Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static void ext4_journalled_zero_new_buffers(handle_t *handle,
53 struct inode *inode,
54 struct folio *folio,
55 unsigned from, unsigned to);
56
57static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58 struct ext4_inode_info *ei)
59{
60 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61 __u32 csum;
62 __u16 dummy_csum = 0;
63 int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 unsigned int csum_size = sizeof(dummy_csum);
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68 offset += csum_size;
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70 EXT4_GOOD_OLD_INODE_SIZE - offset);
71
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 offset = offsetof(struct ext4_inode, i_checksum_hi);
74 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75 EXT4_GOOD_OLD_INODE_SIZE,
76 offset - EXT4_GOOD_OLD_INODE_SIZE);
77 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79 csum_size);
80 offset += csum_size;
81 }
82 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 }
85
86 return csum;
87}
88
89static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90 struct ext4_inode_info *ei)
91{
92 __u32 provided, calculated;
93
94 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95 cpu_to_le32(EXT4_OS_LINUX) ||
96 !ext4_has_metadata_csum(inode->i_sb))
97 return 1;
98
99 provided = le16_to_cpu(raw->i_checksum_lo);
100 calculated = ext4_inode_csum(inode, raw, ei);
101 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104 else
105 calculated &= 0xFFFF;
106
107 return provided == calculated;
108}
109
110void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111 struct ext4_inode_info *ei)
112{
113 __u32 csum;
114
115 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116 cpu_to_le32(EXT4_OS_LINUX) ||
117 !ext4_has_metadata_csum(inode->i_sb))
118 return;
119
120 csum = ext4_inode_csum(inode, raw, ei);
121 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125}
126
127static inline int ext4_begin_ordered_truncate(struct inode *inode,
128 loff_t new_size)
129{
130 trace_ext4_begin_ordered_truncate(inode, new_size);
131 /*
132 * If jinode is zero, then we never opened the file for
133 * writing, so there's no need to call
134 * jbd2_journal_begin_ordered_truncate() since there's no
135 * outstanding writes we need to flush.
136 */
137 if (!EXT4_I(inode)->jinode)
138 return 0;
139 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140 EXT4_I(inode)->jinode,
141 new_size);
142}
143
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147/*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151int ext4_inode_is_fast_symlink(struct inode *inode)
152{
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164}
165
166/*
167 * Called at the last iput() if i_nlink is zero.
168 */
169void ext4_evict_inode(struct inode *inode)
170{
171 handle_t *handle;
172 int err;
173 /*
174 * Credits for final inode cleanup and freeing:
175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 * (xattr block freeing), bitmap, group descriptor (inode freeing)
177 */
178 int extra_credits = 6;
179 struct ext4_xattr_inode_array *ea_inode_array = NULL;
180 bool freeze_protected = false;
181
182 trace_ext4_evict_inode(inode);
183
184 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185 ext4_evict_ea_inode(inode);
186 if (inode->i_nlink) {
187 truncate_inode_pages_final(&inode->i_data);
188
189 goto no_delete;
190 }
191
192 if (is_bad_inode(inode))
193 goto no_delete;
194 dquot_initialize(inode);
195
196 if (ext4_should_order_data(inode))
197 ext4_begin_ordered_truncate(inode, 0);
198 truncate_inode_pages_final(&inode->i_data);
199
200 /*
201 * For inodes with journalled data, transaction commit could have
202 * dirtied the inode. And for inodes with dioread_nolock, unwritten
203 * extents converting worker could merge extents and also have dirtied
204 * the inode. Flush worker is ignoring it because of I_FREEING flag but
205 * we still need to remove the inode from the writeback lists.
206 */
207 if (!list_empty_careful(&inode->i_io_list))
208 inode_io_list_del(inode);
209
210 /*
211 * Protect us against freezing - iput() caller didn't have to have any
212 * protection against it. When we are in a running transaction though,
213 * we are already protected against freezing and we cannot grab further
214 * protection due to lock ordering constraints.
215 */
216 if (!ext4_journal_current_handle()) {
217 sb_start_intwrite(inode->i_sb);
218 freeze_protected = true;
219 }
220
221 if (!IS_NOQUOTA(inode))
222 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223
224 /*
225 * Block bitmap, group descriptor, and inode are accounted in both
226 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227 */
228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229 ext4_blocks_for_truncate(inode) + extra_credits - 3);
230 if (IS_ERR(handle)) {
231 ext4_std_error(inode->i_sb, PTR_ERR(handle));
232 /*
233 * If we're going to skip the normal cleanup, we still need to
234 * make sure that the in-core orphan linked list is properly
235 * cleaned up.
236 */
237 ext4_orphan_del(NULL, inode);
238 if (freeze_protected)
239 sb_end_intwrite(inode->i_sb);
240 goto no_delete;
241 }
242
243 if (IS_SYNC(inode))
244 ext4_handle_sync(handle);
245
246 /*
247 * Set inode->i_size to 0 before calling ext4_truncate(). We need
248 * special handling of symlinks here because i_size is used to
249 * determine whether ext4_inode_info->i_data contains symlink data or
250 * block mappings. Setting i_size to 0 will remove its fast symlink
251 * status. Erase i_data so that it becomes a valid empty block map.
252 */
253 if (ext4_inode_is_fast_symlink(inode))
254 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks) {
263 err = ext4_truncate(inode);
264 if (err) {
265 ext4_error_err(inode->i_sb, -err,
266 "couldn't truncate inode %lu (err %d)",
267 inode->i_ino, err);
268 goto stop_handle;
269 }
270 }
271
272 /* Remove xattr references. */
273 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274 extra_credits);
275 if (err) {
276 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 if (freeze_protected)
281 sb_end_intwrite(inode->i_sb);
282 ext4_xattr_inode_array_free(ea_inode_array);
283 goto no_delete;
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 if (freeze_protected)
311 sb_end_intwrite(inode->i_sb);
312 ext4_xattr_inode_array_free(ea_inode_array);
313 return;
314no_delete:
315 /*
316 * Check out some where else accidentally dirty the evicting inode,
317 * which may probably cause inode use-after-free issues later.
318 */
319 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320
321 if (!list_empty(&EXT4_I(inode)->i_fc_list))
322 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
324}
325
326#ifdef CONFIG_QUOTA
327qsize_t *ext4_get_reserved_space(struct inode *inode)
328{
329 return &EXT4_I(inode)->i_reserved_quota;
330}
331#endif
332
333/*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
337void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
339{
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 struct ext4_inode_info *ei = EXT4_I(inode);
342
343 spin_lock(&ei->i_block_reservation_lock);
344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 if (unlikely(used > ei->i_reserved_data_blocks)) {
346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
353
354 /* Update per-inode reservations */
355 ei->i_reserved_data_blocks -= used;
356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357
358 spin_unlock(&ei->i_block_reservation_lock);
359
360 /* Update quota subsystem for data blocks */
361 if (quota_claim)
362 dquot_claim_block(inode, EXT4_C2B(sbi, used));
363 else {
364 /*
365 * We did fallocate with an offset that is already delayed
366 * allocated. So on delayed allocated writeback we should
367 * not re-claim the quota for fallocated blocks.
368 */
369 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370 }
371
372 /*
373 * If we have done all the pending block allocations and if
374 * there aren't any writers on the inode, we can discard the
375 * inode's preallocations.
376 */
377 if ((ei->i_reserved_data_blocks == 0) &&
378 !inode_is_open_for_write(inode))
379 ext4_discard_preallocations(inode);
380}
381
382static int __check_block_validity(struct inode *inode, const char *func,
383 unsigned int line,
384 struct ext4_map_blocks *map)
385{
386 if (ext4_has_feature_journal(inode->i_sb) &&
387 (inode->i_ino ==
388 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389 return 0;
390 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391 ext4_error_inode(inode, func, line, map->m_pblk,
392 "lblock %lu mapped to illegal pblock %llu "
393 "(length %d)", (unsigned long) map->m_lblk,
394 map->m_pblk, map->m_len);
395 return -EFSCORRUPTED;
396 }
397 return 0;
398}
399
400int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401 ext4_lblk_t len)
402{
403 int ret;
404
405 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406 return fscrypt_zeroout_range(inode, lblk, pblk, len);
407
408 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409 if (ret > 0)
410 ret = 0;
411
412 return ret;
413}
414
415#define check_block_validity(inode, map) \
416 __check_block_validity((inode), __func__, __LINE__, (map))
417
418#ifdef ES_AGGRESSIVE_TEST
419static void ext4_map_blocks_es_recheck(handle_t *handle,
420 struct inode *inode,
421 struct ext4_map_blocks *es_map,
422 struct ext4_map_blocks *map,
423 int flags)
424{
425 int retval;
426
427 map->m_flags = 0;
428 /*
429 * There is a race window that the result is not the same.
430 * e.g. xfstests #223 when dioread_nolock enables. The reason
431 * is that we lookup a block mapping in extent status tree with
432 * out taking i_data_sem. So at the time the unwritten extent
433 * could be converted.
434 */
435 down_read(&EXT4_I(inode)->i_data_sem);
436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 retval = ext4_ext_map_blocks(handle, inode, map, 0);
438 } else {
439 retval = ext4_ind_map_blocks(handle, inode, map, 0);
440 }
441 up_read((&EXT4_I(inode)->i_data_sem));
442
443 /*
444 * We don't check m_len because extent will be collpased in status
445 * tree. So the m_len might not equal.
446 */
447 if (es_map->m_lblk != map->m_lblk ||
448 es_map->m_flags != map->m_flags ||
449 es_map->m_pblk != map->m_pblk) {
450 printk("ES cache assertion failed for inode: %lu "
451 "es_cached ex [%d/%d/%llu/%x] != "
452 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 inode->i_ino, es_map->m_lblk, es_map->m_len,
454 es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 map->m_len, map->m_pblk, map->m_flags,
456 retval, flags);
457 }
458}
459#endif /* ES_AGGRESSIVE_TEST */
460
461static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462 struct ext4_map_blocks *map)
463{
464 unsigned int status;
465 int retval;
466
467 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468 retval = ext4_ext_map_blocks(handle, inode, map, 0);
469 else
470 retval = ext4_ind_map_blocks(handle, inode, map, 0);
471
472 if (retval <= 0)
473 return retval;
474
475 if (unlikely(retval != map->m_len)) {
476 ext4_warning(inode->i_sb,
477 "ES len assertion failed for inode "
478 "%lu: retval %d != map->m_len %d",
479 inode->i_ino, retval, map->m_len);
480 WARN_ON(1);
481 }
482
483 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486 map->m_pblk, status, false);
487 return retval;
488}
489
490static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491 struct ext4_map_blocks *map, int flags)
492{
493 struct extent_status es;
494 unsigned int status;
495 int err, retval = 0;
496
497 /*
498 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499 * indicates that the blocks and quotas has already been
500 * checked when the data was copied into the page cache.
501 */
502 if (map->m_flags & EXT4_MAP_DELAYED)
503 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504
505 /*
506 * Here we clear m_flags because after allocating an new extent,
507 * it will be set again.
508 */
509 map->m_flags &= ~EXT4_MAP_FLAGS;
510
511 /*
512 * We need to check for EXT4 here because migrate could have
513 * changed the inode type in between.
514 */
515 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516 retval = ext4_ext_map_blocks(handle, inode, map, flags);
517 } else {
518 retval = ext4_ind_map_blocks(handle, inode, map, flags);
519
520 /*
521 * We allocated new blocks which will result in i_data's
522 * format changing. Force the migrate to fail by clearing
523 * migrate flags.
524 */
525 if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527 }
528 if (retval <= 0)
529 return retval;
530
531 if (unlikely(retval != map->m_len)) {
532 ext4_warning(inode->i_sb,
533 "ES len assertion failed for inode %lu: "
534 "retval %d != map->m_len %d",
535 inode->i_ino, retval, map->m_len);
536 WARN_ON(1);
537 }
538
539 /*
540 * We have to zeroout blocks before inserting them into extent
541 * status tree. Otherwise someone could look them up there and
542 * use them before they are really zeroed. We also have to
543 * unmap metadata before zeroing as otherwise writeback can
544 * overwrite zeros with stale data from block device.
545 */
546 if (flags & EXT4_GET_BLOCKS_ZERO &&
547 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549 map->m_len);
550 if (err)
551 return err;
552 }
553
554 /*
555 * If the extent has been zeroed out, we don't need to update
556 * extent status tree.
557 */
558 if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560 if (ext4_es_is_written(&es))
561 return retval;
562 }
563
564 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
567 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
568
569 return retval;
570}
571
572/*
573 * The ext4_map_blocks() function tries to look up the requested blocks,
574 * and returns if the blocks are already mapped.
575 *
576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577 * and store the allocated blocks in the result buffer head and mark it
578 * mapped.
579 *
580 * If file type is extents based, it will call ext4_ext_map_blocks(),
581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582 * based files
583 *
584 * On success, it returns the number of blocks being mapped or allocated.
585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588 *
589 * It returns 0 if plain look up failed (blocks have not been allocated), in
590 * that case, @map is returned as unmapped but we still do fill map->m_len to
591 * indicate the length of a hole starting at map->m_lblk.
592 *
593 * It returns the error in case of allocation failure.
594 */
595int ext4_map_blocks(handle_t *handle, struct inode *inode,
596 struct ext4_map_blocks *map, int flags)
597{
598 struct extent_status es;
599 int retval;
600 int ret = 0;
601#ifdef ES_AGGRESSIVE_TEST
602 struct ext4_map_blocks orig_map;
603
604 memcpy(&orig_map, map, sizeof(*map));
605#endif
606
607 map->m_flags = 0;
608 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609 flags, map->m_len, (unsigned long) map->m_lblk);
610
611 /*
612 * ext4_map_blocks returns an int, and m_len is an unsigned int
613 */
614 if (unlikely(map->m_len > INT_MAX))
615 map->m_len = INT_MAX;
616
617 /* We can handle the block number less than EXT_MAX_BLOCKS */
618 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619 return -EFSCORRUPTED;
620
621 /* Lookup extent status tree firstly */
622 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625 map->m_pblk = ext4_es_pblock(&es) +
626 map->m_lblk - es.es_lblk;
627 map->m_flags |= ext4_es_is_written(&es) ?
628 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629 retval = es.es_len - (map->m_lblk - es.es_lblk);
630 if (retval > map->m_len)
631 retval = map->m_len;
632 map->m_len = retval;
633 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634 map->m_pblk = 0;
635 map->m_flags |= ext4_es_is_delayed(&es) ?
636 EXT4_MAP_DELAYED : 0;
637 retval = es.es_len - (map->m_lblk - es.es_lblk);
638 if (retval > map->m_len)
639 retval = map->m_len;
640 map->m_len = retval;
641 retval = 0;
642 } else {
643 BUG();
644 }
645
646 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647 return retval;
648#ifdef ES_AGGRESSIVE_TEST
649 ext4_map_blocks_es_recheck(handle, inode, map,
650 &orig_map, flags);
651#endif
652 goto found;
653 }
654 /*
655 * In the query cache no-wait mode, nothing we can do more if we
656 * cannot find extent in the cache.
657 */
658 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659 return 0;
660
661 /*
662 * Try to see if we can get the block without requesting a new
663 * file system block.
664 */
665 down_read(&EXT4_I(inode)->i_data_sem);
666 retval = ext4_map_query_blocks(handle, inode, map);
667 up_read((&EXT4_I(inode)->i_data_sem));
668
669found:
670 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671 ret = check_block_validity(inode, map);
672 if (ret != 0)
673 return ret;
674 }
675
676 /* If it is only a block(s) look up */
677 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678 return retval;
679
680 /*
681 * Returns if the blocks have already allocated
682 *
683 * Note that if blocks have been preallocated
684 * ext4_ext_map_blocks() returns with buffer head unmapped
685 */
686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687 /*
688 * If we need to convert extent to unwritten
689 * we continue and do the actual work in
690 * ext4_ext_map_blocks()
691 */
692 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693 return retval;
694
695 /*
696 * New blocks allocate and/or writing to unwritten extent
697 * will possibly result in updating i_data, so we take
698 * the write lock of i_data_sem, and call get_block()
699 * with create == 1 flag.
700 */
701 down_write(&EXT4_I(inode)->i_data_sem);
702 retval = ext4_map_create_blocks(handle, inode, map, flags);
703 up_write((&EXT4_I(inode)->i_data_sem));
704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 ret = check_block_validity(inode, map);
706 if (ret != 0)
707 return ret;
708
709 /*
710 * Inodes with freshly allocated blocks where contents will be
711 * visible after transaction commit must be on transaction's
712 * ordered data list.
713 */
714 if (map->m_flags & EXT4_MAP_NEW &&
715 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 !ext4_is_quota_file(inode) &&
718 ext4_should_order_data(inode)) {
719 loff_t start_byte =
720 (loff_t)map->m_lblk << inode->i_blkbits;
721 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722
723 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724 ret = ext4_jbd2_inode_add_wait(handle, inode,
725 start_byte, length);
726 else
727 ret = ext4_jbd2_inode_add_write(handle, inode,
728 start_byte, length);
729 if (ret)
730 return ret;
731 }
732 }
733 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734 map->m_flags & EXT4_MAP_MAPPED))
735 ext4_fc_track_range(handle, inode, map->m_lblk,
736 map->m_lblk + map->m_len - 1);
737 if (retval < 0)
738 ext_debug(inode, "failed with err %d\n", retval);
739 return retval;
740}
741
742/*
743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744 * we have to be careful as someone else may be manipulating b_state as well.
745 */
746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747{
748 unsigned long old_state;
749 unsigned long new_state;
750
751 flags &= EXT4_MAP_FLAGS;
752
753 /* Dummy buffer_head? Set non-atomically. */
754 if (!bh->b_page) {
755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 return;
757 }
758 /*
759 * Someone else may be modifying b_state. Be careful! This is ugly but
760 * once we get rid of using bh as a container for mapping information
761 * to pass to / from get_block functions, this can go away.
762 */
763 old_state = READ_ONCE(bh->b_state);
764 do {
765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767}
768
769static int _ext4_get_block(struct inode *inode, sector_t iblock,
770 struct buffer_head *bh, int flags)
771{
772 struct ext4_map_blocks map;
773 int ret = 0;
774
775 if (ext4_has_inline_data(inode))
776 return -ERANGE;
777
778 map.m_lblk = iblock;
779 map.m_len = bh->b_size >> inode->i_blkbits;
780
781 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782 flags);
783 if (ret > 0) {
784 map_bh(bh, inode->i_sb, map.m_pblk);
785 ext4_update_bh_state(bh, map.m_flags);
786 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787 ret = 0;
788 } else if (ret == 0) {
789 /* hole case, need to fill in bh->b_size */
790 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 }
792 return ret;
793}
794
795int ext4_get_block(struct inode *inode, sector_t iblock,
796 struct buffer_head *bh, int create)
797{
798 return _ext4_get_block(inode, iblock, bh,
799 create ? EXT4_GET_BLOCKS_CREATE : 0);
800}
801
802/*
803 * Get block function used when preparing for buffered write if we require
804 * creating an unwritten extent if blocks haven't been allocated. The extent
805 * will be converted to written after the IO is complete.
806 */
807int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh_result, int create)
809{
810 int ret = 0;
811
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 ret = _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816
817 /*
818 * If the buffer is marked unwritten, mark it as new to make sure it is
819 * zeroed out correctly in case of partial writes. Otherwise, there is
820 * a chance of stale data getting exposed.
821 */
822 if (ret == 0 && buffer_unwritten(bh_result))
823 set_buffer_new(bh_result);
824
825 return ret;
826}
827
828/* Maximum number of blocks we map for direct IO at once. */
829#define DIO_MAX_BLOCKS 4096
830
831/*
832 * `handle' can be NULL if create is zero
833 */
834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
836{
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841 int err;
842
843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 || handle != NULL || create == 0);
845 ASSERT(create == 0 || !nowait);
846
847 map.m_lblk = block;
848 map.m_len = 1;
849 err = ext4_map_blocks(handle, inode, &map, map_flags);
850
851 if (err == 0)
852 return create ? ERR_PTR(-ENOSPC) : NULL;
853 if (err < 0)
854 return ERR_PTR(err);
855
856 if (nowait)
857 return sb_find_get_block(inode->i_sb, map.m_pblk);
858
859 /*
860 * Since bh could introduce extra ref count such as referred by
861 * journal_head etc. Try to avoid using __GFP_MOVABLE here
862 * as it may fail the migration when journal_head remains.
863 */
864 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
865 inode->i_sb->s_blocksize);
866
867 if (unlikely(!bh))
868 return ERR_PTR(-ENOMEM);
869 if (map.m_flags & EXT4_MAP_NEW) {
870 ASSERT(create != 0);
871 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872 || (handle != NULL));
873
874 /*
875 * Now that we do not always journal data, we should
876 * keep in mind whether this should always journal the
877 * new buffer as metadata. For now, regular file
878 * writes use ext4_get_block instead, so it's not a
879 * problem.
880 */
881 lock_buffer(bh);
882 BUFFER_TRACE(bh, "call get_create_access");
883 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884 EXT4_JTR_NONE);
885 if (unlikely(err)) {
886 unlock_buffer(bh);
887 goto errout;
888 }
889 if (!buffer_uptodate(bh)) {
890 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891 set_buffer_uptodate(bh);
892 }
893 unlock_buffer(bh);
894 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895 err = ext4_handle_dirty_metadata(handle, inode, bh);
896 if (unlikely(err))
897 goto errout;
898 } else
899 BUFFER_TRACE(bh, "not a new buffer");
900 return bh;
901errout:
902 brelse(bh);
903 return ERR_PTR(err);
904}
905
906struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907 ext4_lblk_t block, int map_flags)
908{
909 struct buffer_head *bh;
910 int ret;
911
912 bh = ext4_getblk(handle, inode, block, map_flags);
913 if (IS_ERR(bh))
914 return bh;
915 if (!bh || ext4_buffer_uptodate(bh))
916 return bh;
917
918 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919 if (ret) {
920 put_bh(bh);
921 return ERR_PTR(ret);
922 }
923 return bh;
924}
925
926/* Read a contiguous batch of blocks. */
927int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928 bool wait, struct buffer_head **bhs)
929{
930 int i, err;
931
932 for (i = 0; i < bh_count; i++) {
933 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934 if (IS_ERR(bhs[i])) {
935 err = PTR_ERR(bhs[i]);
936 bh_count = i;
937 goto out_brelse;
938 }
939 }
940
941 for (i = 0; i < bh_count; i++)
942 /* Note that NULL bhs[i] is valid because of holes. */
943 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945
946 if (!wait)
947 return 0;
948
949 for (i = 0; i < bh_count; i++)
950 if (bhs[i])
951 wait_on_buffer(bhs[i]);
952
953 for (i = 0; i < bh_count; i++) {
954 if (bhs[i] && !buffer_uptodate(bhs[i])) {
955 err = -EIO;
956 goto out_brelse;
957 }
958 }
959 return 0;
960
961out_brelse:
962 for (i = 0; i < bh_count; i++) {
963 brelse(bhs[i]);
964 bhs[i] = NULL;
965 }
966 return err;
967}
968
969int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970 struct buffer_head *head,
971 unsigned from,
972 unsigned to,
973 int *partial,
974 int (*fn)(handle_t *handle, struct inode *inode,
975 struct buffer_head *bh))
976{
977 struct buffer_head *bh;
978 unsigned block_start, block_end;
979 unsigned blocksize = head->b_size;
980 int err, ret = 0;
981 struct buffer_head *next;
982
983 for (bh = head, block_start = 0;
984 ret == 0 && (bh != head || !block_start);
985 block_start = block_end, bh = next) {
986 next = bh->b_this_page;
987 block_end = block_start + blocksize;
988 if (block_end <= from || block_start >= to) {
989 if (partial && !buffer_uptodate(bh))
990 *partial = 1;
991 continue;
992 }
993 err = (*fn)(handle, inode, bh);
994 if (!ret)
995 ret = err;
996 }
997 return ret;
998}
999
1000/*
1001 * Helper for handling dirtying of journalled data. We also mark the folio as
1002 * dirty so that writeback code knows about this page (and inode) contains
1003 * dirty data. ext4_writepages() then commits appropriate transaction to
1004 * make data stable.
1005 */
1006static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007{
1008 folio_mark_dirty(bh->b_folio);
1009 return ext4_handle_dirty_metadata(handle, NULL, bh);
1010}
1011
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1014{
1015 if (!buffer_mapped(bh) || buffer_freed(bh))
1016 return 0;
1017 BUFFER_TRACE(bh, "get write access");
1018 return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019 EXT4_JTR_NONE);
1020}
1021
1022int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023 loff_t pos, unsigned len,
1024 get_block_t *get_block)
1025{
1026 unsigned from = pos & (PAGE_SIZE - 1);
1027 unsigned to = from + len;
1028 struct inode *inode = folio->mapping->host;
1029 unsigned block_start, block_end;
1030 sector_t block;
1031 int err = 0;
1032 unsigned blocksize = inode->i_sb->s_blocksize;
1033 unsigned bbits;
1034 struct buffer_head *bh, *head, *wait[2];
1035 int nr_wait = 0;
1036 int i;
1037 bool should_journal_data = ext4_should_journal_data(inode);
1038
1039 BUG_ON(!folio_test_locked(folio));
1040 BUG_ON(from > PAGE_SIZE);
1041 BUG_ON(to > PAGE_SIZE);
1042 BUG_ON(from > to);
1043
1044 head = folio_buffers(folio);
1045 if (!head)
1046 head = create_empty_buffers(folio, blocksize, 0);
1047 bbits = ilog2(blocksize);
1048 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050 for (bh = head, block_start = 0; bh != head || !block_start;
1051 block++, block_start = block_end, bh = bh->b_this_page) {
1052 block_end = block_start + blocksize;
1053 if (block_end <= from || block_start >= to) {
1054 if (folio_test_uptodate(folio)) {
1055 set_buffer_uptodate(bh);
1056 }
1057 continue;
1058 }
1059 if (buffer_new(bh))
1060 clear_buffer_new(bh);
1061 if (!buffer_mapped(bh)) {
1062 WARN_ON(bh->b_size != blocksize);
1063 err = get_block(inode, block, bh, 1);
1064 if (err)
1065 break;
1066 if (buffer_new(bh)) {
1067 /*
1068 * We may be zeroing partial buffers or all new
1069 * buffers in case of failure. Prepare JBD2 for
1070 * that.
1071 */
1072 if (should_journal_data)
1073 do_journal_get_write_access(handle,
1074 inode, bh);
1075 if (folio_test_uptodate(folio)) {
1076 /*
1077 * Unlike __block_write_begin() we leave
1078 * dirtying of new uptodate buffers to
1079 * ->write_end() time or
1080 * folio_zero_new_buffers().
1081 */
1082 set_buffer_uptodate(bh);
1083 continue;
1084 }
1085 if (block_end > to || block_start < from)
1086 folio_zero_segments(folio, to,
1087 block_end,
1088 block_start, from);
1089 continue;
1090 }
1091 }
1092 if (folio_test_uptodate(folio)) {
1093 set_buffer_uptodate(bh);
1094 continue;
1095 }
1096 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097 !buffer_unwritten(bh) &&
1098 (block_start < from || block_end > to)) {
1099 ext4_read_bh_lock(bh, 0, false);
1100 wait[nr_wait++] = bh;
1101 }
1102 }
1103 /*
1104 * If we issued read requests, let them complete.
1105 */
1106 for (i = 0; i < nr_wait; i++) {
1107 wait_on_buffer(wait[i]);
1108 if (!buffer_uptodate(wait[i]))
1109 err = -EIO;
1110 }
1111 if (unlikely(err)) {
1112 if (should_journal_data)
1113 ext4_journalled_zero_new_buffers(handle, inode, folio,
1114 from, to);
1115 else
1116 folio_zero_new_buffers(folio, from, to);
1117 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118 for (i = 0; i < nr_wait; i++) {
1119 int err2;
1120
1121 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122 blocksize, bh_offset(wait[i]));
1123 if (err2) {
1124 clear_buffer_uptodate(wait[i]);
1125 err = err2;
1126 }
1127 }
1128 }
1129
1130 return err;
1131}
1132
1133/*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction. We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
1140static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141 loff_t pos, unsigned len,
1142 struct folio **foliop, void **fsdata)
1143{
1144 struct inode *inode = mapping->host;
1145 int ret, needed_blocks;
1146 handle_t *handle;
1147 int retries = 0;
1148 struct folio *folio;
1149 pgoff_t index;
1150 unsigned from, to;
1151
1152 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153 return -EIO;
1154
1155 trace_ext4_write_begin(inode, pos, len);
1156 /*
1157 * Reserve one block more for addition to orphan list in case
1158 * we allocate blocks but write fails for some reason
1159 */
1160 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161 index = pos >> PAGE_SHIFT;
1162 from = pos & (PAGE_SIZE - 1);
1163 to = from + len;
1164
1165 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 foliop);
1168 if (ret < 0)
1169 return ret;
1170 if (ret == 1)
1171 return 0;
1172 }
1173
1174 /*
1175 * __filemap_get_folio() can take a long time if the
1176 * system is thrashing due to memory pressure, or if the folio
1177 * is being written back. So grab it first before we start
1178 * the transaction handle. This also allows us to allocate
1179 * the folio (if needed) without using GFP_NOFS.
1180 */
1181retry_grab:
1182 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183 mapping_gfp_mask(mapping));
1184 if (IS_ERR(folio))
1185 return PTR_ERR(folio);
1186 /*
1187 * The same as page allocation, we prealloc buffer heads before
1188 * starting the handle.
1189 */
1190 if (!folio_buffers(folio))
1191 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193 folio_unlock(folio);
1194
1195retry_journal:
1196 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197 if (IS_ERR(handle)) {
1198 folio_put(folio);
1199 return PTR_ERR(handle);
1200 }
1201
1202 folio_lock(folio);
1203 if (folio->mapping != mapping) {
1204 /* The folio got truncated from under us */
1205 folio_unlock(folio);
1206 folio_put(folio);
1207 ext4_journal_stop(handle);
1208 goto retry_grab;
1209 }
1210 /* In case writeback began while the folio was unlocked */
1211 folio_wait_stable(folio);
1212
1213 if (ext4_should_dioread_nolock(inode))
1214 ret = ext4_block_write_begin(handle, folio, pos, len,
1215 ext4_get_block_unwritten);
1216 else
1217 ret = ext4_block_write_begin(handle, folio, pos, len,
1218 ext4_get_block);
1219 if (!ret && ext4_should_journal_data(inode)) {
1220 ret = ext4_walk_page_buffers(handle, inode,
1221 folio_buffers(folio), from, to,
1222 NULL, do_journal_get_write_access);
1223 }
1224
1225 if (ret) {
1226 bool extended = (pos + len > inode->i_size) &&
1227 !ext4_verity_in_progress(inode);
1228
1229 folio_unlock(folio);
1230 /*
1231 * ext4_block_write_begin may have instantiated a few blocks
1232 * outside i_size. Trim these off again. Don't need
1233 * i_size_read because we hold i_rwsem.
1234 *
1235 * Add inode to orphan list in case we crash before
1236 * truncate finishes
1237 */
1238 if (extended && ext4_can_truncate(inode))
1239 ext4_orphan_add(handle, inode);
1240
1241 ext4_journal_stop(handle);
1242 if (extended) {
1243 ext4_truncate_failed_write(inode);
1244 /*
1245 * If truncate failed early the inode might
1246 * still be on the orphan list; we need to
1247 * make sure the inode is removed from the
1248 * orphan list in that case.
1249 */
1250 if (inode->i_nlink)
1251 ext4_orphan_del(NULL, inode);
1252 }
1253
1254 if (ret == -ENOSPC &&
1255 ext4_should_retry_alloc(inode->i_sb, &retries))
1256 goto retry_journal;
1257 folio_put(folio);
1258 return ret;
1259 }
1260 *foliop = folio;
1261 return ret;
1262}
1263
1264/* For write_end() in data=journal mode */
1265static int write_end_fn(handle_t *handle, struct inode *inode,
1266 struct buffer_head *bh)
1267{
1268 int ret;
1269 if (!buffer_mapped(bh) || buffer_freed(bh))
1270 return 0;
1271 set_buffer_uptodate(bh);
1272 ret = ext4_dirty_journalled_data(handle, bh);
1273 clear_buffer_meta(bh);
1274 clear_buffer_prio(bh);
1275 return ret;
1276}
1277
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata
1283 * buffers are managed internally.
1284 */
1285static int ext4_write_end(struct file *file,
1286 struct address_space *mapping,
1287 loff_t pos, unsigned len, unsigned copied,
1288 struct folio *folio, void *fsdata)
1289{
1290 handle_t *handle = ext4_journal_current_handle();
1291 struct inode *inode = mapping->host;
1292 loff_t old_size = inode->i_size;
1293 int ret = 0, ret2;
1294 int i_size_changed = 0;
1295 bool verity = ext4_verity_in_progress(inode);
1296
1297 trace_ext4_write_end(inode, pos, len, copied);
1298
1299 if (ext4_has_inline_data(inode) &&
1300 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301 return ext4_write_inline_data_end(inode, pos, len, copied,
1302 folio);
1303
1304 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305 /*
1306 * it's important to update i_size while still holding folio lock:
1307 * page writeout could otherwise come in and zero beyond i_size.
1308 *
1309 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310 * blocks are being written past EOF, so skip the i_size update.
1311 */
1312 if (!verity)
1313 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314 folio_unlock(folio);
1315 folio_put(folio);
1316
1317 if (old_size < pos && !verity) {
1318 pagecache_isize_extended(inode, old_size, pos);
1319 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320 }
1321 /*
1322 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323 * makes the holding time of folio lock longer. Second, it forces lock
1324 * ordering of folio lock and transaction start for journaling
1325 * filesystems.
1326 */
1327 if (i_size_changed)
1328 ret = ext4_mark_inode_dirty(handle, inode);
1329
1330 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331 /* if we have allocated more blocks and copied
1332 * less. We will have blocks allocated outside
1333 * inode->i_size. So truncate them
1334 */
1335 ext4_orphan_add(handle, inode);
1336
1337 ret2 = ext4_journal_stop(handle);
1338 if (!ret)
1339 ret = ret2;
1340
1341 if (pos + len > inode->i_size && !verity) {
1342 ext4_truncate_failed_write(inode);
1343 /*
1344 * If truncate failed early the inode might still be
1345 * on the orphan list; we need to make sure the inode
1346 * is removed from the orphan list in that case.
1347 */
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1350 }
1351
1352 return ret ? ret : copied;
1353}
1354
1355/*
1356 * This is a private version of folio_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_dirty_journalled_data() instead.
1359 */
1360static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361 struct inode *inode,
1362 struct folio *folio,
1363 unsigned from, unsigned to)
1364{
1365 unsigned int block_start = 0, block_end;
1366 struct buffer_head *head, *bh;
1367
1368 bh = head = folio_buffers(folio);
1369 do {
1370 block_end = block_start + bh->b_size;
1371 if (buffer_new(bh)) {
1372 if (block_end > from && block_start < to) {
1373 if (!folio_test_uptodate(folio)) {
1374 unsigned start, size;
1375
1376 start = max(from, block_start);
1377 size = min(to, block_end) - start;
1378
1379 folio_zero_range(folio, start, size);
1380 }
1381 clear_buffer_new(bh);
1382 write_end_fn(handle, inode, bh);
1383 }
1384 }
1385 block_start = block_end;
1386 bh = bh->b_this_page;
1387 } while (bh != head);
1388}
1389
1390static int ext4_journalled_write_end(struct file *file,
1391 struct address_space *mapping,
1392 loff_t pos, unsigned len, unsigned copied,
1393 struct folio *folio, void *fsdata)
1394{
1395 handle_t *handle = ext4_journal_current_handle();
1396 struct inode *inode = mapping->host;
1397 loff_t old_size = inode->i_size;
1398 int ret = 0, ret2;
1399 int partial = 0;
1400 unsigned from, to;
1401 int size_changed = 0;
1402 bool verity = ext4_verity_in_progress(inode);
1403
1404 trace_ext4_journalled_write_end(inode, pos, len, copied);
1405 from = pos & (PAGE_SIZE - 1);
1406 to = from + len;
1407
1408 BUG_ON(!ext4_handle_valid(handle));
1409
1410 if (ext4_has_inline_data(inode))
1411 return ext4_write_inline_data_end(inode, pos, len, copied,
1412 folio);
1413
1414 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415 copied = 0;
1416 ext4_journalled_zero_new_buffers(handle, inode, folio,
1417 from, to);
1418 } else {
1419 if (unlikely(copied < len))
1420 ext4_journalled_zero_new_buffers(handle, inode, folio,
1421 from + copied, to);
1422 ret = ext4_walk_page_buffers(handle, inode,
1423 folio_buffers(folio),
1424 from, from + copied, &partial,
1425 write_end_fn);
1426 if (!partial)
1427 folio_mark_uptodate(folio);
1428 }
1429 if (!verity)
1430 size_changed = ext4_update_inode_size(inode, pos + copied);
1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432 folio_unlock(folio);
1433 folio_put(folio);
1434
1435 if (old_size < pos && !verity) {
1436 pagecache_isize_extended(inode, old_size, pos);
1437 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438 }
1439
1440 if (size_changed) {
1441 ret2 = ext4_mark_inode_dirty(handle, inode);
1442 if (!ret)
1443 ret = ret2;
1444 }
1445
1446 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447 /* if we have allocated more blocks and copied
1448 * less. We will have blocks allocated outside
1449 * inode->i_size. So truncate them
1450 */
1451 ext4_orphan_add(handle, inode);
1452
1453 ret2 = ext4_journal_stop(handle);
1454 if (!ret)
1455 ret = ret2;
1456 if (pos + len > inode->i_size && !verity) {
1457 ext4_truncate_failed_write(inode);
1458 /*
1459 * If truncate failed early the inode might still be
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1462 */
1463 if (inode->i_nlink)
1464 ext4_orphan_del(NULL, inode);
1465 }
1466
1467 return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for 'nr_resv' clusters
1472 */
1473static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474{
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 struct ext4_inode_info *ei = EXT4_I(inode);
1477 int ret;
1478
1479 /*
1480 * We will charge metadata quota at writeout time; this saves
1481 * us from metadata over-estimation, though we may go over by
1482 * a small amount in the end. Here we just reserve for data.
1483 */
1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485 if (ret)
1486 return ret;
1487
1488 spin_lock(&ei->i_block_reservation_lock);
1489 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490 spin_unlock(&ei->i_block_reservation_lock);
1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492 return -ENOSPC;
1493 }
1494 ei->i_reserved_data_blocks += nr_resv;
1495 trace_ext4_da_reserve_space(inode, nr_resv);
1496 spin_unlock(&ei->i_block_reservation_lock);
1497
1498 return 0; /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506 if (!to_free)
1507 return; /* Nothing to release, exit */
1508
1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511 trace_ext4_da_release_space(inode, to_free);
1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513 /*
1514 * if there aren't enough reserved blocks, then the
1515 * counter is messed up somewhere. Since this
1516 * function is called from invalidate page, it's
1517 * harmless to return without any action.
1518 */
1519 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 "ino %lu, to_free %d with only %d reserved "
1521 "data blocks", inode->i_ino, to_free,
1522 ei->i_reserved_data_blocks);
1523 WARN_ON(1);
1524 to_free = ei->i_reserved_data_blocks;
1525 }
1526 ei->i_reserved_data_blocks -= to_free;
1527
1528 /* update fs dirty data blocks counter */
1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541 /* These are input fields for ext4_do_writepages() */
1542 struct inode *inode;
1543 struct writeback_control *wbc;
1544 unsigned int can_map:1; /* Can writepages call map blocks? */
1545
1546 /* These are internal state of ext4_do_writepages() */
1547 pgoff_t first_page; /* The first page to write */
1548 pgoff_t next_page; /* Current page to examine */
1549 pgoff_t last_page; /* Last page to examine */
1550 /*
1551 * Extent to map - this can be after first_page because that can be
1552 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553 * is delalloc or unwritten.
