Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1994  Linus Torvalds
   4 *
   5 *  Cyrix stuff, June 1998 by:
   6 *	- Rafael R. Reilova (moved everything from head.S),
   7 *        <rreilova@ececs.uc.edu>
   8 *	- Channing Corn (tests & fixes),
   9 *	- Andrew D. Balsa (code cleanup).
  10 */
  11#include <linux/init.h>
 
  12#include <linux/cpu.h>
  13#include <linux/module.h>
  14#include <linux/nospec.h>
  15#include <linux/prctl.h>
  16#include <linux/sched/smt.h>
  17#include <linux/pgtable.h>
  18#include <linux/bpf.h>
  19
  20#include <asm/spec-ctrl.h>
  21#include <asm/cmdline.h>
  22#include <asm/bugs.h>
  23#include <asm/processor.h>
  24#include <asm/processor-flags.h>
  25#include <asm/fpu/api.h>
  26#include <asm/msr.h>
  27#include <asm/vmx.h>
  28#include <asm/paravirt.h>
  29#include <asm/cpu_device_id.h>
 
 
  30#include <asm/e820/api.h>
  31#include <asm/hypervisor.h>
  32#include <asm/tlbflush.h>
  33#include <asm/cpu.h>
  34
  35#include "cpu.h"
  36
  37static void __init spectre_v1_select_mitigation(void);
  38static void __init spectre_v2_select_mitigation(void);
  39static void __init retbleed_select_mitigation(void);
  40static void __init spectre_v2_user_select_mitigation(void);
  41static void __init ssb_select_mitigation(void);
  42static void __init l1tf_select_mitigation(void);
  43static void __init mds_select_mitigation(void);
  44static void __init md_clear_update_mitigation(void);
  45static void __init md_clear_select_mitigation(void);
  46static void __init taa_select_mitigation(void);
  47static void __init mmio_select_mitigation(void);
  48static void __init srbds_select_mitigation(void);
  49static void __init l1d_flush_select_mitigation(void);
  50static void __init srso_select_mitigation(void);
  51static void __init gds_select_mitigation(void);
  52
  53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
  54u64 x86_spec_ctrl_base;
  55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
  56
  57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
  58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
  59EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
  60
  61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
  62EXPORT_SYMBOL_GPL(x86_pred_cmd);
  63
  64static u64 __ro_after_init x86_arch_cap_msr;
  65
  66static DEFINE_MUTEX(spec_ctrl_mutex);
  67
  68void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
  69
  70/* Update SPEC_CTRL MSR and its cached copy unconditionally */
  71static void update_spec_ctrl(u64 val)
  72{
  73	this_cpu_write(x86_spec_ctrl_current, val);
  74	wrmsrl(MSR_IA32_SPEC_CTRL, val);
  75}
  76
  77/*
  78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
  79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
  80 */
  81void update_spec_ctrl_cond(u64 val)
  82{
  83	if (this_cpu_read(x86_spec_ctrl_current) == val)
  84		return;
  85
  86	this_cpu_write(x86_spec_ctrl_current, val);
  87
  88	/*
  89	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
  90	 * forced the update can be delayed until that time.
  91	 */
  92	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
  93		wrmsrl(MSR_IA32_SPEC_CTRL, val);
  94}
  95
  96noinstr u64 spec_ctrl_current(void)
  97{
  98	return this_cpu_read(x86_spec_ctrl_current);
  99}
 100EXPORT_SYMBOL_GPL(spec_ctrl_current);
 101
 102/*
 103 * AMD specific MSR info for Speculative Store Bypass control.
 104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
 105 */
 106u64 __ro_after_init x86_amd_ls_cfg_base;
 107u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
 108
 109/* Control conditional STIBP in switch_to() */
 110DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
 111/* Control conditional IBPB in switch_mm() */
 112DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
 113/* Control unconditional IBPB in switch_mm() */
 114DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
 115
 
 
 
 116/* Control MDS CPU buffer clear before idling (halt, mwait) */
 117DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
 118EXPORT_SYMBOL_GPL(mds_idle_clear);
 119
 120/*
 121 * Controls whether l1d flush based mitigations are enabled,
 122 * based on hw features and admin setting via boot parameter
 123 * defaults to false
 124 */
 125DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
 126
 127/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
 128DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
 129EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
 130
 131void __init cpu_select_mitigations(void)
 132{
 
 
 
 
 
 
 
 
 
 
 
 
 
 133	/*
 134	 * Read the SPEC_CTRL MSR to account for reserved bits which may
 135	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
 136	 * init code as it is not enumerated and depends on the family.
 137	 */
 138	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
 139		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
 140
 141		/*
 142		 * Previously running kernel (kexec), may have some controls
 143		 * turned ON. Clear them and let the mitigations setup below
 144		 * rediscover them based on configuration.
 145		 */
 146		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
 147	}
 148
 149	x86_arch_cap_msr = x86_read_arch_cap_msr();
 150
 151	/* Select the proper CPU mitigations before patching alternatives: */
 152	spectre_v1_select_mitigation();
 153	spectre_v2_select_mitigation();
 154	/*
 155	 * retbleed_select_mitigation() relies on the state set by
 156	 * spectre_v2_select_mitigation(); specifically it wants to know about
 157	 * spectre_v2=ibrs.
 158	 */
 159	retbleed_select_mitigation();
 160	/*
 161	 * spectre_v2_user_select_mitigation() relies on the state set by
 162	 * retbleed_select_mitigation(); specifically the STIBP selection is
 163	 * forced for UNRET or IBPB.
 164	 */
 165	spectre_v2_user_select_mitigation();
 166	ssb_select_mitigation();
 167	l1tf_select_mitigation();
 168	md_clear_select_mitigation();
 169	srbds_select_mitigation();
 170	l1d_flush_select_mitigation();
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172	/*
 173	 * srso_select_mitigation() depends and must run after
 174	 * retbleed_select_mitigation().
 
 
 
 
 175	 */
 176	srso_select_mitigation();
 177	gds_select_mitigation();
 
 178}
 179
 180/*
 181 * NOTE: This function is *only* called for SVM, since Intel uses
 182 * MSR_IA32_SPEC_CTRL for SSBD.
 183 */
 184void
 185x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
 186{
 187	u64 guestval, hostval;
 188	struct thread_info *ti = current_thread_info();
 189
 190	/*
 191	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
 192	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
 193	 */
 194	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 195	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
 196		return;
 197
 198	/*
 199	 * If the host has SSBD mitigation enabled, force it in the host's
 200	 * virtual MSR value. If its not permanently enabled, evaluate
 201	 * current's TIF_SSBD thread flag.
 202	 */
 203	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
 204		hostval = SPEC_CTRL_SSBD;
 205	else
 206		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
 207
 208	/* Sanitize the guest value */
 209	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
 210
 211	if (hostval != guestval) {
 212		unsigned long tif;
 213
 214		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
 215				 ssbd_spec_ctrl_to_tif(hostval);
 216
 217		speculation_ctrl_update(tif);
 218	}
 219}
 220EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
 221
 222static void x86_amd_ssb_disable(void)
 223{
 224	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
 225
 226	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
 227		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
 228	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 229		wrmsrl(MSR_AMD64_LS_CFG, msrval);
 230}
 231
 232#undef pr_fmt
 233#define pr_fmt(fmt)	"MDS: " fmt
 234
 235/* Default mitigation for MDS-affected CPUs */
 236static enum mds_mitigations mds_mitigation __ro_after_init =
 237	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_FULL : MDS_MITIGATION_OFF;
 238static bool mds_nosmt __ro_after_init = false;
 239
 240static const char * const mds_strings[] = {
 241	[MDS_MITIGATION_OFF]	= "Vulnerable",
 242	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
 243	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 244};
 245
 246static void __init mds_select_mitigation(void)
 247{
 248	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
 249		mds_mitigation = MDS_MITIGATION_OFF;
 250		return;
 251	}
 252
 253	if (mds_mitigation == MDS_MITIGATION_FULL) {
 254		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
 255			mds_mitigation = MDS_MITIGATION_VMWERV;
 256
 257		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 258
 259		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
 260		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
 261			cpu_smt_disable(false);
 262	}
 263}
 264
 265static int __init mds_cmdline(char *str)
 266{
 267	if (!boot_cpu_has_bug(X86_BUG_MDS))
 268		return 0;
 269
 270	if (!str)
 271		return -EINVAL;
 272
 273	if (!strcmp(str, "off"))
 274		mds_mitigation = MDS_MITIGATION_OFF;
 275	else if (!strcmp(str, "full"))
 276		mds_mitigation = MDS_MITIGATION_FULL;
 277	else if (!strcmp(str, "full,nosmt")) {
 278		mds_mitigation = MDS_MITIGATION_FULL;
 279		mds_nosmt = true;
 280	}
 281
 282	return 0;
 283}
 284early_param("mds", mds_cmdline);
 285
 286#undef pr_fmt
 287#define pr_fmt(fmt)	"TAA: " fmt
 288
 289enum taa_mitigations {
 290	TAA_MITIGATION_OFF,
 291	TAA_MITIGATION_UCODE_NEEDED,
 292	TAA_MITIGATION_VERW,
 293	TAA_MITIGATION_TSX_DISABLED,
 294};
 295
 296/* Default mitigation for TAA-affected CPUs */
 297static enum taa_mitigations taa_mitigation __ro_after_init =
 298	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_VERW : TAA_MITIGATION_OFF;
 299static bool taa_nosmt __ro_after_init;
 300
 301static const char * const taa_strings[] = {
 302	[TAA_MITIGATION_OFF]		= "Vulnerable",
 303	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 304	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 305	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
 306};
 307
 308static void __init taa_select_mitigation(void)
 309{
 
 
 310	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
 311		taa_mitigation = TAA_MITIGATION_OFF;
 312		return;
 313	}
 314
 315	/* TSX previously disabled by tsx=off */
 316	if (!boot_cpu_has(X86_FEATURE_RTM)) {
 317		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
 318		return;
 319	}
 320
 321	if (cpu_mitigations_off()) {
 322		taa_mitigation = TAA_MITIGATION_OFF;
 323		return;
 324	}
 325
 326	/*
 327	 * TAA mitigation via VERW is turned off if both
 328	 * tsx_async_abort=off and mds=off are specified.
 329	 */
 330	if (taa_mitigation == TAA_MITIGATION_OFF &&
 331	    mds_mitigation == MDS_MITIGATION_OFF)
 332		return;
 333
 334	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
 335		taa_mitigation = TAA_MITIGATION_VERW;
 336	else
 337		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 338
 339	/*
 340	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
 341	 * A microcode update fixes this behavior to clear CPU buffers. It also
 342	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
 343	 * ARCH_CAP_TSX_CTRL_MSR bit.
 344	 *
 345	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
 346	 * update is required.
 347	 */
 348	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
 349	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
 
 350		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 351
 352	/*
 353	 * TSX is enabled, select alternate mitigation for TAA which is
 354	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
 355	 *
 356	 * For guests that can't determine whether the correct microcode is
 357	 * present on host, enable the mitigation for UCODE_NEEDED as well.
 358	 */
 359	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 360
 361	if (taa_nosmt || cpu_mitigations_auto_nosmt())
 362		cpu_smt_disable(false);
 363}
 364
 365static int __init tsx_async_abort_parse_cmdline(char *str)
 366{
 367	if (!boot_cpu_has_bug(X86_BUG_TAA))
 368		return 0;
 369
 370	if (!str)
 371		return -EINVAL;
 372
 373	if (!strcmp(str, "off")) {
 374		taa_mitigation = TAA_MITIGATION_OFF;
 375	} else if (!strcmp(str, "full")) {
 376		taa_mitigation = TAA_MITIGATION_VERW;
 377	} else if (!strcmp(str, "full,nosmt")) {
 378		taa_mitigation = TAA_MITIGATION_VERW;
 379		taa_nosmt = true;
 380	}
 381
 382	return 0;
 383}
 384early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
 385
 386#undef pr_fmt
 387#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
 388
 389enum mmio_mitigations {
 390	MMIO_MITIGATION_OFF,
 391	MMIO_MITIGATION_UCODE_NEEDED,
 392	MMIO_MITIGATION_VERW,
 393};
 394
 395/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
 396static enum mmio_mitigations mmio_mitigation __ro_after_init =
 397	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ? MMIO_MITIGATION_VERW : MMIO_MITIGATION_OFF;
 398static bool mmio_nosmt __ro_after_init = false;
 399
 400static const char * const mmio_strings[] = {
 401	[MMIO_MITIGATION_OFF]		= "Vulnerable",
 402	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 403	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 404};
 405
 406static void __init mmio_select_mitigation(void)
 407{
 
 
 408	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
 409	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
 410	     cpu_mitigations_off()) {
 411		mmio_mitigation = MMIO_MITIGATION_OFF;
 412		return;
 413	}
 414
 415	if (mmio_mitigation == MMIO_MITIGATION_OFF)
 416		return;
 417
 
 
 418	/*
 419	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
 420	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
 421	 */
 422	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
 423					      boot_cpu_has(X86_FEATURE_RTM)))
 424		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 425
 426	/*
 427	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
 428	 * mitigations, disable KVM-only mitigation in that case.
 429	 */
 430	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
 431		static_branch_disable(&mmio_stale_data_clear);
 432	else
 433		static_branch_enable(&mmio_stale_data_clear);
 434
 435	/*
 436	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
 437	 * be propagated to uncore buffers, clearing the Fill buffers on idle
 438	 * is required irrespective of SMT state.
 439	 */
 440	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
 441		static_branch_enable(&mds_idle_clear);
 442
 443	/*
 444	 * Check if the system has the right microcode.
 445	 *
 446	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
 447	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
 448	 * affected systems.
 449	 */
 450	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
 451	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
 452	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
 453	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
 454		mmio_mitigation = MMIO_MITIGATION_VERW;
 455	else
 456		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
 457
 458	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
 459		cpu_smt_disable(false);
 460}
 461
 462static int __init mmio_stale_data_parse_cmdline(char *str)
 463{
 464	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 465		return 0;
 466
 467	if (!str)
 468		return -EINVAL;
 469
 470	if (!strcmp(str, "off")) {
 471		mmio_mitigation = MMIO_MITIGATION_OFF;
 472	} else if (!strcmp(str, "full")) {
 473		mmio_mitigation = MMIO_MITIGATION_VERW;
 474	} else if (!strcmp(str, "full,nosmt")) {
 475		mmio_mitigation = MMIO_MITIGATION_VERW;
 476		mmio_nosmt = true;
 477	}
 478
 479	return 0;
 480}
 481early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
 482
 483#undef pr_fmt
 484#define pr_fmt(fmt)	"Register File Data Sampling: " fmt
 485
 486enum rfds_mitigations {
 487	RFDS_MITIGATION_OFF,
 488	RFDS_MITIGATION_VERW,
 489	RFDS_MITIGATION_UCODE_NEEDED,
 490};
 491
 492/* Default mitigation for Register File Data Sampling */
 493static enum rfds_mitigations rfds_mitigation __ro_after_init =
 494	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
 495
 496static const char * const rfds_strings[] = {
 497	[RFDS_MITIGATION_OFF]			= "Vulnerable",
 498	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
 499	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
 500};
 501
 502static void __init rfds_select_mitigation(void)
 503{
 504	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
 505		rfds_mitigation = RFDS_MITIGATION_OFF;
 506		return;
 507	}
 508	if (rfds_mitigation == RFDS_MITIGATION_OFF)
 509		return;
 510
 511	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
 512		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
 513	else
 514		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
 515}
 516
 517static __init int rfds_parse_cmdline(char *str)
 518{
 519	if (!str)
 520		return -EINVAL;
 521
 522	if (!boot_cpu_has_bug(X86_BUG_RFDS))
 523		return 0;
 524
 525	if (!strcmp(str, "off"))
 526		rfds_mitigation = RFDS_MITIGATION_OFF;
 527	else if (!strcmp(str, "on"))
 528		rfds_mitigation = RFDS_MITIGATION_VERW;
 529
 530	return 0;
 531}
 532early_param("reg_file_data_sampling", rfds_parse_cmdline);
 533
 534#undef pr_fmt
 535#define pr_fmt(fmt)     "" fmt
 536
 537static void __init md_clear_update_mitigation(void)
 538{
 539	if (cpu_mitigations_off())
 540		return;
 541
 542	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
 543		goto out;
 544
 545	/*
 546	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
 547	 * Stale Data mitigation, if necessary.
 548	 */
 549	if (mds_mitigation == MDS_MITIGATION_OFF &&
 550	    boot_cpu_has_bug(X86_BUG_MDS)) {
 551		mds_mitigation = MDS_MITIGATION_FULL;
 552		mds_select_mitigation();
 553	}
 554	if (taa_mitigation == TAA_MITIGATION_OFF &&
 555	    boot_cpu_has_bug(X86_BUG_TAA)) {
 556		taa_mitigation = TAA_MITIGATION_VERW;
 557		taa_select_mitigation();
 558	}
 559	/*
 560	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
 561	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
 562	 */
 563	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
 564		mmio_mitigation = MMIO_MITIGATION_VERW;
 565		mmio_select_mitigation();
 566	}
 567	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
 568	    boot_cpu_has_bug(X86_BUG_RFDS)) {
 569		rfds_mitigation = RFDS_MITIGATION_VERW;
 570		rfds_select_mitigation();
 571	}
 572out:
 573	if (boot_cpu_has_bug(X86_BUG_MDS))
 574		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
 575	if (boot_cpu_has_bug(X86_BUG_TAA))
 576		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
 577	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 578		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
 579	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
 580		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
 581	if (boot_cpu_has_bug(X86_BUG_RFDS))
 582		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
 583}
 584
 585static void __init md_clear_select_mitigation(void)
 586{
 587	mds_select_mitigation();
 588	taa_select_mitigation();
 589	mmio_select_mitigation();
 590	rfds_select_mitigation();
 591
 592	/*
 593	 * As these mitigations are inter-related and rely on VERW instruction
 594	 * to clear the microarchitural buffers, update and print their status
 595	 * after mitigation selection is done for each of these vulnerabilities.
 596	 */
 597	md_clear_update_mitigation();
 598}
 599
 600#undef pr_fmt
 601#define pr_fmt(fmt)	"SRBDS: " fmt
 602
 603enum srbds_mitigations {
 604	SRBDS_MITIGATION_OFF,
 605	SRBDS_MITIGATION_UCODE_NEEDED,
 606	SRBDS_MITIGATION_FULL,
 607	SRBDS_MITIGATION_TSX_OFF,
 608	SRBDS_MITIGATION_HYPERVISOR,
 609};
 610
 611static enum srbds_mitigations srbds_mitigation __ro_after_init =
 612	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_FULL : SRBDS_MITIGATION_OFF;
 613
 614static const char * const srbds_strings[] = {
 615	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
 616	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 617	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 618	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
 619	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 620};
 621
 622static bool srbds_off;
 623
 624void update_srbds_msr(void)
 625{
 626	u64 mcu_ctrl;
 627
 628	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 629		return;
 630
 631	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 632		return;
 633
 634	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
 635		return;
 636
 637	/*
 638	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
 639	 * being disabled and it hasn't received the SRBDS MSR microcode.
 640	 */
 641	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 642		return;
 643
 644	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 645
 646	switch (srbds_mitigation) {
 647	case SRBDS_MITIGATION_OFF:
 648	case SRBDS_MITIGATION_TSX_OFF:
 649		mcu_ctrl |= RNGDS_MITG_DIS;
 650		break;
 651	case SRBDS_MITIGATION_FULL:
 652		mcu_ctrl &= ~RNGDS_MITG_DIS;
 653		break;
 654	default:
 655		break;
 656	}
 657
 658	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 659}
 660
 661static void __init srbds_select_mitigation(void)
 662{
 
