Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26#include "sleep.h"
27
28#define ACPI_BUS_CLASS "system_bus"
29#define ACPI_BUS_HID "LNXSYBUS"
30#define ACPI_BUS_DEVICE_NAME "System Bus"
31
32#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34static const char *dummy_hid = "device";
35
36static LIST_HEAD(acpi_dep_list);
37static DEFINE_MUTEX(acpi_dep_list_lock);
38LIST_HEAD(acpi_bus_id_list);
39static DEFINE_MUTEX(acpi_scan_lock);
40static LIST_HEAD(acpi_scan_handlers_list);
41DEFINE_MUTEX(acpi_device_lock);
42LIST_HEAD(acpi_wakeup_device_list);
43static DEFINE_MUTEX(acpi_hp_context_lock);
44
45/*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50static u64 spcr_uart_addr;
51
52void acpi_scan_lock_acquire(void)
53{
54 mutex_lock(&acpi_scan_lock);
55}
56EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58void acpi_scan_lock_release(void)
59{
60 mutex_unlock(&acpi_scan_lock);
61}
62EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64void acpi_lock_hp_context(void)
65{
66 mutex_lock(&acpi_hp_context_lock);
67}
68
69void acpi_unlock_hp_context(void)
70{
71 mutex_unlock(&acpi_hp_context_lock);
72}
73
74void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 acpi_hp_notify notify, acpi_hp_uevent uevent)
77{
78 acpi_lock_hp_context();
79 hp->notify = notify;
80 hp->uevent = uevent;
81 acpi_set_hp_context(adev, hp);
82 acpi_unlock_hp_context();
83}
84EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
85
86int acpi_scan_add_handler(struct acpi_scan_handler *handler)
87{
88 if (!handler)
89 return -EINVAL;
90
91 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
92 return 0;
93}
94
95int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
96 const char *hotplug_profile_name)
97{
98 int error;
99
100 error = acpi_scan_add_handler(handler);
101 if (error)
102 return error;
103
104 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
105 return 0;
106}
107
108bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
109{
110 struct acpi_device_physical_node *pn;
111 bool offline = true;
112 char *envp[] = { "EVENT=offline", NULL };
113
114 /*
115 * acpi_container_offline() calls this for all of the container's
116 * children under the container's physical_node_lock lock.
117 */
118 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
119
120 list_for_each_entry(pn, &adev->physical_node_list, node)
121 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
122 if (uevent)
123 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
124
125 offline = false;
126 break;
127 }
128
129 mutex_unlock(&adev->physical_node_lock);
130 return offline;
131}
132
133static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
134 void **ret_p)
135{
136 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
137 struct acpi_device_physical_node *pn;
138 bool second_pass = (bool)data;
139 acpi_status status = AE_OK;
140
141 if (!device)
142 return AE_OK;
143
144 if (device->handler && !device->handler->hotplug.enabled) {
145 *ret_p = &device->dev;
146 return AE_SUPPORT;
147 }
148
149 mutex_lock(&device->physical_node_lock);
150
151 list_for_each_entry(pn, &device->physical_node_list, node) {
152 int ret;
153
154 if (second_pass) {
155 /* Skip devices offlined by the first pass. */
156 if (pn->put_online)
157 continue;
158 } else {
159 pn->put_online = false;
160 }
161 ret = device_offline(pn->dev);
162 if (ret >= 0) {
163 pn->put_online = !ret;
164 } else {
165 *ret_p = pn->dev;
166 if (second_pass) {
167 status = AE_ERROR;
168 break;
169 }
170 }
171 }
172
173 mutex_unlock(&device->physical_node_lock);
174
175 return status;
176}
177
178static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
179 void **ret_p)
180{
181 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
182 struct acpi_device_physical_node *pn;
183
184 if (!device)
185 return AE_OK;
186
187 mutex_lock(&device->physical_node_lock);
188
189 list_for_each_entry(pn, &device->physical_node_list, node)
190 if (pn->put_online) {
191 device_online(pn->dev);
192 pn->put_online = false;
193 }
194
195 mutex_unlock(&device->physical_node_lock);
196
197 return AE_OK;
198}
199
200static int acpi_scan_try_to_offline(struct acpi_device *device)
201{
202 acpi_handle handle = device->handle;
203 struct device *errdev = NULL;
204 acpi_status status;
205
206 /*
207 * Carry out two passes here and ignore errors in the first pass,
208 * because if the devices in question are memory blocks and
209 * CONFIG_MEMCG is set, one of the blocks may hold data structures
210 * that the other blocks depend on, but it is not known in advance which
211 * block holds them.
212 *
213 * If the first pass is successful, the second one isn't needed, though.
214 */
215 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
216 NULL, acpi_bus_offline, (void *)false,
217 (void **)&errdev);
218 if (status == AE_SUPPORT) {
219 dev_warn(errdev, "Offline disabled.\n");
220 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221 acpi_bus_online, NULL, NULL, NULL);
222 return -EPERM;
223 }
224 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
225 if (errdev) {
226 errdev = NULL;
227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 NULL, acpi_bus_offline, (void *)true,
229 (void **)&errdev);
230 if (!errdev)
231 acpi_bus_offline(handle, 0, (void *)true,
232 (void **)&errdev);
233
234 if (errdev) {
235 dev_warn(errdev, "Offline failed.\n");
236 acpi_bus_online(handle, 0, NULL, NULL);
237 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
238 ACPI_UINT32_MAX, acpi_bus_online,
239 NULL, NULL, NULL);
240 return -EBUSY;
241 }
242 }
243 return 0;
244}
245
246#define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0)
247#define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1)
248
249static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
250{
251 struct acpi_scan_handler *handler = adev->handler;
252 uintptr_t flags = (uintptr_t)p;
253
254 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
255
256 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
257 acpi_bus_get_status(adev);
258 /*
259 * Skip devices that are still there and take the enabled
260 * flag into account.
261 */
262 if (acpi_device_is_enabled(adev))
263 return 0;
264
265 /* Skip device that have not been enumerated. */
266 if (!acpi_device_enumerated(adev)) {
267 dev_dbg(&adev->dev, "Still not enumerated\n");
268 return 0;
269 }
270 }
271
272 adev->flags.match_driver = false;
273 if (handler) {
274 if (handler->detach)
275 handler->detach(adev);
276 } else {
277 device_release_driver(&adev->dev);
278 }
279 /*
280 * Most likely, the device is going away, so put it into D3cold before
281 * that.
282 */
283 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
284 adev->flags.initialized = false;
285
286 /* For eject this is deferred to acpi_bus_post_eject() */
287 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
288 adev->handler = NULL;
289 acpi_device_clear_enumerated(adev);
290 }
291 return 0;
292}
293
294static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
295{
296 struct acpi_scan_handler *handler = adev->handler;
297
298 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
299
300 if (handler) {
301 if (handler->post_eject)
302 handler->post_eject(adev);
303
304 adev->handler = NULL;
305 }
306
307 acpi_device_clear_enumerated(adev);
308
309 return 0;
310}
311
312static void acpi_scan_check_subtree(struct acpi_device *adev)
313{
314 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
315
316 acpi_scan_check_and_detach(adev, (void *)flags);
317}
318
319static int acpi_scan_hot_remove(struct acpi_device *device)
320{
321 acpi_handle handle = device->handle;
322 unsigned long long sta;
323 acpi_status status;
324 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
325
326 if (device->handler && device->handler->hotplug.demand_offline) {
327 if (!acpi_scan_is_offline(device, true))
328 return -EBUSY;
329 } else {
330 int error = acpi_scan_try_to_offline(device);
331 if (error)
332 return error;
333 }
334
335 acpi_handle_debug(handle, "Ejecting\n");
336
337 acpi_scan_check_and_detach(device, (void *)flags);
338
339 acpi_evaluate_lck(handle, 0);
340 /*
341 * TBD: _EJD support.
342 */
343 status = acpi_evaluate_ej0(handle);
344 if (status == AE_NOT_FOUND)
345 return -ENODEV;
346 else if (ACPI_FAILURE(status))
347 return -EIO;
348
349 /*
350 * Verify if eject was indeed successful. If not, log an error
351 * message. No need to call _OST since _EJ0 call was made OK.
352 */
353 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
354 if (ACPI_FAILURE(status)) {
355 acpi_handle_warn(handle,
356 "Status check after eject failed (0x%x)\n", status);
357 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
358 acpi_handle_warn(handle,
359 "Eject incomplete - status 0x%llx\n", sta);
360 } else {
361 acpi_bus_post_eject(device, NULL);
362 }
363
364 return 0;
365}
366
367static int acpi_scan_rescan_bus(struct acpi_device *adev)
368{
369 struct acpi_scan_handler *handler = adev->handler;
370 int ret;
371
372 if (handler && handler->hotplug.scan_dependent)
373 ret = handler->hotplug.scan_dependent(adev);
374 else
375 ret = acpi_bus_scan(adev->handle);
376
377 if (ret)
378 dev_info(&adev->dev, "Namespace scan failure\n");
379
380 return ret;
381}
382
383static int acpi_scan_device_check(struct acpi_device *adev)
384{
385 struct acpi_device *parent;
386
387 acpi_scan_check_subtree(adev);
388
389 if (!acpi_device_is_present(adev))
390 return 0;
391
392 /*
393 * This function is only called for device objects for which matching
394 * scan handlers exist. The only situation in which the scan handler
395 * is not attached to this device object yet is when the device has
396 * just appeared (either it wasn't present at all before or it was
397 * removed and then added again).
398 */
399 if (adev->handler) {
400 dev_dbg(&adev->dev, "Already enumerated\n");
401 return 0;
402 }
403
404 parent = acpi_dev_parent(adev);
405 if (!parent)
406 parent = adev;
407
408 return acpi_scan_rescan_bus(parent);
409}
410
411static int acpi_scan_bus_check(struct acpi_device *adev)
412{
413 acpi_scan_check_subtree(adev);
414
415 return acpi_scan_rescan_bus(adev);
416}
417
418static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
419{
420 switch (type) {
421 case ACPI_NOTIFY_BUS_CHECK:
422 return acpi_scan_bus_check(adev);
423 case ACPI_NOTIFY_DEVICE_CHECK:
424 return acpi_scan_device_check(adev);
425 case ACPI_NOTIFY_EJECT_REQUEST:
426 case ACPI_OST_EC_OSPM_EJECT:
427 if (adev->handler && !adev->handler->hotplug.enabled) {
428 dev_info(&adev->dev, "Eject disabled\n");
429 return -EPERM;
430 }
431 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
432 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
433 return acpi_scan_hot_remove(adev);
434 }
435 return -EINVAL;
436}
437
438void acpi_device_hotplug(struct acpi_device *adev, u32 src)
439{
440 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
441 int error = -ENODEV;
442
443 lock_device_hotplug();
444 mutex_lock(&acpi_scan_lock);
445
446 /*
447 * The device object's ACPI handle cannot become invalid as long as we
448 * are holding acpi_scan_lock, but it might have become invalid before
449 * that lock was acquired.
450 */
451 if (adev->handle == INVALID_ACPI_HANDLE)
452 goto err_out;
453
454 if (adev->flags.is_dock_station) {
455 error = dock_notify(adev, src);
456 } else if (adev->flags.hotplug_notify) {
457 error = acpi_generic_hotplug_event(adev, src);
458 } else {
459 acpi_hp_notify notify;
460
461 acpi_lock_hp_context();
462 notify = adev->hp ? adev->hp->notify : NULL;
463 acpi_unlock_hp_context();
464 /*
465 * There may be additional notify handlers for device objects
466 * without the .event() callback, so ignore them here.
467 */
468 if (notify)
469 error = notify(adev, src);
470 else
471 goto out;
472 }
473 switch (error) {
474 case 0:
475 ost_code = ACPI_OST_SC_SUCCESS;
476 break;
477 case -EPERM:
478 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
479 break;
480 case -EBUSY:
481 ost_code = ACPI_OST_SC_DEVICE_BUSY;
482 break;
483 default:
484 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
485 break;
486 }
487
488 err_out:
489 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
490
491 out:
492 acpi_put_acpi_dev(adev);
493 mutex_unlock(&acpi_scan_lock);
494 unlock_device_hotplug();
495}
496
497static void acpi_free_power_resources_lists(struct acpi_device *device)
498{
499 int i;
500
501 if (device->wakeup.flags.valid)
502 acpi_power_resources_list_free(&device->wakeup.resources);
503
504 if (!device->power.flags.power_resources)
505 return;
506
507 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
508 struct acpi_device_power_state *ps = &device->power.states[i];
509 acpi_power_resources_list_free(&ps->resources);
510 }
511}
512
513static void acpi_device_release(struct device *dev)
514{
515 struct acpi_device *acpi_dev = to_acpi_device(dev);
516
517 acpi_free_properties(acpi_dev);
518 acpi_free_pnp_ids(&acpi_dev->pnp);
519 acpi_free_power_resources_lists(acpi_dev);
520 kfree(acpi_dev);
521}
522
523static void acpi_device_del(struct acpi_device *device)
524{
525 struct acpi_device_bus_id *acpi_device_bus_id;
526
527 mutex_lock(&acpi_device_lock);
528
529 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
530 if (!strcmp(acpi_device_bus_id->bus_id,
531 acpi_device_hid(device))) {
532 ida_free(&acpi_device_bus_id->instance_ida,
533 device->pnp.instance_no);
534 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
535 list_del(&acpi_device_bus_id->node);
536 kfree_const(acpi_device_bus_id->bus_id);
537 kfree(acpi_device_bus_id);
538 }
539 break;
540 }
541
542 list_del(&device->wakeup_list);
543
544 mutex_unlock(&acpi_device_lock);
545
546 acpi_power_add_remove_device(device, false);
547 acpi_device_remove_files(device);
548 if (device->remove)
549 device->remove(device);
550
551 device_del(&device->dev);
552}
553
554static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
555
556static LIST_HEAD(acpi_device_del_list);
557static DEFINE_MUTEX(acpi_device_del_lock);
558
559static void acpi_device_del_work_fn(struct work_struct *work_not_used)
560{
561 for (;;) {
562 struct acpi_device *adev;
563
564 mutex_lock(&acpi_device_del_lock);
565
566 if (list_empty(&acpi_device_del_list)) {
567 mutex_unlock(&acpi_device_del_lock);
568 break;
569 }
570 adev = list_first_entry(&acpi_device_del_list,
571 struct acpi_device, del_list);
572 list_del(&adev->del_list);
573
574 mutex_unlock(&acpi_device_del_lock);
575
576 blocking_notifier_call_chain(&acpi_reconfig_chain,
577 ACPI_RECONFIG_DEVICE_REMOVE, adev);
578
579 acpi_device_del(adev);
580 /*
581 * Drop references to all power resources that might have been
582 * used by the device.
583 */
584 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
585 acpi_dev_put(adev);
586 }
587}
588
589/**
590 * acpi_scan_drop_device - Drop an ACPI device object.
591 * @handle: Handle of an ACPI namespace node, not used.
592 * @context: Address of the ACPI device object to drop.
593 *
594 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
595 * namespace node the device object pointed to by @context is attached to.
596 *
597 * The unregistration is carried out asynchronously to avoid running
598 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
599 * ensure the correct ordering (the device objects must be unregistered in the
600 * same order in which the corresponding namespace nodes are deleted).
601 */
602static void acpi_scan_drop_device(acpi_handle handle, void *context)
603{
604 static DECLARE_WORK(work, acpi_device_del_work_fn);
605 struct acpi_device *adev = context;
606
607 mutex_lock(&acpi_device_del_lock);
608
609 /*
610 * Use the ACPI hotplug workqueue which is ordered, so this work item
611 * won't run after any hotplug work items submitted subsequently. That
612 * prevents attempts to register device objects identical to those being
613 * deleted from happening concurrently (such attempts result from
614 * hotplug events handled via the ACPI hotplug workqueue). It also will
615 * run after all of the work items submitted previously, which helps
616 * those work items to ensure that they are not accessing stale device
617 * objects.
618 */
619 if (list_empty(&acpi_device_del_list))
620 acpi_queue_hotplug_work(&work);
621
622 list_add_tail(&adev->del_list, &acpi_device_del_list);
623 /* Make acpi_ns_validate_handle() return NULL for this handle. */
624 adev->handle = INVALID_ACPI_HANDLE;
625
626 mutex_unlock(&acpi_device_del_lock);
627}
628
629static struct acpi_device *handle_to_device(acpi_handle handle,
630 void (*callback)(void *))
631{
632 struct acpi_device *adev = NULL;
633 acpi_status status;
634
635 status = acpi_get_data_full(handle, acpi_scan_drop_device,
636 (void **)&adev, callback);
637 if (ACPI_FAILURE(status) || !adev) {
638 acpi_handle_debug(handle, "No context!\n");
639 return NULL;
640 }
641 return adev;
642}
643
644/**
645 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
646 * @handle: ACPI handle associated with the requested ACPI device object.
647 *
648 * Return a pointer to the ACPI device object associated with @handle, if
649 * present, or NULL otherwise.
650 */
651struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
652{
653 return handle_to_device(handle, NULL);
654}
655EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
656
657static void get_acpi_device(void *dev)
658{
659 acpi_dev_get(dev);
660}
661
662/**
663 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
664 * @handle: ACPI handle associated with the requested ACPI device object.
665 *
666 * Return a pointer to the ACPI device object associated with @handle and bump
667 * up that object's reference counter (under the ACPI Namespace lock), if
668 * present, or return NULL otherwise.
669 *
670 * The ACPI device object reference acquired by this function needs to be
671 * dropped via acpi_dev_put().
672 */
673struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
674{
675 return handle_to_device(handle, get_acpi_device);
676}
677EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
678
679static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
680{
681 struct acpi_device_bus_id *acpi_device_bus_id;
682
683 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
684 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
685 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
686 return acpi_device_bus_id;
687 }
688 return NULL;
689}
690
691static int acpi_device_set_name(struct acpi_device *device,
692 struct acpi_device_bus_id *acpi_device_bus_id)
693{
694 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
695 int result;
696
697 result = ida_alloc(instance_ida, GFP_KERNEL);
698 if (result < 0)
699 return result;
700
701 device->pnp.instance_no = result;
702 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
703 return 0;
704}
705
706int acpi_tie_acpi_dev(struct acpi_device *adev)
707{
708 acpi_handle handle = adev->handle;
709 acpi_status status;
710
711 if (!handle)
712 return 0;
713
714 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
715 if (ACPI_FAILURE(status)) {
716 acpi_handle_err(handle, "Unable to attach device data\n");
717 return -ENODEV;
718 }
719
720 return 0;
721}
722
723static void acpi_store_pld_crc(struct acpi_device *adev)
724{
725 struct acpi_pld_info *pld;
726 acpi_status status;
727
728 status = acpi_get_physical_device_location(adev->handle, &pld);
729 if (ACPI_FAILURE(status))
730 return;
731
732 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
733 ACPI_FREE(pld);
734}
735
736int acpi_device_add(struct acpi_device *device)
737{
738 struct acpi_device_bus_id *acpi_device_bus_id;
739 int result;
740
741 /*
742 * Linkage
743 * -------
744 * Link this device to its parent and siblings.