1554 */
1555 struct ext4_map_blocks map;
1556 struct ext4_io_submit io_submit; /* IO submission data */
1557 unsigned int do_map:1;
1558 unsigned int scanned_until_end:1;
1559 unsigned int journalled_more_data:1;
1560};
1561
1562static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563 bool invalidate)
1564{
1565 unsigned nr, i;
1566 pgoff_t index, end;
1567 struct folio_batch fbatch;
1568 struct inode *inode = mpd->inode;
1569 struct address_space *mapping = inode->i_mapping;
1570
1571 /* This is necessary when next_page == 0. */
1572 if (mpd->first_page >= mpd->next_page)
1573 return;
1574
1575 mpd->scanned_until_end = 0;
1576 index = mpd->first_page;
1577 end = mpd->next_page - 1;
1578 if (invalidate) {
1579 ext4_lblk_t start, last;
1580 start = index << (PAGE_SHIFT - inode->i_blkbits);
1581 last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583 /*
1584 * avoid racing with extent status tree scans made by
1585 * ext4_insert_delayed_block()
1586 */
1587 down_write(&EXT4_I(inode)->i_data_sem);
1588 ext4_es_remove_extent(inode, start, last - start + 1);
1589 up_write(&EXT4_I(inode)->i_data_sem);
1590 }
1591
1592 folio_batch_init(&fbatch);
1593 while (index <= end) {
1594 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595 if (nr == 0)
1596 break;
1597 for (i = 0; i < nr; i++) {
1598 struct folio *folio = fbatch.folios[i];
1599
1600 if (folio->index < mpd->first_page)
1601 continue;
1602 if (folio_next_index(folio) - 1 > end)
1603 continue;
1604 BUG_ON(!folio_test_locked(folio));
1605 BUG_ON(folio_test_writeback(folio));
1606 if (invalidate) {
1607 if (folio_mapped(folio))
1608 folio_clear_dirty_for_io(folio);
1609 block_invalidate_folio(folio, 0,
1610 folio_size(folio));
1611 folio_clear_uptodate(folio);
1612 }
1613 folio_unlock(folio);
1614 }
1615 folio_batch_release(&fbatch);
1616 }
1617}
1618
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622 struct super_block *sb = inode->i_sb;
1623 struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626 EXT4_C2B(EXT4_SB(inode->i_sb),
1627 ext4_count_free_clusters(sb)));
1628 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630 (long long) EXT4_C2B(EXT4_SB(sb),
1631 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633 (long long) EXT4_C2B(EXT4_SB(sb),
1634 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637 ei->i_reserved_data_blocks);
1638 return;
1639}
1640
1641/*
1642 * Check whether the cluster containing lblk has been allocated or has
1643 * delalloc reservation.
1644 *
1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646 * reservation, 2 if it's already been allocated, negative error code on
1647 * failure.
1648 */
1649static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650{
1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652 int ret;
1653
1654 /* Has delalloc reservation? */
1655 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656 return 1;
1657
1658 /* Already been allocated? */
1659 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660 return 2;
1661 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662 if (ret < 0)
1663 return ret;
1664 if (ret > 0)
1665 return 2;
1666
1667 return 0;
1668}
1669
1670/*
1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672 * status tree, incrementing the reserved
1673 * cluster/block count or making pending
1674 * reservations where needed
1675 *
1676 * @inode - file containing the newly added block
1677 * @lblk - start logical block to be added
1678 * @len - length of blocks to be added
1679 *
1680 * Returns 0 on success, negative error code on failure.
1681 */
1682static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683 ext4_lblk_t len)
1684{
1685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686 int ret;
1687 bool lclu_allocated = false;
1688 bool end_allocated = false;
1689 ext4_lblk_t resv_clu;
1690 ext4_lblk_t end = lblk + len - 1;
1691
1692 /*
1693 * If the cluster containing lblk or end is shared with a delayed,
1694 * written, or unwritten extent in a bigalloc file system, it's
1695 * already been accounted for and does not need to be reserved.
1696 * A pending reservation must be made for the cluster if it's
1697 * shared with a written or unwritten extent and doesn't already
1698 * have one. Written and unwritten extents can be purged from the
1699 * extents status tree if the system is under memory pressure, so
1700 * it's necessary to examine the extent tree if a search of the
1701 * extents status tree doesn't get a match.
1702 */
1703 if (sbi->s_cluster_ratio == 1) {
1704 ret = ext4_da_reserve_space(inode, len);
1705 if (ret != 0) /* ENOSPC */
1706 return ret;
1707 } else { /* bigalloc */
1708 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710 ret = ext4_clu_alloc_state(inode, lblk);
1711 if (ret < 0)
1712 return ret;
1713 if (ret > 0) {
1714 resv_clu--;
1715 lclu_allocated = (ret == 2);
1716 }
1717
1718 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719 ret = ext4_clu_alloc_state(inode, end);
1720 if (ret < 0)
1721 return ret;
1722 if (ret > 0) {
1723 resv_clu--;
1724 end_allocated = (ret == 2);
1725 }
1726 }
1727
1728 if (resv_clu) {
1729 ret = ext4_da_reserve_space(inode, resv_clu);
1730 if (ret != 0) /* ENOSPC */
1731 return ret;
1732 }
1733 }
1734
1735 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736 end_allocated);
1737 return 0;
1738}
1739
1740/*
1741 * Looks up the requested blocks and sets the delalloc extent map.
1742 * First try to look up for the extent entry that contains the requested
1743 * blocks in the extent status tree without i_data_sem, then try to look
1744 * up for the ondisk extent mapping with i_data_sem in read mode,
1745 * finally hold i_data_sem in write mode, looks up again and add a
1746 * delalloc extent entry if it still couldn't find any extent. Pass out
1747 * the mapped extent through @map and return 0 on success.
1748 */
1749static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750{
1751 struct extent_status es;
1752 int retval;
1753#ifdef ES_AGGRESSIVE_TEST
1754 struct ext4_map_blocks orig_map;
1755
1756 memcpy(&orig_map, map, sizeof(*map));
1757#endif
1758
1759 map->m_flags = 0;
1760 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1761 (unsigned long) map->m_lblk);
1762
1763 /* Lookup extent status tree firstly */
1764 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765 map->m_len = min_t(unsigned int, map->m_len,
1766 es.es_len - (map->m_lblk - es.es_lblk));
1767
1768 if (ext4_es_is_hole(&es))
1769 goto add_delayed;
1770
1771found:
1772 /*
1773 * Delayed extent could be allocated by fallocate.
1774 * So we need to check it.
1775 */
1776 if (ext4_es_is_delayed(&es)) {
1777 map->m_flags |= EXT4_MAP_DELAYED;
1778 return 0;
1779 }
1780
1781 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1782 if (ext4_es_is_written(&es))
1783 map->m_flags |= EXT4_MAP_MAPPED;
1784 else if (ext4_es_is_unwritten(&es))
1785 map->m_flags |= EXT4_MAP_UNWRITTEN;
1786 else
1787 BUG();
1788
1789#ifdef ES_AGGRESSIVE_TEST
1790 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791#endif
1792 return 0;
1793 }
1794
1795 /*
1796 * Try to see if we can get the block without requesting a new
1797 * file system block.
1798 */
1799 down_read(&EXT4_I(inode)->i_data_sem);
1800 if (ext4_has_inline_data(inode))
1801 retval = 0;
1802 else
1803 retval = ext4_map_query_blocks(NULL, inode, map);
1804 up_read(&EXT4_I(inode)->i_data_sem);
1805 if (retval)
1806 return retval < 0 ? retval : 0;
1807
1808add_delayed:
1809 down_write(&EXT4_I(inode)->i_data_sem);
1810 /*
1811 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812 * and fallocate path (no folio lock) can race. Make sure we
1813 * lookup the extent status tree here again while i_data_sem
1814 * is held in write mode, before inserting a new da entry in
1815 * the extent status tree.
1816 */
1817 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818 map->m_len = min_t(unsigned int, map->m_len,
1819 es.es_len - (map->m_lblk - es.es_lblk));
1820
1821 if (!ext4_es_is_hole(&es)) {
1822 up_write(&EXT4_I(inode)->i_data_sem);
1823 goto found;
1824 }
1825 } else if (!ext4_has_inline_data(inode)) {
1826 retval = ext4_map_query_blocks(NULL, inode, map);
1827 if (retval) {
1828 up_write(&EXT4_I(inode)->i_data_sem);
1829 return retval < 0 ? retval : 0;
1830 }
1831 }
1832
1833 map->m_flags |= EXT4_MAP_DELAYED;
1834 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835 up_write(&EXT4_I(inode)->i_data_sem);
1836
1837 return retval;
1838}
1839
1840/*
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin(). It will either return mapped block or
1843 * reserve space for a single block.
1844 *
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1847 *
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1851 */
1852int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853 struct buffer_head *bh, int create)
1854{
1855 struct ext4_map_blocks map;
1856 sector_t invalid_block = ~((sector_t) 0xffff);
1857 int ret = 0;
1858
1859 BUG_ON(create == 0);
1860 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863 invalid_block = ~0;
1864
1865 map.m_lblk = iblock;
1866 map.m_len = 1;
1867
1868 /*
1869 * first, we need to know whether the block is allocated already
1870 * preallocated blocks are unmapped but should treated
1871 * the same as allocated blocks.
1872 */
1873 ret = ext4_da_map_blocks(inode, &map);
1874 if (ret < 0)
1875 return ret;
1876
1877 if (map.m_flags & EXT4_MAP_DELAYED) {
1878 map_bh(bh, inode->i_sb, invalid_block);
1879 set_buffer_new(bh);
1880 set_buffer_delay(bh);
1881 return 0;
1882 }
1883
1884 map_bh(bh, inode->i_sb, map.m_pblk);
1885 ext4_update_bh_state(bh, map.m_flags);
1886
1887 if (buffer_unwritten(bh)) {
1888 /* A delayed write to unwritten bh should be marked
1889 * new and mapped. Mapped ensures that we don't do
1890 * get_block multiple times when we write to the same
1891 * offset and new ensures that we do proper zero out
1892 * for partial write.
1893 */
1894 set_buffer_new(bh);
1895 set_buffer_mapped(bh);
1896 }
1897 return 0;
1898}
1899
1900static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901{
1902 mpd->first_page += folio_nr_pages(folio);
1903 folio_unlock(folio);
1904}
1905
1906static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907{
1908 size_t len;
1909 loff_t size;
1910 int err;
1911
1912 BUG_ON(folio->index != mpd->first_page);
1913 folio_clear_dirty_for_io(folio);
1914 /*
1915 * We have to be very careful here! Nothing protects writeback path
1916 * against i_size changes and the page can be writeably mapped into
1917 * page tables. So an application can be growing i_size and writing
1918 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919 * write-protects our page in page tables and the page cannot get
1920 * written to again until we release folio lock. So only after
1921 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923 * on the barrier provided by folio_test_clear_dirty() in
1924 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925 * after page tables are updated.
1926 */
1927 size = i_size_read(mpd->inode);
1928 len = folio_size(folio);
1929 if (folio_pos(folio) + len > size &&
1930 !ext4_verity_in_progress(mpd->inode))
1931 len = size & (len - 1);
1932 err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933 if (!err)
1934 mpd->wbc->nr_to_write--;
1935
1936 return err;
1937}
1938
1939#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941/*
1942 * mballoc gives us at most this number of blocks...
1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944 * The rest of mballoc seems to handle chunks up to full group size.
1945 */
1946#define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948/*
1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950 *
1951 * @mpd - extent of blocks
1952 * @lblk - logical number of the block in the file
1953 * @bh - buffer head we want to add to the extent
1954 *
1955 * The function is used to collect contig. blocks in the same state. If the
1956 * buffer doesn't require mapping for writeback and we haven't started the
1957 * extent of buffers to map yet, the function returns 'true' immediately - the
1958 * caller can write the buffer right away. Otherwise the function returns true
1959 * if the block has been added to the extent, false if the block couldn't be
1960 * added.
1961 */
1962static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963 struct buffer_head *bh)
1964{
1965 struct ext4_map_blocks *map = &mpd->map;
1966
1967 /* Buffer that doesn't need mapping for writeback? */
1968 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970 /* So far no extent to map => we write the buffer right away */
1971 if (map->m_len == 0)
1972 return true;
1973 return false;
1974 }
1975
1976 /* First block in the extent? */
1977 if (map->m_len == 0) {
1978 /* We cannot map unless handle is started... */
1979 if (!mpd->do_map)
1980 return false;
1981 map->m_lblk = lblk;
1982 map->m_len = 1;
1983 map->m_flags = bh->b_state & BH_FLAGS;
1984 return true;
1985 }
1986
1987 /* Don't go larger than mballoc is willing to allocate */
1988 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989 return false;
1990
1991 /* Can we merge the block to our big extent? */
1992 if (lblk == map->m_lblk + map->m_len &&
1993 (bh->b_state & BH_FLAGS) == map->m_flags) {
1994 map->m_len++;
1995 return true;
1996 }
1997 return false;
1998}
1999
2000/*
2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002 *
2003 * @mpd - extent of blocks for mapping
2004 * @head - the first buffer in the page
2005 * @bh - buffer we should start processing from
2006 * @lblk - logical number of the block in the file corresponding to @bh
2007 *
2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009 * the page for IO if all buffers in this page were mapped and there's no
2010 * accumulated extent of buffers to map or add buffers in the page to the
2011 * extent of buffers to map. The function returns 1 if the caller can continue
2012 * by processing the next page, 0 if it should stop adding buffers to the
2013 * extent to map because we cannot extend it anymore. It can also return value
2014 * < 0 in case of error during IO submission.
2015 */
2016static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017 struct buffer_head *head,
2018 struct buffer_head *bh,
2019 ext4_lblk_t lblk)
2020{
2021 struct inode *inode = mpd->inode;
2022 int err;
2023 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024 >> inode->i_blkbits;
2025
2026 if (ext4_verity_in_progress(inode))
2027 blocks = EXT_MAX_BLOCKS;
2028
2029 do {
2030 BUG_ON(buffer_locked(bh));
2031
2032 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033 /* Found extent to map? */
2034 if (mpd->map.m_len)
2035 return 0;
2036 /* Buffer needs mapping and handle is not started? */
2037 if (!mpd->do_map)
2038 return 0;
2039 /* Everything mapped so far and we hit EOF */
2040 break;
2041 }
2042 } while (lblk++, (bh = bh->b_this_page) != head);
2043 /* So far everything mapped? Submit the page for IO. */
2044 if (mpd->map.m_len == 0) {
2045 err = mpage_submit_folio(mpd, head->b_folio);
2046 if (err < 0)
2047 return err;
2048 mpage_folio_done(mpd, head->b_folio);
2049 }
2050 if (lblk >= blocks) {
2051 mpd->scanned_until_end = 1;
2052 return 0;
2053 }
2054 return 1;
2055}
2056
2057/*
2058 * mpage_process_folio - update folio buffers corresponding to changed extent
2059 * and may submit fully mapped page for IO
2060 * @mpd: description of extent to map, on return next extent to map
2061 * @folio: Contains these buffers.
2062 * @m_lblk: logical block mapping.
2063 * @m_pblk: corresponding physical mapping.
2064 * @map_bh: determines on return whether this page requires any further
2065 * mapping or not.
2066 *
2067 * Scan given folio buffers corresponding to changed extent and update buffer
2068 * state according to new extent state.
2069 * We map delalloc buffers to their physical location, clear unwritten bits.
2070 * If the given folio is not fully mapped, we update @mpd to the next extent in
2071 * the given folio that needs mapping & return @map_bh as true.
2072 */
2073static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075 bool *map_bh)
2076{
2077 struct buffer_head *head, *bh;
2078 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079 ext4_lblk_t lblk = *m_lblk;
2080 ext4_fsblk_t pblock = *m_pblk;
2081 int err = 0;
2082 int blkbits = mpd->inode->i_blkbits;
2083 ssize_t io_end_size = 0;
2084 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086 bh = head = folio_buffers(folio);
2087 do {
2088 if (lblk < mpd->map.m_lblk)
2089 continue;
2090 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091 /*
2092 * Buffer after end of mapped extent.
2093 * Find next buffer in the folio to map.
2094 */
2095 mpd->map.m_len = 0;
2096 mpd->map.m_flags = 0;
2097 io_end_vec->size += io_end_size;
2098
2099 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100 if (err > 0)
2101 err = 0;
2102 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103 io_end_vec = ext4_alloc_io_end_vec(io_end);
2104 if (IS_ERR(io_end_vec)) {
2105 err = PTR_ERR(io_end_vec);
2106 goto out;
2107 }
2108 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109 }
2110 *map_bh = true;
2111 goto out;
2112 }
2113 if (buffer_delay(bh)) {
2114 clear_buffer_delay(bh);
2115 bh->b_blocknr = pblock++;
2116 }
2117 clear_buffer_unwritten(bh);
2118 io_end_size += (1 << blkbits);
2119 } while (lblk++, (bh = bh->b_this_page) != head);
2120
2121 io_end_vec->size += io_end_size;
2122 *map_bh = false;
2123out:
2124 *m_lblk = lblk;
2125 *m_pblk = pblock;
2126 return err;
2127}
2128
2129/*
2130 * mpage_map_buffers - update buffers corresponding to changed extent and
2131 * submit fully mapped pages for IO
2132 *
2133 * @mpd - description of extent to map, on return next extent to map
2134 *
2135 * Scan buffers corresponding to changed extent (we expect corresponding pages
2136 * to be already locked) and update buffer state according to new extent state.
2137 * We map delalloc buffers to their physical location, clear unwritten bits,
2138 * and mark buffers as uninit when we perform writes to unwritten extents
2139 * and do extent conversion after IO is finished. If the last page is not fully
2140 * mapped, we update @map to the next extent in the last page that needs
2141 * mapping. Otherwise we submit the page for IO.
2142 */
2143static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144{
2145 struct folio_batch fbatch;
2146 unsigned nr, i;
2147 struct inode *inode = mpd->inode;
2148 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149 pgoff_t start, end;
2150 ext4_lblk_t lblk;
2151 ext4_fsblk_t pblock;
2152 int err;
2153 bool map_bh = false;
2154
2155 start = mpd->map.m_lblk >> bpp_bits;
2156 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157 lblk = start << bpp_bits;
2158 pblock = mpd->map.m_pblk;
2159
2160 folio_batch_init(&fbatch);
2161 while (start <= end) {
2162 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163 if (nr == 0)
2164 break;
2165 for (i = 0; i < nr; i++) {
2166 struct folio *folio = fbatch.folios[i];
2167
2168 err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169 &map_bh);
2170 /*
2171 * If map_bh is true, means page may require further bh
2172 * mapping, or maybe the page was submitted for IO.
2173 * So we return to call further extent mapping.
2174 */
2175 if (err < 0 || map_bh)
2176 goto out;
2177 /* Page fully mapped - let IO run! */
2178 err = mpage_submit_folio(mpd, folio);
2179 if (err < 0)
2180 goto out;
2181 mpage_folio_done(mpd, folio);
2182 }
2183 folio_batch_release(&fbatch);
2184 }
2185 /* Extent fully mapped and matches with page boundary. We are done. */
2186 mpd->map.m_len = 0;
2187 mpd->map.m_flags = 0;
2188 return 0;
2189out:
2190 folio_batch_release(&fbatch);
2191 return err;
2192}
2193
2194static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195{
2196 struct inode *inode = mpd->inode;
2197 struct ext4_map_blocks *map = &mpd->map;
2198 int get_blocks_flags;
2199 int err, dioread_nolock;
2200
2201 trace_ext4_da_write_pages_extent(inode, map);
2202 /*
2203 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204 * to convert an unwritten extent to be initialized (in the case
2205 * where we have written into one or more preallocated blocks). It is
2206 * possible that we're going to need more metadata blocks than
2207 * previously reserved. However we must not fail because we're in
2208 * writeback and there is nothing we can do about it so it might result
2209 * in data loss. So use reserved blocks to allocate metadata if
2210 * possible.
2211 */
2212 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214 EXT4_GET_BLOCKS_IO_SUBMIT;
2215 dioread_nolock = ext4_should_dioread_nolock(inode);
2216 if (dioread_nolock)
2217 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2218
2219 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220 if (err < 0)
2221 return err;
2222 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223 if (!mpd->io_submit.io_end->handle &&
2224 ext4_handle_valid(handle)) {
2225 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226 handle->h_rsv_handle = NULL;
2227 }
2228 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229 }
2230
2231 BUG_ON(map->m_len == 0);
2232 return 0;
2233}
2234
2235/*
2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237 * mpd->len and submit pages underlying it for IO
2238 *
2239 * @handle - handle for journal operations
2240 * @mpd - extent to map
2241 * @give_up_on_write - we set this to true iff there is a fatal error and there
2242 * is no hope of writing the data. The caller should discard
2243 * dirty pages to avoid infinite loops.
2244 *
2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247 * them to initialized or split the described range from larger unwritten
2248 * extent. Note that we need not map all the described range since allocation
2249 * can return less blocks or the range is covered by more unwritten extents. We
2250 * cannot map more because we are limited by reserved transaction credits. On
2251 * the other hand we always make sure that the last touched page is fully
2252 * mapped so that it can be written out (and thus forward progress is
2253 * guaranteed). After mapping we submit all mapped pages for IO.
2254 */
2255static int mpage_map_and_submit_extent(handle_t *handle,
2256 struct mpage_da_data *mpd,
2257 bool *give_up_on_write)
2258{
2259 struct inode *inode = mpd->inode;
2260 struct ext4_map_blocks *map = &mpd->map;
2261 int err;
2262 loff_t disksize;
2263 int progress = 0;
2264 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265 struct ext4_io_end_vec *io_end_vec;
2266
2267 io_end_vec = ext4_alloc_io_end_vec(io_end);
2268 if (IS_ERR(io_end_vec))
2269 return PTR_ERR(io_end_vec);
2270 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271 do {
2272 err = mpage_map_one_extent(handle, mpd);
2273 if (err < 0) {
2274 struct super_block *sb = inode->i_sb;
2275
2276 if (ext4_forced_shutdown(sb))
2277 goto invalidate_dirty_pages;
2278 /*
2279 * Let the uper layers retry transient errors.
2280 * In the case of ENOSPC, if ext4_count_free_blocks()
2281 * is non-zero, a commit should free up blocks.
2282 */
2283 if ((err == -ENOMEM) ||
2284 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285 if (progress)
2286 goto update_disksize;
2287 return err;
2288 }
2289 ext4_msg(sb, KERN_CRIT,
2290 "Delayed block allocation failed for "
2291 "inode %lu at logical offset %llu with"
2292 " max blocks %u with error %d",
2293 inode->i_ino,
2294 (unsigned long long)map->m_lblk,
2295 (unsigned)map->m_len, -err);
2296 ext4_msg(sb, KERN_CRIT,
2297 "This should not happen!! Data will "
2298 "be lost\n");
2299 if (err == -ENOSPC)
2300 ext4_print_free_blocks(inode);
2301 invalidate_dirty_pages:
2302 *give_up_on_write = true;
2303 return err;
2304 }
2305 progress = 1;
2306 /*
2307 * Update buffer state, submit mapped pages, and get us new
2308 * extent to map
2309 */
2310 err = mpage_map_and_submit_buffers(mpd);
2311 if (err < 0)
2312 goto update_disksize;
2313 } while (map->m_len);
2314
2315update_disksize:
2316 /*
2317 * Update on-disk size after IO is submitted. Races with
2318 * truncate are avoided by checking i_size under i_data_sem.
2319 */
2320 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322 int err2;
2323 loff_t i_size;
2324
2325 down_write(&EXT4_I(inode)->i_data_sem);
2326 i_size = i_size_read(inode);
2327 if (disksize > i_size)
2328 disksize = i_size;
2329 if (disksize > EXT4_I(inode)->i_disksize)
2330 EXT4_I(inode)->i_disksize = disksize;
2331 up_write(&EXT4_I(inode)->i_data_sem);
2332 err2 = ext4_mark_inode_dirty(handle, inode);
2333 if (err2) {
2334 ext4_error_err(inode->i_sb, -err2,
2335 "Failed to mark inode %lu dirty",
2336 inode->i_ino);
2337 }
2338 if (!err)
2339 err = err2;
2340 }
2341 return err;
2342}
2343
2344/*
2345 * Calculate the total number of credits to reserve for one writepages
2346 * iteration. This is called from ext4_writepages(). We map an extent of
2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349 * bpp - 1 blocks in bpp different extents.
2350 */
2351static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352{
2353 int bpp = ext4_journal_blocks_per_page(inode);
2354
2355 return ext4_meta_trans_blocks(inode,
2356 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357}
2358
2359static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360 size_t len)
2361{
2362 struct buffer_head *page_bufs = folio_buffers(folio);
2363 struct inode *inode = folio->mapping->host;
2364 int ret, err;
2365
2366 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367 NULL, do_journal_get_write_access);
2368 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369 NULL, write_end_fn);
2370 if (ret == 0)
2371 ret = err;
2372 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373 if (ret == 0)
2374 ret = err;
2375 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377 return ret;
2378}
2379
2380static int mpage_journal_page_buffers(handle_t *handle,
2381 struct mpage_da_data *mpd,
2382 struct folio *folio)
2383{
2384 struct inode *inode = mpd->inode;
2385 loff_t size = i_size_read(inode);
2386 size_t len = folio_size(folio);
2387
2388 folio_clear_checked(folio);
2389 mpd->wbc->nr_to_write--;
2390
2391 if (folio_pos(folio) + len > size &&
2392 !ext4_verity_in_progress(inode))
2393 len = size & (len - 1);
2394
2395 return ext4_journal_folio_buffers(handle, folio, len);
2396}
2397
2398/*
2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400 * needing mapping, submit mapped pages
2401 *
2402 * @mpd - where to look for pages
2403 *
2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405 * IO immediately. If we cannot map blocks, we submit just already mapped
2406 * buffers in the page for IO and keep page dirty. When we can map blocks and
2407 * we find a page which isn't mapped we start accumulating extent of buffers
2408 * underlying these pages that needs mapping (formed by either delayed or
2409 * unwritten buffers). We also lock the pages containing these buffers. The
2410 * extent found is returned in @mpd structure (starting at mpd->lblk with
2411 * length mpd->len blocks).
2412 *
2413 * Note that this function can attach bios to one io_end structure which are
2414 * neither logically nor physically contiguous. Although it may seem as an
2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416 * case as we need to track IO to all buffers underlying a page in one io_end.
2417 */
2418static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419{
2420 struct address_space *mapping = mpd->inode->i_mapping;
2421 struct folio_batch fbatch;
2422 unsigned int nr_folios;
2423 pgoff_t index = mpd->first_page;
2424 pgoff_t end = mpd->last_page;
2425 xa_mark_t tag;
2426 int i, err = 0;
2427 int blkbits = mpd->inode->i_blkbits;
2428 ext4_lblk_t lblk;
2429 struct buffer_head *head;
2430 handle_t *handle = NULL;
2431 int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434 tag = PAGECACHE_TAG_TOWRITE;
2435 else
2436 tag = PAGECACHE_TAG_DIRTY;
2437
2438 mpd->map.m_len = 0;
2439 mpd->next_page = index;
2440 if (ext4_should_journal_data(mpd->inode)) {
2441 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442 bpp);
2443 if (IS_ERR(handle))
2444 return PTR_ERR(handle);
2445 }
2446 folio_batch_init(&fbatch);
2447 while (index <= end) {
2448 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449 tag, &fbatch);
2450 if (nr_folios == 0)
2451 break;
2452
2453 for (i = 0; i < nr_folios; i++) {
2454 struct folio *folio = fbatch.folios[i];
2455
2456 /*
2457 * Accumulated enough dirty pages? This doesn't apply
2458 * to WB_SYNC_ALL mode. For integrity sync we have to
2459 * keep going because someone may be concurrently
2460 * dirtying pages, and we might have synced a lot of
2461 * newly appeared dirty pages, but have not synced all
2462 * of the old dirty pages.
2463 */
2464 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465 mpd->wbc->nr_to_write <=
2466 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467 goto out;
2468
2469 /* If we can't merge this page, we are done. */
2470 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471 goto out;
2472
2473 if (handle) {
2474 err = ext4_journal_ensure_credits(handle, bpp,
2475 0);
2476 if (err < 0)
2477 goto out;
2478 }
2479
2480 folio_lock(folio);
2481 /*
2482 * If the page is no longer dirty, or its mapping no
2483 * longer corresponds to inode we are writing (which
2484 * means it has been truncated or invalidated), or the
2485 * page is already under writeback and we are not doing
2486 * a data integrity writeback, skip the page
2487 */
2488 if (!folio_test_dirty(folio) ||
2489 (folio_test_writeback(folio) &&
2490 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491 unlikely(folio->mapping != mapping)) {
2492 folio_unlock(folio);
2493 continue;
2494 }
2495
2496 folio_wait_writeback(folio);
2497 BUG_ON(folio_test_writeback(folio));
2498
2499 /*
2500 * Should never happen but for buggy code in
2501 * other subsystems that call
2502 * set_page_dirty() without properly warning
2503 * the file system first. See [1] for more
2504 * information.
2505 *
2506 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507 */
2508 if (!folio_buffers(folio)) {
2509 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510 folio_clear_dirty(folio);
2511 folio_unlock(folio);
2512 continue;
2513 }
2514
2515 if (mpd->map.m_len == 0)
2516 mpd->first_page = folio->index;
2517 mpd->next_page = folio_next_index(folio);
2518 /*
2519 * Writeout when we cannot modify metadata is simple.
2520 * Just submit the page. For data=journal mode we
2521 * first handle writeout of the page for checkpoint and
2522 * only after that handle delayed page dirtying. This
2523 * makes sure current data is checkpointed to the final
2524 * location before possibly journalling it again which
2525 * is desirable when the page is frequently dirtied
2526 * through a pin.
2527 */
2528 if (!mpd->can_map) {
2529 err = mpage_submit_folio(mpd, folio);
2530 if (err < 0)
2531 goto out;
2532 /* Pending dirtying of journalled data? */
2533 if (folio_test_checked(folio)) {
2534 err = mpage_journal_page_buffers(handle,
2535 mpd, folio);
2536 if (err < 0)
2537 goto out;
2538 mpd->journalled_more_data = 1;
2539 }
2540 mpage_folio_done(mpd, folio);
2541 } else {
2542 /* Add all dirty buffers to mpd */
2543 lblk = ((ext4_lblk_t)folio->index) <<
2544 (PAGE_SHIFT - blkbits);
2545 head = folio_buffers(folio);
2546 err = mpage_process_page_bufs(mpd, head, head,
2547 lblk);
2548 if (err <= 0)
2549 goto out;
2550 err = 0;
2551 }
2552 }
2553 folio_batch_release(&fbatch);
2554 cond_resched();
2555 }
2556 mpd->scanned_until_end = 1;
2557 if (handle)
2558 ext4_journal_stop(handle);
2559 return 0;
2560out:
2561 folio_batch_release(&fbatch);
2562 if (handle)
2563 ext4_journal_stop(handle);
2564 return err;
2565}
2566
2567static int ext4_do_writepages(struct mpage_da_data *mpd)
2568{
2569 struct writeback_control *wbc = mpd->wbc;
2570 pgoff_t writeback_index = 0;
2571 long nr_to_write = wbc->nr_to_write;
2572 int range_whole = 0;
2573 int cycled = 1;
2574 handle_t *handle = NULL;
2575 struct inode *inode = mpd->inode;
2576 struct address_space *mapping = inode->i_mapping;
2577 int needed_blocks, rsv_blocks = 0, ret = 0;
2578 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579 struct blk_plug plug;
2580 bool give_up_on_write = false;
2581
2582 trace_ext4_writepages(inode, wbc);
2583
2584 /*
2585 * No pages to write? This is mainly a kludge to avoid starting
2586 * a transaction for special inodes like journal inode on last iput()
2587 * because that could violate lock ordering on umount
2588 */
2589 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590 goto out_writepages;
2591
2592 /*
2593 * If the filesystem has aborted, it is read-only, so return
2594 * right away instead of dumping stack traces later on that
2595 * will obscure the real source of the problem. We test
2596 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597 * the latter could be true if the filesystem is mounted
2598 * read-only, and in that case, ext4_writepages should
2599 * *never* be called, so if that ever happens, we would want
2600 * the stack trace.
2601 */
2602 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603 ret = -EROFS;
2604 goto out_writepages;
2605 }
2606
2607 /*
2608 * If we have inline data and arrive here, it means that
2609 * we will soon create the block for the 1st page, so
2610 * we'd better clear the inline data here.
2611 */
2612 if (ext4_has_inline_data(inode)) {
2613 /* Just inode will be modified... */
2614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615 if (IS_ERR(handle)) {
2616 ret = PTR_ERR(handle);
2617 goto out_writepages;
2618 }
2619 BUG_ON(ext4_test_inode_state(inode,
2620 EXT4_STATE_MAY_INLINE_DATA));
2621 ext4_destroy_inline_data(handle, inode);
2622 ext4_journal_stop(handle);
2623 }
2624
2625 /*
2626 * data=journal mode does not do delalloc so we just need to writeout /
2627 * journal already mapped buffers. On the other hand we need to commit
2628 * transaction to make data stable. We expect all the data to be
2629 * already in the journal (the only exception are DMA pinned pages
2630 * dirtied behind our back) so we commit transaction here and run the
2631 * writeback loop to checkpoint them. The checkpointing is not actually
2632 * necessary to make data persistent *but* quite a few places (extent
2633 * shifting operations, fsverity, ...) depend on being able to drop
2634 * pagecache pages after calling filemap_write_and_wait() and for that
2635 * checkpointing needs to happen.
2636 */
2637 if (ext4_should_journal_data(inode)) {
2638 mpd->can_map = 0;
2639 if (wbc->sync_mode == WB_SYNC_ALL)
2640 ext4_fc_commit(sbi->s_journal,
2641 EXT4_I(inode)->i_datasync_tid);
2642 }
2643 mpd->journalled_more_data = 0;
2644
2645 if (ext4_should_dioread_nolock(inode)) {
2646 /*
2647 * We may need to convert up to one extent per block in
2648 * the page and we may dirty the inode.
2649 */
2650 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651 PAGE_SIZE >> inode->i_blkbits);
2652 }
2653
2654 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655 range_whole = 1;
2656
2657 if (wbc->range_cyclic) {
2658 writeback_index = mapping->writeback_index;
2659 if (writeback_index)
2660 cycled = 0;
2661 mpd->first_page = writeback_index;
2662 mpd->last_page = -1;
2663 } else {
2664 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666 }
2667
2668 ext4_io_submit_init(&mpd->io_submit, wbc);
2669retry:
2670 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671 tag_pages_for_writeback(mapping, mpd->first_page,
2672 mpd->last_page);
2673 blk_start_plug(&plug);
2674
2675 /*
2676 * First writeback pages that don't need mapping - we can avoid
2677 * starting a transaction unnecessarily and also avoid being blocked
2678 * in the block layer on device congestion while having transaction
2679 * started.
2680 */
2681 mpd->do_map = 0;
2682 mpd->scanned_until_end = 0;
2683 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684 if (!mpd->io_submit.io_end) {
2685 ret = -ENOMEM;
2686 goto unplug;
2687 }
2688 ret = mpage_prepare_extent_to_map(mpd);
2689 /* Unlock pages we didn't use */
2690 mpage_release_unused_pages(mpd, false);
2691 /* Submit prepared bio */
2692 ext4_io_submit(&mpd->io_submit);
2693 ext4_put_io_end_defer(mpd->io_submit.io_end);
2694 mpd->io_submit.io_end = NULL;
2695 if (ret < 0)
2696 goto unplug;
2697
2698 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699 /* For each extent of pages we use new io_end */
2700 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701 if (!mpd->io_submit.io_end) {
2702 ret = -ENOMEM;
2703 break;
2704 }
2705
2706 WARN_ON_ONCE(!mpd->can_map);
2707 /*
2708 * We have two constraints: We find one extent to map and we
2709 * must always write out whole page (makes a difference when
2710 * blocksize < pagesize) so that we don't block on IO when we
2711 * try to write out the rest of the page. Journalled mode is
2712 * not supported by delalloc.
2713 */
2714 BUG_ON(ext4_should_journal_data(inode));
2715 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717 /* start a new transaction */
2718 handle = ext4_journal_start_with_reserve(inode,
2719 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720 if (IS_ERR(handle)) {
2721 ret = PTR_ERR(handle);
2722 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723 "%ld pages, ino %lu; err %d", __func__,
2724 wbc->nr_to_write, inode->i_ino, ret);
2725 /* Release allocated io_end */
2726 ext4_put_io_end(mpd->io_submit.io_end);
2727 mpd->io_submit.io_end = NULL;
2728 break;
2729 }
2730 mpd->do_map = 1;
2731
2732 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733 ret = mpage_prepare_extent_to_map(mpd);
2734 if (!ret && mpd->map.m_len)
2735 ret = mpage_map_and_submit_extent(handle, mpd,
2736 &give_up_on_write);
2737 /*
2738 * Caution: If the handle is synchronous,
2739 * ext4_journal_stop() can wait for transaction commit
2740 * to finish which may depend on writeback of pages to
2741 * complete or on page lock to be released. In that
2742 * case, we have to wait until after we have
2743 * submitted all the IO, released page locks we hold,
2744 * and dropped io_end reference (for extent conversion
2745 * to be able to complete) before stopping the handle.
2746 */
2747 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748 ext4_journal_stop(handle);
2749 handle = NULL;
2750 mpd->do_map = 0;
2751 }
2752 /* Unlock pages we didn't use */
2753 mpage_release_unused_pages(mpd, give_up_on_write);
2754 /* Submit prepared bio */
2755 ext4_io_submit(&mpd->io_submit);
2756
2757 /*
2758 * Drop our io_end reference we got from init. We have
2759 * to be careful and use deferred io_end finishing if
2760 * we are still holding the transaction as we can
2761 * release the last reference to io_end which may end
2762 * up doing unwritten extent conversion.
2763 */
2764 if (handle) {
2765 ext4_put_io_end_defer(mpd->io_submit.io_end);
2766 ext4_journal_stop(handle);
2767 } else
2768 ext4_put_io_end(mpd->io_submit.io_end);
2769 mpd->io_submit.io_end = NULL;
2770
2771 if (ret == -ENOSPC && sbi->s_journal) {
2772 /*
2773 * Commit the transaction which would
2774 * free blocks released in the transaction
2775 * and try again
2776 */
2777 jbd2_journal_force_commit_nested(sbi->s_journal);
2778 ret = 0;
2779 continue;
2780 }
2781 /* Fatal error - ENOMEM, EIO... */
2782 if (ret)
2783 break;
2784 }
2785unplug:
2786 blk_finish_plug(&plug);
2787 if (!ret && !cycled && wbc->nr_to_write > 0) {
2788 cycled = 1;
2789 mpd->last_page = writeback_index - 1;
2790 mpd->first_page = 0;
2791 goto retry;
2792 }
2793
2794 /* Update index */
2795 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796 /*
2797 * Set the writeback_index so that range_cyclic
2798 * mode will write it back later
2799 */
2800 mapping->writeback_index = mpd->first_page;
2801
2802out_writepages:
2803 trace_ext4_writepages_result(inode, wbc, ret,
2804 nr_to_write - wbc->nr_to_write);
2805 return ret;
2806}
2807
2808static int ext4_writepages(struct address_space *mapping,
2809 struct writeback_control *wbc)
2810{
2811 struct super_block *sb = mapping->host->i_sb;
2812 struct mpage_da_data mpd = {
2813 .inode = mapping->host,
2814 .wbc = wbc,
2815 .can_map = 1,
2816 };
2817 int ret;
2818 int alloc_ctx;
2819
2820 if (unlikely(ext4_forced_shutdown(sb)))
2821 return -EIO;
2822
2823 alloc_ctx = ext4_writepages_down_read(sb);
2824 ret = ext4_do_writepages(&mpd);
2825 /*
2826 * For data=journal writeback we could have come across pages marked
2827 * for delayed dirtying (PageChecked) which were just added to the
2828 * running transaction. Try once more to get them to stable storage.