 
 663	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 664		return;
 665
 666	/*
 667	 * Check to see if this is one of the MDS_NO systems supporting TSX that
 668	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
 669	 * by Processor MMIO Stale Data vulnerability.
 670	 */
 671	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
 
 672	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 673		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
 674	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 675		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
 676	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 677		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
 678	else if (cpu_mitigations_off() || srbds_off)
 679		srbds_mitigation = SRBDS_MITIGATION_OFF;
 680
 681	update_srbds_msr();
 682	pr_info("%s\n", srbds_strings[srbds_mitigation]);
 683}
 684
 685static int __init srbds_parse_cmdline(char *str)
 686{
 687	if (!str)
 688		return -EINVAL;
 689
 690	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 691		return 0;
 692
 693	srbds_off = !strcmp(str, "off");
 694	return 0;
 695}
 696early_param("srbds", srbds_parse_cmdline);
 697
 698#undef pr_fmt
 699#define pr_fmt(fmt)     "L1D Flush : " fmt
 700
 701enum l1d_flush_mitigations {
 702	L1D_FLUSH_OFF = 0,
 703	L1D_FLUSH_ON,
 704};
 705
 706static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
 707
 708static void __init l1d_flush_select_mitigation(void)
 709{
 710	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
 711		return;
 712
 713	static_branch_enable(&switch_mm_cond_l1d_flush);
 714	pr_info("Conditional flush on switch_mm() enabled\n");
 715}
 716
 717static int __init l1d_flush_parse_cmdline(char *str)
 718{
 719	if (!strcmp(str, "on"))
 720		l1d_flush_mitigation = L1D_FLUSH_ON;
 721
 722	return 0;
 723}
 724early_param("l1d_flush", l1d_flush_parse_cmdline);
 725
 726#undef pr_fmt
 727#define pr_fmt(fmt)	"GDS: " fmt
 728
 729enum gds_mitigations {
 730	GDS_MITIGATION_OFF,
 731	GDS_MITIGATION_UCODE_NEEDED,
 732	GDS_MITIGATION_FORCE,
 733	GDS_MITIGATION_FULL,
 734	GDS_MITIGATION_FULL_LOCKED,
 735	GDS_MITIGATION_HYPERVISOR,
 736};
 737
 738static enum gds_mitigations gds_mitigation __ro_after_init =
 739	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_FULL : GDS_MITIGATION_OFF;
 740
 741static const char * const gds_strings[] = {
 742	[GDS_MITIGATION_OFF]		= "Vulnerable",
 743	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 744	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
 745	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 746	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
 747	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 748};
 749
 750bool gds_ucode_mitigated(void)
 751{
 752	return (gds_mitigation == GDS_MITIGATION_FULL ||
 753		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
 754}
 755EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
 756
 757void update_gds_msr(void)
 758{
 759	u64 mcu_ctrl_after;
 760	u64 mcu_ctrl;
 761
 762	switch (gds_mitigation) {
 763	case GDS_MITIGATION_OFF:
 764		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 765		mcu_ctrl |= GDS_MITG_DIS;
 766		break;
 767	case GDS_MITIGATION_FULL_LOCKED:
 768		/*
 769		 * The LOCKED state comes from the boot CPU. APs might not have
 770		 * the same state. Make sure the mitigation is enabled on all
 771		 * CPUs.
 772		 */
 773	case GDS_MITIGATION_FULL:
 774		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 775		mcu_ctrl &= ~GDS_MITG_DIS;
 776		break;
 777	case GDS_MITIGATION_FORCE:
 778	case GDS_MITIGATION_UCODE_NEEDED:
 779	case GDS_MITIGATION_HYPERVISOR:
 780		return;
 781	}
 782
 783	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 784
 785	/*
 786	 * Check to make sure that the WRMSR value was not ignored. Writes to
 787	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
 788	 * processor was not.
 789	 */
 790	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
 791	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
 792}
 793
 794static void __init gds_select_mitigation(void)
 795{
 796	u64 mcu_ctrl;
 797
 798	if (!boot_cpu_has_bug(X86_BUG_GDS))
 799		return;
 800
 801	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 802		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
 803		goto out;
 804	}
 805
 806	if (cpu_mitigations_off())
 807		gds_mitigation = GDS_MITIGATION_OFF;
 808	/* Will verify below that mitigation _can_ be disabled */
 809
 810	/* No microcode */
 811	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
 812		if (gds_mitigation == GDS_MITIGATION_FORCE) {
 813			/*
 814			 * This only needs to be done on the boot CPU so do it
 815			 * here rather than in update_gds_msr()
 816			 */
 817			setup_clear_cpu_cap(X86_FEATURE_AVX);
 818			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
 819		} else {
 820			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
 821		}
 822		goto out;
 823	}
 824
 825	/* Microcode has mitigation, use it */
 826	if (gds_mitigation == GDS_MITIGATION_FORCE)
 827		gds_mitigation = GDS_MITIGATION_FULL;
 828
 829	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 830	if (mcu_ctrl & GDS_MITG_LOCKED) {
 831		if (gds_mitigation == GDS_MITIGATION_OFF)
 832			pr_warn("Mitigation locked. Disable failed.\n");
 833
 834		/*
 835		 * The mitigation is selected from the boot CPU. All other CPUs
 836		 * _should_ have the same state. If the boot CPU isn't locked
 837		 * but others are then update_gds_msr() will WARN() of the state
 838		 * mismatch. If the boot CPU is locked update_gds_msr() will
 839		 * ensure the other CPUs have the mitigation enabled.
 840		 */
 841		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
 842	}
 843
 844	update_gds_msr();
 845out:
 846	pr_info("%s\n", gds_strings[gds_mitigation]);
 847}
 848
 849static int __init gds_parse_cmdline(char *str)
 850{
 851	if (!str)
 852		return -EINVAL;
 853
 854	if (!boot_cpu_has_bug(X86_BUG_GDS))
 855		return 0;
 856
 857	if (!strcmp(str, "off"))
 858		gds_mitigation = GDS_MITIGATION_OFF;
 859	else if (!strcmp(str, "force"))
 860		gds_mitigation = GDS_MITIGATION_FORCE;
 861
 862	return 0;
 863}
 864early_param("gather_data_sampling", gds_parse_cmdline);
 865
 866#undef pr_fmt
 867#define pr_fmt(fmt)     "Spectre V1 : " fmt
 868
 869enum spectre_v1_mitigation {
 870	SPECTRE_V1_MITIGATION_NONE,
 871	SPECTRE_V1_MITIGATION_AUTO,
 872};
 873
 874static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
 875	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
 876		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
 877
 878static const char * const spectre_v1_strings[] = {
 879	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
 880	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
 881};
 882
 883/*
 884 * Does SMAP provide full mitigation against speculative kernel access to
 885 * userspace?
 886 */
 887static bool smap_works_speculatively(void)
 888{
 889	if (!boot_cpu_has(X86_FEATURE_SMAP))
 890		return false;
 891
 892	/*
 893	 * On CPUs which are vulnerable to Meltdown, SMAP does not
 894	 * prevent speculative access to user data in the L1 cache.
 895	 * Consider SMAP to be non-functional as a mitigation on these
 896	 * CPUs.
 897	 */
 898	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
 899		return false;
 900
 901	return true;
 902}
 903
 904static void __init spectre_v1_select_mitigation(void)
 905{
 906	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
 907		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 908		return;
 909	}
 910
 911	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
 912		/*
 913		 * With Spectre v1, a user can speculatively control either
 914		 * path of a conditional swapgs with a user-controlled GS
 915		 * value.  The mitigation is to add lfences to both code paths.
 916		 *
 917		 * If FSGSBASE is enabled, the user can put a kernel address in
 918		 * GS, in which case SMAP provides no protection.
 919		 *
 920		 * If FSGSBASE is disabled, the user can only put a user space
 921		 * address in GS.  That makes an attack harder, but still
 922		 * possible if there's no SMAP protection.
 923		 */
 924		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 925		    !smap_works_speculatively()) {
 926			/*
 927			 * Mitigation can be provided from SWAPGS itself or
 928			 * PTI as the CR3 write in the Meltdown mitigation
 929			 * is serializing.
 930			 *
 931			 * If neither is there, mitigate with an LFENCE to
 932			 * stop speculation through swapgs.
 933			 */
 934			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
 935			    !boot_cpu_has(X86_FEATURE_PTI))
 936				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
 937
 938			/*
 939			 * Enable lfences in the kernel entry (non-swapgs)
 940			 * paths, to prevent user entry from speculatively
 941			 * skipping swapgs.
 942			 */
 943			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
 944		}
 945	}
 946
 947	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
 948}
 949
 950static int __init nospectre_v1_cmdline(char *str)
 951{
 952	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 953	return 0;
 954}
 955early_param("nospectre_v1", nospectre_v1_cmdline);
 956
 957enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
 
 958
 959#undef pr_fmt
 960#define pr_fmt(fmt)     "RETBleed: " fmt
 961
 962enum retbleed_mitigation {
 963	RETBLEED_MITIGATION_NONE,
 964	RETBLEED_MITIGATION_UNRET,
 965	RETBLEED_MITIGATION_IBPB,
 966	RETBLEED_MITIGATION_IBRS,
 967	RETBLEED_MITIGATION_EIBRS,
 968	RETBLEED_MITIGATION_STUFF,
 969};
 970
 971enum retbleed_mitigation_cmd {
 972	RETBLEED_CMD_OFF,
 973	RETBLEED_CMD_AUTO,
 974	RETBLEED_CMD_UNRET,
 975	RETBLEED_CMD_IBPB,
 976	RETBLEED_CMD_STUFF,
 977};
 978
 979static const char * const retbleed_strings[] = {
 980	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
 981	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
 982	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
 983	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
 984	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
 985	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
 986};
 987
 988static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
 989	RETBLEED_MITIGATION_NONE;
 990static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
 991	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_CMD_AUTO : RETBLEED_CMD_OFF;
 992
 993static int __ro_after_init retbleed_nosmt = false;
 994
 995static int __init retbleed_parse_cmdline(char *str)
 996{
 997	if (!str)
 998		return -EINVAL;
 999
1000	while (str) {
1001		char *next = strchr(str, ',');
1002		if (next) {
1003			*next = 0;
1004			next++;
1005		}
1006
1007		if (!strcmp(str, "off")) {
1008			retbleed_cmd = RETBLEED_CMD_OFF;
1009		} else if (!strcmp(str, "auto")) {
1010			retbleed_cmd = RETBLEED_CMD_AUTO;
1011		} else if (!strcmp(str, "unret")) {
1012			retbleed_cmd = RETBLEED_CMD_UNRET;
1013		} else if (!strcmp(str, "ibpb")) {
1014			retbleed_cmd = RETBLEED_CMD_IBPB;
1015		} else if (!strcmp(str, "stuff")) {
1016			retbleed_cmd = RETBLEED_CMD_STUFF;
1017		} else if (!strcmp(str, "nosmt")) {
1018			retbleed_nosmt = true;
1019		} else if (!strcmp(str, "force")) {
1020			setup_force_cpu_bug(X86_BUG_RETBLEED);
1021		} else {
1022			pr_err("Ignoring unknown retbleed option (%s).", str);
1023		}
1024
1025		str = next;
1026	}
1027
1028	return 0;
1029}
1030early_param("retbleed", retbleed_parse_cmdline);
1031
1032#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1033#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1034
1035static void __init retbleed_select_mitigation(void)
1036{
1037	bool mitigate_smt = false;
1038
1039	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1040		return;
1041
1042	switch (retbleed_cmd) {
1043	case RETBLEED_CMD_OFF:
1044		return;
1045
1046	case RETBLEED_CMD_UNRET:
1047		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1048			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1049		} else {
1050			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1051			goto do_cmd_auto;
1052		}
1053		break;
1054
1055	case RETBLEED_CMD_IBPB:
1056		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1057			pr_err("WARNING: CPU does not support IBPB.\n");
1058			goto do_cmd_auto;
1059		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1060			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1061		} else {
1062			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1063			goto do_cmd_auto;
1064		}
1065		break;
1066
1067	case RETBLEED_CMD_STUFF:
1068		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1069		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1070			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1071
1072		} else {
1073			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1074				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1075			else
1076				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1077
1078			goto do_cmd_auto;
1079		}
1080		break;
1081
1082do_cmd_auto:
1083	case RETBLEED_CMD_AUTO:
 
1084		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1085		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1086			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1087				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1088			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1089				 boot_cpu_has(X86_FEATURE_IBPB))
1090				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1091		}
1092
1093		/*
1094		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1095		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1096		 * be set accordingly below.
1097		 */
1098
1099		break;
1100	}
1101
1102	switch (retbleed_mitigation) {
1103	case RETBLEED_MITIGATION_UNRET:
1104		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1105		setup_force_cpu_cap(X86_FEATURE_UNRET);
1106
1107		x86_return_thunk = retbleed_return_thunk;
1108
1109		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1110		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1111			pr_err(RETBLEED_UNTRAIN_MSG);
1112
1113		mitigate_smt = true;
1114		break;
1115
1116	case RETBLEED_MITIGATION_IBPB:
1117		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1118		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1119		mitigate_smt = true;
1120
1121		/*
1122		 * IBPB on entry already obviates the need for
1123		 * software-based untraining so clear those in case some
1124		 * other mitigation like SRSO has selected them.
1125		 */
1126		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1127		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1128
1129		/*
1130		 * There is no need for RSB filling: entry_ibpb() ensures
1131		 * all predictions, including the RSB, are invalidated,
1132		 * regardless of IBPB implementation.
1133		 */
1134		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1135
1136		break;
1137
1138	case RETBLEED_MITIGATION_STUFF:
1139		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1140		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1141
1142		x86_return_thunk = call_depth_return_thunk;
1143		break;
1144
1145	default:
1146		break;
1147	}
1148
1149	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1150	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1151		cpu_smt_disable(false);
1152
1153	/*
1154	 * Let IBRS trump all on Intel without affecting the effects of the
1155	 * retbleed= cmdline option except for call depth based stuffing
1156	 */
1157	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1158		switch (spectre_v2_enabled) {
1159		case SPECTRE_V2_IBRS:
1160			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1161			break;
1162		case SPECTRE_V2_EIBRS:
1163		case SPECTRE_V2_EIBRS_RETPOLINE:
1164		case SPECTRE_V2_EIBRS_LFENCE:
1165			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1166			break;
1167		default:
1168			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1169				pr_err(RETBLEED_INTEL_MSG);
1170		}
1171	}
1172
1173	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1174}
1175
1176#undef pr_fmt
1177#define pr_fmt(fmt)     "Spectre V2 : " fmt
1178
1179static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1180	SPECTRE_V2_USER_NONE;
1181static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1182	SPECTRE_V2_USER_NONE;
1183
1184#ifdef CONFIG_MITIGATION_RETPOLINE
1185static bool spectre_v2_bad_module;
1186
1187bool retpoline_module_ok(bool has_retpoline)
1188{
1189	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1190		return true;
1191
1192	pr_err("System may be vulnerable to spectre v2\n");
1193	spectre_v2_bad_module = true;
1194	return false;
1195}
1196
1197static inline const char *spectre_v2_module_string(void)
1198{
1199	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1200}
1201#else
1202static inline const char *spectre_v2_module_string(void) { return ""; }
1203#endif
1204
1205#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1206#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1207#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1208#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1209
1210#ifdef CONFIG_BPF_SYSCALL
1211void unpriv_ebpf_notify(int new_state)
1212{
1213	if (new_state)
1214		return;
1215
1216	/* Unprivileged eBPF is enabled */
1217
1218	switch (spectre_v2_enabled) {
1219	case SPECTRE_V2_EIBRS:
1220		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1221		break;
1222	case SPECTRE_V2_EIBRS_LFENCE:
1223		if (sched_smt_active())
1224			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1225		break;
1226	default:
1227		break;
1228	}
1229}
1230#endif
1231
1232static inline bool match_option(const char *arg, int arglen, const char *opt)
1233{
1234	int len = strlen(opt);
1235
1236	return len == arglen && !strncmp(arg, opt, len);
1237}
1238
1239/* The kernel command line selection for spectre v2 */
1240enum spectre_v2_mitigation_cmd {
1241	SPECTRE_V2_CMD_NONE,
1242	SPECTRE_V2_CMD_AUTO,
1243	SPECTRE_V2_CMD_FORCE,
1244	SPECTRE_V2_CMD_RETPOLINE,
1245	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1246	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1247	SPECTRE_V2_CMD_EIBRS,
1248	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1249	SPECTRE_V2_CMD_EIBRS_LFENCE,
1250	SPECTRE_V2_CMD_IBRS,
1251};
1252
1253enum spectre_v2_user_cmd {
1254	SPECTRE_V2_USER_CMD_NONE,
1255	SPECTRE_V2_USER_CMD_AUTO,
1256	SPECTRE_V2_USER_CMD_FORCE,
1257	SPECTRE_V2_USER_CMD_PRCTL,
1258	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1259	SPECTRE_V2_USER_CMD_SECCOMP,
1260	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1261};
1262
1263static const char * const spectre_v2_user_strings[] = {
1264	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1265	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1266	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1267	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1268	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1269};
1270
1271static const struct {
1272	const char			*option;
1273	enum spectre_v2_user_cmd	cmd;
1274	bool				secure;
1275} v2_user_options[] __initconst = {
1276	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1277	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1278	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1279	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1280	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1281	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1282	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1283};
1284
1285static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1286{
1287	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1288		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1289}
1290
1291static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1292
1293static enum spectre_v2_user_cmd __init
1294spectre_v2_parse_user_cmdline(void)
1295{
1296	char arg[20];
1297	int ret, i;
1298
1299	switch (spectre_v2_cmd) {
1300	case SPECTRE_V2_CMD_NONE:
1301		return SPECTRE_V2_USER_CMD_NONE;
1302	case SPECTRE_V2_CMD_FORCE:
1303		return SPECTRE_V2_USER_CMD_FORCE;
1304	default:
1305		break;
1306	}
1307
1308	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1309				  arg, sizeof(arg));
1310	if (ret < 0)
1311		return SPECTRE_V2_USER_CMD_AUTO;
1312
1313	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1314		if (match_option(arg, ret, v2_user_options[i].option)) {
1315			spec_v2_user_print_cond(v2_user_options[i].option,
1316						v2_user_options[i].secure);
1317			return v2_user_options[i].cmd;
1318		}
1319	}
1320
1321	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1322	return SPECTRE_V2_USER_CMD_AUTO;
1323}
1324
1325static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1326{
1327	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
 
 
 
