Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
  35#include "internal.h"
  36#include "mount.h"
  37
  38#include <asm/runtime-const.h>
  39
  40/*
  41 * Usage:
  42 * dcache->d_inode->i_lock protects:
  43 *   - i_dentry, d_u.d_alias, d_inode of aliases
  44 * dcache_hash_bucket lock protects:
  45 *   - the dcache hash table
  46 * s_roots bl list spinlock protects:
  47 *   - the s_roots list (see __d_drop)
  48 * dentry->d_sb->s_dentry_lru_lock protects:
  49 *   - the dcache lru lists and counters
  50 * d_lock protects:
  51 *   - d_flags
  52 *   - d_name
  53 *   - d_lru
  54 *   - d_count
  55 *   - d_unhashed()
  56 *   - d_parent and d_chilren
  57 *   - childrens' d_sib and d_parent
  58 *   - d_u.d_alias, d_inode
  59 *
  60 * Ordering:
  61 * dentry->d_inode->i_lock
  62 *   dentry->d_lock
  63 *     dentry->d_sb->s_dentry_lru_lock
  64 *     dcache_hash_bucket lock
  65 *     s_roots lock
  66 *
  67 * If there is an ancestor relationship:
  68 * dentry->d_parent->...->d_parent->d_lock
  69 *   ...
  70 *     dentry->d_parent->d_lock
  71 *       dentry->d_lock
  72 *
  73 * If no ancestor relationship:
  74 * arbitrary, since it's serialized on rename_lock
  75 */
  76int sysctl_vfs_cache_pressure __read_mostly = 100;
  77EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  78
  79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  80
  81EXPORT_SYMBOL(rename_lock);
  82
  83static struct kmem_cache *dentry_cache __ro_after_init;
  84
  85const struct qstr empty_name = QSTR_INIT("", 0);
  86EXPORT_SYMBOL(empty_name);
  87const struct qstr slash_name = QSTR_INIT("/", 1);
  88EXPORT_SYMBOL(slash_name);
  89const struct qstr dotdot_name = QSTR_INIT("..", 2);
  90EXPORT_SYMBOL(dotdot_name);
  91
  92/*
  93 * This is the single most critical data structure when it comes
  94 * to the dcache: the hashtable for lookups. Somebody should try
  95 * to make this good - I've just made it work.
  96 *
  97 * This hash-function tries to avoid losing too many bits of hash
  98 * information, yet avoid using a prime hash-size or similar.
  99 *
 100 * Marking the variables "used" ensures that the compiler doesn't
 101 * optimize them away completely on architectures with runtime
 102 * constant infrastructure, this allows debuggers to see their
 103 * values. But updating these values has no effect on those arches.
 104 */
 105
 106static unsigned int d_hash_shift __ro_after_init __used;
 107
 108static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
 109
 110static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
 111{
 112	return runtime_const_ptr(dentry_hashtable) +
 113		runtime_const_shift_right_32(hashlen, d_hash_shift);
 114}
 115
 116#define IN_LOOKUP_SHIFT 10
 117static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 118
 119static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 120					unsigned int hash)
 121{
 122	hash += (unsigned long) parent / L1_CACHE_BYTES;
 123	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 124}
 125
 126struct dentry_stat_t {
 127	long nr_dentry;
 128	long nr_unused;
 129	long age_limit;		/* age in seconds */
 130	long want_pages;	/* pages requested by system */
 131	long nr_negative;	/* # of unused negative dentries */
 132	long dummy;		/* Reserved for future use */
 133};
 134
 135static DEFINE_PER_CPU(long, nr_dentry);
 136static DEFINE_PER_CPU(long, nr_dentry_unused);
 137static DEFINE_PER_CPU(long, nr_dentry_negative);
 138static int dentry_negative_policy;
 139
 140#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 141/* Statistics gathering. */
 142static struct dentry_stat_t dentry_stat = {
 143	.age_limit = 45,
 144};
 145
 146/*
 147 * Here we resort to our own counters instead of using generic per-cpu counters
 148 * for consistency with what the vfs inode code does. We are expected to harvest
 149 * better code and performance by having our own specialized counters.
 150 *
 151 * Please note that the loop is done over all possible CPUs, not over all online
 152 * CPUs. The reason for this is that we don't want to play games with CPUs going
 153 * on and off. If one of them goes off, we will just keep their counters.
 154 *
 155 * glommer: See cffbc8a for details, and if you ever intend to change this,
 156 * please update all vfs counters to match.
 157 */
 158static long get_nr_dentry(void)
 159{
 160	int i;
 161	long sum = 0;
 162	for_each_possible_cpu(i)
 163		sum += per_cpu(nr_dentry, i);
 164	return sum < 0 ? 0 : sum;
 165}
 166
 167static long get_nr_dentry_unused(void)
 168{
 169	int i;
 170	long sum = 0;
 171	for_each_possible_cpu(i)
 172		sum += per_cpu(nr_dentry_unused, i);
 173	return sum < 0 ? 0 : sum;
 174}
 175
 176static long get_nr_dentry_negative(void)
 177{
 178	int i;
 179	long sum = 0;
 180
 181	for_each_possible_cpu(i)
 182		sum += per_cpu(nr_dentry_negative, i);
 183	return sum < 0 ? 0 : sum;
 184}
 185
 186static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
 187			  size_t *lenp, loff_t *ppos)
 188{
 189	dentry_stat.nr_dentry = get_nr_dentry();
 190	dentry_stat.nr_unused = get_nr_dentry_unused();
 191	dentry_stat.nr_negative = get_nr_dentry_negative();
 192	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 193}
 194
 195static struct ctl_table fs_dcache_sysctls[] = {
 196	{
 197		.procname	= "dentry-state",
 198		.data		= &dentry_stat,
 199		.maxlen		= 6*sizeof(long),
 200		.mode		= 0444,
 201		.proc_handler	= proc_nr_dentry,
 202	},
 203	{
 204		.procname	= "dentry-negative",
 205		.data		= &dentry_negative_policy,
 206		.maxlen		= sizeof(dentry_negative_policy),
 207		.mode		= 0644,
 208		.proc_handler	= proc_dointvec_minmax,
 209		.extra1		= SYSCTL_ZERO,
 210		.extra2		= SYSCTL_ONE,
 211	},
 212};
 213
 214static int __init init_fs_dcache_sysctls(void)
 215{
 216	register_sysctl_init("fs", fs_dcache_sysctls);
 217	return 0;
 218}
 219fs_initcall(init_fs_dcache_sysctls);
 220#endif
 221
 222/*
 223 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 224 * The strings are both count bytes long, and count is non-zero.
 225 */
 226#ifdef CONFIG_DCACHE_WORD_ACCESS
 227
 228#include <asm/word-at-a-time.h>
 229/*
 230 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 231 * aligned allocation for this particular component. We don't
 232 * strictly need the load_unaligned_zeropad() safety, but it
 233 * doesn't hurt either.
 234 *
 235 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 236 * need the careful unaligned handling.
 237 */
 238static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 239{
 240	unsigned long a,b,mask;
 241
 242	for (;;) {
 243		a = read_word_at_a_time(cs);
 244		b = load_unaligned_zeropad(ct);
 245		if (tcount < sizeof(unsigned long))
 246			break;
 247		if (unlikely(a != b))
 248			return 1;
 249		cs += sizeof(unsigned long);
 250		ct += sizeof(unsigned long);
 251		tcount -= sizeof(unsigned long);
 252		if (!tcount)
 253			return 0;
 254	}
 255	mask = bytemask_from_count(tcount);
 256	return unlikely(!!((a ^ b) & mask));
 257}
 258
 259#else
 260
 261static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 262{
 263	do {
 264		if (*cs != *ct)
 265			return 1;
 266		cs++;
 267		ct++;
 268		tcount--;
 269	} while (tcount);
 270	return 0;
 271}
 272
 273#endif
 274
 275static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 276{
 277	/*
 278	 * Be careful about RCU walk racing with rename:
 279	 * use 'READ_ONCE' to fetch the name pointer.
 280	 *
 281	 * NOTE! Even if a rename will mean that the length
 282	 * was not loaded atomically, we don't care. The
 283	 * RCU walk will check the sequence count eventually,
 284	 * and catch it. And we won't overrun the buffer,
 285	 * because we're reading the name pointer atomically,
 286	 * and a dentry name is guaranteed to be properly
 287	 * terminated with a NUL byte.
 288	 *
 289	 * End result: even if 'len' is wrong, we'll exit
 290	 * early because the data cannot match (there can
 291	 * be no NUL in the ct/tcount data)
 292	 */
 293	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 294
 295	return dentry_string_cmp(cs, ct, tcount);
 296}
 297
 298struct external_name {
 299	union {
 300		atomic_t count;
 301		struct rcu_head head;
 302	} u;
 303	unsigned char name[];
 304};
 305
 306static inline struct external_name *external_name(struct dentry *dentry)
 307{
 308	return container_of(dentry->d_name.name, struct external_name, name[0]);
 309}
 310
 311static void __d_free(struct rcu_head *head)
 312{
 313	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 314
 315	kmem_cache_free(dentry_cache, dentry); 
 316}
 317
 318static void __d_free_external(struct rcu_head *head)
 319{
 320	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 321	kfree(external_name(dentry));
 322	kmem_cache_free(dentry_cache, dentry);
 323}
 324
 325static inline int dname_external(const struct dentry *dentry)
 326{
 327	return dentry->d_name.name != dentry->d_iname;
 328}
 329
 330void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 331{
 332	spin_lock(&dentry->d_lock);
 333	name->name = dentry->d_name;
 334	if (unlikely(dname_external(dentry))) {
 335		atomic_inc(&external_name(dentry)->u.count);
 336	} else {
 337		memcpy(name->inline_name, dentry->d_iname,
 338		       dentry->d_name.len + 1);
 339		name->name.name = name->inline_name;
 340	}
 341	spin_unlock(&dentry->d_lock);
 342}
 343EXPORT_SYMBOL(take_dentry_name_snapshot);
 344
 345void release_dentry_name_snapshot(struct name_snapshot *name)
 346{
 347	if (unlikely(name->name.name != name->inline_name)) {
 348		struct external_name *p;
 349		p = container_of(name->name.name, struct external_name, name[0]);
 350		if (unlikely(atomic_dec_and_test(&p->u.count)))
 351			kfree_rcu(p, u.head);
 352	}
 353}
 354EXPORT_SYMBOL(release_dentry_name_snapshot);
 355
 356static inline void __d_set_inode_and_type(struct dentry *dentry,
 357					  struct inode *inode,
 358					  unsigned type_flags)
 359{
 360	unsigned flags;
 361
 362	dentry->d_inode = inode;
 363	flags = READ_ONCE(dentry->d_flags);
 364	flags &= ~DCACHE_ENTRY_TYPE;
 365	flags |= type_flags;
 366	smp_store_release(&dentry->d_flags, flags);
 367}
 368
 369static inline void __d_clear_type_and_inode(struct dentry *dentry)
 370{
 371	unsigned flags = READ_ONCE(dentry->d_flags);
 372
 373	flags &= ~DCACHE_ENTRY_TYPE;
 374	WRITE_ONCE(dentry->d_flags, flags);
 375	dentry->d_inode = NULL;
 376	/*
 377	 * The negative counter only tracks dentries on the LRU. Don't inc if
 378	 * d_lru is on another list.
 379	 */
 380	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
 381		this_cpu_inc(nr_dentry_negative);
 382}
 383
 384static void dentry_free(struct dentry *dentry)
 385{
 386	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 387	if (unlikely(dname_external(dentry))) {
 388		struct external_name *p = external_name(dentry);
 389		if (likely(atomic_dec_and_test(&p->u.count))) {
 390			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 391			return;
 392		}
 393	}
 394	/* if dentry was never visible to RCU, immediate free is OK */
 395	if (dentry->d_flags & DCACHE_NORCU)
 396		__d_free(&dentry->d_u.d_rcu);
 397	else
 398		call_rcu(&dentry->d_u.d_rcu, __d_free);
 399}
 400
 401/*
 402 * Release the dentry's inode, using the filesystem
 403 * d_iput() operation if defined.
 404 */
 405static void dentry_unlink_inode(struct dentry * dentry)
 406	__releases(dentry->d_lock)
 407	__releases(dentry->d_inode->i_lock)
 408{
 409	struct inode *inode = dentry->d_inode;
 410
 411	raw_write_seqcount_begin(&dentry->d_seq);
 412	__d_clear_type_and_inode(dentry);
 413	hlist_del_init(&dentry->d_u.d_alias);
 414	raw_write_seqcount_end(&dentry->d_seq);
 415	spin_unlock(&dentry->d_lock);
 416	spin_unlock(&inode->i_lock);
 417	if (!inode->i_nlink)
 418		fsnotify_inoderemove(inode);
 419	if (dentry->d_op && dentry->d_op->d_iput)
 420		dentry->d_op->d_iput(dentry, inode);
 421	else
 422		iput(inode);
 423}
 424
 425/*
 426 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 427 * is in use - which includes both the "real" per-superblock
 428 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 429 *
 430 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 431 * on the shrink list (ie not on the superblock LRU list).
 432 *
 433 * The per-cpu "nr_dentry_unused" counters are updated with
 434 * the DCACHE_LRU_LIST bit.
 435 *
 436 * The per-cpu "nr_dentry_negative" counters are only updated
 437 * when deleted from or added to the per-superblock LRU list, not
 438 * from/to the shrink list. That is to avoid an unneeded dec/inc
 439 * pair when moving from LRU to shrink list in select_collect().
 440 *
 441 * These helper functions make sure we always follow the
 442 * rules. d_lock must be held by the caller.
 443 */
 444#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 445static void d_lru_add(struct dentry *dentry)
 446{
 447	D_FLAG_VERIFY(dentry, 0);
 448	dentry->d_flags |= DCACHE_LRU_LIST;
 449	this_cpu_inc(nr_dentry_unused);
 450	if (d_is_negative(dentry))
 451		this_cpu_inc(nr_dentry_negative);
 452	WARN_ON_ONCE(!list_lru_add_obj(
 453			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 454}
 455
 456static void d_lru_del(struct dentry *dentry)
 457{
 458	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 459	dentry->d_flags &= ~DCACHE_LRU_LIST;
 460	this_cpu_dec(nr_dentry_unused);
 461	if (d_is_negative(dentry))
 462		this_cpu_dec(nr_dentry_negative);
 463	WARN_ON_ONCE(!list_lru_del_obj(
 464			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 465}
 466
 467static void d_shrink_del(struct dentry *dentry)
 468{
 469	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 470	list_del_init(&dentry->d_lru);
 471	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 472	this_cpu_dec(nr_dentry_unused);
 473}
 474
 475static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 476{
 477	D_FLAG_VERIFY(dentry, 0);
 478	list_add(&dentry->d_lru, list);
 479	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 480	this_cpu_inc(nr_dentry_unused);
 481}
 482
 483/*
 484 * These can only be called under the global LRU lock, ie during the
 485 * callback for freeing the LRU list. "isolate" removes it from the
 486 * LRU lists entirely, while shrink_move moves it to the indicated
 487 * private list.
 488 */
 489static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 490{
 491	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 492	dentry->d_flags &= ~DCACHE_LRU_LIST;
 493	this_cpu_dec(nr_dentry_unused);
 494	if (d_is_negative(dentry))
 495		this_cpu_dec(nr_dentry_negative);
 496	list_lru_isolate(lru, &dentry->d_lru);
 497}
 498
 499static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 500			      struct list_head *list)
 501{
 502	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 503	dentry->d_flags |= DCACHE_SHRINK_LIST;
 504	if (d_is_negative(dentry))
 505		this_cpu_dec(nr_dentry_negative);
 506	list_lru_isolate_move(lru, &dentry->d_lru, list);
 507}
 508
 509static void ___d_drop(struct dentry *dentry)
 510{
 511	struct hlist_bl_head *b;
 512	/*
 513	 * Hashed dentries are normally on the dentry hashtable,
 514	 * with the exception of those newly allocated by
 515	 * d_obtain_root, which are always IS_ROOT:
 516	 */
 517	if (unlikely(IS_ROOT(dentry)))
 518		b = &dentry->d_sb->s_roots;
 519	else
 520		b = d_hash(dentry->d_name.hash);
 521
 522	hlist_bl_lock(b);
 523	__hlist_bl_del(&dentry->d_hash);
 524	hlist_bl_unlock(b);
 525}
 526
 527void __d_drop(struct dentry *dentry)
 528{
 529	if (!d_unhashed(dentry)) {
 530		___d_drop(dentry);
 531		dentry->d_hash.pprev = NULL;
 532		write_seqcount_invalidate(&dentry->d_seq);
 533	}
 534}
 535EXPORT_SYMBOL(__d_drop);
 536
 537/**
 538 * d_drop - drop a dentry
 539 * @dentry: dentry to drop
 540 *
 541 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 542 * be found through a VFS lookup any more. Note that this is different from
 543 * deleting the dentry - d_delete will try to mark the dentry negative if
 544 * possible, giving a successful _negative_ lookup, while d_drop will
 545 * just make the cache lookup fail.
 546 *
 547 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 548 * reason (NFS timeouts or autofs deletes).
 549 *
 550 * __d_drop requires dentry->d_lock
 551 *
 552 * ___d_drop doesn't mark dentry as "unhashed"
 553 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 554 */
 555void d_drop(struct dentry *dentry)
 556{
 557	spin_lock(&dentry->d_lock);
 558	__d_drop(dentry);
 559	spin_unlock(&dentry->d_lock);
 560}
 561EXPORT_SYMBOL(d_drop);
 562
 563static inline void dentry_unlist(struct dentry *dentry)
 564{
 565	struct dentry *next;
 566	/*
 567	 * Inform d_walk() and shrink_dentry_list() that we are no longer
 568	 * attached to the dentry tree
 569	 */
 570	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 571	if (unlikely(hlist_unhashed(&dentry->d_sib)))
 572		return;
 573	__hlist_del(&dentry->d_sib);
 574	/*
 575	 * Cursors can move around the list of children.  While we'd been
 576	 * a normal list member, it didn't matter - ->d_sib.next would've
 577	 * been updated.  However, from now on it won't be and for the
 578	 * things like d_walk() it might end up with a nasty surprise.
 579	 * Normally d_walk() doesn't care about cursors moving around -
 580	 * ->d_lock on parent prevents that and since a cursor has no children
 581	 * of its own, we get through it without ever unlocking the parent.
 582	 * There is one exception, though - if we ascend from a child that
 583	 * gets killed as soon as we unlock it, the next sibling is found
 584	 * using the value left in its ->d_sib.next.  And if _that_
 585	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
 586	 * before d_walk() regains parent->d_lock, we'll end up skipping
 587	 * everything the cursor had been moved past.
 588	 *
 589	 * Solution: make sure that the pointer left behind in ->d_sib.next
 590	 * points to something that won't be moving around.  I.e. skip the
 591	 * cursors.
 592	 */
 593	while (dentry->d_sib.next) {
 594		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
 595		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 596			break;
 597		dentry->d_sib.next = next->d_sib.next;
 598	}
 599}
 600
 601static struct dentry *__dentry_kill(struct dentry *dentry)
 602{
 603	struct dentry *parent = NULL;
 604	bool can_free = true;
 605
 606	/*
 607	 * The dentry is now unrecoverably dead to the world.
 608	 */
 609	lockref_mark_dead(&dentry->d_lockref);
 610
 611	/*
 612	 * inform the fs via d_prune that this dentry is about to be
 613	 * unhashed and destroyed.
 614	 */
 615	if (dentry->d_flags & DCACHE_OP_PRUNE)
 616		dentry->d_op->d_prune(dentry);
 617
 618	if (dentry->d_flags & DCACHE_LRU_LIST) {
 619		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 620			d_lru_del(dentry);
 621	}
 622	/* if it was on the hash then remove it */
 623	__d_drop(dentry);
 624	if (dentry->d_inode)
 625		dentry_unlink_inode(dentry);
 626	else
 627		spin_unlock(&dentry->d_lock);
 628	this_cpu_dec(nr_dentry);
 629	if (dentry->d_op && dentry->d_op->d_release)
 630		dentry->d_op->d_release(dentry);
 631
 632	cond_resched();
 633	/* now that it's negative, ->d_parent is stable */
 634	if (!IS_ROOT(dentry)) {
 635		parent = dentry->d_parent;
 636		spin_lock(&parent->d_lock);
 637	}
 638	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 639	dentry_unlist(dentry);
 640	if (dentry->d_flags & DCACHE_SHRINK_LIST)
 641		can_free = false;
 642	spin_unlock(&dentry->d_lock);
 643	if (likely(can_free))
 644		dentry_free(dentry);
 645	if (parent && --parent->d_lockref.count) {
 646		spin_unlock(&parent->d_lock);
 647		return NULL;
 648	}
 649	return parent;
 650}
 651
 652/*
 653 * Lock a dentry for feeding it to __dentry_kill().
 654 * Called under rcu_read_lock() and dentry->d_lock; the former
 655 * guarantees that nothing we access will be freed under us.
 656 * Note that dentry is *not* protected from concurrent dentry_kill(),
 657 * d_delete(), etc.
 658 *
 659 * Return false if dentry is busy.  Otherwise, return true and have
 660 * that dentry's inode locked.
 661 */
 662
 663static bool lock_for_kill(struct dentry *dentry)
 664{
 665	struct inode *inode = dentry->d_inode;
 666
 667	if (unlikely(dentry->d_lockref.count))
 668		return false;
 669
 670	if (!inode || likely(spin_trylock(&inode->i_lock)))
 671		return true;
 672
 673	do {
 674		spin_unlock(&dentry->d_lock);
 675		spin_lock(&inode->i_lock);
 676		spin_lock(&dentry->d_lock);
 677		if (likely(inode == dentry->d_inode))
 678			break;
 679		spin_unlock(&inode->i_lock);
 680		inode = dentry->d_inode;
 681	} while (inode);
 682	if (likely(!dentry->d_lockref.count))
 683		return true;
 684	if (inode)
 685		spin_unlock(&inode->i_lock);
 686	return false;
 687}
 688
 689/*
 690 * Decide if dentry is worth retaining.  Usually this is called with dentry
 691 * locked; if not locked, we are more limited and might not be able to tell
 692 * without a lock.  False in this case means "punt to locked path and recheck".
 693 *
 694 * In case we aren't locked, these predicates are not "stable". However, it is
 695 * sufficient that at some point after we dropped the reference the dentry was
 696 * hashed and the flags had the proper value. Other dentry users may have
 697 * re-gotten a reference to the dentry and change that, but our work is done -
 698 * we can leave the dentry around with a zero refcount.
 699 */
 700static inline bool retain_dentry(struct dentry *dentry, bool locked)
 701{
 702	unsigned int d_flags;
 703
 704	smp_rmb();
 705	d_flags = READ_ONCE(dentry->d_flags);
 706
 707	// Unreachable? Nobody would be able to look it up, no point retaining
 708	if (unlikely(d_unhashed(dentry)))
 709		return false;
 710
 711	// Same if it's disconnected
 712	if (unlikely(d_flags & DCACHE_DISCONNECTED))
 713		return false;
 714
 715	// ->d_delete() might tell us not to bother, but that requires
 716	// ->d_lock; can't decide without it
 717	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
 718		if (!locked || dentry->d_op->d_delete(dentry))
 719			return false;
 720	}
 721
 722	// Explicitly told not to bother
 723	if (unlikely(d_flags & DCACHE_DONTCACHE))
 724		return false;
 725
 726	// At this point it looks like we ought to keep it.  We also might
 727	// need to do something - put it on LRU if it wasn't there already
 728	// and mark it referenced if it was on LRU, but not marked yet.
 729	// Unfortunately, both actions require ->d_lock, so in lockless
 730	// case we'd have to punt rather than doing those.
 731	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
 732		if (!locked)
 733			return false;
 734		d_lru_add(dentry);
 735	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
 736		if (!locked)
 737			return false;
 738		dentry->d_flags |= DCACHE_REFERENCED;
 739	}
 740	return true;
 741}
 742
 743void d_mark_dontcache(struct inode *inode)
 744{
 745	struct dentry *de;
 746
 747	spin_lock(&inode->i_lock);
 748	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 749		spin_lock(&de->d_lock);
 750		de->d_flags |= DCACHE_DONTCACHE;
 751		spin_unlock(&de->d_lock);
 752	}
 753	inode->i_state |= I_DONTCACHE;
 754	spin_unlock(&inode->i_lock);
 755}
 756EXPORT_SYMBOL(d_mark_dontcache);
 757
 758/*
 759 * Try to do a lockless dput(), and return whether that was successful.
 760 *
 761 * If unsuccessful, we return false, having already taken the dentry lock.
 762 * In that case refcount is guaranteed to be zero and we have already
 763 * decided that it's not worth keeping around.
 764 *
 765 * The caller needs to hold the RCU read lock, so that the dentry is
 766 * guaranteed to stay around even if the refcount goes down to zero!
 767 */
 768static inline bool fast_dput(struct dentry *dentry)
 769{
 770	int ret;
 771
 772	/*
 773	 * try to decrement the lockref optimistically.
 774	 */
 775	ret = lockref_put_return(&dentry->d_lockref);
 776
 777	/*
 778	 * If the lockref_put_return() failed due to the lock being held
 779	 * by somebody else, the fast path has failed. We will need to
 780	 * get the lock, and then check the count again.
 781	 */
 782	if (unlikely(ret < 0)) {
 783		spin_lock(&dentry->d_lock);
 784		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
 785			spin_unlock(&dentry->d_lock);
 786			return true;
 787		}
 788		dentry->d_lockref.count--;
 789		goto locked;
 790	}
 791
 792	/*
 793	 * If we weren't the last ref, we're done.
 794	 */
 795	if (ret)
 796		return true;
 797
 798	/*
 799	 * Can we decide that decrement of refcount is all we needed without
 800	 * taking the lock?  There's a very common case when it's all we need -
 801	 * dentry looks like it ought to be retained and there's nothing else
 802	 * to do.
 803	 */
 804	if (retain_dentry(dentry, false))
 805		return true;
 806
 807	/*
 808	 * Either not worth retaining or we can't tell without the lock.
 809	 * Get the lock, then.  We've already decremented the refcount to 0,
 810	 * but we'll need to re-check the situation after getting the lock.
 811	 */
 812	spin_lock(&dentry->d_lock);
 813
 814	/*
 815	 * Did somebody else grab a reference to it in the meantime, and
 816	 * we're no longer the last user after all? Alternatively, somebody
 817	 * else could have killed it and marked it dead. Either way, we
 818	 * don't need to do anything else.
 819	 */
 820locked:
 821	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
 822		spin_unlock(&dentry->d_lock);
 823		return true;
 824	}
 825	return false;
 826}
 827
 828
 829/* 
 830 * This is dput
 831 *
 832 * This is complicated by the fact that we do not want to put
 833 * dentries that are no longer on any hash chain on the unused
 834 * list: we'd much rather just get rid of them immediately.
 835 *
 836 * However, that implies that we have to traverse the dentry
 837 * tree upwards to the parents which might _also_ now be
 838 * scheduled for deletion (it may have been only waiting for
 839 * its last child to go away).
 840 *
 841 * This tail recursion is done by hand as we don't want to depend
 842 * on the compiler to always get this right (gcc generally doesn't).
 843 * Real recursion would eat up our stack space.
 844 */
 845
 846/*
 847 * dput - release a dentry
 848 * @dentry: dentry to release 
 849 *
 850 * Release a dentry. This will drop the usage count and if appropriate
 851 * call the dentry unlink method as well as removing it from the queues and
 852 * releasing its resources. If the parent dentries were scheduled for release
 853 * they too may now get deleted.
 854 */
 855void dput(struct dentry *dentry)
 856{
 857	if (!dentry)
 858		return;
 859	might_sleep();
 860	rcu_read_lock();
 861	if (likely(fast_dput(dentry))) {
 862		rcu_read_unlock();
 863		return;
 864	}
 865	while (lock_for_kill(dentry)) {
 866		rcu_read_unlock();
 867		dentry = __dentry_kill(dentry);
 868		if (!dentry)
 869			return;
 870		if (retain_dentry(dentry, true)) {
 871			spin_unlock(&dentry->d_lock);
 872			return;
 873		}
 874		rcu_read_lock();
 875	}
 876	rcu_read_unlock();
 877	spin_unlock(&dentry->d_lock);
 878}
 879EXPORT_SYMBOL(dput);
 880
 881static void to_shrink_list(struct dentry *dentry, struct list_head *list)
 882__must_hold(&dentry->d_lock)
 883{
 884	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
 885		if (dentry->d_flags & DCACHE_LRU_LIST)
 886			d_lru_del(dentry);
 887		d_shrink_add(dentry, list);
 888	}
 889}
 890
 891void dput_to_list(struct dentry *dentry, struct list_head *list)
 892{
 893	rcu_read_lock();
 894	if (likely(fast_dput(dentry))) {
 895		rcu_read_unlock();
 896		return;
 897	}
 898	rcu_read_unlock();
 899	to_shrink_list(dentry, list);
 900	spin_unlock(&dentry->d_lock);
 901}
 902
 903struct dentry *dget_parent(struct dentry *dentry)
 904{
 905	int gotref;
 906	struct dentry *ret;
 907	unsigned seq;
 908
 909	/*
 910	 * Do optimistic parent lookup without any
 911	 * locking.
 912	 */
 913	rcu_read_lock();
 914	seq = raw_seqcount_begin(&dentry->d_seq);
 915	ret = READ_ONCE(dentry->d_parent);
 916	gotref = lockref_get_not_zero(&ret->d_lockref);
 917	rcu_read_unlock();
 918	if (likely(gotref)) {
 919		if (!read_seqcount_retry(&dentry->d_seq, seq))
 920			return ret;
 921		dput(ret);
 922	}
 923
 924repeat:
 925	/*
 926	 * Don't need rcu_dereference because we re-check it was correct under
 927	 * the lock.
 928	 */
 929	rcu_read_lock();
 930	ret = dentry->d_parent;
 931	spin_lock(&ret->d_lock);
 932	if (unlikely(ret != dentry->d_parent)) {
 933		spin_unlock(&ret->d_lock);
 934		rcu_read_unlock();
 935		goto repeat;
 936	}
 937	rcu_read_unlock();
 938	BUG_ON(!ret->d_lockref.count);
 939	ret->d_lockref.count++;
 940	spin_unlock(&ret->d_lock);
 941	return ret;
 942}
 943EXPORT_SYMBOL(dget_parent);
 944
 945static struct dentry * __d_find_any_alias(struct inode *inode)
 946{
 947	struct dentry *alias;
 948
 949	if (hlist_empty(&inode->i_dentry))
 950		return NULL;
 951	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 952	lockref_get(&alias->d_lockref);
 953	return alias;
 954}
 955
 956/**
 957 * d_find_any_alias - find any alias for a given inode
 958 * @inode: inode to find an alias for
 959 *
 960 * If any aliases exist for the given inode, take and return a
 961 * reference for one of them.  If no aliases exist, return %NULL.
 962 */
 963struct dentry *d_find_any_alias(struct inode *inode)
 964{
 965	struct dentry *de;
 966
 967	spin_lock(&inode->i_lock);
 968	de = __d_find_any_alias(inode);
 969	spin_unlock(&inode->i_lock);
 970	return de;
 971}
 972EXPORT_SYMBOL(d_find_any_alias);
 973
 974static struct dentry *__d_find_alias(struct inode *inode)
 975{
 976	struct dentry *alias;
 977
 978	if (S_ISDIR(inode->i_mode))
 979		return __d_find_any_alias(inode);
 980
 981	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 982		spin_lock(&alias->d_lock);
 983 		if (!d_unhashed(alias)) {
 984			dget_dlock(alias);
 985			spin_unlock(&alias->d_lock);
 986			return alias;
 987		}
 988		spin_unlock(&alias->d_lock);
 989	}
 990	return NULL;
 991}
 992
 993/**
 994 * d_find_alias - grab a hashed alias of inode
 995 * @inode: inode in question
 996 *
 997 * If inode has a hashed alias, or is a directory and has any alias,
 998 * acquire the reference to alias and return it. Otherwise return NULL.
 999 * Notice that if inode is a directory there can be only one alias and
1000 * it can be unhashed only if it has no children, or if it is the root
1001 * of a filesystem, or if the directory was renamed and d_revalidate
1002 * was the first vfs operation to notice.
1003 *
1004 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1005 * any other hashed alias over that one.
1006 */
1007struct dentry *d_find_alias(struct inode *inode)
1008{
1009	struct dentry *de = NULL;
1010
1011	if (!hlist_empty(&inode->i_dentry)) {
1012		spin_lock(&inode->i_lock);
1013		de = __d_find_alias(inode);
1014		spin_unlock(&inode->i_lock);
1015	}
1016	return de;
1017}
1018EXPORT_SYMBOL(d_find_alias);
1019
1020/*
1021 *  Caller MUST be holding rcu_read_lock() and be guaranteed
1022 *  that inode won't get freed until rcu_read_unlock().
1023 */
1024struct dentry *d_find_alias_rcu(struct inode *inode)
1025{
1026	struct hlist_head *l = &inode->i_dentry;
1027	struct dentry *de = NULL;
1028
1029	spin_lock(&inode->i_lock);
1030	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1031	// used without having I_FREEING set, which means no aliases left
1032	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1033		if (S_ISDIR(inode->i_mode)) {
1034			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1035		} else {
1036			hlist_for_each_entry(de, l, d_u.d_alias)
1037				if (!d_unhashed(de))
1038					break;
1039		}
1040	}
1041	spin_unlock(&inode->i_lock);
1042	return de;
1043}
1044
1045/*
1046 *	Try to kill dentries associated with this inode.
1047 * WARNING: you must own a reference to inode.
1048 */
1049void d_prune_aliases(struct inode *inode)
1050{
1051	LIST_HEAD(dispose);
1052	struct dentry *dentry;
1053
1054	spin_lock(&inode->i_lock);
1055	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1056		spin_lock(&dentry->d_lock);
1057		if (!dentry->d_lockref.count)
1058			to_shrink_list(dentry, &dispose);
1059		spin_unlock(&dentry->d_lock);
1060	}
1061	spin_unlock(&inode->i_lock);
1062	shrink_dentry_list(&dispose);
1063}
1064EXPORT_SYMBOL(d_prune_aliases);
1065
1066static inline void shrink_kill(struct dentry *victim)
1067{
1068	do {
1069		rcu_read_unlock();
1070		victim = __dentry_kill(victim);
1071		rcu_read_lock();
1072	} while (victim && lock_for_kill(victim));
1073	rcu_read_unlock();
1074	if (victim)
1075		spin_unlock(&victim->d_lock);
1076}
1077
1078void shrink_dentry_list(struct list_head *list)
1079{
1080	while (!list_empty(list)) {
1081		struct dentry *dentry;
1082
1083		dentry = list_entry(list->prev, struct dentry, d_lru);
1084		spin_lock(&dentry->d_lock);
1085		rcu_read_lock();
1086		if (!lock_for_kill(dentry)) {
1087			bool can_free;
1088			rcu_read_unlock();
1089			d_shrink_del(dentry);
1090			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1091			spin_unlock(&dentry->d_lock);
1092			if (can_free)
1093				dentry_free(dentry);
1094			continue;
1095		}
1096		d_shrink_del(dentry);
1097		shrink_kill(dentry);
1098	}
1099}
1100
1101static enum lru_status dentry_lru_isolate(struct list_head *item,
1102		struct list_lru_one *lru, void *arg)
1103{
1104	struct list_head *freeable = arg;
1105	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1106
1107
1108	/*
1109	 * we are inverting the lru lock/dentry->d_lock here,
1110	 * so use a trylock. If we fail to get the lock, just skip
1111	 * it
1112	 */
1113	if (!spin_trylock(&dentry->d_lock))
1114		return LRU_SKIP;
1115
1116	/*
1117	 * Referenced dentries are still in use. If they have active
1118	 * counts, just remove them from the LRU. Otherwise give them
1119	 * another pass through the LRU.
1120	 */
1121	if (dentry->d_lockref.count) {
1122		d_lru_isolate(lru, dentry);
1123		spin_unlock(&dentry->d_lock);
1124		return LRU_REMOVED;
1125	}
1126
1127	if (dentry->d_flags & DCACHE_REFERENCED) {
1128		dentry->d_flags &= ~DCACHE_REFERENCED;
1129		spin_unlock(&dentry->d_lock);
1130
1131		/*
1132		 * The list move itself will be made by the common LRU code. At
1133		 * this point, we've dropped the dentry->d_lock but keep the
1134		 * lru lock. This is safe to do, since every list movement is
1135		 * protected by the lru lock even if both locks are held.
1136		 *
1137		 * This is guaranteed by the fact that all LRU management
1138		 * functions are intermediated by the LRU API calls like
1139		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1140		 * only ever occur through this functions or through callbacks
1141		 * like this one, that are called from the LRU API.
1142		 *
1143		 * The only exceptions to this are functions like
1144		 * shrink_dentry_list, and code that first checks for the
1145		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1146		 * operating only with stack provided lists after they are
1147		 * properly isolated from the main list.  It is thus, always a
1148		 * local access.
1149		 */
1150		return LRU_ROTATE;
1151	}
1152
1153	d_lru_shrink_move(lru, dentry, freeable);
1154	spin_unlock(&dentry->d_lock);
1155
1156	return LRU_REMOVED;
1157}
1158
1159/**
1160 * prune_dcache_sb - shrink the dcache
1161 * @sb: superblock
1162 * @sc: shrink control, passed to list_lru_shrink_walk()
1163 *
1164 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1165 * is done when we need more memory and called from the superblock shrinker
1166 * function.
1167 *
1168 * This function may fail to free any resources if all the dentries are in
1169 * use.
1170 */
1171long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1172{
1173	LIST_HEAD(dispose);
1174	long freed;
1175
1176	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1177				     dentry_lru_isolate, &dispose);
1178	shrink_dentry_list(&dispose);
1179	return freed;
1180}
1181
1182static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1183		struct list_lru_one *lru, void *arg)
1184{
1185	struct list_head *freeable = arg;
1186	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1187
1188	/*
1189	 * we are inverting the lru lock/dentry->d_lock here,
1190	 * so use a trylock. If we fail to get the lock, just skip
1191	 * it
1192	 */
1193	if (!spin_trylock(&dentry->d_lock))
1194		return LRU_SKIP;
1195
1196	d_lru_shrink_move(lru, dentry, freeable);
1197	spin_unlock(&dentry->d_lock);
1198
1199	return LRU_REMOVED;
1200}
1201
1202
1203/**
1204 * shrink_dcache_sb - shrink dcache for a superblock
1205 * @sb: superblock
1206 *
1207 * Shrink the dcache for the specified super block. This is used to free
1208 * the dcache before unmounting a file system.
1209 */
1210void shrink_dcache_sb(struct super_block *sb)
1211{
1212	do {
1213		LIST_HEAD(dispose);
1214
1215		list_lru_walk(&sb->s_dentry_lru,
1216			dentry_lru_isolate_shrink, &dispose, 1024);
1217		shrink_dentry_list(&dispose);
1218	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1219}
1220EXPORT_SYMBOL(shrink_dcache_sb);
1221
1222/**
1223 * enum d_walk_ret - action to talke during tree walk
1224 * @D_WALK_CONTINUE:	contrinue walk
1225 * @D_WALK_QUIT:	quit walk
1226 * @D_WALK_NORETRY:	quit when retry is needed
1227 * @D_WALK_SKIP:	skip this dentry and its children
1228 */
1229enum d_walk_ret {
1230	D_WALK_CONTINUE,
1231	D_WALK_QUIT,
1232	D_WALK_NORETRY,
1233	D_WALK_SKIP,
1234};
1235
1236/**
1237 * d_walk - walk the dentry tree
1238 * @parent:	start of walk
1239 * @data:	data passed to @enter() and @finish()
1240 * @enter:	callback when first entering the dentry
1241 *
1242 * The @enter() callbacks are called with d_lock held.
1243 */
1244static void d_walk(struct dentry *parent, void *data,
1245		   enum d_walk_ret (*enter)(void *, struct dentry *))
1246{
1247	struct dentry *this_parent, *dentry;
1248	unsigned seq = 0;
1249	enum d_walk_ret ret;
1250	bool retry = true;
1251
1252again:
1253	read_seqbegin_or_lock(&rename_lock, &seq);
1254	this_parent = parent;
1255	spin_lock(&this_parent->d_lock);
1256
1257	ret = enter(data, this_parent);
1258	switch (ret) {
1259	case D_WALK_CONTINUE:
1260		break;
1261	case D_WALK_QUIT:
1262	case D_WALK_SKIP:
1263		goto out_unlock;
1264	case D_WALK_NORETRY:
1265		retry = false;
1266		break;
1267	}
1268repeat:
1269	dentry = d_first_child(this_parent);
1270resume:
1271	hlist_for_each_entry_from(dentry, d_sib) {
1272		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1273			continue;
1274
1275		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1276
1277		ret = enter(data, dentry);
1278		switch (ret) {
1279		case D_WALK_CONTINUE:
1280			break;
1281		case D_WALK_QUIT:
1282			spin_unlock(&dentry->d_lock);
1283			goto out_unlock;
1284		case D_WALK_NORETRY:
1285			retry = false;
1286			break;
1287		case D_WALK_SKIP:
1288			spin_unlock(&dentry->d_lock);
1289			continue;
1290		}
1291
1292		if (!hlist_empty(&dentry->d_children)) {
1293			spin_unlock(&this_parent->d_lock);
1294			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1295			this_parent = dentry;
1296			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1297			goto repeat;
1298		}
1299		spin_unlock(&dentry->d_lock);
1300	}
1301	/*
1302	 * All done at this level ... ascend and resume the search.
1303	 */
1304	rcu_read_lock();
1305ascend:
1306	if (this_parent != parent) {
1307		dentry = this_parent;
1308		this_parent = dentry->d_parent;
1309
1310		spin_unlock(&dentry->d_lock);
1311		spin_lock(&this_parent->d_lock);
1312
1313		/* might go back up the wrong parent if we have had a rename. */
1314		if (need_seqretry(&rename_lock, seq))
1315			goto rename_retry;
1316		/* go into the first sibling still alive */
1317		hlist_for_each_entry_continue(dentry, d_sib) {
1318			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1319				rcu_read_unlock();
1320				goto resume;
1321			}
1322		}
1323		goto ascend;
1324	}
1325	if (need_seqretry(&rename_lock, seq))
1326		goto rename_retry;
1327	rcu_read_unlock();
1328
1329out_unlock:
1330	spin_unlock(&this_parent->d_lock);
1331	done_seqretry(&rename_lock, seq);
1332	return;
1333
1334rename_retry:
1335	spin_unlock(&this_parent->d_lock);
1336	rcu_read_unlock();
1337	BUG_ON(seq & 1);
1338	if (!retry)
1339		return;
1340	seq = 1;
1341	goto again;
1342}
1343
1344struct check_mount {
1345	struct vfsmount *mnt;
1346	unsigned int mounted;
1347};
1348
1349static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1350{
1351	struct check_mount *info = data;
1352	struct path path = { .mnt = info->mnt, .dentry = dentry };
1353
1354	if (likely(!d_mountpoint(dentry)))
1355		return D_WALK_CONTINUE;
1356	if (__path_is_mountpoint(&path)) {
1357		info->mounted = 1;
1358		return D_WALK_QUIT;
1359	}
1360	return D_WALK_CONTINUE;
1361}
1362
1363/**
1364 * path_has_submounts - check for mounts over a dentry in the
1365 *                      current namespace.
1366 * @parent: path to check.
1367 *
1368 * Return true if the parent or its subdirectories contain
1369 * a mount point in the current namespace.
1370 */
1371int path_has_submounts(const struct path *parent)
1372{
1373	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1374
1375	read_seqlock_excl(&mount_lock);
1376	d_walk(parent->dentry, &data, path_check_mount);
1377	read_sequnlock_excl(&mount_lock);
1378
1379	return data.mounted;
1380}
1381EXPORT_SYMBOL(path_has_submounts);
1382
1383/*
1384 * Called by mount code to set a mountpoint and check if the mountpoint is
1385 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1386 * subtree can become unreachable).
1387 *
1388 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1389 * this reason take rename_lock and d_lock on dentry and ancestors.
1390 */
1391int d_set_mounted(struct dentry *dentry)
1392{
1393	struct dentry *p;
1394	int ret = -ENOENT;
1395	write_seqlock(&rename_lock);
1396	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1397		/* Need exclusion wrt. d_invalidate() */
1398		spin_lock(&p->d_lock);
1399		if (unlikely(d_unhashed(p))) {
1400			spin_unlock(&p->d_lock);
1401			goto out;
1402		}
1403		spin_unlock(&p->d_lock);
1404	}
1405	spin_lock(&dentry->d_lock);
1406	if (!d_unlinked(dentry)) {
1407		ret = -EBUSY;
1408		if (!d_mountpoint(dentry)) {
1409			dentry->d_flags |= DCACHE_MOUNTED;
1410			ret = 0;
1411		}
1412	}
1413 	spin_unlock(&dentry->d_lock);
1414out:
1415	write_sequnlock(&rename_lock);
1416	return ret;
1417}
1418
1419/*
1420 * Search the dentry child list of the specified parent,
1421 * and move any unused dentries to the end of the unused
1422 * list for prune_dcache(). We descend to the next level
1423 * whenever the d_children list is non-empty and continue
1424 * searching.
1425 *
1426 * It returns zero iff there are no unused children,
1427 * otherwise  it returns the number of children moved to
1428 * the end of the unused list. This may not be the total
1429 * number of unused children, because select_parent can
1430 * drop the lock and return early due to latency
1431 * constraints.
1432 */
1433
1434struct select_data {
1435	struct dentry *start;
1436	union {
1437		long found;
1438		struct dentry *victim;
1439	};
1440	struct list_head dispose;
1441};
1442
1443static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1444{
1445	struct select_data *data = _data;
1446	enum d_walk_ret ret = D_WALK_CONTINUE;
1447
1448	if (data->start == dentry)
1449		goto out;
1450
1451	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1452		data->found++;
1453	} else if (!dentry->d_lockref.count) {
1454		to_shrink_list(dentry, &data->dispose);
1455		data->found++;
1456	} else if (dentry->d_lockref.count < 0) {
1457		data->found++;
1458	}
1459	/*
1460	 * We can return to the caller if we have found some (this
1461	 * ensures forward progress). We'll be coming back to find
1462	 * the rest.
1463	 */
1464	if (!list_empty(&data->dispose))
1465		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1466out:
1467	return ret;
1468}
1469
1470static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1471{
1472	struct select_data *data = _data;
1473	enum d_walk_ret ret = D_WALK_CONTINUE;
1474
1475	if (data->start == dentry)
1476		goto out;
1477
1478	if (!dentry->d_lockref.count) {
1479		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1480			rcu_read_lock();
1481			data->victim = dentry;
1482			return D_WALK_QUIT;
1483		}
1484		to_shrink_list(dentry, &data->dispose);
1485	}
1486	/*
1487	 * We can return to the caller if we have found some (this
1488	 * ensures forward progress). We'll be coming back to find
1489	 * the rest.
1490	 */
1491	if (!list_empty(&data->dispose))
1492		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1493out:
1494	return ret;
1495}
1496
1497/**
1498 * shrink_dcache_parent - prune dcache
1499 * @parent: parent of entries to prune
1500 *
1501 * Prune the dcache to remove unused children of the parent dentry.
1502 */
1503void shrink_dcache_parent(struct dentry *parent)
1504{
1505	for (;;) {
1506		struct select_data data = {.start = parent};
1507
1508		INIT_LIST_HEAD(&data.dispose);
1509		d_walk(parent, &data, select_collect);
1510
1511		if (!list_empty(&data.dispose)) {
1512			shrink_dentry_list(&data.dispose);
1513			continue;
1514		}
1515
1516		cond_resched();
1517		if (!data.found)
1518			break;
1519		data.victim = NULL;
1520		d_walk(parent, &data, select_collect2);
1521		if (data.victim) {
1522			spin_lock(&data.victim->d_lock);
1523			if (!lock_for_kill(data.victim)) {
1524				spin_unlock(&data.victim->d_lock);
1525				rcu_read_unlock();
1526			} else {
1527				shrink_kill(data.victim);
1528			}
1529		}
1530		if (!list_empty(&data.dispose))
1531			shrink_dentry_list(&data.dispose);
1532	}
1533}
1534EXPORT_SYMBOL(shrink_dcache_parent);
1535
1536static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1537{
1538	/* it has busy descendents; complain about those instead */
1539	if (!hlist_empty(&dentry->d_children))
1540		return D_WALK_CONTINUE;
1541
1542	/* root with refcount 1 is fine */
1543	if (dentry == _data && dentry->d_lockref.count == 1)
1544		return D_WALK_CONTINUE;
1545
1546	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1547			" still in use (%d) [unmount of %s %s]\n",
1548		       dentry,
1549		       dentry->d_inode ?
1550		       dentry->d_inode->i_ino : 0UL,
1551		       dentry,
1552		       dentry->d_lockref.count,
1553		       dentry->d_sb->s_type->name,
1554		       dentry->d_sb->s_id);
1555	return D_WALK_CONTINUE;
1556}
1557
1558static void do_one_tree(struct dentry *dentry)
1559{
1560	shrink_dcache_parent(dentry);
1561	d_walk(dentry, dentry, umount_check);
1562	d_drop(dentry);
1563	dput(dentry);
1564}
1565
1566/*
1567 * destroy the dentries attached to a superblock on unmounting
1568 */
1569void shrink_dcache_for_umount(struct super_block *sb)
1570{
1571	struct dentry *dentry;
1572
1573	rwsem_assert_held_write(&sb->s_umount);
1574
1575	dentry = sb->s_root;
1576	sb->s_root = NULL;
1577	do_one_tree(dentry);
1578
1579	while (!hlist_bl_empty(&sb->s_roots)) {
1580		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1581		do_one_tree(dentry);
1582	}
1583}
1584
1585static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1586{
1587	struct dentry **victim = _data;
1588	if (d_mountpoint(dentry)) {
1589		*victim = dget_dlock(dentry);
1590		return D_WALK_QUIT;
1591	}
1592	return D_WALK_CONTINUE;
1593}
1594
1595/**
1596 * d_invalidate - detach submounts, prune dcache, and drop
1597 * @dentry: dentry to invalidate (aka detach, prune and drop)
1598 */
1599void d_invalidate(struct dentry *dentry)
1600{
1601	bool had_submounts = false;
1602	spin_lock(&dentry->d_lock);
1603	if (d_unhashed(dentry)) {
1604		spin_unlock(&dentry->d_lock);
1605		return;
1606	}
1607	__d_drop(dentry);
1608	spin_unlock(&dentry->d_lock);
1609
1610	/* Negative dentries can be dropped without further checks */
1611	if (!dentry->d_inode)
1612		return;
1613
1614	shrink_dcache_parent(dentry);
1615	for (;;) {
1616		struct dentry *victim = NULL;
1617		d_walk(dentry, &victim, find_submount);
1618		if (!victim) {
1619			if (had_submounts)
1620				shrink_dcache_parent(dentry);
1621			return;
1622		}
1623		had_submounts = true;
1624		detach_mounts(victim);
1625		dput(victim);
1626	}
1627}
1628EXPORT_SYMBOL(d_invalidate);
1629
1630/**
1631 * __d_alloc	-	allocate a dcache entry
1632 * @sb: filesystem it will belong to
1633 * @name: qstr of the name
1634 *
1635 * Allocates a dentry. It returns %NULL if there is insufficient memory
1636 * available. On a success the dentry is returned. The name passed in is
1637 * copied and the copy passed in may be reused after this call.
1638 */
1639 
1640static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1641{
1642	struct dentry *dentry;
1643	char *dname;
1644	int err;
1645
1646	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1647				      GFP_KERNEL);
1648	if (!dentry)
1649		return NULL;
1650
1651	/*
1652	 * We guarantee that the inline name is always NUL-terminated.
1653	 * This way the memcpy() done by the name switching in rename
1654	 * will still always have a NUL at the end, even if we might
1655	 * be overwriting an internal NUL character
1656	 */
1657	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1658	if (unlikely(!name)) {
1659		name = &slash_name;
1660		dname = dentry->d_iname;
1661	} else if (name->len > DNAME_INLINE_LEN-1) {
1662		size_t size = offsetof(struct external_name, name[1]);
1663		struct external_name *p = kmalloc(size + name->len,
1664						  GFP_KERNEL_ACCOUNT |
1665						  __GFP_RECLAIMABLE);
1666		if (!p) {
1667			kmem_cache_free(dentry_cache, dentry); 
1668			return NULL;
1669		}
1670		atomic_set(&p->u.count, 1);
1671		dname = p->name;
1672	} else  {
1673		dname = dentry->d_iname;
1674	}	
1675
1676	dentry->d_name.len = name->len;
1677	dentry->d_name.hash = name->hash;
1678	memcpy(dname, name->name, name->len);
1679	dname[name->len] = 0;
1680
1681	/* Make sure we always see the terminating NUL character */
1682	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1683
1684	dentry->d_lockref.count = 1;
1685	dentry->d_flags = 0;
1686	spin_lock_init(&dentry->d_lock);
1687	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1688	dentry->d_inode = NULL;
1689	dentry->d_parent = dentry;
1690	dentry->d_sb = sb;
1691	dentry->d_op = NULL;
1692	dentry->d_fsdata = NULL;
1693	INIT_HLIST_BL_NODE(&dentry->d_hash);
1694	INIT_LIST_HEAD(&dentry->d_lru);
1695	INIT_HLIST_HEAD(&dentry->d_children);
1696	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1697	INIT_HLIST_NODE(&dentry->d_sib);
1698	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1699
1700	if (dentry->d_op && dentry->d_op->d_init) {
1701		err = dentry->d_op->d_init(dentry);
1702		if (err) {
1703			if (dname_external(dentry))
1704				kfree(external_name(dentry));
1705			kmem_cache_free(dentry_cache, dentry);
1706			return NULL;
1707		}
1708	}
1709
1710	this_cpu_inc(nr_dentry);
1711
1712	return dentry;
1713}
1714
1715/**
1716 * d_alloc	-	allocate a dcache entry
1717 * @parent: parent of entry to allocate
1718 * @name: qstr of the name
1719 *
1720 * Allocates a dentry. It returns %NULL if there is insufficient memory
1721 * available. On a success the dentry is returned. The name passed in is
1722 * copied and the copy passed in may be reused after this call.
1723 */
1724struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1725{
1726	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1727	if (!dentry)
1728		return NULL;
1729	spin_lock(&parent->d_lock);
1730	/*
1731	 * don't need child lock because it is not subject
1732	 * to concurrency here
1733	 */
1734	dentry->d_parent = dget_dlock(parent);
1735	hlist_add_head(&dentry->d_sib, &parent->d_children);
1736	spin_unlock(&parent->d_lock);
1737
1738	return dentry;
1739}
1740EXPORT_SYMBOL(d_alloc);
1741
1742struct dentry *d_alloc_anon(struct super_block *sb)
1743{
1744	return __d_alloc(sb, NULL);
1745}
1746EXPORT_SYMBOL(d_alloc_anon);
1747
1748struct dentry *d_alloc_cursor(struct dentry * parent)
1749{
1750	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1751	if (dentry) {
1752		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1753		dentry->d_parent = dget(parent);
1754	}
1755	return dentry;
1756}
1757
1758/**
1759 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1760 * @sb: the superblock
1761 * @name: qstr of the name
1762 *
1763 * For a filesystem that just pins its dentries in memory and never
1764 * performs lookups at all, return an unhashed IS_ROOT dentry.
1765 * This is used for pipes, sockets et.al. - the stuff that should
1766 * never be anyone's children or parents.  Unlike all other
1767 * dentries, these will not have RCU delay between dropping the
1768 * last reference and freeing them.
1769 *
1770 * The only user is alloc_file_pseudo() and that's what should
1771 * be considered a public interface.  Don't use directly.
1772 */
1773struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1774{
1775	static const struct dentry_operations anon_ops = {
1776		.d_dname = simple_dname
1777	};
1778	struct dentry *dentry = __d_alloc(sb, name);
1779	if (likely(dentry)) {
1780		dentry->d_flags |= DCACHE_NORCU;
1781		if (!sb->s_d_op)
1782			d_set_d_op(dentry, &anon_ops);
1783	}
1784	return dentry;
1785}
1786
1787struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1788{
1789	struct qstr q;
1790
1791	q.name = name;
1792	q.hash_len = hashlen_string(parent, name);
1793	return d_alloc(parent, &q);
1794}
1795EXPORT_SYMBOL(d_alloc_name);
1796
1797void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1798{
1799	WARN_ON_ONCE(dentry->d_op);
1800	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1801				DCACHE_OP_COMPARE	|
1802				DCACHE_OP_REVALIDATE	|
1803				DCACHE_OP_WEAK_REVALIDATE	|
1804				DCACHE_OP_DELETE	|
1805				DCACHE_OP_REAL));
1806	dentry->d_op = op;
1807	if (!op)
1808		return;
1809	if (op->d_hash)
1810		dentry->d_flags |= DCACHE_OP_HASH;
1811	if (op->d_compare)
1812		dentry->d_flags |= DCACHE_OP_COMPARE;
1813	if (op->d_revalidate)
1814		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1815	if (op->d_weak_revalidate)
1816		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1817	if (op->d_delete)
1818		dentry->d_flags |= DCACHE_OP_DELETE;
1819	if (op->d_prune)
1820		dentry->d_flags |= DCACHE_OP_PRUNE;
1821	if (op->d_real)
1822		dentry->d_flags |= DCACHE_OP_REAL;
1823
1824}
1825EXPORT_SYMBOL(d_set_d_op);
1826
1827static unsigned d_flags_for_inode(struct inode *inode)
1828{
1829	unsigned add_flags = DCACHE_REGULAR_TYPE;
1830
1831	if (!inode)
1832		return DCACHE_MISS_TYPE;
1833
1834	if (S_ISDIR(inode->i_mode)) {
1835		add_flags = DCACHE_DIRECTORY_TYPE;
1836		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1837			if (unlikely(!inode->i_op->lookup))
1838				add_flags = DCACHE_AUTODIR_TYPE;
1839			else
1840				inode->i_opflags |= IOP_LOOKUP;
1841		}
1842		goto type_determined;
1843	}
1844
1845	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1846		if (unlikely(inode->i_op->get_link)) {
1847			add_flags = DCACHE_SYMLINK_TYPE;
1848			goto type_determined;
1849		}
1850		inode->i_opflags |= IOP_NOFOLLOW;
1851	}
1852
1853	if (unlikely(!S_ISREG(inode->i_mode)))
1854		add_flags = DCACHE_SPECIAL_TYPE;
1855
1856type_determined:
1857	if (unlikely(IS_AUTOMOUNT(inode)))
1858		add_flags |= DCACHE_NEED_AUTOMOUNT;
1859	return add_flags;
1860}
1861
1862static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1863{
1864	unsigned add_flags = d_flags_for_inode(inode);
1865	WARN_ON(d_in_lookup(dentry));
1866
1867	spin_lock(&dentry->d_lock);
1868	/*
1869	 * The negative counter only tracks dentries on the LRU. Don't dec if
1870	 * d_lru is on another list.
1871	 */
1872	if ((dentry->d_flags &
1873	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1874		this_cpu_dec(nr_dentry_negative);
1875	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1876	raw_write_seqcount_begin(&dentry->d_seq);
1877	__d_set_inode_and_type(dentry, inode, add_flags);
1878	raw_write_seqcount_end(&dentry->d_seq);
1879	fsnotify_update_flags(dentry);
1880	spin_unlock(&dentry->d_lock);
1881}
1882
1883/**
1884 * d_instantiate - fill in inode information for a dentry
1885 * @entry: dentry to complete
1886 * @inode: inode to attach to this dentry
1887 *
1888 * Fill in inode information in the entry.
1889 *
1890 * This turns negative dentries into productive full members
1891 * of society.
1892 *
1893 * NOTE! This assumes that the inode count has been incremented
1894 * (or otherwise set) by the caller to indicate that it is now
1895 * in use by the dcache.
1896 */
1897 
1898void d_instantiate(struct dentry *entry, struct inode * inode)
1899{
1900	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1901	if (inode) {
1902		security_d_instantiate(entry, inode);
1903		spin_lock(&inode->i_lock);
1904		__d_instantiate(entry, inode);
1905		spin_unlock(&inode->i_lock);
1906	}
1907}
1908EXPORT_SYMBOL(d_instantiate);
1909
1910/*
1911 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1912 * with lockdep-related part of unlock_new_inode() done before
1913 * anything else.  Use that instead of open-coding d_instantiate()/
1914 * unlock_new_inode() combinations.
1915 */
1916void d_instantiate_new(struct dentry *entry, struct inode *inode)
1917{
1918	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1919	BUG_ON(!inode);
1920	lockdep_annotate_inode_mutex_key(inode);
1921	security_d_instantiate(entry, inode);
1922	spin_lock(&inode->i_lock);
1923	__d_instantiate(entry, inode);
1924	WARN_ON(!(inode->i_state & I_NEW));
1925	inode->i_state &= ~I_NEW & ~I_CREATING;
1926	/*
1927	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1928	 * ___wait_var_event() either sees the bit cleared or
1929	 * waitqueue_active() check in wake_up_var() sees the waiter.
1930	 */
1931	smp_mb();
1932	inode_wake_up_bit(inode, __I_NEW);
1933	spin_unlock(&inode->i_lock);
1934}
1935EXPORT_SYMBOL(d_instantiate_new);
1936
1937struct dentry *d_make_root(struct inode *root_inode)
1938{
1939	struct dentry *res = NULL;
1940
1941	if (root_inode) {
1942		res = d_alloc_anon(root_inode->i_sb);
1943		if (res)
1944			d_instantiate(res, root_inode);
1945		else
1946			iput(root_inode);
1947	}
1948	return res;
1949}
1950EXPORT_SYMBOL(d_make_root);
1951
1952static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1953{
1954	struct super_block *sb;
1955	struct dentry *new, *res;
1956
1957	if (!inode)
1958		return ERR_PTR(-ESTALE);
1959	if (IS_ERR(inode))
1960		return ERR_CAST(inode);
1961
1962	sb = inode->i_sb;
1963
1964	res = d_find_any_alias(inode); /* existing alias? */
1965	if (res)
1966		goto out;
1967
1968	new = d_alloc_anon(sb);
1969	if (!new) {
1970		res = ERR_PTR(-ENOMEM);
1971		goto out;
1972	}
1973
1974	security_d_instantiate(new, inode);
1975	spin_lock(&inode->i_lock);
1976	res = __d_find_any_alias(inode); /* recheck under lock */
1977	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1978		unsigned add_flags = d_flags_for_inode(inode);
1979
1980		if (disconnected)
1981			add_flags |= DCACHE_DISCONNECTED;
1982
1983		spin_lock(&new->d_lock);
1984		__d_set_inode_and_type(new, inode, add_flags);
1985		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1986		if (!disconnected) {
1987			hlist_bl_lock(&sb->s_roots);
1988			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1989			hlist_bl_unlock(&sb->s_roots);
1990		}
1991		spin_unlock(&new->d_lock);
1992		spin_unlock(&inode->i_lock);
1993		inode = NULL; /* consumed by new->d_inode */
1994		res = new;
1995	} else {
1996		spin_unlock(&inode->i_lock);
1997		dput(new);
1998	}
1999
2000 out:
2001	iput(inode);
2002	return res;
2003}
2004
2005/**
2006 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2008 *
2009 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2010 * similar open by handle operations.  The returned dentry may be anonymous,
2011 * or may have a full name (if the inode was already in the cache).
2012 *
2013 * When called on a directory inode, we must ensure that the inode only ever
2014 * has one dentry.  If a dentry is found, that is returned instead of
2015 * allocating a new one.
2016 *
2017 * On successful return, the reference to the inode has been transferred
2018 * to the dentry.  In case of an error the reference on the inode is released.
2019 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2020 * be passed in and the error will be propagated to the return value,
2021 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2022 */
2023struct dentry *d_obtain_alias(struct inode *inode)
2024{
2025	return __d_obtain_alias(inode, true);
2026}
2027EXPORT_SYMBOL(d_obtain_alias);
2028
2029/**
2030 * d_obtain_root - find or allocate a dentry for a given inode
2031 * @inode: inode to allocate the dentry for
2032 *
2033 * Obtain an IS_ROOT dentry for the root of a filesystem.
2034 *
2035 * We must ensure that directory inodes only ever have one dentry.  If a
2036 * dentry is found, that is returned instead of allocating a new one.
2037 *
2038 * On successful return, the reference to the inode has been transferred
2039 * to the dentry.  In case of an error the reference on the inode is
2040 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2041 * error will be propagate to the return value, with a %NULL @inode
2042 * replaced by ERR_PTR(-ESTALE).
2043 */
2044struct dentry *d_obtain_root(struct inode *inode)
2045{
2046	return __d_obtain_alias(inode, false);
2047}
2048EXPORT_SYMBOL(d_obtain_root);
2049
2050/**
2051 * d_add_ci - lookup or allocate new dentry with case-exact name
2052 * @dentry: the negative dentry that was passed to the parent's lookup func
2053 * @inode:  the inode case-insensitive lookup has found
 
