
6028 * are allocated to the file.
6029 *
6030 * If the inode is marked synchronous, we don't honour that here - doing
6031 * so would cause a commit on atime updates, which we don't bother doing.
6032 * We handle synchronous inodes at the highest possible level.
6033 */
6034void ext4_dirty_inode(struct inode *inode, int flags)
6035{
6036	handle_t *handle;
6037
6038	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039	if (IS_ERR(handle))
6040		return;
 
6041	ext4_mark_inode_dirty(handle, inode);
 
6042	ext4_journal_stop(handle);
 
 
6043}
6044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046{
6047	journal_t *journal;
6048	handle_t *handle;
6049	int err;
6050	int alloc_ctx;
6051
6052	/*
6053	 * We have to be very careful here: changing a data block's
6054	 * journaling status dynamically is dangerous.  If we write a
6055	 * data block to the journal, change the status and then delete
6056	 * that block, we risk forgetting to revoke the old log record
6057	 * from the journal and so a subsequent replay can corrupt data.
6058	 * So, first we make sure that the journal is empty and that
6059	 * nobody is changing anything.
6060	 */
6061
6062	journal = EXT4_JOURNAL(inode);
6063	if (!journal)
6064		return 0;
6065	if (is_journal_aborted(journal))
6066		return -EROFS;
6067
6068	/* Wait for all existing dio workers */
6069	inode_dio_wait(inode);
6070
6071	/*
6072	 * Before flushing the journal and switching inode's aops, we have
6073	 * to flush all dirty data the inode has. There can be outstanding
6074	 * delayed allocations, there can be unwritten extents created by
6075	 * fallocate or buffered writes in dioread_nolock mode covered by
6076	 * dirty data which can be converted only after flushing the dirty
6077	 * data (and journalled aops don't know how to handle these cases).
6078	 */
6079	if (val) {
6080		filemap_invalidate_lock(inode->i_mapping);
6081		err = filemap_write_and_wait(inode->i_mapping);
6082		if (err < 0) {
6083			filemap_invalidate_unlock(inode->i_mapping);
6084			return err;
6085		}
6086	}
6087
6088	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089	jbd2_journal_lock_updates(journal);
 
6090
6091	/*
6092	 * OK, there are no updates running now, and all cached data is
6093	 * synced to disk.  We are now in a completely consistent state
6094	 * which doesn't have anything in the journal, and we know that
6095	 * no filesystem updates are running, so it is safe to modify
6096	 * the inode's in-core data-journaling state flag now.
6097	 */
6098
6099	if (val)
6100		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101	else {
6102		err = jbd2_journal_flush(journal, 0);
6103		if (err < 0) {
6104			jbd2_journal_unlock_updates(journal);
6105			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6106			return err;
6107		}
6108		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109	}
6110	ext4_set_aops(inode);
6111
6112	jbd2_journal_unlock_updates(journal);
6113	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114
6115	if (val)
6116		filemap_invalidate_unlock(inode->i_mapping);
6117
6118	/* Finally we can mark the inode as dirty. */
6119
6120	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121	if (IS_ERR(handle))
6122		return PTR_ERR(handle);
6123
6124	ext4_fc_mark_ineligible(inode->i_sb,
6125		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126	err = ext4_mark_inode_dirty(handle, inode);
6127	ext4_handle_sync(handle);
6128	ext4_journal_stop(handle);
6129	ext4_std_error(inode->i_sb, err);
6130
6131	return err;
6132}
6133
6134static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135			    struct buffer_head *bh)
6136{
6137	return !buffer_mapped(bh);
6138}
6139
6140vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141{
6142	struct vm_area_struct *vma = vmf->vma;
6143	struct folio *folio = page_folio(vmf->page);
6144	loff_t size;
6145	unsigned long len;
6146	int err;
6147	vm_fault_t ret;
6148	struct file *file = vma->vm_file;
6149	struct inode *inode = file_inode(file);
6150	struct address_space *mapping = inode->i_mapping;
6151	handle_t *handle;
6152	get_block_t *get_block;
6153	int retries = 0;
6154
6155	if (unlikely(IS_IMMUTABLE(inode)))
6156		return VM_FAULT_SIGBUS;
6157
6158	sb_start_pagefault(inode->i_sb);
6159	file_update_time(vma->vm_file);
6160
6161	filemap_invalidate_lock_shared(mapping);
6162
6163	err = ext4_convert_inline_data(inode);
6164	if (err)
6165		goto out_ret;
6166
6167	/*
6168	 * On data journalling we skip straight to the transaction handle:
6169	 * there's no delalloc; page truncated will be checked later; the
6170	 * early return w/ all buffers mapped (calculates size/len) can't
6171	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172	 */
6173	if (ext4_should_journal_data(inode))
6174		goto retry_alloc;
6175
6176	/* Delalloc case is easy... */
6177	if (test_opt(inode->i_sb, DELALLOC) &&
 
6178	    !ext4_nonda_switch(inode->i_sb)) {
6179		do {
6180			err = block_page_mkwrite(vma, vmf,
6181						   ext4_da_get_block_prep);
6182		} while (err == -ENOSPC &&
6183		       ext4_should_retry_alloc(inode->i_sb, &retries));
6184		goto out_ret;
6185	}
6186
6187	folio_lock(folio);
6188	size = i_size_read(inode);
6189	/* Page got truncated from under us? */
6190	if (folio->mapping != mapping || folio_pos(folio) > size) {
6191		folio_unlock(folio);
6192		ret = VM_FAULT_NOPAGE;
6193		goto out;
6194	}
6195
6196	len = folio_size(folio);
6197	if (folio_pos(folio) + len > size)
6198		len = size - folio_pos(folio);
 
6199	/*
6200	 * Return if we have all the buffers mapped. This avoids the need to do
6201	 * journal_start/journal_stop which can block and take a long time
6202	 *
6203	 * This cannot be done for data journalling, as we have to add the
6204	 * inode to the transaction's list to writeprotect pages on commit.
6205	 */
6206	if (folio_buffers(folio)) {
6207		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208					    0, len, NULL,
6209					    ext4_bh_unmapped)) {
6210			/* Wait so that we don't change page under IO */
6211			folio_wait_stable(folio);
6212			ret = VM_FAULT_LOCKED;
6213			goto out;
6214		}
6215	}
6216	folio_unlock(folio);
6217	/* OK, we need to fill the hole... */
6218	if (ext4_should_dioread_nolock(inode))
6219		get_block = ext4_get_block_unwritten;
6220	else
6221		get_block = ext4_get_block;
6222retry_alloc:
6223	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224				    ext4_writepage_trans_blocks(inode));
6225	if (IS_ERR(handle)) {
6226		ret = VM_FAULT_SIGBUS;
6227		goto out;
6228	}
6229	/*
6230	 * Data journalling can't use block_page_mkwrite() because it
6231	 * will set_buffer_dirty() before do_journal_get_write_access()
6232	 * thus might hit warning messages for dirty metadata buffers.
6233	 */
6234	if (!ext4_should_journal_data(inode)) {
6235		err = block_page_mkwrite(vma, vmf, get_block);
6236	} else {
6237		folio_lock(folio);
6238		size = i_size_read(inode);
6239		/* Page got truncated from under us? */
6240		if (folio->mapping != mapping || folio_pos(folio) > size) {
6241			ret = VM_FAULT_NOPAGE;
6242			goto out_error;
6243		}
6244
6245		len = folio_size(folio);
6246		if (folio_pos(folio) + len > size)
6247			len = size - folio_pos(folio);
6248
6249		err = ext4_block_write_begin(handle, folio, 0, len,
6250					     ext4_get_block);
6251		if (!err) {
6252			ret = VM_FAULT_SIGBUS;
6253			if (ext4_journal_folio_buffers(handle, folio, len))
6254				goto out_error;
6255		} else {
6256			folio_unlock(folio);
6257		}
 
6258	}
6259	ext4_journal_stop(handle);
6260	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261		goto retry_alloc;
6262out_ret:
6263	ret = vmf_fs_error(err);
6264out:
6265	filemap_invalidate_unlock_shared(mapping);
6266	sb_end_pagefault(inode->i_sb);
6267	return ret;
6268out_error:
6269	folio_unlock(folio);
6270	ext4_journal_stop(handle);
6271	goto out;
6272}
v3.1
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/fs.h>
 
  23#include <linux/time.h>
  24#include <linux/jbd2.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
 
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/ratelimit.h>
 
 
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "ext4_extents.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52static inline int ext4_begin_ordered_truncate(struct inode *inode,
  53					      loff_t new_size)
  54{
  55	trace_ext4_begin_ordered_truncate(inode, new_size);
  56	/*
  57	 * If jinode is zero, then we never opened the file for
  58	 * writing, so there's no need to call
  59	 * jbd2_journal_begin_ordered_truncate() since there's no
  60	 * outstanding writes we need to flush.
  61	 */
  62	if (!EXT4_I(inode)->jinode)
  63		return 0;
  64	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  65						   EXT4_I(inode)->jinode,
  66						   new_size);
  67}
  68
  69static void ext4_invalidatepage(struct page *page, unsigned long offset);
  70static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  71				   struct buffer_head *bh_result, int create);
  72static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  73static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  74static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  75static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
  76
  77/*
  78 * Test whether an inode is a fast symlink.
 
  79 */
  80static int ext4_inode_is_fast_symlink(struct inode *inode)
  81{
  82	int ea_blocks = EXT4_I(inode)->i_file_acl ?
  83		(inode->i_sb->s_blocksize >> 9) : 0;
 
  84
  85	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  86}
  87
  88/*
  89 * Restart the transaction associated with *handle.  This does a commit,
  90 * so before we call here everything must be consistently dirtied against
  91 * this transaction.
  92 */
  93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  94				 int nblocks)
  95{
  96	int ret;
  97
  98	/*
  99	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 100	 * moment, get_block can be called only for blocks inside i_size since
 101	 * page cache has been already dropped and writes are blocked by
 102	 * i_mutex. So we can safely drop the i_data_sem here.
 103	 */
 104	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 105	jbd_debug(2, "restarting handle %p\n", handle);
 106	up_write(&EXT4_I(inode)->i_data_sem);
 107	ret = ext4_journal_restart(handle, nblocks);
 108	down_write(&EXT4_I(inode)->i_data_sem);
 109	ext4_discard_preallocations(inode);
 110
 111	return ret;
 112}
 113
 114/*
 115 * Called at the last iput() if i_nlink is zero.
 116 */
 117void ext4_evict_inode(struct inode *inode)
 118{
 119	handle_t *handle;
 120	int err;
 
 
 
 
 
 
 
 
 121
 122	trace_ext4_evict_inode(inode);
 123
 124	ext4_ioend_wait(inode);
 125
 126	if (inode->i_nlink) {
 127		/*
 128		 * When journalling data dirty buffers are tracked only in the
 129		 * journal. So although mm thinks everything is clean and
 130		 * ready for reaping the inode might still have some pages to
 131		 * write in the running transaction or waiting to be
 132		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 133		 * (via truncate_inode_pages()) to discard these buffers can
 134		 * cause data loss. Also even if we did not discard these
 135		 * buffers, we would have no way to find them after the inode
 136		 * is reaped and thus user could see stale data if he tries to
 137		 * read them before the transaction is checkpointed. So be
 138		 * careful and force everything to disk here... We use
 139		 * ei->i_datasync_tid to store the newest transaction
 140		 * containing inode's data.
 141		 *
 142		 * Note that directories do not have this problem because they
 143		 * don't use page cache.
 144		 */
 145		if (ext4_should_journal_data(inode) &&
 146		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 147			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 148			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 149
 150			jbd2_log_start_commit(journal, commit_tid);
 151			jbd2_log_wait_commit(journal, commit_tid);
 152			filemap_write_and_wait(&inode->i_data);
 153		}
 154		truncate_inode_pages(&inode->i_data, 0);
 155		goto no_delete;
 156	}
 157
 158	if (!is_bad_inode(inode))
 159		dquot_initialize(inode);
 
 160
 161	if (ext4_should_order_data(inode))
 162		ext4_begin_ordered_truncate(inode, 0);
 163	truncate_inode_pages(&inode->i_data, 0);
 
 
 
 
 
 
 
 
 
 
 164
 165	if (is_bad_inode(inode))
 166		goto no_delete;
 
 
 
 
 
 
 
 
 
 
 
 167
 168	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 
 
 
 
 
 169	if (IS_ERR(handle)) {
 170		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 171		/*
 172		 * If we're going to skip the normal cleanup, we still need to
 173		 * make sure that the in-core orphan linked list is properly
 174		 * cleaned up.
 175		 */
 176		ext4_orphan_del(NULL, inode);
 
 
 177		goto no_delete;
 178	}
 179
 180	if (IS_SYNC(inode))
 181		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 182	inode->i_size = 0;
 183	err = ext4_mark_inode_dirty(handle, inode);
 184	if (err) {
 185		ext4_warning(inode->i_sb,
 186			     "couldn't mark inode dirty (err %d)", err);
 187		goto stop_handle;
 188	}
 189	if (inode->i_blocks)
 190		ext4_truncate(inode);
 
 
 
 
 
 
 
 191
 192	/*
 193	 * ext4_ext_truncate() doesn't reserve any slop when it
 194	 * restarts journal transactions; therefore there may not be
 195	 * enough credits left in the handle to remove the inode from
 196	 * the orphan list and set the dtime field.
 197	 */
 198	if (!ext4_handle_has_enough_credits(handle, 3)) {
 199		err = ext4_journal_extend(handle, 3);
 200		if (err > 0)
 201			err = ext4_journal_restart(handle, 3);
 202		if (err != 0) {
 203			ext4_warning(inode->i_sb,
 204				     "couldn't extend journal (err %d)", err);
 205		stop_handle:
 206			ext4_journal_stop(handle);
 207			ext4_orphan_del(NULL, inode);
 208			goto no_delete;
 209		}
 210	}
 211
 212	/*
 213	 * Kill off the orphan record which ext4_truncate created.
 214	 * AKPM: I think this can be inside the above `if'.
 215	 * Note that ext4_orphan_del() has to be able to cope with the
 216	 * deletion of a non-existent orphan - this is because we don't
 217	 * know if ext4_truncate() actually created an orphan record.
 218	 * (Well, we could do this if we need to, but heck - it works)
 219	 */
 220	ext4_orphan_del(handle, inode);
 221	EXT4_I(inode)->i_dtime	= get_seconds();
 222
 223	/*
 224	 * One subtle ordering requirement: if anything has gone wrong
 225	 * (transaction abort, IO errors, whatever), then we can still
 226	 * do these next steps (the fs will already have been marked as
 227	 * having errors), but we can't free the inode if the mark_dirty
 228	 * fails.
 229	 */
 230	if (ext4_mark_inode_dirty(handle, inode))
 231		/* If that failed, just do the required in-core inode clear. */
 232		ext4_clear_inode(inode);
 233	else
 234		ext4_free_inode(handle, inode);
 235	ext4_journal_stop(handle);
 
 
 
 236	return;
 237no_delete:
 
 
 
 
 
 
 
 
 238	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 239}
 240
 241#ifdef CONFIG_QUOTA
 242qsize_t *ext4_get_reserved_space(struct inode *inode)
 243{
 244	return &EXT4_I(inode)->i_reserved_quota;
 245}
 246#endif
 247
 248/*
 249 * Calculate the number of metadata blocks need to reserve
 250 * to allocate a block located at @lblock
 251 */
 252static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 253{
 254	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 255		return ext4_ext_calc_metadata_amount(inode, lblock);
 256
 257	return ext4_ind_calc_metadata_amount(inode, lblock);
 258}
 259
 260/*
 261 * Called with i_data_sem down, which is important since we can call
 262 * ext4_discard_preallocations() from here.
 263 */
 264void ext4_da_update_reserve_space(struct inode *inode,
 265					int used, int quota_claim)
 266{
 267	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 268	struct ext4_inode_info *ei = EXT4_I(inode);
 269
 270	spin_lock(&ei->i_block_reservation_lock);
 271	trace_ext4_da_update_reserve_space(inode, used);
 272	if (unlikely(used > ei->i_reserved_data_blocks)) {
 273		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 274			 "with only %d reserved data blocks\n",
 275			 __func__, inode->i_ino, used,
 276			 ei->i_reserved_data_blocks);
 277		WARN_ON(1);
 278		used = ei->i_reserved_data_blocks;
 279	}
 280
 281	/* Update per-inode reservations */
 282	ei->i_reserved_data_blocks -= used;
 283	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 284	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 285			   used + ei->i_allocated_meta_blocks);
 286	ei->i_allocated_meta_blocks = 0;
 287
 288	if (ei->i_reserved_data_blocks == 0) {
 289		/*
 290		 * We can release all of the reserved metadata blocks
 291		 * only when we have written all of the delayed
 292		 * allocation blocks.
 293		 */
 294		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 295				   ei->i_reserved_meta_blocks);
 296		ei->i_reserved_meta_blocks = 0;
 297		ei->i_da_metadata_calc_len = 0;
 298	}
 299	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 300
 301	/* Update quota subsystem for data blocks */
 302	if (quota_claim)
 303		dquot_claim_block(inode, used);
 304	else {
 305		/*
 306		 * We did fallocate with an offset that is already delayed
 307		 * allocated. So on delayed allocated writeback we should
 308		 * not re-claim the quota for fallocated blocks.
 309		 */
 310		dquot_release_reservation_block(inode, used);
 311	}
 312
 313	/*
 314	 * If we have done all the pending block allocations and if
 315	 * there aren't any writers on the inode, we can discard the
 316	 * inode's preallocations.
 317	 */
 318	if ((ei->i_reserved_data_blocks == 0) &&
 319	    (atomic_read(&inode->i_writecount) == 0))
 320		ext4_discard_preallocations(inode);
 321}
 322
 323static int __check_block_validity(struct inode *inode, const char *func,
 324				unsigned int line,
 325				struct ext4_map_blocks *map)
 326{
 327	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 328				   map->m_len)) {
 
 
 
 329		ext4_error_inode(inode, func, line, map->m_pblk,
 330				 "lblock %lu mapped to illegal pblock "
 331				 "(length %d)", (unsigned long) map->m_lblk,
 332				 map->m_len);
 333		return -EIO;
 334	}
 335	return 0;
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338#define check_block_validity(inode, map)	\
 339	__check_block_validity((inode), __func__, __LINE__, (map))
 340
 341/*
 342 * Return the number of contiguous dirty pages in a given inode
 343 * starting at page frame idx.
 344 */
 345static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 346				    unsigned int max_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347{
 348	struct address_space *mapping = inode->i_mapping;
 349	pgoff_t	index;
 350	struct pagevec pvec;
 351	pgoff_t num = 0;
 352	int i, nr_pages, done = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353
 354	if (max_pages == 0)
 355		return 0;
 356	pagevec_init(&pvec, 0);
 357	while (!done) {
 358		index = idx;
 359		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 360					      PAGECACHE_TAG_DIRTY,
 361					      (pgoff_t)PAGEVEC_SIZE);
 362		if (nr_pages == 0)
 363			break;
 364		for (i = 0; i < nr_pages; i++) {
 365			struct page *page = pvec.pages[i];
 366			struct buffer_head *bh, *head;
 367
 368			lock_page(page);
 369			if (unlikely(page->mapping != mapping) ||
 370			    !PageDirty(page) ||
 371			    PageWriteback(page) ||
 372			    page->index != idx) {
 373				done = 1;
 374				unlock_page(page);
 375				break;
 376			}
 377			if (page_has_buffers(page)) {
 378				bh = head = page_buffers(page);
 379				do {
 380					if (!buffer_delay(bh) &&
 381					    !buffer_unwritten(bh))
 382						done = 1;
 383					bh = bh->b_this_page;
 384				} while (!done && (bh != head));
 385			}
 386			unlock_page(page);
 387			if (done)
 388				break;
 389			idx++;
 390			num++;
 391			if (num >= max_pages) {
 392				done = 1;
 393				break;
 394			}
 395		}
 396		pagevec_release(&pvec);
 397	}
 398	return num;
 
