Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/cpu.h>
13#include <linux/module.h>
14#include <linux/nospec.h>
15#include <linux/prctl.h>
16#include <linux/sched/smt.h>
17#include <linux/pgtable.h>
18#include <linux/bpf.h>
19
20#include <asm/spec-ctrl.h>
21#include <asm/cmdline.h>
22#include <asm/bugs.h>
23#include <asm/processor.h>
24#include <asm/processor-flags.h>
25#include <asm/fpu/api.h>
26#include <asm/msr.h>
27#include <asm/vmx.h>
28#include <asm/paravirt.h>
29#include <asm/cpu_device_id.h>
30#include <asm/e820/api.h>
31#include <asm/hypervisor.h>
32#include <asm/tlbflush.h>
33#include <asm/cpu.h>
34
35#include "cpu.h"
36
37static void __init spectre_v1_select_mitigation(void);
38static void __init spectre_v2_select_mitigation(void);
39static void __init retbleed_select_mitigation(void);
40static void __init spectre_v2_user_select_mitigation(void);
41static void __init ssb_select_mitigation(void);
42static void __init l1tf_select_mitigation(void);
43static void __init mds_select_mitigation(void);
44static void __init md_clear_update_mitigation(void);
45static void __init md_clear_select_mitigation(void);
46static void __init taa_select_mitigation(void);
47static void __init mmio_select_mitigation(void);
48static void __init srbds_select_mitigation(void);
49static void __init l1d_flush_select_mitigation(void);
50static void __init srso_select_mitigation(void);
51static void __init gds_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
60
61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64static u64 __ro_after_init x86_arch_cap_msr;
65
66static DEFINE_MUTEX(spec_ctrl_mutex);
67
68void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69
70/* Update SPEC_CTRL MSR and its cached copy unconditionally */
71static void update_spec_ctrl(u64 val)
72{
73 this_cpu_write(x86_spec_ctrl_current, val);
74 wrmsrl(MSR_IA32_SPEC_CTRL, val);
75}
76
77/*
78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80 */
81void update_spec_ctrl_cond(u64 val)
82{
83 if (this_cpu_read(x86_spec_ctrl_current) == val)
84 return;
85
86 this_cpu_write(x86_spec_ctrl_current, val);
87
88 /*
89 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90 * forced the update can be delayed until that time.
91 */
92 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93 wrmsrl(MSR_IA32_SPEC_CTRL, val);
94}
95
96noinstr u64 spec_ctrl_current(void)
97{
98 return this_cpu_read(x86_spec_ctrl_current);
99}
100EXPORT_SYMBOL_GPL(spec_ctrl_current);
101
102/*
103 * AMD specific MSR info for Speculative Store Bypass control.
104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105 */
106u64 __ro_after_init x86_amd_ls_cfg_base;
107u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108
109/* Control conditional STIBP in switch_to() */
110DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111/* Control conditional IBPB in switch_mm() */
112DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113/* Control unconditional IBPB in switch_mm() */
114DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115
116/* Control MDS CPU buffer clear before idling (halt, mwait) */
117DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118EXPORT_SYMBOL_GPL(mds_idle_clear);
119
120/*
121 * Controls whether l1d flush based mitigations are enabled,
122 * based on hw features and admin setting via boot parameter
123 * defaults to false
124 */
125DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126
127/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130
131void __init cpu_select_mitigations(void)
132{
133 /*
134 * Read the SPEC_CTRL MSR to account for reserved bits which may
135 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136 * init code as it is not enumerated and depends on the family.
137 */
138 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140
141 /*
142 * Previously running kernel (kexec), may have some controls
143 * turned ON. Clear them and let the mitigations setup below
144 * rediscover them based on configuration.
145 */
146 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147 }
148
149 x86_arch_cap_msr = x86_read_arch_cap_msr();
150
151 /* Select the proper CPU mitigations before patching alternatives: */
152 spectre_v1_select_mitigation();
153 spectre_v2_select_mitigation();
154 /*
155 * retbleed_select_mitigation() relies on the state set by
156 * spectre_v2_select_mitigation(); specifically it wants to know about
157 * spectre_v2=ibrs.
158 */
159 retbleed_select_mitigation();
160 /*
161 * spectre_v2_user_select_mitigation() relies on the state set by
162 * retbleed_select_mitigation(); specifically the STIBP selection is
163 * forced for UNRET or IBPB.
164 */
165 spectre_v2_user_select_mitigation();
166 ssb_select_mitigation();
167 l1tf_select_mitigation();
168 md_clear_select_mitigation();
169 srbds_select_mitigation();
170 l1d_flush_select_mitigation();
171
172 /*
173 * srso_select_mitigation() depends and must run after
174 * retbleed_select_mitigation().
175 */
176 srso_select_mitigation();
177 gds_select_mitigation();
178}
179
180/*
181 * NOTE: This function is *only* called for SVM, since Intel uses
182 * MSR_IA32_SPEC_CTRL for SSBD.
183 */
184void
185x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
186{
187 u64 guestval, hostval;
188 struct thread_info *ti = current_thread_info();
189
190 /*
191 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
192 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
193 */
194 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
195 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
196 return;
197
198 /*
199 * If the host has SSBD mitigation enabled, force it in the host's
200 * virtual MSR value. If its not permanently enabled, evaluate
201 * current's TIF_SSBD thread flag.
202 */
203 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
204 hostval = SPEC_CTRL_SSBD;
205 else
206 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
207
208 /* Sanitize the guest value */
209 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
210
211 if (hostval != guestval) {
212 unsigned long tif;
213
214 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
215 ssbd_spec_ctrl_to_tif(hostval);
216
217 speculation_ctrl_update(tif);
218 }
219}
220EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
221
222static void x86_amd_ssb_disable(void)
223{
224 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
225
226 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
227 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
228 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
229 wrmsrl(MSR_AMD64_LS_CFG, msrval);
230}
231
232#undef pr_fmt
233#define pr_fmt(fmt) "MDS: " fmt
234
235/* Default mitigation for MDS-affected CPUs */
236static enum mds_mitigations mds_mitigation __ro_after_init =
237 IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_FULL : MDS_MITIGATION_OFF;
238static bool mds_nosmt __ro_after_init = false;
239
240static const char * const mds_strings[] = {
241 [MDS_MITIGATION_OFF] = "Vulnerable",
242 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
243 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
244};
245
246static void __init mds_select_mitigation(void)
247{
248 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
249 mds_mitigation = MDS_MITIGATION_OFF;
250 return;
251 }
252
253 if (mds_mitigation == MDS_MITIGATION_FULL) {
254 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
255 mds_mitigation = MDS_MITIGATION_VMWERV;
256
257 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
258
259 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
260 (mds_nosmt || cpu_mitigations_auto_nosmt()))
261 cpu_smt_disable(false);
262 }
263}
264
265static int __init mds_cmdline(char *str)
266{
267 if (!boot_cpu_has_bug(X86_BUG_MDS))
268 return 0;
269
270 if (!str)
271 return -EINVAL;
272
273 if (!strcmp(str, "off"))
274 mds_mitigation = MDS_MITIGATION_OFF;
275 else if (!strcmp(str, "full"))
276 mds_mitigation = MDS_MITIGATION_FULL;
277 else if (!strcmp(str, "full,nosmt")) {
278 mds_mitigation = MDS_MITIGATION_FULL;
279 mds_nosmt = true;
280 }
281
282 return 0;
283}
284early_param("mds", mds_cmdline);
285
286#undef pr_fmt
287#define pr_fmt(fmt) "TAA: " fmt
288
289enum taa_mitigations {
290 TAA_MITIGATION_OFF,
291 TAA_MITIGATION_UCODE_NEEDED,
292 TAA_MITIGATION_VERW,
293 TAA_MITIGATION_TSX_DISABLED,
294};
295
296/* Default mitigation for TAA-affected CPUs */
297static enum taa_mitigations taa_mitigation __ro_after_init =
298 IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_VERW : TAA_MITIGATION_OFF;
299static bool taa_nosmt __ro_after_init;
300
301static const char * const taa_strings[] = {
302 [TAA_MITIGATION_OFF] = "Vulnerable",
303 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
304 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
305 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
306};
307
308static void __init taa_select_mitigation(void)
309{
310 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
311 taa_mitigation = TAA_MITIGATION_OFF;
312 return;
313 }
314
315 /* TSX previously disabled by tsx=off */
316 if (!boot_cpu_has(X86_FEATURE_RTM)) {
317 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
318 return;
319 }
320
321 if (cpu_mitigations_off()) {
322 taa_mitigation = TAA_MITIGATION_OFF;
323 return;
324 }
325
326 /*
327 * TAA mitigation via VERW is turned off if both
328 * tsx_async_abort=off and mds=off are specified.
329 */
330 if (taa_mitigation == TAA_MITIGATION_OFF &&
331 mds_mitigation == MDS_MITIGATION_OFF)
332 return;
333
334 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
335 taa_mitigation = TAA_MITIGATION_VERW;
336 else
337 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
338
339 /*
340 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
341 * A microcode update fixes this behavior to clear CPU buffers. It also
342 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
343 * ARCH_CAP_TSX_CTRL_MSR bit.
344 *
345 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
346 * update is required.
347 */
348 if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
349 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
350 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
351
352 /*
353 * TSX is enabled, select alternate mitigation for TAA which is
354 * the same as MDS. Enable MDS static branch to clear CPU buffers.
355 *
356 * For guests that can't determine whether the correct microcode is
357 * present on host, enable the mitigation for UCODE_NEEDED as well.
358 */
359 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
360
361 if (taa_nosmt || cpu_mitigations_auto_nosmt())
362 cpu_smt_disable(false);
363}
364
365static int __init tsx_async_abort_parse_cmdline(char *str)
366{
367 if (!boot_cpu_has_bug(X86_BUG_TAA))
368 return 0;
369
370 if (!str)
371 return -EINVAL;
372
373 if (!strcmp(str, "off")) {
374 taa_mitigation = TAA_MITIGATION_OFF;
375 } else if (!strcmp(str, "full")) {
376 taa_mitigation = TAA_MITIGATION_VERW;
377 } else if (!strcmp(str, "full,nosmt")) {
378 taa_mitigation = TAA_MITIGATION_VERW;
379 taa_nosmt = true;
380 }
381
382 return 0;
383}
384early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
385
386#undef pr_fmt
387#define pr_fmt(fmt) "MMIO Stale Data: " fmt
388
389enum mmio_mitigations {
390 MMIO_MITIGATION_OFF,
391 MMIO_MITIGATION_UCODE_NEEDED,
392 MMIO_MITIGATION_VERW,
393};
394
395/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
396static enum mmio_mitigations mmio_mitigation __ro_after_init =
397 IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ? MMIO_MITIGATION_VERW : MMIO_MITIGATION_OFF;
398static bool mmio_nosmt __ro_after_init = false;
399
400static const char * const mmio_strings[] = {
401 [MMIO_MITIGATION_OFF] = "Vulnerable",
402 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
403 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
404};
405
406static void __init mmio_select_mitigation(void)
407{
408 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
409 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
410 cpu_mitigations_off()) {
411 mmio_mitigation = MMIO_MITIGATION_OFF;
412 return;
413 }
414
415 if (mmio_mitigation == MMIO_MITIGATION_OFF)
416 return;
417
418 /*
419 * Enable CPU buffer clear mitigation for host and VMM, if also affected
420 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
421 */
422 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
423 boot_cpu_has(X86_FEATURE_RTM)))
424 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
425
426 /*
427 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
428 * mitigations, disable KVM-only mitigation in that case.
429 */
430 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
431 static_branch_disable(&mmio_stale_data_clear);
432 else
433 static_branch_enable(&mmio_stale_data_clear);
434
435 /*
436 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
437 * be propagated to uncore buffers, clearing the Fill buffers on idle
438 * is required irrespective of SMT state.
439 */
440 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
441 static_branch_enable(&mds_idle_clear);
442
443 /*
444 * Check if the system has the right microcode.
445 *
446 * CPU Fill buffer clear mitigation is enumerated by either an explicit
447 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
448 * affected systems.
449 */
450 if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
451 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
452 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
453 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
454 mmio_mitigation = MMIO_MITIGATION_VERW;
455 else
456 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
457
458 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
459 cpu_smt_disable(false);
460}
461
462static int __init mmio_stale_data_parse_cmdline(char *str)
463{
464 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
465 return 0;
466
467 if (!str)
468 return -EINVAL;
469
470 if (!strcmp(str, "off")) {
471 mmio_mitigation = MMIO_MITIGATION_OFF;
472 } else if (!strcmp(str, "full")) {
473 mmio_mitigation = MMIO_MITIGATION_VERW;
474 } else if (!strcmp(str, "full,nosmt")) {
475 mmio_mitigation = MMIO_MITIGATION_VERW;
476 mmio_nosmt = true;
477 }
478
479 return 0;
480}
481early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
482
483#undef pr_fmt
484#define pr_fmt(fmt) "Register File Data Sampling: " fmt
485
486enum rfds_mitigations {
487 RFDS_MITIGATION_OFF,
488 RFDS_MITIGATION_VERW,
489 RFDS_MITIGATION_UCODE_NEEDED,
490};
491
492/* Default mitigation for Register File Data Sampling */
493static enum rfds_mitigations rfds_mitigation __ro_after_init =
494 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
495
496static const char * const rfds_strings[] = {
497 [RFDS_MITIGATION_OFF] = "Vulnerable",
498 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File",
499 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
500};
501
502static void __init rfds_select_mitigation(void)
503{
504 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
505 rfds_mitigation = RFDS_MITIGATION_OFF;
506 return;
507 }
508 if (rfds_mitigation == RFDS_MITIGATION_OFF)
509 return;
510
511 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
512 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
513 else
514 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
515}
516
517static __init int rfds_parse_cmdline(char *str)
518{
519 if (!str)
520 return -EINVAL;
521
522 if (!boot_cpu_has_bug(X86_BUG_RFDS))
523 return 0;
524
525 if (!strcmp(str, "off"))
526 rfds_mitigation = RFDS_MITIGATION_OFF;
527 else if (!strcmp(str, "on"))
528 rfds_mitigation = RFDS_MITIGATION_VERW;
529
530 return 0;
531}
532early_param("reg_file_data_sampling", rfds_parse_cmdline);
533
534#undef pr_fmt
535#define pr_fmt(fmt) "" fmt
536
537static void __init md_clear_update_mitigation(void)
538{
539 if (cpu_mitigations_off())
540 return;
541
542 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
543 goto out;
544
545 /*
546 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
547 * Stale Data mitigation, if necessary.
548 */
549 if (mds_mitigation == MDS_MITIGATION_OFF &&
550 boot_cpu_has_bug(X86_BUG_MDS)) {
551 mds_mitigation = MDS_MITIGATION_FULL;
552 mds_select_mitigation();
553 }
554 if (taa_mitigation == TAA_MITIGATION_OFF &&
555 boot_cpu_has_bug(X86_BUG_TAA)) {
556 taa_mitigation = TAA_MITIGATION_VERW;
557 taa_select_mitigation();
558 }
559 /*
560 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
561 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
562 */
563 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
564 mmio_mitigation = MMIO_MITIGATION_VERW;
565 mmio_select_mitigation();
566 }
567 if (rfds_mitigation == RFDS_MITIGATION_OFF &&
568 boot_cpu_has_bug(X86_BUG_RFDS)) {
569 rfds_mitigation = RFDS_MITIGATION_VERW;
570 rfds_select_mitigation();
571 }
572out:
573 if (boot_cpu_has_bug(X86_BUG_MDS))
574 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
575 if (boot_cpu_has_bug(X86_BUG_TAA))
576 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
577 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
578 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
579 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
580 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
581 if (boot_cpu_has_bug(X86_BUG_RFDS))
582 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
583}
584
585static void __init md_clear_select_mitigation(void)
586{
587 mds_select_mitigation();
588 taa_select_mitigation();
589 mmio_select_mitigation();
590 rfds_select_mitigation();
591
592 /*
593 * As these mitigations are inter-related and rely on VERW instruction
594 * to clear the microarchitural buffers, update and print their status
595 * after mitigation selection is done for each of these vulnerabilities.
596 */
597 md_clear_update_mitigation();
598}
599
600#undef pr_fmt
601#define pr_fmt(fmt) "SRBDS: " fmt
602
603enum srbds_mitigations {
604 SRBDS_MITIGATION_OFF,
605 SRBDS_MITIGATION_UCODE_NEEDED,
606 SRBDS_MITIGATION_FULL,
607 SRBDS_MITIGATION_TSX_OFF,
608 SRBDS_MITIGATION_HYPERVISOR,
609};
610
611static enum srbds_mitigations srbds_mitigation __ro_after_init =
612 IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_FULL : SRBDS_MITIGATION_OFF;
613
614static const char * const srbds_strings[] = {
615 [SRBDS_MITIGATION_OFF] = "Vulnerable",
616 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
617 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
618 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
619 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
620};
621
622static bool srbds_off;
623
624void update_srbds_msr(void)
625{
626 u64 mcu_ctrl;
627
628 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
629 return;
630
631 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
632 return;
633
634 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
635 return;
636
637 /*
638 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
639 * being disabled and it hasn't received the SRBDS MSR microcode.
640 */
641 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
642 return;
643
644 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
645
646 switch (srbds_mitigation) {
647 case SRBDS_MITIGATION_OFF:
648 case SRBDS_MITIGATION_TSX_OFF:
649 mcu_ctrl |= RNGDS_MITG_DIS;
650 break;
651 case SRBDS_MITIGATION_FULL:
652 mcu_ctrl &= ~RNGDS_MITG_DIS;
653 break;
654 default:
655 break;
656 }
657
658 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
659}
660
661static void __init srbds_select_mitigation(void)
662{
663 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
664 return;
665
666 /*
667 * Check to see if this is one of the MDS_NO systems supporting TSX that
668 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
669 * by Processor MMIO Stale Data vulnerability.
670 */
671 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
672 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
673 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
674 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
675 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
676 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
677 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
678 else if (cpu_mitigations_off() || srbds_off)
679 srbds_mitigation = SRBDS_MITIGATION_OFF;
680
681 update_srbds_msr();
682 pr_info("%s\n", srbds_strings[srbds_mitigation]);
683}
684
685static int __init srbds_parse_cmdline(char *str)
686{
687 if (!str)
688 return -EINVAL;
689
690 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
691 return 0;
692
693 srbds_off = !strcmp(str, "off");
694 return 0;
695}
696early_param("srbds", srbds_parse_cmdline);
697
698#undef pr_fmt
699#define pr_fmt(fmt) "L1D Flush : " fmt
700
701enum l1d_flush_mitigations {
702 L1D_FLUSH_OFF = 0,
703 L1D_FLUSH_ON,
704};
705
706static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
707
708static void __init l1d_flush_select_mitigation(void)
709{
710 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
711 return;
712
713 static_branch_enable(&switch_mm_cond_l1d_flush);
714 pr_info("Conditional flush on switch_mm() enabled\n");
715}
716
717static int __init l1d_flush_parse_cmdline(char *str)
718{
719 if (!strcmp(str, "on"))
720 l1d_flush_mitigation = L1D_FLUSH_ON;
721
722 return 0;
723}
724early_param("l1d_flush", l1d_flush_parse_cmdline);
725
726#undef pr_fmt
727#define pr_fmt(fmt) "GDS: " fmt
728
729enum gds_mitigations {
730 GDS_MITIGATION_OFF,
731 GDS_MITIGATION_UCODE_NEEDED,
732 GDS_MITIGATION_FORCE,
733 GDS_MITIGATION_FULL,
734 GDS_MITIGATION_FULL_LOCKED,
735 GDS_MITIGATION_HYPERVISOR,
736};
737
738static enum gds_mitigations gds_mitigation __ro_after_init =
739 IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_FULL : GDS_MITIGATION_OFF;
740
741static const char * const gds_strings[] = {
742 [GDS_MITIGATION_OFF] = "Vulnerable",
743 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
744 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
745 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
746 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
747 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
748};
749
750bool gds_ucode_mitigated(void)
751{
752 return (gds_mitigation == GDS_MITIGATION_FULL ||
753 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
754}
755EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
756
757void update_gds_msr(void)
758{
759 u64 mcu_ctrl_after;
760 u64 mcu_ctrl;
761
762 switch (gds_mitigation) {
763 case GDS_MITIGATION_OFF:
764 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
765 mcu_ctrl |= GDS_MITG_DIS;
766 break;
767 case GDS_MITIGATION_FULL_LOCKED:
768 /*
769 * The LOCKED state comes from the boot CPU. APs might not have
770 * the same state. Make sure the mitigation is enabled on all
771 * CPUs.
