Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26#include "sleep.h"
27
28#define ACPI_BUS_CLASS "system_bus"
29#define ACPI_BUS_HID "LNXSYBUS"
30#define ACPI_BUS_DEVICE_NAME "System Bus"
31
32#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34static const char *dummy_hid = "device";
35
36static LIST_HEAD(acpi_dep_list);
37static DEFINE_MUTEX(acpi_dep_list_lock);
38LIST_HEAD(acpi_bus_id_list);
39static DEFINE_MUTEX(acpi_scan_lock);
40static LIST_HEAD(acpi_scan_handlers_list);
41DEFINE_MUTEX(acpi_device_lock);
42LIST_HEAD(acpi_wakeup_device_list);
43static DEFINE_MUTEX(acpi_hp_context_lock);
44
45/*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50static u64 spcr_uart_addr;
51
52void acpi_scan_lock_acquire(void)
53{
54 mutex_lock(&acpi_scan_lock);
55}
56EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58void acpi_scan_lock_release(void)
59{
60 mutex_unlock(&acpi_scan_lock);
61}
62EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64void acpi_lock_hp_context(void)
65{
66 mutex_lock(&acpi_hp_context_lock);
67}
68
69void acpi_unlock_hp_context(void)
70{
71 mutex_unlock(&acpi_hp_context_lock);
72}
73
74void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 acpi_hp_notify notify, acpi_hp_uevent uevent)
77{
78 acpi_lock_hp_context();
79 hp->notify = notify;
80 hp->uevent = uevent;
81 acpi_set_hp_context(adev, hp);
82 acpi_unlock_hp_context();
83}
84EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
85
86int acpi_scan_add_handler(struct acpi_scan_handler *handler)
87{
88 if (!handler)
89 return -EINVAL;
90
91 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
92 return 0;
93}
94
95int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
96 const char *hotplug_profile_name)
97{
98 int error;
99
100 error = acpi_scan_add_handler(handler);
101 if (error)
102 return error;
103
104 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
105 return 0;
106}
107
108bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
109{
110 struct acpi_device_physical_node *pn;
111 bool offline = true;
112 char *envp[] = { "EVENT=offline", NULL };
113
114 /*
115 * acpi_container_offline() calls this for all of the container's
116 * children under the container's physical_node_lock lock.
117 */
118 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
119
120 list_for_each_entry(pn, &adev->physical_node_list, node)
121 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
122 if (uevent)
123 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
124
125 offline = false;
126 break;
127 }
128
129 mutex_unlock(&adev->physical_node_lock);
130 return offline;
131}
132
133static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
134 void **ret_p)
135{
136 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
137 struct acpi_device_physical_node *pn;
138 bool second_pass = (bool)data;
139 acpi_status status = AE_OK;
140
141 if (!device)
142 return AE_OK;
143
144 if (device->handler && !device->handler->hotplug.enabled) {
145 *ret_p = &device->dev;
146 return AE_SUPPORT;
147 }
148
149 mutex_lock(&device->physical_node_lock);
150
151 list_for_each_entry(pn, &device->physical_node_list, node) {
152 int ret;
153
154 if (second_pass) {
155 /* Skip devices offlined by the first pass. */
156 if (pn->put_online)
157 continue;
158 } else {
159 pn->put_online = false;
160 }
161 ret = device_offline(pn->dev);
162 if (ret >= 0) {
163 pn->put_online = !ret;
164 } else {
165 *ret_p = pn->dev;
166 if (second_pass) {
167 status = AE_ERROR;
168 break;
169 }
170 }
171 }
172
173 mutex_unlock(&device->physical_node_lock);
174
175 return status;
176}
177
178static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
179 void **ret_p)
180{
181 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
182 struct acpi_device_physical_node *pn;
183
184 if (!device)
185 return AE_OK;
186
187 mutex_lock(&device->physical_node_lock);
188
189 list_for_each_entry(pn, &device->physical_node_list, node)
190 if (pn->put_online) {
191 device_online(pn->dev);
192 pn->put_online = false;
193 }
194
195 mutex_unlock(&device->physical_node_lock);
196
197 return AE_OK;
198}
199
200static int acpi_scan_try_to_offline(struct acpi_device *device)
201{
202 acpi_handle handle = device->handle;
203 struct device *errdev = NULL;
204 acpi_status status;
205
206 /*
207 * Carry out two passes here and ignore errors in the first pass,
208 * because if the devices in question are memory blocks and
209 * CONFIG_MEMCG is set, one of the blocks may hold data structures
210 * that the other blocks depend on, but it is not known in advance which
211 * block holds them.
212 *
213 * If the first pass is successful, the second one isn't needed, though.
214 */
215 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
216 NULL, acpi_bus_offline, (void *)false,
217 (void **)&errdev);
218 if (status == AE_SUPPORT) {
219 dev_warn(errdev, "Offline disabled.\n");
220 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221 acpi_bus_online, NULL, NULL, NULL);
222 return -EPERM;
223 }
224 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
225 if (errdev) {
226 errdev = NULL;
227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 NULL, acpi_bus_offline, (void *)true,
229 (void **)&errdev);
230 if (!errdev)
231 acpi_bus_offline(handle, 0, (void *)true,
232 (void **)&errdev);
233
234 if (errdev) {
235 dev_warn(errdev, "Offline failed.\n");
236 acpi_bus_online(handle, 0, NULL, NULL);
237 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
238 ACPI_UINT32_MAX, acpi_bus_online,
239 NULL, NULL, NULL);
240 return -EBUSY;
241 }
242 }
243 return 0;
244}
245
246#define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0)
247#define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1)
248
249static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
250{
251 struct acpi_scan_handler *handler = adev->handler;
252 uintptr_t flags = (uintptr_t)p;
253
254 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
255
256 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
257 acpi_bus_get_status(adev);
258 /*
259 * Skip devices that are still there and take the enabled
260 * flag into account.
261 */
262 if (acpi_device_is_enabled(adev))
263 return 0;
264
265 /* Skip device that have not been enumerated. */
266 if (!acpi_device_enumerated(adev)) {
267 dev_dbg(&adev->dev, "Still not enumerated\n");
268 return 0;
269 }
270 }
271
272 adev->flags.match_driver = false;
273 if (handler) {
274 if (handler->detach)
275 handler->detach(adev);
276 } else {
277 device_release_driver(&adev->dev);
278 }
279 /*
280 * Most likely, the device is going away, so put it into D3cold before
281 * that.
282 */
283 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
284 adev->flags.initialized = false;
285
286 /* For eject this is deferred to acpi_bus_post_eject() */
287 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
288 adev->handler = NULL;
289 acpi_device_clear_enumerated(adev);
290 }
291 return 0;
292}
293
294static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
295{
296 struct acpi_scan_handler *handler = adev->handler;
297
298 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
299
300 if (handler) {
301 if (handler->post_eject)
302 handler->post_eject(adev);
303
304 adev->handler = NULL;
305 }
306
307 acpi_device_clear_enumerated(adev);
308
309 return 0;
310}
311
312static void acpi_scan_check_subtree(struct acpi_device *adev)
313{
314 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
315
316 acpi_scan_check_and_detach(adev, (void *)flags);
317}
318
319static int acpi_scan_hot_remove(struct acpi_device *device)
320{
321 acpi_handle handle = device->handle;
322 unsigned long long sta;
323 acpi_status status;
324 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
325
326 if (device->handler && device->handler->hotplug.demand_offline) {
327 if (!acpi_scan_is_offline(device, true))
328 return -EBUSY;
329 } else {
330 int error = acpi_scan_try_to_offline(device);
331 if (error)
332 return error;
333 }
334
335 acpi_handle_debug(handle, "Ejecting\n");
336
337 acpi_scan_check_and_detach(device, (void *)flags);
338
339 acpi_evaluate_lck(handle, 0);
340 /*
341 * TBD: _EJD support.
342 */
343 status = acpi_evaluate_ej0(handle);
344 if (status == AE_NOT_FOUND)
345 return -ENODEV;
346 else if (ACPI_FAILURE(status))
347 return -EIO;
348
349 /*
350 * Verify if eject was indeed successful. If not, log an error
351 * message. No need to call _OST since _EJ0 call was made OK.
352 */
353 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
354 if (ACPI_FAILURE(status)) {
355 acpi_handle_warn(handle,
356 "Status check after eject failed (0x%x)\n", status);
357 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
358 acpi_handle_warn(handle,
359 "Eject incomplete - status 0x%llx\n", sta);
360 } else {
361 acpi_bus_post_eject(device, NULL);
362 }
363
364 return 0;
365}
366
367static int acpi_scan_rescan_bus(struct acpi_device *adev)
368{
369 struct acpi_scan_handler *handler = adev->handler;
370 int ret;
371
372 if (handler && handler->hotplug.scan_dependent)
373 ret = handler->hotplug.scan_dependent(adev);
374 else
375 ret = acpi_bus_scan(adev->handle);
376
377 if (ret)
378 dev_info(&adev->dev, "Namespace scan failure\n");
379
380 return ret;
381}
382
383static int acpi_scan_device_check(struct acpi_device *adev)
384{
385 struct acpi_device *parent;
386
387 acpi_scan_check_subtree(adev);
388
389 if (!acpi_device_is_present(adev))
390 return 0;
391
392 /*
393 * This function is only called for device objects for which matching
394 * scan handlers exist. The only situation in which the scan handler
395 * is not attached to this device object yet is when the device has
396 * just appeared (either it wasn't present at all before or it was
397 * removed and then added again).
398 */
399 if (adev->handler) {
400 dev_dbg(&adev->dev, "Already enumerated\n");
401 return 0;
402 }
403
404 parent = acpi_dev_parent(adev);
405 if (!parent)
406 parent = adev;
407
408 return acpi_scan_rescan_bus(parent);
409}
410
411static int acpi_scan_bus_check(struct acpi_device *adev)
412{
413 acpi_scan_check_subtree(adev);
414
415 return acpi_scan_rescan_bus(adev);
416}
417
418static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
419{
420 switch (type) {
421 case ACPI_NOTIFY_BUS_CHECK:
422 return acpi_scan_bus_check(adev);
423 case ACPI_NOTIFY_DEVICE_CHECK:
424 return acpi_scan_device_check(adev);
425 case ACPI_NOTIFY_EJECT_REQUEST:
426 case ACPI_OST_EC_OSPM_EJECT:
427 if (adev->handler && !adev->handler->hotplug.enabled) {
428 dev_info(&adev->dev, "Eject disabled\n");
429 return -EPERM;
430 }
431 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
432 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
433 return acpi_scan_hot_remove(adev);
434 }
435 return -EINVAL;
436}
437
438void acpi_device_hotplug(struct acpi_device *adev, u32 src)
439{
440 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
441 int error = -ENODEV;
442
443 lock_device_hotplug();
444 mutex_lock(&acpi_scan_lock);
445
446 /*
447 * The device object's ACPI handle cannot become invalid as long as we
448 * are holding acpi_scan_lock, but it might have become invalid before
449 * that lock was acquired.
450 */
451 if (adev->handle == INVALID_ACPI_HANDLE)
452 goto err_out;
453
454 if (adev->flags.is_dock_station) {
455 error = dock_notify(adev, src);
456 } else if (adev->flags.hotplug_notify) {
457 error = acpi_generic_hotplug_event(adev, src);
458 } else {
459 acpi_hp_notify notify;
460
461 acpi_lock_hp_context();
462 notify = adev->hp ? adev->hp->notify : NULL;
463 acpi_unlock_hp_context();
464 /*
465 * There may be additional notify handlers for device objects
466 * without the .event() callback, so ignore them here.
467 */
468 if (notify)
469 error = notify(adev, src);
470 else
471 goto out;
472 }
473 switch (error) {
474 case 0:
475 ost_code = ACPI_OST_SC_SUCCESS;
476 break;
477 case -EPERM:
478 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
479 break;
480 case -EBUSY:
481 ost_code = ACPI_OST_SC_DEVICE_BUSY;
482 break;
483 default:
484 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
485 break;
486 }
487
488 err_out:
489 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
490
491 out:
492 acpi_put_acpi_dev(adev);
493 mutex_unlock(&acpi_scan_lock);
494 unlock_device_hotplug();
495}
496
497static void acpi_free_power_resources_lists(struct acpi_device *device)
498{
499 int i;
500
501 if (device->wakeup.flags.valid)
502 acpi_power_resources_list_free(&device->wakeup.resources);
503
504 if (!device->power.flags.power_resources)
505 return;
506
507 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
508 struct acpi_device_power_state *ps = &device->power.states[i];
509 acpi_power_resources_list_free(&ps->resources);
510 }
511}
512
513static void acpi_device_release(struct device *dev)
514{
515 struct acpi_device *acpi_dev = to_acpi_device(dev);
516
517 acpi_free_properties(acpi_dev);
518 acpi_free_pnp_ids(&acpi_dev->pnp);
519 acpi_free_power_resources_lists(acpi_dev);
520 kfree(acpi_dev);
521}
522
523static void acpi_device_del(struct acpi_device *device)
524{
525 struct acpi_device_bus_id *acpi_device_bus_id;
526
527 mutex_lock(&acpi_device_lock);
528
529 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
530 if (!strcmp(acpi_device_bus_id->bus_id,
531 acpi_device_hid(device))) {
532 ida_free(&acpi_device_bus_id->instance_ida,
533 device->pnp.instance_no);
534 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
535 list_del(&acpi_device_bus_id->node);
536 kfree_const(acpi_device_bus_id->bus_id);
537 kfree(acpi_device_bus_id);
538 }
539 break;
540 }
541
542 list_del(&device->wakeup_list);
543
544 mutex_unlock(&acpi_device_lock);
545
546 acpi_power_add_remove_device(device, false);
547 acpi_device_remove_files(device);
548 if (device->remove)
549 device->remove(device);
550
551 device_del(&device->dev);
552}
553
554static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
555
556static LIST_HEAD(acpi_device_del_list);
557static DEFINE_MUTEX(acpi_device_del_lock);
558
559static void acpi_device_del_work_fn(struct work_struct *work_not_used)
560{
561 for (;;) {
562 struct acpi_device *adev;
563
564 mutex_lock(&acpi_device_del_lock);
565
566 if (list_empty(&acpi_device_del_list)) {
567 mutex_unlock(&acpi_device_del_lock);
568 break;
569 }
570 adev = list_first_entry(&acpi_device_del_list,
571 struct acpi_device, del_list);
572 list_del(&adev->del_list);
573
574 mutex_unlock(&acpi_device_del_lock);
575
576 blocking_notifier_call_chain(&acpi_reconfig_chain,
577 ACPI_RECONFIG_DEVICE_REMOVE, adev);
578
579 acpi_device_del(adev);
580 /*
581 * Drop references to all power resources that might have been
582 * used by the device.
583 */
584 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
585 acpi_dev_put(adev);
586 }
587}
588
589/**
590 * acpi_scan_drop_device - Drop an ACPI device object.
591 * @handle: Handle of an ACPI namespace node, not used.
592 * @context: Address of the ACPI device object to drop.
593 *
594 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
595 * namespace node the device object pointed to by @context is attached to.
596 *
597 * The unregistration is carried out asynchronously to avoid running
598 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
599 * ensure the correct ordering (the device objects must be unregistered in the
600 * same order in which the corresponding namespace nodes are deleted).
601 */
602static void acpi_scan_drop_device(acpi_handle handle, void *context)
603{
604 static DECLARE_WORK(work, acpi_device_del_work_fn);
605 struct acpi_device *adev = context;
606
607 mutex_lock(&acpi_device_del_lock);
608
609 /*
610 * Use the ACPI hotplug workqueue which is ordered, so this work item
611 * won't run after any hotplug work items submitted subsequently. That
612 * prevents attempts to register device objects identical to those being
613 * deleted from happening concurrently (such attempts result from
614 * hotplug events handled via the ACPI hotplug workqueue). It also will
615 * run after all of the work items submitted previously, which helps
616 * those work items to ensure that they are not accessing stale device
617 * objects.
618 */
619 if (list_empty(&acpi_device_del_list))
620 acpi_queue_hotplug_work(&work);
621
622 list_add_tail(&adev->del_list, &acpi_device_del_list);
623 /* Make acpi_ns_validate_handle() return NULL for this handle. */
624 adev->handle = INVALID_ACPI_HANDLE;
625
626 mutex_unlock(&acpi_device_del_lock);
627}
628
629static struct acpi_device *handle_to_device(acpi_handle handle,
630 void (*callback)(void *))
631{
632 struct acpi_device *adev = NULL;
633 acpi_status status;
634
635 status = acpi_get_data_full(handle, acpi_scan_drop_device,
636 (void **)&adev, callback);
637 if (ACPI_FAILURE(status) || !adev) {
638 acpi_handle_debug(handle, "No context!\n");
639 return NULL;
640 }
641 return adev;
642}
643
644/**
645 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
646 * @handle: ACPI handle associated with the requested ACPI device object.
647 *
648 * Return a pointer to the ACPI device object associated with @handle, if
649 * present, or NULL otherwise.
650 */
651struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
652{
653 return handle_to_device(handle, NULL);
654}
655EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
656
657static void get_acpi_device(void *dev)
658{
659 acpi_dev_get(dev);
660}
661
662/**
663 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
664 * @handle: ACPI handle associated with the requested ACPI device object.
665 *
666 * Return a pointer to the ACPI device object associated with @handle and bump
667 * up that object's reference counter (under the ACPI Namespace lock), if
668 * present, or return NULL otherwise.
669 *
670 * The ACPI device object reference acquired by this function needs to be
671 * dropped via acpi_dev_put().
672 */
673struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
674{
675 return handle_to_device(handle, get_acpi_device);
676}
677EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
678
679static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
680{
681 struct acpi_device_bus_id *acpi_device_bus_id;
682
683 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
684 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
685 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
686 return acpi_device_bus_id;
687 }
688 return NULL;
689}
690
691static int acpi_device_set_name(struct acpi_device *device,
692 struct acpi_device_bus_id *acpi_device_bus_id)
693{
694 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
695 int result;
696
697 result = ida_alloc(instance_ida, GFP_KERNEL);
698 if (result < 0)
699 return result;
700
701 device->pnp.instance_no = result;
702 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
703 return 0;
704}
705
706int acpi_tie_acpi_dev(struct acpi_device *adev)
707{
708 acpi_handle handle = adev->handle;
709 acpi_status status;
710
711 if (!handle)
712 return 0;
713
714 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
715 if (ACPI_FAILURE(status)) {
716 acpi_handle_err(handle, "Unable to attach device data\n");
717 return -ENODEV;
718 }
719
720 return 0;
721}
722
723static void acpi_store_pld_crc(struct acpi_device *adev)
724{
725 struct acpi_pld_info *pld;
726 acpi_status status;
727
728 status = acpi_get_physical_device_location(adev->handle, &pld);
729 if (ACPI_FAILURE(status))
730 return;
731
732 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
733 ACPI_FREE(pld);
734}
735
736int acpi_device_add(struct acpi_device *device)
737{
738 struct acpi_device_bus_id *acpi_device_bus_id;
739 int result;
740
741 /*
742 * Linkage
743 * -------
744 * Link this device to its parent and siblings.