 
 
 
 
 
 399}
 400
 401/*
 402 * The ext4_map_blocks() function tries to look up the requested blocks,
 403 * and returns if the blocks are already mapped.
 404 *
 405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 406 * and store the allocated blocks in the result buffer head and mark it
 407 * mapped.
 408 *
 409 * If file type is extents based, it will call ext4_ext_map_blocks(),
 410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 411 * based files
 412 *
 413 * On success, it returns the number of blocks being mapped or allocate.
 414 * if create==0 and the blocks are pre-allocated and uninitialized block,
 415 * the result buffer head is unmapped. If the create ==1, it will make sure
 416 * the buffer head is mapped.
 417 *
 418 * It returns 0 if plain look up failed (blocks have not been allocated), in
 419 * that casem, buffer head is unmapped
 
 420 *
 421 * It returns the error in case of allocation failure.
 422 */
 423int ext4_map_blocks(handle_t *handle, struct inode *inode,
 424		    struct ext4_map_blocks *map, int flags)
 425{
 
 426	int retval;
 
 
 
 
 
 
 427
 428	map->m_flags = 0;
 429	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 430		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 431		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432	/*
 433	 * Try to see if we can get the block without requesting a new
 434	 * file system block.
 435	 */
 436	down_read((&EXT4_I(inode)->i_data_sem));
 437	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 438		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 439	} else {
 440		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 441	}
 442	up_read((&EXT4_I(inode)->i_data_sem));
 443
 
 444	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 445		int ret = check_block_validity(inode, map);
 446		if (ret != 0)
 447			return ret;
 448	}
 449
 450	/* If it is only a block(s) look up */
 451	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 452		return retval;
 453
 454	/*
 455	 * Returns if the blocks have already allocated
 456	 *
 457	 * Note that if blocks have been preallocated
 458	 * ext4_ext_get_block() returns th create = 0
 459	 * with buffer head unmapped.
 460	 */
 461	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 462		return retval;
 463
 464	/*
 465	 * When we call get_blocks without the create flag, the
 466	 * BH_Unwritten flag could have gotten set if the blocks
 467	 * requested were part of a uninitialized extent.  We need to
 468	 * clear this flag now that we are committed to convert all or
 469	 * part of the uninitialized extent to be an initialized
 470	 * extent.  This is because we need to avoid the combination
 471	 * of BH_Unwritten and BH_Mapped flags being simultaneously
 472	 * set on the buffer_head.
 473	 */
 474	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 475
 476	/*
 477	 * New blocks allocate and/or writing to uninitialized extent
 478	 * will possibly result in updating i_data, so we take
 479	 * the write lock of i_data_sem, and call get_blocks()
 480	 * with create == 1 flag.
 481	 */
 482	down_write((&EXT4_I(inode)->i_data_sem));
 483
 484	/*
 485	 * if the caller is from delayed allocation writeout path
 486	 * we have already reserved fs blocks for allocation
 487	 * let the underlying get_block() function know to
 488	 * avoid double accounting
 489	 */
 490	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 491		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 492	/*
 493	 * We need to check for EXT4 here because migrate
 494	 * could have changed the inode type in between
 495	 */
 496	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 497		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 498	} else {
 499		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 500
 501		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 502			/*
 503			 * We allocated new blocks which will result in
 504			 * i_data's format changing.  Force the migrate
 505			 * to fail by clearing migrate flags
 506			 */
 507			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 508		}
 509
 510		/*
 511		 * Update reserved blocks/metadata blocks after successful
 512		 * block allocation which had been deferred till now. We don't
 513		 * support fallocate for non extent files. So we can update
 514		 * reserve space here.
 515		 */
 516		if ((retval > 0) &&
 517			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 518			ext4_da_update_reserve_space(inode, retval, 1);
 519	}
 520	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 521		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 522
 523	up_write((&EXT4_I(inode)->i_data_sem));
 524	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 525		int ret = check_block_validity(inode, map);
 526		if (ret != 0)
 527			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	}
 
 
 
 
 
 
 529	return retval;
 530}
 531
 532/* Maximum number of blocks we map for direct IO at once. */
 533#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535static int _ext4_get_block(struct inode *inode, sector_t iblock,
 536			   struct buffer_head *bh, int flags)
 537{
 538	handle_t *handle = ext4_journal_current_handle();
 539	struct ext4_map_blocks map;
 540	int ret = 0, started = 0;
 541	int dio_credits;
 
 
 542
 543	map.m_lblk = iblock;
 544	map.m_len = bh->b_size >> inode->i_blkbits;
 545
 546	if (flags && !handle) {
 547		/* Direct IO write... */
 548		if (map.m_len > DIO_MAX_BLOCKS)
 549			map.m_len = DIO_MAX_BLOCKS;
 550		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 551		handle = ext4_journal_start(inode, dio_credits);
 552		if (IS_ERR(handle)) {
 553			ret = PTR_ERR(handle);
 554			return ret;
 555		}
 556		started = 1;
 557	}
 558
 559	ret = ext4_map_blocks(handle, inode, &map, flags);
 560	if (ret > 0) {
 561		map_bh(bh, inode->i_sb, map.m_pblk);
 562		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 563		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 564		ret = 0;
 
 
 
 565	}
 566	if (started)
 567		ext4_journal_stop(handle);
 568	return ret;
 569}
 570
 571int ext4_get_block(struct inode *inode, sector_t iblock,
 572		   struct buffer_head *bh, int create)
 573{
 574	return _ext4_get_block(inode, iblock, bh,
 575			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 576}
 577
 578/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579 * `handle' can be NULL if create is zero
 580 */
 581struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 582				ext4_lblk_t block, int create, int *errp)
 583{
 584	struct ext4_map_blocks map;
 585	struct buffer_head *bh;
 586	int fatal = 0, err;
 
 
 587
 588	J_ASSERT(handle != NULL || create == 0);
 
 
 589
 590	map.m_lblk = block;
 591	map.m_len = 1;
 592	err = ext4_map_blocks(handle, inode, &map,
 593			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 594
 
 
 595	if (err < 0)
 596		*errp = err;
 597	if (err <= 0)
 598		return NULL;
 599	*errp = 0;
 600
 601	bh = sb_getblk(inode->i_sb, map.m_pblk);
 602	if (!bh) {
 603		*errp = -EIO;
 604		return NULL;
 605	}
 
 
 
 
 
 606	if (map.m_flags & EXT4_MAP_NEW) {
 607		J_ASSERT(create != 0);
 608		J_ASSERT(handle != NULL);
 
 609
 610		/*
 611		 * Now that we do not always journal data, we should
 612		 * keep in mind whether this should always journal the
 613		 * new buffer as metadata.  For now, regular file
 614		 * writes use ext4_get_block instead, so it's not a
 615		 * problem.
 616		 */
 617		lock_buffer(bh);
 618		BUFFER_TRACE(bh, "call get_create_access");
 619		fatal = ext4_journal_get_create_access(handle, bh);
 620		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 
 621			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 622			set_buffer_uptodate(bh);
 623		}
 624		unlock_buffer(bh);
 625		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 626		err = ext4_handle_dirty_metadata(handle, inode, bh);
 627		if (!fatal)
 628			fatal = err;
 629	} else {
 630		BUFFER_TRACE(bh, "not a new buffer");
 631	}
 632	if (fatal) {
 633		*errp = fatal;
 634		brelse(bh);
 635		bh = NULL;
 636	}
 637	return bh;
 
 
 
 638}
 639
 640struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 641			       ext4_lblk_t block, int create, int *err)
 642{
 643	struct buffer_head *bh;
 
 644
 645	bh = ext4_getblk(handle, inode, block, create, err);
 646	if (!bh)
 647		return bh;
 648	if (buffer_uptodate(bh))
 649		return bh;
 650	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 651	wait_on_buffer(bh);
 652	if (buffer_uptodate(bh))
 653		return bh;
 654	put_bh(bh);
 655	*err = -EIO;
 656	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657}
 658
 659static int walk_page_buffers(handle_t *handle,
 660			     struct buffer_head *head,
 661			     unsigned from,
 662			     unsigned to,
 663			     int *partial,
 664			     int (*fn)(handle_t *handle,
 665				       struct buffer_head *bh))
 666{
 667	struct buffer_head *bh;
 668	unsigned block_start, block_end;
 669	unsigned blocksize = head->b_size;
 670	int err, ret = 0;
 671	struct buffer_head *next;
 672
 673	for (bh = head, block_start = 0;
 674	     ret == 0 && (bh != head || !block_start);
 675	     block_start = block_end, bh = next) {
 676		next = bh->b_this_page;
 677		block_end = block_start + blocksize;
 678		if (block_end <= from || block_start >= to) {
 679			if (partial && !buffer_uptodate(bh))
 680				*partial = 1;
 681			continue;
 682		}
 683		err = (*fn)(handle, bh);
 684		if (!ret)
 685			ret = err;
 686	}
 687	return ret;
 688}
 689
 690/*
 691 * To preserve ordering, it is essential that the hole instantiation and
 692 * the data write be encapsulated in a single transaction.  We cannot
 693 * close off a transaction and start a new one between the ext4_get_block()
 694 * and the commit_write().  So doing the jbd2_journal_start at the start of
 695 * prepare_write() is the right place.
 696 *
 697 * Also, this function can nest inside ext4_writepage() ->
 698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 699 * has generated enough buffer credits to do the whole page.  So we won't
 700 * block on the journal in that case, which is good, because the caller may
 701 * be PF_MEMALLOC.
 702 *
 703 * By accident, ext4 can be reentered when a transaction is open via
 704 * quota file writes.  If we were to commit the transaction while thus
 705 * reentered, there can be a deadlock - we would be holding a quota
 706 * lock, and the commit would never complete if another thread had a
 707 * transaction open and was blocking on the quota lock - a ranking
 708 * violation.
 709 *
 710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 711 * will _not_ run commit under these circumstances because handle->h_ref
 712 * is elevated.  We'll still have enough credits for the tiny quotafile
 713 * write.
 714 */
 715static int do_journal_get_write_access(handle_t *handle,
 716				       struct buffer_head *bh)
 717{
 718	int dirty = buffer_dirty(bh);
 719	int ret;
 
 720
 
 
 
 721	if (!buffer_mapped(bh) || buffer_freed(bh))
 722		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723	/*
 724	 * __block_write_begin() could have dirtied some buffers. Clean
 725	 * the dirty bit as jbd2_journal_get_write_access() could complain
 726	 * otherwise about fs integrity issues. Setting of the dirty bit
 727	 * by __block_write_begin() isn't a real problem here as we clear
 728	 * the bit before releasing a page lock and thus writeback cannot
 729	 * ever write the buffer.
 730	 */
 731	if (dirty)
 732		clear_buffer_dirty(bh);
 733	ret = ext4_journal_get_write_access(handle, bh);
 734	if (!ret && dirty)
 735		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 736	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737}
 738
 739static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 740		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 741static int ext4_write_begin(struct file *file, struct address_space *mapping,
 742			    loff_t pos, unsigned len, unsigned flags,
 743			    struct page **pagep, void **fsdata)
 744{
 745	struct inode *inode = mapping->host;
 746	int ret, needed_blocks;
 747	handle_t *handle;
 748	int retries = 0;
 749	struct page *page;
 750	pgoff_t index;
 751	unsigned from, to;
 752
 753	trace_ext4_write_begin(inode, pos, len, flags);
 
 
 
 754	/*
 755	 * Reserve one block more for addition to orphan list in case
 756	 * we allocate blocks but write fails for some reason
 757	 */
 758	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 759	index = pos >> PAGE_CACHE_SHIFT;
 760	from = pos & (PAGE_CACHE_SIZE - 1);
 761	to = from + len;
 762
 763retry:
 764	handle = ext4_journal_start(inode, needed_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765	if (IS_ERR(handle)) {
 766		ret = PTR_ERR(handle);
 767		goto out;
 768	}
 769
 770	/* We cannot recurse into the filesystem as the transaction is already
 771	 * started */
 772	flags |= AOP_FLAG_NOFS;
 773
 774	page = grab_cache_page_write_begin(mapping, index, flags);
 775	if (!page) {
 776		ext4_journal_stop(handle);
 777		ret = -ENOMEM;
 778		goto out;
 779	}
 780	*pagep = page;
 
 781
 782	if (ext4_should_dioread_nolock(inode))
 783		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 784	else
 785		ret = __block_write_begin(page, pos, len, ext4_get_block);
 786
 787	if (!ret && ext4_should_journal_data(inode)) {
 788		ret = walk_page_buffers(handle, page_buffers(page),
 789				from, to, NULL, do_journal_get_write_access);
 
 790	}
 791
 792	if (ret) {
 793		unlock_page(page);
 794		page_cache_release(page);
 
 
 795		/*
 796		 * __block_write_begin may have instantiated a few blocks
 797		 * outside i_size.  Trim these off again. Don't need
 798		 * i_size_read because we hold i_mutex.
 799		 *
 800		 * Add inode to orphan list in case we crash before
 801		 * truncate finishes
 802		 */
 803		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 804			ext4_orphan_add(handle, inode);
 805
 806		ext4_journal_stop(handle);
 807		if (pos + len > inode->i_size) {
 808			ext4_truncate_failed_write(inode);
 809			/*
 810			 * If truncate failed early the inode might
 811			 * still be on the orphan list; we need to
 812			 * make sure the inode is removed from the
 813			 * orphan list in that case.
 814			 */
 815			if (inode->i_nlink)
 816				ext4_orphan_del(NULL, inode);
 817		}
 
 
 
 
 
 
 818	}
 819
 820	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 821		goto retry;
 822out:
 823	return ret;
 824}
 825
 826/* For write_end() in data=journal mode */
 827static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 
 828{
 
 829	if (!buffer_mapped(bh) || buffer_freed(bh))
 830		return 0;
 831	set_buffer_uptodate(bh);
 832	return ext4_handle_dirty_metadata(handle, NULL, bh);
 833}
 834
 835static int ext4_generic_write_end(struct file *file,
 836				  struct address_space *mapping,
 837				  loff_t pos, unsigned len, unsigned copied,
 838				  struct page *page, void *fsdata)
 839{
 840	int i_size_changed = 0;
 841	struct inode *inode = mapping->host;
 842	handle_t *handle = ext4_journal_current_handle();
 843
 844	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 845
 846	/*
 847	 * No need to use i_size_read() here, the i_size
 848	 * cannot change under us because we hold i_mutex.
 849	 *
 850	 * But it's important to update i_size while still holding page lock:
 851	 * page writeout could otherwise come in and zero beyond i_size.
 852	 */
 853	if (pos + copied > inode->i_size) {
 854		i_size_write(inode, pos + copied);
 855		i_size_changed = 1;
 856	}
 857
 858	if (pos + copied >  EXT4_I(inode)->i_disksize) {
 859		/* We need to mark inode dirty even if
 860		 * new_i_size is less that inode->i_size
 861		 * bu greater than i_disksize.(hint delalloc)
 862		 */
 863		ext4_update_i_disksize(inode, (pos + copied));
 864		i_size_changed = 1;
 865	}
 866	unlock_page(page);
 867	page_cache_release(page);
 868
 869	/*
 870	 * Don't mark the inode dirty under page lock. First, it unnecessarily
 871	 * makes the holding time of page lock longer. Second, it forces lock
 872	 * ordering of page lock and transaction start for journaling
 873	 * filesystems.
 874	 */
 875	if (i_size_changed)
 876		ext4_mark_inode_dirty(handle, inode);
 877
 878	return copied;
 879}
 880
 881/*
 882 * We need to pick up the new inode size which generic_commit_write gave us
 883 * `file' can be NULL - eg, when called from page_symlink().
 884 *
 885 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 886 * buffers are managed internally.
 887 */
 888static int ext4_ordered_write_end(struct file *file,
 889				  struct address_space *mapping,
 890				  loff_t pos, unsigned len, unsigned copied,
 891				  struct page *page, void *fsdata)
 892{
 893	handle_t *handle = ext4_journal_current_handle();
 894	struct inode *inode = mapping->host;
 
 895	int ret = 0, ret2;
 
 
 896
 897	trace_ext4_ordered_write_end(inode, pos, len, copied);
 898	ret = ext4_jbd2_file_inode(handle, inode);
 899
 900	if (ret == 0) {
 901		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 902							page, fsdata);
 903		copied = ret2;
 904		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 905			/* if we have allocated more blocks and copied
 906			 * less. We will have blocks allocated outside
 907			 * inode->i_size. So truncate them
 908			 */
 909			ext4_orphan_add(handle, inode);
 910		if (ret2 < 0)
 911			ret = ret2;
 912	}
 913	ret2 = ext4_journal_stop(handle);
 914	if (!ret)
 915		ret = ret2;
 916
 917	if (pos + len > inode->i_size) {
 918		ext4_truncate_failed_write(inode);
 919		/*
 920		 * If truncate failed early the inode might still be
 921		 * on the orphan list; we need to make sure the inode
 922		 * is removed from the orphan list in that case.
 923		 */
 924		if (inode->i_nlink)
 925			ext4_orphan_del(NULL, inode);
 926	}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928
 929	return ret ? ret : copied;
 930}
 931
 932static int ext4_writeback_write_end(struct file *file,
 933				    struct address_space *mapping,
 934				    loff_t pos, unsigned len, unsigned copied,
 935				    struct page *page, void *fsdata)
 936{
 937	handle_t *handle = ext4_journal_current_handle();
 938	struct inode *inode = mapping->host;
 939	int ret = 0, ret2;
 940
 941	trace_ext4_writeback_write_end(inode, pos, len, copied);
 942	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
 943							page, fsdata);
 944	copied = ret2;
 945	if (pos + len > inode->i_size && ext4_can_truncate(inode))
 946		/* if we have allocated more blocks and copied
 947		 * less. We will have blocks allocated outside
 948		 * inode->i_size. So truncate them
 949		 */
 950		ext4_orphan_add(handle, inode);
 951
 952	if (ret2 < 0)
 953		ret = ret2;
 954
 955	ret2 = ext4_journal_stop(handle);
 956	if (!ret)
 957		ret = ret2;
 958
 959	if (pos + len > inode->i_size) {
 960		ext4_truncate_failed_write(inode);
 961		/*
 962		 * If truncate failed early the inode might still be
 963		 * on the orphan list; we need to make sure the inode
 964		 * is removed from the orphan list in that case.
 965		 */
 966		if (inode->i_nlink)
 967			ext4_orphan_del(NULL, inode);
 968	}
 969
 970	return ret ? ret : copied;
 971}
 972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973static int ext4_journalled_write_end(struct file *file,
 974				     struct address_space *mapping,
 975				     loff_t pos, unsigned len, unsigned copied,
 976				     struct page *page, void *fsdata)
 977{
 978	handle_t *handle = ext4_journal_current_handle();
 979	struct inode *inode = mapping->host;
 
