Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1994  Linus Torvalds
   4 *
   5 *  Cyrix stuff, June 1998 by:
   6 *	- Rafael R. Reilova (moved everything from head.S),
   7 *        <rreilova@ececs.uc.edu>
   8 *	- Channing Corn (tests & fixes),
   9 *	- Andrew D. Balsa (code cleanup).
  10 */
  11#include <linux/init.h>
  12#include <linux/cpu.h>
  13#include <linux/module.h>
  14#include <linux/nospec.h>
  15#include <linux/prctl.h>
  16#include <linux/sched/smt.h>
  17#include <linux/pgtable.h>
  18#include <linux/bpf.h>
  19
  20#include <asm/spec-ctrl.h>
  21#include <asm/cmdline.h>
  22#include <asm/bugs.h>
  23#include <asm/processor.h>
  24#include <asm/processor-flags.h>
  25#include <asm/fpu/api.h>
  26#include <asm/msr.h>
  27#include <asm/vmx.h>
  28#include <asm/paravirt.h>
  29#include <asm/cpu_device_id.h>
  30#include <asm/e820/api.h>
  31#include <asm/hypervisor.h>
  32#include <asm/tlbflush.h>
  33#include <asm/cpu.h>
  34
  35#include "cpu.h"
  36
  37static void __init spectre_v1_select_mitigation(void);
  38static void __init spectre_v2_select_mitigation(void);
  39static void __init retbleed_select_mitigation(void);
  40static void __init spectre_v2_user_select_mitigation(void);
  41static void __init ssb_select_mitigation(void);
  42static void __init l1tf_select_mitigation(void);
  43static void __init mds_select_mitigation(void);
  44static void __init md_clear_update_mitigation(void);
  45static void __init md_clear_select_mitigation(void);
  46static void __init taa_select_mitigation(void);
  47static void __init mmio_select_mitigation(void);
  48static void __init srbds_select_mitigation(void);
  49static void __init l1d_flush_select_mitigation(void);
  50static void __init srso_select_mitigation(void);
  51static void __init gds_select_mitigation(void);
  52
  53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
  54u64 x86_spec_ctrl_base;
  55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
  56
  57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
  58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
  59EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
  60
  61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
  62EXPORT_SYMBOL_GPL(x86_pred_cmd);
  63
  64static u64 __ro_after_init x86_arch_cap_msr;
  65
  66static DEFINE_MUTEX(spec_ctrl_mutex);
  67
  68void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
  69
  70/* Update SPEC_CTRL MSR and its cached copy unconditionally */
  71static void update_spec_ctrl(u64 val)
  72{
  73	this_cpu_write(x86_spec_ctrl_current, val);
  74	wrmsrl(MSR_IA32_SPEC_CTRL, val);
  75}
  76
  77/*
  78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
  79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
  80 */
  81void update_spec_ctrl_cond(u64 val)
  82{
  83	if (this_cpu_read(x86_spec_ctrl_current) == val)
  84		return;
  85
  86	this_cpu_write(x86_spec_ctrl_current, val);
  87
  88	/*
  89	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
  90	 * forced the update can be delayed until that time.
  91	 */
  92	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
  93		wrmsrl(MSR_IA32_SPEC_CTRL, val);
  94}
  95
  96noinstr u64 spec_ctrl_current(void)
  97{
  98	return this_cpu_read(x86_spec_ctrl_current);
  99}
 100EXPORT_SYMBOL_GPL(spec_ctrl_current);
 101
 102/*
 103 * AMD specific MSR info for Speculative Store Bypass control.
 104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
 105 */
 106u64 __ro_after_init x86_amd_ls_cfg_base;
 107u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
 108
 109/* Control conditional STIBP in switch_to() */
 110DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
 111/* Control conditional IBPB in switch_mm() */
 112DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
 113/* Control unconditional IBPB in switch_mm() */
 114DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
 115
 116/* Control MDS CPU buffer clear before idling (halt, mwait) */
 117DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
 118EXPORT_SYMBOL_GPL(mds_idle_clear);
 119
 120/*
 121 * Controls whether l1d flush based mitigations are enabled,
 122 * based on hw features and admin setting via boot parameter
 123 * defaults to false
 124 */
 125DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
 126
 127/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
 128DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
 129EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
 130
 131void __init cpu_select_mitigations(void)
 132{
 133	/*
 134	 * Read the SPEC_CTRL MSR to account for reserved bits which may
 135	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
 136	 * init code as it is not enumerated and depends on the family.
 137	 */
 138	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
 139		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
 140
 141		/*
 142		 * Previously running kernel (kexec), may have some controls
 143		 * turned ON. Clear them and let the mitigations setup below
 144		 * rediscover them based on configuration.
 145		 */
 146		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
 147	}
 148
 149	x86_arch_cap_msr = x86_read_arch_cap_msr();
 150
 151	/* Select the proper CPU mitigations before patching alternatives: */
 152	spectre_v1_select_mitigation();
 153	spectre_v2_select_mitigation();
 154	/*
 155	 * retbleed_select_mitigation() relies on the state set by
 156	 * spectre_v2_select_mitigation(); specifically it wants to know about
 157	 * spectre_v2=ibrs.
 158	 */
 159	retbleed_select_mitigation();
 160	/*
 161	 * spectre_v2_user_select_mitigation() relies on the state set by
 162	 * retbleed_select_mitigation(); specifically the STIBP selection is
 163	 * forced for UNRET or IBPB.
 164	 */
 165	spectre_v2_user_select_mitigation();
 166	ssb_select_mitigation();
 167	l1tf_select_mitigation();
 168	md_clear_select_mitigation();
 169	srbds_select_mitigation();
 170	l1d_flush_select_mitigation();
 171
 172	/*
 173	 * srso_select_mitigation() depends and must run after
 174	 * retbleed_select_mitigation().
 175	 */
 176	srso_select_mitigation();
 177	gds_select_mitigation();
 178}
 179
 180/*
 181 * NOTE: This function is *only* called for SVM, since Intel uses
 182 * MSR_IA32_SPEC_CTRL for SSBD.
 183 */
 184void
 185x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
 186{
 187	u64 guestval, hostval;
 188	struct thread_info *ti = current_thread_info();
 189
 190	/*
 191	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
 192	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
 193	 */
 194	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 195	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
 196		return;
 197
 198	/*
 199	 * If the host has SSBD mitigation enabled, force it in the host's
 200	 * virtual MSR value. If its not permanently enabled, evaluate
 201	 * current's TIF_SSBD thread flag.
 202	 */
 203	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
 204		hostval = SPEC_CTRL_SSBD;
 205	else
 206		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
 207
 208	/* Sanitize the guest value */
 209	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
 210
 211	if (hostval != guestval) {
 212		unsigned long tif;
 213
 214		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
 215				 ssbd_spec_ctrl_to_tif(hostval);
 216
 217		speculation_ctrl_update(tif);
 218	}
 219}
 220EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
 221
 222static void x86_amd_ssb_disable(void)
 223{
 224	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
 225
 226	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
 227		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
 228	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 229		wrmsrl(MSR_AMD64_LS_CFG, msrval);
 230}
 231
 232#undef pr_fmt
 233#define pr_fmt(fmt)	"MDS: " fmt
 234
 235/* Default mitigation for MDS-affected CPUs */
 236static enum mds_mitigations mds_mitigation __ro_after_init =
 237	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_FULL : MDS_MITIGATION_OFF;
 238static bool mds_nosmt __ro_after_init = false;
 239
 240static const char * const mds_strings[] = {
 241	[MDS_MITIGATION_OFF]	= "Vulnerable",
 242	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
 243	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 244};
 245
 246static void __init mds_select_mitigation(void)
 247{
 248	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
 249		mds_mitigation = MDS_MITIGATION_OFF;
 250		return;
 251	}
 252
 253	if (mds_mitigation == MDS_MITIGATION_FULL) {
 254		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
 255			mds_mitigation = MDS_MITIGATION_VMWERV;
 256
 257		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 258
 259		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
 260		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
 261			cpu_smt_disable(false);
 262	}
 263}
 264
 265static int __init mds_cmdline(char *str)
 266{
 267	if (!boot_cpu_has_bug(X86_BUG_MDS))
 268		return 0;
 269
 270	if (!str)
 271		return -EINVAL;
 272
 273	if (!strcmp(str, "off"))
 274		mds_mitigation = MDS_MITIGATION_OFF;
 275	else if (!strcmp(str, "full"))
 276		mds_mitigation = MDS_MITIGATION_FULL;
 277	else if (!strcmp(str, "full,nosmt")) {
 278		mds_mitigation = MDS_MITIGATION_FULL;
 279		mds_nosmt = true;
 280	}
 281
 282	return 0;
 283}
 284early_param("mds", mds_cmdline);
 285
 286#undef pr_fmt
 287#define pr_fmt(fmt)	"TAA: " fmt
 288
 289enum taa_mitigations {
 290	TAA_MITIGATION_OFF,
 291	TAA_MITIGATION_UCODE_NEEDED,
 292	TAA_MITIGATION_VERW,
 293	TAA_MITIGATION_TSX_DISABLED,
 294};
 295
 296/* Default mitigation for TAA-affected CPUs */
 297static enum taa_mitigations taa_mitigation __ro_after_init =
 298	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_VERW : TAA_MITIGATION_OFF;
 299static bool taa_nosmt __ro_after_init;
 300
 301static const char * const taa_strings[] = {
 302	[TAA_MITIGATION_OFF]		= "Vulnerable",
 303	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 304	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 305	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
 306};
 307
 308static void __init taa_select_mitigation(void)
 309{
 310	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
 311		taa_mitigation = TAA_MITIGATION_OFF;
 312		return;
 313	}
 314
 315	/* TSX previously disabled by tsx=off */
 316	if (!boot_cpu_has(X86_FEATURE_RTM)) {
 317		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
 318		return;
 319	}
 320
 321	if (cpu_mitigations_off()) {
 322		taa_mitigation = TAA_MITIGATION_OFF;
 323		return;
 324	}
 325
 326	/*
 327	 * TAA mitigation via VERW is turned off if both
 328	 * tsx_async_abort=off and mds=off are specified.
 329	 */
 330	if (taa_mitigation == TAA_MITIGATION_OFF &&
 331	    mds_mitigation == MDS_MITIGATION_OFF)
 332		return;
 333
 334	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
 335		taa_mitigation = TAA_MITIGATION_VERW;
 336	else
 337		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 338
 339	/*
 340	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
 341	 * A microcode update fixes this behavior to clear CPU buffers. It also
 342	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
 343	 * ARCH_CAP_TSX_CTRL_MSR bit.
 344	 *
 345	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
 346	 * update is required.
 347	 */
 348	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
 349	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
 350		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 351
 352	/*
 353	 * TSX is enabled, select alternate mitigation for TAA which is
 354	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
 355	 *
 356	 * For guests that can't determine whether the correct microcode is
 357	 * present on host, enable the mitigation for UCODE_NEEDED as well.
 358	 */
 359	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 360
 361	if (taa_nosmt || cpu_mitigations_auto_nosmt())
 362		cpu_smt_disable(false);
 363}
 364
 365static int __init tsx_async_abort_parse_cmdline(char *str)
 366{
 367	if (!boot_cpu_has_bug(X86_BUG_TAA))
 368		return 0;
 369
 370	if (!str)
 371		return -EINVAL;
 372
 373	if (!strcmp(str, "off")) {
 374		taa_mitigation = TAA_MITIGATION_OFF;
 375	} else if (!strcmp(str, "full")) {
 376		taa_mitigation = TAA_MITIGATION_VERW;
 377	} else if (!strcmp(str, "full,nosmt")) {
 378		taa_mitigation = TAA_MITIGATION_VERW;
 379		taa_nosmt = true;
 380	}
 381
 382	return 0;
 383}
 384early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
 385
 386#undef pr_fmt
 387#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
 388
 389enum mmio_mitigations {
 390	MMIO_MITIGATION_OFF,
 391	MMIO_MITIGATION_UCODE_NEEDED,
 392	MMIO_MITIGATION_VERW,
 393};
 394
 395/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
 396static enum mmio_mitigations mmio_mitigation __ro_after_init =
 397	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ? MMIO_MITIGATION_VERW : MMIO_MITIGATION_OFF;
 398static bool mmio_nosmt __ro_after_init = false;
 399
 400static const char * const mmio_strings[] = {
 401	[MMIO_MITIGATION_OFF]		= "Vulnerable",
 402	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 403	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 404};
 405
 406static void __init mmio_select_mitigation(void)
 407{
 408	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
 409	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
 410	     cpu_mitigations_off()) {
 411		mmio_mitigation = MMIO_MITIGATION_OFF;
 412		return;
 413	}
 414
 415	if (mmio_mitigation == MMIO_MITIGATION_OFF)
 416		return;
 417
 418	/*
 419	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
 420	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
 421	 */
 422	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
 423					      boot_cpu_has(X86_FEATURE_RTM)))
 424		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 425
 426	/*
 427	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
 428	 * mitigations, disable KVM-only mitigation in that case.
 429	 */
 430	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
 431		static_branch_disable(&mmio_stale_data_clear);
 432	else
 433		static_branch_enable(&mmio_stale_data_clear);
 434
 435	/*
 436	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
 437	 * be propagated to uncore buffers, clearing the Fill buffers on idle
 438	 * is required irrespective of SMT state.
 439	 */
 440	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
 441		static_branch_enable(&mds_idle_clear);
 442
 443	/*
 444	 * Check if the system has the right microcode.
 445	 *
 446	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
 447	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
 448	 * affected systems.
 449	 */
 450	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
 451	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
 452	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
 453	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
 454		mmio_mitigation = MMIO_MITIGATION_VERW;
 455	else
 456		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
 457
 458	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
 459		cpu_smt_disable(false);
 460}
 461
 462static int __init mmio_stale_data_parse_cmdline(char *str)
 463{
 464	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 465		return 0;
 466
 467	if (!str)
 468		return -EINVAL;
 469
 470	if (!strcmp(str, "off")) {
 471		mmio_mitigation = MMIO_MITIGATION_OFF;
 472	} else if (!strcmp(str, "full")) {
 473		mmio_mitigation = MMIO_MITIGATION_VERW;
 474	} else if (!strcmp(str, "full,nosmt")) {
 475		mmio_mitigation = MMIO_MITIGATION_VERW;
 476		mmio_nosmt = true;
 477	}
 478
 479	return 0;
 480}
 481early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
 482
 483#undef pr_fmt
 484#define pr_fmt(fmt)	"Register File Data Sampling: " fmt
 485
 486enum rfds_mitigations {
 487	RFDS_MITIGATION_OFF,
 488	RFDS_MITIGATION_VERW,
 489	RFDS_MITIGATION_UCODE_NEEDED,
 490};
 491
 492/* Default mitigation for Register File Data Sampling */
 493static enum rfds_mitigations rfds_mitigation __ro_after_init =
 494	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
 495
 496static const char * const rfds_strings[] = {
 497	[RFDS_MITIGATION_OFF]			= "Vulnerable",
 498	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
 499	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
 500};
 501
 502static void __init rfds_select_mitigation(void)
 503{
 504	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
 505		rfds_mitigation = RFDS_MITIGATION_OFF;
 506		return;
 507	}
 508	if (rfds_mitigation == RFDS_MITIGATION_OFF)
 509		return;
 510
 511	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
 512		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 513	else
 514		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
 515}
 516
 517static __init int rfds_parse_cmdline(char *str)
 518{
 519	if (!str)
 520		return -EINVAL;
 521
 522	if (!boot_cpu_has_bug(X86_BUG_RFDS))
 523		return 0;
 524
 525	if (!strcmp(str, "off"))
 526		rfds_mitigation = RFDS_MITIGATION_OFF;
 527	else if (!strcmp(str, "on"))
 528		rfds_mitigation = RFDS_MITIGATION_VERW;
 529
 530	return 0;
 531}
 532early_param("reg_file_data_sampling", rfds_parse_cmdline);
 533
 534#undef pr_fmt
 535#define pr_fmt(fmt)     "" fmt
 536
 537static void __init md_clear_update_mitigation(void)
 538{
 539	if (cpu_mitigations_off())
 540		return;
 541
 542	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
 543		goto out;
 544
 545	/*
 546	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
 547	 * Stale Data mitigation, if necessary.
 548	 */
 549	if (mds_mitigation == MDS_MITIGATION_OFF &&
 550	    boot_cpu_has_bug(X86_BUG_MDS)) {
 551		mds_mitigation = MDS_MITIGATION_FULL;
 552		mds_select_mitigation();
 553	}
 554	if (taa_mitigation == TAA_MITIGATION_OFF &&
 555	    boot_cpu_has_bug(X86_BUG_TAA)) {
 556		taa_mitigation = TAA_MITIGATION_VERW;
 557		taa_select_mitigation();
 558	}
 559	/*
 560	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
 561	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
 562	 */
 563	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
 564		mmio_mitigation = MMIO_MITIGATION_VERW;
 565		mmio_select_mitigation();
 566	}
 567	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
 568	    boot_cpu_has_bug(X86_BUG_RFDS)) {
 569		rfds_mitigation = RFDS_MITIGATION_VERW;
 570		rfds_select_mitigation();
 571	}
 572out:
 573	if (boot_cpu_has_bug(X86_BUG_MDS))
 574		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
 575	if (boot_cpu_has_bug(X86_BUG_TAA))
 576		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
 577	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 578		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
 579	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
 580		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
 581	if (boot_cpu_has_bug(X86_BUG_RFDS))
 582		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
 583}
 584
 585static void __init md_clear_select_mitigation(void)
 586{
 587	mds_select_mitigation();
 588	taa_select_mitigation();
 589	mmio_select_mitigation();
 590	rfds_select_mitigation();
 591
 592	/*
 593	 * As these mitigations are inter-related and rely on VERW instruction
 594	 * to clear the microarchitural buffers, update and print their status
 595	 * after mitigation selection is done for each of these vulnerabilities.
 596	 */
 597	md_clear_update_mitigation();
 598}
 599
 600#undef pr_fmt
 601#define pr_fmt(fmt)	"SRBDS: " fmt
 602
 603enum srbds_mitigations {
 604	SRBDS_MITIGATION_OFF,
 605	SRBDS_MITIGATION_UCODE_NEEDED,
 606	SRBDS_MITIGATION_FULL,
 607	SRBDS_MITIGATION_TSX_OFF,
 608	SRBDS_MITIGATION_HYPERVISOR,
 609};
 610
 611static enum srbds_mitigations srbds_mitigation __ro_after_init =
 612	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_FULL : SRBDS_MITIGATION_OFF;
 613
 614static const char * const srbds_strings[] = {
 615	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
 616	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 617	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 618	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
 619	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 620};
 621
 622static bool srbds_off;
 623
 624void update_srbds_msr(void)
 625{
 626	u64 mcu_ctrl;
 627
 628	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 629		return;
 630
 631	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 632		return;
 633
 634	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
 635		return;
 636
 637	/*
 638	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
 639	 * being disabled and it hasn't received the SRBDS MSR microcode.
 640	 */
 641	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 642		return;
 643
 644	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 645
 646	switch (srbds_mitigation) {
 647	case SRBDS_MITIGATION_OFF:
 648	case SRBDS_MITIGATION_TSX_OFF:
 649		mcu_ctrl |= RNGDS_MITG_DIS;
 650		break;
 651	case SRBDS_MITIGATION_FULL:
 652		mcu_ctrl &= ~RNGDS_MITG_DIS;
 653		break;
 654	default:
 655		break;
 656	}
 657
 658	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 659}
 660
 661static void __init srbds_select_mitigation(void)
 662{
 663	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 664		return;
 665
 666	/*
 667	 * Check to see if this is one of the MDS_NO systems supporting TSX that
 668	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
 669	 * by Processor MMIO Stale Data vulnerability.
 670	 */
 671	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
 672	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 673		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
 674	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 675		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
 676	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 677		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
 678	else if (cpu_mitigations_off() || srbds_off)
 679		srbds_mitigation = SRBDS_MITIGATION_OFF;
 680
 681	update_srbds_msr();
 682	pr_info("%s\n", srbds_strings[srbds_mitigation]);
 683}
 684
 685static int __init srbds_parse_cmdline(char *str)
 686{
 687	if (!str)
 688		return -EINVAL;
 689
 690	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 691		return 0;
 692
 693	srbds_off = !strcmp(str, "off");
 694	return 0;
 695}
 696early_param("srbds", srbds_parse_cmdline);
 697
 698#undef pr_fmt
 699#define pr_fmt(fmt)     "L1D Flush : " fmt
 700
 701enum l1d_flush_mitigations {
 702	L1D_FLUSH_OFF = 0,
 703	L1D_FLUSH_ON,
 704};
 705
 706static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
 707
 708static void __init l1d_flush_select_mitigation(void)
 709{
 710	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
 711		return;
 712
 713	static_branch_enable(&switch_mm_cond_l1d_flush);
 714	pr_info("Conditional flush on switch_mm() enabled\n");
 715}
 716
 717static int __init l1d_flush_parse_cmdline(char *str)
 718{
 719	if (!strcmp(str, "on"))
 720		l1d_flush_mitigation = L1D_FLUSH_ON;
 721
 722	return 0;
 723}
 724early_param("l1d_flush", l1d_flush_parse_cmdline);
 725
 726#undef pr_fmt
 727#define pr_fmt(fmt)	"GDS: " fmt
 728
 729enum gds_mitigations {
 730	GDS_MITIGATION_OFF,
 731	GDS_MITIGATION_UCODE_NEEDED,
 732	GDS_MITIGATION_FORCE,
 733	GDS_MITIGATION_FULL,
 734	GDS_MITIGATION_FULL_LOCKED,
 735	GDS_MITIGATION_HYPERVISOR,
 736};
 737
 738static enum gds_mitigations gds_mitigation __ro_after_init =
 739	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_FULL : GDS_MITIGATION_OFF;
 