1328}
1329
1330static void __init
1331spectre_v2_user_select_mitigation(void)
1332{
1333	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1334	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1335	enum spectre_v2_user_cmd cmd;
1336
1337	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1338		return;
1339
1340	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1341	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1342		smt_possible = false;
1343
1344	cmd = spectre_v2_parse_user_cmdline();
1345	switch (cmd) {
1346	case SPECTRE_V2_USER_CMD_NONE:
1347		goto set_mode;
1348	case SPECTRE_V2_USER_CMD_FORCE:
1349		mode = SPECTRE_V2_USER_STRICT;
1350		break;
1351	case SPECTRE_V2_USER_CMD_AUTO:
1352	case SPECTRE_V2_USER_CMD_PRCTL:
1353	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1354		mode = SPECTRE_V2_USER_PRCTL;
1355		break;
1356	case SPECTRE_V2_USER_CMD_SECCOMP:
1357	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1358		if (IS_ENABLED(CONFIG_SECCOMP))
1359			mode = SPECTRE_V2_USER_SECCOMP;
1360		else
1361			mode = SPECTRE_V2_USER_PRCTL;
1362		break;
1363	}
1364
1365	/* Initialize Indirect Branch Prediction Barrier */
1366	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1367		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1368
1369		spectre_v2_user_ibpb = mode;
1370		switch (cmd) {
1371		case SPECTRE_V2_USER_CMD_NONE:
1372			break;
1373		case SPECTRE_V2_USER_CMD_FORCE:
1374		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1375		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1376			static_branch_enable(&switch_mm_always_ibpb);
1377			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1378			break;
1379		case SPECTRE_V2_USER_CMD_PRCTL:
1380		case SPECTRE_V2_USER_CMD_AUTO:
1381		case SPECTRE_V2_USER_CMD_SECCOMP:
1382			static_branch_enable(&switch_mm_cond_ibpb);
1383			break;
 
 
1384		}
1385
1386		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1387			static_key_enabled(&switch_mm_always_ibpb) ?
1388			"always-on" : "conditional");
1389	}
1390
1391	/*
1392	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1393	 * is not required.
1394	 *
1395	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1396	 * injection in user-mode as the IBRS bit remains always set which
1397	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1398	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1399	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1400	 * These modes therefore disable the implicit cross-thread protection,
1401	 * so allow for STIBP to be selected in those cases.
1402	 */
1403	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1404	    !smt_possible ||
1405	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1406	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1407		return;
1408
1409	/*
1410	 * At this point, an STIBP mode other than "off" has been set.
1411	 * If STIBP support is not being forced, check if STIBP always-on
1412	 * is preferred.
1413	 */
1414	if (mode != SPECTRE_V2_USER_STRICT &&
1415	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1416		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1417
1418	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1419	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1420		if (mode != SPECTRE_V2_USER_STRICT &&
1421		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1422			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1423		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1424	}
1425
1426	spectre_v2_user_stibp = mode;
1427
1428set_mode:
1429	pr_info("%s\n", spectre_v2_user_strings[mode]);
1430}
1431
1432static const char * const spectre_v2_strings[] = {
1433	[SPECTRE_V2_NONE]			= "Vulnerable",
1434	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1435	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1436	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1437	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1438	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1439	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1440};
1441
1442static const struct {
1443	const char *option;
1444	enum spectre_v2_mitigation_cmd cmd;
1445	bool secure;
1446} mitigation_options[] __initconst = {
1447	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1448	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1449	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1450	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1451	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1452	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1453	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1454	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1455	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1456	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1457	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1458};
1459
1460static void __init spec_v2_print_cond(const char *reason, bool secure)
1461{
1462	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1463		pr_info("%s selected on command line.\n", reason);
1464}
1465
1466static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1467{
1468	enum spectre_v2_mitigation_cmd cmd;
1469	char arg[20];
1470	int ret, i;
1471
1472	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1473	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1474	    cpu_mitigations_off())
1475		return SPECTRE_V2_CMD_NONE;
1476
1477	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1478	if (ret < 0)
1479		return cmd;
1480
1481	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1482		if (!match_option(arg, ret, mitigation_options[i].option))
1483			continue;
1484		cmd = mitigation_options[i].cmd;
1485		break;
1486	}
1487
1488	if (i >= ARRAY_SIZE(mitigation_options)) {
1489		pr_err("unknown option (%s). Switching to default mode\n", arg);
1490		return cmd;
1491	}
1492
1493	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1494	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1495	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1496	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1497	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1498	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1499		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1500		       mitigation_options[i].option);
1501		return SPECTRE_V2_CMD_AUTO;
1502	}
1503
1504	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1505	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1506	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1507	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1508		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1509		       mitigation_options[i].option);
1510		return SPECTRE_V2_CMD_AUTO;
1511	}
1512
1513	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1514	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1515	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1516		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1517		       mitigation_options[i].option);
1518		return SPECTRE_V2_CMD_AUTO;
1519	}
1520
1521	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1522		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1523		       mitigation_options[i].option);
1524		return SPECTRE_V2_CMD_AUTO;
1525	}
1526
1527	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1528		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1529		       mitigation_options[i].option);
1530		return SPECTRE_V2_CMD_AUTO;
1531	}
1532
1533	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1534		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1535		       mitigation_options[i].option);
1536		return SPECTRE_V2_CMD_AUTO;
1537	}
1538
1539	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1540		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1541		       mitigation_options[i].option);
1542		return SPECTRE_V2_CMD_AUTO;
1543	}
1544
1545	spec_v2_print_cond(mitigation_options[i].option,
1546			   mitigation_options[i].secure);
1547	return cmd;
1548}
1549
1550static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1551{
1552	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1553		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1554		return SPECTRE_V2_NONE;
1555	}
1556
1557	return SPECTRE_V2_RETPOLINE;
1558}
1559
1560static bool __ro_after_init rrsba_disabled;
1561
1562/* Disable in-kernel use of non-RSB RET predictors */
1563static void __init spec_ctrl_disable_kernel_rrsba(void)
1564{
1565	if (rrsba_disabled)
1566		return;
1567
1568	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1569		rrsba_disabled = true;
1570		return;
1571	}
1572
1573	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1574		return;
1575
1576	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1577	update_spec_ctrl(x86_spec_ctrl_base);
1578	rrsba_disabled = true;
 
 
 
1579}
1580
1581static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1582{
1583	/*
1584	 * Similar to context switches, there are two types of RSB attacks
1585	 * after VM exit:
1586	 *
1587	 * 1) RSB underflow
1588	 *
1589	 * 2) Poisoned RSB entry
1590	 *
1591	 * When retpoline is enabled, both are mitigated by filling/clearing
1592	 * the RSB.
1593	 *
1594	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1595	 * prediction isolation protections, RSB still needs to be cleared
1596	 * because of #2.  Note that SMEP provides no protection here, unlike
1597	 * user-space-poisoned RSB entries.
1598	 *
1599	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1600	 * bug is present then a LITE version of RSB protection is required,
1601	 * just a single call needs to retire before a RET is executed.
1602	 */
1603	switch (mode) {
1604	case SPECTRE_V2_NONE:
1605		return;
1606
1607	case SPECTRE_V2_EIBRS_LFENCE:
1608	case SPECTRE_V2_EIBRS:
1609		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1610			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1611			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1612		}
1613		return;
1614
1615	case SPECTRE_V2_EIBRS_RETPOLINE:
1616	case SPECTRE_V2_RETPOLINE:
1617	case SPECTRE_V2_LFENCE:
1618	case SPECTRE_V2_IBRS:
1619		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1620		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1621		return;
1622	}
1623
1624	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1625	dump_stack();
1626}
1627
1628/*
1629 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1630 * branch history in userspace. Not needed if BHI_NO is set.
1631 */
1632static bool __init spec_ctrl_bhi_dis(void)
1633{
1634	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1635		return false;
1636
1637	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1638	update_spec_ctrl(x86_spec_ctrl_base);
1639	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1640
1641	return true;
1642}
1643
1644enum bhi_mitigations {
1645	BHI_MITIGATION_OFF,
1646	BHI_MITIGATION_ON,
1647	BHI_MITIGATION_VMEXIT_ONLY,
1648};
1649
1650static enum bhi_mitigations bhi_mitigation __ro_after_init =
1651	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1652
1653static int __init spectre_bhi_parse_cmdline(char *str)
1654{
1655	if (!str)
1656		return -EINVAL;
1657
1658	if (!strcmp(str, "off"))
1659		bhi_mitigation = BHI_MITIGATION_OFF;
1660	else if (!strcmp(str, "on"))
1661		bhi_mitigation = BHI_MITIGATION_ON;
1662	else if (!strcmp(str, "vmexit"))
1663		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
1664	else
1665		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1666
1667	return 0;
1668}
1669early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1670
1671static void __init bhi_select_mitigation(void)
1672{
1673	if (bhi_mitigation == BHI_MITIGATION_OFF)
1674		return;
1675
1676	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1677	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1678	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1679		spec_ctrl_disable_kernel_rrsba();
1680		if (rrsba_disabled)
1681			return;
1682	}
1683
1684	/* Mitigate in hardware if supported */
1685	if (spec_ctrl_bhi_dis())
1686		return;
1687
1688	if (!IS_ENABLED(CONFIG_X86_64))
1689		return;
1690
1691	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
1692		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
1693		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1694		return;
1695	}
1696
1697	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
1698	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1699	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1700}
1701
1702static void __init spectre_v2_select_mitigation(void)
1703{
1704	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1705	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1706
1707	/*
1708	 * If the CPU is not affected and the command line mode is NONE or AUTO
1709	 * then nothing to do.
1710	 */
1711	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1712	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1713		return;
1714
1715	switch (cmd) {
1716	case SPECTRE_V2_CMD_NONE:
1717		return;
1718
1719	case SPECTRE_V2_CMD_FORCE:
1720	case SPECTRE_V2_CMD_AUTO:
1721		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1722			mode = SPECTRE_V2_EIBRS;
1723			break;
1724		}
1725
1726		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1727		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1728		    retbleed_cmd != RETBLEED_CMD_OFF &&
1729		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1730		    boot_cpu_has(X86_FEATURE_IBRS) &&
1731		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1732			mode = SPECTRE_V2_IBRS;
1733			break;
1734		}
1735
1736		mode = spectre_v2_select_retpoline();
1737		break;
1738
1739	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1740		pr_err(SPECTRE_V2_LFENCE_MSG);
1741		mode = SPECTRE_V2_LFENCE;
1742		break;
1743
1744	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1745		mode = SPECTRE_V2_RETPOLINE;
1746		break;
1747
1748	case SPECTRE_V2_CMD_RETPOLINE:
1749		mode = spectre_v2_select_retpoline();
1750		break;
1751
1752	case SPECTRE_V2_CMD_IBRS:
1753		mode = SPECTRE_V2_IBRS;
1754		break;
1755
1756	case SPECTRE_V2_CMD_EIBRS:
1757		mode = SPECTRE_V2_EIBRS;
1758		break;
1759
1760	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1761		mode = SPECTRE_V2_EIBRS_LFENCE;
1762		break;
1763
1764	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1765		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1766		break;
1767	}
1768
1769	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1770		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1771
1772	if (spectre_v2_in_ibrs_mode(mode)) {
1773		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1774			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1775		} else {
1776			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1777			update_spec_ctrl(x86_spec_ctrl_base);
1778		}
1779	}
1780
1781	switch (mode) {
1782	case SPECTRE_V2_NONE:
1783	case SPECTRE_V2_EIBRS:
1784		break;
1785
1786	case SPECTRE_V2_IBRS:
1787		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1788		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1789			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1790		break;
1791
1792	case SPECTRE_V2_LFENCE:
1793	case SPECTRE_V2_EIBRS_LFENCE:
1794		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1795		fallthrough;
1796
1797	case SPECTRE_V2_RETPOLINE:
1798	case SPECTRE_V2_EIBRS_RETPOLINE:
1799		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1800		break;
1801	}
1802
1803	/*
1804	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1805	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1806	 * prediction from a non-RSB predictor is still a risk.
1807	 */
1808	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1809	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1810	    mode == SPECTRE_V2_RETPOLINE)
1811		spec_ctrl_disable_kernel_rrsba();
1812
1813	if (boot_cpu_has(X86_BUG_BHI))
1814		bhi_select_mitigation();
1815
1816	spectre_v2_enabled = mode;
1817	pr_info("%s\n", spectre_v2_strings[mode]);
1818
1819	/*
1820	 * If Spectre v2 protection has been enabled, fill the RSB during a
1821	 * context switch.  In general there are two types of RSB attacks
1822	 * across context switches, for which the CALLs/RETs may be unbalanced.
1823	 *
1824	 * 1) RSB underflow
1825	 *
1826	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1827	 *    speculated return targets may come from the branch predictor,
1828	 *    which could have a user-poisoned BTB or BHB entry.
1829	 *
1830	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1831	 *    regardless of the state of the RSB.
1832	 *
1833	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1834	 *    scenario is mitigated by the IBRS branch prediction isolation
1835	 *    properties, so the RSB buffer filling wouldn't be necessary to
1836	 *    protect against this type of attack.
1837	 *
1838	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1839	 *
1840	 * 2) Poisoned RSB entry
1841	 *
1842	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1843	 *    'next' could be tricked into speculating with a user-poisoned RSB
1844	 *    entry.
1845	 *
1846	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1847	 *    eIBRS.
1848	 *
1849	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1850	 *    RSB clearing.
1851	 *
1852	 * So to mitigate all cases, unconditionally fill RSB on context
1853	 * switches.
1854	 *
1855	 * FIXME: Is this pointless for retbleed-affected AMD?
1856	 */
1857	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1858	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1859
1860	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1861
1862	/*
1863	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1864	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1865	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1866	 * otherwise enabled.
1867	 *
1868	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1869	 * the user might select retpoline on the kernel command line and if
1870	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1871	 * enable IBRS around firmware calls.
1872	 */
1873	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1874	    boot_cpu_has(X86_FEATURE_IBPB) &&
1875	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1876	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1877
1878		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1879			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1880			pr_info("Enabling Speculation Barrier for firmware calls\n");
1881		}
1882
1883	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1884		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1885		pr_info("Enabling Restricted Speculation for firmware calls\n");
1886	}
1887
1888	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1889	spectre_v2_cmd = cmd;
1890}
1891
1892static void update_stibp_msr(void * __unused)
1893{
1894	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1895	update_spec_ctrl(val);
1896}
1897
1898/* Update x86_spec_ctrl_base in case SMT state changed. */
1899static void update_stibp_strict(void)
1900{
1901	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1902
1903	if (sched_smt_active())
1904		mask |= SPEC_CTRL_STIBP;
1905
1906	if (mask == x86_spec_ctrl_base)
1907		return;
1908
1909	pr_info("Update user space SMT mitigation: STIBP %s\n",
1910		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1911	x86_spec_ctrl_base = mask;
1912	on_each_cpu(update_stibp_msr, NULL, 1);
1913}
1914
1915/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1916static void update_indir_branch_cond(void)
1917{
1918	if (sched_smt_active())
1919		static_branch_enable(&switch_to_cond_stibp);
1920	else
1921		static_branch_disable(&switch_to_cond_stibp);
1922}
1923
1924#undef pr_fmt
1925#define pr_fmt(fmt) fmt
1926
1927/* Update the static key controlling the MDS CPU buffer clear in idle */
1928static void update_mds_branch_idle(void)
1929{
 