 980	int ret = 0, ret2;
 981	int partial = 0;
 982	unsigned from, to;
 983	loff_t new_i_size;
 
 984
 985	trace_ext4_journalled_write_end(inode, pos, len, copied);
 986	from = pos & (PAGE_CACHE_SIZE - 1);
 987	to = from + len;
 988
 989	BUG_ON(!ext4_handle_valid(handle));
 990
 991	if (copied < len) {
 992		if (!PageUptodate(page))
 993			copied = 0;
 994		page_zero_new_buffers(page, from+copied, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	}
 996
 997	ret = walk_page_buffers(handle, page_buffers(page), from,
 998				to, &partial, write_end_fn);
 999	if (!partial)
1000		SetPageUptodate(page);
1001	new_i_size = pos + copied;
1002	if (new_i_size > inode->i_size)
1003		i_size_write(inode, pos+copied);
1004	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006	if (new_i_size > EXT4_I(inode)->i_disksize) {
1007		ext4_update_i_disksize(inode, new_i_size);
1008		ret2 = ext4_mark_inode_dirty(handle, inode);
1009		if (!ret)
1010			ret = ret2;
1011	}
1012
1013	unlock_page(page);
1014	page_cache_release(page);
1015	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016		/* if we have allocated more blocks and copied
1017		 * less. We will have blocks allocated outside
1018		 * inode->i_size. So truncate them
1019		 */
1020		ext4_orphan_add(handle, inode);
1021
1022	ret2 = ext4_journal_stop(handle);
1023	if (!ret)
1024		ret = ret2;
1025	if (pos + len > inode->i_size) {
1026		ext4_truncate_failed_write(inode);
1027		/*
1028		 * If truncate failed early the inode might still be
1029		 * on the orphan list; we need to make sure the inode
1030		 * is removed from the orphan list in that case.
1031		 */
1032		if (inode->i_nlink)
1033			ext4_orphan_del(NULL, inode);
1034	}
1035
1036	return ret ? ret : copied;
1037}
1038
1039/*
1040 * Reserve a single block located at lblock
1041 */
1042static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043{
1044	int retries = 0;
1045	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046	struct ext4_inode_info *ei = EXT4_I(inode);
1047	unsigned long md_needed;
1048	int ret;
1049
1050	/*
1051	 * recalculate the amount of metadata blocks to reserve
1052	 * in order to allocate nrblocks
1053	 * worse case is one extent per block
1054	 */
1055repeat:
1056	spin_lock(&ei->i_block_reservation_lock);
1057	md_needed = ext4_calc_metadata_amount(inode, lblock);
1058	trace_ext4_da_reserve_space(inode, md_needed);
1059	spin_unlock(&ei->i_block_reservation_lock);
1060
1061	/*
1062	 * We will charge metadata quota at writeout time; this saves
1063	 * us from metadata over-estimation, though we may go over by
1064	 * a small amount in the end.  Here we just reserve for data.
1065	 */
1066	ret = dquot_reserve_block(inode, 1);
1067	if (ret)
1068		return ret;
1069	/*
1070	 * We do still charge estimated metadata to the sb though;
1071	 * we cannot afford to run out of free blocks.
1072	 */
1073	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074		dquot_release_reservation_block(inode, 1);
1075		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076			yield();
1077			goto repeat;
1078		}
1079		return -ENOSPC;
1080	}
1081	spin_lock(&ei->i_block_reservation_lock);
1082	ei->i_reserved_data_blocks++;
1083	ei->i_reserved_meta_blocks += md_needed;
1084	spin_unlock(&ei->i_block_reservation_lock);
1085
1086	return 0;       /* success */
1087}
1088
1089static void ext4_da_release_space(struct inode *inode, int to_free)
1090{
1091	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092	struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094	if (!to_free)
1095		return;		/* Nothing to release, exit */
1096
1097	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099	trace_ext4_da_release_space(inode, to_free);
1100	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101		/*
1102		 * if there aren't enough reserved blocks, then the
1103		 * counter is messed up somewhere.  Since this
1104		 * function is called from invalidate page, it's
1105		 * harmless to return without any action.
1106		 */
1107		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108			 "ino %lu, to_free %d with only %d reserved "
1109			 "data blocks\n", inode->i_ino, to_free,
1110			 ei->i_reserved_data_blocks);
1111		WARN_ON(1);
1112		to_free = ei->i_reserved_data_blocks;
1113	}
1114	ei->i_reserved_data_blocks -= to_free;
1115
1116	if (ei->i_reserved_data_blocks == 0) {
1117		/*
1118		 * We can release all of the reserved metadata blocks
1119		 * only when we have written all of the delayed
1120		 * allocation blocks.
1121		 */
1122		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123				   ei->i_reserved_meta_blocks);
1124		ei->i_reserved_meta_blocks = 0;
1125		ei->i_da_metadata_calc_len = 0;
1126	}
1127
1128	/* update fs dirty data blocks counter */
1129	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130
1131	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133	dquot_release_reservation_block(inode, to_free);
1134}
1135
1136static void ext4_da_page_release_reservation(struct page *page,
1137					     unsigned long offset)
1138{
1139	int to_release = 0;
1140	struct buffer_head *head, *bh;
1141	unsigned int curr_off = 0;
1142
1143	head = page_buffers(page);
1144	bh = head;
1145	do {
1146		unsigned int next_off = curr_off + bh->b_size;
1147
1148		if ((offset <= curr_off) && (buffer_delay(bh))) {
1149			to_release++;
1150			clear_buffer_delay(bh);
1151		}
1152		curr_off = next_off;
1153	} while ((bh = bh->b_this_page) != head);
1154	ext4_da_release_space(page->mapping->host, to_release);
1155}
1156
1157/*
1158 * Delayed allocation stuff
1159 */
1160
1161/*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1174static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175			      struct ext4_map_blocks *map)
1176{
1177	struct pagevec pvec;
1178	unsigned long index, end;
1179	int ret = 0, err, nr_pages, i;
1180	struct inode *inode = mpd->inode;
1181	struct address_space *mapping = inode->i_mapping;
1182	loff_t size = i_size_read(inode);
1183	unsigned int len, block_start;
1184	struct buffer_head *bh, *page_bufs = NULL;
1185	int journal_data = ext4_should_journal_data(inode);
1186	sector_t pblock = 0, cur_logical = 0;
1187	struct ext4_io_submit io_submit;
1188
1189	BUG_ON(mpd->next_page <= mpd->first_page);
1190	memset(&io_submit, 0, sizeof(io_submit));
1191	/*
1192	 * We need to start from the first_page to the next_page - 1
1193	 * to make sure we also write the mapped dirty buffer_heads.
1194	 * If we look at mpd->b_blocknr we would only be looking
1195	 * at the currently mapped buffer_heads.
1196	 */
1197	index = mpd->first_page;
1198	end = mpd->next_page - 1;
1199
1200	pagevec_init(&pvec, 0);
1201	while (index <= end) {
1202		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203		if (nr_pages == 0)
1204			break;
1205		for (i = 0; i < nr_pages; i++) {
1206			int commit_write = 0, skip_page = 0;
1207			struct page *page = pvec.pages[i];
1208
1209			index = page->index;
1210			if (index > end)
1211				break;
1212
1213			if (index == size >> PAGE_CACHE_SHIFT)
1214				len = size & ~PAGE_CACHE_MASK;
1215			else
1216				len = PAGE_CACHE_SIZE;
1217			if (map) {
1218				cur_logical = index << (PAGE_CACHE_SHIFT -
1219							inode->i_blkbits);
1220				pblock = map->m_pblk + (cur_logical -
1221							map->m_lblk);
1222			}
1223			index++;
1224
1225			BUG_ON(!PageLocked(page));
1226			BUG_ON(PageWriteback(page));
1227
1228			/*
1229			 * If the page does not have buffers (for
1230			 * whatever reason), try to create them using
1231			 * __block_write_begin.  If this fails,
1232			 * skip the page and move on.
1233			 */
1234			if (!page_has_buffers(page)) {
1235				if (__block_write_begin(page, 0, len,
1236						noalloc_get_block_write)) {
1237				skip_page:
1238					unlock_page(page);
1239					continue;
1240				}
1241				commit_write = 1;
1242			}
1243
1244			bh = page_bufs = page_buffers(page);
1245			block_start = 0;
1246			do {
1247				if (!bh)
1248					goto skip_page;
1249				if (map && (cur_logical >= map->m_lblk) &&
1250				    (cur_logical <= (map->m_lblk +
1251						     (map->m_len - 1)))) {
1252					if (buffer_delay(bh)) {
1253						clear_buffer_delay(bh);
1254						bh->b_blocknr = pblock;
1255					}
1256					if (buffer_unwritten(bh) ||
1257					    buffer_mapped(bh))
1258						BUG_ON(bh->b_blocknr != pblock);
1259					if (map->m_flags & EXT4_MAP_UNINIT)
1260						set_buffer_uninit(bh);
1261					clear_buffer_unwritten(bh);
1262				}
1263
1264				/* skip page if block allocation undone */
1265				if (buffer_delay(bh) || buffer_unwritten(bh))
1266					skip_page = 1;
1267				bh = bh->b_this_page;
1268				block_start += bh->b_size;
1269				cur_logical++;
1270				pblock++;
1271			} while (bh != page_bufs);
1272
1273			if (skip_page)
1274				goto skip_page;
1275
1276			if (commit_write)
1277				/* mark the buffer_heads as dirty & uptodate */
1278				block_commit_write(page, 0, len);
1279
1280			clear_page_dirty_for_io(page);
1281			/*
1282			 * Delalloc doesn't support data journalling,
1283			 * but eventually maybe we'll lift this
1284			 * restriction.
1285			 */
1286			if (unlikely(journal_data && PageChecked(page)))
1287				err = __ext4_journalled_writepage(page, len);
1288			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289				err = ext4_bio_write_page(&io_submit, page,
1290							  len, mpd->wbc);
1291			else if (buffer_uninit(page_bufs)) {
1292				ext4_set_bh_endio(page_bufs, inode);
1293				err = block_write_full_page_endio(page,
1294					noalloc_get_block_write,
1295					mpd->wbc, ext4_end_io_buffer_write);
1296			} else
1297				err = block_write_full_page(page,
1298					noalloc_get_block_write, mpd->wbc);
1299
1300			if (!err)
1301				mpd->pages_written++;
1302			/*
1303			 * In error case, we have to continue because
1304			 * remaining pages are still locked
1305			 */
1306			if (ret == 0)
1307				ret = err;
1308		}
1309		pagevec_release(&pvec);
1310	}
1311	ext4_io_submit(&io_submit);
1312	return ret;
1313}
1314
1315static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1316{
1317	int nr_pages, i;
1318	pgoff_t index, end;
1319	struct pagevec pvec;
1320	struct inode *inode = mpd->inode;
1321	struct address_space *mapping = inode->i_mapping;
1322
 
 
 
 
 
1323	index = mpd->first_page;
1324	end   = mpd->next_page - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325	while (index <= end) {
1326		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327		if (nr_pages == 0)
1328			break;
1329		for (i = 0; i < nr_pages; i++) {
1330			struct page *page = pvec.pages[i];
1331			if (page->index > end)
1332				break;
1333			BUG_ON(!PageLocked(page));
1334			BUG_ON(PageWriteback(page));
1335			block_invalidatepage(page, 0);
1336			ClearPageUptodate(page);
1337			unlock_page(page);
 
 
 
 
 
 
 
 
1338		}
1339		index = pvec.pages[nr_pages - 1]->index + 1;
1340		pagevec_release(&pvec);
1341	}
1342	return;
1343}
1344
1345static void ext4_print_free_blocks(struct inode *inode)
1346{
1347	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348	printk(KERN_CRIT "Total free blocks count %lld\n",
1349	       ext4_count_free_blocks(inode->i_sb));
1350	printk(KERN_CRIT "Free/Dirty block details\n");
1351	printk(KERN_CRIT "free_blocks=%lld\n",
1352	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353	printk(KERN_CRIT "dirty_blocks=%lld\n",
1354	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355	printk(KERN_CRIT "Block reservation details\n");
1356	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357	       EXT4_I(inode)->i_reserved_data_blocks);
1358	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359	       EXT4_I(inode)->i_reserved_meta_blocks);
 
 
 
 
1360	return;
1361}
1362
1363/*
1364 * mpage_da_map_and_submit - go through given space, map them
1365 *       if necessary, and then submit them for I/O
1366 *
1367 * @mpd - bh describing space
1368 *
1369 * The function skips space we know is already mapped to disk blocks.
1370 *
 
 
 
1371 */
1372static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373{
1374	int err, blks, get_blocks_flags;
1375	struct ext4_map_blocks map, *mapp = NULL;
1376	sector_t next = mpd->b_blocknr;
1377	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379	handle_t *handle = NULL;
1380
1381	/*
1382	 * If the blocks are mapped already, or we couldn't accumulate
1383	 * any blocks, then proceed immediately to the submission stage.
1384	 */
1385	if ((mpd->b_size == 0) ||
1386	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1387	     !(mpd->b_state & (1 << BH_Delay)) &&
1388	     !(mpd->b_state & (1 << BH_Unwritten))))
1389		goto submit_io;
1390
1391	handle = ext4_journal_current_handle();
1392	BUG_ON(!handle);
1393
1394	/*
1395	 * Call ext4_map_blocks() to allocate any delayed allocation
1396	 * blocks, or to convert an uninitialized extent to be
1397	 * initialized (in the case where we have written into
1398	 * one or more preallocated blocks).
1399	 *
1400	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401	 * indicate that we are on the delayed allocation path.  This
1402	 * affects functions in many different parts of the allocation
1403	 * call path.  This flag exists primarily because we don't
1404	 * want to change *many* call functions, so ext4_map_blocks()
1405	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406	 * inode's allocation semaphore is taken.
1407	 *
1408	 * If the blocks in questions were delalloc blocks, set
1409	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410	 * variables are updated after the blocks have been allocated.
1411	 */
1412	map.m_lblk = next;
1413	map.m_len = max_blocks;
1414	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415	if (ext4_should_dioread_nolock(mpd->inode))
1416		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417	if (mpd->b_state & (1 << BH_Delay))
1418		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419
1420	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421	if (blks < 0) {
1422		struct super_block *sb = mpd->inode->i_sb;
 
 
 
 
 
1423
1424		err = blks;
1425		/*
1426		 * If get block returns EAGAIN or ENOSPC and there
1427		 * appears to be free blocks we will just let
1428		 * mpage_da_submit_io() unlock all of the pages.
1429		 */
1430		if (err == -EAGAIN)
1431			goto submit_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432
1433		if (err == -ENOSPC &&
1434		    ext4_count_free_blocks(sb)) {
1435			mpd->retval = err;
1436			goto submit_io;
 
 
1437		}
1438
1439		/*
1440		 * get block failure will cause us to loop in
1441		 * writepages, because a_ops->writepage won't be able
1442		 * to make progress. The page will be redirtied by
1443		 * writepage and writepages will again try to write
1444		 * the same.
1445		 */
1446		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447			ext4_msg(sb, KERN_CRIT,
1448				 "delayed block allocation failed for inode %lu "
1449				 "at logical offset %llu with max blocks %zd "
1450				 "with error %d", mpd->inode->i_ino,
1451				 (unsigned long long) next,
1452				 mpd->b_size >> mpd->inode->i_blkbits, err);
1453			ext4_msg(sb, KERN_CRIT,
1454				"This should not happen!! Data will be lost\n");
1455			if (err == -ENOSPC)
1456				ext4_print_free_blocks(mpd->inode);
1457		}
1458		/* invalidate all the pages */
1459		ext4_da_block_invalidatepages(mpd);
1460
1461		/* Mark this page range as having been completed */
1462		mpd->io_done = 1;
1463		return;
 
 
1464	}
1465	BUG_ON(blks == 0);
1466
1467	mapp = &map;
1468	if (map.m_flags & EXT4_MAP_NEW) {
1469		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470		int i;
1471
1472		for (i = 0; i < map.m_len; i++)
1473			unmap_underlying_metadata(bdev, map.m_pblk + i);
1474	}
 
 
 
 
 
 
 
 
 
 
 
 
1475
1476	if (ext4_should_order_data(mpd->inode)) {
1477		err = ext4_jbd2_file_inode(handle, mpd->inode);
1478		if (err)
1479			/* This only happens if the journal is aborted */
1480			return;
1481	}
1482
1483	/*
1484	 * Update on-disk size along with block allocation.
1485	 */
1486	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487	if (disksize > i_size_read(mpd->inode))
1488		disksize = i_size_read(mpd->inode);
1489	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490		ext4_update_i_disksize(mpd->inode, disksize);
1491		err = ext4_mark_inode_dirty(handle, mpd->inode);
1492		if (err)
1493			ext4_error(mpd->inode->i_sb,
1494				   "Failed to mark inode %lu dirty",
1495				   mpd->inode->i_ino);
1496	}
1497
1498submit_io:
1499	mpage_da_submit_io(mpd, mapp);
1500	mpd->io_done = 1;
1501}
1502
1503#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504		(1 << BH_Delay) | (1 << BH_Unwritten))
1505
1506/*
1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508 *
1509 * @mpd->lbh - extent of blocks
1510 * @logical - logical number of the block in the file
1511 * @bh - bh of the block (used to access block's state)
1512 *
1513 * the function is used to collect contig. blocks in same state
1514 */
1515static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516				   sector_t logical, size_t b_size,
1517				   unsigned long b_state)
1518{
1519	sector_t next;
1520	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521
1522	/*
1523	 * XXX Don't go larger than mballoc is willing to allocate
1524	 * This is a stopgap solution.  We eventually need to fold
1525	 * mpage_da_submit_io() into this function and then call
1526	 * ext4_map_blocks() multiple times in a loop
1527	 */
1528	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529		goto flush_it;
1530
1531	/* check if thereserved journal credits might overflow */
1532	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534			/*
1535			 * With non-extent format we are limited by the journal
1536			 * credit available.  Total credit needed to insert
1537			 * nrblocks contiguous blocks is dependent on the
1538			 * nrblocks.  So limit nrblocks.
1539			 */
1540			goto flush_it;
1541		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542				EXT4_MAX_TRANS_DATA) {
1543			/*
1544			 * Adding the new buffer_head would make it cross the
1545			 * allowed limit for which we have journal credit
1546			 * reserved. So limit the new bh->b_size
1547			 */
1548			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549						mpd->inode->i_blkbits;
1550			/* we will do mpage_da_submit_io in the next loop */
1551		}
1552	}
 