 
 
 740
 741static const char * const gds_strings[] = {
 742	[GDS_MITIGATION_OFF]		= "Vulnerable",
 743	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 744	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
 745	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 746	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
 747	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 748};
 749
 750bool gds_ucode_mitigated(void)
 751{
 752	return (gds_mitigation == GDS_MITIGATION_FULL ||
 753		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
 754}
 755EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
 756
 757void update_gds_msr(void)
 758{
 759	u64 mcu_ctrl_after;
 760	u64 mcu_ctrl;
 761
 762	switch (gds_mitigation) {
 763	case GDS_MITIGATION_OFF:
 764		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 765		mcu_ctrl |= GDS_MITG_DIS;
 766		break;
 767	case GDS_MITIGATION_FULL_LOCKED:
 768		/*
 769		 * The LOCKED state comes from the boot CPU. APs might not have
 770		 * the same state. Make sure the mitigation is enabled on all
 771		 * CPUs.
 772		 */
 773	case GDS_MITIGATION_FULL:
 774		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 775		mcu_ctrl &= ~GDS_MITG_DIS;
 776		break;
 777	case GDS_MITIGATION_FORCE:
 778	case GDS_MITIGATION_UCODE_NEEDED:
 779	case GDS_MITIGATION_HYPERVISOR:
 780		return;
 781	}
 782
 783	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 784
 785	/*
 786	 * Check to make sure that the WRMSR value was not ignored. Writes to
 787	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
 788	 * processor was not.
 789	 */
 790	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
 791	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
 792}
 793
 794static void __init gds_select_mitigation(void)
 795{
 796	u64 mcu_ctrl;
 797
 798	if (!boot_cpu_has_bug(X86_BUG_GDS))
 799		return;
 800
 801	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 802		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
 803		goto out;
 804	}
 805
 806	if (cpu_mitigations_off())
 807		gds_mitigation = GDS_MITIGATION_OFF;
 808	/* Will verify below that mitigation _can_ be disabled */
 809
 810	/* No microcode */
 811	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
 812		if (gds_mitigation == GDS_MITIGATION_FORCE) {
 813			/*
 814			 * This only needs to be done on the boot CPU so do it
 815			 * here rather than in update_gds_msr()
 816			 */
 817			setup_clear_cpu_cap(X86_FEATURE_AVX);
 818			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
 819		} else {
 820			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
 821		}
 822		goto out;
 823	}
 824
 825	/* Microcode has mitigation, use it */
 826	if (gds_mitigation == GDS_MITIGATION_FORCE)
 827		gds_mitigation = GDS_MITIGATION_FULL;
 828
 829	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 830	if (mcu_ctrl & GDS_MITG_LOCKED) {
 831		if (gds_mitigation == GDS_MITIGATION_OFF)
 832			pr_warn("Mitigation locked. Disable failed.\n");
 833
 834		/*
 835		 * The mitigation is selected from the boot CPU. All other CPUs
 836		 * _should_ have the same state. If the boot CPU isn't locked
 837		 * but others are then update_gds_msr() will WARN() of the state
 838		 * mismatch. If the boot CPU is locked update_gds_msr() will
 839		 * ensure the other CPUs have the mitigation enabled.
 840		 */
 841		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
 842	}
 843
 844	update_gds_msr();
 845out:
 846	pr_info("%s\n", gds_strings[gds_mitigation]);
 847}
 848
 849static int __init gds_parse_cmdline(char *str)
 850{
 851	if (!str)
 852		return -EINVAL;
 853
 854	if (!boot_cpu_has_bug(X86_BUG_GDS))
 855		return 0;
 856
 857	if (!strcmp(str, "off"))
 858		gds_mitigation = GDS_MITIGATION_OFF;
 859	else if (!strcmp(str, "force"))
 860		gds_mitigation = GDS_MITIGATION_FORCE;
 861
 862	return 0;
 863}
 864early_param("gather_data_sampling", gds_parse_cmdline);
 865
 866#undef pr_fmt
 867#define pr_fmt(fmt)     "Spectre V1 : " fmt
 868
 869enum spectre_v1_mitigation {
 870	SPECTRE_V1_MITIGATION_NONE,
 871	SPECTRE_V1_MITIGATION_AUTO,
 872};
 873
 874static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
 875	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
 876		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
 877
 878static const char * const spectre_v1_strings[] = {
 879	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
 880	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
 881};
 882
 883/*
 884 * Does SMAP provide full mitigation against speculative kernel access to
 885 * userspace?
 886 */
 887static bool smap_works_speculatively(void)
 888{
 889	if (!boot_cpu_has(X86_FEATURE_SMAP))
 890		return false;
 891
 892	/*
 893	 * On CPUs which are vulnerable to Meltdown, SMAP does not
 894	 * prevent speculative access to user data in the L1 cache.
 895	 * Consider SMAP to be non-functional as a mitigation on these
 896	 * CPUs.
 897	 */
 898	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
 899		return false;
 900
 901	return true;
 902}
 903
 904static void __init spectre_v1_select_mitigation(void)
 905{
 906	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
 907		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 908		return;
 909	}
 910
 911	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
 912		/*
 913		 * With Spectre v1, a user can speculatively control either
 914		 * path of a conditional swapgs with a user-controlled GS
 915		 * value.  The mitigation is to add lfences to both code paths.
 916		 *
 917		 * If FSGSBASE is enabled, the user can put a kernel address in
 918		 * GS, in which case SMAP provides no protection.
 919		 *
 920		 * If FSGSBASE is disabled, the user can only put a user space
 921		 * address in GS.  That makes an attack harder, but still
 922		 * possible if there's no SMAP protection.
 923		 */
 924		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 925		    !smap_works_speculatively()) {
 926			/*
 927			 * Mitigation can be provided from SWAPGS itself or
 928			 * PTI as the CR3 write in the Meltdown mitigation
 929			 * is serializing.
 930			 *
 931			 * If neither is there, mitigate with an LFENCE to
 932			 * stop speculation through swapgs.
 933			 */
 934			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
 935			    !boot_cpu_has(X86_FEATURE_PTI))
 936				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
 937
 938			/*
 939			 * Enable lfences in the kernel entry (non-swapgs)
 940			 * paths, to prevent user entry from speculatively
 941			 * skipping swapgs.
 942			 */
 943			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
 944		}
 945	}
 946
 947	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
 948}
 949
 950static int __init nospectre_v1_cmdline(char *str)
 951{
 952	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 953	return 0;
 954}
 955early_param("nospectre_v1", nospectre_v1_cmdline);
 956
 957enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
 958
 959#undef pr_fmt
 960#define pr_fmt(fmt)     "RETBleed: " fmt
 961
 962enum retbleed_mitigation {
 963	RETBLEED_MITIGATION_NONE,
 964	RETBLEED_MITIGATION_UNRET,
 965	RETBLEED_MITIGATION_IBPB,
 966	RETBLEED_MITIGATION_IBRS,
 967	RETBLEED_MITIGATION_EIBRS,
 968	RETBLEED_MITIGATION_STUFF,
 969};
 970
 971enum retbleed_mitigation_cmd {
 972	RETBLEED_CMD_OFF,
 973	RETBLEED_CMD_AUTO,
 974	RETBLEED_CMD_UNRET,
 975	RETBLEED_CMD_IBPB,
 976	RETBLEED_CMD_STUFF,
 977};
 978
 979static const char * const retbleed_strings[] = {
 980	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
 981	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
 982	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
 983	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
 984	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
 985	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
 986};
 987
 988static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
 989	RETBLEED_MITIGATION_NONE;
 990static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
 991	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_CMD_AUTO : RETBLEED_CMD_OFF;
 992
 993static int __ro_after_init retbleed_nosmt = false;
 994
 995static int __init retbleed_parse_cmdline(char *str)
 996{
 997	if (!str)
 998		return -EINVAL;
 999
1000	while (str) {
1001		char *next = strchr(str, ',');
1002		if (next) {
1003			*next = 0;
1004			next++;
1005		}
1006
1007		if (!strcmp(str, "off")) {
1008			retbleed_cmd = RETBLEED_CMD_OFF;
1009		} else if (!strcmp(str, "auto")) {
1010			retbleed_cmd = RETBLEED_CMD_AUTO;
1011		} else if (!strcmp(str, "unret")) {
1012			retbleed_cmd = RETBLEED_CMD_UNRET;
1013		} else if (!strcmp(str, "ibpb")) {
1014			retbleed_cmd = RETBLEED_CMD_IBPB;
1015		} else if (!strcmp(str, "stuff")) {
1016			retbleed_cmd = RETBLEED_CMD_STUFF;
1017		} else if (!strcmp(str, "nosmt")) {
1018			retbleed_nosmt = true;
1019		} else if (!strcmp(str, "force")) {
1020			setup_force_cpu_bug(X86_BUG_RETBLEED);
1021		} else {
1022			pr_err("Ignoring unknown retbleed option (%s).", str);
1023		}
1024
1025		str = next;
1026	}
1027
1028	return 0;
1029}
1030early_param("retbleed", retbleed_parse_cmdline);
1031
1032#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1033#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1034
1035static void __init retbleed_select_mitigation(void)
1036{
1037	bool mitigate_smt = false;
1038
1039	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1040		return;
1041
1042	switch (retbleed_cmd) {
1043	case RETBLEED_CMD_OFF:
1044		return;
1045
1046	case RETBLEED_CMD_UNRET:
1047		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1048			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1049		} else {
1050			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1051			goto do_cmd_auto;
1052		}
1053		break;
1054
1055	case RETBLEED_CMD_IBPB:
1056		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1057			pr_err("WARNING: CPU does not support IBPB.\n");
1058			goto do_cmd_auto;
1059		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1060			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1061		} else {
1062			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1063			goto do_cmd_auto;
1064		}
1065		break;
1066
1067	case RETBLEED_CMD_STUFF:
1068		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1069		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1070			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1071
1072		} else {
1073			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1074				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1075			else
1076				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1077
1078			goto do_cmd_auto;
1079		}
1080		break;
1081
1082do_cmd_auto:
1083	case RETBLEED_CMD_AUTO:
1084		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1085		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1086			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1087				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1088			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1089				 boot_cpu_has(X86_FEATURE_IBPB))
1090				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1091		}
1092
1093		/*
1094		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1095		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1096		 * be set accordingly below.
1097		 */
1098
1099		break;
1100	}
1101
1102	switch (retbleed_mitigation) {
1103	case RETBLEED_MITIGATION_UNRET:
1104		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1105		setup_force_cpu_cap(X86_FEATURE_UNRET);
1106
1107		x86_return_thunk = retbleed_return_thunk;
1108
1109		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1110		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1111			pr_err(RETBLEED_UNTRAIN_MSG);
1112
1113		mitigate_smt = true;
1114		break;
1115
1116	case RETBLEED_MITIGATION_IBPB:
1117		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1118		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1119		mitigate_smt = true;
1120
1121		/*
1122		 * IBPB on entry already obviates the need for
1123		 * software-based untraining so clear those in case some
1124		 * other mitigation like SRSO has selected them.
1125		 */
1126		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1127		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1128
1129		/*
1130		 * There is no need for RSB filling: entry_ibpb() ensures
1131		 * all predictions, including the RSB, are invalidated,
1132		 * regardless of IBPB implementation.
1133		 */
1134		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1135
1136		break;
1137
1138	case RETBLEED_MITIGATION_STUFF:
1139		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1140		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1141
1142		x86_return_thunk = call_depth_return_thunk;
1143		break;
1144
1145	default:
1146		break;
1147	}
1148
1149	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1150	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1151		cpu_smt_disable(false);
1152
1153	/*
1154	 * Let IBRS trump all on Intel without affecting the effects of the
1155	 * retbleed= cmdline option except for call depth based stuffing
1156	 */
1157	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1158		switch (spectre_v2_enabled) {
1159		case SPECTRE_V2_IBRS:
1160			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1161			break;
1162		case SPECTRE_V2_EIBRS:
1163		case SPECTRE_V2_EIBRS_RETPOLINE:
1164		case SPECTRE_V2_EIBRS_LFENCE:
1165			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1166			break;
1167		default:
1168			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1169				pr_err(RETBLEED_INTEL_MSG);
1170		}
1171	}
1172
1173	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1174}
1175
1176#undef pr_fmt
1177#define pr_fmt(fmt)     "Spectre V2 : " fmt
1178
1179static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1180	SPECTRE_V2_USER_NONE;
1181static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1182	SPECTRE_V2_USER_NONE;
1183
1184#ifdef CONFIG_MITIGATION_RETPOLINE
1185static bool spectre_v2_bad_module;
1186
1187bool retpoline_module_ok(bool has_retpoline)
1188{
1189	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1190		return true;
1191
1192	pr_err("System may be vulnerable to spectre v2\n");
1193	spectre_v2_bad_module = true;
1194	return false;
1195}
1196
1197static inline const char *spectre_v2_module_string(void)
1198{
1199	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1200}
1201#else
1202static inline const char *spectre_v2_module_string(void) { return ""; }
1203#endif
1204
1205#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1206#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1207#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1208#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1209
1210#ifdef CONFIG_BPF_SYSCALL
1211void unpriv_ebpf_notify(int new_state)
1212{
1213	if (new_state)
1214		return;
1215
1216	/* Unprivileged eBPF is enabled */
1217
1218	switch (spectre_v2_enabled) {
1219	case SPECTRE_V2_EIBRS:
1220		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1221		break;
1222	case SPECTRE_V2_EIBRS_LFENCE:
1223		if (sched_smt_active())
1224			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1225		break;
1226	default:
1227		break;
1228	}
1229}
1230#endif
1231
1232static inline bool match_option(const char *arg, int arglen, const char *opt)
1233{
1234	int len = strlen(opt);
1235
1236	return len == arglen && !strncmp(arg, opt, len);
1237}
1238
1239/* The kernel command line selection for spectre v2 */
1240enum spectre_v2_mitigation_cmd {
1241	SPECTRE_V2_CMD_NONE,
1242	SPECTRE_V2_CMD_AUTO,
1243	SPECTRE_V2_CMD_FORCE,
1244	SPECTRE_V2_CMD_RETPOLINE,
1245	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1246	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1247	SPECTRE_V2_CMD_EIBRS,
1248	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1249	SPECTRE_V2_CMD_EIBRS_LFENCE,
1250	SPECTRE_V2_CMD_IBRS,
1251};
1252
1253enum spectre_v2_user_cmd {
1254	SPECTRE_V2_USER_CMD_NONE,
1255	SPECTRE_V2_USER_CMD_AUTO,
1256	SPECTRE_V2_USER_CMD_FORCE,
1257	SPECTRE_V2_USER_CMD_PRCTL,
1258	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1259	SPECTRE_V2_USER_CMD_SECCOMP,
1260	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1261};
1262
1263static const char * const spectre_v2_user_strings[] = {
1264	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1265	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1266	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1267	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1268	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1269};
1270
1271static const struct {
1272	const char			*option;
1273	enum spectre_v2_user_cmd	cmd;
1274	bool				secure;
1275} v2_user_options[] __initconst = {
1276	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1277	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1278	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1279	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1280	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1281	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1282	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1283};
1284
1285static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1286{
1287	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1288		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1289}
1290
1291static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1292
1293static enum spectre_v2_user_cmd __init
1294spectre_v2_parse_user_cmdline(void)
1295{
1296	char arg[20];
1297	int ret, i;
1298
1299	switch (spectre_v2_cmd) {
1300	case SPECTRE_V2_CMD_NONE:
1301		return SPECTRE_V2_USER_CMD_NONE;
1302	case SPECTRE_V2_CMD_FORCE:
1303		return SPECTRE_V2_USER_CMD_FORCE;
1304	default:
1305		break;
1306	}
1307
1308	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1309				  arg, sizeof(arg));
1310	if (ret < 0)
1311		return SPECTRE_V2_USER_CMD_AUTO;
1312
1313	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1314		if (match_option(arg, ret, v2_user_options[i].option)) {
1315			spec_v2_user_print_cond(v2_user_options[i].option,
1316						v2_user_options[i].secure);
1317			return v2_user_options[i].cmd;
1318		}
1319	}
1320
1321	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1322	return SPECTRE_V2_USER_CMD_AUTO;
1323}
1324
1325static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1326{
1327	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1328}
1329
1330static void __init
1331spectre_v2_user_select_mitigation(void)
1332{
1333	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1334	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1335	enum spectre_v2_user_cmd cmd;
1336
1337	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1338		return;
1339
1340	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1341	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1342		smt_possible = false;
1343
1344	cmd = spectre_v2_parse_user_cmdline();
1345	switch (cmd) {
1346	case SPECTRE_V2_USER_CMD_NONE:
1347		goto set_mode;
1348	case SPECTRE_V2_USER_CMD_FORCE:
1349		mode = SPECTRE_V2_USER_STRICT;
1350		break;
1351	case SPECTRE_V2_USER_CMD_AUTO:
1352	case SPECTRE_V2_USER_CMD_PRCTL:
1353	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1354		mode = SPECTRE_V2_USER_PRCTL;
1355		break;
1356	case SPECTRE_V2_USER_CMD_SECCOMP:
1357	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1358		if (IS_ENABLED(CONFIG_SECCOMP))
1359			mode = SPECTRE_V2_USER_SECCOMP;
1360		else
1361			mode = SPECTRE_V2_USER_PRCTL;
1362		break;
1363	}
1364
1365	/* Initialize Indirect Branch Prediction Barrier */
1366	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1367		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1368
1369		spectre_v2_user_ibpb = mode;
1370		switch (cmd) {
1371		case SPECTRE_V2_USER_CMD_NONE:
1372			break;
1373		case SPECTRE_V2_USER_CMD_FORCE:
1374		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1375		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1376			static_branch_enable(&switch_mm_always_ibpb);
1377			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1378			break;
1379		case SPECTRE_V2_USER_CMD_PRCTL:
1380		case SPECTRE_V2_USER_CMD_AUTO:
1381		case SPECTRE_V2_USER_CMD_SECCOMP:
1382			static_branch_enable(&switch_mm_cond_ibpb);
1383			break;
1384		}
1385
1386		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1387			static_key_enabled(&switch_mm_always_ibpb) ?
1388			"always-on" : "conditional");
1389	}
1390
1391	/*
1392	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1393	 * is not required.
1394	 *
1395	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1396	 * injection in user-mode as the IBRS bit remains always set which
1397	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1398	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1399	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1400	 * These modes therefore disable the implicit cross-thread protection,
1401	 * so allow for STIBP to be selected in those cases.
1402	 */
1403	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1404	    !smt_possible ||
1405	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1406	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1407		return;
1408
1409	/*
1410	 * At this point, an STIBP mode other than "off" has been set.
1411	 * If STIBP support is not being forced, check if STIBP always-on
1412	 * is preferred.
1413	 */
1414	if (mode != SPECTRE_V2_USER_STRICT &&
1415	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1416		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1417
1418	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1419	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1420		if (mode != SPECTRE_V2_USER_STRICT &&
1421		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1422			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1423		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1424	}
1425
1426	spectre_v2_user_stibp = mode;
1427
1428set_mode:
1429	pr_info("%s\n", spectre_v2_user_strings[mode]);
1430}
1431
1432static const char * const spectre_v2_strings[] = {
1433	[SPECTRE_V2_NONE]			= "Vulnerable",
1434	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1435	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1436	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1437	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1438	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1439	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1440};
1441
1442static const struct {
1443	const char *option;
1444	enum spectre_v2_mitigation_cmd cmd;
1445	bool secure;
1446} mitigation_options[] __initconst = {
1447	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1448	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1449	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1450	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1451	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1452	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1453	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1454	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1455	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1456	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1457	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1458};
1459
1460static void __init spec_v2_print_cond(const char *reason, bool secure)
1461{
1462	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1463		pr_info("%s selected on command line.\n", reason);
1464}
1465
1466static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1467{
1468	enum spectre_v2_mitigation_cmd cmd;
1469	char arg[20];
1470	int ret, i;
1471
1472	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1473	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1474	    cpu_mitigations_off())
1475		return SPECTRE_V2_CMD_NONE;
1476
1477	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1478	if (ret < 0)
1479		return cmd;
1480
1481	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1482		if (!match_option(arg, ret, mitigation_options[i].option))
1483			continue;
1484		cmd = mitigation_options[i].cmd;
1485		break;
1486	}
1487
1488	if (i >= ARRAY_SIZE(mitigation_options)) {
1489		pr_err("unknown option (%s). Switching to default mode\n", arg);
1490		return cmd;
1491	}
1492
1493	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1494	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1495	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1496	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1497	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1498	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1499		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1500		       mitigation_options[i].option);
1501		return SPECTRE_V2_CMD_AUTO;
1502	}
1503
1504	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1505	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1506	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1507	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1508		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1509		       mitigation_options[i].option);
1510		return SPECTRE_V2_CMD_AUTO;
1511	}
1512
1513	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1514	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1515	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1516		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1517		       mitigation_options[i].option);
1518		return SPECTRE_V2_CMD_AUTO;
1519	}
1520
1521	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1522		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1523		       mitigation_options[i].option);
1524		return SPECTRE_V2_CMD_AUTO;
1525	}
1526
1527	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1528		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1529		       mitigation_options[i].option);
1530		return SPECTRE_V2_CMD_AUTO;
1531	}
1532
1533	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1534		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1535		       mitigation_options[i].option);
1536		return SPECTRE_V2_CMD_AUTO;
1537	}
1538
1539	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1540		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1541		       mitigation_options[i].option);
1542		return SPECTRE_V2_CMD_AUTO;
1543	}
1544
1545	spec_v2_print_cond(mitigation_options[i].option,
1546			   mitigation_options[i].secure);
1547	return cmd;
1548}
1549
1550static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1551{
1552	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1553		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1554		return SPECTRE_V2_NONE;
1555	}
1556
1557	return SPECTRE_V2_RETPOLINE;
1558}
1559
1560static bool __ro_after_init rrsba_disabled;
1561
1562/* Disable in-kernel use of non-RSB RET predictors */
1563static void __init spec_ctrl_disable_kernel_rrsba(void)
1564{
1565	if (rrsba_disabled)
1566		return;
1567
1568	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1569		rrsba_disabled = true;
1570		return;
1571	}
1572
1573	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1574		return;
1575
1576	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1577	update_spec_ctrl(x86_spec_ctrl_base);
1578	rrsba_disabled = true;
1579}
1580
1581static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1582{
1583	/*
1584	 * Similar to context switches, there are two types of RSB attacks
1585	 * after VM exit:
1586	 *
1587	 * 1) RSB underflow
1588	 *
1589	 * 2) Poisoned RSB entry
1590	 *
1591	 * When retpoline is enabled, both are mitigated by filling/clearing
1592	 * the RSB.
1593	 *
1594	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1595	 * prediction isolation protections, RSB still needs to be cleared
1596	 * because of #2.  Note that SMEP provides no protection here, unlike
1597	 * user-space-poisoned RSB entries.
1598	 *
1599	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1600	 * bug is present then a LITE version of RSB protection is required,
1601	 * just a single call needs to retire before a RET is executed.
1602	 */
1603	switch (mode) {
1604	case SPECTRE_V2_NONE:
1605		return;
1606
1607	case SPECTRE_V2_EIBRS_LFENCE:
1608	case SPECTRE_V2_EIBRS:
1609		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1610			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1611			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1612		}
1613		return;
1614
1615	case SPECTRE_V2_EIBRS_RETPOLINE:
1616	case SPECTRE_V2_RETPOLINE:
1617	case SPECTRE_V2_LFENCE:
1618	case SPECTRE_V2_IBRS:
1619		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1620		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1621		return;
1622	}
1623
1624	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1625	dump_stack();
1626}
1627
1628/*
1629 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1630 * branch history in userspace. Not needed if BHI_NO is set.
1631 */
1632static bool __init spec_ctrl_bhi_dis(void)
1633{
1634	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1635		return false;
1636
1637	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1638	update_spec_ctrl(x86_spec_ctrl_base);
1639	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1640
1641	return true;
1642}
1643
1644enum bhi_mitigations {
1645	BHI_MITIGATION_OFF,
1646	BHI_MITIGATION_ON,
1647	BHI_MITIGATION_VMEXIT_ONLY,
1648};
1649
1650static enum bhi_mitigations bhi_mitigation __ro_after_init =
1651	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1652