745 */
746 INIT_LIST_HEAD(&device->wakeup_list);
747 INIT_LIST_HEAD(&device->physical_node_list);
748 INIT_LIST_HEAD(&device->del_list);
749 mutex_init(&device->physical_node_lock);
750
751 mutex_lock(&acpi_device_lock);
752
753 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
754 if (acpi_device_bus_id) {
755 result = acpi_device_set_name(device, acpi_device_bus_id);
756 if (result)
757 goto err_unlock;
758 } else {
759 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
760 GFP_KERNEL);
761 if (!acpi_device_bus_id) {
762 result = -ENOMEM;
763 goto err_unlock;
764 }
765 acpi_device_bus_id->bus_id =
766 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
767 if (!acpi_device_bus_id->bus_id) {
768 kfree(acpi_device_bus_id);
769 result = -ENOMEM;
770 goto err_unlock;
771 }
772
773 ida_init(&acpi_device_bus_id->instance_ida);
774
775 result = acpi_device_set_name(device, acpi_device_bus_id);
776 if (result) {
777 kfree_const(acpi_device_bus_id->bus_id);
778 kfree(acpi_device_bus_id);
779 goto err_unlock;
780 }
781
782 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
783 }
784
785 if (device->wakeup.flags.valid)
786 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
787
788 acpi_store_pld_crc(device);
789
790 mutex_unlock(&acpi_device_lock);
791
792 result = device_add(&device->dev);
793 if (result) {
794 dev_err(&device->dev, "Error registering device\n");
795 goto err;
796 }
797
798 acpi_device_setup_files(device);
799
800 return 0;
801
802err:
803 mutex_lock(&acpi_device_lock);
804
805 list_del(&device->wakeup_list);
806
807err_unlock:
808 mutex_unlock(&acpi_device_lock);
809
810 acpi_detach_data(device->handle, acpi_scan_drop_device);
811
812 return result;
813}
814
815/* --------------------------------------------------------------------------
816 Device Enumeration
817 -------------------------------------------------------------------------- */
818static bool acpi_info_matches_ids(struct acpi_device_info *info,
819 const char * const ids[])
820{
821 struct acpi_pnp_device_id_list *cid_list = NULL;
822 int i, index;
823
824 if (!(info->valid & ACPI_VALID_HID))
825 return false;
826
827 index = match_string(ids, -1, info->hardware_id.string);
828 if (index >= 0)
829 return true;
830
831 if (info->valid & ACPI_VALID_CID)
832 cid_list = &info->compatible_id_list;
833
834 if (!cid_list)
835 return false;
836
837 for (i = 0; i < cid_list->count; i++) {
838 index = match_string(ids, -1, cid_list->ids[i].string);
839 if (index >= 0)
840 return true;
841 }
842
843 return false;
844}
845
846/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
847static const char * const acpi_ignore_dep_ids[] = {
848 "PNP0D80", /* Windows-compatible System Power Management Controller */
849 "INT33BD", /* Intel Baytrail Mailbox Device */
850 "LATT2021", /* Lattice FW Update Client Driver */
851 NULL
852};
853
854/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
855static const char * const acpi_honor_dep_ids[] = {
856 "INT3472", /* Camera sensor PMIC / clk and regulator info */
857 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
858 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
859 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
860 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
861 "RSCV0001", /* RISC-V PLIC */
862 "RSCV0002", /* RISC-V APLIC */
863 "PNP0C0F", /* PCI Link Device */
864 NULL
865};
866
867static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
868{
869 struct acpi_device *adev;
870
871 /*
872 * Fixed hardware devices do not appear in the namespace and do not
873 * have handles, but we fabricate acpi_devices for them, so we have
874 * to deal with them specially.
875 */
876 if (!handle)
877 return acpi_root;
878
879 do {
880 acpi_status status;
881
882 status = acpi_get_parent(handle, &handle);
883 if (ACPI_FAILURE(status)) {
884 if (status != AE_NULL_ENTRY)
885 return acpi_root;
886
887 return NULL;
888 }
889 adev = acpi_fetch_acpi_dev(handle);
890 } while (!adev);
891 return adev;
892}
893
894acpi_status
895acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
896{
897 acpi_status status;
898 acpi_handle tmp;
899 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
900 union acpi_object *obj;
901
902 status = acpi_get_handle(handle, "_EJD", &tmp);
903 if (ACPI_FAILURE(status))
904 return status;
905
906 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
907 if (ACPI_SUCCESS(status)) {
908 obj = buffer.pointer;
909 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
910 ejd);
911 kfree(buffer.pointer);
912 }
913 return status;
914}
915EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
916
917static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
918{
919 acpi_handle handle = dev->handle;
920 struct acpi_device_wakeup *wakeup = &dev->wakeup;
921 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
922 union acpi_object *package = NULL;
923 union acpi_object *element = NULL;
924 acpi_status status;
925 int err = -ENODATA;
926
927 INIT_LIST_HEAD(&wakeup->resources);
928
929 /* _PRW */
930 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
931 if (ACPI_FAILURE(status)) {
932 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
933 acpi_format_exception(status));
934 return err;
935 }
936
937 package = (union acpi_object *)buffer.pointer;
938
939 if (!package || package->package.count < 2)
940 goto out;
941
942 element = &(package->package.elements[0]);
943 if (!element)
944 goto out;
945
946 if (element->type == ACPI_TYPE_PACKAGE) {
947 if ((element->package.count < 2) ||
948 (element->package.elements[0].type !=
949 ACPI_TYPE_LOCAL_REFERENCE)
950 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
951 goto out;
952
953 wakeup->gpe_device =
954 element->package.elements[0].reference.handle;
955 wakeup->gpe_number =
956 (u32) element->package.elements[1].integer.value;
957 } else if (element->type == ACPI_TYPE_INTEGER) {
958 wakeup->gpe_device = NULL;
959 wakeup->gpe_number = element->integer.value;
960 } else {
961 goto out;
962 }
963
964 element = &(package->package.elements[1]);
965 if (element->type != ACPI_TYPE_INTEGER)
966 goto out;
967
968 wakeup->sleep_state = element->integer.value;
969
970 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
971 if (err)
972 goto out;
973
974 if (!list_empty(&wakeup->resources)) {
975 int sleep_state;
976
977 err = acpi_power_wakeup_list_init(&wakeup->resources,
978 &sleep_state);
979 if (err) {
980 acpi_handle_warn(handle, "Retrieving current states "
981 "of wakeup power resources failed\n");
982 acpi_power_resources_list_free(&wakeup->resources);
983 goto out;
984 }
985 if (sleep_state < wakeup->sleep_state) {
986 acpi_handle_warn(handle, "Overriding _PRW sleep state "
987 "(S%d) by S%d from power resources\n",
988 (int)wakeup->sleep_state, sleep_state);
989 wakeup->sleep_state = sleep_state;
990 }
991 }
992
993 out:
994 kfree(buffer.pointer);
995 return err;
996}
997
998/* Do not use a button for S5 wakeup */
999#define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
1000
1001static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1002{
1003 static const struct acpi_device_id button_device_ids[] = {
1004 {"PNP0C0C", 0}, /* Power button */
1005 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
1006 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
1007 {"", 0},
1008 };
1009 struct acpi_device_wakeup *wakeup = &device->wakeup;
1010 const struct acpi_device_id *match;
1011 acpi_status status;
1012
1013 wakeup->flags.notifier_present = 0;
1014
1015 /* Power button, Lid switch always enable wakeup */
1016 match = acpi_match_acpi_device(button_device_ids, device);
1017 if (match) {
1018 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
1019 wakeup->sleep_state == ACPI_STATE_S5)
1020 wakeup->sleep_state = ACPI_STATE_S4;
1021 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
1022 device_set_wakeup_capable(&device->dev, true);
1023 return true;
1024 }
1025
1026 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1027 wakeup->gpe_number);
1028 return ACPI_SUCCESS(status);
1029}
1030
1031static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1032{
1033 int err;
1034
1035 /* Presence of _PRW indicates wake capable */
1036 if (!acpi_has_method(device->handle, "_PRW"))
1037 return;
1038
1039 err = acpi_bus_extract_wakeup_device_power_package(device);
1040 if (err) {
1041 dev_err(&device->dev, "Unable to extract wakeup power resources");
1042 return;
1043 }
1044
1045 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1046 device->wakeup.prepare_count = 0;
1047 /*
1048 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1049 * system for the ACPI device with the _PRW object.
1050 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1051 * So it is necessary to call _DSW object first. Only when it is not
1052 * present will the _PSW object used.
1053 */
1054 err = acpi_device_sleep_wake(device, 0, 0, 0);
1055 if (err)
1056 pr_debug("error in _DSW or _PSW evaluation\n");
1057}
1058
1059static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1060{
1061 struct acpi_device_power_state *ps = &device->power.states[state];
1062 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1063 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1064 acpi_status status;
1065
1066 INIT_LIST_HEAD(&ps->resources);
1067
1068 /* Evaluate "_PRx" to get referenced power resources */
1069 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1070 if (ACPI_SUCCESS(status)) {
1071 union acpi_object *package = buffer.pointer;
1072
1073 if (buffer.length && package
1074 && package->type == ACPI_TYPE_PACKAGE
1075 && package->package.count)
1076 acpi_extract_power_resources(package, 0, &ps->resources);
1077
1078 ACPI_FREE(buffer.pointer);
1079 }
1080
1081 /* Evaluate "_PSx" to see if we can do explicit sets */
1082 pathname[2] = 'S';
1083 if (acpi_has_method(device->handle, pathname))
1084 ps->flags.explicit_set = 1;
1085
1086 /* State is valid if there are means to put the device into it. */
1087 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1088 ps->flags.valid = 1;
1089
1090 ps->power = -1; /* Unknown - driver assigned */
1091 ps->latency = -1; /* Unknown - driver assigned */
1092}
1093
1094static void acpi_bus_get_power_flags(struct acpi_device *device)
1095{
1096 unsigned long long dsc = ACPI_STATE_D0;
1097 u32 i;
1098
1099 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1100 if (!acpi_has_method(device->handle, "_PS0") &&
1101 !acpi_has_method(device->handle, "_PR0"))
1102 return;
1103
1104 device->flags.power_manageable = 1;
1105
1106 /*
1107 * Power Management Flags
1108 */
1109 if (acpi_has_method(device->handle, "_PSC"))
1110 device->power.flags.explicit_get = 1;
1111
1112 if (acpi_has_method(device->handle, "_IRC"))
1113 device->power.flags.inrush_current = 1;
1114
1115 if (acpi_has_method(device->handle, "_DSW"))
1116 device->power.flags.dsw_present = 1;
1117
1118 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1119 device->power.state_for_enumeration = dsc;
1120
1121 /*
1122 * Enumerate supported power management states
1123 */
1124 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1125 acpi_bus_init_power_state(device, i);
1126
1127 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1128
1129 /* Set the defaults for D0 and D3hot (always supported). */
1130 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1131 device->power.states[ACPI_STATE_D0].power = 100;
1132 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1133
1134 /*
1135 * Use power resources only if the D0 list of them is populated, because
1136 * some platforms may provide _PR3 only to indicate D3cold support and
1137 * in those cases the power resources list returned by it may be bogus.
1138 */
1139 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1140 device->power.flags.power_resources = 1;
1141 /*
1142 * D3cold is supported if the D3hot list of power resources is
1143 * not empty.
1144 */
1145 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1146 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1147 }
1148
1149 if (acpi_bus_init_power(device))
1150 device->flags.power_manageable = 0;
1151}
1152
1153static void acpi_bus_get_flags(struct acpi_device *device)
1154{
1155 /* Presence of _STA indicates 'dynamic_status' */
1156 if (acpi_has_method(device->handle, "_STA"))
1157 device->flags.dynamic_status = 1;
1158
1159 /* Presence of _RMV indicates 'removable' */
1160 if (acpi_has_method(device->handle, "_RMV"))
1161 device->flags.removable = 1;
1162
1163 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1164 if (acpi_has_method(device->handle, "_EJD") ||
1165 acpi_has_method(device->handle, "_EJ0"))
1166 device->flags.ejectable = 1;
1167}
1168
1169static void acpi_device_get_busid(struct acpi_device *device)
1170{
1171 char bus_id[5] = { '?', 0 };
1172 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1173 int i = 0;
1174
1175 /*
1176 * Bus ID
1177 * ------
1178 * The device's Bus ID is simply the object name.
1179 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1180 */
1181 if (!acpi_dev_parent(device)) {
1182 strscpy(device->pnp.bus_id, "ACPI");
1183 return;
1184 }
1185
1186 switch (device->device_type) {
1187 case ACPI_BUS_TYPE_POWER_BUTTON:
1188 strscpy(device->pnp.bus_id, "PWRF");
1189 break;
1190 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1191 strscpy(device->pnp.bus_id, "SLPF");
1192 break;
1193 case ACPI_BUS_TYPE_ECDT_EC:
1194 strscpy(device->pnp.bus_id, "ECDT");
1195 break;
1196 default:
1197 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1198 /* Clean up trailing underscores (if any) */
1199 for (i = 3; i > 1; i--) {
1200 if (bus_id[i] == '_')
1201 bus_id[i] = '\0';
1202 else
1203 break;
1204 }
1205 strscpy(device->pnp.bus_id, bus_id);
1206 break;
1207 }
1208}
1209
1210/*
1211 * acpi_ata_match - see if an acpi object is an ATA device
1212 *
1213 * If an acpi object has one of the ACPI ATA methods defined,
1214 * then we can safely call it an ATA device.
1215 */
1216bool acpi_ata_match(acpi_handle handle)
1217{
1218 return acpi_has_method(handle, "_GTF") ||
1219 acpi_has_method(handle, "_GTM") ||
1220 acpi_has_method(handle, "_STM") ||
1221 acpi_has_method(handle, "_SDD");
1222}
1223
1224/*
1225 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1226 *
1227 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1228 * then we can safely call it an ejectable drive bay
1229 */
1230bool acpi_bay_match(acpi_handle handle)
1231{
1232 acpi_handle phandle;
1233
1234 if (!acpi_has_method(handle, "_EJ0"))
1235 return false;
1236 if (acpi_ata_match(handle))
1237 return true;
1238 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1239 return false;
1240
1241 return acpi_ata_match(phandle);
1242}
1243
1244bool acpi_device_is_battery(struct acpi_device *adev)
1245{
1246 struct acpi_hardware_id *hwid;
1247
1248 list_for_each_entry(hwid, &adev->pnp.ids, list)
1249 if (!strcmp("PNP0C0A", hwid->id))
1250 return true;
1251
1252 return false;
1253}
1254
1255static bool is_ejectable_bay(struct acpi_device *adev)
1256{
1257 acpi_handle handle = adev->handle;
1258
1259 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1260 return true;
1261
1262 return acpi_bay_match(handle);
1263}
1264
1265/*
1266 * acpi_dock_match - see if an acpi object has a _DCK method
1267 */
1268bool acpi_dock_match(acpi_handle handle)
1269{
1270 return acpi_has_method(handle, "_DCK");
1271}
1272
1273static acpi_status
1274acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1275 void **return_value)
1276{
1277 long *cap = context;
1278
1279 if (acpi_has_method(handle, "_BCM") &&
1280 acpi_has_method(handle, "_BCL")) {
1281 acpi_handle_debug(handle, "Found generic backlight support\n");
1282 *cap |= ACPI_VIDEO_BACKLIGHT;
1283 /* We have backlight support, no need to scan further */
1284 return AE_CTRL_TERMINATE;
1285 }
1286 return 0;
1287}
1288
1289/* Returns true if the ACPI object is a video device which can be
1290 * handled by video.ko.
1291 * The device will get a Linux specific CID added in scan.c to
1292 * identify the device as an ACPI graphics device
1293 * Be aware that the graphics device may not be physically present
1294 * Use acpi_video_get_capabilities() to detect general ACPI video
1295 * capabilities of present cards
1296 */
1297long acpi_is_video_device(acpi_handle handle)
1298{
1299 long video_caps = 0;
1300
1301 /* Is this device able to support video switching ? */
1302 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1303 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1304
1305 /* Is this device able to retrieve a video ROM ? */
1306 if (acpi_has_method(handle, "_ROM"))
1307 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1308
1309 /* Is this device able to configure which video head to be POSTed ? */
1310 if (acpi_has_method(handle, "_VPO") &&
1311 acpi_has_method(handle, "_GPD") &&
1312 acpi_has_method(handle, "_SPD"))
1313 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1314
1315 /* Only check for backlight functionality if one of the above hit. */
1316 if (video_caps)
1317 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1318 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1319 &video_caps, NULL);
1320
1321 return video_caps;
1322}
1323EXPORT_SYMBOL(acpi_is_video_device);
1324
1325const char *acpi_device_hid(struct acpi_device *device)
1326{
1327 struct acpi_hardware_id *hid;
1328
1329 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1330 if (!hid)
1331 return dummy_hid;
1332
1333 return hid->id;
1334}
1335EXPORT_SYMBOL(acpi_device_hid);
1336
1337static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1338{
1339 struct acpi_hardware_id *id;
1340
1341 id = kmalloc(sizeof(*id), GFP_KERNEL);
1342 if (!id)
1343 return;
1344
1345 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1346 if (!id->id) {
1347 kfree(id);
1348 return;
1349 }
1350
1351 list_add_tail(&id->list, &pnp->ids);
1352 pnp->type.hardware_id = 1;
1353}
1354
1355/*
1356 * Old IBM workstations have a DSDT bug wherein the SMBus object
1357 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1358 * prefix. Work around this.
1359 */
1360static bool acpi_ibm_smbus_match(acpi_handle handle)
1361{
1362 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1363 struct acpi_buffer path = { sizeof(node_name), node_name };
1364
1365 if (!dmi_name_in_vendors("IBM"))
1366 return false;
1367
1368 /* Look for SMBS object */
1369 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1370 strcmp("SMBS", path.pointer))
1371 return false;
1372
1373 /* Does it have the necessary (but misnamed) methods? */
1374 if (acpi_has_method(handle, "SBI") &&
1375 acpi_has_method(handle, "SBR") &&
1376 acpi_has_method(handle, "SBW"))
1377 return true;
1378
1379 return false;
1380}
1381
1382static bool acpi_object_is_system_bus(acpi_handle handle)
1383{
1384 acpi_handle tmp;
1385
1386 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1387 tmp == handle)
1388 return true;
1389 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1390 tmp == handle)
1391 return true;
1392
1393 return false;
1394}
1395
1396static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1397 int device_type)
1398{
1399 struct acpi_device_info *info = NULL;
1400 struct acpi_pnp_device_id_list *cid_list;
1401 int i;
1402
1403 switch (device_type) {
1404 case ACPI_BUS_TYPE_DEVICE:
1405 if (handle == ACPI_ROOT_OBJECT) {
1406 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1407 break;
1408 }
1409
1410 acpi_get_object_info(handle, &info);
1411 if (!info) {
1412 pr_err("%s: Error reading device info\n", __func__);
1413 return;
1414 }
1415
1416 if (info->valid & ACPI_VALID_HID) {
1417 acpi_add_id(pnp, info->hardware_id.string);
1418 pnp->type.platform_id = 1;
1419 }
1420 if (info->valid & ACPI_VALID_CID) {
1421 cid_list = &info->compatible_id_list;
1422 for (i = 0; i < cid_list->count; i++)
1423 acpi_add_id(pnp, cid_list->ids[i].string);
1424 }
1425 if (info->valid & ACPI_VALID_ADR) {
1426 pnp->bus_address = info->address;
1427 pnp->type.bus_address = 1;
1428 }
1429 if (info->valid & ACPI_VALID_UID)
1430 pnp->unique_id = kstrdup(info->unique_id.string,
1431 GFP_KERNEL);
1432 if (info->valid & ACPI_VALID_CLS)
1433 acpi_add_id(pnp, info->class_code.string);
1434
1435 kfree(info);
1436
1437 /*
1438 * Some devices don't reliably have _HIDs & _CIDs, so add
1439 * synthetic HIDs to make sure drivers can find them.