1553	/*
1554	 * First block in the extent
 
1555	 */
1556	if (mpd->b_size == 0) {
1557		mpd->b_blocknr = logical;
1558		mpd->b_size = b_size;
1559		mpd->b_state = b_state & BH_FLAGS;
1560		return;
1561	}
 
 
1562
1563	next = mpd->b_blocknr + nrblocks;
 
1564	/*
1565	 * Can we merge the block to our big extent?
1566	 */
1567	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568		mpd->b_size += b_size;
1569		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570	}
1571
1572flush_it:
1573	/*
1574	 * We couldn't merge the block to our extent, so we
1575	 * need to flush current  extent and start new one
1576	 */
1577	mpage_da_map_and_submit(mpd);
1578	return;
1579}
1580
1581static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582{
1583	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1584}
1585
1586/*
1587 * This is a special get_blocks_t callback which is used by
1588 * ext4_da_write_begin().  It will either return mapped block or
1589 * reserve space for a single block.
1590 *
1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592 * We also have b_blocknr = -1 and b_bdev initialized properly
1593 *
1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596 * initialized properly.
1597 */
1598static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599				  struct buffer_head *bh, int create)
1600{
1601	struct ext4_map_blocks map;
 
1602	int ret = 0;
1603	sector_t invalid_block = ~((sector_t) 0xffff);
 
 
1604
1605	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606		invalid_block = ~0;
1607
1608	BUG_ON(create == 0);
1609	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610
1611	map.m_lblk = iblock;
1612	map.m_len = 1;
1613
1614	/*
1615	 * first, we need to know whether the block is allocated already
1616	 * preallocated blocks are unmapped but should treated
1617	 * the same as allocated blocks.
1618	 */
1619	ret = ext4_map_blocks(NULL, inode, &map, 0);
1620	if (ret < 0)
1621		return ret;
1622	if (ret == 0) {
1623		if (buffer_delay(bh))
1624			return 0; /* Not sure this could or should happen */
1625		/*
1626		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627		 */
1628		ret = ext4_da_reserve_space(inode, iblock);
1629		if (ret)
1630			/* not enough space to reserve */
1631			return ret;
1632
 
1633		map_bh(bh, inode->i_sb, invalid_block);
1634		set_buffer_new(bh);
1635		set_buffer_delay(bh);
1636		return 0;
1637	}
1638
1639	map_bh(bh, inode->i_sb, map.m_pblk);
1640	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642	if (buffer_unwritten(bh)) {
1643		/* A delayed write to unwritten bh should be marked
1644		 * new and mapped.  Mapped ensures that we don't do
1645		 * get_block multiple times when we write to the same
1646		 * offset and new ensures that we do proper zero out
1647		 * for partial write.
1648		 */
1649		set_buffer_new(bh);
1650		set_buffer_mapped(bh);
1651	}
1652	return 0;
1653}
1654
1655/*
1656 * This function is used as a standard get_block_t calback function
1657 * when there is no desire to allocate any blocks.  It is used as a
1658 * callback function for block_write_begin() and block_write_full_page().
1659 * These functions should only try to map a single block at a time.
1660 *
1661 * Since this function doesn't do block allocations even if the caller
1662 * requests it by passing in create=1, it is critically important that
1663 * any caller checks to make sure that any buffer heads are returned
1664 * by this function are either all already mapped or marked for
1665 * delayed allocation before calling  block_write_full_page().  Otherwise,
1666 * b_blocknr could be left unitialized, and the page write functions will
1667 * be taken by surprise.
1668 */
1669static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670				   struct buffer_head *bh_result, int create)
1671{
1672	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673	return _ext4_get_block(inode, iblock, bh_result, 0);
1674}
1675
1676static int bget_one(handle_t *handle, struct buffer_head *bh)
1677{
1678	get_bh(bh);
1679	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680}
1681
1682static int bput_one(handle_t *handle, struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683{
1684	put_bh(bh);
1685	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686}
1687
1688static int __ext4_journalled_writepage(struct page *page,
1689				       unsigned int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690{
1691	struct address_space *mapping = page->mapping;
1692	struct inode *inode = mapping->host;
1693	struct buffer_head *page_bufs;
1694	handle_t *handle = NULL;
1695	int ret = 0;
1696	int err;
 
 
1697
1698	ClearPageChecked(page);
1699	page_bufs = page_buffers(page);
1700	BUG_ON(!page_bufs);
1701	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702	/* As soon as we unlock the page, it can go away, but we have
1703	 * references to buffers so we are safe */
1704	unlock_page(page);
1705
1706	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1707	if (IS_ERR(handle)) {
1708		ret = PTR_ERR(handle);
1709		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710	}
 
 
1711
1712	BUG_ON(!ext4_handle_valid(handle));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713
1714	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715				do_journal_get_write_access);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718				write_end_fn);
1719	if (ret == 0)
1720		ret = err;
1721	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722	err = ext4_journal_stop(handle);
1723	if (!ret)
1724		ret = err;
1725
1726	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1727	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728out:
1729	return ret;
 
 
1730}
1731
1732static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734
1735/*
1736 * Note that we don't need to start a transaction unless we're journaling data
1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738 * need to file the inode to the transaction's list in ordered mode because if
1739 * we are writing back data added by write(), the inode is already there and if
1740 * we are writing back data modified via mmap(), no one guarantees in which
1741 * transaction the data will hit the disk. In case we are journaling data, we
1742 * cannot start transaction directly because transaction start ranks above page
1743 * lock so we have to do some magic.
1744 *
1745 * This function can get called via...
1746 *   - ext4_da_writepages after taking page lock (have journal handle)
1747 *   - journal_submit_inode_data_buffers (no journal handle)
1748 *   - shrink_page_list via pdflush (no journal handle)
1749 *   - grab_page_cache when doing write_begin (have journal handle)
1750 *
1751 * We don't do any block allocation in this function. If we have page with
1752 * multiple blocks we need to write those buffer_heads that are mapped. This
1753 * is important for mmaped based write. So if we do with blocksize 1K
1754 * truncate(f, 1024);
1755 * a = mmap(f, 0, 4096);
1756 * a[0] = 'a';
1757 * truncate(f, 4096);
1758 * we have in the page first buffer_head mapped via page_mkwrite call back
1759 * but other bufer_heads would be unmapped but dirty(dirty done via the
1760 * do_wp_page). So writepage should write the first block. If we modify
1761 * the mmap area beyond 1024 we will again get a page_fault and the
1762 * page_mkwrite callback will do the block allocation and mark the
1763 * buffer_heads mapped.
1764 *
1765 * We redirty the page if we have any buffer_heads that is either delay or
1766 * unwritten in the page.
1767 *
1768 * We can get recursively called as show below.
1769 *
1770 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771 *		ext4_writepage()
1772 *
1773 * But since we don't do any block allocation we should not deadlock.
1774 * Page also have the dirty flag cleared so we don't get recurive page_lock.
 
 
 
 
 
 
 
1775 */
1776static int ext4_writepage(struct page *page,
1777			  struct writeback_control *wbc)
1778{
1779	int ret = 0, commit_write = 0;
1780	loff_t size;
1781	unsigned int len;
1782	struct buffer_head *page_bufs = NULL;
1783	struct inode *inode = page->mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784
1785	trace_ext4_writepage(page);
1786	size = i_size_read(inode);
1787	if (page->index == size >> PAGE_CACHE_SHIFT)
1788		len = size & ~PAGE_CACHE_MASK;
1789	else
1790		len = PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791
1792	/*
1793	 * If the page does not have buffers (for whatever reason),
1794	 * try to create them using __block_write_begin.  If this
1795	 * fails, redirty the page and move on.
1796	 */
1797	if (!page_has_buffers(page)) {
1798		if (__block_write_begin(page, 0, len,
1799					noalloc_get_block_write)) {
1800		redirty_page:
1801			redirty_page_for_writepage(wbc, page);
1802			unlock_page(page);
1803			return 0;
1804		}
1805		commit_write = 1;
1806	}
1807	page_bufs = page_buffers(page);
1808	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809			      ext4_bh_delay_or_unwritten)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810		/*
1811		 * We don't want to do block allocation, so redirty
1812		 * the page and return.  We may reach here when we do
1813		 * a journal commit via journal_submit_inode_data_buffers.
1814		 * We can also reach here via shrink_page_list
1815		 */
1816		goto redirty_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817	}
1818	if (commit_write)
1819		/* now mark the buffer_heads as dirty and uptodate */
1820		block_commit_write(page, 0, len);
 
 
 
 
 
 
 
 
 
 
1821
1822	if (PageChecked(page) && ext4_should_journal_data(inode))
1823		/*
1824		 * It's mmapped pagecache.  Add buffers and journal it.  There
1825		 * doesn't seem much point in redirtying the page here.
1826		 */
1827		return __ext4_journalled_writepage(page, len);
 
 
 
 
1828
1829	if (buffer_uninit(page_bufs)) {
1830		ext4_set_bh_endio(page_bufs, inode);
1831		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832					    wbc, ext4_end_io_buffer_write);
1833	} else
1834		ret = block_write_full_page(page, noalloc_get_block_write,
1835					    wbc);
 
 
 
1836
1837	return ret;
1838}
1839
1840/*
1841 * This is called via ext4_da_writepages() to
1842 * calculate the total number of credits to reserve to fit
1843 * a single extent allocation into a single transaction,
1844 * ext4_da_writpeages() will loop calling this before
1845 * the block allocation.
1846 */
1847
1848static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849{
1850	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851
1852	/*
1853	 * With non-extent format the journal credit needed to
1854	 * insert nrblocks contiguous block is dependent on
1855	 * number of contiguous block. So we will limit
1856	 * number of contiguous block to a sane value
1857	 */
1858	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859	    (max_blocks > EXT4_MAX_TRANS_DATA))
1860		max_blocks = EXT4_MAX_TRANS_DATA;
1861
1862	return ext4_chunk_trans_blocks(inode, max_blocks);
1863}
1864
1865/*
1866 * write_cache_pages_da - walk the list of dirty pages of the given
1867 * address space and accumulate pages that need writing, and call
1868 * mpage_da_map_and_submit to map a single contiguous memory region
1869 * and then write them.
1870 */
1871static int write_cache_pages_da(struct address_space *mapping,
1872				struct writeback_control *wbc,
1873				struct mpage_da_data *mpd,
1874				pgoff_t *done_index)
1875{
1876	struct buffer_head	*bh, *head;
1877	struct inode		*inode = mapping->host;
1878	struct pagevec		pvec;
1879	unsigned int		nr_pages;
1880	sector_t		logical;
1881	pgoff_t			index, end;
1882	long			nr_to_write = wbc->nr_to_write;
1883	int			i, tag, ret = 0;
1884
1885	memset(mpd, 0, sizeof(struct mpage_da_data));
1886	mpd->wbc = wbc;
1887	mpd->inode = inode;
1888	pagevec_init(&pvec, 0);
1889	index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890	end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
1891
1892	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893		tag = PAGECACHE_TAG_TOWRITE;
1894	else
1895		tag = PAGECACHE_TAG_DIRTY;
1896
1897	*done_index = index;
 
 
 
 
 
 
 
 
1898	while (index <= end) {
1899		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901		if (nr_pages == 0)
1902			return 0;
1903
1904		for (i = 0; i < nr_pages; i++) {
1905			struct page *page = pvec.pages[i];
1906
1907			/*
1908			 * At this point, the page may be truncated or
1909			 * invalidated (changing page->mapping to NULL), or
1910			 * even swizzled back from swapper_space to tmpfs file
1911			 * mapping. However, page->index will not change
1912			 * because we have a reference on the page.
 
1913			 */
1914			if (page->index > end)
 
 
1915				goto out;
1916
1917			*done_index = page->index + 1;
 
 
 
 
 
 
 
 
 
1918
 
1919			/*
1920			 * If we can't merge this page, and we have
1921			 * accumulated an contiguous region, write it
 
 
 
1922			 */
1923			if ((mpd->next_page != page->index) &&
1924			    (mpd->next_page != mpd->first_page)) {
1925				mpage_da_map_and_submit(mpd);
1926				goto ret_extent_tail;
 
 
1927			}
1928
1929			lock_page(page);
 
1930
1931			/*
1932			 * If the page is no longer dirty, or its
1933			 * mapping no longer corresponds to inode we
1934			 * are writing (which means it has been
1935			 * truncated or invalidated), or the page is
1936			 * already under writeback and we are not
1937			 * doing a data integrity writeback, skip the page
 
1938			 */
1939			if (!PageDirty(page) ||
1940			    (PageWriteback(page) &&
1941			     (wbc->sync_mode == WB_SYNC_NONE)) ||
1942			    unlikely(page->mapping != mapping)) {
1943				unlock_page(page);
1944				continue;
1945			}
1946
1947			wait_on_page_writeback(page);
1948			BUG_ON(PageWriteback(page));
1949
1950			if (mpd->next_page != page->index)
1951				mpd->first_page = page->index;
1952			mpd->next_page = page->index + 1;
1953			logical = (sector_t) page->index <<
1954				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1955
1956			if (!page_has_buffers(page)) {
1957				mpage_add_bh_to_extent(mpd, logical,
1958						       PAGE_CACHE_SIZE,
1959						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1960				if (mpd->io_done)
1961					goto ret_extent_tail;
 
 
 
 
 
 
 
 
 
 
 
1962			} else {
1963				/*
1964				 * Page with regular buffer heads,
1965				 * just add all dirty ones
1966				 */
1967				head = page_buffers(page);
1968				bh = head;
1969				do {
1970					BUG_ON(buffer_locked(bh));
1971					/*
1972					 * We need to try to allocate
1973					 * unmapped blocks in the same page.
1974					 * Otherwise we won't make progress
1975					 * with the page in ext4_writepage
1976					 */
1977					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978						mpage_add_bh_to_extent(mpd, logical,
1979								       bh->b_size,
1980								       bh->b_state);
1981						if (mpd->io_done)
1982							goto ret_extent_tail;
1983					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984						/*
1985						 * mapped dirty buffer. We need
1986						 * to update the b_state
1987						 * because we look at b_state
1988						 * in mpage_da_map_blocks.  We
1989						 * don't update b_size because
1990						 * if we find an unmapped
1991						 * buffer_head later we need to
1992						 * use the b_state flag of that
1993						 * buffer_head.
1994						 */
1995						if (mpd->b_size == 0)
1996							mpd->b_state = bh->b_state & BH_FLAGS;
1997					}
1998					logical++;
1999				} while ((bh = bh->b_this_page) != head);
2000			}
2001
2002			if (nr_to_write > 0) {
2003				nr_to_write--;
2004				if (nr_to_write == 0 &&
2005				    wbc->sync_mode == WB_SYNC_NONE)
2006					/*
2007					 * We stop writing back only if we are
2008					 * not doing integrity sync. In case of
2009					 * integrity sync we have to keep going
2010					 * because someone may be concurrently
2011					 * dirtying pages, and we might have
2012					 * synced a lot of newly appeared dirty
2013					 * pages, but have not synced all of the
2014					 * old dirty pages.
2015					 */
2016					goto out;
 
2017			}
2018		}
2019		pagevec_release(&pvec);
2020		cond_resched();
2021	}
 
 
 
2022	return 0;
2023ret_extent_tail:
2024	ret = MPAGE_DA_EXTENT_TAIL;
2025out:
2026	pagevec_release(&pvec);
2027	cond_resched();
2028	return ret;
 
2029}
2030
2031
2032static int ext4_da_writepages(struct address_space *mapping,
2033			      struct writeback_control *wbc)
2034{
2035	pgoff_t	index;
 
 
2036	int range_whole = 0;
 
2037	handle_t *handle = NULL;
2038	struct mpage_da_data mpd;
2039	struct inode *inode = mapping->host;
2040	int pages_written = 0;
2041	unsigned int max_pages;
2042	int range_cyclic, cycled = 1, io_done = 0;
2043	int needed_blocks, ret = 0;
2044	long desired_nr_to_write, nr_to_writebump = 0;
2045	loff_t range_start = wbc->range_start;
2046	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047	pgoff_t done_index = 0;
2048	pgoff_t end;
2049
2050	trace_ext4_da_writepages(inode, wbc);
2051
2052	/*
2053	 * No pages to write? This is mainly a kludge to avoid starting
2054	 * a transaction for special inodes like journal inode on last iput()
2055	 * because that could violate lock ordering on umount
2056	 */
2057	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058		return 0;
2059
2060	/*
2061	 * If the filesystem has aborted, it is read-only, so return
2062	 * right away instead of dumping stack traces later on that
2063	 * will obscure the real source of the problem.  We test
2064	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065	 * the latter could be true if the filesystem is mounted
2066	 * read-only, and in that case, ext4_da_writepages should
2067	 * *never* be called, so if that ever happens, we would want
2068	 * the stack trace.
2069	 */
2070	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074		range_whole = 1;
2075
2076	range_cyclic = wbc->range_cyclic;
2077	if (wbc->range_cyclic) {
2078		index = mapping->writeback_index;
2079		if (index)
2080			cycled = 0;
2081		wbc->range_start = index << PAGE_CACHE_SHIFT;
2082		wbc->range_end  = LLONG_MAX;
2083		wbc->range_cyclic = 0;
2084		end = -1;
2085	} else {
2086		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088	}
2089
 
 
 
 
 
 
 
2090	/*
2091	 * This works around two forms of stupidity.  The first is in
2092	 * the writeback code, which caps the maximum number of pages
2093	 * written to be 1024 pages.  This is wrong on multiple
2094	 * levels; different architectues have a different page size,
2095	 * which changes the maximum amount of data which gets
2096	 * written.  Secondly, 4 megabytes is way too small.  XFS
2097	 * forces this value to be 16 megabytes by multiplying
2098	 * nr_to_write parameter by four, and then relies on its
2099	 * allocator to allocate larger extents to make them
2100	 * contiguous.  Unfortunately this brings us to the second
2101	 * stupidity, which is that ext4's mballoc code only allocates
2102	 * at most 2048 blocks.  So we force contiguous writes up to
2103	 * the number of dirty blocks in the inode, or
2104	 * sbi->max_writeback_mb_bump whichever is smaller.
2105	 */
2106	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107	if (!range_cyclic && range_whole) {
2108		if (wbc->nr_to_write == LONG_MAX)
2109			desired_nr_to_write = wbc->nr_to_write;
2110		else
2111			desired_nr_to_write = wbc->nr_to_write * 8;
2112	} else
2113		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114							   max_pages);
2115	if (desired_nr_to_write > max_pages)
2116		desired_nr_to_write = max_pages;
2117
2118	if (wbc->nr_to_write < desired_nr_to_write) {
2119		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120		wbc->nr_to_write = desired_nr_to_write;
2121	}
 
 
 
 
 
 
 
 
 
2122
2123retry:
2124	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125		tag_pages_for_writeback(mapping, index, end);
2126
2127	while (!ret && wbc->nr_to_write > 0) {
 
 
2128
 
2129		/*
2130		 * we  insert one extent at a time. So we need
2131		 * credit needed for single extent allocation.
2132		 * journalled mode is currently not supported
2133		 * by delalloc
 
2134		 */
2135		BUG_ON(ext4_should_journal_data(inode));
2136		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137
2138		/* start a new transaction*/
2139		handle = ext4_journal_start(inode, needed_blocks);
 
2140		if (IS_ERR(handle)) {
2141			ret = PTR_ERR(handle);
2142			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143			       "%ld pages, ino %lu; err %d", __func__,
2144				wbc->nr_to_write, inode->i_ino, ret);
2145			goto out_writepages;
 
 
 
2146		}
 
2147
 
 
 
 
 
2148		/*
2149		 * Now call write_cache_pages_da() to find the next
2150		 * contiguous region of logical blocks that need
2151		 * blocks to be allocated by ext4 and submit them.
 