1653static int __init spectre_bhi_parse_cmdline(char *str)
1654{
1655	if (!str)
1656		return -EINVAL;
1657
1658	if (!strcmp(str, "off"))
1659		bhi_mitigation = BHI_MITIGATION_OFF;
1660	else if (!strcmp(str, "on"))
1661		bhi_mitigation = BHI_MITIGATION_ON;
1662	else if (!strcmp(str, "vmexit"))
1663		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
1664	else
1665		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1666
1667	return 0;
1668}
1669early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1670
1671static void __init bhi_select_mitigation(void)
1672{
1673	if (bhi_mitigation == BHI_MITIGATION_OFF)
1674		return;
1675
1676	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1677	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1678	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1679		spec_ctrl_disable_kernel_rrsba();
1680		if (rrsba_disabled)
1681			return;
1682	}
1683
1684	/* Mitigate in hardware if supported */
1685	if (spec_ctrl_bhi_dis())
1686		return;
1687
1688	if (!IS_ENABLED(CONFIG_X86_64))
1689		return;
1690
1691	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
1692		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
1693		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1694		return;
1695	}
1696
1697	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
1698	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1699	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1700}
1701
1702static void __init spectre_v2_select_mitigation(void)
1703{
1704	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1705	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1706
1707	/*
1708	 * If the CPU is not affected and the command line mode is NONE or AUTO
1709	 * then nothing to do.
1710	 */
1711	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1712	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1713		return;
1714
1715	switch (cmd) {
1716	case SPECTRE_V2_CMD_NONE:
1717		return;
1718
1719	case SPECTRE_V2_CMD_FORCE:
1720	case SPECTRE_V2_CMD_AUTO:
1721		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1722			mode = SPECTRE_V2_EIBRS;
1723			break;
1724		}
1725
1726		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1727		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1728		    retbleed_cmd != RETBLEED_CMD_OFF &&
1729		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1730		    boot_cpu_has(X86_FEATURE_IBRS) &&
1731		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1732			mode = SPECTRE_V2_IBRS;
1733			break;
1734		}
1735
1736		mode = spectre_v2_select_retpoline();
1737		break;
1738
1739	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1740		pr_err(SPECTRE_V2_LFENCE_MSG);
1741		mode = SPECTRE_V2_LFENCE;
1742		break;
1743
1744	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1745		mode = SPECTRE_V2_RETPOLINE;
1746		break;
1747
1748	case SPECTRE_V2_CMD_RETPOLINE:
1749		mode = spectre_v2_select_retpoline();
1750		break;
1751
1752	case SPECTRE_V2_CMD_IBRS:
1753		mode = SPECTRE_V2_IBRS;
1754		break;
1755
1756	case SPECTRE_V2_CMD_EIBRS:
1757		mode = SPECTRE_V2_EIBRS;
1758		break;
1759
1760	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1761		mode = SPECTRE_V2_EIBRS_LFENCE;
1762		break;
1763
1764	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1765		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1766		break;
1767	}
1768
1769	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1770		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1771
1772	if (spectre_v2_in_ibrs_mode(mode)) {
1773		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1774			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1775		} else {
1776			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1777			update_spec_ctrl(x86_spec_ctrl_base);
1778		}
1779	}
1780
1781	switch (mode) {
1782	case SPECTRE_V2_NONE:
1783	case SPECTRE_V2_EIBRS:
1784		break;
1785
1786	case SPECTRE_V2_IBRS:
1787		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1788		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1789			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1790		break;
1791
1792	case SPECTRE_V2_LFENCE:
1793	case SPECTRE_V2_EIBRS_LFENCE:
1794		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1795		fallthrough;
1796
1797	case SPECTRE_V2_RETPOLINE:
1798	case SPECTRE_V2_EIBRS_RETPOLINE:
1799		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1800		break;
1801	}
1802
1803	/*
1804	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1805	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1806	 * prediction from a non-RSB predictor is still a risk.
1807	 */
1808	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1809	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1810	    mode == SPECTRE_V2_RETPOLINE)
1811		spec_ctrl_disable_kernel_rrsba();
1812
1813	if (boot_cpu_has(X86_BUG_BHI))
1814		bhi_select_mitigation();
1815
1816	spectre_v2_enabled = mode;
1817	pr_info("%s\n", spectre_v2_strings[mode]);
1818
1819	/*
1820	 * If Spectre v2 protection has been enabled, fill the RSB during a
1821	 * context switch.  In general there are two types of RSB attacks
1822	 * across context switches, for which the CALLs/RETs may be unbalanced.
1823	 *
1824	 * 1) RSB underflow
1825	 *
1826	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1827	 *    speculated return targets may come from the branch predictor,
1828	 *    which could have a user-poisoned BTB or BHB entry.
1829	 *
1830	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1831	 *    regardless of the state of the RSB.
1832	 *
1833	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1834	 *    scenario is mitigated by the IBRS branch prediction isolation
1835	 *    properties, so the RSB buffer filling wouldn't be necessary to
1836	 *    protect against this type of attack.
1837	 *
1838	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1839	 *
1840	 * 2) Poisoned RSB entry
1841	 *
1842	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1843	 *    'next' could be tricked into speculating with a user-poisoned RSB
1844	 *    entry.
1845	 *
1846	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1847	 *    eIBRS.
1848	 *
1849	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1850	 *    RSB clearing.
1851	 *
1852	 * So to mitigate all cases, unconditionally fill RSB on context
1853	 * switches.
1854	 *
1855	 * FIXME: Is this pointless for retbleed-affected AMD?
1856	 */
1857	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1858	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1859
1860	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1861
1862	/*
1863	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1864	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1865	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1866	 * otherwise enabled.
1867	 *
1868	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1869	 * the user might select retpoline on the kernel command line and if
1870	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1871	 * enable IBRS around firmware calls.
1872	 */
1873	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1874	    boot_cpu_has(X86_FEATURE_IBPB) &&
1875	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1876	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1877
1878		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1879			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1880			pr_info("Enabling Speculation Barrier for firmware calls\n");
1881		}
1882
1883	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1884		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1885		pr_info("Enabling Restricted Speculation for firmware calls\n");
1886	}
1887
1888	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1889	spectre_v2_cmd = cmd;
1890}
1891
1892static void update_stibp_msr(void * __unused)
1893{
1894	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1895	update_spec_ctrl(val);
1896}
1897
1898/* Update x86_spec_ctrl_base in case SMT state changed. */
1899static void update_stibp_strict(void)
1900{
1901	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1902
1903	if (sched_smt_active())
1904		mask |= SPEC_CTRL_STIBP;
1905
1906	if (mask == x86_spec_ctrl_base)
1907		return;
1908
1909	pr_info("Update user space SMT mitigation: STIBP %s\n",
1910		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1911	x86_spec_ctrl_base = mask;
1912	on_each_cpu(update_stibp_msr, NULL, 1);
1913}
1914
1915/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1916static void update_indir_branch_cond(void)
1917{
1918	if (sched_smt_active())
1919		static_branch_enable(&switch_to_cond_stibp);
1920	else
1921		static_branch_disable(&switch_to_cond_stibp);
1922}
1923
1924#undef pr_fmt
1925#define pr_fmt(fmt) fmt
1926
1927/* Update the static key controlling the MDS CPU buffer clear in idle */
1928static void update_mds_branch_idle(void)
1929{
1930	/*
1931	 * Enable the idle clearing if SMT is active on CPUs which are
1932	 * affected only by MSBDS and not any other MDS variant.
1933	 *
1934	 * The other variants cannot be mitigated when SMT is enabled, so
1935	 * clearing the buffers on idle just to prevent the Store Buffer
1936	 * repartitioning leak would be a window dressing exercise.
1937	 */
1938	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1939		return;
1940
1941	if (sched_smt_active()) {
1942		static_branch_enable(&mds_idle_clear);
1943	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1944		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1945		static_branch_disable(&mds_idle_clear);
1946	}
1947}
1948
1949#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1950#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1951#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1952
1953void cpu_bugs_smt_update(void)
1954{
1955	mutex_lock(&spec_ctrl_mutex);
1956
1957	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1958	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1959		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1960
1961	switch (spectre_v2_user_stibp) {
1962	case SPECTRE_V2_USER_NONE:
1963		break;
1964	case SPECTRE_V2_USER_STRICT:
1965	case SPECTRE_V2_USER_STRICT_PREFERRED:
1966		update_stibp_strict();
1967		break;
1968	case SPECTRE_V2_USER_PRCTL:
1969	case SPECTRE_V2_USER_SECCOMP:
1970		update_indir_branch_cond();
1971		break;
1972	}
1973
1974	switch (mds_mitigation) {
1975	case MDS_MITIGATION_FULL:
1976	case MDS_MITIGATION_VMWERV:
1977		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1978			pr_warn_once(MDS_MSG_SMT);
1979		update_mds_branch_idle();
1980		break;
1981	case MDS_MITIGATION_OFF:
1982		break;
1983	}
1984
1985	switch (taa_mitigation) {
1986	case TAA_MITIGATION_VERW:
1987	case TAA_MITIGATION_UCODE_NEEDED:
1988		if (sched_smt_active())
1989			pr_warn_once(TAA_MSG_SMT);
1990		break;
1991	case TAA_MITIGATION_TSX_DISABLED:
1992	case TAA_MITIGATION_OFF:
1993		break;
1994	}
1995
1996	switch (mmio_mitigation) {
1997	case MMIO_MITIGATION_VERW:
1998	case MMIO_MITIGATION_UCODE_NEEDED:
1999		if (sched_smt_active())
2000			pr_warn_once(MMIO_MSG_SMT);
2001		break;
2002	case MMIO_MITIGATION_OFF:
2003		break;
2004	}
2005
2006	mutex_unlock(&spec_ctrl_mutex);
2007}
2008
2009#undef pr_fmt
2010#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2011
2012static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2013
2014/* The kernel command line selection */
2015enum ssb_mitigation_cmd {
2016	SPEC_STORE_BYPASS_CMD_NONE,
2017	SPEC_STORE_BYPASS_CMD_AUTO,
2018	SPEC_STORE_BYPASS_CMD_ON,
2019	SPEC_STORE_BYPASS_CMD_PRCTL,
2020	SPEC_STORE_BYPASS_CMD_SECCOMP,
2021};
2022
2023static const char * const ssb_strings[] = {
2024	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2025	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2026	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2027	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2028};
2029
2030static const struct {
2031	const char *option;
2032	enum ssb_mitigation_cmd cmd;
2033} ssb_mitigation_options[]  __initconst = {
2034	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2035	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2036	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2037	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2038	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2039};
2040
2041static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2042{
2043	enum ssb_mitigation_cmd cmd;
2044	char arg[20];
2045	int ret, i;
2046
2047	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2048		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2049	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2050	    cpu_mitigations_off()) {
2051		return SPEC_STORE_BYPASS_CMD_NONE;
2052	} else {
2053		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2054					  arg, sizeof(arg));
2055		if (ret < 0)
2056			return cmd;
2057
2058		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2059			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2060				continue;
2061
2062			cmd = ssb_mitigation_options[i].cmd;
2063			break;
2064		}
2065
2066		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2067			pr_err("unknown option (%s). Switching to default mode\n", arg);
2068			return cmd;
2069		}
2070	}
2071
2072	return cmd;
2073}
2074
2075static enum ssb_mitigation __init __ssb_select_mitigation(void)
2076{
2077	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2078	enum ssb_mitigation_cmd cmd;
2079
2080	if (!boot_cpu_has(X86_FEATURE_SSBD))
2081		return mode;
2082
2083	cmd = ssb_parse_cmdline();
2084	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2085	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2086	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2087		return mode;
2088
2089	switch (cmd) {
2090	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2091		/*
2092		 * Choose prctl+seccomp as the default mode if seccomp is
2093		 * enabled.
2094		 */
2095		if (IS_ENABLED(CONFIG_SECCOMP))
2096			mode = SPEC_STORE_BYPASS_SECCOMP;
2097		else
2098			mode = SPEC_STORE_BYPASS_PRCTL;
2099		break;
2100	case SPEC_STORE_BYPASS_CMD_ON:
2101		mode = SPEC_STORE_BYPASS_DISABLE;
2102		break;
2103	case SPEC_STORE_BYPASS_CMD_AUTO:
2104	case SPEC_STORE_BYPASS_CMD_PRCTL:
2105		mode = SPEC_STORE_BYPASS_PRCTL;
2106		break;
2107	case SPEC_STORE_BYPASS_CMD_NONE:
2108		break;
2109	}
2110
2111	/*
2112	 * We have three CPU feature flags that are in play here:
2113	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2114	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2115	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2116	 */
2117	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2118		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2119		/*
2120		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2121		 * use a completely different MSR and bit dependent on family.
2122		 */
2123		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2124		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2125			x86_amd_ssb_disable();
2126		} else {
2127			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2128			update_spec_ctrl(x86_spec_ctrl_base);
2129		}
2130	}
2131
2132	return mode;
2133}
2134
2135static void ssb_select_mitigation(void)
2136{
2137	ssb_mode = __ssb_select_mitigation();
2138
2139	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2140		pr_info("%s\n", ssb_strings[ssb_mode]);
2141}
2142
2143#undef pr_fmt
2144#define pr_fmt(fmt)     "Speculation prctl: " fmt
2145
2146static void task_update_spec_tif(struct task_struct *tsk)
2147{
2148	/* Force the update of the real TIF bits */
2149	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2150
2151	/*
2152	 * Immediately update the speculation control MSRs for the current
2153	 * task, but for a non-current task delay setting the CPU
2154	 * mitigation until it is scheduled next.
2155	 *
2156	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2157	 * always the current task.
2158	 */
2159	if (tsk == current)
2160		speculation_ctrl_update_current();
2161}
2162
2163static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2164{
2165
2166	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2167		return -EPERM;
2168
2169	switch (ctrl) {
2170	case PR_SPEC_ENABLE:
2171		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2172		return 0;
2173	case PR_SPEC_DISABLE:
2174		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2175		return 0;
2176	default:
2177		return -ERANGE;
2178	}
2179}
2180
2181static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2182{
2183	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2184	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2185		return -ENXIO;
2186
2187	switch (ctrl) {
2188	case PR_SPEC_ENABLE:
2189		/* If speculation is force disabled, enable is not allowed */
2190		if (task_spec_ssb_force_disable(task))
2191			return -EPERM;
2192		task_clear_spec_ssb_disable(task);
2193		task_clear_spec_ssb_noexec(task);
2194		task_update_spec_tif(task);
2195		break;
2196	case PR_SPEC_DISABLE:
2197		task_set_spec_ssb_disable(task);
2198		task_clear_spec_ssb_noexec(task);
2199		task_update_spec_tif(task);
2200		break;
2201	case PR_SPEC_FORCE_DISABLE:
2202		task_set_spec_ssb_disable(task);
2203		task_set_spec_ssb_force_disable(task);
2204		task_clear_spec_ssb_noexec(task);
2205		task_update_spec_tif(task);
2206		break;
2207	case PR_SPEC_DISABLE_NOEXEC:
2208		if (task_spec_ssb_force_disable(task))
2209			return -EPERM;
2210		task_set_spec_ssb_disable(task);
2211		task_set_spec_ssb_noexec(task);
2212		task_update_spec_tif(task);
2213		break;
2214	default:
2215		return -ERANGE;
2216	}
2217	return 0;
2218}
2219
2220static bool is_spec_ib_user_controlled(void)
2221{
2222	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2223		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2224		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2225		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2226}
2227
2228static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2229{
2230	switch (ctrl) {
2231	case PR_SPEC_ENABLE:
2232		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2233		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2234			return 0;
2235
2236		/*
2237		 * With strict mode for both IBPB and STIBP, the instruction
2238		 * code paths avoid checking this task flag and instead,
2239		 * unconditionally run the instruction. However, STIBP and IBPB
2240		 * are independent and either can be set to conditionally
2241		 * enabled regardless of the mode of the other.
2242		 *
2243		 * If either is set to conditional, allow the task flag to be
2244		 * updated, unless it was force-disabled by a previous prctl
2245		 * call. Currently, this is possible on an AMD CPU which has the
2246		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2247		 * kernel is booted with 'spectre_v2_user=seccomp', then
2248		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2249		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2250		 */
2251		if (!is_spec_ib_user_controlled() ||
2252		    task_spec_ib_force_disable(task))
2253			return -EPERM;
2254
2255		task_clear_spec_ib_disable(task);
2256		task_update_spec_tif(task);
2257		break;
2258	case PR_SPEC_DISABLE:
2259	case PR_SPEC_FORCE_DISABLE:
2260		/*
2261		 * Indirect branch speculation is always allowed when
2262		 * mitigation is force disabled.
2263		 */
2264		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2265		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2266			return -EPERM;
2267
2268		if (!is_spec_ib_user_controlled())
2269			return 0;
2270
2271		task_set_spec_ib_disable(task);
2272		if (ctrl == PR_SPEC_FORCE_DISABLE)
2273			task_set_spec_ib_force_disable(task);
2274		task_update_spec_tif(task);
2275		if (task == current)
2276			indirect_branch_prediction_barrier();
2277		break;
2278	default:
2279		return -ERANGE;
2280	}
2281	return 0;
2282}
2283
2284int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2285			     unsigned long ctrl)
2286{
2287	switch (which) {
2288	case PR_SPEC_STORE_BYPASS:
2289		return ssb_prctl_set(task, ctrl);
2290	case PR_SPEC_INDIRECT_BRANCH:
2291		return ib_prctl_set(task, ctrl);
2292	case PR_SPEC_L1D_FLUSH:
2293		return l1d_flush_prctl_set(task, ctrl);
2294	default:
2295		return -ENODEV;
2296	}
2297}
2298
2299#ifdef CONFIG_SECCOMP
2300void arch_seccomp_spec_mitigate(struct task_struct *task)
2301{
2302	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2303		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2304	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2305	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2306		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2307}
2308#endif
2309
2310static int l1d_flush_prctl_get(struct task_struct *task)
2311{
2312	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2313		return PR_SPEC_FORCE_DISABLE;
2314
2315	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2316		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2317	else
2318		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2319}
2320
2321static int ssb_prctl_get(struct task_struct *task)
2322{
2323	switch (ssb_mode) {
2324	case SPEC_STORE_BYPASS_NONE:
2325		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2326			return PR_SPEC_ENABLE;
2327		return PR_SPEC_NOT_AFFECTED;
2328	case SPEC_STORE_BYPASS_DISABLE:
2329		return PR_SPEC_DISABLE;
2330	case SPEC_STORE_BYPASS_SECCOMP:
2331	case SPEC_STORE_BYPASS_PRCTL:
2332		if (task_spec_ssb_force_disable(task))
2333			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2334		if (task_spec_ssb_noexec(task))
2335			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2336		if (task_spec_ssb_disable(task))
2337			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2338		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2339	}
2340	BUG();
2341}
2342
2343static int ib_prctl_get(struct task_struct *task)
2344{
2345	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2346		return PR_SPEC_NOT_AFFECTED;
2347
2348	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2349	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2350		return PR_SPEC_ENABLE;
2351	else if (is_spec_ib_user_controlled()) {
2352		if (task_spec_ib_force_disable(task))
2353			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2354		if (task_spec_ib_disable(task))
2355			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2356		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2357	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2358	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2359	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2360		return PR_SPEC_DISABLE;
2361	else
2362		return PR_SPEC_NOT_AFFECTED;
2363}
2364
2365int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2366{
2367	switch (which) {
2368	case PR_SPEC_STORE_BYPASS:
2369		return ssb_prctl_get(task);
2370	case PR_SPEC_INDIRECT_BRANCH:
2371		return ib_prctl_get(task);
2372	case PR_SPEC_L1D_FLUSH:
2373		return l1d_flush_prctl_get(task);
2374	default:
2375		return -ENODEV;
2376	}
2377}
2378
2379void x86_spec_ctrl_setup_ap(void)
2380{
2381	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2382		update_spec_ctrl(x86_spec_ctrl_base);
2383
2384	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2385		x86_amd_ssb_disable();
2386}
2387
2388bool itlb_multihit_kvm_mitigation;
2389EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2390
2391#undef pr_fmt
2392#define pr_fmt(fmt)	"L1TF: " fmt
2393
2394/* Default mitigation for L1TF-affected CPUs */
2395enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2396	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_FLUSH : L1TF_MITIGATION_OFF;
2397#if IS_ENABLED(CONFIG_KVM_INTEL)
2398EXPORT_SYMBOL_GPL(l1tf_mitigation);
2399#endif
2400enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2401EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2402
2403/*
2404 * These CPUs all support 44bits physical address space internally in the
2405 * cache but CPUID can report a smaller number of physical address bits.
2406 *
2407 * The L1TF mitigation uses the top most address bit for the inversion of
2408 * non present PTEs. When the installed memory reaches into the top most
2409 * address bit due to memory holes, which has been observed on machines
2410 * which report 36bits physical address bits and have 32G RAM installed,
2411 * then the mitigation range check in l1tf_select_mitigation() triggers.
2412 * This is a false positive because the mitigation is still possible due to
2413 * the fact that the cache uses 44bit internally. Use the cache bits
2414 * instead of the reported physical bits and adjust them on the affected
2415 * machines to 44bit if the reported bits are less than 44.
2416 */
2417static void override_cache_bits(struct cpuinfo_x86 *c)
2418{
2419	if (c->x86 != 6)
2420		return;
2421
2422	switch (c->x86_vfm) {
2423	case INTEL_NEHALEM:
2424	case INTEL_WESTMERE:
2425	case INTEL_SANDYBRIDGE:
2426	case INTEL_IVYBRIDGE:
2427	case INTEL_HASWELL:
2428	case INTEL_HASWELL_L:
2429	case INTEL_HASWELL_G:
2430	case INTEL_BROADWELL:
2431	case INTEL_BROADWELL_G:
2432	case INTEL_SKYLAKE_L:
2433	case INTEL_SKYLAKE:
2434	case INTEL_KABYLAKE_L:
2435	case INTEL_KABYLAKE:
2436		if (c->x86_cache_bits < 44)
2437			c->x86_cache_bits = 44;
2438		break;
2439	}
2440}
2441
2442static void __init l1tf_select_mitigation(void)
2443{
2444	u64 half_pa;
2445
2446	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2447		return;
2448
2449	if (cpu_mitigations_off())
2450		l1tf_mitigation = L1TF_MITIGATION_OFF;
2451	else if (cpu_mitigations_auto_nosmt())
2452		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2453
2454	override_cache_bits(&boot_cpu_data);
2455
2456	switch (l1tf_mitigation) {
2457	case L1TF_MITIGATION_OFF:
2458	case L1TF_MITIGATION_FLUSH_NOWARN:
2459	case L1TF_MITIGATION_FLUSH:
2460		break;
2461	case L1TF_MITIGATION_FLUSH_NOSMT:
2462	case L1TF_MITIGATION_FULL:
2463		cpu_smt_disable(false);
2464		break;
2465	case L1TF_MITIGATION_FULL_FORCE:
2466		cpu_smt_disable(true);
2467		break;
2468	}
2469
2470#if CONFIG_PGTABLE_LEVELS == 2
2471	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2472	return;
2473#endif
2474
2475	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2476	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2477			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2478		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2479		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2480				half_pa);
2481		pr_info("However, doing so will make a part of your RAM unusable.\n");
2482		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2483		return;
2484	}
2485
2486	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2487}
2488
2489static int __init l1tf_cmdline(char *str)
2490{
2491	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2492		return 0;
2493
2494	if (!str)
2495		return -EINVAL;
2496
2497	if (!strcmp(str, "off"))
2498		l1tf_mitigation = L1TF_MITIGATION_OFF;
2499	else if (!strcmp(str, "flush,nowarn"))
2500		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2501	else if (!strcmp(str, "flush"))
2502		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2503	else if (!strcmp(str, "flush,nosmt"))
2504		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2505	else if (!strcmp(str, "full"))
2506		l1tf_mitigation = L1TF_MITIGATION_FULL;
2507	else if (!strcmp(str, "full,force"))
2508		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2509
2510	return 0;
2511}
2512early_param("l1tf", l1tf_cmdline);
2513
2514#undef pr_fmt
2515#define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2516
2517enum srso_mitigation {
2518	SRSO_MITIGATION_NONE,
2519	SRSO_MITIGATION_UCODE_NEEDED,
2520	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2521	SRSO_MITIGATION_MICROCODE,
2522	SRSO_MITIGATION_SAFE_RET,
2523	SRSO_MITIGATION_IBPB,
2524	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2525};
2526
2527enum srso_mitigation_cmd {
2528	SRSO_CMD_OFF,
2529	SRSO_CMD_MICROCODE,
2530	SRSO_CMD_SAFE_RET,
2531	SRSO_CMD_IBPB,
2532	SRSO_CMD_IBPB_ON_VMEXIT,
2533};
2534
2535static const char * const srso_strings[] = {
2536	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2537	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2538	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2539	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2540	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2541	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2542	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2543};
2544
2545static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2546static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2547
2548static int __init srso_parse_cmdline(char *str)
2549{
2550	if (!str)
2551		return -EINVAL;
2552
2553	if (!strcmp(str, "off"))
2554		srso_cmd = SRSO_CMD_OFF;
2555	else if (!strcmp(str, "microcode"))
2556		srso_cmd = SRSO_CMD_MICROCODE;
2557	else if (!strcmp(str, "safe-ret"))
2558		srso_cmd = SRSO_CMD_SAFE_RET;
2559	else if (!strcmp(str, "ibpb"))
2560		srso_cmd = SRSO_CMD_IBPB;
2561	else if (!strcmp(str, "ibpb-vmexit"))
2562		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2563	else
2564		pr_err("Ignoring unknown SRSO option (%s).", str);
2565
2566	return 0;
2567}
2568early_param("spec_rstack_overflow", srso_parse_cmdline);
2569
2570#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2571
2572static void __init srso_select_mitigation(void)
2573{
2574	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2575
2576	if (!boot_cpu_has_bug(X86_BUG_SRSO) ||
2577	    cpu_mitigations_off() ||
2578	    srso_cmd == SRSO_CMD_OFF) {
 