1440 */
1441 if (acpi_is_video_device(handle)) {
1442 acpi_add_id(pnp, ACPI_VIDEO_HID);
1443 pnp->type.backlight = 1;
1444 break;
1445 }
1446 if (acpi_bay_match(handle))
1447 acpi_add_id(pnp, ACPI_BAY_HID);
1448 else if (acpi_dock_match(handle))
1449 acpi_add_id(pnp, ACPI_DOCK_HID);
1450 else if (acpi_ibm_smbus_match(handle))
1451 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1452 else if (list_empty(&pnp->ids) &&
1453 acpi_object_is_system_bus(handle)) {
1454 /* \_SB, \_TZ, LNXSYBUS */
1455 acpi_add_id(pnp, ACPI_BUS_HID);
1456 strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1457 strscpy(pnp->device_class, ACPI_BUS_CLASS);
1458 }
1459
1460 break;
1461 case ACPI_BUS_TYPE_POWER:
1462 acpi_add_id(pnp, ACPI_POWER_HID);
1463 break;
1464 case ACPI_BUS_TYPE_PROCESSOR:
1465 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1466 break;
1467 case ACPI_BUS_TYPE_THERMAL:
1468 acpi_add_id(pnp, ACPI_THERMAL_HID);
1469 break;
1470 case ACPI_BUS_TYPE_POWER_BUTTON:
1471 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1472 break;
1473 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1474 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1475 break;
1476 case ACPI_BUS_TYPE_ECDT_EC:
1477 acpi_add_id(pnp, ACPI_ECDT_HID);
1478 break;
1479 }
1480}
1481
1482void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1483{
1484 struct acpi_hardware_id *id, *tmp;
1485
1486 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1487 kfree_const(id->id);
1488 kfree(id);
1489 }
1490 kfree(pnp->unique_id);
1491}
1492
1493/**
1494 * acpi_dma_supported - Check DMA support for the specified device.
1495 * @adev: The pointer to acpi device
1496 *
1497 * Return false if DMA is not supported. Otherwise, return true
1498 */
1499bool acpi_dma_supported(const struct acpi_device *adev)
1500{
1501 if (!adev)
1502 return false;
1503
1504 if (adev->flags.cca_seen)
1505 return true;
1506
1507 /*
1508 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1509 * DMA on "Intel platforms". Presumably that includes all x86 and
1510 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1511 */
1512 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1513 return true;
1514
1515 return false;
1516}
1517
1518/**
1519 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1520 * @adev: The pointer to acpi device
1521 *
1522 * Return enum dev_dma_attr.
1523 */
1524enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1525{
1526 if (!acpi_dma_supported(adev))
1527 return DEV_DMA_NOT_SUPPORTED;
1528
1529 if (adev->flags.coherent_dma)
1530 return DEV_DMA_COHERENT;
1531 else
1532 return DEV_DMA_NON_COHERENT;
1533}
1534
1535/**
1536 * acpi_dma_get_range() - Get device DMA parameters.
1537 *
1538 * @dev: device to configure
1539 * @map: pointer to DMA ranges result
1540 *
1541 * Evaluate DMA regions and return pointer to DMA regions on
1542 * parsing success; it does not update the passed in values on failure.
1543 *
1544 * Return 0 on success, < 0 on failure.
1545 */
1546int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1547{
1548 struct acpi_device *adev;
1549 LIST_HEAD(list);
1550 struct resource_entry *rentry;
1551 int ret;
1552 struct device *dma_dev = dev;
1553 struct bus_dma_region *r;
1554
1555 /*
1556 * Walk the device tree chasing an ACPI companion with a _DMA
1557 * object while we go. Stop if we find a device with an ACPI
1558 * companion containing a _DMA method.
1559 */
1560 do {
1561 adev = ACPI_COMPANION(dma_dev);
1562 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1563 break;
1564
1565 dma_dev = dma_dev->parent;
1566 } while (dma_dev);
1567
1568 if (!dma_dev)
1569 return -ENODEV;
1570
1571 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1572 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1573 return -EINVAL;
1574 }
1575
1576 ret = acpi_dev_get_dma_resources(adev, &list);
1577 if (ret > 0) {
1578 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1579 if (!r) {
1580 ret = -ENOMEM;
1581 goto out;
1582 }
1583
1584 *map = r;
1585
1586 list_for_each_entry(rentry, &list, node) {
1587 if (rentry->res->start >= rentry->res->end) {
1588 kfree(*map);
1589 *map = NULL;
1590 ret = -EINVAL;
1591 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1592 goto out;
1593 }
1594
1595 r->cpu_start = rentry->res->start;
1596 r->dma_start = rentry->res->start - rentry->offset;
1597 r->size = resource_size(rentry->res);
1598 r++;
1599 }
1600 }
1601 out:
1602 acpi_dev_free_resource_list(&list);
1603
1604 return ret >= 0 ? 0 : ret;
1605}
1606
1607#ifdef CONFIG_IOMMU_API
1608int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1609 struct fwnode_handle *fwnode)
1610{
1611 int ret;
1612
1613 ret = iommu_fwspec_init(dev, fwnode);
1614 if (ret)
1615 return ret;
1616
1617 return iommu_fwspec_add_ids(dev, &id, 1);
1618}
1619
1620static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1621{
1622 int err;
1623
1624 /* Serialise to make dev->iommu stable under our potential fwspec */
1625 mutex_lock(&iommu_probe_device_lock);
1626 /* If we already translated the fwspec there is nothing left to do */
1627 if (dev_iommu_fwspec_get(dev)) {
1628 mutex_unlock(&iommu_probe_device_lock);
1629 return 0;
1630 }
1631
1632 err = iort_iommu_configure_id(dev, id_in);
1633 if (err && err != -EPROBE_DEFER)
1634 err = viot_iommu_configure(dev);
1635 mutex_unlock(&iommu_probe_device_lock);
1636
1637 /*
1638 * If we have reason to believe the IOMMU driver missed the initial
1639 * iommu_probe_device() call for dev, replay it to get things in order.
1640 */
1641 if (!err && dev->bus)
1642 err = iommu_probe_device(dev);
1643
1644 return err;
1645}
1646
1647#else /* !CONFIG_IOMMU_API */
1648
1649int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1650 struct fwnode_handle *fwnode)
1651{
1652 return -ENODEV;
1653}
1654
1655static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1656{
1657 return -ENODEV;
1658}
1659
1660#endif /* !CONFIG_IOMMU_API */
1661
1662/**
1663 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1664 * @dev: The pointer to the device
1665 * @attr: device dma attributes
1666 * @input_id: input device id const value pointer
1667 */
1668int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1669 const u32 *input_id)
1670{
1671 int ret;
1672
1673 if (attr == DEV_DMA_NOT_SUPPORTED) {
1674 set_dma_ops(dev, &dma_dummy_ops);
1675 return 0;
1676 }
1677
1678 acpi_arch_dma_setup(dev);
1679
1680 /* Ignore all other errors apart from EPROBE_DEFER */
1681 ret = acpi_iommu_configure_id(dev, input_id);
1682 if (ret == -EPROBE_DEFER)
1683 return -EPROBE_DEFER;
1684 if (ret)
1685 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1686
1687 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1688
1689 return 0;
1690}
1691EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1692
1693static void acpi_init_coherency(struct acpi_device *adev)
1694{
1695 unsigned long long cca = 0;
1696 acpi_status status;
1697 struct acpi_device *parent = acpi_dev_parent(adev);
1698
1699 if (parent && parent->flags.cca_seen) {
1700 /*
1701 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1702 * already saw one.
1703 */
1704 adev->flags.cca_seen = 1;
1705 cca = parent->flags.coherent_dma;
1706 } else {
1707 status = acpi_evaluate_integer(adev->handle, "_CCA",
1708 NULL, &cca);
1709 if (ACPI_SUCCESS(status))
1710 adev->flags.cca_seen = 1;
1711 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1712 /*
1713 * If architecture does not specify that _CCA is
1714 * required for DMA-able devices (e.g. x86),
1715 * we default to _CCA=1.
1716 */
1717 cca = 1;
1718 else
1719 acpi_handle_debug(adev->handle,
1720 "ACPI device is missing _CCA.\n");
1721 }
1722
1723 adev->flags.coherent_dma = cca;
1724}
1725
1726static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1727{
1728 bool *is_serial_bus_slave_p = data;
1729
1730 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1731 return 1;
1732
1733 *is_serial_bus_slave_p = true;
1734
1735 /* no need to do more checking */
1736 return -1;
1737}
1738
1739static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1740{
1741 struct acpi_device *parent = acpi_dev_parent(device);
1742 static const struct acpi_device_id indirect_io_hosts[] = {
1743 {"HISI0191", 0},
1744 {}
1745 };
1746
1747 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1748}
1749
1750static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1751{
1752 struct list_head resource_list;
1753 bool is_serial_bus_slave = false;
1754 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1755 /*
1756 * These devices have multiple SerialBus resources and a client
1757 * device must be instantiated for each of them, each with
1758 * its own device id.
1759 * Normally we only instantiate one client device for the first
1760 * resource, using the ACPI HID as id. These special cases are handled
1761 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1762 * knows which client device id to use for each resource.
1763 */
1764 {"BSG1160", },
1765 {"BSG2150", },
1766 {"CSC3551", },
1767 {"CSC3554", },
1768 {"CSC3556", },
1769 {"CSC3557", },
1770 {"INT33FE", },
1771 {"INT3515", },
1772 /* Non-conforming _HID for Cirrus Logic already released */
1773 {"CLSA0100", },
1774 {"CLSA0101", },
1775 /*
1776 * Some ACPI devs contain SerialBus resources even though they are not
1777 * attached to a serial bus at all.
1778 */
1779 {ACPI_VIDEO_HID, },
1780 {"MSHW0028", },
1781 /*
1782 * HIDs of device with an UartSerialBusV2 resource for which userspace
1783 * expects a regular tty cdev to be created (instead of the in kernel
1784 * serdev) and which have a kernel driver which expects a platform_dev
1785 * such as the rfkill-gpio driver.
1786 */
1787 {"BCM4752", },
1788 {"LNV4752", },
1789 {}
1790 };
1791
1792 if (acpi_is_indirect_io_slave(device))
1793 return true;
1794
1795 /* Macs use device properties in lieu of _CRS resources */
1796 if (x86_apple_machine &&
1797 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1798 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1799 fwnode_property_present(&device->fwnode, "baud")))
1800 return true;
1801
1802 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1803 return false;
1804
1805 INIT_LIST_HEAD(&resource_list);
1806 acpi_dev_get_resources(device, &resource_list,
1807 acpi_check_serial_bus_slave,
1808 &is_serial_bus_slave);
1809 acpi_dev_free_resource_list(&resource_list);
1810
1811 return is_serial_bus_slave;
1812}
1813
1814void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1815 int type, void (*release)(struct device *))
1816{
1817 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1818
1819 INIT_LIST_HEAD(&device->pnp.ids);
1820 device->device_type = type;
1821 device->handle = handle;
1822 device->dev.parent = parent ? &parent->dev : NULL;
1823 device->dev.release = release;
1824 device->dev.bus = &acpi_bus_type;
1825 device->dev.groups = acpi_groups;
1826 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1827 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1828 acpi_device_get_busid(device);
1829 acpi_set_pnp_ids(handle, &device->pnp, type);
1830 acpi_init_properties(device);
1831 acpi_bus_get_flags(device);
1832 device->flags.match_driver = false;
1833 device->flags.initialized = true;
1834 device->flags.enumeration_by_parent =
1835 acpi_device_enumeration_by_parent(device);
1836 acpi_device_clear_enumerated(device);
1837 device_initialize(&device->dev);
1838 dev_set_uevent_suppress(&device->dev, true);
1839 acpi_init_coherency(device);
1840}
1841
1842static void acpi_scan_dep_init(struct acpi_device *adev)
1843{
1844 struct acpi_dep_data *dep;
1845
1846 list_for_each_entry(dep, &acpi_dep_list, node) {
1847 if (dep->consumer == adev->handle) {
1848 if (dep->honor_dep)
1849 adev->flags.honor_deps = 1;
1850
1851 if (!dep->met)
1852 adev->dep_unmet++;
1853 }
1854 }
1855}
1856
1857void acpi_device_add_finalize(struct acpi_device *device)
1858{
1859 dev_set_uevent_suppress(&device->dev, false);
1860 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1861}
1862
1863static void acpi_scan_init_status(struct acpi_device *adev)
1864{
1865 if (acpi_bus_get_status(adev))
1866 acpi_set_device_status(adev, 0);
1867}
1868
1869static int acpi_add_single_object(struct acpi_device **child,
1870 acpi_handle handle, int type, bool dep_init)
1871{
1872 struct acpi_device *device;
1873 bool release_dep_lock = false;
1874 int result;
1875
1876 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1877 if (!device)
1878 return -ENOMEM;
1879
1880 acpi_init_device_object(device, handle, type, acpi_device_release);
1881 /*
1882 * Getting the status is delayed till here so that we can call
1883 * acpi_bus_get_status() and use its quirk handling. Note that
1884 * this must be done before the get power-/wakeup_dev-flags calls.
1885 */
1886 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1887 if (dep_init) {
1888 mutex_lock(&acpi_dep_list_lock);
1889 /*
1890 * Hold the lock until the acpi_tie_acpi_dev() call
1891 * below to prevent concurrent acpi_scan_clear_dep()
1892 * from deleting a dependency list entry without
1893 * updating dep_unmet for the device.
1894 */
1895 release_dep_lock = true;
1896 acpi_scan_dep_init(device);
1897 }
1898 acpi_scan_init_status(device);
1899 }
1900
1901 acpi_bus_get_power_flags(device);
1902 acpi_bus_get_wakeup_device_flags(device);
1903
1904 result = acpi_tie_acpi_dev(device);
1905
1906 if (release_dep_lock)
1907 mutex_unlock(&acpi_dep_list_lock);
1908
1909 if (!result)
1910 result = acpi_device_add(device);
1911
1912 if (result) {
1913 acpi_device_release(&device->dev);
1914 return result;
1915 }
1916
1917 acpi_power_add_remove_device(device, true);
1918 acpi_device_add_finalize(device);
1919
1920 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1921 dev_name(&device->dev), device->dev.parent ?
1922 dev_name(device->dev.parent) : "(null)");
1923
1924 *child = device;
1925 return 0;
1926}
1927
1928static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1929 void *context)
1930{
1931 struct resource *res = context;
1932
1933 if (acpi_dev_resource_memory(ares, res))
1934 return AE_CTRL_TERMINATE;
1935
1936 return AE_OK;
1937}
1938
1939static bool acpi_device_should_be_hidden(acpi_handle handle)
1940{
1941 acpi_status status;
1942 struct resource res;
1943
1944 /* Check if it should ignore the UART device */
1945 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1946 return false;
1947
1948 /*
1949 * The UART device described in SPCR table is assumed to have only one
1950 * memory resource present. So we only look for the first one here.
1951 */
1952 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1953 acpi_get_resource_memory, &res);
1954 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1955 return false;
1956
1957 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1958 &res.start);
1959
1960 return true;
1961}
1962
1963bool acpi_device_is_present(const struct acpi_device *adev)
1964{
1965 return adev->status.present || adev->status.functional;
1966}
1967
1968bool acpi_device_is_enabled(const struct acpi_device *adev)
1969{
1970 return adev->status.enabled;
1971}
1972
1973static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1974 const char *idstr,
1975 const struct acpi_device_id **matchid)
1976{
1977 const struct acpi_device_id *devid;
1978
1979 if (handler->match)
1980 return handler->match(idstr, matchid);
1981
1982 for (devid = handler->ids; devid->id[0]; devid++)
1983 if (!strcmp((char *)devid->id, idstr)) {
1984 if (matchid)
1985 *matchid = devid;
1986
1987 return true;
1988 }
1989
1990 return false;
1991}
1992
1993static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1994 const struct acpi_device_id **matchid)
1995{
1996 struct acpi_scan_handler *handler;
1997
1998 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1999 if (acpi_scan_handler_matching(handler, idstr, matchid))
2000 return handler;
2001
2002 return NULL;
2003}
2004
2005void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2006{
2007 if (!!hotplug->enabled == !!val)
2008 return;
2009
2010 mutex_lock(&acpi_scan_lock);
2011
2012 hotplug->enabled = val;
2013
2014 mutex_unlock(&acpi_scan_lock);
2015}
2016
2017int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices)
2018{
2019 u32 count;
2020 int i;
2021
2022 for (count = 0, i = 0; i < dep_devices->count; i++) {
2023 struct acpi_device_info *info;
2024 struct acpi_dep_data *dep;
2025 bool skip, honor_dep;
2026 acpi_status status;
2027
2028 status = acpi_get_object_info(dep_devices->handles[i], &info);
2029 if (ACPI_FAILURE(status)) {
2030 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2031 continue;
2032 }
2033
2034 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2035 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2036 kfree(info);
2037
2038 if (skip)
2039 continue;
2040
2041 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2042 if (!dep)
2043 continue;
2044
2045 count++;
2046
2047 dep->supplier = dep_devices->handles[i];
2048 dep->consumer = handle;
2049 dep->honor_dep = honor_dep;
2050
2051 mutex_lock(&acpi_dep_list_lock);
2052 list_add_tail(&dep->node, &acpi_dep_list);
2053 mutex_unlock(&acpi_dep_list_lock);
2054 }
2055
2056 acpi_handle_list_free(dep_devices);
2057 return count;
2058}
2059
2060static void acpi_scan_init_hotplug(struct acpi_device *adev)
2061{
2062 struct acpi_hardware_id *hwid;
2063
2064 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2065 acpi_dock_add(adev);
2066 return;
2067 }
2068 list_for_each_entry(hwid, &adev->pnp.ids, list) {
2069 struct acpi_scan_handler *handler;
2070
2071 handler = acpi_scan_match_handler(hwid->id, NULL);
2072 if (handler) {
2073 adev->flags.hotplug_notify = true;
2074 break;
2075 }
2076 }
2077}
2078
2079u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; }
2080
2081static u32 acpi_scan_check_dep(acpi_handle handle)
2082{
2083 struct acpi_handle_list dep_devices;
2084 u32 count = 0;
2085
2086 /*
2087 * Some architectures like RISC-V need to add dependencies for
2088 * all devices which use GSI to the interrupt controller so that
2089 * interrupt controller is probed before any of those devices.
2090 * Instead of mandating _DEP on all the devices, detect the
2091 * dependency and add automatically.
2092 */
2093 count += arch_acpi_add_auto_dep(handle);
2094
2095 /*
2096 * Check for _HID here to avoid deferring the enumeration of:
2097 * 1. PCI devices.
2098 * 2. ACPI nodes describing USB ports.
2099 * Still, checking for _HID catches more then just these cases ...