 
 
 
 
2152		 */
2153		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
 
 
 
 
 
 
 
 
 
2154		/*
2155		 * If we have a contiguous extent of pages and we
2156		 * haven't done the I/O yet, map the blocks and submit
2157		 * them for I/O.
 
 
2158		 */
2159		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160			mpage_da_map_and_submit(&mpd);
2161			ret = MPAGE_DA_EXTENT_TAIL;
2162		}
2163		trace_ext4_da_write_pages(inode, &mpd);
2164		wbc->nr_to_write -= mpd.pages_written;
2165
2166		ext4_journal_stop(handle);
2167
2168		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169			/* commit the transaction which would
2170			 * free blocks released in the transaction
2171			 * and try again
2172			 */
2173			jbd2_journal_force_commit_nested(sbi->s_journal);
2174			ret = 0;
2175		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176			/*
2177			 * got one extent now try with
2178			 * rest of the pages
2179			 */
2180			pages_written += mpd.pages_written;
2181			ret = 0;
2182			io_done = 1;
2183		} else if (wbc->nr_to_write)
2184			/*
2185			 * There is no more writeout needed
2186			 * or we requested for a noblocking writeout
2187			 * and we found the device congested
2188			 */
2189			break;
2190	}
2191	if (!io_done && !cycled) {
 
 
2192		cycled = 1;
2193		index = 0;
2194		wbc->range_start = index << PAGE_CACHE_SHIFT;
2195		wbc->range_end  = mapping->writeback_index - 1;
2196		goto retry;
2197	}
2198
2199	/* Update index */
2200	wbc->range_cyclic = range_cyclic;
2201	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202		/*
2203		 * set the writeback_index so that range_cyclic
2204		 * mode will write it back later
2205		 */
2206		mapping->writeback_index = done_index;
2207
2208out_writepages:
2209	wbc->nr_to_write -= nr_to_writebump;
2210	wbc->range_start = range_start;
2211	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212	return ret;
2213}
2214
2215#define FALL_BACK_TO_NONDELALLOC 1
2216static int ext4_nonda_switch(struct super_block *sb)
2217{
2218	s64 free_blocks, dirty_blocks;
2219	struct ext4_sb_info *sbi = EXT4_SB(sb);
2220
2221	/*
2222	 * switch to non delalloc mode if we are running low
2223	 * on free block. The free block accounting via percpu
2224	 * counters can get slightly wrong with percpu_counter_batch getting
2225	 * accumulated on each CPU without updating global counters
2226	 * Delalloc need an accurate free block accounting. So switch
2227	 * to non delalloc when we are near to error range.
2228	 */
2229	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231	if (2 * free_blocks < 3 * dirty_blocks ||
2232		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
 
 
 
 
 
 
 
 
2233		/*
2234		 * free block count is less than 150% of dirty blocks
2235		 * or free blocks is less than watermark
2236		 */
2237		return 1;
2238	}
2239	/*
2240	 * Even if we don't switch but are nearing capacity,
2241	 * start pushing delalloc when 1/2 of free blocks are dirty.
2242	 */
2243	if (free_blocks < 2 * dirty_blocks)
2244		writeback_inodes_sb_if_idle(sb);
2245
2246	return 0;
2247}
2248
2249static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250			       loff_t pos, unsigned len, unsigned flags,
2251			       struct page **pagep, void **fsdata)
2252{
2253	int ret, retries = 0;
2254	struct page *page;
2255	pgoff_t index;
2256	struct inode *inode = mapping->host;
2257	handle_t *handle;
2258
2259	index = pos >> PAGE_CACHE_SHIFT;
 
 
 
2260
2261	if (ext4_nonda_switch(inode->i_sb)) {
2262		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2263		return ext4_write_begin(file, mapping, pos,
2264					len, flags, pagep, fsdata);
2265	}
2266	*fsdata = (void *)0;
2267	trace_ext4_da_write_begin(inode, pos, len, flags);
2268retry:
2269	/*
2270	 * With delayed allocation, we don't log the i_disksize update
2271	 * if there is delayed block allocation. But we still need
2272	 * to journalling the i_disksize update if writes to the end
2273	 * of file which has an already mapped buffer.
2274	 */
2275	handle = ext4_journal_start(inode, 1);
2276	if (IS_ERR(handle)) {
2277		ret = PTR_ERR(handle);
2278		goto out;
2279	}
2280	/* We cannot recurse into the filesystem as the transaction is already
2281	 * started */
2282	flags |= AOP_FLAG_NOFS;
2283
2284	page = grab_cache_page_write_begin(mapping, index, flags);
2285	if (!page) {
2286		ext4_journal_stop(handle);
2287		ret = -ENOMEM;
2288		goto out;
2289	}
2290	*pagep = page;
2291
2292	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 
2293	if (ret < 0) {
2294		unlock_page(page);
2295		ext4_journal_stop(handle);
2296		page_cache_release(page);
2297		/*
2298		 * block_write_begin may have instantiated a few blocks
2299		 * outside i_size.  Trim these off again. Don't need
2300		 * i_size_read because we hold i_mutex.
2301		 */
2302		if (pos + len > inode->i_size)
2303			ext4_truncate_failed_write(inode);
 
 
 
 
 
2304	}
2305
2306	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2307		goto retry;
2308out:
2309	return ret;
2310}
2311
2312/*
2313 * Check if we should update i_disksize
2314 * when write to the end of file but not require block allocation
2315 */
2316static int ext4_da_should_update_i_disksize(struct page *page,
2317					    unsigned long offset)
2318{
2319	struct buffer_head *bh;
2320	struct inode *inode = page->mapping->host;
2321	unsigned int idx;
2322	int i;
2323
2324	bh = page_buffers(page);
2325	idx = offset >> inode->i_blkbits;
2326
2327	for (i = 0; i < idx; i++)
2328		bh = bh->b_this_page;
2329
2330	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331		return 0;
2332	return 1;
2333}
2334
2335static int ext4_da_write_end(struct file *file,
2336			     struct address_space *mapping,
2337			     loff_t pos, unsigned len, unsigned copied,
2338			     struct page *page, void *fsdata)
2339{
2340	struct inode *inode = mapping->host;
2341	int ret = 0, ret2;
2342	handle_t *handle = ext4_journal_current_handle();
2343	loff_t new_i_size;
2344	unsigned long start, end;
2345	int write_mode = (int)(unsigned long)fsdata;
2346
2347	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2348		if (ext4_should_order_data(inode)) {
2349			return ext4_ordered_write_end(file, mapping, pos,
2350					len, copied, page, fsdata);
2351		} else if (ext4_should_writeback_data(inode)) {
2352			return ext4_writeback_write_end(file, mapping, pos,
2353					len, copied, page, fsdata);
2354		} else {
2355			BUG();
2356		}
2357	}
2358
2359	trace_ext4_da_write_end(inode, pos, len, copied);
2360	start = pos & (PAGE_CACHE_SIZE - 1);
2361	end = start + copied - 1;
 
 
 
2362
2363	/*
2364	 * generic_write_end() will run mark_inode_dirty() if i_size
2365	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2366	 * into that.
 
 
 
 
 
 
 
 
 
 
2367	 */
 
 
 
 
 
 
 
 
 
 
2368
2369	new_i_size = pos + copied;
2370	if (new_i_size > EXT4_I(inode)->i_disksize) {
2371		if (ext4_da_should_update_i_disksize(page, end)) {
2372			down_write(&EXT4_I(inode)->i_data_sem);
2373			if (new_i_size > EXT4_I(inode)->i_disksize) {
2374				/*
2375				 * Updating i_disksize when extending file
2376				 * without needing block allocation
2377				 */
2378				if (ext4_should_order_data(inode))
2379					ret = ext4_jbd2_file_inode(handle,
2380								   inode);
2381
2382				EXT4_I(inode)->i_disksize = new_i_size;
2383			}
2384			up_write(&EXT4_I(inode)->i_data_sem);
2385			/* We need to mark inode dirty even if
2386			 * new_i_size is less that inode->i_size
2387			 * bu greater than i_disksize.(hint delalloc)
2388			 */
2389			ext4_mark_inode_dirty(handle, inode);
2390		}
2391	}
2392	ret2 = generic_write_end(file, mapping, pos, len, copied,
2393							page, fsdata);
2394	copied = ret2;
2395	if (ret2 < 0)
2396		ret = ret2;
2397	ret2 = ext4_journal_stop(handle);
2398	if (!ret)
2399		ret = ret2;
2400
2401	return ret ? ret : copied;
 
 
 
 
 
 
 
 
 
 
 
2402}
2403
2404static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
 
 
 
2405{
2406	/*
2407	 * Drop reserved blocks
2408	 */
2409	BUG_ON(!PageLocked(page));
2410	if (!page_has_buffers(page))
2411		goto out;
 
 
2412
2413	ext4_da_page_release_reservation(page, offset);
 
 
 
 
2414
2415out:
2416	ext4_invalidatepage(page, offset);
2417
2418	return;
2419}
2420
2421/*
2422 * Force all delayed allocation blocks to be allocated for a given inode.
2423 */
2424int ext4_alloc_da_blocks(struct inode *inode)
2425{
2426	trace_ext4_alloc_da_blocks(inode);
2427
2428	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2429	    !EXT4_I(inode)->i_reserved_meta_blocks)
2430		return 0;
2431
2432	/*
2433	 * We do something simple for now.  The filemap_flush() will
2434	 * also start triggering a write of the data blocks, which is
2435	 * not strictly speaking necessary (and for users of
2436	 * laptop_mode, not even desirable).  However, to do otherwise
2437	 * would require replicating code paths in:
2438	 *
2439	 * ext4_da_writepages() ->
2440	 *    write_cache_pages() ---> (via passed in callback function)
2441	 *        __mpage_da_writepage() -->
2442	 *           mpage_add_bh_to_extent()
2443	 *           mpage_da_map_blocks()
2444	 *
2445	 * The problem is that write_cache_pages(), located in
2446	 * mm/page-writeback.c, marks pages clean in preparation for
2447	 * doing I/O, which is not desirable if we're not planning on
2448	 * doing I/O at all.
2449	 *
2450	 * We could call write_cache_pages(), and then redirty all of
2451	 * the pages by calling redirty_page_for_writepage() but that
2452	 * would be ugly in the extreme.  So instead we would need to
2453	 * replicate parts of the code in the above functions,
2454	 * simplifying them because we wouldn't actually intend to
2455	 * write out the pages, but rather only collect contiguous
2456	 * logical block extents, call the multi-block allocator, and
2457	 * then update the buffer heads with the block allocations.
2458	 *
2459	 * For now, though, we'll cheat by calling filemap_flush(),
2460	 * which will map the blocks, and start the I/O, but not
2461	 * actually wait for the I/O to complete.
2462	 */
2463	return filemap_flush(inode->i_mapping);
2464}
2465
2466/*
2467 * bmap() is special.  It gets used by applications such as lilo and by
2468 * the swapper to find the on-disk block of a specific piece of data.
2469 *
2470 * Naturally, this is dangerous if the block concerned is still in the
2471 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2472 * filesystem and enables swap, then they may get a nasty shock when the
2473 * data getting swapped to that swapfile suddenly gets overwritten by
2474 * the original zero's written out previously to the journal and
2475 * awaiting writeback in the kernel's buffer cache.
2476 *
2477 * So, if we see any bmap calls here on a modified, data-journaled file,
2478 * take extra steps to flush any blocks which might be in the cache.
2479 */
2480static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481{
2482	struct inode *inode = mapping->host;
2483	journal_t *journal;
2484	int err;
 
 
 
 
 
 
2485
2486	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2487			test_opt(inode->i_sb, DELALLOC)) {
 
2488		/*
2489		 * With delalloc we want to sync the file
2490		 * so that we can make sure we allocate
2491		 * blocks for file
2492		 */
2493		filemap_write_and_wait(mapping);
2494	}
2495
2496	if (EXT4_JOURNAL(inode) &&
2497	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498		/*
2499		 * This is a REALLY heavyweight approach, but the use of
2500		 * bmap on dirty files is expected to be extremely rare:
2501		 * only if we run lilo or swapon on a freshly made file
2502		 * do we expect this to happen.
2503		 *
2504		 * (bmap requires CAP_SYS_RAWIO so this does not
2505		 * represent an unprivileged user DOS attack --- we'd be
2506		 * in trouble if mortal users could trigger this path at
2507		 * will.)
2508		 *
2509		 * NB. EXT4_STATE_JDATA is not set on files other than
2510		 * regular files.  If somebody wants to bmap a directory
2511		 * or symlink and gets confused because the buffer
2512		 * hasn't yet been flushed to disk, they deserve
2513		 * everything they get.
2514		 */
2515
2516		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517		journal = EXT4_JOURNAL(inode);
2518		jbd2_journal_lock_updates(journal);
2519		err = jbd2_journal_flush(journal);
2520		jbd2_journal_unlock_updates(journal);
2521
2522		if (err)
2523			return 0;
2524	}
2525
2526	return generic_block_bmap(mapping, block, ext4_get_block);
2527}
2528
2529static int ext4_readpage(struct file *file, struct page *page)
2530{
2531	trace_ext4_readpage(page);
2532	return mpage_readpage(page, ext4_get_block);
 
 
 
 
 
2533}
2534
2535static int
2536ext4_readpages(struct file *file, struct address_space *mapping,
2537		struct list_head *pages, unsigned nr_pages)
2538{
2539	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2540}
2541
2542static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2543{
2544	struct buffer_head *head, *bh;
2545	unsigned int curr_off = 0;
2546
2547	if (!page_has_buffers(page))
2548		return;
2549	head = bh = page_buffers(page);
2550	do {
2551		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2552					&& bh->b_private) {
2553			ext4_free_io_end(bh->b_private);
2554			bh->b_private = NULL;
2555			bh->b_end_io = NULL;
2556		}
2557		curr_off = curr_off + bh->b_size;
2558		bh = bh->b_this_page;
2559	} while (bh != head);
2560}
2561
2562static void ext4_invalidatepage(struct page *page, unsigned long offset)
 
2563{
2564	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565
2566	trace_ext4_invalidatepage(page, offset);
2567
2568	/*
2569	 * free any io_end structure allocated for buffers to be discarded
2570	 */
2571	if (ext4_should_dioread_nolock(page->mapping->host))
2572		ext4_invalidatepage_free_endio(page, offset);
2573	/*
2574	 * If it's a full truncate we just forget about the pending dirtying
2575	 */
2576	if (offset == 0)
2577		ClearPageChecked(page);
2578
2579	if (journal)
2580		jbd2_journal_invalidatepage(journal, page, offset);
2581	else
2582		block_invalidatepage(page, offset);
 
 
 
 
 
2583}
2584
2585static int ext4_releasepage(struct page *page, gfp_t wait)
2586{
2587	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
 
2588
2589	trace_ext4_releasepage(page);
2590
2591	WARN_ON(PageChecked(page));
2592	if (!page_has_buffers(page))
2593		return 0;
2594	if (journal)
2595		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2596	else
2597		return try_to_free_buffers(page);
2598}
2599
2600/*
2601 * ext4_get_block used when preparing for a DIO write or buffer write.
2602 * We allocate an uinitialized extent if blocks haven't been allocated.
2603 * The extent will be converted to initialized after the IO is complete.
2604 */
2605static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606		   struct buffer_head *bh_result, int create)
2607{
2608	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609		   inode->i_ino, create);
2610	return _ext4_get_block(inode, iblock, bh_result,
2611			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 
 
 
 
 
 
 
 
 
 
 
2612}
2613
2614static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615			    ssize_t size, void *private, int ret,
2616			    bool is_async)
2617{
2618	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619        ext4_io_end_t *io_end = iocb->private;
2620	struct workqueue_struct *wq;
2621	unsigned long flags;
2622	struct ext4_inode_info *ei;
2623
2624	/* if not async direct IO or dio with 0 bytes write, just return */
2625	if (!io_end || !size)
2626		goto out;
 
 
 
 
 
 
2627
2628	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2629		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2630 		  iocb->private, io_end->inode->i_ino, iocb, offset,
2631		  size);
2632
2633	/* if not aio dio with unwritten extents, just free io and return */
2634	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635		ext4_free_io_end(io_end);
2636		iocb->private = NULL;
2637out:
2638		if (is_async)
2639			aio_complete(iocb, ret, 0);
2640		inode_dio_done(inode);
2641		return;
2642	}
2643
2644	io_end->offset = offset;
2645	io_end->size = size;
2646	if (is_async) {
2647		io_end->iocb = iocb;
2648		io_end->result = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649	}
2650	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2651
2652	/* Add the io_end to per-inode completed aio dio list*/
2653	ei = EXT4_I(io_end->inode);
2654	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2655	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2656	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657
2658	/* queue the work to convert unwritten extents to written */
2659	queue_work(wq, &io_end->work);
2660	iocb->private = NULL;
2661
2662	/* XXX: probably should move into the real I/O completion handler */
2663	inode_dio_done(inode);
2664}
2665
2666static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
 
2667{
2668	ext4_io_end_t *io_end = bh->b_private;
2669	struct workqueue_struct *wq;
2670	struct inode *inode;
2671	unsigned long flags;
2672
2673	if (!test_clear_buffer_uninit(bh) || !io_end)
2674		goto out;
 
 
 
 
 
2675
2676	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2677		printk("sb umounted, discard end_io request for inode %lu\n",
2678			io_end->inode->i_ino);
2679		ext4_free_io_end(io_end);
2680		goto out;
2681	}
 
 
 