745 */
746 INIT_LIST_HEAD(&device->wakeup_list);
747 INIT_LIST_HEAD(&device->physical_node_list);
748 INIT_LIST_HEAD(&device->del_list);
749 mutex_init(&device->physical_node_lock);
750
751 mutex_lock(&acpi_device_lock);
752
753 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
754 if (acpi_device_bus_id) {
755 result = acpi_device_set_name(device, acpi_device_bus_id);
756 if (result)
757 goto err_unlock;
758 } else {
759 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
760 GFP_KERNEL);
761 if (!acpi_device_bus_id) {
762 result = -ENOMEM;
763 goto err_unlock;
764 }
765 acpi_device_bus_id->bus_id =
766 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
767 if (!acpi_device_bus_id->bus_id) {
768 kfree(acpi_device_bus_id);
769 result = -ENOMEM;
770 goto err_unlock;
771 }
772
773 ida_init(&acpi_device_bus_id->instance_ida);
774
775 result = acpi_device_set_name(device, acpi_device_bus_id);
776 if (result) {
777 kfree_const(acpi_device_bus_id->bus_id);
778 kfree(acpi_device_bus_id);
779 goto err_unlock;
780 }
781
782 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
783 }
784
785 if (device->wakeup.flags.valid)
786 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
787
788 acpi_store_pld_crc(device);
789
790 mutex_unlock(&acpi_device_lock);
791
792 result = device_add(&device->dev);
793 if (result) {
794 dev_err(&device->dev, "Error registering device\n");
795 goto err;
796 }
797
798 acpi_device_setup_files(device);
799
800 return 0;
801
802err:
803 mutex_lock(&acpi_device_lock);
804
805 list_del(&device->wakeup_list);
806
807err_unlock:
808 mutex_unlock(&acpi_device_lock);
809
810 acpi_detach_data(device->handle, acpi_scan_drop_device);
811
812 return result;
813}
814
815/* --------------------------------------------------------------------------
816 Device Enumeration
817 -------------------------------------------------------------------------- */
818static bool acpi_info_matches_ids(struct acpi_device_info *info,
819 const char * const ids[])
820{
821 struct acpi_pnp_device_id_list *cid_list = NULL;
822 int i, index;
823
824 if (!(info->valid & ACPI_VALID_HID))
825 return false;
826
827 index = match_string(ids, -1, info->hardware_id.string);
828 if (index >= 0)
829 return true;
830
831 if (info->valid & ACPI_VALID_CID)
832 cid_list = &info->compatible_id_list;
833
834 if (!cid_list)
835 return false;
836
837 for (i = 0; i < cid_list->count; i++) {
838 index = match_string(ids, -1, cid_list->ids[i].string);
839 if (index >= 0)
840 return true;
841 }
842
843 return false;
844}
845
846/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
847static const char * const acpi_ignore_dep_ids[] = {
848 "PNP0D80", /* Windows-compatible System Power Management Controller */
849 "INT33BD", /* Intel Baytrail Mailbox Device */
850 "LATT2021", /* Lattice FW Update Client Driver */
851 NULL
852};
853
854/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
855static const char * const acpi_honor_dep_ids[] = {
856 "INT3472", /* Camera sensor PMIC / clk and regulator info */
857 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
858 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
859 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
860 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
861 "RSCV0001", /* RISC-V PLIC */
862 "RSCV0002", /* RISC-V APLIC */
863 "PNP0C0F", /* PCI Link Device */
864 NULL
865};
866
867static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
868{
869 struct acpi_device *adev;
870
871 /*
872 * Fixed hardware devices do not appear in the namespace and do not
873 * have handles, but we fabricate acpi_devices for them, so we have
874 * to deal with them specially.
875 */
876 if (!handle)
877 return acpi_root;
878
879 do {
880 acpi_status status;
881
882 status = acpi_get_parent(handle, &handle);
883 if (ACPI_FAILURE(status)) {
884 if (status != AE_NULL_ENTRY)
885 return acpi_root;
886
887 return NULL;
888 }
889 adev = acpi_fetch_acpi_dev(handle);
890 } while (!adev);
891 return adev;
892}
893
894acpi_status
895acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
896{
897 acpi_status status;
898 acpi_handle tmp;
899 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
900 union acpi_object *obj;
901
902 status = acpi_get_handle(handle, "_EJD", &tmp);
903 if (ACPI_FAILURE(status))
904 return status;
905
906 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
907 if (ACPI_SUCCESS(status)) {
908 obj = buffer.pointer;
909 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
910 ejd);
911 kfree(buffer.pointer);
912 }
913 return status;
914}
915EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
916
917static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
918{
919 acpi_handle handle = dev->handle;
920 struct acpi_device_wakeup *wakeup = &dev->wakeup;
921 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
922 union acpi_object *package = NULL;
923 union acpi_object *element = NULL;
924 acpi_status status;
925 int err = -ENODATA;
926
927 INIT_LIST_HEAD(&wakeup->resources);
928
929 /* _PRW */
930 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
931 if (ACPI_FAILURE(status)) {
932 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
933 acpi_format_exception(status));
934 return err;
935 }
936
937 package = (union acpi_object *)buffer.pointer;
938
939 if (!package || package->package.count < 2)
940 goto out;
941
942 element = &(package->package.elements[0]);
943 if (!element)
944 goto out;
945
946 if (element->type == ACPI_TYPE_PACKAGE) {
947 if ((element->package.count < 2) ||
948 (element->package.elements[0].type !=
949 ACPI_TYPE_LOCAL_REFERENCE)
950 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
951 goto out;
952
953 wakeup->gpe_device =
954 element->package.elements[0].reference.handle;
955 wakeup->gpe_number =
956 (u32) element->package.elements[1].integer.value;
957 } else if (element->type == ACPI_TYPE_INTEGER) {
958 wakeup->gpe_device = NULL;
959 wakeup->gpe_number = element->integer.value;
960 } else {
961 goto out;
962 }
963
964 element = &(package->package.elements[1]);
965 if (element->type != ACPI_TYPE_INTEGER)
966 goto out;
967
968 wakeup->sleep_state = element->integer.value;
969
970 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
971 if (err)
972 goto out;
973
974 if (!list_empty(&wakeup->resources)) {
975 int sleep_state;
976
977 err = acpi_power_wakeup_list_init(&wakeup->resources,
978 &sleep_state);
979 if (err) {
980 acpi_handle_warn(handle, "Retrieving current states "
981 "of wakeup power resources failed\n");
982 acpi_power_resources_list_free(&wakeup->resources);
983 goto out;
984 }
985 if (sleep_state < wakeup->sleep_state) {
986 acpi_handle_warn(handle, "Overriding _PRW sleep state "
987 "(S%d) by S%d from power resources\n",
988 (int)wakeup->sleep_state, sleep_state);
989 wakeup->sleep_state = sleep_state;
990 }
991 }
992
993 out:
994 kfree(buffer.pointer);
995 return err;
996}
997
998/* Do not use a button for S5 wakeup */
999#define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
1000
1001static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1002{
1003 static const struct acpi_device_id button_device_ids[] = {
1004 {"PNP0C0C", 0}, /* Power button */
1005 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
1006 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
1007 {"", 0},
1008 };
1009 struct acpi_device_wakeup *wakeup = &device->wakeup;
1010 const struct acpi_device_id *match;
1011 acpi_status status;
1012
1013 wakeup->flags.notifier_present = 0;
1014
1015 /* Power button, Lid switch always enable wakeup */
1016 match = acpi_match_acpi_device(button_device_ids, device);
1017 if (match) {
1018 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
1019 wakeup->sleep_state == ACPI_STATE_S5)
1020 wakeup->sleep_state = ACPI_STATE_S4;
1021 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
1022 device_set_wakeup_capable(&device->dev, true);
1023 return true;
1024 }
1025
1026 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1027 wakeup->gpe_number);
1028 return ACPI_SUCCESS(status);
1029}
1030
1031static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1032{
1033 int err;
1034
1035 /* Presence of _PRW indicates wake capable */
1036 if (!acpi_has_method(device->handle, "_PRW"))
1037 return;
1038
1039 err = acpi_bus_extract_wakeup_device_power_package(device);
1040 if (err) {
1041 dev_err(&device->dev, "Unable to extract wakeup power resources");
1042 return;
1043 }
1044
1045 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1046 device->wakeup.prepare_count = 0;
1047 /*
1048 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1049 * system for the ACPI device with the _PRW object.
1050 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1051 * So it is necessary to call _DSW object first. Only when it is not
1052 * present will the _PSW object used.
1053 */
1054 err = acpi_device_sleep_wake(device, 0, 0, 0);
1055 if (err)
1056 pr_debug("error in _DSW or _PSW evaluation\n");
1057}
1058
1059static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1060{
1061 struct acpi_device_power_state *ps = &device->power.states[state];
1062 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1063 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1064 acpi_status status;
1065
1066 INIT_LIST_HEAD(&ps->resources);
1067
1068 /* Evaluate "_PRx" to get referenced power resources */
1069 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1070 if (ACPI_SUCCESS(status)) {
1071 union acpi_object *package = buffer.pointer;
1072
1073 if (buffer.length && package
1074 && package->type == ACPI_TYPE_PACKAGE
1075 && package->package.count)
1076 acpi_extract_power_resources(package, 0, &ps->resources);
1077
1078 ACPI_FREE(buffer.pointer);
1079 }
1080
1081 /* Evaluate "_PSx" to see if we can do explicit sets */
1082 pathname[2] = 'S';
1083 if (acpi_has_method(device->handle, pathname))
1084 ps->flags.explicit_set = 1;
1085
1086 /* State is valid if there are means to put the device into it. */
1087 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1088 ps->flags.valid = 1;
1089
1090 ps->power = -1; /* Unknown - driver assigned */
1091 ps->latency = -1; /* Unknown - driver assigned */
1092}
1093
1094static void acpi_bus_get_power_flags(struct acpi_device *device)
1095{
1096 unsigned long long dsc = ACPI_STATE_D0;
1097 u32 i;
1098
1099 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1100 if (!acpi_has_method(device->handle, "_PS0") &&
1101 !acpi_has_method(device->handle, "_PR0"))
1102 return;
1103
1104 device->flags.power_manageable = 1;
1105
1106 /*
1107 * Power Management Flags
1108 */
1109 if (acpi_has_method(device->handle, "_PSC"))
1110 device->power.flags.explicit_get = 1;
1111
1112 if (acpi_has_method(device->handle, "_IRC"))
1113 device->power.flags.inrush_current = 1;
1114
1115 if (acpi_has_method(device->handle, "_DSW"))
1116 device->power.flags.dsw_present = 1;
1117
1118 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1119 device->power.state_for_enumeration = dsc;
1120
1121 /*
1122 * Enumerate supported power management states
1123 */
1124 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1125 acpi_bus_init_power_state(device, i);
1126
1127 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1128
1129 /* Set the defaults for D0 and D3hot (always supported). */
1130 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1131 device->power.states[ACPI_STATE_D0].power = 100;
1132 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1133
1134 /*
1135 * Use power resources only if the D0 list of them is populated, because
1136 * some platforms may provide _PR3 only to indicate D3cold support and
1137 * in those cases the power resources list returned by it may be bogus.
1138 */
1139 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1140 device->power.flags.power_resources = 1;
1141 /*
1142 * D3cold is supported if the D3hot list of power resources is
1143 * not empty.
1144 */
1145 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1146 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1147 }
1148
1149 if (acpi_bus_init_power(device))
1150 device->flags.power_manageable = 0;
1151}
1152
1153static void acpi_bus_get_flags(struct acpi_device *device)
1154{
1155 /* Presence of _STA indicates 'dynamic_status' */
1156 if (acpi_has_method(device->handle, "_STA"))
1157 device->flags.dynamic_status = 1;
1158
1159 /* Presence of _RMV indicates 'removable' */
1160 if (acpi_has_method(device->handle, "_RMV"))
1161 device->flags.removable = 1;
1162
1163 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1164 if (acpi_has_method(device->handle, "_EJD") ||
1165 acpi_has_method(device->handle, "_EJ0"))
1166 device->flags.ejectable = 1;
1167}
1168
1169static void acpi_device_get_busid(struct acpi_device *device)
1170{
1171 char bus_id[5] = { '?', 0 };
1172 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1173 int i = 0;
1174
1175 /*
1176 * Bus ID
1177 * ------
1178 * The device's Bus ID is simply the object name.
1179 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1180 */
1181 if (!acpi_dev_parent(device)) {
1182 strscpy(device->pnp.bus_id, "ACPI");
1183 return;
1184 }
1185
1186 switch (device->device_type) {
1187 case ACPI_BUS_TYPE_POWER_BUTTON:
1188 strscpy(device->pnp.bus_id, "PWRF");
1189 break;
1190 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1191 strscpy(device->pnp.bus_id, "SLPF");
1192 break;
1193 case ACPI_BUS_TYPE_ECDT_EC:
1194 strscpy(device->pnp.bus_id, "ECDT");
1195 break;
1196 default:
1197 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1198 /* Clean up trailing underscores (if any) */
1199 for (i = 3; i > 1; i--) {
1200 if (bus_id[i] == '_')
1201 bus_id[i] = '\0';
1202 else
1203 break;
1204 }
1205 strscpy(device->pnp.bus_id, bus_id);
1206 break;
1207 }
1208}
1209
1210/*
1211 * acpi_ata_match - see if an acpi object is an ATA device
1212 *
1213 * If an acpi object has one of the ACPI ATA methods defined,
1214 * then we can safely call it an ATA device.
1215 */
1216bool acpi_ata_match(acpi_handle handle)
1217{
1218 return acpi_has_method(handle, "_GTF") ||
1219 acpi_has_method(handle, "_GTM") ||
1220 acpi_has_method(handle, "_STM") ||
1221 acpi_has_method(handle, "_SDD");
1222}
1223
1224/*
1225 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1226 *
1227 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1228 * then we can safely call it an ejectable drive bay
1229 */
1230bool acpi_bay_match(acpi_handle handle)
1231{
1232 acpi_handle phandle;
1233
1234 if (!acpi_has_method(handle, "_EJ0"))
1235 return false;
1236 if (acpi_ata_match(handle))
1237 return true;
1238 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1239 return false;
1240
1241 return acpi_ata_match(phandle);
1242}
1243
1244bool acpi_device_is_battery(struct acpi_device *adev)
1245{
1246 struct acpi_hardware_id *hwid;
1247
1248 list_for_each_entry(hwid, &adev->pnp.ids, list)
1249 if (!strcmp("PNP0C0A", hwid->id))
1250 return true;
1251
1252 return false;
1253}
1254
1255static bool is_ejectable_bay(struct acpi_device *adev)
1256{
1257 acpi_handle handle = adev->handle;
1258
1259 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1260 return true;
1261
1262 return acpi_bay_match(handle);
1263}
1264
1265/*
1266 * acpi_dock_match - see if an acpi object has a _DCK method
1267 */
1268bool acpi_dock_match(acpi_handle handle)
1269{
1270 return acpi_has_method(handle, "_DCK");
1271}
1272
1273static acpi_status
1274acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1275 void **return_value)
1276{
1277 long *cap = context;
1278
1279 if (acpi_has_method(handle, "_BCM") &&
1280 acpi_has_method(handle, "_BCL")) {
1281 acpi_handle_debug(handle, "Found generic backlight support\n");
1282 *cap |= ACPI_VIDEO_BACKLIGHT;
1283 /* We have backlight support, no need to scan further */
1284 return AE_CTRL_TERMINATE;
1285 }
1286 return 0;
1287}
1288
1289/* Returns true if the ACPI object is a video device which can be
1290 * handled by video.ko.
1291 * The device will get a Linux specific CID added in scan.c to
1292 * identify the device as an ACPI graphics device
1293 * Be aware that the graphics device may not be physically present
1294 * Use acpi_video_get_capabilities() to detect general ACPI video
1295 * capabilities of present cards
1296 */
1297long acpi_is_video_device(acpi_handle handle)
1298{
1299 long video_caps = 0;
1300
1301 /* Is this device able to support video switching ? */
1302 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1303 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1304
1305 /* Is this device able to retrieve a video ROM ? */
1306 if (acpi_has_method(handle, "_ROM"))
1307 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1308
1309 /* Is this device able to configure which video head to be POSTed ? */
1310 if (acpi_has_method(handle, "_VPO") &&
1311 acpi_has_method(handle, "_GPD") &&
1312 acpi_has_method(handle, "_SPD"))
1313 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1314
1315 /* Only check for backlight functionality if one of the above hit. */
1316 if (video_caps)
1317 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1318 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1319 &video_caps, NULL);
1320
1321 return video_caps;
1322}
1323EXPORT_SYMBOL(acpi_is_video_device);
1324
1325const char *acpi_device_hid(struct acpi_device *device)
1326{
1327 struct acpi_hardware_id *hid;
1328
1329 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1330 if (!hid)
1331 return dummy_hid;
1332
1333 return hid->id;
1334}
1335EXPORT_SYMBOL(acpi_device_hid);
1336
1337static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1338{
1339 struct acpi_hardware_id *id;
1340
1341 id = kmalloc(sizeof(*id), GFP_KERNEL);
1342 if (!id)
1343 return;
1344
1345 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1346 if (!id->id) {
1347 kfree(id);
1348 return;
1349 }
1350
1351 list_add_tail(&id->list, &pnp->ids);
1352 pnp->type.hardware_id = 1;
1353}
1354
1355/*
1356 * Old IBM workstations have a DSDT bug wherein the SMBus object
1357 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1358 * prefix. Work around this.
1359 */
1360static bool acpi_ibm_smbus_match(acpi_handle handle)
1361{
1362 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1363 struct acpi_buffer path = { sizeof(node_name), node_name };
1364
1365 if (!dmi_name_in_vendors("IBM"))
1366 return false;
1367
1368 /* Look for SMBS object */
1369 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1370 strcmp("SMBS", path.pointer))
1371 return false;
1372
1373 /* Does it have the necessary (but misnamed) methods? */
1374 if (acpi_has_method(handle, "SBI") &&
1375 acpi_has_method(handle, "SBR") &&
1376 acpi_has_method(handle, "SBW"))
1377 return true;
1378
1379 return false;
1380}
1381
1382static bool acpi_object_is_system_bus(acpi_handle handle)
1383{
1384 acpi_handle tmp;
1385
1386 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1387 tmp == handle)
1388 return true;
1389 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1390 tmp == handle)
1391 return true;
1392
1393 return false;
1394}
1395
1396static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1397 int device_type)
1398{
1399 struct acpi_device_info *info = NULL;
1400 struct acpi_pnp_device_id_list *cid_list;
1401 int i;
1402
1403 switch (device_type) {
1404 case ACPI_BUS_TYPE_DEVICE:
1405 if (handle == ACPI_ROOT_OBJECT) {
1406 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1407 break;
1408 }
1409
1410 acpi_get_object_info(handle, &info);
1411 if (!info) {
1412 pr_err("%s: Error reading device info\n", __func__);
1413 return;
1414 }
1415
1416 if (info->valid & ACPI_VALID_HID) {
1417 acpi_add_id(pnp, info->hardware_id.string);
1418 pnp->type.platform_id = 1;
1419 }
1420 if (info->valid & ACPI_VALID_CID) {
1421 cid_list = &info->compatible_id_list;
1422 for (i = 0; i < cid_list->count; i++)
1423 acpi_add_id(pnp, cid_list->ids[i].string);
1424 }
1425 if (info->valid & ACPI_VALID_ADR) {
1426 pnp->bus_address = info->address;
1427 pnp->type.bus_address = 1;
1428 }
1429 if (info->valid & ACPI_VALID_UID)
1430 pnp->unique_id = kstrdup(info->unique_id.string,
1431 GFP_KERNEL);
1432 if (info->valid & ACPI_VALID_CLS)
1433 acpi_add_id(pnp, info->class_code.string);
1434
1435 kfree(info);
1436
1437 /*
1438 * Some devices don't reliably have _HIDs & _CIDs, so add
1439 * synthetic HIDs to make sure drivers can find them.