2100 */
2101 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2102 return count;
2103
2104 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2105 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2106 return count;
2107 }
2108
2109 count += acpi_scan_add_dep(handle, &dep_devices);
2110 return count;
2111}
2112
2113static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2114{
2115 acpi_mipi_check_crs_csi2(handle);
2116 return AE_OK;
2117}
2118
2119static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2120 struct acpi_device **adev_p)
2121{
2122 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2123 acpi_object_type acpi_type;
2124 int type;
2125
2126 if (device)
2127 goto out;
2128
2129 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2130 return AE_OK;
2131
2132 switch (acpi_type) {
2133 case ACPI_TYPE_DEVICE:
2134 if (acpi_device_should_be_hidden(handle))
2135 return AE_OK;
2136
2137 if (first_pass) {
2138 acpi_mipi_check_crs_csi2(handle);
2139
2140 /* Bail out if there are dependencies. */
2141 if (acpi_scan_check_dep(handle) > 0) {
2142 /*
2143 * The entire CSI-2 connection graph needs to be
2144 * extracted before any drivers or scan handlers
2145 * are bound to struct device objects, so scan
2146 * _CRS CSI-2 resource descriptors for all
2147 * devices below the current handle.
2148 */
2149 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2150 ACPI_UINT32_MAX,
2151 acpi_scan_check_crs_csi2_cb,
2152 NULL, NULL, NULL);
2153 return AE_CTRL_DEPTH;
2154 }
2155 }
2156
2157 fallthrough;
2158 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2159 type = ACPI_BUS_TYPE_DEVICE;
2160 break;
2161
2162 case ACPI_TYPE_PROCESSOR:
2163 type = ACPI_BUS_TYPE_PROCESSOR;
2164 break;
2165
2166 case ACPI_TYPE_THERMAL:
2167 type = ACPI_BUS_TYPE_THERMAL;
2168 break;
2169
2170 case ACPI_TYPE_POWER:
2171 acpi_add_power_resource(handle);
2172 fallthrough;
2173 default:
2174 return AE_OK;
2175 }
2176
2177 /*
2178 * If first_pass is true at this point, the device has no dependencies,
2179 * or the creation of the device object would have been postponed above.
2180 */
2181 acpi_add_single_object(&device, handle, type, !first_pass);
2182 if (!device)
2183 return AE_CTRL_DEPTH;
2184
2185 acpi_scan_init_hotplug(device);
2186
2187out:
2188 if (!*adev_p)
2189 *adev_p = device;
2190
2191 return AE_OK;
2192}
2193
2194static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2195 void *not_used, void **ret_p)
2196{
2197 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2198}
2199
2200static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2201 void *not_used, void **ret_p)
2202{
2203 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2204}
2205
2206static void acpi_default_enumeration(struct acpi_device *device)
2207{
2208 /*
2209 * Do not enumerate devices with enumeration_by_parent flag set as
2210 * they will be enumerated by their respective parents.
2211 */
2212 if (!device->flags.enumeration_by_parent) {
2213 acpi_create_platform_device(device, NULL);
2214 acpi_device_set_enumerated(device);
2215 } else {
2216 blocking_notifier_call_chain(&acpi_reconfig_chain,
2217 ACPI_RECONFIG_DEVICE_ADD, device);
2218 }
2219}
2220
2221static const struct acpi_device_id generic_device_ids[] = {
2222 {ACPI_DT_NAMESPACE_HID, },
2223 {"", },
2224};
2225
2226static int acpi_generic_device_attach(struct acpi_device *adev,
2227 const struct acpi_device_id *not_used)
2228{
2229 /*
2230 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2231 * below can be unconditional.
2232 */
2233 if (adev->data.of_compatible)
2234 acpi_default_enumeration(adev);
2235
2236 return 1;
2237}
2238
2239static struct acpi_scan_handler generic_device_handler = {
2240 .ids = generic_device_ids,
2241 .attach = acpi_generic_device_attach,
2242};
2243
2244static int acpi_scan_attach_handler(struct acpi_device *device)
2245{
2246 struct acpi_hardware_id *hwid;
2247 int ret = 0;
2248
2249 list_for_each_entry(hwid, &device->pnp.ids, list) {
2250 const struct acpi_device_id *devid;
2251 struct acpi_scan_handler *handler;
2252
2253 handler = acpi_scan_match_handler(hwid->id, &devid);
2254 if (handler) {
2255 if (!handler->attach) {
2256 device->pnp.type.platform_id = 0;
2257 continue;
2258 }
2259 device->handler = handler;
2260 ret = handler->attach(device, devid);
2261 if (ret > 0)
2262 break;
2263
2264 device->handler = NULL;
2265 if (ret < 0)
2266 break;
2267 }
2268 }
2269
2270 return ret;
2271}
2272
2273static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2274{
2275 bool skip = !first_pass && device->flags.visited;
2276 acpi_handle ejd;
2277 int ret;
2278
2279 if (skip)
2280 goto ok;
2281
2282 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2283 register_dock_dependent_device(device, ejd);
2284
2285 acpi_bus_get_status(device);
2286 /* Skip devices that are not ready for enumeration (e.g. not present) */
2287 if (!acpi_dev_ready_for_enumeration(device)) {
2288 device->flags.initialized = false;
2289 acpi_device_clear_enumerated(device);
2290 device->flags.power_manageable = 0;
2291 return 0;
2292 }
2293 if (device->handler)
2294 goto ok;
2295
2296 acpi_ec_register_opregions(device);
2297
2298 if (!device->flags.initialized) {
2299 device->flags.power_manageable =
2300 device->power.states[ACPI_STATE_D0].flags.valid;
2301 if (acpi_bus_init_power(device))
2302 device->flags.power_manageable = 0;
2303
2304 device->flags.initialized = true;
2305 } else if (device->flags.visited) {
2306 goto ok;
2307 }
2308
2309 ret = acpi_scan_attach_handler(device);
2310 if (ret < 0)
2311 return 0;
2312
2313 device->flags.match_driver = true;
2314 if (ret > 0 && !device->flags.enumeration_by_parent) {
2315 acpi_device_set_enumerated(device);
2316 goto ok;
2317 }
2318
2319 ret = device_attach(&device->dev);
2320 if (ret < 0)
2321 return 0;
2322
2323 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2324 acpi_default_enumeration(device);
2325 else
2326 acpi_device_set_enumerated(device);
2327
2328ok:
2329 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2330
2331 if (!skip && device->handler && device->handler->hotplug.notify_online)
2332 device->handler->hotplug.notify_online(device);
2333
2334 return 0;
2335}
2336
2337static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2338{
2339 struct acpi_device **adev_p = data;
2340 struct acpi_device *adev = *adev_p;
2341
2342 /*
2343 * If we're passed a 'previous' consumer device then we need to skip
2344 * any consumers until we meet the previous one, and then NULL @data
2345 * so the next one can be returned.
2346 */
2347 if (adev) {
2348 if (dep->consumer == adev->handle)
2349 *adev_p = NULL;
2350
2351 return 0;
2352 }
2353
2354 adev = acpi_get_acpi_dev(dep->consumer);
2355 if (adev) {
2356 *(struct acpi_device **)data = adev;
2357 return 1;
2358 }
2359 /* Continue parsing if the device object is not present. */
2360 return 0;
2361}
2362
2363struct acpi_scan_clear_dep_work {
2364 struct work_struct work;
2365 struct acpi_device *adev;
2366};
2367
2368static void acpi_scan_clear_dep_fn(struct work_struct *work)
2369{
2370 struct acpi_scan_clear_dep_work *cdw;
2371
2372 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2373
2374 acpi_scan_lock_acquire();
2375 acpi_bus_attach(cdw->adev, (void *)true);
2376 acpi_scan_lock_release();
2377
2378 acpi_dev_put(cdw->adev);
2379 kfree(cdw);
2380}
2381
2382static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2383{
2384 struct acpi_scan_clear_dep_work *cdw;
2385
2386 if (adev->dep_unmet)
2387 return false;
2388
2389 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2390 if (!cdw)
2391 return false;
2392
2393 cdw->adev = adev;
2394 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2395 /*
2396 * Since the work function may block on the lock until the entire
2397 * initial enumeration of devices is complete, put it into the unbound
2398 * workqueue.
2399 */
2400 queue_work(system_unbound_wq, &cdw->work);
2401
2402 return true;
2403}
2404
2405static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2406{
2407 list_del(&dep->node);
2408 kfree(dep);
2409}
2410
2411static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2412{
2413 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2414
2415 if (adev) {
2416 adev->dep_unmet--;
2417 if (!acpi_scan_clear_dep_queue(adev))
2418 acpi_dev_put(adev);
2419 }
2420
2421 if (dep->free_when_met)
2422 acpi_scan_delete_dep_data(dep);
2423 else
2424 dep->met = true;
2425
2426 return 0;
2427}
2428
2429/**
2430 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2431 * @handle: The ACPI handle of the supplier device
2432 * @callback: Pointer to the callback function to apply
2433 * @data: Pointer to some data to pass to the callback
2434 *
2435 * The return value of the callback determines this function's behaviour. If 0
2436 * is returned we continue to iterate over acpi_dep_list. If a positive value
2437 * is returned then the loop is broken but this function returns 0. If a
2438 * negative value is returned by the callback then the loop is broken and that
2439 * value is returned as the final error.
2440 */
2441static int acpi_walk_dep_device_list(acpi_handle handle,
2442 int (*callback)(struct acpi_dep_data *, void *),
2443 void *data)
2444{
2445 struct acpi_dep_data *dep, *tmp;
2446 int ret = 0;
2447
2448 mutex_lock(&acpi_dep_list_lock);
2449 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2450 if (dep->supplier == handle) {
2451 ret = callback(dep, data);
2452 if (ret)
2453 break;
2454 }
2455 }
2456 mutex_unlock(&acpi_dep_list_lock);
2457
2458 return ret > 0 ? 0 : ret;
2459}
2460
2461/**
2462 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2463 * @supplier: Pointer to the supplier &struct acpi_device
2464 *
2465 * Clear dependencies on the given device.
2466 */
2467void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2468{
2469 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2470}
2471EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2472
2473/**
2474 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2475 * @device: Pointer to the &struct acpi_device to check
2476 *
2477 * Check if the device is present and has no unmet dependencies.
2478 *
2479 * Return true if the device is ready for enumeratino. Otherwise, return false.
2480 */
2481bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2482{
2483 if (device->flags.honor_deps && device->dep_unmet)
2484 return false;
2485
2486 return acpi_device_is_present(device);
2487}
2488EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2489
2490/**
2491 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2492 * @supplier: Pointer to the dependee device
2493 * @start: Pointer to the current dependent device
2494 *
2495 * Returns the next &struct acpi_device which declares itself dependent on
2496 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2497 *
2498 * If the returned adev is not passed as @start to this function, the caller is
2499 * responsible for putting the reference to adev when it is no longer needed.
2500 */
2501struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2502 struct acpi_device *start)
2503{
2504 struct acpi_device *adev = start;
2505
2506 acpi_walk_dep_device_list(supplier->handle,
2507 acpi_dev_get_next_consumer_dev_cb, &adev);
2508
2509 acpi_dev_put(start);
2510
2511 if (adev == start)
2512 return NULL;
2513
2514 return adev;
2515}
2516EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2517
2518static void acpi_scan_postponed_branch(acpi_handle handle)
2519{
2520 struct acpi_device *adev = NULL;
2521
2522 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2523 return;
2524
2525 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2526 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2527
2528 /*
2529 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2530 * have been added above.
2531 */
2532 acpi_mipi_init_crs_csi2_swnodes();
2533
2534 acpi_bus_attach(adev, NULL);
2535}
2536
2537static void acpi_scan_postponed(void)
2538{
2539 struct acpi_dep_data *dep, *tmp;
2540
2541 mutex_lock(&acpi_dep_list_lock);
2542
2543 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2544 acpi_handle handle = dep->consumer;
2545
2546 /*
2547 * In case there are multiple acpi_dep_list entries with the
2548 * same consumer, skip the current entry if the consumer device
2549 * object corresponding to it is present already.
2550 */
2551 if (!acpi_fetch_acpi_dev(handle)) {
2552 /*
2553 * Even though the lock is released here, tmp is
2554 * guaranteed to be valid, because none of the list
2555 * entries following dep is marked as "free when met"
2556 * and so they cannot be deleted.
2557 */
2558 mutex_unlock(&acpi_dep_list_lock);
2559
2560 acpi_scan_postponed_branch(handle);
2561
2562 mutex_lock(&acpi_dep_list_lock);
2563 }
2564
2565 if (dep->met)
2566 acpi_scan_delete_dep_data(dep);
2567 else
2568 dep->free_when_met = true;
2569 }
2570
2571 mutex_unlock(&acpi_dep_list_lock);
2572}
2573
2574/**
2575 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2576 * @handle: Root of the namespace scope to scan.
2577 *
2578 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2579 * found devices.
2580 *
2581 * If no devices were found, -ENODEV is returned, but it does not mean that
2582 * there has been a real error. There just have been no suitable ACPI objects
2583 * in the table trunk from which the kernel could create a device and add an
2584 * appropriate driver.
2585 *
2586 * Must be called under acpi_scan_lock.
2587 */
2588int acpi_bus_scan(acpi_handle handle)
2589{
2590 struct acpi_device *device = NULL;
2591
2592 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2593
2594 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2595 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2596 acpi_bus_check_add_1, NULL, NULL,
2597 (void **)&device);
2598
2599 if (!device)
2600 return -ENODEV;
2601
2602 /*
2603 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2604 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2605 * walk above and MIPI DisCo for Imaging device properties.
2606 */
2607 acpi_mipi_scan_crs_csi2();
2608 acpi_mipi_init_crs_csi2_swnodes();
2609
2610 acpi_bus_attach(device, (void *)true);
2611
2612 /* Pass 2: Enumerate all of the remaining devices. */
2613
2614 acpi_scan_postponed();
2615
2616 acpi_mipi_crs_csi2_cleanup();
2617
2618 return 0;
2619}
2620EXPORT_SYMBOL(acpi_bus_scan);
2621
2622/**
2623 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2624 * @adev: Root of the ACPI namespace scope to walk.
2625 *
2626 * Must be called under acpi_scan_lock.
2627 */
2628void acpi_bus_trim(struct acpi_device *adev)
2629{
2630 uintptr_t flags = 0;
2631
2632 acpi_scan_check_and_detach(adev, (void *)flags);
2633}
2634EXPORT_SYMBOL_GPL(acpi_bus_trim);
2635
2636int acpi_bus_register_early_device(int type)
2637{
2638 struct acpi_device *device = NULL;
2639 int result;
2640
2641 result = acpi_add_single_object(&device, NULL, type, false);
2642 if (result)
2643 return result;
2644
2645 device->flags.match_driver = true;
2646 return device_attach(&device->dev);
2647}
2648EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2649
2650static void acpi_bus_scan_fixed(void)
2651{
2652 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2653 struct acpi_device *adev = NULL;
2654
2655 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2656 false);
2657 if (adev) {
2658 adev->flags.match_driver = true;
2659 if (device_attach(&adev->dev) >= 0)
2660 device_init_wakeup(&adev->dev, true);
2661 else
2662 dev_dbg(&adev->dev, "No driver\n");
2663 }
2664 }
2665
2666 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2667 struct acpi_device *adev = NULL;
2668
2669 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2670 false);
2671 if (adev) {
2672 adev->flags.match_driver = true;
2673 if (device_attach(&adev->dev) < 0)
2674 dev_dbg(&adev->dev, "No driver\n");
2675 }
2676 }
2677}
2678
2679static void __init acpi_get_spcr_uart_addr(void)
2680{
2681 acpi_status status;
2682 struct acpi_table_spcr *spcr_ptr;
2683
2684 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2685 (struct acpi_table_header **)&spcr_ptr);
2686 if (ACPI_FAILURE(status)) {
2687 pr_warn("STAO table present, but SPCR is missing\n");
2688 return;
2689 }
2690
2691 spcr_uart_addr = spcr_ptr->serial_port.address;
2692 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2693}
2694
2695static bool acpi_scan_initialized;
2696
2697void __init acpi_scan_init(void)
2698{
2699 acpi_status status;
2700 struct acpi_table_stao *stao_ptr;
2701
2702 acpi_pci_root_init();
2703 acpi_pci_link_init();
2704 acpi_processor_init();
2705 acpi_platform_init();
2706 acpi_lpss_init();
2707 acpi_apd_init();
2708 acpi_cmos_rtc_init();
2709 acpi_container_init();
2710 acpi_memory_hotplug_init();
2711 acpi_watchdog_init();
2712 acpi_pnp_init();
2713 acpi_int340x_thermal_init();
2714 acpi_init_lpit();
2715
2716 acpi_scan_add_handler(&generic_device_handler);
2717
2718 /*
2719 * If there is STAO table, check whether it needs to ignore the UART
2720 * device in SPCR table.
2721 */
2722 status = acpi_get_table(ACPI_SIG_STAO, 0,
2723 (struct acpi_table_header **)&stao_ptr);
2724 if (ACPI_SUCCESS(status)) {
2725 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2726 pr_info("STAO Name List not yet supported.\n");
2727
2728 if (stao_ptr->ignore_uart)
2729 acpi_get_spcr_uart_addr();
2730
2731 acpi_put_table((struct acpi_table_header *)stao_ptr);
2732 }
2733
2734 acpi_gpe_apply_masked_gpes();
2735 acpi_update_all_gpes();
2736
2737 /*
2738 * Although we call __add_memory() that is documented to require the
2739 * device_hotplug_lock, it is not necessary here because this is an
2740 * early code when userspace or any other code path cannot trigger
2741 * hotplug/hotunplug operations.
2742 */
2743 mutex_lock(&acpi_scan_lock);
2744 /*
2745 * Enumerate devices in the ACPI namespace.