2054 * @name:   the case-exact name to be associated with the returned dentry
2055 *
2056 * This is to avoid filling the dcache with case-insensitive names to the
2057 * same inode, only the actual correct case is stored in the dcache for
2058 * case-insensitive filesystems.
2059 *
2060 * For a case-insensitive lookup match and if the case-exact dentry
2061 * already exists in the dcache, use it and return it.
2062 *
2063 * If no entry exists with the exact case name, allocate new dentry with
2064 * the exact case, and return the spliced entry.
2065 */
2066struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2067			struct qstr *name)
2068{
2069	struct dentry *found, *res;
2070
2071	/*
2072	 * First check if a dentry matching the name already exists,
2073	 * if not go ahead and create it now.
2074	 */
2075	found = d_hash_and_lookup(dentry->d_parent, name);
2076	if (found) {
2077		iput(inode);
2078		return found;
2079	}
2080	if (d_in_lookup(dentry)) {
2081		found = d_alloc_parallel(dentry->d_parent, name,
2082					dentry->d_wait);
2083		if (IS_ERR(found) || !d_in_lookup(found)) {
2084			iput(inode);
2085			return found;
2086		}
2087	} else {
2088		found = d_alloc(dentry->d_parent, name);
2089		if (!found) {
2090			iput(inode);
2091			return ERR_PTR(-ENOMEM);
2092		} 
2093	}
2094	res = d_splice_alias(inode, found);
2095	if (res) {
2096		d_lookup_done(found);
2097		dput(found);
2098		return res;
2099	}
2100	return found;
2101}
2102EXPORT_SYMBOL(d_add_ci);
2103
2104/**
2105 * d_same_name - compare dentry name with case-exact name
2106 * @dentry: the negative dentry that was passed to the parent's lookup func
2107 * @parent: parent dentry
 