2829 */
2830 if (!ret && mpd.journalled_more_data)
2831 ret = ext4_do_writepages(&mpd);
2832 ext4_writepages_up_read(sb, alloc_ctx);
2833
2834 return ret;
2835}
2836
2837int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838{
2839 struct writeback_control wbc = {
2840 .sync_mode = WB_SYNC_ALL,
2841 .nr_to_write = LONG_MAX,
2842 .range_start = jinode->i_dirty_start,
2843 .range_end = jinode->i_dirty_end,
2844 };
2845 struct mpage_da_data mpd = {
2846 .inode = jinode->i_vfs_inode,
2847 .wbc = &wbc,
2848 .can_map = 0,
2849 };
2850 return ext4_do_writepages(&mpd);
2851}
2852
2853static int ext4_dax_writepages(struct address_space *mapping,
2854 struct writeback_control *wbc)
2855{
2856 int ret;
2857 long nr_to_write = wbc->nr_to_write;
2858 struct inode *inode = mapping->host;
2859 int alloc_ctx;
2860
2861 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862 return -EIO;
2863
2864 alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865 trace_ext4_writepages(inode, wbc);
2866
2867 ret = dax_writeback_mapping_range(mapping,
2868 EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869 trace_ext4_writepages_result(inode, wbc, ret,
2870 nr_to_write - wbc->nr_to_write);
2871 ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872 return ret;
2873}
2874
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877 s64 free_clusters, dirty_clusters;
2878 struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880 /*
2881 * switch to non delalloc mode if we are running low
2882 * on free block. The free block accounting via percpu
2883 * counters can get slightly wrong with percpu_counter_batch getting
2884 * accumulated on each CPU without updating global counters
2885 * Delalloc need an accurate free block accounting. So switch
2886 * to non delalloc when we are near to error range.
2887 */
2888 free_clusters =
2889 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 dirty_clusters =
2891 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 /*
2893 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 */
2895 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898 if (2 * free_clusters < 3 * dirty_clusters ||
2899 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 /*
2901 * free block count is less than 150% of dirty blocks
2902 * or free blocks is less than watermark
2903 */
2904 return 1;
2905 }
2906 return 0;
2907}
2908
2909static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910 loff_t pos, unsigned len,
2911 struct folio **foliop, void **fsdata)
2912{
2913 int ret, retries = 0;
2914 struct folio *folio;
2915 pgoff_t index;
2916 struct inode *inode = mapping->host;
2917
2918 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919 return -EIO;
2920
2921 index = pos >> PAGE_SHIFT;
2922
2923 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925 return ext4_write_begin(file, mapping, pos,
2926 len, foliop, fsdata);
2927 }
2928 *fsdata = (void *)0;
2929 trace_ext4_da_write_begin(inode, pos, len);
2930
2931 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933 foliop, fsdata);
2934 if (ret < 0)
2935 return ret;
2936 if (ret == 1)
2937 return 0;
2938 }
2939
2940retry:
2941 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942 mapping_gfp_mask(mapping));
2943 if (IS_ERR(folio))
2944 return PTR_ERR(folio);
2945
2946 ret = ext4_block_write_begin(NULL, folio, pos, len,
2947 ext4_da_get_block_prep);
2948 if (ret < 0) {
2949 folio_unlock(folio);
2950 folio_put(folio);
2951 /*
2952 * block_write_begin may have instantiated a few blocks
2953 * outside i_size. Trim these off again. Don't need
2954 * i_size_read because we hold inode lock.
2955 */
2956 if (pos + len > inode->i_size)
2957 ext4_truncate_failed_write(inode);
2958
2959 if (ret == -ENOSPC &&
2960 ext4_should_retry_alloc(inode->i_sb, &retries))
2961 goto retry;
2962 return ret;
2963 }
2964
2965 *foliop = folio;
2966 return ret;
2967}
2968
2969/*
2970 * Check if we should update i_disksize
2971 * when write to the end of file but not require block allocation
2972 */
2973static int ext4_da_should_update_i_disksize(struct folio *folio,
2974 unsigned long offset)
2975{
2976 struct buffer_head *bh;
2977 struct inode *inode = folio->mapping->host;
2978 unsigned int idx;
2979 int i;
2980
2981 bh = folio_buffers(folio);
2982 idx = offset >> inode->i_blkbits;
2983
2984 for (i = 0; i < idx; i++)
2985 bh = bh->b_this_page;
2986
2987 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988 return 0;
2989 return 1;
2990}
2991
2992static int ext4_da_do_write_end(struct address_space *mapping,
2993 loff_t pos, unsigned len, unsigned copied,
2994 struct folio *folio)
2995{
2996 struct inode *inode = mapping->host;
2997 loff_t old_size = inode->i_size;
2998 bool disksize_changed = false;
2999 loff_t new_i_size, zero_len = 0;
3000 handle_t *handle;
3001
3002 if (unlikely(!folio_buffers(folio))) {
3003 folio_unlock(folio);
3004 folio_put(folio);
3005 return -EIO;
3006 }
3007 /*
3008 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009 * flag, which all that's needed to trigger page writeback.
3010 */
3011 copied = block_write_end(NULL, mapping, pos, len, copied,
3012 folio, NULL);
3013 new_i_size = pos + copied;
3014
3015 /*
3016 * It's important to update i_size while still holding folio lock,
3017 * because folio writeout could otherwise come in and zero beyond
3018 * i_size.
3019 *
3020 * Since we are holding inode lock, we are sure i_disksize <=
3021 * i_size. We also know that if i_disksize < i_size, there are
3022 * delalloc writes pending in the range up to i_size. If the end of
3023 * the current write is <= i_size, there's no need to touch
3024 * i_disksize since writeback will push i_disksize up to i_size
3025 * eventually. If the end of the current write is > i_size and
3026 * inside an allocated block which ext4_da_should_update_i_disksize()
3027 * checked, we need to update i_disksize here as certain
3028 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029 */
3030 if (new_i_size > inode->i_size) {
3031 unsigned long end;
3032
3033 i_size_write(inode, new_i_size);
3034 end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036 ext4_update_i_disksize(inode, new_i_size);
3037 disksize_changed = true;
3038 }
3039 }
3040
3041 folio_unlock(folio);
3042 folio_put(folio);
3043
3044 if (pos > old_size) {
3045 pagecache_isize_extended(inode, old_size, pos);
3046 zero_len = pos - old_size;
3047 }
3048
3049 if (!disksize_changed && !zero_len)
3050 return copied;
3051
3052 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053 if (IS_ERR(handle))
3054 return PTR_ERR(handle);
3055 if (zero_len)
3056 ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057 ext4_mark_inode_dirty(handle, inode);
3058 ext4_journal_stop(handle);
3059
3060 return copied;
3061}
3062
3063static int ext4_da_write_end(struct file *file,
3064 struct address_space *mapping,
3065 loff_t pos, unsigned len, unsigned copied,
3066 struct folio *folio, void *fsdata)
3067{
3068 struct inode *inode = mapping->host;
3069 int write_mode = (int)(unsigned long)fsdata;
3070
3071 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072 return ext4_write_end(file, mapping, pos,
3073 len, copied, folio, fsdata);
3074
3075 trace_ext4_da_write_end(inode, pos, len, copied);
3076
3077 if (write_mode != CONVERT_INLINE_DATA &&
3078 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079 ext4_has_inline_data(inode))
3080 return ext4_write_inline_data_end(inode, pos, len, copied,
3081 folio);
3082
3083 if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084 copied = 0;
3085
3086 return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087}
3088
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
3094 trace_ext4_alloc_da_blocks(inode);
3095
3096 if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 return 0;
3098
3099 /*
3100 * We do something simple for now. The filemap_flush() will
3101 * also start triggering a write of the data blocks, which is
3102 * not strictly speaking necessary (and for users of
3103 * laptop_mode, not even desirable). However, to do otherwise
3104 * would require replicating code paths in:
3105 *
3106 * ext4_writepages() ->
3107 * write_cache_pages() ---> (via passed in callback function)
3108 * __mpage_da_writepage() -->
3109 * mpage_add_bh_to_extent()
3110 * mpage_da_map_blocks()
3111 *
3112 * The problem is that write_cache_pages(), located in
3113 * mm/page-writeback.c, marks pages clean in preparation for
3114 * doing I/O, which is not desirable if we're not planning on
3115 * doing I/O at all.
3116 *
3117 * We could call write_cache_pages(), and then redirty all of
3118 * the pages by calling redirty_page_for_writepage() but that
3119 * would be ugly in the extreme. So instead we would need to
3120 * replicate parts of the code in the above functions,
3121 * simplifying them because we wouldn't actually intend to
3122 * write out the pages, but rather only collect contiguous
3123 * logical block extents, call the multi-block allocator, and
3124 * then update the buffer heads with the block allocations.
3125 *
3126 * For now, though, we'll cheat by calling filemap_flush(),
3127 * which will map the blocks, and start the I/O, but not
3128 * actually wait for the I/O to complete.
3129 */
3130 return filemap_flush(inode->i_mapping);
3131}
3132
3133/*
3134 * bmap() is special. It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal. If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148{
3149 struct inode *inode = mapping->host;
3150 sector_t ret = 0;
3151
3152 inode_lock_shared(inode);
3153 /*
3154 * We can get here for an inline file via the FIBMAP ioctl
3155 */
3156 if (ext4_has_inline_data(inode))
3157 goto out;
3158
3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 (test_opt(inode->i_sb, DELALLOC) ||
3161 ext4_should_journal_data(inode))) {
3162 /*
3163 * With delalloc or journalled data we want to sync the file so
3164 * that we can make sure we allocate blocks for file and data
3165 * is in place for the user to see it
3166 */
3167 filemap_write_and_wait(mapping);
3168 }
3169
3170 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3171
3172out:
3173 inode_unlock_shared(inode);
3174 return ret;
3175}
3176
3177static int ext4_read_folio(struct file *file, struct folio *folio)
3178{
3179 int ret = -EAGAIN;
3180 struct inode *inode = folio->mapping->host;
3181
3182 trace_ext4_read_folio(inode, folio);
3183
3184 if (ext4_has_inline_data(inode))
3185 ret = ext4_readpage_inline(inode, folio);
3186
3187 if (ret == -EAGAIN)
3188 return ext4_mpage_readpages(inode, NULL, folio);
3189
3190 return ret;
3191}
3192
3193static void ext4_readahead(struct readahead_control *rac)
3194{
3195 struct inode *inode = rac->mapping->host;
3196
3197 /* If the file has inline data, no need to do readahead. */
3198 if (ext4_has_inline_data(inode))
3199 return;
3200
3201 ext4_mpage_readpages(inode, rac, NULL);
3202}
3203
3204static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205 size_t length)
3206{
3207 trace_ext4_invalidate_folio(folio, offset, length);
3208
3209 /* No journalling happens on data buffers when this function is used */
3210 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211
3212 block_invalidate_folio(folio, offset, length);
3213}
3214
3215static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216 size_t offset, size_t length)
3217{
3218 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222 /*
3223 * If it's a full truncate we just forget about the pending dirtying
3224 */
3225 if (offset == 0 && length == folio_size(folio))
3226 folio_clear_checked(folio);
3227
3228 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229}
3230
3231/* Wrapper for aops... */
3232static void ext4_journalled_invalidate_folio(struct folio *folio,
3233 size_t offset,
3234 size_t length)
3235{
3236 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237}
3238
3239static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240{
3241 struct inode *inode = folio->mapping->host;
3242 journal_t *journal = EXT4_JOURNAL(inode);
3243
3244 trace_ext4_release_folio(inode, folio);
3245
3246 /* Page has dirty journalled data -> cannot release */
3247 if (folio_test_checked(folio))
3248 return false;
3249 if (journal)
3250 return jbd2_journal_try_to_free_buffers(journal, folio);
3251 else
3252 return try_to_free_buffers(folio);
3253}
3254
3255static bool ext4_inode_datasync_dirty(struct inode *inode)
3256{
3257 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258
3259 if (journal) {
3260 if (jbd2_transaction_committed(journal,
3261 EXT4_I(inode)->i_datasync_tid))
3262 return false;
3263 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264 return !list_empty(&EXT4_I(inode)->i_fc_list);
3265 return true;
3266 }
3267
3268 /* Any metadata buffers to write? */
3269 if (!list_empty(&inode->i_mapping->i_private_list))
3270 return true;
3271 return inode->i_state & I_DIRTY_DATASYNC;
3272}
3273
3274static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275 struct ext4_map_blocks *map, loff_t offset,
3276 loff_t length, unsigned int flags)
3277{
3278 u8 blkbits = inode->i_blkbits;
3279
3280 /*
3281 * Writes that span EOF might trigger an I/O size update on completion,
3282 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283 * there is no other metadata changes being made or are pending.
3284 */
3285 iomap->flags = 0;
3286 if (ext4_inode_datasync_dirty(inode) ||
3287 offset + length > i_size_read(inode))
3288 iomap->flags |= IOMAP_F_DIRTY;
3289
3290 if (map->m_flags & EXT4_MAP_NEW)
3291 iomap->flags |= IOMAP_F_NEW;
3292
3293 if (flags & IOMAP_DAX)
3294 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295 else
3296 iomap->bdev = inode->i_sb->s_bdev;
3297 iomap->offset = (u64) map->m_lblk << blkbits;
3298 iomap->length = (u64) map->m_len << blkbits;
3299
3300 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302 iomap->flags |= IOMAP_F_MERGED;
3303
3304 /*
3305 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307 * set. In order for any allocated unwritten extents to be converted
3308 * into written extents correctly within the ->end_io() handler, we
3309 * need to ensure that the iomap->type is set appropriately. Hence, the
3310 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311 * been set first.
3312 */
3313 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314 iomap->type = IOMAP_UNWRITTEN;
3315 iomap->addr = (u64) map->m_pblk << blkbits;
3316 if (flags & IOMAP_DAX)
3317 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3319 iomap->type = IOMAP_MAPPED;
3320 iomap->addr = (u64) map->m_pblk << blkbits;
3321 if (flags & IOMAP_DAX)
3322 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323 } else if (map->m_flags & EXT4_MAP_DELAYED) {
3324 iomap->type = IOMAP_DELALLOC;
3325 iomap->addr = IOMAP_NULL_ADDR;
3326 } else {
3327 iomap->type = IOMAP_HOLE;
3328 iomap->addr = IOMAP_NULL_ADDR;
3329 }
3330}
3331
3332static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333 unsigned int flags)
3334{
3335 handle_t *handle;
3336 u8 blkbits = inode->i_blkbits;
3337 int ret, dio_credits, m_flags = 0, retries = 0;
3338
3339 /*
3340 * Trim the mapping request to the maximum value that we can map at
3341 * once for direct I/O.
3342 */
3343 if (map->m_len > DIO_MAX_BLOCKS)
3344 map->m_len = DIO_MAX_BLOCKS;
3345 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347retry:
3348 /*
3349 * Either we allocate blocks and then don't get an unwritten extent, so
3350 * in that case we have reserved enough credits. Or, the blocks are
3351 * already allocated and unwritten. In that case, the extent conversion
3352 * fits into the credits as well.
3353 */
3354 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355 if (IS_ERR(handle))
3356 return PTR_ERR(handle);
3357
3358 /*
3359 * DAX and direct I/O are the only two operations that are currently
3360 * supported with IOMAP_WRITE.
3361 */
3362 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363 if (flags & IOMAP_DAX)
3364 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365 /*
3366 * We use i_size instead of i_disksize here because delalloc writeback
3367 * can complete at any point during the I/O and subsequently push the
3368 * i_disksize out to i_size. This could be beyond where direct I/O is
3369 * happening and thus expose allocated blocks to direct I/O reads.
3370 */
3371 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372 m_flags = EXT4_GET_BLOCKS_CREATE;
3373 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375
3376 ret = ext4_map_blocks(handle, inode, map, m_flags);
3377
3378 /*
3379 * We cannot fill holes in indirect tree based inodes as that could
3380 * expose stale data in the case of a crash. Use the magic error code
3381 * to fallback to buffered I/O.
3382 */
3383 if (!m_flags && !ret)
3384 ret = -ENOTBLK;
3385
3386 ext4_journal_stop(handle);
3387 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388 goto retry;
3389
3390 return ret;
3391}
3392
3393
3394static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396{
3397 int ret;
3398 struct ext4_map_blocks map;
3399 u8 blkbits = inode->i_blkbits;
3400
3401 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402 return -EINVAL;
3403
3404 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405 return -ERANGE;
3406
3407 /*
3408 * Calculate the first and last logical blocks respectively.
3409 */
3410 map.m_lblk = offset >> blkbits;
3411 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413
3414 if (flags & IOMAP_WRITE) {
3415 /*
3416 * We check here if the blocks are already allocated, then we
3417 * don't need to start a journal txn and we can directly return
3418 * the mapping information. This could boost performance
3419 * especially in multi-threaded overwrite requests.
3420 */
3421 if (offset + length <= i_size_read(inode)) {
3422 ret = ext4_map_blocks(NULL, inode, &map, 0);
3423 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424 goto out;
3425 }
3426 ret = ext4_iomap_alloc(inode, &map, flags);
3427 } else {
3428 ret = ext4_map_blocks(NULL, inode, &map, 0);
3429 }
3430
3431 if (ret < 0)
3432 return ret;
3433out:
3434 /*
3435 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436 * has to be broken up to guarantee DUN contiguity. Handle this by
3437 * limiting the length of the mapping returned.
3438 */
3439 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443 return 0;
3444}
3445
3446static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447 loff_t length, unsigned flags, struct iomap *iomap,
3448 struct iomap *srcmap)
3449{
3450 int ret;
3451
3452 /*
3453 * Even for writes we don't need to allocate blocks, so just pretend
3454 * we are reading to save overhead of starting a transaction.
3455 */
3456 flags &= ~IOMAP_WRITE;
3457 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459 return ret;
3460}
3461
3462static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463{
3464 /* must be a directio to fall back to buffered */
3465 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466 (IOMAP_WRITE | IOMAP_DIRECT))
3467 return false;
3468
3469 /* atomic writes are all-or-nothing */
3470 if (flags & IOMAP_ATOMIC)
3471 return false;
3472
3473 /* can only try again if we wrote nothing */
3474 return written == 0;
3475}
3476
3477static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478 ssize_t written, unsigned flags, struct iomap *iomap)
3479{
3480 /*
3481 * Check to see whether an error occurred while writing out the data to
3482 * the allocated blocks. If so, return the magic error code for
3483 * non-atomic write so that we fallback to buffered I/O and attempt to
3484 * complete the remainder of the I/O.
3485 * For non-atomic writes, any blocks that may have been
3486 * allocated in preparation for the direct I/O will be reused during
3487 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488 */
3489 if (ext4_want_directio_fallback(flags, written))
3490 return -ENOTBLK;
3491
3492 return 0;
3493}
3494
3495const struct iomap_ops ext4_iomap_ops = {
3496 .iomap_begin = ext4_iomap_begin,
3497 .iomap_end = ext4_iomap_end,
3498};
3499
3500const struct iomap_ops ext4_iomap_overwrite_ops = {
3501 .iomap_begin = ext4_iomap_overwrite_begin,
3502 .iomap_end = ext4_iomap_end,
3503};
3504
3505static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506 loff_t length, unsigned int flags,
3507 struct iomap *iomap, struct iomap *srcmap)
3508{
3509 int ret;
3510 struct ext4_map_blocks map;
3511 u8 blkbits = inode->i_blkbits;
3512
3513 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514 return -EINVAL;
3515
3516 if (ext4_has_inline_data(inode)) {
3517 ret = ext4_inline_data_iomap(inode, iomap);
3518 if (ret != -EAGAIN) {
3519 if (ret == 0 && offset >= iomap->length)
3520 ret = -ENOENT;
3521 return ret;
3522 }
3523 }
3524
3525 /*
3526 * Calculate the first and last logical block respectively.
3527 */
3528 map.m_lblk = offset >> blkbits;
3529 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531
3532 /*
3533 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534 * So handle it here itself instead of querying ext4_map_blocks().
3535 * Since ext4_map_blocks() will warn about it and will return
3536 * -EIO error.
3537 */
3538 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541 if (offset >= sbi->s_bitmap_maxbytes) {
3542 map.m_flags = 0;
3543 goto set_iomap;
3544 }
3545 }
3546
3547 ret = ext4_map_blocks(NULL, inode, &map, 0);
3548 if (ret < 0)
3549 return ret;
3550set_iomap:
3551 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553 return 0;
3554}
3555
3556const struct iomap_ops ext4_iomap_report_ops = {
3557 .iomap_begin = ext4_iomap_begin_report,
3558};
3559
3560/*
3561 * For data=journal mode, folio should be marked dirty only when it was
3562 * writeably mapped. When that happens, it was already attached to the
3563 * transaction and marked as jbddirty (we take care of this in
3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565 * so we should have nothing to do here, except for the case when someone
3566 * had the page pinned and dirtied the page through this pin (e.g. by doing
3567 * direct IO to it). In that case we'd need to attach buffers here to the
3568 * transaction but we cannot due to lock ordering. We cannot just dirty the
3569 * folio and leave attached buffers clean, because the buffers' dirty state is
3570 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3571 * the journalling code will explode. So what we do is to mark the folio
3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573 * to the transaction appropriately.
3574 */
3575static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576 struct folio *folio)
3577{
3578 WARN_ON_ONCE(!folio_buffers(folio));
3579 if (folio_maybe_dma_pinned(folio))
3580 folio_set_checked(folio);
3581 return filemap_dirty_folio(mapping, folio);
3582}
3583
3584static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585{
3586 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587 WARN_ON_ONCE(!folio_buffers(folio));
3588 return block_dirty_folio(mapping, folio);
3589}
3590
3591static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592 struct file *file, sector_t *span)
3593{
3594 return iomap_swapfile_activate(sis, file, span,
3595 &ext4_iomap_report_ops);
3596}
3597
3598static const struct address_space_operations ext4_aops = {
3599 .read_folio = ext4_read_folio,
3600 .readahead = ext4_readahead,
3601 .writepages = ext4_writepages,
3602 .write_begin = ext4_write_begin,
3603 .write_end = ext4_write_end,
3604 .dirty_folio = ext4_dirty_folio,
3605 .bmap = ext4_bmap,
3606 .invalidate_folio = ext4_invalidate_folio,
3607 .release_folio = ext4_release_folio,
3608 .migrate_folio = buffer_migrate_folio,
3609 .is_partially_uptodate = block_is_partially_uptodate,
3610 .error_remove_folio = generic_error_remove_folio,
3611 .swap_activate = ext4_iomap_swap_activate,
3612};
3613
3614static const struct address_space_operations ext4_journalled_aops = {
3615 .read_folio = ext4_read_folio,
3616 .readahead = ext4_readahead,
3617 .writepages = ext4_writepages,
3618 .write_begin = ext4_write_begin,
3619 .write_end = ext4_journalled_write_end,
3620 .dirty_folio = ext4_journalled_dirty_folio,
3621 .bmap = ext4_bmap,
3622 .invalidate_folio = ext4_journalled_invalidate_folio,
3623 .release_folio = ext4_release_folio,
3624 .migrate_folio = buffer_migrate_folio_norefs,
3625 .is_partially_uptodate = block_is_partially_uptodate,
3626 .error_remove_folio = generic_error_remove_folio,
3627 .swap_activate = ext4_iomap_swap_activate,
3628};
3629
3630static const struct address_space_operations ext4_da_aops = {
3631 .read_folio = ext4_read_folio,
3632 .readahead = ext4_readahead,
3633 .writepages = ext4_writepages,
3634 .write_begin = ext4_da_write_begin,
3635 .write_end = ext4_da_write_end,
3636 .dirty_folio = ext4_dirty_folio,
3637 .bmap = ext4_bmap,
3638 .invalidate_folio = ext4_invalidate_folio,
3639 .release_folio = ext4_release_folio,
3640 .migrate_folio = buffer_migrate_folio,
3641 .is_partially_uptodate = block_is_partially_uptodate,
3642 .error_remove_folio = generic_error_remove_folio,
3643 .swap_activate = ext4_iomap_swap_activate,
3644};
3645
3646static const struct address_space_operations ext4_dax_aops = {
3647 .writepages = ext4_dax_writepages,
3648 .dirty_folio = noop_dirty_folio,
3649 .bmap = ext4_bmap,
3650 .swap_activate = ext4_iomap_swap_activate,
3651};
3652
3653void ext4_set_aops(struct inode *inode)
3654{
3655 switch (ext4_inode_journal_mode(inode)) {
3656 case EXT4_INODE_ORDERED_DATA_MODE:
3657 case EXT4_INODE_WRITEBACK_DATA_MODE:
3658 break;
3659 case EXT4_INODE_JOURNAL_DATA_MODE:
3660 inode->i_mapping->a_ops = &ext4_journalled_aops;
3661 return;
3662 default:
3663 BUG();
3664 }
3665 if (IS_DAX(inode))
3666 inode->i_mapping->a_ops = &ext4_dax_aops;
3667 else if (test_opt(inode->i_sb, DELALLOC))
3668 inode->i_mapping->a_ops = &ext4_da_aops;
3669 else
3670 inode->i_mapping->a_ops = &ext4_aops;
3671}
3672
3673/*
3674 * Here we can't skip an unwritten buffer even though it usually reads zero
3675 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677 * racing writeback can come later and flush the stale pagecache to disk.
3678 */
3679static int __ext4_block_zero_page_range(handle_t *handle,
3680 struct address_space *mapping, loff_t from, loff_t length)
3681{
3682 ext4_fsblk_t index = from >> PAGE_SHIFT;
3683 unsigned offset = from & (PAGE_SIZE-1);
3684 unsigned blocksize, pos;
3685 ext4_lblk_t iblock;
3686 struct inode *inode = mapping->host;
3687 struct buffer_head *bh;
3688 struct folio *folio;
3689 int err = 0;
3690
3691 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693 mapping_gfp_constraint(mapping, ~__GFP_FS));
3694 if (IS_ERR(folio))
3695 return PTR_ERR(folio);
3696
3697 blocksize = inode->i_sb->s_blocksize;
3698
3699 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700
3701 bh = folio_buffers(folio);
3702 if (!bh)
3703 bh = create_empty_buffers(folio, blocksize, 0);
3704
3705 /* Find the buffer that contains "offset" */
3706 pos = blocksize;
3707 while (offset >= pos) {
3708 bh = bh->b_this_page;
3709 iblock++;
3710 pos += blocksize;
3711 }
3712 if (buffer_freed(bh)) {
3713 BUFFER_TRACE(bh, "freed: skip");
3714 goto unlock;
3715 }
3716 if (!buffer_mapped(bh)) {
3717 BUFFER_TRACE(bh, "unmapped");
3718 ext4_get_block(inode, iblock, bh, 0);
3719 /* unmapped? It's a hole - nothing to do */
3720 if (!buffer_mapped(bh)) {
3721 BUFFER_TRACE(bh, "still unmapped");
3722 goto unlock;
3723 }
3724 }
3725
3726 /* Ok, it's mapped. Make sure it's up-to-date */
3727 if (folio_test_uptodate(folio))
3728 set_buffer_uptodate(bh);
3729
3730 if (!buffer_uptodate(bh)) {
3731 err = ext4_read_bh_lock(bh, 0, true);
3732 if (err)
3733 goto unlock;
3734 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3735 /* We expect the key to be set. */
3736 BUG_ON(!fscrypt_has_encryption_key(inode));
3737 err = fscrypt_decrypt_pagecache_blocks(folio,
3738 blocksize,
3739 bh_offset(bh));
3740 if (err) {
3741 clear_buffer_uptodate(bh);
3742 goto unlock;
3743 }
3744 }
3745 }
3746 if (ext4_should_journal_data(inode)) {
3747 BUFFER_TRACE(bh, "get write access");
3748 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749 EXT4_JTR_NONE);
3750 if (err)
3751 goto unlock;
3752 }
3753 folio_zero_range(folio, offset, length);
3754 BUFFER_TRACE(bh, "zeroed end of block");
3755
3756 if (ext4_should_journal_data(inode)) {
3757 err = ext4_dirty_journalled_data(handle, bh);
3758 } else {
3759 err = 0;
3760 mark_buffer_dirty(bh);
3761 if (ext4_should_order_data(inode))
3762 err = ext4_jbd2_inode_add_write(handle, inode, from,
3763 length);
3764 }
3765
3766unlock:
3767 folio_unlock(folio);
3768 folio_put(folio);
3769 return err;
3770}
3771
3772/*
3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774 * starting from file offset 'from'. The range to be zero'd must
3775 * be contained with in one block. If the specified range exceeds
3776 * the end of the block it will be shortened to end of the block
3777 * that corresponds to 'from'
3778 */
3779static int ext4_block_zero_page_range(handle_t *handle,
3780 struct address_space *mapping, loff_t from, loff_t length)
3781{
3782 struct inode *inode = mapping->host;
3783 unsigned offset = from & (PAGE_SIZE-1);
3784 unsigned blocksize = inode->i_sb->s_blocksize;
3785 unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787 /*
3788 * correct length if it does not fall between
3789 * 'from' and the end of the block
3790 */
3791 if (length > max || length < 0)
3792 length = max;
3793
3794 if (IS_DAX(inode)) {
3795 return dax_zero_range(inode, from, length, NULL,
3796 &ext4_iomap_ops);
3797 }
3798 return __ext4_block_zero_page_range(handle, mapping, from, length);
3799}
3800
3801/*
3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803 * up to the end of the block which corresponds to `from'.
3804 * This required during truncate. We need to physically zero the tail end
3805 * of that block so it doesn't yield old data if the file is later grown.
3806 */
3807static int ext4_block_truncate_page(handle_t *handle,
3808 struct address_space *mapping, loff_t from)
3809{
3810 unsigned offset = from & (PAGE_SIZE-1);
3811 unsigned length;
3812 unsigned blocksize;
3813 struct inode *inode = mapping->host;
3814
3815 /* If we are processing an encrypted inode during orphan list handling */
3816 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817 return 0;
3818
3819 blocksize = inode->i_sb->s_blocksize;
3820 length = blocksize - (offset & (blocksize - 1));
3821
3822 return ext4_block_zero_page_range(handle, mapping, from, length);
3823}
3824
3825int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826 loff_t lstart, loff_t length)
3827{
3828 struct super_block *sb = inode->i_sb;
3829 struct address_space *mapping = inode->i_mapping;
3830 unsigned partial_start, partial_end;
3831 ext4_fsblk_t start, end;
3832 loff_t byte_end = (lstart + length - 1);
3833 int err = 0;
3834
3835 partial_start = lstart & (sb->s_blocksize - 1);
3836 partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838 start = lstart >> sb->s_blocksize_bits;
3839 end = byte_end >> sb->s_blocksize_bits;
3840
3841 /* Handle partial zero within the single block */
3842 if (start == end &&
3843 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844 err = ext4_block_zero_page_range(handle, mapping,
3845 lstart, length);
3846 return err;
3847 }
3848 /* Handle partial zero out on the start of the range */
3849 if (partial_start) {
3850 err = ext4_block_zero_page_range(handle, mapping,
3851 lstart, sb->s_blocksize);
3852 if (err)
3853 return err;
3854 }
3855 /* Handle partial zero out on the end of the range */
3856 if (partial_end != sb->s_blocksize - 1)
3857 err = ext4_block_zero_page_range(handle, mapping,
3858 byte_end - partial_end,
3859 partial_end + 1);
3860 return err;
3861}
3862
3863int ext4_can_truncate(struct inode *inode)
3864{
3865 if (S_ISREG(inode->i_mode))
3866 return 1;
3867 if (S_ISDIR(inode->i_mode))
3868 return 1;
3869 if (S_ISLNK(inode->i_mode))
3870 return !ext4_inode_is_fast_symlink(inode);
3871 return 0;
3872}
3873
3874/*
3875 * We have to make sure i_disksize gets properly updated before we truncate
3876 * page cache due to hole punching or zero range. Otherwise i_disksize update
3877 * can get lost as it may have been postponed to submission of writeback but
3878 * that will never happen after we truncate page cache.
3879 */
3880int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881 loff_t len)
3882{
3883 handle_t *handle;
3884 int ret;
3885
3886 loff_t size = i_size_read(inode);
3887
3888 WARN_ON(!inode_is_locked(inode));
3889 if (offset > size || offset + len < size)
3890 return 0;
3891
3892 if (EXT4_I(inode)->i_disksize >= size)
3893 return 0;
3894
3895 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896 if (IS_ERR(handle))
3897 return PTR_ERR(handle);
3898 ext4_update_i_disksize(inode, size);
3899 ret = ext4_mark_inode_dirty(handle, inode);
3900 ext4_journal_stop(handle);
3901
3902 return ret;
3903}
3904
3905static void ext4_wait_dax_page(struct inode *inode)
3906{
3907 filemap_invalidate_unlock(inode->i_mapping);
3908 schedule();
3909 filemap_invalidate_lock(inode->i_mapping);
3910}
3911
3912int ext4_break_layouts(struct inode *inode)
3913{
3914 struct page *page;
3915 int error;
3916
3917 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918 return -EINVAL;
3919
3920 do {
3921 page = dax_layout_busy_page(inode->i_mapping);
3922 if (!page)
3923 return 0;
3924
3925 error = ___wait_var_event(&page->_refcount,
3926 atomic_read(&page->_refcount) == 1,
3927 TASK_INTERRUPTIBLE, 0, 0,
3928 ext4_wait_dax_page(inode));
3929 } while (error == 0);
3930
3931 return error;
3932}
3933
3934/*
3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936 * associated with the given offset and length
3937 *
3938 * @inode: File inode
3939 * @offset: The offset where the hole will begin
3940 * @len: The length of the hole
3941 *
3942 * Returns: 0 on success or negative on failure
3943 */
3944
3945int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946{
3947 struct inode *inode = file_inode(file);
3948 struct super_block *sb = inode->i_sb;
3949 ext4_lblk_t first_block, stop_block;
3950 struct address_space *mapping = inode->i_mapping;
3951 loff_t first_block_offset, last_block_offset, max_length;
3952 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953 handle_t *handle;
3954 unsigned int credits;
3955 int ret = 0, ret2 = 0;
3956
3957 trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959 /*
3960 * Write out all dirty pages to avoid race conditions
3961 * Then release them.
3962 */
3963 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964 ret = filemap_write_and_wait_range(mapping, offset,
3965 offset + length - 1);
3966 if (ret)
3967 return ret;
3968 }
3969
3970 inode_lock(inode);
3971
3972 /* No need to punch hole beyond i_size */
3973 if (offset >= inode->i_size)
3974 goto out_mutex;
3975
3976 /*
3977 * If the hole extends beyond i_size, set the hole
3978 * to end after the page that contains i_size
3979 */
3980 if (offset + length > inode->i_size) {
3981 length = inode->i_size +
3982 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983 offset;
3984 }
3985
3986 /*
3987 * For punch hole the length + offset needs to be within one block
3988 * before last range. Adjust the length if it goes beyond that limit.
3989 */
3990 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991 if (offset + length > max_length)
3992 length = max_length - offset;
3993
3994 if (offset & (sb->s_blocksize - 1) ||
3995 (offset + length) & (sb->s_blocksize - 1)) {
3996 /*
3997 * Attach jinode to inode for jbd2 if we do any zeroing of
3998 * partial block
3999 */
4000 ret = ext4_inode_attach_jinode(inode);
4001 if (ret < 0)
4002 goto out_mutex;
4003
4004 }
4005
4006 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4007 inode_dio_wait(inode);
4008
4009 ret = file_modified(file);
4010 if (ret)
4011 goto out_mutex;
4012
4013 /*
4014 * Prevent page faults from reinstantiating pages we have released from
4015 * page cache.
4016 */
4017 filemap_invalidate_lock(mapping);
4018
4019 ret = ext4_break_layouts(inode);
4020 if (ret)
4021 goto out_dio;
4022
4023 first_block_offset = round_up(offset, sb->s_blocksize);
4024 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026 /* Now release the pages and zero block aligned part of pages*/
4027 if (last_block_offset > first_block_offset) {
4028 ret = ext4_update_disksize_before_punch(inode, offset, length);
4029 if (ret)
4030 goto out_dio;
4031 truncate_pagecache_range(inode, first_block_offset,
4032 last_block_offset);
4033 }
4034
4035 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036 credits = ext4_writepage_trans_blocks(inode);
4037 else
4038 credits = ext4_blocks_for_truncate(inode);
4039 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040 if (IS_ERR(handle)) {
4041 ret = PTR_ERR(handle);
4042 ext4_std_error(sb, ret);
4043 goto out_dio;
4044 }
4045
4046 ret = ext4_zero_partial_blocks(handle, inode, offset,
4047 length);
4048 if (ret)
4049 goto out_stop;
4050
4051 first_block = (offset + sb->s_blocksize - 1) >>
4052 EXT4_BLOCK_SIZE_BITS(sb);
4053 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055 /* If there are blocks to remove, do it */
4056 if (stop_block > first_block) {
4057 ext4_lblk_t hole_len = stop_block - first_block;
4058
4059 down_write(&EXT4_I(inode)->i_data_sem);
4060 ext4_discard_preallocations(inode);
4061
4062 ext4_es_remove_extent(inode, first_block, hole_len);
4063
4064 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065 ret = ext4_ext_remove_space(inode, first_block,
4066 stop_block - 1);
4067 else
4068 ret = ext4_ind_remove_space(handle, inode, first_block,
4069 stop_block);
4070
4071 ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072 EXTENT_STATUS_HOLE, 0);
4073 up_write(&EXT4_I(inode)->i_data_sem);
4074 }
4075 ext4_fc_track_range(handle, inode, first_block, stop_block);
4076 if (IS_SYNC(inode))
4077 ext4_handle_sync(handle);
4078
4079 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080 ret2 = ext4_mark_inode_dirty(handle, inode);
4081 if (unlikely(ret2))
4082 ret = ret2;
4083 if (ret >= 0)
4084 ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086 ext4_journal_stop(handle);
4087out_dio:
4088 filemap_invalidate_unlock(mapping);
4089out_mutex:
4090 inode_unlock(inode);
4091 return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096 struct ext4_inode_info *ei = EXT4_I(inode);
4097 struct jbd2_inode *jinode;
4098
4099 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100 return 0;
4101
4102 jinode = jbd2_alloc_inode(GFP_KERNEL);
4103 spin_lock(&inode->i_lock);
4104 if (!ei->jinode) {
4105 if (!jinode) {
4106 spin_unlock(&inode->i_lock);
4107 return -ENOMEM;
4108 }
4109 ei->jinode = jinode;
4110 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111 jinode = NULL;
4112 }
4113 spin_unlock(&inode->i_lock);
4114 if (unlikely(jinode != NULL))
4115 jbd2_free_inode(jinode);
4116 return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk. We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable. It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go. So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem. But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149 struct ext4_inode_info *ei = EXT4_I(inode);
4150 unsigned int credits;
4151 int err = 0, err2;
4152 handle_t *handle;
4153 struct address_space *mapping = inode->i_mapping;
4154
4155 /*
4156 * There is a possibility that we're either freeing the inode
4157 * or it's a completely new inode. In those cases we might not
4158 * have i_rwsem locked because it's not necessary.