1440 */
1441 if (acpi_is_video_device(handle)) {
1442 acpi_add_id(pnp, ACPI_VIDEO_HID);
1443 pnp->type.backlight = 1;
1444 break;
1445 }
1446 if (acpi_bay_match(handle))
1447 acpi_add_id(pnp, ACPI_BAY_HID);
1448 else if (acpi_dock_match(handle))
1449 acpi_add_id(pnp, ACPI_DOCK_HID);
1450 else if (acpi_ibm_smbus_match(handle))
1451 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1452 else if (list_empty(&pnp->ids) &&
1453 acpi_object_is_system_bus(handle)) {
1454 /* \_SB, \_TZ, LNXSYBUS */
1455 acpi_add_id(pnp, ACPI_BUS_HID);
1456 strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1457 strscpy(pnp->device_class, ACPI_BUS_CLASS);
1458 }
1459
1460 break;
1461 case ACPI_BUS_TYPE_POWER:
1462 acpi_add_id(pnp, ACPI_POWER_HID);
1463 break;
1464 case ACPI_BUS_TYPE_PROCESSOR:
1465 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1466 break;
1467 case ACPI_BUS_TYPE_THERMAL:
1468 acpi_add_id(pnp, ACPI_THERMAL_HID);
1469 break;
1470 case ACPI_BUS_TYPE_POWER_BUTTON:
1471 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1472 break;
1473 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1474 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1475 break;
1476 case ACPI_BUS_TYPE_ECDT_EC:
1477 acpi_add_id(pnp, ACPI_ECDT_HID);
1478 break;
1479 }
1480}
1481
1482void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1483{
1484 struct acpi_hardware_id *id, *tmp;
1485
1486 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1487 kfree_const(id->id);
1488 kfree(id);
1489 }
1490 kfree(pnp->unique_id);
1491}
1492
1493/**
1494 * acpi_dma_supported - Check DMA support for the specified device.
1495 * @adev: The pointer to acpi device
1496 *
1497 * Return false if DMA is not supported. Otherwise, return true
1498 */
1499bool acpi_dma_supported(const struct acpi_device *adev)
1500{
1501 if (!adev)
1502 return false;
1503
1504 if (adev->flags.cca_seen)
1505 return true;
1506
1507 /*
1508 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1509 * DMA on "Intel platforms". Presumably that includes all x86 and
1510 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1511 */
1512 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1513 return true;
1514
1515 return false;
1516}
1517
1518/**
1519 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1520 * @adev: The pointer to acpi device
1521 *
1522 * Return enum dev_dma_attr.
1523 */
1524enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1525{
1526 if (!acpi_dma_supported(adev))
1527 return DEV_DMA_NOT_SUPPORTED;
1528
1529 if (adev->flags.coherent_dma)
1530 return DEV_DMA_COHERENT;
1531 else
1532 return DEV_DMA_NON_COHERENT;
1533}
1534
1535/**
1536 * acpi_dma_get_range() - Get device DMA parameters.
1537 *
1538 * @dev: device to configure
1539 * @map: pointer to DMA ranges result
1540 *
1541 * Evaluate DMA regions and return pointer to DMA regions on
1542 * parsing success; it does not update the passed in values on failure.
1543 *
1544 * Return 0 on success, < 0 on failure.
1545 */
1546int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1547{
1548 struct acpi_device *adev;
1549 LIST_HEAD(list);
1550 struct resource_entry *rentry;
1551 int ret;
1552 struct device *dma_dev = dev;
1553 struct bus_dma_region *r;
1554
1555 /*
1556 * Walk the device tree chasing an ACPI companion with a _DMA
1557 * object while we go. Stop if we find a device with an ACPI
1558 * companion containing a _DMA method.
1559 */
1560 do {
1561 adev = ACPI_COMPANION(dma_dev);
1562 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1563 break;
1564
1565 dma_dev = dma_dev->parent;
1566 } while (dma_dev);
1567
1568 if (!dma_dev)
1569 return -ENODEV;
1570
1571 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1572 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1573 return -EINVAL;
1574 }
1575
1576 ret = acpi_dev_get_dma_resources(adev, &list);
1577 if (ret > 0) {
1578 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1579 if (!r) {
1580 ret = -ENOMEM;
1581 goto out;
1582 }
1583
1584 *map = r;
1585
1586 list_for_each_entry(rentry, &list, node) {
1587 if (rentry->res->start >= rentry->res->end) {
1588 kfree(*map);
1589 *map = NULL;
1590 ret = -EINVAL;
1591 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1592 goto out;
1593 }
1594
1595 r->cpu_start = rentry->res->start;
1596 r->dma_start = rentry->res->start - rentry->offset;
1597 r->size = resource_size(rentry->res);
1598 r++;
1599 }
1600 }
1601 out:
1602 acpi_dev_free_resource_list(&list);
1603
1604 return ret >= 0 ? 0 : ret;
1605}
1606
1607#ifdef CONFIG_IOMMU_API
1608int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1609 struct fwnode_handle *fwnode)
1610{
1611 int ret;
1612
1613 ret = iommu_fwspec_init(dev, fwnode);
1614 if (ret)
1615 return ret;
1616
1617 return iommu_fwspec_add_ids(dev, &id, 1);
1618}
1619
1620static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1621{
1622 int err;
1623
1624 /* Serialise to make dev->iommu stable under our potential fwspec */
1625 mutex_lock(&iommu_probe_device_lock);
1626 /* If we already translated the fwspec there is nothing left to do */
1627 if (dev_iommu_fwspec_get(dev)) {
1628 mutex_unlock(&iommu_probe_device_lock);
1629 return 0;
1630 }
1631
1632 err = iort_iommu_configure_id(dev, id_in);
1633 if (err && err != -EPROBE_DEFER)
1634 err = viot_iommu_configure(dev);
1635 mutex_unlock(&iommu_probe_device_lock);
1636
1637 /*
1638 * If we have reason to believe the IOMMU driver missed the initial
1639 * iommu_probe_device() call for dev, replay it to get things in order.
1640 */
1641 if (!err && dev->bus)
1642 err = iommu_probe_device(dev);
1643
1644 return err;
1645}
1646
1647#else /* !CONFIG_IOMMU_API */
1648
1649int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1650 struct fwnode_handle *fwnode)
1651{
1652 return -ENODEV;
1653}
1654
1655static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1656{
1657 return -ENODEV;
1658}
1659
1660#endif /* !CONFIG_IOMMU_API */
1661
1662/**
1663 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1664 * @dev: The pointer to the device
1665 * @attr: device dma attributes
1666 * @input_id: input device id const value pointer
1667 */
1668int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1669 const u32 *input_id)
1670{
1671 int ret;
1672
1673 if (attr == DEV_DMA_NOT_SUPPORTED) {
1674 set_dma_ops(dev, &dma_dummy_ops);
1675 return 0;
1676 }
1677
1678 acpi_arch_dma_setup(dev);
1679
1680 /* Ignore all other errors apart from EPROBE_DEFER */
1681 ret = acpi_iommu_configure_id(dev, input_id);
1682 if (ret == -EPROBE_DEFER)
1683 return -EPROBE_DEFER;
1684 if (ret)
1685 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1686
1687 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1688
1689 return 0;
1690}
1691EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1692
1693static void acpi_init_coherency(struct acpi_device *adev)
1694{
1695 unsigned long long cca = 0;
1696 acpi_status status;
1697 struct acpi_device *parent = acpi_dev_parent(adev);
1698
1699 if (parent && parent->flags.cca_seen) {
1700 /*
1701 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1702 * already saw one.
1703 */
1704 adev->flags.cca_seen = 1;
1705 cca = parent->flags.coherent_dma;
1706 } else {
1707 status = acpi_evaluate_integer(adev->handle, "_CCA",
1708 NULL, &cca);
1709 if (ACPI_SUCCESS(status))
1710 adev->flags.cca_seen = 1;
1711 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1712 /*
1713 * If architecture does not specify that _CCA is
1714 * required for DMA-able devices (e.g. x86),
1715 * we default to _CCA=1.
1716 */
1717 cca = 1;
1718 else
1719 acpi_handle_debug(adev->handle,
1720 "ACPI device is missing _CCA.\n");
1721 }
1722
1723 adev->flags.coherent_dma = cca;
1724}
1725
1726static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1727{
1728 bool *is_serial_bus_slave_p = data;
1729
1730 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1731 return 1;
1732
1733 *is_serial_bus_slave_p = true;
1734
1735 /* no need to do more checking */
1736 return -1;
1737}
1738
1739static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1740{
1741 struct acpi_device *parent = acpi_dev_parent(device);
1742 static const struct acpi_device_id indirect_io_hosts[] = {
1743 {"HISI0191", 0},
1744 {}
1745 };
1746
1747 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1748}
1749
1750static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1751{
1752 struct list_head resource_list;
1753 bool is_serial_bus_slave = false;
1754 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1755 /*
1756 * These devices have multiple SerialBus resources and a client
1757 * device must be instantiated for each of them, each with
1758 * its own device id.
1759 * Normally we only instantiate one client device for the first
1760 * resource, using the ACPI HID as id. These special cases are handled
1761 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1762 * knows which client device id to use for each resource.
1763 */
1764 {"BSG1160", },
1765 {"BSG2150", },
1766 {"CSC3551", },
1767 {"CSC3554", },
1768 {"CSC3556", },
1769 {"CSC3557", },
1770 {"INT33FE", },
1771 {"INT3515", },
1772 /* Non-conforming _HID for Cirrus Logic already released */
1773 {"CLSA0100", },
1774 {"CLSA0101", },
1775 /*
1776 * Some ACPI devs contain SerialBus resources even though they are not
1777 * attached to a serial bus at all.
1778 */
1779 {ACPI_VIDEO_HID, },
1780 {"MSHW0028", },
1781 /*
1782 * HIDs of device with an UartSerialBusV2 resource for which userspace
1783 * expects a regular tty cdev to be created (instead of the in kernel
1784 * serdev) and which have a kernel driver which expects a platform_dev
1785 * such as the rfkill-gpio driver.
1786 */
1787 {"BCM4752", },
1788 {"LNV4752", },
1789 {}
1790 };
1791
1792 if (acpi_is_indirect_io_slave(device))
1793 return true;
1794
1795 /* Macs use device properties in lieu of _CRS resources */
1796 if (x86_apple_machine &&
1797 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1798 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1799 fwnode_property_present(&device->fwnode, "baud")))
1800 return true;
1801
1802 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1803 return false;
1804
1805 INIT_LIST_HEAD(&resource_list);
1806 acpi_dev_get_resources(device, &resource_list,
1807 acpi_check_serial_bus_slave,
1808 &is_serial_bus_slave);
1809 acpi_dev_free_resource_list(&resource_list);
1810
1811 return is_serial_bus_slave;
1812}
1813
1814void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1815 int type, void (*release)(struct device *))
1816{
1817 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1818
1819 INIT_LIST_HEAD(&device->pnp.ids);
1820 device->device_type = type;
1821 device->handle = handle;
1822 device->dev.parent = parent ? &parent->dev : NULL;
1823 device->dev.release = release;
1824 device->dev.bus = &acpi_bus_type;
1825 device->dev.groups = acpi_groups;
1826 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1827 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1828 acpi_device_get_busid(device);
1829 acpi_set_pnp_ids(handle, &device->pnp, type);
1830 acpi_init_properties(device);
1831 acpi_bus_get_flags(device);
1832 device->flags.match_driver = false;
1833 device->flags.initialized = true;
1834 device->flags.enumeration_by_parent =
1835 acpi_device_enumeration_by_parent(device);
1836 acpi_device_clear_enumerated(device);
1837 device_initialize(&device->dev);
1838 dev_set_uevent_suppress(&device->dev, true);
1839 acpi_init_coherency(device);
1840}
1841
1842static void acpi_scan_dep_init(struct acpi_device *adev)
1843{
1844 struct acpi_dep_data *dep;
1845
1846 list_for_each_entry(dep, &acpi_dep_list, node) {
1847 if (dep->consumer == adev->handle) {
1848 if (dep->honor_dep)
1849 adev->flags.honor_deps = 1;
1850
1851 if (!dep->met)
1852 adev->dep_unmet++;
1853 }
1854 }
1855}
1856
1857void acpi_device_add_finalize(struct acpi_device *device)
1858{
1859 dev_set_uevent_suppress(&device->dev, false);
1860 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1861}
1862
1863static void acpi_scan_init_status(struct acpi_device *adev)
1864{
1865 if (acpi_bus_get_status(adev))
1866 acpi_set_device_status(adev, 0);
1867}
1868
1869static int acpi_add_single_object(struct acpi_device **child,
1870 acpi_handle handle, int type, bool dep_init)
1871{
1872 struct acpi_device *device;
1873 bool release_dep_lock = false;
1874 int result;
1875
1876 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1877 if (!device)
1878 return -ENOMEM;
1879
1880 acpi_init_device_object(device, handle, type, acpi_device_release);
1881 /*
1882 * Getting the status is delayed till here so that we can call
1883 * acpi_bus_get_status() and use its quirk handling. Note that
1884 * this must be done before the get power-/wakeup_dev-flags calls.
1885 */
1886 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1887 if (dep_init) {
1888 mutex_lock(&acpi_dep_list_lock);
1889 /*
1890 * Hold the lock until the acpi_tie_acpi_dev() call
1891 * below to prevent concurrent acpi_scan_clear_dep()
1892 * from deleting a dependency list entry without
1893 * updating dep_unmet for the device.
1894 */
1895 release_dep_lock = true;
1896 acpi_scan_dep_init(device);
1897 }
1898 acpi_scan_init_status(device);
1899 }
1900
1901 acpi_bus_get_power_flags(device);
1902 acpi_bus_get_wakeup_device_flags(device);
1903
1904 result = acpi_tie_acpi_dev(device);
1905
1906 if (release_dep_lock)
1907 mutex_unlock(&acpi_dep_list_lock);
1908
1909 if (!result)
1910 result = acpi_device_add(device);
1911
1912 if (result) {
1913 acpi_device_release(&device->dev);
1914 return result;
1915 }
1916
1917 acpi_power_add_remove_device(device, true);
1918 acpi_device_add_finalize(device);
1919
1920 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1921 dev_name(&device->dev), device->dev.parent ?
1922 dev_name(device->dev.parent) : "(null)");
1923
1924 *child = device;
1925 return 0;
1926}
1927
1928static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1929 void *context)
1930{
1931 struct resource *res = context;
1932
1933 if (acpi_dev_resource_memory(ares, res))
1934 return AE_CTRL_TERMINATE;
1935
1936 return AE_OK;
1937}
1938
1939static bool acpi_device_should_be_hidden(acpi_handle handle)
1940{
1941 acpi_status status;
1942 struct resource res;
1943
1944 /* Check if it should ignore the UART device */
1945 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1946 return false;
1947
1948 /*
1949 * The UART device described in SPCR table is assumed to have only one
1950 * memory resource present. So we only look for the first one here.
1951 */
1952 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1953 acpi_get_resource_memory, &res);
1954 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1955 return false;
1956
1957 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1958 &res.start);
1959
1960 return true;
1961}
1962
1963bool acpi_device_is_present(const struct acpi_device *adev)
1964{
1965 return adev->status.present || adev->status.functional;
1966}
1967
1968bool acpi_device_is_enabled(const struct acpi_device *adev)
1969{
1970 return adev->status.enabled;
1971}
1972
1973static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1974 const char *idstr,
1975 const struct acpi_device_id **matchid)
1976{
1977 const struct acpi_device_id *devid;
1978
1979 if (handler->match)
1980 return handler->match(idstr, matchid);
1981
1982 for (devid = handler->ids; devid->id[0]; devid++)
1983 if (!strcmp((char *)devid->id, idstr)) {
1984 if (matchid)
1985 *matchid = devid;
1986
1987 return true;
1988 }
1989
1990 return false;
1991}
1992
1993static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1994 const struct acpi_device_id **matchid)
1995{
1996 struct acpi_scan_handler *handler;
1997
1998 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1999 if (acpi_scan_handler_matching(handler, idstr, matchid))
2000 return handler;
2001
2002 return NULL;
2003}
2004
2005void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2006{
2007 if (!!hotplug->enabled == !!val)
2008 return;
2009
2010 mutex_lock(&acpi_scan_lock);
2011
2012 hotplug->enabled = val;
2013
2014 mutex_unlock(&acpi_scan_lock);
2015}
2016
2017int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices)
2018{
2019 u32 count;
2020 int i;
2021
2022 for (count = 0, i = 0; i < dep_devices->count; i++) {
2023 struct acpi_device_info *info;
2024 struct acpi_dep_data *dep;
2025 bool skip, honor_dep;
2026 acpi_status status;
2027
2028 status = acpi_get_object_info(dep_devices->handles[i], &info);
2029 if (ACPI_FAILURE(status)) {
2030 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2031 continue;
2032 }
2033
2034 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2035 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2036 kfree(info);
2037
2038 if (skip)
2039 continue;
2040
2041 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2042 if (!dep)
2043 continue;
2044
2045 count++;
2046
2047 dep->supplier = dep_devices->handles[i];
2048 dep->consumer = handle;
2049 dep->honor_dep = honor_dep;
2050
2051 mutex_lock(&acpi_dep_list_lock);
2052 list_add_tail(&dep->node, &acpi_dep_list);
2053 mutex_unlock(&acpi_dep_list_lock);
2054 }
2055
2056 acpi_handle_list_free(dep_devices);
2057 return count;
2058}
2059
2060static void acpi_scan_init_hotplug(struct acpi_device *adev)
2061{
2062 struct acpi_hardware_id *hwid;
2063
2064 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2065 acpi_dock_add(adev);
2066 return;
2067 }
2068 list_for_each_entry(hwid, &adev->pnp.ids, list) {
2069 struct acpi_scan_handler *handler;
2070
2071 handler = acpi_scan_match_handler(hwid->id, NULL);
2072 if (handler) {
2073 adev->flags.hotplug_notify = true;
2074 break;
2075 }
2076 }
2077}
2078
2079u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; }
2080
2081static u32 acpi_scan_check_dep(acpi_handle handle)
2082{
2083 struct acpi_handle_list dep_devices;
2084 u32 count = 0;
2085
2086 /*
2087 * Some architectures like RISC-V need to add dependencies for
2088 * all devices which use GSI to the interrupt controller so that
2089 * interrupt controller is probed before any of those devices.