772 */
773 case GDS_MITIGATION_FULL:
774 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
775 mcu_ctrl &= ~GDS_MITG_DIS;
776 break;
777 case GDS_MITIGATION_FORCE:
778 case GDS_MITIGATION_UCODE_NEEDED:
779 case GDS_MITIGATION_HYPERVISOR:
780 return;
781 }
782
783 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
784
785 /*
786 * Check to make sure that the WRMSR value was not ignored. Writes to
787 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
788 * processor was not.
789 */
790 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
791 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
792}
793
794static void __init gds_select_mitigation(void)
795{
796 u64 mcu_ctrl;
797
798 if (!boot_cpu_has_bug(X86_BUG_GDS))
799 return;
800
801 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
802 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
803 goto out;
804 }
805
806 if (cpu_mitigations_off())
807 gds_mitigation = GDS_MITIGATION_OFF;
808 /* Will verify below that mitigation _can_ be disabled */
809
810 /* No microcode */
811 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
812 if (gds_mitigation == GDS_MITIGATION_FORCE) {
813 /*
814 * This only needs to be done on the boot CPU so do it
815 * here rather than in update_gds_msr()
816 */
817 setup_clear_cpu_cap(X86_FEATURE_AVX);
818 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
819 } else {
820 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
821 }
822 goto out;
823 }
824
825 /* Microcode has mitigation, use it */
826 if (gds_mitigation == GDS_MITIGATION_FORCE)
827 gds_mitigation = GDS_MITIGATION_FULL;
828
829 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
830 if (mcu_ctrl & GDS_MITG_LOCKED) {
831 if (gds_mitigation == GDS_MITIGATION_OFF)
832 pr_warn("Mitigation locked. Disable failed.\n");
833
834 /*
835 * The mitigation is selected from the boot CPU. All other CPUs
836 * _should_ have the same state. If the boot CPU isn't locked
837 * but others are then update_gds_msr() will WARN() of the state
838 * mismatch. If the boot CPU is locked update_gds_msr() will
839 * ensure the other CPUs have the mitigation enabled.
840 */
841 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
842 }
843
844 update_gds_msr();
845out:
846 pr_info("%s\n", gds_strings[gds_mitigation]);
847}
848
849static int __init gds_parse_cmdline(char *str)
850{
851 if (!str)
852 return -EINVAL;
853
854 if (!boot_cpu_has_bug(X86_BUG_GDS))
855 return 0;
856
857 if (!strcmp(str, "off"))
858 gds_mitigation = GDS_MITIGATION_OFF;
859 else if (!strcmp(str, "force"))
860 gds_mitigation = GDS_MITIGATION_FORCE;
861
862 return 0;
863}
864early_param("gather_data_sampling", gds_parse_cmdline);
865
866#undef pr_fmt
867#define pr_fmt(fmt) "Spectre V1 : " fmt
868
869enum spectre_v1_mitigation {
870 SPECTRE_V1_MITIGATION_NONE,
871 SPECTRE_V1_MITIGATION_AUTO,
872};
873
874static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
875 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
876 SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
877
878static const char * const spectre_v1_strings[] = {
879 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
880 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
881};
882
883/*
884 * Does SMAP provide full mitigation against speculative kernel access to
885 * userspace?
886 */
887static bool smap_works_speculatively(void)
888{
889 if (!boot_cpu_has(X86_FEATURE_SMAP))
890 return false;
891
892 /*
893 * On CPUs which are vulnerable to Meltdown, SMAP does not
894 * prevent speculative access to user data in the L1 cache.
895 * Consider SMAP to be non-functional as a mitigation on these
896 * CPUs.
897 */
898 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
899 return false;
900
901 return true;
902}
903
904static void __init spectre_v1_select_mitigation(void)
905{
906 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
907 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
908 return;
909 }
910
911 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
912 /*
913 * With Spectre v1, a user can speculatively control either
914 * path of a conditional swapgs with a user-controlled GS
915 * value. The mitigation is to add lfences to both code paths.
916 *
917 * If FSGSBASE is enabled, the user can put a kernel address in
918 * GS, in which case SMAP provides no protection.
919 *
920 * If FSGSBASE is disabled, the user can only put a user space
921 * address in GS. That makes an attack harder, but still
922 * possible if there's no SMAP protection.
923 */
924 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
925 !smap_works_speculatively()) {
926 /*
927 * Mitigation can be provided from SWAPGS itself or
928 * PTI as the CR3 write in the Meltdown mitigation
929 * is serializing.
930 *
931 * If neither is there, mitigate with an LFENCE to
932 * stop speculation through swapgs.
933 */
934 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
935 !boot_cpu_has(X86_FEATURE_PTI))
936 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
937
938 /*
939 * Enable lfences in the kernel entry (non-swapgs)
940 * paths, to prevent user entry from speculatively
941 * skipping swapgs.
942 */
943 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
944 }
945 }
946
947 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
948}
949
950static int __init nospectre_v1_cmdline(char *str)
951{
952 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
953 return 0;
954}
955early_param("nospectre_v1", nospectre_v1_cmdline);
956
957enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
958
959#undef pr_fmt
960#define pr_fmt(fmt) "RETBleed: " fmt
961
962enum retbleed_mitigation {
963 RETBLEED_MITIGATION_NONE,
964 RETBLEED_MITIGATION_UNRET,
965 RETBLEED_MITIGATION_IBPB,
966 RETBLEED_MITIGATION_IBRS,
967 RETBLEED_MITIGATION_EIBRS,
968 RETBLEED_MITIGATION_STUFF,
969};
970
971enum retbleed_mitigation_cmd {
972 RETBLEED_CMD_OFF,
973 RETBLEED_CMD_AUTO,
974 RETBLEED_CMD_UNRET,
975 RETBLEED_CMD_IBPB,
976 RETBLEED_CMD_STUFF,
977};
978
979static const char * const retbleed_strings[] = {
980 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
981 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
982 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
983 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
984 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
985 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
986};
987
988static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
989 RETBLEED_MITIGATION_NONE;
990static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
991 IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_CMD_AUTO : RETBLEED_CMD_OFF;
992
993static int __ro_after_init retbleed_nosmt = false;
994
995static int __init retbleed_parse_cmdline(char *str)
996{
997 if (!str)
998 return -EINVAL;
999
1000 while (str) {
1001 char *next = strchr(str, ',');
1002 if (next) {
1003 *next = 0;
1004 next++;
1005 }
1006
1007 if (!strcmp(str, "off")) {
1008 retbleed_cmd = RETBLEED_CMD_OFF;
1009 } else if (!strcmp(str, "auto")) {
1010 retbleed_cmd = RETBLEED_CMD_AUTO;
1011 } else if (!strcmp(str, "unret")) {
1012 retbleed_cmd = RETBLEED_CMD_UNRET;
1013 } else if (!strcmp(str, "ibpb")) {
1014 retbleed_cmd = RETBLEED_CMD_IBPB;
1015 } else if (!strcmp(str, "stuff")) {
1016 retbleed_cmd = RETBLEED_CMD_STUFF;
1017 } else if (!strcmp(str, "nosmt")) {
1018 retbleed_nosmt = true;
1019 } else if (!strcmp(str, "force")) {
1020 setup_force_cpu_bug(X86_BUG_RETBLEED);
1021 } else {
1022 pr_err("Ignoring unknown retbleed option (%s).", str);
1023 }
1024
1025 str = next;
1026 }
1027
1028 return 0;
1029}
1030early_param("retbleed", retbleed_parse_cmdline);
1031
1032#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1033#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1034
1035static void __init retbleed_select_mitigation(void)
1036{
1037 bool mitigate_smt = false;
1038
1039 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1040 return;
1041
1042 switch (retbleed_cmd) {
1043 case RETBLEED_CMD_OFF:
1044 return;
1045
1046 case RETBLEED_CMD_UNRET:
1047 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1048 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1049 } else {
1050 pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1051 goto do_cmd_auto;
1052 }
1053 break;
1054
1055 case RETBLEED_CMD_IBPB:
1056 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1057 pr_err("WARNING: CPU does not support IBPB.\n");
1058 goto do_cmd_auto;
1059 } else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1060 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1061 } else {
1062 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1063 goto do_cmd_auto;
1064 }
1065 break;
1066
1067 case RETBLEED_CMD_STUFF:
1068 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1069 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1070 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1071
1072 } else {
1073 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1074 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1075 else
1076 pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1077
1078 goto do_cmd_auto;
1079 }
1080 break;
1081
1082do_cmd_auto:
1083 case RETBLEED_CMD_AUTO:
1084 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1085 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1086 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1087 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1088 else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1089 boot_cpu_has(X86_FEATURE_IBPB))
1090 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1091 }
1092
1093 /*
1094 * The Intel mitigation (IBRS or eIBRS) was already selected in
1095 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1096 * be set accordingly below.
1097 */
1098
1099 break;
1100 }
1101
1102 switch (retbleed_mitigation) {
1103 case RETBLEED_MITIGATION_UNRET:
1104 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1105 setup_force_cpu_cap(X86_FEATURE_UNRET);
1106
1107 x86_return_thunk = retbleed_return_thunk;
1108
1109 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1110 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1111 pr_err(RETBLEED_UNTRAIN_MSG);
1112
1113 mitigate_smt = true;
1114 break;
1115
1116 case RETBLEED_MITIGATION_IBPB:
1117 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1118 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1119 mitigate_smt = true;
1120
1121 /*
1122 * IBPB on entry already obviates the need for
1123 * software-based untraining so clear those in case some
1124 * other mitigation like SRSO has selected them.
1125 */
1126 setup_clear_cpu_cap(X86_FEATURE_UNRET);
1127 setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1128
1129 /*
1130 * There is no need for RSB filling: entry_ibpb() ensures
1131 * all predictions, including the RSB, are invalidated,
1132 * regardless of IBPB implementation.
1133 */
1134 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1135
1136 break;
1137
1138 case RETBLEED_MITIGATION_STUFF:
1139 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1140 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1141
1142 x86_return_thunk = call_depth_return_thunk;
1143 break;
1144
1145 default:
1146 break;
1147 }
1148
1149 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1150 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1151 cpu_smt_disable(false);
1152
1153 /*
1154 * Let IBRS trump all on Intel without affecting the effects of the
1155 * retbleed= cmdline option except for call depth based stuffing
1156 */
1157 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1158 switch (spectre_v2_enabled) {
1159 case SPECTRE_V2_IBRS:
1160 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1161 break;
1162 case SPECTRE_V2_EIBRS:
1163 case SPECTRE_V2_EIBRS_RETPOLINE:
1164 case SPECTRE_V2_EIBRS_LFENCE:
1165 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1166 break;
1167 default:
1168 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1169 pr_err(RETBLEED_INTEL_MSG);
1170 }
1171 }
1172
1173 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1174}
1175
1176#undef pr_fmt
1177#define pr_fmt(fmt) "Spectre V2 : " fmt
1178
1179static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1180 SPECTRE_V2_USER_NONE;
1181static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1182 SPECTRE_V2_USER_NONE;
1183
1184#ifdef CONFIG_MITIGATION_RETPOLINE
1185static bool spectre_v2_bad_module;
1186
1187bool retpoline_module_ok(bool has_retpoline)
1188{
1189 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1190 return true;
1191
1192 pr_err("System may be vulnerable to spectre v2\n");
1193 spectre_v2_bad_module = true;
1194 return false;
1195}
1196
1197static inline const char *spectre_v2_module_string(void)
1198{
1199 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1200}
1201#else
1202static inline const char *spectre_v2_module_string(void) { return ""; }
1203#endif
1204
1205#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1206#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1207#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1208#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1209
1210#ifdef CONFIG_BPF_SYSCALL
1211void unpriv_ebpf_notify(int new_state)
1212{
1213 if (new_state)
1214 return;
1215
1216 /* Unprivileged eBPF is enabled */
1217
1218 switch (spectre_v2_enabled) {
1219 case SPECTRE_V2_EIBRS:
1220 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1221 break;
1222 case SPECTRE_V2_EIBRS_LFENCE:
1223 if (sched_smt_active())
1224 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1225 break;
1226 default:
1227 break;
1228 }
1229}
1230#endif
1231
1232static inline bool match_option(const char *arg, int arglen, const char *opt)
1233{
1234 int len = strlen(opt);
1235
1236 return len == arglen && !strncmp(arg, opt, len);
1237}
1238
1239/* The kernel command line selection for spectre v2 */
1240enum spectre_v2_mitigation_cmd {
1241 SPECTRE_V2_CMD_NONE,
1242 SPECTRE_V2_CMD_AUTO,
1243 SPECTRE_V2_CMD_FORCE,
1244 SPECTRE_V2_CMD_RETPOLINE,
1245 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1246 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1247 SPECTRE_V2_CMD_EIBRS,
1248 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1249 SPECTRE_V2_CMD_EIBRS_LFENCE,
1250 SPECTRE_V2_CMD_IBRS,
1251};
1252
1253enum spectre_v2_user_cmd {
1254 SPECTRE_V2_USER_CMD_NONE,
1255 SPECTRE_V2_USER_CMD_AUTO,
1256 SPECTRE_V2_USER_CMD_FORCE,
1257 SPECTRE_V2_USER_CMD_PRCTL,
1258 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1259 SPECTRE_V2_USER_CMD_SECCOMP,
1260 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1261};
1262
1263static const char * const spectre_v2_user_strings[] = {
1264 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1265 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1266 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1267 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1268 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1269};
1270
1271static const struct {
1272 const char *option;
1273 enum spectre_v2_user_cmd cmd;
1274 bool secure;
1275} v2_user_options[] __initconst = {
1276 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1277 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1278 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1279 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1280 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1281 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1282 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1283};
1284
1285static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1286{
1287 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1288 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1289}
1290
1291static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1292
1293static enum spectre_v2_user_cmd __init
1294spectre_v2_parse_user_cmdline(void)
1295{
1296 char arg[20];
1297 int ret, i;
1298
1299 switch (spectre_v2_cmd) {
1300 case SPECTRE_V2_CMD_NONE:
1301 return SPECTRE_V2_USER_CMD_NONE;
1302 case SPECTRE_V2_CMD_FORCE:
1303 return SPECTRE_V2_USER_CMD_FORCE;
1304 default:
1305 break;
1306 }
1307
1308 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1309 arg, sizeof(arg));
1310 if (ret < 0)
1311 return SPECTRE_V2_USER_CMD_AUTO;
1312
1313 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1314 if (match_option(arg, ret, v2_user_options[i].option)) {
1315 spec_v2_user_print_cond(v2_user_options[i].option,
1316 v2_user_options[i].secure);
1317 return v2_user_options[i].cmd;
1318 }
1319 }
1320
1321 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1322 return SPECTRE_V2_USER_CMD_AUTO;
1323}
1324
1325static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1326{
1327 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1328}
1329
1330static void __init
1331spectre_v2_user_select_mitigation(void)
1332{
1333 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1334 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1335 enum spectre_v2_user_cmd cmd;
1336
1337 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1338 return;
1339
1340 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1341 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1342 smt_possible = false;
1343
1344 cmd = spectre_v2_parse_user_cmdline();
1345 switch (cmd) {
1346 case SPECTRE_V2_USER_CMD_NONE:
1347 goto set_mode;
1348 case SPECTRE_V2_USER_CMD_FORCE:
1349 mode = SPECTRE_V2_USER_STRICT;
1350 break;
1351 case SPECTRE_V2_USER_CMD_AUTO:
1352 case SPECTRE_V2_USER_CMD_PRCTL:
1353 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1354 mode = SPECTRE_V2_USER_PRCTL;
1355 break;
1356 case SPECTRE_V2_USER_CMD_SECCOMP:
1357 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1358 if (IS_ENABLED(CONFIG_SECCOMP))
1359 mode = SPECTRE_V2_USER_SECCOMP;
1360 else
1361 mode = SPECTRE_V2_USER_PRCTL;
1362 break;
1363 }
1364
1365 /* Initialize Indirect Branch Prediction Barrier */
1366 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1367 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1368
1369 spectre_v2_user_ibpb = mode;
1370 switch (cmd) {
1371 case SPECTRE_V2_USER_CMD_NONE:
1372 break;
1373 case SPECTRE_V2_USER_CMD_FORCE:
1374 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1375 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1376 static_branch_enable(&switch_mm_always_ibpb);
1377 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1378 break;
1379 case SPECTRE_V2_USER_CMD_PRCTL:
1380 case SPECTRE_V2_USER_CMD_AUTO:
1381 case SPECTRE_V2_USER_CMD_SECCOMP:
1382 static_branch_enable(&switch_mm_cond_ibpb);
1383 break;
1384 }
1385
1386 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1387 static_key_enabled(&switch_mm_always_ibpb) ?
1388 "always-on" : "conditional");
1389 }
1390
1391 /*
1392 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1393 * is not required.
1394 *
1395 * Intel's Enhanced IBRS also protects against cross-thread branch target
1396 * injection in user-mode as the IBRS bit remains always set which
1397 * implicitly enables cross-thread protections. However, in legacy IBRS
1398 * mode, the IBRS bit is set only on kernel entry and cleared on return
1399 * to userspace. AMD Automatic IBRS also does not protect userspace.
1400 * These modes therefore disable the implicit cross-thread protection,
1401 * so allow for STIBP to be selected in those cases.
1402 */
1403 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1404 !smt_possible ||
1405 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1406 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1407 return;
1408
1409 /*
1410 * At this point, an STIBP mode other than "off" has been set.
1411 * If STIBP support is not being forced, check if STIBP always-on
1412 * is preferred.