4159 */
4160 if (!(inode->i_state & (I_NEW|I_FREEING)))
4161 WARN_ON(!inode_is_locked(inode));
4162 trace_ext4_truncate_enter(inode);
4163
4164 if (!ext4_can_truncate(inode))
4165 goto out_trace;
4166
4167 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170 if (ext4_has_inline_data(inode)) {
4171 int has_inline = 1;
4172
4173 err = ext4_inline_data_truncate(inode, &has_inline);
4174 if (err || has_inline)
4175 goto out_trace;
4176 }
4177
4178 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180 err = ext4_inode_attach_jinode(inode);
4181 if (err)
4182 goto out_trace;
4183 }
4184
4185 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186 credits = ext4_writepage_trans_blocks(inode);
4187 else
4188 credits = ext4_blocks_for_truncate(inode);
4189
4190 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191 if (IS_ERR(handle)) {
4192 err = PTR_ERR(handle);
4193 goto out_trace;
4194 }
4195
4196 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197 ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199 /*
4200 * We add the inode to the orphan list, so that if this
4201 * truncate spans multiple transactions, and we crash, we will
4202 * resume the truncate when the filesystem recovers. It also
4203 * marks the inode dirty, to catch the new size.
4204 *
4205 * Implication: the file must always be in a sane, consistent
4206 * truncatable state while each transaction commits.
4207 */
4208 err = ext4_orphan_add(handle, inode);
4209 if (err)
4210 goto out_stop;
4211
4212 down_write(&EXT4_I(inode)->i_data_sem);
4213
4214 ext4_discard_preallocations(inode);
4215
4216 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217 err = ext4_ext_truncate(handle, inode);
4218 else
4219 ext4_ind_truncate(handle, inode);
4220
4221 up_write(&ei->i_data_sem);
4222 if (err)
4223 goto out_stop;
4224
4225 if (IS_SYNC(inode))
4226 ext4_handle_sync(handle);
4227
4228out_stop:
4229 /*
4230 * If this was a simple ftruncate() and the file will remain alive,
4231 * then we need to clear up the orphan record which we created above.
4232 * However, if this was a real unlink then we were called by
4233 * ext4_evict_inode(), and we allow that function to clean up the
4234 * orphan info for us.
4235 */
4236 if (inode->i_nlink)
4237 ext4_orphan_del(handle, inode);
4238
4239 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240 err2 = ext4_mark_inode_dirty(handle, inode);
4241 if (unlikely(err2 && !err))
4242 err = err2;
4243 ext4_journal_stop(handle);
4244
4245out_trace:
4246 trace_ext4_truncate_exit(inode);
4247 return err;
4248}
4249
4250static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251{
4252 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253 return inode_peek_iversion_raw(inode);
4254 else
4255 return inode_peek_iversion(inode);
4256}
4257
4258static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259 struct ext4_inode_info *ei)
4260{
4261 struct inode *inode = &(ei->vfs_inode);
4262 u64 i_blocks = READ_ONCE(inode->i_blocks);
4263 struct super_block *sb = inode->i_sb;
4264
4265 if (i_blocks <= ~0U) {
4266 /*
4267 * i_blocks can be represented in a 32 bit variable
4268 * as multiple of 512 bytes
4269 */
4270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4271 raw_inode->i_blocks_high = 0;
4272 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273 return 0;
4274 }
4275
4276 /*
4277 * This should never happen since sb->s_maxbytes should not have
4278 * allowed this, sb->s_maxbytes was set according to the huge_file
4279 * feature in ext4_fill_super().
4280 */
4281 if (!ext4_has_feature_huge_file(sb))
4282 return -EFSCORRUPTED;
4283
4284 if (i_blocks <= 0xffffffffffffULL) {
4285 /*
4286 * i_blocks can be represented in a 48 bit variable
4287 * as multiple of 512 bytes
4288 */
4289 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4290 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292 } else {
4293 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294 /* i_block is stored in file system block size */
4295 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4297 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298 }
4299 return 0;
4300}
4301
4302static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303{
4304 struct ext4_inode_info *ei = EXT4_I(inode);
4305 uid_t i_uid;
4306 gid_t i_gid;
4307 projid_t i_projid;
4308 int block;
4309 int err;
4310
4311 err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314 i_uid = i_uid_read(inode);
4315 i_gid = i_gid_read(inode);
4316 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317 if (!(test_opt(inode->i_sb, NO_UID32))) {
4318 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320 /*
4321 * Fix up interoperability with old kernels. Otherwise,
4322 * old inodes get re-used with the upper 16 bits of the
4323 * uid/gid intact.
4324 */
4325 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326 raw_inode->i_uid_high = 0;
4327 raw_inode->i_gid_high = 0;
4328 } else {
4329 raw_inode->i_uid_high =
4330 cpu_to_le16(high_16_bits(i_uid));
4331 raw_inode->i_gid_high =
4332 cpu_to_le16(high_16_bits(i_gid));
4333 }
4334 } else {
4335 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337 raw_inode->i_uid_high = 0;
4338 raw_inode->i_gid_high = 0;
4339 }
4340 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342 EXT4_INODE_SET_CTIME(inode, raw_inode);
4343 EXT4_INODE_SET_MTIME(inode, raw_inode);
4344 EXT4_INODE_SET_ATIME(inode, raw_inode);
4345 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350 raw_inode->i_file_acl_high =
4351 cpu_to_le16(ei->i_file_acl >> 32);
4352 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353 ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357 if (old_valid_dev(inode->i_rdev)) {
4358 raw_inode->i_block[0] =
4359 cpu_to_le32(old_encode_dev(inode->i_rdev));
4360 raw_inode->i_block[1] = 0;
4361 } else {
4362 raw_inode->i_block[0] = 0;
4363 raw_inode->i_block[1] =
4364 cpu_to_le32(new_encode_dev(inode->i_rdev));
4365 raw_inode->i_block[2] = 0;
4366 }
4367 } else if (!ext4_has_inline_data(inode)) {
4368 for (block = 0; block < EXT4_N_BLOCKS; block++)
4369 raw_inode->i_block[block] = ei->i_data[block];
4370 }
4371
4372 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373 u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375 raw_inode->i_disk_version = cpu_to_le32(ivers);
4376 if (ei->i_extra_isize) {
4377 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378 raw_inode->i_version_hi =
4379 cpu_to_le32(ivers >> 32);
4380 raw_inode->i_extra_isize =
4381 cpu_to_le16(ei->i_extra_isize);
4382 }
4383 }
4384
4385 if (i_projid != EXT4_DEF_PROJID &&
4386 !ext4_has_feature_project(inode->i_sb))
4387 err = err ?: -EFSCORRUPTED;
4388
4389 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391 raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393 ext4_inode_csum_set(inode, raw_inode, ei);
4394 return err;
4395}
4396
4397/*
4398 * ext4_get_inode_loc returns with an extra refcount against the inode's
4399 * underlying buffer_head on success. If we pass 'inode' and it does not
4400 * have in-inode xattr, we have all inode data in memory that is needed
4401 * to recreate the on-disk version of this inode.
4402 */
4403static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404 struct inode *inode, struct ext4_iloc *iloc,
4405 ext4_fsblk_t *ret_block)
4406{
4407 struct ext4_group_desc *gdp;
4408 struct buffer_head *bh;
4409 ext4_fsblk_t block;
4410 struct blk_plug plug;
4411 int inodes_per_block, inode_offset;
4412
4413 iloc->bh = NULL;
4414 if (ino < EXT4_ROOT_INO ||
4415 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416 return -EFSCORRUPTED;
4417
4418 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420 if (!gdp)
4421 return -EIO;
4422
4423 /*
4424 * Figure out the offset within the block group inode table
4425 */
4426 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427 inode_offset = ((ino - 1) %
4428 EXT4_INODES_PER_GROUP(sb));
4429 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431 block = ext4_inode_table(sb, gdp);
4432 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434 ext4_error(sb, "Invalid inode table block %llu in "
4435 "block_group %u", block, iloc->block_group);
4436 return -EFSCORRUPTED;
4437 }
4438 block += (inode_offset / inodes_per_block);
4439
4440 bh = sb_getblk(sb, block);
4441 if (unlikely(!bh))
4442 return -ENOMEM;
4443 if (ext4_buffer_uptodate(bh))
4444 goto has_buffer;
4445
4446 lock_buffer(bh);
4447 if (ext4_buffer_uptodate(bh)) {
4448 /* Someone brought it uptodate while we waited */
4449 unlock_buffer(bh);
4450 goto has_buffer;
4451 }
4452
4453 /*
4454 * If we have all information of the inode in memory and this
4455 * is the only valid inode in the block, we need not read the
4456 * block.
4457 */
4458 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459 struct buffer_head *bitmap_bh;
4460 int i, start;
4461
4462 start = inode_offset & ~(inodes_per_block - 1);
4463
4464 /* Is the inode bitmap in cache? */
4465 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466 if (unlikely(!bitmap_bh))
4467 goto make_io;
4468
4469 /*
4470 * If the inode bitmap isn't in cache then the
4471 * optimisation may end up performing two reads instead
4472 * of one, so skip it.
4473 */
4474 if (!buffer_uptodate(bitmap_bh)) {
4475 brelse(bitmap_bh);
4476 goto make_io;
4477 }
4478 for (i = start; i < start + inodes_per_block; i++) {
4479 if (i == inode_offset)
4480 continue;
4481 if (ext4_test_bit(i, bitmap_bh->b_data))
4482 break;
4483 }
4484 brelse(bitmap_bh);
4485 if (i == start + inodes_per_block) {
4486 struct ext4_inode *raw_inode =
4487 (struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489 /* all other inodes are free, so skip I/O */
4490 memset(bh->b_data, 0, bh->b_size);
4491 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492 ext4_fill_raw_inode(inode, raw_inode);
4493 set_buffer_uptodate(bh);
4494 unlock_buffer(bh);
4495 goto has_buffer;
4496 }
4497 }
4498
4499make_io:
4500 /*
4501 * If we need to do any I/O, try to pre-readahead extra
4502 * blocks from the inode table.
4503 */
4504 blk_start_plug(&plug);
4505 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506 ext4_fsblk_t b, end, table;
4507 unsigned num;
4508 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510 table = ext4_inode_table(sb, gdp);
4511 /* s_inode_readahead_blks is always a power of 2 */
4512 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513 if (table > b)
4514 b = table;
4515 end = b + ra_blks;
4516 num = EXT4_INODES_PER_GROUP(sb);
4517 if (ext4_has_group_desc_csum(sb))
4518 num -= ext4_itable_unused_count(sb, gdp);
4519 table += num / inodes_per_block;
4520 if (end > table)
4521 end = table;
4522 while (b <= end)
4523 ext4_sb_breadahead_unmovable(sb, b++);
4524 }
4525
4526 /*
4527 * There are other valid inodes in the buffer, this inode
4528 * has in-inode xattrs, or we don't have this inode in memory.
4529 * Read the block from disk.
4530 */
4531 trace_ext4_load_inode(sb, ino);
4532 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534 blk_finish_plug(&plug);
4535 wait_on_buffer(bh);
4536 if (!buffer_uptodate(bh)) {
4537 if (ret_block)
4538 *ret_block = block;
4539 brelse(bh);
4540 return -EIO;
4541 }
4542has_buffer:
4543 iloc->bh = bh;
4544 return 0;
4545}
4546
4547static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548 struct ext4_iloc *iloc)
4549{
4550 ext4_fsblk_t err_blk = 0;
4551 int ret;
4552
4553 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554 &err_blk);
4555
4556 if (ret == -EIO)
4557 ext4_error_inode_block(inode, err_blk, EIO,
4558 "unable to read itable block");
4559
4560 return ret;
4561}
4562
4563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564{
4565 ext4_fsblk_t err_blk = 0;
4566 int ret;
4567
4568 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569 &err_blk);
4570
4571 if (ret == -EIO)
4572 ext4_error_inode_block(inode, err_blk, EIO,
4573 "unable to read itable block");
4574
4575 return ret;
4576}
4577
4578
4579int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580 struct ext4_iloc *iloc)
4581{
4582 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583}
4584
4585static bool ext4_should_enable_dax(struct inode *inode)
4586{
4587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589 if (test_opt2(inode->i_sb, DAX_NEVER))
4590 return false;
4591 if (!S_ISREG(inode->i_mode))
4592 return false;
4593 if (ext4_should_journal_data(inode))
4594 return false;
4595 if (ext4_has_inline_data(inode))
4596 return false;
4597 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598 return false;
4599 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600 return false;
4601 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602 return false;
4603 if (test_opt(inode->i_sb, DAX_ALWAYS))
4604 return true;
4605
4606 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607}
4608
4609void ext4_set_inode_flags(struct inode *inode, bool init)
4610{
4611 unsigned int flags = EXT4_I(inode)->i_flags;
4612 unsigned int new_fl = 0;
4613
4614 WARN_ON_ONCE(IS_DAX(inode) && init);
4615
4616 if (flags & EXT4_SYNC_FL)
4617 new_fl |= S_SYNC;
4618 if (flags & EXT4_APPEND_FL)
4619 new_fl |= S_APPEND;
4620 if (flags & EXT4_IMMUTABLE_FL)
4621 new_fl |= S_IMMUTABLE;
4622 if (flags & EXT4_NOATIME_FL)
4623 new_fl |= S_NOATIME;
4624 if (flags & EXT4_DIRSYNC_FL)
4625 new_fl |= S_DIRSYNC;
4626
4627 /* Because of the way inode_set_flags() works we must preserve S_DAX
4628 * here if already set. */
4629 new_fl |= (inode->i_flags & S_DAX);
4630 if (init && ext4_should_enable_dax(inode))
4631 new_fl |= S_DAX;
4632
4633 if (flags & EXT4_ENCRYPT_FL)
4634 new_fl |= S_ENCRYPTED;
4635 if (flags & EXT4_CASEFOLD_FL)
4636 new_fl |= S_CASEFOLD;
4637 if (flags & EXT4_VERITY_FL)
4638 new_fl |= S_VERITY;
4639 inode_set_flags(inode, new_fl,
4640 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4642}
4643
4644static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645 struct ext4_inode_info *ei)
4646{
4647 blkcnt_t i_blocks ;
4648 struct inode *inode = &(ei->vfs_inode);
4649 struct super_block *sb = inode->i_sb;
4650
4651 if (ext4_has_feature_huge_file(sb)) {
4652 /* we are using combined 48 bit field */
4653 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654 le32_to_cpu(raw_inode->i_blocks_lo);
4655 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656 /* i_blocks represent file system block size */
4657 return i_blocks << (inode->i_blkbits - 9);
4658 } else {
4659 return i_blocks;
4660 }
4661 } else {
4662 return le32_to_cpu(raw_inode->i_blocks_lo);
4663 }
4664}
4665
4666static inline int ext4_iget_extra_inode(struct inode *inode,
4667 struct ext4_inode *raw_inode,
4668 struct ext4_inode_info *ei)
4669{
4670 __le32 *magic = (void *)raw_inode +
4671 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4674 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675 int err;
4676
4677 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678 err = ext4_find_inline_data_nolock(inode);
4679 if (!err && ext4_has_inline_data(inode))
4680 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681 return err;
4682 } else
4683 EXT4_I(inode)->i_inline_off = 0;
4684 return 0;
4685}
4686
4687int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688{
4689 if (!ext4_has_feature_project(inode->i_sb))
4690 return -EOPNOTSUPP;
4691 *projid = EXT4_I(inode)->i_projid;
4692 return 0;
4693}
4694
4695/*
4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698 * set.
4699 */
4700static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701{
4702 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703 inode_set_iversion_raw(inode, val);
4704 else
4705 inode_set_iversion_queried(inode, val);
4706}
4707
4708static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710{
4711 if (flags & EXT4_IGET_EA_INODE) {
4712 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713 return "missing EA_INODE flag";
4714 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715 EXT4_I(inode)->i_file_acl)
4716 return "ea_inode with extended attributes";
4717 } else {
4718 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719 return "unexpected EA_INODE flag";
4720 }
4721 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722 return "unexpected bad inode w/o EXT4_IGET_BAD";
4723 return NULL;
4724}
4725
4726struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727 ext4_iget_flags flags, const char *function,
4728 unsigned int line)
4729{
4730 struct ext4_iloc iloc;
4731 struct ext4_inode *raw_inode;
4732 struct ext4_inode_info *ei;
4733 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734 struct inode *inode;
4735 const char *err_str;
4736 journal_t *journal = EXT4_SB(sb)->s_journal;
4737 long ret;
4738 loff_t size;
4739 int block;
4740 uid_t i_uid;
4741 gid_t i_gid;
4742 projid_t i_projid;
4743
4744 if ((!(flags & EXT4_IGET_SPECIAL) &&
4745 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750 (ino < EXT4_ROOT_INO) ||
4751 (ino > le32_to_cpu(es->s_inodes_count))) {
4752 if (flags & EXT4_IGET_HANDLE)
4753 return ERR_PTR(-ESTALE);
4754 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755 "inode #%lu: comm %s: iget: illegal inode #",
4756 ino, current->comm);
4757 return ERR_PTR(-EFSCORRUPTED);
4758 }
4759
4760 inode = iget_locked(sb, ino);
4761 if (!inode)
4762 return ERR_PTR(-ENOMEM);
4763 if (!(inode->i_state & I_NEW)) {
4764 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765 ext4_error_inode(inode, function, line, 0, err_str);
4766 iput(inode);
4767 return ERR_PTR(-EFSCORRUPTED);
4768 }
4769 return inode;
4770 }
4771
4772 ei = EXT4_I(inode);
4773 iloc.bh = NULL;
4774
4775 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776 if (ret < 0)
4777 goto bad_inode;
4778 raw_inode = ext4_raw_inode(&iloc);
4779
4780 if ((flags & EXT4_IGET_HANDLE) &&
4781 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782 ret = -ESTALE;
4783 goto bad_inode;
4784 }
4785
4786 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789 EXT4_INODE_SIZE(inode->i_sb) ||
4790 (ei->i_extra_isize & 3)) {
4791 ext4_error_inode(inode, function, line, 0,
4792 "iget: bad extra_isize %u "
4793 "(inode size %u)",
4794 ei->i_extra_isize,
4795 EXT4_INODE_SIZE(inode->i_sb));
4796 ret = -EFSCORRUPTED;
4797 goto bad_inode;
4798 }
4799 } else
4800 ei->i_extra_isize = 0;
4801
4802 /* Precompute checksum seed for inode metadata */
4803 if (ext4_has_metadata_csum(sb)) {
4804 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805 __u32 csum;
4806 __le32 inum = cpu_to_le32(inode->i_ino);
4807 __le32 gen = raw_inode->i_generation;
4808 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809 sizeof(inum));
4810 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811 sizeof(gen));
4812 }
4813
4814 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817 ext4_error_inode_err(inode, function, line, 0,
4818 EFSBADCRC, "iget: checksum invalid");
4819 ret = -EFSBADCRC;
4820 goto bad_inode;
4821 }
4822
4823 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826 if (ext4_has_feature_project(sb) &&
4827 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830 else
4831 i_projid = EXT4_DEF_PROJID;
4832
4833 if (!(test_opt(inode->i_sb, NO_UID32))) {
4834 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836 }
4837 i_uid_write(inode, i_uid);
4838 i_gid_write(inode, i_gid);
4839 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4843 ei->i_inline_off = 0;
4844 ei->i_dir_start_lookup = 0;
4845 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846 /* We now have enough fields to check if the inode was active or not.
4847 * This is needed because nfsd might try to access dead inodes
4848 * the test is that same one that e2fsck uses
4849 * NeilBrown 1999oct15
4850 */
4851 if (inode->i_nlink == 0) {
4852 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854 ino != EXT4_BOOT_LOADER_INO) {
4855 /* this inode is deleted or unallocated */
4856 if (flags & EXT4_IGET_SPECIAL) {
4857 ext4_error_inode(inode, function, line, 0,
4858 "iget: special inode unallocated");
4859 ret = -EFSCORRUPTED;
4860 } else
4861 ret = -ESTALE;
4862 goto bad_inode;
4863 }
4864 /* The only unlinked inodes we let through here have
4865 * valid i_mode and are being read by the orphan
4866 * recovery code: that's fine, we're about to complete
4867 * the process of deleting those.
4868 * OR it is the EXT4_BOOT_LOADER_INO which is
4869 * not initialized on a new filesystem. */
4870 }
4871 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872 ext4_set_inode_flags(inode, true);
4873 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875 if (ext4_has_feature_64bit(sb))
4876 ei->i_file_acl |=
4877 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878 inode->i_size = ext4_isize(sb, raw_inode);
4879 if ((size = i_size_read(inode)) < 0) {
4880 ext4_error_inode(inode, function, line, 0,
4881 "iget: bad i_size value: %lld", size);
4882 ret = -EFSCORRUPTED;
4883 goto bad_inode;
4884 }
4885 /*
4886 * If dir_index is not enabled but there's dir with INDEX flag set,
4887 * we'd normally treat htree data as empty space. But with metadata
4888 * checksumming that corrupts checksums so forbid that.
4889 */
4890 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892 ext4_error_inode(inode, function, line, 0,
4893 "iget: Dir with htree data on filesystem without dir_index feature.");
4894 ret = -EFSCORRUPTED;
4895 goto bad_inode;
4896 }
4897 ei->i_disksize = inode->i_size;
4898#ifdef CONFIG_QUOTA
4899 ei->i_reserved_quota = 0;
4900#endif
4901 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902 ei->i_block_group = iloc.block_group;
4903 ei->i_last_alloc_group = ~0;
4904 /*
4905 * NOTE! The in-memory inode i_data array is in little-endian order
4906 * even on big-endian machines: we do NOT byteswap the block numbers!
4907 */
4908 for (block = 0; block < EXT4_N_BLOCKS; block++)
4909 ei->i_data[block] = raw_inode->i_block[block];
4910 INIT_LIST_HEAD(&ei->i_orphan);
4911 ext4_fc_init_inode(&ei->vfs_inode);
4912
4913 /*
4914 * Set transaction id's of transactions that have to be committed
4915 * to finish f[data]sync. We set them to currently running transaction
4916 * as we cannot be sure that the inode or some of its metadata isn't
4917 * part of the transaction - the inode could have been reclaimed and
4918 * now it is reread from disk.
4919 */
4920 if (journal) {
4921 transaction_t *transaction;
4922 tid_t tid;
4923
4924 read_lock(&journal->j_state_lock);
4925 if (journal->j_running_transaction)
4926 transaction = journal->j_running_transaction;
4927 else
4928 transaction = journal->j_committing_transaction;
4929 if (transaction)
4930 tid = transaction->t_tid;
4931 else
4932 tid = journal->j_commit_sequence;
4933 read_unlock(&journal->j_state_lock);
4934 ei->i_sync_tid = tid;
4935 ei->i_datasync_tid = tid;
4936 }
4937
4938 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939 if (ei->i_extra_isize == 0) {
4940 /* The extra space is currently unused. Use it. */
4941 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942 ei->i_extra_isize = sizeof(struct ext4_inode) -
4943 EXT4_GOOD_OLD_INODE_SIZE;
4944 } else {
4945 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946 if (ret)
4947 goto bad_inode;
4948 }
4949 }
4950
4951 EXT4_INODE_GET_CTIME(inode, raw_inode);
4952 EXT4_INODE_GET_ATIME(inode, raw_inode);
4953 EXT4_INODE_GET_MTIME(inode, raw_inode);
4954 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961 ivers |=
4962 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963 }
4964 ext4_inode_set_iversion_queried(inode, ivers);
4965 }
4966
4967 ret = 0;
4968 if (ei->i_file_acl &&
4969 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970 ext4_error_inode(inode, function, line, 0,
4971 "iget: bad extended attribute block %llu",
4972 ei->i_file_acl);
4973 ret = -EFSCORRUPTED;
4974 goto bad_inode;
4975 } else if (!ext4_has_inline_data(inode)) {
4976 /* validate the block references in the inode */
4977 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979 (S_ISLNK(inode->i_mode) &&
4980 !ext4_inode_is_fast_symlink(inode)))) {
4981 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982 ret = ext4_ext_check_inode(inode);
4983 else
4984 ret = ext4_ind_check_inode(inode);
4985 }
4986 }
4987 if (ret)
4988 goto bad_inode;
4989
4990 if (S_ISREG(inode->i_mode)) {
4991 inode->i_op = &ext4_file_inode_operations;
4992 inode->i_fop = &ext4_file_operations;
4993 ext4_set_aops(inode);
4994 } else if (S_ISDIR(inode->i_mode)) {
4995 inode->i_op = &ext4_dir_inode_operations;
4996 inode->i_fop = &ext4_dir_operations;
4997 } else if (S_ISLNK(inode->i_mode)) {
4998 /* VFS does not allow setting these so must be corruption */
4999 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000 ext4_error_inode(inode, function, line, 0,
5001 "iget: immutable or append flags "
5002 "not allowed on symlinks");
5003 ret = -EFSCORRUPTED;
5004 goto bad_inode;
5005 }
5006 if (IS_ENCRYPTED(inode)) {
5007 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5008 } else if (ext4_inode_is_fast_symlink(inode)) {
5009 inode->i_link = (char *)ei->i_data;
5010 inode->i_op = &ext4_fast_symlink_inode_operations;
5011 nd_terminate_link(ei->i_data, inode->i_size,
5012 sizeof(ei->i_data) - 1);
5013 } else {
5014 inode->i_op = &ext4_symlink_inode_operations;
5015 }
5016 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018 inode->i_op = &ext4_special_inode_operations;
5019 if (raw_inode->i_block[0])
5020 init_special_inode(inode, inode->i_mode,
5021 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022 else
5023 init_special_inode(inode, inode->i_mode,
5024 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025 } else if (ino == EXT4_BOOT_LOADER_INO) {
5026 make_bad_inode(inode);
5027 } else {
5028 ret = -EFSCORRUPTED;
5029 ext4_error_inode(inode, function, line, 0,
5030 "iget: bogus i_mode (%o)", inode->i_mode);
5031 goto bad_inode;
5032 }
5033 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034 ext4_error_inode(inode, function, line, 0,
5035 "casefold flag without casefold feature");
5036 ret = -EFSCORRUPTED;
5037 goto bad_inode;
5038 }
5039 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040 ext4_error_inode(inode, function, line, 0, err_str);
5041 ret = -EFSCORRUPTED;
5042 goto bad_inode;
5043 }
5044
5045 brelse(iloc.bh);
5046 unlock_new_inode(inode);
5047 return inode;
5048
5049bad_inode:
5050 brelse(iloc.bh);
5051 iget_failed(inode);
5052 return ERR_PTR(ret);
5053}
5054
5055static void __ext4_update_other_inode_time(struct super_block *sb,
5056 unsigned long orig_ino,
5057 unsigned long ino,
5058 struct ext4_inode *raw_inode)
5059{
5060 struct inode *inode;
5061
5062 inode = find_inode_by_ino_rcu(sb, ino);
5063 if (!inode)
5064 return;
5065
5066 if (!inode_is_dirtytime_only(inode))
5067 return;
5068
5069 spin_lock(&inode->i_lock);
5070 if (inode_is_dirtytime_only(inode)) {
5071 struct ext4_inode_info *ei = EXT4_I(inode);
5072
5073 inode->i_state &= ~I_DIRTY_TIME;
5074 spin_unlock(&inode->i_lock);
5075
5076 spin_lock(&ei->i_raw_lock);
5077 EXT4_INODE_SET_CTIME(inode, raw_inode);
5078 EXT4_INODE_SET_MTIME(inode, raw_inode);
5079 EXT4_INODE_SET_ATIME(inode, raw_inode);
5080 ext4_inode_csum_set(inode, raw_inode, ei);
5081 spin_unlock(&ei->i_raw_lock);
5082 trace_ext4_other_inode_update_time(inode, orig_ino);
5083 return;
5084 }
5085 spin_unlock(&inode->i_lock);
5086}
5087
5088/*
5089 * Opportunistically update the other time fields for other inodes in
5090 * the same inode table block.
5091 */
5092static void ext4_update_other_inodes_time(struct super_block *sb,
5093 unsigned long orig_ino, char *buf)
5094{
5095 unsigned long ino;
5096 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097 int inode_size = EXT4_INODE_SIZE(sb);
5098
5099 /*
5100 * Calculate the first inode in the inode table block. Inode
5101 * numbers are one-based. That is, the first inode in a block
5102 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103 */
5104 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105 rcu_read_lock();
5106 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107 if (ino == orig_ino)
5108 continue;
5109 __ext4_update_other_inode_time(sb, orig_ino, ino,
5110 (struct ext4_inode *)buf);
5111 }
5112 rcu_read_unlock();
5113}
5114
5115/*
5116 * Post the struct inode info into an on-disk inode location in the
5117 * buffer-cache. This gobbles the caller's reference to the
5118 * buffer_head in the inode location struct.
5119 *
5120 * The caller must have write access to iloc->bh.
5121 */
5122static int ext4_do_update_inode(handle_t *handle,
5123 struct inode *inode,
5124 struct ext4_iloc *iloc)
5125{
5126 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127 struct ext4_inode_info *ei = EXT4_I(inode);
5128 struct buffer_head *bh = iloc->bh;
5129 struct super_block *sb = inode->i_sb;
5130 int err;
5131 int need_datasync = 0, set_large_file = 0;
5132
5133 spin_lock(&ei->i_raw_lock);
5134
5135 /*
5136 * For fields not tracked in the in-memory inode, initialise them
5137 * to zero for new inodes.
5138 */
5139 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141
5142 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5143 need_datasync = 1;
5144 if (ei->i_disksize > 0x7fffffffULL) {
5145 if (!ext4_has_feature_large_file(sb) ||
5146 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5147 set_large_file = 1;
5148 }
5149
5150 err = ext4_fill_raw_inode(inode, raw_inode);
5151 spin_unlock(&ei->i_raw_lock);
5152 if (err) {
5153 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5154 goto out_brelse;
5155 }
5156
5157 if (inode->i_sb->s_flags & SB_LAZYTIME)
5158 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159 bh->b_data);
5160
5161 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163 if (err)
5164 goto out_error;
5165 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166 if (set_large_file) {
5167 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168 err = ext4_journal_get_write_access(handle, sb,
5169 EXT4_SB(sb)->s_sbh,
5170 EXT4_JTR_NONE);
5171 if (err)
5172 goto out_error;
5173 lock_buffer(EXT4_SB(sb)->s_sbh);
5174 ext4_set_feature_large_file(sb);
5175 ext4_superblock_csum_set(sb);
5176 unlock_buffer(EXT4_SB(sb)->s_sbh);
5177 ext4_handle_sync(handle);
5178 err = ext4_handle_dirty_metadata(handle, NULL,
5179 EXT4_SB(sb)->s_sbh);
5180 }
5181 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182out_error:
5183 ext4_std_error(inode->i_sb, err);
5184out_brelse:
5185 brelse(bh);
5186 return err;
5187}
5188
5189/*
5190 * ext4_write_inode()
5191 *
5192 * We are called from a few places:
5193 *
5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195 * Here, there will be no transaction running. We wait for any running
5196 * transaction to commit.
5197 *
5198 * - Within flush work (sys_sync(), kupdate and such).
5199 * We wait on commit, if told to.
5200 *
5201 * - Within iput_final() -> write_inode_now()
5202 * We wait on commit, if told to.
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
5206 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5207 * writeback.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this. The code:
5214 *
5215 * mark_inode_dirty(inode)
5216 * stuff();
5217 * inode->i_size = expr;
5218 *
5219 * is in error because write_inode() could occur while `stuff()' is running,
5220 * and the new i_size will be lost. Plus the inode will no longer be on the
5221 * superblock's dirty inode list.
5222 */
5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224{
5225 int err;
5226
5227 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228 return 0;
5229
5230 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231 return -EIO;
5232
5233 if (EXT4_SB(inode->i_sb)->s_journal) {
5234 if (ext4_journal_current_handle()) {
5235 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236 dump_stack();
5237 return -EIO;
5238 }
5239
5240 /*
5241 * No need to force transaction in WB_SYNC_NONE mode. Also
5242 * ext4_sync_fs() will force the commit after everything is
5243 * written.
5244 */
5245 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246 return 0;
5247
5248 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249 EXT4_I(inode)->i_sync_tid);
5250 } else {
5251 struct ext4_iloc iloc;
5252
5253 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254 if (err)
5255 return err;
5256 /*
5257 * sync(2) will flush the whole buffer cache. No need to do
5258 * it here separately for each inode.
5259 */
5260 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261 sync_dirty_buffer(iloc.bh);
5262 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264 "IO error syncing inode");
5265 err = -EIO;
5266 }
5267 brelse(iloc.bh);
5268 }
5269 return err;
5270}
5271
5272/*
5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274 * buffers that are attached to a folio straddling i_size and are undergoing
5275 * commit. In that case we have to wait for commit to finish and try again.
5276 */
5277static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278{
5279 unsigned offset;
5280 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281 tid_t commit_tid;
5282 int ret;
5283 bool has_transaction;
5284
5285 offset = inode->i_size & (PAGE_SIZE - 1);
5286 /*
5287 * If the folio is fully truncated, we don't need to wait for any commit
5288 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289 * strip all buffers from the folio but keep the folio dirty which can then
5290 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291 * buffers). Also we don't need to wait for any commit if all buffers in
5292 * the folio remain valid. This is most beneficial for the common case of
5293 * blocksize == PAGESIZE.
5294 */
5295 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296 return;
5297 while (1) {
5298 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299 inode->i_size >> PAGE_SHIFT);
5300 if (IS_ERR(folio))
5301 return;
5302 ret = __ext4_journalled_invalidate_folio(folio, offset,
5303 folio_size(folio) - offset);
5304 folio_unlock(folio);
5305 folio_put(folio);
5306 if (ret != -EBUSY)
5307 return;
5308 has_transaction = false;
5309 read_lock(&journal->j_state_lock);
5310 if (journal->j_committing_transaction) {
5311 commit_tid = journal->j_committing_transaction->t_tid;
5312 has_transaction = true;
5313 }
5314 read_unlock(&journal->j_state_lock);
5315 if (has_transaction)
5316 jbd2_log_wait_commit(journal, commit_tid);
5317 }
5318}
5319
5320/*
5321 * ext4_setattr()
5322 *
5323 * Called from notify_change.
5324 *
5325 * We want to trap VFS attempts to truncate the file as soon as
5326 * possible. In particular, we want to make sure that when the VFS
5327 * shrinks i_size, we put the inode on the orphan list and modify
5328 * i_disksize immediately, so that during the subsequent flushing of
5329 * dirty pages and freeing of disk blocks, we can guarantee that any
5330 * commit will leave the blocks being flushed in an unused state on
5331 * disk. (On recovery, the inode will get truncated and the blocks will
5332 * be freed, so we have a strong guarantee that no future commit will
5333 * leave these blocks visible to the user.)
5334 *
5335 * Another thing we have to assure is that if we are in ordered mode
5336 * and inode is still attached to the committing transaction, we must
5337 * we start writeout of all the dirty pages which are being truncated.
5338 * This way we are sure that all the data written in the previous
5339 * transaction are already on disk (truncate waits for pages under
5340 * writeback).
5341 *
5342 * Called with inode->i_rwsem down.
5343 */
5344int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345 struct iattr *attr)
5346{
5347 struct inode *inode = d_inode(dentry);
5348 int error, rc = 0;
5349 int orphan = 0;
5350 const unsigned int ia_valid = attr->ia_valid;
5351 bool inc_ivers = true;
5352
5353 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354 return -EIO;
5355
5356 if (unlikely(IS_IMMUTABLE(inode)))
5357 return -EPERM;
5358
5359 if (unlikely(IS_APPEND(inode) &&
5360 (ia_valid & (ATTR_MODE | ATTR_UID |
5361 ATTR_GID | ATTR_TIMES_SET))))
5362 return -EPERM;
5363
5364 error = setattr_prepare(idmap, dentry, attr);
5365 if (error)
5366 return error;
5367
5368 error = fscrypt_prepare_setattr(dentry, attr);
5369 if (error)
5370 return error;
5371
5372 error = fsverity_prepare_setattr(dentry, attr);
5373 if (error)
5374 return error;
5375
5376 if (is_quota_modification(idmap, inode, attr)) {
5377 error = dquot_initialize(inode);
5378 if (error)
5379 return error;
5380 }
5381
5382 if (i_uid_needs_update(idmap, attr, inode) ||
5383 i_gid_needs_update(idmap, attr, inode)) {
5384 handle_t *handle;
5385
5386 /* (user+group)*(old+new) structure, inode write (sb,
5387 * inode block, ? - but truncate inode update has it) */
5388 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391 if (IS_ERR(handle)) {
5392 error = PTR_ERR(handle);
5393 goto err_out;
5394 }
5395
5396 /* dquot_transfer() calls back ext4_get_inode_usage() which
5397 * counts xattr inode references.
5398 */
5399 down_read(&EXT4_I(inode)->xattr_sem);
5400 error = dquot_transfer(idmap, inode, attr);
5401 up_read(&EXT4_I(inode)->xattr_sem);
5402
5403 if (error) {
5404 ext4_journal_stop(handle);
5405 return error;
5406 }
5407 /* Update corresponding info in inode so that everything is in
5408 * one transaction */
5409 i_uid_update(idmap, attr, inode);
5410 i_gid_update(idmap, attr, inode);
5411 error = ext4_mark_inode_dirty(handle, inode);
5412 ext4_journal_stop(handle);
5413 if (unlikely(error)) {
5414 return error;
5415 }
5416 }
5417
5418 if (attr->ia_valid & ATTR_SIZE) {
5419 handle_t *handle;
5420 loff_t oldsize = inode->i_size;
5421 loff_t old_disksize;
5422 int shrink = (attr->ia_size < inode->i_size);
5423
5424 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426
5427 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428 return -EFBIG;
5429 }
5430 }
5431 if (!S_ISREG(inode->i_mode)) {
5432 return -EINVAL;
5433 }
5434
5435 if (attr->ia_size == inode->i_size)
5436 inc_ivers = false;
5437
5438 if (shrink) {
5439 if (ext4_should_order_data(inode)) {
5440 error = ext4_begin_ordered_truncate(inode,
5441 attr->ia_size);
5442 if (error)
5443 goto err_out;
5444 }
5445 /*
5446 * Blocks are going to be removed from the inode. Wait
5447 * for dio in flight.
5448 */
5449 inode_dio_wait(inode);
5450 }
5451
5452 filemap_invalidate_lock(inode->i_mapping);
5453
5454 rc = ext4_break_layouts(inode);
5455 if (rc) {
5456 filemap_invalidate_unlock(inode->i_mapping);
5457 goto err_out;
5458 }
5459
5460 if (attr->ia_size != inode->i_size) {
5461 /* attach jbd2 jinode for EOF folio tail zeroing */
5462 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463 oldsize & (inode->i_sb->s_blocksize - 1)) {
5464 error = ext4_inode_attach_jinode(inode);
5465 if (error)
5466 goto err_out;
5467 }
5468
5469 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470 if (IS_ERR(handle)) {
5471 error = PTR_ERR(handle);
5472 goto out_mmap_sem;
5473 }
5474 if (ext4_handle_valid(handle) && shrink) {
5475 error = ext4_orphan_add(handle, inode);
5476 orphan = 1;
5477 }
5478 /*
5479 * Update c/mtime and tail zero the EOF folio on
5480 * truncate up. ext4_truncate() handles the shrink case
5481 * below.