 
1930	/*
1931	 * Enable the idle clearing if SMT is active on CPUs which are
1932	 * affected only by MSBDS and not any other MDS variant.
1933	 *
1934	 * The other variants cannot be mitigated when SMT is enabled, so
1935	 * clearing the buffers on idle just to prevent the Store Buffer
1936	 * repartitioning leak would be a window dressing exercise.
1937	 */
1938	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1939		return;
1940
1941	if (sched_smt_active()) {
1942		static_branch_enable(&mds_idle_clear);
1943	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1944		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1945		static_branch_disable(&mds_idle_clear);
1946	}
1947}
1948
1949#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1950#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1951#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1952
1953void cpu_bugs_smt_update(void)
1954{
1955	mutex_lock(&spec_ctrl_mutex);
1956
1957	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1958	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1959		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1960
1961	switch (spectre_v2_user_stibp) {
1962	case SPECTRE_V2_USER_NONE:
1963		break;
1964	case SPECTRE_V2_USER_STRICT:
1965	case SPECTRE_V2_USER_STRICT_PREFERRED:
1966		update_stibp_strict();
1967		break;
1968	case SPECTRE_V2_USER_PRCTL:
1969	case SPECTRE_V2_USER_SECCOMP:
1970		update_indir_branch_cond();
1971		break;
1972	}
1973
1974	switch (mds_mitigation) {
1975	case MDS_MITIGATION_FULL:
1976	case MDS_MITIGATION_VMWERV:
1977		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1978			pr_warn_once(MDS_MSG_SMT);
1979		update_mds_branch_idle();
1980		break;
1981	case MDS_MITIGATION_OFF:
1982		break;
1983	}
1984
1985	switch (taa_mitigation) {
1986	case TAA_MITIGATION_VERW:
1987	case TAA_MITIGATION_UCODE_NEEDED:
1988		if (sched_smt_active())
1989			pr_warn_once(TAA_MSG_SMT);
1990		break;
1991	case TAA_MITIGATION_TSX_DISABLED:
1992	case TAA_MITIGATION_OFF:
1993		break;
1994	}
1995
1996	switch (mmio_mitigation) {
1997	case MMIO_MITIGATION_VERW:
1998	case MMIO_MITIGATION_UCODE_NEEDED:
1999		if (sched_smt_active())
2000			pr_warn_once(MMIO_MSG_SMT);
2001		break;
2002	case MMIO_MITIGATION_OFF:
2003		break;
2004	}
2005
2006	mutex_unlock(&spec_ctrl_mutex);
2007}
2008
2009#undef pr_fmt
2010#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2011
2012static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2013
2014/* The kernel command line selection */
2015enum ssb_mitigation_cmd {
2016	SPEC_STORE_BYPASS_CMD_NONE,
2017	SPEC_STORE_BYPASS_CMD_AUTO,
2018	SPEC_STORE_BYPASS_CMD_ON,
2019	SPEC_STORE_BYPASS_CMD_PRCTL,
2020	SPEC_STORE_BYPASS_CMD_SECCOMP,
2021};
2022
2023static const char * const ssb_strings[] = {
2024	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2025	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2026	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2027	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2028};
2029
2030static const struct {
2031	const char *option;
2032	enum ssb_mitigation_cmd cmd;
2033} ssb_mitigation_options[]  __initconst = {
2034	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2035	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2036	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2037	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2038	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2039};
2040
2041static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2042{
2043	enum ssb_mitigation_cmd cmd;
2044	char arg[20];
2045	int ret, i;
2046
2047	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2048		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2049	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2050	    cpu_mitigations_off()) {
2051		return SPEC_STORE_BYPASS_CMD_NONE;
2052	} else {
2053		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2054					  arg, sizeof(arg));
2055		if (ret < 0)
2056			return cmd;
2057
2058		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2059			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2060				continue;
2061
2062			cmd = ssb_mitigation_options[i].cmd;
2063			break;
2064		}
2065
2066		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2067			pr_err("unknown option (%s). Switching to default mode\n", arg);
2068			return cmd;
2069		}
2070	}
2071
2072	return cmd;
2073}
2074
2075static enum ssb_mitigation __init __ssb_select_mitigation(void)
2076{
2077	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2078	enum ssb_mitigation_cmd cmd;
2079
2080	if (!boot_cpu_has(X86_FEATURE_SSBD))
2081		return mode;
2082
2083	cmd = ssb_parse_cmdline();
2084	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2085	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2086	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2087		return mode;
2088
2089	switch (cmd) {
2090	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2091		/*
2092		 * Choose prctl+seccomp as the default mode if seccomp is
2093		 * enabled.
2094		 */
2095		if (IS_ENABLED(CONFIG_SECCOMP))
2096			mode = SPEC_STORE_BYPASS_SECCOMP;
2097		else
2098			mode = SPEC_STORE_BYPASS_PRCTL;
2099		break;
2100	case SPEC_STORE_BYPASS_CMD_ON:
2101		mode = SPEC_STORE_BYPASS_DISABLE;
2102		break;
2103	case SPEC_STORE_BYPASS_CMD_AUTO:
2104	case SPEC_STORE_BYPASS_CMD_PRCTL:
2105		mode = SPEC_STORE_BYPASS_PRCTL;
2106		break;
2107	case SPEC_STORE_BYPASS_CMD_NONE:
2108		break;
2109	}
2110
2111	/*
2112	 * We have three CPU feature flags that are in play here:
2113	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2114	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2115	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2116	 */
2117	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2118		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2119		/*
2120		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2121		 * use a completely different MSR and bit dependent on family.
2122		 */
2123		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2124		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2125			x86_amd_ssb_disable();
2126		} else {
2127			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2128			update_spec_ctrl(x86_spec_ctrl_base);
2129		}
2130	}
2131
2132	return mode;
2133}
2134
2135static void ssb_select_mitigation(void)
2136{
2137	ssb_mode = __ssb_select_mitigation();
2138
2139	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2140		pr_info("%s\n", ssb_strings[ssb_mode]);
2141}
2142
2143#undef pr_fmt
2144#define pr_fmt(fmt)     "Speculation prctl: " fmt
2145
2146static void task_update_spec_tif(struct task_struct *tsk)
2147{
2148	/* Force the update of the real TIF bits */
2149	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2150
2151	/*
2152	 * Immediately update the speculation control MSRs for the current
2153	 * task, but for a non-current task delay setting the CPU
2154	 * mitigation until it is scheduled next.
2155	 *
2156	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2157	 * always the current task.
2158	 */
2159	if (tsk == current)
2160		speculation_ctrl_update_current();
2161}
2162
2163static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2164{
2165
2166	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2167		return -EPERM;
2168
2169	switch (ctrl) {
2170	case PR_SPEC_ENABLE:
2171		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2172		return 0;
2173	case PR_SPEC_DISABLE:
2174		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2175		return 0;
2176	default:
2177		return -ERANGE;
2178	}
2179}
2180
2181static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2182{
2183	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2184	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2185		return -ENXIO;
2186
2187	switch (ctrl) {
2188	case PR_SPEC_ENABLE:
2189		/* If speculation is force disabled, enable is not allowed */
2190		if (task_spec_ssb_force_disable(task))
2191			return -EPERM;
2192		task_clear_spec_ssb_disable(task);
2193		task_clear_spec_ssb_noexec(task);
2194		task_update_spec_tif(task);
2195		break;
2196	case PR_SPEC_DISABLE:
2197		task_set_spec_ssb_disable(task);
2198		task_clear_spec_ssb_noexec(task);
2199		task_update_spec_tif(task);
2200		break;
2201	case PR_SPEC_FORCE_DISABLE:
2202		task_set_spec_ssb_disable(task);
2203		task_set_spec_ssb_force_disable(task);
2204		task_clear_spec_ssb_noexec(task);
2205		task_update_spec_tif(task);
2206		break;
2207	case PR_SPEC_DISABLE_NOEXEC:
2208		if (task_spec_ssb_force_disable(task))
2209			return -EPERM;
2210		task_set_spec_ssb_disable(task);
2211		task_set_spec_ssb_noexec(task);
2212		task_update_spec_tif(task);
2213		break;
2214	default:
2215		return -ERANGE;
2216	}
2217	return 0;
2218}
2219
2220static bool is_spec_ib_user_controlled(void)
2221{
2222	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2223		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2224		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2225		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2226}
2227
2228static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2229{
2230	switch (ctrl) {
2231	case PR_SPEC_ENABLE:
2232		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2233		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2234			return 0;
2235
2236		/*
2237		 * With strict mode for both IBPB and STIBP, the instruction
2238		 * code paths avoid checking this task flag and instead,
2239		 * unconditionally run the instruction. However, STIBP and IBPB
2240		 * are independent and either can be set to conditionally
2241		 * enabled regardless of the mode of the other.
2242		 *
2243		 * If either is set to conditional, allow the task flag to be
2244		 * updated, unless it was force-disabled by a previous prctl
2245		 * call. Currently, this is possible on an AMD CPU which has the
2246		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2247		 * kernel is booted with 'spectre_v2_user=seccomp', then
2248		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2249		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2250		 */
2251		if (!is_spec_ib_user_controlled() ||
2252		    task_spec_ib_force_disable(task))
2253			return -EPERM;
2254
2255		task_clear_spec_ib_disable(task);
2256		task_update_spec_tif(task);
2257		break;
2258	case PR_SPEC_DISABLE:
2259	case PR_SPEC_FORCE_DISABLE:
2260		/*
2261		 * Indirect branch speculation is always allowed when
2262		 * mitigation is force disabled.
2263		 */
2264		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2265		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2266			return -EPERM;
2267
2268		if (!is_spec_ib_user_controlled())
2269			return 0;
2270
2271		task_set_spec_ib_disable(task);
2272		if (ctrl == PR_SPEC_FORCE_DISABLE)
2273			task_set_spec_ib_force_disable(task);
2274		task_update_spec_tif(task);
2275		if (task == current)
2276			indirect_branch_prediction_barrier();
2277		break;
2278	default:
2279		return -ERANGE;
2280	}
2281	return 0;
2282}
2283
2284int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2285			     unsigned long ctrl)
2286{
2287	switch (which) {
2288	case PR_SPEC_STORE_BYPASS:
2289		return ssb_prctl_set(task, ctrl);
2290	case PR_SPEC_INDIRECT_BRANCH:
2291		return ib_prctl_set(task, ctrl);
2292	case PR_SPEC_L1D_FLUSH:
2293		return l1d_flush_prctl_set(task, ctrl);
2294	default:
2295		return -ENODEV;
2296	}
2297}
2298
2299#ifdef CONFIG_SECCOMP
2300void arch_seccomp_spec_mitigate(struct task_struct *task)
2301{
2302	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2303		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2304	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2305	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2306		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2307}
2308#endif
2309
2310static int l1d_flush_prctl_get(struct task_struct *task)
2311{
2312	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2313		return PR_SPEC_FORCE_DISABLE;
2314
2315	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2316		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2317	else
2318		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2319}
2320
2321static int ssb_prctl_get(struct task_struct *task)
2322{
2323	switch (ssb_mode) {
2324	case SPEC_STORE_BYPASS_NONE:
2325		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2326			return PR_SPEC_ENABLE;
2327		return PR_SPEC_NOT_AFFECTED;
2328	case SPEC_STORE_BYPASS_DISABLE:
2329		return PR_SPEC_DISABLE;
2330	case SPEC_STORE_BYPASS_SECCOMP:
2331	case SPEC_STORE_BYPASS_PRCTL:
2332		if (task_spec_ssb_force_disable(task))
2333			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2334		if (task_spec_ssb_noexec(task))
2335			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2336		if (task_spec_ssb_disable(task))
2337			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2338		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
 
 
 
 
2339	}
2340	BUG();
2341}
2342
2343static int ib_prctl_get(struct task_struct *task)
2344{
2345	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2346		return PR_SPEC_NOT_AFFECTED;
2347
2348	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2349	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2350		return PR_SPEC_ENABLE;
2351	else if (is_spec_ib_user_controlled()) {
2352		if (task_spec_ib_force_disable(task))
2353			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2354		if (task_spec_ib_disable(task))
2355			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2356		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2357	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2358	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2359	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2360		return PR_SPEC_DISABLE;
2361	else
2362		return PR_SPEC_NOT_AFFECTED;
2363}
2364
2365int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2366{
2367	switch (which) {
2368	case PR_SPEC_STORE_BYPASS:
2369		return ssb_prctl_get(task);
2370	case PR_SPEC_INDIRECT_BRANCH:
2371		return ib_prctl_get(task);
2372	case PR_SPEC_L1D_FLUSH:
2373		return l1d_flush_prctl_get(task);
2374	default:
2375		return -ENODEV;
2376	}
2377}
2378
2379void x86_spec_ctrl_setup_ap(void)
2380{
2381	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2382		update_spec_ctrl(x86_spec_ctrl_base);
2383
2384	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2385		x86_amd_ssb_disable();
2386}
2387
2388bool itlb_multihit_kvm_mitigation;
2389EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2390
2391#undef pr_fmt
2392#define pr_fmt(fmt)	"L1TF: " fmt
2393
2394/* Default mitigation for L1TF-affected CPUs */
2395enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2396	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_FLUSH : L1TF_MITIGATION_OFF;
2397#if IS_ENABLED(CONFIG_KVM_INTEL)
2398EXPORT_SYMBOL_GPL(l1tf_mitigation);
2399#endif
2400enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2401EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2402
2403/*
2404 * These CPUs all support 44bits physical address space internally in the
2405 * cache but CPUID can report a smaller number of physical address bits.
2406 *
2407 * The L1TF mitigation uses the top most address bit for the inversion of
2408 * non present PTEs. When the installed memory reaches into the top most
2409 * address bit due to memory holes, which has been observed on machines
2410 * which report 36bits physical address bits and have 32G RAM installed,
2411 * then the mitigation range check in l1tf_select_mitigation() triggers.
2412 * This is a false positive because the mitigation is still possible due to
2413 * the fact that the cache uses 44bit internally. Use the cache bits
2414 * instead of the reported physical bits and adjust them on the affected
2415 * machines to 44bit if the reported bits are less than 44.
2416 */
2417static void override_cache_bits(struct cpuinfo_x86 *c)
2418{
2419	if (c->x86 != 6)
2420		return;
2421
2422	switch (c->x86_vfm) {
2423	case INTEL_NEHALEM:
2424	case INTEL_WESTMERE:
2425	case INTEL_SANDYBRIDGE:
2426	case INTEL_IVYBRIDGE:
2427	case INTEL_HASWELL:
2428	case INTEL_HASWELL_L:
2429	case INTEL_HASWELL_G:
2430	case INTEL_BROADWELL:
2431	case INTEL_BROADWELL_G:
2432	case INTEL_SKYLAKE_L:
2433	case INTEL_SKYLAKE:
2434	case INTEL_KABYLAKE_L:
2435	case INTEL_KABYLAKE:
2436		if (c->x86_cache_bits < 44)
2437			c->x86_cache_bits = 44;
2438		break;
2439	}
2440}
2441
2442static void __init l1tf_select_mitigation(void)
2443{
2444	u64 half_pa;
2445
2446	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2447		return;
2448
2449	if (cpu_mitigations_off())
2450		l1tf_mitigation = L1TF_MITIGATION_OFF;
2451	else if (cpu_mitigations_auto_nosmt())
2452		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2453
2454	override_cache_bits(&boot_cpu_data);
2455
2456	switch (l1tf_mitigation) {
2457	case L1TF_MITIGATION_OFF:
2458	case L1TF_MITIGATION_FLUSH_NOWARN:
2459	case L1TF_MITIGATION_FLUSH:
2460		break;
2461	case L1TF_MITIGATION_FLUSH_NOSMT:
2462	case L1TF_MITIGATION_FULL:
2463		cpu_smt_disable(false);
2464		break;
2465	case L1TF_MITIGATION_FULL_FORCE:
2466		cpu_smt_disable(true);
2467		break;
2468	}
2469
2470#if CONFIG_PGTABLE_LEVELS == 2
2471	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2472	return;
2473#endif
2474
2475	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2476	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2477			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2478		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2479		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2480				half_pa);
2481		pr_info("However, doing so will make a part of your RAM unusable.\n");
2482		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2483		return;
2484	}
2485
2486	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2487}
2488
2489static int __init l1tf_cmdline(char *str)
2490{
2491	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2492		return 0;
2493
2494	if (!str)
2495		return -EINVAL;
2496
2497	if (!strcmp(str, "off"))
2498		l1tf_mitigation = L1TF_MITIGATION_OFF;
2499	else if (!strcmp(str, "flush,nowarn"))
2500		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2501	else if (!strcmp(str, "flush"))
2502		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2503	else if (!strcmp(str, "flush,nosmt"))
2504		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2505	else if (!strcmp(str, "full"))
2506		l1tf_mitigation = L1TF_MITIGATION_FULL;
2507	else if (!strcmp(str, "full,force"))
2508		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2509
2510	return 0;
2511}
2512early_param("l1tf", l1tf_cmdline);
2513
2514#undef pr_fmt
2515#define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2516
2517enum srso_mitigation {
2518	SRSO_MITIGATION_NONE,
2519	SRSO_MITIGATION_UCODE_NEEDED,
2520	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2521	SRSO_MITIGATION_MICROCODE,
2522	SRSO_MITIGATION_SAFE_RET,
2523	SRSO_MITIGATION_IBPB,
2524	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2525};
2526
2527enum srso_mitigation_cmd {
2528	SRSO_CMD_OFF,
2529	SRSO_CMD_MICROCODE,
2530	SRSO_CMD_SAFE_RET,
2531	SRSO_CMD_IBPB,
2532	SRSO_CMD_IBPB_ON_VMEXIT,
2533};
2534
2535static const char * const srso_strings[] = {
2536	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2537	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2538	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2539	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2540	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2541	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2542	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2543};
2544
2545static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2546static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2547
2548static int __init srso_parse_cmdline(char *str)
2549{
2550	if (!str)
2551		return -EINVAL;
2552
2553	if (!strcmp(str, "off"))
2554		srso_cmd = SRSO_CMD_OFF;
2555	else if (!strcmp(str, "microcode"))
2556		srso_cmd = SRSO_CMD_MICROCODE;
2557	else if (!strcmp(str, "safe-ret"))
2558		srso_cmd = SRSO_CMD_SAFE_RET;
2559	else if (!strcmp(str, "ibpb"))
2560		srso_cmd = SRSO_CMD_IBPB;
2561	else if (!strcmp(str, "ibpb-vmexit"))
2562		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2563	else
2564		pr_err("Ignoring unknown SRSO option (%s).", str);
2565
2566	return 0;
2567}
2568early_param("spec_rstack_overflow", srso_parse_cmdline);
2569
2570#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2571
2572static void __init srso_select_mitigation(void)
2573{
2574	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2575
2576	if (!boot_cpu_has_bug(X86_BUG_SRSO) ||
2577	    cpu_mitigations_off() ||
2578	    srso_cmd == SRSO_CMD_OFF) {
2579		if (boot_cpu_has(X86_FEATURE_SBPB))
2580			x86_pred_cmd = PRED_CMD_SBPB;
2581		return;
2582	}
2583
2584	if (has_microcode) {
2585		/*
2586		 * Zen1/2 with SMT off aren't vulnerable after the right
2587		 * IBPB microcode has been applied.
2588		 *
2589		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2590		 */
2591		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2592			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2593			return;
2594		}
2595
2596		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2597			srso_mitigation = SRSO_MITIGATION_IBPB;
2598			goto out;
2599		}
2600	} else {
2601		pr_warn("IBPB-extending microcode not applied!\n");
2602		pr_warn(SRSO_NOTICE);
2603
2604		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2605		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2606	}
2607
2608	switch (srso_cmd) {
2609	case SRSO_CMD_MICROCODE:
2610		if (has_microcode) {
2611			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2612			pr_warn(SRSO_NOTICE);
2613		}
2614		break;
2615
2616	case SRSO_CMD_SAFE_RET:
2617		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2618			/*
2619			 * Enable the return thunk for generated code
2620			 * like ftrace, static_call, etc.
2621			 */
2622			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2623			setup_force_cpu_cap(X86_FEATURE_UNRET);
2624
2625			if (boot_cpu_data.x86 == 0x19) {
2626				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2627				x86_return_thunk = srso_alias_return_thunk;
2628			} else {
2629				setup_force_cpu_cap(X86_FEATURE_SRSO);
2630				x86_return_thunk = srso_return_thunk;
2631			}
2632			if (has_microcode)
2633				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2634			else
2635				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2636		} else {
2637			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2638		}
2639		break;
2640
2641	case SRSO_CMD_IBPB:
2642		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2643			if (has_microcode) {
2644				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2645				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2646				srso_mitigation = SRSO_MITIGATION_IBPB;
2647
2648				/*
2649				 * IBPB on entry already obviates the need for
2650				 * software-based untraining so clear those in case some
2651				 * other mitigation like Retbleed has selected them.
2652				 */
2653				setup_clear_cpu_cap(X86_FEATURE_UNRET);
2654				setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2655
2656				/*
2657				 * There is no need for RSB filling: entry_ibpb() ensures
2658				 * all predictions, including the RSB, are invalidated,
2659				 * regardless of IBPB implementation.
2660				 */
2661				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2662			}
2663		} else {
2664			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2665		}
2666		break;
2667
2668	case SRSO_CMD_IBPB_ON_VMEXIT:
2669		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2670			if (has_microcode) {
2671				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2672				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2673
2674				/*
2675				 * There is no need for RSB filling: entry_ibpb() ensures
2676				 * all predictions, including the RSB, are invalidated,
2677				 * regardless of IBPB implementation.
2678				 */
2679				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2680			}
2681		} else {
2682			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2683		}
2684		break;
2685	default:
2686		break;
2687	}
2688
2689out:
2690	pr_info("%s\n", srso_strings[srso_mitigation]);
2691}
2692
2693#undef pr_fmt
2694#define pr_fmt(fmt) fmt
2695
2696#ifdef CONFIG_SYSFS
2697
2698#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2699
2700#if IS_ENABLED(CONFIG_KVM_INTEL)
2701static const char * const l1tf_vmx_states[] = {
2702	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2703	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2704	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2705	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2706	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2707	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2708};
2709
2710static ssize_t l1tf_show_state(char *buf)
2711{
2712	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2713		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2714
2715	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2716	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2717	     sched_smt_active())) {
2718		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2719				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2720	}
2721
2722	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2723			  l1tf_vmx_states[l1tf_vmx_mitigation],
2724			  sched_smt_active() ? "vulnerable" : "disabled");
2725}
2726
2727static ssize_t itlb_multihit_show_state(char *buf)
2728{
2729	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2730	    !boot_cpu_has(X86_FEATURE_VMX))
2731		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2732	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2733		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2734	else if (itlb_multihit_kvm_mitigation)
2735		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2736	else
2737		return sysfs_emit(buf, "KVM: Vulnerable\n");
2738}
2739#else
2740static ssize_t l1tf_show_state(char *buf)
2741{
2742	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2743}
2744
2745static ssize_t itlb_multihit_show_state(char *buf)
2746{
2747	return sysfs_emit(buf, "Processor vulnerable\n");
2748}
2749#endif
2750
2751static ssize_t mds_show_state(char *buf)
2752{
2753	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2754		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2755				  mds_strings[mds_mitigation]);
2756	}
2757
2758	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2759		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2760				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2761				   sched_smt_active() ? "mitigated" : "disabled"));
2762	}
2763
2764	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2765			  sched_smt_active() ? "vulnerable" : "disabled");
2766}
2767
2768static ssize_t tsx_async_abort_show_state(char *buf)
2769{
2770	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2771	    (taa_mitigation == TAA_MITIGATION_OFF))
2772		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2773
2774	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2775		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2776				  taa_strings[taa_mitigation]);
2777	}
2778
2779	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2780			  sched_smt_active() ? "vulnerable" : "disabled");
2781}
2782
2783static ssize_t mmio_stale_data_show_state(char *buf)
2784{
2785	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2786		return sysfs_emit(buf, "Unknown: No mitigations\n");
2787
2788	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2789		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2790
2791	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2792		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2793				  mmio_strings[mmio_mitigation]);
2794	}
2795
2796	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2797			  sched_smt_active() ? "vulnerable" : "disabled");
2798}
2799
2800static ssize_t rfds_show_state(char *buf)
2801{
2802	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2803}
2804
2805static char *stibp_state(void)
2806{
2807	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2808	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2809		return "";
2810
2811	switch (spectre_v2_user_stibp) {
2812	case SPECTRE_V2_USER_NONE:
2813		return "; STIBP: disabled";
2814	case SPECTRE_V2_USER_STRICT:
2815		return "; STIBP: forced";
2816	case SPECTRE_V2_USER_STRICT_PREFERRED:
2817		return "; STIBP: always-on";
2818	case SPECTRE_V2_USER_PRCTL:
2819	case SPECTRE_V2_USER_SECCOMP:
2820		if (static_key_enabled(&switch_to_cond_stibp))
2821			return "; STIBP: conditional";
2822	}
2823	return "";
2824}
2825
2826static char *ibpb_state(void)
2827{
2828	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2829		if (static_key_enabled(&switch_mm_always_ibpb))
2830			return "; IBPB: always-on";
2831		if (static_key_enabled(&switch_mm_cond_ibpb))
2832			return "; IBPB: conditional";
2833		return "; IBPB: disabled";
2834	}
2835	return "";
2836}
2837
2838static char *pbrsb_eibrs_state(void)
2839{
2840	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2841		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2842		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2843			return "; PBRSB-eIBRS: SW sequence";
2844		else
2845			return "; PBRSB-eIBRS: Vulnerable";
2846	} else {
2847		return "; PBRSB-eIBRS: Not affected";
2848	}
2849}
2850
2851static const char *spectre_bhi_state(void)
2852{
2853	if (!boot_cpu_has_bug(X86_BUG_BHI))
2854		return "; BHI: Not affected";
2855	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2856		return "; BHI: BHI_DIS_S";
2857	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2858		return "; BHI: SW loop, KVM: SW loop";
2859	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2860		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2861		 rrsba_disabled)
2862		return "; BHI: Retpoline";
2863	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2864		return "; BHI: Vulnerable, KVM: SW loop";
2865
2866	return "; BHI: Vulnerable";
2867}
2868
2869static ssize_t spectre_v2_show_state(char *buf)
2870{
2871	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2872		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2873
2874	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2875		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2876
2877	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2878	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2879		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2880
2881	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2882			  spectre_v2_strings[spectre_v2_enabled],
2883			  ibpb_state(),
2884			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2885			  stibp_state(),
2886			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2887			  pbrsb_eibrs_state(),
2888			  spectre_bhi_state(),
2889			  /* this should always be at the end */
2890			  spectre_v2_module_string());
2891}
2892
2893static ssize_t srbds_show_state(char *buf)
2894{
2895	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2896}
2897
2898static ssize_t retbleed_show_state(char *buf)
2899{
2900	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2901	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2902		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2903		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2904			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2905
2906		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2907				  !sched_smt_active() ? "disabled" :
2908				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2909				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2910				  "enabled with STIBP protection" : "vulnerable");
2911	}
2912
2913	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2914}
2915
2916static ssize_t srso_show_state(char *buf)
2917{
2918	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2919		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2920
2921	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2922}
2923
2924static ssize_t gds_show_state(char *buf)
2925{
2926	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2927}
2928
2929static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2930			       char *buf, unsigned int bug)
2931{
2932	if (!boot_cpu_has_bug(bug))
2933		return sysfs_emit(buf, "Not affected\n");
2934
2935	switch (bug) {
2936	case X86_BUG_CPU_MELTDOWN:
2937		if (boot_cpu_has(X86_FEATURE_PTI))
2938			return sysfs_emit(buf, "Mitigation: PTI\n");
2939
2940		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2941			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2942
2943		break;
2944
2945	case X86_BUG_SPECTRE_V1:
2946		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2947
2948	case X86_BUG_SPECTRE_V2:
2949		return spectre_v2_show_state(buf);
2950
2951	case X86_BUG_SPEC_STORE_BYPASS:
2952		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2953
2954	case X86_BUG_L1TF:
2955		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2956			return l1tf_show_state(buf);
2957		break;
2958
2959	case X86_BUG_MDS:
2960		return mds_show_state(buf);
2961
2962	case X86_BUG_TAA:
2963		return tsx_async_abort_show_state(buf);
2964
2965	case X86_BUG_ITLB_MULTIHIT:
2966		return itlb_multihit_show_state(buf);
2967
2968	case X86_BUG_SRBDS:
2969		return srbds_show_state(buf);
2970
2971	case X86_BUG_MMIO_STALE_DATA:
2972	case X86_BUG_MMIO_UNKNOWN:
2973		return mmio_stale_data_show_state(buf);
2974
2975	case X86_BUG_RETBLEED:
2976		return retbleed_show_state(buf);
2977
2978	case X86_BUG_SRSO:
2979		return srso_show_state(buf);
2980
2981	case X86_BUG_GDS:
2982		return gds_show_state(buf);
2983
2984	case X86_BUG_RFDS:
2985		return rfds_show_state(buf);
2986
2987	default:
2988		break;
2989	}
2990
2991	return sysfs_emit(buf, "Vulnerable\n");
2992}
2993
2994ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2995{
2996	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2997}
2998
2999ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3000{
3001	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3002}
3003
3004ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3005{
3006	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3007}
3008
3009ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3010{
3011	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3012}
3013
3014ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3015{
3016	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3017}
3018
3019ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3020{
3021	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3022}
3023
3024ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3025{
3026	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3027}
3028
3029ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3030{
3031	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3032}
3033
3034ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3035{
3036	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3037}
3038
3039ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3040{
3041	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3042		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3043	else
3044		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3045}
3046
3047ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3048{
3049	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3050}
3051
3052ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3053{
3054	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3055}
3056
3057ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3058{
3059	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3060}
3061
3062ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3063{
3064	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3065}
3066#endif
3067
3068void __warn_thunk(void)
3069{
3070	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3071}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1994  Linus Torvalds
   4 *
   5 *  Cyrix stuff, June 1998 by:
   6 *	- Rafael R. Reilova (moved everything from head.S),
   7 *        <rreilova@ececs.uc.edu>
   8 *	- Channing Corn (tests & fixes),
   9 *	- Andrew D. Balsa (code cleanup).
  10 */
  11#include <linux/init.h>
  12#include <linux/utsname.h>
  13#include <linux/cpu.h>
  14#include <linux/module.h>
  15#include <linux/nospec.h>
  16#include <linux/prctl.h>
  17#include <linux/sched/smt.h>
  18#include <linux/pgtable.h>
  19#include <linux/bpf.h>
  20
  21#include <asm/spec-ctrl.h>
  22#include <asm/cmdline.h>
  23#include <asm/bugs.h>
  24#include <asm/processor.h>
  25#include <asm/processor-flags.h>
  26#include <asm/fpu/api.h>
  27#include <asm/msr.h>
  28#include <asm/vmx.h>
  29#include <asm/paravirt.h>
  30#include <asm/alternative.h>
  31#include <asm/set_memory.h>
  32#include <asm/intel-family.h>
  33#include <asm/e820/api.h>
  34#include <asm/hypervisor.h>
  35#include <asm/tlbflush.h>
 