2090 * Instead of mandating _DEP on all the devices, detect the
2091 * dependency and add automatically.
2092 */
2093 count += arch_acpi_add_auto_dep(handle);
2094
2095 /*
2096 * Check for _HID here to avoid deferring the enumeration of:
2097 * 1. PCI devices.
2098 * 2. ACPI nodes describing USB ports.
2099 * Still, checking for _HID catches more then just these cases ...
2100 */
2101 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2102 return count;
2103
2104 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2105 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2106 return count;
2107 }
2108
2109 count += acpi_scan_add_dep(handle, &dep_devices);
2110 return count;
2111}
2112
2113static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2114{
2115 acpi_mipi_check_crs_csi2(handle);
2116 return AE_OK;
2117}
2118
2119static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2120 struct acpi_device **adev_p)
2121{
2122 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2123 acpi_object_type acpi_type;
2124 int type;
2125
2126 if (device)
2127 goto out;
2128
2129 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2130 return AE_OK;
2131
2132 switch (acpi_type) {
2133 case ACPI_TYPE_DEVICE:
2134 if (acpi_device_should_be_hidden(handle))
2135 return AE_OK;
2136
2137 if (first_pass) {
2138 acpi_mipi_check_crs_csi2(handle);
2139
2140 /* Bail out if there are dependencies. */
2141 if (acpi_scan_check_dep(handle) > 0) {
2142 /*
2143 * The entire CSI-2 connection graph needs to be
2144 * extracted before any drivers or scan handlers
2145 * are bound to struct device objects, so scan
2146 * _CRS CSI-2 resource descriptors for all
2147 * devices below the current handle.
2148 */
2149 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2150 ACPI_UINT32_MAX,
2151 acpi_scan_check_crs_csi2_cb,
2152 NULL, NULL, NULL);
2153 return AE_CTRL_DEPTH;
2154 }
2155 }
2156
2157 fallthrough;
2158 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2159 type = ACPI_BUS_TYPE_DEVICE;
2160 break;
2161
2162 case ACPI_TYPE_PROCESSOR:
2163 type = ACPI_BUS_TYPE_PROCESSOR;
2164 break;
2165
2166 case ACPI_TYPE_THERMAL:
2167 type = ACPI_BUS_TYPE_THERMAL;
2168 break;
2169
2170 case ACPI_TYPE_POWER:
2171 acpi_add_power_resource(handle);
2172 fallthrough;
2173 default:
2174 return AE_OK;
2175 }
2176
2177 /*
2178 * If first_pass is true at this point, the device has no dependencies,
2179 * or the creation of the device object would have been postponed above.
2180 */
2181 acpi_add_single_object(&device, handle, type, !first_pass);
2182 if (!device)
2183 return AE_CTRL_DEPTH;
2184
2185 acpi_scan_init_hotplug(device);
2186
2187out:
2188 if (!*adev_p)
2189 *adev_p = device;
2190
2191 return AE_OK;
2192}
2193
2194static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2195 void *not_used, void **ret_p)
2196{
2197 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2198}
2199
2200static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2201 void *not_used, void **ret_p)
2202{
2203 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2204}
2205
2206static void acpi_default_enumeration(struct acpi_device *device)
2207{
2208 /*
2209 * Do not enumerate devices with enumeration_by_parent flag set as
2210 * they will be enumerated by their respective parents.
2211 */
2212 if (!device->flags.enumeration_by_parent) {
2213 acpi_create_platform_device(device, NULL);
2214 acpi_device_set_enumerated(device);
2215 } else {
2216 blocking_notifier_call_chain(&acpi_reconfig_chain,
2217 ACPI_RECONFIG_DEVICE_ADD, device);
2218 }
2219}
2220
2221static const struct acpi_device_id generic_device_ids[] = {
2222 {ACPI_DT_NAMESPACE_HID, },
2223 {"", },
2224};
2225
2226static int acpi_generic_device_attach(struct acpi_device *adev,
2227 const struct acpi_device_id *not_used)
2228{
2229 /*
2230 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2231 * below can be unconditional.
2232 */
2233 if (adev->data.of_compatible)
2234 acpi_default_enumeration(adev);
2235
2236 return 1;
2237}
2238
2239static struct acpi_scan_handler generic_device_handler = {
2240 .ids = generic_device_ids,
2241 .attach = acpi_generic_device_attach,
2242};
2243
2244static int acpi_scan_attach_handler(struct acpi_device *device)
2245{
2246 struct acpi_hardware_id *hwid;
2247 int ret = 0;
2248
2249 list_for_each_entry(hwid, &device->pnp.ids, list) {
2250 const struct acpi_device_id *devid;
2251 struct acpi_scan_handler *handler;
2252
2253 handler = acpi_scan_match_handler(hwid->id, &devid);
2254 if (handler) {
2255 if (!handler->attach) {
2256 device->pnp.type.platform_id = 0;
2257 continue;
2258 }
2259 device->handler = handler;
2260 ret = handler->attach(device, devid);
2261 if (ret > 0)
2262 break;
2263
2264 device->handler = NULL;
2265 if (ret < 0)
2266 break;
2267 }
2268 }
2269
2270 return ret;
2271}
2272
2273static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2274{
2275 bool skip = !first_pass && device->flags.visited;
2276 acpi_handle ejd;
2277 int ret;
2278
2279 if (skip)
2280 goto ok;
2281
2282 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2283 register_dock_dependent_device(device, ejd);
2284
2285 acpi_bus_get_status(device);
2286 /* Skip devices that are not ready for enumeration (e.g. not present) */
2287 if (!acpi_dev_ready_for_enumeration(device)) {
2288 device->flags.initialized = false;
2289 acpi_device_clear_enumerated(device);
2290 device->flags.power_manageable = 0;
2291 return 0;
2292 }
2293 if (device->handler)
2294 goto ok;
2295
2296 acpi_ec_register_opregions(device);
2297
2298 if (!device->flags.initialized) {
2299 device->flags.power_manageable =
2300 device->power.states[ACPI_STATE_D0].flags.valid;
2301 if (acpi_bus_init_power(device))
2302 device->flags.power_manageable = 0;
2303
2304 device->flags.initialized = true;
2305 } else if (device->flags.visited) {
2306 goto ok;
2307 }
2308
2309 ret = acpi_scan_attach_handler(device);
2310 if (ret < 0)
2311 return 0;
2312
2313 device->flags.match_driver = true;
2314 if (ret > 0 && !device->flags.enumeration_by_parent) {
2315 acpi_device_set_enumerated(device);
2316 goto ok;
2317 }
2318
2319 ret = device_attach(&device->dev);
2320 if (ret < 0)
2321 return 0;
2322
2323 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2324 acpi_default_enumeration(device);
2325 else
2326 acpi_device_set_enumerated(device);
2327
2328ok:
2329 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2330
2331 if (!skip && device->handler && device->handler->hotplug.notify_online)
2332 device->handler->hotplug.notify_online(device);
2333
2334 return 0;
2335}
2336
2337static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2338{
2339 struct acpi_device **adev_p = data;
2340 struct acpi_device *adev = *adev_p;
2341
2342 /*
2343 * If we're passed a 'previous' consumer device then we need to skip
2344 * any consumers until we meet the previous one, and then NULL @data
2345 * so the next one can be returned.
2346 */
2347 if (adev) {
2348 if (dep->consumer == adev->handle)
2349 *adev_p = NULL;
2350
2351 return 0;
2352 }
2353
2354 adev = acpi_get_acpi_dev(dep->consumer);
2355 if (adev) {
2356 *(struct acpi_device **)data = adev;
2357 return 1;
2358 }
2359 /* Continue parsing if the device object is not present. */
2360 return 0;
2361}
2362
2363struct acpi_scan_clear_dep_work {
2364 struct work_struct work;
2365 struct acpi_device *adev;
2366};
2367
2368static void acpi_scan_clear_dep_fn(struct work_struct *work)
2369{
2370 struct acpi_scan_clear_dep_work *cdw;
2371
2372 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2373
2374 acpi_scan_lock_acquire();
2375 acpi_bus_attach(cdw->adev, (void *)true);
2376 acpi_scan_lock_release();
2377
2378 acpi_dev_put(cdw->adev);
2379 kfree(cdw);
2380}
2381
2382static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2383{
2384 struct acpi_scan_clear_dep_work *cdw;
2385
2386 if (adev->dep_unmet)
2387 return false;
2388
2389 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2390 if (!cdw)
2391 return false;
2392
2393 cdw->adev = adev;
2394 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2395 /*
2396 * Since the work function may block on the lock until the entire
2397 * initial enumeration of devices is complete, put it into the unbound
2398 * workqueue.
2399 */
2400 queue_work(system_unbound_wq, &cdw->work);
2401
2402 return true;
2403}
2404
2405static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2406{
2407 list_del(&dep->node);
2408 kfree(dep);
2409}
2410
2411static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2412{
2413 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2414
2415 if (adev) {
2416 adev->dep_unmet--;
2417 if (!acpi_scan_clear_dep_queue(adev))
2418 acpi_dev_put(adev);
2419 }
2420
2421 if (dep->free_when_met)
2422 acpi_scan_delete_dep_data(dep);
2423 else
2424 dep->met = true;
2425
2426 return 0;
2427}
2428
2429/**
2430 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2431 * @handle: The ACPI handle of the supplier device
2432 * @callback: Pointer to the callback function to apply
2433 * @data: Pointer to some data to pass to the callback
2434 *
2435 * The return value of the callback determines this function's behaviour. If 0
2436 * is returned we continue to iterate over acpi_dep_list. If a positive value
2437 * is returned then the loop is broken but this function returns 0. If a
2438 * negative value is returned by the callback then the loop is broken and that
2439 * value is returned as the final error.
2440 */
2441static int acpi_walk_dep_device_list(acpi_handle handle,
2442 int (*callback)(struct acpi_dep_data *, void *),
2443 void *data)
2444{
2445 struct acpi_dep_data *dep, *tmp;
2446 int ret = 0;
2447
2448 mutex_lock(&acpi_dep_list_lock);
2449 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2450 if (dep->supplier == handle) {
2451 ret = callback(dep, data);
2452 if (ret)
2453 break;
2454 }
2455 }
2456 mutex_unlock(&acpi_dep_list_lock);
2457
2458 return ret > 0 ? 0 : ret;
2459}
2460
2461/**
2462 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2463 * @supplier: Pointer to the supplier &struct acpi_device
2464 *
2465 * Clear dependencies on the given device.
2466 */
2467void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2468{
2469 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2470}
2471EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2472
2473/**
2474 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2475 * @device: Pointer to the &struct acpi_device to check
2476 *
2477 * Check if the device is present and has no unmet dependencies.
2478 *
2479 * Return true if the device is ready for enumeratino. Otherwise, return false.
2480 */
2481bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2482{
2483 if (device->flags.honor_deps && device->dep_unmet)
2484 return false;
2485
2486 return acpi_device_is_present(device);
2487}
2488EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2489
2490/**
2491 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2492 * @supplier: Pointer to the dependee device
2493 * @start: Pointer to the current dependent device
2494 *
2495 * Returns the next &struct acpi_device which declares itself dependent on
2496 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2497 *
2498 * If the returned adev is not passed as @start to this function, the caller is
2499 * responsible for putting the reference to adev when it is no longer needed.
2500 */
2501struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2502 struct acpi_device *start)
2503{
2504 struct acpi_device *adev = start;
2505
2506 acpi_walk_dep_device_list(supplier->handle,
2507 acpi_dev_get_next_consumer_dev_cb, &adev);
2508
2509 acpi_dev_put(start);
2510
2511 if (adev == start)
2512 return NULL;
2513
2514 return adev;
2515}
2516EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2517
2518static void acpi_scan_postponed_branch(acpi_handle handle)
2519{
2520 struct acpi_device *adev = NULL;
2521
2522 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2523 return;
2524
2525 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2526 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2527
2528 /*
2529 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2530 * have been added above.
2531 */
2532 acpi_mipi_init_crs_csi2_swnodes();
2533
2534 acpi_bus_attach(adev, NULL);
2535}
2536
2537static void acpi_scan_postponed(void)
2538{
2539 struct acpi_dep_data *dep, *tmp;
2540
2541 mutex_lock(&acpi_dep_list_lock);
2542
2543 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2544 acpi_handle handle = dep->consumer;
2545
2546 /*
2547 * In case there are multiple acpi_dep_list entries with the
2548 * same consumer, skip the current entry if the consumer device
2549 * object corresponding to it is present already.
2550 */
2551 if (!acpi_fetch_acpi_dev(handle)) {
2552 /*
2553 * Even though the lock is released here, tmp is
2554 * guaranteed to be valid, because none of the list
2555 * entries following dep is marked as "free when met"
2556 * and so they cannot be deleted.
2557 */
2558 mutex_unlock(&acpi_dep_list_lock);
2559
2560 acpi_scan_postponed_branch(handle);
2561
2562 mutex_lock(&acpi_dep_list_lock);
2563 }
2564
2565 if (dep->met)
2566 acpi_scan_delete_dep_data(dep);
2567 else
2568 dep->free_when_met = true;
2569 }
2570
2571 mutex_unlock(&acpi_dep_list_lock);
2572}
2573
2574/**
2575 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2576 * @handle: Root of the namespace scope to scan.
2577 *
2578 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2579 * found devices.
2580 *
2581 * If no devices were found, -ENODEV is returned, but it does not mean that
2582 * there has been a real error. There just have been no suitable ACPI objects
2583 * in the table trunk from which the kernel could create a device and add an
2584 * appropriate driver.
2585 *
2586 * Must be called under acpi_scan_lock.
2587 */
2588int acpi_bus_scan(acpi_handle handle)
2589{
2590 struct acpi_device *device = NULL;
2591
2592 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2593
2594 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2595 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2596 acpi_bus_check_add_1, NULL, NULL,
2597 (void **)&device);
2598
2599 if (!device)
2600 return -ENODEV;
2601
2602 /*
2603 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2604 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2605 * walk above and MIPI DisCo for Imaging device properties.
2606 */
2607 acpi_mipi_scan_crs_csi2();
2608 acpi_mipi_init_crs_csi2_swnodes();
2609
2610 acpi_bus_attach(device, (void *)true);
2611
2612 /* Pass 2: Enumerate all of the remaining devices. */
2613
2614 acpi_scan_postponed();
2615
2616 acpi_mipi_crs_csi2_cleanup();
2617
2618 return 0;
2619}
2620EXPORT_SYMBOL(acpi_bus_scan);
2621
2622/**
2623 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2624 * @adev: Root of the ACPI namespace scope to walk.
2625 *
2626 * Must be called under acpi_scan_lock.
2627 */
2628void acpi_bus_trim(struct acpi_device *adev)
2629{
2630 uintptr_t flags = 0;
2631
2632 acpi_scan_check_and_detach(adev, (void *)flags);
2633}
2634EXPORT_SYMBOL_GPL(acpi_bus_trim);
2635
2636int acpi_bus_register_early_device(int type)
2637{
2638 struct acpi_device *device = NULL;
2639 int result;
2640
2641 result = acpi_add_single_object(&device, NULL, type, false);
2642 if (result)
2643 return result;
2644
2645 device->flags.match_driver = true;
2646 return device_attach(&device->dev);
2647}
2648EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2649
2650static void acpi_bus_scan_fixed(void)
2651{
2652 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2653 struct acpi_device *adev = NULL;
2654
2655 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2656 false);
2657 if (adev) {
2658 adev->flags.match_driver = true;
2659 if (device_attach(&adev->dev) >= 0)
2660 device_init_wakeup(&adev->dev, true);
2661 else
2662 dev_dbg(&adev->dev, "No driver\n");
2663 }
2664 }
2665
2666 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2667 struct acpi_device *adev = NULL;
2668
2669 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2670 false);
2671 if (adev) {
2672 adev->flags.match_driver = true;
2673 if (device_attach(&adev->dev) < 0)
2674 dev_dbg(&adev->dev, "No driver\n");
2675 }
2676 }
2677}
2678
2679static void __init acpi_get_spcr_uart_addr(void)
2680{
2681 acpi_status status;
2682 struct acpi_table_spcr *spcr_ptr;
2683
2684 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2685 (struct acpi_table_header **)&spcr_ptr);
2686 if (ACPI_FAILURE(status)) {
2687 pr_warn("STAO table present, but SPCR is missing\n");
2688 return;
2689 }
2690
2691 spcr_uart_addr = spcr_ptr->serial_port.address;
2692 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2693}
2694
2695static bool acpi_scan_initialized;
2696
2697void __init acpi_scan_init(void)
2698{
2699 acpi_status status;
2700 struct acpi_table_stao *stao_ptr;
2701
2702 acpi_pci_root_init();
2703 acpi_pci_link_init();
2704 acpi_processor_init();
2705 acpi_platform_init();
2706 acpi_lpss_init();
2707 acpi_apd_init();
2708 acpi_cmos_rtc_init();
2709 acpi_container_init();
2710 acpi_memory_hotplug_init();
2711 acpi_watchdog_init();
2712 acpi_pnp_init();
2713 acpi_int340x_thermal_init();
2714 acpi_init_lpit();
2715
2716 acpi_scan_add_handler(&generic_device_handler);
2717
2718 /*
2719 * If there is STAO table, check whether it needs to ignore the UART
2720 * device in SPCR table.
2721 */
2722 status = acpi_get_table(ACPI_SIG_STAO, 0,
2723 (struct acpi_table_header **)&stao_ptr);
2724 if (ACPI_SUCCESS(status)) {
2725 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2726 pr_info("STAO Name List not yet supported.\n");
2727
2728 if (stao_ptr->ignore_uart)
2729 acpi_get_spcr_uart_addr();
2730
2731 acpi_put_table((struct acpi_table_header *)stao_ptr);
2732 }
2733
2734 acpi_gpe_apply_masked_gpes();
2735 acpi_update_all_gpes();
2736
2737 /*
2738 * Although we call __add_memory() that is documented to require the
2739 * device_hotplug_lock, it is not necessary here because this is an
2740 * early code when userspace or any other code path cannot trigger
2741 * hotplug/hotunplug operations.
2742 */
2743 mutex_lock(&acpi_scan_lock);
2744 /*
2745 * Enumerate devices in the ACPI namespace.