2108 * @name:   the case-exact name to be associated with the returned dentry
2109 *
2110 * Return: true if names are same, or false
2111 */
2112bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2113		 const struct qstr *name)
2114{
2115	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2116		if (dentry->d_name.len != name->len)
2117			return false;
2118		return dentry_cmp(dentry, name->name, name->len) == 0;
2119	}
2120	return parent->d_op->d_compare(dentry,
2121				       dentry->d_name.len, dentry->d_name.name,
2122				       name) == 0;
2123}
2124EXPORT_SYMBOL_GPL(d_same_name);
2125
2126/*
2127 * This is __d_lookup_rcu() when the parent dentry has
2128 * DCACHE_OP_COMPARE, which makes things much nastier.
2129 */
2130static noinline struct dentry *__d_lookup_rcu_op_compare(
2131	const struct dentry *parent,
2132	const struct qstr *name,
2133	unsigned *seqp)
2134{
2135	u64 hashlen = name->hash_len;
2136	struct hlist_bl_head *b = d_hash(hashlen);
2137	struct hlist_bl_node *node;
2138	struct dentry *dentry;
2139
2140	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2141		int tlen;
2142		const char *tname;
2143		unsigned seq;
2144
2145seqretry:
2146		seq = raw_seqcount_begin(&dentry->d_seq);
2147		if (dentry->d_parent != parent)
2148			continue;
2149		if (d_unhashed(dentry))
2150			continue;
2151		if (dentry->d_name.hash != hashlen_hash(hashlen))
2152			continue;
2153		tlen = dentry->d_name.len;
2154		tname = dentry->d_name.name;
2155		/* we want a consistent (name,len) pair */
2156		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2157			cpu_relax();
2158			goto seqretry;
2159		}
2160		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2161			continue;
2162		*seqp = seq;
2163		return dentry;
2164	}
2165	return NULL;
2166}
2167
2168/**
2169 * __d_lookup_rcu - search for a dentry (racy, store-free)
2170 * @parent: parent dentry
2171 * @name: qstr of name we wish to find
2172 * @seqp: returns d_seq value at the point where the dentry was found
2173 * Returns: dentry, or NULL
2174 *
2175 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2176 * resolution (store-free path walking) design described in
2177 * Documentation/filesystems/path-lookup.txt.
2178 *
2179 * This is not to be used outside core vfs.
2180 *
2181 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2182 * held, and rcu_read_lock held. The returned dentry must not be stored into
2183 * without taking d_lock and checking d_seq sequence count against @seq
2184 * returned here.
2185 *
 
 
 