5482 */
5483 if (!shrink) {
5484 inode_set_mtime_to_ts(inode,
5485 inode_set_ctime_current(inode));
5486 if (oldsize & (inode->i_sb->s_blocksize - 1))
5487 ext4_block_truncate_page(handle,
5488 inode->i_mapping, oldsize);
5489 }
5490
5491 if (shrink)
5492 ext4_fc_track_range(handle, inode,
5493 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494 inode->i_sb->s_blocksize_bits,
5495 EXT_MAX_BLOCKS - 1);
5496 else
5497 ext4_fc_track_range(
5498 handle, inode,
5499 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5500 inode->i_sb->s_blocksize_bits,
5501 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502 inode->i_sb->s_blocksize_bits);
5503
5504 down_write(&EXT4_I(inode)->i_data_sem);
5505 old_disksize = EXT4_I(inode)->i_disksize;
5506 EXT4_I(inode)->i_disksize = attr->ia_size;
5507 rc = ext4_mark_inode_dirty(handle, inode);
5508 if (!error)
5509 error = rc;
5510 /*
5511 * We have to update i_size under i_data_sem together
5512 * with i_disksize to avoid races with writeback code
5513 * running ext4_wb_update_i_disksize().
5514 */
5515 if (!error)
5516 i_size_write(inode, attr->ia_size);
5517 else
5518 EXT4_I(inode)->i_disksize = old_disksize;
5519 up_write(&EXT4_I(inode)->i_data_sem);
5520 ext4_journal_stop(handle);
5521 if (error)
5522 goto out_mmap_sem;
5523 if (!shrink) {
5524 pagecache_isize_extended(inode, oldsize,
5525 inode->i_size);
5526 } else if (ext4_should_journal_data(inode)) {
5527 ext4_wait_for_tail_page_commit(inode);
5528 }
5529 }
5530
5531 /*
5532 * Truncate pagecache after we've waited for commit
5533 * in data=journal mode to make pages freeable.
5534 */
5535 truncate_pagecache(inode, inode->i_size);
5536 /*
5537 * Call ext4_truncate() even if i_size didn't change to
5538 * truncate possible preallocated blocks.
5539 */
5540 if (attr->ia_size <= oldsize) {
5541 rc = ext4_truncate(inode);
5542 if (rc)
5543 error = rc;
5544 }
5545out_mmap_sem:
5546 filemap_invalidate_unlock(inode->i_mapping);
5547 }
5548
5549 if (!error) {
5550 if (inc_ivers)
5551 inode_inc_iversion(inode);
5552 setattr_copy(idmap, inode, attr);
5553 mark_inode_dirty(inode);
5554 }
5555
5556 /*
5557 * If the call to ext4_truncate failed to get a transaction handle at
5558 * all, we need to clean up the in-core orphan list manually.
5559 */
5560 if (orphan && inode->i_nlink)
5561 ext4_orphan_del(NULL, inode);
5562
5563 if (!error && (ia_valid & ATTR_MODE))
5564 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565
5566err_out:
5567 if (error)
5568 ext4_std_error(inode->i_sb, error);
5569 if (!error)
5570 error = rc;
5571 return error;
5572}
5573
5574u32 ext4_dio_alignment(struct inode *inode)
5575{
5576 if (fsverity_active(inode))
5577 return 0;
5578 if (ext4_should_journal_data(inode))
5579 return 0;
5580 if (ext4_has_inline_data(inode))
5581 return 0;
5582 if (IS_ENCRYPTED(inode)) {
5583 if (!fscrypt_dio_supported(inode))
5584 return 0;
5585 return i_blocksize(inode);
5586 }
5587 return 1; /* use the iomap defaults */
5588}
5589
5590int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592{
5593 struct inode *inode = d_inode(path->dentry);
5594 struct ext4_inode *raw_inode;
5595 struct ext4_inode_info *ei = EXT4_I(inode);
5596 unsigned int flags;
5597
5598 if ((request_mask & STATX_BTIME) &&
5599 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600 stat->result_mask |= STATX_BTIME;
5601 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603 }
5604
5605 /*
5606 * Return the DIO alignment restrictions if requested. We only return
5607 * this information when requested, since on encrypted files it might
5608 * take a fair bit of work to get if the file wasn't opened recently.
5609 */
5610 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611 u32 dio_align = ext4_dio_alignment(inode);
5612
5613 stat->result_mask |= STATX_DIOALIGN;
5614 if (dio_align == 1) {
5615 struct block_device *bdev = inode->i_sb->s_bdev;
5616
5617 /* iomap defaults */
5618 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619 stat->dio_offset_align = bdev_logical_block_size(bdev);
5620 } else {
5621 stat->dio_mem_align = dio_align;
5622 stat->dio_offset_align = dio_align;
5623 }
5624 }
5625
5626 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628 unsigned int awu_min = 0, awu_max = 0;
5629
5630 if (ext4_inode_can_atomic_write(inode)) {
5631 awu_min = sbi->s_awu_min;
5632 awu_max = sbi->s_awu_max;
5633 }
5634
5635 generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636 }
5637
5638 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639 if (flags & EXT4_APPEND_FL)
5640 stat->attributes |= STATX_ATTR_APPEND;
5641 if (flags & EXT4_COMPR_FL)
5642 stat->attributes |= STATX_ATTR_COMPRESSED;
5643 if (flags & EXT4_ENCRYPT_FL)
5644 stat->attributes |= STATX_ATTR_ENCRYPTED;
5645 if (flags & EXT4_IMMUTABLE_FL)
5646 stat->attributes |= STATX_ATTR_IMMUTABLE;
5647 if (flags & EXT4_NODUMP_FL)
5648 stat->attributes |= STATX_ATTR_NODUMP;
5649 if (flags & EXT4_VERITY_FL)
5650 stat->attributes |= STATX_ATTR_VERITY;
5651
5652 stat->attributes_mask |= (STATX_ATTR_APPEND |
5653 STATX_ATTR_COMPRESSED |
5654 STATX_ATTR_ENCRYPTED |
5655 STATX_ATTR_IMMUTABLE |
5656 STATX_ATTR_NODUMP |
5657 STATX_ATTR_VERITY);
5658
5659 generic_fillattr(idmap, request_mask, inode, stat);
5660 return 0;
5661}
5662
5663int ext4_file_getattr(struct mnt_idmap *idmap,
5664 const struct path *path, struct kstat *stat,
5665 u32 request_mask, unsigned int query_flags)
5666{
5667 struct inode *inode = d_inode(path->dentry);
5668 u64 delalloc_blocks;
5669
5670 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5671
5672 /*
5673 * If there is inline data in the inode, the inode will normally not
5674 * have data blocks allocated (it may have an external xattr block).
5675 * Report at least one sector for such files, so tools like tar, rsync,
5676 * others don't incorrectly think the file is completely sparse.
5677 */
5678 if (unlikely(ext4_has_inline_data(inode)))
5679 stat->blocks += (stat->size + 511) >> 9;
5680
5681 /*
5682 * We can't update i_blocks if the block allocation is delayed
5683 * otherwise in the case of system crash before the real block
5684 * allocation is done, we will have i_blocks inconsistent with
5685 * on-disk file blocks.
5686 * We always keep i_blocks updated together with real
5687 * allocation. But to not confuse with user, stat
5688 * will return the blocks that include the delayed allocation
5689 * blocks for this file.
5690 */
5691 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692 EXT4_I(inode)->i_reserved_data_blocks);
5693 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694 return 0;
5695}
5696
5697static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698 int pextents)
5699{
5700 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701 return ext4_ind_trans_blocks(inode, lblocks);
5702 return ext4_ext_index_trans_blocks(inode, pextents);
5703}
5704
5705/*
5706 * Account for index blocks, block groups bitmaps and block group
5707 * descriptor blocks if modify datablocks and index blocks
5708 * worse case, the indexs blocks spread over different block groups
5709 *
5710 * If datablocks are discontiguous, they are possible to spread over
5711 * different block groups too. If they are contiguous, with flexbg,
5712 * they could still across block group boundary.
5713 *
5714 * Also account for superblock, inode, quota and xattr blocks
5715 */
5716static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717 int pextents)
5718{
5719 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720 int gdpblocks;
5721 int idxblocks;
5722 int ret;
5723
5724 /*
5725 * How many index blocks need to touch to map @lblocks logical blocks
5726 * to @pextents physical extents?
5727 */
5728 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729
5730 ret = idxblocks;
5731
5732 /*
5733 * Now let's see how many group bitmaps and group descriptors need
5734 * to account
5735 */
5736 groups = idxblocks + pextents;
5737 gdpblocks = groups;
5738 if (groups > ngroups)
5739 groups = ngroups;
5740 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742
5743 /* bitmaps and block group descriptor blocks */
5744 ret += groups + gdpblocks;
5745
5746 /* Blocks for super block, inode, quota and xattr blocks */
5747 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748
5749 return ret;
5750}
5751
5752/*
5753 * Calculate the total number of credits to reserve to fit
5754 * the modification of a single pages into a single transaction,
5755 * which may include multiple chunks of block allocations.
5756 *
5757 * This could be called via ext4_write_begin()
5758 *
5759 * We need to consider the worse case, when
5760 * one new block per extent.
5761 */
5762int ext4_writepage_trans_blocks(struct inode *inode)
5763{
5764 int bpp = ext4_journal_blocks_per_page(inode);
5765 int ret;
5766
5767 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768
5769 /* Account for data blocks for journalled mode */
5770 if (ext4_should_journal_data(inode))
5771 ret += bpp;
5772 return ret;
5773}
5774
5775/*
5776 * Calculate the journal credits for a chunk of data modification.
5777 *
5778 * This is called from DIO, fallocate or whoever calling
5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780 *
5781 * journal buffers for data blocks are not included here, as DIO
5782 * and fallocate do no need to journal data buffers.
5783 */
5784int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785{
5786 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787}
5788
5789/*
5790 * The caller must have previously called ext4_reserve_inode_write().
5791 * Give this, we know that the caller already has write access to iloc->bh.
5792 */
5793int ext4_mark_iloc_dirty(handle_t *handle,
5794 struct inode *inode, struct ext4_iloc *iloc)
5795{
5796 int err = 0;
5797
5798 if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799 put_bh(iloc->bh);
5800 return -EIO;
5801 }
5802 ext4_fc_track_inode(handle, inode);
5803
5804 /* the do_update_inode consumes one bh->b_count */
5805 get_bh(iloc->bh);
5806
5807 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808 err = ext4_do_update_inode(handle, inode, iloc);
5809 put_bh(iloc->bh);
5810 return err;
5811}
5812
5813/*
5814 * On success, We end up with an outstanding reference count against
5815 * iloc->bh. This _must_ be cleaned up later.
5816 */
5817
5818int
5819ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820 struct ext4_iloc *iloc)
5821{
5822 int err;
5823
5824 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825 return -EIO;
5826
5827 err = ext4_get_inode_loc(inode, iloc);
5828 if (!err) {
5829 BUFFER_TRACE(iloc->bh, "get_write_access");
5830 err = ext4_journal_get_write_access(handle, inode->i_sb,
5831 iloc->bh, EXT4_JTR_NONE);
5832 if (err) {
5833 brelse(iloc->bh);
5834 iloc->bh = NULL;
5835 }
5836 }
5837 ext4_std_error(inode->i_sb, err);
5838 return err;
5839}
5840
5841static int __ext4_expand_extra_isize(struct inode *inode,
5842 unsigned int new_extra_isize,
5843 struct ext4_iloc *iloc,
5844 handle_t *handle, int *no_expand)
5845{
5846 struct ext4_inode *raw_inode;
5847 struct ext4_xattr_ibody_header *header;
5848 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849 struct ext4_inode_info *ei = EXT4_I(inode);
5850 int error;
5851
5852 /* this was checked at iget time, but double check for good measure */
5853 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854 (ei->i_extra_isize & 3)) {
5855 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856 ei->i_extra_isize,
5857 EXT4_INODE_SIZE(inode->i_sb));
5858 return -EFSCORRUPTED;
5859 }
5860 if ((new_extra_isize < ei->i_extra_isize) ||
5861 (new_extra_isize < 4) ||
5862 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863 return -EINVAL; /* Should never happen */
5864
5865 raw_inode = ext4_raw_inode(iloc);
5866
5867 header = IHDR(inode, raw_inode);
5868
5869 /* No extended attributes present */
5870 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873 EXT4_I(inode)->i_extra_isize, 0,
5874 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876 return 0;
5877 }
5878
5879 /*
5880 * We may need to allocate external xattr block so we need quotas
5881 * initialized. Here we can be called with various locks held so we
5882 * cannot affort to initialize quotas ourselves. So just bail.
5883 */
5884 if (dquot_initialize_needed(inode))
5885 return -EAGAIN;
5886
5887 /* try to expand with EAs present */
5888 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889 raw_inode, handle);
5890 if (error) {
5891 /*
5892 * Inode size expansion failed; don't try again
5893 */
5894 *no_expand = 1;
5895 }
5896
5897 return error;
5898}
5899
5900/*
5901 * Expand an inode by new_extra_isize bytes.
5902 * Returns 0 on success or negative error number on failure.
5903 */
5904static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905 unsigned int new_extra_isize,
5906 struct ext4_iloc iloc,
5907 handle_t *handle)
5908{
5909 int no_expand;
5910 int error;
5911
5912 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913 return -EOVERFLOW;
5914
5915 /*
5916 * In nojournal mode, we can immediately attempt to expand
5917 * the inode. When journaled, we first need to obtain extra
5918 * buffer credits since we may write into the EA block
5919 * with this same handle. If journal_extend fails, then it will
5920 * only result in a minor loss of functionality for that inode.
5921 * If this is felt to be critical, then e2fsck should be run to
5922 * force a large enough s_min_extra_isize.
5923 */
5924 if (ext4_journal_extend(handle,
5925 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5926 return -ENOSPC;
5927
5928 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929 return -EBUSY;
5930
5931 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932 handle, &no_expand);
5933 ext4_write_unlock_xattr(inode, &no_expand);
5934
5935 return error;
5936}
5937
5938int ext4_expand_extra_isize(struct inode *inode,
5939 unsigned int new_extra_isize,
5940 struct ext4_iloc *iloc)
5941{
5942 handle_t *handle;
5943 int no_expand;
5944 int error, rc;
5945
5946 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947 brelse(iloc->bh);
5948 return -EOVERFLOW;
5949 }
5950
5951 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953 if (IS_ERR(handle)) {
5954 error = PTR_ERR(handle);
5955 brelse(iloc->bh);
5956 return error;
5957 }
5958
5959 ext4_write_lock_xattr(inode, &no_expand);
5960
5961 BUFFER_TRACE(iloc->bh, "get_write_access");
5962 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963 EXT4_JTR_NONE);
5964 if (error) {
5965 brelse(iloc->bh);
5966 goto out_unlock;
5967 }
5968
5969 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970 handle, &no_expand);
5971
5972 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973 if (!error)
5974 error = rc;
5975
5976out_unlock:
5977 ext4_write_unlock_xattr(inode, &no_expand);
5978 ext4_journal_stop(handle);
5979 return error;
5980}
5981
5982/*
5983 * What we do here is to mark the in-core inode as clean with respect to inode
5984 * dirtiness (it may still be data-dirty).
5985 * This means that the in-core inode may be reaped by prune_icache
5986 * without having to perform any I/O. This is a very good thing,
5987 * because *any* task may call prune_icache - even ones which
5988 * have a transaction open against a different journal.
5989 *
5990 * Is this cheating? Not really. Sure, we haven't written the
5991 * inode out, but prune_icache isn't a user-visible syncing function.
5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993 * we start and wait on commits.
5994 */
5995int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996 const char *func, unsigned int line)
5997{
5998 struct ext4_iloc iloc;
5999 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000 int err;
6001
6002 might_sleep();
6003 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004 err = ext4_reserve_inode_write(handle, inode, &iloc);
6005 if (err)
6006 goto out;
6007
6008 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010 iloc, handle);
6011
6012 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013out:
6014 if (unlikely(err))
6015 ext4_error_inode_err(inode, func, line, 0, err,
6016 "mark_inode_dirty error");
6017 return err;
6018}
6019
6020/*
6021 * ext4_dirty_inode() is called from __mark_inode_dirty()
6022 *
6023 * We're really interested in the case where a file is being extended.
6024 * i_size has been changed by generic_commit_write() and we thus need
6025 * to include the updated inode in the current transaction.
6026 *
6027 * Also, dquot_alloc_block() will always dirty the inode when blocks
6028 * are allocated to the file.
6029 *
6030 * If the inode is marked synchronous, we don't honour that here - doing
6031 * so would cause a commit on atime updates, which we don't bother doing.
6032 * We handle synchronous inodes at the highest possible level.
6033 */
6034void ext4_dirty_inode(struct inode *inode, int flags)
6035{
6036 handle_t *handle;
6037
6038 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039 if (IS_ERR(handle))
6040 return;
6041 ext4_mark_inode_dirty(handle, inode);
6042 ext4_journal_stop(handle);
6043}
6044
6045int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046{
6047 journal_t *journal;
6048 handle_t *handle;
6049 int err;
6050 int alloc_ctx;
6051
6052 /*
6053 * We have to be very careful here: changing a data block's
6054 * journaling status dynamically is dangerous. If we write a
6055 * data block to the journal, change the status and then delete
6056 * that block, we risk forgetting to revoke the old log record
6057 * from the journal and so a subsequent replay can corrupt data.
6058 * So, first we make sure that the journal is empty and that
6059 * nobody is changing anything.
6060 */
6061
6062 journal = EXT4_JOURNAL(inode);
6063 if (!journal)
6064 return 0;
6065 if (is_journal_aborted(journal))
6066 return -EROFS;
6067
6068 /* Wait for all existing dio workers */
6069 inode_dio_wait(inode);
6070
6071 /*
6072 * Before flushing the journal and switching inode's aops, we have
6073 * to flush all dirty data the inode has. There can be outstanding
6074 * delayed allocations, there can be unwritten extents created by
6075 * fallocate or buffered writes in dioread_nolock mode covered by
6076 * dirty data which can be converted only after flushing the dirty
6077 * data (and journalled aops don't know how to handle these cases).
6078 */
6079 if (val) {
6080 filemap_invalidate_lock(inode->i_mapping);
6081 err = filemap_write_and_wait(inode->i_mapping);
6082 if (err < 0) {
6083 filemap_invalidate_unlock(inode->i_mapping);
6084 return err;
6085 }
6086 }
6087
6088 alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089 jbd2_journal_lock_updates(journal);
6090
6091 /*
6092 * OK, there are no updates running now, and all cached data is
6093 * synced to disk. We are now in a completely consistent state
6094 * which doesn't have anything in the journal, and we know that
6095 * no filesystem updates are running, so it is safe to modify
6096 * the inode's in-core data-journaling state flag now.
6097 */
6098
6099 if (val)
6100 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101 else {
6102 err = jbd2_journal_flush(journal, 0);
6103 if (err < 0) {
6104 jbd2_journal_unlock_updates(journal);
6105 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6106 return err;
6107 }
6108 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109 }
6110 ext4_set_aops(inode);
6111
6112 jbd2_journal_unlock_updates(journal);
6113 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114
6115 if (val)
6116 filemap_invalidate_unlock(inode->i_mapping);
6117
6118 /* Finally we can mark the inode as dirty. */
6119
6120 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121 if (IS_ERR(handle))
6122 return PTR_ERR(handle);
6123
6124 ext4_fc_mark_ineligible(inode->i_sb,
6125 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126 err = ext4_mark_inode_dirty(handle, inode);
6127 ext4_handle_sync(handle);
6128 ext4_journal_stop(handle);
6129 ext4_std_error(inode->i_sb, err);
6130
6131 return err;
6132}
6133
6134static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135 struct buffer_head *bh)
6136{
6137 return !buffer_mapped(bh);
6138}
6139
6140vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141{
6142 struct vm_area_struct *vma = vmf->vma;
6143 struct folio *folio = page_folio(vmf->page);
6144 loff_t size;
6145 unsigned long len;
6146 int err;
6147 vm_fault_t ret;
6148 struct file *file = vma->vm_file;
6149 struct inode *inode = file_inode(file);
6150 struct address_space *mapping = inode->i_mapping;
6151 handle_t *handle;
6152 get_block_t *get_block;
6153 int retries = 0;
6154
6155 if (unlikely(IS_IMMUTABLE(inode)))
6156 return VM_FAULT_SIGBUS;
6157
6158 sb_start_pagefault(inode->i_sb);
6159 file_update_time(vma->vm_file);
6160
6161 filemap_invalidate_lock_shared(mapping);
6162
6163 err = ext4_convert_inline_data(inode);
6164 if (err)
6165 goto out_ret;
6166
6167 /*
6168 * On data journalling we skip straight to the transaction handle:
6169 * there's no delalloc; page truncated will be checked later; the
6170 * early return w/ all buffers mapped (calculates size/len) can't
6171 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172 */
6173 if (ext4_should_journal_data(inode))
6174 goto retry_alloc;
6175
6176 /* Delalloc case is easy... */
6177 if (test_opt(inode->i_sb, DELALLOC) &&
6178 !ext4_nonda_switch(inode->i_sb)) {
6179 do {
6180 err = block_page_mkwrite(vma, vmf,
6181 ext4_da_get_block_prep);
6182 } while (err == -ENOSPC &&
6183 ext4_should_retry_alloc(inode->i_sb, &retries));
6184 goto out_ret;
6185 }
6186
6187 folio_lock(folio);
6188 size = i_size_read(inode);
6189 /* Page got truncated from under us? */
6190 if (folio->mapping != mapping || folio_pos(folio) > size) {
6191 folio_unlock(folio);
6192 ret = VM_FAULT_NOPAGE;
6193 goto out;
6194 }
6195
6196 len = folio_size(folio);
6197 if (folio_pos(folio) + len > size)
6198 len = size - folio_pos(folio);
6199 /*
6200 * Return if we have all the buffers mapped. This avoids the need to do
6201 * journal_start/journal_stop which can block and take a long time
6202 *
6203 * This cannot be done for data journalling, as we have to add the
6204 * inode to the transaction's list to writeprotect pages on commit.
6205 */
6206 if (folio_buffers(folio)) {
6207 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208 0, len, NULL,
6209 ext4_bh_unmapped)) {
6210 /* Wait so that we don't change page under IO */
6211 folio_wait_stable(folio);
6212 ret = VM_FAULT_LOCKED;
6213 goto out;
6214 }
6215 }
6216 folio_unlock(folio);
6217 /* OK, we need to fill the hole... */
6218 if (ext4_should_dioread_nolock(inode))
6219 get_block = ext4_get_block_unwritten;
6220 else
6221 get_block = ext4_get_block;
6222retry_alloc:
6223 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224 ext4_writepage_trans_blocks(inode));
6225 if (IS_ERR(handle)) {
6226 ret = VM_FAULT_SIGBUS;
6227 goto out;
6228 }
6229 /*
6230 * Data journalling can't use block_page_mkwrite() because it
6231 * will set_buffer_dirty() before do_journal_get_write_access()
6232 * thus might hit warning messages for dirty metadata buffers.
6233 */
6234 if (!ext4_should_journal_data(inode)) {
6235 err = block_page_mkwrite(vma, vmf, get_block);
6236 } else {
6237 folio_lock(folio);
6238 size = i_size_read(inode);
6239 /* Page got truncated from under us? */
6240 if (folio->mapping != mapping || folio_pos(folio) > size) {
6241 ret = VM_FAULT_NOPAGE;
6242 goto out_error;
6243 }
6244
6245 len = folio_size(folio);
6246 if (folio_pos(folio) + len > size)
6247 len = size - folio_pos(folio);
6248
6249 err = ext4_block_write_begin(handle, folio, 0, len,
6250 ext4_get_block);
6251 if (!err) {
6252 ret = VM_FAULT_SIGBUS;
6253 if (ext4_journal_folio_buffers(handle, folio, len))
6254 goto out_error;
6255 } else {
6256 folio_unlock(folio);
6257 }
6258 }
6259 ext4_journal_stop(handle);
6260 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261 goto retry_alloc;
6262out_ret:
6263 ret = vmf_fs_error(err);
6264out:
6265 filemap_invalidate_unlock_shared(mapping);
6266 sb_end_pagefault(inode->i_sb);
6267 return ret;
6268out_error:
6269 folio_unlock(folio);
6270 ext4_journal_stop(handle);
6271 goto out;
6272}
1/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/module.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/jbd2.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
31#include <linux/pagevec.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include <linux/bio.h>
36#include <linux/workqueue.h>
37#include <linux/kernel.h>
38#include <linux/printk.h>
39#include <linux/slab.h>
40#include <linux/ratelimit.h>
41
42#include "ext4_jbd2.h"
43#include "xattr.h"
44#include "acl.h"
45#include "ext4_extents.h"
46#include "truncate.h"
47
48#include <trace/events/ext4.h>
49
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
52static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54{
55 trace_ext4_begin_ordered_truncate(inode, new_size);
56 /*
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
61 */
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
67}
68
69static void ext4_invalidatepage(struct page *page, unsigned long offset);
70static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77/*
78 * Test whether an inode is a fast symlink.
79 */
80static int ext4_inode_is_fast_symlink(struct inode *inode)
81{
82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 (inode->i_sb->s_blocksize >> 9) : 0;
84
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86}
87
88/*
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
92 */
93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 int nblocks)
95{
96 int ret;
97
98 /*
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
103 */
104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 jbd_debug(2, "restarting handle %p\n", handle);
106 up_write(&EXT4_I(inode)->i_data_sem);
107 ret = ext4_journal_restart(handle, nblocks);
108 down_write(&EXT4_I(inode)->i_data_sem);
109 ext4_discard_preallocations(inode);
110
111 return ret;
112}
113
114/*
115 * Called at the last iput() if i_nlink is zero.
116 */
117void ext4_evict_inode(struct inode *inode)
118{
119 handle_t *handle;
120 int err;
121
122 trace_ext4_evict_inode(inode);
123
124 ext4_ioend_wait(inode);
125
126 if (inode->i_nlink) {
127 /*
128 * When journalling data dirty buffers are tracked only in the
129 * journal. So although mm thinks everything is clean and
130 * ready for reaping the inode might still have some pages to
131 * write in the running transaction or waiting to be
132 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 * (via truncate_inode_pages()) to discard these buffers can
134 * cause data loss. Also even if we did not discard these
135 * buffers, we would have no way to find them after the inode
136 * is reaped and thus user could see stale data if he tries to
137 * read them before the transaction is checkpointed. So be
138 * careful and force everything to disk here... We use
139 * ei->i_datasync_tid to store the newest transaction
140 * containing inode's data.
141 *
142 * Note that directories do not have this problem because they
143 * don't use page cache.
144 */
145 if (ext4_should_journal_data(inode) &&
146 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
147 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
148 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149
150 jbd2_log_start_commit(journal, commit_tid);
151 jbd2_log_wait_commit(journal, commit_tid);
152 filemap_write_and_wait(&inode->i_data);
153 }
154 truncate_inode_pages(&inode->i_data, 0);
155 goto no_delete;
156 }
157
158 if (!is_bad_inode(inode))
159 dquot_initialize(inode);
160
161 if (ext4_should_order_data(inode))
162 ext4_begin_ordered_truncate(inode, 0);
163 truncate_inode_pages(&inode->i_data, 0);
164
165 if (is_bad_inode(inode))
166 goto no_delete;
167
168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169 if (IS_ERR(handle)) {
170 ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 /*
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
174 * cleaned up.
175 */
176 ext4_orphan_del(NULL, inode);
177 goto no_delete;
178 }
179
180 if (IS_SYNC(inode))
181 ext4_handle_sync(handle);
182 inode->i_size = 0;
183 err = ext4_mark_inode_dirty(handle, inode);
184 if (err) {
185 ext4_warning(inode->i_sb,
186 "couldn't mark inode dirty (err %d)", err);
187 goto stop_handle;
188 }
189 if (inode->i_blocks)
190 ext4_truncate(inode);
191
192 /*
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
197 */
198 if (!ext4_handle_has_enough_credits(handle, 3)) {
199 err = ext4_journal_extend(handle, 3);
200 if (err > 0)
201 err = ext4_journal_restart(handle, 3);
202 if (err != 0) {
203 ext4_warning(inode->i_sb,
204 "couldn't extend journal (err %d)", err);
205 stop_handle:
206 ext4_journal_stop(handle);
207 ext4_orphan_del(NULL, inode);
208 goto no_delete;
209 }
210 }
211
212 /*
213 * Kill off the orphan record which ext4_truncate created.
214 * AKPM: I think this can be inside the above `if'.
215 * Note that ext4_orphan_del() has to be able to cope with the
216 * deletion of a non-existent orphan - this is because we don't
217 * know if ext4_truncate() actually created an orphan record.
218 * (Well, we could do this if we need to, but heck - it works)
219 */
220 ext4_orphan_del(handle, inode);
221 EXT4_I(inode)->i_dtime = get_seconds();
222
223 /*
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
228 * fails.
229 */
230 if (ext4_mark_inode_dirty(handle, inode))
231 /* If that failed, just do the required in-core inode clear. */
232 ext4_clear_inode(inode);
233 else
234 ext4_free_inode(handle, inode);
235 ext4_journal_stop(handle);
236 return;
237no_delete:
238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
239}
240
241#ifdef CONFIG_QUOTA
242qsize_t *ext4_get_reserved_space(struct inode *inode)
243{
244 return &EXT4_I(inode)->i_reserved_quota;
245}
246#endif
247
248/*
249 * Calculate the number of metadata blocks need to reserve
250 * to allocate a block located at @lblock
251 */
252static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253{
254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255 return ext4_ext_calc_metadata_amount(inode, lblock);
256
257 return ext4_ind_calc_metadata_amount(inode, lblock);
258}
259
260/*
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
263 */
264void ext4_da_update_reserve_space(struct inode *inode,
265 int used, int quota_claim)
266{
267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 struct ext4_inode_info *ei = EXT4_I(inode);
269
270 spin_lock(&ei->i_block_reservation_lock);
271 trace_ext4_da_update_reserve_space(inode, used);
272 if (unlikely(used > ei->i_reserved_data_blocks)) {
273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks\n",
275 __func__, inode->i_ino, used,
276 ei->i_reserved_data_blocks);
277 WARN_ON(1);
278 used = ei->i_reserved_data_blocks;
279 }
280
281 /* Update per-inode reservations */
282 ei->i_reserved_data_blocks -= used;
283 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
285 used + ei->i_allocated_meta_blocks);
286 ei->i_allocated_meta_blocks = 0;
287
288 if (ei->i_reserved_data_blocks == 0) {
289 /*
290 * We can release all of the reserved metadata blocks
291 * only when we have written all of the delayed
292 * allocation blocks.
293 */
294 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
295 ei->i_reserved_meta_blocks);
296 ei->i_reserved_meta_blocks = 0;
297 ei->i_da_metadata_calc_len = 0;
298 }
299 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300
301 /* Update quota subsystem for data blocks */
302 if (quota_claim)
303 dquot_claim_block(inode, used);
304 else {
305 /*
306 * We did fallocate with an offset that is already delayed
307 * allocated. So on delayed allocated writeback we should
308 * not re-claim the quota for fallocated blocks.
309 */
310 dquot_release_reservation_block(inode, used);
311 }
312
313 /*
314 * If we have done all the pending block allocations and if
315 * there aren't any writers on the inode, we can discard the
316 * inode's preallocations.
317 */
318 if ((ei->i_reserved_data_blocks == 0) &&
319 (atomic_read(&inode->i_writecount) == 0))
320 ext4_discard_preallocations(inode);
321}
322
323static int __check_block_validity(struct inode *inode, const char *func,
324 unsigned int line,
325 struct ext4_map_blocks *map)
326{
327 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
328 map->m_len)) {
329 ext4_error_inode(inode, func, line, map->m_pblk,
330 "lblock %lu mapped to illegal pblock "
331 "(length %d)", (unsigned long) map->m_lblk,
332 map->m_len);
333 return -EIO;
334 }
335 return 0;
336}
337
338#define check_block_validity(inode, map) \
339 __check_block_validity((inode), __func__, __LINE__, (map))
340
341/*
342 * Return the number of contiguous dirty pages in a given inode
343 * starting at page frame idx.
344 */
345static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
346 unsigned int max_pages)
347{
348 struct address_space *mapping = inode->i_mapping;
349 pgoff_t index;
350 struct pagevec pvec;
351 pgoff_t num = 0;
352 int i, nr_pages, done = 0;
353
354 if (max_pages == 0)
355 return 0;
356 pagevec_init(&pvec, 0);
357 while (!done) {
358 index = idx;
359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
360 PAGECACHE_TAG_DIRTY,
361 (pgoff_t)PAGEVEC_SIZE);
362 if (nr_pages == 0)
363 break;
364 for (i = 0; i < nr_pages; i++) {
365 struct page *page = pvec.pages[i];
366 struct buffer_head *bh, *head;
367
368 lock_page(page);
369 if (unlikely(page->mapping != mapping) ||
370 !PageDirty(page) ||
371 PageWriteback(page) ||
372 page->index != idx) {
373 done = 1;
374 unlock_page(page);
375 break;
376 }
377 if (page_has_buffers(page)) {
378 bh = head = page_buffers(page);
379 do {
380 if (!buffer_delay(bh) &&
381 !buffer_unwritten(bh))
382 done = 1;
383 bh = bh->b_this_page;
384 } while (!done && (bh != head));
385 }
386 unlock_page(page);
387 if (done)
388 break;
389 idx++;
390 num++;
391 if (num >= max_pages) {
392 done = 1;
393 break;
394 }
395 }
396 pagevec_release(&pvec);
397 }
398 return num;
399}
400
401/*
402 * The ext4_map_blocks() function tries to look up the requested blocks,
403 * and returns if the blocks are already mapped.
404 *
405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406 * and store the allocated blocks in the result buffer head and mark it
407 * mapped.
408 *
409 * If file type is extents based, it will call ext4_ext_map_blocks(),
410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411 * based files
412 *
413 * On success, it returns the number of blocks being mapped or allocate.
414 * if create==0 and the blocks are pre-allocated and uninitialized block,
415 * the result buffer head is unmapped. If the create ==1, it will make sure
416 * the buffer head is mapped.
417 *
418 * It returns 0 if plain look up failed (blocks have not been allocated), in
419 * that casem, buffer head is unmapped
420 *
421 * It returns the error in case of allocation failure.
422 */
423int ext4_map_blocks(handle_t *handle, struct inode *inode,
424 struct ext4_map_blocks *map, int flags)
425{
426 int retval;
427
428 map->m_flags = 0;
429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 "logical block %lu\n", inode->i_ino, flags, map->m_len,
431 (unsigned long) map->m_lblk);
432 /*
433 * Try to see if we can get the block without requesting a new
434 * file system block.
435 */
436 down_read((&EXT4_I(inode)->i_data_sem));
437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 retval = ext4_ext_map_blocks(handle, inode, map, 0);
439 } else {
440 retval = ext4_ind_map_blocks(handle, inode, map, 0);
441 }
442 up_read((&EXT4_I(inode)->i_data_sem));
443
444 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445 int ret = check_block_validity(inode, map);
446 if (ret != 0)
447 return ret;
448 }
449
450 /* If it is only a block(s) look up */
451 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 return retval;
453
454 /*
455 * Returns if the blocks have already allocated
456 *
457 * Note that if blocks have been preallocated
458 * ext4_ext_get_block() returns th create = 0
459 * with buffer head unmapped.
460 */
461 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 return retval;
463
464 /*
465 * When we call get_blocks without the create flag, the
466 * BH_Unwritten flag could have gotten set if the blocks
467 * requested were part of a uninitialized extent. We need to
468 * clear this flag now that we are committed to convert all or
469 * part of the uninitialized extent to be an initialized
470 * extent. This is because we need to avoid the combination
471 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 * set on the buffer_head.
473 */
474 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
475
476 /*
477 * New blocks allocate and/or writing to uninitialized extent
478 * will possibly result in updating i_data, so we take
479 * the write lock of i_data_sem, and call get_blocks()
480 * with create == 1 flag.
481 */
482 down_write((&EXT4_I(inode)->i_data_sem));
483
484 /*
485 * if the caller is from delayed allocation writeout path
486 * we have already reserved fs blocks for allocation
487 * let the underlying get_block() function know to
488 * avoid double accounting
489 */
490 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
492 /*
493 * We need to check for EXT4 here because migrate
494 * could have changed the inode type in between
495 */
496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497 retval = ext4_ext_map_blocks(handle, inode, map, flags);
498 } else {
499 retval = ext4_ind_map_blocks(handle, inode, map, flags);
500
501 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
502 /*
503 * We allocated new blocks which will result in
504 * i_data's format changing. Force the migrate
505 * to fail by clearing migrate flags
506 */
507 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508 }
509
510 /*
511 * Update reserved blocks/metadata blocks after successful
512 * block allocation which had been deferred till now. We don't
513 * support fallocate for non extent files. So we can update
514 * reserve space here.
515 */
516 if ((retval > 0) &&
517 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 ext4_da_update_reserve_space(inode, retval, 1);
519 }
520 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
522
523 up_write((&EXT4_I(inode)->i_data_sem));
524 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525 int ret = check_block_validity(inode, map);
526 if (ret != 0)
527 return ret;
528 }
529 return retval;
530}
531
532/* Maximum number of blocks we map for direct IO at once. */
533#define DIO_MAX_BLOCKS 4096
534
535static int _ext4_get_block(struct inode *inode, sector_t iblock,
536 struct buffer_head *bh, int flags)
537{
538 handle_t *handle = ext4_journal_current_handle();
539 struct ext4_map_blocks map;
540 int ret = 0, started = 0;
541 int dio_credits;
542
543 map.m_lblk = iblock;
544 map.m_len = bh->b_size >> inode->i_blkbits;
545
546 if (flags && !handle) {
547 /* Direct IO write... */
548 if (map.m_len > DIO_MAX_BLOCKS)
549 map.m_len = DIO_MAX_BLOCKS;
550 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551 handle = ext4_journal_start(inode, dio_credits);
552 if (IS_ERR(handle)) {
553 ret = PTR_ERR(handle);
554 return ret;
555 }
556 started = 1;
557 }
558
559 ret = ext4_map_blocks(handle, inode, &map, flags);
560 if (ret > 0) {
561 map_bh(bh, inode->i_sb, map.m_pblk);
562 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
563 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
564 ret = 0;
565 }
566 if (started)
567 ext4_journal_stop(handle);
568 return ret;
569}
570
571int ext4_get_block(struct inode *inode, sector_t iblock,
572 struct buffer_head *bh, int create)
573{
574 return _ext4_get_block(inode, iblock, bh,
575 create ? EXT4_GET_BLOCKS_CREATE : 0);
576}
577
578/*
579 * `handle' can be NULL if create is zero
580 */
581struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
582 ext4_lblk_t block, int create, int *errp)
583{
584 struct ext4_map_blocks map;
585 struct buffer_head *bh;
586 int fatal = 0, err;
587
588 J_ASSERT(handle != NULL || create == 0);
589
590 map.m_lblk = block;
591 map.m_len = 1;
592 err = ext4_map_blocks(handle, inode, &map,
593 create ? EXT4_GET_BLOCKS_CREATE : 0);
594
595 if (err < 0)
596 *errp = err;
597 if (err <= 0)
598 return NULL;
599 *errp = 0;
600
601 bh = sb_getblk(inode->i_sb, map.m_pblk);
602 if (!bh) {
603 *errp = -EIO;
604 return NULL;
605 }
606 if (map.m_flags & EXT4_MAP_NEW) {
607 J_ASSERT(create != 0);
608 J_ASSERT(handle != NULL);
609
610 /*
611 * Now that we do not always journal data, we should
612 * keep in mind whether this should always journal the
613 * new buffer as metadata. For now, regular file
614 * writes use ext4_get_block instead, so it's not a
615 * problem.