2579		if (boot_cpu_has(X86_FEATURE_SBPB))
2580			x86_pred_cmd = PRED_CMD_SBPB;
2581		return;
2582	}
2583
2584	if (has_microcode) {
2585		/*
2586		 * Zen1/2 with SMT off aren't vulnerable after the right
2587		 * IBPB microcode has been applied.
2588		 *
2589		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2590		 */
2591		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2592			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2593			return;
2594		}
2595
2596		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2597			srso_mitigation = SRSO_MITIGATION_IBPB;
2598			goto out;
2599		}
2600	} else {
2601		pr_warn("IBPB-extending microcode not applied!\n");
2602		pr_warn(SRSO_NOTICE);
2603
2604		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2605		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2606	}
2607
2608	switch (srso_cmd) {
 
 
 
 
 
2609	case SRSO_CMD_MICROCODE:
2610		if (has_microcode) {
2611			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2612			pr_warn(SRSO_NOTICE);
2613		}
2614		break;
2615
2616	case SRSO_CMD_SAFE_RET:
2617		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2618			/*
2619			 * Enable the return thunk for generated code
2620			 * like ftrace, static_call, etc.
2621			 */
2622			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2623			setup_force_cpu_cap(X86_FEATURE_UNRET);
2624
2625			if (boot_cpu_data.x86 == 0x19) {
2626				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2627				x86_return_thunk = srso_alias_return_thunk;
2628			} else {
2629				setup_force_cpu_cap(X86_FEATURE_SRSO);
2630				x86_return_thunk = srso_return_thunk;
2631			}
2632			if (has_microcode)
2633				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2634			else
2635				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2636		} else {
2637			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2638		}
2639		break;
2640
2641	case SRSO_CMD_IBPB:
2642		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2643			if (has_microcode) {
2644				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2645				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2646				srso_mitigation = SRSO_MITIGATION_IBPB;
2647
2648				/*
2649				 * IBPB on entry already obviates the need for
2650				 * software-based untraining so clear those in case some
2651				 * other mitigation like Retbleed has selected them.
2652				 */
2653				setup_clear_cpu_cap(X86_FEATURE_UNRET);
2654				setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2655
2656				/*
2657				 * There is no need for RSB filling: entry_ibpb() ensures
2658				 * all predictions, including the RSB, are invalidated,
2659				 * regardless of IBPB implementation.
2660				 */
2661				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2662			}
2663		} else {
2664			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2665		}
2666		break;
2667
2668	case SRSO_CMD_IBPB_ON_VMEXIT:
2669		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2670			if (has_microcode) {
2671				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2672				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2673
2674				/*
2675				 * There is no need for RSB filling: entry_ibpb() ensures
2676				 * all predictions, including the RSB, are invalidated,
2677				 * regardless of IBPB implementation.
2678				 */
2679				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2680			}
2681		} else {
2682			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2683		}
2684		break;
2685	default:
2686		break;
2687	}
2688
2689out:
2690	pr_info("%s\n", srso_strings[srso_mitigation]);
2691}
2692
2693#undef pr_fmt
2694#define pr_fmt(fmt) fmt
2695
2696#ifdef CONFIG_SYSFS
2697
2698#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2699
2700#if IS_ENABLED(CONFIG_KVM_INTEL)
2701static const char * const l1tf_vmx_states[] = {
2702	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2703	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2704	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2705	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2706	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2707	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2708};
2709
2710static ssize_t l1tf_show_state(char *buf)
2711{
2712	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2713		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2714
2715	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2716	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2717	     sched_smt_active())) {
2718		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2719				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2720	}
2721
2722	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2723			  l1tf_vmx_states[l1tf_vmx_mitigation],
2724			  sched_smt_active() ? "vulnerable" : "disabled");
2725}
2726
2727static ssize_t itlb_multihit_show_state(char *buf)
2728{
2729	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2730	    !boot_cpu_has(X86_FEATURE_VMX))
2731		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2732	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2733		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2734	else if (itlb_multihit_kvm_mitigation)
2735		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2736	else
2737		return sysfs_emit(buf, "KVM: Vulnerable\n");
2738}
2739#else
2740static ssize_t l1tf_show_state(char *buf)
2741{
2742	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2743}
2744
2745static ssize_t itlb_multihit_show_state(char *buf)
2746{
2747	return sysfs_emit(buf, "Processor vulnerable\n");
2748}
2749#endif
2750
2751static ssize_t mds_show_state(char *buf)
2752{
2753	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2754		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2755				  mds_strings[mds_mitigation]);
2756	}
2757
2758	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2759		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2760				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2761				   sched_smt_active() ? "mitigated" : "disabled"));
2762	}
2763
2764	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2765			  sched_smt_active() ? "vulnerable" : "disabled");
2766}
2767
2768static ssize_t tsx_async_abort_show_state(char *buf)
2769{
2770	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2771	    (taa_mitigation == TAA_MITIGATION_OFF))
2772		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2773
2774	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2775		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2776				  taa_strings[taa_mitigation]);
2777	}
2778
2779	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2780			  sched_smt_active() ? "vulnerable" : "disabled");
2781}
2782
2783static ssize_t mmio_stale_data_show_state(char *buf)
2784{
2785	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2786		return sysfs_emit(buf, "Unknown: No mitigations\n");
2787
2788	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2789		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2790
2791	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2792		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2793				  mmio_strings[mmio_mitigation]);
2794	}
2795
2796	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2797			  sched_smt_active() ? "vulnerable" : "disabled");
2798}
2799
2800static ssize_t rfds_show_state(char *buf)
2801{
2802	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2803}
2804
2805static char *stibp_state(void)
2806{
2807	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2808	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2809		return "";
2810
2811	switch (spectre_v2_user_stibp) {
2812	case SPECTRE_V2_USER_NONE:
2813		return "; STIBP: disabled";
2814	case SPECTRE_V2_USER_STRICT:
2815		return "; STIBP: forced";
2816	case SPECTRE_V2_USER_STRICT_PREFERRED:
2817		return "; STIBP: always-on";
2818	case SPECTRE_V2_USER_PRCTL:
2819	case SPECTRE_V2_USER_SECCOMP:
2820		if (static_key_enabled(&switch_to_cond_stibp))
2821			return "; STIBP: conditional";
2822	}
2823	return "";
2824}
2825
2826static char *ibpb_state(void)
2827{
2828	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2829		if (static_key_enabled(&switch_mm_always_ibpb))
2830			return "; IBPB: always-on";
2831		if (static_key_enabled(&switch_mm_cond_ibpb))
2832			return "; IBPB: conditional";
2833		return "; IBPB: disabled";
2834	}
2835	return "";
2836}
2837
2838static char *pbrsb_eibrs_state(void)
2839{
2840	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2841		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2842		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2843			return "; PBRSB-eIBRS: SW sequence";
2844		else
2845			return "; PBRSB-eIBRS: Vulnerable";
2846	} else {
2847		return "; PBRSB-eIBRS: Not affected";
2848	}
2849}
2850
2851static const char *spectre_bhi_state(void)
2852{
2853	if (!boot_cpu_has_bug(X86_BUG_BHI))
2854		return "; BHI: Not affected";
2855	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2856		return "; BHI: BHI_DIS_S";
2857	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2858		return "; BHI: SW loop, KVM: SW loop";
2859	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2860		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2861		 rrsba_disabled)
2862		return "; BHI: Retpoline";
2863	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2864		return "; BHI: Vulnerable, KVM: SW loop";
2865
2866	return "; BHI: Vulnerable";
2867}
2868
2869static ssize_t spectre_v2_show_state(char *buf)
2870{
2871	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2872		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2873
2874	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2875		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2876
2877	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2878	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2879		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2880
2881	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2882			  spectre_v2_strings[spectre_v2_enabled],
2883			  ibpb_state(),
2884			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2885			  stibp_state(),
2886			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2887			  pbrsb_eibrs_state(),
2888			  spectre_bhi_state(),
2889			  /* this should always be at the end */
2890			  spectre_v2_module_string());
2891}
2892
2893static ssize_t srbds_show_state(char *buf)
2894{
2895	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2896}
2897
2898static ssize_t retbleed_show_state(char *buf)
2899{
2900	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2901	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2902		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2903		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2904			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2905
2906		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2907				  !sched_smt_active() ? "disabled" :
2908				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2909				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2910				  "enabled with STIBP protection" : "vulnerable");
2911	}
2912
2913	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2914}
2915
2916static ssize_t srso_show_state(char *buf)
2917{
2918	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2919		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2920
2921	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2922}
2923
2924static ssize_t gds_show_state(char *buf)
2925{
2926	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2927}
2928
2929static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2930			       char *buf, unsigned int bug)
2931{
2932	if (!boot_cpu_has_bug(bug))
2933		return sysfs_emit(buf, "Not affected\n");
2934
2935	switch (bug) {
2936	case X86_BUG_CPU_MELTDOWN:
2937		if (boot_cpu_has(X86_FEATURE_PTI))
2938			return sysfs_emit(buf, "Mitigation: PTI\n");
2939
2940		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2941			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2942
2943		break;
2944
2945	case X86_BUG_SPECTRE_V1:
2946		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2947
2948	case X86_BUG_SPECTRE_V2:
2949		return spectre_v2_show_state(buf);
2950
2951	case X86_BUG_SPEC_STORE_BYPASS:
2952		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2953
2954	case X86_BUG_L1TF:
2955		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2956			return l1tf_show_state(buf);
2957		break;
2958
2959	case X86_BUG_MDS:
2960		return mds_show_state(buf);
2961
2962	case X86_BUG_TAA:
2963		return tsx_async_abort_show_state(buf);
2964
2965	case X86_BUG_ITLB_MULTIHIT:
2966		return itlb_multihit_show_state(buf);
2967
2968	case X86_BUG_SRBDS:
2969		return srbds_show_state(buf);
2970
2971	case X86_BUG_MMIO_STALE_DATA:
2972	case X86_BUG_MMIO_UNKNOWN:
2973		return mmio_stale_data_show_state(buf);
2974
2975	case X86_BUG_RETBLEED:
2976		return retbleed_show_state(buf);
2977
2978	case X86_BUG_SRSO:
2979		return srso_show_state(buf);
2980
2981	case X86_BUG_GDS:
2982		return gds_show_state(buf);
2983
2984	case X86_BUG_RFDS:
2985		return rfds_show_state(buf);
2986
2987	default:
2988		break;
2989	}
2990
2991	return sysfs_emit(buf, "Vulnerable\n");
2992}
2993
2994ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2995{
2996	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2997}
2998
2999ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3000{
3001	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3002}
3003
3004ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3005{
3006	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3007}
3008
3009ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3010{
3011	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3012}
3013
3014ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3015{
3016	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3017}
3018
3019ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3020{
3021	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3022}
3023
3024ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3025{
3026	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3027}
3028
3029ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3030{
3031	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3032}
3033
3034ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3035{
3036	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3037}
3038
3039ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3040{
3041	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3042		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3043	else
3044		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3045}
3046
3047ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3048{
3049	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3050}
3051
3052ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3053{
3054	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3055}
3056
3057ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3058{
3059	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3060}
3061
3062ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3063{
3064	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3065}
3066#endif
3067
3068void __warn_thunk(void)
3069{
3070	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3071}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1994  Linus Torvalds
   4 *
   5 *  Cyrix stuff, June 1998 by:
   6 *	- Rafael R. Reilova (moved everything from head.S),
   7 *        <rreilova@ececs.uc.edu>
   8 *	- Channing Corn (tests & fixes),
   9 *	- Andrew D. Balsa (code cleanup).
  10 */
  11#include <linux/init.h>
  12#include <linux/cpu.h>
  13#include <linux/module.h>
  14#include <linux/nospec.h>
  15#include <linux/prctl.h>
  16#include <linux/sched/smt.h>
  17#include <linux/pgtable.h>
  18#include <linux/bpf.h>
  19
  20#include <asm/spec-ctrl.h>
  21#include <asm/cmdline.h>
  22#include <asm/bugs.h>
  23#include <asm/processor.h>
  24#include <asm/processor-flags.h>
  25#include <asm/fpu/api.h>
  26#include <asm/msr.h>
  27#include <asm/vmx.h>
  28#include <asm/paravirt.h>
  29#include <asm/intel-family.h>
  30#include <asm/e820/api.h>
  31#include <asm/hypervisor.h>
  32#include <asm/tlbflush.h>
  33#include <asm/cpu.h>
  34
  35#include "cpu.h"
  36
  37static void __init spectre_v1_select_mitigation(void);
  38static void __init spectre_v2_select_mitigation(void);
  39static void __init retbleed_select_mitigation(void);
  40static void __init spectre_v2_user_select_mitigation(void);
  41static void __init ssb_select_mitigation(void);
  42static void __init l1tf_select_mitigation(void);
  43static void __init mds_select_mitigation(void);
  44static void __init md_clear_update_mitigation(void);
  45static void __init md_clear_select_mitigation(void);
  46static void __init taa_select_mitigation(void);
  47static void __init mmio_select_mitigation(void);
  48static void __init srbds_select_mitigation(void);
  49static void __init l1d_flush_select_mitigation(void);
  50static void __init srso_select_mitigation(void);
  51static void __init gds_select_mitigation(void);
  52
  53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
  54u64 x86_spec_ctrl_base;
  55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
  56
  57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
  58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
  59EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
  60
  61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
  62EXPORT_SYMBOL_GPL(x86_pred_cmd);
  63
  64static u64 __ro_after_init x86_arch_cap_msr;
  65
  66static DEFINE_MUTEX(spec_ctrl_mutex);
  67
  68void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
  69
  70/* Update SPEC_CTRL MSR and its cached copy unconditionally */
  71static void update_spec_ctrl(u64 val)
  72{
  73	this_cpu_write(x86_spec_ctrl_current, val);
  74	wrmsrl(MSR_IA32_SPEC_CTRL, val);
  75}
  76
  77/*
  78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
  79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
  80 */
  81void update_spec_ctrl_cond(u64 val)
  82{
  83	if (this_cpu_read(x86_spec_ctrl_current) == val)
  84		return;
  85
  86	this_cpu_write(x86_spec_ctrl_current, val);
  87
  88	/*
  89	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
  90	 * forced the update can be delayed until that time.
  91	 */
  92	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
  93		wrmsrl(MSR_IA32_SPEC_CTRL, val);
  94}
  95
  96noinstr u64 spec_ctrl_current(void)
  97{
  98	return this_cpu_read(x86_spec_ctrl_current);
  99}
 100EXPORT_SYMBOL_GPL(spec_ctrl_current);
 101
 102/*
 103 * AMD specific MSR info for Speculative Store Bypass control.
 104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
 105 */
 106u64 __ro_after_init x86_amd_ls_cfg_base;
 107u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
 108
 109/* Control conditional STIBP in switch_to() */
 110DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
 111/* Control conditional IBPB in switch_mm() */
 112DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
 113/* Control unconditional IBPB in switch_mm() */
 114DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
 115
 116/* Control MDS CPU buffer clear before idling (halt, mwait) */
 117DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
 118EXPORT_SYMBOL_GPL(mds_idle_clear);
 119
 120/*
 121 * Controls whether l1d flush based mitigations are enabled,
 122 * based on hw features and admin setting via boot parameter
 123 * defaults to false
 124 */
 125DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
 126
 127/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
 128DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
 129EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
 130
 131void __init cpu_select_mitigations(void)
 132{
 133	/*
 134	 * Read the SPEC_CTRL MSR to account for reserved bits which may
 135	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
 136	 * init code as it is not enumerated and depends on the family.
 137	 */
 138	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
 139		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
 140
 141		/*
 142		 * Previously running kernel (kexec), may have some controls
 143		 * turned ON. Clear them and let the mitigations setup below
 144		 * rediscover them based on configuration.
 145		 */
 146		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
 147	}
 148
 149	x86_arch_cap_msr = x86_read_arch_cap_msr();
 150
 151	/* Select the proper CPU mitigations before patching alternatives: */
 152	spectre_v1_select_mitigation();
 153	spectre_v2_select_mitigation();
 154	/*
 155	 * retbleed_select_mitigation() relies on the state set by
 156	 * spectre_v2_select_mitigation(); specifically it wants to know about
 157	 * spectre_v2=ibrs.
 158	 */
 159	retbleed_select_mitigation();
 160	/*
 161	 * spectre_v2_user_select_mitigation() relies on the state set by
 162	 * retbleed_select_mitigation(); specifically the STIBP selection is
 163	 * forced for UNRET or IBPB.
 164	 */
 165	spectre_v2_user_select_mitigation();
 166	ssb_select_mitigation();
 167	l1tf_select_mitigation();
 168	md_clear_select_mitigation();
 169	srbds_select_mitigation();
 170	l1d_flush_select_mitigation();
 171
 172	/*
 173	 * srso_select_mitigation() depends and must run after
 174	 * retbleed_select_mitigation().
 175	 */
 176	srso_select_mitigation();
 177	gds_select_mitigation();
 178}
 179
 180/*
 181 * NOTE: This function is *only* called for SVM, since Intel uses
 182 * MSR_IA32_SPEC_CTRL for SSBD.
 183 */
 184void
 185x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
 186{
 187	u64 guestval, hostval;
 188	struct thread_info *ti = current_thread_info();
 189
 190	/*
 191	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
 192	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
 193	 */
 194	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 195	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
 196		return;
 197
 198	/*
 199	 * If the host has SSBD mitigation enabled, force it in the host's
 200	 * virtual MSR value. If its not permanently enabled, evaluate
 201	 * current's TIF_SSBD thread flag.
 202	 */
 203	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
 204		hostval = SPEC_CTRL_SSBD;
 205	else
 206		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
 207
 208	/* Sanitize the guest value */
 209	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
 210
 211	if (hostval != guestval) {
 212		unsigned long tif;
 213
 214		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
 215				 ssbd_spec_ctrl_to_tif(hostval);
 216
 217		speculation_ctrl_update(tif);
 218	}
 219}
 220EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
 221
 222static void x86_amd_ssb_disable(void)
 223{
 224	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
 225
 226	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
 227		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
 228	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 229		wrmsrl(MSR_AMD64_LS_CFG, msrval);
 230}
 231
 232#undef pr_fmt
 233#define pr_fmt(fmt)	"MDS: " fmt
 234
 235/* Default mitigation for MDS-affected CPUs */
 236static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
 