2746 */
2747 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2748 goto unlock;
2749
2750 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2751 if (!acpi_root)
2752 goto unlock;
2753
2754 /* Fixed feature devices do not exist on HW-reduced platform */
2755 if (!acpi_gbl_reduced_hardware)
2756 acpi_bus_scan_fixed();
2757
2758 acpi_turn_off_unused_power_resources();
2759
2760 acpi_scan_initialized = true;
2761
2762unlock:
2763 mutex_unlock(&acpi_scan_lock);
2764}
2765
2766static struct acpi_probe_entry *ape;
2767static int acpi_probe_count;
2768static DEFINE_MUTEX(acpi_probe_mutex);
2769
2770static int __init acpi_match_madt(union acpi_subtable_headers *header,
2771 const unsigned long end)
2772{
2773 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2774 if (!ape->probe_subtbl(header, end))
2775 acpi_probe_count++;
2776
2777 return 0;
2778}
2779
2780void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { }
2781
2782int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2783{
2784 int count = 0;
2785
2786 if (acpi_disabled)
2787 return 0;
2788
2789 mutex_lock(&acpi_probe_mutex);
2790 arch_sort_irqchip_probe(ap_head, nr);
2791 for (ape = ap_head; nr; ape++, nr--) {
2792 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2793 acpi_probe_count = 0;
2794 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2795 count += acpi_probe_count;
2796 } else {
2797 int res;
2798 res = acpi_table_parse(ape->id, ape->probe_table);
2799 if (!res)
2800 count++;
2801 }
2802 }
2803 mutex_unlock(&acpi_probe_mutex);
2804
2805 return count;
2806}
2807
2808static void acpi_table_events_fn(struct work_struct *work)
2809{
2810 acpi_scan_lock_acquire();
2811 acpi_bus_scan(ACPI_ROOT_OBJECT);
2812 acpi_scan_lock_release();
2813
2814 kfree(work);
2815}
2816
2817void acpi_scan_table_notify(void)
2818{
2819 struct work_struct *work;
2820
2821 if (!acpi_scan_initialized)
2822 return;
2823
2824 work = kmalloc(sizeof(*work), GFP_KERNEL);
2825 if (!work)
2826 return;
2827
2828 INIT_WORK(work, acpi_table_events_fn);
2829 schedule_work(work);
2830}
2831
2832int acpi_reconfig_notifier_register(struct notifier_block *nb)
2833{
2834 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2835}
2836EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2837
2838int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2839{
2840 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2841}
2842EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26
27extern struct acpi_device *acpi_root;
28
29#define ACPI_BUS_CLASS "system_bus"
30#define ACPI_BUS_HID "LNXSYBUS"
31#define ACPI_BUS_DEVICE_NAME "System Bus"
32
33#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
34
35static const char *dummy_hid = "device";
36
37static LIST_HEAD(acpi_dep_list);
38static DEFINE_MUTEX(acpi_dep_list_lock);
39LIST_HEAD(acpi_bus_id_list);
40static DEFINE_MUTEX(acpi_scan_lock);
41static LIST_HEAD(acpi_scan_handlers_list);
42DEFINE_MUTEX(acpi_device_lock);
43LIST_HEAD(acpi_wakeup_device_list);
44static DEFINE_MUTEX(acpi_hp_context_lock);
45
46/*
47 * The UART device described by the SPCR table is the only object which needs
48 * special-casing. Everything else is covered by ACPI namespace paths in STAO
49 * table.
50 */
51static u64 spcr_uart_addr;
52
53void acpi_scan_lock_acquire(void)
54{
55 mutex_lock(&acpi_scan_lock);
56}
57EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
59void acpi_scan_lock_release(void)
60{
61 mutex_unlock(&acpi_scan_lock);
62}
63EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
65void acpi_lock_hp_context(void)
66{
67 mutex_lock(&acpi_hp_context_lock);
68}
69
70void acpi_unlock_hp_context(void)
71{
72 mutex_unlock(&acpi_hp_context_lock);
73}
74
75void acpi_initialize_hp_context(struct acpi_device *adev,
76 struct acpi_hotplug_context *hp,
77 int (*notify)(struct acpi_device *, u32),
78 void (*uevent)(struct acpi_device *, u32))
79{
80 acpi_lock_hp_context();
81 hp->notify = notify;
82 hp->uevent = uevent;
83 acpi_set_hp_context(adev, hp);
84 acpi_unlock_hp_context();
85}
86EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
88int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89{
90 if (!handler)
91 return -EINVAL;
92
93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 return 0;
95}
96
97int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 const char *hotplug_profile_name)
99{
100 int error;
101
102 error = acpi_scan_add_handler(handler);
103 if (error)
104 return error;
105
106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 return 0;
108}
109
110bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111{
112 struct acpi_device_physical_node *pn;
113 bool offline = true;
114 char *envp[] = { "EVENT=offline", NULL };
115
116 /*
117 * acpi_container_offline() calls this for all of the container's
118 * children under the container's physical_node_lock lock.
119 */
120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122 list_for_each_entry(pn, &adev->physical_node_list, node)
123 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 if (uevent)
125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127 offline = false;
128 break;
129 }
130
131 mutex_unlock(&adev->physical_node_lock);
132 return offline;
133}
134
135static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 void **ret_p)
137{
138 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
139 struct acpi_device_physical_node *pn;
140 bool second_pass = (bool)data;
141 acpi_status status = AE_OK;
142
143 if (!device)
144 return AE_OK;
145
146 if (device->handler && !device->handler->hotplug.enabled) {
147 *ret_p = &device->dev;
148 return AE_SUPPORT;
149 }
150
151 mutex_lock(&device->physical_node_lock);
152
153 list_for_each_entry(pn, &device->physical_node_list, node) {
154 int ret;
155
156 if (second_pass) {
157 /* Skip devices offlined by the first pass. */
158 if (pn->put_online)
159 continue;
160 } else {
161 pn->put_online = false;
162 }
163 ret = device_offline(pn->dev);
164 if (ret >= 0) {
165 pn->put_online = !ret;
166 } else {
167 *ret_p = pn->dev;
168 if (second_pass) {
169 status = AE_ERROR;
170 break;
171 }
172 }
173 }
174
175 mutex_unlock(&device->physical_node_lock);
176
177 return status;
178}
179
180static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 void **ret_p)
182{
183 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
184 struct acpi_device_physical_node *pn;
185
186 if (!device)
187 return AE_OK;
188
189 mutex_lock(&device->physical_node_lock);
190
191 list_for_each_entry(pn, &device->physical_node_list, node)
192 if (pn->put_online) {
193 device_online(pn->dev);
194 pn->put_online = false;
195 }
196
197 mutex_unlock(&device->physical_node_lock);
198
199 return AE_OK;
200}
201
202static int acpi_scan_try_to_offline(struct acpi_device *device)
203{
204 acpi_handle handle = device->handle;
205 struct device *errdev = NULL;
206 acpi_status status;
207
208 /*
209 * Carry out two passes here and ignore errors in the first pass,
210 * because if the devices in question are memory blocks and
211 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 * that the other blocks depend on, but it is not known in advance which
213 * block holds them.
214 *
215 * If the first pass is successful, the second one isn't needed, though.
216 */
217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 NULL, acpi_bus_offline, (void *)false,
219 (void **)&errdev);
220 if (status == AE_SUPPORT) {
221 dev_warn(errdev, "Offline disabled.\n");
222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 acpi_bus_online, NULL, NULL, NULL);
224 return -EPERM;
225 }
226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 if (errdev) {
228 errdev = NULL;
229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 NULL, acpi_bus_offline, (void *)true,
231 (void **)&errdev);
232 if (!errdev)
233 acpi_bus_offline(handle, 0, (void *)true,
234 (void **)&errdev);
235
236 if (errdev) {
237 dev_warn(errdev, "Offline failed.\n");
238 acpi_bus_online(handle, 0, NULL, NULL);
239 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 ACPI_UINT32_MAX, acpi_bus_online,
241 NULL, NULL, NULL);
242 return -EBUSY;
243 }
244 }
245 return 0;
246}
247
248static int acpi_scan_hot_remove(struct acpi_device *device)
249{
250 acpi_handle handle = device->handle;
251 unsigned long long sta;
252 acpi_status status;
253
254 if (device->handler && device->handler->hotplug.demand_offline) {
255 if (!acpi_scan_is_offline(device, true))
256 return -EBUSY;
257 } else {
258 int error = acpi_scan_try_to_offline(device);
259 if (error)
260 return error;
261 }
262
263 acpi_handle_debug(handle, "Ejecting\n");
264
265 acpi_bus_trim(device);
266
267 acpi_evaluate_lck(handle, 0);
268 /*
269 * TBD: _EJD support.
270 */
271 status = acpi_evaluate_ej0(handle);
272 if (status == AE_NOT_FOUND)
273 return -ENODEV;
274 else if (ACPI_FAILURE(status))
275 return -EIO;
276
277 /*
278 * Verify if eject was indeed successful. If not, log an error
279 * message. No need to call _OST since _EJ0 call was made OK.
280 */
281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 if (ACPI_FAILURE(status)) {
283 acpi_handle_warn(handle,
284 "Status check after eject failed (0x%x)\n", status);
285 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 acpi_handle_warn(handle,
287 "Eject incomplete - status 0x%llx\n", sta);
288 }
289
290 return 0;
291}
292
293static int acpi_scan_device_not_present(struct acpi_device *adev)
294{
295 if (!acpi_device_enumerated(adev)) {
296 dev_warn(&adev->dev, "Still not present\n");
297 return -EALREADY;
298 }
299 acpi_bus_trim(adev);
300 return 0;
301}
302
303static int acpi_scan_device_check(struct acpi_device *adev)
304{
305 int error;
306
307 acpi_bus_get_status(adev);
308 if (adev->status.present || adev->status.functional) {
309 /*
310 * This function is only called for device objects for which
311 * matching scan handlers exist. The only situation in which
312 * the scan handler is not attached to this device object yet
313 * is when the device has just appeared (either it wasn't
314 * present at all before or it was removed and then added
315 * again).
316 */
317 if (adev->handler) {
318 dev_warn(&adev->dev, "Already enumerated\n");
319 return -EALREADY;
320 }
321 error = acpi_bus_scan(adev->handle);
322 if (error) {
323 dev_warn(&adev->dev, "Namespace scan failure\n");
324 return error;
325 }
326 if (!adev->handler) {
327 dev_warn(&adev->dev, "Enumeration failure\n");
328 error = -ENODEV;
329 }
330 } else {
331 error = acpi_scan_device_not_present(adev);
332 }
333 return error;
334}
335
336static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
337{
338 struct acpi_scan_handler *handler = adev->handler;
339 int error;
340
341 acpi_bus_get_status(adev);
342 if (!(adev->status.present || adev->status.functional)) {
343 acpi_scan_device_not_present(adev);
344 return 0;
345 }
346 if (handler && handler->hotplug.scan_dependent)
347 return handler->hotplug.scan_dependent(adev);
348
349 error = acpi_bus_scan(adev->handle);
350 if (error) {
351 dev_warn(&adev->dev, "Namespace scan failure\n");
352 return error;
353 }
354 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
355}
356
357static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
358{
359 switch (type) {
360 case ACPI_NOTIFY_BUS_CHECK:
361 return acpi_scan_bus_check(adev, NULL);
362 case ACPI_NOTIFY_DEVICE_CHECK:
363 return acpi_scan_device_check(adev);
364 case ACPI_NOTIFY_EJECT_REQUEST:
365 case ACPI_OST_EC_OSPM_EJECT:
366 if (adev->handler && !adev->handler->hotplug.enabled) {
367 dev_info(&adev->dev, "Eject disabled\n");
368 return -EPERM;
369 }
370 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
371 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
372 return acpi_scan_hot_remove(adev);
373 }
374 return -EINVAL;
375}
376
377void acpi_device_hotplug(struct acpi_device *adev, u32 src)
378{
379 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
380 int error = -ENODEV;
381
382 lock_device_hotplug();
383 mutex_lock(&acpi_scan_lock);
384
385 /*
386 * The device object's ACPI handle cannot become invalid as long as we
387 * are holding acpi_scan_lock, but it might have become invalid before
388 * that lock was acquired.
389 */
390 if (adev->handle == INVALID_ACPI_HANDLE)
391 goto err_out;
392
393 if (adev->flags.is_dock_station) {
394 error = dock_notify(adev, src);
395 } else if (adev->flags.hotplug_notify) {
396 error = acpi_generic_hotplug_event(adev, src);
397 } else {
398 int (*notify)(struct acpi_device *, u32);
399
400 acpi_lock_hp_context();
401 notify = adev->hp ? adev->hp->notify : NULL;
402 acpi_unlock_hp_context();
403 /*
404 * There may be additional notify handlers for device objects
405 * without the .event() callback, so ignore them here.
406 */
407 if (notify)
408 error = notify(adev, src);
409 else
410 goto out;
411 }
412 switch (error) {
413 case 0:
414 ost_code = ACPI_OST_SC_SUCCESS;
415 break;
416 case -EPERM:
417 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
418 break;
419 case -EBUSY:
420 ost_code = ACPI_OST_SC_DEVICE_BUSY;
421 break;
422 default:
423 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
424 break;
425 }
426
427 err_out:
428 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
429
430 out:
431 acpi_put_acpi_dev(adev);
432 mutex_unlock(&acpi_scan_lock);
433 unlock_device_hotplug();
434}
435
436static void acpi_free_power_resources_lists(struct acpi_device *device)
437{
438 int i;
439
440 if (device->wakeup.flags.valid)
441 acpi_power_resources_list_free(&device->wakeup.resources);
442
443 if (!device->power.flags.power_resources)
444 return;
445
446 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
447 struct acpi_device_power_state *ps = &device->power.states[i];
448 acpi_power_resources_list_free(&ps->resources);
449 }
450}
451
452static void acpi_device_release(struct device *dev)
453{
454 struct acpi_device *acpi_dev = to_acpi_device(dev);
455
456 acpi_free_properties(acpi_dev);
457 acpi_free_pnp_ids(&acpi_dev->pnp);
458 acpi_free_power_resources_lists(acpi_dev);
459 kfree(acpi_dev);
460}
461
462static void acpi_device_del(struct acpi_device *device)
463{
464 struct acpi_device_bus_id *acpi_device_bus_id;
465
466 mutex_lock(&acpi_device_lock);
467
468 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
469 if (!strcmp(acpi_device_bus_id->bus_id,
470 acpi_device_hid(device))) {
471 ida_free(&acpi_device_bus_id->instance_ida,
472 device->pnp.instance_no);
473 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
474 list_del(&acpi_device_bus_id->node);
475 kfree_const(acpi_device_bus_id->bus_id);
476 kfree(acpi_device_bus_id);
477 }
478 break;
479 }
480
481 list_del(&device->wakeup_list);
482
483 mutex_unlock(&acpi_device_lock);
484
485 acpi_power_add_remove_device(device, false);
486 acpi_device_remove_files(device);
487 if (device->remove)
488 device->remove(device);
489
490 device_del(&device->dev);
491}
492
493static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
494
495static LIST_HEAD(acpi_device_del_list);
496static DEFINE_MUTEX(acpi_device_del_lock);
497
498static void acpi_device_del_work_fn(struct work_struct *work_not_used)
499{
500 for (;;) {
501 struct acpi_device *adev;
502
503 mutex_lock(&acpi_device_del_lock);
504
505 if (list_empty(&acpi_device_del_list)) {
506 mutex_unlock(&acpi_device_del_lock);
507 break;
508 }
509 adev = list_first_entry(&acpi_device_del_list,
510 struct acpi_device, del_list);
511 list_del(&adev->del_list);
512
513 mutex_unlock(&acpi_device_del_lock);
514
515 blocking_notifier_call_chain(&acpi_reconfig_chain,
516 ACPI_RECONFIG_DEVICE_REMOVE, adev);
517
518 acpi_device_del(adev);
519 /*
520 * Drop references to all power resources that might have been
521 * used by the device.
522 */
523 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
524 acpi_dev_put(adev);
525 }
526}
527
528/**
529 * acpi_scan_drop_device - Drop an ACPI device object.
530 * @handle: Handle of an ACPI namespace node, not used.
531 * @context: Address of the ACPI device object to drop.
532 *
533 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
534 * namespace node the device object pointed to by @context is attached to.
535 *
536 * The unregistration is carried out asynchronously to avoid running
537 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
538 * ensure the correct ordering (the device objects must be unregistered in the
539 * same order in which the corresponding namespace nodes are deleted).
540 */
541static void acpi_scan_drop_device(acpi_handle handle, void *context)
542{
543 static DECLARE_WORK(work, acpi_device_del_work_fn);
544 struct acpi_device *adev = context;
545
546 mutex_lock(&acpi_device_del_lock);
547
548 /*
549 * Use the ACPI hotplug workqueue which is ordered, so this work item
550 * won't run after any hotplug work items submitted subsequently. That
551 * prevents attempts to register device objects identical to those being
552 * deleted from happening concurrently (such attempts result from
553 * hotplug events handled via the ACPI hotplug workqueue). It also will
554 * run after all of the work items submitted previously, which helps
555 * those work items to ensure that they are not accessing stale device
556 * objects.
557 */
558 if (list_empty(&acpi_device_del_list))
559 acpi_queue_hotplug_work(&work);
560
561 list_add_tail(&adev->del_list, &acpi_device_del_list);
562 /* Make acpi_ns_validate_handle() return NULL for this handle. */
563 adev->handle = INVALID_ACPI_HANDLE;
564
565 mutex_unlock(&acpi_device_del_lock);
566}
567
568static struct acpi_device *handle_to_device(acpi_handle handle,
569 void (*callback)(void *))
570{
571 struct acpi_device *adev = NULL;
572 acpi_status status;
573
574 status = acpi_get_data_full(handle, acpi_scan_drop_device,
575 (void **)&adev, callback);
576 if (ACPI_FAILURE(status) || !adev) {
577 acpi_handle_debug(handle, "No context!\n");
578 return NULL;
579 }
580 return adev;
581}
582
583/**
584 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
585 * @handle: ACPI handle associated with the requested ACPI device object.
586 *
587 * Return a pointer to the ACPI device object associated with @handle, if
588 * present, or NULL otherwise.
589 */
590struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
591{
592 return handle_to_device(handle, NULL);
593}
594EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
595
596static void get_acpi_device(void *dev)
597{
598 acpi_dev_get(dev);
599}
600
601/**
602 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
603 * @handle: ACPI handle associated with the requested ACPI device object.
604 *
605 * Return a pointer to the ACPI device object associated with @handle and bump
606 * up that object's reference counter (under the ACPI Namespace lock), if
607 * present, or return NULL otherwise.
608 *
609 * The ACPI device object reference acquired by this function needs to be
610 * dropped via acpi_dev_put().
611 */
612struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
613{
614 return handle_to_device(handle, get_acpi_device);
615}
616EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
617
618static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
619{
620 struct acpi_device_bus_id *acpi_device_bus_id;
621
622 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
623 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
624 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
625 return acpi_device_bus_id;
626 }
627 return NULL;
628}
629
630static int acpi_device_set_name(struct acpi_device *device,
631 struct acpi_device_bus_id *acpi_device_bus_id)
632{
633 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
634 int result;
635
636 result = ida_alloc(instance_ida, GFP_KERNEL);
637 if (result < 0)
638 return result;
639
640 device->pnp.instance_no = result;
641 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
642 return 0;
643}
644
645int acpi_tie_acpi_dev(struct acpi_device *adev)
646{
647 acpi_handle handle = adev->handle;
648 acpi_status status;
649
650 if (!handle)
651 return 0;
652
653 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
654 if (ACPI_FAILURE(status)) {
655 acpi_handle_err(handle, "Unable to attach device data\n");
656 return -ENODEV;
657 }
658
659 return 0;
660}
661
662static void acpi_store_pld_crc(struct acpi_device *adev)
663{
664 struct acpi_pld_info *pld;
665 acpi_status status;
666
667 status = acpi_get_physical_device_location(adev->handle, &pld);
668 if (ACPI_FAILURE(status))
669 return;
670
671 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
672 ACPI_FREE(pld);
673}
674
675int acpi_device_add(struct acpi_device *device)
676{
677 struct acpi_device_bus_id *acpi_device_bus_id;
678 int result;
679
680 /*
681 * Linkage
682 * -------
683 * Link this device to its parent and siblings.