616 */
617 lock_buffer(bh);
618 BUFFER_TRACE(bh, "call get_create_access");
619 fatal = ext4_journal_get_create_access(handle, bh);
620 if (!fatal && !buffer_uptodate(bh)) {
621 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
622 set_buffer_uptodate(bh);
623 }
624 unlock_buffer(bh);
625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
626 err = ext4_handle_dirty_metadata(handle, inode, bh);
627 if (!fatal)
628 fatal = err;
629 } else {
630 BUFFER_TRACE(bh, "not a new buffer");
631 }
632 if (fatal) {
633 *errp = fatal;
634 brelse(bh);
635 bh = NULL;
636 }
637 return bh;
638}
639
640struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
641 ext4_lblk_t block, int create, int *err)
642{
643 struct buffer_head *bh;
644
645 bh = ext4_getblk(handle, inode, block, create, err);
646 if (!bh)
647 return bh;
648 if (buffer_uptodate(bh))
649 return bh;
650 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
651 wait_on_buffer(bh);
652 if (buffer_uptodate(bh))
653 return bh;
654 put_bh(bh);
655 *err = -EIO;
656 return NULL;
657}
658
659static int walk_page_buffers(handle_t *handle,
660 struct buffer_head *head,
661 unsigned from,
662 unsigned to,
663 int *partial,
664 int (*fn)(handle_t *handle,
665 struct buffer_head *bh))
666{
667 struct buffer_head *bh;
668 unsigned block_start, block_end;
669 unsigned blocksize = head->b_size;
670 int err, ret = 0;
671 struct buffer_head *next;
672
673 for (bh = head, block_start = 0;
674 ret == 0 && (bh != head || !block_start);
675 block_start = block_end, bh = next) {
676 next = bh->b_this_page;
677 block_end = block_start + blocksize;
678 if (block_end <= from || block_start >= to) {
679 if (partial && !buffer_uptodate(bh))
680 *partial = 1;
681 continue;
682 }
683 err = (*fn)(handle, bh);
684 if (!ret)
685 ret = err;
686 }
687 return ret;
688}
689
690/*
691 * To preserve ordering, it is essential that the hole instantiation and
692 * the data write be encapsulated in a single transaction. We cannot
693 * close off a transaction and start a new one between the ext4_get_block()
694 * and the commit_write(). So doing the jbd2_journal_start at the start of
695 * prepare_write() is the right place.
696 *
697 * Also, this function can nest inside ext4_writepage() ->
698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 * has generated enough buffer credits to do the whole page. So we won't
700 * block on the journal in that case, which is good, because the caller may
701 * be PF_MEMALLOC.
702 *
703 * By accident, ext4 can be reentered when a transaction is open via
704 * quota file writes. If we were to commit the transaction while thus
705 * reentered, there can be a deadlock - we would be holding a quota
706 * lock, and the commit would never complete if another thread had a
707 * transaction open and was blocking on the quota lock - a ranking
708 * violation.
709 *
710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 * will _not_ run commit under these circumstances because handle->h_ref
712 * is elevated. We'll still have enough credits for the tiny quotafile
713 * write.
714 */
715static int do_journal_get_write_access(handle_t *handle,
716 struct buffer_head *bh)
717{
718 int dirty = buffer_dirty(bh);
719 int ret;
720
721 if (!buffer_mapped(bh) || buffer_freed(bh))
722 return 0;
723 /*
724 * __block_write_begin() could have dirtied some buffers. Clean
725 * the dirty bit as jbd2_journal_get_write_access() could complain
726 * otherwise about fs integrity issues. Setting of the dirty bit
727 * by __block_write_begin() isn't a real problem here as we clear
728 * the bit before releasing a page lock and thus writeback cannot
729 * ever write the buffer.
730 */
731 if (dirty)
732 clear_buffer_dirty(bh);
733 ret = ext4_journal_get_write_access(handle, bh);
734 if (!ret && dirty)
735 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 return ret;
737}
738
739static int ext4_get_block_write(struct inode *inode, sector_t iblock,
740 struct buffer_head *bh_result, int create);
741static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 loff_t pos, unsigned len, unsigned flags,
743 struct page **pagep, void **fsdata)
744{
745 struct inode *inode = mapping->host;
746 int ret, needed_blocks;
747 handle_t *handle;
748 int retries = 0;
749 struct page *page;
750 pgoff_t index;
751 unsigned from, to;
752
753 trace_ext4_write_begin(inode, pos, len, flags);
754 /*
755 * Reserve one block more for addition to orphan list in case
756 * we allocate blocks but write fails for some reason
757 */
758 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759 index = pos >> PAGE_CACHE_SHIFT;
760 from = pos & (PAGE_CACHE_SIZE - 1);
761 to = from + len;
762
763retry:
764 handle = ext4_journal_start(inode, needed_blocks);
765 if (IS_ERR(handle)) {
766 ret = PTR_ERR(handle);
767 goto out;
768 }
769
770 /* We cannot recurse into the filesystem as the transaction is already
771 * started */
772 flags |= AOP_FLAG_NOFS;
773
774 page = grab_cache_page_write_begin(mapping, index, flags);
775 if (!page) {
776 ext4_journal_stop(handle);
777 ret = -ENOMEM;
778 goto out;
779 }
780 *pagep = page;
781
782 if (ext4_should_dioread_nolock(inode))
783 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784 else
785 ret = __block_write_begin(page, pos, len, ext4_get_block);
786
787 if (!ret && ext4_should_journal_data(inode)) {
788 ret = walk_page_buffers(handle, page_buffers(page),
789 from, to, NULL, do_journal_get_write_access);
790 }
791
792 if (ret) {
793 unlock_page(page);
794 page_cache_release(page);
795 /*
796 * __block_write_begin may have instantiated a few blocks
797 * outside i_size. Trim these off again. Don't need
798 * i_size_read because we hold i_mutex.
799 *
800 * Add inode to orphan list in case we crash before
801 * truncate finishes
802 */
803 if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 ext4_orphan_add(handle, inode);
805
806 ext4_journal_stop(handle);
807 if (pos + len > inode->i_size) {
808 ext4_truncate_failed_write(inode);
809 /*
810 * If truncate failed early the inode might
811 * still be on the orphan list; we need to
812 * make sure the inode is removed from the
813 * orphan list in that case.
814 */
815 if (inode->i_nlink)
816 ext4_orphan_del(NULL, inode);
817 }
818 }
819
820 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821 goto retry;
822out:
823 return ret;
824}
825
826/* For write_end() in data=journal mode */
827static int write_end_fn(handle_t *handle, struct buffer_head *bh)
828{
829 if (!buffer_mapped(bh) || buffer_freed(bh))
830 return 0;
831 set_buffer_uptodate(bh);
832 return ext4_handle_dirty_metadata(handle, NULL, bh);
833}
834
835static int ext4_generic_write_end(struct file *file,
836 struct address_space *mapping,
837 loff_t pos, unsigned len, unsigned copied,
838 struct page *page, void *fsdata)
839{
840 int i_size_changed = 0;
841 struct inode *inode = mapping->host;
842 handle_t *handle = ext4_journal_current_handle();
843
844 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
845
846 /*
847 * No need to use i_size_read() here, the i_size
848 * cannot change under us because we hold i_mutex.
849 *
850 * But it's important to update i_size while still holding page lock:
851 * page writeout could otherwise come in and zero beyond i_size.
852 */
853 if (pos + copied > inode->i_size) {
854 i_size_write(inode, pos + copied);
855 i_size_changed = 1;
856 }
857
858 if (pos + copied > EXT4_I(inode)->i_disksize) {
859 /* We need to mark inode dirty even if
860 * new_i_size is less that inode->i_size
861 * bu greater than i_disksize.(hint delalloc)
862 */
863 ext4_update_i_disksize(inode, (pos + copied));
864 i_size_changed = 1;
865 }
866 unlock_page(page);
867 page_cache_release(page);
868
869 /*
870 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 * makes the holding time of page lock longer. Second, it forces lock
872 * ordering of page lock and transaction start for journaling
873 * filesystems.
874 */
875 if (i_size_changed)
876 ext4_mark_inode_dirty(handle, inode);
877
878 return copied;
879}
880
881/*
882 * We need to pick up the new inode size which generic_commit_write gave us
883 * `file' can be NULL - eg, when called from page_symlink().
884 *
885 * ext4 never places buffers on inode->i_mapping->private_list. metadata
886 * buffers are managed internally.
887 */
888static int ext4_ordered_write_end(struct file *file,
889 struct address_space *mapping,
890 loff_t pos, unsigned len, unsigned copied,
891 struct page *page, void *fsdata)
892{
893 handle_t *handle = ext4_journal_current_handle();
894 struct inode *inode = mapping->host;
895 int ret = 0, ret2;
896
897 trace_ext4_ordered_write_end(inode, pos, len, copied);
898 ret = ext4_jbd2_file_inode(handle, inode);
899
900 if (ret == 0) {
901 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
902 page, fsdata);
903 copied = ret2;
904 if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 /* if we have allocated more blocks and copied
906 * less. We will have blocks allocated outside
907 * inode->i_size. So truncate them
908 */
909 ext4_orphan_add(handle, inode);
910 if (ret2 < 0)
911 ret = ret2;
912 }
913 ret2 = ext4_journal_stop(handle);
914 if (!ret)
915 ret = ret2;
916
917 if (pos + len > inode->i_size) {
918 ext4_truncate_failed_write(inode);
919 /*
920 * If truncate failed early the inode might still be
921 * on the orphan list; we need to make sure the inode
922 * is removed from the orphan list in that case.
923 */
924 if (inode->i_nlink)
925 ext4_orphan_del(NULL, inode);
926 }
927
928
929 return ret ? ret : copied;
930}
931
932static int ext4_writeback_write_end(struct file *file,
933 struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned copied,
935 struct page *page, void *fsdata)
936{
937 handle_t *handle = ext4_journal_current_handle();
938 struct inode *inode = mapping->host;
939 int ret = 0, ret2;
940
941 trace_ext4_writeback_write_end(inode, pos, len, copied);
942 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
943 page, fsdata);
944 copied = ret2;
945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 /* if we have allocated more blocks and copied
947 * less. We will have blocks allocated outside
948 * inode->i_size. So truncate them
949 */
950 ext4_orphan_add(handle, inode);
951
952 if (ret2 < 0)
953 ret = ret2;
954
955 ret2 = ext4_journal_stop(handle);
956 if (!ret)
957 ret = ret2;
958
959 if (pos + len > inode->i_size) {
960 ext4_truncate_failed_write(inode);
961 /*
962 * If truncate failed early the inode might still be
963 * on the orphan list; we need to make sure the inode
964 * is removed from the orphan list in that case.
965 */
966 if (inode->i_nlink)
967 ext4_orphan_del(NULL, inode);
968 }
969
970 return ret ? ret : copied;
971}
972
973static int ext4_journalled_write_end(struct file *file,
974 struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned copied,
976 struct page *page, void *fsdata)
977{
978 handle_t *handle = ext4_journal_current_handle();
979 struct inode *inode = mapping->host;
980 int ret = 0, ret2;
981 int partial = 0;
982 unsigned from, to;
983 loff_t new_i_size;
984
985 trace_ext4_journalled_write_end(inode, pos, len, copied);
986 from = pos & (PAGE_CACHE_SIZE - 1);
987 to = from + len;
988
989 BUG_ON(!ext4_handle_valid(handle));
990
991 if (copied < len) {
992 if (!PageUptodate(page))
993 copied = 0;
994 page_zero_new_buffers(page, from+copied, to);
995 }
996
997 ret = walk_page_buffers(handle, page_buffers(page), from,
998 to, &partial, write_end_fn);
999 if (!partial)
1000 SetPageUptodate(page);
1001 new_i_size = pos + copied;
1002 if (new_i_size > inode->i_size)
1003 i_size_write(inode, pos+copied);
1004 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 if (new_i_size > EXT4_I(inode)->i_disksize) {
1007 ext4_update_i_disksize(inode, new_i_size);
1008 ret2 = ext4_mark_inode_dirty(handle, inode);
1009 if (!ret)
1010 ret = ret2;
1011 }
1012
1013 unlock_page(page);
1014 page_cache_release(page);
1015 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 /* if we have allocated more blocks and copied
1017 * less. We will have blocks allocated outside
1018 * inode->i_size. So truncate them
1019 */
1020 ext4_orphan_add(handle, inode);
1021
1022 ret2 = ext4_journal_stop(handle);
1023 if (!ret)
1024 ret = ret2;
1025 if (pos + len > inode->i_size) {
1026 ext4_truncate_failed_write(inode);
1027 /*
1028 * If truncate failed early the inode might still be
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1031 */
1032 if (inode->i_nlink)
1033 ext4_orphan_del(NULL, inode);
1034 }
1035
1036 return ret ? ret : copied;
1037}
1038
1039/*
1040 * Reserve a single block located at lblock
1041 */
1042static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043{
1044 int retries = 0;
1045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046 struct ext4_inode_info *ei = EXT4_I(inode);
1047 unsigned long md_needed;
1048 int ret;
1049
1050 /*
1051 * recalculate the amount of metadata blocks to reserve
1052 * in order to allocate nrblocks
1053 * worse case is one extent per block
1054 */
1055repeat:
1056 spin_lock(&ei->i_block_reservation_lock);
1057 md_needed = ext4_calc_metadata_amount(inode, lblock);
1058 trace_ext4_da_reserve_space(inode, md_needed);
1059 spin_unlock(&ei->i_block_reservation_lock);
1060
1061 /*
1062 * We will charge metadata quota at writeout time; this saves
1063 * us from metadata over-estimation, though we may go over by
1064 * a small amount in the end. Here we just reserve for data.
1065 */
1066 ret = dquot_reserve_block(inode, 1);
1067 if (ret)
1068 return ret;
1069 /*
1070 * We do still charge estimated metadata to the sb though;
1071 * we cannot afford to run out of free blocks.
1072 */
1073 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074 dquot_release_reservation_block(inode, 1);
1075 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 yield();
1077 goto repeat;
1078 }
1079 return -ENOSPC;
1080 }
1081 spin_lock(&ei->i_block_reservation_lock);
1082 ei->i_reserved_data_blocks++;
1083 ei->i_reserved_meta_blocks += md_needed;
1084 spin_unlock(&ei->i_block_reservation_lock);
1085
1086 return 0; /* success */
1087}
1088
1089static void ext4_da_release_space(struct inode *inode, int to_free)
1090{
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094 if (!to_free)
1095 return; /* Nothing to release, exit */
1096
1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099 trace_ext4_da_release_space(inode, to_free);
1100 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101 /*
1102 * if there aren't enough reserved blocks, then the
1103 * counter is messed up somewhere. Since this
1104 * function is called from invalidate page, it's
1105 * harmless to return without any action.
1106 */
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108 "ino %lu, to_free %d with only %d reserved "
1109 "data blocks\n", inode->i_ino, to_free,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 to_free = ei->i_reserved_data_blocks;
1113 }
1114 ei->i_reserved_data_blocks -= to_free;
1115
1116 if (ei->i_reserved_data_blocks == 0) {
1117 /*
1118 * We can release all of the reserved metadata blocks
1119 * only when we have written all of the delayed
1120 * allocation blocks.
1121 */
1122 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123 ei->i_reserved_meta_blocks);
1124 ei->i_reserved_meta_blocks = 0;
1125 ei->i_da_metadata_calc_len = 0;
1126 }
1127
1128 /* update fs dirty data blocks counter */
1129 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130
1131 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133 dquot_release_reservation_block(inode, to_free);
1134}
1135
1136static void ext4_da_page_release_reservation(struct page *page,
1137 unsigned long offset)
1138{
1139 int to_release = 0;
1140 struct buffer_head *head, *bh;
1141 unsigned int curr_off = 0;
1142
1143 head = page_buffers(page);
1144 bh = head;
1145 do {
1146 unsigned int next_off = curr_off + bh->b_size;
1147
1148 if ((offset <= curr_off) && (buffer_delay(bh))) {
1149 to_release++;
1150 clear_buffer_delay(bh);
1151 }
1152 curr_off = next_off;
1153 } while ((bh = bh->b_this_page) != head);
1154 ext4_da_release_space(page->mapping->host, to_release);
1155}
1156
1157/*
1158 * Delayed allocation stuff
1159 */
1160
1161/*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1174static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175 struct ext4_map_blocks *map)
1176{
1177 struct pagevec pvec;
1178 unsigned long index, end;
1179 int ret = 0, err, nr_pages, i;
1180 struct inode *inode = mpd->inode;
1181 struct address_space *mapping = inode->i_mapping;
1182 loff_t size = i_size_read(inode);
1183 unsigned int len, block_start;
1184 struct buffer_head *bh, *page_bufs = NULL;
1185 int journal_data = ext4_should_journal_data(inode);
1186 sector_t pblock = 0, cur_logical = 0;
1187 struct ext4_io_submit io_submit;
1188
1189 BUG_ON(mpd->next_page <= mpd->first_page);
1190 memset(&io_submit, 0, sizeof(io_submit));
1191 /*
1192 * We need to start from the first_page to the next_page - 1
1193 * to make sure we also write the mapped dirty buffer_heads.
1194 * If we look at mpd->b_blocknr we would only be looking
1195 * at the currently mapped buffer_heads.
1196 */
1197 index = mpd->first_page;
1198 end = mpd->next_page - 1;
1199
1200 pagevec_init(&pvec, 0);
1201 while (index <= end) {
1202 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203 if (nr_pages == 0)
1204 break;
1205 for (i = 0; i < nr_pages; i++) {
1206 int commit_write = 0, skip_page = 0;
1207 struct page *page = pvec.pages[i];
1208
1209 index = page->index;
1210 if (index > end)
1211 break;
1212
1213 if (index == size >> PAGE_CACHE_SHIFT)
1214 len = size & ~PAGE_CACHE_MASK;
1215 else
1216 len = PAGE_CACHE_SIZE;
1217 if (map) {
1218 cur_logical = index << (PAGE_CACHE_SHIFT -
1219 inode->i_blkbits);
1220 pblock = map->m_pblk + (cur_logical -
1221 map->m_lblk);
1222 }
1223 index++;
1224
1225 BUG_ON(!PageLocked(page));
1226 BUG_ON(PageWriteback(page));
1227
1228 /*
1229 * If the page does not have buffers (for
1230 * whatever reason), try to create them using
1231 * __block_write_begin. If this fails,
1232 * skip the page and move on.
1233 */
1234 if (!page_has_buffers(page)) {
1235 if (__block_write_begin(page, 0, len,
1236 noalloc_get_block_write)) {
1237 skip_page:
1238 unlock_page(page);
1239 continue;
1240 }
1241 commit_write = 1;
1242 }
1243
1244 bh = page_bufs = page_buffers(page);
1245 block_start = 0;
1246 do {
1247 if (!bh)
1248 goto skip_page;
1249 if (map && (cur_logical >= map->m_lblk) &&
1250 (cur_logical <= (map->m_lblk +
1251 (map->m_len - 1)))) {
1252 if (buffer_delay(bh)) {
1253 clear_buffer_delay(bh);
1254 bh->b_blocknr = pblock;
1255 }
1256 if (buffer_unwritten(bh) ||
1257 buffer_mapped(bh))
1258 BUG_ON(bh->b_blocknr != pblock);
1259 if (map->m_flags & EXT4_MAP_UNINIT)
1260 set_buffer_uninit(bh);
1261 clear_buffer_unwritten(bh);
1262 }
1263
1264 /* skip page if block allocation undone */
1265 if (buffer_delay(bh) || buffer_unwritten(bh))
1266 skip_page = 1;
1267 bh = bh->b_this_page;
1268 block_start += bh->b_size;
1269 cur_logical++;
1270 pblock++;
1271 } while (bh != page_bufs);
1272
1273 if (skip_page)
1274 goto skip_page;
1275
1276 if (commit_write)
1277 /* mark the buffer_heads as dirty & uptodate */
1278 block_commit_write(page, 0, len);
1279
1280 clear_page_dirty_for_io(page);
1281 /*
1282 * Delalloc doesn't support data journalling,
1283 * but eventually maybe we'll lift this
1284 * restriction.
1285 */
1286 if (unlikely(journal_data && PageChecked(page)))
1287 err = __ext4_journalled_writepage(page, len);
1288 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289 err = ext4_bio_write_page(&io_submit, page,
1290 len, mpd->wbc);
1291 else if (buffer_uninit(page_bufs)) {
1292 ext4_set_bh_endio(page_bufs, inode);
1293 err = block_write_full_page_endio(page,
1294 noalloc_get_block_write,
1295 mpd->wbc, ext4_end_io_buffer_write);
1296 } else
1297 err = block_write_full_page(page,
1298 noalloc_get_block_write, mpd->wbc);
1299
1300 if (!err)
1301 mpd->pages_written++;
1302 /*
1303 * In error case, we have to continue because
1304 * remaining pages are still locked
1305 */
1306 if (ret == 0)
1307 ret = err;
1308 }
1309 pagevec_release(&pvec);
1310 }
1311 ext4_io_submit(&io_submit);
1312 return ret;
1313}
1314
1315static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1316{
1317 int nr_pages, i;
1318 pgoff_t index, end;
1319 struct pagevec pvec;
1320 struct inode *inode = mpd->inode;
1321 struct address_space *mapping = inode->i_mapping;
1322
1323 index = mpd->first_page;
1324 end = mpd->next_page - 1;
1325 while (index <= end) {
1326 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327 if (nr_pages == 0)
1328 break;
1329 for (i = 0; i < nr_pages; i++) {
1330 struct page *page = pvec.pages[i];
1331 if (page->index > end)
1332 break;
1333 BUG_ON(!PageLocked(page));
1334 BUG_ON(PageWriteback(page));
1335 block_invalidatepage(page, 0);
1336 ClearPageUptodate(page);
1337 unlock_page(page);
1338 }
1339 index = pvec.pages[nr_pages - 1]->index + 1;
1340 pagevec_release(&pvec);
1341 }
1342 return;
1343}
1344
1345static void ext4_print_free_blocks(struct inode *inode)
1346{
1347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348 printk(KERN_CRIT "Total free blocks count %lld\n",
1349 ext4_count_free_blocks(inode->i_sb));
1350 printk(KERN_CRIT "Free/Dirty block details\n");
1351 printk(KERN_CRIT "free_blocks=%lld\n",
1352 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353 printk(KERN_CRIT "dirty_blocks=%lld\n",
1354 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355 printk(KERN_CRIT "Block reservation details\n");
1356 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357 EXT4_I(inode)->i_reserved_data_blocks);
1358 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359 EXT4_I(inode)->i_reserved_meta_blocks);
1360 return;
1361}
1362
1363/*
1364 * mpage_da_map_and_submit - go through given space, map them
1365 * if necessary, and then submit them for I/O
1366 *
1367 * @mpd - bh describing space
1368 *
1369 * The function skips space we know is already mapped to disk blocks.
1370 *
1371 */
1372static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373{
1374 int err, blks, get_blocks_flags;
1375 struct ext4_map_blocks map, *mapp = NULL;
1376 sector_t next = mpd->b_blocknr;
1377 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379 handle_t *handle = NULL;
1380
1381 /*
1382 * If the blocks are mapped already, or we couldn't accumulate
1383 * any blocks, then proceed immediately to the submission stage.
1384 */
1385 if ((mpd->b_size == 0) ||
1386 ((mpd->b_state & (1 << BH_Mapped)) &&
1387 !(mpd->b_state & (1 << BH_Delay)) &&
1388 !(mpd->b_state & (1 << BH_Unwritten))))
1389 goto submit_io;
1390
1391 handle = ext4_journal_current_handle();
1392 BUG_ON(!handle);
1393
1394 /*
1395 * Call ext4_map_blocks() to allocate any delayed allocation
1396 * blocks, or to convert an uninitialized extent to be
1397 * initialized (in the case where we have written into
1398 * one or more preallocated blocks).
1399 *
1400 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401 * indicate that we are on the delayed allocation path. This
1402 * affects functions in many different parts of the allocation
1403 * call path. This flag exists primarily because we don't
1404 * want to change *many* call functions, so ext4_map_blocks()
1405 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406 * inode's allocation semaphore is taken.
1407 *
1408 * If the blocks in questions were delalloc blocks, set
1409 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410 * variables are updated after the blocks have been allocated.
1411 */
1412 map.m_lblk = next;
1413 map.m_len = max_blocks;
1414 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415 if (ext4_should_dioread_nolock(mpd->inode))
1416 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417 if (mpd->b_state & (1 << BH_Delay))
1418 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419
1420 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421 if (blks < 0) {
1422 struct super_block *sb = mpd->inode->i_sb;
1423
1424 err = blks;
1425 /*
1426 * If get block returns EAGAIN or ENOSPC and there
1427 * appears to be free blocks we will just let
1428 * mpage_da_submit_io() unlock all of the pages.
1429 */
1430 if (err == -EAGAIN)
1431 goto submit_io;
1432
1433 if (err == -ENOSPC &&
1434 ext4_count_free_blocks(sb)) {
1435 mpd->retval = err;
1436 goto submit_io;
1437 }
1438
1439 /*
1440 * get block failure will cause us to loop in
1441 * writepages, because a_ops->writepage won't be able
1442 * to make progress. The page will be redirtied by
1443 * writepage and writepages will again try to write
1444 * the same.
1445 */
1446 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447 ext4_msg(sb, KERN_CRIT,
1448 "delayed block allocation failed for inode %lu "
1449 "at logical offset %llu with max blocks %zd "
1450 "with error %d", mpd->inode->i_ino,
1451 (unsigned long long) next,
1452 mpd->b_size >> mpd->inode->i_blkbits, err);
1453 ext4_msg(sb, KERN_CRIT,
1454 "This should not happen!! Data will be lost\n");
1455 if (err == -ENOSPC)
1456 ext4_print_free_blocks(mpd->inode);
1457 }
1458 /* invalidate all the pages */
1459 ext4_da_block_invalidatepages(mpd);
1460
1461 /* Mark this page range as having been completed */
1462 mpd->io_done = 1;
1463 return;
1464 }
1465 BUG_ON(blks == 0);
1466
1467 mapp = ↦
1468 if (map.m_flags & EXT4_MAP_NEW) {
1469 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470 int i;
1471
1472 for (i = 0; i < map.m_len; i++)
1473 unmap_underlying_metadata(bdev, map.m_pblk + i);
1474 }
1475
1476 if (ext4_should_order_data(mpd->inode)) {
1477 err = ext4_jbd2_file_inode(handle, mpd->inode);
1478 if (err)
1479 /* This only happens if the journal is aborted */
1480 return;
1481 }
1482
1483 /*
1484 * Update on-disk size along with block allocation.
1485 */
1486 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487 if (disksize > i_size_read(mpd->inode))
1488 disksize = i_size_read(mpd->inode);
1489 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490 ext4_update_i_disksize(mpd->inode, disksize);
1491 err = ext4_mark_inode_dirty(handle, mpd->inode);
1492 if (err)
1493 ext4_error(mpd->inode->i_sb,
1494 "Failed to mark inode %lu dirty",
1495 mpd->inode->i_ino);
1496 }
1497
1498submit_io:
1499 mpage_da_submit_io(mpd, mapp);
1500 mpd->io_done = 1;
1501}
1502
1503#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504 (1 << BH_Delay) | (1 << BH_Unwritten))
1505
1506/*
1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508 *
1509 * @mpd->lbh - extent of blocks
1510 * @logical - logical number of the block in the file
1511 * @bh - bh of the block (used to access block's state)
1512 *
1513 * the function is used to collect contig. blocks in same state
1514 */
1515static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516 sector_t logical, size_t b_size,
1517 unsigned long b_state)
1518{
1519 sector_t next;
1520 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521
1522 /*
1523 * XXX Don't go larger than mballoc is willing to allocate
1524 * This is a stopgap solution. We eventually need to fold
1525 * mpage_da_submit_io() into this function and then call
1526 * ext4_map_blocks() multiple times in a loop
1527 */
1528 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529 goto flush_it;
1530
1531 /* check if thereserved journal credits might overflow */
1532 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534 /*
1535 * With non-extent format we are limited by the journal
1536 * credit available. Total credit needed to insert
1537 * nrblocks contiguous blocks is dependent on the
1538 * nrblocks. So limit nrblocks.
1539 */
1540 goto flush_it;
1541 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542 EXT4_MAX_TRANS_DATA) {
1543 /*
1544 * Adding the new buffer_head would make it cross the
1545 * allowed limit for which we have journal credit
1546 * reserved. So limit the new bh->b_size
1547 */
1548 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549 mpd->inode->i_blkbits;
1550 /* we will do mpage_da_submit_io in the next loop */
1551 }
1552 }
1553 /*
1554 * First block in the extent
1555 */
1556 if (mpd->b_size == 0) {
1557 mpd->b_blocknr = logical;
1558 mpd->b_size = b_size;
1559 mpd->b_state = b_state & BH_FLAGS;
1560 return;
1561 }
1562
1563 next = mpd->b_blocknr + nrblocks;
1564 /*
1565 * Can we merge the block to our big extent?
1566 */
1567 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568 mpd->b_size += b_size;
1569 return;
1570 }
1571
1572flush_it:
1573 /*
1574 * We couldn't merge the block to our extent, so we
1575 * need to flush current extent and start new one
1576 */
1577 mpage_da_map_and_submit(mpd);
1578 return;
1579}
1580
1581static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582{
1583 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1584}
1585
1586/*
1587 * This is a special get_blocks_t callback which is used by
1588 * ext4_da_write_begin(). It will either return mapped block or
1589 * reserve space for a single block.
1590 *
1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592 * We also have b_blocknr = -1 and b_bdev initialized properly
1593 *
1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596 * initialized properly.
1597 */
1598static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599 struct buffer_head *bh, int create)
1600{
1601 struct ext4_map_blocks map;
1602 int ret = 0;
1603 sector_t invalid_block = ~((sector_t) 0xffff);
1604
1605 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606 invalid_block = ~0;
1607
1608 BUG_ON(create == 0);
1609 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610
1611 map.m_lblk = iblock;
1612 map.m_len = 1;
1613
1614 /*
1615 * first, we need to know whether the block is allocated already
1616 * preallocated blocks are unmapped but should treated
1617 * the same as allocated blocks.
1618 */
1619 ret = ext4_map_blocks(NULL, inode, &map, 0);
1620 if (ret < 0)
1621 return ret;
1622 if (ret == 0) {
1623 if (buffer_delay(bh))
1624 return 0; /* Not sure this could or should happen */
1625 /*
1626 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627 */
1628 ret = ext4_da_reserve_space(inode, iblock);
1629 if (ret)
1630 /* not enough space to reserve */
1631 return ret;
1632
1633 map_bh(bh, inode->i_sb, invalid_block);
1634 set_buffer_new(bh);
1635 set_buffer_delay(bh);
1636 return 0;
1637 }
1638
1639 map_bh(bh, inode->i_sb, map.m_pblk);
1640 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642 if (buffer_unwritten(bh)) {
1643 /* A delayed write to unwritten bh should be marked
1644 * new and mapped. Mapped ensures that we don't do
1645 * get_block multiple times when we write to the same
1646 * offset and new ensures that we do proper zero out
1647 * for partial write.
1648 */
1649 set_buffer_new(bh);
1650 set_buffer_mapped(bh);
1651 }
1652 return 0;
1653}
1654
1655/*
1656 * This function is used as a standard get_block_t calback function
1657 * when there is no desire to allocate any blocks. It is used as a
1658 * callback function for block_write_begin() and block_write_full_page().
1659 * These functions should only try to map a single block at a time.
1660 *
1661 * Since this function doesn't do block allocations even if the caller
1662 * requests it by passing in create=1, it is critically important that
1663 * any caller checks to make sure that any buffer heads are returned
1664 * by this function are either all already mapped or marked for
1665 * delayed allocation before calling block_write_full_page(). Otherwise,
1666 * b_blocknr could be left unitialized, and the page write functions will
1667 * be taken by surprise.
1668 */
1669static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670 struct buffer_head *bh_result, int create)
1671{
1672 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673 return _ext4_get_block(inode, iblock, bh_result, 0);
1674}
1675
1676static int bget_one(handle_t *handle, struct buffer_head *bh)
1677{
1678 get_bh(bh);
1679 return 0;
1680}
1681
1682static int bput_one(handle_t *handle, struct buffer_head *bh)
1683{
1684 put_bh(bh);
1685 return 0;
1686}
1687
1688static int __ext4_journalled_writepage(struct page *page,
1689 unsigned int len)
1690{
1691 struct address_space *mapping = page->mapping;
1692 struct inode *inode = mapping->host;
1693 struct buffer_head *page_bufs;
1694 handle_t *handle = NULL;
1695 int ret = 0;
1696 int err;
1697
1698 ClearPageChecked(page);
1699 page_bufs = page_buffers(page);
1700 BUG_ON(!page_bufs);
1701 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702 /* As soon as we unlock the page, it can go away, but we have
1703 * references to buffers so we are safe */
1704 unlock_page(page);
1705
1706 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1707 if (IS_ERR(handle)) {
1708 ret = PTR_ERR(handle);
1709 goto out;
1710 }
1711
1712 BUG_ON(!ext4_handle_valid(handle));
1713
1714 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715 do_journal_get_write_access);
1716
1717 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718 write_end_fn);
1719 if (ret == 0)
1720 ret = err;
1721 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722 err = ext4_journal_stop(handle);
1723 if (!ret)
1724 ret = err;
1725
1726 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1727 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728out:
1729 return ret;
1730}
1731
1732static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734
1735/*
1736 * Note that we don't need to start a transaction unless we're journaling data
1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738 * need to file the inode to the transaction's list in ordered mode because if
1739 * we are writing back data added by write(), the inode is already there and if
1740 * we are writing back data modified via mmap(), no one guarantees in which
1741 * transaction the data will hit the disk. In case we are journaling data, we
1742 * cannot start transaction directly because transaction start ranks above page
1743 * lock so we have to do some magic.
1744 *
1745 * This function can get called via...
1746 * - ext4_da_writepages after taking page lock (have journal handle)
1747 * - journal_submit_inode_data_buffers (no journal handle)
1748 * - shrink_page_list via pdflush (no journal handle)
1749 * - grab_page_cache when doing write_begin (have journal handle)
1750 *
1751 * We don't do any block allocation in this function. If we have page with
1752 * multiple blocks we need to write those buffer_heads that are mapped. This
1753 * is important for mmaped based write. So if we do with blocksize 1K
1754 * truncate(f, 1024);
1755 * a = mmap(f, 0, 4096);
1756 * a[0] = 'a';
1757 * truncate(f, 4096);
1758 * we have in the page first buffer_head mapped via page_mkwrite call back
1759 * but other bufer_heads would be unmapped but dirty(dirty done via the
1760 * do_wp_page). So writepage should write the first block. If we modify
1761 * the mmap area beyond 1024 we will again get a page_fault and the
1762 * page_mkwrite callback will do the block allocation and mark the
1763 * buffer_heads mapped.
1764 *
1765 * We redirty the page if we have any buffer_heads that is either delay or
1766 * unwritten in the page.
1767 *
1768 * We can get recursively called as show below.
1769 *
1770 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771 * ext4_writepage()
1772 *
1773 * But since we don't do any block allocation we should not deadlock.
1774 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1775 */
1776static int ext4_writepage(struct page *page,
1777 struct writeback_control *wbc)
1778{
1779 int ret = 0, commit_write = 0;
1780 loff_t size;
1781 unsigned int len;
1782 struct buffer_head *page_bufs = NULL;
1783 struct inode *inode = page->mapping->host;
1784
1785 trace_ext4_writepage(page);
1786 size = i_size_read(inode);
1787 if (page->index == size >> PAGE_CACHE_SHIFT)
1788 len = size & ~PAGE_CACHE_MASK;
1789 else
1790 len = PAGE_CACHE_SIZE;
1791
1792 /*
1793 * If the page does not have buffers (for whatever reason),
1794 * try to create them using __block_write_begin. If this
1795 * fails, redirty the page and move on.
1796 */
1797 if (!page_has_buffers(page)) {
1798 if (__block_write_begin(page, 0, len,
1799 noalloc_get_block_write)) {
1800 redirty_page:
1801 redirty_page_for_writepage(wbc, page);
1802 unlock_page(page);
1803 return 0;
1804 }
1805 commit_write = 1;
1806 }
1807 page_bufs = page_buffers(page);
1808 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809 ext4_bh_delay_or_unwritten)) {
1810 /*
1811 * We don't want to do block allocation, so redirty
1812 * the page and return. We may reach here when we do
1813 * a journal commit via journal_submit_inode_data_buffers.
1814 * We can also reach here via shrink_page_list
1815 */
1816 goto redirty_page;
1817 }
1818 if (commit_write)
1819 /* now mark the buffer_heads as dirty and uptodate */
1820 block_commit_write(page, 0, len);
1821
1822 if (PageChecked(page) && ext4_should_journal_data(inode))
1823 /*
1824 * It's mmapped pagecache. Add buffers and journal it. There
1825 * doesn't seem much point in redirtying the page here.
1826 */
1827 return __ext4_journalled_writepage(page, len);
1828
1829 if (buffer_uninit(page_bufs)) {
1830 ext4_set_bh_endio(page_bufs, inode);
1831 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832 wbc, ext4_end_io_buffer_write);
1833 } else
1834 ret = block_write_full_page(page, noalloc_get_block_write,
1835 wbc);
1836
1837 return ret;
1838}
1839
1840/*
1841 * This is called via ext4_da_writepages() to
1842 * calculate the total number of credits to reserve to fit
1843 * a single extent allocation into a single transaction,
1844 * ext4_da_writpeages() will loop calling this before
1845 * the block allocation.
1846 */
1847
1848static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849{
1850 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851
1852 /*
1853 * With non-extent format the journal credit needed to
1854 * insert nrblocks contiguous block is dependent on
1855 * number of contiguous block. So we will limit
1856 * number of contiguous block to a sane value
1857 */
1858 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859 (max_blocks > EXT4_MAX_TRANS_DATA))
1860 max_blocks = EXT4_MAX_TRANS_DATA;
1861
1862 return ext4_chunk_trans_blocks(inode, max_blocks);
1863}
1864
1865/*
1866 * write_cache_pages_da - walk the list of dirty pages of the given
1867 * address space and accumulate pages that need writing, and call
1868 * mpage_da_map_and_submit to map a single contiguous memory region
1869 * and then write them.
1870 */
1871static int write_cache_pages_da(struct address_space *mapping,
1872 struct writeback_control *wbc,
1873 struct mpage_da_data *mpd,
1874 pgoff_t *done_index)
1875{
1876 struct buffer_head *bh, *head;
1877 struct inode *inode = mapping->host;
1878 struct pagevec pvec;
1879 unsigned int nr_pages;
1880 sector_t logical;
1881 pgoff_t index, end;
1882 long nr_to_write = wbc->nr_to_write;
1883 int i, tag, ret = 0;
1884
1885 memset(mpd, 0, sizeof(struct mpage_da_data));
1886 mpd->wbc = wbc;
1887 mpd->inode = inode;
1888 pagevec_init(&pvec, 0);
1889 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1891
1892 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893 tag = PAGECACHE_TAG_TOWRITE;
1894 else
1895 tag = PAGECACHE_TAG_DIRTY;
1896
1897 *done_index = index;
1898 while (index <= end) {
1899 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901 if (nr_pages == 0)
1902 return 0;
1903
1904 for (i = 0; i < nr_pages; i++) {
1905 struct page *page = pvec.pages[i];
1906
1907 /*
1908 * At this point, the page may be truncated or
1909 * invalidated (changing page->mapping to NULL), or
1910 * even swizzled back from swapper_space to tmpfs file
1911 * mapping. However, page->index will not change
1912 * because we have a reference on the page.
