Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
  35#include "internal.h"
  36#include "mount.h"
  37
  38#include <asm/runtime-const.h>
  39
  40/*
  41 * Usage:
  42 * dcache->d_inode->i_lock protects:
  43 *   - i_dentry, d_u.d_alias, d_inode of aliases
  44 * dcache_hash_bucket lock protects:
  45 *   - the dcache hash table
  46 * s_roots bl list spinlock protects:
  47 *   - the s_roots list (see __d_drop)
  48 * dentry->d_sb->s_dentry_lru_lock protects:
  49 *   - the dcache lru lists and counters
  50 * d_lock protects:
  51 *   - d_flags
  52 *   - d_name
  53 *   - d_lru
  54 *   - d_count
  55 *   - d_unhashed()
  56 *   - d_parent and d_chilren
  57 *   - childrens' d_sib and d_parent
  58 *   - d_u.d_alias, d_inode
  59 *
  60 * Ordering:
  61 * dentry->d_inode->i_lock
  62 *   dentry->d_lock
  63 *     dentry->d_sb->s_dentry_lru_lock
  64 *     dcache_hash_bucket lock
  65 *     s_roots lock
  66 *
  67 * If there is an ancestor relationship:
  68 * dentry->d_parent->...->d_parent->d_lock
  69 *   ...
  70 *     dentry->d_parent->d_lock
  71 *       dentry->d_lock
  72 *
  73 * If no ancestor relationship:
  74 * arbitrary, since it's serialized on rename_lock
  75 */
  76int sysctl_vfs_cache_pressure __read_mostly = 100;
  77EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  78
  79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  80
  81EXPORT_SYMBOL(rename_lock);
  82
  83static struct kmem_cache *dentry_cache __ro_after_init;
  84
  85const struct qstr empty_name = QSTR_INIT("", 0);
  86EXPORT_SYMBOL(empty_name);
  87const struct qstr slash_name = QSTR_INIT("/", 1);
  88EXPORT_SYMBOL(slash_name);
  89const struct qstr dotdot_name = QSTR_INIT("..", 2);
  90EXPORT_SYMBOL(dotdot_name);
  91
  92/*
  93 * This is the single most critical data structure when it comes
  94 * to the dcache: the hashtable for lookups. Somebody should try
  95 * to make this good - I've just made it work.
  96 *
  97 * This hash-function tries to avoid losing too many bits of hash
  98 * information, yet avoid using a prime hash-size or similar.
  99 *
 100 * Marking the variables "used" ensures that the compiler doesn't
 101 * optimize them away completely on architectures with runtime
 102 * constant infrastructure, this allows debuggers to see their
 103 * values. But updating these values has no effect on those arches.
 104 */
 105
 106static unsigned int d_hash_shift __ro_after_init __used;
 107
 108static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
 109
 110static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
 111{
 112	return runtime_const_ptr(dentry_hashtable) +
 113		runtime_const_shift_right_32(hashlen, d_hash_shift);
 114}
 115
 116#define IN_LOOKUP_SHIFT 10
 117static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 118
 119static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 120					unsigned int hash)
 121{
 122	hash += (unsigned long) parent / L1_CACHE_BYTES;
 123	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 124}
 125
 126struct dentry_stat_t {
 127	long nr_dentry;
 128	long nr_unused;
 129	long age_limit;		/* age in seconds */
 130	long want_pages;	/* pages requested by system */
 131	long nr_negative;	/* # of unused negative dentries */
 132	long dummy;		/* Reserved for future use */
 133};
 134
 135static DEFINE_PER_CPU(long, nr_dentry);
 136static DEFINE_PER_CPU(long, nr_dentry_unused);
 137static DEFINE_PER_CPU(long, nr_dentry_negative);
 138static int dentry_negative_policy;
 139
 140#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 141/* Statistics gathering. */
 142static struct dentry_stat_t dentry_stat = {
 143	.age_limit = 45,
 144};
 145
 146/*
 147 * Here we resort to our own counters instead of using generic per-cpu counters
 148 * for consistency with what the vfs inode code does. We are expected to harvest
 149 * better code and performance by having our own specialized counters.
 150 *
 151 * Please note that the loop is done over all possible CPUs, not over all online
 152 * CPUs. The reason for this is that we don't want to play games with CPUs going
 153 * on and off. If one of them goes off, we will just keep their counters.
 154 *
 155 * glommer: See cffbc8a for details, and if you ever intend to change this,
 156 * please update all vfs counters to match.
 157 */
 158static long get_nr_dentry(void)
 159{
 160	int i;
 161	long sum = 0;
 162	for_each_possible_cpu(i)
 163		sum += per_cpu(nr_dentry, i);
 164	return sum < 0 ? 0 : sum;
 165}
 166
 167static long get_nr_dentry_unused(void)
 168{
 169	int i;
 170	long sum = 0;
 171	for_each_possible_cpu(i)
 172		sum += per_cpu(nr_dentry_unused, i);
 173	return sum < 0 ? 0 : sum;
 174}
 175
 176static long get_nr_dentry_negative(void)
 177{
 178	int i;
 179	long sum = 0;
 180
 181	for_each_possible_cpu(i)
 182		sum += per_cpu(nr_dentry_negative, i);
 183	return sum < 0 ? 0 : sum;
 184}
 185
 186static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
 187			  size_t *lenp, loff_t *ppos)
 188{
 189	dentry_stat.nr_dentry = get_nr_dentry();
 190	dentry_stat.nr_unused = get_nr_dentry_unused();
 191	dentry_stat.nr_negative = get_nr_dentry_negative();
 192	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 193}
 194
 195static struct ctl_table fs_dcache_sysctls[] = {
 196	{
 197		.procname	= "dentry-state",
 198		.data		= &dentry_stat,
 199		.maxlen		= 6*sizeof(long),
 200		.mode		= 0444,
 201		.proc_handler	= proc_nr_dentry,
 202	},
 203	{
 204		.procname	= "dentry-negative",
 205		.data		= &dentry_negative_policy,
 206		.maxlen		= sizeof(dentry_negative_policy),
 207		.mode		= 0644,
 208		.proc_handler	= proc_dointvec_minmax,
 209		.extra1		= SYSCTL_ZERO,
 210		.extra2		= SYSCTL_ONE,
 211	},
 212};
 213
 214static int __init init_fs_dcache_sysctls(void)
 215{
 216	register_sysctl_init("fs", fs_dcache_sysctls);
 217	return 0;
 218}
 219fs_initcall(init_fs_dcache_sysctls);
 220#endif
 221
 222/*
 223 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 224 * The strings are both count bytes long, and count is non-zero.
 225 */
 226#ifdef CONFIG_DCACHE_WORD_ACCESS
 227
 228#include <asm/word-at-a-time.h>
 229/*
 230 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 231 * aligned allocation for this particular component. We don't
 232 * strictly need the load_unaligned_zeropad() safety, but it
 233 * doesn't hurt either.
 234 *
 235 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 236 * need the careful unaligned handling.
 237 */
 238static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 239{
 240	unsigned long a,b,mask;
 241
 242	for (;;) {
 243		a = read_word_at_a_time(cs);
 244		b = load_unaligned_zeropad(ct);
 245		if (tcount < sizeof(unsigned long))
 246			break;
 247		if (unlikely(a != b))
 248			return 1;
 249		cs += sizeof(unsigned long);
 250		ct += sizeof(unsigned long);
 251		tcount -= sizeof(unsigned long);
 252		if (!tcount)
 253			return 0;
 254	}
 255	mask = bytemask_from_count(tcount);
 256	return unlikely(!!((a ^ b) & mask));
 257}
 258
 259#else
 260
 261static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 262{
 263	do {
 264		if (*cs != *ct)
 265			return 1;
 266		cs++;
 267		ct++;
 268		tcount--;
 269	} while (tcount);
 270	return 0;
 271}
 272
 273#endif
 274
 275static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 276{
 277	/*
 278	 * Be careful about RCU walk racing with rename:
 279	 * use 'READ_ONCE' to fetch the name pointer.
 280	 *
 281	 * NOTE! Even if a rename will mean that the length
 282	 * was not loaded atomically, we don't care. The
 283	 * RCU walk will check the sequence count eventually,
 284	 * and catch it. And we won't overrun the buffer,
 285	 * because we're reading the name pointer atomically,
 286	 * and a dentry name is guaranteed to be properly
 287	 * terminated with a NUL byte.
 288	 *
 289	 * End result: even if 'len' is wrong, we'll exit
 290	 * early because the data cannot match (there can
 291	 * be no NUL in the ct/tcount data)
 292	 */
 293	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 294
 295	return dentry_string_cmp(cs, ct, tcount);
 296}
 297
 298struct external_name {
 299	union {
 300		atomic_t count;
 301		struct rcu_head head;
 302	} u;
 303	unsigned char name[];
 304};
 305
 306static inline struct external_name *external_name(struct dentry *dentry)
 307{
 308	return container_of(dentry->d_name.name, struct external_name, name[0]);
 309}
 310
 311static void __d_free(struct rcu_head *head)
 312{
 313	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 314
 315	kmem_cache_free(dentry_cache, dentry); 
 316}
 317
 318static void __d_free_external(struct rcu_head *head)
 319{
 320	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 321	kfree(external_name(dentry));
 322	kmem_cache_free(dentry_cache, dentry);
 323}
 324
 325static inline int dname_external(const struct dentry *dentry)
 326{
 327	return dentry->d_name.name != dentry->d_iname;
 328}
 329
 330void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 331{
 332	spin_lock(&dentry->d_lock);
 333	name->name = dentry->d_name;
 334	if (unlikely(dname_external(dentry))) {
 335		atomic_inc(&external_name(dentry)->u.count);
 336	} else {
 337		memcpy(name->inline_name, dentry->d_iname,
 338		       dentry->d_name.len + 1);
 339		name->name.name = name->inline_name;
 340	}
 341	spin_unlock(&dentry->d_lock);
 342}
 343EXPORT_SYMBOL(take_dentry_name_snapshot);
 344
 345void release_dentry_name_snapshot(struct name_snapshot *name)
 346{
 347	if (unlikely(name->name.name != name->inline_name)) {
 348		struct external_name *p;
 349		p = container_of(name->name.name, struct external_name, name[0]);
 350		if (unlikely(atomic_dec_and_test(&p->u.count)))
 351			kfree_rcu(p, u.head);
 352	}
 353}
 354EXPORT_SYMBOL(release_dentry_name_snapshot);
 355
 356static inline void __d_set_inode_and_type(struct dentry *dentry,
 357					  struct inode *inode,
 358					  unsigned type_flags)
 359{
 360	unsigned flags;
 361
 362	dentry->d_inode = inode;
 363	flags = READ_ONCE(dentry->d_flags);
 364	flags &= ~DCACHE_ENTRY_TYPE;
 365	flags |= type_flags;
 366	smp_store_release(&dentry->d_flags, flags);
 367}
 368
 369static inline void __d_clear_type_and_inode(struct dentry *dentry)
 370{
 371	unsigned flags = READ_ONCE(dentry->d_flags);
 372
 373	flags &= ~DCACHE_ENTRY_TYPE;
 374	WRITE_ONCE(dentry->d_flags, flags);
 375	dentry->d_inode = NULL;
 376	/*
 377	 * The negative counter only tracks dentries on the LRU. Don't inc if
 378	 * d_lru is on another list.
 379	 */
 380	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
 381		this_cpu_inc(nr_dentry_negative);
 382}
 383
 384static void dentry_free(struct dentry *dentry)
 385{
 386	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 387	if (unlikely(dname_external(dentry))) {
 388		struct external_name *p = external_name(dentry);
 389		if (likely(atomic_dec_and_test(&p->u.count))) {
 390			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 391			return;
 392		}
 393	}
 394	/* if dentry was never visible to RCU, immediate free is OK */
 395	if (dentry->d_flags & DCACHE_NORCU)
 396		__d_free(&dentry->d_u.d_rcu);
 397	else
 398		call_rcu(&dentry->d_u.d_rcu, __d_free);
 399}
 400
 401/*
 402 * Release the dentry's inode, using the filesystem
 403 * d_iput() operation if defined.
 404 */
 405static void dentry_unlink_inode(struct dentry * dentry)
 406	__releases(dentry->d_lock)
 407	__releases(dentry->d_inode->i_lock)
 408{
 409	struct inode *inode = dentry->d_inode;
 410
 411	raw_write_seqcount_begin(&dentry->d_seq);
 412	__d_clear_type_and_inode(dentry);
 413	hlist_del_init(&dentry->d_u.d_alias);
 414	raw_write_seqcount_end(&dentry->d_seq);
 415	spin_unlock(&dentry->d_lock);
 416	spin_unlock(&inode->i_lock);
 417	if (!inode->i_nlink)
 418		fsnotify_inoderemove(inode);
 419	if (dentry->d_op && dentry->d_op->d_iput)
 420		dentry->d_op->d_iput(dentry, inode);
 421	else
 422		iput(inode);
 423}
 424
 425/*
 426 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 427 * is in use - which includes both the "real" per-superblock
 428 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 429 *
 430 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 431 * on the shrink list (ie not on the superblock LRU list).
 432 *
 433 * The per-cpu "nr_dentry_unused" counters are updated with
 434 * the DCACHE_LRU_LIST bit.
 435 *
 436 * The per-cpu "nr_dentry_negative" counters are only updated
 437 * when deleted from or added to the per-superblock LRU list, not
 438 * from/to the shrink list. That is to avoid an unneeded dec/inc
 439 * pair when moving from LRU to shrink list in select_collect().
 440 *
 441 * These helper functions make sure we always follow the
 442 * rules. d_lock must be held by the caller.
 443 */
 444#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 445static void d_lru_add(struct dentry *dentry)
 446{
 447	D_FLAG_VERIFY(dentry, 0);
 448	dentry->d_flags |= DCACHE_LRU_LIST;
 449	this_cpu_inc(nr_dentry_unused);
 450	if (d_is_negative(dentry))
 451		this_cpu_inc(nr_dentry_negative);
 452	WARN_ON_ONCE(!list_lru_add_obj(
 453			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 454}
 455
 456static void d_lru_del(struct dentry *dentry)
 457{
 458	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 459	dentry->d_flags &= ~DCACHE_LRU_LIST;
 460	this_cpu_dec(nr_dentry_unused);
 461	if (d_is_negative(dentry))
 462		this_cpu_dec(nr_dentry_negative);
 463	WARN_ON_ONCE(!list_lru_del_obj(
 464			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 465}
 466
 467static void d_shrink_del(struct dentry *dentry)
 468{
 469	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 470	list_del_init(&dentry->d_lru);
 471	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 472	this_cpu_dec(nr_dentry_unused);
 473}
 474
 475static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 476{
 477	D_FLAG_VERIFY(dentry, 0);
 478	list_add(&dentry->d_lru, list);
 479	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 480	this_cpu_inc(nr_dentry_unused);
 481}
 482
 483/*
 484 * These can only be called under the global LRU lock, ie during the
 485 * callback for freeing the LRU list. "isolate" removes it from the
 486 * LRU lists entirely, while shrink_move moves it to the indicated
 487 * private list.
 488 */
 489static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 490{
 491	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 492	dentry->d_flags &= ~DCACHE_LRU_LIST;
 493	this_cpu_dec(nr_dentry_unused);
 494	if (d_is_negative(dentry))
 495		this_cpu_dec(nr_dentry_negative);
 496	list_lru_isolate(lru, &dentry->d_lru);
 497}
 498
 499static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 500			      struct list_head *list)
 501{
 502	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 503	dentry->d_flags |= DCACHE_SHRINK_LIST;
 504	if (d_is_negative(dentry))
 505		this_cpu_dec(nr_dentry_negative);
 506	list_lru_isolate_move(lru, &dentry->d_lru, list);
 507}
 508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509static void ___d_drop(struct dentry *dentry)
 510{
 511	struct hlist_bl_head *b;
 512	/*
 513	 * Hashed dentries are normally on the dentry hashtable,
 514	 * with the exception of those newly allocated by
 515	 * d_obtain_root, which are always IS_ROOT:
 516	 */
 517	if (unlikely(IS_ROOT(dentry)))
 518		b = &dentry->d_sb->s_roots;
 519	else
 520		b = d_hash(dentry->d_name.hash);
 521
 522	hlist_bl_lock(b);
 523	__hlist_bl_del(&dentry->d_hash);
 524	hlist_bl_unlock(b);
 525}
 526
 527void __d_drop(struct dentry *dentry)
 528{
 529	if (!d_unhashed(dentry)) {
 530		___d_drop(dentry);
 531		dentry->d_hash.pprev = NULL;
 532		write_seqcount_invalidate(&dentry->d_seq);
 533	}
 534}
 535EXPORT_SYMBOL(__d_drop);
 536
 537/**
 538 * d_drop - drop a dentry
 539 * @dentry: dentry to drop
 540 *
 541 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 542 * be found through a VFS lookup any more. Note that this is different from
 543 * deleting the dentry - d_delete will try to mark the dentry negative if
 544 * possible, giving a successful _negative_ lookup, while d_drop will
 545 * just make the cache lookup fail.
 546 *
 547 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 548 * reason (NFS timeouts or autofs deletes).
 549 *
 550 * __d_drop requires dentry->d_lock
 551 *
 552 * ___d_drop doesn't mark dentry as "unhashed"
 553 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 554 */
 555void d_drop(struct dentry *dentry)
 556{
 557	spin_lock(&dentry->d_lock);
 558	__d_drop(dentry);
 559	spin_unlock(&dentry->d_lock);
 560}
 561EXPORT_SYMBOL(d_drop);
 562
 563static inline void dentry_unlist(struct dentry *dentry)
 564{
 565	struct dentry *next;
 566	/*
 567	 * Inform d_walk() and shrink_dentry_list() that we are no longer
 568	 * attached to the dentry tree
 569	 */
 570	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 571	if (unlikely(hlist_unhashed(&dentry->d_sib)))
 572		return;
 573	__hlist_del(&dentry->d_sib);
 574	/*
 575	 * Cursors can move around the list of children.  While we'd been
 576	 * a normal list member, it didn't matter - ->d_sib.next would've
 577	 * been updated.  However, from now on it won't be and for the
 578	 * things like d_walk() it might end up with a nasty surprise.
 579	 * Normally d_walk() doesn't care about cursors moving around -
 580	 * ->d_lock on parent prevents that and since a cursor has no children
 581	 * of its own, we get through it without ever unlocking the parent.
 582	 * There is one exception, though - if we ascend from a child that
 583	 * gets killed as soon as we unlock it, the next sibling is found
 584	 * using the value left in its ->d_sib.next.  And if _that_
 585	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
 586	 * before d_walk() regains parent->d_lock, we'll end up skipping
 587	 * everything the cursor had been moved past.
 588	 *
 589	 * Solution: make sure that the pointer left behind in ->d_sib.next
 590	 * points to something that won't be moving around.  I.e. skip the
 591	 * cursors.
 592	 */
 593	while (dentry->d_sib.next) {
 594		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
 595		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 596			break;
 597		dentry->d_sib.next = next->d_sib.next;
 598	}
 599}
 600
 601static struct dentry *__dentry_kill(struct dentry *dentry)
 602{
 603	struct dentry *parent = NULL;
 604	bool can_free = true;
 