1413 */
1414 if (mode != SPECTRE_V2_USER_STRICT &&
1415 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1416 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1417
1418 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1419 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1420 if (mode != SPECTRE_V2_USER_STRICT &&
1421 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1422 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1423 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1424 }
1425
1426 spectre_v2_user_stibp = mode;
1427
1428set_mode:
1429 pr_info("%s\n", spectre_v2_user_strings[mode]);
1430}
1431
1432static const char * const spectre_v2_strings[] = {
1433 [SPECTRE_V2_NONE] = "Vulnerable",
1434 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1435 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1436 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1437 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1438 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1439 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1440};
1441
1442static const struct {
1443 const char *option;
1444 enum spectre_v2_mitigation_cmd cmd;
1445 bool secure;
1446} mitigation_options[] __initconst = {
1447 { "off", SPECTRE_V2_CMD_NONE, false },
1448 { "on", SPECTRE_V2_CMD_FORCE, true },
1449 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1450 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1451 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1452 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1453 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1454 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1455 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1456 { "auto", SPECTRE_V2_CMD_AUTO, false },
1457 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1458};
1459
1460static void __init spec_v2_print_cond(const char *reason, bool secure)
1461{
1462 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1463 pr_info("%s selected on command line.\n", reason);
1464}
1465
1466static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1467{
1468 enum spectre_v2_mitigation_cmd cmd;
1469 char arg[20];
1470 int ret, i;
1471
1472 cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1473 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1474 cpu_mitigations_off())
1475 return SPECTRE_V2_CMD_NONE;
1476
1477 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1478 if (ret < 0)
1479 return cmd;
1480
1481 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1482 if (!match_option(arg, ret, mitigation_options[i].option))
1483 continue;
1484 cmd = mitigation_options[i].cmd;
1485 break;
1486 }
1487
1488 if (i >= ARRAY_SIZE(mitigation_options)) {
1489 pr_err("unknown option (%s). Switching to default mode\n", arg);
1490 return cmd;
1491 }
1492
1493 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1494 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1495 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1496 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1497 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1498 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1499 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1500 mitigation_options[i].option);
1501 return SPECTRE_V2_CMD_AUTO;
1502 }
1503
1504 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1505 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1506 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1507 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1508 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1509 mitigation_options[i].option);
1510 return SPECTRE_V2_CMD_AUTO;
1511 }
1512
1513 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1514 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1515 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1516 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1517 mitigation_options[i].option);
1518 return SPECTRE_V2_CMD_AUTO;
1519 }
1520
1521 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1522 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1523 mitigation_options[i].option);
1524 return SPECTRE_V2_CMD_AUTO;
1525 }
1526
1527 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1528 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1529 mitigation_options[i].option);
1530 return SPECTRE_V2_CMD_AUTO;
1531 }
1532
1533 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1534 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1535 mitigation_options[i].option);
1536 return SPECTRE_V2_CMD_AUTO;
1537 }
1538
1539 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1540 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1541 mitigation_options[i].option);
1542 return SPECTRE_V2_CMD_AUTO;
1543 }
1544
1545 spec_v2_print_cond(mitigation_options[i].option,
1546 mitigation_options[i].secure);
1547 return cmd;
1548}
1549
1550static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1551{
1552 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1553 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1554 return SPECTRE_V2_NONE;
1555 }
1556
1557 return SPECTRE_V2_RETPOLINE;
1558}
1559
1560static bool __ro_after_init rrsba_disabled;
1561
1562/* Disable in-kernel use of non-RSB RET predictors */
1563static void __init spec_ctrl_disable_kernel_rrsba(void)
1564{
1565 if (rrsba_disabled)
1566 return;
1567
1568 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1569 rrsba_disabled = true;
1570 return;
1571 }
1572
1573 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1574 return;
1575
1576 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1577 update_spec_ctrl(x86_spec_ctrl_base);
1578 rrsba_disabled = true;
1579}
1580
1581static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1582{
1583 /*
1584 * Similar to context switches, there are two types of RSB attacks
1585 * after VM exit:
1586 *
1587 * 1) RSB underflow
1588 *
1589 * 2) Poisoned RSB entry
1590 *
1591 * When retpoline is enabled, both are mitigated by filling/clearing
1592 * the RSB.
1593 *
1594 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1595 * prediction isolation protections, RSB still needs to be cleared
1596 * because of #2. Note that SMEP provides no protection here, unlike
1597 * user-space-poisoned RSB entries.
1598 *
1599 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1600 * bug is present then a LITE version of RSB protection is required,
1601 * just a single call needs to retire before a RET is executed.
1602 */
1603 switch (mode) {
1604 case SPECTRE_V2_NONE:
1605 return;
1606
1607 case SPECTRE_V2_EIBRS_LFENCE:
1608 case SPECTRE_V2_EIBRS:
1609 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1610 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1611 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1612 }
1613 return;
1614
1615 case SPECTRE_V2_EIBRS_RETPOLINE:
1616 case SPECTRE_V2_RETPOLINE:
1617 case SPECTRE_V2_LFENCE:
1618 case SPECTRE_V2_IBRS:
1619 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1620 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1621 return;
1622 }
1623
1624 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1625 dump_stack();
1626}
1627
1628/*
1629 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1630 * branch history in userspace. Not needed if BHI_NO is set.
1631 */
1632static bool __init spec_ctrl_bhi_dis(void)
1633{
1634 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1635 return false;
1636
1637 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1638 update_spec_ctrl(x86_spec_ctrl_base);
1639 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1640
1641 return true;
1642}
1643
1644enum bhi_mitigations {
1645 BHI_MITIGATION_OFF,
1646 BHI_MITIGATION_ON,
1647 BHI_MITIGATION_VMEXIT_ONLY,
1648};
1649
1650static enum bhi_mitigations bhi_mitigation __ro_after_init =
1651 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1652
1653static int __init spectre_bhi_parse_cmdline(char *str)
1654{
1655 if (!str)
1656 return -EINVAL;
1657
1658 if (!strcmp(str, "off"))
1659 bhi_mitigation = BHI_MITIGATION_OFF;
1660 else if (!strcmp(str, "on"))
1661 bhi_mitigation = BHI_MITIGATION_ON;
1662 else if (!strcmp(str, "vmexit"))
1663 bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
1664 else
1665 pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1666
1667 return 0;
1668}
1669early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1670
1671static void __init bhi_select_mitigation(void)
1672{
1673 if (bhi_mitigation == BHI_MITIGATION_OFF)
1674 return;
1675
1676 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1677 if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1678 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1679 spec_ctrl_disable_kernel_rrsba();
1680 if (rrsba_disabled)
1681 return;
1682 }
1683
1684 /* Mitigate in hardware if supported */
1685 if (spec_ctrl_bhi_dis())
1686 return;
1687
1688 if (!IS_ENABLED(CONFIG_X86_64))
1689 return;
1690
1691 if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
1692 pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
1693 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1694 return;
1695 }
1696
1697 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
1698 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1699 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1700}
1701
1702static void __init spectre_v2_select_mitigation(void)
1703{
1704 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1705 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1706
1707 /*
1708 * If the CPU is not affected and the command line mode is NONE or AUTO
1709 * then nothing to do.
1710 */
1711 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1712 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1713 return;
1714
1715 switch (cmd) {
1716 case SPECTRE_V2_CMD_NONE:
1717 return;
1718
1719 case SPECTRE_V2_CMD_FORCE:
1720 case SPECTRE_V2_CMD_AUTO:
1721 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1722 mode = SPECTRE_V2_EIBRS;
1723 break;
1724 }
1725
1726 if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1727 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1728 retbleed_cmd != RETBLEED_CMD_OFF &&
1729 retbleed_cmd != RETBLEED_CMD_STUFF &&
1730 boot_cpu_has(X86_FEATURE_IBRS) &&
1731 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1732 mode = SPECTRE_V2_IBRS;
1733 break;
1734 }
1735
1736 mode = spectre_v2_select_retpoline();
1737 break;
1738
1739 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1740 pr_err(SPECTRE_V2_LFENCE_MSG);
1741 mode = SPECTRE_V2_LFENCE;
1742 break;
1743
1744 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1745 mode = SPECTRE_V2_RETPOLINE;
1746 break;
1747
1748 case SPECTRE_V2_CMD_RETPOLINE:
1749 mode = spectre_v2_select_retpoline();
1750 break;
1751
1752 case SPECTRE_V2_CMD_IBRS:
1753 mode = SPECTRE_V2_IBRS;
1754 break;
1755
1756 case SPECTRE_V2_CMD_EIBRS:
1757 mode = SPECTRE_V2_EIBRS;
1758 break;
1759
1760 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1761 mode = SPECTRE_V2_EIBRS_LFENCE;
1762 break;
1763
1764 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1765 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1766 break;
1767 }
1768
1769 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1770 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1771
1772 if (spectre_v2_in_ibrs_mode(mode)) {
1773 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1774 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1775 } else {
1776 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1777 update_spec_ctrl(x86_spec_ctrl_base);
1778 }
1779 }
1780
1781 switch (mode) {
1782 case SPECTRE_V2_NONE:
1783 case SPECTRE_V2_EIBRS:
1784 break;
1785
1786 case SPECTRE_V2_IBRS:
1787 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1788 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1789 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1790 break;
1791
1792 case SPECTRE_V2_LFENCE:
1793 case SPECTRE_V2_EIBRS_LFENCE:
1794 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1795 fallthrough;
1796
1797 case SPECTRE_V2_RETPOLINE:
1798 case SPECTRE_V2_EIBRS_RETPOLINE:
1799 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1800 break;
1801 }
1802
1803 /*
1804 * Disable alternate RSB predictions in kernel when indirect CALLs and
1805 * JMPs gets protection against BHI and Intramode-BTI, but RET
1806 * prediction from a non-RSB predictor is still a risk.
1807 */
1808 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1809 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1810 mode == SPECTRE_V2_RETPOLINE)
1811 spec_ctrl_disable_kernel_rrsba();
1812
1813 if (boot_cpu_has(X86_BUG_BHI))
1814 bhi_select_mitigation();
1815
1816 spectre_v2_enabled = mode;
1817 pr_info("%s\n", spectre_v2_strings[mode]);
1818
1819 /*
1820 * If Spectre v2 protection has been enabled, fill the RSB during a
1821 * context switch. In general there are two types of RSB attacks
1822 * across context switches, for which the CALLs/RETs may be unbalanced.
1823 *
1824 * 1) RSB underflow
1825 *
1826 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1827 * speculated return targets may come from the branch predictor,
1828 * which could have a user-poisoned BTB or BHB entry.
1829 *
1830 * AMD has it even worse: *all* returns are speculated from the BTB,
1831 * regardless of the state of the RSB.
1832 *
1833 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1834 * scenario is mitigated by the IBRS branch prediction isolation
1835 * properties, so the RSB buffer filling wouldn't be necessary to
1836 * protect against this type of attack.
1837 *
1838 * The "user -> user" attack scenario is mitigated by RSB filling.
1839 *
1840 * 2) Poisoned RSB entry
1841 *
1842 * If the 'next' in-kernel return stack is shorter than 'prev',
1843 * 'next' could be tricked into speculating with a user-poisoned RSB
1844 * entry.
1845 *
1846 * The "user -> kernel" attack scenario is mitigated by SMEP and
1847 * eIBRS.
1848 *
1849 * The "user -> user" scenario, also known as SpectreBHB, requires
1850 * RSB clearing.
1851 *
1852 * So to mitigate all cases, unconditionally fill RSB on context
1853 * switches.
1854 *
1855 * FIXME: Is this pointless for retbleed-affected AMD?
1856 */
1857 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1858 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1859
1860 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1861
1862 /*
1863 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1864 * and Enhanced IBRS protect firmware too, so enable IBRS around
1865 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1866 * otherwise enabled.
1867 *
1868 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1869 * the user might select retpoline on the kernel command line and if
1870 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1871 * enable IBRS around firmware calls.
1872 */
1873 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1874 boot_cpu_has(X86_FEATURE_IBPB) &&
1875 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1876 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1877
1878 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1879 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1880 pr_info("Enabling Speculation Barrier for firmware calls\n");
1881 }
1882
1883 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1884 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1885 pr_info("Enabling Restricted Speculation for firmware calls\n");
1886 }
1887
1888 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1889 spectre_v2_cmd = cmd;
1890}
1891
1892static void update_stibp_msr(void * __unused)
1893{
1894 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1895 update_spec_ctrl(val);
1896}
1897
1898/* Update x86_spec_ctrl_base in case SMT state changed. */
1899static void update_stibp_strict(void)
1900{
1901 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1902
1903 if (sched_smt_active())
1904 mask |= SPEC_CTRL_STIBP;
1905
1906 if (mask == x86_spec_ctrl_base)
1907 return;
1908
1909 pr_info("Update user space SMT mitigation: STIBP %s\n",
1910 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1911 x86_spec_ctrl_base = mask;
1912 on_each_cpu(update_stibp_msr, NULL, 1);
1913}
1914
1915/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1916static void update_indir_branch_cond(void)
1917{
1918 if (sched_smt_active())
1919 static_branch_enable(&switch_to_cond_stibp);
1920 else
1921 static_branch_disable(&switch_to_cond_stibp);
1922}
1923
1924#undef pr_fmt
1925#define pr_fmt(fmt) fmt
1926
1927/* Update the static key controlling the MDS CPU buffer clear in idle */
1928static void update_mds_branch_idle(void)
1929{
1930 /*
1931 * Enable the idle clearing if SMT is active on CPUs which are
1932 * affected only by MSBDS and not any other MDS variant.
1933 *
1934 * The other variants cannot be mitigated when SMT is enabled, so
1935 * clearing the buffers on idle just to prevent the Store Buffer
1936 * repartitioning leak would be a window dressing exercise.
1937 */
1938 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1939 return;
1940
1941 if (sched_smt_active()) {
1942 static_branch_enable(&mds_idle_clear);
1943 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1944 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1945 static_branch_disable(&mds_idle_clear);
1946 }
1947}
1948
1949#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1950#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1951#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1952
1953void cpu_bugs_smt_update(void)
1954{
1955 mutex_lock(&spec_ctrl_mutex);
1956
1957 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1958 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1959 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1960
1961 switch (spectre_v2_user_stibp) {
1962 case SPECTRE_V2_USER_NONE:
1963 break;
1964 case SPECTRE_V2_USER_STRICT:
1965 case SPECTRE_V2_USER_STRICT_PREFERRED:
1966 update_stibp_strict();
1967 break;
1968 case SPECTRE_V2_USER_PRCTL:
1969 case SPECTRE_V2_USER_SECCOMP:
1970 update_indir_branch_cond();
1971 break;
1972 }
1973
1974 switch (mds_mitigation) {
1975 case MDS_MITIGATION_FULL:
1976 case MDS_MITIGATION_VMWERV:
1977 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1978 pr_warn_once(MDS_MSG_SMT);
1979 update_mds_branch_idle();
1980 break;
1981 case MDS_MITIGATION_OFF:
1982 break;
1983 }
1984
1985 switch (taa_mitigation) {
1986 case TAA_MITIGATION_VERW:
1987 case TAA_MITIGATION_UCODE_NEEDED:
1988 if (sched_smt_active())
1989 pr_warn_once(TAA_MSG_SMT);
1990 break;
1991 case TAA_MITIGATION_TSX_DISABLED:
1992 case TAA_MITIGATION_OFF:
1993 break;
1994 }
1995
1996 switch (mmio_mitigation) {
1997 case MMIO_MITIGATION_VERW:
1998 case MMIO_MITIGATION_UCODE_NEEDED:
1999 if (sched_smt_active())
2000 pr_warn_once(MMIO_MSG_SMT);
2001 break;
2002 case MMIO_MITIGATION_OFF:
2003 break;
2004 }
2005
2006 mutex_unlock(&spec_ctrl_mutex);
2007}
2008
2009#undef pr_fmt
2010#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
2011
2012static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2013
2014/* The kernel command line selection */
2015enum ssb_mitigation_cmd {
2016 SPEC_STORE_BYPASS_CMD_NONE,
2017 SPEC_STORE_BYPASS_CMD_AUTO,
2018 SPEC_STORE_BYPASS_CMD_ON,
2019 SPEC_STORE_BYPASS_CMD_PRCTL,
2020 SPEC_STORE_BYPASS_CMD_SECCOMP,
2021};
2022
2023static const char * const ssb_strings[] = {
2024 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
2025 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
2026 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
2027 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2028};
2029
2030static const struct {
2031 const char *option;
2032 enum ssb_mitigation_cmd cmd;
2033} ssb_mitigation_options[] __initconst = {
2034 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
2035 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
2036 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
2037 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
2038 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2039};
2040
2041static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2042{
2043 enum ssb_mitigation_cmd cmd;
2044 char arg[20];
2045 int ret, i;
2046
2047 cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2048 SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2049 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2050 cpu_mitigations_off()) {
2051 return SPEC_STORE_BYPASS_CMD_NONE;
2052 } else {
2053 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2054 arg, sizeof(arg));
2055 if (ret < 0)
2056 return cmd;
2057
2058 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2059 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2060 continue;
2061
2062 cmd = ssb_mitigation_options[i].cmd;
2063 break;
2064 }
2065
2066 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2067 pr_err("unknown option (%s). Switching to default mode\n", arg);
2068 return cmd;
2069 }
2070 }
2071
2072 return cmd;
2073}
2074
2075static enum ssb_mitigation __init __ssb_select_mitigation(void)
2076{
2077 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2078 enum ssb_mitigation_cmd cmd;
2079
2080 if (!boot_cpu_has(X86_FEATURE_SSBD))
2081 return mode;
2082
2083 cmd = ssb_parse_cmdline();
2084 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2085 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2086 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2087 return mode;
2088
2089 switch (cmd) {
2090 case SPEC_STORE_BYPASS_CMD_SECCOMP:
2091 /*
2092 * Choose prctl+seccomp as the default mode if seccomp is
2093 * enabled.
2094 */
2095 if (IS_ENABLED(CONFIG_SECCOMP))
2096 mode = SPEC_STORE_BYPASS_SECCOMP;
2097 else
2098 mode = SPEC_STORE_BYPASS_PRCTL;
2099 break;
2100 case SPEC_STORE_BYPASS_CMD_ON:
2101 mode = SPEC_STORE_BYPASS_DISABLE;
2102 break;
2103 case SPEC_STORE_BYPASS_CMD_AUTO:
2104 case SPEC_STORE_BYPASS_CMD_PRCTL:
2105 mode = SPEC_STORE_BYPASS_PRCTL;
2106 break;
2107 case SPEC_STORE_BYPASS_CMD_NONE:
2108 break;
2109 }
2110
2111 /*
2112 * We have three CPU feature flags that are in play here:
2113 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2114 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2115 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2116 */
2117 if (mode == SPEC_STORE_BYPASS_DISABLE) {
2118 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2119 /*
2120 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2121 * use a completely different MSR and bit dependent on family.
2122 */
2123 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2124 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2125 x86_amd_ssb_disable();
2126 } else {
2127 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2128 update_spec_ctrl(x86_spec_ctrl_base);
2129 }
2130 }
2131
2132 return mode;
2133}
2134
2135static void ssb_select_mitigation(void)
2136{
2137 ssb_mode = __ssb_select_mitigation();
2138
2139 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2140 pr_info("%s\n", ssb_strings[ssb_mode]);
2141}
2142
2143#undef pr_fmt
2144#define pr_fmt(fmt) "Speculation prctl: " fmt
2145
2146static void task_update_spec_tif(struct task_struct *tsk)
2147{
2148 /* Force the update of the real TIF bits */
2149 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2150
2151 /*
2152 * Immediately update the speculation control MSRs for the current
2153 * task, but for a non-current task delay setting the CPU
2154 * mitigation until it is scheduled next.
2155 *
2156 * This can only happen for SECCOMP mitigation. For PRCTL it's
2157 * always the current task.