1913 */
1914 if (page->index > end)
1915 goto out;
1916
1917 *done_index = page->index + 1;
1918
1919 /*
1920 * If we can't merge this page, and we have
1921 * accumulated an contiguous region, write it
1922 */
1923 if ((mpd->next_page != page->index) &&
1924 (mpd->next_page != mpd->first_page)) {
1925 mpage_da_map_and_submit(mpd);
1926 goto ret_extent_tail;
1927 }
1928
1929 lock_page(page);
1930
1931 /*
1932 * If the page is no longer dirty, or its
1933 * mapping no longer corresponds to inode we
1934 * are writing (which means it has been
1935 * truncated or invalidated), or the page is
1936 * already under writeback and we are not
1937 * doing a data integrity writeback, skip the page
1938 */
1939 if (!PageDirty(page) ||
1940 (PageWriteback(page) &&
1941 (wbc->sync_mode == WB_SYNC_NONE)) ||
1942 unlikely(page->mapping != mapping)) {
1943 unlock_page(page);
1944 continue;
1945 }
1946
1947 wait_on_page_writeback(page);
1948 BUG_ON(PageWriteback(page));
1949
1950 if (mpd->next_page != page->index)
1951 mpd->first_page = page->index;
1952 mpd->next_page = page->index + 1;
1953 logical = (sector_t) page->index <<
1954 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1955
1956 if (!page_has_buffers(page)) {
1957 mpage_add_bh_to_extent(mpd, logical,
1958 PAGE_CACHE_SIZE,
1959 (1 << BH_Dirty) | (1 << BH_Uptodate));
1960 if (mpd->io_done)
1961 goto ret_extent_tail;
1962 } else {
1963 /*
1964 * Page with regular buffer heads,
1965 * just add all dirty ones
1966 */
1967 head = page_buffers(page);
1968 bh = head;
1969 do {
1970 BUG_ON(buffer_locked(bh));
1971 /*
1972 * We need to try to allocate
1973 * unmapped blocks in the same page.
1974 * Otherwise we won't make progress
1975 * with the page in ext4_writepage
1976 */
1977 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978 mpage_add_bh_to_extent(mpd, logical,
1979 bh->b_size,
1980 bh->b_state);
1981 if (mpd->io_done)
1982 goto ret_extent_tail;
1983 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984 /*
1985 * mapped dirty buffer. We need
1986 * to update the b_state
1987 * because we look at b_state
1988 * in mpage_da_map_blocks. We
1989 * don't update b_size because
1990 * if we find an unmapped
1991 * buffer_head later we need to
1992 * use the b_state flag of that
1993 * buffer_head.
1994 */
1995 if (mpd->b_size == 0)
1996 mpd->b_state = bh->b_state & BH_FLAGS;
1997 }
1998 logical++;
1999 } while ((bh = bh->b_this_page) != head);
2000 }
2001
2002 if (nr_to_write > 0) {
2003 nr_to_write--;
2004 if (nr_to_write == 0 &&
2005 wbc->sync_mode == WB_SYNC_NONE)
2006 /*
2007 * We stop writing back only if we are
2008 * not doing integrity sync. In case of
2009 * integrity sync we have to keep going
2010 * because someone may be concurrently
2011 * dirtying pages, and we might have
2012 * synced a lot of newly appeared dirty
2013 * pages, but have not synced all of the
2014 * old dirty pages.
2015 */
2016 goto out;
2017 }
2018 }
2019 pagevec_release(&pvec);
2020 cond_resched();
2021 }
2022 return 0;
2023ret_extent_tail:
2024 ret = MPAGE_DA_EXTENT_TAIL;
2025out:
2026 pagevec_release(&pvec);
2027 cond_resched();
2028 return ret;
2029}
2030
2031
2032static int ext4_da_writepages(struct address_space *mapping,
2033 struct writeback_control *wbc)
2034{
2035 pgoff_t index;
2036 int range_whole = 0;
2037 handle_t *handle = NULL;
2038 struct mpage_da_data mpd;
2039 struct inode *inode = mapping->host;
2040 int pages_written = 0;
2041 unsigned int max_pages;
2042 int range_cyclic, cycled = 1, io_done = 0;
2043 int needed_blocks, ret = 0;
2044 long desired_nr_to_write, nr_to_writebump = 0;
2045 loff_t range_start = wbc->range_start;
2046 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047 pgoff_t done_index = 0;
2048 pgoff_t end;
2049
2050 trace_ext4_da_writepages(inode, wbc);
2051
2052 /*
2053 * No pages to write? This is mainly a kludge to avoid starting
2054 * a transaction for special inodes like journal inode on last iput()
2055 * because that could violate lock ordering on umount
2056 */
2057 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058 return 0;
2059
2060 /*
2061 * If the filesystem has aborted, it is read-only, so return
2062 * right away instead of dumping stack traces later on that
2063 * will obscure the real source of the problem. We test
2064 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065 * the latter could be true if the filesystem is mounted
2066 * read-only, and in that case, ext4_da_writepages should
2067 * *never* be called, so if that ever happens, we would want
2068 * the stack trace.
2069 */
2070 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071 return -EROFS;
2072
2073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074 range_whole = 1;
2075
2076 range_cyclic = wbc->range_cyclic;
2077 if (wbc->range_cyclic) {
2078 index = mapping->writeback_index;
2079 if (index)
2080 cycled = 0;
2081 wbc->range_start = index << PAGE_CACHE_SHIFT;
2082 wbc->range_end = LLONG_MAX;
2083 wbc->range_cyclic = 0;
2084 end = -1;
2085 } else {
2086 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088 }
2089
2090 /*
2091 * This works around two forms of stupidity. The first is in
2092 * the writeback code, which caps the maximum number of pages
2093 * written to be 1024 pages. This is wrong on multiple
2094 * levels; different architectues have a different page size,
2095 * which changes the maximum amount of data which gets
2096 * written. Secondly, 4 megabytes is way too small. XFS
2097 * forces this value to be 16 megabytes by multiplying
2098 * nr_to_write parameter by four, and then relies on its
2099 * allocator to allocate larger extents to make them
2100 * contiguous. Unfortunately this brings us to the second
2101 * stupidity, which is that ext4's mballoc code only allocates
2102 * at most 2048 blocks. So we force contiguous writes up to
2103 * the number of dirty blocks in the inode, or
2104 * sbi->max_writeback_mb_bump whichever is smaller.
2105 */
2106 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107 if (!range_cyclic && range_whole) {
2108 if (wbc->nr_to_write == LONG_MAX)
2109 desired_nr_to_write = wbc->nr_to_write;
2110 else
2111 desired_nr_to_write = wbc->nr_to_write * 8;
2112 } else
2113 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114 max_pages);
2115 if (desired_nr_to_write > max_pages)
2116 desired_nr_to_write = max_pages;
2117
2118 if (wbc->nr_to_write < desired_nr_to_write) {
2119 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120 wbc->nr_to_write = desired_nr_to_write;
2121 }
2122
2123retry:
2124 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125 tag_pages_for_writeback(mapping, index, end);
2126
2127 while (!ret && wbc->nr_to_write > 0) {
2128
2129 /*
2130 * we insert one extent at a time. So we need
2131 * credit needed for single extent allocation.
2132 * journalled mode is currently not supported
2133 * by delalloc
2134 */
2135 BUG_ON(ext4_should_journal_data(inode));
2136 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137
2138 /* start a new transaction*/
2139 handle = ext4_journal_start(inode, needed_blocks);
2140 if (IS_ERR(handle)) {
2141 ret = PTR_ERR(handle);
2142 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143 "%ld pages, ino %lu; err %d", __func__,
2144 wbc->nr_to_write, inode->i_ino, ret);
2145 goto out_writepages;
2146 }
2147
2148 /*
2149 * Now call write_cache_pages_da() to find the next
2150 * contiguous region of logical blocks that need
2151 * blocks to be allocated by ext4 and submit them.
2152 */
2153 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2154 /*
2155 * If we have a contiguous extent of pages and we
2156 * haven't done the I/O yet, map the blocks and submit
2157 * them for I/O.
2158 */
2159 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160 mpage_da_map_and_submit(&mpd);
2161 ret = MPAGE_DA_EXTENT_TAIL;
2162 }
2163 trace_ext4_da_write_pages(inode, &mpd);
2164 wbc->nr_to_write -= mpd.pages_written;
2165
2166 ext4_journal_stop(handle);
2167
2168 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169 /* commit the transaction which would
2170 * free blocks released in the transaction
2171 * and try again
2172 */
2173 jbd2_journal_force_commit_nested(sbi->s_journal);
2174 ret = 0;
2175 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176 /*
2177 * got one extent now try with
2178 * rest of the pages
2179 */
2180 pages_written += mpd.pages_written;
2181 ret = 0;
2182 io_done = 1;
2183 } else if (wbc->nr_to_write)
2184 /*
2185 * There is no more writeout needed
2186 * or we requested for a noblocking writeout
2187 * and we found the device congested
2188 */
2189 break;
2190 }
2191 if (!io_done && !cycled) {
2192 cycled = 1;
2193 index = 0;
2194 wbc->range_start = index << PAGE_CACHE_SHIFT;
2195 wbc->range_end = mapping->writeback_index - 1;
2196 goto retry;
2197 }
2198
2199 /* Update index */
2200 wbc->range_cyclic = range_cyclic;
2201 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202 /*
2203 * set the writeback_index so that range_cyclic
2204 * mode will write it back later
2205 */
2206 mapping->writeback_index = done_index;
2207
2208out_writepages:
2209 wbc->nr_to_write -= nr_to_writebump;
2210 wbc->range_start = range_start;
2211 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2212 return ret;
2213}
2214
2215#define FALL_BACK_TO_NONDELALLOC 1
2216static int ext4_nonda_switch(struct super_block *sb)
2217{
2218 s64 free_blocks, dirty_blocks;
2219 struct ext4_sb_info *sbi = EXT4_SB(sb);
2220
2221 /*
2222 * switch to non delalloc mode if we are running low
2223 * on free block. The free block accounting via percpu
2224 * counters can get slightly wrong with percpu_counter_batch getting
2225 * accumulated on each CPU without updating global counters
2226 * Delalloc need an accurate free block accounting. So switch
2227 * to non delalloc when we are near to error range.
2228 */
2229 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231 if (2 * free_blocks < 3 * dirty_blocks ||
2232 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2233 /*
2234 * free block count is less than 150% of dirty blocks
2235 * or free blocks is less than watermark
2236 */
2237 return 1;
2238 }
2239 /*
2240 * Even if we don't switch but are nearing capacity,
2241 * start pushing delalloc when 1/2 of free blocks are dirty.
2242 */
2243 if (free_blocks < 2 * dirty_blocks)
2244 writeback_inodes_sb_if_idle(sb);
2245
2246 return 0;
2247}
2248
2249static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250 loff_t pos, unsigned len, unsigned flags,
2251 struct page **pagep, void **fsdata)
2252{
2253 int ret, retries = 0;
2254 struct page *page;
2255 pgoff_t index;
2256 struct inode *inode = mapping->host;
2257 handle_t *handle;
2258
2259 index = pos >> PAGE_CACHE_SHIFT;
2260
2261 if (ext4_nonda_switch(inode->i_sb)) {
2262 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2263 return ext4_write_begin(file, mapping, pos,
2264 len, flags, pagep, fsdata);
2265 }
2266 *fsdata = (void *)0;
2267 trace_ext4_da_write_begin(inode, pos, len, flags);
2268retry:
2269 /*
2270 * With delayed allocation, we don't log the i_disksize update
2271 * if there is delayed block allocation. But we still need
2272 * to journalling the i_disksize update if writes to the end
2273 * of file which has an already mapped buffer.
2274 */
2275 handle = ext4_journal_start(inode, 1);
2276 if (IS_ERR(handle)) {
2277 ret = PTR_ERR(handle);
2278 goto out;
2279 }
2280 /* We cannot recurse into the filesystem as the transaction is already
2281 * started */
2282 flags |= AOP_FLAG_NOFS;
2283
2284 page = grab_cache_page_write_begin(mapping, index, flags);
2285 if (!page) {
2286 ext4_journal_stop(handle);
2287 ret = -ENOMEM;
2288 goto out;
2289 }
2290 *pagep = page;
2291
2292 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2293 if (ret < 0) {
2294 unlock_page(page);
2295 ext4_journal_stop(handle);
2296 page_cache_release(page);
2297 /*
2298 * block_write_begin may have instantiated a few blocks
2299 * outside i_size. Trim these off again. Don't need
2300 * i_size_read because we hold i_mutex.
2301 */
2302 if (pos + len > inode->i_size)
2303 ext4_truncate_failed_write(inode);
2304 }
2305
2306 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2307 goto retry;
2308out:
2309 return ret;
2310}
2311
2312/*
2313 * Check if we should update i_disksize
2314 * when write to the end of file but not require block allocation
2315 */
2316static int ext4_da_should_update_i_disksize(struct page *page,
2317 unsigned long offset)
2318{
2319 struct buffer_head *bh;
2320 struct inode *inode = page->mapping->host;
2321 unsigned int idx;
2322 int i;
2323
2324 bh = page_buffers(page);
2325 idx = offset >> inode->i_blkbits;
2326
2327 for (i = 0; i < idx; i++)
2328 bh = bh->b_this_page;
2329
2330 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331 return 0;
2332 return 1;
2333}
2334
2335static int ext4_da_write_end(struct file *file,
2336 struct address_space *mapping,
2337 loff_t pos, unsigned len, unsigned copied,
2338 struct page *page, void *fsdata)
2339{
2340 struct inode *inode = mapping->host;
2341 int ret = 0, ret2;
2342 handle_t *handle = ext4_journal_current_handle();
2343 loff_t new_i_size;
2344 unsigned long start, end;
2345 int write_mode = (int)(unsigned long)fsdata;
2346
2347 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2348 if (ext4_should_order_data(inode)) {
2349 return ext4_ordered_write_end(file, mapping, pos,
2350 len, copied, page, fsdata);
2351 } else if (ext4_should_writeback_data(inode)) {
2352 return ext4_writeback_write_end(file, mapping, pos,
2353 len, copied, page, fsdata);
2354 } else {
2355 BUG();
2356 }
2357 }
2358
2359 trace_ext4_da_write_end(inode, pos, len, copied);
2360 start = pos & (PAGE_CACHE_SIZE - 1);
2361 end = start + copied - 1;
2362
2363 /*
2364 * generic_write_end() will run mark_inode_dirty() if i_size
2365 * changes. So let's piggyback the i_disksize mark_inode_dirty
2366 * into that.
2367 */
2368
2369 new_i_size = pos + copied;
2370 if (new_i_size > EXT4_I(inode)->i_disksize) {
2371 if (ext4_da_should_update_i_disksize(page, end)) {
2372 down_write(&EXT4_I(inode)->i_data_sem);
2373 if (new_i_size > EXT4_I(inode)->i_disksize) {
2374 /*
2375 * Updating i_disksize when extending file
2376 * without needing block allocation
2377 */
2378 if (ext4_should_order_data(inode))
2379 ret = ext4_jbd2_file_inode(handle,
2380 inode);
2381
2382 EXT4_I(inode)->i_disksize = new_i_size;
2383 }
2384 up_write(&EXT4_I(inode)->i_data_sem);
2385 /* We need to mark inode dirty even if
2386 * new_i_size is less that inode->i_size
2387 * bu greater than i_disksize.(hint delalloc)
2388 */
2389 ext4_mark_inode_dirty(handle, inode);
2390 }
2391 }
2392 ret2 = generic_write_end(file, mapping, pos, len, copied,
2393 page, fsdata);
2394 copied = ret2;
2395 if (ret2 < 0)
2396 ret = ret2;
2397 ret2 = ext4_journal_stop(handle);
2398 if (!ret)
2399 ret = ret2;
2400
2401 return ret ? ret : copied;
2402}
2403
2404static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2405{
2406 /*
2407 * Drop reserved blocks
2408 */
2409 BUG_ON(!PageLocked(page));
2410 if (!page_has_buffers(page))
2411 goto out;
2412
2413 ext4_da_page_release_reservation(page, offset);
2414
2415out:
2416 ext4_invalidatepage(page, offset);
2417
2418 return;
2419}
2420
2421/*
2422 * Force all delayed allocation blocks to be allocated for a given inode.
2423 */
2424int ext4_alloc_da_blocks(struct inode *inode)
2425{
2426 trace_ext4_alloc_da_blocks(inode);
2427
2428 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2429 !EXT4_I(inode)->i_reserved_meta_blocks)
2430 return 0;
2431
2432 /*
2433 * We do something simple for now. The filemap_flush() will
2434 * also start triggering a write of the data blocks, which is
2435 * not strictly speaking necessary (and for users of
2436 * laptop_mode, not even desirable). However, to do otherwise
2437 * would require replicating code paths in:
2438 *
2439 * ext4_da_writepages() ->
2440 * write_cache_pages() ---> (via passed in callback function)
2441 * __mpage_da_writepage() -->
2442 * mpage_add_bh_to_extent()
2443 * mpage_da_map_blocks()
2444 *
2445 * The problem is that write_cache_pages(), located in
2446 * mm/page-writeback.c, marks pages clean in preparation for
2447 * doing I/O, which is not desirable if we're not planning on
2448 * doing I/O at all.
2449 *
2450 * We could call write_cache_pages(), and then redirty all of
2451 * the pages by calling redirty_page_for_writepage() but that
2452 * would be ugly in the extreme. So instead we would need to
2453 * replicate parts of the code in the above functions,
2454 * simplifying them because we wouldn't actually intend to
2455 * write out the pages, but rather only collect contiguous
2456 * logical block extents, call the multi-block allocator, and
2457 * then update the buffer heads with the block allocations.
2458 *
2459 * For now, though, we'll cheat by calling filemap_flush(),
2460 * which will map the blocks, and start the I/O, but not
2461 * actually wait for the I/O to complete.
2462 */
2463 return filemap_flush(inode->i_mapping);
2464}
2465
2466/*
2467 * bmap() is special. It gets used by applications such as lilo and by
2468 * the swapper to find the on-disk block of a specific piece of data.
2469 *
2470 * Naturally, this is dangerous if the block concerned is still in the
2471 * journal. If somebody makes a swapfile on an ext4 data-journaling
2472 * filesystem and enables swap, then they may get a nasty shock when the
2473 * data getting swapped to that swapfile suddenly gets overwritten by
2474 * the original zero's written out previously to the journal and
2475 * awaiting writeback in the kernel's buffer cache.
2476 *
2477 * So, if we see any bmap calls here on a modified, data-journaled file,
2478 * take extra steps to flush any blocks which might be in the cache.
2479 */
2480static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481{
2482 struct inode *inode = mapping->host;
2483 journal_t *journal;
2484 int err;
2485
2486 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2487 test_opt(inode->i_sb, DELALLOC)) {
2488 /*
2489 * With delalloc we want to sync the file
2490 * so that we can make sure we allocate
2491 * blocks for file
2492 */
2493 filemap_write_and_wait(mapping);
2494 }
2495
2496 if (EXT4_JOURNAL(inode) &&
2497 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498 /*
2499 * This is a REALLY heavyweight approach, but the use of
2500 * bmap on dirty files is expected to be extremely rare:
2501 * only if we run lilo or swapon on a freshly made file
2502 * do we expect this to happen.
2503 *
2504 * (bmap requires CAP_SYS_RAWIO so this does not
2505 * represent an unprivileged user DOS attack --- we'd be
2506 * in trouble if mortal users could trigger this path at
2507 * will.)
2508 *
2509 * NB. EXT4_STATE_JDATA is not set on files other than
2510 * regular files. If somebody wants to bmap a directory
2511 * or symlink and gets confused because the buffer
2512 * hasn't yet been flushed to disk, they deserve
2513 * everything they get.
2514 */
2515
2516 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517 journal = EXT4_JOURNAL(inode);
2518 jbd2_journal_lock_updates(journal);
2519 err = jbd2_journal_flush(journal);
2520 jbd2_journal_unlock_updates(journal);
2521
2522 if (err)
2523 return 0;
2524 }
2525
2526 return generic_block_bmap(mapping, block, ext4_get_block);
2527}
2528
2529static int ext4_readpage(struct file *file, struct page *page)
2530{
2531 trace_ext4_readpage(page);
2532 return mpage_readpage(page, ext4_get_block);
2533}
2534
2535static int
2536ext4_readpages(struct file *file, struct address_space *mapping,
2537 struct list_head *pages, unsigned nr_pages)
2538{
2539 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2540}
2541
2542static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2543{
2544 struct buffer_head *head, *bh;
2545 unsigned int curr_off = 0;
2546
2547 if (!page_has_buffers(page))
2548 return;
2549 head = bh = page_buffers(page);
2550 do {
2551 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2552 && bh->b_private) {
2553 ext4_free_io_end(bh->b_private);
2554 bh->b_private = NULL;
2555 bh->b_end_io = NULL;
2556 }
2557 curr_off = curr_off + bh->b_size;
2558 bh = bh->b_this_page;
2559 } while (bh != head);
2560}
2561
2562static void ext4_invalidatepage(struct page *page, unsigned long offset)
2563{
2564 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565
2566 trace_ext4_invalidatepage(page, offset);
2567
2568 /*
2569 * free any io_end structure allocated for buffers to be discarded
2570 */
2571 if (ext4_should_dioread_nolock(page->mapping->host))
2572 ext4_invalidatepage_free_endio(page, offset);
2573 /*
2574 * If it's a full truncate we just forget about the pending dirtying
2575 */
2576 if (offset == 0)
2577 ClearPageChecked(page);
2578
2579 if (journal)
2580 jbd2_journal_invalidatepage(journal, page, offset);
2581 else
2582 block_invalidatepage(page, offset);
2583}
2584
2585static int ext4_releasepage(struct page *page, gfp_t wait)
2586{
2587 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2588
2589 trace_ext4_releasepage(page);
2590
2591 WARN_ON(PageChecked(page));
2592 if (!page_has_buffers(page))
2593 return 0;
2594 if (journal)
2595 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2596 else
2597 return try_to_free_buffers(page);
2598}
2599
2600/*
2601 * ext4_get_block used when preparing for a DIO write or buffer write.
2602 * We allocate an uinitialized extent if blocks haven't been allocated.
2603 * The extent will be converted to initialized after the IO is complete.
2604 */
2605static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606 struct buffer_head *bh_result, int create)
2607{
2608 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609 inode->i_ino, create);
2610 return _ext4_get_block(inode, iblock, bh_result,
2611 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2612}
2613
2614static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615 ssize_t size, void *private, int ret,
2616 bool is_async)
2617{
2618 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619 ext4_io_end_t *io_end = iocb->private;
2620 struct workqueue_struct *wq;
2621 unsigned long flags;
2622 struct ext4_inode_info *ei;
2623
2624 /* if not async direct IO or dio with 0 bytes write, just return */
2625 if (!io_end || !size)
2626 goto out;
2627
2628 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2629 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2630 iocb->private, io_end->inode->i_ino, iocb, offset,
2631 size);
2632
2633 /* if not aio dio with unwritten extents, just free io and return */
2634 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635 ext4_free_io_end(io_end);
2636 iocb->private = NULL;
2637out:
2638 if (is_async)
2639 aio_complete(iocb, ret, 0);
2640 inode_dio_done(inode);
2641 return;
2642 }
2643
2644 io_end->offset = offset;
2645 io_end->size = size;
2646 if (is_async) {
2647 io_end->iocb = iocb;
2648 io_end->result = ret;
2649 }
2650 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2651
2652 /* Add the io_end to per-inode completed aio dio list*/
2653 ei = EXT4_I(io_end->inode);
2654 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2655 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2656 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657
2658 /* queue the work to convert unwritten extents to written */
2659 queue_work(wq, &io_end->work);
2660 iocb->private = NULL;
2661
2662 /* XXX: probably should move into the real I/O completion handler */
2663 inode_dio_done(inode);
2664}
2665
2666static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2667{
2668 ext4_io_end_t *io_end = bh->b_private;
2669 struct workqueue_struct *wq;
2670 struct inode *inode;
2671 unsigned long flags;
2672
2673 if (!test_clear_buffer_uninit(bh) || !io_end)
2674 goto out;
2675
2676 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2677 printk("sb umounted, discard end_io request for inode %lu\n",
2678 io_end->inode->i_ino);
2679 ext4_free_io_end(io_end);
2680 goto out;
2681 }
2682
2683 /*
2684 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2685 * but being more careful is always safe for the future change.
2686 */
2687 inode = io_end->inode;
2688 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2689 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2690 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2691 }
2692
2693 /* Add the io_end to per-inode completed io list*/
2694 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2695 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2696 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2697
2698 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2699 /* queue the work to convert unwritten extents to written */
2700 queue_work(wq, &io_end->work);
2701out:
2702 bh->b_private = NULL;
2703 bh->b_end_io = NULL;
2704 clear_buffer_uninit(bh);
2705 end_buffer_async_write(bh, uptodate);
2706}
2707
2708static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2709{
2710 ext4_io_end_t *io_end;
2711 struct page *page = bh->b_page;
2712 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2713 size_t size = bh->b_size;
2714
2715retry:
2716 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2717 if (!io_end) {
2718 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719 schedule();
2720 goto retry;
2721 }
2722 io_end->offset = offset;
2723 io_end->size = size;
2724 /*
2725 * We need to hold a reference to the page to make sure it
2726 * doesn't get evicted before ext4_end_io_work() has a chance
2727 * to convert the extent from written to unwritten.
2728 */
2729 io_end->page = page;
2730 get_page(io_end->page);
2731
2732 bh->b_private = io_end;
2733 bh->b_end_io = ext4_end_io_buffer_write;
2734 return 0;
2735}
2736
2737/*
2738 * For ext4 extent files, ext4 will do direct-io write to holes,
2739 * preallocated extents, and those write extend the file, no need to
2740 * fall back to buffered IO.
2741 *
2742 * For holes, we fallocate those blocks, mark them as uninitialized
2743 * If those blocks were preallocated, we mark sure they are splited, but
2744 * still keep the range to write as uninitialized.
2745 *
2746 * The unwrritten extents will be converted to written when DIO is completed.
2747 * For async direct IO, since the IO may still pending when return, we
2748 * set up an end_io call back function, which will do the conversion
2749 * when async direct IO completed.
2750 *
2751 * If the O_DIRECT write will extend the file then add this inode to the
2752 * orphan list. So recovery will truncate it back to the original size
2753 * if the machine crashes during the write.
2754 *
2755 */
2756static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2757 const struct iovec *iov, loff_t offset,
2758 unsigned long nr_segs)
2759{
2760 struct file *file = iocb->ki_filp;
2761 struct inode *inode = file->f_mapping->host;
2762 ssize_t ret;
2763 size_t count = iov_length(iov, nr_segs);
2764
2765 loff_t final_size = offset + count;
2766 if (rw == WRITE && final_size <= inode->i_size) {
2767 /*
2768 * We could direct write to holes and fallocate.
2769 *
2770 * Allocated blocks to fill the hole are marked as uninitialized
2771 * to prevent parallel buffered read to expose the stale data
2772 * before DIO complete the data IO.
2773 *
2774 * As to previously fallocated extents, ext4 get_block
2775 * will just simply mark the buffer mapped but still
2776 * keep the extents uninitialized.
2777 *
2778 * for non AIO case, we will convert those unwritten extents
2779 * to written after return back from blockdev_direct_IO.
2780 *
2781 * for async DIO, the conversion needs to be defered when
2782 * the IO is completed. The ext4 end_io callback function
2783 * will be called to take care of the conversion work.
2784 * Here for async case, we allocate an io_end structure to
2785 * hook to the iocb.
2786 */
2787 iocb->private = NULL;
2788 EXT4_I(inode)->cur_aio_dio = NULL;
2789 if (!is_sync_kiocb(iocb)) {
2790 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791 if (!iocb->private)
2792 return -ENOMEM;
2793 /*
2794 * we save the io structure for current async
2795 * direct IO, so that later ext4_map_blocks()
2796 * could flag the io structure whether there
2797 * is a unwritten extents needs to be converted
2798 * when IO is completed.
2799 */
2800 EXT4_I(inode)->cur_aio_dio = iocb->private;
2801 }
2802
2803 ret = __blockdev_direct_IO(rw, iocb, inode,
2804 inode->i_sb->s_bdev, iov,
2805 offset, nr_segs,
2806 ext4_get_block_write,
2807 ext4_end_io_dio,
2808 NULL,
2809 DIO_LOCKING | DIO_SKIP_HOLES);
2810 if (iocb->private)
2811 EXT4_I(inode)->cur_aio_dio = NULL;
2812 /*
2813 * The io_end structure takes a reference to the inode,
2814 * that structure needs to be destroyed and the
2815 * reference to the inode need to be dropped, when IO is
2816 * complete, even with 0 byte write, or failed.
2817 *
2818 * In the successful AIO DIO case, the io_end structure will be
2819 * desctroyed and the reference to the inode will be dropped
2820 * after the end_io call back function is called.
2821 *
2822 * In the case there is 0 byte write, or error case, since
2823 * VFS direct IO won't invoke the end_io call back function,
2824 * we need to free the end_io structure here.
2825 */
2826 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2827 ext4_free_io_end(iocb->private);
2828 iocb->private = NULL;
2829 } else if (ret > 0 && ext4_test_inode_state(inode,
2830 EXT4_STATE_DIO_UNWRITTEN)) {
2831 int err;
2832 /*
2833 * for non AIO case, since the IO is already
2834 * completed, we could do the conversion right here
2835 */
2836 err = ext4_convert_unwritten_extents(inode,
2837 offset, ret);
2838 if (err < 0)
2839 ret = err;
2840 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2841 }
2842 return ret;
2843 }
2844
2845 /* for write the the end of file case, we fall back to old way */
2846 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2847}
2848
2849static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2850 const struct iovec *iov, loff_t offset,
2851 unsigned long nr_segs)
2852{
2853 struct file *file = iocb->ki_filp;
2854 struct inode *inode = file->f_mapping->host;
2855 ssize_t ret;
2856
2857 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2858 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2859 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2860 else
2861 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2862 trace_ext4_direct_IO_exit(inode, offset,
2863 iov_length(iov, nr_segs), rw, ret);
2864 return ret;
2865}
2866
2867/*
2868 * Pages can be marked dirty completely asynchronously from ext4's journalling
2869 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2870 * much here because ->set_page_dirty is called under VFS locks. The page is
2871 * not necessarily locked.
2872 *
2873 * We cannot just dirty the page and leave attached buffers clean, because the
2874 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2875 * or jbddirty because all the journalling code will explode.
2876 *
2877 * So what we do is to mark the page "pending dirty" and next time writepage
2878 * is called, propagate that into the buffers appropriately.
2879 */
2880static int ext4_journalled_set_page_dirty(struct page *page)
2881{
2882 SetPageChecked(page);
2883 return __set_page_dirty_nobuffers(page);
2884}
2885
2886static const struct address_space_operations ext4_ordered_aops = {
2887 .readpage = ext4_readpage,
2888 .readpages = ext4_readpages,
2889 .writepage = ext4_writepage,
2890 .write_begin = ext4_write_begin,
2891 .write_end = ext4_ordered_write_end,
2892 .bmap = ext4_bmap,
2893 .invalidatepage = ext4_invalidatepage,
2894 .releasepage = ext4_releasepage,
2895 .direct_IO = ext4_direct_IO,
2896 .migratepage = buffer_migrate_page,
2897 .is_partially_uptodate = block_is_partially_uptodate,
2898 .error_remove_page = generic_error_remove_page,
2899};
2900
2901static const struct address_space_operations ext4_writeback_aops = {
2902 .readpage = ext4_readpage,
2903 .readpages = ext4_readpages,
2904 .writepage = ext4_writepage,
2905 .write_begin = ext4_write_begin,
2906 .write_end = ext4_writeback_write_end,
2907 .bmap = ext4_bmap,
2908 .invalidatepage = ext4_invalidatepage,
2909 .releasepage = ext4_releasepage,
2910 .direct_IO = ext4_direct_IO,
2911 .migratepage = buffer_migrate_page,
2912 .is_partially_uptodate = block_is_partially_uptodate,
2913 .error_remove_page = generic_error_remove_page,
2914};
2915
2916static const struct address_space_operations ext4_journalled_aops = {
2917 .readpage = ext4_readpage,
2918 .readpages = ext4_readpages,
2919 .writepage = ext4_writepage,
2920 .write_begin = ext4_write_begin,
2921 .write_end = ext4_journalled_write_end,
2922 .set_page_dirty = ext4_journalled_set_page_dirty,
2923 .bmap = ext4_bmap,
2924 .invalidatepage = ext4_invalidatepage,
2925 .releasepage = ext4_releasepage,
2926 .is_partially_uptodate = block_is_partially_uptodate,
2927 .error_remove_page = generic_error_remove_page,
2928};
2929
2930static const struct address_space_operations ext4_da_aops = {
2931 .readpage = ext4_readpage,
2932 .readpages = ext4_readpages,
2933 .writepage = ext4_writepage,
2934 .writepages = ext4_da_writepages,
2935 .write_begin = ext4_da_write_begin,
2936 .write_end = ext4_da_write_end,
2937 .bmap = ext4_bmap,
2938 .invalidatepage = ext4_da_invalidatepage,
2939 .releasepage = ext4_releasepage,
2940 .direct_IO = ext4_direct_IO,
2941 .migratepage = buffer_migrate_page,
2942 .is_partially_uptodate = block_is_partially_uptodate,
2943 .error_remove_page = generic_error_remove_page,
2944};
2945
2946void ext4_set_aops(struct inode *inode)
2947{
2948 if (ext4_should_order_data(inode) &&
2949 test_opt(inode->i_sb, DELALLOC))
2950 inode->i_mapping->a_ops = &ext4_da_aops;
2951 else if (ext4_should_order_data(inode))
2952 inode->i_mapping->a_ops = &ext4_ordered_aops;
2953 else if (ext4_should_writeback_data(inode) &&
2954 test_opt(inode->i_sb, DELALLOC))
2955 inode->i_mapping->a_ops = &ext4_da_aops;
2956 else if (ext4_should_writeback_data(inode))
2957 inode->i_mapping->a_ops = &ext4_writeback_aops;
2958 else
2959 inode->i_mapping->a_ops = &ext4_journalled_aops;
2960}
2961
2962/*
2963 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2964 * up to the end of the block which corresponds to `from'.
2965 * This required during truncate. We need to physically zero the tail end
2966 * of that block so it doesn't yield old data if the file is later grown.
2967 */
2968int ext4_block_truncate_page(handle_t *handle,
2969 struct address_space *mapping, loff_t from)
2970{
2971 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2972 unsigned length;
2973 unsigned blocksize;
2974 struct inode *inode = mapping->host;
2975
2976 blocksize = inode->i_sb->s_blocksize;
2977 length = blocksize - (offset & (blocksize - 1));
2978
2979 return ext4_block_zero_page_range(handle, mapping, from, length);
2980}
2981
2982/*
2983 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2984 * starting from file offset 'from'. The range to be zero'd must
2985 * be contained with in one block. If the specified range exceeds
2986 * the end of the block it will be shortened to end of the block
2987 * that cooresponds to 'from'
2988 */
2989int ext4_block_zero_page_range(handle_t *handle,
2990 struct address_space *mapping, loff_t from, loff_t length)
2991{
2992 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2993 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2994 unsigned blocksize, max, pos;
2995 ext4_lblk_t iblock;
2996 struct inode *inode = mapping->host;
2997 struct buffer_head *bh;
2998 struct page *page;
2999 int err = 0;
3000
3001 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3002 mapping_gfp_mask(mapping) & ~__GFP_FS);
3003 if (!page)
3004 return -EINVAL;
3005
3006 blocksize = inode->i_sb->s_blocksize;
3007 max = blocksize - (offset & (blocksize - 1));
3008
3009 /*
3010 * correct length if it does not fall between
3011 * 'from' and the end of the block
3012 */
3013 if (length > max || length < 0)
3014 length = max;
3015
3016 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3017
3018 if (!page_has_buffers(page))
3019 create_empty_buffers(page, blocksize, 0);
3020
3021 /* Find the buffer that contains "offset" */
3022 bh = page_buffers(page);
3023 pos = blocksize;
3024 while (offset >= pos) {
3025 bh = bh->b_this_page;
3026 iblock++;
3027 pos += blocksize;
3028 }
3029
3030 err = 0;
3031 if (buffer_freed(bh)) {
3032 BUFFER_TRACE(bh, "freed: skip");
3033 goto unlock;
3034 }
3035
3036 if (!buffer_mapped(bh)) {
3037 BUFFER_TRACE(bh, "unmapped");
3038 ext4_get_block(inode, iblock, bh, 0);
3039 /* unmapped? It's a hole - nothing to do */
3040 if (!buffer_mapped(bh)) {
3041 BUFFER_TRACE(bh, "still unmapped");
3042 goto unlock;
3043 }
3044 }
3045
3046 /* Ok, it's mapped. Make sure it's up-to-date */
3047 if (PageUptodate(page))
3048 set_buffer_uptodate(bh);
3049
3050 if (!buffer_uptodate(bh)) {
3051 err = -EIO;
3052 ll_rw_block(READ, 1, &bh);
3053 wait_on_buffer(bh);
3054 /* Uhhuh. Read error. Complain and punt. */
3055 if (!buffer_uptodate(bh))
3056 goto unlock;
3057 }
3058
3059 if (ext4_should_journal_data(inode)) {
3060 BUFFER_TRACE(bh, "get write access");
3061 err = ext4_journal_get_write_access(handle, bh);
3062 if (err)
3063 goto unlock;
3064 }
3065
3066 zero_user(page, offset, length);
3067
3068 BUFFER_TRACE(bh, "zeroed end of block");
3069
3070 err = 0;
3071 if (ext4_should_journal_data(inode)) {
3072 err = ext4_handle_dirty_metadata(handle, inode, bh);
3073 } else {
3074 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3075 err = ext4_jbd2_file_inode(handle, inode);
3076 mark_buffer_dirty(bh);
3077 }
3078
3079unlock:
3080 unlock_page(page);
3081 page_cache_release(page);
3082 return err;
3083}
3084
3085int ext4_can_truncate(struct inode *inode)
3086{
3087 if (S_ISREG(inode->i_mode))
3088 return 1;
3089 if (S_ISDIR(inode->i_mode))
3090 return 1;
3091 if (S_ISLNK(inode->i_mode))
3092 return !ext4_inode_is_fast_symlink(inode);
3093 return 0;
3094}
3095
3096/*
3097 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3098 * associated with the given offset and length
3099 *
3100 * @inode: File inode
3101 * @offset: The offset where the hole will begin
3102 * @len: The length of the hole
3103 *
3104 * Returns: 0 on sucess or negative on failure
3105 */
3106
3107int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3108{
3109 struct inode *inode = file->f_path.dentry->d_inode;
3110 if (!S_ISREG(inode->i_mode))
3111 return -ENOTSUPP;
3112
3113 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3114 /* TODO: Add support for non extent hole punching */
3115 return -ENOTSUPP;
3116 }
3117
3118 return ext4_ext_punch_hole(file, offset, length);
3119}
3120
3121/*
3122 * ext4_truncate()
3123 *
3124 * We block out ext4_get_block() block instantiations across the entire
3125 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3126 * simultaneously on behalf of the same inode.
3127 *
3128 * As we work through the truncate and commmit bits of it to the journal there
3129 * is one core, guiding principle: the file's tree must always be consistent on
3130 * disk. We must be able to restart the truncate after a crash.
3131 *
3132 * The file's tree may be transiently inconsistent in memory (although it
3133 * probably isn't), but whenever we close off and commit a journal transaction,
3134 * the contents of (the filesystem + the journal) must be consistent and
3135 * restartable. It's pretty simple, really: bottom up, right to left (although
3136 * left-to-right works OK too).
3137 *
3138 * Note that at recovery time, journal replay occurs *before* the restart of
3139 * truncate against the orphan inode list.
3140 *
3141 * The committed inode has the new, desired i_size (which is the same as
3142 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3143 * that this inode's truncate did not complete and it will again call
3144 * ext4_truncate() to have another go. So there will be instantiated blocks
3145 * to the right of the truncation point in a crashed ext4 filesystem. But
3146 * that's fine - as long as they are linked from the inode, the post-crash
3147 * ext4_truncate() run will find them and release them.