684 */
685 INIT_LIST_HEAD(&device->wakeup_list);
686 INIT_LIST_HEAD(&device->physical_node_list);
687 INIT_LIST_HEAD(&device->del_list);
688 mutex_init(&device->physical_node_lock);
689
690 mutex_lock(&acpi_device_lock);
691
692 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
693 if (acpi_device_bus_id) {
694 result = acpi_device_set_name(device, acpi_device_bus_id);
695 if (result)
696 goto err_unlock;
697 } else {
698 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
699 GFP_KERNEL);
700 if (!acpi_device_bus_id) {
701 result = -ENOMEM;
702 goto err_unlock;
703 }
704 acpi_device_bus_id->bus_id =
705 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
706 if (!acpi_device_bus_id->bus_id) {
707 kfree(acpi_device_bus_id);
708 result = -ENOMEM;
709 goto err_unlock;
710 }
711
712 ida_init(&acpi_device_bus_id->instance_ida);
713
714 result = acpi_device_set_name(device, acpi_device_bus_id);
715 if (result) {
716 kfree_const(acpi_device_bus_id->bus_id);
717 kfree(acpi_device_bus_id);
718 goto err_unlock;
719 }
720
721 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
722 }
723
724 if (device->wakeup.flags.valid)
725 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
726
727 acpi_store_pld_crc(device);
728
729 mutex_unlock(&acpi_device_lock);
730
731 result = device_add(&device->dev);
732 if (result) {
733 dev_err(&device->dev, "Error registering device\n");
734 goto err;
735 }
736
737 result = acpi_device_setup_files(device);
738 if (result)
739 pr_err("Error creating sysfs interface for device %s\n",
740 dev_name(&device->dev));
741
742 return 0;
743
744err:
745 mutex_lock(&acpi_device_lock);
746
747 list_del(&device->wakeup_list);
748
749err_unlock:
750 mutex_unlock(&acpi_device_lock);
751
752 acpi_detach_data(device->handle, acpi_scan_drop_device);
753
754 return result;
755}
756
757/* --------------------------------------------------------------------------
758 Device Enumeration
759 -------------------------------------------------------------------------- */
760static bool acpi_info_matches_ids(struct acpi_device_info *info,
761 const char * const ids[])
762{
763 struct acpi_pnp_device_id_list *cid_list = NULL;
764 int i, index;
765
766 if (!(info->valid & ACPI_VALID_HID))
767 return false;
768
769 index = match_string(ids, -1, info->hardware_id.string);
770 if (index >= 0)
771 return true;
772
773 if (info->valid & ACPI_VALID_CID)
774 cid_list = &info->compatible_id_list;
775
776 if (!cid_list)
777 return false;
778
779 for (i = 0; i < cid_list->count; i++) {
780 index = match_string(ids, -1, cid_list->ids[i].string);
781 if (index >= 0)
782 return true;
783 }
784
785 return false;
786}
787
788/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
789static const char * const acpi_ignore_dep_ids[] = {
790 "PNP0D80", /* Windows-compatible System Power Management Controller */
791 "INT33BD", /* Intel Baytrail Mailbox Device */
792 "LATT2021", /* Lattice FW Update Client Driver */
793 NULL
794};
795
796/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
797static const char * const acpi_honor_dep_ids[] = {
798 "INT3472", /* Camera sensor PMIC / clk and regulator info */
799 NULL
800};
801
802static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
803{
804 struct acpi_device *adev;
805
806 /*
807 * Fixed hardware devices do not appear in the namespace and do not
808 * have handles, but we fabricate acpi_devices for them, so we have
809 * to deal with them specially.
810 */
811 if (!handle)
812 return acpi_root;
813
814 do {
815 acpi_status status;
816
817 status = acpi_get_parent(handle, &handle);
818 if (ACPI_FAILURE(status)) {
819 if (status != AE_NULL_ENTRY)
820 return acpi_root;
821
822 return NULL;
823 }
824 adev = acpi_fetch_acpi_dev(handle);
825 } while (!adev);
826 return adev;
827}
828
829acpi_status
830acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
831{
832 acpi_status status;
833 acpi_handle tmp;
834 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
835 union acpi_object *obj;
836
837 status = acpi_get_handle(handle, "_EJD", &tmp);
838 if (ACPI_FAILURE(status))
839 return status;
840
841 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
842 if (ACPI_SUCCESS(status)) {
843 obj = buffer.pointer;
844 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
845 ejd);
846 kfree(buffer.pointer);
847 }
848 return status;
849}
850EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
851
852static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
853{
854 acpi_handle handle = dev->handle;
855 struct acpi_device_wakeup *wakeup = &dev->wakeup;
856 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
857 union acpi_object *package = NULL;
858 union acpi_object *element = NULL;
859 acpi_status status;
860 int err = -ENODATA;
861
862 INIT_LIST_HEAD(&wakeup->resources);
863
864 /* _PRW */
865 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
866 if (ACPI_FAILURE(status)) {
867 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
868 acpi_format_exception(status));
869 return err;
870 }
871
872 package = (union acpi_object *)buffer.pointer;
873
874 if (!package || package->package.count < 2)
875 goto out;
876
877 element = &(package->package.elements[0]);
878 if (!element)
879 goto out;
880
881 if (element->type == ACPI_TYPE_PACKAGE) {
882 if ((element->package.count < 2) ||
883 (element->package.elements[0].type !=
884 ACPI_TYPE_LOCAL_REFERENCE)
885 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
886 goto out;
887
888 wakeup->gpe_device =
889 element->package.elements[0].reference.handle;
890 wakeup->gpe_number =
891 (u32) element->package.elements[1].integer.value;
892 } else if (element->type == ACPI_TYPE_INTEGER) {
893 wakeup->gpe_device = NULL;
894 wakeup->gpe_number = element->integer.value;
895 } else {
896 goto out;
897 }
898
899 element = &(package->package.elements[1]);
900 if (element->type != ACPI_TYPE_INTEGER)
901 goto out;
902
903 wakeup->sleep_state = element->integer.value;
904
905 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
906 if (err)
907 goto out;
908
909 if (!list_empty(&wakeup->resources)) {
910 int sleep_state;
911
912 err = acpi_power_wakeup_list_init(&wakeup->resources,
913 &sleep_state);
914 if (err) {
915 acpi_handle_warn(handle, "Retrieving current states "
916 "of wakeup power resources failed\n");
917 acpi_power_resources_list_free(&wakeup->resources);
918 goto out;
919 }
920 if (sleep_state < wakeup->sleep_state) {
921 acpi_handle_warn(handle, "Overriding _PRW sleep state "
922 "(S%d) by S%d from power resources\n",
923 (int)wakeup->sleep_state, sleep_state);
924 wakeup->sleep_state = sleep_state;
925 }
926 }
927
928 out:
929 kfree(buffer.pointer);
930 return err;
931}
932
933static bool acpi_wakeup_gpe_init(struct acpi_device *device)
934{
935 static const struct acpi_device_id button_device_ids[] = {
936 {"PNP0C0C", 0}, /* Power button */
937 {"PNP0C0D", 0}, /* Lid */
938 {"PNP0C0E", 0}, /* Sleep button */
939 {"", 0},
940 };
941 struct acpi_device_wakeup *wakeup = &device->wakeup;
942 acpi_status status;
943
944 wakeup->flags.notifier_present = 0;
945
946 /* Power button, Lid switch always enable wakeup */
947 if (!acpi_match_device_ids(device, button_device_ids)) {
948 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
949 /* Do not use Lid/sleep button for S5 wakeup */
950 if (wakeup->sleep_state == ACPI_STATE_S5)
951 wakeup->sleep_state = ACPI_STATE_S4;
952 }
953 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
954 device_set_wakeup_capable(&device->dev, true);
955 return true;
956 }
957
958 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
959 wakeup->gpe_number);
960 return ACPI_SUCCESS(status);
961}
962
963static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
964{
965 int err;
966
967 /* Presence of _PRW indicates wake capable */
968 if (!acpi_has_method(device->handle, "_PRW"))
969 return;
970
971 err = acpi_bus_extract_wakeup_device_power_package(device);
972 if (err) {
973 dev_err(&device->dev, "Unable to extract wakeup power resources");
974 return;
975 }
976
977 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
978 device->wakeup.prepare_count = 0;
979 /*
980 * Call _PSW/_DSW object to disable its ability to wake the sleeping
981 * system for the ACPI device with the _PRW object.
982 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
983 * So it is necessary to call _DSW object first. Only when it is not
984 * present will the _PSW object used.
985 */
986 err = acpi_device_sleep_wake(device, 0, 0, 0);
987 if (err)
988 pr_debug("error in _DSW or _PSW evaluation\n");
989}
990
991static void acpi_bus_init_power_state(struct acpi_device *device, int state)
992{
993 struct acpi_device_power_state *ps = &device->power.states[state];
994 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
995 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
996 acpi_status status;
997
998 INIT_LIST_HEAD(&ps->resources);
999
1000 /* Evaluate "_PRx" to get referenced power resources */
1001 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1002 if (ACPI_SUCCESS(status)) {
1003 union acpi_object *package = buffer.pointer;
1004
1005 if (buffer.length && package
1006 && package->type == ACPI_TYPE_PACKAGE
1007 && package->package.count)
1008 acpi_extract_power_resources(package, 0, &ps->resources);
1009
1010 ACPI_FREE(buffer.pointer);
1011 }
1012
1013 /* Evaluate "_PSx" to see if we can do explicit sets */
1014 pathname[2] = 'S';
1015 if (acpi_has_method(device->handle, pathname))
1016 ps->flags.explicit_set = 1;
1017
1018 /* State is valid if there are means to put the device into it. */
1019 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1020 ps->flags.valid = 1;
1021
1022 ps->power = -1; /* Unknown - driver assigned */
1023 ps->latency = -1; /* Unknown - driver assigned */
1024}
1025
1026static void acpi_bus_get_power_flags(struct acpi_device *device)
1027{
1028 unsigned long long dsc = ACPI_STATE_D0;
1029 u32 i;
1030
1031 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1032 if (!acpi_has_method(device->handle, "_PS0") &&
1033 !acpi_has_method(device->handle, "_PR0"))
1034 return;
1035
1036 device->flags.power_manageable = 1;
1037
1038 /*
1039 * Power Management Flags
1040 */
1041 if (acpi_has_method(device->handle, "_PSC"))
1042 device->power.flags.explicit_get = 1;
1043
1044 if (acpi_has_method(device->handle, "_IRC"))
1045 device->power.flags.inrush_current = 1;
1046
1047 if (acpi_has_method(device->handle, "_DSW"))
1048 device->power.flags.dsw_present = 1;
1049
1050 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1051 device->power.state_for_enumeration = dsc;
1052
1053 /*
1054 * Enumerate supported power management states
1055 */
1056 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1057 acpi_bus_init_power_state(device, i);
1058
1059 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1060
1061 /* Set the defaults for D0 and D3hot (always supported). */
1062 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1063 device->power.states[ACPI_STATE_D0].power = 100;
1064 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1065
1066 /*
1067 * Use power resources only if the D0 list of them is populated, because
1068 * some platforms may provide _PR3 only to indicate D3cold support and
1069 * in those cases the power resources list returned by it may be bogus.
1070 */
1071 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1072 device->power.flags.power_resources = 1;
1073 /*
1074 * D3cold is supported if the D3hot list of power resources is
1075 * not empty.
1076 */
1077 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1078 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1079 }
1080
1081 if (acpi_bus_init_power(device))
1082 device->flags.power_manageable = 0;
1083}
1084
1085static void acpi_bus_get_flags(struct acpi_device *device)
1086{
1087 /* Presence of _STA indicates 'dynamic_status' */
1088 if (acpi_has_method(device->handle, "_STA"))
1089 device->flags.dynamic_status = 1;
1090
1091 /* Presence of _RMV indicates 'removable' */
1092 if (acpi_has_method(device->handle, "_RMV"))
1093 device->flags.removable = 1;
1094
1095 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1096 if (acpi_has_method(device->handle, "_EJD") ||
1097 acpi_has_method(device->handle, "_EJ0"))
1098 device->flags.ejectable = 1;
1099}
1100
1101static void acpi_device_get_busid(struct acpi_device *device)
1102{
1103 char bus_id[5] = { '?', 0 };
1104 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1105 int i = 0;
1106
1107 /*
1108 * Bus ID
1109 * ------
1110 * The device's Bus ID is simply the object name.
1111 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1112 */
1113 if (!acpi_dev_parent(device)) {
1114 strcpy(device->pnp.bus_id, "ACPI");
1115 return;
1116 }
1117
1118 switch (device->device_type) {
1119 case ACPI_BUS_TYPE_POWER_BUTTON:
1120 strcpy(device->pnp.bus_id, "PWRF");
1121 break;
1122 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1123 strcpy(device->pnp.bus_id, "SLPF");
1124 break;
1125 case ACPI_BUS_TYPE_ECDT_EC:
1126 strcpy(device->pnp.bus_id, "ECDT");
1127 break;
1128 default:
1129 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1130 /* Clean up trailing underscores (if any) */
1131 for (i = 3; i > 1; i--) {
1132 if (bus_id[i] == '_')
1133 bus_id[i] = '\0';
1134 else
1135 break;
1136 }
1137 strcpy(device->pnp.bus_id, bus_id);
1138 break;
1139 }
1140}
1141
1142/*
1143 * acpi_ata_match - see if an acpi object is an ATA device
1144 *
1145 * If an acpi object has one of the ACPI ATA methods defined,
1146 * then we can safely call it an ATA device.
1147 */
1148bool acpi_ata_match(acpi_handle handle)
1149{
1150 return acpi_has_method(handle, "_GTF") ||
1151 acpi_has_method(handle, "_GTM") ||
1152 acpi_has_method(handle, "_STM") ||
1153 acpi_has_method(handle, "_SDD");
1154}
1155
1156/*
1157 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1158 *
1159 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1160 * then we can safely call it an ejectable drive bay
1161 */
1162bool acpi_bay_match(acpi_handle handle)
1163{
1164 acpi_handle phandle;
1165
1166 if (!acpi_has_method(handle, "_EJ0"))
1167 return false;
1168 if (acpi_ata_match(handle))
1169 return true;
1170 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1171 return false;
1172
1173 return acpi_ata_match(phandle);
1174}
1175
1176bool acpi_device_is_battery(struct acpi_device *adev)
1177{
1178 struct acpi_hardware_id *hwid;
1179
1180 list_for_each_entry(hwid, &adev->pnp.ids, list)
1181 if (!strcmp("PNP0C0A", hwid->id))
1182 return true;
1183
1184 return false;
1185}
1186
1187static bool is_ejectable_bay(struct acpi_device *adev)
1188{
1189 acpi_handle handle = adev->handle;
1190
1191 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1192 return true;
1193
1194 return acpi_bay_match(handle);
1195}
1196
1197/*
1198 * acpi_dock_match - see if an acpi object has a _DCK method
1199 */
1200bool acpi_dock_match(acpi_handle handle)
1201{
1202 return acpi_has_method(handle, "_DCK");
1203}
1204
1205static acpi_status
1206acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1207 void **return_value)
1208{
1209 long *cap = context;
1210
1211 if (acpi_has_method(handle, "_BCM") &&
1212 acpi_has_method(handle, "_BCL")) {
1213 acpi_handle_debug(handle, "Found generic backlight support\n");
1214 *cap |= ACPI_VIDEO_BACKLIGHT;
1215 /* We have backlight support, no need to scan further */
1216 return AE_CTRL_TERMINATE;
1217 }
1218 return 0;
1219}
1220
1221/* Returns true if the ACPI object is a video device which can be
1222 * handled by video.ko.
1223 * The device will get a Linux specific CID added in scan.c to
1224 * identify the device as an ACPI graphics device
1225 * Be aware that the graphics device may not be physically present
1226 * Use acpi_video_get_capabilities() to detect general ACPI video
1227 * capabilities of present cards
1228 */
1229long acpi_is_video_device(acpi_handle handle)
1230{
1231 long video_caps = 0;
1232
1233 /* Is this device able to support video switching ? */
1234 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1235 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1236
1237 /* Is this device able to retrieve a video ROM ? */
1238 if (acpi_has_method(handle, "_ROM"))
1239 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1240
1241 /* Is this device able to configure which video head to be POSTed ? */
1242 if (acpi_has_method(handle, "_VPO") &&
1243 acpi_has_method(handle, "_GPD") &&
1244 acpi_has_method(handle, "_SPD"))
1245 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1246
1247 /* Only check for backlight functionality if one of the above hit. */
1248 if (video_caps)
1249 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1250 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1251 &video_caps, NULL);
1252
1253 return video_caps;
1254}
1255EXPORT_SYMBOL(acpi_is_video_device);
1256
1257const char *acpi_device_hid(struct acpi_device *device)
1258{
1259 struct acpi_hardware_id *hid;
1260
1261 if (list_empty(&device->pnp.ids))
1262 return dummy_hid;
1263
1264 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1265 return hid->id;
1266}
1267EXPORT_SYMBOL(acpi_device_hid);
1268
1269static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1270{
1271 struct acpi_hardware_id *id;
1272
1273 id = kmalloc(sizeof(*id), GFP_KERNEL);
1274 if (!id)
1275 return;
1276
1277 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1278 if (!id->id) {
1279 kfree(id);
1280 return;
1281 }
1282
1283 list_add_tail(&id->list, &pnp->ids);
1284 pnp->type.hardware_id = 1;
1285}
1286
1287/*
1288 * Old IBM workstations have a DSDT bug wherein the SMBus object
1289 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1290 * prefix. Work around this.