2158 */
2159 if (tsk == current)
2160 speculation_ctrl_update_current();
2161}
2162
2163static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2164{
2165
2166 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2167 return -EPERM;
2168
2169 switch (ctrl) {
2170 case PR_SPEC_ENABLE:
2171 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2172 return 0;
2173 case PR_SPEC_DISABLE:
2174 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2175 return 0;
2176 default:
2177 return -ERANGE;
2178 }
2179}
2180
2181static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2182{
2183 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2184 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2185 return -ENXIO;
2186
2187 switch (ctrl) {
2188 case PR_SPEC_ENABLE:
2189 /* If speculation is force disabled, enable is not allowed */
2190 if (task_spec_ssb_force_disable(task))
2191 return -EPERM;
2192 task_clear_spec_ssb_disable(task);
2193 task_clear_spec_ssb_noexec(task);
2194 task_update_spec_tif(task);
2195 break;
2196 case PR_SPEC_DISABLE:
2197 task_set_spec_ssb_disable(task);
2198 task_clear_spec_ssb_noexec(task);
2199 task_update_spec_tif(task);
2200 break;
2201 case PR_SPEC_FORCE_DISABLE:
2202 task_set_spec_ssb_disable(task);
2203 task_set_spec_ssb_force_disable(task);
2204 task_clear_spec_ssb_noexec(task);
2205 task_update_spec_tif(task);
2206 break;
2207 case PR_SPEC_DISABLE_NOEXEC:
2208 if (task_spec_ssb_force_disable(task))
2209 return -EPERM;
2210 task_set_spec_ssb_disable(task);
2211 task_set_spec_ssb_noexec(task);
2212 task_update_spec_tif(task);
2213 break;
2214 default:
2215 return -ERANGE;
2216 }
2217 return 0;
2218}
2219
2220static bool is_spec_ib_user_controlled(void)
2221{
2222 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2223 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2224 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2225 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2226}
2227
2228static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2229{
2230 switch (ctrl) {
2231 case PR_SPEC_ENABLE:
2232 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2233 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2234 return 0;
2235
2236 /*
2237 * With strict mode for both IBPB and STIBP, the instruction
2238 * code paths avoid checking this task flag and instead,
2239 * unconditionally run the instruction. However, STIBP and IBPB
2240 * are independent and either can be set to conditionally
2241 * enabled regardless of the mode of the other.
2242 *
2243 * If either is set to conditional, allow the task flag to be
2244 * updated, unless it was force-disabled by a previous prctl
2245 * call. Currently, this is possible on an AMD CPU which has the
2246 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2247 * kernel is booted with 'spectre_v2_user=seccomp', then
2248 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2249 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2250 */
2251 if (!is_spec_ib_user_controlled() ||
2252 task_spec_ib_force_disable(task))
2253 return -EPERM;
2254
2255 task_clear_spec_ib_disable(task);
2256 task_update_spec_tif(task);
2257 break;
2258 case PR_SPEC_DISABLE:
2259 case PR_SPEC_FORCE_DISABLE:
2260 /*
2261 * Indirect branch speculation is always allowed when
2262 * mitigation is force disabled.
2263 */
2264 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2265 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2266 return -EPERM;
2267
2268 if (!is_spec_ib_user_controlled())
2269 return 0;
2270
2271 task_set_spec_ib_disable(task);
2272 if (ctrl == PR_SPEC_FORCE_DISABLE)
2273 task_set_spec_ib_force_disable(task);
2274 task_update_spec_tif(task);
2275 if (task == current)
2276 indirect_branch_prediction_barrier();
2277 break;
2278 default:
2279 return -ERANGE;
2280 }
2281 return 0;
2282}
2283
2284int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2285 unsigned long ctrl)
2286{
2287 switch (which) {
2288 case PR_SPEC_STORE_BYPASS:
2289 return ssb_prctl_set(task, ctrl);
2290 case PR_SPEC_INDIRECT_BRANCH:
2291 return ib_prctl_set(task, ctrl);
2292 case PR_SPEC_L1D_FLUSH:
2293 return l1d_flush_prctl_set(task, ctrl);
2294 default:
2295 return -ENODEV;
2296 }
2297}
2298
2299#ifdef CONFIG_SECCOMP
2300void arch_seccomp_spec_mitigate(struct task_struct *task)
2301{
2302 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2303 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2304 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2305 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2306 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2307}
2308#endif
2309
2310static int l1d_flush_prctl_get(struct task_struct *task)
2311{
2312 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2313 return PR_SPEC_FORCE_DISABLE;
2314
2315 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2316 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2317 else
2318 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2319}
2320
2321static int ssb_prctl_get(struct task_struct *task)
2322{
2323 switch (ssb_mode) {
2324 case SPEC_STORE_BYPASS_NONE:
2325 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2326 return PR_SPEC_ENABLE;
2327 return PR_SPEC_NOT_AFFECTED;
2328 case SPEC_STORE_BYPASS_DISABLE:
2329 return PR_SPEC_DISABLE;
2330 case SPEC_STORE_BYPASS_SECCOMP:
2331 case SPEC_STORE_BYPASS_PRCTL:
2332 if (task_spec_ssb_force_disable(task))
2333 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2334 if (task_spec_ssb_noexec(task))
2335 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2336 if (task_spec_ssb_disable(task))
2337 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2338 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2339 }
2340 BUG();
2341}
2342
2343static int ib_prctl_get(struct task_struct *task)
2344{
2345 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2346 return PR_SPEC_NOT_AFFECTED;
2347
2348 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2349 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2350 return PR_SPEC_ENABLE;
2351 else if (is_spec_ib_user_controlled()) {
2352 if (task_spec_ib_force_disable(task))
2353 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2354 if (task_spec_ib_disable(task))
2355 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2356 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2357 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2358 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2359 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2360 return PR_SPEC_DISABLE;
2361 else
2362 return PR_SPEC_NOT_AFFECTED;
2363}
2364
2365int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2366{
2367 switch (which) {
2368 case PR_SPEC_STORE_BYPASS:
2369 return ssb_prctl_get(task);
2370 case PR_SPEC_INDIRECT_BRANCH:
2371 return ib_prctl_get(task);
2372 case PR_SPEC_L1D_FLUSH:
2373 return l1d_flush_prctl_get(task);
2374 default:
2375 return -ENODEV;
2376 }
2377}
2378
2379void x86_spec_ctrl_setup_ap(void)
2380{
2381 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2382 update_spec_ctrl(x86_spec_ctrl_base);
2383
2384 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2385 x86_amd_ssb_disable();
2386}
2387
2388bool itlb_multihit_kvm_mitigation;
2389EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2390
2391#undef pr_fmt
2392#define pr_fmt(fmt) "L1TF: " fmt
2393
2394/* Default mitigation for L1TF-affected CPUs */
2395enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2396 IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_FLUSH : L1TF_MITIGATION_OFF;
2397#if IS_ENABLED(CONFIG_KVM_INTEL)
2398EXPORT_SYMBOL_GPL(l1tf_mitigation);
2399#endif
2400enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2401EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2402
2403/*
2404 * These CPUs all support 44bits physical address space internally in the
2405 * cache but CPUID can report a smaller number of physical address bits.
2406 *
2407 * The L1TF mitigation uses the top most address bit for the inversion of
2408 * non present PTEs. When the installed memory reaches into the top most
2409 * address bit due to memory holes, which has been observed on machines
2410 * which report 36bits physical address bits and have 32G RAM installed,
2411 * then the mitigation range check in l1tf_select_mitigation() triggers.
2412 * This is a false positive because the mitigation is still possible due to
2413 * the fact that the cache uses 44bit internally. Use the cache bits
2414 * instead of the reported physical bits and adjust them on the affected
2415 * machines to 44bit if the reported bits are less than 44.
2416 */
2417static void override_cache_bits(struct cpuinfo_x86 *c)
2418{
2419 if (c->x86 != 6)
2420 return;
2421
2422 switch (c->x86_vfm) {
2423 case INTEL_NEHALEM:
2424 case INTEL_WESTMERE:
2425 case INTEL_SANDYBRIDGE:
2426 case INTEL_IVYBRIDGE:
2427 case INTEL_HASWELL:
2428 case INTEL_HASWELL_L:
2429 case INTEL_HASWELL_G:
2430 case INTEL_BROADWELL:
2431 case INTEL_BROADWELL_G:
2432 case INTEL_SKYLAKE_L:
2433 case INTEL_SKYLAKE:
2434 case INTEL_KABYLAKE_L:
2435 case INTEL_KABYLAKE:
2436 if (c->x86_cache_bits < 44)
2437 c->x86_cache_bits = 44;
2438 break;
2439 }
2440}
2441
2442static void __init l1tf_select_mitigation(void)
2443{
2444 u64 half_pa;
2445
2446 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2447 return;
2448
2449 if (cpu_mitigations_off())
2450 l1tf_mitigation = L1TF_MITIGATION_OFF;
2451 else if (cpu_mitigations_auto_nosmt())
2452 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2453
2454 override_cache_bits(&boot_cpu_data);
2455
2456 switch (l1tf_mitigation) {
2457 case L1TF_MITIGATION_OFF:
2458 case L1TF_MITIGATION_FLUSH_NOWARN:
2459 case L1TF_MITIGATION_FLUSH:
2460 break;
2461 case L1TF_MITIGATION_FLUSH_NOSMT:
2462 case L1TF_MITIGATION_FULL:
2463 cpu_smt_disable(false);
2464 break;
2465 case L1TF_MITIGATION_FULL_FORCE:
2466 cpu_smt_disable(true);
2467 break;
2468 }
2469
2470#if CONFIG_PGTABLE_LEVELS == 2
2471 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2472 return;
2473#endif
2474
2475 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2476 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2477 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2478 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2479 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2480 half_pa);
2481 pr_info("However, doing so will make a part of your RAM unusable.\n");
2482 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2483 return;
2484 }
2485
2486 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2487}
2488
2489static int __init l1tf_cmdline(char *str)
2490{
2491 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2492 return 0;
2493
2494 if (!str)
2495 return -EINVAL;
2496
2497 if (!strcmp(str, "off"))
2498 l1tf_mitigation = L1TF_MITIGATION_OFF;
2499 else if (!strcmp(str, "flush,nowarn"))
2500 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2501 else if (!strcmp(str, "flush"))
2502 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2503 else if (!strcmp(str, "flush,nosmt"))
2504 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2505 else if (!strcmp(str, "full"))
2506 l1tf_mitigation = L1TF_MITIGATION_FULL;
2507 else if (!strcmp(str, "full,force"))
2508 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2509
2510 return 0;
2511}
2512early_param("l1tf", l1tf_cmdline);
2513
2514#undef pr_fmt
2515#define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2516
2517enum srso_mitigation {
2518 SRSO_MITIGATION_NONE,
2519 SRSO_MITIGATION_UCODE_NEEDED,
2520 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2521 SRSO_MITIGATION_MICROCODE,
2522 SRSO_MITIGATION_SAFE_RET,
2523 SRSO_MITIGATION_IBPB,
2524 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2525};
2526
2527enum srso_mitigation_cmd {
2528 SRSO_CMD_OFF,
2529 SRSO_CMD_MICROCODE,
2530 SRSO_CMD_SAFE_RET,
2531 SRSO_CMD_IBPB,
2532 SRSO_CMD_IBPB_ON_VMEXIT,
2533};
2534
2535static const char * const srso_strings[] = {
2536 [SRSO_MITIGATION_NONE] = "Vulnerable",
2537 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2538 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2539 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2540 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2541 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2542 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2543};
2544
2545static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2546static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2547
2548static int __init srso_parse_cmdline(char *str)
2549{
2550 if (!str)
2551 return -EINVAL;
2552
2553 if (!strcmp(str, "off"))
2554 srso_cmd = SRSO_CMD_OFF;
2555 else if (!strcmp(str, "microcode"))
2556 srso_cmd = SRSO_CMD_MICROCODE;
2557 else if (!strcmp(str, "safe-ret"))
2558 srso_cmd = SRSO_CMD_SAFE_RET;
2559 else if (!strcmp(str, "ibpb"))
2560 srso_cmd = SRSO_CMD_IBPB;
2561 else if (!strcmp(str, "ibpb-vmexit"))
2562 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2563 else
2564 pr_err("Ignoring unknown SRSO option (%s).", str);
2565
2566 return 0;
2567}
2568early_param("spec_rstack_overflow", srso_parse_cmdline);
2569
2570#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2571
2572static void __init srso_select_mitigation(void)
2573{
2574 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2575
2576 if (!boot_cpu_has_bug(X86_BUG_SRSO) ||
2577 cpu_mitigations_off() ||
2578 srso_cmd == SRSO_CMD_OFF) {
2579 if (boot_cpu_has(X86_FEATURE_SBPB))
2580 x86_pred_cmd = PRED_CMD_SBPB;
2581 return;
2582 }
2583
2584 if (has_microcode) {
2585 /*
2586 * Zen1/2 with SMT off aren't vulnerable after the right
2587 * IBPB microcode has been applied.
2588 *
2589 * Zen1/2 don't have SBPB, no need to try to enable it here.
2590 */
2591 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2592 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2593 return;
2594 }
2595
2596 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2597 srso_mitigation = SRSO_MITIGATION_IBPB;
2598 goto out;
2599 }
2600 } else {
2601 pr_warn("IBPB-extending microcode not applied!\n");
2602 pr_warn(SRSO_NOTICE);
2603
2604 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2605 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2606 }
2607
2608 switch (srso_cmd) {
2609 case SRSO_CMD_MICROCODE:
2610 if (has_microcode) {
2611 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2612 pr_warn(SRSO_NOTICE);
2613 }
2614 break;
2615
2616 case SRSO_CMD_SAFE_RET:
2617 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2618 /*
2619 * Enable the return thunk for generated code
2620 * like ftrace, static_call, etc.
2621 */
2622 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2623 setup_force_cpu_cap(X86_FEATURE_UNRET);
2624
2625 if (boot_cpu_data.x86 == 0x19) {
2626 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2627 x86_return_thunk = srso_alias_return_thunk;
2628 } else {
2629 setup_force_cpu_cap(X86_FEATURE_SRSO);
2630 x86_return_thunk = srso_return_thunk;
2631 }
2632 if (has_microcode)
2633 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2634 else
2635 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2636 } else {
2637 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2638 }
2639 break;
2640
2641 case SRSO_CMD_IBPB:
2642 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2643 if (has_microcode) {
2644 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2645 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2646 srso_mitigation = SRSO_MITIGATION_IBPB;
2647
2648 /*
2649 * IBPB on entry already obviates the need for
2650 * software-based untraining so clear those in case some
2651 * other mitigation like Retbleed has selected them.
2652 */
2653 setup_clear_cpu_cap(X86_FEATURE_UNRET);
2654 setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2655
2656 /*
2657 * There is no need for RSB filling: entry_ibpb() ensures
2658 * all predictions, including the RSB, are invalidated,
2659 * regardless of IBPB implementation.
2660 */
2661 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2662 }
2663 } else {
2664 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2665 }
2666 break;
2667
2668 case SRSO_CMD_IBPB_ON_VMEXIT:
2669 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2670 if (has_microcode) {
2671 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2672 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2673
2674 /*
2675 * There is no need for RSB filling: entry_ibpb() ensures
2676 * all predictions, including the RSB, are invalidated,
2677 * regardless of IBPB implementation.