  36
  37#include "cpu.h"
  38
  39static void __init spectre_v1_select_mitigation(void);
  40static void __init spectre_v2_select_mitigation(void);
  41static void __init retbleed_select_mitigation(void);
  42static void __init spectre_v2_user_select_mitigation(void);
  43static void __init ssb_select_mitigation(void);
  44static void __init l1tf_select_mitigation(void);
  45static void __init mds_select_mitigation(void);
  46static void __init md_clear_update_mitigation(void);
  47static void __init md_clear_select_mitigation(void);
  48static void __init taa_select_mitigation(void);
  49static void __init mmio_select_mitigation(void);
  50static void __init srbds_select_mitigation(void);
  51static void __init l1d_flush_select_mitigation(void);
 
 
  52
  53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
  54u64 x86_spec_ctrl_base;
  55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
  56
  57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
  58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
  59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
 
 
 
 
 
  60
  61static DEFINE_MUTEX(spec_ctrl_mutex);
  62
 
 
  63/* Update SPEC_CTRL MSR and its cached copy unconditionally */
  64static void update_spec_ctrl(u64 val)
  65{
  66	this_cpu_write(x86_spec_ctrl_current, val);
  67	wrmsrl(MSR_IA32_SPEC_CTRL, val);
  68}
  69
  70/*
  71 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
  72 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
  73 */
  74void update_spec_ctrl_cond(u64 val)
  75{
  76	if (this_cpu_read(x86_spec_ctrl_current) == val)
  77		return;
  78
  79	this_cpu_write(x86_spec_ctrl_current, val);
  80
  81	/*
  82	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
  83	 * forced the update can be delayed until that time.
  84	 */
  85	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
  86		wrmsrl(MSR_IA32_SPEC_CTRL, val);
  87}
  88
  89u64 spec_ctrl_current(void)
  90{
  91	return this_cpu_read(x86_spec_ctrl_current);
  92}
  93EXPORT_SYMBOL_GPL(spec_ctrl_current);
  94
  95/*
  96 * AMD specific MSR info for Speculative Store Bypass control.
  97 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
  98 */
  99u64 __ro_after_init x86_amd_ls_cfg_base;
 100u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
 101
 102/* Control conditional STIBP in switch_to() */
 103DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
 104/* Control conditional IBPB in switch_mm() */
 105DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
 106/* Control unconditional IBPB in switch_mm() */
 107DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
 108
 109/* Control MDS CPU buffer clear before returning to user space */
 110DEFINE_STATIC_KEY_FALSE(mds_user_clear);
 111EXPORT_SYMBOL_GPL(mds_user_clear);
 112/* Control MDS CPU buffer clear before idling (halt, mwait) */
 113DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
 114EXPORT_SYMBOL_GPL(mds_idle_clear);
 115
 116/*
 117 * Controls whether l1d flush based mitigations are enabled,
 118 * based on hw features and admin setting via boot parameter
 119 * defaults to false
 120 */
 121DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
 122
 123/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
 124DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
 125EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
 126
 127void __init check_bugs(void)
 128{
 129	identify_boot_cpu();
 130
 131	/*
 132	 * identify_boot_cpu() initialized SMT support information, let the
 133	 * core code know.
 134	 */
 135	cpu_smt_check_topology();
 136
 137	if (!IS_ENABLED(CONFIG_SMP)) {
 138		pr_info("CPU: ");
 139		print_cpu_info(&boot_cpu_data);
 140	}
 141
 142	/*
 143	 * Read the SPEC_CTRL MSR to account for reserved bits which may
 144	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
 145	 * init code as it is not enumerated and depends on the family.
 146	 */
 147	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
 148		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
 149
 
 
 
 
 
 
 
 
 
 
 150	/* Select the proper CPU mitigations before patching alternatives: */
 151	spectre_v1_select_mitigation();
 152	spectre_v2_select_mitigation();
 153	/*
 154	 * retbleed_select_mitigation() relies on the state set by
 155	 * spectre_v2_select_mitigation(); specifically it wants to know about
 156	 * spectre_v2=ibrs.
 157	 */
 158	retbleed_select_mitigation();
 159	/*
 160	 * spectre_v2_user_select_mitigation() relies on the state set by
 161	 * retbleed_select_mitigation(); specifically the STIBP selection is
 162	 * forced for UNRET or IBPB.
 163	 */
 164	spectre_v2_user_select_mitigation();
 165	ssb_select_mitigation();
 166	l1tf_select_mitigation();
 167	md_clear_select_mitigation();
 168	srbds_select_mitigation();
 169	l1d_flush_select_mitigation();
 170
 171	arch_smt_update();
 172
 173#ifdef CONFIG_X86_32
 174	/*
 175	 * Check whether we are able to run this kernel safely on SMP.
 176	 *
 177	 * - i386 is no longer supported.
 178	 * - In order to run on anything without a TSC, we need to be
 179	 *   compiled for a i486.
 180	 */
 181	if (boot_cpu_data.x86 < 4)
 182		panic("Kernel requires i486+ for 'invlpg' and other features");
 183
 184	init_utsname()->machine[1] =
 185		'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
 186	alternative_instructions();
 187
 188	fpu__init_check_bugs();
 189#else /* CONFIG_X86_64 */
 190	alternative_instructions();
 191
 192	/*
 193	 * Make sure the first 2MB area is not mapped by huge pages
 194	 * There are typically fixed size MTRRs in there and overlapping
 195	 * MTRRs into large pages causes slow downs.
 196	 *
 197	 * Right now we don't do that with gbpages because there seems
 198	 * very little benefit for that case.
 199	 */
 200	if (!direct_gbpages)
 201		set_memory_4k((unsigned long)__va(0), 1);
 202#endif
 203}
 204
 205/*
 206 * NOTE: This function is *only* called for SVM, since Intel uses
 207 * MSR_IA32_SPEC_CTRL for SSBD.
 208 */
 209void
 210x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
 211{
 212	u64 guestval, hostval;
 213	struct thread_info *ti = current_thread_info();
 214
 215	/*
 216	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
 217	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
 218	 */
 219	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 220	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
 221		return;
 222
 223	/*
 224	 * If the host has SSBD mitigation enabled, force it in the host's
 225	 * virtual MSR value. If its not permanently enabled, evaluate
 226	 * current's TIF_SSBD thread flag.
 227	 */
 228	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
 229		hostval = SPEC_CTRL_SSBD;
 230	else
 231		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
 232
 233	/* Sanitize the guest value */
 234	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
 235
 236	if (hostval != guestval) {
 237		unsigned long tif;
 238
 239		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
 240				 ssbd_spec_ctrl_to_tif(hostval);
 241
 242		speculation_ctrl_update(tif);
 243	}
 244}
 245EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
 246
 247static void x86_amd_ssb_disable(void)
 248{
 249	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
 250
 251	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
 252		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
 253	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 254		wrmsrl(MSR_AMD64_LS_CFG, msrval);
 255}
 256
 257#undef pr_fmt
 258#define pr_fmt(fmt)	"MDS: " fmt
 259
 260/* Default mitigation for MDS-affected CPUs */
 261static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
 
 262static bool mds_nosmt __ro_after_init = false;
 263
 264static const char * const mds_strings[] = {
 265	[MDS_MITIGATION_OFF]	= "Vulnerable",
 266	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
 267	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 268};
 269
 270static void __init mds_select_mitigation(void)
 271{
 272	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
 273		mds_mitigation = MDS_MITIGATION_OFF;
 274		return;
 275	}
 276
 277	if (mds_mitigation == MDS_MITIGATION_FULL) {
 278		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
 279			mds_mitigation = MDS_MITIGATION_VMWERV;
 280
 281		static_branch_enable(&mds_user_clear);
 282
 283		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
 284		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
 285			cpu_smt_disable(false);
 286	}
 287}
 288
 289static int __init mds_cmdline(char *str)
 290{
 291	if (!boot_cpu_has_bug(X86_BUG_MDS))
 292		return 0;
 293
 294	if (!str)
 295		return -EINVAL;
 296
 297	if (!strcmp(str, "off"))
 298		mds_mitigation = MDS_MITIGATION_OFF;
 299	else if (!strcmp(str, "full"))
 300		mds_mitigation = MDS_MITIGATION_FULL;
 301	else if (!strcmp(str, "full,nosmt")) {
 302		mds_mitigation = MDS_MITIGATION_FULL;
 303		mds_nosmt = true;
 304	}
 305
 306	return 0;
 307}
 308early_param("mds", mds_cmdline);
 309
 310#undef pr_fmt
 311#define pr_fmt(fmt)	"TAA: " fmt
 312
 313enum taa_mitigations {
 314	TAA_MITIGATION_OFF,
 315	TAA_MITIGATION_UCODE_NEEDED,
 316	TAA_MITIGATION_VERW,
 317	TAA_MITIGATION_TSX_DISABLED,
 318};
 319
 320/* Default mitigation for TAA-affected CPUs */
 321static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
 
 322static bool taa_nosmt __ro_after_init;
 323
 324static const char * const taa_strings[] = {
 325	[TAA_MITIGATION_OFF]		= "Vulnerable",
 326	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 327	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 328	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
 329};
 330
 331static void __init taa_select_mitigation(void)
 332{
 333	u64 ia32_cap;
 334
 335	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
 336		taa_mitigation = TAA_MITIGATION_OFF;
 337		return;
 338	}
 339
 340	/* TSX previously disabled by tsx=off */
 341	if (!boot_cpu_has(X86_FEATURE_RTM)) {
 342		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
 343		return;
 344	}
 345
 346	if (cpu_mitigations_off()) {
 347		taa_mitigation = TAA_MITIGATION_OFF;
 348		return;
 349	}
 350
 351	/*
 352	 * TAA mitigation via VERW is turned off if both
 353	 * tsx_async_abort=off and mds=off are specified.
 354	 */
 355	if (taa_mitigation == TAA_MITIGATION_OFF &&
 356	    mds_mitigation == MDS_MITIGATION_OFF)
 357		return;
 358
 359	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
 360		taa_mitigation = TAA_MITIGATION_VERW;
 361	else
 362		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 363
 364	/*
 365	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
 366	 * A microcode update fixes this behavior to clear CPU buffers. It also
 367	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
 368	 * ARCH_CAP_TSX_CTRL_MSR bit.
 369	 *
 370	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
 371	 * update is required.
 372	 */
 373	ia32_cap = x86_read_arch_cap_msr();
 374	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
 375	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
 376		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
 377
 378	/*
 379	 * TSX is enabled, select alternate mitigation for TAA which is
 380	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
 381	 *
 382	 * For guests that can't determine whether the correct microcode is
 383	 * present on host, enable the mitigation for UCODE_NEEDED as well.
 384	 */
 385	static_branch_enable(&mds_user_clear);
 386
 387	if (taa_nosmt || cpu_mitigations_auto_nosmt())
 388		cpu_smt_disable(false);
 389}
 390
 391static int __init tsx_async_abort_parse_cmdline(char *str)
 392{
 393	if (!boot_cpu_has_bug(X86_BUG_TAA))
 394		return 0;
 395
 396	if (!str)
 397		return -EINVAL;
 398
 399	if (!strcmp(str, "off")) {
 400		taa_mitigation = TAA_MITIGATION_OFF;
 401	} else if (!strcmp(str, "full")) {
 402		taa_mitigation = TAA_MITIGATION_VERW;
 403	} else if (!strcmp(str, "full,nosmt")) {
 404		taa_mitigation = TAA_MITIGATION_VERW;
 405		taa_nosmt = true;
 406	}
 407
 408	return 0;
 409}
 410early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
 411
 412#undef pr_fmt
 413#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
 414
 415enum mmio_mitigations {
 416	MMIO_MITIGATION_OFF,
 417	MMIO_MITIGATION_UCODE_NEEDED,
 418	MMIO_MITIGATION_VERW,
 419};
 420
 421/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
 422static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
 