 
 605
 606	/*
 607	 * The dentry is now unrecoverably dead to the world.
 608	 */
 609	lockref_mark_dead(&dentry->d_lockref);
 610
 611	/*
 612	 * inform the fs via d_prune that this dentry is about to be
 613	 * unhashed and destroyed.
 614	 */
 615	if (dentry->d_flags & DCACHE_OP_PRUNE)
 616		dentry->d_op->d_prune(dentry);
 617
 618	if (dentry->d_flags & DCACHE_LRU_LIST) {
 619		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 620			d_lru_del(dentry);
 621	}
 622	/* if it was on the hash then remove it */
 623	__d_drop(dentry);
 
 
 
 624	if (dentry->d_inode)
 625		dentry_unlink_inode(dentry);
 626	else
 627		spin_unlock(&dentry->d_lock);
 628	this_cpu_dec(nr_dentry);
 629	if (dentry->d_op && dentry->d_op->d_release)
 630		dentry->d_op->d_release(dentry);
 631
 632	cond_resched();
 633	/* now that it's negative, ->d_parent is stable */
 634	if (!IS_ROOT(dentry)) {
 635		parent = dentry->d_parent;
 636		spin_lock(&parent->d_lock);
 637	}
 638	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 639	dentry_unlist(dentry);
 640	if (dentry->d_flags & DCACHE_SHRINK_LIST)
 641		can_free = false;
 
 642	spin_unlock(&dentry->d_lock);
 643	if (likely(can_free))
 644		dentry_free(dentry);
 645	if (parent && --parent->d_lockref.count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646		spin_unlock(&parent->d_lock);
 647		return NULL;
 648	}
 
 
 
 
 
 649	return parent;
 650}
 651
 652/*
 653 * Lock a dentry for feeding it to __dentry_kill().
 654 * Called under rcu_read_lock() and dentry->d_lock; the former
 655 * guarantees that nothing we access will be freed under us.
 656 * Note that dentry is *not* protected from concurrent dentry_kill(),
 657 * d_delete(), etc.
 658 *
 659 * Return false if dentry is busy.  Otherwise, return true and have
 660 * that dentry's inode locked.
 661 */
 662
 663static bool lock_for_kill(struct dentry *dentry)
 664{
 665	struct inode *inode = dentry->d_inode;
 666
 667	if (unlikely(dentry->d_lockref.count))
 668		return false;
 669
 670	if (!inode || likely(spin_trylock(&inode->i_lock)))
 671		return true;
 672
 673	do {
 674		spin_unlock(&dentry->d_lock);
 675		spin_lock(&inode->i_lock);
 676		spin_lock(&dentry->d_lock);
 677		if (likely(inode == dentry->d_inode))
 678			break;
 679		spin_unlock(&inode->i_lock);
 680		inode = dentry->d_inode;
 681	} while (inode);
 682	if (likely(!dentry->d_lockref.count))
 683		return true;
 684	if (inode)
 685		spin_unlock(&inode->i_lock);
 686	return false;
 687}
 688
 689/*
 690 * Decide if dentry is worth retaining.  Usually this is called with dentry
 691 * locked; if not locked, we are more limited and might not be able to tell
 692 * without a lock.  False in this case means "punt to locked path and recheck".
 693 *
 694 * In case we aren't locked, these predicates are not "stable". However, it is
 695 * sufficient that at some point after we dropped the reference the dentry was
 696 * hashed and the flags had the proper value. Other dentry users may have
 697 * re-gotten a reference to the dentry and change that, but our work is done -
 698 * we can leave the dentry around with a zero refcount.
 699 */
 700static inline bool retain_dentry(struct dentry *dentry, bool locked)
 701{
 702	unsigned int d_flags;
 703
 704	smp_rmb();
 705	d_flags = READ_ONCE(dentry->d_flags);
 706
 707	// Unreachable? Nobody would be able to look it up, no point retaining
 708	if (unlikely(d_unhashed(dentry)))
 709		return false;
 710
 711	// Same if it's disconnected
 712	if (unlikely(d_flags & DCACHE_DISCONNECTED))
 713		return false;
 714
 715	// ->d_delete() might tell us not to bother, but that requires
 716	// ->d_lock; can't decide without it
 717	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
 718		if (!locked || dentry->d_op->d_delete(dentry))
 719			return false;
 720	}
 721
 722	// Explicitly told not to bother
 723	if (unlikely(d_flags & DCACHE_DONTCACHE))
 724		return false;
 725
 726	// At this point it looks like we ought to keep it.  We also might
 727	// need to do something - put it on LRU if it wasn't there already
 728	// and mark it referenced if it was on LRU, but not marked yet.
 729	// Unfortunately, both actions require ->d_lock, so in lockless
 730	// case we'd have to punt rather than doing those.
 731	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
 732		if (!locked)
 733			return false;
 734		d_lru_add(dentry);
 735	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
 736		if (!locked)
 737			return false;
 738		dentry->d_flags |= DCACHE_REFERENCED;
 739	}
 740	return true;
 741}
 742
 743void d_mark_dontcache(struct inode *inode)
 744{
 745	struct dentry *de;
 746
 747	spin_lock(&inode->i_lock);
 748	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 749		spin_lock(&de->d_lock);
 750		de->d_flags |= DCACHE_DONTCACHE;
 751		spin_unlock(&de->d_lock);
 752	}
 753	inode->i_state |= I_DONTCACHE;
 754	spin_unlock(&inode->i_lock);
 755}
 756EXPORT_SYMBOL(d_mark_dontcache);
 757
 758/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759 * Try to do a lockless dput(), and return whether that was successful.
 760 *
 761 * If unsuccessful, we return false, having already taken the dentry lock.
 762 * In that case refcount is guaranteed to be zero and we have already
 763 * decided that it's not worth keeping around.
 764 *
 765 * The caller needs to hold the RCU read lock, so that the dentry is
 766 * guaranteed to stay around even if the refcount goes down to zero!
 767 */
 768static inline bool fast_dput(struct dentry *dentry)
 769{
 770	int ret;
 
 771
 772	/*
 773	 * try to decrement the lockref optimistically.
 
 
 
 
 
 
 
 
 774	 */
 775	ret = lockref_put_return(&dentry->d_lockref);
 776
 777	/*
 778	 * If the lockref_put_return() failed due to the lock being held
 779	 * by somebody else, the fast path has failed. We will need to
 780	 * get the lock, and then check the count again.
 781	 */
 782	if (unlikely(ret < 0)) {
 783		spin_lock(&dentry->d_lock);
 784		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
 
 785			spin_unlock(&dentry->d_lock);
 786			return true;
 787		}
 788		dentry->d_lockref.count--;
 789		goto locked;
 790	}
 791
 792	/*
 793	 * If we weren't the last ref, we're done.
 794	 */
 795	if (ret)
 796		return true;
 797
 798	/*
 799	 * Can we decide that decrement of refcount is all we needed without
 800	 * taking the lock?  There's a very common case when it's all we need -
 801	 * dentry looks like it ought to be retained and there's nothing else
 802	 * to do.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803	 */
 804	if (retain_dentry(dentry, false))
 
 
 
 
 
 805		return true;
 806
 807	/*
 808	 * Either not worth retaining or we can't tell without the lock.
 809	 * Get the lock, then.  We've already decremented the refcount to 0,
 810	 * but we'll need to re-check the situation after getting the lock.
 811	 */
 812	spin_lock(&dentry->d_lock);
 813
 814	/*
 815	 * Did somebody else grab a reference to it in the meantime, and
 816	 * we're no longer the last user after all? Alternatively, somebody
 817	 * else could have killed it and marked it dead. Either way, we
 818	 * don't need to do anything else.
 819	 */
 820locked:
 821	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
 822		spin_unlock(&dentry->d_lock);
 823		return true;
 824	}
 
 
 
 
 
 
 
 825	return false;
 826}
 827
 828
 829/* 
 830 * This is dput
 831 *
 832 * This is complicated by the fact that we do not want to put
 833 * dentries that are no longer on any hash chain on the unused
 834 * list: we'd much rather just get rid of them immediately.
 835 *
 836 * However, that implies that we have to traverse the dentry
 837 * tree upwards to the parents which might _also_ now be
 838 * scheduled for deletion (it may have been only waiting for
 839 * its last child to go away).
 840 *
 841 * This tail recursion is done by hand as we don't want to depend
 842 * on the compiler to always get this right (gcc generally doesn't).
 843 * Real recursion would eat up our stack space.
 844 */
 845
 846/*
 847 * dput - release a dentry
 848 * @dentry: dentry to release 
 849 *
 850 * Release a dentry. This will drop the usage count and if appropriate
 851 * call the dentry unlink method as well as removing it from the queues and
 852 * releasing its resources. If the parent dentries were scheduled for release
 853 * they too may now get deleted.
 854 */
 855void dput(struct dentry *dentry)
 856{
 857	if (!dentry)
 858		return;
 859	might_sleep();
 860	rcu_read_lock();
 861	if (likely(fast_dput(dentry))) {
 862		rcu_read_unlock();
 863		return;
 864	}
 865	while (lock_for_kill(dentry)) {
 866		rcu_read_unlock();
 867		dentry = __dentry_kill(dentry);
 868		if (!dentry)
 869			return;
 870		if (retain_dentry(dentry, true)) {
 
 
 
 
 
 871			spin_unlock(&dentry->d_lock);
 872			return;
 873		}
 874		rcu_read_lock();
 
 875	}
 876	rcu_read_unlock();
 877	spin_unlock(&dentry->d_lock);
 878}
 879EXPORT_SYMBOL(dput);
 880
 881static void to_shrink_list(struct dentry *dentry, struct list_head *list)
 882__must_hold(&dentry->d_lock)
 883{
 884	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
 
 
 
 885		if (dentry->d_flags & DCACHE_LRU_LIST)
 886			d_lru_del(dentry);
 887		d_shrink_add(dentry, list);
 
 888	}
 889}
 890
 891void dput_to_list(struct dentry *dentry, struct list_head *list)
 892{
 893	rcu_read_lock();
 894	if (likely(fast_dput(dentry))) {
 895		rcu_read_unlock();
 896		return;
 897	}
 898	rcu_read_unlock();
 899	to_shrink_list(dentry, list);
 
 900	spin_unlock(&dentry->d_lock);
 901}
 902
 
 
 
 
 
 
 
 
 
 
 
 903struct dentry *dget_parent(struct dentry *dentry)
 904{
 905	int gotref;
 906	struct dentry *ret;
 907	unsigned seq;
 908
 909	/*
 910	 * Do optimistic parent lookup without any
 911	 * locking.
 912	 */
 913	rcu_read_lock();
 914	seq = raw_seqcount_begin(&dentry->d_seq);
 915	ret = READ_ONCE(dentry->d_parent);
 916	gotref = lockref_get_not_zero(&ret->d_lockref);
 917	rcu_read_unlock();
 918	if (likely(gotref)) {
 919		if (!read_seqcount_retry(&dentry->d_seq, seq))
 920			return ret;
 921		dput(ret);
 922	}
 923
 924repeat:
 925	/*
 926	 * Don't need rcu_dereference because we re-check it was correct under
 927	 * the lock.
 928	 */
 929	rcu_read_lock();
 930	ret = dentry->d_parent;
 931	spin_lock(&ret->d_lock);
 932	if (unlikely(ret != dentry->d_parent)) {
 933		spin_unlock(&ret->d_lock);
 934		rcu_read_unlock();
 935		goto repeat;
 936	}
 937	rcu_read_unlock();
 938	BUG_ON(!ret->d_lockref.count);
 939	ret->d_lockref.count++;
 940	spin_unlock(&ret->d_lock);
 941	return ret;
 942}
 943EXPORT_SYMBOL(dget_parent);
 944
 945static struct dentry * __d_find_any_alias(struct inode *inode)
 946{
 947	struct dentry *alias;
 948
 949	if (hlist_empty(&inode->i_dentry))
 950		return NULL;
 951	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 952	lockref_get(&alias->d_lockref);
 953	return alias;
 954}
 955
 956/**
 957 * d_find_any_alias - find any alias for a given inode
 958 * @inode: inode to find an alias for
 959 *
 960 * If any aliases exist for the given inode, take and return a
 961 * reference for one of them.  If no aliases exist, return %NULL.
 962 */
 963struct dentry *d_find_any_alias(struct inode *inode)
 964{
 965	struct dentry *de;
 966
 967	spin_lock(&inode->i_lock);
 968	de = __d_find_any_alias(inode);
 969	spin_unlock(&inode->i_lock);
 970	return de;
 971}
 972EXPORT_SYMBOL(d_find_any_alias);
 973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974static struct dentry *__d_find_alias(struct inode *inode)
 975{
 976	struct dentry *alias;
 977
 978	if (S_ISDIR(inode->i_mode))
 979		return __d_find_any_alias(inode);
 980
 981	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 982		spin_lock(&alias->d_lock);
 983 		if (!d_unhashed(alias)) {
 984			dget_dlock(alias);
 985			spin_unlock(&alias->d_lock);
 986			return alias;
 987		}
 988		spin_unlock(&alias->d_lock);
 989	}
 990	return NULL;
 991}
 992
 993/**
 994 * d_find_alias - grab a hashed alias of inode
 995 * @inode: inode in question
 996 *
 997 * If inode has a hashed alias, or is a directory and has any alias,
 998 * acquire the reference to alias and return it. Otherwise return NULL.
 999 * Notice that if inode is a directory there can be only one alias and
1000 * it can be unhashed only if it has no children, or if it is the root
1001 * of a filesystem, or if the directory was renamed and d_revalidate
1002 * was the first vfs operation to notice.
1003 *
1004 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1005 * any other hashed alias over that one.
1006 */
1007struct dentry *d_find_alias(struct inode *inode)
1008{
1009	struct dentry *de = NULL;
1010
1011	if (!hlist_empty(&inode->i_dentry)) {
1012		spin_lock(&inode->i_lock);
1013		de = __d_find_alias(inode);
1014		spin_unlock(&inode->i_lock);
1015	}
1016	return de;
1017}
1018EXPORT_SYMBOL(d_find_alias);
1019
1020/*
1021 *  Caller MUST be holding rcu_read_lock() and be guaranteed
1022 *  that inode won't get freed until rcu_read_unlock().
1023 */
1024struct dentry *d_find_alias_rcu(struct inode *inode)
1025{
1026	struct hlist_head *l = &inode->i_dentry;
1027	struct dentry *de = NULL;
1028
1029	spin_lock(&inode->i_lock);
1030	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1031	// used without having I_FREEING set, which means no aliases left
1032	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1033		if (S_ISDIR(inode->i_mode)) {
1034			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1035		} else {
1036			hlist_for_each_entry(de, l, d_u.d_alias)
1037				if (!d_unhashed(de))
1038					break;
1039		}
1040	}
1041	spin_unlock(&inode->i_lock);
1042	return de;
1043}
1044
1045/*
1046 *	Try to kill dentries associated with this inode.
1047 * WARNING: you must own a reference to inode.
1048 */
1049void d_prune_aliases(struct inode *inode)
1050{
1051	LIST_HEAD(dispose);
1052	struct dentry *dentry;
1053
1054	spin_lock(&inode->i_lock);
1055	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1056		spin_lock(&dentry->d_lock);
1057		if (!dentry->d_lockref.count)
1058			to_shrink_list(dentry, &dispose);
 
 
 
 
 
 
 
 
1059		spin_unlock(&dentry->d_lock);
1060	}
1061	spin_unlock(&inode->i_lock);
1062	shrink_dentry_list(&dispose);
1063}
1064EXPORT_SYMBOL(d_prune_aliases);
1065
1066static inline void shrink_kill(struct dentry *victim)
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	do {
1069		rcu_read_unlock();
1070		victim = __dentry_kill(victim);
1071		rcu_read_lock();
1072	} while (victim && lock_for_kill(victim));
1073	rcu_read_unlock();
1074	if (victim)
1075		spin_unlock(&victim->d_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076}
1077
1078void shrink_dentry_list(struct list_head *list)
1079{
1080	while (!list_empty(list)) {
1081		struct dentry *dentry;
1082
1083		dentry = list_entry(list->prev, struct dentry, d_lru);
1084		spin_lock(&dentry->d_lock);
1085		rcu_read_lock();
1086		if (!lock_for_kill(dentry)) {
1087			bool can_free;
1088			rcu_read_unlock();
1089			d_shrink_del(dentry);
1090			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
 