 237static bool mds_nosmt __ro_after_init = false;
 238
 239static const char * const mds_strings[] = {
 240	[MDS_MITIGATION_OFF]	= "Vulnerable",
 241	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
 242	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 243};
 244
 245static void __init mds_select_mitigation(void)
 246{
 247	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
 248		mds_mitigation = MDS_MITIGATION_OFF;
 249		return;
 250	}
 251
 252	if (mds_mitigation == MDS_MITIGATION_FULL) {
 253		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
 254			mds_mitigation = MDS_MITIGATION_VMWERV;
 255
 256		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 257
 258		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
 259		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
 260			cpu_smt_disable(false);
 261	}
 262}
 263
 264static int __init mds_cmdline(char *str)
 265{
 266	if (!boot_cpu_has_bug(X86_BUG_MDS))
 267		return 0;
 268
 269	if (!str)
 270		return -EINVAL;
 271
 272	if (!strcmp(str, "off"))
 273		mds_mitigation = MDS_MITIGATION_OFF;
 274	else if (!strcmp(str, "full"))
 275		mds_mitigation = MDS_MITIGATION_FULL;
 276	else if (!strcmp(str, "full,nosmt")) {
 277		mds_mitigation = MDS_MITIGATION_FULL;
 278		mds_nosmt = true;
 279	}
 280
 281	return 0;
 282}
 283early_param("mds", mds_cmdline);
 284
 285#undef pr_fmt
 286#define pr_fmt(fmt)	"TAA: " fmt
 287
 288enum taa_mitigations {
 289	TAA_MITIGATION_OFF,
 290	TAA_MITIGATION_UCODE_NEEDED,
 291	TAA_MITIGATION_VERW,
 292	TAA_MITIGATION_TSX_DISABLED,
 293};
 294
 295/* Default mitigation for TAA-affected CPUs */
 296static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
 
 297static bool taa_nosmt __ro_after_init;
 298
 299static const char * const taa_strings[] = {
 300	[TAA_MITIGATION_OFF]		= "Vulnerable",
 301	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 302	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 303	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
 304};
 305
 306static void __init taa_select_mitigation(void)
 307{
 308	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
 309		taa_mitigation = TAA_MITIGATION_OFF;
 310		return;
 311	}
 312
 313	/* TSX previously disabled by tsx=off */
 314	if (!boot_cpu_has(X86_FEATURE_RTM)) {
 315		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
 316		return;
 317	}
 318
 319	if (cpu_mitigations_off()) {
 320		taa_mitigation = TAA_MITIGATION_OFF;
 321		return;
 322	}
 323
 324	/*
 325	 * TAA mitigation via VERW is turned off if both
 326	 * tsx_async_abort=off and mds=off are specified.
 327	 */
 328	if (taa_mitigation == TAA_MITIGATION_OFF &&
 329	    mds_mitigation == MDS_MITIGATION_OFF)
 330		return;
 331
 332	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
 333		taa_mitigation = TAA_MITIGATION_VERW;
 334	else
 335		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 336
 337	/*
 338	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
 339	 * A microcode update fixes this behavior to clear CPU buffers. It also
 340	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
 341	 * ARCH_CAP_TSX_CTRL_MSR bit.
 342	 *
 343	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
 344	 * update is required.
 345	 */
 346	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
 347	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
 348		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 349
 350	/*
 351	 * TSX is enabled, select alternate mitigation for TAA which is
 352	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
 353	 *
 354	 * For guests that can't determine whether the correct microcode is
 355	 * present on host, enable the mitigation for UCODE_NEEDED as well.
 356	 */
 357	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 358
 359	if (taa_nosmt || cpu_mitigations_auto_nosmt())
 360		cpu_smt_disable(false);
 361}
 362
 363static int __init tsx_async_abort_parse_cmdline(char *str)
 364{
 365	if (!boot_cpu_has_bug(X86_BUG_TAA))
 366		return 0;
 367
 368	if (!str)
 369		return -EINVAL;
 370
 371	if (!strcmp(str, "off")) {
 372		taa_mitigation = TAA_MITIGATION_OFF;
 373	} else if (!strcmp(str, "full")) {
 374		taa_mitigation = TAA_MITIGATION_VERW;
 375	} else if (!strcmp(str, "full,nosmt")) {
 376		taa_mitigation = TAA_MITIGATION_VERW;
 377		taa_nosmt = true;
 378	}
 379
 380	return 0;
 381}
 382early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
 383
 384#undef pr_fmt
 385#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
 386
 387enum mmio_mitigations {
 388	MMIO_MITIGATION_OFF,
 389	MMIO_MITIGATION_UCODE_NEEDED,
 390	MMIO_MITIGATION_VERW,
 391};
 392
 393/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
 394static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
 
 395static bool mmio_nosmt __ro_after_init = false;
 396
 397static const char * const mmio_strings[] = {
 398	[MMIO_MITIGATION_OFF]		= "Vulnerable",
 399	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 400	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 401};
 402
 403static void __init mmio_select_mitigation(void)
 404{
 405	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
 406	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
 407	     cpu_mitigations_off()) {
 408		mmio_mitigation = MMIO_MITIGATION_OFF;
 409		return;
 410	}
 411
 412	if (mmio_mitigation == MMIO_MITIGATION_OFF)
 413		return;
 414
 415	/*
 416	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
 417	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
 418	 */
 419	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
 420					      boot_cpu_has(X86_FEATURE_RTM)))
 421		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 422
 423	/*
 424	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
 425	 * mitigations, disable KVM-only mitigation in that case.
 426	 */
 427	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
 428		static_branch_disable(&mmio_stale_data_clear);
 429	else
 430		static_branch_enable(&mmio_stale_data_clear);
 431
 432	/*
 433	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
 434	 * be propagated to uncore buffers, clearing the Fill buffers on idle
 435	 * is required irrespective of SMT state.
 436	 */
 437	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
 438		static_branch_enable(&mds_idle_clear);
 439
 440	/*
 441	 * Check if the system has the right microcode.
 442	 *
 443	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
 444	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
 445	 * affected systems.
 446	 */
 447	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
 448	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
 449	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
 450	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
 451		mmio_mitigation = MMIO_MITIGATION_VERW;
 452	else
 453		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
 454
 455	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
 456		cpu_smt_disable(false);
 457}
 458
 459static int __init mmio_stale_data_parse_cmdline(char *str)
 460{
 461	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 462		return 0;
 463
 464	if (!str)
 465		return -EINVAL;
 466
 467	if (!strcmp(str, "off")) {
 468		mmio_mitigation = MMIO_MITIGATION_OFF;
 469	} else if (!strcmp(str, "full")) {
 470		mmio_mitigation = MMIO_MITIGATION_VERW;
 471	} else if (!strcmp(str, "full,nosmt")) {
 472		mmio_mitigation = MMIO_MITIGATION_VERW;
 473		mmio_nosmt = true;
 474	}
 475
 476	return 0;
 477}
 478early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
 479
 480#undef pr_fmt
 481#define pr_fmt(fmt)	"Register File Data Sampling: " fmt
 482
 483enum rfds_mitigations {
 484	RFDS_MITIGATION_OFF,
 485	RFDS_MITIGATION_VERW,
 486	RFDS_MITIGATION_UCODE_NEEDED,
 487};
 488
 489/* Default mitigation for Register File Data Sampling */
 490static enum rfds_mitigations rfds_mitigation __ro_after_init =
 491	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
 492
 493static const char * const rfds_strings[] = {
 494	[RFDS_MITIGATION_OFF]			= "Vulnerable",
 495	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
 496	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
 497};
 498
 499static void __init rfds_select_mitigation(void)
 500{
 501	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
 502		rfds_mitigation = RFDS_MITIGATION_OFF;
 503		return;
 504	}
 505	if (rfds_mitigation == RFDS_MITIGATION_OFF)
 506		return;
 507
 508	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
 509		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 510	else
 511		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
 512}
 513
 514static __init int rfds_parse_cmdline(char *str)
 515{
 516	if (!str)
 517		return -EINVAL;
 518
 519	if (!boot_cpu_has_bug(X86_BUG_RFDS))
 520		return 0;
 521
 522	if (!strcmp(str, "off"))
 523		rfds_mitigation = RFDS_MITIGATION_OFF;
 524	else if (!strcmp(str, "on"))
 525		rfds_mitigation = RFDS_MITIGATION_VERW;
 526
 527	return 0;
 528}
 529early_param("reg_file_data_sampling", rfds_parse_cmdline);
 530
 531#undef pr_fmt
 532#define pr_fmt(fmt)     "" fmt
 533
 534static void __init md_clear_update_mitigation(void)
 535{
 536	if (cpu_mitigations_off())
 537		return;
 538
 539	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
 540		goto out;
 541
 542	/*
 543	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
 544	 * Stale Data mitigation, if necessary.
 545	 */
 546	if (mds_mitigation == MDS_MITIGATION_OFF &&
 547	    boot_cpu_has_bug(X86_BUG_MDS)) {
 548		mds_mitigation = MDS_MITIGATION_FULL;
 549		mds_select_mitigation();
 550	}
 551	if (taa_mitigation == TAA_MITIGATION_OFF &&
 552	    boot_cpu_has_bug(X86_BUG_TAA)) {
 553		taa_mitigation = TAA_MITIGATION_VERW;
 554		taa_select_mitigation();
 555	}
 556	/*
 557	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
 558	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
 559	 */
 560	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
 561		mmio_mitigation = MMIO_MITIGATION_VERW;
 562		mmio_select_mitigation();
 563	}
 564	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
 565	    boot_cpu_has_bug(X86_BUG_RFDS)) {
 566		rfds_mitigation = RFDS_MITIGATION_VERW;
 567		rfds_select_mitigation();
 568	}
 569out:
 570	if (boot_cpu_has_bug(X86_BUG_MDS))
 571		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
 572	if (boot_cpu_has_bug(X86_BUG_TAA))
 573		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
 574	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 575		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
 576	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
 577		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
 578	if (boot_cpu_has_bug(X86_BUG_RFDS))
 579		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
 580}
 581
 582static void __init md_clear_select_mitigation(void)
 583{
 584	mds_select_mitigation();
 585	taa_select_mitigation();
 586	mmio_select_mitigation();
 587	rfds_select_mitigation();
 588
 589	/*
 590	 * As these mitigations are inter-related and rely on VERW instruction
 591	 * to clear the microarchitural buffers, update and print their status
 592	 * after mitigation selection is done for each of these vulnerabilities.
 593	 */
 594	md_clear_update_mitigation();
 595}
 596
 597#undef pr_fmt
 598#define pr_fmt(fmt)	"SRBDS: " fmt
 599
 600enum srbds_mitigations {
 601	SRBDS_MITIGATION_OFF,
 602	SRBDS_MITIGATION_UCODE_NEEDED,
 603	SRBDS_MITIGATION_FULL,
 604	SRBDS_MITIGATION_TSX_OFF,
 605	SRBDS_MITIGATION_HYPERVISOR,
 606};
 607
 608static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
 