 423static bool mmio_nosmt __ro_after_init = false;
 424
 425static const char * const mmio_strings[] = {
 426	[MMIO_MITIGATION_OFF]		= "Vulnerable",
 427	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
 428	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
 429};
 430
 431static void __init mmio_select_mitigation(void)
 432{
 433	u64 ia32_cap;
 434
 435	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
 436	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
 437	     cpu_mitigations_off()) {
 438		mmio_mitigation = MMIO_MITIGATION_OFF;
 439		return;
 440	}
 441
 442	if (mmio_mitigation == MMIO_MITIGATION_OFF)
 443		return;
 444
 445	ia32_cap = x86_read_arch_cap_msr();
 446
 447	/*
 448	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
 449	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
 450	 */
 451	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
 452					      boot_cpu_has(X86_FEATURE_RTM)))
 453		static_branch_enable(&mds_user_clear);
 
 
 
 
 
 
 
 454	else
 455		static_branch_enable(&mmio_stale_data_clear);
 456
 457	/*
 458	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
 459	 * be propagated to uncore buffers, clearing the Fill buffers on idle
 460	 * is required irrespective of SMT state.
 461	 */
 462	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
 463		static_branch_enable(&mds_idle_clear);
 464
 465	/*
 466	 * Check if the system has the right microcode.
 467	 *
 468	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
 469	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
 470	 * affected systems.
 471	 */
 472	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
 473	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
 474	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
 475	     !(ia32_cap & ARCH_CAP_MDS_NO)))
 476		mmio_mitigation = MMIO_MITIGATION_VERW;
 477	else
 478		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
 479
 480	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
 481		cpu_smt_disable(false);
 482}
 483
 484static int __init mmio_stale_data_parse_cmdline(char *str)
 485{
 486	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 487		return 0;
 488
 489	if (!str)
 490		return -EINVAL;
 491
 492	if (!strcmp(str, "off")) {
 493		mmio_mitigation = MMIO_MITIGATION_OFF;
 494	} else if (!strcmp(str, "full")) {
 495		mmio_mitigation = MMIO_MITIGATION_VERW;
 496	} else if (!strcmp(str, "full,nosmt")) {
 497		mmio_mitigation = MMIO_MITIGATION_VERW;
 498		mmio_nosmt = true;
 499	}
 500
 501	return 0;
 502}
 503early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
 504
 505#undef pr_fmt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506#define pr_fmt(fmt)     "" fmt
 507
 508static void __init md_clear_update_mitigation(void)
 509{
 510	if (cpu_mitigations_off())
 511		return;
 512
 513	if (!static_key_enabled(&mds_user_clear))
 514		goto out;
 515
 516	/*
 517	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
 518	 * mitigation, if necessary.
 519	 */
 520	if (mds_mitigation == MDS_MITIGATION_OFF &&
 521	    boot_cpu_has_bug(X86_BUG_MDS)) {
 522		mds_mitigation = MDS_MITIGATION_FULL;
 523		mds_select_mitigation();
 524	}
 525	if (taa_mitigation == TAA_MITIGATION_OFF &&
 526	    boot_cpu_has_bug(X86_BUG_TAA)) {
 527		taa_mitigation = TAA_MITIGATION_VERW;
 528		taa_select_mitigation();
 529	}
 530	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
 531	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
 
 
 
 532		mmio_mitigation = MMIO_MITIGATION_VERW;
 533		mmio_select_mitigation();
 534	}
 
 
 
 
 
 535out:
 536	if (boot_cpu_has_bug(X86_BUG_MDS))
 537		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
 538	if (boot_cpu_has_bug(X86_BUG_TAA))
 539		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
 540	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 541		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
 542	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
 543		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
 
 
 544}
 545
 546static void __init md_clear_select_mitigation(void)
 547{
 548	mds_select_mitigation();
 549	taa_select_mitigation();
 550	mmio_select_mitigation();
 
 551
 552	/*
 553	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
 554	 * and print their mitigation after MDS, TAA and MMIO Stale Data
 555	 * mitigation selection is done.
 556	 */
 557	md_clear_update_mitigation();
 558}
 559
 560#undef pr_fmt
 561#define pr_fmt(fmt)	"SRBDS: " fmt
 562
 563enum srbds_mitigations {
 564	SRBDS_MITIGATION_OFF,
 565	SRBDS_MITIGATION_UCODE_NEEDED,
 566	SRBDS_MITIGATION_FULL,
 567	SRBDS_MITIGATION_TSX_OFF,
 568	SRBDS_MITIGATION_HYPERVISOR,
 569};
 570
 571static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
 
 572
 573static const char * const srbds_strings[] = {
 574	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
 575	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
 576	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
 577	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
 578	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
 579};
 580
 581static bool srbds_off;
 582
 583void update_srbds_msr(void)
 584{
 585	u64 mcu_ctrl;
 586
 587	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 588		return;
 589
 590	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 591		return;
 592
 593	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
 594		return;
 595
 596	/*
 597	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
 598	 * being disabled and it hasn't received the SRBDS MSR microcode.
 599	 */
 600	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 601		return;
 602
 603	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 604
 605	switch (srbds_mitigation) {
 606	case SRBDS_MITIGATION_OFF:
 607	case SRBDS_MITIGATION_TSX_OFF:
 608		mcu_ctrl |= RNGDS_MITG_DIS;
 609		break;
 610	case SRBDS_MITIGATION_FULL:
 611		mcu_ctrl &= ~RNGDS_MITG_DIS;
 612		break;
 613	default:
 614		break;
 615	}
 616
 617	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
 618}
 619
 620static void __init srbds_select_mitigation(void)
 621{
 622	u64 ia32_cap;
 623
 624	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 625		return;
 626
 627	/*
 628	 * Check to see if this is one of the MDS_NO systems supporting TSX that
 629	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
 630	 * by Processor MMIO Stale Data vulnerability.
 631	 */
 632	ia32_cap = x86_read_arch_cap_msr();
 633	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
 634	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
 635		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
 636	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 637		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
 638	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
 639		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
 640	else if (cpu_mitigations_off() || srbds_off)
 641		srbds_mitigation = SRBDS_MITIGATION_OFF;
 642
 643	update_srbds_msr();
 644	pr_info("%s\n", srbds_strings[srbds_mitigation]);
 645}
 646
 647static int __init srbds_parse_cmdline(char *str)
 648{
 649	if (!str)
 650		return -EINVAL;
 651
 652	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
 653		return 0;
 654
 655	srbds_off = !strcmp(str, "off");
 656	return 0;
 657}
 658early_param("srbds", srbds_parse_cmdline);
 659
 660#undef pr_fmt
 661#define pr_fmt(fmt)     "L1D Flush : " fmt
 662
 663enum l1d_flush_mitigations {
 664	L1D_FLUSH_OFF = 0,
 665	L1D_FLUSH_ON,
 666};
 667
 668static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
 669
 670static void __init l1d_flush_select_mitigation(void)
 671{
 672	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
 673		return;
 674
 675	static_branch_enable(&switch_mm_cond_l1d_flush);
 676	pr_info("Conditional flush on switch_mm() enabled\n");
 677}
 678
 679static int __init l1d_flush_parse_cmdline(char *str)
 680{
 681	if (!strcmp(str, "on"))
 682		l1d_flush_mitigation = L1D_FLUSH_ON;
 683
 684	return 0;
 685}
 686early_param("l1d_flush", l1d_flush_parse_cmdline);
 687
 688#undef pr_fmt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689#define pr_fmt(fmt)     "Spectre V1 : " fmt
 690
 691enum spectre_v1_mitigation {
 692	SPECTRE_V1_MITIGATION_NONE,
 693	SPECTRE_V1_MITIGATION_AUTO,
 694};
 695
 696static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
 697	SPECTRE_V1_MITIGATION_AUTO;
 
 698
 699static const char * const spectre_v1_strings[] = {
 700	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
 701	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
 702};
 703
 704/*
 705 * Does SMAP provide full mitigation against speculative kernel access to
 706 * userspace?
 707 */
 708static bool smap_works_speculatively(void)
 709{
 710	if (!boot_cpu_has(X86_FEATURE_SMAP))
 711		return false;
 712
 713	/*
 714	 * On CPUs which are vulnerable to Meltdown, SMAP does not
 715	 * prevent speculative access to user data in the L1 cache.
 716	 * Consider SMAP to be non-functional as a mitigation on these
 717	 * CPUs.
 718	 */
 719	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
 720		return false;
 721
 722	return true;
 723}
 724
 725static void __init spectre_v1_select_mitigation(void)
 726{
 727	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
 728		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 729		return;
 730	}
 731
 732	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
 733		/*
 734		 * With Spectre v1, a user can speculatively control either
 735		 * path of a conditional swapgs with a user-controlled GS
 736		 * value.  The mitigation is to add lfences to both code paths.
 737		 *
 738		 * If FSGSBASE is enabled, the user can put a kernel address in
 739		 * GS, in which case SMAP provides no protection.
 740		 *
 741		 * If FSGSBASE is disabled, the user can only put a user space
 742		 * address in GS.  That makes an attack harder, but still
 743		 * possible if there's no SMAP protection.
 744		 */
 745		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 746		    !smap_works_speculatively()) {
 747			/*
 748			 * Mitigation can be provided from SWAPGS itself or
 749			 * PTI as the CR3 write in the Meltdown mitigation
 750			 * is serializing.
 751			 *
 752			 * If neither is there, mitigate with an LFENCE to
 753			 * stop speculation through swapgs.
 754			 */
 755			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
 756			    !boot_cpu_has(X86_FEATURE_PTI))
 757				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
 758
 759			/*
 760			 * Enable lfences in the kernel entry (non-swapgs)
 761			 * paths, to prevent user entry from speculatively
 762			 * skipping swapgs.
 763			 */
 764			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
 765		}
 766	}
 767
 768	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
 769}
 770
 771static int __init nospectre_v1_cmdline(char *str)
 772{
 773	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
 774	return 0;
 775}
 776early_param("nospectre_v1", nospectre_v1_cmdline);
 777
 778static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
 779	SPECTRE_V2_NONE;
 780
 781#undef pr_fmt
 782#define pr_fmt(fmt)     "RETBleed: " fmt
 783
 784enum retbleed_mitigation {
 785	RETBLEED_MITIGATION_NONE,
 786	RETBLEED_MITIGATION_UNRET,
 787	RETBLEED_MITIGATION_IBPB,
 788	RETBLEED_MITIGATION_IBRS,
 789	RETBLEED_MITIGATION_EIBRS,
 790	RETBLEED_MITIGATION_STUFF,
 791};
 792
 793enum retbleed_mitigation_cmd {
 794	RETBLEED_CMD_OFF,
 795	RETBLEED_CMD_AUTO,
 796	RETBLEED_CMD_UNRET,
 797	RETBLEED_CMD_IBPB,
 798	RETBLEED_CMD_STUFF,
 799};
 800
 801static const char * const retbleed_strings[] = {
 802	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
 803	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
 804	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
 805	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
 806	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
 807	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
 808};
 809
 810static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
 811	RETBLEED_MITIGATION_NONE;
 812static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
 813	RETBLEED_CMD_AUTO;
 814
 815static int __ro_after_init retbleed_nosmt = false;
 816
 817static int __init retbleed_parse_cmdline(char *str)
 818{
 819	if (!str)
 820		return -EINVAL;
 821
 822	while (str) {
 823		char *next = strchr(str, ',');
 824		if (next) {
 825			*next = 0;
 826			next++;
 827		}
 828
 829		if (!strcmp(str, "off")) {
 830			retbleed_cmd = RETBLEED_CMD_OFF;
 831		} else if (!strcmp(str, "auto")) {
 832			retbleed_cmd = RETBLEED_CMD_AUTO;
 833		} else if (!strcmp(str, "unret")) {
 834			retbleed_cmd = RETBLEED_CMD_UNRET;
 835		} else if (!strcmp(str, "ibpb")) {
 836			retbleed_cmd = RETBLEED_CMD_IBPB;
 837		} else if (!strcmp(str, "stuff")) {
 838			retbleed_cmd = RETBLEED_CMD_STUFF;
 839		} else if (!strcmp(str, "nosmt")) {
 840			retbleed_nosmt = true;
 841		} else if (!strcmp(str, "force")) {
 842			setup_force_cpu_bug(X86_BUG_RETBLEED);
 843		} else {
 844			pr_err("Ignoring unknown retbleed option (%s).", str);
 845		}
 846
 847		str = next;
 848	}
 849
 850	return 0;
 851}
 852early_param("retbleed", retbleed_parse_cmdline);
 853
 854#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
 855#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
 856
 857static void __init retbleed_select_mitigation(void)
 858{
 859	bool mitigate_smt = false;
 860
 861	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
 862		return;
 863
 864	switch (retbleed_cmd) {
 865	case RETBLEED_CMD_OFF:
 866		return;
 867
 868	case RETBLEED_CMD_UNRET:
 869		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
 870			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
 871		} else {
 872			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
 873			goto do_cmd_auto;
 874		}
 875		break;
 876
 877	case RETBLEED_CMD_IBPB:
 878		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
 879			pr_err("WARNING: CPU does not support IBPB.\n");
 880			goto do_cmd_auto;
 881		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
 882			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
 883		} else {
 884			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
 885			goto do_cmd_auto;
 886		}
 887		break;
 888
 889	case RETBLEED_CMD_STUFF:
 890		if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
 891		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
 892			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
 893
 894		} else {
 895			if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
 896				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
 897			else
 898				pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
 899
 900			goto do_cmd_auto;
 901		}
 902		break;
 903
 904do_cmd_auto:
 905	case RETBLEED_CMD_AUTO:
 906	default:
 907		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
 908		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
 909			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
 910				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
 911			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
 
 912				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
 913		}
 914
 915		/*
 916		 * The Intel mitigation (IBRS or eIBRS) was already selected in
 917		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
 918		 * be set accordingly below.
 919		 */
 920
 921		break;
 922	}
 923
 924	switch (retbleed_mitigation) {
 925	case RETBLEED_MITIGATION_UNRET:
 926		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
 927		setup_force_cpu_cap(X86_FEATURE_UNRET);
 928
 
 
 929		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
 930		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
 931			pr_err(RETBLEED_UNTRAIN_MSG);
 932
 933		mitigate_smt = true;
 934		break;
 935
 936	case RETBLEED_MITIGATION_IBPB:
 937		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
 
 938		mitigate_smt = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939		break;
 940
 941	case RETBLEED_MITIGATION_STUFF:
 942		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
 943		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
 944		x86_set_skl_return_thunk();
 
 945		break;
 946
 947	default:
 948		break;
 949	}
 950
 951	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
 952	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
 953		cpu_smt_disable(false);
 954
 955	/*
 956	 * Let IBRS trump all on Intel without affecting the effects of the
 957	 * retbleed= cmdline option except for call depth based stuffing
 958	 */
 959	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
 960		switch (spectre_v2_enabled) {
 961		case SPECTRE_V2_IBRS:
 962			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
 963			break;
 964		case SPECTRE_V2_EIBRS:
 965		case SPECTRE_V2_EIBRS_RETPOLINE:
 966		case SPECTRE_V2_EIBRS_LFENCE:
 967			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
 968			break;
 969		default:
 970			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
 971				pr_err(RETBLEED_INTEL_MSG);
 972		}
 973	}
 974
 975	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
 976}
 977
 978#undef pr_fmt
 979#define pr_fmt(fmt)     "Spectre V2 : " fmt
 980
 981static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
 982	SPECTRE_V2_USER_NONE;
 983static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
 984	SPECTRE_V2_USER_NONE;
 985
 986#ifdef CONFIG_RETPOLINE
 987static bool spectre_v2_bad_module;
 988
 989bool retpoline_module_ok(bool has_retpoline)
 990{
 991	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
 992		return true;
 993
 994	pr_err("System may be vulnerable to spectre v2\n");
 995	spectre_v2_bad_module = true;
 996	return false;
 997}
 998
 999static inline const char *spectre_v2_module_string(void)
1000{
1001	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1002}
1003#else
1004static inline const char *spectre_v2_module_string(void) { return ""; }
1005#endif
1006
1007#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1008#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1009#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1010#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1011
1012#ifdef CONFIG_BPF_SYSCALL
1013void unpriv_ebpf_notify(int new_state)
1014{
1015	if (new_state)
1016		return;
1017
1018	/* Unprivileged eBPF is enabled */
1019
1020	switch (spectre_v2_enabled) {
1021	case SPECTRE_V2_EIBRS:
1022		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1023		break;
1024	case SPECTRE_V2_EIBRS_LFENCE:
1025		if (sched_smt_active())
1026			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1027		break;
1028	default:
1029		break;
1030	}
1031}
1032#endif
1033
1034static inline bool match_option(const char *arg, int arglen, const char *opt)
1035{
1036	int len = strlen(opt);
1037
1038	return len == arglen && !strncmp(arg, opt, len);
1039}
1040
1041/* The kernel command line selection for spectre v2 */
1042enum spectre_v2_mitigation_cmd {
1043	SPECTRE_V2_CMD_NONE,
1044	SPECTRE_V2_CMD_AUTO,
1045	SPECTRE_V2_CMD_FORCE,
1046	SPECTRE_V2_CMD_RETPOLINE,
1047	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1048	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1049	SPECTRE_V2_CMD_EIBRS,
1050	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1051	SPECTRE_V2_CMD_EIBRS_LFENCE,
1052	SPECTRE_V2_CMD_IBRS,
1053};
1054
1055enum spectre_v2_user_cmd {
1056	SPECTRE_V2_USER_CMD_NONE,
1057	SPECTRE_V2_USER_CMD_AUTO,
1058	SPECTRE_V2_USER_CMD_FORCE,
1059	SPECTRE_V2_USER_CMD_PRCTL,
1060	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1061	SPECTRE_V2_USER_CMD_SECCOMP,
1062	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1063};
1064
1065static const char * const spectre_v2_user_strings[] = {
1066	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1067	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1068	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1069	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1070	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1071};
1072
1073static const struct {
1074	const char			*option;
1075	enum spectre_v2_user_cmd	cmd;
1076	bool				secure;
1077} v2_user_options[] __initconst = {
1078	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1079	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1080	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1081	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1082	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1083	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1084	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1085};
1086
1087static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1088{
1089	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1090		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1091}
1092
1093static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1094
1095static enum spectre_v2_user_cmd __init
1096spectre_v2_parse_user_cmdline(void)
1097{
1098	char arg[20];
1099	int ret, i;
1100
1101	switch (spectre_v2_cmd) {
1102	case SPECTRE_V2_CMD_NONE:
1103		return SPECTRE_V2_USER_CMD_NONE;
1104	case SPECTRE_V2_CMD_FORCE:
1105		return SPECTRE_V2_USER_CMD_FORCE;
1106	default:
1107		break;
1108	}
1109
1110	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1111				  arg, sizeof(arg));
1112	if (ret < 0)
1113		return SPECTRE_V2_USER_CMD_AUTO;
1114
1115	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1116		if (match_option(arg, ret, v2_user_options[i].option)) {
1117			spec_v2_user_print_cond(v2_user_options[i].option,
1118						v2_user_options[i].secure);
1119			return v2_user_options[i].cmd;
1120		}
1121	}
1122
1123	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1124	return SPECTRE_V2_USER_CMD_AUTO;
1125}
1126
1127static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1128{
1129	return mode == SPECTRE_V2_IBRS ||
1130	       mode == SPECTRE_V2_EIBRS ||
1131	       mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1132	       mode == SPECTRE_V2_EIBRS_LFENCE;
1133}
1134
1135static void __init
1136spectre_v2_user_select_mitigation(void)
1137{
1138	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1139	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1140	enum spectre_v2_user_cmd cmd;
1141
1142	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1143		return;
1144
1145	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1146	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1147		smt_possible = false;
1148
1149	cmd = spectre_v2_parse_user_cmdline();
1150	switch (cmd) {
1151	case SPECTRE_V2_USER_CMD_NONE:
1152		goto set_mode;
1153	case SPECTRE_V2_USER_CMD_FORCE:
1154		mode = SPECTRE_V2_USER_STRICT;
1155		break;
1156	case SPECTRE_V2_USER_CMD_AUTO:
1157	case SPECTRE_V2_USER_CMD_PRCTL:
1158	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1159		mode = SPECTRE_V2_USER_PRCTL;
1160		break;
1161	case SPECTRE_V2_USER_CMD_SECCOMP:
1162	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1163		if (IS_ENABLED(CONFIG_SECCOMP))
1164			mode = SPECTRE_V2_USER_SECCOMP;
1165		else
1166			mode = SPECTRE_V2_USER_PRCTL;
1167		break;
1168	}
1169
1170	/* Initialize Indirect Branch Prediction Barrier */
1171	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1172		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1173
1174		spectre_v2_user_ibpb = mode;
1175		switch (cmd) {
 