2746 */
2747 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2748 goto unlock;
2749
2750 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2751 if (!acpi_root)
2752 goto unlock;
2753
2754 /* Fixed feature devices do not exist on HW-reduced platform */
2755 if (!acpi_gbl_reduced_hardware)
2756 acpi_bus_scan_fixed();
2757
2758 acpi_turn_off_unused_power_resources();
2759
2760 acpi_scan_initialized = true;
2761
2762unlock:
2763 mutex_unlock(&acpi_scan_lock);
2764}
2765
2766static struct acpi_probe_entry *ape;
2767static int acpi_probe_count;
2768static DEFINE_MUTEX(acpi_probe_mutex);
2769
2770static int __init acpi_match_madt(union acpi_subtable_headers *header,
2771 const unsigned long end)
2772{
2773 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2774 if (!ape->probe_subtbl(header, end))
2775 acpi_probe_count++;
2776
2777 return 0;
2778}
2779
2780void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { }
2781
2782int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2783{
2784 int count = 0;
2785
2786 if (acpi_disabled)
2787 return 0;
2788
2789 mutex_lock(&acpi_probe_mutex);
2790 arch_sort_irqchip_probe(ap_head, nr);
2791 for (ape = ap_head; nr; ape++, nr--) {
2792 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2793 acpi_probe_count = 0;
2794 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2795 count += acpi_probe_count;
2796 } else {
2797 int res;
2798 res = acpi_table_parse(ape->id, ape->probe_table);
2799 if (!res)
2800 count++;
2801 }
2802 }
2803 mutex_unlock(&acpi_probe_mutex);
2804
2805 return count;
2806}
2807
2808static void acpi_table_events_fn(struct work_struct *work)
2809{
2810 acpi_scan_lock_acquire();
2811 acpi_bus_scan(ACPI_ROOT_OBJECT);
2812 acpi_scan_lock_release();
2813
2814 kfree(work);
2815}
2816
2817void acpi_scan_table_notify(void)
2818{
2819 struct work_struct *work;
2820
2821 if (!acpi_scan_initialized)
2822 return;
2823
2824 work = kmalloc(sizeof(*work), GFP_KERNEL);
2825 if (!work)
2826 return;
2827
2828 INIT_WORK(work, acpi_table_events_fn);
2829 schedule_work(work);
2830}
2831
2832int acpi_reconfig_notifier_register(struct notifier_block *nb)
2833{
2834 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2835}
2836EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2837
2838int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2839{
2840 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2841}
2842EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26#include "sleep.h"
27
28#define ACPI_BUS_CLASS "system_bus"
29#define ACPI_BUS_HID "LNXSYBUS"
30#define ACPI_BUS_DEVICE_NAME "System Bus"
31
32#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34static const char *dummy_hid = "device";
35
36static LIST_HEAD(acpi_dep_list);
37static DEFINE_MUTEX(acpi_dep_list_lock);
38LIST_HEAD(acpi_bus_id_list);
39static DEFINE_MUTEX(acpi_scan_lock);
40static LIST_HEAD(acpi_scan_handlers_list);
41DEFINE_MUTEX(acpi_device_lock);
42LIST_HEAD(acpi_wakeup_device_list);
43static DEFINE_MUTEX(acpi_hp_context_lock);
44
45/*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50static u64 spcr_uart_addr;
51
52void acpi_scan_lock_acquire(void)
53{
54 mutex_lock(&acpi_scan_lock);
55}
56EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58void acpi_scan_lock_release(void)
59{
60 mutex_unlock(&acpi_scan_lock);
61}
62EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64void acpi_lock_hp_context(void)
65{
66 mutex_lock(&acpi_hp_context_lock);
67}
68
69void acpi_unlock_hp_context(void)
70{
71 mutex_unlock(&acpi_hp_context_lock);
72}
73
74void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 int (*notify)(struct acpi_device *, u32),
77 void (*uevent)(struct acpi_device *, u32))
78{
79 acpi_lock_hp_context();
80 hp->notify = notify;
81 hp->uevent = uevent;
82 acpi_set_hp_context(adev, hp);
83 acpi_unlock_hp_context();
84}
85EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
87int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88{
89 if (!handler)
90 return -EINVAL;
91
92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 return 0;
94}
95
96int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 const char *hotplug_profile_name)
98{
99 int error;
100
101 error = acpi_scan_add_handler(handler);
102 if (error)
103 return error;
104
105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 return 0;
107}
108
109bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110{
111 struct acpi_device_physical_node *pn;
112 bool offline = true;
113 char *envp[] = { "EVENT=offline", NULL };
114
115 /*
116 * acpi_container_offline() calls this for all of the container's
117 * children under the container's physical_node_lock lock.
118 */
119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121 list_for_each_entry(pn, &adev->physical_node_list, node)
122 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 if (uevent)
124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126 offline = false;
127 break;
128 }
129
130 mutex_unlock(&adev->physical_node_lock);
131 return offline;
132}
133
134static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 void **ret_p)
136{
137 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 struct acpi_device_physical_node *pn;
139 bool second_pass = (bool)data;
140 acpi_status status = AE_OK;
141
142 if (!device)
143 return AE_OK;
144
145 if (device->handler && !device->handler->hotplug.enabled) {
146 *ret_p = &device->dev;
147 return AE_SUPPORT;
148 }
149
150 mutex_lock(&device->physical_node_lock);
151
152 list_for_each_entry(pn, &device->physical_node_list, node) {
153 int ret;
154
155 if (second_pass) {
156 /* Skip devices offlined by the first pass. */
157 if (pn->put_online)
158 continue;
159 } else {
160 pn->put_online = false;
161 }
162 ret = device_offline(pn->dev);
163 if (ret >= 0) {
164 pn->put_online = !ret;
165 } else {
166 *ret_p = pn->dev;
167 if (second_pass) {
168 status = AE_ERROR;
169 break;
170 }
171 }
172 }
173
174 mutex_unlock(&device->physical_node_lock);
175
176 return status;
177}
178
179static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 void **ret_p)
181{
182 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 struct acpi_device_physical_node *pn;
184
185 if (!device)
186 return AE_OK;
187
188 mutex_lock(&device->physical_node_lock);
189
190 list_for_each_entry(pn, &device->physical_node_list, node)
191 if (pn->put_online) {
192 device_online(pn->dev);
193 pn->put_online = false;
194 }
195
196 mutex_unlock(&device->physical_node_lock);
197
198 return AE_OK;
199}
200
201static int acpi_scan_try_to_offline(struct acpi_device *device)
202{
203 acpi_handle handle = device->handle;
204 struct device *errdev = NULL;
205 acpi_status status;
206
207 /*
208 * Carry out two passes here and ignore errors in the first pass,
209 * because if the devices in question are memory blocks and
210 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 * that the other blocks depend on, but it is not known in advance which
212 * block holds them.
213 *
214 * If the first pass is successful, the second one isn't needed, though.
215 */
216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 NULL, acpi_bus_offline, (void *)false,
218 (void **)&errdev);
219 if (status == AE_SUPPORT) {
220 dev_warn(errdev, "Offline disabled.\n");
221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 acpi_bus_online, NULL, NULL, NULL);
223 return -EPERM;
224 }
225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 if (errdev) {
227 errdev = NULL;
228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 NULL, acpi_bus_offline, (void *)true,
230 (void **)&errdev);
231 if (!errdev)
232 acpi_bus_offline(handle, 0, (void *)true,
233 (void **)&errdev);
234
235 if (errdev) {
236 dev_warn(errdev, "Offline failed.\n");
237 acpi_bus_online(handle, 0, NULL, NULL);
238 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 ACPI_UINT32_MAX, acpi_bus_online,
240 NULL, NULL, NULL);
241 return -EBUSY;
242 }
243 }
244 return 0;
245}
246
247static int acpi_scan_check_and_detach(struct acpi_device *adev, void *check)
248{
249 struct acpi_scan_handler *handler = adev->handler;
250
251 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, check);
252
253 if (check) {
254 acpi_bus_get_status(adev);
255 /*
256 * Skip devices that are still there and take the enabled
257 * flag into account.
258 */
259 if (acpi_device_is_enabled(adev))
260 return 0;
261
262 /* Skip device that have not been enumerated. */
263 if (!acpi_device_enumerated(adev)) {
264 dev_dbg(&adev->dev, "Still not enumerated\n");
265 return 0;
266 }
267 }
268
269 adev->flags.match_driver = false;
270 if (handler) {
271 if (handler->detach)
272 handler->detach(adev);
273
274 adev->handler = NULL;
275 } else {
276 device_release_driver(&adev->dev);
277 }
278 /*
279 * Most likely, the device is going away, so put it into D3cold before
280 * that.
281 */
282 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
283 adev->flags.initialized = false;
284 acpi_device_clear_enumerated(adev);
285
286 return 0;
287}
288
289static void acpi_scan_check_subtree(struct acpi_device *adev)
290{
291 acpi_scan_check_and_detach(adev, (void *)true);
292}
293
294static int acpi_scan_hot_remove(struct acpi_device *device)
295{
296 acpi_handle handle = device->handle;
297 unsigned long long sta;
298 acpi_status status;
299
300 if (device->handler && device->handler->hotplug.demand_offline) {
301 if (!acpi_scan_is_offline(device, true))
302 return -EBUSY;
303 } else {
304 int error = acpi_scan_try_to_offline(device);
305 if (error)
306 return error;
307 }
308
309 acpi_handle_debug(handle, "Ejecting\n");
310
311 acpi_bus_trim(device);
312
313 acpi_evaluate_lck(handle, 0);
314 /*
315 * TBD: _EJD support.
316 */
317 status = acpi_evaluate_ej0(handle);
318 if (status == AE_NOT_FOUND)
319 return -ENODEV;
320 else if (ACPI_FAILURE(status))
321 return -EIO;
322
323 /*
324 * Verify if eject was indeed successful. If not, log an error
325 * message. No need to call _OST since _EJ0 call was made OK.
326 */
327 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
328 if (ACPI_FAILURE(status)) {
329 acpi_handle_warn(handle,
330 "Status check after eject failed (0x%x)\n", status);
331 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
332 acpi_handle_warn(handle,
333 "Eject incomplete - status 0x%llx\n", sta);
334 }
335
336 return 0;
337}
338
339static int acpi_scan_rescan_bus(struct acpi_device *adev)
340{
341 struct acpi_scan_handler *handler = adev->handler;
342 int ret;
343
344 if (handler && handler->hotplug.scan_dependent)
345 ret = handler->hotplug.scan_dependent(adev);
346 else
347 ret = acpi_bus_scan(adev->handle);
348
349 if (ret)
350 dev_info(&adev->dev, "Namespace scan failure\n");
351
352 return ret;
353}
354
355static int acpi_scan_device_check(struct acpi_device *adev)
356{
357 struct acpi_device *parent;
358
359 acpi_scan_check_subtree(adev);
360
361 if (!acpi_device_is_present(adev))
362 return 0;
363
364 /*
365 * This function is only called for device objects for which matching
366 * scan handlers exist. The only situation in which the scan handler
367 * is not attached to this device object yet is when the device has
368 * just appeared (either it wasn't present at all before or it was
369 * removed and then added again).
370 */
371 if (adev->handler) {
372 dev_dbg(&adev->dev, "Already enumerated\n");
373 return 0;
374 }
375
376 parent = acpi_dev_parent(adev);
377 if (!parent)
378 parent = adev;
379
380 return acpi_scan_rescan_bus(parent);
381}
382
383static int acpi_scan_bus_check(struct acpi_device *adev)
384{
385 acpi_scan_check_subtree(adev);
386
387 return acpi_scan_rescan_bus(adev);
388}
389
390static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
391{
392 switch (type) {
393 case ACPI_NOTIFY_BUS_CHECK:
394 return acpi_scan_bus_check(adev);
395 case ACPI_NOTIFY_DEVICE_CHECK:
396 return acpi_scan_device_check(adev);
397 case ACPI_NOTIFY_EJECT_REQUEST:
398 case ACPI_OST_EC_OSPM_EJECT:
399 if (adev->handler && !adev->handler->hotplug.enabled) {
400 dev_info(&adev->dev, "Eject disabled\n");
401 return -EPERM;
402 }
403 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
404 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
405 return acpi_scan_hot_remove(adev);
406 }
407 return -EINVAL;
408}
409
410void acpi_device_hotplug(struct acpi_device *adev, u32 src)
411{
412 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
413 int error = -ENODEV;
414
415 lock_device_hotplug();
416 mutex_lock(&acpi_scan_lock);
417
418 /*
419 * The device object's ACPI handle cannot become invalid as long as we
420 * are holding acpi_scan_lock, but it might have become invalid before
421 * that lock was acquired.
422 */
423 if (adev->handle == INVALID_ACPI_HANDLE)
424 goto err_out;
425
426 if (adev->flags.is_dock_station) {
427 error = dock_notify(adev, src);
428 } else if (adev->flags.hotplug_notify) {
429 error = acpi_generic_hotplug_event(adev, src);
430 } else {
431 int (*notify)(struct acpi_device *, u32);
432
433 acpi_lock_hp_context();
434 notify = adev->hp ? adev->hp->notify : NULL;
435 acpi_unlock_hp_context();
436 /*
437 * There may be additional notify handlers for device objects
438 * without the .event() callback, so ignore them here.
439 */
440 if (notify)
441 error = notify(adev, src);
442 else
443 goto out;
444 }
445 switch (error) {
446 case 0:
447 ost_code = ACPI_OST_SC_SUCCESS;
448 break;
449 case -EPERM:
450 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
451 break;
452 case -EBUSY:
453 ost_code = ACPI_OST_SC_DEVICE_BUSY;
454 break;
455 default:
456 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
457 break;
458 }
459
460 err_out:
461 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
462
463 out:
464 acpi_put_acpi_dev(adev);
465 mutex_unlock(&acpi_scan_lock);
466 unlock_device_hotplug();
467}
468
469static void acpi_free_power_resources_lists(struct acpi_device *device)
470{
471 int i;
472
473 if (device->wakeup.flags.valid)
474 acpi_power_resources_list_free(&device->wakeup.resources);
475
476 if (!device->power.flags.power_resources)
477 return;
478
479 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
480 struct acpi_device_power_state *ps = &device->power.states[i];
481 acpi_power_resources_list_free(&ps->resources);
482 }
483}
484
485static void acpi_device_release(struct device *dev)
486{
487 struct acpi_device *acpi_dev = to_acpi_device(dev);
488
489 acpi_free_properties(acpi_dev);
490 acpi_free_pnp_ids(&acpi_dev->pnp);
491 acpi_free_power_resources_lists(acpi_dev);
492 kfree(acpi_dev);
493}
494
495static void acpi_device_del(struct acpi_device *device)
496{
497 struct acpi_device_bus_id *acpi_device_bus_id;
498
499 mutex_lock(&acpi_device_lock);
500
501 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
502 if (!strcmp(acpi_device_bus_id->bus_id,
503 acpi_device_hid(device))) {
504 ida_free(&acpi_device_bus_id->instance_ida,
505 device->pnp.instance_no);
506 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
507 list_del(&acpi_device_bus_id->node);
508 kfree_const(acpi_device_bus_id->bus_id);
509 kfree(acpi_device_bus_id);
510 }
511 break;
512 }
513
514 list_del(&device->wakeup_list);
515
516 mutex_unlock(&acpi_device_lock);
517
518 acpi_power_add_remove_device(device, false);
519 acpi_device_remove_files(device);
520 if (device->remove)
521 device->remove(device);
522
523 device_del(&device->dev);
524}
525
526static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
527
528static LIST_HEAD(acpi_device_del_list);
529static DEFINE_MUTEX(acpi_device_del_lock);
530
531static void acpi_device_del_work_fn(struct work_struct *work_not_used)
532{
533 for (;;) {
534 struct acpi_device *adev;
535
536 mutex_lock(&acpi_device_del_lock);
537
538 if (list_empty(&acpi_device_del_list)) {
539 mutex_unlock(&acpi_device_del_lock);
540 break;
541 }
542 adev = list_first_entry(&acpi_device_del_list,
543 struct acpi_device, del_list);
544 list_del(&adev->del_list);
545
546 mutex_unlock(&acpi_device_del_lock);
547
548 blocking_notifier_call_chain(&acpi_reconfig_chain,
549 ACPI_RECONFIG_DEVICE_REMOVE, adev);
550
551 acpi_device_del(adev);
552 /*
553 * Drop references to all power resources that might have been
554 * used by the device.
555 */
556 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
557 acpi_dev_put(adev);
558 }
559}
560
561/**
562 * acpi_scan_drop_device - Drop an ACPI device object.
563 * @handle: Handle of an ACPI namespace node, not used.
564 * @context: Address of the ACPI device object to drop.
565 *
566 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
567 * namespace node the device object pointed to by @context is attached to.
568 *
569 * The unregistration is carried out asynchronously to avoid running
570 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
571 * ensure the correct ordering (the device objects must be unregistered in the
572 * same order in which the corresponding namespace nodes are deleted).
573 */
574static void acpi_scan_drop_device(acpi_handle handle, void *context)
575{
576 static DECLARE_WORK(work, acpi_device_del_work_fn);
577 struct acpi_device *adev = context;
578
579 mutex_lock(&acpi_device_del_lock);
580
581 /*
582 * Use the ACPI hotplug workqueue which is ordered, so this work item
583 * won't run after any hotplug work items submitted subsequently. That
584 * prevents attempts to register device objects identical to those being
585 * deleted from happening concurrently (such attempts result from
586 * hotplug events handled via the ACPI hotplug workqueue). It also will
587 * run after all of the work items submitted previously, which helps
588 * those work items to ensure that they are not accessing stale device
589 * objects.
590 */
591 if (list_empty(&acpi_device_del_list))
592 acpi_queue_hotplug_work(&work);
593
594 list_add_tail(&adev->del_list, &acpi_device_del_list);
595 /* Make acpi_ns_validate_handle() return NULL for this handle. */
596 adev->handle = INVALID_ACPI_HANDLE;
597
598 mutex_unlock(&acpi_device_del_lock);
599}
600
601static struct acpi_device *handle_to_device(acpi_handle handle,
602 void (*callback)(void *))
603{
604 struct acpi_device *adev = NULL;
605 acpi_status status;
606
607 status = acpi_get_data_full(handle, acpi_scan_drop_device,
608 (void **)&adev, callback);
609 if (ACPI_FAILURE(status) || !adev) {
610 acpi_handle_debug(handle, "No context!\n");
611 return NULL;
612 }
613 return adev;
614}
615
616/**
617 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
618 * @handle: ACPI handle associated with the requested ACPI device object.
619 *
620 * Return a pointer to the ACPI device object associated with @handle, if
621 * present, or NULL otherwise.
622 */
623struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
624{
625 return handle_to_device(handle, NULL);
626}
627EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
628
629static void get_acpi_device(void *dev)
630{
631 acpi_dev_get(dev);
632}
633
634/**
635 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
636 * @handle: ACPI handle associated with the requested ACPI device object.
637 *
638 * Return a pointer to the ACPI device object associated with @handle and bump
639 * up that object's reference counter (under the ACPI Namespace lock), if
640 * present, or return NULL otherwise.
641 *
642 * The ACPI device object reference acquired by this function needs to be
643 * dropped via acpi_dev_put().
644 */
645struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
646{
647 return handle_to_device(handle, get_acpi_device);
648}
649EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
650
651static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
652{
653 struct acpi_device_bus_id *acpi_device_bus_id;
654
655 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
656 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
657 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
658 return acpi_device_bus_id;
659 }
660 return NULL;
661}
662
663static int acpi_device_set_name(struct acpi_device *device,
664 struct acpi_device_bus_id *acpi_device_bus_id)
665{
666 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
667 int result;
668
669 result = ida_alloc(instance_ida, GFP_KERNEL);
670 if (result < 0)
671 return result;
672
673 device->pnp.instance_no = result;
674 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
675 return 0;
676}
677
678int acpi_tie_acpi_dev(struct acpi_device *adev)
679{
680 acpi_handle handle = adev->handle;
681 acpi_status status;
682
683 if (!handle)
684 return 0;
685
686 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
687 if (ACPI_FAILURE(status)) {
688 acpi_handle_err(handle, "Unable to attach device data\n");
689 return -ENODEV;
690 }
691
692 return 0;
693}
694
695static void acpi_store_pld_crc(struct acpi_device *adev)
696{
697 struct acpi_pld_info *pld;
698 acpi_status status;
699
700 status = acpi_get_physical_device_location(adev->handle, &pld);
701 if (ACPI_FAILURE(status))
702 return;
703
704 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
705 ACPI_FREE(pld);
706}
707
708int acpi_device_add(struct acpi_device *device)
709{
710 struct acpi_device_bus_id *acpi_device_bus_id;
711 int result;
712
713 /*
714 * Linkage
715 * -------
716 * Link this device to its parent and siblings.