 609
 610static const char * const srbds_strings[] = {
 611	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
 612	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 613	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 614	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
 615	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 616};
 617
 618static bool srbds_off;
 619
 620void update_srbds_msr(void)
 621{
 622	u64 mcu_ctrl;
 623
 624	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 625		return;
 626
 627	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 628		return;
 629
 630	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
 631		return;
 632
 633	/*
 634	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
 635	 * being disabled and it hasn't received the SRBDS MSR microcode.
 636	 */
 637	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 638		return;
 639
 640	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 641
 642	switch (srbds_mitigation) {
 643	case SRBDS_MITIGATION_OFF:
 644	case SRBDS_MITIGATION_TSX_OFF:
 645		mcu_ctrl |= RNGDS_MITG_DIS;
 646		break;
 647	case SRBDS_MITIGATION_FULL:
 648		mcu_ctrl &= ~RNGDS_MITG_DIS;
 649		break;
 650	default:
 651		break;
 652	}
 653
 654	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 655}
 656
 657static void __init srbds_select_mitigation(void)
 658{
 659	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 660		return;
 661
 662	/*
 663	 * Check to see if this is one of the MDS_NO systems supporting TSX that
 664	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
 665	 * by Processor MMIO Stale Data vulnerability.
 666	 */
 667	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
 668	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 669		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
 670	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 671		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
 672	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 673		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
 674	else if (cpu_mitigations_off() || srbds_off)
 675		srbds_mitigation = SRBDS_MITIGATION_OFF;
 676
 677	update_srbds_msr();
 678	pr_info("%s\n", srbds_strings[srbds_mitigation]);
 679}
 680
 681static int __init srbds_parse_cmdline(char *str)
 682{
 683	if (!str)
 684		return -EINVAL;
 685
 686	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 687		return 0;
 688
 689	srbds_off = !strcmp(str, "off");
 690	return 0;
 691}
 692early_param("srbds", srbds_parse_cmdline);
 693
 694#undef pr_fmt
 695#define pr_fmt(fmt)     "L1D Flush : " fmt
 696
 697enum l1d_flush_mitigations {
 698	L1D_FLUSH_OFF = 0,
 699	L1D_FLUSH_ON,
 700};
 701
 702static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
 703
 704static void __init l1d_flush_select_mitigation(void)
 705{
 706	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
 707		return;
 708
 709	static_branch_enable(&switch_mm_cond_l1d_flush);
 710	pr_info("Conditional flush on switch_mm() enabled\n");
 711}
 712
 713static int __init l1d_flush_parse_cmdline(char *str)
 714{
 715	if (!strcmp(str, "on"))
 716		l1d_flush_mitigation = L1D_FLUSH_ON;
 717
 718	return 0;
 719}
 720early_param("l1d_flush", l1d_flush_parse_cmdline);
 721
 722#undef pr_fmt
 723#define pr_fmt(fmt)	"GDS: " fmt
 724
 725enum gds_mitigations {
 726	GDS_MITIGATION_OFF,
 727	GDS_MITIGATION_UCODE_NEEDED,
 728	GDS_MITIGATION_FORCE,
 729	GDS_MITIGATION_FULL,
 730	GDS_MITIGATION_FULL_LOCKED,
 731	GDS_MITIGATION_HYPERVISOR,
 732};
 733
 734#if IS_ENABLED(CONFIG_MITIGATION_GDS_FORCE)
 735static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
 736#else
 737static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
 738#endif
 739
 740static const char * const gds_strings[] = {
 741	[GDS_MITIGATION_OFF]		= "Vulnerable",
 742	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 743	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
 744	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 745	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
 746	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 747};
 748
 749bool gds_ucode_mitigated(void)
 750{
 751	return (gds_mitigation == GDS_MITIGATION_FULL ||
 752		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
 753}
 754EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
 755
 756void update_gds_msr(void)
 757{
 758	u64 mcu_ctrl_after;
 759	u64 mcu_ctrl;
 760
 761	switch (gds_mitigation) {
 762	case GDS_MITIGATION_OFF:
 763		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 764		mcu_ctrl |= GDS_MITG_DIS;
 765		break;
 766	case GDS_MITIGATION_FULL_LOCKED:
 767		/*
 768		 * The LOCKED state comes from the boot CPU. APs might not have
 769		 * the same state. Make sure the mitigation is enabled on all
 770		 * CPUs.
 771		 */
 772	case GDS_MITIGATION_FULL:
 773		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 774		mcu_ctrl &= ~GDS_MITG_DIS;
 775		break;
 776	case GDS_MITIGATION_FORCE:
 777	case GDS_MITIGATION_UCODE_NEEDED:
 778	case GDS_MITIGATION_HYPERVISOR:
 779		return;
 780	}
 781
 782	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 783
 784	/*
 785	 * Check to make sure that the WRMSR value was not ignored. Writes to
 786	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
 787	 * processor was not.
 788	 */
 789	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
 790	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
 791}
 792
 793static void __init gds_select_mitigation(void)
 794{
 795	u64 mcu_ctrl;
 796
 797	if (!boot_cpu_has_bug(X86_BUG_GDS))
 798		return;
 799
 800	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 801		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
 802		goto out;
 803	}
 804
 805	if (cpu_mitigations_off())
 806		gds_mitigation = GDS_MITIGATION_OFF;
 807	/* Will verify below that mitigation _can_ be disabled */
 808
 809	/* No microcode */
 810	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
 811		if (gds_mitigation == GDS_MITIGATION_FORCE) {
 812			/*
 813			 * This only needs to be done on the boot CPU so do it
 814			 * here rather than in update_gds_msr()
 815			 */
 816			setup_clear_cpu_cap(X86_FEATURE_AVX);
 817			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
 818		} else {
 819			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
 820		}
 821		goto out;
 822	}
 823
 824	/* Microcode has mitigation, use it */
 825	if (gds_mitigation == GDS_MITIGATION_FORCE)
 826		gds_mitigation = GDS_MITIGATION_FULL;
 827
 828	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 829	if (mcu_ctrl & GDS_MITG_LOCKED) {
 830		if (gds_mitigation == GDS_MITIGATION_OFF)
 831			pr_warn("Mitigation locked. Disable failed.\n");
 832
 833		/*
 834		 * The mitigation is selected from the boot CPU. All other CPUs
 835		 * _should_ have the same state. If the boot CPU isn't locked
 836		 * but others are then update_gds_msr() will WARN() of the state
 837		 * mismatch. If the boot CPU is locked update_gds_msr() will
 838		 * ensure the other CPUs have the mitigation enabled.
 839		 */
 840		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
 841	}
 842
 843	update_gds_msr();
 844out:
 845	pr_info("%s\n", gds_strings[gds_mitigation]);
 846}
 847
 848static int __init gds_parse_cmdline(char *str)
 849{
 850	if (!str)
 851		return -EINVAL;
 852
 853	if (!boot_cpu_has_bug(X86_BUG_GDS))
 854		return 0;
 855
 856	if (!strcmp(str, "off"))
 857		gds_mitigation = GDS_MITIGATION_OFF;
 858	else if (!strcmp(str, "force"))
 859		gds_mitigation = GDS_MITIGATION_FORCE;
 860
 861	return 0;
 862}
 863early_param("gather_data_sampling", gds_parse_cmdline);
 864
 865#undef pr_fmt
 866#define pr_fmt(fmt)     "Spectre V1 : " fmt
 867
 868enum spectre_v1_mitigation {
 869	SPECTRE_V1_MITIGATION_NONE,
 870	SPECTRE_V1_MITIGATION_AUTO,
 871};
 872
 873static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
 874	SPECTRE_V1_MITIGATION_AUTO;
 
 875
 876static const char * const spectre_v1_strings[] = {
 877	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
 878	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
 879};
 880
 881/*
 882 * Does SMAP provide full mitigation against speculative kernel access to
 883 * userspace?
 884 */
 885static bool smap_works_speculatively(void)
 886{
 887	if (!boot_cpu_has(X86_FEATURE_SMAP))
 888		return false;
 889
 890	/*
 891	 * On CPUs which are vulnerable to Meltdown, SMAP does not
 892	 * prevent speculative access to user data in the L1 cache.
 893	 * Consider SMAP to be non-functional as a mitigation on these
 894	 * CPUs.
 895	 */
 896	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
 897		return false;
 898
 899	return true;
 900}
 901
 902static void __init spectre_v1_select_mitigation(void)
 903{
 904	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
 905		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 906		return;
 907	}
 908
 909	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
 910		/*
 911		 * With Spectre v1, a user can speculatively control either
 912		 * path of a conditional swapgs with a user-controlled GS
 913		 * value.  The mitigation is to add lfences to both code paths.
 914		 *
 915		 * If FSGSBASE is enabled, the user can put a kernel address in
 916		 * GS, in which case SMAP provides no protection.
 917		 *
 918		 * If FSGSBASE is disabled, the user can only put a user space
 919		 * address in GS.  That makes an attack harder, but still
 920		 * possible if there's no SMAP protection.
 921		 */
 922		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 923		    !smap_works_speculatively()) {
 924			/*
 925			 * Mitigation can be provided from SWAPGS itself or
 926			 * PTI as the CR3 write in the Meltdown mitigation
 927			 * is serializing.
 928			 *
 929			 * If neither is there, mitigate with an LFENCE to
 930			 * stop speculation through swapgs.
 931			 */
 932			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
 933			    !boot_cpu_has(X86_FEATURE_PTI))
 934				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
 935
 936			/*
 937			 * Enable lfences in the kernel entry (non-swapgs)
 938			 * paths, to prevent user entry from speculatively
 939			 * skipping swapgs.
 940			 */
 941			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
 942		}
 943	}
 944
 945	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
 946}
 947
 948static int __init nospectre_v1_cmdline(char *str)
 949{
 950	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 951	return 0;
 952}
 953early_param("nospectre_v1", nospectre_v1_cmdline);
 954
 955enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
 956
 957#undef pr_fmt
 958#define pr_fmt(fmt)     "RETBleed: " fmt
 959
 960enum retbleed_mitigation {
 961	RETBLEED_MITIGATION_NONE,
 962	RETBLEED_MITIGATION_UNRET,
 963	RETBLEED_MITIGATION_IBPB,
 964	RETBLEED_MITIGATION_IBRS,
 965	RETBLEED_MITIGATION_EIBRS,
 966	RETBLEED_MITIGATION_STUFF,
 967};
 968
 969enum retbleed_mitigation_cmd {
 970	RETBLEED_CMD_OFF,
 971	RETBLEED_CMD_AUTO,
 972	RETBLEED_CMD_UNRET,
 973	RETBLEED_CMD_IBPB,
 974	RETBLEED_CMD_STUFF,
 975};
 976
 977static const char * const retbleed_strings[] = {
 978	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
 979	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
 980	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
 981	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
 982	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
 983	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
 984};
 985
 986static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
 987	RETBLEED_MITIGATION_NONE;
 988static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
 989	RETBLEED_CMD_AUTO;
 990
 991static int __ro_after_init retbleed_nosmt = false;
 992
 993static int __init retbleed_parse_cmdline(char *str)
 994{
 995	if (!str)
 996		return -EINVAL;
 997
 998	while (str) {
 999		char *next = strchr(str, ',');
1000		if (next) {
1001			*next = 0;
1002			next++;
1003		}
1004
1005		if (!strcmp(str, "off")) {
1006			retbleed_cmd = RETBLEED_CMD_OFF;
1007		} else if (!strcmp(str, "auto")) {
1008			retbleed_cmd = RETBLEED_CMD_AUTO;
1009		} else if (!strcmp(str, "unret")) {
1010			retbleed_cmd = RETBLEED_CMD_UNRET;
1011		} else if (!strcmp(str, "ibpb")) {
1012			retbleed_cmd = RETBLEED_CMD_IBPB;
1013		} else if (!strcmp(str, "stuff")) {
1014			retbleed_cmd = RETBLEED_CMD_STUFF;
1015		} else if (!strcmp(str, "nosmt")) {
1016			retbleed_nosmt = true;
1017		} else if (!strcmp(str, "force")) {
1018			setup_force_cpu_bug(X86_BUG_RETBLEED);
1019		} else {
1020			pr_err("Ignoring unknown retbleed option (%s).", str);
1021		}
1022
1023		str = next;
1024	}
1025
1026	return 0;
1027}
1028early_param("retbleed", retbleed_parse_cmdline);
1029
1030#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1031#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1032
1033static void __init retbleed_select_mitigation(void)
1034{
1035	bool mitigate_smt = false;
1036
1037	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1038		return;
1039
1040	switch (retbleed_cmd) {
1041	case RETBLEED_CMD_OFF:
1042		return;
1043
1044	case RETBLEED_CMD_UNRET:
1045		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1046			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1047		} else {
1048			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1049			goto do_cmd_auto;
1050		}
1051		break;
1052
1053	case RETBLEED_CMD_IBPB:
1054		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1055			pr_err("WARNING: CPU does not support IBPB.\n");
1056			goto do_cmd_auto;
1057		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1058			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1059		} else {
1060			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1061			goto do_cmd_auto;
1062		}
1063		break;
1064
1065	case RETBLEED_CMD_STUFF:
1066		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1067		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1068			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1069
1070		} else {
1071			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1072				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1073			else
1074				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1075
1076			goto do_cmd_auto;
1077		}
1078		break;
1079
1080do_cmd_auto:
1081	case RETBLEED_CMD_AUTO:
1082		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1083		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1084			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1085				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1086			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1087				 boot_cpu_has(X86_FEATURE_IBPB))
1088				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1089		}
1090
1091		/*
1092		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1093		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1094		 * be set accordingly below.
1095		 */
1096
1097		break;
1098	}
1099
1100	switch (retbleed_mitigation) {
1101	case RETBLEED_MITIGATION_UNRET:
1102		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1103		setup_force_cpu_cap(X86_FEATURE_UNRET);
1104
1105		x86_return_thunk = retbleed_return_thunk;
1106
1107		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1108		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1109			pr_err(RETBLEED_UNTRAIN_MSG);
1110
1111		mitigate_smt = true;
1112		break;
1113
1114	case RETBLEED_MITIGATION_IBPB:
1115		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1116		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1117		mitigate_smt = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118		break;
1119
1120	case RETBLEED_MITIGATION_STUFF:
1121		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1122		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1123
1124		x86_return_thunk = call_depth_return_thunk;
1125		break;
1126
1127	default:
1128		break;
1129	}
1130
1131	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1132	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1133		cpu_smt_disable(false);
1134
1135	/*
1136	 * Let IBRS trump all on Intel without affecting the effects of the
1137	 * retbleed= cmdline option except for call depth based stuffing
1138	 */
1139	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1140		switch (spectre_v2_enabled) {
1141		case SPECTRE_V2_IBRS:
1142			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1143			break;
1144		case SPECTRE_V2_EIBRS:
1145		case SPECTRE_V2_EIBRS_RETPOLINE:
1146		case SPECTRE_V2_EIBRS_LFENCE:
1147			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1148			break;
1149		default:
1150			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1151				pr_err(RETBLEED_INTEL_MSG);
1152		}
1153	}
1154
1155	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1156}
1157
1158#undef pr_fmt
1159#define pr_fmt(fmt)     "Spectre V2 : " fmt
1160
1161static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1162	SPECTRE_V2_USER_NONE;
1163static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1164	SPECTRE_V2_USER_NONE;
1165
1166#ifdef CONFIG_MITIGATION_RETPOLINE
1167static bool spectre_v2_bad_module;
1168
1169bool retpoline_module_ok(bool has_retpoline)
1170{
1171	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1172		return true;
1173
1174	pr_err("System may be vulnerable to spectre v2\n");
1175	spectre_v2_bad_module = true;
1176	return false;
1177}
1178
1179static inline const char *spectre_v2_module_string(void)
1180{
1181	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1182}
1183#else
1184static inline const char *spectre_v2_module_string(void) { return ""; }
1185#endif
1186
1187#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1188#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1189#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1190#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1191
1192#ifdef CONFIG_BPF_SYSCALL
1193void unpriv_ebpf_notify(int new_state)
1194{
1195	if (new_state)
1196		return;
1197
1198	/* Unprivileged eBPF is enabled */
1199
1200	switch (spectre_v2_enabled) {
1201	case SPECTRE_V2_EIBRS:
1202		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1203		break;
1204	case SPECTRE_V2_EIBRS_LFENCE:
1205		if (sched_smt_active())
1206			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1207		break;
1208	default:
1209		break;
1210	}
1211}
1212#endif
1213
1214static inline bool match_option(const char *arg, int arglen, const char *opt)
1215{
1216	int len = strlen(opt);
1217
1218	return len == arglen && !strncmp(arg, opt, len);
1219}
1220
1221/* The kernel command line selection for spectre v2 */
1222enum spectre_v2_mitigation_cmd {
1223	SPECTRE_V2_CMD_NONE,
1224	SPECTRE_V2_CMD_AUTO,
1225	SPECTRE_V2_CMD_FORCE,
1226	SPECTRE_V2_CMD_RETPOLINE,
1227	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1228	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1229	SPECTRE_V2_CMD_EIBRS,
1230	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1231	SPECTRE_V2_CMD_EIBRS_LFENCE,
1232	SPECTRE_V2_CMD_IBRS,
1233};
1234
1235enum spectre_v2_user_cmd {
1236	SPECTRE_V2_USER_CMD_NONE,
1237	SPECTRE_V2_USER_CMD_AUTO,
1238	SPECTRE_V2_USER_CMD_FORCE,
1239	SPECTRE_V2_USER_CMD_PRCTL,
1240	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1241	SPECTRE_V2_USER_CMD_SECCOMP,
1242	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1243};
1244
1245static const char * const spectre_v2_user_strings[] = {
1246	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1247	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1248	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1249	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1250	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1251};
1252
1253static const struct {
1254	const char			*option;
1255	enum spectre_v2_user_cmd	cmd;
1256	bool				secure;
1257} v2_user_options[] __initconst = {
1258	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1259	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1260	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1261	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1262	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1263	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1264	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1265};
1266
1267static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1268{
1269	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1270		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1271}
1272
1273static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1274
1275static enum spectre_v2_user_cmd __init
1276spectre_v2_parse_user_cmdline(void)
1277{
1278	char arg[20];
1279	int ret, i;
1280
1281	switch (spectre_v2_cmd) {
1282	case SPECTRE_V2_CMD_NONE:
1283		return SPECTRE_V2_USER_CMD_NONE;
1284	case SPECTRE_V2_CMD_FORCE:
1285		return SPECTRE_V2_USER_CMD_FORCE;
1286	default:
1287		break;
1288	}
1289
1290	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1291				  arg, sizeof(arg));
1292	if (ret < 0)
1293		return SPECTRE_V2_USER_CMD_AUTO;
1294
1295	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1296		if (match_option(arg, ret, v2_user_options[i].option)) {
1297			spec_v2_user_print_cond(v2_user_options[i].option,
1298						v2_user_options[i].secure);
1299			return v2_user_options[i].cmd;
1300		}
1301	}
1302
1303	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1304	return SPECTRE_V2_USER_CMD_AUTO;
1305}
1306
1307static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1308{
1309	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1310}
1311
1312static void __init
1313spectre_v2_user_select_mitigation(void)
1314{
1315	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1316	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1317	enum spectre_v2_user_cmd cmd;
1318
1319	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1320		return;
1321
1322	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1323	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1324		smt_possible = false;
1325
1326	cmd = spectre_v2_parse_user_cmdline();
1327	switch (cmd) {
1328	case SPECTRE_V2_USER_CMD_NONE:
1329		goto set_mode;
1330	case SPECTRE_V2_USER_CMD_FORCE:
1331		mode = SPECTRE_V2_USER_STRICT;
1332		break;
1333	case SPECTRE_V2_USER_CMD_AUTO:
1334	case SPECTRE_V2_USER_CMD_PRCTL:
1335	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1336		mode = SPECTRE_V2_USER_PRCTL;
1337		break;
1338	case SPECTRE_V2_USER_CMD_SECCOMP:
1339	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1340		if (IS_ENABLED(CONFIG_SECCOMP))
1341			mode = SPECTRE_V2_USER_SECCOMP;
1342		else
1343			mode = SPECTRE_V2_USER_PRCTL;
1344		break;
1345	}
1346
1347	/* Initialize Indirect Branch Prediction Barrier */
1348	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1349		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1350
1351		spectre_v2_user_ibpb = mode;
1352		switch (cmd) {
1353		case SPECTRE_V2_USER_CMD_NONE:
1354			break;
1355		case SPECTRE_V2_USER_CMD_FORCE:
1356		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1357		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1358			static_branch_enable(&switch_mm_always_ibpb);
1359			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1360			break;
1361		case SPECTRE_V2_USER_CMD_PRCTL:
1362		case SPECTRE_V2_USER_CMD_AUTO:
1363		case SPECTRE_V2_USER_CMD_SECCOMP:
1364			static_branch_enable(&switch_mm_cond_ibpb);
1365			break;
1366		}
1367
1368		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1369			static_key_enabled(&switch_mm_always_ibpb) ?
1370			"always-on" : "conditional");
1371	}
1372
1373	/*
1374	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1375	 * is not required.
1376	 *
1377	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1378	 * injection in user-mode as the IBRS bit remains always set which
1379	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1380	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1381	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1382	 * These modes therefore disable the implicit cross-thread protection,
1383	 * so allow for STIBP to be selected in those cases.
1384	 */
1385	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1386	    !smt_possible ||
1387	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1388	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1389		return;
1390
1391	/*
1392	 * At this point, an STIBP mode other than "off" has been set.
1393	 * If STIBP support is not being forced, check if STIBP always-on
1394	 * is preferred.
1395	 */
1396	if (mode != SPECTRE_V2_USER_STRICT &&
1397	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1398		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1399
1400	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1401	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1402		if (mode != SPECTRE_V2_USER_STRICT &&
1403		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1404			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1405		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1406	}
1407
1408	spectre_v2_user_stibp = mode;
1409
1410set_mode:
1411	pr_info("%s\n", spectre_v2_user_strings[mode]);
1412}
1413
1414static const char * const spectre_v2_strings[] = {
1415	[SPECTRE_V2_NONE]			= "Vulnerable",
1416	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1417	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1418	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1419	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1420	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1421	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1422};
1423
1424static const struct {
1425	const char *option;
1426	enum spectre_v2_mitigation_cmd cmd;
1427	bool secure;
1428} mitigation_options[] __initconst = {
1429	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1430	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1431	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1432	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1433	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1434	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1435	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1436	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1437	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1438	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1439	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1440};
1441
1442static void __init spec_v2_print_cond(const char *reason, bool secure)
1443{
1444	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1445		pr_info("%s selected on command line.\n", reason);
1446}
1447
1448static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1449{
1450	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1451	char arg[20];
1452	int ret, i;
1453
 