 
1176		case SPECTRE_V2_USER_CMD_FORCE:
1177		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1178		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1179			static_branch_enable(&switch_mm_always_ibpb);
1180			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1181			break;
1182		case SPECTRE_V2_USER_CMD_PRCTL:
1183		case SPECTRE_V2_USER_CMD_AUTO:
1184		case SPECTRE_V2_USER_CMD_SECCOMP:
1185			static_branch_enable(&switch_mm_cond_ibpb);
1186			break;
1187		default:
1188			break;
1189		}
1190
1191		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1192			static_key_enabled(&switch_mm_always_ibpb) ?
1193			"always-on" : "conditional");
1194	}
1195
1196	/*
1197	 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1198	 * STIBP is not required.
 
 
 
 
 
 
 
 
1199	 */
1200	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1201	    !smt_possible ||
1202	    spectre_v2_in_ibrs_mode(spectre_v2_enabled))
 
1203		return;
1204
1205	/*
1206	 * At this point, an STIBP mode other than "off" has been set.
1207	 * If STIBP support is not being forced, check if STIBP always-on
1208	 * is preferred.
1209	 */
1210	if (mode != SPECTRE_V2_USER_STRICT &&
1211	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1212		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1213
1214	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1215	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1216		if (mode != SPECTRE_V2_USER_STRICT &&
1217		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1218			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1219		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1220	}
1221
1222	spectre_v2_user_stibp = mode;
1223
1224set_mode:
1225	pr_info("%s\n", spectre_v2_user_strings[mode]);
1226}
1227
1228static const char * const spectre_v2_strings[] = {
1229	[SPECTRE_V2_NONE]			= "Vulnerable",
1230	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1231	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1232	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced IBRS",
1233	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced IBRS + LFENCE",
1234	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced IBRS + Retpolines",
1235	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1236};
1237
1238static const struct {
1239	const char *option;
1240	enum spectre_v2_mitigation_cmd cmd;
1241	bool secure;
1242} mitigation_options[] __initconst = {
1243	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1244	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1245	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1246	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1247	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1248	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1249	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1250	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1251	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1252	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1253	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1254};
1255
1256static void __init spec_v2_print_cond(const char *reason, bool secure)
1257{
1258	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1259		pr_info("%s selected on command line.\n", reason);
1260}
1261
1262static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1263{
1264	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1265	char arg[20];
1266	int ret, i;
1267
 
1268	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1269	    cpu_mitigations_off())
1270		return SPECTRE_V2_CMD_NONE;
1271
1272	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1273	if (ret < 0)
1274		return SPECTRE_V2_CMD_AUTO;
1275
1276	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1277		if (!match_option(arg, ret, mitigation_options[i].option))
1278			continue;
1279		cmd = mitigation_options[i].cmd;
1280		break;
1281	}
1282
1283	if (i >= ARRAY_SIZE(mitigation_options)) {
1284		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1285		return SPECTRE_V2_CMD_AUTO;
1286	}
1287
1288	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1289	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1290	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1291	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1292	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1293	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1294		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1295		       mitigation_options[i].option);
1296		return SPECTRE_V2_CMD_AUTO;
1297	}
1298
1299	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1300	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1301	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1302	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1303		pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1304		       mitigation_options[i].option);
1305		return SPECTRE_V2_CMD_AUTO;
1306	}
1307
1308	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1309	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1310	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1311		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1312		       mitigation_options[i].option);
1313		return SPECTRE_V2_CMD_AUTO;
1314	}
1315
1316	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1317		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1318		       mitigation_options[i].option);
1319		return SPECTRE_V2_CMD_AUTO;
1320	}
1321
1322	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1323		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1324		       mitigation_options[i].option);
1325		return SPECTRE_V2_CMD_AUTO;
1326	}
1327
1328	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1329		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1330		       mitigation_options[i].option);
1331		return SPECTRE_V2_CMD_AUTO;
1332	}
1333
1334	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1335		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1336		       mitigation_options[i].option);
1337		return SPECTRE_V2_CMD_AUTO;
1338	}
1339
1340	spec_v2_print_cond(mitigation_options[i].option,
1341			   mitigation_options[i].secure);
1342	return cmd;
1343}
1344
1345static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1346{
1347	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1348		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1349		return SPECTRE_V2_NONE;
1350	}
1351
1352	return SPECTRE_V2_RETPOLINE;
1353}
1354
 
 
1355/* Disable in-kernel use of non-RSB RET predictors */
1356static void __init spec_ctrl_disable_kernel_rrsba(void)
1357{
1358	u64 ia32_cap;
 
 
 
 
 
 
1359
1360	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1361		return;
1362
1363	ia32_cap = x86_read_arch_cap_msr();
1364
1365	if (ia32_cap & ARCH_CAP_RRSBA) {
1366		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1367		update_spec_ctrl(x86_spec_ctrl_base);
1368	}
1369}
1370
1371static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1372{
1373	/*
1374	 * Similar to context switches, there are two types of RSB attacks
1375	 * after VM exit:
1376	 *
1377	 * 1) RSB underflow
1378	 *
1379	 * 2) Poisoned RSB entry
1380	 *
1381	 * When retpoline is enabled, both are mitigated by filling/clearing
1382	 * the RSB.
1383	 *
1384	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1385	 * prediction isolation protections, RSB still needs to be cleared
1386	 * because of #2.  Note that SMEP provides no protection here, unlike
1387	 * user-space-poisoned RSB entries.
1388	 *
1389	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1390	 * bug is present then a LITE version of RSB protection is required,
1391	 * just a single call needs to retire before a RET is executed.
1392	 */
1393	switch (mode) {
1394	case SPECTRE_V2_NONE:
1395		return;
1396
1397	case SPECTRE_V2_EIBRS_LFENCE:
1398	case SPECTRE_V2_EIBRS:
1399		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1400			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1401			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1402		}
1403		return;
1404
1405	case SPECTRE_V2_EIBRS_RETPOLINE:
1406	case SPECTRE_V2_RETPOLINE:
1407	case SPECTRE_V2_LFENCE:
1408	case SPECTRE_V2_IBRS:
1409		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1410		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1411		return;
1412	}
1413
1414	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1415	dump_stack();
1416}
1417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418static void __init spectre_v2_select_mitigation(void)
1419{
1420	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1421	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1422
1423	/*
1424	 * If the CPU is not affected and the command line mode is NONE or AUTO
1425	 * then nothing to do.
1426	 */
1427	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1428	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1429		return;
1430
1431	switch (cmd) {
1432	case SPECTRE_V2_CMD_NONE:
1433		return;
1434
1435	case SPECTRE_V2_CMD_FORCE:
1436	case SPECTRE_V2_CMD_AUTO:
1437		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1438			mode = SPECTRE_V2_EIBRS;
1439			break;
1440		}
1441
1442		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1443		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1444		    retbleed_cmd != RETBLEED_CMD_OFF &&
1445		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1446		    boot_cpu_has(X86_FEATURE_IBRS) &&
1447		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1448			mode = SPECTRE_V2_IBRS;
1449			break;
1450		}
1451
1452		mode = spectre_v2_select_retpoline();
1453		break;
1454
1455	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1456		pr_err(SPECTRE_V2_LFENCE_MSG);
1457		mode = SPECTRE_V2_LFENCE;
1458		break;
1459
1460	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1461		mode = SPECTRE_V2_RETPOLINE;
1462		break;
1463
1464	case SPECTRE_V2_CMD_RETPOLINE:
1465		mode = spectre_v2_select_retpoline();
1466		break;
1467
1468	case SPECTRE_V2_CMD_IBRS:
1469		mode = SPECTRE_V2_IBRS;
1470		break;
1471
1472	case SPECTRE_V2_CMD_EIBRS:
1473		mode = SPECTRE_V2_EIBRS;
1474		break;
1475
1476	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1477		mode = SPECTRE_V2_EIBRS_LFENCE;
1478		break;
1479
1480	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1481		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1482		break;
1483	}
1484
1485	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1486		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1487
1488	if (spectre_v2_in_ibrs_mode(mode)) {
1489		x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1490		update_spec_ctrl(x86_spec_ctrl_base);
 
 
 
 
1491	}
1492
1493	switch (mode) {
1494	case SPECTRE_V2_NONE:
1495	case SPECTRE_V2_EIBRS:
1496		break;
1497
1498	case SPECTRE_V2_IBRS:
1499		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1500		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1501			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1502		break;
1503
1504	case SPECTRE_V2_LFENCE:
1505	case SPECTRE_V2_EIBRS_LFENCE:
1506		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1507		fallthrough;
1508
1509	case SPECTRE_V2_RETPOLINE:
1510	case SPECTRE_V2_EIBRS_RETPOLINE:
1511		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1512		break;
1513	}
1514
1515	/*
1516	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1517	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1518	 * prediction from a non-RSB predictor is still a risk.
1519	 */
1520	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1521	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1522	    mode == SPECTRE_V2_RETPOLINE)
1523		spec_ctrl_disable_kernel_rrsba();
1524
 
 
 
1525	spectre_v2_enabled = mode;
1526	pr_info("%s\n", spectre_v2_strings[mode]);
1527
1528	/*
1529	 * If Spectre v2 protection has been enabled, fill the RSB during a
1530	 * context switch.  In general there are two types of RSB attacks
1531	 * across context switches, for which the CALLs/RETs may be unbalanced.
1532	 *
1533	 * 1) RSB underflow
1534	 *
1535	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1536	 *    speculated return targets may come from the branch predictor,
1537	 *    which could have a user-poisoned BTB or BHB entry.
1538	 *
1539	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1540	 *    regardless of the state of the RSB.
1541	 *
1542	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1543	 *    scenario is mitigated by the IBRS branch prediction isolation
1544	 *    properties, so the RSB buffer filling wouldn't be necessary to
1545	 *    protect against this type of attack.
1546	 *
1547	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1548	 *
1549	 * 2) Poisoned RSB entry
1550	 *
1551	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1552	 *    'next' could be tricked into speculating with a user-poisoned RSB
1553	 *    entry.
1554	 *
1555	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1556	 *    eIBRS.
1557	 *
1558	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1559	 *    RSB clearing.
1560	 *
1561	 * So to mitigate all cases, unconditionally fill RSB on context
1562	 * switches.
1563	 *
1564	 * FIXME: Is this pointless for retbleed-affected AMD?
1565	 */
1566	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1567	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1568
1569	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1570
1571	/*
1572	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1573	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1574	 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1575	 * enabled.
1576	 *
1577	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1578	 * the user might select retpoline on the kernel command line and if
1579	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1580	 * enable IBRS around firmware calls.
1581	 */
1582	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1583	    boot_cpu_has(X86_FEATURE_IBPB) &&
1584	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1585	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1586
1587		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1588			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1589			pr_info("Enabling Speculation Barrier for firmware calls\n");
1590		}
1591
1592	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1593		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1594		pr_info("Enabling Restricted Speculation for firmware calls\n");
1595	}
1596
1597	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1598	spectre_v2_cmd = cmd;
1599}
1600
1601static void update_stibp_msr(void * __unused)
1602{
1603	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1604	update_spec_ctrl(val);
1605}
1606
1607/* Update x86_spec_ctrl_base in case SMT state changed. */
1608static void update_stibp_strict(void)
1609{
1610	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1611
1612	if (sched_smt_active())
1613		mask |= SPEC_CTRL_STIBP;
1614
1615	if (mask == x86_spec_ctrl_base)
1616		return;
1617
1618	pr_info("Update user space SMT mitigation: STIBP %s\n",
1619		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1620	x86_spec_ctrl_base = mask;
1621	on_each_cpu(update_stibp_msr, NULL, 1);
1622}
1623
1624/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1625static void update_indir_branch_cond(void)
1626{
1627	if (sched_smt_active())
1628		static_branch_enable(&switch_to_cond_stibp);
1629	else
1630		static_branch_disable(&switch_to_cond_stibp);
1631}
1632
1633#undef pr_fmt
1634#define pr_fmt(fmt) fmt
1635
1636/* Update the static key controlling the MDS CPU buffer clear in idle */
1637static void update_mds_branch_idle(void)
1638{
1639	u64 ia32_cap = x86_read_arch_cap_msr();
1640
1641	/*
1642	 * Enable the idle clearing if SMT is active on CPUs which are
1643	 * affected only by MSBDS and not any other MDS variant.
1644	 *
1645	 * The other variants cannot be mitigated when SMT is enabled, so
1646	 * clearing the buffers on idle just to prevent the Store Buffer
1647	 * repartitioning leak would be a window dressing exercise.
1648	 */
1649	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1650		return;
1651
1652	if (sched_smt_active()) {
1653		static_branch_enable(&mds_idle_clear);
1654	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1655		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1656		static_branch_disable(&mds_idle_clear);
1657	}
1658}
1659
1660#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1661#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1662#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1663
1664void cpu_bugs_smt_update(void)
1665{
1666	mutex_lock(&spec_ctrl_mutex);
1667
1668	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1669	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1670		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1671
1672	switch (spectre_v2_user_stibp) {
1673	case SPECTRE_V2_USER_NONE:
1674		break;
1675	case SPECTRE_V2_USER_STRICT:
1676	case SPECTRE_V2_USER_STRICT_PREFERRED:
1677		update_stibp_strict();
1678		break;
1679	case SPECTRE_V2_USER_PRCTL:
1680	case SPECTRE_V2_USER_SECCOMP:
1681		update_indir_branch_cond();
1682		break;
1683	}
1684
1685	switch (mds_mitigation) {
1686	case MDS_MITIGATION_FULL:
1687	case MDS_MITIGATION_VMWERV:
1688		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1689			pr_warn_once(MDS_MSG_SMT);
1690		update_mds_branch_idle();
1691		break;
1692	case MDS_MITIGATION_OFF:
1693		break;
1694	}
1695
1696	switch (taa_mitigation) {
1697	case TAA_MITIGATION_VERW:
1698	case TAA_MITIGATION_UCODE_NEEDED:
1699		if (sched_smt_active())
1700			pr_warn_once(TAA_MSG_SMT);
1701		break;
1702	case TAA_MITIGATION_TSX_DISABLED:
1703	case TAA_MITIGATION_OFF:
1704		break;
1705	}
1706
1707	switch (mmio_mitigation) {
1708	case MMIO_MITIGATION_VERW:
1709	case MMIO_MITIGATION_UCODE_NEEDED:
1710		if (sched_smt_active())
1711			pr_warn_once(MMIO_MSG_SMT);
1712		break;
1713	case MMIO_MITIGATION_OFF:
1714		break;
1715	}
1716
1717	mutex_unlock(&spec_ctrl_mutex);
1718}
1719
1720#undef pr_fmt
1721#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1722
1723static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1724
1725/* The kernel command line selection */
1726enum ssb_mitigation_cmd {
1727	SPEC_STORE_BYPASS_CMD_NONE,
1728	SPEC_STORE_BYPASS_CMD_AUTO,
1729	SPEC_STORE_BYPASS_CMD_ON,
1730	SPEC_STORE_BYPASS_CMD_PRCTL,
1731	SPEC_STORE_BYPASS_CMD_SECCOMP,
1732};
1733
1734static const char * const ssb_strings[] = {
1735	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1736	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1737	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1738	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1739};
1740
1741static const struct {
1742	const char *option;
1743	enum ssb_mitigation_cmd cmd;
1744} ssb_mitigation_options[]  __initconst = {
1745	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1746	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1747	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1748	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1749	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1750};
1751
1752static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1753{
1754	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1755	char arg[20];
1756	int ret, i;
1757
 