2186 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2187 * the returned dentry, so long as its parent's seqlock is checked after the
2188 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2189 * is formed, giving integrity down the path walk.
2190 *
2191 * NOTE! The caller *has* to check the resulting dentry against the sequence
2192 * number we've returned before using any of the resulting dentry state!
2193 */
2194struct dentry *__d_lookup_rcu(const struct dentry *parent,
2195				const struct qstr *name,
2196				unsigned *seqp)
2197{
2198	u64 hashlen = name->hash_len;
2199	const unsigned char *str = name->name;
2200	struct hlist_bl_head *b = d_hash(hashlen);
2201	struct hlist_bl_node *node;
2202	struct dentry *dentry;
2203
2204	/*
2205	 * Note: There is significant duplication with __d_lookup_rcu which is
2206	 * required to prevent single threaded performance regressions
2207	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2208	 * Keep the two functions in sync.
2209	 */
2210
2211	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2212		return __d_lookup_rcu_op_compare(parent, name, seqp);
2213
2214	/*
2215	 * The hash list is protected using RCU.
2216	 *
2217	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2218	 * races with d_move().
2219	 *
2220	 * It is possible that concurrent renames can mess up our list
2221	 * walk here and result in missing our dentry, resulting in the
2222	 * false-negative result. d_lookup() protects against concurrent
2223	 * renames using rename_lock seqlock.
2224	 *
2225	 * See Documentation/filesystems/path-lookup.txt for more details.
2226	 */
2227	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2228		unsigned seq;
2229
2230		/*
2231		 * The dentry sequence count protects us from concurrent
2232		 * renames, and thus protects parent and name fields.
2233		 *
2234		 * The caller must perform a seqcount check in order
2235		 * to do anything useful with the returned dentry.
2236		 *
2237		 * NOTE! We do a "raw" seqcount_begin here. That means that
2238		 * we don't wait for the sequence count to stabilize if it
2239		 * is in the middle of a sequence change. If we do the slow
2240		 * dentry compare, we will do seqretries until it is stable,
2241		 * and if we end up with a successful lookup, we actually
2242		 * want to exit RCU lookup anyway.
2243		 *
2244		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2245		 * we are still guaranteed NUL-termination of ->d_name.name.
2246		 */
2247		seq = raw_seqcount_begin(&dentry->d_seq);
2248		if (dentry->d_parent != parent)
2249			continue;
2250		if (d_unhashed(dentry))
2251			continue;
2252		if (dentry->d_name.hash_len != hashlen)
2253			continue;
2254		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2255			continue;
2256		*seqp = seq;
2257		return dentry;
2258	}
2259	return NULL;
2260}
2261
2262/**
2263 * d_lookup - search for a dentry
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * d_lookup searches the children of the parent dentry for the name in
2269 * question. If the dentry is found its reference count is incremented and the
2270 * dentry is returned. The caller must use dput to free the entry when it has
2271 * finished using it. %NULL is returned if the dentry does not exist.
2272 */
2273struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2274{
2275	struct dentry *dentry;
2276	unsigned seq;
2277
2278	do {
2279		seq = read_seqbegin(&rename_lock);
2280		dentry = __d_lookup(parent, name);
2281		if (dentry)
2282			break;
2283	} while (read_seqretry(&rename_lock, seq));
2284	return dentry;
2285}
2286EXPORT_SYMBOL(d_lookup);
2287
2288/**
2289 * __d_lookup - search for a dentry (racy)
2290 * @parent: parent dentry
2291 * @name: qstr of name we wish to find
2292 * Returns: dentry, or NULL
2293 *
2294 * __d_lookup is like d_lookup, however it may (rarely) return a
2295 * false-negative result due to unrelated rename activity.
2296 *
2297 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2298 * however it must be used carefully, eg. with a following d_lookup in
2299 * the case of failure.
2300 *
2301 * __d_lookup callers must be commented.
2302 */
2303struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2304{
2305	unsigned int hash = name->hash;
2306	struct hlist_bl_head *b = d_hash(hash);
2307	struct hlist_bl_node *node;
2308	struct dentry *found = NULL;
2309	struct dentry *dentry;
2310
2311	/*
2312	 * Note: There is significant duplication with __d_lookup_rcu which is
2313	 * required to prevent single threaded performance regressions
2314	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2315	 * Keep the two functions in sync.
2316	 */
2317
2318	/*
2319	 * The hash list is protected using RCU.
2320	 *
2321	 * Take d_lock when comparing a candidate dentry, to avoid races
2322	 * with d_move().
2323	 *
2324	 * It is possible that concurrent renames can mess up our list
2325	 * walk here and result in missing our dentry, resulting in the
2326	 * false-negative result. d_lookup() protects against concurrent
2327	 * renames using rename_lock seqlock.
2328	 *
2329	 * See Documentation/filesystems/path-lookup.txt for more details.
2330	 */
2331	rcu_read_lock();
2332	
2333	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2334
2335		if (dentry->d_name.hash != hash)
2336			continue;
2337
2338		spin_lock(&dentry->d_lock);
2339		if (dentry->d_parent != parent)
2340			goto next;
2341		if (d_unhashed(dentry))
2342			goto next;
2343
2344		if (!d_same_name(dentry, parent, name))
2345			goto next;
2346
2347		dentry->d_lockref.count++;
2348		found = dentry;
2349		spin_unlock(&dentry->d_lock);
2350		break;
2351next:
2352		spin_unlock(&dentry->d_lock);
2353 	}
2354 	rcu_read_unlock();
2355
2356 	return found;
2357}
2358
2359/**
2360 * d_hash_and_lookup - hash the qstr then search for a dentry
2361 * @dir: Directory to search in
2362 * @name: qstr of name we wish to find
2363 *
2364 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2365 */
2366struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2367{
2368	/*
2369	 * Check for a fs-specific hash function. Note that we must
2370	 * calculate the standard hash first, as the d_op->d_hash()
2371	 * routine may choose to leave the hash value unchanged.
2372	 */
2373	name->hash = full_name_hash(dir, name->name, name->len);
2374	if (dir->d_flags & DCACHE_OP_HASH) {
2375		int err = dir->d_op->d_hash(dir, name);
2376		if (unlikely(err < 0))
2377			return ERR_PTR(err);
2378	}
2379	return d_lookup(dir, name);
2380}
2381EXPORT_SYMBOL(d_hash_and_lookup);
2382
2383/*
2384 * When a file is deleted, we have two options:
2385 * - turn this dentry into a negative dentry
2386 * - unhash this dentry and free it.
2387 *
2388 * Usually, we want to just turn this into
2389 * a negative dentry, but if anybody else is
2390 * currently using the dentry or the inode
2391 * we can't do that and we fall back on removing
2392 * it from the hash queues and waiting for
2393 * it to be deleted later when it has no users
2394 */
2395 
2396/**
2397 * d_delete - delete a dentry
2398 * @dentry: The dentry to delete
2399 *
2400 * Turn the dentry into a negative dentry if possible, otherwise
2401 * remove it from the hash queues so it can be deleted later
2402 */
2403 
2404void d_delete(struct dentry * dentry)
2405{
2406	struct inode *inode = dentry->d_inode;
2407
2408	spin_lock(&inode->i_lock);
2409	spin_lock(&dentry->d_lock);
2410	/*
2411	 * Are we the only user?
2412	 */
2413	if (dentry->d_lockref.count == 1) {
2414		if (dentry_negative_policy)
2415			__d_drop(dentry);
2416		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2417		dentry_unlink_inode(dentry);
2418	} else {
2419		__d_drop(dentry);
2420		spin_unlock(&dentry->d_lock);
2421		spin_unlock(&inode->i_lock);
2422	}
2423}
2424EXPORT_SYMBOL(d_delete);
2425
2426static void __d_rehash(struct dentry *entry)
2427{
2428	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2429
2430	hlist_bl_lock(b);
2431	hlist_bl_add_head_rcu(&entry->d_hash, b);
2432	hlist_bl_unlock(b);
2433}
2434
2435/**
2436 * d_rehash	- add an entry back to the hash
2437 * @entry: dentry to add to the hash
2438 *
2439 * Adds a dentry to the hash according to its name.
2440 */
2441 
2442void d_rehash(struct dentry * entry)
2443{
2444	spin_lock(&entry->d_lock);
2445	__d_rehash(entry);
2446	spin_unlock(&entry->d_lock);
2447}
2448EXPORT_SYMBOL(d_rehash);
2449
2450static inline unsigned start_dir_add(struct inode *dir)
2451{
2452	preempt_disable_nested();
2453	for (;;) {
2454		unsigned n = dir->i_dir_seq;
2455		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2456			return n;
2457		cpu_relax();
2458	}
2459}
2460
2461static inline void end_dir_add(struct inode *dir, unsigned int n,
2462			       wait_queue_head_t *d_wait)
2463{
2464	smp_store_release(&dir->i_dir_seq, n + 2);
2465	preempt_enable_nested();
2466	wake_up_all(d_wait);
2467}
2468
2469static void d_wait_lookup(struct dentry *dentry)
2470{
2471	if (d_in_lookup(dentry)) {
2472		DECLARE_WAITQUEUE(wait, current);
2473		add_wait_queue(dentry->d_wait, &wait);
2474		do {
2475			set_current_state(TASK_UNINTERRUPTIBLE);
2476			spin_unlock(&dentry->d_lock);
2477			schedule();
2478			spin_lock(&dentry->d_lock);
2479		} while (d_in_lookup(dentry));
2480	}
2481}
2482
2483struct dentry *d_alloc_parallel(struct dentry *parent,
2484				const struct qstr *name,
2485				wait_queue_head_t *wq)
2486{
2487	unsigned int hash = name->hash;
2488	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2489	struct hlist_bl_node *node;
2490	struct dentry *new = d_alloc(parent, name);
2491	struct dentry *dentry;
2492	unsigned seq, r_seq, d_seq;
2493
2494	if (unlikely(!new))
2495		return ERR_PTR(-ENOMEM);
2496
2497retry:
2498	rcu_read_lock();
2499	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2500	r_seq = read_seqbegin(&rename_lock);
2501	dentry = __d_lookup_rcu(parent, name, &d_seq);
2502	if (unlikely(dentry)) {
2503		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2504			rcu_read_unlock();
2505			goto retry;
2506		}
2507		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2508			rcu_read_unlock();
2509			dput(dentry);
2510			goto retry;
2511		}
2512		rcu_read_unlock();
2513		dput(new);
2514		return dentry;
2515	}
2516	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2517		rcu_read_unlock();
2518		goto retry;
2519	}
2520
2521	if (unlikely(seq & 1)) {
2522		rcu_read_unlock();
2523		goto retry;
2524	}
2525
2526	hlist_bl_lock(b);
2527	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2528		hlist_bl_unlock(b);
2529		rcu_read_unlock();
2530		goto retry;
2531	}
2532	/*
2533	 * No changes for the parent since the beginning of d_lookup().
2534	 * Since all removals from the chain happen with hlist_bl_lock(),
2535	 * any potential in-lookup matches are going to stay here until
2536	 * we unlock the chain.  All fields are stable in everything
2537	 * we encounter.
2538	 */
2539	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2540		if (dentry->d_name.hash != hash)
2541			continue;
2542		if (dentry->d_parent != parent)
2543			continue;
2544		if (!d_same_name(dentry, parent, name))
2545			continue;
2546		hlist_bl_unlock(b);
2547		/* now we can try to grab a reference */
2548		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2549			rcu_read_unlock();
2550			goto retry;
2551		}
2552
2553		rcu_read_unlock();
2554		/*
2555		 * somebody is likely to be still doing lookup for it;
2556		 * wait for them to finish
2557		 */
2558		spin_lock(&dentry->d_lock);
2559		d_wait_lookup(dentry);
2560		/*
2561		 * it's not in-lookup anymore; in principle we should repeat
2562		 * everything from dcache lookup, but it's likely to be what
2563		 * d_lookup() would've found anyway.  If it is, just return it;
2564		 * otherwise we really have to repeat the whole thing.
2565		 */
2566		if (unlikely(dentry->d_name.hash != hash))
2567			goto mismatch;
2568		if (unlikely(dentry->d_parent != parent))
2569			goto mismatch;
2570		if (unlikely(d_unhashed(dentry)))
2571			goto mismatch;
2572		if (unlikely(!d_same_name(dentry, parent, name)))
2573			goto mismatch;
2574		/* OK, it *is* a hashed match; return it */
2575		spin_unlock(&dentry->d_lock);
2576		dput(new);
2577		return dentry;
2578	}
2579	rcu_read_unlock();
2580	/* we can't take ->d_lock here; it's OK, though. */
2581	new->d_flags |= DCACHE_PAR_LOOKUP;
2582	new->d_wait = wq;
2583	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2584	hlist_bl_unlock(b);
2585	return new;
2586mismatch:
2587	spin_unlock(&dentry->d_lock);
2588	dput(dentry);
2589	goto retry;
2590}
2591EXPORT_SYMBOL(d_alloc_parallel);
2592
2593/*
2594 * - Unhash the dentry
2595 * - Retrieve and clear the waitqueue head in dentry
2596 * - Return the waitqueue head
2597 */
2598static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2599{
2600	wait_queue_head_t *d_wait;
2601	struct hlist_bl_head *b;
2602
2603	lockdep_assert_held(&dentry->d_lock);
2604
2605	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2606	hlist_bl_lock(b);
2607	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2608	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2609	d_wait = dentry->d_wait;
2610	dentry->d_wait = NULL;
2611	hlist_bl_unlock(b);
2612	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2613	INIT_LIST_HEAD(&dentry->d_lru);
2614	return d_wait;
2615}
2616
2617void __d_lookup_unhash_wake(struct dentry *dentry)
2618{
2619	spin_lock(&dentry->d_lock);
2620	wake_up_all(__d_lookup_unhash(dentry));
2621	spin_unlock(&dentry->d_lock);
2622}
2623EXPORT_SYMBOL(__d_lookup_unhash_wake);
2624
2625/* inode->i_lock held if inode is non-NULL */
2626
2627static inline void __d_add(struct dentry *dentry, struct inode *inode)
2628{
2629	wait_queue_head_t *d_wait;
2630	struct inode *dir = NULL;
2631	unsigned n;
2632	spin_lock(&dentry->d_lock);
2633	if (unlikely(d_in_lookup(dentry))) {
2634		dir = dentry->d_parent->d_inode;
2635		n = start_dir_add(dir);
2636		d_wait = __d_lookup_unhash(dentry);
2637	}
2638	if (inode) {
2639		unsigned add_flags = d_flags_for_inode(inode);
2640		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2641		raw_write_seqcount_begin(&dentry->d_seq);
2642		__d_set_inode_and_type(dentry, inode, add_flags);
2643		raw_write_seqcount_end(&dentry->d_seq);
2644		fsnotify_update_flags(dentry);
2645	}
2646	__d_rehash(dentry);
2647	if (dir)
2648		end_dir_add(dir, n, d_wait);
2649	spin_unlock(&dentry->d_lock);
2650	if (inode)
2651		spin_unlock(&inode->i_lock);
2652}
2653
2654/**
2655 * d_add - add dentry to hash queues
2656 * @entry: dentry to add
2657 * @inode: The inode to attach to this dentry
2658 *
2659 * This adds the entry to the hash queues and initializes @inode.
2660 * The entry was actually filled in earlier during d_alloc().
2661 */
2662
2663void d_add(struct dentry *entry, struct inode *inode)
2664{
2665	if (inode) {
2666		security_d_instantiate(entry, inode);
2667		spin_lock(&inode->i_lock);
2668	}
2669	__d_add(entry, inode);
2670}
2671EXPORT_SYMBOL(d_add);
2672
2673/**
2674 * d_exact_alias - find and hash an exact unhashed alias
2675 * @entry: dentry to add
2676 * @inode: The inode to go with this dentry
2677 *
2678 * If an unhashed dentry with the same name/parent and desired
2679 * inode already exists, hash and return it.  Otherwise, return
2680 * NULL.
2681 *
2682 * Parent directory should be locked.
2683 */
2684struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2685{
2686	struct dentry *alias;
2687	unsigned int hash = entry->d_name.hash;
2688
2689	spin_lock(&inode->i_lock);
2690	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2691		/*
2692		 * Don't need alias->d_lock here, because aliases with
2693		 * d_parent == entry->d_parent are not subject to name or
2694		 * parent changes, because the parent inode i_mutex is held.
2695		 */
2696		if (alias->d_name.hash != hash)
2697			continue;
2698		if (alias->d_parent != entry->d_parent)
2699			continue;
2700		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2701			continue;
2702		spin_lock(&alias->d_lock);
2703		if (!d_unhashed(alias)) {
2704			spin_unlock(&alias->d_lock);
2705			alias = NULL;
2706		} else {
2707			dget_dlock(alias);
2708			__d_rehash(alias);
2709			spin_unlock(&alias->d_lock);
2710		}
2711		spin_unlock(&inode->i_lock);
2712		return alias;
2713	}
2714	spin_unlock(&inode->i_lock);
2715	return NULL;
2716}
2717EXPORT_SYMBOL(d_exact_alias);
2718
2719static void swap_names(struct dentry *dentry, struct dentry *target)
2720{
2721	if (unlikely(dname_external(target))) {
2722		if (unlikely(dname_external(dentry))) {
2723			/*
2724			 * Both external: swap the pointers
2725			 */
2726			swap(target->d_name.name, dentry->d_name.name);
2727		} else {
2728			/*
2729			 * dentry:internal, target:external.  Steal target's
2730			 * storage and make target internal.
2731			 */
2732			memcpy(target->d_iname, dentry->d_name.name,
2733					dentry->d_name.len + 1);
2734			dentry->d_name.name = target->d_name.name;
2735			target->d_name.name = target->d_iname;
2736		}
2737	} else {
2738		if (unlikely(dname_external(dentry))) {
2739			/*
2740			 * dentry:external, target:internal.  Give dentry's
2741			 * storage to target and make dentry internal
2742			 */
2743			memcpy(dentry->d_iname, target->d_name.name,
2744					target->d_name.len + 1);
2745			target->d_name.name = dentry->d_name.name;
2746			dentry->d_name.name = dentry->d_iname;
2747		} else {
2748			/*
2749			 * Both are internal.
2750			 */
2751			unsigned int i;
2752			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2753			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2754				swap(((long *) &dentry->d_iname)[i],
2755				     ((long *) &target->d_iname)[i]);
2756			}
2757		}
2758	}
2759	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2760}
2761
2762static void copy_name(struct dentry *dentry, struct dentry *target)
2763{
2764	struct external_name *old_name = NULL;
2765	if (unlikely(dname_external(dentry)))
2766		old_name = external_name(dentry);
2767	if (unlikely(dname_external(target))) {
2768		atomic_inc(&external_name(target)->u.count);
2769		dentry->d_name = target->d_name;
2770	} else {
2771		memcpy(dentry->d_iname, target->d_name.name,
2772				target->d_name.len + 1);
2773		dentry->d_name.name = dentry->d_iname;
2774		dentry->d_name.hash_len = target->d_name.hash_len;
2775	}
2776	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2777		kfree_rcu(old_name, u.head);
2778}
2779
2780/*
2781 * __d_move - move a dentry
2782 * @dentry: entry to move
2783 * @target: new dentry
2784 * @exchange: exchange the two dentries
2785 *
2786 * Update the dcache to reflect the move of a file name. Negative
2787 * dcache entries should not be moved in this way. Caller must hold
2788 * rename_lock, the i_mutex of the source and target directories,
2789 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2790 */
2791static void __d_move(struct dentry *dentry, struct dentry *target,
2792		     bool exchange)
2793{
2794	struct dentry *old_parent, *p;
2795	wait_queue_head_t *d_wait;
2796	struct inode *dir = NULL;
2797	unsigned n;
2798
2799	WARN_ON(!dentry->d_inode);
2800	if (WARN_ON(dentry == target))
2801		return;
2802
2803	BUG_ON(d_ancestor(target, dentry));
2804	old_parent = dentry->d_parent;
2805	p = d_ancestor(old_parent, target);
2806	if (IS_ROOT(dentry)) {
2807		BUG_ON(p);
2808		spin_lock(&target->d_parent->d_lock);
2809	} else if (!p) {
2810		/* target is not a descendent of dentry->d_parent */
2811		spin_lock(&target->d_parent->d_lock);
2812		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2813	} else {
2814		BUG_ON(p == dentry);
2815		spin_lock(&old_parent->d_lock);
2816		if (p != target)
2817			spin_lock_nested(&target->d_parent->d_lock,
2818					DENTRY_D_LOCK_NESTED);
2819	}
2820	spin_lock_nested(&dentry->d_lock, 2);
2821	spin_lock_nested(&target->d_lock, 3);
2822
2823	if (unlikely(d_in_lookup(target))) {
2824		dir = target->d_parent->d_inode;
2825		n = start_dir_add(dir);
2826		d_wait = __d_lookup_unhash(target);
2827	}
2828
2829	write_seqcount_begin(&dentry->d_seq);
2830	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2831
2832	/* unhash both */
2833	if (!d_unhashed(dentry))
2834		___d_drop(dentry);
2835	if (!d_unhashed(target))
2836		___d_drop(target);
2837
2838	/* ... and switch them in the tree */
2839	dentry->d_parent = target->d_parent;
2840	if (!exchange) {
2841		copy_name(dentry, target);
2842		target->d_hash.pprev = NULL;
2843		dentry->d_parent->d_lockref.count++;
2844		if (dentry != old_parent) /* wasn't IS_ROOT */
2845			WARN_ON(!--old_parent->d_lockref.count);
2846	} else {
2847		target->d_parent = old_parent;
2848		swap_names(dentry, target);
2849		if (!hlist_unhashed(&target->d_sib))
2850			__hlist_del(&target->d_sib);
2851		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2852		__d_rehash(target);
2853		fsnotify_update_flags(target);
2854	}
2855	if (!hlist_unhashed(&dentry->d_sib))
2856		__hlist_del(&dentry->d_sib);
2857	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2858	__d_rehash(dentry);
2859	fsnotify_update_flags(dentry);
2860	fscrypt_handle_d_move(dentry);
2861
2862	write_seqcount_end(&target->d_seq);
2863	write_seqcount_end(&dentry->d_seq);
2864
2865	if (dir)
2866		end_dir_add(dir, n, d_wait);
2867
2868	if (dentry->d_parent != old_parent)
2869		spin_unlock(&dentry->d_parent->d_lock);
2870	if (dentry != old_parent)
2871		spin_unlock(&old_parent->d_lock);
2872	spin_unlock(&target->d_lock);
2873	spin_unlock(&dentry->d_lock);
2874}
2875
2876/*
2877 * d_move - move a dentry
2878 * @dentry: entry to move
2879 * @target: new dentry
2880 *
2881 * Update the dcache to reflect the move of a file name. Negative
2882 * dcache entries should not be moved in this way. See the locking
2883 * requirements for __d_move.
2884 */
2885void d_move(struct dentry *dentry, struct dentry *target)
2886{
2887	write_seqlock(&rename_lock);
2888	__d_move(dentry, target, false);
2889	write_sequnlock(&rename_lock);
2890}
2891EXPORT_SYMBOL(d_move);
2892
2893/*
2894 * d_exchange - exchange two dentries
2895 * @dentry1: first dentry
2896 * @dentry2: second dentry
2897 */
2898void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2899{
2900	write_seqlock(&rename_lock);
2901
2902	WARN_ON(!dentry1->d_inode);
2903	WARN_ON(!dentry2->d_inode);
2904	WARN_ON(IS_ROOT(dentry1));
2905	WARN_ON(IS_ROOT(dentry2));
2906
2907	__d_move(dentry1, dentry2, true);
2908
2909	write_sequnlock(&rename_lock);
2910}
2911
2912/**
2913 * d_ancestor - search for an ancestor
2914 * @p1: ancestor dentry
2915 * @p2: child dentry
2916 *
2917 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2918 * an ancestor of p2, else NULL.
2919 */
2920struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2921{
2922	struct dentry *p;
2923
2924	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2925		if (p->d_parent == p1)
2926			return p;
2927	}
2928	return NULL;
2929}
2930
2931/*
2932 * This helper attempts to cope with remotely renamed directories
2933 *
2934 * It assumes that the caller is already holding
2935 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2936 *
2937 * Note: If ever the locking in lock_rename() changes, then please
2938 * remember to update this too...
2939 */
2940static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2941{
2942	struct mutex *m1 = NULL;
2943	struct rw_semaphore *m2 = NULL;
2944	int ret = -ESTALE;
2945
2946	/* If alias and dentry share a parent, then no extra locks required */
2947	if (alias->d_parent == dentry->d_parent)
2948		goto out_unalias;
2949
2950	/* See lock_rename() */
2951	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2952		goto out_err;
2953	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2954	if (!inode_trylock_shared(alias->d_parent->d_inode))
2955		goto out_err;
2956	m2 = &alias->d_parent->d_inode->i_rwsem;
2957out_unalias:
2958	__d_move(alias, dentry, false);
2959	ret = 0;
2960out_err:
2961	if (m2)
2962		up_read(m2);
2963	if (m1)
2964		mutex_unlock(m1);
2965	return ret;
2966}
2967
2968/**
2969 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2970 * @inode:  the inode which may have a disconnected dentry
2971 * @dentry: a negative dentry which we want to point to the inode.
2972 *
2973 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2974 * place of the given dentry and return it, else simply d_add the inode
2975 * to the dentry and return NULL.
2976 *
2977 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2978 * we should error out: directories can't have multiple aliases.
2979 *
2980 * This is needed in the lookup routine of any filesystem that is exportable
2981 * (via knfsd) so that we can build dcache paths to directories effectively.
2982 *
2983 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2984 * is returned.  This matches the expected return value of ->lookup.
2985 *
2986 * Cluster filesystems may call this function with a negative, hashed dentry.
2987 * In that case, we know that the inode will be a regular file, and also this
2988 * will only occur during atomic_open. So we need to check for the dentry
2989 * being already hashed only in the final case.
2990 */
2991struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2992{
2993	if (IS_ERR(inode))
2994		return ERR_CAST(inode);
2995
2996	BUG_ON(!d_unhashed(dentry));
2997
2998	if (!inode)
2999		goto out;
3000
3001	security_d_instantiate(dentry, inode);
3002	spin_lock(&inode->i_lock);
3003	if (S_ISDIR(inode->i_mode)) {
3004		struct dentry *new = __d_find_any_alias(inode);
3005		if (unlikely(new)) {
3006			/* The reference to new ensures it remains an alias */
3007			spin_unlock(&inode->i_lock);
3008			write_seqlock(&rename_lock);
3009			if (unlikely(d_ancestor(new, dentry))) {
3010				write_sequnlock(&rename_lock);
3011				dput(new);
3012				new = ERR_PTR(-ELOOP);
3013				pr_warn_ratelimited(
3014					"VFS: Lookup of '%s' in %s %s"
3015					" would have caused loop\n",
3016					dentry->d_name.name,
3017					inode->i_sb->s_type->name,
3018					inode->i_sb->s_id);
3019			} else if (!IS_ROOT(new)) {
3020				struct dentry *old_parent = dget(new->d_parent);
3021				int err = __d_unalias(dentry, new);
3022				write_sequnlock(&rename_lock);
3023				if (err) {
3024					dput(new);
3025					new = ERR_PTR(err);
3026				}
3027				dput(old_parent);
3028			} else {
3029				__d_move(new, dentry, false);
3030				write_sequnlock(&rename_lock);
3031			}
3032			iput(inode);
3033			return new;
3034		}
3035	}
3036out:
3037	__d_add(dentry, inode);
3038	return NULL;
3039}
3040EXPORT_SYMBOL(d_splice_alias);
3041
3042/*
3043 * Test whether new_dentry is a subdirectory of old_dentry.
3044 *
3045 * Trivially implemented using the dcache structure
3046 */
3047
3048/**
3049 * is_subdir - is new dentry a subdirectory of old_dentry
3050 * @new_dentry: new dentry
3051 * @old_dentry: old dentry
3052 *
3053 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3054 * Returns false otherwise.
3055 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3056 */
3057  
3058bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3059{
3060	bool subdir;
3061	unsigned seq;
3062
3063	if (new_dentry == old_dentry)
3064		return true;
3065
3066	/* Access d_parent under rcu as d_move() may change it. */
3067	rcu_read_lock();
3068	seq = read_seqbegin(&rename_lock);
3069	subdir = d_ancestor(old_dentry, new_dentry);
3070	 /* Try lockless once... */
3071	if (read_seqretry(&rename_lock, seq)) {
3072		/* ...else acquire lock for progress even on deep chains. */
3073		read_seqlock_excl(&rename_lock);
3074		subdir = d_ancestor(old_dentry, new_dentry);
3075		read_sequnlock_excl(&rename_lock);
3076	}
3077	rcu_read_unlock();
3078	return subdir;
 
 
 
3079}
3080EXPORT_SYMBOL(is_subdir);
3081
3082static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3083{
3084	struct dentry *root = data;
3085	if (dentry != root) {
3086		if (d_unhashed(dentry) || !dentry->d_inode)
3087			return D_WALK_SKIP;
3088
3089		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3090			dentry->d_flags |= DCACHE_GENOCIDE;
3091			dentry->d_lockref.count--;
3092		}
3093	}
3094	return D_WALK_CONTINUE;
3095}
3096
3097void d_genocide(struct dentry *parent)
3098{
3099	d_walk(parent, parent, d_genocide_kill);
3100}
3101
3102void d_mark_tmpfile(struct file *file, struct inode *inode)
3103{
3104	struct dentry *dentry = file->f_path.dentry;
3105
3106	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3107		!hlist_unhashed(&dentry->d_u.d_alias) ||
3108		!d_unlinked(dentry));
3109	spin_lock(&dentry->d_parent->d_lock);
3110	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3111	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3112				(unsigned long long)inode->i_ino);
3113	spin_unlock(&dentry->d_lock);
3114	spin_unlock(&dentry->d_parent->d_lock);
3115}
3116EXPORT_SYMBOL(d_mark_tmpfile);
3117
3118void d_tmpfile(struct file *file, struct inode *inode)
3119{
3120	struct dentry *dentry = file->f_path.dentry;
3121
3122	inode_dec_link_count(inode);
3123	d_mark_tmpfile(file, inode);
3124	d_instantiate(dentry, inode);
3125}
3126EXPORT_SYMBOL(d_tmpfile);
3127
3128/*
3129 * Obtain inode number of the parent dentry.
3130 */
3131ino_t d_parent_ino(struct dentry *dentry)
3132{
3133	struct dentry *parent;
3134	struct inode *iparent;
3135	unsigned seq;
3136	ino_t ret;
3137
3138	scoped_guard(rcu) {
3139		seq = raw_seqcount_begin(&dentry->d_seq);
3140		parent = READ_ONCE(dentry->d_parent);
3141		iparent = d_inode_rcu(parent);
3142		if (likely(iparent)) {
3143			ret = iparent->i_ino;
3144			if (!read_seqcount_retry(&dentry->d_seq, seq))
3145				return ret;
3146		}
3147	}
3148
3149	spin_lock(&dentry->d_lock);
3150	ret = dentry->d_parent->d_inode->i_ino;
3151	spin_unlock(&dentry->d_lock);
3152	return ret;
3153}
3154EXPORT_SYMBOL(d_parent_ino);
3155
3156static __initdata unsigned long dhash_entries;
3157static int __init set_dhash_entries(char *str)
3158{
3159	if (!str)
3160		return 0;
3161	dhash_entries = simple_strtoul(str, &str, 0);
3162	return 1;
3163}
3164__setup("dhash_entries=", set_dhash_entries);
3165
3166static void __init dcache_init_early(void)
3167{
3168	/* If hashes are distributed across NUMA nodes, defer
3169	 * hash allocation until vmalloc space is available.
3170	 */
3171	if (hashdist)
3172		return;
3173
3174	dentry_hashtable =
3175		alloc_large_system_hash("Dentry cache",
3176					sizeof(struct hlist_bl_head),
3177					dhash_entries,
3178					13,
3179					HASH_EARLY | HASH_ZERO,
3180					&d_hash_shift,
3181					NULL,
3182					0,
3183					0);
3184	d_hash_shift = 32 - d_hash_shift;
3185
3186	runtime_const_init(shift, d_hash_shift);
3187	runtime_const_init(ptr, dentry_hashtable);
3188}
3189
3190static void __init dcache_init(void)
3191{
3192	/*
3193	 * A constructor could be added for stable state like the lists,
3194	 * but it is probably not worth it because of the cache nature
3195	 * of the dcache.
3196	 */
3197	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3198		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3199		d_iname);
3200
3201	/* Hash may have been set up in dcache_init_early */
3202	if (!hashdist)
3203		return;
3204
3205	dentry_hashtable =
3206		alloc_large_system_hash("Dentry cache",
3207					sizeof(struct hlist_bl_head),
3208					dhash_entries,
3209					13,
3210					HASH_ZERO,
3211					&d_hash_shift,
3212					NULL,
3213					0,
3214					0);
3215	d_hash_shift = 32 - d_hash_shift;
3216
3217	runtime_const_init(shift, d_hash_shift);
3218	runtime_const_init(ptr, dentry_hashtable);
3219}
3220
3221/* SLAB cache for __getname() consumers */
3222struct kmem_cache *names_cachep __ro_after_init;
3223EXPORT_SYMBOL(names_cachep);
3224
3225void __init vfs_caches_init_early(void)
3226{
3227	int i;
3228
3229	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3230		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3231
3232	dcache_init_early();
3233	inode_init_early();
3234}
3235
3236void __init vfs_caches_init(void)
3237{
3238	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3239			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3240
3241	dcache_init();
3242	inode_init();
3243	files_init();
3244	files_maxfiles_init();
3245	mnt_init();
3246	bdev_cache_init();
3247	chrdev_init();
3248}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
  35#include "internal.h"
  36#include "mount.h"
  37
 
 
  38/*
  39 * Usage:
  40 * dcache->d_inode->i_lock protects:
  41 *   - i_dentry, d_u.d_alias, d_inode of aliases
  42 * dcache_hash_bucket lock protects:
  43 *   - the dcache hash table
  44 * s_roots bl list spinlock protects:
  45 *   - the s_roots list (see __d_drop)
  46 * dentry->d_sb->s_dentry_lru_lock protects:
  47 *   - the dcache lru lists and counters
  48 * d_lock protects:
  49 *   - d_flags
  50 *   - d_name
  51 *   - d_lru
  52 *   - d_count
  53 *   - d_unhashed()
  54 *   - d_parent and d_chilren
  55 *   - childrens' d_sib and d_parent
  56 *   - d_u.d_alias, d_inode
  57 *
  58 * Ordering:
  59 * dentry->d_inode->i_lock
  60 *   dentry->d_lock
  61 *     dentry->d_sb->s_dentry_lru_lock
  62 *     dcache_hash_bucket lock
  63 *     s_roots lock
  64 *
  65 * If there is an ancestor relationship:
  66 * dentry->d_parent->...->d_parent->d_lock
  67 *   ...
  68 *     dentry->d_parent->d_lock
  69 *       dentry->d_lock
  70 *
  71 * If no ancestor relationship:
  72 * arbitrary, since it's serialized on rename_lock
  73 */
  74int sysctl_vfs_cache_pressure __read_mostly = 100;
  75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  76
  77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  78
  79EXPORT_SYMBOL(rename_lock);
  80
  81static struct kmem_cache *dentry_cache __ro_after_init;
  82
  83const struct qstr empty_name = QSTR_INIT("", 0);
  84EXPORT_SYMBOL(empty_name);
  85const struct qstr slash_name = QSTR_INIT("/", 1);
  86EXPORT_SYMBOL(slash_name);
  87const struct qstr dotdot_name = QSTR_INIT("..", 2);
  88EXPORT_SYMBOL(dotdot_name);
  89
  90/*
  91 * This is the single most critical data structure when it comes
  92 * to the dcache: the hashtable for lookups. Somebody should try
  93 * to make this good - I've just made it work.
  94 *
  95 * This hash-function tries to avoid losing too many bits of hash
  96 * information, yet avoid using a prime hash-size or similar.
 