1454	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1455	    cpu_mitigations_off())
1456		return SPECTRE_V2_CMD_NONE;
1457
1458	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1459	if (ret < 0)
1460		return SPECTRE_V2_CMD_AUTO;
1461
1462	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1463		if (!match_option(arg, ret, mitigation_options[i].option))
1464			continue;
1465		cmd = mitigation_options[i].cmd;
1466		break;
1467	}
1468
1469	if (i >= ARRAY_SIZE(mitigation_options)) {
1470		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1471		return SPECTRE_V2_CMD_AUTO;
1472	}
1473
1474	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1475	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1476	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1477	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1478	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1479	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1480		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1481		       mitigation_options[i].option);
1482		return SPECTRE_V2_CMD_AUTO;
1483	}
1484
1485	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1486	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1487	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1488	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1489		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1490		       mitigation_options[i].option);
1491		return SPECTRE_V2_CMD_AUTO;
1492	}
1493
1494	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1495	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1496	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1497		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1498		       mitigation_options[i].option);
1499		return SPECTRE_V2_CMD_AUTO;
1500	}
1501
1502	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1503		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1504		       mitigation_options[i].option);
1505		return SPECTRE_V2_CMD_AUTO;
1506	}
1507
1508	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1509		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1510		       mitigation_options[i].option);
1511		return SPECTRE_V2_CMD_AUTO;
1512	}
1513
1514	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1515		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1516		       mitigation_options[i].option);
1517		return SPECTRE_V2_CMD_AUTO;
1518	}
1519
1520	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1521		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1522		       mitigation_options[i].option);
1523		return SPECTRE_V2_CMD_AUTO;
1524	}
1525
1526	spec_v2_print_cond(mitigation_options[i].option,
1527			   mitigation_options[i].secure);
1528	return cmd;
1529}
1530
1531static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1532{
1533	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1534		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1535		return SPECTRE_V2_NONE;
1536	}
1537
1538	return SPECTRE_V2_RETPOLINE;
1539}
1540
1541static bool __ro_after_init rrsba_disabled;
1542
1543/* Disable in-kernel use of non-RSB RET predictors */
1544static void __init spec_ctrl_disable_kernel_rrsba(void)
1545{
1546	if (rrsba_disabled)
1547		return;
1548
1549	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1550		rrsba_disabled = true;
1551		return;
1552	}
1553
1554	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1555		return;
1556
1557	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1558	update_spec_ctrl(x86_spec_ctrl_base);
1559	rrsba_disabled = true;
1560}
1561
1562static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1563{
1564	/*
1565	 * Similar to context switches, there are two types of RSB attacks
1566	 * after VM exit:
1567	 *
1568	 * 1) RSB underflow
1569	 *
1570	 * 2) Poisoned RSB entry
1571	 *
1572	 * When retpoline is enabled, both are mitigated by filling/clearing
1573	 * the RSB.
1574	 *
1575	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1576	 * prediction isolation protections, RSB still needs to be cleared
1577	 * because of #2.  Note that SMEP provides no protection here, unlike
1578	 * user-space-poisoned RSB entries.
1579	 *
1580	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1581	 * bug is present then a LITE version of RSB protection is required,
1582	 * just a single call needs to retire before a RET is executed.
1583	 */
1584	switch (mode) {
1585	case SPECTRE_V2_NONE:
1586		return;
1587
1588	case SPECTRE_V2_EIBRS_LFENCE:
1589	case SPECTRE_V2_EIBRS:
1590		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1591			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1592			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1593		}
1594		return;
1595
1596	case SPECTRE_V2_EIBRS_RETPOLINE:
1597	case SPECTRE_V2_RETPOLINE:
1598	case SPECTRE_V2_LFENCE:
1599	case SPECTRE_V2_IBRS:
1600		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1601		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1602		return;
1603	}
1604
1605	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1606	dump_stack();
1607}
1608
1609/*
1610 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1611 * branch history in userspace. Not needed if BHI_NO is set.
1612 */
1613static bool __init spec_ctrl_bhi_dis(void)
1614{
1615	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1616		return false;
1617
1618	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1619	update_spec_ctrl(x86_spec_ctrl_base);
1620	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1621
1622	return true;
1623}
1624
1625enum bhi_mitigations {
1626	BHI_MITIGATION_OFF,
1627	BHI_MITIGATION_ON,
 
1628};
1629
1630static enum bhi_mitigations bhi_mitigation __ro_after_init =
1631	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1632
1633static int __init spectre_bhi_parse_cmdline(char *str)
1634{
1635	if (!str)
1636		return -EINVAL;
1637
1638	if (!strcmp(str, "off"))
1639		bhi_mitigation = BHI_MITIGATION_OFF;
1640	else if (!strcmp(str, "on"))
1641		bhi_mitigation = BHI_MITIGATION_ON;
 
 
1642	else
1643		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1644
1645	return 0;
1646}
1647early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1648
1649static void __init bhi_select_mitigation(void)
1650{
1651	if (bhi_mitigation == BHI_MITIGATION_OFF)
1652		return;
1653
1654	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1655	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1656	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1657		spec_ctrl_disable_kernel_rrsba();
1658		if (rrsba_disabled)
1659			return;
1660	}
1661
 
1662	if (spec_ctrl_bhi_dis())
1663		return;
1664
1665	if (!IS_ENABLED(CONFIG_X86_64))
1666		return;
1667
1668	/* Mitigate KVM by default */
1669	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1670	pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n");
 
 
1671
1672	/* Mitigate syscalls when the mitigation is forced =on */
1673	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1674	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n");
1675}
1676
1677static void __init spectre_v2_select_mitigation(void)
1678{
1679	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1680	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1681
1682	/*
1683	 * If the CPU is not affected and the command line mode is NONE or AUTO
1684	 * then nothing to do.
1685	 */
1686	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1687	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1688		return;
1689
1690	switch (cmd) {
1691	case SPECTRE_V2_CMD_NONE:
1692		return;
1693
1694	case SPECTRE_V2_CMD_FORCE:
1695	case SPECTRE_V2_CMD_AUTO:
1696		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1697			mode = SPECTRE_V2_EIBRS;
1698			break;
1699		}
1700
1701		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1702		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1703		    retbleed_cmd != RETBLEED_CMD_OFF &&
1704		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1705		    boot_cpu_has(X86_FEATURE_IBRS) &&
1706		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1707			mode = SPECTRE_V2_IBRS;
1708			break;
1709		}
1710
1711		mode = spectre_v2_select_retpoline();
1712		break;
1713
1714	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1715		pr_err(SPECTRE_V2_LFENCE_MSG);
1716		mode = SPECTRE_V2_LFENCE;
1717		break;
1718
1719	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1720		mode = SPECTRE_V2_RETPOLINE;
1721		break;
1722
1723	case SPECTRE_V2_CMD_RETPOLINE:
1724		mode = spectre_v2_select_retpoline();
1725		break;
1726
1727	case SPECTRE_V2_CMD_IBRS:
1728		mode = SPECTRE_V2_IBRS;
1729		break;
1730
1731	case SPECTRE_V2_CMD_EIBRS:
1732		mode = SPECTRE_V2_EIBRS;
1733		break;
1734
1735	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1736		mode = SPECTRE_V2_EIBRS_LFENCE;
1737		break;
1738
1739	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1740		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1741		break;
1742	}
1743
1744	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1745		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1746
1747	if (spectre_v2_in_ibrs_mode(mode)) {
1748		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1749			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1750		} else {
1751			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1752			update_spec_ctrl(x86_spec_ctrl_base);
1753		}
1754	}
1755
1756	switch (mode) {
1757	case SPECTRE_V2_NONE:
1758	case SPECTRE_V2_EIBRS:
1759		break;
1760
1761	case SPECTRE_V2_IBRS:
1762		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1763		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1764			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1765		break;
1766
1767	case SPECTRE_V2_LFENCE:
1768	case SPECTRE_V2_EIBRS_LFENCE:
1769		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1770		fallthrough;
1771
1772	case SPECTRE_V2_RETPOLINE:
1773	case SPECTRE_V2_EIBRS_RETPOLINE:
1774		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1775		break;
1776	}
1777
1778	/*
1779	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1780	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1781	 * prediction from a non-RSB predictor is still a risk.
1782	 */
1783	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1784	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1785	    mode == SPECTRE_V2_RETPOLINE)
1786		spec_ctrl_disable_kernel_rrsba();
1787
1788	if (boot_cpu_has(X86_BUG_BHI))
1789		bhi_select_mitigation();
1790
1791	spectre_v2_enabled = mode;
1792	pr_info("%s\n", spectre_v2_strings[mode]);
1793
1794	/*
1795	 * If Spectre v2 protection has been enabled, fill the RSB during a
1796	 * context switch.  In general there are two types of RSB attacks
1797	 * across context switches, for which the CALLs/RETs may be unbalanced.
1798	 *
1799	 * 1) RSB underflow
1800	 *
1801	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1802	 *    speculated return targets may come from the branch predictor,
1803	 *    which could have a user-poisoned BTB or BHB entry.
1804	 *
1805	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1806	 *    regardless of the state of the RSB.
1807	 *
1808	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1809	 *    scenario is mitigated by the IBRS branch prediction isolation
1810	 *    properties, so the RSB buffer filling wouldn't be necessary to
1811	 *    protect against this type of attack.
1812	 *
1813	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1814	 *
1815	 * 2) Poisoned RSB entry
1816	 *
1817	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1818	 *    'next' could be tricked into speculating with a user-poisoned RSB
1819	 *    entry.
1820	 *
1821	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1822	 *    eIBRS.
1823	 *
1824	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1825	 *    RSB clearing.
1826	 *
1827	 * So to mitigate all cases, unconditionally fill RSB on context
1828	 * switches.
1829	 *
1830	 * FIXME: Is this pointless for retbleed-affected AMD?
1831	 */
1832	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1833	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1834
1835	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1836
1837	/*
1838	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1839	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1840	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1841	 * otherwise enabled.
1842	 *
1843	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1844	 * the user might select retpoline on the kernel command line and if
1845	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1846	 * enable IBRS around firmware calls.
1847	 */
1848	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1849	    boot_cpu_has(X86_FEATURE_IBPB) &&
1850	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1851	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1852
1853		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1854			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1855			pr_info("Enabling Speculation Barrier for firmware calls\n");
1856		}
1857
1858	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1859		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1860		pr_info("Enabling Restricted Speculation for firmware calls\n");
1861	}
1862
1863	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1864	spectre_v2_cmd = cmd;
1865}
1866
1867static void update_stibp_msr(void * __unused)
1868{
1869	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1870	update_spec_ctrl(val);
1871}
1872
1873/* Update x86_spec_ctrl_base in case SMT state changed. */
1874static void update_stibp_strict(void)
1875{
1876	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1877
1878	if (sched_smt_active())
1879		mask |= SPEC_CTRL_STIBP;
1880
1881	if (mask == x86_spec_ctrl_base)
1882		return;
1883
1884	pr_info("Update user space SMT mitigation: STIBP %s\n",
1885		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1886	x86_spec_ctrl_base = mask;
1887	on_each_cpu(update_stibp_msr, NULL, 1);
1888}
1889
1890/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1891static void update_indir_branch_cond(void)
1892{
1893	if (sched_smt_active())
1894		static_branch_enable(&switch_to_cond_stibp);
1895	else
1896		static_branch_disable(&switch_to_cond_stibp);
1897}
1898
1899#undef pr_fmt
1900#define pr_fmt(fmt) fmt
1901
1902/* Update the static key controlling the MDS CPU buffer clear in idle */
1903static void update_mds_branch_idle(void)
1904{
1905	/*
1906	 * Enable the idle clearing if SMT is active on CPUs which are
1907	 * affected only by MSBDS and not any other MDS variant.
1908	 *
1909	 * The other variants cannot be mitigated when SMT is enabled, so
1910	 * clearing the buffers on idle just to prevent the Store Buffer
1911	 * repartitioning leak would be a window dressing exercise.
1912	 */
1913	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1914		return;
1915
1916	if (sched_smt_active()) {
1917		static_branch_enable(&mds_idle_clear);
1918	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1919		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1920		static_branch_disable(&mds_idle_clear);
1921	}
1922}
1923
1924#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1925#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1926#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1927
1928void cpu_bugs_smt_update(void)
1929{
1930	mutex_lock(&spec_ctrl_mutex);
1931
1932	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1933	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1934		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1935
1936	switch (spectre_v2_user_stibp) {
1937	case SPECTRE_V2_USER_NONE:
1938		break;
1939	case SPECTRE_V2_USER_STRICT:
1940	case SPECTRE_V2_USER_STRICT_PREFERRED:
1941		update_stibp_strict();
1942		break;
1943	case SPECTRE_V2_USER_PRCTL:
1944	case SPECTRE_V2_USER_SECCOMP:
1945		update_indir_branch_cond();
1946		break;
1947	}
1948
1949	switch (mds_mitigation) {
1950	case MDS_MITIGATION_FULL:
1951	case MDS_MITIGATION_VMWERV:
1952		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1953			pr_warn_once(MDS_MSG_SMT);
1954		update_mds_branch_idle();
1955		break;
1956	case MDS_MITIGATION_OFF:
1957		break;
1958	}
1959
1960	switch (taa_mitigation) {
1961	case TAA_MITIGATION_VERW:
1962	case TAA_MITIGATION_UCODE_NEEDED:
1963		if (sched_smt_active())
1964			pr_warn_once(TAA_MSG_SMT);
1965		break;
1966	case TAA_MITIGATION_TSX_DISABLED:
1967	case TAA_MITIGATION_OFF:
1968		break;
1969	}
1970
1971	switch (mmio_mitigation) {
1972	case MMIO_MITIGATION_VERW:
1973	case MMIO_MITIGATION_UCODE_NEEDED:
1974		if (sched_smt_active())
1975			pr_warn_once(MMIO_MSG_SMT);
1976		break;
1977	case MMIO_MITIGATION_OFF:
1978		break;
1979	}
1980
1981	mutex_unlock(&spec_ctrl_mutex);
1982}
1983
1984#undef pr_fmt
1985#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1986
1987static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1988
1989/* The kernel command line selection */
1990enum ssb_mitigation_cmd {
1991	SPEC_STORE_BYPASS_CMD_NONE,
1992	SPEC_STORE_BYPASS_CMD_AUTO,
1993	SPEC_STORE_BYPASS_CMD_ON,
1994	SPEC_STORE_BYPASS_CMD_PRCTL,
1995	SPEC_STORE_BYPASS_CMD_SECCOMP,
1996};
1997
1998static const char * const ssb_strings[] = {
1999	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2000	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2001	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2002	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2003};
2004
2005static const struct {
2006	const char *option;
2007	enum ssb_mitigation_cmd cmd;
2008} ssb_mitigation_options[]  __initconst = {
2009	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2010	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2011	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2012	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2013	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2014};
2015
2016static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2017{
2018	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
2019	char arg[20];
2020	int ret, i;
2021
 
 
2022	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2023	    cpu_mitigations_off()) {
2024		return SPEC_STORE_BYPASS_CMD_NONE;
2025	} else {
2026		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2027					  arg, sizeof(arg));
2028		if (ret < 0)
2029			return SPEC_STORE_BYPASS_CMD_AUTO;
2030
2031		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2032			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2033				continue;
2034
2035			cmd = ssb_mitigation_options[i].cmd;
2036			break;
2037		}
2038
2039		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2040			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
2041			return SPEC_STORE_BYPASS_CMD_AUTO;
2042		}
2043	}
2044
2045	return cmd;
2046}
2047
2048static enum ssb_mitigation __init __ssb_select_mitigation(void)
2049{
2050	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2051	enum ssb_mitigation_cmd cmd;
2052
2053	if (!boot_cpu_has(X86_FEATURE_SSBD))
2054		return mode;
2055
2056	cmd = ssb_parse_cmdline();
2057	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2058	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2059	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2060		return mode;
2061
2062	switch (cmd) {
2063	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2064		/*
2065		 * Choose prctl+seccomp as the default mode if seccomp is
2066		 * enabled.
2067		 */
2068		if (IS_ENABLED(CONFIG_SECCOMP))
2069			mode = SPEC_STORE_BYPASS_SECCOMP;
2070		else
2071			mode = SPEC_STORE_BYPASS_PRCTL;
2072		break;
2073	case SPEC_STORE_BYPASS_CMD_ON:
2074		mode = SPEC_STORE_BYPASS_DISABLE;
2075		break;
2076	case SPEC_STORE_BYPASS_CMD_AUTO:
2077	case SPEC_STORE_BYPASS_CMD_PRCTL:
2078		mode = SPEC_STORE_BYPASS_PRCTL;
2079		break;
2080	case SPEC_STORE_BYPASS_CMD_NONE:
2081		break;
2082	}
2083
2084	/*
2085	 * We have three CPU feature flags that are in play here:
2086	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2087	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2088	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2089	 */
2090	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2091		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2092		/*
2093		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2094		 * use a completely different MSR and bit dependent on family.
2095		 */
2096		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2097		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2098			x86_amd_ssb_disable();
2099		} else {
2100			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2101			update_spec_ctrl(x86_spec_ctrl_base);
2102		}
2103	}
2104
2105	return mode;
2106}
2107
2108static void ssb_select_mitigation(void)
2109{
2110	ssb_mode = __ssb_select_mitigation();
2111
2112	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2113		pr_info("%s\n", ssb_strings[ssb_mode]);
2114}
2115
2116#undef pr_fmt
2117#define pr_fmt(fmt)     "Speculation prctl: " fmt
2118
2119static void task_update_spec_tif(struct task_struct *tsk)
2120{
2121	/* Force the update of the real TIF bits */
2122	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2123
2124	/*
2125	 * Immediately update the speculation control MSRs for the current
2126	 * task, but for a non-current task delay setting the CPU
2127	 * mitigation until it is scheduled next.
2128	 *
2129	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2130	 * always the current task.
2131	 */
2132	if (tsk == current)
2133		speculation_ctrl_update_current();
2134}
2135
2136static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2137{
2138
2139	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2140		return -EPERM;
2141
2142	switch (ctrl) {
2143	case PR_SPEC_ENABLE:
2144		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2145		return 0;
2146	case PR_SPEC_DISABLE:
2147		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2148		return 0;
2149	default:
2150		return -ERANGE;
2151	}
2152}
2153
2154static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2155{
2156	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2157	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2158		return -ENXIO;
2159
2160	switch (ctrl) {
2161	case PR_SPEC_ENABLE:
2162		/* If speculation is force disabled, enable is not allowed */
2163		if (task_spec_ssb_force_disable(task))
2164			return -EPERM;
2165		task_clear_spec_ssb_disable(task);
2166		task_clear_spec_ssb_noexec(task);
2167		task_update_spec_tif(task);
2168		break;
2169	case PR_SPEC_DISABLE:
2170		task_set_spec_ssb_disable(task);
2171		task_clear_spec_ssb_noexec(task);
2172		task_update_spec_tif(task);
2173		break;
2174	case PR_SPEC_FORCE_DISABLE:
2175		task_set_spec_ssb_disable(task);
2176		task_set_spec_ssb_force_disable(task);
2177		task_clear_spec_ssb_noexec(task);
2178		task_update_spec_tif(task);
2179		break;
2180	case PR_SPEC_DISABLE_NOEXEC:
2181		if (task_spec_ssb_force_disable(task))
2182			return -EPERM;
2183		task_set_spec_ssb_disable(task);
2184		task_set_spec_ssb_noexec(task);
2185		task_update_spec_tif(task);
2186		break;
2187	default:
2188		return -ERANGE;
2189	}
2190	return 0;
2191}
2192
2193static bool is_spec_ib_user_controlled(void)
2194{
2195	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2196		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2197		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2198		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2199}
2200
2201static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2202{
2203	switch (ctrl) {
2204	case PR_SPEC_ENABLE:
2205		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2206		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2207			return 0;
2208
2209		/*
2210		 * With strict mode for both IBPB and STIBP, the instruction
2211		 * code paths avoid checking this task flag and instead,
2212		 * unconditionally run the instruction. However, STIBP and IBPB
2213		 * are independent and either can be set to conditionally
2214		 * enabled regardless of the mode of the other.
2215		 *
2216		 * If either is set to conditional, allow the task flag to be
2217		 * updated, unless it was force-disabled by a previous prctl
2218		 * call. Currently, this is possible on an AMD CPU which has the
2219		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2220		 * kernel is booted with 'spectre_v2_user=seccomp', then
2221		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2222		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2223		 */
2224		if (!is_spec_ib_user_controlled() ||
2225		    task_spec_ib_force_disable(task))
2226			return -EPERM;
2227
2228		task_clear_spec_ib_disable(task);
2229		task_update_spec_tif(task);
2230		break;
2231	case PR_SPEC_DISABLE:
2232	case PR_SPEC_FORCE_DISABLE:
2233		/*
2234		 * Indirect branch speculation is always allowed when
2235		 * mitigation is force disabled.
2236		 */
2237		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2238		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2239			return -EPERM;
2240
2241		if (!is_spec_ib_user_controlled())
2242			return 0;
2243
2244		task_set_spec_ib_disable(task);
2245		if (ctrl == PR_SPEC_FORCE_DISABLE)
2246			task_set_spec_ib_force_disable(task);
2247		task_update_spec_tif(task);
2248		if (task == current)
2249			indirect_branch_prediction_barrier();
2250		break;
2251	default:
2252		return -ERANGE;
2253	}
2254	return 0;
2255}
2256
2257int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2258			     unsigned long ctrl)
2259{
2260	switch (which) {
2261	case PR_SPEC_STORE_BYPASS:
2262		return ssb_prctl_set(task, ctrl);
2263	case PR_SPEC_INDIRECT_BRANCH:
2264		return ib_prctl_set(task, ctrl);
2265	case PR_SPEC_L1D_FLUSH:
2266		return l1d_flush_prctl_set(task, ctrl);
2267	default:
2268		return -ENODEV;
2269	}
2270}
2271
2272#ifdef CONFIG_SECCOMP
2273void arch_seccomp_spec_mitigate(struct task_struct *task)
2274{
2275	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2276		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2277	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2278	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2279		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2280}
2281#endif
2282
2283static int l1d_flush_prctl_get(struct task_struct *task)
2284{
2285	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2286		return PR_SPEC_FORCE_DISABLE;
2287
2288	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2289		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2290	else
2291		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2292}
2293
2294static int ssb_prctl_get(struct task_struct *task)
2295{
2296	switch (ssb_mode) {
2297	case SPEC_STORE_BYPASS_NONE:
2298		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2299			return PR_SPEC_ENABLE;
2300		return PR_SPEC_NOT_AFFECTED;
2301	case SPEC_STORE_BYPASS_DISABLE:
2302		return PR_SPEC_DISABLE;
2303	case SPEC_STORE_BYPASS_SECCOMP:
2304	case SPEC_STORE_BYPASS_PRCTL:
2305		if (task_spec_ssb_force_disable(task))
2306			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2307		if (task_spec_ssb_noexec(task))
2308			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2309		if (task_spec_ssb_disable(task))
2310			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2311		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2312	}
2313	BUG();
2314}
2315
2316static int ib_prctl_get(struct task_struct *task)
2317{
2318	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2319		return PR_SPEC_NOT_AFFECTED;
2320
2321	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2322	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2323		return PR_SPEC_ENABLE;
2324	else if (is_spec_ib_user_controlled()) {
2325		if (task_spec_ib_force_disable(task))
2326			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2327		if (task_spec_ib_disable(task))
2328			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2329		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2330	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2331	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2332	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2333		return PR_SPEC_DISABLE;
2334	else
2335		return PR_SPEC_NOT_AFFECTED;
2336}
2337
2338int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2339{
2340	switch (which) {
2341	case PR_SPEC_STORE_BYPASS:
2342		return ssb_prctl_get(task);
2343	case PR_SPEC_INDIRECT_BRANCH:
2344		return ib_prctl_get(task);
2345	case PR_SPEC_L1D_FLUSH:
2346		return l1d_flush_prctl_get(task);
2347	default:
2348		return -ENODEV;
2349	}
2350}
2351
2352void x86_spec_ctrl_setup_ap(void)
2353{
2354	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2355		update_spec_ctrl(x86_spec_ctrl_base);
2356
2357	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2358		x86_amd_ssb_disable();
2359}
2360
2361bool itlb_multihit_kvm_mitigation;
2362EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2363
2364#undef pr_fmt
2365#define pr_fmt(fmt)	"L1TF: " fmt
2366
2367/* Default mitigation for L1TF-affected CPUs */
2368enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
 