717 */
718 INIT_LIST_HEAD(&device->wakeup_list);
719 INIT_LIST_HEAD(&device->physical_node_list);
720 INIT_LIST_HEAD(&device->del_list);
721 mutex_init(&device->physical_node_lock);
722
723 mutex_lock(&acpi_device_lock);
724
725 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
726 if (acpi_device_bus_id) {
727 result = acpi_device_set_name(device, acpi_device_bus_id);
728 if (result)
729 goto err_unlock;
730 } else {
731 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
732 GFP_KERNEL);
733 if (!acpi_device_bus_id) {
734 result = -ENOMEM;
735 goto err_unlock;
736 }
737 acpi_device_bus_id->bus_id =
738 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
739 if (!acpi_device_bus_id->bus_id) {
740 kfree(acpi_device_bus_id);
741 result = -ENOMEM;
742 goto err_unlock;
743 }
744
745 ida_init(&acpi_device_bus_id->instance_ida);
746
747 result = acpi_device_set_name(device, acpi_device_bus_id);
748 if (result) {
749 kfree_const(acpi_device_bus_id->bus_id);
750 kfree(acpi_device_bus_id);
751 goto err_unlock;
752 }
753
754 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
755 }
756
757 if (device->wakeup.flags.valid)
758 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
759
760 acpi_store_pld_crc(device);
761
762 mutex_unlock(&acpi_device_lock);
763
764 result = device_add(&device->dev);
765 if (result) {
766 dev_err(&device->dev, "Error registering device\n");
767 goto err;
768 }
769
770 result = acpi_device_setup_files(device);
771 if (result)
772 pr_err("Error creating sysfs interface for device %s\n",
773 dev_name(&device->dev));
774
775 return 0;
776
777err:
778 mutex_lock(&acpi_device_lock);
779
780 list_del(&device->wakeup_list);
781
782err_unlock:
783 mutex_unlock(&acpi_device_lock);
784
785 acpi_detach_data(device->handle, acpi_scan_drop_device);
786
787 return result;
788}
789
790/* --------------------------------------------------------------------------
791 Device Enumeration
792 -------------------------------------------------------------------------- */
793static bool acpi_info_matches_ids(struct acpi_device_info *info,
794 const char * const ids[])
795{
796 struct acpi_pnp_device_id_list *cid_list = NULL;
797 int i, index;
798
799 if (!(info->valid & ACPI_VALID_HID))
800 return false;
801
802 index = match_string(ids, -1, info->hardware_id.string);
803 if (index >= 0)
804 return true;
805
806 if (info->valid & ACPI_VALID_CID)
807 cid_list = &info->compatible_id_list;
808
809 if (!cid_list)
810 return false;
811
812 for (i = 0; i < cid_list->count; i++) {
813 index = match_string(ids, -1, cid_list->ids[i].string);
814 if (index >= 0)
815 return true;
816 }
817
818 return false;
819}
820
821/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
822static const char * const acpi_ignore_dep_ids[] = {
823 "PNP0D80", /* Windows-compatible System Power Management Controller */
824 "INT33BD", /* Intel Baytrail Mailbox Device */
825 "LATT2021", /* Lattice FW Update Client Driver */
826 NULL
827};
828
829/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
830static const char * const acpi_honor_dep_ids[] = {
831 "INT3472", /* Camera sensor PMIC / clk and regulator info */
832 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
833 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
834 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
835 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
836 NULL
837};
838
839static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
840{
841 struct acpi_device *adev;
842
843 /*
844 * Fixed hardware devices do not appear in the namespace and do not
845 * have handles, but we fabricate acpi_devices for them, so we have
846 * to deal with them specially.
847 */
848 if (!handle)
849 return acpi_root;
850
851 do {
852 acpi_status status;
853
854 status = acpi_get_parent(handle, &handle);
855 if (ACPI_FAILURE(status)) {
856 if (status != AE_NULL_ENTRY)
857 return acpi_root;
858
859 return NULL;
860 }
861 adev = acpi_fetch_acpi_dev(handle);
862 } while (!adev);
863 return adev;
864}
865
866acpi_status
867acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
868{
869 acpi_status status;
870 acpi_handle tmp;
871 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
872 union acpi_object *obj;
873
874 status = acpi_get_handle(handle, "_EJD", &tmp);
875 if (ACPI_FAILURE(status))
876 return status;
877
878 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
879 if (ACPI_SUCCESS(status)) {
880 obj = buffer.pointer;
881 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
882 ejd);
883 kfree(buffer.pointer);
884 }
885 return status;
886}
887EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
888
889static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
890{
891 acpi_handle handle = dev->handle;
892 struct acpi_device_wakeup *wakeup = &dev->wakeup;
893 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
894 union acpi_object *package = NULL;
895 union acpi_object *element = NULL;
896 acpi_status status;
897 int err = -ENODATA;
898
899 INIT_LIST_HEAD(&wakeup->resources);
900
901 /* _PRW */
902 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
903 if (ACPI_FAILURE(status)) {
904 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
905 acpi_format_exception(status));
906 return err;
907 }
908
909 package = (union acpi_object *)buffer.pointer;
910
911 if (!package || package->package.count < 2)
912 goto out;
913
914 element = &(package->package.elements[0]);
915 if (!element)
916 goto out;
917
918 if (element->type == ACPI_TYPE_PACKAGE) {
919 if ((element->package.count < 2) ||
920 (element->package.elements[0].type !=
921 ACPI_TYPE_LOCAL_REFERENCE)
922 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
923 goto out;
924
925 wakeup->gpe_device =
926 element->package.elements[0].reference.handle;
927 wakeup->gpe_number =
928 (u32) element->package.elements[1].integer.value;
929 } else if (element->type == ACPI_TYPE_INTEGER) {
930 wakeup->gpe_device = NULL;
931 wakeup->gpe_number = element->integer.value;
932 } else {
933 goto out;
934 }
935
936 element = &(package->package.elements[1]);
937 if (element->type != ACPI_TYPE_INTEGER)
938 goto out;
939
940 wakeup->sleep_state = element->integer.value;
941
942 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
943 if (err)
944 goto out;
945
946 if (!list_empty(&wakeup->resources)) {
947 int sleep_state;
948
949 err = acpi_power_wakeup_list_init(&wakeup->resources,
950 &sleep_state);
951 if (err) {
952 acpi_handle_warn(handle, "Retrieving current states "
953 "of wakeup power resources failed\n");
954 acpi_power_resources_list_free(&wakeup->resources);
955 goto out;
956 }
957 if (sleep_state < wakeup->sleep_state) {
958 acpi_handle_warn(handle, "Overriding _PRW sleep state "
959 "(S%d) by S%d from power resources\n",
960 (int)wakeup->sleep_state, sleep_state);
961 wakeup->sleep_state = sleep_state;
962 }
963 }
964
965 out:
966 kfree(buffer.pointer);
967 return err;
968}
969
970/* Do not use a button for S5 wakeup */
971#define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
972
973static bool acpi_wakeup_gpe_init(struct acpi_device *device)
974{
975 static const struct acpi_device_id button_device_ids[] = {
976 {"PNP0C0C", 0}, /* Power button */
977 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
978 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
979 {"", 0},
980 };
981 struct acpi_device_wakeup *wakeup = &device->wakeup;
982 const struct acpi_device_id *match;
983 acpi_status status;
984
985 wakeup->flags.notifier_present = 0;
986
987 /* Power button, Lid switch always enable wakeup */
988 match = acpi_match_acpi_device(button_device_ids, device);
989 if (match) {
990 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
991 wakeup->sleep_state == ACPI_STATE_S5)
992 wakeup->sleep_state = ACPI_STATE_S4;
993 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
994 device_set_wakeup_capable(&device->dev, true);
995 return true;
996 }
997
998 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
999 wakeup->gpe_number);
1000 return ACPI_SUCCESS(status);
1001}
1002
1003static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1004{
1005 int err;
1006
1007 /* Presence of _PRW indicates wake capable */
1008 if (!acpi_has_method(device->handle, "_PRW"))
1009 return;
1010
1011 err = acpi_bus_extract_wakeup_device_power_package(device);
1012 if (err) {
1013 dev_err(&device->dev, "Unable to extract wakeup power resources");
1014 return;
1015 }
1016
1017 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1018 device->wakeup.prepare_count = 0;
1019 /*
1020 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1021 * system for the ACPI device with the _PRW object.
1022 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1023 * So it is necessary to call _DSW object first. Only when it is not
1024 * present will the _PSW object used.
1025 */
1026 err = acpi_device_sleep_wake(device, 0, 0, 0);
1027 if (err)
1028 pr_debug("error in _DSW or _PSW evaluation\n");
1029}
1030
1031static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1032{
1033 struct acpi_device_power_state *ps = &device->power.states[state];
1034 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1035 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1036 acpi_status status;
1037
1038 INIT_LIST_HEAD(&ps->resources);
1039
1040 /* Evaluate "_PRx" to get referenced power resources */
1041 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1042 if (ACPI_SUCCESS(status)) {
1043 union acpi_object *package = buffer.pointer;
1044
1045 if (buffer.length && package
1046 && package->type == ACPI_TYPE_PACKAGE
1047 && package->package.count)
1048 acpi_extract_power_resources(package, 0, &ps->resources);
1049
1050 ACPI_FREE(buffer.pointer);
1051 }
1052
1053 /* Evaluate "_PSx" to see if we can do explicit sets */
1054 pathname[2] = 'S';
1055 if (acpi_has_method(device->handle, pathname))
1056 ps->flags.explicit_set = 1;
1057
1058 /* State is valid if there are means to put the device into it. */
1059 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1060 ps->flags.valid = 1;
1061
1062 ps->power = -1; /* Unknown - driver assigned */
1063 ps->latency = -1; /* Unknown - driver assigned */
1064}
1065
1066static void acpi_bus_get_power_flags(struct acpi_device *device)
1067{
1068 unsigned long long dsc = ACPI_STATE_D0;
1069 u32 i;
1070
1071 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1072 if (!acpi_has_method(device->handle, "_PS0") &&
1073 !acpi_has_method(device->handle, "_PR0"))
1074 return;
1075
1076 device->flags.power_manageable = 1;
1077
1078 /*
1079 * Power Management Flags
1080 */
1081 if (acpi_has_method(device->handle, "_PSC"))
1082 device->power.flags.explicit_get = 1;
1083
1084 if (acpi_has_method(device->handle, "_IRC"))
1085 device->power.flags.inrush_current = 1;
1086
1087 if (acpi_has_method(device->handle, "_DSW"))
1088 device->power.flags.dsw_present = 1;
1089
1090 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1091 device->power.state_for_enumeration = dsc;
1092
1093 /*
1094 * Enumerate supported power management states
1095 */
1096 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1097 acpi_bus_init_power_state(device, i);
1098
1099 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1100
1101 /* Set the defaults for D0 and D3hot (always supported). */
1102 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1103 device->power.states[ACPI_STATE_D0].power = 100;
1104 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1105
1106 /*
1107 * Use power resources only if the D0 list of them is populated, because
1108 * some platforms may provide _PR3 only to indicate D3cold support and
1109 * in those cases the power resources list returned by it may be bogus.
1110 */
1111 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1112 device->power.flags.power_resources = 1;
1113 /*
1114 * D3cold is supported if the D3hot list of power resources is
1115 * not empty.
1116 */
1117 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1118 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1119 }
1120
1121 if (acpi_bus_init_power(device))
1122 device->flags.power_manageable = 0;
1123}
1124
1125static void acpi_bus_get_flags(struct acpi_device *device)
1126{
1127 /* Presence of _STA indicates 'dynamic_status' */
1128 if (acpi_has_method(device->handle, "_STA"))
1129 device->flags.dynamic_status = 1;
1130
1131 /* Presence of _RMV indicates 'removable' */
1132 if (acpi_has_method(device->handle, "_RMV"))
1133 device->flags.removable = 1;
1134
1135 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1136 if (acpi_has_method(device->handle, "_EJD") ||
1137 acpi_has_method(device->handle, "_EJ0"))
1138 device->flags.ejectable = 1;
1139}
1140
1141static void acpi_device_get_busid(struct acpi_device *device)
1142{
1143 char bus_id[5] = { '?', 0 };
1144 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1145 int i = 0;
1146
1147 /*
1148 * Bus ID
1149 * ------
1150 * The device's Bus ID is simply the object name.
1151 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1152 */
1153 if (!acpi_dev_parent(device)) {
1154 strcpy(device->pnp.bus_id, "ACPI");
1155 return;
1156 }
1157
1158 switch (device->device_type) {
1159 case ACPI_BUS_TYPE_POWER_BUTTON:
1160 strcpy(device->pnp.bus_id, "PWRF");
1161 break;
1162 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1163 strcpy(device->pnp.bus_id, "SLPF");
1164 break;
1165 case ACPI_BUS_TYPE_ECDT_EC:
1166 strcpy(device->pnp.bus_id, "ECDT");
1167 break;
1168 default:
1169 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1170 /* Clean up trailing underscores (if any) */
1171 for (i = 3; i > 1; i--) {
1172 if (bus_id[i] == '_')
1173 bus_id[i] = '\0';
1174 else
1175 break;
1176 }
1177 strcpy(device->pnp.bus_id, bus_id);
1178 break;
1179 }
1180}
1181
1182/*
1183 * acpi_ata_match - see if an acpi object is an ATA device
1184 *
1185 * If an acpi object has one of the ACPI ATA methods defined,
1186 * then we can safely call it an ATA device.
1187 */
1188bool acpi_ata_match(acpi_handle handle)
1189{
1190 return acpi_has_method(handle, "_GTF") ||
1191 acpi_has_method(handle, "_GTM") ||
1192 acpi_has_method(handle, "_STM") ||
1193 acpi_has_method(handle, "_SDD");
1194}
1195
1196/*
1197 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1198 *
1199 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1200 * then we can safely call it an ejectable drive bay
1201 */
1202bool acpi_bay_match(acpi_handle handle)
1203{
1204 acpi_handle phandle;
1205
1206 if (!acpi_has_method(handle, "_EJ0"))
1207 return false;
1208 if (acpi_ata_match(handle))
1209 return true;
1210 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1211 return false;
1212
1213 return acpi_ata_match(phandle);
1214}
1215
1216bool acpi_device_is_battery(struct acpi_device *adev)
1217{
1218 struct acpi_hardware_id *hwid;
1219
1220 list_for_each_entry(hwid, &adev->pnp.ids, list)
1221 if (!strcmp("PNP0C0A", hwid->id))
1222 return true;
1223
1224 return false;
1225}
1226
1227static bool is_ejectable_bay(struct acpi_device *adev)
1228{
1229 acpi_handle handle = adev->handle;
1230
1231 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1232 return true;
1233
1234 return acpi_bay_match(handle);
1235}
1236
1237/*
1238 * acpi_dock_match - see if an acpi object has a _DCK method
1239 */
1240bool acpi_dock_match(acpi_handle handle)
1241{
1242 return acpi_has_method(handle, "_DCK");
1243}
1244
1245static acpi_status
1246acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1247 void **return_value)
1248{
1249 long *cap = context;
1250
1251 if (acpi_has_method(handle, "_BCM") &&
1252 acpi_has_method(handle, "_BCL")) {
1253 acpi_handle_debug(handle, "Found generic backlight support\n");
1254 *cap |= ACPI_VIDEO_BACKLIGHT;
1255 /* We have backlight support, no need to scan further */
1256 return AE_CTRL_TERMINATE;
1257 }
1258 return 0;
1259}
1260
1261/* Returns true if the ACPI object is a video device which can be
1262 * handled by video.ko.
1263 * The device will get a Linux specific CID added in scan.c to
1264 * identify the device as an ACPI graphics device
1265 * Be aware that the graphics device may not be physically present
1266 * Use acpi_video_get_capabilities() to detect general ACPI video
1267 * capabilities of present cards
1268 */
1269long acpi_is_video_device(acpi_handle handle)
1270{
1271 long video_caps = 0;
1272
1273 /* Is this device able to support video switching ? */
1274 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1275 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1276
1277 /* Is this device able to retrieve a video ROM ? */
1278 if (acpi_has_method(handle, "_ROM"))
1279 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1280
1281 /* Is this device able to configure which video head to be POSTed ? */
1282 if (acpi_has_method(handle, "_VPO") &&
1283 acpi_has_method(handle, "_GPD") &&
1284 acpi_has_method(handle, "_SPD"))
1285 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1286
1287 /* Only check for backlight functionality if one of the above hit. */
1288 if (video_caps)
1289 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1290 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1291 &video_caps, NULL);
1292
1293 return video_caps;
1294}
1295EXPORT_SYMBOL(acpi_is_video_device);
1296
1297const char *acpi_device_hid(struct acpi_device *device)
1298{
1299 struct acpi_hardware_id *hid;
1300
1301 if (list_empty(&device->pnp.ids))
1302 return dummy_hid;
1303
1304 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1305 return hid->id;
1306}
1307EXPORT_SYMBOL(acpi_device_hid);
1308
1309static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1310{
1311 struct acpi_hardware_id *id;
1312
1313 id = kmalloc(sizeof(*id), GFP_KERNEL);
1314 if (!id)
1315 return;
1316
1317 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1318 if (!id->id) {
1319 kfree(id);
1320 return;
1321 }
1322
1323 list_add_tail(&id->list, &pnp->ids);
1324 pnp->type.hardware_id = 1;
1325}
1326
1327/*
1328 * Old IBM workstations have a DSDT bug wherein the SMBus object
1329 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1330 * prefix. Work around this.
1331 */
1332static bool acpi_ibm_smbus_match(acpi_handle handle)
1333{
1334 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1335 struct acpi_buffer path = { sizeof(node_name), node_name };
1336
1337 if (!dmi_name_in_vendors("IBM"))
1338 return false;
1339
1340 /* Look for SMBS object */
1341 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1342 strcmp("SMBS", path.pointer))
1343 return false;
1344
1345 /* Does it have the necessary (but misnamed) methods? */
1346 if (acpi_has_method(handle, "SBI") &&
1347 acpi_has_method(handle, "SBR") &&
1348 acpi_has_method(handle, "SBW"))
1349 return true;
1350
1351 return false;
1352}
1353
1354static bool acpi_object_is_system_bus(acpi_handle handle)
1355{
1356 acpi_handle tmp;
1357
1358 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1359 tmp == handle)
1360 return true;
1361 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1362 tmp == handle)
1363 return true;
1364
1365 return false;
1366}
1367
1368static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1369 int device_type)
1370{
1371 struct acpi_device_info *info = NULL;
1372 struct acpi_pnp_device_id_list *cid_list;
1373 int i;
1374
1375 switch (device_type) {
1376 case ACPI_BUS_TYPE_DEVICE:
1377 if (handle == ACPI_ROOT_OBJECT) {
1378 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1379 break;
1380 }
1381
1382 acpi_get_object_info(handle, &info);
1383 if (!info) {
1384 pr_err("%s: Error reading device info\n", __func__);
1385 return;
1386 }
1387
1388 if (info->valid & ACPI_VALID_HID) {
1389 acpi_add_id(pnp, info->hardware_id.string);
1390 pnp->type.platform_id = 1;
1391 }
1392 if (info->valid & ACPI_VALID_CID) {
1393 cid_list = &info->compatible_id_list;
1394 for (i = 0; i < cid_list->count; i++)
1395 acpi_add_id(pnp, cid_list->ids[i].string);
1396 }
1397 if (info->valid & ACPI_VALID_ADR) {
1398 pnp->bus_address = info->address;
1399 pnp->type.bus_address = 1;
1400 }
1401 if (info->valid & ACPI_VALID_UID)
1402 pnp->unique_id = kstrdup(info->unique_id.string,
1403 GFP_KERNEL);
1404 if (info->valid & ACPI_VALID_CLS)
1405 acpi_add_id(pnp, info->class_code.string);
1406
1407 kfree(info);
1408
1409 /*
1410 * Some devices don't reliably have _HIDs & _CIDs, so add
1411 * synthetic HIDs to make sure drivers can find them.