 
 
 
 
  97 */
  98
  99static unsigned int d_hash_shift __ro_after_init;
 100
 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
 102
 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
 104{
 105	return dentry_hashtable + (hash >> d_hash_shift);
 
 106}
 107
 108#define IN_LOOKUP_SHIFT 10
 109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 110
 111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 112					unsigned int hash)
 113{
 114	hash += (unsigned long) parent / L1_CACHE_BYTES;
 115	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 116}
 117
 118struct dentry_stat_t {
 119	long nr_dentry;
 120	long nr_unused;
 121	long age_limit;		/* age in seconds */
 122	long want_pages;	/* pages requested by system */
 123	long nr_negative;	/* # of unused negative dentries */
 124	long dummy;		/* Reserved for future use */
 125};
 126
 127static DEFINE_PER_CPU(long, nr_dentry);
 128static DEFINE_PER_CPU(long, nr_dentry_unused);
 129static DEFINE_PER_CPU(long, nr_dentry_negative);
 
 130
 131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 132/* Statistics gathering. */
 133static struct dentry_stat_t dentry_stat = {
 134	.age_limit = 45,
 135};
 136
 137/*
 138 * Here we resort to our own counters instead of using generic per-cpu counters
 139 * for consistency with what the vfs inode code does. We are expected to harvest
 140 * better code and performance by having our own specialized counters.
 141 *
 142 * Please note that the loop is done over all possible CPUs, not over all online
 143 * CPUs. The reason for this is that we don't want to play games with CPUs going
 144 * on and off. If one of them goes off, we will just keep their counters.
 145 *
 146 * glommer: See cffbc8a for details, and if you ever intend to change this,
 147 * please update all vfs counters to match.
 148 */
 149static long get_nr_dentry(void)
 150{
 151	int i;
 152	long sum = 0;
 153	for_each_possible_cpu(i)
 154		sum += per_cpu(nr_dentry, i);
 155	return sum < 0 ? 0 : sum;
 156}
 157
 158static long get_nr_dentry_unused(void)
 159{
 160	int i;
 161	long sum = 0;
 162	for_each_possible_cpu(i)
 163		sum += per_cpu(nr_dentry_unused, i);
 164	return sum < 0 ? 0 : sum;
 165}
 166
 167static long get_nr_dentry_negative(void)
 168{
 169	int i;
 170	long sum = 0;
 171
 172	for_each_possible_cpu(i)
 173		sum += per_cpu(nr_dentry_negative, i);
 174	return sum < 0 ? 0 : sum;
 175}
 176
 177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
 178			  size_t *lenp, loff_t *ppos)
 179{
 180	dentry_stat.nr_dentry = get_nr_dentry();
 181	dentry_stat.nr_unused = get_nr_dentry_unused();
 182	dentry_stat.nr_negative = get_nr_dentry_negative();
 183	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 184}
 185
 186static struct ctl_table fs_dcache_sysctls[] = {
 187	{
 188		.procname	= "dentry-state",
 189		.data		= &dentry_stat,
 190		.maxlen		= 6*sizeof(long),
 191		.mode		= 0444,
 192		.proc_handler	= proc_nr_dentry,
 193	},
 
 
 
 
 
 
 
 
 
 194};
 195
 196static int __init init_fs_dcache_sysctls(void)
 197{
 198	register_sysctl_init("fs", fs_dcache_sysctls);
 199	return 0;
 200}
 201fs_initcall(init_fs_dcache_sysctls);
 202#endif
 203
 204/*
 205 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 206 * The strings are both count bytes long, and count is non-zero.
 207 */
 208#ifdef CONFIG_DCACHE_WORD_ACCESS
 209
 210#include <asm/word-at-a-time.h>
 211/*
 212 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 213 * aligned allocation for this particular component. We don't
 214 * strictly need the load_unaligned_zeropad() safety, but it
 215 * doesn't hurt either.
 216 *
 217 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 218 * need the careful unaligned handling.
 219 */
 220static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 221{
 222	unsigned long a,b,mask;
 223
 224	for (;;) {
 225		a = read_word_at_a_time(cs);
 226		b = load_unaligned_zeropad(ct);
 227		if (tcount < sizeof(unsigned long))
 228			break;
 229		if (unlikely(a != b))
 230			return 1;
 231		cs += sizeof(unsigned long);
 232		ct += sizeof(unsigned long);
 233		tcount -= sizeof(unsigned long);
 234		if (!tcount)
 235			return 0;
 236	}
 237	mask = bytemask_from_count(tcount);
 238	return unlikely(!!((a ^ b) & mask));
 239}
 240
 241#else
 242
 243static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 244{
 245	do {
 246		if (*cs != *ct)
 247			return 1;
 248		cs++;
 249		ct++;
 250		tcount--;
 251	} while (tcount);
 252	return 0;
 253}
 254
 255#endif
 256
 257static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 258{
 259	/*
 260	 * Be careful about RCU walk racing with rename:
 261	 * use 'READ_ONCE' to fetch the name pointer.
 262	 *
 263	 * NOTE! Even if a rename will mean that the length
 264	 * was not loaded atomically, we don't care. The
 265	 * RCU walk will check the sequence count eventually,
 266	 * and catch it. And we won't overrun the buffer,
 267	 * because we're reading the name pointer atomically,
 268	 * and a dentry name is guaranteed to be properly
 269	 * terminated with a NUL byte.
 270	 *
 271	 * End result: even if 'len' is wrong, we'll exit
 272	 * early because the data cannot match (there can
 273	 * be no NUL in the ct/tcount data)
 274	 */
 275	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 276
 277	return dentry_string_cmp(cs, ct, tcount);
 278}
 279
 280struct external_name {
 281	union {
 282		atomic_t count;
 283		struct rcu_head head;
 284	} u;
 285	unsigned char name[];
 286};
 287
 288static inline struct external_name *external_name(struct dentry *dentry)
 289{
 290	return container_of(dentry->d_name.name, struct external_name, name[0]);
 291}
 292
 293static void __d_free(struct rcu_head *head)
 294{
 295	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 296
 297	kmem_cache_free(dentry_cache, dentry); 
 298}
 299
 300static void __d_free_external(struct rcu_head *head)
 301{
 302	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 303	kfree(external_name(dentry));
 304	kmem_cache_free(dentry_cache, dentry);
 305}
 306
 307static inline int dname_external(const struct dentry *dentry)
 308{
 309	return dentry->d_name.name != dentry->d_iname;
 310}
 311
 312void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 313{
 314	spin_lock(&dentry->d_lock);
 315	name->name = dentry->d_name;
 316	if (unlikely(dname_external(dentry))) {
 317		atomic_inc(&external_name(dentry)->u.count);
 318	} else {
 319		memcpy(name->inline_name, dentry->d_iname,
 320		       dentry->d_name.len + 1);
 321		name->name.name = name->inline_name;
 322	}
 323	spin_unlock(&dentry->d_lock);
 324}
 325EXPORT_SYMBOL(take_dentry_name_snapshot);
 326
 327void release_dentry_name_snapshot(struct name_snapshot *name)
 328{
 329	if (unlikely(name->name.name != name->inline_name)) {
 330		struct external_name *p;
 331		p = container_of(name->name.name, struct external_name, name[0]);
 332		if (unlikely(atomic_dec_and_test(&p->u.count)))
 333			kfree_rcu(p, u.head);
 334	}
 335}
 336EXPORT_SYMBOL(release_dentry_name_snapshot);
 337
 338static inline void __d_set_inode_and_type(struct dentry *dentry,
 339					  struct inode *inode,
 340					  unsigned type_flags)
 341{
 342	unsigned flags;
 343
 344	dentry->d_inode = inode;
 345	flags = READ_ONCE(dentry->d_flags);
 346	flags &= ~DCACHE_ENTRY_TYPE;
 347	flags |= type_flags;
 348	smp_store_release(&dentry->d_flags, flags);
 349}
 350
 351static inline void __d_clear_type_and_inode(struct dentry *dentry)
 352{
 353	unsigned flags = READ_ONCE(dentry->d_flags);
 354
 355	flags &= ~DCACHE_ENTRY_TYPE;
 356	WRITE_ONCE(dentry->d_flags, flags);
 357	dentry->d_inode = NULL;
 358	if (dentry->d_flags & DCACHE_LRU_LIST)
 
 
 