 
2682
2683	/*
2684	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2685	 * but being more careful is always safe for the future change.
2686	 */
2687	inode = io_end->inode;
2688	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2689		io_end->flag |= EXT4_IO_END_UNWRITTEN;
2690		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2691	}
2692
2693	/* Add the io_end to per-inode completed io list*/
2694	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2695	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2696	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2697
2698	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2699	/* queue the work to convert unwritten extents to written */
2700	queue_work(wq, &io_end->work);
2701out:
2702	bh->b_private = NULL;
2703	bh->b_end_io = NULL;
2704	clear_buffer_uninit(bh);
2705	end_buffer_async_write(bh, uptodate);
2706}
2707
2708static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2709{
2710	ext4_io_end_t *io_end;
2711	struct page *page = bh->b_page;
2712	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2713	size_t size = bh->b_size;
2714
2715retry:
2716	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2717	if (!io_end) {
2718		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719		schedule();
2720		goto retry;
2721	}
2722	io_end->offset = offset;
2723	io_end->size = size;
2724	/*
2725	 * We need to hold a reference to the page to make sure it
2726	 * doesn't get evicted before ext4_end_io_work() has a chance
2727	 * to convert the extent from written to unwritten.
2728	 */
2729	io_end->page = page;
2730	get_page(io_end->page);
2731
2732	bh->b_private = io_end;
2733	bh->b_end_io = ext4_end_io_buffer_write;
2734	return 0;
 
 
2735}
2736
2737/*
2738 * For ext4 extent files, ext4 will do direct-io write to holes,
2739 * preallocated extents, and those write extend the file, no need to
2740 * fall back to buffered IO.
2741 *
2742 * For holes, we fallocate those blocks, mark them as uninitialized
2743 * If those blocks were preallocated, we mark sure they are splited, but
2744 * still keep the range to write as uninitialized.
2745 *
2746 * The unwrritten extents will be converted to written when DIO is completed.
2747 * For async direct IO, since the IO may still pending when return, we
2748 * set up an end_io call back function, which will do the conversion
2749 * when async direct IO completed.
2750 *
2751 * If the O_DIRECT write will extend the file then add this inode to the
2752 * orphan list.  So recovery will truncate it back to the original size
2753 * if the machine crashes during the write.
2754 *
2755 */
2756static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2757			      const struct iovec *iov, loff_t offset,
2758			      unsigned long nr_segs)
2759{
2760	struct file *file = iocb->ki_filp;
2761	struct inode *inode = file->f_mapping->host;
2762	ssize_t ret;
2763	size_t count = iov_length(iov, nr_segs);
2764
2765	loff_t final_size = offset + count;
2766	if (rw == WRITE && final_size <= inode->i_size) {
2767		/*
2768 		 * We could direct write to holes and fallocate.
2769		 *
2770 		 * Allocated blocks to fill the hole are marked as uninitialized
2771 		 * to prevent parallel buffered read to expose the stale data
2772 		 * before DIO complete the data IO.
2773		 *
2774 		 * As to previously fallocated extents, ext4 get_block
2775 		 * will just simply mark the buffer mapped but still
2776 		 * keep the extents uninitialized.
2777 		 *
2778		 * for non AIO case, we will convert those unwritten extents
2779		 * to written after return back from blockdev_direct_IO.
2780		 *
2781		 * for async DIO, the conversion needs to be defered when
2782		 * the IO is completed. The ext4 end_io callback function
2783		 * will be called to take care of the conversion work.
2784		 * Here for async case, we allocate an io_end structure to
2785		 * hook to the iocb.
2786 		 */
2787		iocb->private = NULL;
2788		EXT4_I(inode)->cur_aio_dio = NULL;
2789		if (!is_sync_kiocb(iocb)) {
2790			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791			if (!iocb->private)
2792				return -ENOMEM;
2793			/*
2794			 * we save the io structure for current async
2795			 * direct IO, so that later ext4_map_blocks()
2796			 * could flag the io structure whether there
2797			 * is a unwritten extents needs to be converted
2798			 * when IO is completed.
2799			 */
2800			EXT4_I(inode)->cur_aio_dio = iocb->private;
2801		}
2802
2803		ret = __blockdev_direct_IO(rw, iocb, inode,
2804					 inode->i_sb->s_bdev, iov,
2805					 offset, nr_segs,
2806					 ext4_get_block_write,
2807					 ext4_end_io_dio,
2808					 NULL,
2809					 DIO_LOCKING | DIO_SKIP_HOLES);
2810		if (iocb->private)
2811			EXT4_I(inode)->cur_aio_dio = NULL;
2812		/*
2813		 * The io_end structure takes a reference to the inode,
2814		 * that structure needs to be destroyed and the
2815		 * reference to the inode need to be dropped, when IO is
2816		 * complete, even with 0 byte write, or failed.
2817		 *
2818		 * In the successful AIO DIO case, the io_end structure will be
2819		 * desctroyed and the reference to the inode will be dropped
2820		 * after the end_io call back function is called.
2821		 *
2822		 * In the case there is 0 byte write, or error case, since
2823		 * VFS direct IO won't invoke the end_io call back function,
2824		 * we need to free the end_io structure here.
2825		 */
2826		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2827			ext4_free_io_end(iocb->private);
2828			iocb->private = NULL;
2829		} else if (ret > 0 && ext4_test_inode_state(inode,
2830						EXT4_STATE_DIO_UNWRITTEN)) {
2831			int err;
2832			/*
2833			 * for non AIO case, since the IO is already
2834			 * completed, we could do the conversion right here
2835			 */
2836			err = ext4_convert_unwritten_extents(inode,
2837							     offset, ret);
2838			if (err < 0)
2839				ret = err;
2840			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2841		}
 
 
 
 
 
 
2842		return ret;
2843	}
 
 
 
 
 
 
 
 
2844
2845	/* for write the the end of file case, we fall back to old way */
2846	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2847}
2848
2849static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2850			      const struct iovec *iov, loff_t offset,
2851			      unsigned long nr_segs)
2852{
2853	struct file *file = iocb->ki_filp;
2854	struct inode *inode = file->f_mapping->host;
2855	ssize_t ret;
2856
2857	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2858	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2859		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2860	else
2861		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2862	trace_ext4_direct_IO_exit(inode, offset,
2863				iov_length(iov, nr_segs), rw, ret);
2864	return ret;
2865}
2866
2867/*
2868 * Pages can be marked dirty completely asynchronously from ext4's journalling
2869 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2870 * much here because ->set_page_dirty is called under VFS locks.  The page is
2871 * not necessarily locked.
2872 *
2873 * We cannot just dirty the page and leave attached buffers clean, because the
2874 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2875 * or jbddirty because all the journalling code will explode.
2876 *
2877 * So what we do is to mark the page "pending dirty" and next time writepage
2878 * is called, propagate that into the buffers appropriately.
2879 */
2880static int ext4_journalled_set_page_dirty(struct page *page)
 
 
 
2881{
2882	SetPageChecked(page);
2883	return __set_page_dirty_nobuffers(page);
 
 
 
 
 
 
 
 
 
 
 
2884}
2885
2886static const struct address_space_operations ext4_ordered_aops = {
2887	.readpage		= ext4_readpage,
2888	.readpages		= ext4_readpages,
2889	.writepage		= ext4_writepage,
2890	.write_begin		= ext4_write_begin,
2891	.write_end		= ext4_ordered_write_end,
2892	.bmap			= ext4_bmap,
2893	.invalidatepage		= ext4_invalidatepage,
2894	.releasepage		= ext4_releasepage,
2895	.direct_IO		= ext4_direct_IO,
2896	.migratepage		= buffer_migrate_page,
2897	.is_partially_uptodate  = block_is_partially_uptodate,
2898	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2899};
2900
2901static const struct address_space_operations ext4_writeback_aops = {
2902	.readpage		= ext4_readpage,
2903	.readpages		= ext4_readpages,
2904	.writepage		= ext4_writepage,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2905	.write_begin		= ext4_write_begin,
2906	.write_end		= ext4_writeback_write_end,
 
2907	.bmap			= ext4_bmap,
2908	.invalidatepage		= ext4_invalidatepage,
2909	.releasepage		= ext4_releasepage,
2910	.direct_IO		= ext4_direct_IO,
2911	.migratepage		= buffer_migrate_page,
2912	.is_partially_uptodate  = block_is_partially_uptodate,
2913	.error_remove_page	= generic_error_remove_page,
 
2914};
2915
2916static const struct address_space_operations ext4_journalled_aops = {
2917	.readpage		= ext4_readpage,
2918	.readpages		= ext4_readpages,
2919	.writepage		= ext4_writepage,
2920	.write_begin		= ext4_write_begin,
2921	.write_end		= ext4_journalled_write_end,
2922	.set_page_dirty		= ext4_journalled_set_page_dirty,
2923	.bmap			= ext4_bmap,
2924	.invalidatepage		= ext4_invalidatepage,
2925	.releasepage		= ext4_releasepage,
 
2926	.is_partially_uptodate  = block_is_partially_uptodate,
2927	.error_remove_page	= generic_error_remove_page,
 
2928};
2929
2930static const struct address_space_operations ext4_da_aops = {
2931	.readpage		= ext4_readpage,
2932	.readpages		= ext4_readpages,
2933	.writepage		= ext4_writepage,
2934	.writepages		= ext4_da_writepages,
2935	.write_begin		= ext4_da_write_begin,
2936	.write_end		= ext4_da_write_end,
 
2937	.bmap			= ext4_bmap,
2938	.invalidatepage		= ext4_da_invalidatepage,
2939	.releasepage		= ext4_releasepage,
2940	.direct_IO		= ext4_direct_IO,
2941	.migratepage		= buffer_migrate_page,
2942	.is_partially_uptodate  = block_is_partially_uptodate,
2943	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
2944};
2945
2946void ext4_set_aops(struct inode *inode)
2947{
2948	if (ext4_should_order_data(inode) &&
2949		test_opt(inode->i_sb, DELALLOC))
2950		inode->i_mapping->a_ops = &ext4_da_aops;
2951	else if (ext4_should_order_data(inode))
2952		inode->i_mapping->a_ops = &ext4_ordered_aops;
2953	else if (ext4_should_writeback_data(inode) &&
2954		 test_opt(inode->i_sb, DELALLOC))
 
 
 
 
 
 
2955		inode->i_mapping->a_ops = &ext4_da_aops;
2956	else if (ext4_should_writeback_data(inode))
2957		inode->i_mapping->a_ops = &ext4_writeback_aops;
2958	else
2959		inode->i_mapping->a_ops = &ext4_journalled_aops;
2960}
2961
2962/*
2963 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2964 * up to the end of the block which corresponds to `from'.
2965 * This required during truncate. We need to physically zero the tail end
2966 * of that block so it doesn't yield old data if the file is later grown.
2967 */
2968int ext4_block_truncate_page(handle_t *handle,
2969		struct address_space *mapping, loff_t from)
2970{
2971	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2972	unsigned length;
2973	unsigned blocksize;
2974	struct inode *inode = mapping->host;
2975
2976	blocksize = inode->i_sb->s_blocksize;
2977	length = blocksize - (offset & (blocksize - 1));
2978
2979	return ext4_block_zero_page_range(handle, mapping, from, length);
2980}
2981
2982/*
2983 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2984 * starting from file offset 'from'.  The range to be zero'd must
2985 * be contained with in one block.  If the specified range exceeds
2986 * the end of the block it will be shortened to end of the block
2987 * that cooresponds to 'from'
2988 */
2989int ext4_block_zero_page_range(handle_t *handle,
2990		struct address_space *mapping, loff_t from, loff_t length)
2991{
2992	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2993	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2994	unsigned blocksize, max, pos;
2995	ext4_lblk_t iblock;
2996	struct inode *inode = mapping->host;
2997	struct buffer_head *bh;
2998	struct page *page;
2999	int err = 0;
3000
3001	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3002				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3003	if (!page)
3004		return -EINVAL;
 
3005
3006	blocksize = inode->i_sb->s_blocksize;
3007	max = blocksize - (offset & (blocksize - 1));
3008
3009	/*
3010	 * correct length if it does not fall between
3011	 * 'from' and the end of the block
3012	 */
3013	if (length > max || length < 0)
3014		length = max;
3015
3016	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3017
3018	if (!page_has_buffers(page))
3019		create_empty_buffers(page, blocksize, 0);
3020
3021	/* Find the buffer that contains "offset" */
3022	bh = page_buffers(page);
3023	pos = blocksize;
3024	while (offset >= pos) {
3025		bh = bh->b_this_page;
3026		iblock++;
3027		pos += blocksize;
3028	}
3029
3030	err = 0;
3031	if (buffer_freed(bh)) {
3032		BUFFER_TRACE(bh, "freed: skip");
3033		goto unlock;
3034	}
3035
3036	if (!buffer_mapped(bh)) {
3037		BUFFER_TRACE(bh, "unmapped");
3038		ext4_get_block(inode, iblock, bh, 0);
3039		/* unmapped? It's a hole - nothing to do */
3040		if (!buffer_mapped(bh)) {
3041			BUFFER_TRACE(bh, "still unmapped");
3042			goto unlock;
3043		}
3044	}
3045
3046	/* Ok, it's mapped. Make sure it's up-to-date */
3047	if (PageUptodate(page))
3048		set_buffer_uptodate(bh);
3049
3050	if (!buffer_uptodate(bh)) {
3051		err = -EIO;
3052		ll_rw_block(READ, 1, &bh);
3053		wait_on_buffer(bh);
3054		/* Uhhuh. Read error. Complain and punt. */
3055		if (!buffer_uptodate(bh))
3056			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
3057	}
3058
3059	if (ext4_should_journal_data(inode)) {
3060		BUFFER_TRACE(bh, "get write access");
3061		err = ext4_journal_get_write_access(handle, bh);
 
3062		if (err)
3063			goto unlock;
3064	}
3065
3066	zero_user(page, offset, length);
3067
3068	BUFFER_TRACE(bh, "zeroed end of block");
3069
3070	err = 0;
3071	if (ext4_should_journal_data(inode)) {
3072		err = ext4_handle_dirty_metadata(handle, inode, bh);
3073	} else {
3074		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3075			err = ext4_jbd2_file_inode(handle, inode);
3076		mark_buffer_dirty(bh);
 
 
 
3077	}
3078
3079unlock:
3080	unlock_page(page);
3081	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082	return err;
3083}
3084
3085int ext4_can_truncate(struct inode *inode)
3086{
3087	if (S_ISREG(inode->i_mode))
3088		return 1;
3089	if (S_ISDIR(inode->i_mode))
3090		return 1;
3091	if (S_ISLNK(inode->i_mode))
3092		return !ext4_inode_is_fast_symlink(inode);
3093	return 0;
3094}
3095
3096/*
3097 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098 * associated with the given offset and length
3099 *
3100 * @inode:  File inode
3101 * @offset: The offset where the hole will begin
3102 * @len:    The length of the hole
3103 *
3104 * Returns: 0 on sucess or negative on failure
3105 */
3106
3107int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3108{
3109	struct inode *inode = file->f_path.dentry->d_inode;
3110	if (!S_ISREG(inode->i_mode))
3111		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3114		/* TODO: Add support for non extent hole punching */
3115		return -ENOTSUPP;
3116	}
 
 
 
3117
3118	return ext4_ext_punch_hole(file, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119}
3120
3121/*
3122 * ext4_truncate()
3123 *
3124 * We block out ext4_get_block() block instantiations across the entire
3125 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3126 * simultaneously on behalf of the same inode.
3127 *
3128 * As we work through the truncate and commmit bits of it to the journal there
3129 * is one core, guiding principle: the file's tree must always be consistent on
3130 * disk.  We must be able to restart the truncate after a crash.
3131 *
3132 * The file's tree may be transiently inconsistent in memory (although it
3133 * probably isn't), but whenever we close off and commit a journal transaction,
3134 * the contents of (the filesystem + the journal) must be consistent and
3135 * restartable.  It's pretty simple, really: bottom up, right to left (although
3136 * left-to-right works OK too).
3137 *
3138 * Note that at recovery time, journal replay occurs *before* the restart of
3139 * truncate against the orphan inode list.
3140 *
3141 * The committed inode has the new, desired i_size (which is the same as
3142 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3143 * that this inode's truncate did not complete and it will again call
3144 * ext4_truncate() to have another go.  So there will be instantiated blocks
3145 * to the right of the truncation point in a crashed ext4 filesystem.  But
3146 * that's fine - as long as they are linked from the inode, the post-crash
3147 * ext4_truncate() run will find them and release them.
3148 */
3149void ext4_truncate(struct inode *inode)
3150{
 
 
 
 
 
 
 
 
 
 
 
 
 
3151	trace_ext4_truncate_enter(inode);
3152
3153	if (!ext4_can_truncate(inode))
3154		return;
3155
3156	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3157
3158	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3159		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3162		ext4_ext_truncate(inode);
3163	else
3164		ext4_ind_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3165
 
3166	trace_ext4_truncate_exit(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3167}
3168
3169/*
3170 * ext4_get_inode_loc returns with an extra refcount against the inode's
3171 * underlying buffer_head on success. If 'in_mem' is true, we have all
3172 * data in memory that is needed to recreate the on-disk version of this
3173 * inode.
3174 */
3175static int __ext4_get_inode_loc(struct inode *inode,
3176				struct ext4_iloc *iloc, int in_mem)
 
3177{
3178	struct ext4_group_desc	*gdp;
3179	struct buffer_head	*bh;
3180	struct super_block	*sb = inode->i_sb;
3181	ext4_fsblk_t		block;
 
3182	int			inodes_per_block, inode_offset;
3183
3184	iloc->bh = NULL;
3185	if (!ext4_valid_inum(sb, inode->i_ino))
3186		return -EIO;
 
3187
3188	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3189	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3190	if (!gdp)
3191		return -EIO;
3192
3193	/*
3194	 * Figure out the offset within the block group inode table
3195	 */
3196	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3197	inode_offset = ((inode->i_ino - 1) %
3198			EXT4_INODES_PER_GROUP(sb));
3199	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3200	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3201
 
 
 
 
 
 
 
 
 
3202	bh = sb_getblk(sb, block);
3203	if (!bh) {
3204		EXT4_ERROR_INODE_BLOCK(inode, block,
3205				       "unable to read itable block");
3206		return -EIO;
 
 
 
 
 
 
3207	}
3208	if (!buffer_uptodate(bh)) {
3209		lock_buffer(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3210
3211		/*
3212		 * If the buffer has the write error flag, we have failed
3213		 * to write out another inode in the same block.  In this
3214		 * case, we don't have to read the block because we may
3215		 * read the old inode data successfully.
3216		 */
3217		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218			set_buffer_uptodate(bh);
3219
3220		if (buffer_uptodate(bh)) {
3221			/* someone brought it uptodate while we waited */
3222			unlock_buffer(bh);
3223			goto has_buffer;
3224		}
3225
3226		/*
3227		 * If we have all information of the inode in memory and this
3228		 * is the only valid inode in the block, we need not read the
3229		 * block.
3230		 */
3231		if (in_mem) {
3232			struct buffer_head *bitmap_bh;
3233			int i, start;
3234
3235			start = inode_offset & ~(inodes_per_block - 1);
3236
3237			/* Is the inode bitmap in cache? */
3238			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3239			if (!bitmap_bh)
3240				goto make_io;
3241
3242			/*
3243			 * If the inode bitmap isn't in cache then the
3244			 * optimisation may end up performing two reads instead
3245			 * of one, so skip it.
3246			 */
3247			if (!buffer_uptodate(bitmap_bh)) {
3248				brelse(bitmap_bh);
3249				goto make_io;
3250			}
3251			for (i = start; i < start + inodes_per_block; i++) {
3252				if (i == inode_offset)
3253					continue;
3254				if (ext4_test_bit(i, bitmap_bh->b_data))
3255					break;
3256			}
3257			brelse(bitmap_bh);
3258			if (i == start + inodes_per_block) {
3259				/* all other inodes are free, so skip I/O */
3260				memset(bh->b_data, 0, bh->b_size);
3261				set_buffer_uptodate(bh);
3262				unlock_buffer(bh);
3263				goto has_buffer;
3264			}
3265		}
3266
3267make_io:
3268		/*
3269		 * If we need to do any I/O, try to pre-readahead extra
3270		 * blocks from the inode table.
3271		 */
3272		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3273			ext4_fsblk_t b, end, table;
3274			unsigned num;
3275
3276			table = ext4_inode_table(sb, gdp);
3277			/* s_inode_readahead_blks is always a power of 2 */
3278			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3279			if (table > b)
3280				b = table;
3281			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3282			num = EXT4_INODES_PER_GROUP(sb);
3283			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3284				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3285				num -= ext4_itable_unused_count(sb, gdp);
3286			table += num / inodes_per_block;
3287			if (end > table)
3288				end = table;
3289			while (b <= end)
3290				sb_breadahead(sb, b++);
3291		}
 