2369#if IS_ENABLED(CONFIG_KVM_INTEL)
2370EXPORT_SYMBOL_GPL(l1tf_mitigation);
2371#endif
2372enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2373EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2374
2375/*
2376 * These CPUs all support 44bits physical address space internally in the
2377 * cache but CPUID can report a smaller number of physical address bits.
2378 *
2379 * The L1TF mitigation uses the top most address bit for the inversion of
2380 * non present PTEs. When the installed memory reaches into the top most
2381 * address bit due to memory holes, which has been observed on machines
2382 * which report 36bits physical address bits and have 32G RAM installed,
2383 * then the mitigation range check in l1tf_select_mitigation() triggers.
2384 * This is a false positive because the mitigation is still possible due to
2385 * the fact that the cache uses 44bit internally. Use the cache bits
2386 * instead of the reported physical bits and adjust them on the affected
2387 * machines to 44bit if the reported bits are less than 44.
2388 */
2389static void override_cache_bits(struct cpuinfo_x86 *c)
2390{
2391	if (c->x86 != 6)
2392		return;
2393
2394	switch (c->x86_model) {
2395	case INTEL_FAM6_NEHALEM:
2396	case INTEL_FAM6_WESTMERE:
2397	case INTEL_FAM6_SANDYBRIDGE:
2398	case INTEL_FAM6_IVYBRIDGE:
2399	case INTEL_FAM6_HASWELL:
2400	case INTEL_FAM6_HASWELL_L:
2401	case INTEL_FAM6_HASWELL_G:
2402	case INTEL_FAM6_BROADWELL:
2403	case INTEL_FAM6_BROADWELL_G:
2404	case INTEL_FAM6_SKYLAKE_L:
2405	case INTEL_FAM6_SKYLAKE:
2406	case INTEL_FAM6_KABYLAKE_L:
2407	case INTEL_FAM6_KABYLAKE:
2408		if (c->x86_cache_bits < 44)
2409			c->x86_cache_bits = 44;
2410		break;
2411	}
2412}
2413
2414static void __init l1tf_select_mitigation(void)
2415{
2416	u64 half_pa;
2417
2418	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2419		return;
2420
2421	if (cpu_mitigations_off())
2422		l1tf_mitigation = L1TF_MITIGATION_OFF;
2423	else if (cpu_mitigations_auto_nosmt())
2424		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2425
2426	override_cache_bits(&boot_cpu_data);
2427
2428	switch (l1tf_mitigation) {
2429	case L1TF_MITIGATION_OFF:
2430	case L1TF_MITIGATION_FLUSH_NOWARN:
2431	case L1TF_MITIGATION_FLUSH:
2432		break;
2433	case L1TF_MITIGATION_FLUSH_NOSMT:
2434	case L1TF_MITIGATION_FULL:
2435		cpu_smt_disable(false);
2436		break;
2437	case L1TF_MITIGATION_FULL_FORCE:
2438		cpu_smt_disable(true);
2439		break;
2440	}
2441
2442#if CONFIG_PGTABLE_LEVELS == 2
2443	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2444	return;
2445#endif
2446
2447	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2448	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2449			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2450		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2451		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2452				half_pa);
2453		pr_info("However, doing so will make a part of your RAM unusable.\n");
2454		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2455		return;
2456	}
2457
2458	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2459}
2460
2461static int __init l1tf_cmdline(char *str)
2462{
2463	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2464		return 0;
2465
2466	if (!str)
2467		return -EINVAL;
2468
2469	if (!strcmp(str, "off"))
2470		l1tf_mitigation = L1TF_MITIGATION_OFF;
2471	else if (!strcmp(str, "flush,nowarn"))
2472		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2473	else if (!strcmp(str, "flush"))
2474		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2475	else if (!strcmp(str, "flush,nosmt"))
2476		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2477	else if (!strcmp(str, "full"))
2478		l1tf_mitigation = L1TF_MITIGATION_FULL;
2479	else if (!strcmp(str, "full,force"))
2480		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2481
2482	return 0;
2483}
2484early_param("l1tf", l1tf_cmdline);
2485
2486#undef pr_fmt
2487#define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2488
2489enum srso_mitigation {
2490	SRSO_MITIGATION_NONE,
2491	SRSO_MITIGATION_UCODE_NEEDED,
2492	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2493	SRSO_MITIGATION_MICROCODE,
2494	SRSO_MITIGATION_SAFE_RET,
2495	SRSO_MITIGATION_IBPB,
2496	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2497};
2498
2499enum srso_mitigation_cmd {
2500	SRSO_CMD_OFF,
2501	SRSO_CMD_MICROCODE,
2502	SRSO_CMD_SAFE_RET,
2503	SRSO_CMD_IBPB,
2504	SRSO_CMD_IBPB_ON_VMEXIT,
2505};
2506
2507static const char * const srso_strings[] = {
2508	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2509	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2510	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2511	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2512	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2513	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2514	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2515};
2516
2517static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2518static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2519
2520static int __init srso_parse_cmdline(char *str)
2521{
2522	if (!str)
2523		return -EINVAL;
2524
2525	if (!strcmp(str, "off"))
2526		srso_cmd = SRSO_CMD_OFF;
2527	else if (!strcmp(str, "microcode"))
2528		srso_cmd = SRSO_CMD_MICROCODE;
2529	else if (!strcmp(str, "safe-ret"))
2530		srso_cmd = SRSO_CMD_SAFE_RET;
2531	else if (!strcmp(str, "ibpb"))
2532		srso_cmd = SRSO_CMD_IBPB;
2533	else if (!strcmp(str, "ibpb-vmexit"))
2534		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2535	else
2536		pr_err("Ignoring unknown SRSO option (%s).", str);
2537
2538	return 0;
2539}
2540early_param("spec_rstack_overflow", srso_parse_cmdline);
2541
2542#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2543
2544static void __init srso_select_mitigation(void)
2545{
2546	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2547
2548	if (cpu_mitigations_off())
2549		return;
2550
2551	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2552		if (boot_cpu_has(X86_FEATURE_SBPB))
2553			x86_pred_cmd = PRED_CMD_SBPB;
2554		return;
2555	}
2556
2557	if (has_microcode) {
2558		/*
2559		 * Zen1/2 with SMT off aren't vulnerable after the right
2560		 * IBPB microcode has been applied.
2561		 *
2562		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2563		 */
2564		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2565			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2566			return;
2567		}
2568
2569		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2570			srso_mitigation = SRSO_MITIGATION_IBPB;
2571			goto out;
2572		}
2573	} else {
2574		pr_warn("IBPB-extending microcode not applied!\n");
2575		pr_warn(SRSO_NOTICE);
2576
2577		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2578		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2579	}
2580
2581	switch (srso_cmd) {
2582	case SRSO_CMD_OFF:
2583		if (boot_cpu_has(X86_FEATURE_SBPB))
2584			x86_pred_cmd = PRED_CMD_SBPB;
2585		return;
2586
2587	case SRSO_CMD_MICROCODE:
2588		if (has_microcode) {
2589			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2590			pr_warn(SRSO_NOTICE);
2591		}
2592		break;
2593
2594	case SRSO_CMD_SAFE_RET:
2595		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2596			/*
2597			 * Enable the return thunk for generated code
2598			 * like ftrace, static_call, etc.
2599			 */
2600			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2601			setup_force_cpu_cap(X86_FEATURE_UNRET);
2602
2603			if (boot_cpu_data.x86 == 0x19) {
2604				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2605				x86_return_thunk = srso_alias_return_thunk;
2606			} else {
2607				setup_force_cpu_cap(X86_FEATURE_SRSO);
2608				x86_return_thunk = srso_return_thunk;
2609			}
2610			if (has_microcode)
2611				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2612			else
2613				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2614		} else {
2615			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2616		}
2617		break;
2618
2619	case SRSO_CMD_IBPB:
2620		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2621			if (has_microcode) {
2622				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
 
2623				srso_mitigation = SRSO_MITIGATION_IBPB;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624			}
2625		} else {
2626			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2627		}
2628		break;
2629
2630	case SRSO_CMD_IBPB_ON_VMEXIT:
2631		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2632			if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2633				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2634				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
 
 
 
 
 
 
 
2635			}
2636		} else {
2637			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2638                }
 
 
2639		break;
2640	}
2641
2642out:
2643	pr_info("%s\n", srso_strings[srso_mitigation]);
2644}
2645
2646#undef pr_fmt
2647#define pr_fmt(fmt) fmt
2648
2649#ifdef CONFIG_SYSFS
2650
2651#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2652
2653#if IS_ENABLED(CONFIG_KVM_INTEL)
2654static const char * const l1tf_vmx_states[] = {
2655	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2656	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2657	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2658	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2659	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2660	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2661};
2662
2663static ssize_t l1tf_show_state(char *buf)
2664{
2665	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2666		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2667
2668	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2669	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2670	     sched_smt_active())) {
2671		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2672				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2673	}
2674
2675	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2676			  l1tf_vmx_states[l1tf_vmx_mitigation],
2677			  sched_smt_active() ? "vulnerable" : "disabled");
2678}
2679
2680static ssize_t itlb_multihit_show_state(char *buf)
2681{
2682	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2683	    !boot_cpu_has(X86_FEATURE_VMX))
2684		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2685	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2686		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2687	else if (itlb_multihit_kvm_mitigation)
2688		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2689	else
2690		return sysfs_emit(buf, "KVM: Vulnerable\n");
2691}
2692#else
2693static ssize_t l1tf_show_state(char *buf)
2694{
2695	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2696}
2697
2698static ssize_t itlb_multihit_show_state(char *buf)
2699{
2700	return sysfs_emit(buf, "Processor vulnerable\n");
2701}
2702#endif
2703
2704static ssize_t mds_show_state(char *buf)
2705{
2706	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2707		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2708				  mds_strings[mds_mitigation]);
2709	}
2710
2711	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2712		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2713				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2714				   sched_smt_active() ? "mitigated" : "disabled"));
2715	}
2716
2717	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2718			  sched_smt_active() ? "vulnerable" : "disabled");
2719}
2720
2721static ssize_t tsx_async_abort_show_state(char *buf)
2722{
2723	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2724	    (taa_mitigation == TAA_MITIGATION_OFF))
2725		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2726
2727	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2728		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2729				  taa_strings[taa_mitigation]);
2730	}
2731
2732	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2733			  sched_smt_active() ? "vulnerable" : "disabled");
2734}
2735
2736static ssize_t mmio_stale_data_show_state(char *buf)
2737{
2738	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2739		return sysfs_emit(buf, "Unknown: No mitigations\n");
2740
2741	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2742		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2743
2744	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2745		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2746				  mmio_strings[mmio_mitigation]);
2747	}
2748
2749	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2750			  sched_smt_active() ? "vulnerable" : "disabled");
2751}
2752
2753static ssize_t rfds_show_state(char *buf)
2754{
2755	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2756}
2757
2758static char *stibp_state(void)
2759{
2760	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2761	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2762		return "";
2763
2764	switch (spectre_v2_user_stibp) {
2765	case SPECTRE_V2_USER_NONE:
2766		return "; STIBP: disabled";
2767	case SPECTRE_V2_USER_STRICT:
2768		return "; STIBP: forced";
2769	case SPECTRE_V2_USER_STRICT_PREFERRED:
2770		return "; STIBP: always-on";
2771	case SPECTRE_V2_USER_PRCTL:
2772	case SPECTRE_V2_USER_SECCOMP:
2773		if (static_key_enabled(&switch_to_cond_stibp))
2774			return "; STIBP: conditional";
2775	}
2776	return "";
2777}
2778
2779static char *ibpb_state(void)
2780{
2781	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2782		if (static_key_enabled(&switch_mm_always_ibpb))
2783			return "; IBPB: always-on";
2784		if (static_key_enabled(&switch_mm_cond_ibpb))
2785			return "; IBPB: conditional";
2786		return "; IBPB: disabled";
2787	}
2788	return "";
2789}
2790
2791static char *pbrsb_eibrs_state(void)
2792{
2793	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2794		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2795		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2796			return "; PBRSB-eIBRS: SW sequence";
2797		else
2798			return "; PBRSB-eIBRS: Vulnerable";
2799	} else {
2800		return "; PBRSB-eIBRS: Not affected";
2801	}
2802}
2803
2804static const char *spectre_bhi_state(void)
2805{
2806	if (!boot_cpu_has_bug(X86_BUG_BHI))
2807		return "; BHI: Not affected";
2808	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2809		return "; BHI: BHI_DIS_S";
2810	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2811		return "; BHI: SW loop, KVM: SW loop";
2812	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2813		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2814		 rrsba_disabled)
2815		return "; BHI: Retpoline";
2816	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2817		return "; BHI: Vulnerable, KVM: SW loop";
2818
2819	return "; BHI: Vulnerable";
2820}
2821
2822static ssize_t spectre_v2_show_state(char *buf)
2823{
2824	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2825		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2826
2827	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2828		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2829
2830	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2831	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2832		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2833
2834	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2835			  spectre_v2_strings[spectre_v2_enabled],
2836			  ibpb_state(),
2837			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2838			  stibp_state(),
2839			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2840			  pbrsb_eibrs_state(),
2841			  spectre_bhi_state(),
2842			  /* this should always be at the end */
2843			  spectre_v2_module_string());
2844}
2845
2846static ssize_t srbds_show_state(char *buf)
2847{
2848	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2849}
2850
2851static ssize_t retbleed_show_state(char *buf)
2852{
2853	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2854	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2855		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2856		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2857			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2858
2859		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2860				  !sched_smt_active() ? "disabled" :
2861				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2862				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2863				  "enabled with STIBP protection" : "vulnerable");
2864	}
2865
2866	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2867}
2868
2869static ssize_t srso_show_state(char *buf)
2870{
2871	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2872		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2873
2874	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2875}
2876
2877static ssize_t gds_show_state(char *buf)
2878{
2879	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2880}
2881
2882static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2883			       char *buf, unsigned int bug)
2884{
2885	if (!boot_cpu_has_bug(bug))
2886		return sysfs_emit(buf, "Not affected\n");
2887
2888	switch (bug) {
2889	case X86_BUG_CPU_MELTDOWN:
2890		if (boot_cpu_has(X86_FEATURE_PTI))
2891			return sysfs_emit(buf, "Mitigation: PTI\n");
2892
2893		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2894			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2895
2896		break;
2897
2898	case X86_BUG_SPECTRE_V1:
2899		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2900
2901	case X86_BUG_SPECTRE_V2:
2902		return spectre_v2_show_state(buf);
2903
2904	case X86_BUG_SPEC_STORE_BYPASS:
2905		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2906
2907	case X86_BUG_L1TF:
2908		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2909			return l1tf_show_state(buf);
2910		break;
2911
2912	case X86_BUG_MDS:
2913		return mds_show_state(buf);
2914
2915	case X86_BUG_TAA:
2916		return tsx_async_abort_show_state(buf);
2917
2918	case X86_BUG_ITLB_MULTIHIT:
2919		return itlb_multihit_show_state(buf);
2920
2921	case X86_BUG_SRBDS:
2922		return srbds_show_state(buf);
2923
2924	case X86_BUG_MMIO_STALE_DATA:
2925	case X86_BUG_MMIO_UNKNOWN:
2926		return mmio_stale_data_show_state(buf);
2927
2928	case X86_BUG_RETBLEED:
2929		return retbleed_show_state(buf);
2930
2931	case X86_BUG_SRSO:
2932		return srso_show_state(buf);
2933
2934	case X86_BUG_GDS:
2935		return gds_show_state(buf);
2936
2937	case X86_BUG_RFDS:
2938		return rfds_show_state(buf);
2939
2940	default:
2941		break;
2942	}
2943
2944	return sysfs_emit(buf, "Vulnerable\n");
2945}
2946
2947ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2948{
2949	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2950}
2951
2952ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2953{
2954	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2955}
2956
2957ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2958{
2959	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2960}
2961
2962ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2963{
2964	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2965}
2966
2967ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2968{
2969	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2970}
2971
2972ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2973{
2974	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2975}
2976
2977ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2978{
2979	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2980}
2981
2982ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2983{
2984	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2985}
2986
2987ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2988{
2989	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2990}
2991
2992ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2993{
2994	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2995		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2996	else
2997		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2998}
2999
3000ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3001{
3002	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3003}
3004
3005ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3006{
3007	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3008}
3009
3010ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3011{
3012	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3013}
3014
3015ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3016{
3017	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3018}
3019#endif
3020
3021void __warn_thunk(void)
3022{
3023	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3024}