 
 359		this_cpu_inc(nr_dentry_negative);
 360}
 361
 362static void dentry_free(struct dentry *dentry)
 363{
 364	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 365	if (unlikely(dname_external(dentry))) {
 366		struct external_name *p = external_name(dentry);
 367		if (likely(atomic_dec_and_test(&p->u.count))) {
 368			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 369			return;
 370		}
 371	}
 372	/* if dentry was never visible to RCU, immediate free is OK */
 373	if (dentry->d_flags & DCACHE_NORCU)
 374		__d_free(&dentry->d_u.d_rcu);
 375	else
 376		call_rcu(&dentry->d_u.d_rcu, __d_free);
 377}
 378
 379/*
 380 * Release the dentry's inode, using the filesystem
 381 * d_iput() operation if defined.
 382 */
 383static void dentry_unlink_inode(struct dentry * dentry)
 384	__releases(dentry->d_lock)
 385	__releases(dentry->d_inode->i_lock)
 386{
 387	struct inode *inode = dentry->d_inode;
 388
 389	raw_write_seqcount_begin(&dentry->d_seq);
 390	__d_clear_type_and_inode(dentry);
 391	hlist_del_init(&dentry->d_u.d_alias);
 392	raw_write_seqcount_end(&dentry->d_seq);
 393	spin_unlock(&dentry->d_lock);
 394	spin_unlock(&inode->i_lock);
 395	if (!inode->i_nlink)
 396		fsnotify_inoderemove(inode);
 397	if (dentry->d_op && dentry->d_op->d_iput)
 398		dentry->d_op->d_iput(dentry, inode);
 399	else
 400		iput(inode);
 401}
 402
 403/*
 404 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 405 * is in use - which includes both the "real" per-superblock
 406 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 407 *
 408 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 409 * on the shrink list (ie not on the superblock LRU list).
 410 *
 411 * The per-cpu "nr_dentry_unused" counters are updated with
 412 * the DCACHE_LRU_LIST bit.
 413 *
 414 * The per-cpu "nr_dentry_negative" counters are only updated
 415 * when deleted from or added to the per-superblock LRU list, not
 416 * from/to the shrink list. That is to avoid an unneeded dec/inc
 417 * pair when moving from LRU to shrink list in select_collect().
 418 *
 419 * These helper functions make sure we always follow the
 420 * rules. d_lock must be held by the caller.
 421 */
 422#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 423static void d_lru_add(struct dentry *dentry)
 424{
 425	D_FLAG_VERIFY(dentry, 0);
 426	dentry->d_flags |= DCACHE_LRU_LIST;
 427	this_cpu_inc(nr_dentry_unused);
 428	if (d_is_negative(dentry))
 429		this_cpu_inc(nr_dentry_negative);
 430	WARN_ON_ONCE(!list_lru_add_obj(
 431			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 432}
 433
 434static void d_lru_del(struct dentry *dentry)
 435{
 436	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 437	dentry->d_flags &= ~DCACHE_LRU_LIST;
 438	this_cpu_dec(nr_dentry_unused);
 439	if (d_is_negative(dentry))
 440		this_cpu_dec(nr_dentry_negative);
 441	WARN_ON_ONCE(!list_lru_del_obj(
 442			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 443}
 444
 445static void d_shrink_del(struct dentry *dentry)
 446{
 447	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 448	list_del_init(&dentry->d_lru);
 449	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 450	this_cpu_dec(nr_dentry_unused);
 451}
 452
 453static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 454{
 455	D_FLAG_VERIFY(dentry, 0);
 456	list_add(&dentry->d_lru, list);
 457	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 458	this_cpu_inc(nr_dentry_unused);
 459}
 460
 461/*
 462 * These can only be called under the global LRU lock, ie during the
 463 * callback for freeing the LRU list. "isolate" removes it from the
 464 * LRU lists entirely, while shrink_move moves it to the indicated
 465 * private list.
 466 */
 467static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 468{
 469	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 470	dentry->d_flags &= ~DCACHE_LRU_LIST;
 471	this_cpu_dec(nr_dentry_unused);
 472	if (d_is_negative(dentry))
 473		this_cpu_dec(nr_dentry_negative);
 474	list_lru_isolate(lru, &dentry->d_lru);
 475}
 476
 477static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 478			      struct list_head *list)
 479{
 480	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 481	dentry->d_flags |= DCACHE_SHRINK_LIST;
 482	if (d_is_negative(dentry))
 483		this_cpu_dec(nr_dentry_negative);
 484	list_lru_isolate_move(lru, &dentry->d_lru, list);
 485}
 486
 487static void ___d_drop(struct dentry *dentry)
 488{
 489	struct hlist_bl_head *b;
 490	/*
 491	 * Hashed dentries are normally on the dentry hashtable,
 492	 * with the exception of those newly allocated by
 493	 * d_obtain_root, which are always IS_ROOT:
 494	 */
 495	if (unlikely(IS_ROOT(dentry)))
 496		b = &dentry->d_sb->s_roots;
 497	else
 498		b = d_hash(dentry->d_name.hash);
 499
 500	hlist_bl_lock(b);
 501	__hlist_bl_del(&dentry->d_hash);
 502	hlist_bl_unlock(b);
 503}
 504
 505void __d_drop(struct dentry *dentry)
 506{
 507	if (!d_unhashed(dentry)) {
 508		___d_drop(dentry);
 509		dentry->d_hash.pprev = NULL;
 510		write_seqcount_invalidate(&dentry->d_seq);
 511	}
 512}
 513EXPORT_SYMBOL(__d_drop);
 514
 515/**
 516 * d_drop - drop a dentry
 517 * @dentry: dentry to drop
 518 *
 519 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 520 * be found through a VFS lookup any more. Note that this is different from
 521 * deleting the dentry - d_delete will try to mark the dentry negative if
 522 * possible, giving a successful _negative_ lookup, while d_drop will
 523 * just make the cache lookup fail.
 524 *
 525 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 526 * reason (NFS timeouts or autofs deletes).
 527 *
 528 * __d_drop requires dentry->d_lock
 529 *
 530 * ___d_drop doesn't mark dentry as "unhashed"
 531 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 532 */
 533void d_drop(struct dentry *dentry)
 534{
 535	spin_lock(&dentry->d_lock);
 536	__d_drop(dentry);
 537	spin_unlock(&dentry->d_lock);
 538}
 539EXPORT_SYMBOL(d_drop);
 540
 541static inline void dentry_unlist(struct dentry *dentry)
 542{
 543	struct dentry *next;
 544	/*
 545	 * Inform d_walk() and shrink_dentry_list() that we are no longer
 546	 * attached to the dentry tree
 547	 */
 548	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 549	if (unlikely(hlist_unhashed(&dentry->d_sib)))
 550		return;
 551	__hlist_del(&dentry->d_sib);
 552	/*
 553	 * Cursors can move around the list of children.  While we'd been
 554	 * a normal list member, it didn't matter - ->d_sib.next would've
 555	 * been updated.  However, from now on it won't be and for the
 556	 * things like d_walk() it might end up with a nasty surprise.
 557	 * Normally d_walk() doesn't care about cursors moving around -
 558	 * ->d_lock on parent prevents that and since a cursor has no children
 559	 * of its own, we get through it without ever unlocking the parent.
 560	 * There is one exception, though - if we ascend from a child that
 561	 * gets killed as soon as we unlock it, the next sibling is found
 562	 * using the value left in its ->d_sib.next.  And if _that_
 563	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
 564	 * before d_walk() regains parent->d_lock, we'll end up skipping
 565	 * everything the cursor had been moved past.
 566	 *
 567	 * Solution: make sure that the pointer left behind in ->d_sib.next
 568	 * points to something that won't be moving around.  I.e. skip the
 569	 * cursors.
 570	 */
 571	while (dentry->d_sib.next) {
 572		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
 573		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 574			break;
 575		dentry->d_sib.next = next->d_sib.next;
 576	}
 577}
 578
 579static struct dentry *__dentry_kill(struct dentry *dentry)
 580{
 581	struct dentry *parent = NULL;
 582	bool can_free = true;
 583
 584	/*
 585	 * The dentry is now unrecoverably dead to the world.
 586	 */
 587	lockref_mark_dead(&dentry->d_lockref);
 588
 589	/*
 590	 * inform the fs via d_prune that this dentry is about to be
 591	 * unhashed and destroyed.
 592	 */
 593	if (dentry->d_flags & DCACHE_OP_PRUNE)
 594		dentry->d_op->d_prune(dentry);
 595
 596	if (dentry->d_flags & DCACHE_LRU_LIST) {
 597		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 598			d_lru_del(dentry);
 599	}
 600	/* if it was on the hash then remove it */
 601	__d_drop(dentry);
 602	if (dentry->d_inode)
 603		dentry_unlink_inode(dentry);
 604	else
 605		spin_unlock(&dentry->d_lock);
 606	this_cpu_dec(nr_dentry);
 607	if (dentry->d_op && dentry->d_op->d_release)
 608		dentry->d_op->d_release(dentry);
 609
 610	cond_resched();
 611	/* now that it's negative, ->d_parent is stable */
 612	if (!IS_ROOT(dentry)) {
 613		parent = dentry->d_parent;
 614		spin_lock(&parent->d_lock);
 615	}
 616	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 617	dentry_unlist(dentry);
 618	if (dentry->d_flags & DCACHE_SHRINK_LIST)
 619		can_free = false;
 620	spin_unlock(&dentry->d_lock);
 621	if (likely(can_free))
 622		dentry_free(dentry);
 623	if (parent && --parent->d_lockref.count) {
 624		spin_unlock(&parent->d_lock);
 625		return NULL;
 626	}
 627	return parent;
 628}
 629
 630/*
 631 * Lock a dentry for feeding it to __dentry_kill().
 632 * Called under rcu_read_lock() and dentry->d_lock; the former
 633 * guarantees that nothing we access will be freed under us.
 634 * Note that dentry is *not* protected from concurrent dentry_kill(),
 635 * d_delete(), etc.
 636 *
 637 * Return false if dentry is busy.  Otherwise, return true and have
 638 * that dentry's inode locked.
 639 */
 640
 641static bool lock_for_kill(struct dentry *dentry)
 642{
 643	struct inode *inode = dentry->d_inode;
 644
 645	if (unlikely(dentry->d_lockref.count))
 646		return false;
 647
 648	if (!inode || likely(spin_trylock(&inode->i_lock)))
 649		return true;
 650
 651	do {
 652		spin_unlock(&dentry->d_lock);
 653		spin_lock(&inode->i_lock);
 654		spin_lock(&dentry->d_lock);
 655		if (likely(inode == dentry->d_inode))
 656			break;
 657		spin_unlock(&inode->i_lock);
 658		inode = dentry->d_inode;
 659	} while (inode);
 660	if (likely(!dentry->d_lockref.count))
 661		return true;
 662	if (inode)
 663		spin_unlock(&inode->i_lock);
 664	return false;
 665}
 666
 667/*
 668 * Decide if dentry is worth retaining.  Usually this is called with dentry
 669 * locked; if not locked, we are more limited and might not be able to tell
 670 * without a lock.  False in this case means "punt to locked path and recheck".
 671 *
 672 * In case we aren't locked, these predicates are not "stable". However, it is
 673 * sufficient that at some point after we dropped the reference the dentry was
 674 * hashed and the flags had the proper value. Other dentry users may have
 675 * re-gotten a reference to the dentry and change that, but our work is done -
 676 * we can leave the dentry around with a zero refcount.
 677 */
 678static inline bool retain_dentry(struct dentry *dentry, bool locked)
 679{
 680	unsigned int d_flags;
 681
 682	smp_rmb();
 683	d_flags = READ_ONCE(dentry->d_flags);
 684
 685	// Unreachable? Nobody would be able to look it up, no point retaining
 686	if (unlikely(d_unhashed(dentry)))
 687		return false;
 688
 689	// Same if it's disconnected
 690	if (unlikely(d_flags & DCACHE_DISCONNECTED))
 691		return false;
 692
 693	// ->d_delete() might tell us not to bother, but that requires
 694	// ->d_lock; can't decide without it
 695	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
 696		if (!locked || dentry->d_op->d_delete(dentry))
 697			return false;
 698	}
 699
 700	// Explicitly told not to bother
 701	if (unlikely(d_flags & DCACHE_DONTCACHE))
 702		return false;
 703
 704	// At this point it looks like we ought to keep it.  We also might
 705	// need to do something - put it on LRU if it wasn't there already
 706	// and mark it referenced if it was on LRU, but not marked yet.
 707	// Unfortunately, both actions require ->d_lock, so in lockless
 708	// case we'd have to punt rather than doing those.
 709	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
 710		if (!locked)
 711			return false;
 712		d_lru_add(dentry);
 713	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
 714		if (!locked)
 715			return false;
 716		dentry->d_flags |= DCACHE_REFERENCED;
 717	}
 718	return true;
 719}
 720
 721void d_mark_dontcache(struct inode *inode)
 722{
 723	struct dentry *de;
 724
 725	spin_lock(&inode->i_lock);
 726	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 727		spin_lock(&de->d_lock);
 728		de->d_flags |= DCACHE_DONTCACHE;
 729		spin_unlock(&de->d_lock);
 730	}
 731	inode->i_state |= I_DONTCACHE;
 732	spin_unlock(&inode->i_lock);
 733}
 734EXPORT_SYMBOL(d_mark_dontcache);
 735
 736/*
 737 * Try to do a lockless dput(), and return whether that was successful.
 738 *
 739 * If unsuccessful, we return false, having already taken the dentry lock.
 740 * In that case refcount is guaranteed to be zero and we have already
 741 * decided that it's not worth keeping around.
 742 *
 743 * The caller needs to hold the RCU read lock, so that the dentry is
 744 * guaranteed to stay around even if the refcount goes down to zero!
 745 */
 746static inline bool fast_dput(struct dentry *dentry)
 747{
 748	int ret;
 749
 750	/*
 751	 * try to decrement the lockref optimistically.
 752	 */
 753	ret = lockref_put_return(&dentry->d_lockref);
 754
 755	/*
 756	 * If the lockref_put_return() failed due to the lock being held
 757	 * by somebody else, the fast path has failed. We will need to
 758	 * get the lock, and then check the count again.
 759	 */
 760	if (unlikely(ret < 0)) {
 761		spin_lock(&dentry->d_lock);
 762		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
 763			spin_unlock(&dentry->d_lock);
 764			return true;
 765		}
 766		dentry->d_lockref.count--;
 767		goto locked;
 768	}
 769
 770	/*
 771	 * If we weren't the last ref, we're done.
 772	 */
 773	if (ret)
 774		return true;
 775
 776	/*
 777	 * Can we decide that decrement of refcount is all we needed without
 778	 * taking the lock?  There's a very common case when it's all we need -
 779	 * dentry looks like it ought to be retained and there's nothing else
 780	 * to do.
 781	 */
 782	if (retain_dentry(dentry, false))
 783		return true;
 784
 785	/*
 786	 * Either not worth retaining or we can't tell without the lock.
 787	 * Get the lock, then.  We've already decremented the refcount to 0,
 788	 * but we'll need to re-check the situation after getting the lock.
 789	 */
 790	spin_lock(&dentry->d_lock);
 791
 792	/*
 793	 * Did somebody else grab a reference to it in the meantime, and
 794	 * we're no longer the last user after all? Alternatively, somebody
 795	 * else could have killed it and marked it dead. Either way, we
 796	 * don't need to do anything else.
 797	 */
 798locked:
 799	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
 800		spin_unlock(&dentry->d_lock);
 801		return true;
 802	}
 803	return false;
 804}
 805
 806
 807/* 
 808 * This is dput
 809 *
 810 * This is complicated by the fact that we do not want to put
 811 * dentries that are no longer on any hash chain on the unused
 812 * list: we'd much rather just get rid of them immediately.
 813 *
 814 * However, that implies that we have to traverse the dentry
 815 * tree upwards to the parents which might _also_ now be
 816 * scheduled for deletion (it may have been only waiting for
 817 * its last child to go away).
 818 *
 819 * This tail recursion is done by hand as we don't want to depend
 820 * on the compiler to always get this right (gcc generally doesn't).
 821 * Real recursion would eat up our stack space.
 822 */
 823
 824/*
 825 * dput - release a dentry
 826 * @dentry: dentry to release 
 827 *
 828 * Release a dentry. This will drop the usage count and if appropriate
 829 * call the dentry unlink method as well as removing it from the queues and
 830 * releasing its resources. If the parent dentries were scheduled for release
 831 * they too may now get deleted.
 832 */
 833void dput(struct dentry *dentry)
 834{
 835	if (!dentry)
 836		return;
 837	might_sleep();
 838	rcu_read_lock();
 839	if (likely(fast_dput(dentry))) {
 840		rcu_read_unlock();
 841		return;
 842	}
 843	while (lock_for_kill(dentry)) {
 844		rcu_read_unlock();
 845		dentry = __dentry_kill(dentry);
 846		if (!dentry)
 847			return;
 848		if (retain_dentry(dentry, true)) {
 849			spin_unlock(&dentry->d_lock);
 850			return;
 851		}
 852		rcu_read_lock();
 853	}
 854	rcu_read_unlock();
 855	spin_unlock(&dentry->d_lock);
 856}
 857EXPORT_SYMBOL(dput);
 858
 859static void to_shrink_list(struct dentry *dentry, struct list_head *list)
 860__must_hold(&dentry->d_lock)
 861{
 862	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
 863		if (dentry->d_flags & DCACHE_LRU_LIST)
 864			d_lru_del(dentry);
 865		d_shrink_add(dentry, list);
 866	}
 867}
 868
 869void dput_to_list(struct dentry *dentry, struct list_head *list)
 870{
 871	rcu_read_lock();
 872	if (likely(fast_dput(dentry))) {
 873		rcu_read_unlock();
 874		return;
 875	}
 876	rcu_read_unlock();
 877	to_shrink_list(dentry, list);
 878	spin_unlock(&dentry->d_lock);
 879}
 880
 881struct dentry *dget_parent(struct dentry *dentry)
 882{
 883	int gotref;
 884	struct dentry *ret;
 885	unsigned seq;
 886
 887	/*
 888	 * Do optimistic parent lookup without any
 889	 * locking.
 890	 */
 891	rcu_read_lock();
 892	seq = raw_seqcount_begin(&dentry->d_seq);
 893	ret = READ_ONCE(dentry->d_parent);
 894	gotref = lockref_get_not_zero(&ret->d_lockref);
 895	rcu_read_unlock();
 896	if (likely(gotref)) {
 897		if (!read_seqcount_retry(&dentry->d_seq, seq))
 898			return ret;
 899		dput(ret);
 900	}
 901
 902repeat:
 903	/*
 904	 * Don't need rcu_dereference because we re-check it was correct under
 905	 * the lock.
 906	 */
 907	rcu_read_lock();
 908	ret = dentry->d_parent;
 909	spin_lock(&ret->d_lock);
 910	if (unlikely(ret != dentry->d_parent)) {
 911		spin_unlock(&ret->d_lock);
 912		rcu_read_unlock();
 913		goto repeat;
 914	}
 915	rcu_read_unlock();
 916	BUG_ON(!ret->d_lockref.count);
 917	ret->d_lockref.count++;
 918	spin_unlock(&ret->d_lock);
 919	return ret;
 920}
 921EXPORT_SYMBOL(dget_parent);
 922
 923static struct dentry * __d_find_any_alias(struct inode *inode)
 924{
 925	struct dentry *alias;
 926
 927	if (hlist_empty(&inode->i_dentry))
 928		return NULL;
 929	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 930	lockref_get(&alias->d_lockref);
 931	return alias;
 932}
 933
 934/**
 935 * d_find_any_alias - find any alias for a given inode
 936 * @inode: inode to find an alias for
 937 *
 938 * If any aliases exist for the given inode, take and return a
 939 * reference for one of them.  If no aliases exist, return %NULL.
 940 */
 941struct dentry *d_find_any_alias(struct inode *inode)
 942{
 943	struct dentry *de;
 944
 945	spin_lock(&inode->i_lock);
 946	de = __d_find_any_alias(inode);
 947	spin_unlock(&inode->i_lock);
 948	return de;
 949}
 950EXPORT_SYMBOL(d_find_any_alias);
 951
 952static struct dentry *__d_find_alias(struct inode *inode)
 953{
 954	struct dentry *alias;
 955
 956	if (S_ISDIR(inode->i_mode))
 957		return __d_find_any_alias(inode);
 958
 959	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 960		spin_lock(&alias->d_lock);
 961 		if (!d_unhashed(alias)) {
 962			dget_dlock(alias);
 963			spin_unlock(&alias->d_lock);
 964			return alias;
 965		}
 966		spin_unlock(&alias->d_lock);
 967	}
 968	return NULL;
 969}
 970
 971/**
 972 * d_find_alias - grab a hashed alias of inode
 973 * @inode: inode in question
 974 *
 975 * If inode has a hashed alias, or is a directory and has any alias,
 976 * acquire the reference to alias and return it. Otherwise return NULL.
 977 * Notice that if inode is a directory there can be only one alias and
 978 * it can be unhashed only if it has no children, or if it is the root
 979 * of a filesystem, or if the directory was renamed and d_revalidate
 980 * was the first vfs operation to notice.
 981 *
 982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 983 * any other hashed alias over that one.
 984 */
 985struct dentry *d_find_alias(struct inode *inode)
 986{
 987	struct dentry *de = NULL;
 988
 989	if (!hlist_empty(&inode->i_dentry)) {
 990		spin_lock(&inode->i_lock);
 991		de = __d_find_alias(inode);
 992		spin_unlock(&inode->i_lock);
 993	}
 994	return de;
 995}
 996EXPORT_SYMBOL(d_find_alias);
 997
 998/*
 999 *  Caller MUST be holding rcu_read_lock() and be guaranteed
1000 *  that inode won't get freed until rcu_read_unlock().
1001 */
1002struct dentry *d_find_alias_rcu(struct inode *inode)
1003{
1004	struct hlist_head *l = &inode->i_dentry;
1005	struct dentry *de = NULL;
1006
1007	spin_lock(&inode->i_lock);
1008	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1009	// used without having I_FREEING set, which means no aliases left
1010	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1011		if (S_ISDIR(inode->i_mode)) {
1012			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1013		} else {
1014			hlist_for_each_entry(de, l, d_u.d_alias)
1015				if (!d_unhashed(de))
1016					break;
1017		}
1018	}
1019	spin_unlock(&inode->i_lock);
1020	return de;
1021}
1022
1023/*
1024 *	Try to kill dentries associated with this inode.
1025 * WARNING: you must own a reference to inode.
1026 */
1027void d_prune_aliases(struct inode *inode)
1028{
1029	LIST_HEAD(dispose);
1030	struct dentry *dentry;
1031
1032	spin_lock(&inode->i_lock);
1033	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1034		spin_lock(&dentry->d_lock);
1035		if (!dentry->d_lockref.count)
1036			to_shrink_list(dentry, &dispose);
1037		spin_unlock(&dentry->d_lock);
1038	}
1039	spin_unlock(&inode->i_lock);
1040	shrink_dentry_list(&dispose);
1041}
1042EXPORT_SYMBOL(d_prune_aliases);
1043
1044static inline void shrink_kill(struct dentry *victim)
1045{
1046	do {
1047		rcu_read_unlock();
1048		victim = __dentry_kill(victim);
1049		rcu_read_lock();
1050	} while (victim && lock_for_kill(victim));
1051	rcu_read_unlock();
1052	if (victim)
1053		spin_unlock(&victim->d_lock);
1054}
1055
1056void shrink_dentry_list(struct list_head *list)
1057{
1058	while (!list_empty(list)) {
1059		struct dentry *dentry;
1060
1061		dentry = list_entry(list->prev, struct dentry, d_lru);
1062		spin_lock(&dentry->d_lock);
1063		rcu_read_lock();
1064		if (!lock_for_kill(dentry)) {
1065			bool can_free;
1066			rcu_read_unlock();
1067			d_shrink_del(dentry);
1068			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1069			spin_unlock(&dentry->d_lock);
1070			if (can_free)
1071				dentry_free(dentry);
1072			continue;
1073		}
1074		d_shrink_del(dentry);
1075		shrink_kill(dentry);
1076	}
1077}
1078
1079static enum lru_status dentry_lru_isolate(struct list_head *item,
1080		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1081{
1082	struct list_head *freeable = arg;
1083	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1084
1085
1086	/*
1087	 * we are inverting the lru lock/dentry->d_lock here,
1088	 * so use a trylock. If we fail to get the lock, just skip
1089	 * it
1090	 */
1091	if (!spin_trylock(&dentry->d_lock))
1092		return LRU_SKIP;
1093
1094	/*
1095	 * Referenced dentries are still in use. If they have active
1096	 * counts, just remove them from the LRU. Otherwise give them
1097	 * another pass through the LRU.
1098	 */
1099	if (dentry->d_lockref.count) {
1100		d_lru_isolate(lru, dentry);
1101		spin_unlock(&dentry->d_lock);
1102		return LRU_REMOVED;
1103	}
1104
1105	if (dentry->d_flags & DCACHE_REFERENCED) {
1106		dentry->d_flags &= ~DCACHE_REFERENCED;
1107		spin_unlock(&dentry->d_lock);
1108
1109		/*
1110		 * The list move itself will be made by the common LRU code. At
1111		 * this point, we've dropped the dentry->d_lock but keep the
1112		 * lru lock. This is safe to do, since every list movement is
1113		 * protected by the lru lock even if both locks are held.
1114		 *
1115		 * This is guaranteed by the fact that all LRU management
1116		 * functions are intermediated by the LRU API calls like
1117		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1118		 * only ever occur through this functions or through callbacks
1119		 * like this one, that are called from the LRU API.
1120		 *
1121		 * The only exceptions to this are functions like
1122		 * shrink_dentry_list, and code that first checks for the
1123		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1124		 * operating only with stack provided lists after they are
1125		 * properly isolated from the main list.  It is thus, always a
1126		 * local access.
1127		 */
1128		return LRU_ROTATE;
1129	}
1130
1131	d_lru_shrink_move(lru, dentry, freeable);
1132	spin_unlock(&dentry->d_lock);
1133
1134	return LRU_REMOVED;
1135}
1136
1137/**
1138 * prune_dcache_sb - shrink the dcache
1139 * @sb: superblock
1140 * @sc: shrink control, passed to list_lru_shrink_walk()
1141 *
1142 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1143 * is done when we need more memory and called from the superblock shrinker
1144 * function.
1145 *
1146 * This function may fail to free any resources if all the dentries are in
1147 * use.
1148 */
1149long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1150{
1151	LIST_HEAD(dispose);
1152	long freed;
1153
1154	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1155				     dentry_lru_isolate, &dispose);
1156	shrink_dentry_list(&dispose);
1157	return freed;
1158}
1159
1160static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1161		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1162{
1163	struct list_head *freeable = arg;
1164	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1165
1166	/*
1167	 * we are inverting the lru lock/dentry->d_lock here,
1168	 * so use a trylock. If we fail to get the lock, just skip
1169	 * it
1170	 */
1171	if (!spin_trylock(&dentry->d_lock))
1172		return LRU_SKIP;
1173
1174	d_lru_shrink_move(lru, dentry, freeable);
1175	spin_unlock(&dentry->d_lock);
1176
1177	return LRU_REMOVED;
1178}
1179
1180
1181/**
1182 * shrink_dcache_sb - shrink dcache for a superblock
1183 * @sb: superblock
1184 *
1185 * Shrink the dcache for the specified super block. This is used to free
1186 * the dcache before unmounting a file system.
1187 */
1188void shrink_dcache_sb(struct super_block *sb)
1189{
1190	do {
1191		LIST_HEAD(dispose);
1192
1193		list_lru_walk(&sb->s_dentry_lru,
1194			dentry_lru_isolate_shrink, &dispose, 1024);
1195		shrink_dentry_list(&dispose);
1196	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1197}
1198EXPORT_SYMBOL(shrink_dcache_sb);
1199
1200/**
1201 * enum d_walk_ret - action to talke during tree walk
1202 * @D_WALK_CONTINUE:	contrinue walk
1203 * @D_WALK_QUIT:	quit walk
1204 * @D_WALK_NORETRY:	quit when retry is needed
1205 * @D_WALK_SKIP:	skip this dentry and its children
1206 */
1207enum d_walk_ret {
1208	D_WALK_CONTINUE,
1209	D_WALK_QUIT,
1210	D_WALK_NORETRY,
1211	D_WALK_SKIP,
1212};
1213
1214/**
1215 * d_walk - walk the dentry tree
1216 * @parent:	start of walk
1217 * @data:	data passed to @enter() and @finish()
1218 * @enter:	callback when first entering the dentry
1219 *
1220 * The @enter() callbacks are called with d_lock held.
1221 */
1222static void d_walk(struct dentry *parent, void *data,
1223		   enum d_walk_ret (*enter)(void *, struct dentry *))
1224{
1225	struct dentry *this_parent, *dentry;
1226	unsigned seq = 0;
1227	enum d_walk_ret ret;
1228	bool retry = true;
1229
1230again:
1231	read_seqbegin_or_lock(&rename_lock, &seq);
1232	this_parent = parent;
1233	spin_lock(&this_parent->d_lock);
1234
1235	ret = enter(data, this_parent);
1236	switch (ret) {
1237	case D_WALK_CONTINUE:
1238		break;
1239	case D_WALK_QUIT:
1240	case D_WALK_SKIP:
1241		goto out_unlock;
1242	case D_WALK_NORETRY:
1243		retry = false;
1244		break;
1245	}
1246repeat:
1247	dentry = d_first_child(this_parent);
1248resume:
1249	hlist_for_each_entry_from(dentry, d_sib) {
1250		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1251			continue;
1252
1253		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1254
1255		ret = enter(data, dentry);
1256		switch (ret) {
1257		case D_WALK_CONTINUE:
1258			break;
1259		case D_WALK_QUIT:
1260			spin_unlock(&dentry->d_lock);
1261			goto out_unlock;
1262		case D_WALK_NORETRY:
1263			retry = false;
1264			break;
1265		case D_WALK_SKIP:
1266			spin_unlock(&dentry->d_lock);
1267			continue;
1268		}
1269
1270		if (!hlist_empty(&dentry->d_children)) {
1271			spin_unlock(&this_parent->d_lock);
1272			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1273			this_parent = dentry;
1274			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1275			goto repeat;
1276		}
1277		spin_unlock(&dentry->d_lock);
1278	}
1279	/*
1280	 * All done at this level ... ascend and resume the search.
1281	 */
1282	rcu_read_lock();
1283ascend:
1284	if (this_parent != parent) {
1285		dentry = this_parent;
1286		this_parent = dentry->d_parent;
1287
1288		spin_unlock(&dentry->d_lock);
1289		spin_lock(&this_parent->d_lock);
1290
1291		/* might go back up the wrong parent if we have had a rename. */
1292		if (need_seqretry(&rename_lock, seq))
1293			goto rename_retry;
1294		/* go into the first sibling still alive */
1295		hlist_for_each_entry_continue(dentry, d_sib) {
1296			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1297				rcu_read_unlock();
1298				goto resume;
1299			}
1300		}
1301		goto ascend;
1302	}
1303	if (need_seqretry(&rename_lock, seq))
1304		goto rename_retry;
1305	rcu_read_unlock();
1306
1307out_unlock:
1308	spin_unlock(&this_parent->d_lock);
1309	done_seqretry(&rename_lock, seq);
1310	return;
1311
1312rename_retry:
1313	spin_unlock(&this_parent->d_lock);
1314	rcu_read_unlock();
1315	BUG_ON(seq & 1);
1316	if (!retry)
1317		return;
1318	seq = 1;
1319	goto again;
1320}
1321
1322struct check_mount {
1323	struct vfsmount *mnt;
1324	unsigned int mounted;
1325};
1326
1327static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1328{
1329	struct check_mount *info = data;
1330	struct path path = { .mnt = info->mnt, .dentry = dentry };
1331
1332	if (likely(!d_mountpoint(dentry)))
1333		return D_WALK_CONTINUE;
1334	if (__path_is_mountpoint(&path)) {
1335		info->mounted = 1;
1336		return D_WALK_QUIT;
1337	}
1338	return D_WALK_CONTINUE;
1339}
1340
1341/**
1342 * path_has_submounts - check for mounts over a dentry in the
1343 *                      current namespace.
1344 * @parent: path to check.
1345 *
1346 * Return true if the parent or its subdirectories contain
1347 * a mount point in the current namespace.
1348 */
1349int path_has_submounts(const struct path *parent)
1350{
1351	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1352
1353	read_seqlock_excl(&mount_lock);
1354	d_walk(parent->dentry, &data, path_check_mount);
1355	read_sequnlock_excl(&mount_lock);
1356
1357	return data.mounted;
1358}
1359EXPORT_SYMBOL(path_has_submounts);
1360
1361/*
1362 * Called by mount code to set a mountpoint and check if the mountpoint is
1363 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1364 * subtree can become unreachable).
1365 *
1366 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1367 * this reason take rename_lock and d_lock on dentry and ancestors.
1368 */
1369int d_set_mounted(struct dentry *dentry)
1370{
1371	struct dentry *p;
1372	int ret = -ENOENT;
1373	write_seqlock(&rename_lock);
1374	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1375		/* Need exclusion wrt. d_invalidate() */
1376		spin_lock(&p->d_lock);
1377		if (unlikely(d_unhashed(p))) {
1378			spin_unlock(&p->d_lock);
1379			goto out;
1380		}
1381		spin_unlock(&p->d_lock);
1382	}
1383	spin_lock(&dentry->d_lock);
1384	if (!d_unlinked(dentry)) {
1385		ret = -EBUSY;
1386		if (!d_mountpoint(dentry)) {
1387			dentry->d_flags |= DCACHE_MOUNTED;
1388			ret = 0;
1389		}
1390	}
1391 	spin_unlock(&dentry->d_lock);
1392out:
1393	write_sequnlock(&rename_lock);
1394	return ret;
1395}
1396
1397/*
1398 * Search the dentry child list of the specified parent,
1399 * and move any unused dentries to the end of the unused
1400 * list for prune_dcache(). We descend to the next level
1401 * whenever the d_children list is non-empty and continue
1402 * searching.
1403 *
1404 * It returns zero iff there are no unused children,
1405 * otherwise  it returns the number of children moved to
1406 * the end of the unused list. This may not be the total
1407 * number of unused children, because select_parent can
1408 * drop the lock and return early due to latency
1409 * constraints.
1410 */
1411
1412struct select_data {
1413	struct dentry *start;
1414	union {
1415		long found;
1416		struct dentry *victim;
1417	};
1418	struct list_head dispose;
1419};
1420
1421static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1422{
1423	struct select_data *data = _data;
1424	enum d_walk_ret ret = D_WALK_CONTINUE;
1425
1426	if (data->start == dentry)
1427		goto out;
1428
1429	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1430		data->found++;
1431	} else if (!dentry->d_lockref.count) {
1432		to_shrink_list(dentry, &data->dispose);
1433		data->found++;
1434	} else if (dentry->d_lockref.count < 0) {
1435		data->found++;
1436	}
1437	/*
1438	 * We can return to the caller if we have found some (this
1439	 * ensures forward progress). We'll be coming back to find
1440	 * the rest.
1441	 */
1442	if (!list_empty(&data->dispose))
1443		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1444out:
1445	return ret;
1446}
1447
1448static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1449{
1450	struct select_data *data = _data;
1451	enum d_walk_ret ret = D_WALK_CONTINUE;
1452
1453	if (data->start == dentry)
1454		goto out;
1455
1456	if (!dentry->d_lockref.count) {
1457		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1458			rcu_read_lock();
1459			data->victim = dentry;
1460			return D_WALK_QUIT;
1461		}
1462		to_shrink_list(dentry, &data->dispose);
1463	}
1464	/*
1465	 * We can return to the caller if we have found some (this
1466	 * ensures forward progress). We'll be coming back to find
1467	 * the rest.
1468	 */
1469	if (!list_empty(&data->dispose))
1470		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1471out:
1472	return ret;
1473}
1474
1475/**
1476 * shrink_dcache_parent - prune dcache
1477 * @parent: parent of entries to prune
1478 *
1479 * Prune the dcache to remove unused children of the parent dentry.
1480 */
1481void shrink_dcache_parent(struct dentry *parent)
1482{
1483	for (;;) {
1484		struct select_data data = {.start = parent};
1485
1486		INIT_LIST_HEAD(&data.dispose);
1487		d_walk(parent, &data, select_collect);
1488
1489		if (!list_empty(&data.dispose)) {
1490			shrink_dentry_list(&data.dispose);
1491			continue;
1492		}
1493
1494		cond_resched();
1495		if (!data.found)
1496			break;
1497		data.victim = NULL;
1498		d_walk(parent, &data, select_collect2);
1499		if (data.victim) {
1500			spin_lock(&data.victim->d_lock);
1501			if (!lock_for_kill(data.victim)) {
1502				spin_unlock(&data.victim->d_lock);
1503				rcu_read_unlock();
1504			} else {
1505				shrink_kill(data.victim);
1506			}
1507		}
1508		if (!list_empty(&data.dispose))
1509			shrink_dentry_list(&data.dispose);
1510	}
1511}
1512EXPORT_SYMBOL(shrink_dcache_parent);
1513
1514static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1515{
1516	/* it has busy descendents; complain about those instead */
1517	if (!hlist_empty(&dentry->d_children))
1518		return D_WALK_CONTINUE;
1519
1520	/* root with refcount 1 is fine */
1521	if (dentry == _data && dentry->d_lockref.count == 1)
1522		return D_WALK_CONTINUE;
1523
1524	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1525			" still in use (%d) [unmount of %s %s]\n",
1526		       dentry,
1527		       dentry->d_inode ?
1528		       dentry->d_inode->i_ino : 0UL,
1529		       dentry,
1530		       dentry->d_lockref.count,
1531		       dentry->d_sb->s_type->name,
1532		       dentry->d_sb->s_id);
1533	return D_WALK_CONTINUE;
1534}
1535
1536static void do_one_tree(struct dentry *dentry)
1537{
1538	shrink_dcache_parent(dentry);
1539	d_walk(dentry, dentry, umount_check);
1540	d_drop(dentry);
1541	dput(dentry);
1542}
1543
1544/*
1545 * destroy the dentries attached to a superblock on unmounting
1546 */
1547void shrink_dcache_for_umount(struct super_block *sb)
1548{
1549	struct dentry *dentry;
1550
1551	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1552
1553	dentry = sb->s_root;
1554	sb->s_root = NULL;
1555	do_one_tree(dentry);
1556
1557	while (!hlist_bl_empty(&sb->s_roots)) {
1558		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1559		do_one_tree(dentry);
1560	}
1561}
1562
1563static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1564{
1565	struct dentry **victim = _data;
1566	if (d_mountpoint(dentry)) {
1567		*victim = dget_dlock(dentry);
1568		return D_WALK_QUIT;
1569	}
1570	return D_WALK_CONTINUE;
1571}
1572
1573/**
1574 * d_invalidate - detach submounts, prune dcache, and drop
1575 * @dentry: dentry to invalidate (aka detach, prune and drop)
1576 */
1577void d_invalidate(struct dentry *dentry)
1578{
1579	bool had_submounts = false;
1580	spin_lock(&dentry->d_lock);
1581	if (d_unhashed(dentry)) {
1582		spin_unlock(&dentry->d_lock);
1583		return;
1584	}
1585	__d_drop(dentry);
1586	spin_unlock(&dentry->d_lock);
1587
1588	/* Negative dentries can be dropped without further checks */
1589	if (!dentry->d_inode)
1590		return;
1591
1592	shrink_dcache_parent(dentry);
1593	for (;;) {
1594		struct dentry *victim = NULL;
1595		d_walk(dentry, &victim, find_submount);
1596		if (!victim) {
1597			if (had_submounts)
1598				shrink_dcache_parent(dentry);
1599			return;
1600		}
1601		had_submounts = true;
1602		detach_mounts(victim);
1603		dput(victim);
1604	}
1605}
1606EXPORT_SYMBOL(d_invalidate);
1607
1608/**
1609 * __d_alloc	-	allocate a dcache entry
1610 * @sb: filesystem it will belong to
1611 * @name: qstr of the name
1612 *
1613 * Allocates a dentry. It returns %NULL if there is insufficient memory
1614 * available. On a success the dentry is returned. The name passed in is
1615 * copied and the copy passed in may be reused after this call.
1616 */
1617 
1618static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1619{
1620	struct dentry *dentry;
1621	char *dname;
1622	int err;
1623
1624	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1625				      GFP_KERNEL);
1626	if (!dentry)
1627		return NULL;
1628
1629	/*
1630	 * We guarantee that the inline name is always NUL-terminated.
1631	 * This way the memcpy() done by the name switching in rename
1632	 * will still always have a NUL at the end, even if we might
1633	 * be overwriting an internal NUL character
1634	 */
1635	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1636	if (unlikely(!name)) {
1637		name = &slash_name;
1638		dname = dentry->d_iname;
1639	} else if (name->len > DNAME_INLINE_LEN-1) {
1640		size_t size = offsetof(struct external_name, name[1]);
1641		struct external_name *p = kmalloc(size + name->len,
1642						  GFP_KERNEL_ACCOUNT |
1643						  __GFP_RECLAIMABLE);
1644		if (!p) {
1645			kmem_cache_free(dentry_cache, dentry); 
1646			return NULL;
1647		}
1648		atomic_set(&p->u.count, 1);
1649		dname = p->name;
1650	} else  {
1651		dname = dentry->d_iname;
1652	}	
1653
1654	dentry->d_name.len = name->len;
1655	dentry->d_name.hash = name->hash;
1656	memcpy(dname, name->name, name->len);
1657	dname[name->len] = 0;
1658
1659	/* Make sure we always see the terminating NUL character */
1660	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1661
1662	dentry->d_lockref.count = 1;
1663	dentry->d_flags = 0;
1664	spin_lock_init(&dentry->d_lock);
1665	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1666	dentry->d_inode = NULL;
1667	dentry->d_parent = dentry;
1668	dentry->d_sb = sb;
1669	dentry->d_op = NULL;
1670	dentry->d_fsdata = NULL;
1671	INIT_HLIST_BL_NODE(&dentry->d_hash);
1672	INIT_LIST_HEAD(&dentry->d_lru);
1673	INIT_HLIST_HEAD(&dentry->d_children);
1674	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1675	INIT_HLIST_NODE(&dentry->d_sib);
1676	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1677
1678	if (dentry->d_op && dentry->d_op->d_init) {
1679		err = dentry->d_op->d_init(dentry);
1680		if (err) {
1681			if (dname_external(dentry))
1682				kfree(external_name(dentry));
1683			kmem_cache_free(dentry_cache, dentry);
1684			return NULL;
1685		}
1686	}
1687
1688	this_cpu_inc(nr_dentry);
1689
1690	return dentry;
1691}
1692
1693/**
1694 * d_alloc	-	allocate a dcache entry
1695 * @parent: parent of entry to allocate
1696 * @name: qstr of the name
1697 *
1698 * Allocates a dentry. It returns %NULL if there is insufficient memory
1699 * available. On a success the dentry is returned. The name passed in is
1700 * copied and the copy passed in may be reused after this call.
1701 */
1702struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1703{
1704	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1705	if (!dentry)
1706		return NULL;
1707	spin_lock(&parent->d_lock);
1708	/*
1709	 * don't need child lock because it is not subject
1710	 * to concurrency here
1711	 */
1712	dentry->d_parent = dget_dlock(parent);
1713	hlist_add_head(&dentry->d_sib, &parent->d_children);
1714	spin_unlock(&parent->d_lock);
1715
1716	return dentry;
1717}
1718EXPORT_SYMBOL(d_alloc);
1719
1720struct dentry *d_alloc_anon(struct super_block *sb)
1721{
1722	return __d_alloc(sb, NULL);
1723}
1724EXPORT_SYMBOL(d_alloc_anon);
1725
1726struct dentry *d_alloc_cursor(struct dentry * parent)
1727{
1728	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1729	if (dentry) {
1730		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1731		dentry->d_parent = dget(parent);
1732	}
1733	return dentry;
1734}
1735
1736/**
1737 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1738 * @sb: the superblock
1739 * @name: qstr of the name
1740 *
1741 * For a filesystem that just pins its dentries in memory and never
1742 * performs lookups at all, return an unhashed IS_ROOT dentry.
1743 * This is used for pipes, sockets et.al. - the stuff that should
1744 * never be anyone's children or parents.  Unlike all other
1745 * dentries, these will not have RCU delay between dropping the
1746 * last reference and freeing them.
1747 *
1748 * The only user is alloc_file_pseudo() and that's what should
1749 * be considered a public interface.  Don't use directly.
1750 */
1751struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1752{
1753	static const struct dentry_operations anon_ops = {
1754		.d_dname = simple_dname
1755	};
1756	struct dentry *dentry = __d_alloc(sb, name);
1757	if (likely(dentry)) {
1758		dentry->d_flags |= DCACHE_NORCU;
1759		if (!sb->s_d_op)
1760			d_set_d_op(dentry, &anon_ops);
1761	}
1762	return dentry;
1763}
1764
1765struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1766{
1767	struct qstr q;
1768
1769	q.name = name;
1770	q.hash_len = hashlen_string(parent, name);
1771	return d_alloc(parent, &q);
1772}
1773EXPORT_SYMBOL(d_alloc_name);
1774
1775void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1776{
1777	WARN_ON_ONCE(dentry->d_op);
1778	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1779				DCACHE_OP_COMPARE	|
1780				DCACHE_OP_REVALIDATE	|
1781				DCACHE_OP_WEAK_REVALIDATE	|
1782				DCACHE_OP_DELETE	|
1783				DCACHE_OP_REAL));
1784	dentry->d_op = op;
1785	if (!op)
1786		return;
1787	if (op->d_hash)
1788		dentry->d_flags |= DCACHE_OP_HASH;
1789	if (op->d_compare)
1790		dentry->d_flags |= DCACHE_OP_COMPARE;
1791	if (op->d_revalidate)
1792		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1793	if (op->d_weak_revalidate)
1794		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1795	if (op->d_delete)
1796		dentry->d_flags |= DCACHE_OP_DELETE;
1797	if (op->d_prune)
1798		dentry->d_flags |= DCACHE_OP_PRUNE;
1799	if (op->d_real)
1800		dentry->d_flags |= DCACHE_OP_REAL;
1801
1802}
1803EXPORT_SYMBOL(d_set_d_op);
1804
1805static unsigned d_flags_for_inode(struct inode *inode)
1806{
1807	unsigned add_flags = DCACHE_REGULAR_TYPE;
1808
1809	if (!inode)
1810		return DCACHE_MISS_TYPE;
1811
1812	if (S_ISDIR(inode->i_mode)) {
1813		add_flags = DCACHE_DIRECTORY_TYPE;
1814		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1815			if (unlikely(!inode->i_op->lookup))
1816				add_flags = DCACHE_AUTODIR_TYPE;
1817			else
1818				inode->i_opflags |= IOP_LOOKUP;
1819		}
1820		goto type_determined;
1821	}
1822
1823	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1824		if (unlikely(inode->i_op->get_link)) {
1825			add_flags = DCACHE_SYMLINK_TYPE;
1826			goto type_determined;
1827		}
1828		inode->i_opflags |= IOP_NOFOLLOW;
1829	}
1830
1831	if (unlikely(!S_ISREG(inode->i_mode)))
1832		add_flags = DCACHE_SPECIAL_TYPE;
1833
1834type_determined:
1835	if (unlikely(IS_AUTOMOUNT(inode)))
1836		add_flags |= DCACHE_NEED_AUTOMOUNT;
1837	return add_flags;
1838}
1839
1840static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1841{
1842	unsigned add_flags = d_flags_for_inode(inode);
1843	WARN_ON(d_in_lookup(dentry));
1844
1845	spin_lock(&dentry->d_lock);
1846	/*
1847	 * Decrement negative dentry count if it was in the LRU list.
 