3148 */
3149void ext4_truncate(struct inode *inode)
3150{
3151 trace_ext4_truncate_enter(inode);
3152
3153 if (!ext4_can_truncate(inode))
3154 return;
3155
3156 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3157
3158 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3159 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3160
3161 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3162 ext4_ext_truncate(inode);
3163 else
3164 ext4_ind_truncate(inode);
3165
3166 trace_ext4_truncate_exit(inode);
3167}
3168
3169/*
3170 * ext4_get_inode_loc returns with an extra refcount against the inode's
3171 * underlying buffer_head on success. If 'in_mem' is true, we have all
3172 * data in memory that is needed to recreate the on-disk version of this
3173 * inode.
3174 */
3175static int __ext4_get_inode_loc(struct inode *inode,
3176 struct ext4_iloc *iloc, int in_mem)
3177{
3178 struct ext4_group_desc *gdp;
3179 struct buffer_head *bh;
3180 struct super_block *sb = inode->i_sb;
3181 ext4_fsblk_t block;
3182 int inodes_per_block, inode_offset;
3183
3184 iloc->bh = NULL;
3185 if (!ext4_valid_inum(sb, inode->i_ino))
3186 return -EIO;
3187
3188 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3189 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3190 if (!gdp)
3191 return -EIO;
3192
3193 /*
3194 * Figure out the offset within the block group inode table
3195 */
3196 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3197 inode_offset = ((inode->i_ino - 1) %
3198 EXT4_INODES_PER_GROUP(sb));
3199 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3200 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3201
3202 bh = sb_getblk(sb, block);
3203 if (!bh) {
3204 EXT4_ERROR_INODE_BLOCK(inode, block,
3205 "unable to read itable block");
3206 return -EIO;
3207 }
3208 if (!buffer_uptodate(bh)) {
3209 lock_buffer(bh);
3210
3211 /*
3212 * If the buffer has the write error flag, we have failed
3213 * to write out another inode in the same block. In this
3214 * case, we don't have to read the block because we may
3215 * read the old inode data successfully.
3216 */
3217 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3218 set_buffer_uptodate(bh);
3219
3220 if (buffer_uptodate(bh)) {
3221 /* someone brought it uptodate while we waited */
3222 unlock_buffer(bh);
3223 goto has_buffer;
3224 }
3225
3226 /*
3227 * If we have all information of the inode in memory and this
3228 * is the only valid inode in the block, we need not read the
3229 * block.
3230 */
3231 if (in_mem) {
3232 struct buffer_head *bitmap_bh;
3233 int i, start;
3234
3235 start = inode_offset & ~(inodes_per_block - 1);
3236
3237 /* Is the inode bitmap in cache? */
3238 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3239 if (!bitmap_bh)
3240 goto make_io;
3241
3242 /*
3243 * If the inode bitmap isn't in cache then the
3244 * optimisation may end up performing two reads instead
3245 * of one, so skip it.
3246 */
3247 if (!buffer_uptodate(bitmap_bh)) {
3248 brelse(bitmap_bh);
3249 goto make_io;
3250 }
3251 for (i = start; i < start + inodes_per_block; i++) {
3252 if (i == inode_offset)
3253 continue;
3254 if (ext4_test_bit(i, bitmap_bh->b_data))
3255 break;
3256 }
3257 brelse(bitmap_bh);
3258 if (i == start + inodes_per_block) {
3259 /* all other inodes are free, so skip I/O */
3260 memset(bh->b_data, 0, bh->b_size);
3261 set_buffer_uptodate(bh);
3262 unlock_buffer(bh);
3263 goto has_buffer;
3264 }
3265 }
3266
3267make_io:
3268 /*
3269 * If we need to do any I/O, try to pre-readahead extra
3270 * blocks from the inode table.
3271 */
3272 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3273 ext4_fsblk_t b, end, table;
3274 unsigned num;
3275
3276 table = ext4_inode_table(sb, gdp);
3277 /* s_inode_readahead_blks is always a power of 2 */
3278 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3279 if (table > b)
3280 b = table;
3281 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3282 num = EXT4_INODES_PER_GROUP(sb);
3283 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3284 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3285 num -= ext4_itable_unused_count(sb, gdp);
3286 table += num / inodes_per_block;
3287 if (end > table)
3288 end = table;
3289 while (b <= end)
3290 sb_breadahead(sb, b++);
3291 }
3292
3293 /*
3294 * There are other valid inodes in the buffer, this inode
3295 * has in-inode xattrs, or we don't have this inode in memory.
3296 * Read the block from disk.
3297 */
3298 trace_ext4_load_inode(inode);
3299 get_bh(bh);
3300 bh->b_end_io = end_buffer_read_sync;
3301 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3302 wait_on_buffer(bh);
3303 if (!buffer_uptodate(bh)) {
3304 EXT4_ERROR_INODE_BLOCK(inode, block,
3305 "unable to read itable block");
3306 brelse(bh);
3307 return -EIO;
3308 }
3309 }
3310has_buffer:
3311 iloc->bh = bh;
3312 return 0;
3313}
3314
3315int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3316{
3317 /* We have all inode data except xattrs in memory here. */
3318 return __ext4_get_inode_loc(inode, iloc,
3319 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3320}
3321
3322void ext4_set_inode_flags(struct inode *inode)
3323{
3324 unsigned int flags = EXT4_I(inode)->i_flags;
3325
3326 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3327 if (flags & EXT4_SYNC_FL)
3328 inode->i_flags |= S_SYNC;
3329 if (flags & EXT4_APPEND_FL)
3330 inode->i_flags |= S_APPEND;
3331 if (flags & EXT4_IMMUTABLE_FL)
3332 inode->i_flags |= S_IMMUTABLE;
3333 if (flags & EXT4_NOATIME_FL)
3334 inode->i_flags |= S_NOATIME;
3335 if (flags & EXT4_DIRSYNC_FL)
3336 inode->i_flags |= S_DIRSYNC;
3337}
3338
3339/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3340void ext4_get_inode_flags(struct ext4_inode_info *ei)
3341{
3342 unsigned int vfs_fl;
3343 unsigned long old_fl, new_fl;
3344
3345 do {
3346 vfs_fl = ei->vfs_inode.i_flags;
3347 old_fl = ei->i_flags;
3348 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3349 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3350 EXT4_DIRSYNC_FL);
3351 if (vfs_fl & S_SYNC)
3352 new_fl |= EXT4_SYNC_FL;
3353 if (vfs_fl & S_APPEND)
3354 new_fl |= EXT4_APPEND_FL;
3355 if (vfs_fl & S_IMMUTABLE)
3356 new_fl |= EXT4_IMMUTABLE_FL;
3357 if (vfs_fl & S_NOATIME)
3358 new_fl |= EXT4_NOATIME_FL;
3359 if (vfs_fl & S_DIRSYNC)
3360 new_fl |= EXT4_DIRSYNC_FL;
3361 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3362}
3363
3364static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3365 struct ext4_inode_info *ei)
3366{
3367 blkcnt_t i_blocks ;
3368 struct inode *inode = &(ei->vfs_inode);
3369 struct super_block *sb = inode->i_sb;
3370
3371 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3373 /* we are using combined 48 bit field */
3374 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3375 le32_to_cpu(raw_inode->i_blocks_lo);
3376 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3377 /* i_blocks represent file system block size */
3378 return i_blocks << (inode->i_blkbits - 9);
3379 } else {
3380 return i_blocks;
3381 }
3382 } else {
3383 return le32_to_cpu(raw_inode->i_blocks_lo);
3384 }
3385}
3386
3387struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3388{
3389 struct ext4_iloc iloc;
3390 struct ext4_inode *raw_inode;
3391 struct ext4_inode_info *ei;
3392 struct inode *inode;
3393 journal_t *journal = EXT4_SB(sb)->s_journal;
3394 long ret;
3395 int block;
3396
3397 inode = iget_locked(sb, ino);
3398 if (!inode)
3399 return ERR_PTR(-ENOMEM);
3400 if (!(inode->i_state & I_NEW))
3401 return inode;
3402
3403 ei = EXT4_I(inode);
3404 iloc.bh = NULL;
3405
3406 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3407 if (ret < 0)
3408 goto bad_inode;
3409 raw_inode = ext4_raw_inode(&iloc);
3410 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3411 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3412 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3413 if (!(test_opt(inode->i_sb, NO_UID32))) {
3414 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3415 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3416 }
3417 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3418
3419 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3420 ei->i_dir_start_lookup = 0;
3421 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3422 /* We now have enough fields to check if the inode was active or not.
3423 * This is needed because nfsd might try to access dead inodes
3424 * the test is that same one that e2fsck uses
3425 * NeilBrown 1999oct15
3426 */
3427 if (inode->i_nlink == 0) {
3428 if (inode->i_mode == 0 ||
3429 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3430 /* this inode is deleted */
3431 ret = -ESTALE;
3432 goto bad_inode;
3433 }
3434 /* The only unlinked inodes we let through here have
3435 * valid i_mode and are being read by the orphan
3436 * recovery code: that's fine, we're about to complete
3437 * the process of deleting those. */
3438 }
3439 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3440 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3441 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3442 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3443 ei->i_file_acl |=
3444 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3445 inode->i_size = ext4_isize(raw_inode);
3446 ei->i_disksize = inode->i_size;
3447#ifdef CONFIG_QUOTA
3448 ei->i_reserved_quota = 0;
3449#endif
3450 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3451 ei->i_block_group = iloc.block_group;
3452 ei->i_last_alloc_group = ~0;
3453 /*
3454 * NOTE! The in-memory inode i_data array is in little-endian order
3455 * even on big-endian machines: we do NOT byteswap the block numbers!
3456 */
3457 for (block = 0; block < EXT4_N_BLOCKS; block++)
3458 ei->i_data[block] = raw_inode->i_block[block];
3459 INIT_LIST_HEAD(&ei->i_orphan);
3460
3461 /*
3462 * Set transaction id's of transactions that have to be committed
3463 * to finish f[data]sync. We set them to currently running transaction
3464 * as we cannot be sure that the inode or some of its metadata isn't
3465 * part of the transaction - the inode could have been reclaimed and
3466 * now it is reread from disk.
3467 */
3468 if (journal) {
3469 transaction_t *transaction;
3470 tid_t tid;
3471
3472 read_lock(&journal->j_state_lock);
3473 if (journal->j_running_transaction)
3474 transaction = journal->j_running_transaction;
3475 else
3476 transaction = journal->j_committing_transaction;
3477 if (transaction)
3478 tid = transaction->t_tid;
3479 else
3480 tid = journal->j_commit_sequence;
3481 read_unlock(&journal->j_state_lock);
3482 ei->i_sync_tid = tid;
3483 ei->i_datasync_tid = tid;
3484 }
3485
3486 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3487 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3488 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3489 EXT4_INODE_SIZE(inode->i_sb)) {
3490 ret = -EIO;
3491 goto bad_inode;
3492 }
3493 if (ei->i_extra_isize == 0) {
3494 /* The extra space is currently unused. Use it. */
3495 ei->i_extra_isize = sizeof(struct ext4_inode) -
3496 EXT4_GOOD_OLD_INODE_SIZE;
3497 } else {
3498 __le32 *magic = (void *)raw_inode +
3499 EXT4_GOOD_OLD_INODE_SIZE +
3500 ei->i_extra_isize;
3501 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3502 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3503 }
3504 } else
3505 ei->i_extra_isize = 0;
3506
3507 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3508 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3509 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3510 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3511
3512 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3513 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3514 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3515 inode->i_version |=
3516 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3517 }
3518
3519 ret = 0;
3520 if (ei->i_file_acl &&
3521 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3522 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3523 ei->i_file_acl);
3524 ret = -EIO;
3525 goto bad_inode;
3526 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3527 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3528 (S_ISLNK(inode->i_mode) &&
3529 !ext4_inode_is_fast_symlink(inode)))
3530 /* Validate extent which is part of inode */
3531 ret = ext4_ext_check_inode(inode);
3532 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3533 (S_ISLNK(inode->i_mode) &&
3534 !ext4_inode_is_fast_symlink(inode))) {
3535 /* Validate block references which are part of inode */
3536 ret = ext4_ind_check_inode(inode);
3537 }
3538 if (ret)
3539 goto bad_inode;
3540
3541 if (S_ISREG(inode->i_mode)) {
3542 inode->i_op = &ext4_file_inode_operations;
3543 inode->i_fop = &ext4_file_operations;
3544 ext4_set_aops(inode);
3545 } else if (S_ISDIR(inode->i_mode)) {
3546 inode->i_op = &ext4_dir_inode_operations;
3547 inode->i_fop = &ext4_dir_operations;
3548 } else if (S_ISLNK(inode->i_mode)) {
3549 if (ext4_inode_is_fast_symlink(inode)) {
3550 inode->i_op = &ext4_fast_symlink_inode_operations;
3551 nd_terminate_link(ei->i_data, inode->i_size,
3552 sizeof(ei->i_data) - 1);
3553 } else {
3554 inode->i_op = &ext4_symlink_inode_operations;
3555 ext4_set_aops(inode);
3556 }
3557 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3558 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3559 inode->i_op = &ext4_special_inode_operations;
3560 if (raw_inode->i_block[0])
3561 init_special_inode(inode, inode->i_mode,
3562 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3563 else
3564 init_special_inode(inode, inode->i_mode,
3565 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3566 } else {
3567 ret = -EIO;
3568 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3569 goto bad_inode;
3570 }
3571 brelse(iloc.bh);
3572 ext4_set_inode_flags(inode);
3573 unlock_new_inode(inode);
3574 return inode;
3575
3576bad_inode:
3577 brelse(iloc.bh);
3578 iget_failed(inode);
3579 return ERR_PTR(ret);
3580}
3581
3582static int ext4_inode_blocks_set(handle_t *handle,
3583 struct ext4_inode *raw_inode,
3584 struct ext4_inode_info *ei)
3585{
3586 struct inode *inode = &(ei->vfs_inode);
3587 u64 i_blocks = inode->i_blocks;
3588 struct super_block *sb = inode->i_sb;
3589
3590 if (i_blocks <= ~0U) {
3591 /*
3592 * i_blocks can be represnted in a 32 bit variable
3593 * as multiple of 512 bytes
3594 */
3595 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3596 raw_inode->i_blocks_high = 0;
3597 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598 return 0;
3599 }
3600 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3601 return -EFBIG;
3602
3603 if (i_blocks <= 0xffffffffffffULL) {
3604 /*
3605 * i_blocks can be represented in a 48 bit variable
3606 * as multiple of 512 bytes
3607 */
3608 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3609 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3610 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3611 } else {
3612 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3613 /* i_block is stored in file system block size */
3614 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3615 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3616 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3617 }
3618 return 0;
3619}
3620
3621/*
3622 * Post the struct inode info into an on-disk inode location in the
3623 * buffer-cache. This gobbles the caller's reference to the
3624 * buffer_head in the inode location struct.
3625 *
3626 * The caller must have write access to iloc->bh.
3627 */
3628static int ext4_do_update_inode(handle_t *handle,
3629 struct inode *inode,
3630 struct ext4_iloc *iloc)
3631{
3632 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3633 struct ext4_inode_info *ei = EXT4_I(inode);
3634 struct buffer_head *bh = iloc->bh;
3635 int err = 0, rc, block;
3636
3637 /* For fields not not tracking in the in-memory inode,
3638 * initialise them to zero for new inodes. */
3639 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3640 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3641
3642 ext4_get_inode_flags(ei);
3643 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3644 if (!(test_opt(inode->i_sb, NO_UID32))) {
3645 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3646 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3647/*
3648 * Fix up interoperability with old kernels. Otherwise, old inodes get
3649 * re-used with the upper 16 bits of the uid/gid intact
3650 */
3651 if (!ei->i_dtime) {
3652 raw_inode->i_uid_high =
3653 cpu_to_le16(high_16_bits(inode->i_uid));
3654 raw_inode->i_gid_high =
3655 cpu_to_le16(high_16_bits(inode->i_gid));
3656 } else {
3657 raw_inode->i_uid_high = 0;
3658 raw_inode->i_gid_high = 0;
3659 }
3660 } else {
3661 raw_inode->i_uid_low =
3662 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3663 raw_inode->i_gid_low =
3664 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3665 raw_inode->i_uid_high = 0;
3666 raw_inode->i_gid_high = 0;
3667 }
3668 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3669
3670 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3671 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3672 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3673 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3674
3675 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3676 goto out_brelse;
3677 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3678 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3679 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3680 cpu_to_le32(EXT4_OS_HURD))
3681 raw_inode->i_file_acl_high =
3682 cpu_to_le16(ei->i_file_acl >> 32);
3683 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3684 ext4_isize_set(raw_inode, ei->i_disksize);
3685 if (ei->i_disksize > 0x7fffffffULL) {
3686 struct super_block *sb = inode->i_sb;
3687 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3688 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3689 EXT4_SB(sb)->s_es->s_rev_level ==
3690 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3691 /* If this is the first large file
3692 * created, add a flag to the superblock.
3693 */
3694 err = ext4_journal_get_write_access(handle,
3695 EXT4_SB(sb)->s_sbh);
3696 if (err)
3697 goto out_brelse;
3698 ext4_update_dynamic_rev(sb);
3699 EXT4_SET_RO_COMPAT_FEATURE(sb,
3700 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3701 sb->s_dirt = 1;
3702 ext4_handle_sync(handle);
3703 err = ext4_handle_dirty_metadata(handle, NULL,
3704 EXT4_SB(sb)->s_sbh);
3705 }
3706 }
3707 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3708 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3709 if (old_valid_dev(inode->i_rdev)) {
3710 raw_inode->i_block[0] =
3711 cpu_to_le32(old_encode_dev(inode->i_rdev));
3712 raw_inode->i_block[1] = 0;
3713 } else {
3714 raw_inode->i_block[0] = 0;
3715 raw_inode->i_block[1] =
3716 cpu_to_le32(new_encode_dev(inode->i_rdev));
3717 raw_inode->i_block[2] = 0;
3718 }
3719 } else
3720 for (block = 0; block < EXT4_N_BLOCKS; block++)
3721 raw_inode->i_block[block] = ei->i_data[block];
3722
3723 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3724 if (ei->i_extra_isize) {
3725 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3726 raw_inode->i_version_hi =
3727 cpu_to_le32(inode->i_version >> 32);
3728 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3729 }
3730
3731 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3732 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3733 if (!err)
3734 err = rc;
3735 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3736
3737 ext4_update_inode_fsync_trans(handle, inode, 0);
3738out_brelse:
3739 brelse(bh);
3740 ext4_std_error(inode->i_sb, err);
3741 return err;
3742}
3743
3744/*
3745 * ext4_write_inode()
3746 *
3747 * We are called from a few places:
3748 *
3749 * - Within generic_file_write() for O_SYNC files.
3750 * Here, there will be no transaction running. We wait for any running
3751 * trasnaction to commit.
3752 *
3753 * - Within sys_sync(), kupdate and such.
3754 * We wait on commit, if tol to.
3755 *
3756 * - Within prune_icache() (PF_MEMALLOC == true)
3757 * Here we simply return. We can't afford to block kswapd on the
3758 * journal commit.
3759 *
3760 * In all cases it is actually safe for us to return without doing anything,
3761 * because the inode has been copied into a raw inode buffer in
3762 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3763 * knfsd.
3764 *
3765 * Note that we are absolutely dependent upon all inode dirtiers doing the
3766 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3767 * which we are interested.
3768 *
3769 * It would be a bug for them to not do this. The code:
3770 *
3771 * mark_inode_dirty(inode)
3772 * stuff();
3773 * inode->i_size = expr;
3774 *
3775 * is in error because a kswapd-driven write_inode() could occur while
3776 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3777 * will no longer be on the superblock's dirty inode list.
3778 */
3779int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3780{
3781 int err;
3782
3783 if (current->flags & PF_MEMALLOC)
3784 return 0;
3785
3786 if (EXT4_SB(inode->i_sb)->s_journal) {
3787 if (ext4_journal_current_handle()) {
3788 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3789 dump_stack();
3790 return -EIO;
3791 }
3792
3793 if (wbc->sync_mode != WB_SYNC_ALL)
3794 return 0;
3795
3796 err = ext4_force_commit(inode->i_sb);
3797 } else {
3798 struct ext4_iloc iloc;
3799
3800 err = __ext4_get_inode_loc(inode, &iloc, 0);
3801 if (err)
3802 return err;
3803 if (wbc->sync_mode == WB_SYNC_ALL)
3804 sync_dirty_buffer(iloc.bh);
3805 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3806 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3807 "IO error syncing inode");
3808 err = -EIO;
3809 }
3810 brelse(iloc.bh);
3811 }
3812 return err;
3813}
3814
3815/*
3816 * ext4_setattr()
3817 *
3818 * Called from notify_change.
3819 *
3820 * We want to trap VFS attempts to truncate the file as soon as
3821 * possible. In particular, we want to make sure that when the VFS
3822 * shrinks i_size, we put the inode on the orphan list and modify
3823 * i_disksize immediately, so that during the subsequent flushing of
3824 * dirty pages and freeing of disk blocks, we can guarantee that any
3825 * commit will leave the blocks being flushed in an unused state on
3826 * disk. (On recovery, the inode will get truncated and the blocks will
3827 * be freed, so we have a strong guarantee that no future commit will
3828 * leave these blocks visible to the user.)
3829 *
3830 * Another thing we have to assure is that if we are in ordered mode
3831 * and inode is still attached to the committing transaction, we must
3832 * we start writeout of all the dirty pages which are being truncated.
3833 * This way we are sure that all the data written in the previous
3834 * transaction are already on disk (truncate waits for pages under
3835 * writeback).
3836 *
3837 * Called with inode->i_mutex down.
3838 */
3839int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3840{
3841 struct inode *inode = dentry->d_inode;
3842 int error, rc = 0;
3843 int orphan = 0;
3844 const unsigned int ia_valid = attr->ia_valid;
3845
3846 error = inode_change_ok(inode, attr);
3847 if (error)
3848 return error;
3849
3850 if (is_quota_modification(inode, attr))
3851 dquot_initialize(inode);
3852 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3853 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3854 handle_t *handle;
3855
3856 /* (user+group)*(old+new) structure, inode write (sb,
3857 * inode block, ? - but truncate inode update has it) */
3858 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3859 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3860 if (IS_ERR(handle)) {
3861 error = PTR_ERR(handle);
3862 goto err_out;
3863 }
3864 error = dquot_transfer(inode, attr);
3865 if (error) {
3866 ext4_journal_stop(handle);
3867 return error;
3868 }
3869 /* Update corresponding info in inode so that everything is in
3870 * one transaction */
3871 if (attr->ia_valid & ATTR_UID)
3872 inode->i_uid = attr->ia_uid;
3873 if (attr->ia_valid & ATTR_GID)
3874 inode->i_gid = attr->ia_gid;
3875 error = ext4_mark_inode_dirty(handle, inode);
3876 ext4_journal_stop(handle);
3877 }
3878
3879 if (attr->ia_valid & ATTR_SIZE) {
3880 inode_dio_wait(inode);
3881
3882 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884
3885 if (attr->ia_size > sbi->s_bitmap_maxbytes)
3886 return -EFBIG;
3887 }
3888 }
3889
3890 if (S_ISREG(inode->i_mode) &&
3891 attr->ia_valid & ATTR_SIZE &&
3892 (attr->ia_size < inode->i_size)) {
3893 handle_t *handle;
3894
3895 handle = ext4_journal_start(inode, 3);
3896 if (IS_ERR(handle)) {
3897 error = PTR_ERR(handle);
3898 goto err_out;
3899 }
3900 if (ext4_handle_valid(handle)) {
3901 error = ext4_orphan_add(handle, inode);
3902 orphan = 1;
3903 }
3904 EXT4_I(inode)->i_disksize = attr->ia_size;
3905 rc = ext4_mark_inode_dirty(handle, inode);
3906 if (!error)
3907 error = rc;
3908 ext4_journal_stop(handle);
3909
3910 if (ext4_should_order_data(inode)) {
3911 error = ext4_begin_ordered_truncate(inode,
3912 attr->ia_size);
3913 if (error) {
3914 /* Do as much error cleanup as possible */
3915 handle = ext4_journal_start(inode, 3);
3916 if (IS_ERR(handle)) {
3917 ext4_orphan_del(NULL, inode);
3918 goto err_out;
3919 }
3920 ext4_orphan_del(handle, inode);
3921 orphan = 0;
3922 ext4_journal_stop(handle);
3923 goto err_out;
3924 }
3925 }
3926 }
3927
3928 if (attr->ia_valid & ATTR_SIZE) {
3929 if (attr->ia_size != i_size_read(inode)) {
3930 truncate_setsize(inode, attr->ia_size);
3931 ext4_truncate(inode);
3932 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3933 ext4_truncate(inode);
3934 }
3935
3936 if (!rc) {
3937 setattr_copy(inode, attr);
3938 mark_inode_dirty(inode);
3939 }
3940
3941 /*
3942 * If the call to ext4_truncate failed to get a transaction handle at
3943 * all, we need to clean up the in-core orphan list manually.
3944 */
3945 if (orphan && inode->i_nlink)
3946 ext4_orphan_del(NULL, inode);
3947
3948 if (!rc && (ia_valid & ATTR_MODE))
3949 rc = ext4_acl_chmod(inode);
3950
3951err_out:
3952 ext4_std_error(inode->i_sb, error);
3953 if (!error)
3954 error = rc;
3955 return error;
3956}
3957
3958int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3959 struct kstat *stat)
3960{
3961 struct inode *inode;
3962 unsigned long delalloc_blocks;
3963
3964 inode = dentry->d_inode;
3965 generic_fillattr(inode, stat);
3966
3967 /*
3968 * We can't update i_blocks if the block allocation is delayed
3969 * otherwise in the case of system crash before the real block
3970 * allocation is done, we will have i_blocks inconsistent with
3971 * on-disk file blocks.
3972 * We always keep i_blocks updated together with real
3973 * allocation. But to not confuse with user, stat
3974 * will return the blocks that include the delayed allocation
3975 * blocks for this file.
3976 */
3977 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3978
3979 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3980 return 0;
3981}
3982
3983static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3984{
3985 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3986 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3987 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3988}
3989
3990/*
3991 * Account for index blocks, block groups bitmaps and block group
3992 * descriptor blocks if modify datablocks and index blocks
3993 * worse case, the indexs blocks spread over different block groups
3994 *
3995 * If datablocks are discontiguous, they are possible to spread over
3996 * different block groups too. If they are contiuguous, with flexbg,
3997 * they could still across block group boundary.
3998 *
3999 * Also account for superblock, inode, quota and xattr blocks
4000 */
4001static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4002{
4003 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4004 int gdpblocks;
4005 int idxblocks;
4006 int ret = 0;
4007
4008 /*
4009 * How many index blocks need to touch to modify nrblocks?
4010 * The "Chunk" flag indicating whether the nrblocks is
4011 * physically contiguous on disk
4012 *
4013 * For Direct IO and fallocate, they calls get_block to allocate
4014 * one single extent at a time, so they could set the "Chunk" flag
4015 */
4016 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4017
4018 ret = idxblocks;
4019
4020 /*
4021 * Now let's see how many group bitmaps and group descriptors need
4022 * to account
4023 */
4024 groups = idxblocks;
4025 if (chunk)
4026 groups += 1;
4027 else
4028 groups += nrblocks;
4029
4030 gdpblocks = groups;
4031 if (groups > ngroups)
4032 groups = ngroups;
4033 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4034 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4035
4036 /* bitmaps and block group descriptor blocks */
4037 ret += groups + gdpblocks;
4038
4039 /* Blocks for super block, inode, quota and xattr blocks */
4040 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4041
4042 return ret;
4043}
4044
4045/*
4046 * Calculate the total number of credits to reserve to fit
4047 * the modification of a single pages into a single transaction,
4048 * which may include multiple chunks of block allocations.
4049 *
4050 * This could be called via ext4_write_begin()
4051 *
4052 * We need to consider the worse case, when
4053 * one new block per extent.
4054 */
4055int ext4_writepage_trans_blocks(struct inode *inode)
4056{
4057 int bpp = ext4_journal_blocks_per_page(inode);
4058 int ret;
4059
4060 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4061
4062 /* Account for data blocks for journalled mode */
4063 if (ext4_should_journal_data(inode))
4064 ret += bpp;
4065 return ret;
4066}
4067
4068/*
4069 * Calculate the journal credits for a chunk of data modification.
4070 *
4071 * This is called from DIO, fallocate or whoever calling
4072 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4073 *
4074 * journal buffers for data blocks are not included here, as DIO
4075 * and fallocate do no need to journal data buffers.
4076 */
4077int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4078{
4079 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4080}
4081
4082/*
4083 * The caller must have previously called ext4_reserve_inode_write().
4084 * Give this, we know that the caller already has write access to iloc->bh.
4085 */
4086int ext4_mark_iloc_dirty(handle_t *handle,
4087 struct inode *inode, struct ext4_iloc *iloc)
4088{
4089 int err = 0;
4090
4091 if (test_opt(inode->i_sb, I_VERSION))
4092 inode_inc_iversion(inode);
4093
4094 /* the do_update_inode consumes one bh->b_count */
4095 get_bh(iloc->bh);
4096
4097 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4098 err = ext4_do_update_inode(handle, inode, iloc);
4099 put_bh(iloc->bh);
4100 return err;
4101}
4102
4103/*
4104 * On success, We end up with an outstanding reference count against
4105 * iloc->bh. This _must_ be cleaned up later.
4106 */
4107
4108int
4109ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4110 struct ext4_iloc *iloc)
4111{
4112 int err;
4113
4114 err = ext4_get_inode_loc(inode, iloc);
4115 if (!err) {
4116 BUFFER_TRACE(iloc->bh, "get_write_access");
4117 err = ext4_journal_get_write_access(handle, iloc->bh);
4118 if (err) {
4119 brelse(iloc->bh);
4120 iloc->bh = NULL;
4121 }
4122 }
4123 ext4_std_error(inode->i_sb, err);
4124 return err;
4125}
4126
4127/*
4128 * Expand an inode by new_extra_isize bytes.
4129 * Returns 0 on success or negative error number on failure.
4130 */
4131static int ext4_expand_extra_isize(struct inode *inode,
4132 unsigned int new_extra_isize,
4133 struct ext4_iloc iloc,
4134 handle_t *handle)
4135{
4136 struct ext4_inode *raw_inode;
4137 struct ext4_xattr_ibody_header *header;
4138
4139 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4140 return 0;
4141
4142 raw_inode = ext4_raw_inode(&iloc);
4143
4144 header = IHDR(inode, raw_inode);
4145
4146 /* No extended attributes present */
4147 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4148 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4149 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4150 new_extra_isize);
4151 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4152 return 0;
4153 }
4154
4155 /* try to expand with EAs present */
4156 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4157 raw_inode, handle);
4158}
4159
4160/*
4161 * What we do here is to mark the in-core inode as clean with respect to inode
4162 * dirtiness (it may still be data-dirty).
4163 * This means that the in-core inode may be reaped by prune_icache
4164 * without having to perform any I/O. This is a very good thing,
4165 * because *any* task may call prune_icache - even ones which
4166 * have a transaction open against a different journal.
4167 *
4168 * Is this cheating? Not really. Sure, we haven't written the
4169 * inode out, but prune_icache isn't a user-visible syncing function.
4170 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4171 * we start and wait on commits.
4172 *
4173 * Is this efficient/effective? Well, we're being nice to the system
4174 * by cleaning up our inodes proactively so they can be reaped
4175 * without I/O. But we are potentially leaving up to five seconds'
4176 * worth of inodes floating about which prune_icache wants us to
4177 * write out. One way to fix that would be to get prune_icache()
4178 * to do a write_super() to free up some memory. It has the desired
4179 * effect.
4180 */
4181int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4182{
4183 struct ext4_iloc iloc;
4184 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4185 static unsigned int mnt_count;
4186 int err, ret;
4187
4188 might_sleep();
4189 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4190 err = ext4_reserve_inode_write(handle, inode, &iloc);
4191 if (ext4_handle_valid(handle) &&
4192 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4193 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4194 /*
4195 * We need extra buffer credits since we may write into EA block
4196 * with this same handle. If journal_extend fails, then it will
4197 * only result in a minor loss of functionality for that inode.
4198 * If this is felt to be critical, then e2fsck should be run to
4199 * force a large enough s_min_extra_isize.
4200 */
4201 if ((jbd2_journal_extend(handle,
4202 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4203 ret = ext4_expand_extra_isize(inode,
4204 sbi->s_want_extra_isize,
4205 iloc, handle);
4206 if (ret) {
4207 ext4_set_inode_state(inode,
4208 EXT4_STATE_NO_EXPAND);
4209 if (mnt_count !=
4210 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4211 ext4_warning(inode->i_sb,
4212 "Unable to expand inode %lu. Delete"
4213 " some EAs or run e2fsck.",
4214 inode->i_ino);
4215 mnt_count =
4216 le16_to_cpu(sbi->s_es->s_mnt_count);
4217 }
4218 }
4219 }
4220 }
4221 if (!err)
4222 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4223 return err;
4224}
4225
4226/*
4227 * ext4_dirty_inode() is called from __mark_inode_dirty()
4228 *
4229 * We're really interested in the case where a file is being extended.
4230 * i_size has been changed by generic_commit_write() and we thus need
4231 * to include the updated inode in the current transaction.
4232 *
4233 * Also, dquot_alloc_block() will always dirty the inode when blocks
4234 * are allocated to the file.
4235 *
4236 * If the inode is marked synchronous, we don't honour that here - doing
4237 * so would cause a commit on atime updates, which we don't bother doing.
4238 * We handle synchronous inodes at the highest possible level.
4239 */
4240void ext4_dirty_inode(struct inode *inode, int flags)
4241{
4242 handle_t *handle;
4243
4244 handle = ext4_journal_start(inode, 2);
4245 if (IS_ERR(handle))
4246 goto out;
4247
4248 ext4_mark_inode_dirty(handle, inode);
4249
4250 ext4_journal_stop(handle);
4251out:
4252 return;
4253}
4254
4255#if 0
4256/*
4257 * Bind an inode's backing buffer_head into this transaction, to prevent
4258 * it from being flushed to disk early. Unlike
4259 * ext4_reserve_inode_write, this leaves behind no bh reference and
4260 * returns no iloc structure, so the caller needs to repeat the iloc
4261 * lookup to mark the inode dirty later.
4262 */
4263static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4264{
4265 struct ext4_iloc iloc;
4266
4267 int err = 0;
4268 if (handle) {
4269 err = ext4_get_inode_loc(inode, &iloc);
4270 if (!err) {
4271 BUFFER_TRACE(iloc.bh, "get_write_access");
4272 err = jbd2_journal_get_write_access(handle, iloc.bh);
4273 if (!err)
4274 err = ext4_handle_dirty_metadata(handle,
4275 NULL,
4276 iloc.bh);
4277 brelse(iloc.bh);
4278 }
4279 }
4280 ext4_std_error(inode->i_sb, err);
4281 return err;
4282}
4283#endif
4284
4285int ext4_change_inode_journal_flag(struct inode *inode, int val)
4286{
4287 journal_t *journal;
4288 handle_t *handle;
4289 int err;
4290
4291 /*
4292 * We have to be very careful here: changing a data block's
4293 * journaling status dynamically is dangerous. If we write a
4294 * data block to the journal, change the status and then delete
4295 * that block, we risk forgetting to revoke the old log record
4296 * from the journal and so a subsequent replay can corrupt data.
4297 * So, first we make sure that the journal is empty and that
4298 * nobody is changing anything.
4299 */
4300
4301 journal = EXT4_JOURNAL(inode);
4302 if (!journal)
4303 return 0;
4304 if (is_journal_aborted(journal))
4305 return -EROFS;
4306
4307 jbd2_journal_lock_updates(journal);
4308 jbd2_journal_flush(journal);
4309
4310 /*
4311 * OK, there are no updates running now, and all cached data is
4312 * synced to disk. We are now in a completely consistent state
4313 * which doesn't have anything in the journal, and we know that
4314 * no filesystem updates are running, so it is safe to modify
4315 * the inode's in-core data-journaling state flag now.
4316 */
4317
4318 if (val)
4319 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4320 else
4321 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4322 ext4_set_aops(inode);
4323
4324 jbd2_journal_unlock_updates(journal);
4325
4326 /* Finally we can mark the inode as dirty. */
4327
4328 handle = ext4_journal_start(inode, 1);
4329 if (IS_ERR(handle))
4330 return PTR_ERR(handle);
4331
4332 err = ext4_mark_inode_dirty(handle, inode);
4333 ext4_handle_sync(handle);
4334 ext4_journal_stop(handle);
4335 ext4_std_error(inode->i_sb, err);
4336
4337 return err;
4338}
4339
4340static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4341{
4342 return !buffer_mapped(bh);
4343}
4344
4345int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4346{
4347 struct page *page = vmf->page;
4348 loff_t size;
4349 unsigned long len;
4350 int ret;
4351 struct file *file = vma->vm_file;
4352 struct inode *inode = file->f_path.dentry->d_inode;
4353 struct address_space *mapping = inode->i_mapping;
4354 handle_t *handle;
4355 get_block_t *get_block;
4356 int retries = 0;
4357
4358 /*
4359 * This check is racy but catches the common case. We rely on
4360 * __block_page_mkwrite() to do a reliable check.
4361 */
4362 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4363 /* Delalloc case is easy... */
4364 if (test_opt(inode->i_sb, DELALLOC) &&
4365 !ext4_should_journal_data(inode) &&
4366 !ext4_nonda_switch(inode->i_sb)) {
4367 do {
4368 ret = __block_page_mkwrite(vma, vmf,
4369 ext4_da_get_block_prep);
4370 } while (ret == -ENOSPC &&
4371 ext4_should_retry_alloc(inode->i_sb, &retries));
4372 goto out_ret;
4373 }
4374
4375 lock_page(page);
4376 size = i_size_read(inode);
4377 /* Page got truncated from under us? */
4378 if (page->mapping != mapping || page_offset(page) > size) {
4379 unlock_page(page);
4380 ret = VM_FAULT_NOPAGE;
4381 goto out;
4382 }
4383
4384 if (page->index == size >> PAGE_CACHE_SHIFT)
4385 len = size & ~PAGE_CACHE_MASK;
4386 else
4387 len = PAGE_CACHE_SIZE;
4388 /*
4389 * Return if we have all the buffers mapped. This avoids the need to do
4390 * journal_start/journal_stop which can block and take a long time
4391 */
4392 if (page_has_buffers(page)) {
4393 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4394 ext4_bh_unmapped)) {
4395 /* Wait so that we don't change page under IO */
4396 wait_on_page_writeback(page);
4397 ret = VM_FAULT_LOCKED;
4398 goto out;
4399 }
4400 }
4401 unlock_page(page);
4402 /* OK, we need to fill the hole... */
4403 if (ext4_should_dioread_nolock(inode))
4404 get_block = ext4_get_block_write;
4405 else
4406 get_block = ext4_get_block;
4407retry_alloc:
4408 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4409 if (IS_ERR(handle)) {
4410 ret = VM_FAULT_SIGBUS;
4411 goto out;
4412 }
4413 ret = __block_page_mkwrite(vma, vmf, get_block);
4414 if (!ret && ext4_should_journal_data(inode)) {
4415 if (walk_page_buffers(handle, page_buffers(page), 0,
4416 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4417 unlock_page(page);
4418 ret = VM_FAULT_SIGBUS;
4419 goto out;
4420 }
4421 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4422 }
4423 ext4_journal_stop(handle);
4424 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4425 goto retry_alloc;
4426out_ret:
4427 ret = block_page_mkwrite_return(ret);
4428out:
4429 return ret;
4430}