2678 */
2679 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2680 }
2681 } else {
2682 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2683 }
2684 break;
2685 default:
2686 break;
2687 }
2688
2689out:
2690 pr_info("%s\n", srso_strings[srso_mitigation]);
2691}
2692
2693#undef pr_fmt
2694#define pr_fmt(fmt) fmt
2695
2696#ifdef CONFIG_SYSFS
2697
2698#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2699
2700#if IS_ENABLED(CONFIG_KVM_INTEL)
2701static const char * const l1tf_vmx_states[] = {
2702 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2703 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2704 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2705 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2706 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2707 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2708};
2709
2710static ssize_t l1tf_show_state(char *buf)
2711{
2712 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2713 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2714
2715 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2716 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2717 sched_smt_active())) {
2718 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2719 l1tf_vmx_states[l1tf_vmx_mitigation]);
2720 }
2721
2722 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2723 l1tf_vmx_states[l1tf_vmx_mitigation],
2724 sched_smt_active() ? "vulnerable" : "disabled");
2725}
2726
2727static ssize_t itlb_multihit_show_state(char *buf)
2728{
2729 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2730 !boot_cpu_has(X86_FEATURE_VMX))
2731 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2732 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2733 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2734 else if (itlb_multihit_kvm_mitigation)
2735 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2736 else
2737 return sysfs_emit(buf, "KVM: Vulnerable\n");
2738}
2739#else
2740static ssize_t l1tf_show_state(char *buf)
2741{
2742 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2743}
2744
2745static ssize_t itlb_multihit_show_state(char *buf)
2746{
2747 return sysfs_emit(buf, "Processor vulnerable\n");
2748}
2749#endif
2750
2751static ssize_t mds_show_state(char *buf)
2752{
2753 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2754 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2755 mds_strings[mds_mitigation]);
2756 }
2757
2758 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2759 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2760 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2761 sched_smt_active() ? "mitigated" : "disabled"));
2762 }
2763
2764 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2765 sched_smt_active() ? "vulnerable" : "disabled");
2766}
2767
2768static ssize_t tsx_async_abort_show_state(char *buf)
2769{
2770 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2771 (taa_mitigation == TAA_MITIGATION_OFF))
2772 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2773
2774 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2775 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2776 taa_strings[taa_mitigation]);
2777 }
2778
2779 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2780 sched_smt_active() ? "vulnerable" : "disabled");
2781}
2782
2783static ssize_t mmio_stale_data_show_state(char *buf)
2784{
2785 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2786 return sysfs_emit(buf, "Unknown: No mitigations\n");
2787
2788 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2789 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2790
2791 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2792 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2793 mmio_strings[mmio_mitigation]);
2794 }
2795
2796 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2797 sched_smt_active() ? "vulnerable" : "disabled");
2798}
2799
2800static ssize_t rfds_show_state(char *buf)
2801{
2802 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2803}
2804
2805static char *stibp_state(void)
2806{
2807 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2808 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2809 return "";
2810
2811 switch (spectre_v2_user_stibp) {
2812 case SPECTRE_V2_USER_NONE:
2813 return "; STIBP: disabled";
2814 case SPECTRE_V2_USER_STRICT:
2815 return "; STIBP: forced";
2816 case SPECTRE_V2_USER_STRICT_PREFERRED:
2817 return "; STIBP: always-on";
2818 case SPECTRE_V2_USER_PRCTL:
2819 case SPECTRE_V2_USER_SECCOMP:
2820 if (static_key_enabled(&switch_to_cond_stibp))
2821 return "; STIBP: conditional";
2822 }
2823 return "";
2824}
2825
2826static char *ibpb_state(void)
2827{
2828 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2829 if (static_key_enabled(&switch_mm_always_ibpb))
2830 return "; IBPB: always-on";
2831 if (static_key_enabled(&switch_mm_cond_ibpb))
2832 return "; IBPB: conditional";
2833 return "; IBPB: disabled";
2834 }
2835 return "";
2836}
2837
2838static char *pbrsb_eibrs_state(void)
2839{
2840 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2841 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2842 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2843 return "; PBRSB-eIBRS: SW sequence";
2844 else
2845 return "; PBRSB-eIBRS: Vulnerable";
2846 } else {
2847 return "; PBRSB-eIBRS: Not affected";
2848 }
2849}
2850
2851static const char *spectre_bhi_state(void)
2852{
2853 if (!boot_cpu_has_bug(X86_BUG_BHI))
2854 return "; BHI: Not affected";
2855 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2856 return "; BHI: BHI_DIS_S";
2857 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2858 return "; BHI: SW loop, KVM: SW loop";
2859 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2860 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2861 rrsba_disabled)
2862 return "; BHI: Retpoline";
2863 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2864 return "; BHI: Vulnerable, KVM: SW loop";
2865
2866 return "; BHI: Vulnerable";
2867}
2868
2869static ssize_t spectre_v2_show_state(char *buf)
2870{
2871 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2872 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2873
2874 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2875 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2876
2877 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2878 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2879 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2880
2881 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2882 spectre_v2_strings[spectre_v2_enabled],
2883 ibpb_state(),
2884 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2885 stibp_state(),
2886 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2887 pbrsb_eibrs_state(),
2888 spectre_bhi_state(),
2889 /* this should always be at the end */
2890 spectre_v2_module_string());
2891}
2892
2893static ssize_t srbds_show_state(char *buf)
2894{
2895 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2896}
2897
2898static ssize_t retbleed_show_state(char *buf)
2899{
2900 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2901 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2902 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2903 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2904 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2905
2906 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2907 !sched_smt_active() ? "disabled" :
2908 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2909 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2910 "enabled with STIBP protection" : "vulnerable");
2911 }
2912
2913 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2914}
2915
2916static ssize_t srso_show_state(char *buf)
2917{
2918 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2919 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2920
2921 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2922}
2923
2924static ssize_t gds_show_state(char *buf)
2925{
2926 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2927}
2928
2929static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2930 char *buf, unsigned int bug)
2931{
2932 if (!boot_cpu_has_bug(bug))
2933 return sysfs_emit(buf, "Not affected\n");
2934
2935 switch (bug) {
2936 case X86_BUG_CPU_MELTDOWN:
2937 if (boot_cpu_has(X86_FEATURE_PTI))
2938 return sysfs_emit(buf, "Mitigation: PTI\n");
2939
2940 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2941 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2942
2943 break;
2944
2945 case X86_BUG_SPECTRE_V1:
2946 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2947
2948 case X86_BUG_SPECTRE_V2:
2949 return spectre_v2_show_state(buf);
2950
2951 case X86_BUG_SPEC_STORE_BYPASS:
2952 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2953
2954 case X86_BUG_L1TF:
2955 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2956 return l1tf_show_state(buf);
2957 break;
2958
2959 case X86_BUG_MDS:
2960 return mds_show_state(buf);
2961
2962 case X86_BUG_TAA:
2963 return tsx_async_abort_show_state(buf);
2964
2965 case X86_BUG_ITLB_MULTIHIT:
2966 return itlb_multihit_show_state(buf);
2967
2968 case X86_BUG_SRBDS:
2969 return srbds_show_state(buf);
2970
2971 case X86_BUG_MMIO_STALE_DATA:
2972 case X86_BUG_MMIO_UNKNOWN:
2973 return mmio_stale_data_show_state(buf);
2974
2975 case X86_BUG_RETBLEED:
2976 return retbleed_show_state(buf);
2977
2978 case X86_BUG_SRSO:
2979 return srso_show_state(buf);
2980
2981 case X86_BUG_GDS:
2982 return gds_show_state(buf);
2983
2984 case X86_BUG_RFDS:
2985 return rfds_show_state(buf);
2986
2987 default:
2988 break;
2989 }
2990
2991 return sysfs_emit(buf, "Vulnerable\n");
2992}
2993
2994ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2995{
2996 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2997}
2998
2999ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3000{
3001 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3002}
3003
3004ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3005{
3006 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3007}
3008
3009ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3010{
3011 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3012}
3013
3014ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3015{
3016 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3017}
3018
3019ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3020{
3021 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3022}
3023
3024ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3025{
3026 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3027}
3028
3029ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3030{
3031 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3032}
3033
3034ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3035{
3036 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3037}
3038
3039ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3040{
3041 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3042 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3043 else
3044 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3045}
3046
3047ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3048{
3049 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3050}
3051
3052ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3053{
3054 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3055}
3056
3057ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3058{
3059 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3060}
3061
3062ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3063{
3064 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3065}
3066#endif
3067
3068void __warn_thunk(void)
3069{
3070 WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3071}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/cpu.h>
13#include <linux/module.h>
14#include <linux/nospec.h>
15#include <linux/prctl.h>
16#include <linux/sched/smt.h>
17#include <linux/pgtable.h>
18#include <linux/bpf.h>
19
20#include <asm/spec-ctrl.h>
21#include <asm/cmdline.h>
22#include <asm/bugs.h>
23#include <asm/processor.h>
24#include <asm/processor-flags.h>
25#include <asm/fpu/api.h>
26#include <asm/msr.h>
27#include <asm/vmx.h>
28#include <asm/paravirt.h>
29#include <asm/intel-family.h>
30#include <asm/e820/api.h>
31#include <asm/hypervisor.h>
32#include <asm/tlbflush.h>
33#include <asm/cpu.h>
34
35#include "cpu.h"
36
37static void __init spectre_v1_select_mitigation(void);
38static void __init spectre_v2_select_mitigation(void);
39static void __init retbleed_select_mitigation(void);
40static void __init spectre_v2_user_select_mitigation(void);
41static void __init ssb_select_mitigation(void);
42static void __init l1tf_select_mitigation(void);
43static void __init mds_select_mitigation(void);
44static void __init md_clear_update_mitigation(void);
45static void __init md_clear_select_mitigation(void);
46static void __init taa_select_mitigation(void);
47static void __init mmio_select_mitigation(void);
48static void __init srbds_select_mitigation(void);
49static void __init l1d_flush_select_mitigation(void);
50static void __init srso_select_mitigation(void);
51static void __init gds_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64static DEFINE_MUTEX(spec_ctrl_mutex);
65
66void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
67
68/* Update SPEC_CTRL MSR and its cached copy unconditionally */
69static void update_spec_ctrl(u64 val)
70{
71 this_cpu_write(x86_spec_ctrl_current, val);
72 wrmsrl(MSR_IA32_SPEC_CTRL, val);
73}
74
75/*
76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
78 */
79void update_spec_ctrl_cond(u64 val)
80{
81 if (this_cpu_read(x86_spec_ctrl_current) == val)
82 return;
83
84 this_cpu_write(x86_spec_ctrl_current, val);
85
86 /*
87 * When KERNEL_IBRS this MSR is written on return-to-user, unless
88 * forced the update can be delayed until that time.
89 */
90 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
91 wrmsrl(MSR_IA32_SPEC_CTRL, val);
92}
93
94noinstr u64 spec_ctrl_current(void)
95{
96 return this_cpu_read(x86_spec_ctrl_current);
97}
98EXPORT_SYMBOL_GPL(spec_ctrl_current);
99
100/*
101 * AMD specific MSR info for Speculative Store Bypass control.
102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
103 */
104u64 __ro_after_init x86_amd_ls_cfg_base;
105u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
106
107/* Control conditional STIBP in switch_to() */
108DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
109/* Control conditional IBPB in switch_mm() */
110DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
111/* Control unconditional IBPB in switch_mm() */
112DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
113
114/* Control MDS CPU buffer clear before idling (halt, mwait) */
115DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
116EXPORT_SYMBOL_GPL(mds_idle_clear);
117
118/*
119 * Controls whether l1d flush based mitigations are enabled,
120 * based on hw features and admin setting via boot parameter
121 * defaults to false
122 */
123DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
124
125/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
126DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
127EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
128
129void __init cpu_select_mitigations(void)
130{
131 /*
132 * Read the SPEC_CTRL MSR to account for reserved bits which may
133 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
134 * init code as it is not enumerated and depends on the family.
135 */
136 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
137 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
138
139 /*
140 * Previously running kernel (kexec), may have some controls
141 * turned ON. Clear them and let the mitigations setup below
142 * rediscover them based on configuration.
143 */
144 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
145 }
146
147 /* Select the proper CPU mitigations before patching alternatives: */
148 spectre_v1_select_mitigation();
149 spectre_v2_select_mitigation();
150 /*
151 * retbleed_select_mitigation() relies on the state set by
152 * spectre_v2_select_mitigation(); specifically it wants to know about
153 * spectre_v2=ibrs.
154 */
155 retbleed_select_mitigation();
156 /*
157 * spectre_v2_user_select_mitigation() relies on the state set by
158 * retbleed_select_mitigation(); specifically the STIBP selection is
159 * forced for UNRET or IBPB.
160 */
161 spectre_v2_user_select_mitigation();
162 ssb_select_mitigation();
163 l1tf_select_mitigation();
164 md_clear_select_mitigation();
165 srbds_select_mitigation();
166 l1d_flush_select_mitigation();
167
168 /*
169 * srso_select_mitigation() depends and must run after
170 * retbleed_select_mitigation().
171 */
172 srso_select_mitigation();
173 gds_select_mitigation();
174}
175
176/*
177 * NOTE: This function is *only* called for SVM, since Intel uses
178 * MSR_IA32_SPEC_CTRL for SSBD.
179 */
180void
181x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
182{
183 u64 guestval, hostval;
184 struct thread_info *ti = current_thread_info();
185
186 /*
187 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
188 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
189 */
190 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
191 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
192 return;
193
194 /*
195 * If the host has SSBD mitigation enabled, force it in the host's
196 * virtual MSR value. If its not permanently enabled, evaluate
197 * current's TIF_SSBD thread flag.
198 */
199 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
200 hostval = SPEC_CTRL_SSBD;
201 else
202 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
203
204 /* Sanitize the guest value */
205 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
206
207 if (hostval != guestval) {
208 unsigned long tif;
209
210 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
211 ssbd_spec_ctrl_to_tif(hostval);
212
213 speculation_ctrl_update(tif);
214 }
215}
216EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
217
218static void x86_amd_ssb_disable(void)
219{
220 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
221
222 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
223 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
224 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
225 wrmsrl(MSR_AMD64_LS_CFG, msrval);
226}
227
228#undef pr_fmt
229#define pr_fmt(fmt) "MDS: " fmt
230
231/* Default mitigation for MDS-affected CPUs */
232static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
233static bool mds_nosmt __ro_after_init = false;
234
235static const char * const mds_strings[] = {
236 [MDS_MITIGATION_OFF] = "Vulnerable",
237 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
238 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
239};
240
241static void __init mds_select_mitigation(void)
242{
243 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
244 mds_mitigation = MDS_MITIGATION_OFF;
245 return;
246 }
247
248 if (mds_mitigation == MDS_MITIGATION_FULL) {
249 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
250 mds_mitigation = MDS_MITIGATION_VMWERV;
251
252 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
253
254 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
255 (mds_nosmt || cpu_mitigations_auto_nosmt()))
256 cpu_smt_disable(false);
257 }
258}
259
260static int __init mds_cmdline(char *str)
261{
262 if (!boot_cpu_has_bug(X86_BUG_MDS))
263 return 0;
264
265 if (!str)
266 return -EINVAL;
267
268 if (!strcmp(str, "off"))
269 mds_mitigation = MDS_MITIGATION_OFF;
270 else if (!strcmp(str, "full"))
271 mds_mitigation = MDS_MITIGATION_FULL;
272 else if (!strcmp(str, "full,nosmt")) {
273 mds_mitigation = MDS_MITIGATION_FULL;
274 mds_nosmt = true;
275 }
276
277 return 0;
278}
279early_param("mds", mds_cmdline);
280
281#undef pr_fmt
282#define pr_fmt(fmt) "TAA: " fmt
283
284enum taa_mitigations {
285 TAA_MITIGATION_OFF,
286 TAA_MITIGATION_UCODE_NEEDED,
287 TAA_MITIGATION_VERW,
288 TAA_MITIGATION_TSX_DISABLED,
289};
290
291/* Default mitigation for TAA-affected CPUs */
292static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
293static bool taa_nosmt __ro_after_init;
294
295static const char * const taa_strings[] = {
296 [TAA_MITIGATION_OFF] = "Vulnerable",
297 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
298 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
299 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
300};
301
302static void __init taa_select_mitigation(void)
303{
304 u64 ia32_cap;
305
306 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
307 taa_mitigation = TAA_MITIGATION_OFF;
308 return;
309 }
310
311 /* TSX previously disabled by tsx=off */
312 if (!boot_cpu_has(X86_FEATURE_RTM)) {
313 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
314 return;
315 }
316
317 if (cpu_mitigations_off()) {
318 taa_mitigation = TAA_MITIGATION_OFF;
319 return;
320 }
321
322 /*
323 * TAA mitigation via VERW is turned off if both
324 * tsx_async_abort=off and mds=off are specified.
325 */
326 if (taa_mitigation == TAA_MITIGATION_OFF &&
327 mds_mitigation == MDS_MITIGATION_OFF)
328 return;
329
330 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
331 taa_mitigation = TAA_MITIGATION_VERW;
332 else
333 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
334
335 /*
336 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
337 * A microcode update fixes this behavior to clear CPU buffers. It also
338 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
339 * ARCH_CAP_TSX_CTRL_MSR bit.
340 *
341 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
342 * update is required.
343 */
344 ia32_cap = x86_read_arch_cap_msr();
345 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
346 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
347 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
348
349 /*
350 * TSX is enabled, select alternate mitigation for TAA which is
351 * the same as MDS. Enable MDS static branch to clear CPU buffers.
352 *
353 * For guests that can't determine whether the correct microcode is
354 * present on host, enable the mitigation for UCODE_NEEDED as well.
355 */
356 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
357
358 if (taa_nosmt || cpu_mitigations_auto_nosmt())
359 cpu_smt_disable(false);
360}
361
362static int __init tsx_async_abort_parse_cmdline(char *str)
363{
364 if (!boot_cpu_has_bug(X86_BUG_TAA))
365 return 0;
366
367 if (!str)
368 return -EINVAL;
369
370 if (!strcmp(str, "off")) {
371 taa_mitigation = TAA_MITIGATION_OFF;
372 } else if (!strcmp(str, "full")) {
373 taa_mitigation = TAA_MITIGATION_VERW;
374 } else if (!strcmp(str, "full,nosmt")) {
375 taa_mitigation = TAA_MITIGATION_VERW;
376 taa_nosmt = true;
377 }
378
379 return 0;
380}
381early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
382
383#undef pr_fmt
384#define pr_fmt(fmt) "MMIO Stale Data: " fmt
385
386enum mmio_mitigations {
387 MMIO_MITIGATION_OFF,
388 MMIO_MITIGATION_UCODE_NEEDED,
389 MMIO_MITIGATION_VERW,
390};
391
392/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
393static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
394static bool mmio_nosmt __ro_after_init = false;
395
396static const char * const mmio_strings[] = {
397 [MMIO_MITIGATION_OFF] = "Vulnerable",
398 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
399 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
400};
401
402static void __init mmio_select_mitigation(void)
403{
404 u64 ia32_cap;
405
406 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
407 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
408 cpu_mitigations_off()) {
409 mmio_mitigation = MMIO_MITIGATION_OFF;
410 return;
411 }
412
413 if (mmio_mitigation == MMIO_MITIGATION_OFF)
414 return;
415
416 ia32_cap = x86_read_arch_cap_msr();
417
418 /*
419 * Enable CPU buffer clear mitigation for host and VMM, if also affected
420 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
421 */
422 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
423 boot_cpu_has(X86_FEATURE_RTM)))
424 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
425 else
426 static_branch_enable(&mmio_stale_data_clear);
427
428 /*
429 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
430 * be propagated to uncore buffers, clearing the Fill buffers on idle
431 * is required irrespective of SMT state.
432 */
433 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
434 static_branch_enable(&mds_idle_clear);
435
436 /*
437 * Check if the system has the right microcode.
438 *
439 * CPU Fill buffer clear mitigation is enumerated by either an explicit
440 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
441 * affected systems.
442 */
443 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
444 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
445 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
446 !(ia32_cap & ARCH_CAP_MDS_NO)))
447 mmio_mitigation = MMIO_MITIGATION_VERW;
448 else
449 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
450
451 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
452 cpu_smt_disable(false);
453}
454
455static int __init mmio_stale_data_parse_cmdline(char *str)
456{
457 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
458 return 0;
459
460 if (!str)
461 return -EINVAL;
462
463 if (!strcmp(str, "off")) {
464 mmio_mitigation = MMIO_MITIGATION_OFF;
465 } else if (!strcmp(str, "full")) {
466 mmio_mitigation = MMIO_MITIGATION_VERW;
467 } else if (!strcmp(str, "full,nosmt")) {
468 mmio_mitigation = MMIO_MITIGATION_VERW;
469 mmio_nosmt = true;
470 }
471
472 return 0;
473}
474early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
475
476#undef pr_fmt
477#define pr_fmt(fmt) "" fmt
478
479static void __init md_clear_update_mitigation(void)
480{
481 if (cpu_mitigations_off())
482 return;
483
484 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
485 goto out;
486
487 /*
488 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
489 * Stale Data mitigation, if necessary.
490 */
491 if (mds_mitigation == MDS_MITIGATION_OFF &&
492 boot_cpu_has_bug(X86_BUG_MDS)) {
493 mds_mitigation = MDS_MITIGATION_FULL;
494 mds_select_mitigation();
495 }
496 if (taa_mitigation == TAA_MITIGATION_OFF &&
497 boot_cpu_has_bug(X86_BUG_TAA)) {
498 taa_mitigation = TAA_MITIGATION_VERW;
499 taa_select_mitigation();
500 }
501 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
502 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
503 mmio_mitigation = MMIO_MITIGATION_VERW;
504 mmio_select_mitigation();
505 }
506out:
507 if (boot_cpu_has_bug(X86_BUG_MDS))
508 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
509 if (boot_cpu_has_bug(X86_BUG_TAA))
510 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
511 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
512 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
513 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
514 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
515}
516
517static void __init md_clear_select_mitigation(void)
518{
519 mds_select_mitigation();
520 taa_select_mitigation();
521 mmio_select_mitigation();
522
523 /*
524 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
525 * and print their mitigation after MDS, TAA and MMIO Stale Data
526 * mitigation selection is done.
527 */
528 md_clear_update_mitigation();
529}
530
531#undef pr_fmt
532#define pr_fmt(fmt) "SRBDS: " fmt
533
534enum srbds_mitigations {
535 SRBDS_MITIGATION_OFF,
536 SRBDS_MITIGATION_UCODE_NEEDED,
537 SRBDS_MITIGATION_FULL,
538 SRBDS_MITIGATION_TSX_OFF,
539 SRBDS_MITIGATION_HYPERVISOR,
540};
541
542static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
543
544static const char * const srbds_strings[] = {
545 [SRBDS_MITIGATION_OFF] = "Vulnerable",
546 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
547 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
548 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
549 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
550};
551
552static bool srbds_off;
553
554void update_srbds_msr(void)
555{
556 u64 mcu_ctrl;
557
558 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
559 return;
560
561 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
562 return;
563
564 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
565 return;
566
567 /*
568 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
569 * being disabled and it hasn't received the SRBDS MSR microcode.
570 */
571 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
572 return;
573
574 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
575
576 switch (srbds_mitigation) {
577 case SRBDS_MITIGATION_OFF:
578 case SRBDS_MITIGATION_TSX_OFF:
579 mcu_ctrl |= RNGDS_MITG_DIS;
580 break;
581 case SRBDS_MITIGATION_FULL:
582 mcu_ctrl &= ~RNGDS_MITG_DIS;
583 break;
584 default:
585 break;
586 }
587
588 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
589}
590
591static void __init srbds_select_mitigation(void)
592{
593 u64 ia32_cap;
594
595 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
596 return;
597
598 /*
599 * Check to see if this is one of the MDS_NO systems supporting TSX that
600 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
601 * by Processor MMIO Stale Data vulnerability.