1291 */
1292static bool acpi_ibm_smbus_match(acpi_handle handle)
1293{
1294 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1295 struct acpi_buffer path = { sizeof(node_name), node_name };
1296
1297 if (!dmi_name_in_vendors("IBM"))
1298 return false;
1299
1300 /* Look for SMBS object */
1301 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1302 strcmp("SMBS", path.pointer))
1303 return false;
1304
1305 /* Does it have the necessary (but misnamed) methods? */
1306 if (acpi_has_method(handle, "SBI") &&
1307 acpi_has_method(handle, "SBR") &&
1308 acpi_has_method(handle, "SBW"))
1309 return true;
1310
1311 return false;
1312}
1313
1314static bool acpi_object_is_system_bus(acpi_handle handle)
1315{
1316 acpi_handle tmp;
1317
1318 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1319 tmp == handle)
1320 return true;
1321 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1322 tmp == handle)
1323 return true;
1324
1325 return false;
1326}
1327
1328static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1329 int device_type)
1330{
1331 struct acpi_device_info *info = NULL;
1332 struct acpi_pnp_device_id_list *cid_list;
1333 int i;
1334
1335 switch (device_type) {
1336 case ACPI_BUS_TYPE_DEVICE:
1337 if (handle == ACPI_ROOT_OBJECT) {
1338 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1339 break;
1340 }
1341
1342 acpi_get_object_info(handle, &info);
1343 if (!info) {
1344 pr_err("%s: Error reading device info\n", __func__);
1345 return;
1346 }
1347
1348 if (info->valid & ACPI_VALID_HID) {
1349 acpi_add_id(pnp, info->hardware_id.string);
1350 pnp->type.platform_id = 1;
1351 }
1352 if (info->valid & ACPI_VALID_CID) {
1353 cid_list = &info->compatible_id_list;
1354 for (i = 0; i < cid_list->count; i++)
1355 acpi_add_id(pnp, cid_list->ids[i].string);
1356 }
1357 if (info->valid & ACPI_VALID_ADR) {
1358 pnp->bus_address = info->address;
1359 pnp->type.bus_address = 1;
1360 }
1361 if (info->valid & ACPI_VALID_UID)
1362 pnp->unique_id = kstrdup(info->unique_id.string,
1363 GFP_KERNEL);
1364 if (info->valid & ACPI_VALID_CLS)
1365 acpi_add_id(pnp, info->class_code.string);
1366
1367 kfree(info);
1368
1369 /*
1370 * Some devices don't reliably have _HIDs & _CIDs, so add
1371 * synthetic HIDs to make sure drivers can find them.
1372 */
1373 if (acpi_is_video_device(handle)) {
1374 acpi_add_id(pnp, ACPI_VIDEO_HID);
1375 pnp->type.backlight = 1;
1376 break;
1377 }
1378 if (acpi_bay_match(handle))
1379 acpi_add_id(pnp, ACPI_BAY_HID);
1380 else if (acpi_dock_match(handle))
1381 acpi_add_id(pnp, ACPI_DOCK_HID);
1382 else if (acpi_ibm_smbus_match(handle))
1383 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1384 else if (list_empty(&pnp->ids) &&
1385 acpi_object_is_system_bus(handle)) {
1386 /* \_SB, \_TZ, LNXSYBUS */
1387 acpi_add_id(pnp, ACPI_BUS_HID);
1388 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1389 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1390 }
1391
1392 break;
1393 case ACPI_BUS_TYPE_POWER:
1394 acpi_add_id(pnp, ACPI_POWER_HID);
1395 break;
1396 case ACPI_BUS_TYPE_PROCESSOR:
1397 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1398 break;
1399 case ACPI_BUS_TYPE_THERMAL:
1400 acpi_add_id(pnp, ACPI_THERMAL_HID);
1401 break;
1402 case ACPI_BUS_TYPE_POWER_BUTTON:
1403 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1404 break;
1405 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1406 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1407 break;
1408 case ACPI_BUS_TYPE_ECDT_EC:
1409 acpi_add_id(pnp, ACPI_ECDT_HID);
1410 break;
1411 }
1412}
1413
1414void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1415{
1416 struct acpi_hardware_id *id, *tmp;
1417
1418 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1419 kfree_const(id->id);
1420 kfree(id);
1421 }
1422 kfree(pnp->unique_id);
1423}
1424
1425/**
1426 * acpi_dma_supported - Check DMA support for the specified device.
1427 * @adev: The pointer to acpi device
1428 *
1429 * Return false if DMA is not supported. Otherwise, return true
1430 */
1431bool acpi_dma_supported(const struct acpi_device *adev)
1432{
1433 if (!adev)
1434 return false;
1435
1436 if (adev->flags.cca_seen)
1437 return true;
1438
1439 /*
1440 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1441 * DMA on "Intel platforms". Presumably that includes all x86 and
1442 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1443 */
1444 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1445 return true;
1446
1447 return false;
1448}
1449
1450/**
1451 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1452 * @adev: The pointer to acpi device
1453 *
1454 * Return enum dev_dma_attr.
1455 */
1456enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1457{
1458 if (!acpi_dma_supported(adev))
1459 return DEV_DMA_NOT_SUPPORTED;
1460
1461 if (adev->flags.coherent_dma)
1462 return DEV_DMA_COHERENT;
1463 else
1464 return DEV_DMA_NON_COHERENT;
1465}
1466
1467/**
1468 * acpi_dma_get_range() - Get device DMA parameters.
1469 *
1470 * @dev: device to configure
1471 * @map: pointer to DMA ranges result
1472 *
1473 * Evaluate DMA regions and return pointer to DMA regions on
1474 * parsing success; it does not update the passed in values on failure.
1475 *
1476 * Return 0 on success, < 0 on failure.
1477 */
1478int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1479{
1480 struct acpi_device *adev;
1481 LIST_HEAD(list);
1482 struct resource_entry *rentry;
1483 int ret;
1484 struct device *dma_dev = dev;
1485 struct bus_dma_region *r;
1486
1487 /*
1488 * Walk the device tree chasing an ACPI companion with a _DMA
1489 * object while we go. Stop if we find a device with an ACPI
1490 * companion containing a _DMA method.
1491 */
1492 do {
1493 adev = ACPI_COMPANION(dma_dev);
1494 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1495 break;
1496
1497 dma_dev = dma_dev->parent;
1498 } while (dma_dev);
1499
1500 if (!dma_dev)
1501 return -ENODEV;
1502
1503 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1504 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1505 return -EINVAL;
1506 }
1507
1508 ret = acpi_dev_get_dma_resources(adev, &list);
1509 if (ret > 0) {
1510 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1511 if (!r) {
1512 ret = -ENOMEM;
1513 goto out;
1514 }
1515
1516 *map = r;
1517
1518 list_for_each_entry(rentry, &list, node) {
1519 if (rentry->res->start >= rentry->res->end) {
1520 kfree(*map);
1521 *map = NULL;
1522 ret = -EINVAL;
1523 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1524 goto out;
1525 }
1526
1527 r->cpu_start = rentry->res->start;
1528 r->dma_start = rentry->res->start - rentry->offset;
1529 r->size = resource_size(rentry->res);
1530 r->offset = rentry->offset;
1531 r++;
1532 }
1533 }
1534 out:
1535 acpi_dev_free_resource_list(&list);
1536
1537 return ret >= 0 ? 0 : ret;
1538}
1539
1540#ifdef CONFIG_IOMMU_API
1541int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1542 struct fwnode_handle *fwnode,
1543 const struct iommu_ops *ops)
1544{
1545 int ret = iommu_fwspec_init(dev, fwnode, ops);
1546
1547 if (!ret)
1548 ret = iommu_fwspec_add_ids(dev, &id, 1);
1549
1550 return ret;
1551}
1552
1553static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1554{
1555 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1556
1557 return fwspec ? fwspec->ops : NULL;
1558}
1559
1560static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1561 const u32 *id_in)
1562{
1563 int err;
1564 const struct iommu_ops *ops;
1565
1566 /*
1567 * If we already translated the fwspec there is nothing left to do,
1568 * return the iommu_ops.
1569 */
1570 ops = acpi_iommu_fwspec_ops(dev);
1571 if (ops)
1572 return ops;
1573
1574 err = iort_iommu_configure_id(dev, id_in);
1575 if (err && err != -EPROBE_DEFER)
1576 err = viot_iommu_configure(dev);
1577
1578 /*
1579 * If we have reason to believe the IOMMU driver missed the initial
1580 * iommu_probe_device() call for dev, replay it to get things in order.
1581 */
1582 if (!err && dev->bus && !device_iommu_mapped(dev))
1583 err = iommu_probe_device(dev);
1584
1585 /* Ignore all other errors apart from EPROBE_DEFER */
1586 if (err == -EPROBE_DEFER) {
1587 return ERR_PTR(err);
1588 } else if (err) {
1589 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1590 return NULL;
1591 }
1592 return acpi_iommu_fwspec_ops(dev);
1593}
1594
1595#else /* !CONFIG_IOMMU_API */
1596
1597int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1598 struct fwnode_handle *fwnode,
1599 const struct iommu_ops *ops)
1600{
1601 return -ENODEV;
1602}
1603
1604static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1605 const u32 *id_in)
1606{
1607 return NULL;
1608}
1609
1610#endif /* !CONFIG_IOMMU_API */
1611
1612/**
1613 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1614 * @dev: The pointer to the device
1615 * @attr: device dma attributes
1616 * @input_id: input device id const value pointer
1617 */
1618int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1619 const u32 *input_id)
1620{
1621 const struct iommu_ops *iommu;
1622
1623 if (attr == DEV_DMA_NOT_SUPPORTED) {
1624 set_dma_ops(dev, &dma_dummy_ops);
1625 return 0;
1626 }
1627
1628 acpi_arch_dma_setup(dev);
1629
1630 iommu = acpi_iommu_configure_id(dev, input_id);
1631 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1632 return -EPROBE_DEFER;
1633
1634 arch_setup_dma_ops(dev, 0, U64_MAX,
1635 iommu, attr == DEV_DMA_COHERENT);
1636
1637 return 0;
1638}
1639EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1640
1641static void acpi_init_coherency(struct acpi_device *adev)
1642{
1643 unsigned long long cca = 0;
1644 acpi_status status;
1645 struct acpi_device *parent = acpi_dev_parent(adev);
1646
1647 if (parent && parent->flags.cca_seen) {
1648 /*
1649 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1650 * already saw one.
1651 */
1652 adev->flags.cca_seen = 1;
1653 cca = parent->flags.coherent_dma;
1654 } else {
1655 status = acpi_evaluate_integer(adev->handle, "_CCA",
1656 NULL, &cca);
1657 if (ACPI_SUCCESS(status))
1658 adev->flags.cca_seen = 1;
1659 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1660 /*
1661 * If architecture does not specify that _CCA is
1662 * required for DMA-able devices (e.g. x86),
1663 * we default to _CCA=1.
1664 */
1665 cca = 1;
1666 else
1667 acpi_handle_debug(adev->handle,
1668 "ACPI device is missing _CCA.\n");
1669 }
1670
1671 adev->flags.coherent_dma = cca;
1672}
1673
1674static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1675{
1676 bool *is_serial_bus_slave_p = data;
1677
1678 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1679 return 1;
1680
1681 *is_serial_bus_slave_p = true;
1682
1683 /* no need to do more checking */
1684 return -1;
1685}
1686
1687static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1688{
1689 struct acpi_device *parent = acpi_dev_parent(device);
1690 static const struct acpi_device_id indirect_io_hosts[] = {
1691 {"HISI0191", 0},
1692 {}
1693 };
1694
1695 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1696}
1697
1698static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1699{
1700 struct list_head resource_list;
1701 bool is_serial_bus_slave = false;
1702 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1703 /*
1704 * These devices have multiple SerialBus resources and a client
1705 * device must be instantiated for each of them, each with
1706 * its own device id.
1707 * Normally we only instantiate one client device for the first
1708 * resource, using the ACPI HID as id. These special cases are handled
1709 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1710 * knows which client device id to use for each resource.
1711 */
1712 {"BSG1160", },
1713 {"BSG2150", },
1714 {"CSC3551", },
1715 {"INT33FE", },
1716 {"INT3515", },
1717 /* Non-conforming _HID for Cirrus Logic already released */
1718 {"CLSA0100", },
1719 {"CLSA0101", },
1720 /*
1721 * Some ACPI devs contain SerialBus resources even though they are not
1722 * attached to a serial bus at all.
1723 */
1724 {"MSHW0028", },
1725 /*
1726 * HIDs of device with an UartSerialBusV2 resource for which userspace
1727 * expects a regular tty cdev to be created (instead of the in kernel
1728 * serdev) and which have a kernel driver which expects a platform_dev
1729 * such as the rfkill-gpio driver.
1730 */
1731 {"BCM4752", },
1732 {"LNV4752", },
1733 {}
1734 };
1735
1736 if (acpi_is_indirect_io_slave(device))
1737 return true;
1738
1739 /* Macs use device properties in lieu of _CRS resources */
1740 if (x86_apple_machine &&
1741 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1742 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1743 fwnode_property_present(&device->fwnode, "baud")))
1744 return true;
1745
1746 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1747 return false;
1748
1749 INIT_LIST_HEAD(&resource_list);
1750 acpi_dev_get_resources(device, &resource_list,
1751 acpi_check_serial_bus_slave,
1752 &is_serial_bus_slave);
1753 acpi_dev_free_resource_list(&resource_list);
1754
1755 return is_serial_bus_slave;
1756}
1757
1758void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1759 int type, void (*release)(struct device *))
1760{
1761 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1762
1763 INIT_LIST_HEAD(&device->pnp.ids);
1764 device->device_type = type;
1765 device->handle = handle;
1766 device->dev.parent = parent ? &parent->dev : NULL;
1767 device->dev.release = release;
1768 device->dev.bus = &acpi_bus_type;
1769 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1770 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1771 acpi_device_get_busid(device);
1772 acpi_set_pnp_ids(handle, &device->pnp, type);
1773 acpi_init_properties(device);
1774 acpi_bus_get_flags(device);
1775 device->flags.match_driver = false;
1776 device->flags.initialized = true;
1777 device->flags.enumeration_by_parent =
1778 acpi_device_enumeration_by_parent(device);
1779 acpi_device_clear_enumerated(device);
1780 device_initialize(&device->dev);
1781 dev_set_uevent_suppress(&device->dev, true);
1782 acpi_init_coherency(device);
1783}
1784
1785static void acpi_scan_dep_init(struct acpi_device *adev)
1786{
1787 struct acpi_dep_data *dep;
1788
1789 list_for_each_entry(dep, &acpi_dep_list, node) {
1790 if (dep->consumer == adev->handle) {
1791 if (dep->honor_dep)
1792 adev->flags.honor_deps = 1;
1793
1794 adev->dep_unmet++;
1795 }
1796 }
1797}
1798
1799void acpi_device_add_finalize(struct acpi_device *device)
1800{
1801 dev_set_uevent_suppress(&device->dev, false);
1802 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1803}
1804
1805static void acpi_scan_init_status(struct acpi_device *adev)
1806{
1807 if (acpi_bus_get_status(adev))
1808 acpi_set_device_status(adev, 0);
1809}
1810
1811static int acpi_add_single_object(struct acpi_device **child,
1812 acpi_handle handle, int type, bool dep_init)
1813{
1814 struct acpi_device *device;
1815 bool release_dep_lock = false;
1816 int result;
1817
1818 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1819 if (!device)
1820 return -ENOMEM;
1821
1822 acpi_init_device_object(device, handle, type, acpi_device_release);
1823 /*
1824 * Getting the status is delayed till here so that we can call
1825 * acpi_bus_get_status() and use its quirk handling. Note that
1826 * this must be done before the get power-/wakeup_dev-flags calls.
1827 */
1828 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1829 if (dep_init) {
1830 mutex_lock(&acpi_dep_list_lock);
1831 /*
1832 * Hold the lock until the acpi_tie_acpi_dev() call
1833 * below to prevent concurrent acpi_scan_clear_dep()
1834 * from deleting a dependency list entry without
1835 * updating dep_unmet for the device.
1836 */
1837 release_dep_lock = true;
1838 acpi_scan_dep_init(device);
1839 }
1840 acpi_scan_init_status(device);
1841 }
1842
1843 acpi_bus_get_power_flags(device);
1844 acpi_bus_get_wakeup_device_flags(device);
1845
1846 result = acpi_tie_acpi_dev(device);
1847
1848 if (release_dep_lock)
1849 mutex_unlock(&acpi_dep_list_lock);
1850
1851 if (!result)
1852 result = acpi_device_add(device);
1853
1854 if (result) {
1855 acpi_device_release(&device->dev);
1856 return result;
1857 }
1858
1859 acpi_power_add_remove_device(device, true);
1860 acpi_device_add_finalize(device);
1861
1862 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1863 dev_name(&device->dev), device->dev.parent ?
1864 dev_name(device->dev.parent) : "(null)");
1865
1866 *child = device;
1867 return 0;
1868}
1869
1870static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1871 void *context)
1872{
1873 struct resource *res = context;
1874
1875 if (acpi_dev_resource_memory(ares, res))
1876 return AE_CTRL_TERMINATE;
1877
1878 return AE_OK;
1879}
1880
1881static bool acpi_device_should_be_hidden(acpi_handle handle)
1882{
1883 acpi_status status;
1884 struct resource res;
1885
1886 /* Check if it should ignore the UART device */
1887 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1888 return false;
1889
1890 /*
1891 * The UART device described in SPCR table is assumed to have only one
1892 * memory resource present. So we only look for the first one here.
1893 */
1894 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1895 acpi_get_resource_memory, &res);
1896 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1897 return false;
1898
1899 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1900 &res.start);
1901
1902 return true;
1903}
1904
1905bool acpi_device_is_present(const struct acpi_device *adev)
1906{
1907 return adev->status.present || adev->status.functional;
1908}
1909
1910static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1911 const char *idstr,
1912 const struct acpi_device_id **matchid)
1913{
1914 const struct acpi_device_id *devid;
1915
1916 if (handler->match)
1917 return handler->match(idstr, matchid);
1918
1919 for (devid = handler->ids; devid->id[0]; devid++)
1920 if (!strcmp((char *)devid->id, idstr)) {
1921 if (matchid)
1922 *matchid = devid;
1923
1924 return true;
1925 }
1926
1927 return false;
1928}
1929
1930static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1931 const struct acpi_device_id **matchid)
1932{
1933 struct acpi_scan_handler *handler;
1934
1935 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1936 if (acpi_scan_handler_matching(handler, idstr, matchid))
1937 return handler;
1938
1939 return NULL;
1940}
1941
1942void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1943{
1944 if (!!hotplug->enabled == !!val)
1945 return;
1946
1947 mutex_lock(&acpi_scan_lock);
1948
1949 hotplug->enabled = val;
1950
1951 mutex_unlock(&acpi_scan_lock);
1952}
1953
1954static void acpi_scan_init_hotplug(struct acpi_device *adev)
1955{
1956 struct acpi_hardware_id *hwid;
1957
1958 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1959 acpi_dock_add(adev);
1960 return;
1961 }
1962 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1963 struct acpi_scan_handler *handler;
1964
1965 handler = acpi_scan_match_handler(hwid->id, NULL);
1966 if (handler) {
1967 adev->flags.hotplug_notify = true;
1968 break;
1969 }
1970 }
1971}
1972
1973static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1974{
1975 struct acpi_handle_list dep_devices;
1976 acpi_status status;
1977 u32 count;
1978 int i;
1979
1980 /*
1981 * Check for _HID here to avoid deferring the enumeration of:
1982 * 1. PCI devices.
1983 * 2. ACPI nodes describing USB ports.
1984 * Still, checking for _HID catches more then just these cases ...