3292
3293		/*
3294		 * There are other valid inodes in the buffer, this inode
3295		 * has in-inode xattrs, or we don't have this inode in memory.
3296		 * Read the block from disk.
3297		 */
3298		trace_ext4_load_inode(inode);
3299		get_bh(bh);
3300		bh->b_end_io = end_buffer_read_sync;
3301		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3302		wait_on_buffer(bh);
3303		if (!buffer_uptodate(bh)) {
3304			EXT4_ERROR_INODE_BLOCK(inode, block,
3305					       "unable to read itable block");
3306			brelse(bh);
3307			return -EIO;
3308		}
3309	}
3310has_buffer:
3311	iloc->bh = bh;
3312	return 0;
3313}
3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3316{
3317	/* We have all inode data except xattrs in memory here. */
3318	return __ext4_get_inode_loc(inode, iloc,
3319		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320}
3321
3322void ext4_set_inode_flags(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3323{
3324	unsigned int flags = EXT4_I(inode)->i_flags;
 
 
 
3325
3326	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3327	if (flags & EXT4_SYNC_FL)
3328		inode->i_flags |= S_SYNC;
3329	if (flags & EXT4_APPEND_FL)
3330		inode->i_flags |= S_APPEND;
3331	if (flags & EXT4_IMMUTABLE_FL)
3332		inode->i_flags |= S_IMMUTABLE;
3333	if (flags & EXT4_NOATIME_FL)
3334		inode->i_flags |= S_NOATIME;
3335	if (flags & EXT4_DIRSYNC_FL)
3336		inode->i_flags |= S_DIRSYNC;
3337}
3338
3339/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3340void ext4_get_inode_flags(struct ext4_inode_info *ei)
3341{
3342	unsigned int vfs_fl;
3343	unsigned long old_fl, new_fl;
3344
3345	do {
3346		vfs_fl = ei->vfs_inode.i_flags;
3347		old_fl = ei->i_flags;
3348		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3349				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3350				EXT4_DIRSYNC_FL);
3351		if (vfs_fl & S_SYNC)
3352			new_fl |= EXT4_SYNC_FL;
3353		if (vfs_fl & S_APPEND)
3354			new_fl |= EXT4_APPEND_FL;
3355		if (vfs_fl & S_IMMUTABLE)
3356			new_fl |= EXT4_IMMUTABLE_FL;
3357		if (vfs_fl & S_NOATIME)
3358			new_fl |= EXT4_NOATIME_FL;
3359		if (vfs_fl & S_DIRSYNC)
3360			new_fl |= EXT4_DIRSYNC_FL;
3361	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3362}
3363
3364static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3365				  struct ext4_inode_info *ei)
3366{
3367	blkcnt_t i_blocks ;
3368	struct inode *inode = &(ei->vfs_inode);
3369	struct super_block *sb = inode->i_sb;
3370
3371	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3373		/* we are using combined 48 bit field */
3374		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3375					le32_to_cpu(raw_inode->i_blocks_lo);
3376		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3377			/* i_blocks represent file system block size */
3378			return i_blocks  << (inode->i_blkbits - 9);
3379		} else {
3380			return i_blocks;
3381		}
3382	} else {
3383		return le32_to_cpu(raw_inode->i_blocks_lo);
3384	}
3385}
3386
3387struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388{
3389	struct ext4_iloc iloc;
3390	struct ext4_inode *raw_inode;
3391	struct ext4_inode_info *ei;
 
3392	struct inode *inode;
 
3393	journal_t *journal = EXT4_SB(sb)->s_journal;
3394	long ret;
 
3395	int block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396
3397	inode = iget_locked(sb, ino);
3398	if (!inode)
3399		return ERR_PTR(-ENOMEM);
3400	if (!(inode->i_state & I_NEW))
 
 
 
 
 
3401		return inode;
 
3402
3403	ei = EXT4_I(inode);
3404	iloc.bh = NULL;
3405
3406	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3407	if (ret < 0)
3408		goto bad_inode;
3409	raw_inode = ext4_raw_inode(&iloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3411	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3412	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
3413	if (!(test_opt(inode->i_sb, NO_UID32))) {
3414		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3415		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3416	}
3417	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
 
 
 
3418
3419	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 
3420	ei->i_dir_start_lookup = 0;
3421	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3422	/* We now have enough fields to check if the inode was active or not.
3423	 * This is needed because nfsd might try to access dead inodes
3424	 * the test is that same one that e2fsck uses
3425	 * NeilBrown 1999oct15
3426	 */
3427	if (inode->i_nlink == 0) {
3428		if (inode->i_mode == 0 ||
3429		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3430			/* this inode is deleted */
3431			ret = -ESTALE;
 
 
 
 
 
 
3432			goto bad_inode;
3433		}
3434		/* The only unlinked inodes we let through here have
3435		 * valid i_mode and are being read by the orphan
3436		 * recovery code: that's fine, we're about to complete
3437		 * the process of deleting those. */
 
 
3438	}
3439	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
3440	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3441	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3442	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3443		ei->i_file_acl |=
3444			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3445	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446	ei->i_disksize = inode->i_size;
3447#ifdef CONFIG_QUOTA
3448	ei->i_reserved_quota = 0;
3449#endif
3450	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3451	ei->i_block_group = iloc.block_group;
3452	ei->i_last_alloc_group = ~0;
3453	/*
3454	 * NOTE! The in-memory inode i_data array is in little-endian order
3455	 * even on big-endian machines: we do NOT byteswap the block numbers!
3456	 */
3457	for (block = 0; block < EXT4_N_BLOCKS; block++)
3458		ei->i_data[block] = raw_inode->i_block[block];
3459	INIT_LIST_HEAD(&ei->i_orphan);
 
3460
3461	/*
3462	 * Set transaction id's of transactions that have to be committed
3463	 * to finish f[data]sync. We set them to currently running transaction
3464	 * as we cannot be sure that the inode or some of its metadata isn't
3465	 * part of the transaction - the inode could have been reclaimed and
3466	 * now it is reread from disk.
3467	 */
3468	if (journal) {
3469		transaction_t *transaction;
3470		tid_t tid;
3471
3472		read_lock(&journal->j_state_lock);
3473		if (journal->j_running_transaction)
3474			transaction = journal->j_running_transaction;
3475		else
3476			transaction = journal->j_committing_transaction;
3477		if (transaction)
3478			tid = transaction->t_tid;
3479		else
3480			tid = journal->j_commit_sequence;
3481		read_unlock(&journal->j_state_lock);
3482		ei->i_sync_tid = tid;
3483		ei->i_datasync_tid = tid;
3484	}
3485
3486	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3487		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3488		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3489		    EXT4_INODE_SIZE(inode->i_sb)) {
3490			ret = -EIO;
3491			goto bad_inode;
3492		}
3493		if (ei->i_extra_isize == 0) {
3494			/* The extra space is currently unused. Use it. */
 
3495			ei->i_extra_isize = sizeof(struct ext4_inode) -
3496					    EXT4_GOOD_OLD_INODE_SIZE;
3497		} else {
3498			__le32 *magic = (void *)raw_inode +
3499					EXT4_GOOD_OLD_INODE_SIZE +
3500					ei->i_extra_isize;
3501			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3502				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3503		}
3504	} else
3505		ei->i_extra_isize = 0;
3506
3507	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3508	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3509	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3510	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3511
3512	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3513	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3514		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3515			inode->i_version |=
3516			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 
 
 
 
3517	}
3518
3519	ret = 0;
3520	if (ei->i_file_acl &&
3521	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3522		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
3523				 ei->i_file_acl);
3524		ret = -EIO;
3525		goto bad_inode;
3526	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3527		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3528		    (S_ISLNK(inode->i_mode) &&
3529		     !ext4_inode_is_fast_symlink(inode)))
3530			/* Validate extent which is part of inode */
3531			ret = ext4_ext_check_inode(inode);
3532	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3533		   (S_ISLNK(inode->i_mode) &&
3534		    !ext4_inode_is_fast_symlink(inode))) {
3535		/* Validate block references which are part of inode */
3536		ret = ext4_ind_check_inode(inode);
3537	}
3538	if (ret)
3539		goto bad_inode;
3540
3541	if (S_ISREG(inode->i_mode)) {
3542		inode->i_op = &ext4_file_inode_operations;
3543		inode->i_fop = &ext4_file_operations;
3544		ext4_set_aops(inode);
3545	} else if (S_ISDIR(inode->i_mode)) {
3546		inode->i_op = &ext4_dir_inode_operations;
3547		inode->i_fop = &ext4_dir_operations;
3548	} else if (S_ISLNK(inode->i_mode)) {
3549		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
 
 
 
 
 
 
 
3550			inode->i_op = &ext4_fast_symlink_inode_operations;
3551			nd_terminate_link(ei->i_data, inode->i_size,
3552				sizeof(ei->i_data) - 1);
3553		} else {
3554			inode->i_op = &ext4_symlink_inode_operations;
3555			ext4_set_aops(inode);
3556		}
3557	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3558	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3559		inode->i_op = &ext4_special_inode_operations;
3560		if (raw_inode->i_block[0])
3561			init_special_inode(inode, inode->i_mode,
3562			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3563		else
3564			init_special_inode(inode, inode->i_mode,
3565			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 
 
3566	} else {
3567		ret = -EIO;
3568		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
 
 
 
 
 
 
 
 
 
 
 
3569		goto bad_inode;
3570	}
 
3571	brelse(iloc.bh);
3572	ext4_set_inode_flags(inode);
3573	unlock_new_inode(inode);
3574	return inode;
3575
3576bad_inode:
3577	brelse(iloc.bh);
3578	iget_failed(inode);
3579	return ERR_PTR(ret);
3580}
3581
3582static int ext4_inode_blocks_set(handle_t *handle,
3583				struct ext4_inode *raw_inode,
3584				struct ext4_inode_info *ei)
 
3585{
3586	struct inode *inode = &(ei->vfs_inode);
3587	u64 i_blocks = inode->i_blocks;
3588	struct super_block *sb = inode->i_sb;
 
 
 
 
 
3589
3590	if (i_blocks <= ~0U) {
3591		/*
3592		 * i_blocks can be represnted in a 32 bit variable
3593		 * as multiple of 512 bytes
3594		 */
3595		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3596		raw_inode->i_blocks_high = 0;
3597		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598		return 0;
 
 
 
 
 
 
3599	}
3600	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3601		return -EFBIG;
 
 
 
 
 
 
 
 
 
 
 
3602
3603	if (i_blocks <= 0xffffffffffffULL) {
3604		/*
3605		 * i_blocks can be represented in a 48 bit variable
3606		 * as multiple of 512 bytes
3607		 */
3608		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3609		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3610		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3611	} else {
3612		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3613		/* i_block is stored in file system block size */
3614		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3615		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3616		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3617	}
3618	return 0;
3619}
3620
3621/*
3622 * Post the struct inode info into an on-disk inode location in the
3623 * buffer-cache.  This gobbles the caller's reference to the
3624 * buffer_head in the inode location struct.
3625 *
3626 * The caller must have write access to iloc->bh.
3627 */
3628static int ext4_do_update_inode(handle_t *handle,
3629				struct inode *inode,
3630				struct ext4_iloc *iloc)
3631{
3632	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3633	struct ext4_inode_info *ei = EXT4_I(inode);
3634	struct buffer_head *bh = iloc->bh;
3635	int err = 0, rc, block;
 
 
 
 
3636
3637	/* For fields not not tracking in the in-memory inode,
3638	 * initialise them to zero for new inodes. */
 
 
3639	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3640		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3641
3642	ext4_get_inode_flags(ei);
3643	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3644	if (!(test_opt(inode->i_sb, NO_UID32))) {
3645		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3646		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3647/*
3648 * Fix up interoperability with old kernels. Otherwise, old inodes get
3649 * re-used with the upper 16 bits of the uid/gid intact
3650 */
3651		if (!ei->i_dtime) {
3652			raw_inode->i_uid_high =
3653				cpu_to_le16(high_16_bits(inode->i_uid));
3654			raw_inode->i_gid_high =
3655				cpu_to_le16(high_16_bits(inode->i_gid));
3656		} else {
3657			raw_inode->i_uid_high = 0;
3658			raw_inode->i_gid_high = 0;
3659		}
3660	} else {
3661		raw_inode->i_uid_low =
3662			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3663		raw_inode->i_gid_low =
3664			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3665		raw_inode->i_uid_high = 0;
3666		raw_inode->i_gid_high = 0;
3667	}
3668	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3669
3670	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3671	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3672	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3673	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3674
3675	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3676		goto out_brelse;
3677	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3678	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3679	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3680	    cpu_to_le32(EXT4_OS_HURD))
3681		raw_inode->i_file_acl_high =
3682			cpu_to_le16(ei->i_file_acl >> 32);
3683	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3684	ext4_isize_set(raw_inode, ei->i_disksize);
3685	if (ei->i_disksize > 0x7fffffffULL) {
3686		struct super_block *sb = inode->i_sb;
3687		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3688				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3689				EXT4_SB(sb)->s_es->s_rev_level ==
3690				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3691			/* If this is the first large file
3692			 * created, add a flag to the superblock.
3693			 */
3694			err = ext4_journal_get_write_access(handle,
3695					EXT4_SB(sb)->s_sbh);
3696			if (err)
3697				goto out_brelse;
3698			ext4_update_dynamic_rev(sb);
3699			EXT4_SET_RO_COMPAT_FEATURE(sb,
3700					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3701			sb->s_dirt = 1;
3702			ext4_handle_sync(handle);
3703			err = ext4_handle_dirty_metadata(handle, NULL,
3704					EXT4_SB(sb)->s_sbh);
3705		}
3706	}
3707	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3708	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3709		if (old_valid_dev(inode->i_rdev)) {
3710			raw_inode->i_block[0] =
3711				cpu_to_le32(old_encode_dev(inode->i_rdev));
3712			raw_inode->i_block[1] = 0;
3713		} else {
3714			raw_inode->i_block[0] = 0;
3715			raw_inode->i_block[1] =
3716				cpu_to_le32(new_encode_dev(inode->i_rdev));
3717			raw_inode->i_block[2] = 0;
3718		}
3719	} else
3720		for (block = 0; block < EXT4_N_BLOCKS; block++)
3721			raw_inode->i_block[block] = ei->i_data[block];
3722
3723	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3724	if (ei->i_extra_isize) {
3725		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3726			raw_inode->i_version_hi =
3727			cpu_to_le32(inode->i_version >> 32);
3728		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3729	}
3730
3731	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3732	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3733	if (!err)
3734		err = rc;
3735	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3736
3737	ext4_update_inode_fsync_trans(handle, inode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3738out_brelse:
3739	brelse(bh);
3740	ext4_std_error(inode->i_sb, err);
3741	return err;
3742}
3743
3744/*
3745 * ext4_write_inode()
3746 *
3747 * We are called from a few places:
3748 *
3749 * - Within generic_file_write() for O_SYNC files.
3750 *   Here, there will be no transaction running. We wait for any running
3751 *   trasnaction to commit.
3752 *
3753 * - Within sys_sync(), kupdate and such.
3754 *   We wait on commit, if tol to.
3755 *
3756 * - Within prune_icache() (PF_MEMALLOC == true)
3757 *   Here we simply return.  We can't afford to block kswapd on the
3758 *   journal commit.
3759 *
3760 * In all cases it is actually safe for us to return without doing anything,
3761 * because the inode has been copied into a raw inode buffer in
3762 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3763 * knfsd.
3764 *
3765 * Note that we are absolutely dependent upon all inode dirtiers doing the
3766 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3767 * which we are interested.
3768 *
3769 * It would be a bug for them to not do this.  The code:
3770 *
3771 *	mark_inode_dirty(inode)
3772 *	stuff();
3773 *	inode->i_size = expr;
3774 *
3775 * is in error because a kswapd-driven write_inode() could occur while
3776 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3777 * will no longer be on the superblock's dirty inode list.
3778 */
3779int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3780{
3781	int err;
3782
3783	if (current->flags & PF_MEMALLOC)
3784		return 0;
3785
 
 
 
3786	if (EXT4_SB(inode->i_sb)->s_journal) {
3787		if (ext4_journal_current_handle()) {
3788			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3789			dump_stack();
3790			return -EIO;
3791		}
3792
3793		if (wbc->sync_mode != WB_SYNC_ALL)
 
 
 
 
 
3794			return 0;
3795
3796		err = ext4_force_commit(inode->i_sb);
 
3797	} else {
3798		struct ext4_iloc iloc;
3799
3800		err = __ext4_get_inode_loc(inode, &iloc, 0);
3801		if (err)
3802			return err;
3803		if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
3804			sync_dirty_buffer(iloc.bh);
3805		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3806			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3807					 "IO error syncing inode");
3808			err = -EIO;
3809		}
3810		brelse(iloc.bh);
3811	}
3812	return err;
3813}
3814
3815/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3816 * ext4_setattr()
3817 *
3818 * Called from notify_change.
3819 *
3820 * We want to trap VFS attempts to truncate the file as soon as
3821 * possible.  In particular, we want to make sure that when the VFS
3822 * shrinks i_size, we put the inode on the orphan list and modify
3823 * i_disksize immediately, so that during the subsequent flushing of
3824 * dirty pages and freeing of disk blocks, we can guarantee that any
3825 * commit will leave the blocks being flushed in an unused state on
3826 * disk.  (On recovery, the inode will get truncated and the blocks will
3827 * be freed, so we have a strong guarantee that no future commit will
3828 * leave these blocks visible to the user.)
3829 *
3830 * Another thing we have to assure is that if we are in ordered mode
3831 * and inode is still attached to the committing transaction, we must
3832 * we start writeout of all the dirty pages which are being truncated.
3833 * This way we are sure that all the data written in the previous
3834 * transaction are already on disk (truncate waits for pages under
3835 * writeback).
3836 *
3837 * Called with inode->i_mutex down.
3838 */
3839int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 
3840{
3841	struct inode *inode = dentry->d_inode;
3842	int error, rc = 0;
3843	int orphan = 0;
3844	const unsigned int ia_valid = attr->ia_valid;
 