602 */
603 ia32_cap = x86_read_arch_cap_msr();
604 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
605 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
606 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
607 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
608 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
609 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
610 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
611 else if (cpu_mitigations_off() || srbds_off)
612 srbds_mitigation = SRBDS_MITIGATION_OFF;
613
614 update_srbds_msr();
615 pr_info("%s\n", srbds_strings[srbds_mitigation]);
616}
617
618static int __init srbds_parse_cmdline(char *str)
619{
620 if (!str)
621 return -EINVAL;
622
623 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
624 return 0;
625
626 srbds_off = !strcmp(str, "off");
627 return 0;
628}
629early_param("srbds", srbds_parse_cmdline);
630
631#undef pr_fmt
632#define pr_fmt(fmt) "L1D Flush : " fmt
633
634enum l1d_flush_mitigations {
635 L1D_FLUSH_OFF = 0,
636 L1D_FLUSH_ON,
637};
638
639static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
640
641static void __init l1d_flush_select_mitigation(void)
642{
643 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
644 return;
645
646 static_branch_enable(&switch_mm_cond_l1d_flush);
647 pr_info("Conditional flush on switch_mm() enabled\n");
648}
649
650static int __init l1d_flush_parse_cmdline(char *str)
651{
652 if (!strcmp(str, "on"))
653 l1d_flush_mitigation = L1D_FLUSH_ON;
654
655 return 0;
656}
657early_param("l1d_flush", l1d_flush_parse_cmdline);
658
659#undef pr_fmt
660#define pr_fmt(fmt) "GDS: " fmt
661
662enum gds_mitigations {
663 GDS_MITIGATION_OFF,
664 GDS_MITIGATION_UCODE_NEEDED,
665 GDS_MITIGATION_FORCE,
666 GDS_MITIGATION_FULL,
667 GDS_MITIGATION_FULL_LOCKED,
668 GDS_MITIGATION_HYPERVISOR,
669};
670
671#if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
672static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
673#else
674static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
675#endif
676
677static const char * const gds_strings[] = {
678 [GDS_MITIGATION_OFF] = "Vulnerable",
679 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
680 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
681 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
682 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
683 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
684};
685
686bool gds_ucode_mitigated(void)
687{
688 return (gds_mitigation == GDS_MITIGATION_FULL ||
689 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
690}
691EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
692
693void update_gds_msr(void)
694{
695 u64 mcu_ctrl_after;
696 u64 mcu_ctrl;
697
698 switch (gds_mitigation) {
699 case GDS_MITIGATION_OFF:
700 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
701 mcu_ctrl |= GDS_MITG_DIS;
702 break;
703 case GDS_MITIGATION_FULL_LOCKED:
704 /*
705 * The LOCKED state comes from the boot CPU. APs might not have
706 * the same state. Make sure the mitigation is enabled on all
707 * CPUs.
708 */
709 case GDS_MITIGATION_FULL:
710 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
711 mcu_ctrl &= ~GDS_MITG_DIS;
712 break;
713 case GDS_MITIGATION_FORCE:
714 case GDS_MITIGATION_UCODE_NEEDED:
715 case GDS_MITIGATION_HYPERVISOR:
716 return;
717 }
718
719 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
720
721 /*
722 * Check to make sure that the WRMSR value was not ignored. Writes to
723 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
724 * processor was not.
725 */
726 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
727 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
728}
729
730static void __init gds_select_mitigation(void)
731{
732 u64 mcu_ctrl;
733
734 if (!boot_cpu_has_bug(X86_BUG_GDS))
735 return;
736
737 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
738 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
739 goto out;
740 }
741
742 if (cpu_mitigations_off())
743 gds_mitigation = GDS_MITIGATION_OFF;
744 /* Will verify below that mitigation _can_ be disabled */
745
746 /* No microcode */
747 if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
748 if (gds_mitigation == GDS_MITIGATION_FORCE) {
749 /*
750 * This only needs to be done on the boot CPU so do it
751 * here rather than in update_gds_msr()
752 */
753 setup_clear_cpu_cap(X86_FEATURE_AVX);
754 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
755 } else {
756 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
757 }
758 goto out;
759 }
760
761 /* Microcode has mitigation, use it */
762 if (gds_mitigation == GDS_MITIGATION_FORCE)
763 gds_mitigation = GDS_MITIGATION_FULL;
764
765 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
766 if (mcu_ctrl & GDS_MITG_LOCKED) {
767 if (gds_mitigation == GDS_MITIGATION_OFF)
768 pr_warn("Mitigation locked. Disable failed.\n");
769
770 /*
771 * The mitigation is selected from the boot CPU. All other CPUs
772 * _should_ have the same state. If the boot CPU isn't locked
773 * but others are then update_gds_msr() will WARN() of the state
774 * mismatch. If the boot CPU is locked update_gds_msr() will
775 * ensure the other CPUs have the mitigation enabled.
776 */
777 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
778 }
779
780 update_gds_msr();
781out:
782 pr_info("%s\n", gds_strings[gds_mitigation]);
783}
784
785static int __init gds_parse_cmdline(char *str)
786{
787 if (!str)
788 return -EINVAL;
789
790 if (!boot_cpu_has_bug(X86_BUG_GDS))
791 return 0;
792
793 if (!strcmp(str, "off"))
794 gds_mitigation = GDS_MITIGATION_OFF;
795 else if (!strcmp(str, "force"))
796 gds_mitigation = GDS_MITIGATION_FORCE;
797
798 return 0;
799}
800early_param("gather_data_sampling", gds_parse_cmdline);
801
802#undef pr_fmt
803#define pr_fmt(fmt) "Spectre V1 : " fmt
804
805enum spectre_v1_mitigation {
806 SPECTRE_V1_MITIGATION_NONE,
807 SPECTRE_V1_MITIGATION_AUTO,
808};
809
810static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
811 SPECTRE_V1_MITIGATION_AUTO;
812
813static const char * const spectre_v1_strings[] = {
814 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
815 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
816};
817
818/*
819 * Does SMAP provide full mitigation against speculative kernel access to
820 * userspace?
821 */
822static bool smap_works_speculatively(void)
823{
824 if (!boot_cpu_has(X86_FEATURE_SMAP))
825 return false;
826
827 /*
828 * On CPUs which are vulnerable to Meltdown, SMAP does not
829 * prevent speculative access to user data in the L1 cache.
830 * Consider SMAP to be non-functional as a mitigation on these
831 * CPUs.
832 */
833 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
834 return false;
835
836 return true;
837}
838
839static void __init spectre_v1_select_mitigation(void)
840{
841 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
842 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
843 return;
844 }
845
846 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
847 /*
848 * With Spectre v1, a user can speculatively control either
849 * path of a conditional swapgs with a user-controlled GS
850 * value. The mitigation is to add lfences to both code paths.
851 *
852 * If FSGSBASE is enabled, the user can put a kernel address in
853 * GS, in which case SMAP provides no protection.
854 *
855 * If FSGSBASE is disabled, the user can only put a user space
856 * address in GS. That makes an attack harder, but still
857 * possible if there's no SMAP protection.
858 */
859 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
860 !smap_works_speculatively()) {
861 /*
862 * Mitigation can be provided from SWAPGS itself or
863 * PTI as the CR3 write in the Meltdown mitigation
864 * is serializing.
865 *
866 * If neither is there, mitigate with an LFENCE to
867 * stop speculation through swapgs.
868 */
869 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
870 !boot_cpu_has(X86_FEATURE_PTI))
871 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
872
873 /*
874 * Enable lfences in the kernel entry (non-swapgs)
875 * paths, to prevent user entry from speculatively
876 * skipping swapgs.
877 */
878 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
879 }
880 }
881
882 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
883}
884
885static int __init nospectre_v1_cmdline(char *str)
886{
887 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
888 return 0;
889}
890early_param("nospectre_v1", nospectre_v1_cmdline);
891
892enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
893
894#undef pr_fmt
895#define pr_fmt(fmt) "RETBleed: " fmt
896
897enum retbleed_mitigation {
898 RETBLEED_MITIGATION_NONE,
899 RETBLEED_MITIGATION_UNRET,
900 RETBLEED_MITIGATION_IBPB,
901 RETBLEED_MITIGATION_IBRS,
902 RETBLEED_MITIGATION_EIBRS,
903 RETBLEED_MITIGATION_STUFF,
904};
905
906enum retbleed_mitigation_cmd {
907 RETBLEED_CMD_OFF,
908 RETBLEED_CMD_AUTO,
909 RETBLEED_CMD_UNRET,
910 RETBLEED_CMD_IBPB,
911 RETBLEED_CMD_STUFF,
912};
913
914static const char * const retbleed_strings[] = {
915 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
916 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
917 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
918 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
919 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
920 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
921};
922
923static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
924 RETBLEED_MITIGATION_NONE;
925static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
926 RETBLEED_CMD_AUTO;
927
928static int __ro_after_init retbleed_nosmt = false;
929
930static int __init retbleed_parse_cmdline(char *str)
931{
932 if (!str)
933 return -EINVAL;
934
935 while (str) {
936 char *next = strchr(str, ',');
937 if (next) {
938 *next = 0;
939 next++;
940 }
941
942 if (!strcmp(str, "off")) {
943 retbleed_cmd = RETBLEED_CMD_OFF;
944 } else if (!strcmp(str, "auto")) {
945 retbleed_cmd = RETBLEED_CMD_AUTO;
946 } else if (!strcmp(str, "unret")) {
947 retbleed_cmd = RETBLEED_CMD_UNRET;
948 } else if (!strcmp(str, "ibpb")) {
949 retbleed_cmd = RETBLEED_CMD_IBPB;
950 } else if (!strcmp(str, "stuff")) {
951 retbleed_cmd = RETBLEED_CMD_STUFF;
952 } else if (!strcmp(str, "nosmt")) {
953 retbleed_nosmt = true;
954 } else if (!strcmp(str, "force")) {
955 setup_force_cpu_bug(X86_BUG_RETBLEED);
956 } else {
957 pr_err("Ignoring unknown retbleed option (%s).", str);
958 }
959
960 str = next;
961 }
962
963 return 0;
964}
965early_param("retbleed", retbleed_parse_cmdline);
966
967#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
968#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
969
970static void __init retbleed_select_mitigation(void)
971{
972 bool mitigate_smt = false;
973
974 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
975 return;
976
977 switch (retbleed_cmd) {
978 case RETBLEED_CMD_OFF:
979 return;
980
981 case RETBLEED_CMD_UNRET:
982 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
983 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
984 } else {
985 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
986 goto do_cmd_auto;
987 }
988 break;
989
990 case RETBLEED_CMD_IBPB:
991 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
992 pr_err("WARNING: CPU does not support IBPB.\n");
993 goto do_cmd_auto;
994 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
995 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
996 } else {
997 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
998 goto do_cmd_auto;
999 }
1000 break;
1001
1002 case RETBLEED_CMD_STUFF:
1003 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1004 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1005 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1006
1007 } else {
1008 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1009 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1010 else
1011 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1012
1013 goto do_cmd_auto;
1014 }
1015 break;
1016
1017do_cmd_auto:
1018 case RETBLEED_CMD_AUTO:
1019 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1020 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1021 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1022 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1023 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1024 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1025 }
1026
1027 /*
1028 * The Intel mitigation (IBRS or eIBRS) was already selected in
1029 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1030 * be set accordingly below.
1031 */
1032
1033 break;
1034 }
1035
1036 switch (retbleed_mitigation) {
1037 case RETBLEED_MITIGATION_UNRET:
1038 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1039 setup_force_cpu_cap(X86_FEATURE_UNRET);
1040
1041 x86_return_thunk = retbleed_return_thunk;
1042
1043 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1044 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1045 pr_err(RETBLEED_UNTRAIN_MSG);
1046
1047 mitigate_smt = true;
1048 break;
1049
1050 case RETBLEED_MITIGATION_IBPB:
1051 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1052 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1053 mitigate_smt = true;
1054 break;
1055
1056 case RETBLEED_MITIGATION_STUFF:
1057 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1058 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1059
1060 x86_return_thunk = call_depth_return_thunk;
1061 break;
1062
1063 default:
1064 break;
1065 }
1066
1067 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1068 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1069 cpu_smt_disable(false);
1070
1071 /*
1072 * Let IBRS trump all on Intel without affecting the effects of the
1073 * retbleed= cmdline option except for call depth based stuffing
1074 */
1075 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1076 switch (spectre_v2_enabled) {
1077 case SPECTRE_V2_IBRS:
1078 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1079 break;
1080 case SPECTRE_V2_EIBRS:
1081 case SPECTRE_V2_EIBRS_RETPOLINE:
1082 case SPECTRE_V2_EIBRS_LFENCE:
1083 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1084 break;
1085 default:
1086 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1087 pr_err(RETBLEED_INTEL_MSG);
1088 }
1089 }
1090
1091 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1092}
1093
1094#undef pr_fmt
1095#define pr_fmt(fmt) "Spectre V2 : " fmt
1096
1097static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1098 SPECTRE_V2_USER_NONE;
1099static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1100 SPECTRE_V2_USER_NONE;
1101
1102#ifdef CONFIG_RETPOLINE
1103static bool spectre_v2_bad_module;
1104
1105bool retpoline_module_ok(bool has_retpoline)
1106{
1107 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1108 return true;
1109
1110 pr_err("System may be vulnerable to spectre v2\n");
1111 spectre_v2_bad_module = true;
1112 return false;
1113}
1114
1115static inline const char *spectre_v2_module_string(void)
1116{
1117 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1118}
1119#else
1120static inline const char *spectre_v2_module_string(void) { return ""; }
1121#endif
1122
1123#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1124#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1125#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1126#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1127
1128#ifdef CONFIG_BPF_SYSCALL
1129void unpriv_ebpf_notify(int new_state)
1130{
1131 if (new_state)
1132 return;
1133
1134 /* Unprivileged eBPF is enabled */
1135
1136 switch (spectre_v2_enabled) {
1137 case SPECTRE_V2_EIBRS:
1138 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1139 break;
1140 case SPECTRE_V2_EIBRS_LFENCE:
1141 if (sched_smt_active())
1142 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1143 break;
1144 default:
1145 break;
1146 }
1147}
1148#endif
1149
1150static inline bool match_option(const char *arg, int arglen, const char *opt)
1151{
1152 int len = strlen(opt);
1153
1154 return len == arglen && !strncmp(arg, opt, len);
1155}
1156
1157/* The kernel command line selection for spectre v2 */
1158enum spectre_v2_mitigation_cmd {
1159 SPECTRE_V2_CMD_NONE,
1160 SPECTRE_V2_CMD_AUTO,
1161 SPECTRE_V2_CMD_FORCE,
1162 SPECTRE_V2_CMD_RETPOLINE,
1163 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1164 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1165 SPECTRE_V2_CMD_EIBRS,
1166 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1167 SPECTRE_V2_CMD_EIBRS_LFENCE,
1168 SPECTRE_V2_CMD_IBRS,
1169};
1170
1171enum spectre_v2_user_cmd {
1172 SPECTRE_V2_USER_CMD_NONE,
1173 SPECTRE_V2_USER_CMD_AUTO,
1174 SPECTRE_V2_USER_CMD_FORCE,
1175 SPECTRE_V2_USER_CMD_PRCTL,
1176 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1177 SPECTRE_V2_USER_CMD_SECCOMP,
1178 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1179};
1180
1181static const char * const spectre_v2_user_strings[] = {
1182 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1183 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1184 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1185 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1186 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1187};
1188
1189static const struct {
1190 const char *option;
1191 enum spectre_v2_user_cmd cmd;
1192 bool secure;
1193} v2_user_options[] __initconst = {
1194 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1195 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1196 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1197 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1198 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1199 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1200 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1201};
1202
1203static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1204{
1205 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1206 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1207}
1208
1209static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1210
1211static enum spectre_v2_user_cmd __init
1212spectre_v2_parse_user_cmdline(void)
1213{
1214 char arg[20];
1215 int ret, i;
1216
1217 switch (spectre_v2_cmd) {
1218 case SPECTRE_V2_CMD_NONE:
1219 return SPECTRE_V2_USER_CMD_NONE;
1220 case SPECTRE_V2_CMD_FORCE:
1221 return SPECTRE_V2_USER_CMD_FORCE;
1222 default:
1223 break;
1224 }
1225
1226 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1227 arg, sizeof(arg));
1228 if (ret < 0)
1229 return SPECTRE_V2_USER_CMD_AUTO;
1230
1231 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1232 if (match_option(arg, ret, v2_user_options[i].option)) {
1233 spec_v2_user_print_cond(v2_user_options[i].option,
1234 v2_user_options[i].secure);
1235 return v2_user_options[i].cmd;
1236 }
1237 }
1238
1239 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1240 return SPECTRE_V2_USER_CMD_AUTO;
1241}
1242
1243static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1244{
1245 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1246}
1247
1248static void __init
1249spectre_v2_user_select_mitigation(void)
1250{
1251 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1252 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1253 enum spectre_v2_user_cmd cmd;
1254
1255 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1256 return;
1257
1258 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1259 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1260 smt_possible = false;
1261
1262 cmd = spectre_v2_parse_user_cmdline();
1263 switch (cmd) {
1264 case SPECTRE_V2_USER_CMD_NONE:
1265 goto set_mode;
1266 case SPECTRE_V2_USER_CMD_FORCE:
1267 mode = SPECTRE_V2_USER_STRICT;
1268 break;
1269 case SPECTRE_V2_USER_CMD_AUTO:
1270 case SPECTRE_V2_USER_CMD_PRCTL:
1271 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1272 mode = SPECTRE_V2_USER_PRCTL;
1273 break;
1274 case SPECTRE_V2_USER_CMD_SECCOMP:
1275 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1276 if (IS_ENABLED(CONFIG_SECCOMP))
1277 mode = SPECTRE_V2_USER_SECCOMP;
1278 else
1279 mode = SPECTRE_V2_USER_PRCTL;
1280 break;
1281 }
1282
1283 /* Initialize Indirect Branch Prediction Barrier */
1284 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1285 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1286
1287 spectre_v2_user_ibpb = mode;
1288 switch (cmd) {
1289 case SPECTRE_V2_USER_CMD_NONE:
1290 break;
1291 case SPECTRE_V2_USER_CMD_FORCE:
1292 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1293 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1294 static_branch_enable(&switch_mm_always_ibpb);
1295 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1296 break;
1297 case SPECTRE_V2_USER_CMD_PRCTL:
1298 case SPECTRE_V2_USER_CMD_AUTO:
1299 case SPECTRE_V2_USER_CMD_SECCOMP:
1300 static_branch_enable(&switch_mm_cond_ibpb);
1301 break;
1302 }
1303
1304 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1305 static_key_enabled(&switch_mm_always_ibpb) ?
1306 "always-on" : "conditional");
1307 }
1308
1309 /*
1310 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1311 * is not required.
1312 *
1313 * Intel's Enhanced IBRS also protects against cross-thread branch target
1314 * injection in user-mode as the IBRS bit remains always set which
1315 * implicitly enables cross-thread protections. However, in legacy IBRS
1316 * mode, the IBRS bit is set only on kernel entry and cleared on return
1317 * to userspace. AMD Automatic IBRS also does not protect userspace.
1318 * These modes therefore disable the implicit cross-thread protection,
1319 * so allow for STIBP to be selected in those cases.
1320 */
1321 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1322 !smt_possible ||
1323 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1324 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1325 return;
1326
1327 /*
1328 * At this point, an STIBP mode other than "off" has been set.
1329 * If STIBP support is not being forced, check if STIBP always-on
1330 * is preferred.