1985 */
1986 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1987 !acpi_has_method(handle, "_HID"))
1988 return 0;
1989
1990 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1991 if (ACPI_FAILURE(status)) {
1992 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1993 return 0;
1994 }
1995
1996 for (count = 0, i = 0; i < dep_devices.count; i++) {
1997 struct acpi_device_info *info;
1998 struct acpi_dep_data *dep;
1999 bool skip, honor_dep;
2000
2001 status = acpi_get_object_info(dep_devices.handles[i], &info);
2002 if (ACPI_FAILURE(status)) {
2003 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2004 continue;
2005 }
2006
2007 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2008 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2009 kfree(info);
2010
2011 if (skip)
2012 continue;
2013
2014 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2015 if (!dep)
2016 continue;
2017
2018 count++;
2019
2020 dep->supplier = dep_devices.handles[i];
2021 dep->consumer = handle;
2022 dep->honor_dep = honor_dep;
2023
2024 mutex_lock(&acpi_dep_list_lock);
2025 list_add_tail(&dep->node , &acpi_dep_list);
2026 mutex_unlock(&acpi_dep_list_lock);
2027 }
2028
2029 return count;
2030}
2031
2032static bool acpi_bus_scan_second_pass;
2033
2034static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2035 struct acpi_device **adev_p)
2036{
2037 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2038 acpi_object_type acpi_type;
2039 int type;
2040
2041 if (device)
2042 goto out;
2043
2044 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2045 return AE_OK;
2046
2047 switch (acpi_type) {
2048 case ACPI_TYPE_DEVICE:
2049 if (acpi_device_should_be_hidden(handle))
2050 return AE_OK;
2051
2052 /* Bail out if there are dependencies. */
2053 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2054 acpi_bus_scan_second_pass = true;
2055 return AE_CTRL_DEPTH;
2056 }
2057
2058 fallthrough;
2059 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2060 type = ACPI_BUS_TYPE_DEVICE;
2061 break;
2062
2063 case ACPI_TYPE_PROCESSOR:
2064 type = ACPI_BUS_TYPE_PROCESSOR;
2065 break;
2066
2067 case ACPI_TYPE_THERMAL:
2068 type = ACPI_BUS_TYPE_THERMAL;
2069 break;
2070
2071 case ACPI_TYPE_POWER:
2072 acpi_add_power_resource(handle);
2073 fallthrough;
2074 default:
2075 return AE_OK;
2076 }
2077
2078 /*
2079 * If check_dep is true at this point, the device has no dependencies,
2080 * or the creation of the device object would have been postponed above.
2081 */
2082 acpi_add_single_object(&device, handle, type, !check_dep);
2083 if (!device)
2084 return AE_CTRL_DEPTH;
2085
2086 acpi_scan_init_hotplug(device);
2087
2088out:
2089 if (!*adev_p)
2090 *adev_p = device;
2091
2092 return AE_OK;
2093}
2094
2095static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2096 void *not_used, void **ret_p)
2097{
2098 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2099}
2100
2101static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2102 void *not_used, void **ret_p)
2103{
2104 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2105}
2106
2107static void acpi_default_enumeration(struct acpi_device *device)
2108{
2109 /*
2110 * Do not enumerate devices with enumeration_by_parent flag set as
2111 * they will be enumerated by their respective parents.
2112 */
2113 if (!device->flags.enumeration_by_parent) {
2114 acpi_create_platform_device(device, NULL);
2115 acpi_device_set_enumerated(device);
2116 } else {
2117 blocking_notifier_call_chain(&acpi_reconfig_chain,
2118 ACPI_RECONFIG_DEVICE_ADD, device);
2119 }
2120}
2121
2122static const struct acpi_device_id generic_device_ids[] = {
2123 {ACPI_DT_NAMESPACE_HID, },
2124 {"", },
2125};
2126
2127static int acpi_generic_device_attach(struct acpi_device *adev,
2128 const struct acpi_device_id *not_used)
2129{
2130 /*
2131 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2132 * below can be unconditional.
2133 */
2134 if (adev->data.of_compatible)
2135 acpi_default_enumeration(adev);
2136
2137 return 1;
2138}
2139
2140static struct acpi_scan_handler generic_device_handler = {
2141 .ids = generic_device_ids,
2142 .attach = acpi_generic_device_attach,
2143};
2144
2145static int acpi_scan_attach_handler(struct acpi_device *device)
2146{
2147 struct acpi_hardware_id *hwid;
2148 int ret = 0;
2149
2150 list_for_each_entry(hwid, &device->pnp.ids, list) {
2151 const struct acpi_device_id *devid;
2152 struct acpi_scan_handler *handler;
2153
2154 handler = acpi_scan_match_handler(hwid->id, &devid);
2155 if (handler) {
2156 if (!handler->attach) {
2157 device->pnp.type.platform_id = 0;
2158 continue;
2159 }
2160 device->handler = handler;
2161 ret = handler->attach(device, devid);
2162 if (ret > 0)
2163 break;
2164
2165 device->handler = NULL;
2166 if (ret < 0)
2167 break;
2168 }
2169 }
2170
2171 return ret;
2172}
2173
2174static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2175{
2176 bool skip = !first_pass && device->flags.visited;
2177 acpi_handle ejd;
2178 int ret;
2179
2180 if (skip)
2181 goto ok;
2182
2183 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2184 register_dock_dependent_device(device, ejd);
2185
2186 acpi_bus_get_status(device);
2187 /* Skip devices that are not ready for enumeration (e.g. not present) */
2188 if (!acpi_dev_ready_for_enumeration(device)) {
2189 device->flags.initialized = false;
2190 acpi_device_clear_enumerated(device);
2191 device->flags.power_manageable = 0;
2192 return 0;
2193 }
2194 if (device->handler)
2195 goto ok;
2196
2197 if (!device->flags.initialized) {
2198 device->flags.power_manageable =
2199 device->power.states[ACPI_STATE_D0].flags.valid;
2200 if (acpi_bus_init_power(device))
2201 device->flags.power_manageable = 0;
2202
2203 device->flags.initialized = true;
2204 } else if (device->flags.visited) {
2205 goto ok;
2206 }
2207
2208 ret = acpi_scan_attach_handler(device);
2209 if (ret < 0)
2210 return 0;
2211
2212 device->flags.match_driver = true;
2213 if (ret > 0 && !device->flags.enumeration_by_parent) {
2214 acpi_device_set_enumerated(device);
2215 goto ok;
2216 }
2217
2218 ret = device_attach(&device->dev);
2219 if (ret < 0)
2220 return 0;
2221
2222 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2223 acpi_default_enumeration(device);
2224 else
2225 acpi_device_set_enumerated(device);
2226
2227ok:
2228 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2229
2230 if (!skip && device->handler && device->handler->hotplug.notify_online)
2231 device->handler->hotplug.notify_online(device);
2232
2233 return 0;
2234}
2235
2236static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2237{
2238 struct acpi_device **adev_p = data;
2239 struct acpi_device *adev = *adev_p;
2240
2241 /*
2242 * If we're passed a 'previous' consumer device then we need to skip
2243 * any consumers until we meet the previous one, and then NULL @data
2244 * so the next one can be returned.
2245 */
2246 if (adev) {
2247 if (dep->consumer == adev->handle)
2248 *adev_p = NULL;
2249
2250 return 0;
2251 }
2252
2253 adev = acpi_get_acpi_dev(dep->consumer);
2254 if (adev) {
2255 *(struct acpi_device **)data = adev;
2256 return 1;
2257 }
2258 /* Continue parsing if the device object is not present. */
2259 return 0;
2260}
2261
2262struct acpi_scan_clear_dep_work {
2263 struct work_struct work;
2264 struct acpi_device *adev;
2265};
2266
2267static void acpi_scan_clear_dep_fn(struct work_struct *work)
2268{
2269 struct acpi_scan_clear_dep_work *cdw;
2270
2271 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2272
2273 acpi_scan_lock_acquire();
2274 acpi_bus_attach(cdw->adev, (void *)true);
2275 acpi_scan_lock_release();
2276
2277 acpi_dev_put(cdw->adev);
2278 kfree(cdw);
2279}
2280
2281static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2282{
2283 struct acpi_scan_clear_dep_work *cdw;
2284
2285 if (adev->dep_unmet)
2286 return false;
2287
2288 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2289 if (!cdw)
2290 return false;
2291
2292 cdw->adev = adev;
2293 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2294 /*
2295 * Since the work function may block on the lock until the entire
2296 * initial enumeration of devices is complete, put it into the unbound
2297 * workqueue.
2298 */
2299 queue_work(system_unbound_wq, &cdw->work);
2300
2301 return true;
2302}
2303
2304static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2305{
2306 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2307
2308 if (adev) {
2309 adev->dep_unmet--;
2310 if (!acpi_scan_clear_dep_queue(adev))
2311 acpi_dev_put(adev);
2312 }
2313
2314 list_del(&dep->node);
2315 kfree(dep);
2316
2317 return 0;
2318}
2319
2320/**
2321 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2322 * @handle: The ACPI handle of the supplier device
2323 * @callback: Pointer to the callback function to apply
2324 * @data: Pointer to some data to pass to the callback
2325 *
2326 * The return value of the callback determines this function's behaviour. If 0
2327 * is returned we continue to iterate over acpi_dep_list. If a positive value
2328 * is returned then the loop is broken but this function returns 0. If a
2329 * negative value is returned by the callback then the loop is broken and that
2330 * value is returned as the final error.
2331 */
2332static int acpi_walk_dep_device_list(acpi_handle handle,
2333 int (*callback)(struct acpi_dep_data *, void *),
2334 void *data)
2335{
2336 struct acpi_dep_data *dep, *tmp;
2337 int ret = 0;
2338
2339 mutex_lock(&acpi_dep_list_lock);
2340 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2341 if (dep->supplier == handle) {
2342 ret = callback(dep, data);
2343 if (ret)
2344 break;
2345 }
2346 }
2347 mutex_unlock(&acpi_dep_list_lock);
2348
2349 return ret > 0 ? 0 : ret;
2350}
2351
2352/**
2353 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2354 * @supplier: Pointer to the supplier &struct acpi_device
2355 *
2356 * Clear dependencies on the given device.
2357 */
2358void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2359{
2360 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2361}
2362EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2363
2364/**
2365 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2366 * @device: Pointer to the &struct acpi_device to check
2367 *
2368 * Check if the device is present and has no unmet dependencies.
2369 *
2370 * Return true if the device is ready for enumeratino. Otherwise, return false.
2371 */
2372bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2373{
2374 if (device->flags.honor_deps && device->dep_unmet)
2375 return false;
2376
2377 return acpi_device_is_present(device);
2378}
2379EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2380
2381/**
2382 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2383 * @supplier: Pointer to the dependee device
2384 * @start: Pointer to the current dependent device
2385 *
2386 * Returns the next &struct acpi_device which declares itself dependent on
2387 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2388 *
2389 * If the returned adev is not passed as @start to this function, the caller is
2390 * responsible for putting the reference to adev when it is no longer needed.
2391 */
2392struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2393 struct acpi_device *start)
2394{
2395 struct acpi_device *adev = start;
2396
2397 acpi_walk_dep_device_list(supplier->handle,
2398 acpi_dev_get_next_consumer_dev_cb, &adev);
2399
2400 acpi_dev_put(start);
2401
2402 if (adev == start)
2403 return NULL;
2404
2405 return adev;
2406}
2407EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2408
2409/**
2410 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2411 * @handle: Root of the namespace scope to scan.
2412 *
2413 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2414 * found devices.
2415 *
2416 * If no devices were found, -ENODEV is returned, but it does not mean that
2417 * there has been a real error. There just have been no suitable ACPI objects
2418 * in the table trunk from which the kernel could create a device and add an
2419 * appropriate driver.
2420 *
2421 * Must be called under acpi_scan_lock.
2422 */
2423int acpi_bus_scan(acpi_handle handle)
2424{
2425 struct acpi_device *device = NULL;
2426
2427 acpi_bus_scan_second_pass = false;
2428
2429 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2430
2431 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2432 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2433 acpi_bus_check_add_1, NULL, NULL,
2434 (void **)&device);
2435
2436 if (!device)
2437 return -ENODEV;
2438
2439 acpi_bus_attach(device, (void *)true);
2440
2441 if (!acpi_bus_scan_second_pass)
2442 return 0;
2443
2444 /* Pass 2: Enumerate all of the remaining devices. */
2445
2446 device = NULL;
2447
2448 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2449 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2450 acpi_bus_check_add_2, NULL, NULL,
2451 (void **)&device);
2452
2453 acpi_bus_attach(device, NULL);
2454
2455 return 0;
2456}
2457EXPORT_SYMBOL(acpi_bus_scan);
2458
2459static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2460{
2461 struct acpi_scan_handler *handler = adev->handler;
2462
2463 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2464
2465 adev->flags.match_driver = false;
2466 if (handler) {
2467 if (handler->detach)
2468 handler->detach(adev);
2469
2470 adev->handler = NULL;
2471 } else {
2472 device_release_driver(&adev->dev);
2473 }
2474 /*
2475 * Most likely, the device is going away, so put it into D3cold before
2476 * that.
2477 */
2478 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2479 adev->flags.initialized = false;
2480 acpi_device_clear_enumerated(adev);
2481
2482 return 0;
2483}
2484
2485/**
2486 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2487 * @adev: Root of the ACPI namespace scope to walk.
2488 *
2489 * Must be called under acpi_scan_lock.
2490 */
2491void acpi_bus_trim(struct acpi_device *adev)
2492{
2493 acpi_bus_trim_one(adev, NULL);
2494}
2495EXPORT_SYMBOL_GPL(acpi_bus_trim);
2496
2497int acpi_bus_register_early_device(int type)
2498{
2499 struct acpi_device *device = NULL;
2500 int result;
2501
2502 result = acpi_add_single_object(&device, NULL, type, false);
2503 if (result)
2504 return result;
2505
2506 device->flags.match_driver = true;
2507 return device_attach(&device->dev);
2508}
2509EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2510
2511static void acpi_bus_scan_fixed(void)
2512{
2513 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2514 struct acpi_device *adev = NULL;
2515
2516 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2517 false);
2518 if (adev) {
2519 adev->flags.match_driver = true;
2520 if (device_attach(&adev->dev) >= 0)
2521 device_init_wakeup(&adev->dev, true);
2522 else
2523 dev_dbg(&adev->dev, "No driver\n");
2524 }
2525 }
2526
2527 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2528 struct acpi_device *adev = NULL;
2529
2530 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2531 false);
2532 if (adev) {
2533 adev->flags.match_driver = true;
2534 if (device_attach(&adev->dev) < 0)
2535 dev_dbg(&adev->dev, "No driver\n");
2536 }
2537 }
2538}
2539
2540static void __init acpi_get_spcr_uart_addr(void)
2541{
2542 acpi_status status;
2543 struct acpi_table_spcr *spcr_ptr;
2544
2545 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2546 (struct acpi_table_header **)&spcr_ptr);
2547 if (ACPI_FAILURE(status)) {
2548 pr_warn("STAO table present, but SPCR is missing\n");
2549 return;
2550 }
2551
2552 spcr_uart_addr = spcr_ptr->serial_port.address;
2553 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2554}
2555
2556static bool acpi_scan_initialized;
2557
2558void __init acpi_scan_init(void)
2559{
2560 acpi_status status;
2561 struct acpi_table_stao *stao_ptr;
2562
2563 acpi_pci_root_init();
2564 acpi_pci_link_init();
2565 acpi_processor_init();
2566 acpi_platform_init();
2567 acpi_lpss_init();
2568 acpi_apd_init();
2569 acpi_cmos_rtc_init();
2570 acpi_container_init();
2571 acpi_memory_hotplug_init();
2572 acpi_watchdog_init();
2573 acpi_pnp_init();
2574 acpi_int340x_thermal_init();
2575 acpi_amba_init();
2576 acpi_init_lpit();
2577
2578 acpi_scan_add_handler(&generic_device_handler);
2579
2580 /*
2581 * If there is STAO table, check whether it needs to ignore the UART
2582 * device in SPCR table.
2583 */
2584 status = acpi_get_table(ACPI_SIG_STAO, 0,
2585 (struct acpi_table_header **)&stao_ptr);
2586 if (ACPI_SUCCESS(status)) {
2587 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2588 pr_info("STAO Name List not yet supported.\n");
2589
2590 if (stao_ptr->ignore_uart)
2591 acpi_get_spcr_uart_addr();
2592
2593 acpi_put_table((struct acpi_table_header *)stao_ptr);
2594 }
2595
2596 acpi_gpe_apply_masked_gpes();
2597 acpi_update_all_gpes();
2598
2599 /*
2600 * Although we call __add_memory() that is documented to require the
2601 * device_hotplug_lock, it is not necessary here because this is an
2602 * early code when userspace or any other code path cannot trigger
2603 * hotplug/hotunplug operations.
2604 */
2605 mutex_lock(&acpi_scan_lock);
2606 /*
2607 * Enumerate devices in the ACPI namespace.
2608 */
2609 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2610 goto unlock;
2611
2612 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2613 if (!acpi_root)
2614 goto unlock;
2615
2616 /* Fixed feature devices do not exist on HW-reduced platform */
2617 if (!acpi_gbl_reduced_hardware)
2618 acpi_bus_scan_fixed();
2619
2620 acpi_turn_off_unused_power_resources();
2621
2622 acpi_scan_initialized = true;
2623
2624unlock:
2625 mutex_unlock(&acpi_scan_lock);
2626}
2627
2628static struct acpi_probe_entry *ape;
2629static int acpi_probe_count;
2630static DEFINE_MUTEX(acpi_probe_mutex);
2631
2632static int __init acpi_match_madt(union acpi_subtable_headers *header,
2633 const unsigned long end)
2634{
2635 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2636 if (!ape->probe_subtbl(header, end))
2637 acpi_probe_count++;
2638
2639 return 0;
2640}
2641
2642int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2643{
2644 int count = 0;
2645
2646 if (acpi_disabled)
2647 return 0;
2648
2649 mutex_lock(&acpi_probe_mutex);
2650 for (ape = ap_head; nr; ape++, nr--) {
2651 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2652 acpi_probe_count = 0;
2653 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2654 count += acpi_probe_count;
2655 } else {
2656 int res;
2657 res = acpi_table_parse(ape->id, ape->probe_table);
2658 if (!res)
2659 count++;
2660 }
2661 }
2662 mutex_unlock(&acpi_probe_mutex);
2663
2664 return count;
2665}
2666
2667static void acpi_table_events_fn(struct work_struct *work)
2668{
2669 acpi_scan_lock_acquire();
2670 acpi_bus_scan(ACPI_ROOT_OBJECT);
2671 acpi_scan_lock_release();
2672
2673 kfree(work);
2674}
2675
2676void acpi_scan_table_notify(void)
2677{
2678 struct work_struct *work;
2679
2680 if (!acpi_scan_initialized)
2681 return;
2682
2683 work = kmalloc(sizeof(*work), GFP_KERNEL);
2684 if (!work)
2685 return;
2686
2687 INIT_WORK(work, acpi_table_events_fn);
2688 schedule_work(work);
2689}
2690
2691int acpi_reconfig_notifier_register(struct notifier_block *nb)
2692{
2693 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2694}
2695EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2696
2697int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2698{
2699 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2700}
2701EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);