1091			spin_unlock(&dentry->d_lock);
1092			if (can_free)
1093				dentry_free(dentry);
1094			continue;
1095		}
 
1096		d_shrink_del(dentry);
1097		shrink_kill(dentry);
 
 
 
1098	}
1099}
1100
1101static enum lru_status dentry_lru_isolate(struct list_head *item,
1102		struct list_lru_one *lru, void *arg)
1103{
1104	struct list_head *freeable = arg;
1105	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1106
1107
1108	/*
1109	 * we are inverting the lru lock/dentry->d_lock here,
1110	 * so use a trylock. If we fail to get the lock, just skip
1111	 * it
1112	 */
1113	if (!spin_trylock(&dentry->d_lock))
1114		return LRU_SKIP;
1115
1116	/*
1117	 * Referenced dentries are still in use. If they have active
1118	 * counts, just remove them from the LRU. Otherwise give them
1119	 * another pass through the LRU.
1120	 */
1121	if (dentry->d_lockref.count) {
1122		d_lru_isolate(lru, dentry);
1123		spin_unlock(&dentry->d_lock);
1124		return LRU_REMOVED;
1125	}
1126
1127	if (dentry->d_flags & DCACHE_REFERENCED) {
1128		dentry->d_flags &= ~DCACHE_REFERENCED;
1129		spin_unlock(&dentry->d_lock);
1130
1131		/*
1132		 * The list move itself will be made by the common LRU code. At
1133		 * this point, we've dropped the dentry->d_lock but keep the
1134		 * lru lock. This is safe to do, since every list movement is
1135		 * protected by the lru lock even if both locks are held.
1136		 *
1137		 * This is guaranteed by the fact that all LRU management
1138		 * functions are intermediated by the LRU API calls like
1139		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1140		 * only ever occur through this functions or through callbacks
1141		 * like this one, that are called from the LRU API.
1142		 *
1143		 * The only exceptions to this are functions like
1144		 * shrink_dentry_list, and code that first checks for the
1145		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1146		 * operating only with stack provided lists after they are
1147		 * properly isolated from the main list.  It is thus, always a
1148		 * local access.
1149		 */
1150		return LRU_ROTATE;
1151	}
1152
1153	d_lru_shrink_move(lru, dentry, freeable);
1154	spin_unlock(&dentry->d_lock);
1155
1156	return LRU_REMOVED;
1157}
1158
1159/**
1160 * prune_dcache_sb - shrink the dcache
1161 * @sb: superblock
1162 * @sc: shrink control, passed to list_lru_shrink_walk()
1163 *
1164 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1165 * is done when we need more memory and called from the superblock shrinker
1166 * function.
1167 *
1168 * This function may fail to free any resources if all the dentries are in
1169 * use.
1170 */
1171long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1172{
1173	LIST_HEAD(dispose);
1174	long freed;
1175
1176	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1177				     dentry_lru_isolate, &dispose);
1178	shrink_dentry_list(&dispose);
1179	return freed;
1180}
1181
1182static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1183		struct list_lru_one *lru, void *arg)
1184{
1185	struct list_head *freeable = arg;
1186	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1187
1188	/*
1189	 * we are inverting the lru lock/dentry->d_lock here,
1190	 * so use a trylock. If we fail to get the lock, just skip
1191	 * it
1192	 */
1193	if (!spin_trylock(&dentry->d_lock))
1194		return LRU_SKIP;
1195
1196	d_lru_shrink_move(lru, dentry, freeable);
1197	spin_unlock(&dentry->d_lock);
1198
1199	return LRU_REMOVED;
1200}
1201
1202
1203/**
1204 * shrink_dcache_sb - shrink dcache for a superblock
1205 * @sb: superblock
1206 *
1207 * Shrink the dcache for the specified super block. This is used to free
1208 * the dcache before unmounting a file system.
1209 */
1210void shrink_dcache_sb(struct super_block *sb)
1211{
1212	do {
1213		LIST_HEAD(dispose);
1214
1215		list_lru_walk(&sb->s_dentry_lru,
1216			dentry_lru_isolate_shrink, &dispose, 1024);
1217		shrink_dentry_list(&dispose);
1218	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1219}
1220EXPORT_SYMBOL(shrink_dcache_sb);
1221
1222/**
1223 * enum d_walk_ret - action to talke during tree walk
1224 * @D_WALK_CONTINUE:	contrinue walk
1225 * @D_WALK_QUIT:	quit walk
1226 * @D_WALK_NORETRY:	quit when retry is needed
1227 * @D_WALK_SKIP:	skip this dentry and its children
1228 */
1229enum d_walk_ret {
1230	D_WALK_CONTINUE,
1231	D_WALK_QUIT,
1232	D_WALK_NORETRY,
1233	D_WALK_SKIP,
1234};
1235
1236/**
1237 * d_walk - walk the dentry tree
1238 * @parent:	start of walk
1239 * @data:	data passed to @enter() and @finish()
1240 * @enter:	callback when first entering the dentry
1241 *
1242 * The @enter() callbacks are called with d_lock held.
1243 */
1244static void d_walk(struct dentry *parent, void *data,
1245		   enum d_walk_ret (*enter)(void *, struct dentry *))
1246{
1247	struct dentry *this_parent, *dentry;
 
1248	unsigned seq = 0;
1249	enum d_walk_ret ret;
1250	bool retry = true;
1251
1252again:
1253	read_seqbegin_or_lock(&rename_lock, &seq);
1254	this_parent = parent;
1255	spin_lock(&this_parent->d_lock);
1256
1257	ret = enter(data, this_parent);
1258	switch (ret) {
1259	case D_WALK_CONTINUE:
1260		break;
1261	case D_WALK_QUIT:
1262	case D_WALK_SKIP:
1263		goto out_unlock;
1264	case D_WALK_NORETRY:
1265		retry = false;
1266		break;
1267	}
1268repeat:
1269	dentry = d_first_child(this_parent);
1270resume:
1271	hlist_for_each_entry_from(dentry, d_sib) {
 
 
 
 
1272		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1273			continue;
1274
1275		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1276
1277		ret = enter(data, dentry);
1278		switch (ret) {
1279		case D_WALK_CONTINUE:
1280			break;
1281		case D_WALK_QUIT:
1282			spin_unlock(&dentry->d_lock);
1283			goto out_unlock;
1284		case D_WALK_NORETRY:
1285			retry = false;
1286			break;
1287		case D_WALK_SKIP:
1288			spin_unlock(&dentry->d_lock);
1289			continue;
1290		}
1291
1292		if (!hlist_empty(&dentry->d_children)) {
1293			spin_unlock(&this_parent->d_lock);
1294			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1295			this_parent = dentry;
1296			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1297			goto repeat;
1298		}
1299		spin_unlock(&dentry->d_lock);
1300	}
1301	/*
1302	 * All done at this level ... ascend and resume the search.
1303	 */
1304	rcu_read_lock();
1305ascend:
1306	if (this_parent != parent) {
1307		dentry = this_parent;
1308		this_parent = dentry->d_parent;
1309
1310		spin_unlock(&dentry->d_lock);
1311		spin_lock(&this_parent->d_lock);
1312
1313		/* might go back up the wrong parent if we have had a rename. */
1314		if (need_seqretry(&rename_lock, seq))
1315			goto rename_retry;
1316		/* go into the first sibling still alive */
1317		hlist_for_each_entry_continue(dentry, d_sib) {
1318			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1319				rcu_read_unlock();
1320				goto resume;
1321			}
1322		}
1323		goto ascend;
 
1324	}
1325	if (need_seqretry(&rename_lock, seq))
1326		goto rename_retry;
1327	rcu_read_unlock();
1328
1329out_unlock:
1330	spin_unlock(&this_parent->d_lock);
1331	done_seqretry(&rename_lock, seq);
1332	return;
1333
1334rename_retry:
1335	spin_unlock(&this_parent->d_lock);
1336	rcu_read_unlock();
1337	BUG_ON(seq & 1);
1338	if (!retry)
1339		return;
1340	seq = 1;
1341	goto again;
1342}
1343
1344struct check_mount {
1345	struct vfsmount *mnt;
1346	unsigned int mounted;
1347};
1348
1349static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1350{
1351	struct check_mount *info = data;
1352	struct path path = { .mnt = info->mnt, .dentry = dentry };
1353
1354	if (likely(!d_mountpoint(dentry)))
1355		return D_WALK_CONTINUE;
1356	if (__path_is_mountpoint(&path)) {
1357		info->mounted = 1;
1358		return D_WALK_QUIT;
1359	}
1360	return D_WALK_CONTINUE;
1361}
1362
1363/**
1364 * path_has_submounts - check for mounts over a dentry in the
1365 *                      current namespace.
1366 * @parent: path to check.
1367 *
1368 * Return true if the parent or its subdirectories contain
1369 * a mount point in the current namespace.
1370 */
1371int path_has_submounts(const struct path *parent)
1372{
1373	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1374
1375	read_seqlock_excl(&mount_lock);
1376	d_walk(parent->dentry, &data, path_check_mount);
1377	read_sequnlock_excl(&mount_lock);
1378
1379	return data.mounted;
1380}
1381EXPORT_SYMBOL(path_has_submounts);
1382
1383/*
1384 * Called by mount code to set a mountpoint and check if the mountpoint is
1385 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1386 * subtree can become unreachable).
1387 *
1388 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1389 * this reason take rename_lock and d_lock on dentry and ancestors.
1390 */
1391int d_set_mounted(struct dentry *dentry)
1392{
1393	struct dentry *p;
1394	int ret = -ENOENT;
1395	write_seqlock(&rename_lock);
1396	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1397		/* Need exclusion wrt. d_invalidate() */
1398		spin_lock(&p->d_lock);
1399		if (unlikely(d_unhashed(p))) {
1400			spin_unlock(&p->d_lock);
1401			goto out;
1402		}
1403		spin_unlock(&p->d_lock);
1404	}
1405	spin_lock(&dentry->d_lock);
1406	if (!d_unlinked(dentry)) {
1407		ret = -EBUSY;
1408		if (!d_mountpoint(dentry)) {
1409			dentry->d_flags |= DCACHE_MOUNTED;
1410			ret = 0;
1411		}
1412	}
1413 	spin_unlock(&dentry->d_lock);
1414out:
1415	write_sequnlock(&rename_lock);
1416	return ret;
1417}
1418
1419/*
1420 * Search the dentry child list of the specified parent,
1421 * and move any unused dentries to the end of the unused
1422 * list for prune_dcache(). We descend to the next level
1423 * whenever the d_children list is non-empty and continue
1424 * searching.
1425 *
1426 * It returns zero iff there are no unused children,
1427 * otherwise  it returns the number of children moved to
1428 * the end of the unused list. This may not be the total
1429 * number of unused children, because select_parent can
1430 * drop the lock and return early due to latency
1431 * constraints.
1432 */
1433
1434struct select_data {
1435	struct dentry *start;
1436	union {
1437		long found;
1438		struct dentry *victim;
1439	};
1440	struct list_head dispose;
1441};
1442
1443static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1444{
1445	struct select_data *data = _data;
1446	enum d_walk_ret ret = D_WALK_CONTINUE;
1447
1448	if (data->start == dentry)
1449		goto out;
1450
1451	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1452		data->found++;
1453	} else if (!dentry->d_lockref.count) {
1454		to_shrink_list(dentry, &data->dispose);
1455		data->found++;
1456	} else if (dentry->d_lockref.count < 0) {
1457		data->found++;
 
 
1458	}
1459	/*
1460	 * We can return to the caller if we have found some (this
1461	 * ensures forward progress). We'll be coming back to find
1462	 * the rest.
1463	 */
1464	if (!list_empty(&data->dispose))
1465		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1466out:
1467	return ret;
1468}
1469
1470static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1471{
1472	struct select_data *data = _data;
1473	enum d_walk_ret ret = D_WALK_CONTINUE;
1474
1475	if (data->start == dentry)
1476		goto out;
1477
1478	if (!dentry->d_lockref.count) {
1479		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1480			rcu_read_lock();
1481			data->victim = dentry;
1482			return D_WALK_QUIT;
1483		}
1484		to_shrink_list(dentry, &data->dispose);
 
 
 
 
1485	}
1486	/*
1487	 * We can return to the caller if we have found some (this
1488	 * ensures forward progress). We'll be coming back to find
1489	 * the rest.
1490	 */
1491	if (!list_empty(&data->dispose))
1492		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1493out:
1494	return ret;
1495}
1496
1497/**
1498 * shrink_dcache_parent - prune dcache
1499 * @parent: parent of entries to prune
1500 *
1501 * Prune the dcache to remove unused children of the parent dentry.
1502 */
1503void shrink_dcache_parent(struct dentry *parent)
1504{
1505	for (;;) {
1506		struct select_data data = {.start = parent};
1507
1508		INIT_LIST_HEAD(&data.dispose);
1509		d_walk(parent, &data, select_collect);
1510
1511		if (!list_empty(&data.dispose)) {
1512			shrink_dentry_list(&data.dispose);
1513			continue;
1514		}
1515
1516		cond_resched();
1517		if (!data.found)
1518			break;
1519		data.victim = NULL;
1520		d_walk(parent, &data, select_collect2);
1521		if (data.victim) {
 
1522			spin_lock(&data.victim->d_lock);
1523			if (!lock_for_kill(data.victim)) {
1524				spin_unlock(&data.victim->d_lock);
1525				rcu_read_unlock();
1526			} else {
1527				shrink_kill(data.victim);
 
 
 
 
1528			}
1529		}
1530		if (!list_empty(&data.dispose))
1531			shrink_dentry_list(&data.dispose);
1532	}
1533}
1534EXPORT_SYMBOL(shrink_dcache_parent);
1535
1536static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1537{
1538	/* it has busy descendents; complain about those instead */
1539	if (!hlist_empty(&dentry->d_children))
1540		return D_WALK_CONTINUE;
1541
1542	/* root with refcount 1 is fine */
1543	if (dentry == _data && dentry->d_lockref.count == 1)
1544		return D_WALK_CONTINUE;
1545
1546	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1547			" still in use (%d) [unmount of %s %s]\n",
1548		       dentry,
1549		       dentry->d_inode ?
1550		       dentry->d_inode->i_ino : 0UL,
1551		       dentry,
1552		       dentry->d_lockref.count,
1553		       dentry->d_sb->s_type->name,
1554		       dentry->d_sb->s_id);
 
1555	return D_WALK_CONTINUE;
1556}
1557
1558static void do_one_tree(struct dentry *dentry)
1559{
1560	shrink_dcache_parent(dentry);
1561	d_walk(dentry, dentry, umount_check);
1562	d_drop(dentry);
1563	dput(dentry);
1564}
1565
1566/*
1567 * destroy the dentries attached to a superblock on unmounting
1568 */
1569void shrink_dcache_for_umount(struct super_block *sb)
1570{
1571	struct dentry *dentry;
1572
1573	rwsem_assert_held_write(&sb->s_umount);
1574
1575	dentry = sb->s_root;
1576	sb->s_root = NULL;
1577	do_one_tree(dentry);
1578
1579	while (!hlist_bl_empty(&sb->s_roots)) {
1580		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1581		do_one_tree(dentry);
1582	}
1583}
1584
1585static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1586{
1587	struct dentry **victim = _data;
1588	if (d_mountpoint(dentry)) {
1589		*victim = dget_dlock(dentry);
 
1590		return D_WALK_QUIT;
1591	}
1592	return D_WALK_CONTINUE;
1593}
1594
1595/**
1596 * d_invalidate - detach submounts, prune dcache, and drop
1597 * @dentry: dentry to invalidate (aka detach, prune and drop)
1598 */
1599void d_invalidate(struct dentry *dentry)
1600{
1601	bool had_submounts = false;
1602	spin_lock(&dentry->d_lock);
1603	if (d_unhashed(dentry)) {
1604		spin_unlock(&dentry->d_lock);
1605		return;
1606	}
1607	__d_drop(dentry);
1608	spin_unlock(&dentry->d_lock);
1609
1610	/* Negative dentries can be dropped without further checks */
1611	if (!dentry->d_inode)
1612		return;
1613
1614	shrink_dcache_parent(dentry);
1615	for (;;) {
1616		struct dentry *victim = NULL;
1617		d_walk(dentry, &victim, find_submount);
1618		if (!victim) {
1619			if (had_submounts)
1620				shrink_dcache_parent(dentry);
1621			return;
1622		}
1623		had_submounts = true;
1624		detach_mounts(victim);
1625		dput(victim);
1626	}
1627}
1628EXPORT_SYMBOL(d_invalidate);
1629
1630/**
1631 * __d_alloc	-	allocate a dcache entry
1632 * @sb: filesystem it will belong to
1633 * @name: qstr of the name
1634 *
1635 * Allocates a dentry. It returns %NULL if there is insufficient memory
1636 * available. On a success the dentry is returned. The name passed in is
1637 * copied and the copy passed in may be reused after this call.
1638 */
1639 
1640static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1641{
1642	struct dentry *dentry;
1643	char *dname;
1644	int err;
1645
1646	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1647				      GFP_KERNEL);
1648	if (!dentry)
1649		return NULL;
1650
1651	/*
1652	 * We guarantee that the inline name is always NUL-terminated.
1653	 * This way the memcpy() done by the name switching in rename
1654	 * will still always have a NUL at the end, even if we might
1655	 * be overwriting an internal NUL character
1656	 */
1657	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1658	if (unlikely(!name)) {
1659		name = &slash_name;
1660		dname = dentry->d_iname;
1661	} else if (name->len > DNAME_INLINE_LEN-1) {
1662		size_t size = offsetof(struct external_name, name[1]);
1663		struct external_name *p = kmalloc(size + name->len,
1664						  GFP_KERNEL_ACCOUNT |
1665						  __GFP_RECLAIMABLE);
1666		if (!p) {
1667			kmem_cache_free(dentry_cache, dentry); 
1668			return NULL;
1669		}
1670		atomic_set(&p->u.count, 1);
1671		dname = p->name;
1672	} else  {
1673		dname = dentry->d_iname;
1674	}	
1675
1676	dentry->d_name.len = name->len;
1677	dentry->d_name.hash = name->hash;
1678	memcpy(dname, name->name, name->len);
1679	dname[name->len] = 0;
1680
1681	/* Make sure we always see the terminating NUL character */
1682	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1683
1684	dentry->d_lockref.count = 1;
1685	dentry->d_flags = 0;
1686	spin_lock_init(&dentry->d_lock);
1687	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1688	dentry->d_inode = NULL;
1689	dentry->d_parent = dentry;
1690	dentry->d_sb = sb;
1691	dentry->d_op = NULL;
1692	dentry->d_fsdata = NULL;
1693	INIT_HLIST_BL_NODE(&dentry->d_hash);
1694	INIT_LIST_HEAD(&dentry->d_lru);
1695	INIT_HLIST_HEAD(&dentry->d_children);
1696	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1697	INIT_HLIST_NODE(&dentry->d_sib);
1698	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1699
1700	if (dentry->d_op && dentry->d_op->d_init) {
1701		err = dentry->d_op->d_init(dentry);
1702		if (err) {
1703			if (dname_external(dentry))
1704				kfree(external_name(dentry));
1705			kmem_cache_free(dentry_cache, dentry);
1706			return NULL;
1707		}
1708	}
1709
1710	this_cpu_inc(nr_dentry);
1711
1712	return dentry;
1713}
1714
1715/**
1716 * d_alloc	-	allocate a dcache entry
1717 * @parent: parent of entry to allocate
1718 * @name: qstr of the name
1719 *
1720 * Allocates a dentry. It returns %NULL if there is insufficient memory
1721 * available. On a success the dentry is returned. The name passed in is
1722 * copied and the copy passed in may be reused after this call.
1723 */
1724struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1725{
1726	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1727	if (!dentry)
1728		return NULL;
1729	spin_lock(&parent->d_lock);
1730	/*
1731	 * don't need child lock because it is not subject
1732	 * to concurrency here
1733	 */
1734	dentry->d_parent = dget_dlock(parent);
1735	hlist_add_head(&dentry->d_sib, &parent->d_children);
 