1412 */
1413 if (acpi_is_video_device(handle)) {
1414 acpi_add_id(pnp, ACPI_VIDEO_HID);
1415 pnp->type.backlight = 1;
1416 break;
1417 }
1418 if (acpi_bay_match(handle))
1419 acpi_add_id(pnp, ACPI_BAY_HID);
1420 else if (acpi_dock_match(handle))
1421 acpi_add_id(pnp, ACPI_DOCK_HID);
1422 else if (acpi_ibm_smbus_match(handle))
1423 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1424 else if (list_empty(&pnp->ids) &&
1425 acpi_object_is_system_bus(handle)) {
1426 /* \_SB, \_TZ, LNXSYBUS */
1427 acpi_add_id(pnp, ACPI_BUS_HID);
1428 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1429 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1430 }
1431
1432 break;
1433 case ACPI_BUS_TYPE_POWER:
1434 acpi_add_id(pnp, ACPI_POWER_HID);
1435 break;
1436 case ACPI_BUS_TYPE_PROCESSOR:
1437 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1438 break;
1439 case ACPI_BUS_TYPE_THERMAL:
1440 acpi_add_id(pnp, ACPI_THERMAL_HID);
1441 break;
1442 case ACPI_BUS_TYPE_POWER_BUTTON:
1443 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1444 break;
1445 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1446 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1447 break;
1448 case ACPI_BUS_TYPE_ECDT_EC:
1449 acpi_add_id(pnp, ACPI_ECDT_HID);
1450 break;
1451 }
1452}
1453
1454void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1455{
1456 struct acpi_hardware_id *id, *tmp;
1457
1458 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1459 kfree_const(id->id);
1460 kfree(id);
1461 }
1462 kfree(pnp->unique_id);
1463}
1464
1465/**
1466 * acpi_dma_supported - Check DMA support for the specified device.
1467 * @adev: The pointer to acpi device
1468 *
1469 * Return false if DMA is not supported. Otherwise, return true
1470 */
1471bool acpi_dma_supported(const struct acpi_device *adev)
1472{
1473 if (!adev)
1474 return false;
1475
1476 if (adev->flags.cca_seen)
1477 return true;
1478
1479 /*
1480 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1481 * DMA on "Intel platforms". Presumably that includes all x86 and
1482 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1483 */
1484 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1485 return true;
1486
1487 return false;
1488}
1489
1490/**
1491 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1492 * @adev: The pointer to acpi device
1493 *
1494 * Return enum dev_dma_attr.
1495 */
1496enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1497{
1498 if (!acpi_dma_supported(adev))
1499 return DEV_DMA_NOT_SUPPORTED;
1500
1501 if (adev->flags.coherent_dma)
1502 return DEV_DMA_COHERENT;
1503 else
1504 return DEV_DMA_NON_COHERENT;
1505}
1506
1507/**
1508 * acpi_dma_get_range() - Get device DMA parameters.
1509 *
1510 * @dev: device to configure
1511 * @map: pointer to DMA ranges result
1512 *
1513 * Evaluate DMA regions and return pointer to DMA regions on
1514 * parsing success; it does not update the passed in values on failure.
1515 *
1516 * Return 0 on success, < 0 on failure.
1517 */
1518int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1519{
1520 struct acpi_device *adev;
1521 LIST_HEAD(list);
1522 struct resource_entry *rentry;
1523 int ret;
1524 struct device *dma_dev = dev;
1525 struct bus_dma_region *r;
1526
1527 /*
1528 * Walk the device tree chasing an ACPI companion with a _DMA
1529 * object while we go. Stop if we find a device with an ACPI
1530 * companion containing a _DMA method.
1531 */
1532 do {
1533 adev = ACPI_COMPANION(dma_dev);
1534 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1535 break;
1536
1537 dma_dev = dma_dev->parent;
1538 } while (dma_dev);
1539
1540 if (!dma_dev)
1541 return -ENODEV;
1542
1543 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1544 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1545 return -EINVAL;
1546 }
1547
1548 ret = acpi_dev_get_dma_resources(adev, &list);
1549 if (ret > 0) {
1550 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1551 if (!r) {
1552 ret = -ENOMEM;
1553 goto out;
1554 }
1555
1556 *map = r;
1557
1558 list_for_each_entry(rentry, &list, node) {
1559 if (rentry->res->start >= rentry->res->end) {
1560 kfree(*map);
1561 *map = NULL;
1562 ret = -EINVAL;
1563 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1564 goto out;
1565 }
1566
1567 r->cpu_start = rentry->res->start;
1568 r->dma_start = rentry->res->start - rentry->offset;
1569 r->size = resource_size(rentry->res);
1570 r++;
1571 }
1572 }
1573 out:
1574 acpi_dev_free_resource_list(&list);
1575
1576 return ret >= 0 ? 0 : ret;
1577}
1578
1579#ifdef CONFIG_IOMMU_API
1580int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1581 struct fwnode_handle *fwnode,
1582 const struct iommu_ops *ops)
1583{
1584 int ret = iommu_fwspec_init(dev, fwnode, ops);
1585
1586 if (!ret)
1587 ret = iommu_fwspec_add_ids(dev, &id, 1);
1588
1589 return ret;
1590}
1591
1592static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1593{
1594 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1595
1596 return fwspec ? fwspec->ops : NULL;
1597}
1598
1599static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1600{
1601 int err;
1602 const struct iommu_ops *ops;
1603
1604 /* Serialise to make dev->iommu stable under our potential fwspec */
1605 mutex_lock(&iommu_probe_device_lock);
1606 /*
1607 * If we already translated the fwspec there is nothing left to do,
1608 * return the iommu_ops.
1609 */
1610 ops = acpi_iommu_fwspec_ops(dev);
1611 if (ops) {
1612 mutex_unlock(&iommu_probe_device_lock);
1613 return 0;
1614 }
1615
1616 err = iort_iommu_configure_id(dev, id_in);
1617 if (err && err != -EPROBE_DEFER)
1618 err = viot_iommu_configure(dev);
1619 mutex_unlock(&iommu_probe_device_lock);
1620
1621 /*
1622 * If we have reason to believe the IOMMU driver missed the initial
1623 * iommu_probe_device() call for dev, replay it to get things in order.
1624 */
1625 if (!err && dev->bus)
1626 err = iommu_probe_device(dev);
1627
1628 /* Ignore all other errors apart from EPROBE_DEFER */
1629 if (err == -EPROBE_DEFER) {
1630 return err;
1631 } else if (err) {
1632 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1633 return -ENODEV;
1634 }
1635 if (!acpi_iommu_fwspec_ops(dev))
1636 return -ENODEV;
1637 return 0;
1638}
1639
1640#else /* !CONFIG_IOMMU_API */
1641
1642int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1643 struct fwnode_handle *fwnode,
1644 const struct iommu_ops *ops)
1645{
1646 return -ENODEV;
1647}
1648
1649static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1650{
1651 return -ENODEV;
1652}
1653
1654#endif /* !CONFIG_IOMMU_API */
1655
1656/**
1657 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1658 * @dev: The pointer to the device
1659 * @attr: device dma attributes
1660 * @input_id: input device id const value pointer
1661 */
1662int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1663 const u32 *input_id)
1664{
1665 int ret;
1666
1667 if (attr == DEV_DMA_NOT_SUPPORTED) {
1668 set_dma_ops(dev, &dma_dummy_ops);
1669 return 0;
1670 }
1671
1672 acpi_arch_dma_setup(dev);
1673
1674 ret = acpi_iommu_configure_id(dev, input_id);
1675 if (ret == -EPROBE_DEFER)
1676 return -EPROBE_DEFER;
1677
1678 /*
1679 * Historically this routine doesn't fail driver probing due to errors
1680 * in acpi_iommu_configure_id()
1681 */
1682
1683 arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
1684
1685 return 0;
1686}
1687EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1688
1689static void acpi_init_coherency(struct acpi_device *adev)
1690{
1691 unsigned long long cca = 0;
1692 acpi_status status;
1693 struct acpi_device *parent = acpi_dev_parent(adev);
1694
1695 if (parent && parent->flags.cca_seen) {
1696 /*
1697 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1698 * already saw one.
1699 */
1700 adev->flags.cca_seen = 1;
1701 cca = parent->flags.coherent_dma;
1702 } else {
1703 status = acpi_evaluate_integer(adev->handle, "_CCA",
1704 NULL, &cca);
1705 if (ACPI_SUCCESS(status))
1706 adev->flags.cca_seen = 1;
1707 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1708 /*
1709 * If architecture does not specify that _CCA is
1710 * required for DMA-able devices (e.g. x86),
1711 * we default to _CCA=1.
1712 */
1713 cca = 1;
1714 else
1715 acpi_handle_debug(adev->handle,
1716 "ACPI device is missing _CCA.\n");
1717 }
1718
1719 adev->flags.coherent_dma = cca;
1720}
1721
1722static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1723{
1724 bool *is_serial_bus_slave_p = data;
1725
1726 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1727 return 1;
1728
1729 *is_serial_bus_slave_p = true;
1730
1731 /* no need to do more checking */
1732 return -1;
1733}
1734
1735static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1736{
1737 struct acpi_device *parent = acpi_dev_parent(device);
1738 static const struct acpi_device_id indirect_io_hosts[] = {
1739 {"HISI0191", 0},
1740 {}
1741 };
1742
1743 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1744}
1745
1746static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1747{
1748 struct list_head resource_list;
1749 bool is_serial_bus_slave = false;
1750 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1751 /*
1752 * These devices have multiple SerialBus resources and a client
1753 * device must be instantiated for each of them, each with
1754 * its own device id.
1755 * Normally we only instantiate one client device for the first
1756 * resource, using the ACPI HID as id. These special cases are handled
1757 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1758 * knows which client device id to use for each resource.
1759 */
1760 {"BSG1160", },
1761 {"BSG2150", },
1762 {"CSC3551", },
1763 {"CSC3554", },
1764 {"CSC3556", },
1765 {"CSC3557", },
1766 {"INT33FE", },
1767 {"INT3515", },
1768 /* Non-conforming _HID for Cirrus Logic already released */
1769 {"CLSA0100", },
1770 {"CLSA0101", },
1771 /*
1772 * Some ACPI devs contain SerialBus resources even though they are not
1773 * attached to a serial bus at all.
1774 */
1775 {ACPI_VIDEO_HID, },
1776 {"MSHW0028", },
1777 /*
1778 * HIDs of device with an UartSerialBusV2 resource for which userspace
1779 * expects a regular tty cdev to be created (instead of the in kernel
1780 * serdev) and which have a kernel driver which expects a platform_dev
1781 * such as the rfkill-gpio driver.
1782 */
1783 {"BCM4752", },
1784 {"LNV4752", },
1785 {}
1786 };
1787
1788 if (acpi_is_indirect_io_slave(device))
1789 return true;
1790
1791 /* Macs use device properties in lieu of _CRS resources */
1792 if (x86_apple_machine &&
1793 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1794 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1795 fwnode_property_present(&device->fwnode, "baud")))
1796 return true;
1797
1798 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1799 return false;
1800
1801 INIT_LIST_HEAD(&resource_list);
1802 acpi_dev_get_resources(device, &resource_list,
1803 acpi_check_serial_bus_slave,
1804 &is_serial_bus_slave);
1805 acpi_dev_free_resource_list(&resource_list);
1806
1807 return is_serial_bus_slave;
1808}
1809
1810void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1811 int type, void (*release)(struct device *))
1812{
1813 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1814
1815 INIT_LIST_HEAD(&device->pnp.ids);
1816 device->device_type = type;
1817 device->handle = handle;
1818 device->dev.parent = parent ? &parent->dev : NULL;
1819 device->dev.release = release;
1820 device->dev.bus = &acpi_bus_type;
1821 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1822 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1823 acpi_device_get_busid(device);
1824 acpi_set_pnp_ids(handle, &device->pnp, type);
1825 acpi_init_properties(device);
1826 acpi_bus_get_flags(device);
1827 device->flags.match_driver = false;
1828 device->flags.initialized = true;
1829 device->flags.enumeration_by_parent =
1830 acpi_device_enumeration_by_parent(device);
1831 acpi_device_clear_enumerated(device);
1832 device_initialize(&device->dev);
1833 dev_set_uevent_suppress(&device->dev, true);
1834 acpi_init_coherency(device);
1835}
1836
1837static void acpi_scan_dep_init(struct acpi_device *adev)
1838{
1839 struct acpi_dep_data *dep;
1840
1841 list_for_each_entry(dep, &acpi_dep_list, node) {
1842 if (dep->consumer == adev->handle) {
1843 if (dep->honor_dep)
1844 adev->flags.honor_deps = 1;
1845
1846 if (!dep->met)
1847 adev->dep_unmet++;
1848 }
1849 }
1850}
1851
1852void acpi_device_add_finalize(struct acpi_device *device)
1853{
1854 dev_set_uevent_suppress(&device->dev, false);
1855 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1856}
1857
1858static void acpi_scan_init_status(struct acpi_device *adev)
1859{
1860 if (acpi_bus_get_status(adev))
1861 acpi_set_device_status(adev, 0);
1862}
1863
1864static int acpi_add_single_object(struct acpi_device **child,
1865 acpi_handle handle, int type, bool dep_init)
1866{
1867 struct acpi_device *device;
1868 bool release_dep_lock = false;
1869 int result;
1870
1871 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1872 if (!device)
1873 return -ENOMEM;
1874
1875 acpi_init_device_object(device, handle, type, acpi_device_release);
1876 /*
1877 * Getting the status is delayed till here so that we can call
1878 * acpi_bus_get_status() and use its quirk handling. Note that
1879 * this must be done before the get power-/wakeup_dev-flags calls.
1880 */
1881 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1882 if (dep_init) {
1883 mutex_lock(&acpi_dep_list_lock);
1884 /*
1885 * Hold the lock until the acpi_tie_acpi_dev() call
1886 * below to prevent concurrent acpi_scan_clear_dep()
1887 * from deleting a dependency list entry without
1888 * updating dep_unmet for the device.
1889 */
1890 release_dep_lock = true;
1891 acpi_scan_dep_init(device);
1892 }
1893 acpi_scan_init_status(device);
1894 }
1895
1896 acpi_bus_get_power_flags(device);
1897 acpi_bus_get_wakeup_device_flags(device);
1898
1899 result = acpi_tie_acpi_dev(device);
1900
1901 if (release_dep_lock)
1902 mutex_unlock(&acpi_dep_list_lock);
1903
1904 if (!result)
1905 result = acpi_device_add(device);
1906
1907 if (result) {
1908 acpi_device_release(&device->dev);
1909 return result;
1910 }
1911
1912 acpi_power_add_remove_device(device, true);
1913 acpi_device_add_finalize(device);
1914
1915 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1916 dev_name(&device->dev), device->dev.parent ?
1917 dev_name(device->dev.parent) : "(null)");
1918
1919 *child = device;
1920 return 0;
1921}
1922
1923static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1924 void *context)
1925{
1926 struct resource *res = context;
1927
1928 if (acpi_dev_resource_memory(ares, res))
1929 return AE_CTRL_TERMINATE;
1930
1931 return AE_OK;
1932}
1933
1934static bool acpi_device_should_be_hidden(acpi_handle handle)
1935{
1936 acpi_status status;
1937 struct resource res;
1938
1939 /* Check if it should ignore the UART device */
1940 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1941 return false;
1942
1943 /*
1944 * The UART device described in SPCR table is assumed to have only one
1945 * memory resource present. So we only look for the first one here.
1946 */
1947 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1948 acpi_get_resource_memory, &res);
1949 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1950 return false;
1951
1952 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1953 &res.start);
1954
1955 return true;
1956}
1957
1958bool acpi_device_is_present(const struct acpi_device *adev)
1959{
1960 return adev->status.present || adev->status.functional;
1961}
1962
1963bool acpi_device_is_enabled(const struct acpi_device *adev)
1964{
1965 return adev->status.present && adev->status.enabled;
1966}
1967
1968static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1969 const char *idstr,
1970 const struct acpi_device_id **matchid)
1971{
1972 const struct acpi_device_id *devid;
1973
1974 if (handler->match)
1975 return handler->match(idstr, matchid);
1976
1977 for (devid = handler->ids; devid->id[0]; devid++)
1978 if (!strcmp((char *)devid->id, idstr)) {
1979 if (matchid)
1980 *matchid = devid;
1981
1982 return true;
1983 }
1984
1985 return false;
1986}
1987
1988static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1989 const struct acpi_device_id **matchid)
1990{
1991 struct acpi_scan_handler *handler;
1992
1993 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1994 if (acpi_scan_handler_matching(handler, idstr, matchid))
1995 return handler;
1996
1997 return NULL;
1998}
1999
2000void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2001{
2002 if (!!hotplug->enabled == !!val)
2003 return;
2004
2005 mutex_lock(&acpi_scan_lock);
2006
2007 hotplug->enabled = val;
2008
2009 mutex_unlock(&acpi_scan_lock);
2010}
2011
2012static void acpi_scan_init_hotplug(struct acpi_device *adev)
2013{
2014 struct acpi_hardware_id *hwid;
2015
2016 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2017 acpi_dock_add(adev);
2018 return;
2019 }
2020 list_for_each_entry(hwid, &adev->pnp.ids, list) {
2021 struct acpi_scan_handler *handler;
2022
2023 handler = acpi_scan_match_handler(hwid->id, NULL);
2024 if (handler) {
2025 adev->flags.hotplug_notify = true;
2026 break;
2027 }
2028 }
2029}
2030
2031static u32 acpi_scan_check_dep(acpi_handle handle)
2032{
2033 struct acpi_handle_list dep_devices;
2034 u32 count;
2035 int i;
2036
2037 /*
2038 * Check for _HID here to avoid deferring the enumeration of:
2039 * 1. PCI devices.
2040 * 2. ACPI nodes describing USB ports.
2041 * Still, checking for _HID catches more then just these cases ...
2042 */
2043 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2044 return 0;
2045
2046 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2047 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2048 return 0;
2049 }
2050
2051 for (count = 0, i = 0; i < dep_devices.count; i++) {
2052 struct acpi_device_info *info;
2053 struct acpi_dep_data *dep;
2054 bool skip, honor_dep;
2055 acpi_status status;
2056
2057 status = acpi_get_object_info(dep_devices.handles[i], &info);
2058 if (ACPI_FAILURE(status)) {
2059 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2060 continue;
2061 }
2062
2063 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2064 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2065 kfree(info);
2066
2067 if (skip)
2068 continue;
2069
2070 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2071 if (!dep)
2072 continue;
2073
2074 count++;
2075
2076 dep->supplier = dep_devices.handles[i];
2077 dep->consumer = handle;
2078 dep->honor_dep = honor_dep;
2079
2080 mutex_lock(&acpi_dep_list_lock);
2081 list_add_tail(&dep->node , &acpi_dep_list);
2082 mutex_unlock(&acpi_dep_list_lock);
2083 }
2084
2085 acpi_handle_list_free(&dep_devices);
2086 return count;
2087}
2088
2089static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2090{
2091 acpi_mipi_check_crs_csi2(handle);
2092 return AE_OK;
2093}
2094
2095static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2096 struct acpi_device **adev_p)
2097{
2098 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2099 acpi_object_type acpi_type;
2100 int type;
2101
2102 if (device)
2103 goto out;
2104
2105 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2106 return AE_OK;
2107
2108 switch (acpi_type) {
2109 case ACPI_TYPE_DEVICE:
2110 if (acpi_device_should_be_hidden(handle))
2111 return AE_OK;
2112
2113 if (first_pass) {
2114 acpi_mipi_check_crs_csi2(handle);
2115
2116 /* Bail out if there are dependencies. */
2117 if (acpi_scan_check_dep(handle) > 0) {
2118 /*
2119 * The entire CSI-2 connection graph needs to be
2120 * extracted before any drivers or scan handlers
2121 * are bound to struct device objects, so scan
2122 * _CRS CSI-2 resource descriptors for all
2123 * devices below the current handle.