 
1758	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1759	    cpu_mitigations_off()) {
1760		return SPEC_STORE_BYPASS_CMD_NONE;
1761	} else {
1762		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1763					  arg, sizeof(arg));
1764		if (ret < 0)
1765			return SPEC_STORE_BYPASS_CMD_AUTO;
1766
1767		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1768			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1769				continue;
1770
1771			cmd = ssb_mitigation_options[i].cmd;
1772			break;
1773		}
1774
1775		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1776			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1777			return SPEC_STORE_BYPASS_CMD_AUTO;
1778		}
1779	}
1780
1781	return cmd;
1782}
1783
1784static enum ssb_mitigation __init __ssb_select_mitigation(void)
1785{
1786	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1787	enum ssb_mitigation_cmd cmd;
1788
1789	if (!boot_cpu_has(X86_FEATURE_SSBD))
1790		return mode;
1791
1792	cmd = ssb_parse_cmdline();
1793	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1794	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1795	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1796		return mode;
1797
1798	switch (cmd) {
1799	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1800		/*
1801		 * Choose prctl+seccomp as the default mode if seccomp is
1802		 * enabled.
1803		 */
1804		if (IS_ENABLED(CONFIG_SECCOMP))
1805			mode = SPEC_STORE_BYPASS_SECCOMP;
1806		else
1807			mode = SPEC_STORE_BYPASS_PRCTL;
1808		break;
1809	case SPEC_STORE_BYPASS_CMD_ON:
1810		mode = SPEC_STORE_BYPASS_DISABLE;
1811		break;
1812	case SPEC_STORE_BYPASS_CMD_AUTO:
1813	case SPEC_STORE_BYPASS_CMD_PRCTL:
1814		mode = SPEC_STORE_BYPASS_PRCTL;
1815		break;
1816	case SPEC_STORE_BYPASS_CMD_NONE:
1817		break;
1818	}
1819
1820	/*
1821	 * We have three CPU feature flags that are in play here:
1822	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1823	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1824	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1825	 */
1826	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1827		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1828		/*
1829		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1830		 * use a completely different MSR and bit dependent on family.
1831		 */
1832		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1833		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1834			x86_amd_ssb_disable();
1835		} else {
1836			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1837			update_spec_ctrl(x86_spec_ctrl_base);
1838		}
1839	}
1840
1841	return mode;
1842}
1843
1844static void ssb_select_mitigation(void)
1845{
1846	ssb_mode = __ssb_select_mitigation();
1847
1848	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1849		pr_info("%s\n", ssb_strings[ssb_mode]);
1850}
1851
1852#undef pr_fmt
1853#define pr_fmt(fmt)     "Speculation prctl: " fmt
1854
1855static void task_update_spec_tif(struct task_struct *tsk)
1856{
1857	/* Force the update of the real TIF bits */
1858	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1859
1860	/*
1861	 * Immediately update the speculation control MSRs for the current
1862	 * task, but for a non-current task delay setting the CPU
1863	 * mitigation until it is scheduled next.
1864	 *
1865	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1866	 * always the current task.
1867	 */
1868	if (tsk == current)
1869		speculation_ctrl_update_current();
1870}
1871
1872static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1873{
1874
1875	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1876		return -EPERM;
1877
1878	switch (ctrl) {
1879	case PR_SPEC_ENABLE:
1880		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1881		return 0;
1882	case PR_SPEC_DISABLE:
1883		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1884		return 0;
1885	default:
1886		return -ERANGE;
1887	}
1888}
1889
1890static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1891{
1892	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1893	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1894		return -ENXIO;
1895
1896	switch (ctrl) {
1897	case PR_SPEC_ENABLE:
1898		/* If speculation is force disabled, enable is not allowed */
1899		if (task_spec_ssb_force_disable(task))
1900			return -EPERM;
1901		task_clear_spec_ssb_disable(task);
1902		task_clear_spec_ssb_noexec(task);
1903		task_update_spec_tif(task);
1904		break;
1905	case PR_SPEC_DISABLE:
1906		task_set_spec_ssb_disable(task);
1907		task_clear_spec_ssb_noexec(task);
1908		task_update_spec_tif(task);
1909		break;
1910	case PR_SPEC_FORCE_DISABLE:
1911		task_set_spec_ssb_disable(task);
1912		task_set_spec_ssb_force_disable(task);
1913		task_clear_spec_ssb_noexec(task);
1914		task_update_spec_tif(task);
1915		break;
1916	case PR_SPEC_DISABLE_NOEXEC:
1917		if (task_spec_ssb_force_disable(task))
1918			return -EPERM;
1919		task_set_spec_ssb_disable(task);
1920		task_set_spec_ssb_noexec(task);
1921		task_update_spec_tif(task);
1922		break;
1923	default:
1924		return -ERANGE;
1925	}
1926	return 0;
1927}
1928
1929static bool is_spec_ib_user_controlled(void)
1930{
1931	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1932		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1933		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1934		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1935}
1936
1937static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1938{
1939	switch (ctrl) {
1940	case PR_SPEC_ENABLE:
1941		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1942		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1943			return 0;
1944
1945		/*
1946		 * With strict mode for both IBPB and STIBP, the instruction
1947		 * code paths avoid checking this task flag and instead,
1948		 * unconditionally run the instruction. However, STIBP and IBPB
1949		 * are independent and either can be set to conditionally
1950		 * enabled regardless of the mode of the other.
1951		 *
1952		 * If either is set to conditional, allow the task flag to be
1953		 * updated, unless it was force-disabled by a previous prctl
1954		 * call. Currently, this is possible on an AMD CPU which has the
1955		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1956		 * kernel is booted with 'spectre_v2_user=seccomp', then
1957		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1958		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1959		 */
1960		if (!is_spec_ib_user_controlled() ||
1961		    task_spec_ib_force_disable(task))
1962			return -EPERM;
1963
1964		task_clear_spec_ib_disable(task);
1965		task_update_spec_tif(task);
1966		break;
1967	case PR_SPEC_DISABLE:
1968	case PR_SPEC_FORCE_DISABLE:
1969		/*
1970		 * Indirect branch speculation is always allowed when
1971		 * mitigation is force disabled.
1972		 */
1973		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1974		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1975			return -EPERM;
1976
1977		if (!is_spec_ib_user_controlled())
1978			return 0;
1979
1980		task_set_spec_ib_disable(task);
1981		if (ctrl == PR_SPEC_FORCE_DISABLE)
1982			task_set_spec_ib_force_disable(task);
1983		task_update_spec_tif(task);
1984		if (task == current)
1985			indirect_branch_prediction_barrier();
1986		break;
1987	default:
1988		return -ERANGE;
1989	}
1990	return 0;
1991}
1992
1993int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1994			     unsigned long ctrl)
1995{
1996	switch (which) {
1997	case PR_SPEC_STORE_BYPASS:
1998		return ssb_prctl_set(task, ctrl);
1999	case PR_SPEC_INDIRECT_BRANCH:
2000		return ib_prctl_set(task, ctrl);
2001	case PR_SPEC_L1D_FLUSH:
2002		return l1d_flush_prctl_set(task, ctrl);
2003	default:
2004		return -ENODEV;
2005	}
2006}
2007
2008#ifdef CONFIG_SECCOMP
2009void arch_seccomp_spec_mitigate(struct task_struct *task)
2010{
2011	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2012		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2013	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2014	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2015		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2016}
2017#endif
2018
2019static int l1d_flush_prctl_get(struct task_struct *task)
2020{
2021	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2022		return PR_SPEC_FORCE_DISABLE;
2023
2024	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2025		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2026	else
2027		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2028}
2029
2030static int ssb_prctl_get(struct task_struct *task)
2031{
2032	switch (ssb_mode) {
 
 
 
 
2033	case SPEC_STORE_BYPASS_DISABLE:
2034		return PR_SPEC_DISABLE;
2035	case SPEC_STORE_BYPASS_SECCOMP:
2036	case SPEC_STORE_BYPASS_PRCTL:
2037		if (task_spec_ssb_force_disable(task))
2038			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2039		if (task_spec_ssb_noexec(task))
2040			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2041		if (task_spec_ssb_disable(task))
2042			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2043		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2044	default:
2045		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2046			return PR_SPEC_ENABLE;
2047		return PR_SPEC_NOT_AFFECTED;
2048	}
 
2049}
2050
2051static int ib_prctl_get(struct task_struct *task)
2052{
2053	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2054		return PR_SPEC_NOT_AFFECTED;
2055
2056	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2057	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2058		return PR_SPEC_ENABLE;
2059	else if (is_spec_ib_user_controlled()) {
2060		if (task_spec_ib_force_disable(task))
2061			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2062		if (task_spec_ib_disable(task))
2063			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2064		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2065	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2066	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2067	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2068		return PR_SPEC_DISABLE;
2069	else
2070		return PR_SPEC_NOT_AFFECTED;
2071}
2072
2073int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2074{
2075	switch (which) {
2076	case PR_SPEC_STORE_BYPASS:
2077		return ssb_prctl_get(task);
2078	case PR_SPEC_INDIRECT_BRANCH:
2079		return ib_prctl_get(task);
2080	case PR_SPEC_L1D_FLUSH:
2081		return l1d_flush_prctl_get(task);
2082	default:
2083		return -ENODEV;
2084	}
2085}
2086
2087void x86_spec_ctrl_setup_ap(void)
2088{
2089	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2090		update_spec_ctrl(x86_spec_ctrl_base);
2091
2092	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2093		x86_amd_ssb_disable();
2094}
2095
2096bool itlb_multihit_kvm_mitigation;
2097EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2098
2099#undef pr_fmt
2100#define pr_fmt(fmt)	"L1TF: " fmt
2101
2102/* Default mitigation for L1TF-affected CPUs */
2103enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
 
2104#if IS_ENABLED(CONFIG_KVM_INTEL)
2105EXPORT_SYMBOL_GPL(l1tf_mitigation);
2106#endif
2107enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2108EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2109
2110/*
2111 * These CPUs all support 44bits physical address space internally in the
2112 * cache but CPUID can report a smaller number of physical address bits.
2113 *
2114 * The L1TF mitigation uses the top most address bit for the inversion of
2115 * non present PTEs. When the installed memory reaches into the top most
2116 * address bit due to memory holes, which has been observed on machines
2117 * which report 36bits physical address bits and have 32G RAM installed,
2118 * then the mitigation range check in l1tf_select_mitigation() triggers.
2119 * This is a false positive because the mitigation is still possible due to
2120 * the fact that the cache uses 44bit internally. Use the cache bits
2121 * instead of the reported physical bits and adjust them on the affected
2122 * machines to 44bit if the reported bits are less than 44.
2123 */
2124static void override_cache_bits(struct cpuinfo_x86 *c)
2125{
2126	if (c->x86 != 6)
2127		return;
2128
2129	switch (c->x86_model) {
2130	case INTEL_FAM6_NEHALEM:
2131	case INTEL_FAM6_WESTMERE:
2132	case INTEL_FAM6_SANDYBRIDGE:
2133	case INTEL_FAM6_IVYBRIDGE:
2134	case INTEL_FAM6_HASWELL:
2135	case INTEL_FAM6_HASWELL_L:
2136	case INTEL_FAM6_HASWELL_G:
2137	case INTEL_FAM6_BROADWELL:
2138	case INTEL_FAM6_BROADWELL_G:
2139	case INTEL_FAM6_SKYLAKE_L:
2140	case INTEL_FAM6_SKYLAKE:
2141	case INTEL_FAM6_KABYLAKE_L:
2142	case INTEL_FAM6_KABYLAKE:
2143		if (c->x86_cache_bits < 44)
2144			c->x86_cache_bits = 44;
2145		break;
2146	}
2147}
2148
2149static void __init l1tf_select_mitigation(void)
2150{
2151	u64 half_pa;
2152
2153	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2154		return;
2155
2156	if (cpu_mitigations_off())
2157		l1tf_mitigation = L1TF_MITIGATION_OFF;
2158	else if (cpu_mitigations_auto_nosmt())
2159		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2160
2161	override_cache_bits(&boot_cpu_data);
2162
2163	switch (l1tf_mitigation) {
2164	case L1TF_MITIGATION_OFF:
2165	case L1TF_MITIGATION_FLUSH_NOWARN:
2166	case L1TF_MITIGATION_FLUSH:
2167		break;
2168	case L1TF_MITIGATION_FLUSH_NOSMT:
2169	case L1TF_MITIGATION_FULL:
2170		cpu_smt_disable(false);
2171		break;
2172	case L1TF_MITIGATION_FULL_FORCE:
2173		cpu_smt_disable(true);
2174		break;
2175	}
2176
2177#if CONFIG_PGTABLE_LEVELS == 2
2178	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2179	return;
2180#endif
2181
2182	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2183	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2184			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2185		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2186		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2187				half_pa);
2188		pr_info("However, doing so will make a part of your RAM unusable.\n");
2189		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2190		return;
2191	}
2192
2193	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2194}
2195
2196static int __init l1tf_cmdline(char *str)
2197{
2198	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2199		return 0;
2200
2201	if (!str)
2202		return -EINVAL;
2203
2204	if (!strcmp(str, "off"))
2205		l1tf_mitigation = L1TF_MITIGATION_OFF;
2206	else if (!strcmp(str, "flush,nowarn"))
2207		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2208	else if (!strcmp(str, "flush"))
2209		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2210	else if (!strcmp(str, "flush,nosmt"))
2211		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2212	else if (!strcmp(str, "full"))
2213		l1tf_mitigation = L1TF_MITIGATION_FULL;
2214	else if (!strcmp(str, "full,force"))
2215		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2216
2217	return 0;
2218}
2219early_param("l1tf", l1tf_cmdline);
2220
2221#undef pr_fmt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222#define pr_fmt(fmt) fmt
2223
2224#ifdef CONFIG_SYSFS
2225
2226#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2227
2228#if IS_ENABLED(CONFIG_KVM_INTEL)
2229static const char * const l1tf_vmx_states[] = {
2230	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2231	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2232	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2233	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2234	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2235	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2236};
2237
2238static ssize_t l1tf_show_state(char *buf)
2239{
2240	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2241		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2242
2243	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2244	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2245	     sched_smt_active())) {
2246		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2247				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2248	}
2249
2250	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2251			  l1tf_vmx_states[l1tf_vmx_mitigation],
2252			  sched_smt_active() ? "vulnerable" : "disabled");
2253}
2254
2255static ssize_t itlb_multihit_show_state(char *buf)
2256{
2257	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2258	    !boot_cpu_has(X86_FEATURE_VMX))
2259		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2260	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2261		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2262	else if (itlb_multihit_kvm_mitigation)
2263		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2264	else
2265		return sysfs_emit(buf, "KVM: Vulnerable\n");
2266}
2267#else
2268static ssize_t l1tf_show_state(char *buf)
2269{
2270	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2271}
2272
2273static ssize_t itlb_multihit_show_state(char *buf)
2274{
2275	return sysfs_emit(buf, "Processor vulnerable\n");
2276}
2277#endif
2278
2279static ssize_t mds_show_state(char *buf)
2280{
2281	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2282		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2283				  mds_strings[mds_mitigation]);
2284	}
2285
2286	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2287		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2288				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2289				   sched_smt_active() ? "mitigated" : "disabled"));
2290	}
2291
2292	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2293			  sched_smt_active() ? "vulnerable" : "disabled");
2294}
2295
2296static ssize_t tsx_async_abort_show_state(char *buf)
2297{
2298	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2299	    (taa_mitigation == TAA_MITIGATION_OFF))
2300		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2301
2302	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2303		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2304				  taa_strings[taa_mitigation]);
2305	}
2306
2307	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2308			  sched_smt_active() ? "vulnerable" : "disabled");
2309}
2310
2311static ssize_t mmio_stale_data_show_state(char *buf)
2312{
2313	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2314		return sysfs_emit(buf, "Unknown: No mitigations\n");
2315
2316	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2317		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2318
2319	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2320		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2321				  mmio_strings[mmio_mitigation]);
2322	}
2323
2324	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2325			  sched_smt_active() ? "vulnerable" : "disabled");
2326}
2327
 
 
 
 
 
2328static char *stibp_state(void)
2329{
2330	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
 
2331		return "";
2332
2333	switch (spectre_v2_user_stibp) {
2334	case SPECTRE_V2_USER_NONE:
2335		return ", STIBP: disabled";
2336	case SPECTRE_V2_USER_STRICT:
2337		return ", STIBP: forced";
2338	case SPECTRE_V2_USER_STRICT_PREFERRED:
2339		return ", STIBP: always-on";
2340	case SPECTRE_V2_USER_PRCTL:
2341	case SPECTRE_V2_USER_SECCOMP:
2342		if (static_key_enabled(&switch_to_cond_stibp))
2343			return ", STIBP: conditional";
2344	}
2345	return "";
2346}
2347
2348static char *ibpb_state(void)
2349{
2350	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2351		if (static_key_enabled(&switch_mm_always_ibpb))
2352			return ", IBPB: always-on";
2353		if (static_key_enabled(&switch_mm_cond_ibpb))
2354			return ", IBPB: conditional";
2355		return ", IBPB: disabled";
2356	}
2357	return "";
2358}
2359
2360static char *pbrsb_eibrs_state(void)
2361{
2362	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2363		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2364		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2365			return ", PBRSB-eIBRS: SW sequence";
2366		else
2367			return ", PBRSB-eIBRS: Vulnerable";
2368	} else {
2369		return ", PBRSB-eIBRS: Not affected";
2370	}
2371}
2372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2373static ssize_t spectre_v2_show_state(char *buf)
2374{
2375	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2376		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2377
2378	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2379		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2380
2381	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2382	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2383		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2384
2385	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2386			  spectre_v2_strings[spectre_v2_enabled],
2387			  ibpb_state(),
2388			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2389			  stibp_state(),
2390			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2391			  pbrsb_eibrs_state(),
 
 
2392			  spectre_v2_module_string());
2393}
2394
2395static ssize_t srbds_show_state(char *buf)
2396{
2397	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2398}
2399
2400static ssize_t retbleed_show_state(char *buf)
2401{
2402	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2403	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2404		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2405		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2406			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2407
2408		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2409				  !sched_smt_active() ? "disabled" :
2410				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2411				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2412				  "enabled with STIBP protection" : "vulnerable");
2413	}
2414
2415	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2416}
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
2418static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2419			       char *buf, unsigned int bug)
2420{
2421	if (!boot_cpu_has_bug(bug))
2422		return sysfs_emit(buf, "Not affected\n");
2423
2424	switch (bug) {
2425	case X86_BUG_CPU_MELTDOWN:
2426		if (boot_cpu_has(X86_FEATURE_PTI))
2427			return sysfs_emit(buf, "Mitigation: PTI\n");
2428
2429		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2430			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2431
2432		break;
2433
2434	case X86_BUG_SPECTRE_V1:
2435		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2436
2437	case X86_BUG_SPECTRE_V2:
2438		return spectre_v2_show_state(buf);
2439
2440	case X86_BUG_SPEC_STORE_BYPASS:
2441		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2442
2443	case X86_BUG_L1TF:
2444		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2445			return l1tf_show_state(buf);
2446		break;
2447
2448	case X86_BUG_MDS:
2449		return mds_show_state(buf);
2450
2451	case X86_BUG_TAA:
2452		return tsx_async_abort_show_state(buf);
2453
2454	case X86_BUG_ITLB_MULTIHIT:
2455		return itlb_multihit_show_state(buf);
2456
2457	case X86_BUG_SRBDS:
2458		return srbds_show_state(buf);
2459
2460	case X86_BUG_MMIO_STALE_DATA:
2461	case X86_BUG_MMIO_UNKNOWN:
2462		return mmio_stale_data_show_state(buf);
2463
2464	case X86_BUG_RETBLEED:
2465		return retbleed_show_state(buf);
2466
 
 
 
 
 
 
 
 
 
2467	default:
2468		break;
2469	}
2470
2471	return sysfs_emit(buf, "Vulnerable\n");
2472}
2473
2474ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2475{
2476	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2477}
2478
2479ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2480{
2481	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2482}
2483
2484ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2485{
2486	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2487}
2488
2489ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2490{
2491	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2492}
2493
2494ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2495{
2496	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2497}
2498
2499ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2500{
2501	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2502}
2503
2504ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2505{
2506	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2507}
2508
2509ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2510{
2511	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2512}
2513
2514ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2515{
2516	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2517}
2518
2519ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2520{
2521	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2522		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2523	else
2524		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2525}
2526
2527ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2528{
2529	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2530}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531#endif