1736	spin_unlock(&parent->d_lock);
1737
1738	return dentry;
1739}
1740EXPORT_SYMBOL(d_alloc);
1741
1742struct dentry *d_alloc_anon(struct super_block *sb)
1743{
1744	return __d_alloc(sb, NULL);
1745}
1746EXPORT_SYMBOL(d_alloc_anon);
1747
1748struct dentry *d_alloc_cursor(struct dentry * parent)
1749{
1750	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1751	if (dentry) {
1752		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1753		dentry->d_parent = dget(parent);
1754	}
1755	return dentry;
1756}
1757
1758/**
1759 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1760 * @sb: the superblock
1761 * @name: qstr of the name
1762 *
1763 * For a filesystem that just pins its dentries in memory and never
1764 * performs lookups at all, return an unhashed IS_ROOT dentry.
1765 * This is used for pipes, sockets et.al. - the stuff that should
1766 * never be anyone's children or parents.  Unlike all other
1767 * dentries, these will not have RCU delay between dropping the
1768 * last reference and freeing them.
1769 *
1770 * The only user is alloc_file_pseudo() and that's what should
1771 * be considered a public interface.  Don't use directly.
1772 */
1773struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1774{
1775	static const struct dentry_operations anon_ops = {
1776		.d_dname = simple_dname
1777	};
1778	struct dentry *dentry = __d_alloc(sb, name);
1779	if (likely(dentry)) {
1780		dentry->d_flags |= DCACHE_NORCU;
1781		if (!sb->s_d_op)
1782			d_set_d_op(dentry, &anon_ops);
1783	}
1784	return dentry;
1785}
1786
1787struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1788{
1789	struct qstr q;
1790
1791	q.name = name;
1792	q.hash_len = hashlen_string(parent, name);
1793	return d_alloc(parent, &q);
1794}
1795EXPORT_SYMBOL(d_alloc_name);
1796
1797void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1798{
1799	WARN_ON_ONCE(dentry->d_op);
1800	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1801				DCACHE_OP_COMPARE	|
1802				DCACHE_OP_REVALIDATE	|
1803				DCACHE_OP_WEAK_REVALIDATE	|
1804				DCACHE_OP_DELETE	|
1805				DCACHE_OP_REAL));
1806	dentry->d_op = op;
1807	if (!op)
1808		return;
1809	if (op->d_hash)
1810		dentry->d_flags |= DCACHE_OP_HASH;
1811	if (op->d_compare)
1812		dentry->d_flags |= DCACHE_OP_COMPARE;
1813	if (op->d_revalidate)
1814		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1815	if (op->d_weak_revalidate)
1816		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1817	if (op->d_delete)
1818		dentry->d_flags |= DCACHE_OP_DELETE;
1819	if (op->d_prune)
1820		dentry->d_flags |= DCACHE_OP_PRUNE;
1821	if (op->d_real)
1822		dentry->d_flags |= DCACHE_OP_REAL;
1823
1824}
1825EXPORT_SYMBOL(d_set_d_op);
1826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827static unsigned d_flags_for_inode(struct inode *inode)
1828{
1829	unsigned add_flags = DCACHE_REGULAR_TYPE;
1830
1831	if (!inode)
1832		return DCACHE_MISS_TYPE;
1833
1834	if (S_ISDIR(inode->i_mode)) {
1835		add_flags = DCACHE_DIRECTORY_TYPE;
1836		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1837			if (unlikely(!inode->i_op->lookup))
1838				add_flags = DCACHE_AUTODIR_TYPE;
1839			else
1840				inode->i_opflags |= IOP_LOOKUP;
1841		}
1842		goto type_determined;
1843	}
1844
1845	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1846		if (unlikely(inode->i_op->get_link)) {
1847			add_flags = DCACHE_SYMLINK_TYPE;
1848			goto type_determined;
1849		}
1850		inode->i_opflags |= IOP_NOFOLLOW;
1851	}
1852
1853	if (unlikely(!S_ISREG(inode->i_mode)))
1854		add_flags = DCACHE_SPECIAL_TYPE;
1855
1856type_determined:
1857	if (unlikely(IS_AUTOMOUNT(inode)))
1858		add_flags |= DCACHE_NEED_AUTOMOUNT;
1859	return add_flags;
1860}
1861
1862static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1863{
1864	unsigned add_flags = d_flags_for_inode(inode);
1865	WARN_ON(d_in_lookup(dentry));
1866
1867	spin_lock(&dentry->d_lock);
1868	/*
1869	 * The negative counter only tracks dentries on the LRU. Don't dec if
1870	 * d_lru is on another list.
1871	 */
1872	if ((dentry->d_flags &
1873	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1874		this_cpu_dec(nr_dentry_negative);
1875	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1876	raw_write_seqcount_begin(&dentry->d_seq);
1877	__d_set_inode_and_type(dentry, inode, add_flags);
1878	raw_write_seqcount_end(&dentry->d_seq);
1879	fsnotify_update_flags(dentry);
1880	spin_unlock(&dentry->d_lock);
1881}
1882
1883/**
1884 * d_instantiate - fill in inode information for a dentry
1885 * @entry: dentry to complete
1886 * @inode: inode to attach to this dentry
1887 *
1888 * Fill in inode information in the entry.
1889 *
1890 * This turns negative dentries into productive full members
1891 * of society.
1892 *
1893 * NOTE! This assumes that the inode count has been incremented
1894 * (or otherwise set) by the caller to indicate that it is now
1895 * in use by the dcache.
1896 */
1897 
1898void d_instantiate(struct dentry *entry, struct inode * inode)
1899{
1900	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1901	if (inode) {
1902		security_d_instantiate(entry, inode);
1903		spin_lock(&inode->i_lock);
1904		__d_instantiate(entry, inode);
1905		spin_unlock(&inode->i_lock);
1906	}
1907}
1908EXPORT_SYMBOL(d_instantiate);
1909
1910/*
1911 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1912 * with lockdep-related part of unlock_new_inode() done before
1913 * anything else.  Use that instead of open-coding d_instantiate()/
1914 * unlock_new_inode() combinations.
1915 */
1916void d_instantiate_new(struct dentry *entry, struct inode *inode)
1917{
1918	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1919	BUG_ON(!inode);
1920	lockdep_annotate_inode_mutex_key(inode);
1921	security_d_instantiate(entry, inode);
1922	spin_lock(&inode->i_lock);
1923	__d_instantiate(entry, inode);
1924	WARN_ON(!(inode->i_state & I_NEW));
1925	inode->i_state &= ~I_NEW & ~I_CREATING;
1926	/*
1927	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1928	 * ___wait_var_event() either sees the bit cleared or
1929	 * waitqueue_active() check in wake_up_var() sees the waiter.
1930	 */
1931	smp_mb();
1932	inode_wake_up_bit(inode, __I_NEW);
1933	spin_unlock(&inode->i_lock);
1934}
1935EXPORT_SYMBOL(d_instantiate_new);
1936
1937struct dentry *d_make_root(struct inode *root_inode)
1938{
1939	struct dentry *res = NULL;
1940
1941	if (root_inode) {
1942		res = d_alloc_anon(root_inode->i_sb);
1943		if (res)
1944			d_instantiate(res, root_inode);
1945		else
1946			iput(root_inode);
1947	}
1948	return res;
1949}
1950EXPORT_SYMBOL(d_make_root);
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1953{
1954	struct super_block *sb;
1955	struct dentry *new, *res;
1956
1957	if (!inode)
1958		return ERR_PTR(-ESTALE);
1959	if (IS_ERR(inode))
1960		return ERR_CAST(inode);
1961
1962	sb = inode->i_sb;
1963
1964	res = d_find_any_alias(inode); /* existing alias? */
1965	if (res)
1966		goto out;
1967
1968	new = d_alloc_anon(sb);
1969	if (!new) {
1970		res = ERR_PTR(-ENOMEM);
1971		goto out;
1972	}
1973
1974	security_d_instantiate(new, inode);
1975	spin_lock(&inode->i_lock);
1976	res = __d_find_any_alias(inode); /* recheck under lock */
1977	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1978		unsigned add_flags = d_flags_for_inode(inode);
1979
1980		if (disconnected)
1981			add_flags |= DCACHE_DISCONNECTED;
1982
1983		spin_lock(&new->d_lock);
1984		__d_set_inode_and_type(new, inode, add_flags);
1985		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1986		if (!disconnected) {
1987			hlist_bl_lock(&sb->s_roots);
1988			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1989			hlist_bl_unlock(&sb->s_roots);
1990		}
1991		spin_unlock(&new->d_lock);
1992		spin_unlock(&inode->i_lock);
1993		inode = NULL; /* consumed by new->d_inode */
1994		res = new;
1995	} else {
1996		spin_unlock(&inode->i_lock);
1997		dput(new);
1998	}
1999
2000 out:
2001	iput(inode);
2002	return res;
2003}
2004
2005/**
2006 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2008 *
2009 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2010 * similar open by handle operations.  The returned dentry may be anonymous,
2011 * or may have a full name (if the inode was already in the cache).
2012 *
2013 * When called on a directory inode, we must ensure that the inode only ever
2014 * has one dentry.  If a dentry is found, that is returned instead of
2015 * allocating a new one.
2016 *
2017 * On successful return, the reference to the inode has been transferred
2018 * to the dentry.  In case of an error the reference on the inode is released.
2019 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2020 * be passed in and the error will be propagated to the return value,
2021 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2022 */
2023struct dentry *d_obtain_alias(struct inode *inode)
2024{
2025	return __d_obtain_alias(inode, true);
2026}
2027EXPORT_SYMBOL(d_obtain_alias);
2028
2029/**
2030 * d_obtain_root - find or allocate a dentry for a given inode
2031 * @inode: inode to allocate the dentry for
2032 *
2033 * Obtain an IS_ROOT dentry for the root of a filesystem.
2034 *
2035 * We must ensure that directory inodes only ever have one dentry.  If a
2036 * dentry is found, that is returned instead of allocating a new one.
2037 *
2038 * On successful return, the reference to the inode has been transferred
2039 * to the dentry.  In case of an error the reference on the inode is
2040 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2041 * error will be propagate to the return value, with a %NULL @inode
2042 * replaced by ERR_PTR(-ESTALE).
2043 */
2044struct dentry *d_obtain_root(struct inode *inode)
2045{
2046	return __d_obtain_alias(inode, false);
2047}
2048EXPORT_SYMBOL(d_obtain_root);
2049
2050/**
2051 * d_add_ci - lookup or allocate new dentry with case-exact name
2052 * @dentry: the negative dentry that was passed to the parent's lookup func
2053 * @inode:  the inode case-insensitive lookup has found
 
2054 * @name:   the case-exact name to be associated with the returned dentry
2055 *
2056 * This is to avoid filling the dcache with case-insensitive names to the
2057 * same inode, only the actual correct case is stored in the dcache for
2058 * case-insensitive filesystems.
2059 *
2060 * For a case-insensitive lookup match and if the case-exact dentry
2061 * already exists in the dcache, use it and return it.
2062 *
2063 * If no entry exists with the exact case name, allocate new dentry with
2064 * the exact case, and return the spliced entry.
2065 */
2066struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2067			struct qstr *name)
2068{
2069	struct dentry *found, *res;
2070
2071	/*
2072	 * First check if a dentry matching the name already exists,
2073	 * if not go ahead and create it now.
2074	 */
2075	found = d_hash_and_lookup(dentry->d_parent, name);
2076	if (found) {
2077		iput(inode);
2078		return found;
2079	}
2080	if (d_in_lookup(dentry)) {
2081		found = d_alloc_parallel(dentry->d_parent, name,
2082					dentry->d_wait);
2083		if (IS_ERR(found) || !d_in_lookup(found)) {
2084			iput(inode);
2085			return found;
2086		}
2087	} else {
2088		found = d_alloc(dentry->d_parent, name);
2089		if (!found) {
2090			iput(inode);
2091			return ERR_PTR(-ENOMEM);
2092		} 
2093	}
2094	res = d_splice_alias(inode, found);
2095	if (res) {
2096		d_lookup_done(found);
2097		dput(found);
2098		return res;
2099	}
2100	return found;
2101}
2102EXPORT_SYMBOL(d_add_ci);
2103
2104/**
2105 * d_same_name - compare dentry name with case-exact name
2106 * @dentry: the negative dentry that was passed to the parent's lookup func
2107 * @parent: parent dentry
2108 * @name:   the case-exact name to be associated with the returned dentry
2109 *
2110 * Return: true if names are same, or false
2111 */
2112bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2113		 const struct qstr *name)
2114{
2115	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2116		if (dentry->d_name.len != name->len)
2117			return false;
2118		return dentry_cmp(dentry, name->name, name->len) == 0;
2119	}
2120	return parent->d_op->d_compare(dentry,
2121				       dentry->d_name.len, dentry->d_name.name,
2122				       name) == 0;
2123}
2124EXPORT_SYMBOL_GPL(d_same_name);
2125
2126/*
2127 * This is __d_lookup_rcu() when the parent dentry has
2128 * DCACHE_OP_COMPARE, which makes things much nastier.
2129 */
2130static noinline struct dentry *__d_lookup_rcu_op_compare(
2131	const struct dentry *parent,
2132	const struct qstr *name,
2133	unsigned *seqp)
2134{
2135	u64 hashlen = name->hash_len;
2136	struct hlist_bl_head *b = d_hash(hashlen);
2137	struct hlist_bl_node *node;
2138	struct dentry *dentry;
2139
2140	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2141		int tlen;
2142		const char *tname;
2143		unsigned seq;
2144
2145seqretry:
2146		seq = raw_seqcount_begin(&dentry->d_seq);
2147		if (dentry->d_parent != parent)
2148			continue;
2149		if (d_unhashed(dentry))
2150			continue;
2151		if (dentry->d_name.hash != hashlen_hash(hashlen))
2152			continue;
2153		tlen = dentry->d_name.len;
2154		tname = dentry->d_name.name;
2155		/* we want a consistent (name,len) pair */
2156		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2157			cpu_relax();
2158			goto seqretry;
2159		}
2160		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2161			continue;
2162		*seqp = seq;
2163		return dentry;
2164	}
2165	return NULL;
2166}
2167
2168/**
2169 * __d_lookup_rcu - search for a dentry (racy, store-free)
2170 * @parent: parent dentry
2171 * @name: qstr of name we wish to find
2172 * @seqp: returns d_seq value at the point where the dentry was found
2173 * Returns: dentry, or NULL
2174 *
2175 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2176 * resolution (store-free path walking) design described in
2177 * Documentation/filesystems/path-lookup.txt.
2178 *
2179 * This is not to be used outside core vfs.
2180 *
2181 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2182 * held, and rcu_read_lock held. The returned dentry must not be stored into
2183 * without taking d_lock and checking d_seq sequence count against @seq
2184 * returned here.
2185 *
 
 
 
2186 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2187 * the returned dentry, so long as its parent's seqlock is checked after the
2188 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2189 * is formed, giving integrity down the path walk.
2190 *
2191 * NOTE! The caller *has* to check the resulting dentry against the sequence
2192 * number we've returned before using any of the resulting dentry state!
2193 */
2194struct dentry *__d_lookup_rcu(const struct dentry *parent,
2195				const struct qstr *name,
2196				unsigned *seqp)
2197{
2198	u64 hashlen = name->hash_len;
2199	const unsigned char *str = name->name;
2200	struct hlist_bl_head *b = d_hash(hashlen);
2201	struct hlist_bl_node *node;
2202	struct dentry *dentry;
2203
2204	/*
2205	 * Note: There is significant duplication with __d_lookup_rcu which is
2206	 * required to prevent single threaded performance regressions
2207	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2208	 * Keep the two functions in sync.
2209	 */
2210
2211	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2212		return __d_lookup_rcu_op_compare(parent, name, seqp);
2213
2214	/*
2215	 * The hash list is protected using RCU.
2216	 *
2217	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2218	 * races with d_move().
2219	 *
2220	 * It is possible that concurrent renames can mess up our list
2221	 * walk here and result in missing our dentry, resulting in the
2222	 * false-negative result. d_lookup() protects against concurrent
2223	 * renames using rename_lock seqlock.
2224	 *
2225	 * See Documentation/filesystems/path-lookup.txt for more details.
2226	 */
2227	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2228		unsigned seq;
2229
 