2124 */
2125 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2126 ACPI_UINT32_MAX,
2127 acpi_scan_check_crs_csi2_cb,
2128 NULL, NULL, NULL);
2129 return AE_CTRL_DEPTH;
2130 }
2131 }
2132
2133 fallthrough;
2134 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2135 type = ACPI_BUS_TYPE_DEVICE;
2136 break;
2137
2138 case ACPI_TYPE_PROCESSOR:
2139 type = ACPI_BUS_TYPE_PROCESSOR;
2140 break;
2141
2142 case ACPI_TYPE_THERMAL:
2143 type = ACPI_BUS_TYPE_THERMAL;
2144 break;
2145
2146 case ACPI_TYPE_POWER:
2147 acpi_add_power_resource(handle);
2148 fallthrough;
2149 default:
2150 return AE_OK;
2151 }
2152
2153 /*
2154 * If first_pass is true at this point, the device has no dependencies,
2155 * or the creation of the device object would have been postponed above.
2156 */
2157 acpi_add_single_object(&device, handle, type, !first_pass);
2158 if (!device)
2159 return AE_CTRL_DEPTH;
2160
2161 acpi_scan_init_hotplug(device);
2162
2163out:
2164 if (!*adev_p)
2165 *adev_p = device;
2166
2167 return AE_OK;
2168}
2169
2170static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2171 void *not_used, void **ret_p)
2172{
2173 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2174}
2175
2176static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2177 void *not_used, void **ret_p)
2178{
2179 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2180}
2181
2182static void acpi_default_enumeration(struct acpi_device *device)
2183{
2184 /*
2185 * Do not enumerate devices with enumeration_by_parent flag set as
2186 * they will be enumerated by their respective parents.
2187 */
2188 if (!device->flags.enumeration_by_parent) {
2189 acpi_create_platform_device(device, NULL);
2190 acpi_device_set_enumerated(device);
2191 } else {
2192 blocking_notifier_call_chain(&acpi_reconfig_chain,
2193 ACPI_RECONFIG_DEVICE_ADD, device);
2194 }
2195}
2196
2197static const struct acpi_device_id generic_device_ids[] = {
2198 {ACPI_DT_NAMESPACE_HID, },
2199 {"", },
2200};
2201
2202static int acpi_generic_device_attach(struct acpi_device *adev,
2203 const struct acpi_device_id *not_used)
2204{
2205 /*
2206 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2207 * below can be unconditional.
2208 */
2209 if (adev->data.of_compatible)
2210 acpi_default_enumeration(adev);
2211
2212 return 1;
2213}
2214
2215static struct acpi_scan_handler generic_device_handler = {
2216 .ids = generic_device_ids,
2217 .attach = acpi_generic_device_attach,
2218};
2219
2220static int acpi_scan_attach_handler(struct acpi_device *device)
2221{
2222 struct acpi_hardware_id *hwid;
2223 int ret = 0;
2224
2225 list_for_each_entry(hwid, &device->pnp.ids, list) {
2226 const struct acpi_device_id *devid;
2227 struct acpi_scan_handler *handler;
2228
2229 handler = acpi_scan_match_handler(hwid->id, &devid);
2230 if (handler) {
2231 if (!handler->attach) {
2232 device->pnp.type.platform_id = 0;
2233 continue;
2234 }
2235 device->handler = handler;
2236 ret = handler->attach(device, devid);
2237 if (ret > 0)
2238 break;
2239
2240 device->handler = NULL;
2241 if (ret < 0)
2242 break;
2243 }
2244 }
2245
2246 return ret;
2247}
2248
2249static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2250{
2251 bool skip = !first_pass && device->flags.visited;
2252 acpi_handle ejd;
2253 int ret;
2254
2255 if (skip)
2256 goto ok;
2257
2258 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2259 register_dock_dependent_device(device, ejd);
2260
2261 acpi_bus_get_status(device);
2262 /* Skip devices that are not ready for enumeration (e.g. not present) */
2263 if (!acpi_dev_ready_for_enumeration(device)) {
2264 device->flags.initialized = false;
2265 acpi_device_clear_enumerated(device);
2266 device->flags.power_manageable = 0;
2267 return 0;
2268 }
2269 if (device->handler)
2270 goto ok;
2271
2272 if (!device->flags.initialized) {
2273 device->flags.power_manageable =
2274 device->power.states[ACPI_STATE_D0].flags.valid;
2275 if (acpi_bus_init_power(device))
2276 device->flags.power_manageable = 0;
2277
2278 device->flags.initialized = true;
2279 } else if (device->flags.visited) {
2280 goto ok;
2281 }
2282
2283 ret = acpi_scan_attach_handler(device);
2284 if (ret < 0)
2285 return 0;
2286
2287 device->flags.match_driver = true;
2288 if (ret > 0 && !device->flags.enumeration_by_parent) {
2289 acpi_device_set_enumerated(device);
2290 goto ok;
2291 }
2292
2293 ret = device_attach(&device->dev);
2294 if (ret < 0)
2295 return 0;
2296
2297 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2298 acpi_default_enumeration(device);
2299 else
2300 acpi_device_set_enumerated(device);
2301
2302ok:
2303 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2304
2305 if (!skip && device->handler && device->handler->hotplug.notify_online)
2306 device->handler->hotplug.notify_online(device);
2307
2308 return 0;
2309}
2310
2311static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2312{
2313 struct acpi_device **adev_p = data;
2314 struct acpi_device *adev = *adev_p;
2315
2316 /*
2317 * If we're passed a 'previous' consumer device then we need to skip
2318 * any consumers until we meet the previous one, and then NULL @data
2319 * so the next one can be returned.
2320 */
2321 if (adev) {
2322 if (dep->consumer == adev->handle)
2323 *adev_p = NULL;
2324
2325 return 0;
2326 }
2327
2328 adev = acpi_get_acpi_dev(dep->consumer);
2329 if (adev) {
2330 *(struct acpi_device **)data = adev;
2331 return 1;
2332 }
2333 /* Continue parsing if the device object is not present. */
2334 return 0;
2335}
2336
2337struct acpi_scan_clear_dep_work {
2338 struct work_struct work;
2339 struct acpi_device *adev;
2340};
2341
2342static void acpi_scan_clear_dep_fn(struct work_struct *work)
2343{
2344 struct acpi_scan_clear_dep_work *cdw;
2345
2346 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2347
2348 acpi_scan_lock_acquire();
2349 acpi_bus_attach(cdw->adev, (void *)true);
2350 acpi_scan_lock_release();
2351
2352 acpi_dev_put(cdw->adev);
2353 kfree(cdw);
2354}
2355
2356static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2357{
2358 struct acpi_scan_clear_dep_work *cdw;
2359
2360 if (adev->dep_unmet)
2361 return false;
2362
2363 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2364 if (!cdw)
2365 return false;
2366
2367 cdw->adev = adev;
2368 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2369 /*
2370 * Since the work function may block on the lock until the entire
2371 * initial enumeration of devices is complete, put it into the unbound
2372 * workqueue.
2373 */
2374 queue_work(system_unbound_wq, &cdw->work);
2375
2376 return true;
2377}
2378
2379static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2380{
2381 list_del(&dep->node);
2382 kfree(dep);
2383}
2384
2385static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2386{
2387 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2388
2389 if (adev) {
2390 adev->dep_unmet--;
2391 if (!acpi_scan_clear_dep_queue(adev))
2392 acpi_dev_put(adev);
2393 }
2394
2395 if (dep->free_when_met)
2396 acpi_scan_delete_dep_data(dep);
2397 else
2398 dep->met = true;
2399
2400 return 0;
2401}
2402
2403/**
2404 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2405 * @handle: The ACPI handle of the supplier device
2406 * @callback: Pointer to the callback function to apply
2407 * @data: Pointer to some data to pass to the callback
2408 *
2409 * The return value of the callback determines this function's behaviour. If 0
2410 * is returned we continue to iterate over acpi_dep_list. If a positive value
2411 * is returned then the loop is broken but this function returns 0. If a
2412 * negative value is returned by the callback then the loop is broken and that
2413 * value is returned as the final error.
2414 */
2415static int acpi_walk_dep_device_list(acpi_handle handle,
2416 int (*callback)(struct acpi_dep_data *, void *),
2417 void *data)
2418{
2419 struct acpi_dep_data *dep, *tmp;
2420 int ret = 0;
2421
2422 mutex_lock(&acpi_dep_list_lock);
2423 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2424 if (dep->supplier == handle) {
2425 ret = callback(dep, data);
2426 if (ret)
2427 break;
2428 }
2429 }
2430 mutex_unlock(&acpi_dep_list_lock);
2431
2432 return ret > 0 ? 0 : ret;
2433}
2434
2435/**
2436 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2437 * @supplier: Pointer to the supplier &struct acpi_device
2438 *
2439 * Clear dependencies on the given device.
2440 */
2441void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2442{
2443 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2444}
2445EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2446
2447/**
2448 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2449 * @device: Pointer to the &struct acpi_device to check
2450 *
2451 * Check if the device is present and has no unmet dependencies.
2452 *
2453 * Return true if the device is ready for enumeratino. Otherwise, return false.
2454 */
2455bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2456{
2457 if (device->flags.honor_deps && device->dep_unmet)
2458 return false;
2459
2460 return acpi_device_is_present(device);
2461}
2462EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2463
2464/**
2465 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2466 * @supplier: Pointer to the dependee device
2467 * @start: Pointer to the current dependent device
2468 *
2469 * Returns the next &struct acpi_device which declares itself dependent on
2470 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2471 *
2472 * If the returned adev is not passed as @start to this function, the caller is
2473 * responsible for putting the reference to adev when it is no longer needed.
2474 */
2475struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2476 struct acpi_device *start)
2477{
2478 struct acpi_device *adev = start;
2479
2480 acpi_walk_dep_device_list(supplier->handle,
2481 acpi_dev_get_next_consumer_dev_cb, &adev);
2482
2483 acpi_dev_put(start);
2484
2485 if (adev == start)
2486 return NULL;
2487
2488 return adev;
2489}
2490EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2491
2492static void acpi_scan_postponed_branch(acpi_handle handle)
2493{
2494 struct acpi_device *adev = NULL;
2495
2496 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2497 return;
2498
2499 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2500 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2501
2502 /*
2503 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2504 * have been added above.
2505 */
2506 acpi_mipi_init_crs_csi2_swnodes();
2507
2508 acpi_bus_attach(adev, NULL);
2509}
2510
2511static void acpi_scan_postponed(void)
2512{
2513 struct acpi_dep_data *dep, *tmp;
2514
2515 mutex_lock(&acpi_dep_list_lock);
2516
2517 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2518 acpi_handle handle = dep->consumer;
2519
2520 /*
2521 * In case there are multiple acpi_dep_list entries with the
2522 * same consumer, skip the current entry if the consumer device
2523 * object corresponding to it is present already.
2524 */
2525 if (!acpi_fetch_acpi_dev(handle)) {
2526 /*
2527 * Even though the lock is released here, tmp is
2528 * guaranteed to be valid, because none of the list
2529 * entries following dep is marked as "free when met"
2530 * and so they cannot be deleted.
2531 */
2532 mutex_unlock(&acpi_dep_list_lock);
2533
2534 acpi_scan_postponed_branch(handle);
2535
2536 mutex_lock(&acpi_dep_list_lock);
2537 }
2538
2539 if (dep->met)
2540 acpi_scan_delete_dep_data(dep);
2541 else
2542 dep->free_when_met = true;
2543 }
2544
2545 mutex_unlock(&acpi_dep_list_lock);
2546}
2547
2548/**
2549 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2550 * @handle: Root of the namespace scope to scan.
2551 *
2552 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2553 * found devices.
2554 *
2555 * If no devices were found, -ENODEV is returned, but it does not mean that
2556 * there has been a real error. There just have been no suitable ACPI objects
2557 * in the table trunk from which the kernel could create a device and add an
2558 * appropriate driver.
2559 *
2560 * Must be called under acpi_scan_lock.
2561 */
2562int acpi_bus_scan(acpi_handle handle)
2563{
2564 struct acpi_device *device = NULL;
2565
2566 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2567
2568 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2569 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2570 acpi_bus_check_add_1, NULL, NULL,
2571 (void **)&device);
2572
2573 if (!device)
2574 return -ENODEV;
2575
2576 /*
2577 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2578 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2579 * walk above and MIPI DisCo for Imaging device properties.
2580 */
2581 acpi_mipi_scan_crs_csi2();
2582 acpi_mipi_init_crs_csi2_swnodes();
2583
2584 acpi_bus_attach(device, (void *)true);
2585
2586 /* Pass 2: Enumerate all of the remaining devices. */
2587
2588 acpi_scan_postponed();
2589
2590 acpi_mipi_crs_csi2_cleanup();
2591
2592 return 0;
2593}
2594EXPORT_SYMBOL(acpi_bus_scan);
2595
2596/**
2597 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2598 * @adev: Root of the ACPI namespace scope to walk.
2599 *
2600 * Must be called under acpi_scan_lock.
2601 */
2602void acpi_bus_trim(struct acpi_device *adev)
2603{
2604 acpi_scan_check_and_detach(adev, NULL);
2605}
2606EXPORT_SYMBOL_GPL(acpi_bus_trim);
2607
2608int acpi_bus_register_early_device(int type)
2609{
2610 struct acpi_device *device = NULL;
2611 int result;
2612
2613 result = acpi_add_single_object(&device, NULL, type, false);
2614 if (result)
2615 return result;
2616
2617 device->flags.match_driver = true;
2618 return device_attach(&device->dev);
2619}
2620EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2621
2622static void acpi_bus_scan_fixed(void)
2623{
2624 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2625 struct acpi_device *adev = NULL;
2626
2627 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2628 false);
2629 if (adev) {
2630 adev->flags.match_driver = true;
2631 if (device_attach(&adev->dev) >= 0)
2632 device_init_wakeup(&adev->dev, true);
2633 else
2634 dev_dbg(&adev->dev, "No driver\n");
2635 }
2636 }
2637
2638 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2639 struct acpi_device *adev = NULL;
2640
2641 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2642 false);
2643 if (adev) {
2644 adev->flags.match_driver = true;
2645 if (device_attach(&adev->dev) < 0)
2646 dev_dbg(&adev->dev, "No driver\n");
2647 }
2648 }
2649}
2650
2651static void __init acpi_get_spcr_uart_addr(void)
2652{
2653 acpi_status status;
2654 struct acpi_table_spcr *spcr_ptr;
2655
2656 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2657 (struct acpi_table_header **)&spcr_ptr);
2658 if (ACPI_FAILURE(status)) {
2659 pr_warn("STAO table present, but SPCR is missing\n");
2660 return;
2661 }
2662
2663 spcr_uart_addr = spcr_ptr->serial_port.address;
2664 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2665}
2666
2667static bool acpi_scan_initialized;
2668
2669void __init acpi_scan_init(void)
2670{
2671 acpi_status status;
2672 struct acpi_table_stao *stao_ptr;
2673
2674 acpi_pci_root_init();
2675 acpi_pci_link_init();
2676 acpi_processor_init();
2677 acpi_platform_init();
2678 acpi_lpss_init();
2679 acpi_apd_init();
2680 acpi_cmos_rtc_init();
2681 acpi_container_init();
2682 acpi_memory_hotplug_init();
2683 acpi_watchdog_init();
2684 acpi_pnp_init();
2685 acpi_int340x_thermal_init();
2686 acpi_init_lpit();
2687
2688 acpi_scan_add_handler(&generic_device_handler);
2689
2690 /*
2691 * If there is STAO table, check whether it needs to ignore the UART
2692 * device in SPCR table.
2693 */
2694 status = acpi_get_table(ACPI_SIG_STAO, 0,
2695 (struct acpi_table_header **)&stao_ptr);
2696 if (ACPI_SUCCESS(status)) {
2697 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2698 pr_info("STAO Name List not yet supported.\n");
2699
2700 if (stao_ptr->ignore_uart)
2701 acpi_get_spcr_uart_addr();
2702
2703 acpi_put_table((struct acpi_table_header *)stao_ptr);
2704 }
2705
2706 acpi_gpe_apply_masked_gpes();
2707 acpi_update_all_gpes();
2708
2709 /*
2710 * Although we call __add_memory() that is documented to require the
2711 * device_hotplug_lock, it is not necessary here because this is an
2712 * early code when userspace or any other code path cannot trigger
2713 * hotplug/hotunplug operations.
2714 */
2715 mutex_lock(&acpi_scan_lock);
2716 /*
2717 * Enumerate devices in the ACPI namespace.
2718 */
2719 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2720 goto unlock;
2721
2722 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2723 if (!acpi_root)
2724 goto unlock;
2725
2726 /* Fixed feature devices do not exist on HW-reduced platform */
2727 if (!acpi_gbl_reduced_hardware)
2728 acpi_bus_scan_fixed();
2729
2730 acpi_turn_off_unused_power_resources();
2731
2732 acpi_scan_initialized = true;
2733
2734unlock:
2735 mutex_unlock(&acpi_scan_lock);
2736}
2737
2738static struct acpi_probe_entry *ape;
2739static int acpi_probe_count;
2740static DEFINE_MUTEX(acpi_probe_mutex);
2741
2742static int __init acpi_match_madt(union acpi_subtable_headers *header,
2743 const unsigned long end)
2744{
2745 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2746 if (!ape->probe_subtbl(header, end))
2747 acpi_probe_count++;
2748
2749 return 0;
2750}
2751
2752int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2753{
2754 int count = 0;
2755
2756 if (acpi_disabled)
2757 return 0;
2758
2759 mutex_lock(&acpi_probe_mutex);
2760 for (ape = ap_head; nr; ape++, nr--) {
2761 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2762 acpi_probe_count = 0;
2763 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2764 count += acpi_probe_count;
2765 } else {
2766 int res;
2767 res = acpi_table_parse(ape->id, ape->probe_table);
2768 if (!res)
2769 count++;
2770 }
2771 }
2772 mutex_unlock(&acpi_probe_mutex);
2773
2774 return count;
2775}
2776
2777static void acpi_table_events_fn(struct work_struct *work)
2778{
2779 acpi_scan_lock_acquire();
2780 acpi_bus_scan(ACPI_ROOT_OBJECT);
2781 acpi_scan_lock_release();
2782
2783 kfree(work);
2784}
2785
2786void acpi_scan_table_notify(void)
2787{
2788 struct work_struct *work;
2789
2790 if (!acpi_scan_initialized)
2791 return;
2792
2793 work = kmalloc(sizeof(*work), GFP_KERNEL);
2794 if (!work)
2795 return;
2796
2797 INIT_WORK(work, acpi_table_events_fn);
2798 schedule_work(work);
2799}
2800
2801int acpi_reconfig_notifier_register(struct notifier_block *nb)
2802{
2803 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2804}
2805EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2806
2807int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2808{
2809 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2810}
2811EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);