 
 
 
3845
3846	error = inode_change_ok(inode, attr);
 
 
 
 
 
 
 
 
3847	if (error)
3848		return error;
3849
3850	if (is_quota_modification(inode, attr))
3851		dquot_initialize(inode);
3852	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3853		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
 
 
 
 
 
 
 
 
 
 
 
 
3854		handle_t *handle;
3855
3856		/* (user+group)*(old+new) structure, inode write (sb,
3857		 * inode block, ? - but truncate inode update has it) */
3858		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3859					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
 
3860		if (IS_ERR(handle)) {
3861			error = PTR_ERR(handle);
3862			goto err_out;
3863		}
3864		error = dquot_transfer(inode, attr);
 
 
 
 
 
 
 
3865		if (error) {
3866			ext4_journal_stop(handle);
3867			return error;
3868		}
3869		/* Update corresponding info in inode so that everything is in
3870		 * one transaction */
3871		if (attr->ia_valid & ATTR_UID)
3872			inode->i_uid = attr->ia_uid;
3873		if (attr->ia_valid & ATTR_GID)
3874			inode->i_gid = attr->ia_gid;
3875		error = ext4_mark_inode_dirty(handle, inode);
3876		ext4_journal_stop(handle);
 
 
 
3877	}
3878
3879	if (attr->ia_valid & ATTR_SIZE) {
3880		inode_dio_wait(inode);
 
 
 
3881
3882		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884
3885			if (attr->ia_size > sbi->s_bitmap_maxbytes)
3886				return -EFBIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887		}
3888	}
3889
3890	if (S_ISREG(inode->i_mode) &&
3891	    attr->ia_valid & ATTR_SIZE &&
3892	    (attr->ia_size < inode->i_size)) {
3893		handle_t *handle;
3894
3895		handle = ext4_journal_start(inode, 3);
3896		if (IS_ERR(handle)) {
3897			error = PTR_ERR(handle);
3898			goto err_out;
3899		}
3900		if (ext4_handle_valid(handle)) {
3901			error = ext4_orphan_add(handle, inode);
3902			orphan = 1;
3903		}
3904		EXT4_I(inode)->i_disksize = attr->ia_size;
3905		rc = ext4_mark_inode_dirty(handle, inode);
3906		if (!error)
3907			error = rc;
3908		ext4_journal_stop(handle);
3909
3910		if (ext4_should_order_data(inode)) {
3911			error = ext4_begin_ordered_truncate(inode,
3912							    attr->ia_size);
3913			if (error) {
3914				/* Do as much error cleanup as possible */
3915				handle = ext4_journal_start(inode, 3);
3916				if (IS_ERR(handle)) {
3917					ext4_orphan_del(NULL, inode);
3918					goto err_out;
3919				}
3920				ext4_orphan_del(handle, inode);
3921				orphan = 0;
3922				ext4_journal_stop(handle);
3923				goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924			}
3925		}
3926	}
3927
3928	if (attr->ia_valid & ATTR_SIZE) {
3929		if (attr->ia_size != i_size_read(inode)) {
3930			truncate_setsize(inode, attr->ia_size);
3931			ext4_truncate(inode);
3932		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3933			ext4_truncate(inode);
 
 
 
 
 
 
 
 
 
 
3934	}
3935
3936	if (!rc) {
3937		setattr_copy(inode, attr);
 
 
3938		mark_inode_dirty(inode);
3939	}
3940
3941	/*
3942	 * If the call to ext4_truncate failed to get a transaction handle at
3943	 * all, we need to clean up the in-core orphan list manually.
3944	 */
3945	if (orphan && inode->i_nlink)
3946		ext4_orphan_del(NULL, inode);
3947
3948	if (!rc && (ia_valid & ATTR_MODE))
3949		rc = ext4_acl_chmod(inode);
3950
3951err_out:
3952	ext4_std_error(inode->i_sb, error);
 
3953	if (!error)
3954		error = rc;
3955	return error;
3956}
3957
3958int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3959		 struct kstat *stat)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3960{
3961	struct inode *inode;
3962	unsigned long delalloc_blocks;
 
 
3963
3964	inode = dentry->d_inode;
3965	generic_fillattr(inode, stat);
 
 
 
 
 
 
3966
3967	/*
3968	 * We can't update i_blocks if the block allocation is delayed
3969	 * otherwise in the case of system crash before the real block
3970	 * allocation is done, we will have i_blocks inconsistent with
3971	 * on-disk file blocks.
3972	 * We always keep i_blocks updated together with real
3973	 * allocation. But to not confuse with user, stat
3974	 * will return the blocks that include the delayed allocation
3975	 * blocks for this file.
3976	 */
3977	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3978
3979	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3980	return 0;
3981}
3982
3983static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
3984{
3985	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3986		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3987	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3988}
3989
3990/*
3991 * Account for index blocks, block groups bitmaps and block group
3992 * descriptor blocks if modify datablocks and index blocks
3993 * worse case, the indexs blocks spread over different block groups
3994 *
3995 * If datablocks are discontiguous, they are possible to spread over
3996 * different block groups too. If they are contiuguous, with flexbg,
3997 * they could still across block group boundary.
3998 *
3999 * Also account for superblock, inode, quota and xattr blocks
4000 */
4001static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4002{
4003	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4004	int gdpblocks;
4005	int idxblocks;
4006	int ret = 0;
4007
4008	/*
4009	 * How many index blocks need to touch to modify nrblocks?
4010	 * The "Chunk" flag indicating whether the nrblocks is
4011	 * physically contiguous on disk
4012	 *
4013	 * For Direct IO and fallocate, they calls get_block to allocate
4014	 * one single extent at a time, so they could set the "Chunk" flag
4015	 */
4016	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4017
4018	ret = idxblocks;
4019
4020	/*
4021	 * Now let's see how many group bitmaps and group descriptors need
4022	 * to account
4023	 */
4024	groups = idxblocks;
4025	if (chunk)
4026		groups += 1;
4027	else
4028		groups += nrblocks;
4029
4030	gdpblocks = groups;
4031	if (groups > ngroups)
4032		groups = ngroups;
4033	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4034		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4035
4036	/* bitmaps and block group descriptor blocks */
4037	ret += groups + gdpblocks;
4038
4039	/* Blocks for super block, inode, quota and xattr blocks */
4040	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4041
4042	return ret;
4043}
4044
4045/*
4046 * Calculate the total number of credits to reserve to fit
4047 * the modification of a single pages into a single transaction,
4048 * which may include multiple chunks of block allocations.
4049 *
4050 * This could be called via ext4_write_begin()
4051 *
4052 * We need to consider the worse case, when
4053 * one new block per extent.
4054 */
4055int ext4_writepage_trans_blocks(struct inode *inode)
4056{
4057	int bpp = ext4_journal_blocks_per_page(inode);
4058	int ret;
4059
4060	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4061
4062	/* Account for data blocks for journalled mode */
4063	if (ext4_should_journal_data(inode))
4064		ret += bpp;
4065	return ret;
4066}
4067
4068/*
4069 * Calculate the journal credits for a chunk of data modification.
4070 *
4071 * This is called from DIO, fallocate or whoever calling
4072 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4073 *
4074 * journal buffers for data blocks are not included here, as DIO
4075 * and fallocate do no need to journal data buffers.
4076 */
4077int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4078{
4079	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4080}
4081
4082/*
4083 * The caller must have previously called ext4_reserve_inode_write().
4084 * Give this, we know that the caller already has write access to iloc->bh.
4085 */
4086int ext4_mark_iloc_dirty(handle_t *handle,
4087			 struct inode *inode, struct ext4_iloc *iloc)
4088{
4089	int err = 0;
4090
4091	if (test_opt(inode->i_sb, I_VERSION))
4092		inode_inc_iversion(inode);
 
 
 
4093
4094	/* the do_update_inode consumes one bh->b_count */
4095	get_bh(iloc->bh);
4096
4097	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4098	err = ext4_do_update_inode(handle, inode, iloc);
4099	put_bh(iloc->bh);
4100	return err;
4101}
4102
4103/*
4104 * On success, We end up with an outstanding reference count against
4105 * iloc->bh.  This _must_ be cleaned up later.
4106 */
4107
4108int
4109ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4110			 struct ext4_iloc *iloc)
4111{
4112	int err;
4113
 
 
 
4114	err = ext4_get_inode_loc(inode, iloc);
4115	if (!err) {
4116		BUFFER_TRACE(iloc->bh, "get_write_access");
4117		err = ext4_journal_get_write_access(handle, iloc->bh);
 
4118		if (err) {
4119			brelse(iloc->bh);
4120			iloc->bh = NULL;
4121		}
4122	}
4123	ext4_std_error(inode->i_sb, err);
4124	return err;
4125}
4126
4127/*
4128 * Expand an inode by new_extra_isize bytes.
4129 * Returns 0 on success or negative error number on failure.
4130 */
4131static int ext4_expand_extra_isize(struct inode *inode,
4132				   unsigned int new_extra_isize,
4133				   struct ext4_iloc iloc,
4134				   handle_t *handle)
4135{
4136	struct ext4_inode *raw_inode;
4137	struct ext4_xattr_ibody_header *header;
 
 
 
4138
4139	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4140		return 0;
 
 
 
 
 
 
 
 
 
 
4141
4142	raw_inode = ext4_raw_inode(&iloc);
4143
4144	header = IHDR(inode, raw_inode);
4145
4146	/* No extended attributes present */
4147	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4148	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4149		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4150			new_extra_isize);
 
4151		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4152		return 0;
4153	}
4154
 
 
 
 
 
 
 
 
4155	/* try to expand with EAs present */
4156	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4157					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158}
4159
4160/*
4161 * What we do here is to mark the in-core inode as clean with respect to inode
4162 * dirtiness (it may still be data-dirty).
4163 * This means that the in-core inode may be reaped by prune_icache
4164 * without having to perform any I/O.  This is a very good thing,
4165 * because *any* task may call prune_icache - even ones which
4166 * have a transaction open against a different journal.
4167 *
4168 * Is this cheating?  Not really.  Sure, we haven't written the
4169 * inode out, but prune_icache isn't a user-visible syncing function.
4170 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4171 * we start and wait on commits.
4172 *
4173 * Is this efficient/effective?  Well, we're being nice to the system
4174 * by cleaning up our inodes proactively so they can be reaped
4175 * without I/O.  But we are potentially leaving up to five seconds'
4176 * worth of inodes floating about which prune_icache wants us to
4177 * write out.  One way to fix that would be to get prune_icache()
4178 * to do a write_super() to free up some memory.  It has the desired
4179 * effect.
4180 */
4181int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
4182{
4183	struct ext4_iloc iloc;
4184	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4185	static unsigned int mnt_count;
4186	int err, ret;
4187
4188	might_sleep();
4189	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4190	err = ext4_reserve_inode_write(handle, inode, &iloc);
4191	if (ext4_handle_valid(handle) &&
4192	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4193	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4194		/*
4195		 * We need extra buffer credits since we may write into EA block
4196		 * with this same handle. If journal_extend fails, then it will
4197		 * only result in a minor loss of functionality for that inode.
4198		 * If this is felt to be critical, then e2fsck should be run to
4199		 * force a large enough s_min_extra_isize.
4200		 */
4201		if ((jbd2_journal_extend(handle,
4202			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4203			ret = ext4_expand_extra_isize(inode,
4204						      sbi->s_want_extra_isize,
4205						      iloc, handle);
4206			if (ret) {
4207				ext4_set_inode_state(inode,
4208						     EXT4_STATE_NO_EXPAND);
4209				if (mnt_count !=
4210					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4211					ext4_warning(inode->i_sb,
4212					"Unable to expand inode %lu. Delete"
4213					" some EAs or run e2fsck.",
4214					inode->i_ino);
4215					mnt_count =
4216					  le16_to_cpu(sbi->s_es->s_mnt_count);
4217				}
4218			}
4219		}
4220	}
4221	if (!err)
4222		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4223	return err;
4224}
4225
4226/*
4227 * ext4_dirty_inode() is called from __mark_inode_dirty()
4228 *
4229 * We're really interested in the case where a file is being extended.
4230 * i_size has been changed by generic_commit_write() and we thus need
4231 * to include the updated inode in the current transaction.
4232 *
4233 * Also, dquot_alloc_block() will always dirty the inode when blocks
4234 * are allocated to the file.
4235 *
4236 * If the inode is marked synchronous, we don't honour that here - doing
4237 * so would cause a commit on atime updates, which we don't bother doing.
4238 * We handle synchronous inodes at the highest possible level.
4239 */
4240void ext4_dirty_inode(struct inode *inode, int flags)
4241{
4242	handle_t *handle;
4243
4244	handle = ext4_journal_start(inode, 2);
4245	if (IS_ERR(handle))
4246		goto out;
4247
4248	ext4_mark_inode_dirty(handle, inode);
4249
4250	ext4_journal_stop(handle);
4251out:
4252	return;
4253}
4254
4255#if 0
4256/*
4257 * Bind an inode's backing buffer_head into this transaction, to prevent
4258 * it from being flushed to disk early.  Unlike
4259 * ext4_reserve_inode_write, this leaves behind no bh reference and
4260 * returns no iloc structure, so the caller needs to repeat the iloc
4261 * lookup to mark the inode dirty later.
4262 */
4263static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4264{
4265	struct ext4_iloc iloc;
4266
4267	int err = 0;
4268	if (handle) {
4269		err = ext4_get_inode_loc(inode, &iloc);
4270		if (!err) {
4271			BUFFER_TRACE(iloc.bh, "get_write_access");
4272			err = jbd2_journal_get_write_access(handle, iloc.bh);
4273			if (!err)
4274				err = ext4_handle_dirty_metadata(handle,
4275								 NULL,
4276								 iloc.bh);
4277			brelse(iloc.bh);
4278		}
4279	}
4280	ext4_std_error(inode->i_sb, err);
4281	return err;
4282}
4283#endif
4284
4285int ext4_change_inode_journal_flag(struct inode *inode, int val)
4286{
4287	journal_t *journal;
4288	handle_t *handle;
4289	int err;
 
4290
4291	/*
4292	 * We have to be very careful here: changing a data block's
4293	 * journaling status dynamically is dangerous.  If we write a
4294	 * data block to the journal, change the status and then delete
4295	 * that block, we risk forgetting to revoke the old log record
4296	 * from the journal and so a subsequent replay can corrupt data.
4297	 * So, first we make sure that the journal is empty and that
4298	 * nobody is changing anything.
4299	 */
4300
4301	journal = EXT4_JOURNAL(inode);
4302	if (!journal)
4303		return 0;
4304	if (is_journal_aborted(journal))
4305		return -EROFS;
4306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4307	jbd2_journal_lock_updates(journal);
4308	jbd2_journal_flush(journal);
4309
4310	/*
4311	 * OK, there are no updates running now, and all cached data is
4312	 * synced to disk.  We are now in a completely consistent state
4313	 * which doesn't have anything in the journal, and we know that
4314	 * no filesystem updates are running, so it is safe to modify
4315	 * the inode's in-core data-journaling state flag now.
4316	 */
4317
4318	if (val)
4319		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4320	else
 
 
 
 
 
 
4321		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
 
4322	ext4_set_aops(inode);
4323
4324	jbd2_journal_unlock_updates(journal);
 
 
 
 
4325
4326	/* Finally we can mark the inode as dirty. */
4327
4328	handle = ext4_journal_start(inode, 1);
4329	if (IS_ERR(handle))
4330		return PTR_ERR(handle);
4331
 
 
4332	err = ext4_mark_inode_dirty(handle, inode);
4333	ext4_handle_sync(handle);
4334	ext4_journal_stop(handle);
4335	ext4_std_error(inode->i_sb, err);
4336
4337	return err;
4338}
4339
4340static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
 
4341{
4342	return !buffer_mapped(bh);
4343}
4344
4345int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4346{
4347	struct page *page = vmf->page;
 
4348	loff_t size;
4349	unsigned long len;
4350	int ret;
 
4351	struct file *file = vma->vm_file;
4352	struct inode *inode = file->f_path.dentry->d_inode;
4353	struct address_space *mapping = inode->i_mapping;
4354	handle_t *handle;
4355	get_block_t *get_block;
4356	int retries = 0;
4357
 
 
 
 
 
 
 
 
 
 
 
 
4358	/*
4359	 * This check is racy but catches the common case. We rely on
4360	 * __block_page_mkwrite() to do a reliable check.
 
 
4361	 */
4362	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 
 
4363	/* Delalloc case is easy... */
4364	if (test_opt(inode->i_sb, DELALLOC) &&
4365	    !ext4_should_journal_data(inode) &&
4366	    !ext4_nonda_switch(inode->i_sb)) {
4367		do {
4368			ret = __block_page_mkwrite(vma, vmf,
4369						   ext4_da_get_block_prep);
4370		} while (ret == -ENOSPC &&
4371		       ext4_should_retry_alloc(inode->i_sb, &retries));
4372		goto out_ret;
4373	}
4374
4375	lock_page(page);
4376	size = i_size_read(inode);
4377	/* Page got truncated from under us? */
4378	if (page->mapping != mapping || page_offset(page) > size) {
4379		unlock_page(page);
4380		ret = VM_FAULT_NOPAGE;
4381		goto out;
4382	}
4383
4384	if (page->index == size >> PAGE_CACHE_SHIFT)
4385		len = size & ~PAGE_CACHE_MASK;
4386	else
4387		len = PAGE_CACHE_SIZE;
4388	/*
4389	 * Return if we have all the buffers mapped. This avoids the need to do
4390	 * journal_start/journal_stop which can block and take a long time
 
 
 
4391	 */
4392	if (page_has_buffers(page)) {
4393		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4394					ext4_bh_unmapped)) {
 
4395			/* Wait so that we don't change page under IO */
4396			wait_on_page_writeback(page);
4397			ret = VM_FAULT_LOCKED;
4398			goto out;
4399		}
4400	}
4401	unlock_page(page);
4402	/* OK, we need to fill the hole... */
4403	if (ext4_should_dioread_nolock(inode))
4404		get_block = ext4_get_block_write;
4405	else
4406		get_block = ext4_get_block;
4407retry_alloc:
4408	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
4409	if (IS_ERR(handle)) {
4410		ret = VM_FAULT_SIGBUS;
4411		goto out;
4412	}
4413	ret = __block_page_mkwrite(vma, vmf, get_block);
4414	if (!ret && ext4_should_journal_data(inode)) {
4415		if (walk_page_buffers(handle, page_buffers(page), 0,
4416			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4417			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4418			ret = VM_FAULT_SIGBUS;
4419			goto out;
 
 
 
4420		}
4421		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4422	}
4423	ext4_journal_stop(handle);
4424	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4425		goto retry_alloc;
4426out_ret:
4427	ret = block_page_mkwrite_return(ret);
4428out:
 
 
4429	return ret;
 
 
 
 
4430}