2230		/*
2231		 * The dentry sequence count protects us from concurrent
2232		 * renames, and thus protects parent and name fields.
2233		 *
2234		 * The caller must perform a seqcount check in order
2235		 * to do anything useful with the returned dentry.
2236		 *
2237		 * NOTE! We do a "raw" seqcount_begin here. That means that
2238		 * we don't wait for the sequence count to stabilize if it
2239		 * is in the middle of a sequence change. If we do the slow
2240		 * dentry compare, we will do seqretries until it is stable,
2241		 * and if we end up with a successful lookup, we actually
2242		 * want to exit RCU lookup anyway.
2243		 *
2244		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2245		 * we are still guaranteed NUL-termination of ->d_name.name.
2246		 */
2247		seq = raw_seqcount_begin(&dentry->d_seq);
2248		if (dentry->d_parent != parent)
2249			continue;
2250		if (d_unhashed(dentry))
2251			continue;
2252		if (dentry->d_name.hash_len != hashlen)
2253			continue;
2254		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2255			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256		*seqp = seq;
2257		return dentry;
2258	}
2259	return NULL;
2260}
2261
2262/**
2263 * d_lookup - search for a dentry
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * d_lookup searches the children of the parent dentry for the name in
2269 * question. If the dentry is found its reference count is incremented and the
2270 * dentry is returned. The caller must use dput to free the entry when it has
2271 * finished using it. %NULL is returned if the dentry does not exist.
2272 */
2273struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2274{
2275	struct dentry *dentry;
2276	unsigned seq;
2277
2278	do {
2279		seq = read_seqbegin(&rename_lock);
2280		dentry = __d_lookup(parent, name);
2281		if (dentry)
2282			break;
2283	} while (read_seqretry(&rename_lock, seq));
2284	return dentry;
2285}
2286EXPORT_SYMBOL(d_lookup);
2287
2288/**
2289 * __d_lookup - search for a dentry (racy)
2290 * @parent: parent dentry
2291 * @name: qstr of name we wish to find
2292 * Returns: dentry, or NULL
2293 *
2294 * __d_lookup is like d_lookup, however it may (rarely) return a
2295 * false-negative result due to unrelated rename activity.
2296 *
2297 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2298 * however it must be used carefully, eg. with a following d_lookup in
2299 * the case of failure.
2300 *
2301 * __d_lookup callers must be commented.
2302 */
2303struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2304{
2305	unsigned int hash = name->hash;
2306	struct hlist_bl_head *b = d_hash(hash);
2307	struct hlist_bl_node *node;
2308	struct dentry *found = NULL;
2309	struct dentry *dentry;
2310
2311	/*
2312	 * Note: There is significant duplication with __d_lookup_rcu which is
2313	 * required to prevent single threaded performance regressions
2314	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2315	 * Keep the two functions in sync.
2316	 */
2317
2318	/*
2319	 * The hash list is protected using RCU.
2320	 *
2321	 * Take d_lock when comparing a candidate dentry, to avoid races
2322	 * with d_move().
2323	 *
2324	 * It is possible that concurrent renames can mess up our list
2325	 * walk here and result in missing our dentry, resulting in the
2326	 * false-negative result. d_lookup() protects against concurrent
2327	 * renames using rename_lock seqlock.
2328	 *
2329	 * See Documentation/filesystems/path-lookup.txt for more details.
2330	 */
2331	rcu_read_lock();
2332	
2333	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2334
2335		if (dentry->d_name.hash != hash)
2336			continue;
2337
2338		spin_lock(&dentry->d_lock);
2339		if (dentry->d_parent != parent)
2340			goto next;
2341		if (d_unhashed(dentry))
2342			goto next;
2343
2344		if (!d_same_name(dentry, parent, name))
2345			goto next;
2346
2347		dentry->d_lockref.count++;
2348		found = dentry;
2349		spin_unlock(&dentry->d_lock);
2350		break;
2351next:
2352		spin_unlock(&dentry->d_lock);
2353 	}
2354 	rcu_read_unlock();
2355
2356 	return found;
2357}
2358
2359/**
2360 * d_hash_and_lookup - hash the qstr then search for a dentry
2361 * @dir: Directory to search in
2362 * @name: qstr of name we wish to find
2363 *
2364 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2365 */
2366struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2367{
2368	/*
2369	 * Check for a fs-specific hash function. Note that we must
2370	 * calculate the standard hash first, as the d_op->d_hash()
2371	 * routine may choose to leave the hash value unchanged.
2372	 */
2373	name->hash = full_name_hash(dir, name->name, name->len);
2374	if (dir->d_flags & DCACHE_OP_HASH) {
2375		int err = dir->d_op->d_hash(dir, name);
2376		if (unlikely(err < 0))
2377			return ERR_PTR(err);
2378	}
2379	return d_lookup(dir, name);
2380}
2381EXPORT_SYMBOL(d_hash_and_lookup);
2382
2383/*
2384 * When a file is deleted, we have two options:
2385 * - turn this dentry into a negative dentry
2386 * - unhash this dentry and free it.
2387 *
2388 * Usually, we want to just turn this into
2389 * a negative dentry, but if anybody else is
2390 * currently using the dentry or the inode
2391 * we can't do that and we fall back on removing
2392 * it from the hash queues and waiting for
2393 * it to be deleted later when it has no users
2394 */
2395 
2396/**
2397 * d_delete - delete a dentry
2398 * @dentry: The dentry to delete
2399 *
2400 * Turn the dentry into a negative dentry if possible, otherwise
2401 * remove it from the hash queues so it can be deleted later
2402 */
2403 
2404void d_delete(struct dentry * dentry)
2405{
2406	struct inode *inode = dentry->d_inode;
2407
2408	spin_lock(&inode->i_lock);
2409	spin_lock(&dentry->d_lock);
2410	/*
2411	 * Are we the only user?
2412	 */
2413	if (dentry->d_lockref.count == 1) {
2414		if (dentry_negative_policy)
2415			__d_drop(dentry);
2416		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2417		dentry_unlink_inode(dentry);
2418	} else {
2419		__d_drop(dentry);
2420		spin_unlock(&dentry->d_lock);
2421		spin_unlock(&inode->i_lock);
2422	}
2423}
2424EXPORT_SYMBOL(d_delete);
2425
2426static void __d_rehash(struct dentry *entry)
2427{
2428	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2429
2430	hlist_bl_lock(b);
2431	hlist_bl_add_head_rcu(&entry->d_hash, b);
2432	hlist_bl_unlock(b);
2433}
2434
2435/**
2436 * d_rehash	- add an entry back to the hash
2437 * @entry: dentry to add to the hash
2438 *
2439 * Adds a dentry to the hash according to its name.
2440 */
2441 
2442void d_rehash(struct dentry * entry)
2443{
2444	spin_lock(&entry->d_lock);
2445	__d_rehash(entry);
2446	spin_unlock(&entry->d_lock);
2447}
2448EXPORT_SYMBOL(d_rehash);
2449
2450static inline unsigned start_dir_add(struct inode *dir)
2451{
2452	preempt_disable_nested();
2453	for (;;) {
2454		unsigned n = dir->i_dir_seq;
2455		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2456			return n;
2457		cpu_relax();
2458	}
2459}
2460
2461static inline void end_dir_add(struct inode *dir, unsigned int n,
2462			       wait_queue_head_t *d_wait)
2463{
2464	smp_store_release(&dir->i_dir_seq, n + 2);
2465	preempt_enable_nested();
2466	wake_up_all(d_wait);
2467}
2468
2469static void d_wait_lookup(struct dentry *dentry)
2470{
2471	if (d_in_lookup(dentry)) {
2472		DECLARE_WAITQUEUE(wait, current);
2473		add_wait_queue(dentry->d_wait, &wait);
2474		do {
2475			set_current_state(TASK_UNINTERRUPTIBLE);
2476			spin_unlock(&dentry->d_lock);
2477			schedule();
2478			spin_lock(&dentry->d_lock);
2479		} while (d_in_lookup(dentry));
2480	}
2481}
2482
2483struct dentry *d_alloc_parallel(struct dentry *parent,
2484				const struct qstr *name,
2485				wait_queue_head_t *wq)
2486{
2487	unsigned int hash = name->hash;
2488	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2489	struct hlist_bl_node *node;
2490	struct dentry *new = d_alloc(parent, name);
2491	struct dentry *dentry;
2492	unsigned seq, r_seq, d_seq;
2493
2494	if (unlikely(!new))
2495		return ERR_PTR(-ENOMEM);
2496
2497retry:
2498	rcu_read_lock();
2499	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2500	r_seq = read_seqbegin(&rename_lock);
2501	dentry = __d_lookup_rcu(parent, name, &d_seq);
2502	if (unlikely(dentry)) {
2503		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2504			rcu_read_unlock();
2505			goto retry;
2506		}
2507		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2508			rcu_read_unlock();
2509			dput(dentry);
2510			goto retry;
2511		}
2512		rcu_read_unlock();
2513		dput(new);
2514		return dentry;
2515	}
2516	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2517		rcu_read_unlock();
2518		goto retry;
2519	}
2520
2521	if (unlikely(seq & 1)) {
2522		rcu_read_unlock();
2523		goto retry;
2524	}
2525
2526	hlist_bl_lock(b);
2527	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2528		hlist_bl_unlock(b);
2529		rcu_read_unlock();
2530		goto retry;
2531	}
2532	/*
2533	 * No changes for the parent since the beginning of d_lookup().
2534	 * Since all removals from the chain happen with hlist_bl_lock(),
2535	 * any potential in-lookup matches are going to stay here until
2536	 * we unlock the chain.  All fields are stable in everything
2537	 * we encounter.
2538	 */
2539	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2540		if (dentry->d_name.hash != hash)
2541			continue;
2542		if (dentry->d_parent != parent)
2543			continue;
2544		if (!d_same_name(dentry, parent, name))
2545			continue;
2546		hlist_bl_unlock(b);
2547		/* now we can try to grab a reference */
2548		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2549			rcu_read_unlock();
2550			goto retry;
2551		}
2552
2553		rcu_read_unlock();
2554		/*
2555		 * somebody is likely to be still doing lookup for it;
2556		 * wait for them to finish
2557		 */
2558		spin_lock(&dentry->d_lock);
2559		d_wait_lookup(dentry);
2560		/*
2561		 * it's not in-lookup anymore; in principle we should repeat
2562		 * everything from dcache lookup, but it's likely to be what
2563		 * d_lookup() would've found anyway.  If it is, just return it;
2564		 * otherwise we really have to repeat the whole thing.
2565		 */
2566		if (unlikely(dentry->d_name.hash != hash))
2567			goto mismatch;
2568		if (unlikely(dentry->d_parent != parent))
2569			goto mismatch;
2570		if (unlikely(d_unhashed(dentry)))
2571			goto mismatch;
2572		if (unlikely(!d_same_name(dentry, parent, name)))
2573			goto mismatch;
2574		/* OK, it *is* a hashed match; return it */
2575		spin_unlock(&dentry->d_lock);
2576		dput(new);
2577		return dentry;
2578	}
2579	rcu_read_unlock();
2580	/* we can't take ->d_lock here; it's OK, though. */
2581	new->d_flags |= DCACHE_PAR_LOOKUP;
2582	new->d_wait = wq;
2583	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2584	hlist_bl_unlock(b);
2585	return new;
2586mismatch:
2587	spin_unlock(&dentry->d_lock);
2588	dput(dentry);
2589	goto retry;
2590}
2591EXPORT_SYMBOL(d_alloc_parallel);
2592
2593/*
2594 * - Unhash the dentry
2595 * - Retrieve and clear the waitqueue head in dentry
2596 * - Return the waitqueue head
2597 */
2598static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2599{
2600	wait_queue_head_t *d_wait;
2601	struct hlist_bl_head *b;
2602
2603	lockdep_assert_held(&dentry->d_lock);
2604
2605	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2606	hlist_bl_lock(b);
2607	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2608	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2609	d_wait = dentry->d_wait;
2610	dentry->d_wait = NULL;
2611	hlist_bl_unlock(b);
2612	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2613	INIT_LIST_HEAD(&dentry->d_lru);
2614	return d_wait;
2615}
2616
2617void __d_lookup_unhash_wake(struct dentry *dentry)
2618{
2619	spin_lock(&dentry->d_lock);
2620	wake_up_all(__d_lookup_unhash(dentry));
2621	spin_unlock(&dentry->d_lock);
2622}
2623EXPORT_SYMBOL(__d_lookup_unhash_wake);
2624
2625/* inode->i_lock held if inode is non-NULL */
2626
2627static inline void __d_add(struct dentry *dentry, struct inode *inode)
2628{
2629	wait_queue_head_t *d_wait;
2630	struct inode *dir = NULL;
2631	unsigned n;
2632	spin_lock(&dentry->d_lock);
2633	if (unlikely(d_in_lookup(dentry))) {
2634		dir = dentry->d_parent->d_inode;
2635		n = start_dir_add(dir);
2636		d_wait = __d_lookup_unhash(dentry);
2637	}
2638	if (inode) {
2639		unsigned add_flags = d_flags_for_inode(inode);
2640		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2641		raw_write_seqcount_begin(&dentry->d_seq);
2642		__d_set_inode_and_type(dentry, inode, add_flags);
2643		raw_write_seqcount_end(&dentry->d_seq);
2644		fsnotify_update_flags(dentry);
2645	}
2646	__d_rehash(dentry);
2647	if (dir)
2648		end_dir_add(dir, n, d_wait);
2649	spin_unlock(&dentry->d_lock);
2650	if (inode)
2651		spin_unlock(&inode->i_lock);
2652}
2653
2654/**
2655 * d_add - add dentry to hash queues
2656 * @entry: dentry to add
2657 * @inode: The inode to attach to this dentry
2658 *
2659 * This adds the entry to the hash queues and initializes @inode.
2660 * The entry was actually filled in earlier during d_alloc().
2661 */
2662
2663void d_add(struct dentry *entry, struct inode *inode)
2664{
2665	if (inode) {
2666		security_d_instantiate(entry, inode);
2667		spin_lock(&inode->i_lock);
2668	}
2669	__d_add(entry, inode);
2670}
2671EXPORT_SYMBOL(d_add);
2672
2673/**
2674 * d_exact_alias - find and hash an exact unhashed alias
2675 * @entry: dentry to add
2676 * @inode: The inode to go with this dentry
2677 *
2678 * If an unhashed dentry with the same name/parent and desired
2679 * inode already exists, hash and return it.  Otherwise, return
2680 * NULL.
2681 *
2682 * Parent directory should be locked.
2683 */
2684struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2685{
2686	struct dentry *alias;
2687	unsigned int hash = entry->d_name.hash;
2688
2689	spin_lock(&inode->i_lock);
2690	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2691		/*
2692		 * Don't need alias->d_lock here, because aliases with
2693		 * d_parent == entry->d_parent are not subject to name or
2694		 * parent changes, because the parent inode i_mutex is held.
2695		 */
2696		if (alias->d_name.hash != hash)
2697			continue;
2698		if (alias->d_parent != entry->d_parent)
2699			continue;
2700		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2701			continue;
2702		spin_lock(&alias->d_lock);
2703		if (!d_unhashed(alias)) {
2704			spin_unlock(&alias->d_lock);
2705			alias = NULL;
2706		} else {
2707			dget_dlock(alias);
2708			__d_rehash(alias);
2709			spin_unlock(&alias->d_lock);
2710		}
2711		spin_unlock(&inode->i_lock);
2712		return alias;
2713	}
2714	spin_unlock(&inode->i_lock);
2715	return NULL;
2716}
2717EXPORT_SYMBOL(d_exact_alias);
2718
2719static void swap_names(struct dentry *dentry, struct dentry *target)
2720{
2721	if (unlikely(dname_external(target))) {
2722		if (unlikely(dname_external(dentry))) {
2723			/*
2724			 * Both external: swap the pointers
2725			 */
2726			swap(target->d_name.name, dentry->d_name.name);
2727		} else {
2728			/*
2729			 * dentry:internal, target:external.  Steal target's
2730			 * storage and make target internal.
2731			 */
2732			memcpy(target->d_iname, dentry->d_name.name,
2733					dentry->d_name.len + 1);
2734			dentry->d_name.name = target->d_name.name;
2735			target->d_name.name = target->d_iname;
2736		}
2737	} else {
2738		if (unlikely(dname_external(dentry))) {
2739			/*
2740			 * dentry:external, target:internal.  Give dentry's
2741			 * storage to target and make dentry internal
2742			 */
2743			memcpy(dentry->d_iname, target->d_name.name,
2744					target->d_name.len + 1);
2745			target->d_name.name = dentry->d_name.name;
2746			dentry->d_name.name = dentry->d_iname;
2747		} else {
2748			/*
2749			 * Both are internal.
2750			 */
2751			unsigned int i;
2752			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2753			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2754				swap(((long *) &dentry->d_iname)[i],
2755				     ((long *) &target->d_iname)[i]);
2756			}
2757		}
2758	}
2759	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2760}
2761
2762static void copy_name(struct dentry *dentry, struct dentry *target)
2763{
2764	struct external_name *old_name = NULL;
2765	if (unlikely(dname_external(dentry)))
2766		old_name = external_name(dentry);
2767	if (unlikely(dname_external(target))) {
2768		atomic_inc(&external_name(target)->u.count);
2769		dentry->d_name = target->d_name;
2770	} else {
2771		memcpy(dentry->d_iname, target->d_name.name,
2772				target->d_name.len + 1);
2773		dentry->d_name.name = dentry->d_iname;
2774		dentry->d_name.hash_len = target->d_name.hash_len;
2775	}
2776	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2777		kfree_rcu(old_name, u.head);
2778}
2779
2780/*
2781 * __d_move - move a dentry
2782 * @dentry: entry to move
2783 * @target: new dentry
2784 * @exchange: exchange the two dentries
2785 *
2786 * Update the dcache to reflect the move of a file name. Negative
2787 * dcache entries should not be moved in this way. Caller must hold
2788 * rename_lock, the i_mutex of the source and target directories,
2789 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2790 */
2791static void __d_move(struct dentry *dentry, struct dentry *target,
2792		     bool exchange)
2793{
2794	struct dentry *old_parent, *p;
2795	wait_queue_head_t *d_wait;
2796	struct inode *dir = NULL;
2797	unsigned n;
2798
2799	WARN_ON(!dentry->d_inode);
2800	if (WARN_ON(dentry == target))
2801		return;
2802
2803	BUG_ON(d_ancestor(target, dentry));
2804	old_parent = dentry->d_parent;
2805	p = d_ancestor(old_parent, target);
2806	if (IS_ROOT(dentry)) {
2807		BUG_ON(p);
2808		spin_lock(&target->d_parent->d_lock);
2809	} else if (!p) {
2810		/* target is not a descendent of dentry->d_parent */
2811		spin_lock(&target->d_parent->d_lock);
2812		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2813	} else {
2814		BUG_ON(p == dentry);
2815		spin_lock(&old_parent->d_lock);
2816		if (p != target)
2817			spin_lock_nested(&target->d_parent->d_lock,
2818					DENTRY_D_LOCK_NESTED);
2819	}
2820	spin_lock_nested(&dentry->d_lock, 2);
2821	spin_lock_nested(&target->d_lock, 3);
2822
2823	if (unlikely(d_in_lookup(target))) {
2824		dir = target->d_parent->d_inode;
2825		n = start_dir_add(dir);
2826		d_wait = __d_lookup_unhash(target);
2827	}
2828
2829	write_seqcount_begin(&dentry->d_seq);
2830	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2831
2832	/* unhash both */
2833	if (!d_unhashed(dentry))
2834		___d_drop(dentry);
2835	if (!d_unhashed(target))
2836		___d_drop(target);
2837
2838	/* ... and switch them in the tree */
2839	dentry->d_parent = target->d_parent;
2840	if (!exchange) {
2841		copy_name(dentry, target);
2842		target->d_hash.pprev = NULL;
2843		dentry->d_parent->d_lockref.count++;
2844		if (dentry != old_parent) /* wasn't IS_ROOT */
2845			WARN_ON(!--old_parent->d_lockref.count);
2846	} else {
2847		target->d_parent = old_parent;
2848		swap_names(dentry, target);
2849		if (!hlist_unhashed(&target->d_sib))
2850			__hlist_del(&target->d_sib);
2851		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2852		__d_rehash(target);
2853		fsnotify_update_flags(target);
2854	}
2855	if (!hlist_unhashed(&dentry->d_sib))
2856		__hlist_del(&dentry->d_sib);
2857	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2858	__d_rehash(dentry);
2859	fsnotify_update_flags(dentry);
2860	fscrypt_handle_d_move(dentry);
2861
2862	write_seqcount_end(&target->d_seq);
2863	write_seqcount_end(&dentry->d_seq);
2864
2865	if (dir)
2866		end_dir_add(dir, n, d_wait);
2867
2868	if (dentry->d_parent != old_parent)
2869		spin_unlock(&dentry->d_parent->d_lock);
2870	if (dentry != old_parent)
2871		spin_unlock(&old_parent->d_lock);
2872	spin_unlock(&target->d_lock);
2873	spin_unlock(&dentry->d_lock);
2874}
2875
2876/*
2877 * d_move - move a dentry
2878 * @dentry: entry to move
2879 * @target: new dentry
2880 *
2881 * Update the dcache to reflect the move of a file name. Negative
2882 * dcache entries should not be moved in this way. See the locking
2883 * requirements for __d_move.
2884 */
2885void d_move(struct dentry *dentry, struct dentry *target)
2886{
2887	write_seqlock(&rename_lock);
2888	__d_move(dentry, target, false);
2889	write_sequnlock(&rename_lock);
2890}
2891EXPORT_SYMBOL(d_move);
2892
2893/*
2894 * d_exchange - exchange two dentries
2895 * @dentry1: first dentry
2896 * @dentry2: second dentry
2897 */
2898void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2899{
2900	write_seqlock(&rename_lock);
2901
2902	WARN_ON(!dentry1->d_inode);
2903	WARN_ON(!dentry2->d_inode);
2904	WARN_ON(IS_ROOT(dentry1));
2905	WARN_ON(IS_ROOT(dentry2));
2906
2907	__d_move(dentry1, dentry2, true);
2908
2909	write_sequnlock(&rename_lock);
2910}
2911
2912/**
2913 * d_ancestor - search for an ancestor
2914 * @p1: ancestor dentry
2915 * @p2: child dentry
2916 *
2917 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2918 * an ancestor of p2, else NULL.
2919 */
2920struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2921{
2922	struct dentry *p;
2923
2924	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2925		if (p->d_parent == p1)
2926			return p;
2927	}
2928	return NULL;
2929}
2930
2931/*
2932 * This helper attempts to cope with remotely renamed directories
2933 *
2934 * It assumes that the caller is already holding
2935 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2936 *
2937 * Note: If ever the locking in lock_rename() changes, then please
2938 * remember to update this too...
2939 */
2940static int __d_unalias(struct dentry *dentry, struct dentry *alias)
 