1848	 */
1849	if (dentry->d_flags & DCACHE_LRU_LIST)
 
1850		this_cpu_dec(nr_dentry_negative);
1851	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1852	raw_write_seqcount_begin(&dentry->d_seq);
1853	__d_set_inode_and_type(dentry, inode, add_flags);
1854	raw_write_seqcount_end(&dentry->d_seq);
1855	fsnotify_update_flags(dentry);
1856	spin_unlock(&dentry->d_lock);
1857}
1858
1859/**
1860 * d_instantiate - fill in inode information for a dentry
1861 * @entry: dentry to complete
1862 * @inode: inode to attach to this dentry
1863 *
1864 * Fill in inode information in the entry.
1865 *
1866 * This turns negative dentries into productive full members
1867 * of society.
1868 *
1869 * NOTE! This assumes that the inode count has been incremented
1870 * (or otherwise set) by the caller to indicate that it is now
1871 * in use by the dcache.
1872 */
1873 
1874void d_instantiate(struct dentry *entry, struct inode * inode)
1875{
1876	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877	if (inode) {
1878		security_d_instantiate(entry, inode);
1879		spin_lock(&inode->i_lock);
1880		__d_instantiate(entry, inode);
1881		spin_unlock(&inode->i_lock);
1882	}
1883}
1884EXPORT_SYMBOL(d_instantiate);
1885
1886/*
1887 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1888 * with lockdep-related part of unlock_new_inode() done before
1889 * anything else.  Use that instead of open-coding d_instantiate()/
1890 * unlock_new_inode() combinations.
1891 */
1892void d_instantiate_new(struct dentry *entry, struct inode *inode)
1893{
1894	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1895	BUG_ON(!inode);
1896	lockdep_annotate_inode_mutex_key(inode);
1897	security_d_instantiate(entry, inode);
1898	spin_lock(&inode->i_lock);
1899	__d_instantiate(entry, inode);
1900	WARN_ON(!(inode->i_state & I_NEW));
1901	inode->i_state &= ~I_NEW & ~I_CREATING;
 
 
 
 
 
1902	smp_mb();
1903	wake_up_bit(&inode->i_state, __I_NEW);
1904	spin_unlock(&inode->i_lock);
1905}
1906EXPORT_SYMBOL(d_instantiate_new);
1907
1908struct dentry *d_make_root(struct inode *root_inode)
1909{
1910	struct dentry *res = NULL;
1911
1912	if (root_inode) {
1913		res = d_alloc_anon(root_inode->i_sb);
1914		if (res)
1915			d_instantiate(res, root_inode);
1916		else
1917			iput(root_inode);
1918	}
1919	return res;
1920}
1921EXPORT_SYMBOL(d_make_root);
1922
1923static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1924{
1925	struct super_block *sb;
1926	struct dentry *new, *res;
1927
1928	if (!inode)
1929		return ERR_PTR(-ESTALE);
1930	if (IS_ERR(inode))
1931		return ERR_CAST(inode);
1932
1933	sb = inode->i_sb;
1934
1935	res = d_find_any_alias(inode); /* existing alias? */
1936	if (res)
1937		goto out;
1938
1939	new = d_alloc_anon(sb);
1940	if (!new) {
1941		res = ERR_PTR(-ENOMEM);
1942		goto out;
1943	}
1944
1945	security_d_instantiate(new, inode);
1946	spin_lock(&inode->i_lock);
1947	res = __d_find_any_alias(inode); /* recheck under lock */
1948	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1949		unsigned add_flags = d_flags_for_inode(inode);
1950
1951		if (disconnected)
1952			add_flags |= DCACHE_DISCONNECTED;
1953
1954		spin_lock(&new->d_lock);
1955		__d_set_inode_and_type(new, inode, add_flags);
1956		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1957		if (!disconnected) {
1958			hlist_bl_lock(&sb->s_roots);
1959			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1960			hlist_bl_unlock(&sb->s_roots);
1961		}
1962		spin_unlock(&new->d_lock);
1963		spin_unlock(&inode->i_lock);
1964		inode = NULL; /* consumed by new->d_inode */
1965		res = new;
1966	} else {
1967		spin_unlock(&inode->i_lock);
1968		dput(new);
1969	}
1970
1971 out:
1972	iput(inode);
1973	return res;
1974}
1975
1976/**
1977 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1978 * @inode: inode to allocate the dentry for
1979 *
1980 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1981 * similar open by handle operations.  The returned dentry may be anonymous,
1982 * or may have a full name (if the inode was already in the cache).
1983 *
1984 * When called on a directory inode, we must ensure that the inode only ever
1985 * has one dentry.  If a dentry is found, that is returned instead of
1986 * allocating a new one.
1987 *
1988 * On successful return, the reference to the inode has been transferred
1989 * to the dentry.  In case of an error the reference on the inode is released.
1990 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1991 * be passed in and the error will be propagated to the return value,
1992 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1993 */
1994struct dentry *d_obtain_alias(struct inode *inode)
1995{
1996	return __d_obtain_alias(inode, true);
1997}
1998EXPORT_SYMBOL(d_obtain_alias);
1999
2000/**
2001 * d_obtain_root - find or allocate a dentry for a given inode
2002 * @inode: inode to allocate the dentry for
2003 *
2004 * Obtain an IS_ROOT dentry for the root of a filesystem.
2005 *
2006 * We must ensure that directory inodes only ever have one dentry.  If a
2007 * dentry is found, that is returned instead of allocating a new one.
2008 *
2009 * On successful return, the reference to the inode has been transferred
2010 * to the dentry.  In case of an error the reference on the inode is
2011 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2012 * error will be propagate to the return value, with a %NULL @inode
2013 * replaced by ERR_PTR(-ESTALE).
2014 */
2015struct dentry *d_obtain_root(struct inode *inode)
2016{
2017	return __d_obtain_alias(inode, false);
2018}
2019EXPORT_SYMBOL(d_obtain_root);
2020
2021/**
2022 * d_add_ci - lookup or allocate new dentry with case-exact name
 
2023 * @inode:  the inode case-insensitive lookup has found
2024 * @dentry: the negative dentry that was passed to the parent's lookup func
2025 * @name:   the case-exact name to be associated with the returned dentry
2026 *
2027 * This is to avoid filling the dcache with case-insensitive names to the
2028 * same inode, only the actual correct case is stored in the dcache for
2029 * case-insensitive filesystems.
2030 *
2031 * For a case-insensitive lookup match and if the case-exact dentry
2032 * already exists in the dcache, use it and return it.
2033 *
2034 * If no entry exists with the exact case name, allocate new dentry with
2035 * the exact case, and return the spliced entry.
2036 */
2037struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2038			struct qstr *name)
2039{
2040	struct dentry *found, *res;
2041
2042	/*
2043	 * First check if a dentry matching the name already exists,
2044	 * if not go ahead and create it now.
2045	 */
2046	found = d_hash_and_lookup(dentry->d_parent, name);
2047	if (found) {
2048		iput(inode);
2049		return found;
2050	}
2051	if (d_in_lookup(dentry)) {
2052		found = d_alloc_parallel(dentry->d_parent, name,
2053					dentry->d_wait);
2054		if (IS_ERR(found) || !d_in_lookup(found)) {
2055			iput(inode);
2056			return found;
2057		}
2058	} else {
2059		found = d_alloc(dentry->d_parent, name);
2060		if (!found) {
2061			iput(inode);
2062			return ERR_PTR(-ENOMEM);
2063		} 
2064	}
2065	res = d_splice_alias(inode, found);
2066	if (res) {
2067		d_lookup_done(found);
2068		dput(found);
2069		return res;
2070	}
2071	return found;
2072}
2073EXPORT_SYMBOL(d_add_ci);
2074
2075/**
2076 * d_same_name - compare dentry name with case-exact name
 
2077 * @parent: parent dentry
2078 * @dentry: the negative dentry that was passed to the parent's lookup func
2079 * @name:   the case-exact name to be associated with the returned dentry
2080 *
2081 * Return: true if names are same, or false
2082 */
2083bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2084		 const struct qstr *name)
2085{
2086	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2087		if (dentry->d_name.len != name->len)
2088			return false;
2089		return dentry_cmp(dentry, name->name, name->len) == 0;
2090	}
2091	return parent->d_op->d_compare(dentry,
2092				       dentry->d_name.len, dentry->d_name.name,
2093				       name) == 0;
2094}
2095EXPORT_SYMBOL_GPL(d_same_name);
2096
2097/*
2098 * This is __d_lookup_rcu() when the parent dentry has
2099 * DCACHE_OP_COMPARE, which makes things much nastier.
2100 */
2101static noinline struct dentry *__d_lookup_rcu_op_compare(
2102	const struct dentry *parent,
2103	const struct qstr *name,
2104	unsigned *seqp)
2105{
2106	u64 hashlen = name->hash_len;
2107	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2108	struct hlist_bl_node *node;
2109	struct dentry *dentry;
2110
2111	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2112		int tlen;
2113		const char *tname;
2114		unsigned seq;
2115
2116seqretry:
2117		seq = raw_seqcount_begin(&dentry->d_seq);
2118		if (dentry->d_parent != parent)
2119			continue;
2120		if (d_unhashed(dentry))
2121			continue;
2122		if (dentry->d_name.hash != hashlen_hash(hashlen))
2123			continue;
2124		tlen = dentry->d_name.len;
2125		tname = dentry->d_name.name;
2126		/* we want a consistent (name,len) pair */
2127		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2128			cpu_relax();
2129			goto seqretry;
2130		}
2131		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2132			continue;
2133		*seqp = seq;
2134		return dentry;
2135	}
2136	return NULL;
2137}
2138
2139/**
2140 * __d_lookup_rcu - search for a dentry (racy, store-free)
2141 * @parent: parent dentry
2142 * @name: qstr of name we wish to find
2143 * @seqp: returns d_seq value at the point where the dentry was found
2144 * Returns: dentry, or NULL
2145 *
2146 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2147 * resolution (store-free path walking) design described in
2148 * Documentation/filesystems/path-lookup.txt.
2149 *
2150 * This is not to be used outside core vfs.
2151 *
2152 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2153 * held, and rcu_read_lock held. The returned dentry must not be stored into
2154 * without taking d_lock and checking d_seq sequence count against @seq
2155 * returned here.
2156 *
2157 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2158 * function.
2159 *
2160 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2161 * the returned dentry, so long as its parent's seqlock is checked after the
2162 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2163 * is formed, giving integrity down the path walk.
2164 *
2165 * NOTE! The caller *has* to check the resulting dentry against the sequence
2166 * number we've returned before using any of the resulting dentry state!
2167 */
2168struct dentry *__d_lookup_rcu(const struct dentry *parent,
2169				const struct qstr *name,
2170				unsigned *seqp)
2171{
2172	u64 hashlen = name->hash_len;
2173	const unsigned char *str = name->name;
2174	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2175	struct hlist_bl_node *node;
2176	struct dentry *dentry;
2177
2178	/*
2179	 * Note: There is significant duplication with __d_lookup_rcu which is
2180	 * required to prevent single threaded performance regressions
2181	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182	 * Keep the two functions in sync.
2183	 */
2184
2185	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2186		return __d_lookup_rcu_op_compare(parent, name, seqp);
2187
2188	/*
2189	 * The hash list is protected using RCU.
2190	 *
2191	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2192	 * races with d_move().
2193	 *
2194	 * It is possible that concurrent renames can mess up our list
2195	 * walk here and result in missing our dentry, resulting in the
2196	 * false-negative result. d_lookup() protects against concurrent
2197	 * renames using rename_lock seqlock.
2198	 *
2199	 * See Documentation/filesystems/path-lookup.txt for more details.
2200	 */
2201	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2202		unsigned seq;
2203
2204		/*
2205		 * The dentry sequence count protects us from concurrent
2206		 * renames, and thus protects parent and name fields.
2207		 *
2208		 * The caller must perform a seqcount check in order
2209		 * to do anything useful with the returned dentry.
2210		 *
2211		 * NOTE! We do a "raw" seqcount_begin here. That means that
2212		 * we don't wait for the sequence count to stabilize if it
2213		 * is in the middle of a sequence change. If we do the slow
2214		 * dentry compare, we will do seqretries until it is stable,
2215		 * and if we end up with a successful lookup, we actually
2216		 * want to exit RCU lookup anyway.
2217		 *
2218		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2219		 * we are still guaranteed NUL-termination of ->d_name.name.
2220		 */
2221		seq = raw_seqcount_begin(&dentry->d_seq);
2222		if (dentry->d_parent != parent)
2223			continue;
2224		if (d_unhashed(dentry))
2225			continue;
2226		if (dentry->d_name.hash_len != hashlen)
2227			continue;
2228		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2229			continue;
2230		*seqp = seq;
2231		return dentry;
2232	}
2233	return NULL;
2234}
2235
2236/**
2237 * d_lookup - search for a dentry
2238 * @parent: parent dentry
2239 * @name: qstr of name we wish to find
2240 * Returns: dentry, or NULL
2241 *
2242 * d_lookup searches the children of the parent dentry for the name in
2243 * question. If the dentry is found its reference count is incremented and the
2244 * dentry is returned. The caller must use dput to free the entry when it has
2245 * finished using it. %NULL is returned if the dentry does not exist.
2246 */
2247struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2248{
2249	struct dentry *dentry;
2250	unsigned seq;
2251
2252	do {
2253		seq = read_seqbegin(&rename_lock);
2254		dentry = __d_lookup(parent, name);
2255		if (dentry)
2256			break;
2257	} while (read_seqretry(&rename_lock, seq));
2258	return dentry;
2259}
2260EXPORT_SYMBOL(d_lookup);
2261
2262/**
2263 * __d_lookup - search for a dentry (racy)
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * __d_lookup is like d_lookup, however it may (rarely) return a
2269 * false-negative result due to unrelated rename activity.
2270 *
2271 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2272 * however it must be used carefully, eg. with a following d_lookup in
2273 * the case of failure.
2274 *
2275 * __d_lookup callers must be commented.
2276 */
2277struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2278{
2279	unsigned int hash = name->hash;
2280	struct hlist_bl_head *b = d_hash(hash);
2281	struct hlist_bl_node *node;
2282	struct dentry *found = NULL;
2283	struct dentry *dentry;
2284
2285	/*
2286	 * Note: There is significant duplication with __d_lookup_rcu which is
2287	 * required to prevent single threaded performance regressions
2288	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2289	 * Keep the two functions in sync.
2290	 */
2291
2292	/*
2293	 * The hash list is protected using RCU.
2294	 *
2295	 * Take d_lock when comparing a candidate dentry, to avoid races
2296	 * with d_move().
2297	 *
2298	 * It is possible that concurrent renames can mess up our list
2299	 * walk here and result in missing our dentry, resulting in the
2300	 * false-negative result. d_lookup() protects against concurrent
2301	 * renames using rename_lock seqlock.
2302	 *
2303	 * See Documentation/filesystems/path-lookup.txt for more details.
2304	 */
2305	rcu_read_lock();
2306	
2307	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2308
2309		if (dentry->d_name.hash != hash)
2310			continue;
2311
2312		spin_lock(&dentry->d_lock);
2313		if (dentry->d_parent != parent)
2314			goto next;
2315		if (d_unhashed(dentry))
2316			goto next;
2317
2318		if (!d_same_name(dentry, parent, name))
2319			goto next;
2320
2321		dentry->d_lockref.count++;
2322		found = dentry;
2323		spin_unlock(&dentry->d_lock);
2324		break;
2325next:
2326		spin_unlock(&dentry->d_lock);
2327 	}
2328 	rcu_read_unlock();
2329
2330 	return found;
2331}
2332
2333/**
2334 * d_hash_and_lookup - hash the qstr then search for a dentry
2335 * @dir: Directory to search in
2336 * @name: qstr of name we wish to find
2337 *
2338 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2339 */
2340struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2341{
2342	/*
2343	 * Check for a fs-specific hash function. Note that we must
2344	 * calculate the standard hash first, as the d_op->d_hash()
2345	 * routine may choose to leave the hash value unchanged.
2346	 */
2347	name->hash = full_name_hash(dir, name->name, name->len);
2348	if (dir->d_flags & DCACHE_OP_HASH) {
2349		int err = dir->d_op->d_hash(dir, name);
2350		if (unlikely(err < 0))
2351			return ERR_PTR(err);
2352	}
2353	return d_lookup(dir, name);
2354}
2355EXPORT_SYMBOL(d_hash_and_lookup);
2356
2357/*
2358 * When a file is deleted, we have two options:
2359 * - turn this dentry into a negative dentry
2360 * - unhash this dentry and free it.
2361 *
2362 * Usually, we want to just turn this into
2363 * a negative dentry, but if anybody else is
2364 * currently using the dentry or the inode
2365 * we can't do that and we fall back on removing
2366 * it from the hash queues and waiting for
2367 * it to be deleted later when it has no users
2368 */
2369 
2370/**
2371 * d_delete - delete a dentry
2372 * @dentry: The dentry to delete
2373 *
2374 * Turn the dentry into a negative dentry if possible, otherwise
2375 * remove it from the hash queues so it can be deleted later
2376 */
2377 
2378void d_delete(struct dentry * dentry)
2379{
2380	struct inode *inode = dentry->d_inode;
2381
2382	spin_lock(&inode->i_lock);
2383	spin_lock(&dentry->d_lock);
2384	/*
2385	 * Are we the only user?
2386	 */
2387	if (dentry->d_lockref.count == 1) {
 