1331 */
1332 if (mode != SPECTRE_V2_USER_STRICT &&
1333 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1334 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1335
1336 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1337 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1338 if (mode != SPECTRE_V2_USER_STRICT &&
1339 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1340 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1341 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1342 }
1343
1344 spectre_v2_user_stibp = mode;
1345
1346set_mode:
1347 pr_info("%s\n", spectre_v2_user_strings[mode]);
1348}
1349
1350static const char * const spectre_v2_strings[] = {
1351 [SPECTRE_V2_NONE] = "Vulnerable",
1352 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1353 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1354 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1355 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1356 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1357 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1358};
1359
1360static const struct {
1361 const char *option;
1362 enum spectre_v2_mitigation_cmd cmd;
1363 bool secure;
1364} mitigation_options[] __initconst = {
1365 { "off", SPECTRE_V2_CMD_NONE, false },
1366 { "on", SPECTRE_V2_CMD_FORCE, true },
1367 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1368 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1369 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1370 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1371 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1372 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1373 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1374 { "auto", SPECTRE_V2_CMD_AUTO, false },
1375 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1376};
1377
1378static void __init spec_v2_print_cond(const char *reason, bool secure)
1379{
1380 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1381 pr_info("%s selected on command line.\n", reason);
1382}
1383
1384static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1385{
1386 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1387 char arg[20];
1388 int ret, i;
1389
1390 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1391 cpu_mitigations_off())
1392 return SPECTRE_V2_CMD_NONE;
1393
1394 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1395 if (ret < 0)
1396 return SPECTRE_V2_CMD_AUTO;
1397
1398 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1399 if (!match_option(arg, ret, mitigation_options[i].option))
1400 continue;
1401 cmd = mitigation_options[i].cmd;
1402 break;
1403 }
1404
1405 if (i >= ARRAY_SIZE(mitigation_options)) {
1406 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1407 return SPECTRE_V2_CMD_AUTO;
1408 }
1409
1410 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1411 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1412 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1413 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1414 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1415 !IS_ENABLED(CONFIG_RETPOLINE)) {
1416 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1417 mitigation_options[i].option);
1418 return SPECTRE_V2_CMD_AUTO;
1419 }
1420
1421 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1422 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1423 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1424 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1425 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1426 mitigation_options[i].option);
1427 return SPECTRE_V2_CMD_AUTO;
1428 }
1429
1430 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1431 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1432 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1433 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1434 mitigation_options[i].option);
1435 return SPECTRE_V2_CMD_AUTO;
1436 }
1437
1438 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1439 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1440 mitigation_options[i].option);
1441 return SPECTRE_V2_CMD_AUTO;
1442 }
1443
1444 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1445 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1446 mitigation_options[i].option);
1447 return SPECTRE_V2_CMD_AUTO;
1448 }
1449
1450 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1451 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1452 mitigation_options[i].option);
1453 return SPECTRE_V2_CMD_AUTO;
1454 }
1455
1456 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1457 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1458 mitigation_options[i].option);
1459 return SPECTRE_V2_CMD_AUTO;
1460 }
1461
1462 spec_v2_print_cond(mitigation_options[i].option,
1463 mitigation_options[i].secure);
1464 return cmd;
1465}
1466
1467static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1468{
1469 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1470 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1471 return SPECTRE_V2_NONE;
1472 }
1473
1474 return SPECTRE_V2_RETPOLINE;
1475}
1476
1477/* Disable in-kernel use of non-RSB RET predictors */
1478static void __init spec_ctrl_disable_kernel_rrsba(void)
1479{
1480 u64 ia32_cap;
1481
1482 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1483 return;
1484
1485 ia32_cap = x86_read_arch_cap_msr();
1486
1487 if (ia32_cap & ARCH_CAP_RRSBA) {
1488 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1489 update_spec_ctrl(x86_spec_ctrl_base);
1490 }
1491}
1492
1493static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1494{
1495 /*
1496 * Similar to context switches, there are two types of RSB attacks
1497 * after VM exit:
1498 *
1499 * 1) RSB underflow
1500 *
1501 * 2) Poisoned RSB entry
1502 *
1503 * When retpoline is enabled, both are mitigated by filling/clearing
1504 * the RSB.
1505 *
1506 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1507 * prediction isolation protections, RSB still needs to be cleared
1508 * because of #2. Note that SMEP provides no protection here, unlike
1509 * user-space-poisoned RSB entries.
1510 *
1511 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1512 * bug is present then a LITE version of RSB protection is required,
1513 * just a single call needs to retire before a RET is executed.
1514 */
1515 switch (mode) {
1516 case SPECTRE_V2_NONE:
1517 return;
1518
1519 case SPECTRE_V2_EIBRS_LFENCE:
1520 case SPECTRE_V2_EIBRS:
1521 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1522 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1523 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1524 }
1525 return;
1526
1527 case SPECTRE_V2_EIBRS_RETPOLINE:
1528 case SPECTRE_V2_RETPOLINE:
1529 case SPECTRE_V2_LFENCE:
1530 case SPECTRE_V2_IBRS:
1531 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1532 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1533 return;
1534 }
1535
1536 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1537 dump_stack();
1538}
1539
1540static void __init spectre_v2_select_mitigation(void)
1541{
1542 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1543 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1544
1545 /*
1546 * If the CPU is not affected and the command line mode is NONE or AUTO
1547 * then nothing to do.
1548 */
1549 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1550 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1551 return;
1552
1553 switch (cmd) {
1554 case SPECTRE_V2_CMD_NONE:
1555 return;
1556
1557 case SPECTRE_V2_CMD_FORCE:
1558 case SPECTRE_V2_CMD_AUTO:
1559 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1560 mode = SPECTRE_V2_EIBRS;
1561 break;
1562 }
1563
1564 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1565 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1566 retbleed_cmd != RETBLEED_CMD_OFF &&
1567 retbleed_cmd != RETBLEED_CMD_STUFF &&
1568 boot_cpu_has(X86_FEATURE_IBRS) &&
1569 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1570 mode = SPECTRE_V2_IBRS;
1571 break;
1572 }
1573
1574 mode = spectre_v2_select_retpoline();
1575 break;
1576
1577 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1578 pr_err(SPECTRE_V2_LFENCE_MSG);
1579 mode = SPECTRE_V2_LFENCE;
1580 break;
1581
1582 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1583 mode = SPECTRE_V2_RETPOLINE;
1584 break;
1585
1586 case SPECTRE_V2_CMD_RETPOLINE:
1587 mode = spectre_v2_select_retpoline();
1588 break;
1589
1590 case SPECTRE_V2_CMD_IBRS:
1591 mode = SPECTRE_V2_IBRS;
1592 break;
1593
1594 case SPECTRE_V2_CMD_EIBRS:
1595 mode = SPECTRE_V2_EIBRS;
1596 break;
1597
1598 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1599 mode = SPECTRE_V2_EIBRS_LFENCE;
1600 break;
1601
1602 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1603 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1604 break;
1605 }
1606
1607 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1608 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1609
1610 if (spectre_v2_in_ibrs_mode(mode)) {
1611 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1612 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1613 } else {
1614 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1615 update_spec_ctrl(x86_spec_ctrl_base);
1616 }
1617 }
1618
1619 switch (mode) {
1620 case SPECTRE_V2_NONE:
1621 case SPECTRE_V2_EIBRS:
1622 break;
1623
1624 case SPECTRE_V2_IBRS:
1625 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1626 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1627 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1628 break;
1629
1630 case SPECTRE_V2_LFENCE:
1631 case SPECTRE_V2_EIBRS_LFENCE:
1632 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1633 fallthrough;
1634
1635 case SPECTRE_V2_RETPOLINE:
1636 case SPECTRE_V2_EIBRS_RETPOLINE:
1637 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1638 break;
1639 }
1640
1641 /*
1642 * Disable alternate RSB predictions in kernel when indirect CALLs and
1643 * JMPs gets protection against BHI and Intramode-BTI, but RET
1644 * prediction from a non-RSB predictor is still a risk.
1645 */
1646 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1647 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1648 mode == SPECTRE_V2_RETPOLINE)
1649 spec_ctrl_disable_kernel_rrsba();
1650
1651 spectre_v2_enabled = mode;
1652 pr_info("%s\n", spectre_v2_strings[mode]);
1653
1654 /*
1655 * If Spectre v2 protection has been enabled, fill the RSB during a
1656 * context switch. In general there are two types of RSB attacks
1657 * across context switches, for which the CALLs/RETs may be unbalanced.
1658 *
1659 * 1) RSB underflow
1660 *
1661 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1662 * speculated return targets may come from the branch predictor,
1663 * which could have a user-poisoned BTB or BHB entry.
1664 *
1665 * AMD has it even worse: *all* returns are speculated from the BTB,
1666 * regardless of the state of the RSB.
1667 *
1668 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1669 * scenario is mitigated by the IBRS branch prediction isolation
1670 * properties, so the RSB buffer filling wouldn't be necessary to
1671 * protect against this type of attack.
1672 *
1673 * The "user -> user" attack scenario is mitigated by RSB filling.
1674 *
1675 * 2) Poisoned RSB entry
1676 *
1677 * If the 'next' in-kernel return stack is shorter than 'prev',
1678 * 'next' could be tricked into speculating with a user-poisoned RSB
1679 * entry.
1680 *
1681 * The "user -> kernel" attack scenario is mitigated by SMEP and
1682 * eIBRS.
1683 *
1684 * The "user -> user" scenario, also known as SpectreBHB, requires
1685 * RSB clearing.
1686 *
1687 * So to mitigate all cases, unconditionally fill RSB on context
1688 * switches.
1689 *
1690 * FIXME: Is this pointless for retbleed-affected AMD?
1691 */
1692 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1693 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1694
1695 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1696
1697 /*
1698 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1699 * and Enhanced IBRS protect firmware too, so enable IBRS around
1700 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1701 * otherwise enabled.
1702 *
1703 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1704 * the user might select retpoline on the kernel command line and if
1705 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1706 * enable IBRS around firmware calls.
1707 */
1708 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1709 boot_cpu_has(X86_FEATURE_IBPB) &&
1710 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1711 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1712
1713 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1714 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1715 pr_info("Enabling Speculation Barrier for firmware calls\n");
1716 }
1717
1718 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1719 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1720 pr_info("Enabling Restricted Speculation for firmware calls\n");
1721 }
1722
1723 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1724 spectre_v2_cmd = cmd;
1725}
1726
1727static void update_stibp_msr(void * __unused)
1728{
1729 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1730 update_spec_ctrl(val);
1731}
1732
1733/* Update x86_spec_ctrl_base in case SMT state changed. */
1734static void update_stibp_strict(void)
1735{
1736 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1737
1738 if (sched_smt_active())
1739 mask |= SPEC_CTRL_STIBP;
1740
1741 if (mask == x86_spec_ctrl_base)
1742 return;
1743
1744 pr_info("Update user space SMT mitigation: STIBP %s\n",
1745 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1746 x86_spec_ctrl_base = mask;
1747 on_each_cpu(update_stibp_msr, NULL, 1);
1748}
1749
1750/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1751static void update_indir_branch_cond(void)
1752{
1753 if (sched_smt_active())
1754 static_branch_enable(&switch_to_cond_stibp);
1755 else
1756 static_branch_disable(&switch_to_cond_stibp);
1757}
1758
1759#undef pr_fmt
1760#define pr_fmt(fmt) fmt
1761
1762/* Update the static key controlling the MDS CPU buffer clear in idle */
1763static void update_mds_branch_idle(void)
1764{
1765 u64 ia32_cap = x86_read_arch_cap_msr();
1766
1767 /*
1768 * Enable the idle clearing if SMT is active on CPUs which are
1769 * affected only by MSBDS and not any other MDS variant.
1770 *
1771 * The other variants cannot be mitigated when SMT is enabled, so
1772 * clearing the buffers on idle just to prevent the Store Buffer
1773 * repartitioning leak would be a window dressing exercise.
1774 */
1775 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1776 return;
1777
1778 if (sched_smt_active()) {
1779 static_branch_enable(&mds_idle_clear);
1780 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1781 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1782 static_branch_disable(&mds_idle_clear);
1783 }
1784}
1785
1786#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1787#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1788#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1789
1790void cpu_bugs_smt_update(void)
1791{
1792 mutex_lock(&spec_ctrl_mutex);
1793
1794 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1795 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1796 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1797
1798 switch (spectre_v2_user_stibp) {
1799 case SPECTRE_V2_USER_NONE:
1800 break;
1801 case SPECTRE_V2_USER_STRICT:
1802 case SPECTRE_V2_USER_STRICT_PREFERRED:
1803 update_stibp_strict();
1804 break;
1805 case SPECTRE_V2_USER_PRCTL:
1806 case SPECTRE_V2_USER_SECCOMP:
1807 update_indir_branch_cond();
1808 break;
1809 }
1810
1811 switch (mds_mitigation) {
1812 case MDS_MITIGATION_FULL:
1813 case MDS_MITIGATION_VMWERV:
1814 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1815 pr_warn_once(MDS_MSG_SMT);
1816 update_mds_branch_idle();
1817 break;
1818 case MDS_MITIGATION_OFF:
1819 break;
1820 }
1821
1822 switch (taa_mitigation) {
1823 case TAA_MITIGATION_VERW:
1824 case TAA_MITIGATION_UCODE_NEEDED:
1825 if (sched_smt_active())
1826 pr_warn_once(TAA_MSG_SMT);
1827 break;
1828 case TAA_MITIGATION_TSX_DISABLED:
1829 case TAA_MITIGATION_OFF:
1830 break;
1831 }
1832
1833 switch (mmio_mitigation) {
1834 case MMIO_MITIGATION_VERW:
1835 case MMIO_MITIGATION_UCODE_NEEDED:
1836 if (sched_smt_active())
1837 pr_warn_once(MMIO_MSG_SMT);
1838 break;
1839 case MMIO_MITIGATION_OFF:
1840 break;
1841 }
1842
1843 mutex_unlock(&spec_ctrl_mutex);
1844}
1845
1846#undef pr_fmt
1847#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1848
1849static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1850
1851/* The kernel command line selection */
1852enum ssb_mitigation_cmd {
1853 SPEC_STORE_BYPASS_CMD_NONE,
1854 SPEC_STORE_BYPASS_CMD_AUTO,
1855 SPEC_STORE_BYPASS_CMD_ON,
1856 SPEC_STORE_BYPASS_CMD_PRCTL,
1857 SPEC_STORE_BYPASS_CMD_SECCOMP,
1858};
1859
1860static const char * const ssb_strings[] = {
1861 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1862 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1863 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1864 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1865};
1866
1867static const struct {
1868 const char *option;
1869 enum ssb_mitigation_cmd cmd;
1870} ssb_mitigation_options[] __initconst = {
1871 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1872 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1873 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1874 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1875 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1876};
1877
1878static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1879{
1880 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1881 char arg[20];
1882 int ret, i;
1883
1884 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1885 cpu_mitigations_off()) {
1886 return SPEC_STORE_BYPASS_CMD_NONE;
1887 } else {
1888 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1889 arg, sizeof(arg));
1890 if (ret < 0)
1891 return SPEC_STORE_BYPASS_CMD_AUTO;
1892
1893 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1894 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1895 continue;
1896
1897 cmd = ssb_mitigation_options[i].cmd;
1898 break;
1899 }
1900
1901 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1902 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1903 return SPEC_STORE_BYPASS_CMD_AUTO;
1904 }
1905 }
1906
1907 return cmd;
1908}
1909
1910static enum ssb_mitigation __init __ssb_select_mitigation(void)
1911{
1912 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1913 enum ssb_mitigation_cmd cmd;
1914
1915 if (!boot_cpu_has(X86_FEATURE_SSBD))
1916 return mode;
1917
1918 cmd = ssb_parse_cmdline();
1919 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1920 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1921 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1922 return mode;
1923
1924 switch (cmd) {
1925 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1926 /*
1927 * Choose prctl+seccomp as the default mode if seccomp is
1928 * enabled.
1929 */
1930 if (IS_ENABLED(CONFIG_SECCOMP))
1931 mode = SPEC_STORE_BYPASS_SECCOMP;
1932 else
1933 mode = SPEC_STORE_BYPASS_PRCTL;
1934 break;
1935 case SPEC_STORE_BYPASS_CMD_ON:
1936 mode = SPEC_STORE_BYPASS_DISABLE;
1937 break;
1938 case SPEC_STORE_BYPASS_CMD_AUTO:
1939 case SPEC_STORE_BYPASS_CMD_PRCTL:
1940 mode = SPEC_STORE_BYPASS_PRCTL;
1941 break;
1942 case SPEC_STORE_BYPASS_CMD_NONE:
1943 break;
1944 }
1945
1946 /*
1947 * We have three CPU feature flags that are in play here:
1948 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1949 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1950 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1951 */
1952 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1953 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1954 /*
1955 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1956 * use a completely different MSR and bit dependent on family.
1957 */
1958 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1959 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1960 x86_amd_ssb_disable();
1961 } else {
1962 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1963 update_spec_ctrl(x86_spec_ctrl_base);
1964 }
1965 }
1966
1967 return mode;
1968}
1969
1970static void ssb_select_mitigation(void)
1971{
1972 ssb_mode = __ssb_select_mitigation();
1973
1974 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1975 pr_info("%s\n", ssb_strings[ssb_mode]);
1976}
1977
1978#undef pr_fmt
1979#define pr_fmt(fmt) "Speculation prctl: " fmt
1980
1981static void task_update_spec_tif(struct task_struct *tsk)
1982{
1983 /* Force the update of the real TIF bits */
1984 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1985
1986 /*
1987 * Immediately update the speculation control MSRs for the current
1988 * task, but for a non-current task delay setting the CPU
1989 * mitigation until it is scheduled next.
1990 *
1991 * This can only happen for SECCOMP mitigation. For PRCTL it's
1992 * always the current task.
1993 */
1994 if (tsk == current)
1995 speculation_ctrl_update_current();
1996}
1997
1998static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1999{
2000
2001 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2002 return -EPERM;
2003
2004 switch (ctrl) {
2005 case PR_SPEC_ENABLE:
2006 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2007 return 0;
2008 case PR_SPEC_DISABLE:
2009 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2010 return 0;
2011 default:
2012 return -ERANGE;
2013 }
2014}
2015
2016static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2017{
2018 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2019 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2020 return -ENXIO;
2021
2022 switch (ctrl) {
2023 case PR_SPEC_ENABLE:
2024 /* If speculation is force disabled, enable is not allowed */
2025 if (task_spec_ssb_force_disable(task))
2026 return -EPERM;
2027 task_clear_spec_ssb_disable(task);
2028 task_clear_spec_ssb_noexec(task);
2029 task_update_spec_tif(task);
2030 break;
2031 case PR_SPEC_DISABLE:
2032 task_set_spec_ssb_disable(task);
2033 task_clear_spec_ssb_noexec(task);
2034 task_update_spec_tif(task);
2035 break;
2036 case PR_SPEC_FORCE_DISABLE:
2037 task_set_spec_ssb_disable(task);
2038 task_set_spec_ssb_force_disable(task);
2039 task_clear_spec_ssb_noexec(task);
2040 task_update_spec_tif(task);
2041 break;
2042 case PR_SPEC_DISABLE_NOEXEC:
2043 if (task_spec_ssb_force_disable(task))
2044 return -EPERM;
2045 task_set_spec_ssb_disable(task);
2046 task_set_spec_ssb_noexec(task);
2047 task_update_spec_tif(task);
2048 break;
2049 default:
2050 return -ERANGE;
2051 }
2052 return 0;
2053}
2054
2055static bool is_spec_ib_user_controlled(void)
2056{
2057 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2058 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2059 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2060 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2061}
2062
2063static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2064{
2065 switch (ctrl) {
2066 case PR_SPEC_ENABLE:
2067 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2068 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2069 return 0;
2070
2071 /*
2072 * With strict mode for both IBPB and STIBP, the instruction
2073 * code paths avoid checking this task flag and instead,
2074 * unconditionally run the instruction. However, STIBP and IBPB
2075 * are independent and either can be set to conditionally
2076 * enabled regardless of the mode of the other.