2941{
2942	struct mutex *m1 = NULL;
2943	struct rw_semaphore *m2 = NULL;
2944	int ret = -ESTALE;
2945
2946	/* If alias and dentry share a parent, then no extra locks required */
2947	if (alias->d_parent == dentry->d_parent)
2948		goto out_unalias;
2949
2950	/* See lock_rename() */
2951	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2952		goto out_err;
2953	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2954	if (!inode_trylock_shared(alias->d_parent->d_inode))
2955		goto out_err;
2956	m2 = &alias->d_parent->d_inode->i_rwsem;
2957out_unalias:
2958	__d_move(alias, dentry, false);
2959	ret = 0;
2960out_err:
2961	if (m2)
2962		up_read(m2);
2963	if (m1)
2964		mutex_unlock(m1);
2965	return ret;
2966}
2967
2968/**
2969 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2970 * @inode:  the inode which may have a disconnected dentry
2971 * @dentry: a negative dentry which we want to point to the inode.
2972 *
2973 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2974 * place of the given dentry and return it, else simply d_add the inode
2975 * to the dentry and return NULL.
2976 *
2977 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2978 * we should error out: directories can't have multiple aliases.
2979 *
2980 * This is needed in the lookup routine of any filesystem that is exportable
2981 * (via knfsd) so that we can build dcache paths to directories effectively.
2982 *
2983 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2984 * is returned.  This matches the expected return value of ->lookup.
2985 *
2986 * Cluster filesystems may call this function with a negative, hashed dentry.
2987 * In that case, we know that the inode will be a regular file, and also this
2988 * will only occur during atomic_open. So we need to check for the dentry
2989 * being already hashed only in the final case.
2990 */
2991struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2992{
2993	if (IS_ERR(inode))
2994		return ERR_CAST(inode);
2995
2996	BUG_ON(!d_unhashed(dentry));
2997
2998	if (!inode)
2999		goto out;
3000
3001	security_d_instantiate(dentry, inode);
3002	spin_lock(&inode->i_lock);
3003	if (S_ISDIR(inode->i_mode)) {
3004		struct dentry *new = __d_find_any_alias(inode);
3005		if (unlikely(new)) {
3006			/* The reference to new ensures it remains an alias */
3007			spin_unlock(&inode->i_lock);
3008			write_seqlock(&rename_lock);
3009			if (unlikely(d_ancestor(new, dentry))) {
3010				write_sequnlock(&rename_lock);
3011				dput(new);
3012				new = ERR_PTR(-ELOOP);
3013				pr_warn_ratelimited(
3014					"VFS: Lookup of '%s' in %s %s"
3015					" would have caused loop\n",
3016					dentry->d_name.name,
3017					inode->i_sb->s_type->name,
3018					inode->i_sb->s_id);
3019			} else if (!IS_ROOT(new)) {
3020				struct dentry *old_parent = dget(new->d_parent);
3021				int err = __d_unalias(dentry, new);
3022				write_sequnlock(&rename_lock);
3023				if (err) {
3024					dput(new);
3025					new = ERR_PTR(err);
3026				}
3027				dput(old_parent);
3028			} else {
3029				__d_move(new, dentry, false);
3030				write_sequnlock(&rename_lock);
3031			}
3032			iput(inode);
3033			return new;
3034		}
3035	}
3036out:
3037	__d_add(dentry, inode);
3038	return NULL;
3039}
3040EXPORT_SYMBOL(d_splice_alias);
3041
3042/*
3043 * Test whether new_dentry is a subdirectory of old_dentry.
3044 *
3045 * Trivially implemented using the dcache structure
3046 */
3047
3048/**
3049 * is_subdir - is new dentry a subdirectory of old_dentry
3050 * @new_dentry: new dentry
3051 * @old_dentry: old dentry
3052 *
3053 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3054 * Returns false otherwise.
3055 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3056 */
3057  
3058bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3059{
3060	bool subdir;
3061	unsigned seq;
3062
3063	if (new_dentry == old_dentry)
3064		return true;
3065
3066	/* Access d_parent under rcu as d_move() may change it. */
3067	rcu_read_lock();
3068	seq = read_seqbegin(&rename_lock);
3069	subdir = d_ancestor(old_dentry, new_dentry);
3070	 /* Try lockless once... */
3071	if (read_seqretry(&rename_lock, seq)) {
3072		/* ...else acquire lock for progress even on deep chains. */
3073		read_seqlock_excl(&rename_lock);
3074		subdir = d_ancestor(old_dentry, new_dentry);
3075		read_sequnlock_excl(&rename_lock);
3076	}
3077	rcu_read_unlock();
3078	return subdir;
 
 
 
3079}
3080EXPORT_SYMBOL(is_subdir);
3081
3082static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3083{
3084	struct dentry *root = data;
3085	if (dentry != root) {
3086		if (d_unhashed(dentry) || !dentry->d_inode)
3087			return D_WALK_SKIP;
3088
3089		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3090			dentry->d_flags |= DCACHE_GENOCIDE;
3091			dentry->d_lockref.count--;
3092		}
3093	}
3094	return D_WALK_CONTINUE;
3095}
3096
3097void d_genocide(struct dentry *parent)
3098{
3099	d_walk(parent, parent, d_genocide_kill);
3100}
3101
3102void d_mark_tmpfile(struct file *file, struct inode *inode)
3103{
3104	struct dentry *dentry = file->f_path.dentry;
3105
 
 
 
3106	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3107		!hlist_unhashed(&dentry->d_u.d_alias) ||
3108		!d_unlinked(dentry));
3109	spin_lock(&dentry->d_parent->d_lock);
3110	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3111	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3112				(unsigned long long)inode->i_ino);
3113	spin_unlock(&dentry->d_lock);
3114	spin_unlock(&dentry->d_parent->d_lock);
3115}
3116EXPORT_SYMBOL(d_mark_tmpfile);
3117
3118void d_tmpfile(struct file *file, struct inode *inode)
3119{
3120	struct dentry *dentry = file->f_path.dentry;
3121
3122	inode_dec_link_count(inode);
3123	d_mark_tmpfile(file, inode);
3124	d_instantiate(dentry, inode);
3125}
3126EXPORT_SYMBOL(d_tmpfile);
3127
3128/*
3129 * Obtain inode number of the parent dentry.
3130 */
3131ino_t d_parent_ino(struct dentry *dentry)
3132{
3133	struct dentry *parent;
3134	struct inode *iparent;
3135	unsigned seq;
3136	ino_t ret;
3137
3138	scoped_guard(rcu) {
3139		seq = raw_seqcount_begin(&dentry->d_seq);
3140		parent = READ_ONCE(dentry->d_parent);
3141		iparent = d_inode_rcu(parent);
3142		if (likely(iparent)) {
3143			ret = iparent->i_ino;
3144			if (!read_seqcount_retry(&dentry->d_seq, seq))
3145				return ret;
3146		}
3147	}
3148
3149	spin_lock(&dentry->d_lock);
3150	ret = dentry->d_parent->d_inode->i_ino;
3151	spin_unlock(&dentry->d_lock);
3152	return ret;
3153}
3154EXPORT_SYMBOL(d_parent_ino);
3155
3156static __initdata unsigned long dhash_entries;
3157static int __init set_dhash_entries(char *str)
3158{
3159	if (!str)
3160		return 0;
3161	dhash_entries = simple_strtoul(str, &str, 0);
3162	return 1;
3163}
3164__setup("dhash_entries=", set_dhash_entries);
3165
3166static void __init dcache_init_early(void)
3167{
3168	/* If hashes are distributed across NUMA nodes, defer
3169	 * hash allocation until vmalloc space is available.
3170	 */
3171	if (hashdist)
3172		return;
3173
3174	dentry_hashtable =
3175		alloc_large_system_hash("Dentry cache",
3176					sizeof(struct hlist_bl_head),
3177					dhash_entries,
3178					13,
3179					HASH_EARLY | HASH_ZERO,
3180					&d_hash_shift,
3181					NULL,
3182					0,
3183					0);
3184	d_hash_shift = 32 - d_hash_shift;
3185
3186	runtime_const_init(shift, d_hash_shift);
3187	runtime_const_init(ptr, dentry_hashtable);
3188}
3189
3190static void __init dcache_init(void)
3191{
3192	/*
3193	 * A constructor could be added for stable state like the lists,
3194	 * but it is probably not worth it because of the cache nature
3195	 * of the dcache.
3196	 */
3197	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3198		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3199		d_iname);
3200
3201	/* Hash may have been set up in dcache_init_early */
3202	if (!hashdist)
3203		return;
3204
3205	dentry_hashtable =
3206		alloc_large_system_hash("Dentry cache",
3207					sizeof(struct hlist_bl_head),
3208					dhash_entries,
3209					13,
3210					HASH_ZERO,
3211					&d_hash_shift,
3212					NULL,
3213					0,
3214					0);
3215	d_hash_shift = 32 - d_hash_shift;
3216
3217	runtime_const_init(shift, d_hash_shift);
3218	runtime_const_init(ptr, dentry_hashtable);
3219}
3220
3221/* SLAB cache for __getname() consumers */
3222struct kmem_cache *names_cachep __ro_after_init;
3223EXPORT_SYMBOL(names_cachep);
3224
3225void __init vfs_caches_init_early(void)
3226{
3227	int i;
3228
3229	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3230		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3231
3232	dcache_init_early();
3233	inode_init_early();
3234}
3235
3236void __init vfs_caches_init(void)
3237{
3238	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3239			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3240
3241	dcache_init();
3242	inode_init();
3243	files_init();
3244	files_maxfiles_init();
3245	mnt_init();
3246	bdev_cache_init();
3247	chrdev_init();
3248}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
  35#include "internal.h"
  36#include "mount.h"
  37
 
 
  38/*
  39 * Usage:
  40 * dcache->d_inode->i_lock protects:
  41 *   - i_dentry, d_u.d_alias, d_inode of aliases
  42 * dcache_hash_bucket lock protects:
  43 *   - the dcache hash table
  44 * s_roots bl list spinlock protects:
  45 *   - the s_roots list (see __d_drop)
  46 * dentry->d_sb->s_dentry_lru_lock protects:
  47 *   - the dcache lru lists and counters
  48 * d_lock protects:
  49 *   - d_flags
  50 *   - d_name
  51 *   - d_lru
  52 *   - d_count
  53 *   - d_unhashed()
  54 *   - d_parent and d_subdirs
  55 *   - childrens' d_child and d_parent
  56 *   - d_u.d_alias, d_inode
  57 *
  58 * Ordering:
  59 * dentry->d_inode->i_lock
  60 *   dentry->d_lock
  61 *     dentry->d_sb->s_dentry_lru_lock
  62 *     dcache_hash_bucket lock
  63 *     s_roots lock
  64 *
  65 * If there is an ancestor relationship:
  66 * dentry->d_parent->...->d_parent->d_lock
  67 *   ...
  68 *     dentry->d_parent->d_lock
  69 *       dentry->d_lock
  70 *
  71 * If no ancestor relationship:
  72 * arbitrary, since it's serialized on rename_lock
  73 */
  74int sysctl_vfs_cache_pressure __read_mostly = 100;
  75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  76
  77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  78
  79EXPORT_SYMBOL(rename_lock);
  80
  81static struct kmem_cache *dentry_cache __read_mostly;
  82
  83const struct qstr empty_name = QSTR_INIT("", 0);
  84EXPORT_SYMBOL(empty_name);
  85const struct qstr slash_name = QSTR_INIT("/", 1);
  86EXPORT_SYMBOL(slash_name);
 
 
  87
  88/*
  89 * This is the single most critical data structure when it comes
  90 * to the dcache: the hashtable for lookups. Somebody should try
  91 * to make this good - I've just made it work.
  92 *
  93 * This hash-function tries to avoid losing too many bits of hash
  94 * information, yet avoid using a prime hash-size or similar.
 