 
2388		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2389		dentry_unlink_inode(dentry);
2390	} else {
2391		__d_drop(dentry);
2392		spin_unlock(&dentry->d_lock);
2393		spin_unlock(&inode->i_lock);
2394	}
2395}
2396EXPORT_SYMBOL(d_delete);
2397
2398static void __d_rehash(struct dentry *entry)
2399{
2400	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2401
2402	hlist_bl_lock(b);
2403	hlist_bl_add_head_rcu(&entry->d_hash, b);
2404	hlist_bl_unlock(b);
2405}
2406
2407/**
2408 * d_rehash	- add an entry back to the hash
2409 * @entry: dentry to add to the hash
2410 *
2411 * Adds a dentry to the hash according to its name.
2412 */
2413 
2414void d_rehash(struct dentry * entry)
2415{
2416	spin_lock(&entry->d_lock);
2417	__d_rehash(entry);
2418	spin_unlock(&entry->d_lock);
2419}
2420EXPORT_SYMBOL(d_rehash);
2421
2422static inline unsigned start_dir_add(struct inode *dir)
2423{
2424	preempt_disable_nested();
2425	for (;;) {
2426		unsigned n = dir->i_dir_seq;
2427		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2428			return n;
2429		cpu_relax();
2430	}
2431}
2432
2433static inline void end_dir_add(struct inode *dir, unsigned int n,
2434			       wait_queue_head_t *d_wait)
2435{
2436	smp_store_release(&dir->i_dir_seq, n + 2);
2437	preempt_enable_nested();
2438	wake_up_all(d_wait);
2439}
2440
2441static void d_wait_lookup(struct dentry *dentry)
2442{
2443	if (d_in_lookup(dentry)) {
2444		DECLARE_WAITQUEUE(wait, current);
2445		add_wait_queue(dentry->d_wait, &wait);
2446		do {
2447			set_current_state(TASK_UNINTERRUPTIBLE);
2448			spin_unlock(&dentry->d_lock);
2449			schedule();
2450			spin_lock(&dentry->d_lock);
2451		} while (d_in_lookup(dentry));
2452	}
2453}
2454
2455struct dentry *d_alloc_parallel(struct dentry *parent,
2456				const struct qstr *name,
2457				wait_queue_head_t *wq)
2458{
2459	unsigned int hash = name->hash;
2460	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2461	struct hlist_bl_node *node;
2462	struct dentry *new = d_alloc(parent, name);
2463	struct dentry *dentry;
2464	unsigned seq, r_seq, d_seq;
2465
2466	if (unlikely(!new))
2467		return ERR_PTR(-ENOMEM);
2468
2469retry:
2470	rcu_read_lock();
2471	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2472	r_seq = read_seqbegin(&rename_lock);
2473	dentry = __d_lookup_rcu(parent, name, &d_seq);
2474	if (unlikely(dentry)) {
2475		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2476			rcu_read_unlock();
2477			goto retry;
2478		}
2479		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2480			rcu_read_unlock();
2481			dput(dentry);
2482			goto retry;
2483		}
2484		rcu_read_unlock();
2485		dput(new);
2486		return dentry;
2487	}
2488	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2489		rcu_read_unlock();
2490		goto retry;
2491	}
2492
2493	if (unlikely(seq & 1)) {
2494		rcu_read_unlock();
2495		goto retry;
2496	}
2497
2498	hlist_bl_lock(b);
2499	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2500		hlist_bl_unlock(b);
2501		rcu_read_unlock();
2502		goto retry;
2503	}
2504	/*
2505	 * No changes for the parent since the beginning of d_lookup().
2506	 * Since all removals from the chain happen with hlist_bl_lock(),
2507	 * any potential in-lookup matches are going to stay here until
2508	 * we unlock the chain.  All fields are stable in everything
2509	 * we encounter.
2510	 */
2511	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2512		if (dentry->d_name.hash != hash)
2513			continue;
2514		if (dentry->d_parent != parent)
2515			continue;
2516		if (!d_same_name(dentry, parent, name))
2517			continue;
2518		hlist_bl_unlock(b);
2519		/* now we can try to grab a reference */
2520		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2521			rcu_read_unlock();
2522			goto retry;
2523		}
2524
2525		rcu_read_unlock();
2526		/*
2527		 * somebody is likely to be still doing lookup for it;
2528		 * wait for them to finish
2529		 */
2530		spin_lock(&dentry->d_lock);
2531		d_wait_lookup(dentry);
2532		/*
2533		 * it's not in-lookup anymore; in principle we should repeat
2534		 * everything from dcache lookup, but it's likely to be what
2535		 * d_lookup() would've found anyway.  If it is, just return it;
2536		 * otherwise we really have to repeat the whole thing.
2537		 */
2538		if (unlikely(dentry->d_name.hash != hash))
2539			goto mismatch;
2540		if (unlikely(dentry->d_parent != parent))
2541			goto mismatch;
2542		if (unlikely(d_unhashed(dentry)))
2543			goto mismatch;
2544		if (unlikely(!d_same_name(dentry, parent, name)))
2545			goto mismatch;
2546		/* OK, it *is* a hashed match; return it */
2547		spin_unlock(&dentry->d_lock);
2548		dput(new);
2549		return dentry;
2550	}
2551	rcu_read_unlock();
2552	/* we can't take ->d_lock here; it's OK, though. */
2553	new->d_flags |= DCACHE_PAR_LOOKUP;
2554	new->d_wait = wq;
2555	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2556	hlist_bl_unlock(b);
2557	return new;
2558mismatch:
2559	spin_unlock(&dentry->d_lock);
2560	dput(dentry);
2561	goto retry;
2562}
2563EXPORT_SYMBOL(d_alloc_parallel);
2564
2565/*
2566 * - Unhash the dentry
2567 * - Retrieve and clear the waitqueue head in dentry
2568 * - Return the waitqueue head
2569 */
2570static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2571{
2572	wait_queue_head_t *d_wait;
2573	struct hlist_bl_head *b;
2574
2575	lockdep_assert_held(&dentry->d_lock);
2576
2577	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2578	hlist_bl_lock(b);
2579	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2580	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2581	d_wait = dentry->d_wait;
2582	dentry->d_wait = NULL;
2583	hlist_bl_unlock(b);
2584	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2585	INIT_LIST_HEAD(&dentry->d_lru);
2586	return d_wait;
2587}
2588
2589void __d_lookup_unhash_wake(struct dentry *dentry)
2590{
2591	spin_lock(&dentry->d_lock);
2592	wake_up_all(__d_lookup_unhash(dentry));
2593	spin_unlock(&dentry->d_lock);
2594}
2595EXPORT_SYMBOL(__d_lookup_unhash_wake);
2596
2597/* inode->i_lock held if inode is non-NULL */
2598
2599static inline void __d_add(struct dentry *dentry, struct inode *inode)
2600{
2601	wait_queue_head_t *d_wait;
2602	struct inode *dir = NULL;
2603	unsigned n;
2604	spin_lock(&dentry->d_lock);
2605	if (unlikely(d_in_lookup(dentry))) {
2606		dir = dentry->d_parent->d_inode;
2607		n = start_dir_add(dir);
2608		d_wait = __d_lookup_unhash(dentry);
2609	}
2610	if (inode) {
2611		unsigned add_flags = d_flags_for_inode(inode);
2612		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2613		raw_write_seqcount_begin(&dentry->d_seq);
2614		__d_set_inode_and_type(dentry, inode, add_flags);
2615		raw_write_seqcount_end(&dentry->d_seq);
2616		fsnotify_update_flags(dentry);
2617	}
2618	__d_rehash(dentry);
2619	if (dir)
2620		end_dir_add(dir, n, d_wait);
2621	spin_unlock(&dentry->d_lock);
2622	if (inode)
2623		spin_unlock(&inode->i_lock);
2624}
2625
2626/**
2627 * d_add - add dentry to hash queues
2628 * @entry: dentry to add
2629 * @inode: The inode to attach to this dentry
2630 *
2631 * This adds the entry to the hash queues and initializes @inode.
2632 * The entry was actually filled in earlier during d_alloc().
2633 */
2634
2635void d_add(struct dentry *entry, struct inode *inode)
2636{
2637	if (inode) {
2638		security_d_instantiate(entry, inode);
2639		spin_lock(&inode->i_lock);
2640	}
2641	__d_add(entry, inode);
2642}
2643EXPORT_SYMBOL(d_add);
2644
2645/**
2646 * d_exact_alias - find and hash an exact unhashed alias
2647 * @entry: dentry to add
2648 * @inode: The inode to go with this dentry
2649 *
2650 * If an unhashed dentry with the same name/parent and desired
2651 * inode already exists, hash and return it.  Otherwise, return
2652 * NULL.
2653 *
2654 * Parent directory should be locked.
2655 */
2656struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2657{
2658	struct dentry *alias;
2659	unsigned int hash = entry->d_name.hash;
2660
2661	spin_lock(&inode->i_lock);
2662	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2663		/*
2664		 * Don't need alias->d_lock here, because aliases with
2665		 * d_parent == entry->d_parent are not subject to name or
2666		 * parent changes, because the parent inode i_mutex is held.
2667		 */
2668		if (alias->d_name.hash != hash)
2669			continue;
2670		if (alias->d_parent != entry->d_parent)
2671			continue;
2672		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2673			continue;
2674		spin_lock(&alias->d_lock);
2675		if (!d_unhashed(alias)) {
2676			spin_unlock(&alias->d_lock);
2677			alias = NULL;
2678		} else {
2679			dget_dlock(alias);
2680			__d_rehash(alias);
2681			spin_unlock(&alias->d_lock);
2682		}
2683		spin_unlock(&inode->i_lock);
2684		return alias;
2685	}
2686	spin_unlock(&inode->i_lock);
2687	return NULL;
2688}
2689EXPORT_SYMBOL(d_exact_alias);
2690
2691static void swap_names(struct dentry *dentry, struct dentry *target)
2692{
2693	if (unlikely(dname_external(target))) {
2694		if (unlikely(dname_external(dentry))) {
2695			/*
2696			 * Both external: swap the pointers
2697			 */
2698			swap(target->d_name.name, dentry->d_name.name);
2699		} else {
2700			/*
2701			 * dentry:internal, target:external.  Steal target's
2702			 * storage and make target internal.
2703			 */
2704			memcpy(target->d_iname, dentry->d_name.name,
2705					dentry->d_name.len + 1);
2706			dentry->d_name.name = target->d_name.name;
2707			target->d_name.name = target->d_iname;
2708		}
2709	} else {
2710		if (unlikely(dname_external(dentry))) {
2711			/*
2712			 * dentry:external, target:internal.  Give dentry's
2713			 * storage to target and make dentry internal
2714			 */
2715			memcpy(dentry->d_iname, target->d_name.name,
2716					target->d_name.len + 1);
2717			target->d_name.name = dentry->d_name.name;
2718			dentry->d_name.name = dentry->d_iname;
2719		} else {
2720			/*
2721			 * Both are internal.
2722			 */
2723			unsigned int i;
2724			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2725			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2726				swap(((long *) &dentry->d_iname)[i],
2727				     ((long *) &target->d_iname)[i]);
2728			}
2729		}
2730	}
2731	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2732}
2733
2734static void copy_name(struct dentry *dentry, struct dentry *target)
2735{
2736	struct external_name *old_name = NULL;
2737	if (unlikely(dname_external(dentry)))
2738		old_name = external_name(dentry);
2739	if (unlikely(dname_external(target))) {
2740		atomic_inc(&external_name(target)->u.count);
2741		dentry->d_name = target->d_name;
2742	} else {
2743		memcpy(dentry->d_iname, target->d_name.name,
2744				target->d_name.len + 1);
2745		dentry->d_name.name = dentry->d_iname;
2746		dentry->d_name.hash_len = target->d_name.hash_len;
2747	}
2748	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2749		kfree_rcu(old_name, u.head);
2750}
2751
2752/*
2753 * __d_move - move a dentry
2754 * @dentry: entry to move
2755 * @target: new dentry
2756 * @exchange: exchange the two dentries
2757 *
2758 * Update the dcache to reflect the move of a file name. Negative
2759 * dcache entries should not be moved in this way. Caller must hold
2760 * rename_lock, the i_mutex of the source and target directories,
2761 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2762 */
2763static void __d_move(struct dentry *dentry, struct dentry *target,
2764		     bool exchange)
2765{
2766	struct dentry *old_parent, *p;
2767	wait_queue_head_t *d_wait;
2768	struct inode *dir = NULL;
2769	unsigned n;
2770
2771	WARN_ON(!dentry->d_inode);
2772	if (WARN_ON(dentry == target))
2773		return;
2774
2775	BUG_ON(d_ancestor(target, dentry));
2776	old_parent = dentry->d_parent;
2777	p = d_ancestor(old_parent, target);
2778	if (IS_ROOT(dentry)) {
2779		BUG_ON(p);
2780		spin_lock(&target->d_parent->d_lock);
2781	} else if (!p) {
2782		/* target is not a descendent of dentry->d_parent */
2783		spin_lock(&target->d_parent->d_lock);
2784		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2785	} else {
2786		BUG_ON(p == dentry);
2787		spin_lock(&old_parent->d_lock);
2788		if (p != target)
2789			spin_lock_nested(&target->d_parent->d_lock,
2790					DENTRY_D_LOCK_NESTED);
2791	}
2792	spin_lock_nested(&dentry->d_lock, 2);
2793	spin_lock_nested(&target->d_lock, 3);
2794
2795	if (unlikely(d_in_lookup(target))) {
2796		dir = target->d_parent->d_inode;
2797		n = start_dir_add(dir);
2798		d_wait = __d_lookup_unhash(target);
2799	}
2800
2801	write_seqcount_begin(&dentry->d_seq);
2802	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2803
2804	/* unhash both */
2805	if (!d_unhashed(dentry))
2806		___d_drop(dentry);
2807	if (!d_unhashed(target))
2808		___d_drop(target);
2809
2810	/* ... and switch them in the tree */
2811	dentry->d_parent = target->d_parent;
2812	if (!exchange) {
2813		copy_name(dentry, target);
2814		target->d_hash.pprev = NULL;
2815		dentry->d_parent->d_lockref.count++;
2816		if (dentry != old_parent) /* wasn't IS_ROOT */
2817			WARN_ON(!--old_parent->d_lockref.count);
2818	} else {
2819		target->d_parent = old_parent;
2820		swap_names(dentry, target);
2821		if (!hlist_unhashed(&target->d_sib))
2822			__hlist_del(&target->d_sib);
2823		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2824		__d_rehash(target);
2825		fsnotify_update_flags(target);
2826	}
2827	if (!hlist_unhashed(&dentry->d_sib))
2828		__hlist_del(&dentry->d_sib);
2829	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2830	__d_rehash(dentry);
2831	fsnotify_update_flags(dentry);
2832	fscrypt_handle_d_move(dentry);
2833
2834	write_seqcount_end(&target->d_seq);
2835	write_seqcount_end(&dentry->d_seq);
2836
2837	if (dir)
2838		end_dir_add(dir, n, d_wait);
2839
2840	if (dentry->d_parent != old_parent)
2841		spin_unlock(&dentry->d_parent->d_lock);
2842	if (dentry != old_parent)
2843		spin_unlock(&old_parent->d_lock);
2844	spin_unlock(&target->d_lock);
2845	spin_unlock(&dentry->d_lock);
2846}
2847
2848/*
2849 * d_move - move a dentry
2850 * @dentry: entry to move
2851 * @target: new dentry
2852 *
2853 * Update the dcache to reflect the move of a file name. Negative
2854 * dcache entries should not be moved in this way. See the locking
2855 * requirements for __d_move.
2856 */
2857void d_move(struct dentry *dentry, struct dentry *target)
2858{
2859	write_seqlock(&rename_lock);
2860	__d_move(dentry, target, false);
2861	write_sequnlock(&rename_lock);
2862}
2863EXPORT_SYMBOL(d_move);
2864
2865/*
2866 * d_exchange - exchange two dentries
2867 * @dentry1: first dentry
2868 * @dentry2: second dentry
2869 */
2870void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2871{
2872	write_seqlock(&rename_lock);
2873
2874	WARN_ON(!dentry1->d_inode);
2875	WARN_ON(!dentry2->d_inode);
2876	WARN_ON(IS_ROOT(dentry1));
2877	WARN_ON(IS_ROOT(dentry2));
2878
2879	__d_move(dentry1, dentry2, true);
2880
2881	write_sequnlock(&rename_lock);
2882}
2883
2884/**
2885 * d_ancestor - search for an ancestor
2886 * @p1: ancestor dentry
2887 * @p2: child dentry
2888 *
2889 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2890 * an ancestor of p2, else NULL.
2891 */
2892struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2893{
2894	struct dentry *p;
2895
2896	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2897		if (p->d_parent == p1)
2898			return p;
2899	}
2900	return NULL;
2901}
2902
2903/*
2904 * This helper attempts to cope with remotely renamed directories
2905 *
2906 * It assumes that the caller is already holding
2907 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2908 *
2909 * Note: If ever the locking in lock_rename() changes, then please
2910 * remember to update this too...
2911 */
2912static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2913{
2914	struct mutex *m1 = NULL;
2915	struct rw_semaphore *m2 = NULL;
2916	int ret = -ESTALE;
2917
2918	/* If alias and dentry share a parent, then no extra locks required */
2919	if (alias->d_parent == dentry->d_parent)
2920		goto out_unalias;
2921
2922	/* See lock_rename() */
2923	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2924		goto out_err;
2925	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2926	if (!inode_trylock_shared(alias->d_parent->d_inode))
2927		goto out_err;
2928	m2 = &alias->d_parent->d_inode->i_rwsem;
2929out_unalias:
2930	__d_move(alias, dentry, false);
2931	ret = 0;
2932out_err:
2933	if (m2)
2934		up_read(m2);
2935	if (m1)
2936		mutex_unlock(m1);
2937	return ret;
2938}
2939
2940/**
2941 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2942 * @inode:  the inode which may have a disconnected dentry
2943 * @dentry: a negative dentry which we want to point to the inode.
2944 *
2945 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2946 * place of the given dentry and return it, else simply d_add the inode
2947 * to the dentry and return NULL.
2948 *
2949 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2950 * we should error out: directories can't have multiple aliases.
2951 *
2952 * This is needed in the lookup routine of any filesystem that is exportable
2953 * (via knfsd) so that we can build dcache paths to directories effectively.
2954 *
2955 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2956 * is returned.  This matches the expected return value of ->lookup.
2957 *
2958 * Cluster filesystems may call this function with a negative, hashed dentry.
2959 * In that case, we know that the inode will be a regular file, and also this
2960 * will only occur during atomic_open. So we need to check for the dentry
2961 * being already hashed only in the final case.
2962 */
2963struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2964{
2965	if (IS_ERR(inode))
2966		return ERR_CAST(inode);
2967
2968	BUG_ON(!d_unhashed(dentry));
2969
2970	if (!inode)
2971		goto out;
2972
2973	security_d_instantiate(dentry, inode);
2974	spin_lock(&inode->i_lock);
2975	if (S_ISDIR(inode->i_mode)) {
2976		struct dentry *new = __d_find_any_alias(inode);
2977		if (unlikely(new)) {
2978			/* The reference to new ensures it remains an alias */
2979			spin_unlock(&inode->i_lock);
2980			write_seqlock(&rename_lock);
2981			if (unlikely(d_ancestor(new, dentry))) {
2982				write_sequnlock(&rename_lock);
2983				dput(new);
2984				new = ERR_PTR(-ELOOP);
2985				pr_warn_ratelimited(
2986					"VFS: Lookup of '%s' in %s %s"
2987					" would have caused loop\n",
2988					dentry->d_name.name,
2989					inode->i_sb->s_type->name,
2990					inode->i_sb->s_id);
2991			} else if (!IS_ROOT(new)) {
2992				struct dentry *old_parent = dget(new->d_parent);
2993				int err = __d_unalias(dentry, new);
2994				write_sequnlock(&rename_lock);
2995				if (err) {
2996					dput(new);
2997					new = ERR_PTR(err);
2998				}
2999				dput(old_parent);
3000			} else {
3001				__d_move(new, dentry, false);
3002				write_sequnlock(&rename_lock);
3003			}
3004			iput(inode);
3005			return new;
3006		}
3007	}
3008out:
3009	__d_add(dentry, inode);
3010	return NULL;
3011}
3012EXPORT_SYMBOL(d_splice_alias);
3013
3014/*
3015 * Test whether new_dentry is a subdirectory of old_dentry.
3016 *
3017 * Trivially implemented using the dcache structure
3018 */
3019
3020/**
3021 * is_subdir - is new dentry a subdirectory of old_dentry
3022 * @new_dentry: new dentry
3023 * @old_dentry: old dentry
3024 *
3025 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3026 * Returns false otherwise.
3027 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3028 */
3029  
3030bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3031{
3032	bool result;
3033	unsigned seq;
3034
3035	if (new_dentry == old_dentry)
3036		return true;
3037
3038	do {
3039		/* for restarting inner loop in case of seq retry */
3040		seq = read_seqbegin(&rename_lock);
3041		/*
3042		 * Need rcu_readlock to protect against the d_parent trashing
3043		 * due to d_move
3044		 */
3045		rcu_read_lock();
3046		if (d_ancestor(old_dentry, new_dentry))
3047			result = true;
3048		else
3049			result = false;
3050		rcu_read_unlock();
3051	} while (read_seqretry(&rename_lock, seq));
3052
3053	return result;
3054}
3055EXPORT_SYMBOL(is_subdir);
3056
3057static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3058{
3059	struct dentry *root = data;
3060	if (dentry != root) {
3061		if (d_unhashed(dentry) || !dentry->d_inode)
3062			return D_WALK_SKIP;
3063
3064		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3065			dentry->d_flags |= DCACHE_GENOCIDE;
3066			dentry->d_lockref.count--;
3067		}
3068	}
3069	return D_WALK_CONTINUE;
3070}
3071
3072void d_genocide(struct dentry *parent)
3073{
3074	d_walk(parent, parent, d_genocide_kill);
3075}
3076
3077void d_mark_tmpfile(struct file *file, struct inode *inode)
3078{
3079	struct dentry *dentry = file->f_path.dentry;
3080
3081	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3082		!hlist_unhashed(&dentry->d_u.d_alias) ||
3083		!d_unlinked(dentry));
3084	spin_lock(&dentry->d_parent->d_lock);
3085	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3086	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3087				(unsigned long long)inode->i_ino);
3088	spin_unlock(&dentry->d_lock);
3089	spin_unlock(&dentry->d_parent->d_lock);
3090}
3091EXPORT_SYMBOL(d_mark_tmpfile);
3092
3093void d_tmpfile(struct file *file, struct inode *inode)
3094{
3095	struct dentry *dentry = file->f_path.dentry;
3096
3097	inode_dec_link_count(inode);
3098	d_mark_tmpfile(file, inode);
3099	d_instantiate(dentry, inode);
3100}
3101EXPORT_SYMBOL(d_tmpfile);
3102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3103static __initdata unsigned long dhash_entries;
3104static int __init set_dhash_entries(char *str)
3105{
3106	if (!str)
3107		return 0;
3108	dhash_entries = simple_strtoul(str, &str, 0);
3109	return 1;
3110}
3111__setup("dhash_entries=", set_dhash_entries);
3112
3113static void __init dcache_init_early(void)
3114{
3115	/* If hashes are distributed across NUMA nodes, defer
3116	 * hash allocation until vmalloc space is available.
3117	 */
3118	if (hashdist)
3119		return;
3120
3121	dentry_hashtable =
3122		alloc_large_system_hash("Dentry cache",
3123					sizeof(struct hlist_bl_head),
3124					dhash_entries,
3125					13,
3126					HASH_EARLY | HASH_ZERO,
3127					&d_hash_shift,
3128					NULL,
3129					0,
3130					0);
3131	d_hash_shift = 32 - d_hash_shift;
 
 
 
3132}
3133
3134static void __init dcache_init(void)
3135{
3136	/*
3137	 * A constructor could be added for stable state like the lists,
3138	 * but it is probably not worth it because of the cache nature
3139	 * of the dcache.
3140	 */
3141	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3142		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3143		d_iname);
3144
3145	/* Hash may have been set up in dcache_init_early */
3146	if (!hashdist)
3147		return;
3148
3149	dentry_hashtable =
3150		alloc_large_system_hash("Dentry cache",
3151					sizeof(struct hlist_bl_head),
3152					dhash_entries,
3153					13,
3154					HASH_ZERO,
3155					&d_hash_shift,
3156					NULL,
3157					0,
3158					0);
3159	d_hash_shift = 32 - d_hash_shift;
 
 
 
3160}
3161
3162/* SLAB cache for __getname() consumers */
3163struct kmem_cache *names_cachep __ro_after_init;
3164EXPORT_SYMBOL(names_cachep);
3165
3166void __init vfs_caches_init_early(void)
3167{
3168	int i;
3169
3170	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3171		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3172
3173	dcache_init_early();
3174	inode_init_early();
3175}
3176
3177void __init vfs_caches_init(void)
3178{
3179	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3180			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3181
3182	dcache_init();
3183	inode_init();
3184	files_init();
3185	files_maxfiles_init();
3186	mnt_init();
3187	bdev_cache_init();
3188	chrdev_init();
3189}