2077 *
2078 * If either is set to conditional, allow the task flag to be
2079 * updated, unless it was force-disabled by a previous prctl
2080 * call. Currently, this is possible on an AMD CPU which has the
2081 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2082 * kernel is booted with 'spectre_v2_user=seccomp', then
2083 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2084 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2085 */
2086 if (!is_spec_ib_user_controlled() ||
2087 task_spec_ib_force_disable(task))
2088 return -EPERM;
2089
2090 task_clear_spec_ib_disable(task);
2091 task_update_spec_tif(task);
2092 break;
2093 case PR_SPEC_DISABLE:
2094 case PR_SPEC_FORCE_DISABLE:
2095 /*
2096 * Indirect branch speculation is always allowed when
2097 * mitigation is force disabled.
2098 */
2099 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2100 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2101 return -EPERM;
2102
2103 if (!is_spec_ib_user_controlled())
2104 return 0;
2105
2106 task_set_spec_ib_disable(task);
2107 if (ctrl == PR_SPEC_FORCE_DISABLE)
2108 task_set_spec_ib_force_disable(task);
2109 task_update_spec_tif(task);
2110 if (task == current)
2111 indirect_branch_prediction_barrier();
2112 break;
2113 default:
2114 return -ERANGE;
2115 }
2116 return 0;
2117}
2118
2119int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2120 unsigned long ctrl)
2121{
2122 switch (which) {
2123 case PR_SPEC_STORE_BYPASS:
2124 return ssb_prctl_set(task, ctrl);
2125 case PR_SPEC_INDIRECT_BRANCH:
2126 return ib_prctl_set(task, ctrl);
2127 case PR_SPEC_L1D_FLUSH:
2128 return l1d_flush_prctl_set(task, ctrl);
2129 default:
2130 return -ENODEV;
2131 }
2132}
2133
2134#ifdef CONFIG_SECCOMP
2135void arch_seccomp_spec_mitigate(struct task_struct *task)
2136{
2137 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2138 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2139 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2140 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2141 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2142}
2143#endif
2144
2145static int l1d_flush_prctl_get(struct task_struct *task)
2146{
2147 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2148 return PR_SPEC_FORCE_DISABLE;
2149
2150 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2151 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2152 else
2153 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2154}
2155
2156static int ssb_prctl_get(struct task_struct *task)
2157{
2158 switch (ssb_mode) {
2159 case SPEC_STORE_BYPASS_NONE:
2160 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2161 return PR_SPEC_ENABLE;
2162 return PR_SPEC_NOT_AFFECTED;
2163 case SPEC_STORE_BYPASS_DISABLE:
2164 return PR_SPEC_DISABLE;
2165 case SPEC_STORE_BYPASS_SECCOMP:
2166 case SPEC_STORE_BYPASS_PRCTL:
2167 if (task_spec_ssb_force_disable(task))
2168 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2169 if (task_spec_ssb_noexec(task))
2170 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2171 if (task_spec_ssb_disable(task))
2172 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2173 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2174 }
2175 BUG();
2176}
2177
2178static int ib_prctl_get(struct task_struct *task)
2179{
2180 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2181 return PR_SPEC_NOT_AFFECTED;
2182
2183 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2184 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2185 return PR_SPEC_ENABLE;
2186 else if (is_spec_ib_user_controlled()) {
2187 if (task_spec_ib_force_disable(task))
2188 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2189 if (task_spec_ib_disable(task))
2190 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2191 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2192 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2193 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2194 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2195 return PR_SPEC_DISABLE;
2196 else
2197 return PR_SPEC_NOT_AFFECTED;
2198}
2199
2200int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2201{
2202 switch (which) {
2203 case PR_SPEC_STORE_BYPASS:
2204 return ssb_prctl_get(task);
2205 case PR_SPEC_INDIRECT_BRANCH:
2206 return ib_prctl_get(task);
2207 case PR_SPEC_L1D_FLUSH:
2208 return l1d_flush_prctl_get(task);
2209 default:
2210 return -ENODEV;
2211 }
2212}
2213
2214void x86_spec_ctrl_setup_ap(void)
2215{
2216 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2217 update_spec_ctrl(x86_spec_ctrl_base);
2218
2219 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2220 x86_amd_ssb_disable();
2221}
2222
2223bool itlb_multihit_kvm_mitigation;
2224EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2225
2226#undef pr_fmt
2227#define pr_fmt(fmt) "L1TF: " fmt
2228
2229/* Default mitigation for L1TF-affected CPUs */
2230enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2231#if IS_ENABLED(CONFIG_KVM_INTEL)
2232EXPORT_SYMBOL_GPL(l1tf_mitigation);
2233#endif
2234enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2235EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2236
2237/*
2238 * These CPUs all support 44bits physical address space internally in the
2239 * cache but CPUID can report a smaller number of physical address bits.
2240 *
2241 * The L1TF mitigation uses the top most address bit for the inversion of
2242 * non present PTEs. When the installed memory reaches into the top most
2243 * address bit due to memory holes, which has been observed on machines
2244 * which report 36bits physical address bits and have 32G RAM installed,
2245 * then the mitigation range check in l1tf_select_mitigation() triggers.
2246 * This is a false positive because the mitigation is still possible due to
2247 * the fact that the cache uses 44bit internally. Use the cache bits
2248 * instead of the reported physical bits and adjust them on the affected
2249 * machines to 44bit if the reported bits are less than 44.
2250 */
2251static void override_cache_bits(struct cpuinfo_x86 *c)
2252{
2253 if (c->x86 != 6)
2254 return;
2255
2256 switch (c->x86_model) {
2257 case INTEL_FAM6_NEHALEM:
2258 case INTEL_FAM6_WESTMERE:
2259 case INTEL_FAM6_SANDYBRIDGE:
2260 case INTEL_FAM6_IVYBRIDGE:
2261 case INTEL_FAM6_HASWELL:
2262 case INTEL_FAM6_HASWELL_L:
2263 case INTEL_FAM6_HASWELL_G:
2264 case INTEL_FAM6_BROADWELL:
2265 case INTEL_FAM6_BROADWELL_G:
2266 case INTEL_FAM6_SKYLAKE_L:
2267 case INTEL_FAM6_SKYLAKE:
2268 case INTEL_FAM6_KABYLAKE_L:
2269 case INTEL_FAM6_KABYLAKE:
2270 if (c->x86_cache_bits < 44)
2271 c->x86_cache_bits = 44;
2272 break;
2273 }
2274}
2275
2276static void __init l1tf_select_mitigation(void)
2277{
2278 u64 half_pa;
2279
2280 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2281 return;
2282
2283 if (cpu_mitigations_off())
2284 l1tf_mitigation = L1TF_MITIGATION_OFF;
2285 else if (cpu_mitigations_auto_nosmt())
2286 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2287
2288 override_cache_bits(&boot_cpu_data);
2289
2290 switch (l1tf_mitigation) {
2291 case L1TF_MITIGATION_OFF:
2292 case L1TF_MITIGATION_FLUSH_NOWARN:
2293 case L1TF_MITIGATION_FLUSH:
2294 break;
2295 case L1TF_MITIGATION_FLUSH_NOSMT:
2296 case L1TF_MITIGATION_FULL:
2297 cpu_smt_disable(false);
2298 break;
2299 case L1TF_MITIGATION_FULL_FORCE:
2300 cpu_smt_disable(true);
2301 break;
2302 }
2303
2304#if CONFIG_PGTABLE_LEVELS == 2
2305 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2306 return;
2307#endif
2308
2309 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2310 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2311 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2312 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2313 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2314 half_pa);
2315 pr_info("However, doing so will make a part of your RAM unusable.\n");
2316 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2317 return;
2318 }
2319
2320 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2321}
2322
2323static int __init l1tf_cmdline(char *str)
2324{
2325 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2326 return 0;
2327
2328 if (!str)
2329 return -EINVAL;
2330
2331 if (!strcmp(str, "off"))
2332 l1tf_mitigation = L1TF_MITIGATION_OFF;
2333 else if (!strcmp(str, "flush,nowarn"))
2334 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2335 else if (!strcmp(str, "flush"))
2336 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2337 else if (!strcmp(str, "flush,nosmt"))
2338 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2339 else if (!strcmp(str, "full"))
2340 l1tf_mitigation = L1TF_MITIGATION_FULL;
2341 else if (!strcmp(str, "full,force"))
2342 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2343
2344 return 0;
2345}
2346early_param("l1tf", l1tf_cmdline);
2347
2348#undef pr_fmt
2349#define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2350
2351enum srso_mitigation {
2352 SRSO_MITIGATION_NONE,
2353 SRSO_MITIGATION_UCODE_NEEDED,
2354 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2355 SRSO_MITIGATION_MICROCODE,
2356 SRSO_MITIGATION_SAFE_RET,
2357 SRSO_MITIGATION_IBPB,
2358 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2359};
2360
2361enum srso_mitigation_cmd {
2362 SRSO_CMD_OFF,
2363 SRSO_CMD_MICROCODE,
2364 SRSO_CMD_SAFE_RET,
2365 SRSO_CMD_IBPB,
2366 SRSO_CMD_IBPB_ON_VMEXIT,
2367};
2368
2369static const char * const srso_strings[] = {
2370 [SRSO_MITIGATION_NONE] = "Vulnerable",
2371 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2372 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2373 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2374 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2375 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2376 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2377};
2378
2379static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2380static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2381
2382static int __init srso_parse_cmdline(char *str)
2383{
2384 if (!str)
2385 return -EINVAL;
2386
2387 if (!strcmp(str, "off"))
2388 srso_cmd = SRSO_CMD_OFF;
2389 else if (!strcmp(str, "microcode"))
2390 srso_cmd = SRSO_CMD_MICROCODE;
2391 else if (!strcmp(str, "safe-ret"))
2392 srso_cmd = SRSO_CMD_SAFE_RET;
2393 else if (!strcmp(str, "ibpb"))
2394 srso_cmd = SRSO_CMD_IBPB;
2395 else if (!strcmp(str, "ibpb-vmexit"))
2396 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2397 else
2398 pr_err("Ignoring unknown SRSO option (%s).", str);
2399
2400 return 0;
2401}
2402early_param("spec_rstack_overflow", srso_parse_cmdline);
2403
2404#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2405
2406static void __init srso_select_mitigation(void)
2407{
2408 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2409
2410 if (cpu_mitigations_off())
2411 return;
2412
2413 if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2414 if (boot_cpu_has(X86_FEATURE_SBPB))
2415 x86_pred_cmd = PRED_CMD_SBPB;
2416 return;
2417 }
2418
2419 if (has_microcode) {
2420 /*
2421 * Zen1/2 with SMT off aren't vulnerable after the right
2422 * IBPB microcode has been applied.
2423 *
2424 * Zen1/2 don't have SBPB, no need to try to enable it here.
2425 */
2426 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2427 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2428 return;
2429 }
2430
2431 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2432 srso_mitigation = SRSO_MITIGATION_IBPB;
2433 goto out;
2434 }
2435 } else {
2436 pr_warn("IBPB-extending microcode not applied!\n");
2437 pr_warn(SRSO_NOTICE);
2438
2439 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2440 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2441 }
2442
2443 switch (srso_cmd) {
2444 case SRSO_CMD_OFF:
2445 if (boot_cpu_has(X86_FEATURE_SBPB))
2446 x86_pred_cmd = PRED_CMD_SBPB;
2447 return;
2448
2449 case SRSO_CMD_MICROCODE:
2450 if (has_microcode) {
2451 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2452 pr_warn(SRSO_NOTICE);
2453 }
2454 break;
2455
2456 case SRSO_CMD_SAFE_RET:
2457 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2458 /*
2459 * Enable the return thunk for generated code
2460 * like ftrace, static_call, etc.
2461 */
2462 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2463 setup_force_cpu_cap(X86_FEATURE_UNRET);
2464
2465 if (boot_cpu_data.x86 == 0x19) {
2466 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2467 x86_return_thunk = srso_alias_return_thunk;
2468 } else {
2469 setup_force_cpu_cap(X86_FEATURE_SRSO);
2470 x86_return_thunk = srso_return_thunk;
2471 }
2472 if (has_microcode)
2473 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2474 else
2475 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2476 } else {
2477 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2478 }
2479 break;
2480
2481 case SRSO_CMD_IBPB:
2482 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2483 if (has_microcode) {
2484 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2485 srso_mitigation = SRSO_MITIGATION_IBPB;
2486 }
2487 } else {
2488 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2489 }
2490 break;
2491
2492 case SRSO_CMD_IBPB_ON_VMEXIT:
2493 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2494 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2495 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2496 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2497 }
2498 } else {
2499 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2500 }
2501 break;
2502 }
2503
2504out:
2505 pr_info("%s\n", srso_strings[srso_mitigation]);
2506}
2507
2508#undef pr_fmt
2509#define pr_fmt(fmt) fmt
2510
2511#ifdef CONFIG_SYSFS
2512
2513#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2514
2515#if IS_ENABLED(CONFIG_KVM_INTEL)
2516static const char * const l1tf_vmx_states[] = {
2517 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2518 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2519 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2520 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2521 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2522 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2523};
2524
2525static ssize_t l1tf_show_state(char *buf)
2526{
2527 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2528 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2529
2530 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2531 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2532 sched_smt_active())) {
2533 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2534 l1tf_vmx_states[l1tf_vmx_mitigation]);
2535 }
2536
2537 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2538 l1tf_vmx_states[l1tf_vmx_mitigation],
2539 sched_smt_active() ? "vulnerable" : "disabled");
2540}
2541
2542static ssize_t itlb_multihit_show_state(char *buf)
2543{
2544 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2545 !boot_cpu_has(X86_FEATURE_VMX))
2546 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2547 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2548 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2549 else if (itlb_multihit_kvm_mitigation)
2550 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2551 else
2552 return sysfs_emit(buf, "KVM: Vulnerable\n");
2553}
2554#else
2555static ssize_t l1tf_show_state(char *buf)
2556{
2557 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2558}
2559
2560static ssize_t itlb_multihit_show_state(char *buf)
2561{
2562 return sysfs_emit(buf, "Processor vulnerable\n");
2563}
2564#endif
2565
2566static ssize_t mds_show_state(char *buf)
2567{
2568 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2569 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2570 mds_strings[mds_mitigation]);
2571 }
2572
2573 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2574 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2575 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2576 sched_smt_active() ? "mitigated" : "disabled"));
2577 }
2578
2579 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2580 sched_smt_active() ? "vulnerable" : "disabled");
2581}
2582
2583static ssize_t tsx_async_abort_show_state(char *buf)
2584{
2585 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2586 (taa_mitigation == TAA_MITIGATION_OFF))
2587 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2588
2589 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2590 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2591 taa_strings[taa_mitigation]);
2592 }
2593
2594 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2595 sched_smt_active() ? "vulnerable" : "disabled");
2596}
2597
2598static ssize_t mmio_stale_data_show_state(char *buf)
2599{
2600 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2601 return sysfs_emit(buf, "Unknown: No mitigations\n");
2602
2603 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2604 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2605
2606 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2607 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2608 mmio_strings[mmio_mitigation]);
2609 }
2610
2611 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2612 sched_smt_active() ? "vulnerable" : "disabled");
2613}
2614
2615static char *stibp_state(void)
2616{
2617 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2618 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2619 return "";
2620
2621 switch (spectre_v2_user_stibp) {
2622 case SPECTRE_V2_USER_NONE:
2623 return ", STIBP: disabled";
2624 case SPECTRE_V2_USER_STRICT:
2625 return ", STIBP: forced";
2626 case SPECTRE_V2_USER_STRICT_PREFERRED:
2627 return ", STIBP: always-on";
2628 case SPECTRE_V2_USER_PRCTL:
2629 case SPECTRE_V2_USER_SECCOMP:
2630 if (static_key_enabled(&switch_to_cond_stibp))
2631 return ", STIBP: conditional";
2632 }
2633 return "";
2634}
2635
2636static char *ibpb_state(void)
2637{
2638 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2639 if (static_key_enabled(&switch_mm_always_ibpb))
2640 return ", IBPB: always-on";
2641 if (static_key_enabled(&switch_mm_cond_ibpb))
2642 return ", IBPB: conditional";
2643 return ", IBPB: disabled";
2644 }
2645 return "";
2646}
2647
2648static char *pbrsb_eibrs_state(void)
2649{
2650 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2651 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2652 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2653 return ", PBRSB-eIBRS: SW sequence";
2654 else
2655 return ", PBRSB-eIBRS: Vulnerable";
2656 } else {
2657 return ", PBRSB-eIBRS: Not affected";
2658 }
2659}
2660
2661static ssize_t spectre_v2_show_state(char *buf)
2662{
2663 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2664 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2665
2666 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2667 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2668
2669 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2670 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2671 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2672
2673 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2674 spectre_v2_strings[spectre_v2_enabled],
2675 ibpb_state(),
2676 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2677 stibp_state(),
2678 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2679 pbrsb_eibrs_state(),
2680 spectre_v2_module_string());
2681}
2682
2683static ssize_t srbds_show_state(char *buf)
2684{
2685 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2686}
2687
2688static ssize_t retbleed_show_state(char *buf)
2689{
2690 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2691 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2692 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2693 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2694 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2695
2696 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2697 !sched_smt_active() ? "disabled" :
2698 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2699 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2700 "enabled with STIBP protection" : "vulnerable");
2701 }
2702
2703 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2704}
2705
2706static ssize_t srso_show_state(char *buf)
2707{
2708 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2709 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2710
2711 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2712}
2713
2714static ssize_t gds_show_state(char *buf)
2715{
2716 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2717}
2718
2719static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2720 char *buf, unsigned int bug)
2721{
2722 if (!boot_cpu_has_bug(bug))
2723 return sysfs_emit(buf, "Not affected\n");
2724
2725 switch (bug) {
2726 case X86_BUG_CPU_MELTDOWN:
2727 if (boot_cpu_has(X86_FEATURE_PTI))
2728 return sysfs_emit(buf, "Mitigation: PTI\n");
2729
2730 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2731 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2732
2733 break;
2734
2735 case X86_BUG_SPECTRE_V1:
2736 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2737
2738 case X86_BUG_SPECTRE_V2:
2739 return spectre_v2_show_state(buf);
2740
2741 case X86_BUG_SPEC_STORE_BYPASS:
2742 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2743
2744 case X86_BUG_L1TF:
2745 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2746 return l1tf_show_state(buf);
2747 break;
2748
2749 case X86_BUG_MDS:
2750 return mds_show_state(buf);
2751
2752 case X86_BUG_TAA:
2753 return tsx_async_abort_show_state(buf);
2754
2755 case X86_BUG_ITLB_MULTIHIT:
2756 return itlb_multihit_show_state(buf);
2757
2758 case X86_BUG_SRBDS:
2759 return srbds_show_state(buf);
2760
2761 case X86_BUG_MMIO_STALE_DATA:
2762 case X86_BUG_MMIO_UNKNOWN:
2763 return mmio_stale_data_show_state(buf);
2764
2765 case X86_BUG_RETBLEED:
2766 return retbleed_show_state(buf);
2767
2768 case X86_BUG_SRSO:
2769 return srso_show_state(buf);
2770
2771 case X86_BUG_GDS:
2772 return gds_show_state(buf);
2773
2774 default:
2775 break;
2776 }
2777
2778 return sysfs_emit(buf, "Vulnerable\n");
2779}
2780
2781ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2782{
2783 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2784}
2785
2786ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2787{
2788 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2789}
2790
2791ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2792{
2793 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2794}
2795
2796ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2797{
2798 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2799}
2800
2801ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2802{
2803 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2804}
2805
2806ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2807{
2808 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2809}
2810
2811ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2812{
2813 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2814}
2815
2816ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2817{
2818 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2819}
2820
2821ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2822{
2823 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2824}
2825
2826ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2827{
2828 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2829 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2830 else
2831 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2832}
2833
2834ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2835{
2836 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2837}
2838
2839ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2840{
2841 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2842}
2843
2844ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2845{
2846 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2847}
2848#endif