 
 
 
 
  95 */
  96
  97static unsigned int d_hash_shift __read_mostly;
  98
  99static struct hlist_bl_head *dentry_hashtable __read_mostly;
 100
 101static inline struct hlist_bl_head *d_hash(unsigned int hash)
 102{
 103	return dentry_hashtable + (hash >> d_hash_shift);
 
 104}
 105
 106#define IN_LOOKUP_SHIFT 10
 107static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 108
 109static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 110					unsigned int hash)
 111{
 112	hash += (unsigned long) parent / L1_CACHE_BYTES;
 113	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 114}
 115
 116
 117/* Statistics gathering. */
 118struct dentry_stat_t dentry_stat = {
 119	.age_limit = 45,
 
 
 
 120};
 121
 122static DEFINE_PER_CPU(long, nr_dentry);
 123static DEFINE_PER_CPU(long, nr_dentry_unused);
 124static DEFINE_PER_CPU(long, nr_dentry_negative);
 
 125
 126#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 
 
 
 
 127
 128/*
 129 * Here we resort to our own counters instead of using generic per-cpu counters
 130 * for consistency with what the vfs inode code does. We are expected to harvest
 131 * better code and performance by having our own specialized counters.
 132 *
 133 * Please note that the loop is done over all possible CPUs, not over all online
 134 * CPUs. The reason for this is that we don't want to play games with CPUs going
 135 * on and off. If one of them goes off, we will just keep their counters.
 136 *
 137 * glommer: See cffbc8a for details, and if you ever intend to change this,
 138 * please update all vfs counters to match.
 139 */
 140static long get_nr_dentry(void)
 141{
 142	int i;
 143	long sum = 0;
 144	for_each_possible_cpu(i)
 145		sum += per_cpu(nr_dentry, i);
 146	return sum < 0 ? 0 : sum;
 147}
 148
 149static long get_nr_dentry_unused(void)
 150{
 151	int i;
 152	long sum = 0;
 153	for_each_possible_cpu(i)
 154		sum += per_cpu(nr_dentry_unused, i);
 155	return sum < 0 ? 0 : sum;
 156}
 157
 158static long get_nr_dentry_negative(void)
 159{
 160	int i;
 161	long sum = 0;
 162
 163	for_each_possible_cpu(i)
 164		sum += per_cpu(nr_dentry_negative, i);
 165	return sum < 0 ? 0 : sum;
 166}
 167
 168int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
 169		   size_t *lenp, loff_t *ppos)
 170{
 171	dentry_stat.nr_dentry = get_nr_dentry();
 172	dentry_stat.nr_unused = get_nr_dentry_unused();
 173	dentry_stat.nr_negative = get_nr_dentry_negative();
 174	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 175}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176#endif
 177
 178/*
 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 180 * The strings are both count bytes long, and count is non-zero.
 181 */
 182#ifdef CONFIG_DCACHE_WORD_ACCESS
 183
 184#include <asm/word-at-a-time.h>
 185/*
 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 187 * aligned allocation for this particular component. We don't
 188 * strictly need the load_unaligned_zeropad() safety, but it
 189 * doesn't hurt either.
 190 *
 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 192 * need the careful unaligned handling.
 193 */
 194static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 195{
 196	unsigned long a,b,mask;
 197
 198	for (;;) {
 199		a = read_word_at_a_time(cs);
 200		b = load_unaligned_zeropad(ct);
 201		if (tcount < sizeof(unsigned long))
 202			break;
 203		if (unlikely(a != b))
 204			return 1;
 205		cs += sizeof(unsigned long);
 206		ct += sizeof(unsigned long);
 207		tcount -= sizeof(unsigned long);
 208		if (!tcount)
 209			return 0;
 210	}
 211	mask = bytemask_from_count(tcount);
 212	return unlikely(!!((a ^ b) & mask));
 213}
 214
 215#else
 216
 217static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 218{
 219	do {
 220		if (*cs != *ct)
 221			return 1;
 222		cs++;
 223		ct++;
 224		tcount--;
 225	} while (tcount);
 226	return 0;
 227}
 228
 229#endif
 230
 231static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 232{
 233	/*
 234	 * Be careful about RCU walk racing with rename:
 235	 * use 'READ_ONCE' to fetch the name pointer.
 236	 *
 237	 * NOTE! Even if a rename will mean that the length
 238	 * was not loaded atomically, we don't care. The
 239	 * RCU walk will check the sequence count eventually,
 240	 * and catch it. And we won't overrun the buffer,
 241	 * because we're reading the name pointer atomically,
 242	 * and a dentry name is guaranteed to be properly
 243	 * terminated with a NUL byte.
 244	 *
 245	 * End result: even if 'len' is wrong, we'll exit
 246	 * early because the data cannot match (there can
 247	 * be no NUL in the ct/tcount data)
 248	 */
 249	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 250
 251	return dentry_string_cmp(cs, ct, tcount);
 252}
 253
 254struct external_name {
 255	union {
 256		atomic_t count;
 257		struct rcu_head head;
 258	} u;
 259	unsigned char name[];
 260};
 261
 262static inline struct external_name *external_name(struct dentry *dentry)
 263{
 264	return container_of(dentry->d_name.name, struct external_name, name[0]);
 265}
 266
 267static void __d_free(struct rcu_head *head)
 268{
 269	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 270
 271	kmem_cache_free(dentry_cache, dentry); 
 272}
 273
 274static void __d_free_external(struct rcu_head *head)
 275{
 276	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 277	kfree(external_name(dentry));
 278	kmem_cache_free(dentry_cache, dentry);
 279}
 280
 281static inline int dname_external(const struct dentry *dentry)
 282{
 283	return dentry->d_name.name != dentry->d_iname;
 284}
 285
 286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 287{
 288	spin_lock(&dentry->d_lock);
 289	name->name = dentry->d_name;
 290	if (unlikely(dname_external(dentry))) {
 291		atomic_inc(&external_name(dentry)->u.count);
 292	} else {
 293		memcpy(name->inline_name, dentry->d_iname,
 294		       dentry->d_name.len + 1);
 295		name->name.name = name->inline_name;
 296	}
 297	spin_unlock(&dentry->d_lock);
 298}
 299EXPORT_SYMBOL(take_dentry_name_snapshot);
 300
 301void release_dentry_name_snapshot(struct name_snapshot *name)
 302{
 303	if (unlikely(name->name.name != name->inline_name)) {
 304		struct external_name *p;
 305		p = container_of(name->name.name, struct external_name, name[0]);
 306		if (unlikely(atomic_dec_and_test(&p->u.count)))
 307			kfree_rcu(p, u.head);
 308	}
 309}
 310EXPORT_SYMBOL(release_dentry_name_snapshot);
 311
 312static inline void __d_set_inode_and_type(struct dentry *dentry,
 313					  struct inode *inode,
 314					  unsigned type_flags)
 315{
 316	unsigned flags;
 317
 318	dentry->d_inode = inode;
 319	flags = READ_ONCE(dentry->d_flags);
 320	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 321	flags |= type_flags;
 322	smp_store_release(&dentry->d_flags, flags);
 323}
 324
 325static inline void __d_clear_type_and_inode(struct dentry *dentry)
 326{
 327	unsigned flags = READ_ONCE(dentry->d_flags);
 328
 329	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 330	WRITE_ONCE(dentry->d_flags, flags);
 331	dentry->d_inode = NULL;
 332	if (dentry->d_flags & DCACHE_LRU_LIST)
 
 
 
 
 333		this_cpu_inc(nr_dentry_negative);
 334}
 335
 336static void dentry_free(struct dentry *dentry)
 337{
 338	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 339	if (unlikely(dname_external(dentry))) {
 340		struct external_name *p = external_name(dentry);
 341		if (likely(atomic_dec_and_test(&p->u.count))) {
 342			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 343			return;
 344		}
 345	}
 346	/* if dentry was never visible to RCU, immediate free is OK */
 347	if (dentry->d_flags & DCACHE_NORCU)
 348		__d_free(&dentry->d_u.d_rcu);
 349	else
 350		call_rcu(&dentry->d_u.d_rcu, __d_free);
 351}
 352
 353/*
 354 * Release the dentry's inode, using the filesystem
 355 * d_iput() operation if defined.
 356 */
 357static void dentry_unlink_inode(struct dentry * dentry)
 358	__releases(dentry->d_lock)
 359	__releases(dentry->d_inode->i_lock)
 360{
 361	struct inode *inode = dentry->d_inode;
 362
 363	raw_write_seqcount_begin(&dentry->d_seq);
 364	__d_clear_type_and_inode(dentry);
 365	hlist_del_init(&dentry->d_u.d_alias);
 366	raw_write_seqcount_end(&dentry->d_seq);
 367	spin_unlock(&dentry->d_lock);
 368	spin_unlock(&inode->i_lock);
 369	if (!inode->i_nlink)
 370		fsnotify_inoderemove(inode);
 371	if (dentry->d_op && dentry->d_op->d_iput)
 372		dentry->d_op->d_iput(dentry, inode);
 373	else
 374		iput(inode);
 375}
 376
 377/*
 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 379 * is in use - which includes both the "real" per-superblock
 380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 381 *
 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 383 * on the shrink list (ie not on the superblock LRU list).
 384 *
 385 * The per-cpu "nr_dentry_unused" counters are updated with
 386 * the DCACHE_LRU_LIST bit.
 387 *
 388 * The per-cpu "nr_dentry_negative" counters are only updated
 389 * when deleted from or added to the per-superblock LRU list, not
 390 * from/to the shrink list. That is to avoid an unneeded dec/inc
 391 * pair when moving from LRU to shrink list in select_collect().
 392 *
 393 * These helper functions make sure we always follow the
 394 * rules. d_lock must be held by the caller.
 395 */
 396#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 397static void d_lru_add(struct dentry *dentry)
 398{
 399	D_FLAG_VERIFY(dentry, 0);
 400	dentry->d_flags |= DCACHE_LRU_LIST;
 401	this_cpu_inc(nr_dentry_unused);
 402	if (d_is_negative(dentry))
 403		this_cpu_inc(nr_dentry_negative);
 404	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 
 405}
 406
 407static void d_lru_del(struct dentry *dentry)
 408{
 409	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 410	dentry->d_flags &= ~DCACHE_LRU_LIST;
 411	this_cpu_dec(nr_dentry_unused);
 412	if (d_is_negative(dentry))
 413		this_cpu_dec(nr_dentry_negative);
 414	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 
 415}
 416
 417static void d_shrink_del(struct dentry *dentry)
 418{
 419	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 420	list_del_init(&dentry->d_lru);
 421	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 422	this_cpu_dec(nr_dentry_unused);
 423}
 424
 425static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 426{
 427	D_FLAG_VERIFY(dentry, 0);
 428	list_add(&dentry->d_lru, list);
 429	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 430	this_cpu_inc(nr_dentry_unused);
 431}
 432
 433/*
 434 * These can only be called under the global LRU lock, ie during the
 435 * callback for freeing the LRU list. "isolate" removes it from the
 436 * LRU lists entirely, while shrink_move moves it to the indicated
 437 * private list.
 438 */
 439static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 440{
 441	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 442	dentry->d_flags &= ~DCACHE_LRU_LIST;
 443	this_cpu_dec(nr_dentry_unused);
 444	if (d_is_negative(dentry))
 445		this_cpu_dec(nr_dentry_negative);
 446	list_lru_isolate(lru, &dentry->d_lru);
 447}
 448
 449static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 450			      struct list_head *list)
 451{
 452	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 453	dentry->d_flags |= DCACHE_SHRINK_LIST;
 454	if (d_is_negative(dentry))
 455		this_cpu_dec(nr_dentry_negative);
 456	list_lru_isolate_move(lru, &dentry->d_lru, list);
 457}
 458
 459/**
 460 * d_drop - drop a dentry
 461 * @dentry: dentry to drop
 462 *
 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 464 * be found through a VFS lookup any more. Note that this is different from
 465 * deleting the dentry - d_delete will try to mark the dentry negative if
 466 * possible, giving a successful _negative_ lookup, while d_drop will
 467 * just make the cache lookup fail.
 468 *
 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 470 * reason (NFS timeouts or autofs deletes).
 471 *
 472 * __d_drop requires dentry->d_lock
 473 * ___d_drop doesn't mark dentry as "unhashed"
 474 *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 475 */
 476static void ___d_drop(struct dentry *dentry)
 477{
 478	struct hlist_bl_head *b;
 479	/*
 480	 * Hashed dentries are normally on the dentry hashtable,
 481	 * with the exception of those newly allocated by
 482	 * d_obtain_root, which are always IS_ROOT:
 483	 */
 484	if (unlikely(IS_ROOT(dentry)))
 485		b = &dentry->d_sb->s_roots;
 486	else
 487		b = d_hash(dentry->d_name.hash);
 488
 489	hlist_bl_lock(b);
 490	__hlist_bl_del(&dentry->d_hash);
 491	hlist_bl_unlock(b);
 492}
 493
 494void __d_drop(struct dentry *dentry)
 495{
 496	if (!d_unhashed(dentry)) {
 497		___d_drop(dentry);
 498		dentry->d_hash.pprev = NULL;
 499		write_seqcount_invalidate(&dentry->d_seq);
 500	}
 501}
 502EXPORT_SYMBOL(__d_drop);
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504void d_drop(struct dentry *dentry)
 505{
 506	spin_lock(&dentry->d_lock);
 507	__d_drop(dentry);
 508	spin_unlock(&dentry->d_lock);
 509}
 510EXPORT_SYMBOL(d_drop);
 511
 512static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
 513{
 514	struct dentry *next;
 515	/*
 516	 * Inform d_walk() and shrink_dentry_list() that we are no longer
 517	 * attached to the dentry tree
 518	 */
 519	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 520	if (unlikely(list_empty(&dentry->d_child)))
 521		return;
 522	__list_del_entry(&dentry->d_child);
 523	/*
 524	 * Cursors can move around the list of children.  While we'd been
 525	 * a normal list member, it didn't matter - ->d_child.next would've
 526	 * been updated.  However, from now on it won't be and for the
 527	 * things like d_walk() it might end up with a nasty surprise.
 528	 * Normally d_walk() doesn't care about cursors moving around -
 529	 * ->d_lock on parent prevents that and since a cursor has no children
 530	 * of its own, we get through it without ever unlocking the parent.
 531	 * There is one exception, though - if we ascend from a child that
 532	 * gets killed as soon as we unlock it, the next sibling is found
 533	 * using the value left in its ->d_child.next.  And if _that_
 534	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
 535	 * before d_walk() regains parent->d_lock, we'll end up skipping
 536	 * everything the cursor had been moved past.
 537	 *
 538	 * Solution: make sure that the pointer left behind in ->d_child.next
 539	 * points to something that won't be moving around.  I.e. skip the
 540	 * cursors.
 541	 */
 542	while (dentry->d_child.next != &parent->d_subdirs) {
 543		next = list_entry(dentry->d_child.next, struct dentry, d_child);
 544		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 545			break;
 546		dentry->d_child.next = next->d_child.next;
 547	}
 548}
 549
 550static void __dentry_kill(struct dentry *dentry)
 551{
 552	struct dentry *parent = NULL;
 553	bool can_free = true;
 554	if (!IS_ROOT(dentry))
 555		parent = dentry->d_parent;
 556
 557	/*
 558	 * The dentry is now unrecoverably dead to the world.
 559	 */
 560	lockref_mark_dead(&dentry->d_lockref);
 561
 562	/*
 563	 * inform the fs via d_prune that this dentry is about to be
 564	 * unhashed and destroyed.
 565	 */
 566	if (dentry->d_flags & DCACHE_OP_PRUNE)
 567		dentry->d_op->d_prune(dentry);
 568
 569	if (dentry->d_flags & DCACHE_LRU_LIST) {
 570		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 571			d_lru_del(dentry);
 572	}
 573	/* if it was on the hash then remove it */
 574	__d_drop(dentry);
 575	dentry_unlist(dentry, parent);
 576	if (parent)
 577		spin_unlock(&parent->d_lock);
 578	if (dentry->d_inode)
 579		dentry_unlink_inode(dentry);
 580	else
 581		spin_unlock(&dentry->d_lock);
 582	this_cpu_dec(nr_dentry);
 583	if (dentry->d_op && dentry->d_op->d_release)
 584		dentry->d_op->d_release(dentry);
 585
 586	spin_lock(&dentry->d_lock);
 587	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 588		dentry->d_flags |= DCACHE_MAY_FREE;
 
 
 
 
 
 
 589		can_free = false;
 590	}
 591	spin_unlock(&dentry->d_lock);
 592	if (likely(can_free))
 593		dentry_free(dentry);
 594	cond_resched();
 595}
 596
 597static struct dentry *__lock_parent(struct dentry *dentry)
 598{
 599	struct dentry *parent;
 600	rcu_read_lock();
 601	spin_unlock(&dentry->d_lock);
 602again:
 603	parent = READ_ONCE(dentry->d_parent);
 604	spin_lock(&parent->d_lock);
 605	/*
 606	 * We can't blindly lock dentry until we are sure
 607	 * that we won't violate the locking order.
 608	 * Any changes of dentry->d_parent must have
 609	 * been done with parent->d_lock held, so
 610	 * spin_lock() above is enough of a barrier
 611	 * for checking if it's still our child.
 612	 */
 613	if (unlikely(parent != dentry->d_parent)) {
 614		spin_unlock(&parent->d_lock);
 615		goto again;
 616	}
 617	rcu_read_unlock();
 618	if (parent != dentry)
 619		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 620	else
 621		parent = NULL;
 622	return parent;
 623}
 624
 625static inline struct dentry *lock_parent(struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 626{
 627	struct dentry *parent = dentry->d_parent;
 628	if (IS_ROOT(dentry))
 629		return NULL;
 630	if (likely(spin_trylock(&parent->d_lock)))
 631		return parent;
 632	return __lock_parent(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633}
 634
 635static inline bool retain_dentry(struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 636{
 637	WARN_ON(d_in_lookup(dentry));
 
 
 
 638
 639	/* Unreachable? Get rid of it */
 640	if (unlikely(d_unhashed(dentry)))
 641		return false;
 642
 643	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 
 644		return false;
 645
 646	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
 647		if (dentry->d_op->d_delete(dentry))
 
 
 648			return false;
 649	}
 650
 651	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
 
 652		return false;
 653
 654	/* retain; LRU fodder */
 655	dentry->d_lockref.count--;
 656	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
 
 
 
 
 
 657		d_lru_add(dentry);
 658	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
 
 
 659		dentry->d_flags |= DCACHE_REFERENCED;
 
 660	return true;
 661}
 662
 663void d_mark_dontcache(struct inode *inode)
 664{
 665	struct dentry *de;
 666
 667	spin_lock(&inode->i_lock);
 668	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 669		spin_lock(&de->d_lock);
 670		de->d_flags |= DCACHE_DONTCACHE;
 671		spin_unlock(&de->d_lock);
 672	}
 673	inode->i_state |= I_DONTCACHE;
 674	spin_unlock(&inode->i_lock);
 675}
 676EXPORT_SYMBOL(d_mark_dontcache);
 677
 678/*
 679 * Finish off a dentry we've decided to kill.
 680 * dentry->d_lock must be held, returns with it unlocked.
 681 * Returns dentry requiring refcount drop, or NULL if we're done.
 682 */
 683static struct dentry *dentry_kill(struct dentry *dentry)
 684	__releases(dentry->d_lock)
 685{
 686	struct inode *inode = dentry->d_inode;
 687	struct dentry *parent = NULL;
 688
 689	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
 690		goto slow_positive;
 691
 692	if (!IS_ROOT(dentry)) {
 693		parent = dentry->d_parent;
 694		if (unlikely(!spin_trylock(&parent->d_lock))) {
 695			parent = __lock_parent(dentry);
 696			if (likely(inode || !dentry->d_inode))
 697				goto got_locks;
 698			/* negative that became positive */
 699			if (parent)
 700				spin_unlock(&parent->d_lock);
 701			inode = dentry->d_inode;
 702			goto slow_positive;
 703		}
 704	}
 705	__dentry_kill(dentry);
 706	return parent;
 707
 708slow_positive:
 709	spin_unlock(&dentry->d_lock);
 710	spin_lock(&inode->i_lock);
 711	spin_lock(&dentry->d_lock);
 712	parent = lock_parent(dentry);
 713got_locks:
 714	if (unlikely(dentry->d_lockref.count != 1)) {
 715		dentry->d_lockref.count--;
 716	} else if (likely(!retain_dentry(dentry))) {
 717		__dentry_kill(dentry);
 718		return parent;
 719	}
 720	/* we are keeping it, after all */
 721	if (inode)
 722		spin_unlock(&inode->i_lock);
 723	if (parent)
 724		spin_unlock(&parent->d_lock);
 725	spin_unlock(&dentry->d_lock);
 726	return NULL;
 727}
 728
 729/*
 730 * Try to do a lockless dput(), and return whether that was successful.
 731 *
 732 * If unsuccessful, we return false, having already taken the dentry lock.
 
 
 733 *
 734 * The caller needs to hold the RCU read lock, so that the dentry is
 735 * guaranteed to stay around even if the refcount goes down to zero!
 736 */
 737static inline bool fast_dput(struct dentry *dentry)
 738{
 739	int ret;
 740	unsigned int d_flags;
 741
 742	/*
 743	 * If we have a d_op->d_delete() operation, we sould not
 744	 * let the dentry count go to zero, so use "put_or_lock".
 745	 */
 746	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
 747		return lockref_put_or_lock(&dentry->d_lockref);
 748
 749	/*
 750	 * .. otherwise, we can try to just decrement the
 751	 * lockref optimistically.
 752	 */
 753	ret = lockref_put_return(&dentry->d_lockref);
 754
 755	/*
 756	 * If the lockref_put_return() failed due to the lock being held
 757	 * by somebody else, the fast path has failed. We will need to
 758	 * get the lock, and then check the count again.
 759	 */
 760	if (unlikely(ret < 0)) {
 761		spin_lock(&dentry->d_lock);
 762		if (dentry->d_lockref.count > 1) {
 763			dentry->d_lockref.count--;
 764			spin_unlock(&dentry->d_lock);
 765			return true;
 766		}
 767		return false;
 
 768	}
 769
 770	/*
 771	 * If we weren't the last ref, we're done.
 772	 */
 773	if (ret)
 774		return true;
 775
 776	/*
 777	 * Careful, careful. The reference count went down
 778	 * to zero, but we don't hold the dentry lock, so
 779	 * somebody else could get it again, and do another
 780	 * dput(), and we need to not race with that.
 781	 *
 782	 * However, there is a very special and common case
 783	 * where we don't care, because there is nothing to
 784	 * do: the dentry is still hashed, it does not have
 785	 * a 'delete' op, and it's referenced and already on
 786	 * the LRU list.
 787	 *
 788	 * NOTE! Since we aren't locked, these values are
 789	 * not "stable". However, it is sufficient that at
 790	 * some point after we dropped the reference the
 791	 * dentry was hashed and the flags had the proper
 792	 * value. Other dentry users may have re-gotten
 793	 * a reference to the dentry and change that, but
 794	 * our work is done - we can leave the dentry
 795	 * around with a zero refcount.
 796	 */
 797	smp_rmb();
 798	d_flags = READ_ONCE(dentry->d_flags);
 799	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
 800
 801	/* Nothing to do? Dropping the reference was all we needed? */
 802	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
 803		return true;
 804
 805	/*
 806	 * Not the fast normal case? Get the lock. We've already decremented
 807	 * the refcount, but we'll need to re-check the situation after
 808	 * getting the lock.
 809	 */
 810	spin_lock(&dentry->d_lock);
 811
 812	/*
 813	 * Did somebody else grab a reference to it in the meantime, and
 814	 * we're no longer the last user after all? Alternatively, somebody
 815	 * else could have killed it and marked it dead. Either way, we
 816	 * don't need to do anything else.
 817	 */
 818	if (dentry->d_lockref.count) {
 
 819		spin_unlock(&dentry->d_lock);
 820		return true;
 821	}
 822
 823	/*
 824	 * Re-get the reference we optimistically dropped. We hold the
 825	 * lock, and we just tested that it was zero, so we can just
 826	 * set it to 1.
 827	 */
 828	dentry->d_lockref.count = 1;
 829	return false;
 830}
 831
 832
 833/* 
 834 * This is dput
 835 *
 836 * This is complicated by the fact that we do not want to put
 837 * dentries that are no longer on any hash chain on the unused
 838 * list: we'd much rather just get rid of them immediately.
 839 *
 840 * However, that implies that we have to traverse the dentry
 841 * tree upwards to the parents which might _also_ now be
 842 * scheduled for deletion (it may have been only waiting for
 843 * its last child to go away).
 844 *
 845 * This tail recursion is done by hand as we don't want to depend
 846 * on the compiler to always get this right (gcc generally doesn't).
 847 * Real recursion would eat up our stack space.
 848 */
 849
 850/*
 851 * dput - release a dentry
 852 * @dentry: dentry to release 
 853 *
 854 * Release a dentry. This will drop the usage count and if appropriate
 855 * call the dentry unlink method as well as removing it from the queues and
 856 * releasing its resources. If the parent dentries were scheduled for release
 857 * they too may now get deleted.
 858 */
 859void dput(struct dentry *dentry)
 860{
 861	while (dentry) {
 862		might_sleep();
 863
 864		rcu_read_lock();
 865		if (likely(fast_dput(dentry))) {
 866			rcu_read_unlock();
 
 
 
 
 
 
 867			return;
 868		}
 869
 870		/* Slow case: now with the dentry lock held */
 871		rcu_read_unlock();
 872
 873		if (likely(retain_dentry(dentry))) {
 874			spin_unlock(&dentry->d_lock);
 875			return;
 876		}
 877
 878		dentry = dentry_kill(dentry);
 879	}
 
 
 880}
 881EXPORT_SYMBOL(dput);
 882
 883static void __dput_to_list(struct dentry *dentry, struct list_head *list)
 884__must_hold(&dentry->d_lock)
 885{
 886	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 887		/* let the owner of the list it's on deal with it */
 888		--dentry->d_lockref.count;
 889	} else {
 890		if (dentry->d_flags & DCACHE_LRU_LIST)
 891			d_lru_del(dentry);
 892		if (!--dentry->d_lockref.count)
 893			d_shrink_add(dentry, list);
 894	}
 895}
 896
 897void dput_to_list(struct dentry *dentry, struct list_head *list)
 898{
 899	rcu_read_lock();
 900	if (likely(fast_dput(dentry))) {
 901		rcu_read_unlock();
 902		return;
 903	}
 904	rcu_read_unlock();
 905	if (!retain_dentry(dentry))
 906		__dput_to_list(dentry, list);
 907	spin_unlock(&dentry->d_lock);
 908}
 909
 910/* This must be called with d_lock held */
 911static inline void __dget_dlock(struct dentry *dentry)
 912{
 913	dentry->d_lockref.count++;
 914}
 915
 916static inline void __dget(struct dentry *dentry)
 917{
 918	lockref_get(&dentry->d_lockref);
 919}
 920
 921struct dentry *dget_parent(struct dentry *dentry)
 922{
 923	int gotref;
 924	struct dentry *ret;
 925	unsigned seq;
 926
 927	/*
 928	 * Do optimistic parent lookup without any
 929	 * locking.
 930	 */
 931	rcu_read_lock();
 932	seq = raw_seqcount_begin(&dentry->d_seq);
 933	ret = READ_ONCE(dentry->d_parent);
 934	gotref = lockref_get_not_zero(&ret->d_lockref);
 935	rcu_read_unlock();
 936	if (likely(gotref)) {
 937		if (!read_seqcount_retry(&dentry->d_seq, seq))
 938			return ret;
 939		dput(ret);
 940	}
 941
 942repeat:
 943	/*
 944	 * Don't need rcu_dereference because we re-check it was correct under
 945	 * the lock.
 946	 */
 947	rcu_read_lock();
 948	ret = dentry->d_parent;
 949	spin_lock(&ret->d_lock);
 950	if (unlikely(ret != dentry->d_parent)) {
 951		spin_unlock(&ret->d_lock);
 952		rcu_read_unlock();
 953		goto repeat;
 954	}
 955	rcu_read_unlock();
 956	BUG_ON(!ret->d_lockref.count);
 957	ret->d_lockref.count++;
 958	spin_unlock(&ret->d_lock);
 959	return ret;
 960}
 961EXPORT_SYMBOL(dget_parent);
 962
 963static struct dentry * __d_find_any_alias(struct inode *inode)
 964{
 965	struct dentry *alias;
 966
 967	if (hlist_empty(&inode->i_dentry))
 968		return NULL;
 969	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 970	__dget(alias);
 971	return alias;
 972}
 973
 974/**
 975 * d_find_any_alias - find any alias for a given inode
 976 * @inode: inode to find an alias for
 977 *
 978 * If any aliases exist for the given inode, take and return a
 979 * reference for one of them.  If no aliases exist, return %NULL.
 980 */
 981struct dentry *d_find_any_alias(struct inode *inode)
 982{
 983	struct dentry *de;
 984
 985	spin_lock(&inode->i_lock);
 986	de = __d_find_any_alias(inode);
 987	spin_unlock(&inode->i_lock);
 988	return de;
 989}
 990EXPORT_SYMBOL(d_find_any_alias);
 991
 992/**
 993 * d_find_alias - grab a hashed alias of inode
 994 * @inode: inode in question
 995 *
 996 * If inode has a hashed alias, or is a directory and has any alias,
 997 * acquire the reference to alias and return it. Otherwise return NULL.
 998 * Notice that if inode is a directory there can be only one alias and
 999 * it can be unhashed only if it has no children, or if it is the root
1000 * of a filesystem, or if the directory was renamed and d_revalidate
1001 * was the first vfs operation to notice.
1002 *
1003 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1004 * any other hashed alias over that one.
1005 */
1006static struct dentry *__d_find_alias(struct inode *inode)
1007{
1008	struct dentry *alias;
1009
1010	if (S_ISDIR(inode->i_mode))
1011		return __d_find_any_alias(inode);
1012
1013	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1014		spin_lock(&alias->d_lock);
1015 		if (!d_unhashed(alias)) {
1016			__dget_dlock(alias);
1017			spin_unlock(&alias->d_lock);
1018			return alias;
1019		}
1020		spin_unlock(&alias->d_lock);
1021	}
1022	return NULL;
1023}
1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025struct dentry *d_find_alias(struct inode *inode)
1026{
1027	struct dentry *de = NULL;
1028
1029	if (!hlist_empty(&inode->i_dentry)) {
1030		spin_lock(&inode->i_lock);
1031		de = __d_find_alias(inode);
1032		spin_unlock(&inode->i_lock);
1033	}
1034	return de;
1035}
1036EXPORT_SYMBOL(d_find_alias);
1037
1038/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039 *	Try to kill dentries associated with this inode.
1040 * WARNING: you must own a reference to inode.
1041 */
1042void d_prune_aliases(struct inode *inode)
1043{
 
1044	struct dentry *dentry;
1045restart:
1046	spin_lock(&inode->i_lock);
1047	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1048		spin_lock(&dentry->d_lock);
1049		if (!dentry->d_lockref.count) {
1050			struct dentry *parent = lock_parent(dentry);
1051			if (likely(!dentry->d_lockref.count)) {
1052				__dentry_kill(dentry);
1053				dput(parent);
1054				goto restart;
1055			}
1056			if (parent)
1057				spin_unlock(&parent->d_lock);
1058		}
1059		spin_unlock(&dentry->d_lock);
1060	}
1061	spin_unlock(&inode->i_lock);
 
1062}
1063EXPORT_SYMBOL(d_prune_aliases);
1064
1065/*
1066 * Lock a dentry from shrink list.
1067 * Called under rcu_read_lock() and dentry->d_lock; the former
1068 * guarantees that nothing we access will be freed under us.
1069 * Note that dentry is *not* protected from concurrent dentry_kill(),
1070 * d_delete(), etc.
1071 *
1072 * Return false if dentry has been disrupted or grabbed, leaving
1073 * the caller to kick it off-list.  Otherwise, return true and have
1074 * that dentry's inode and parent both locked.
1075 */
1076static bool shrink_lock_dentry(struct dentry *dentry)
1077{
1078	struct inode *inode;
1079	struct dentry *parent;
1080
1081	if (dentry->d_lockref.count)
1082		return false;
1083
1084	inode = dentry->d_inode;
1085	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1086		spin_unlock(&dentry->d_lock);
1087		spin_lock(&inode->i_lock);
1088		spin_lock(&dentry->d_lock);
1089		if (unlikely(dentry->d_lockref.count))
1090			goto out;
1091		/* changed inode means that somebody had grabbed it */
1092		if (unlikely(inode != dentry->d_inode))
1093			goto out;
1094	}
1095
1096	parent = dentry->d_parent;
1097	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1098		return true;
1099
1100	spin_unlock(&dentry->d_lock);
1101	spin_lock(&parent->d_lock);
1102	if (unlikely(parent != dentry->d_parent)) {
1103		spin_unlock(&parent->d_lock);
1104		spin_lock(&dentry->d_lock);
1105		goto out;
1106	}
1107	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1108	if (likely(!dentry->d_lockref.count))
1109		return true;
1110	spin_unlock(&parent->d_lock);
1111out:
1112	if (inode)
1113		spin_unlock(&inode->i_lock);
1114	return false;
1115}
1116
1117void shrink_dentry_list(struct list_head *list)
1118{
1119	while (!list_empty(list)) {
1120		struct dentry *dentry, *parent;
1121
1122		dentry = list_entry(list->prev, struct dentry, d_lru);
1123		spin_lock(&dentry->d_lock);
1124		rcu_read_lock();
1125		if (!shrink_lock_dentry(dentry)) {
1126			bool can_free = false;
1127			rcu_read_unlock();
1128			d_shrink_del(dentry);
1129			if (dentry->d_lockref.count < 0)
1130				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1131			spin_unlock(&dentry->d_lock);
1132			if (can_free)
1133				dentry_free(dentry);
1134			continue;
1135		}
1136		rcu_read_unlock();
1137		d_shrink_del(dentry);
1138		parent = dentry->d_parent;
1139		if (parent != dentry)
1140			__dput_to_list(parent, list);
1141		__dentry_kill(dentry);
1142	}
1143}
1144
1145static enum lru_status dentry_lru_isolate(struct list_head *item,
1146		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1147{
1148	struct list_head *freeable = arg;
1149	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1150
1151
1152	/*
1153	 * we are inverting the lru lock/dentry->d_lock here,
1154	 * so use a trylock. If we fail to get the lock, just skip
1155	 * it
1156	 */
1157	if (!spin_trylock(&dentry->d_lock))
1158		return LRU_SKIP;
1159
1160	/*
1161	 * Referenced dentries are still in use. If they have active
1162	 * counts, just remove them from the LRU. Otherwise give them
1163	 * another pass through the LRU.
1164	 */
1165	if (dentry->d_lockref.count) {
1166		d_lru_isolate(lru, dentry);
1167		spin_unlock(&dentry->d_lock);
1168		return LRU_REMOVED;
1169	}
1170
1171	if (dentry->d_flags & DCACHE_REFERENCED) {
1172		dentry->d_flags &= ~DCACHE_REFERENCED;
1173		spin_unlock(&dentry->d_lock);
1174
1175		/*
1176		 * The list move itself will be made by the common LRU code. At
1177		 * this point, we've dropped the dentry->d_lock but keep the
1178		 * lru lock. This is safe to do, since every list movement is
1179		 * protected by the lru lock even if both locks are held.
1180		 *
1181		 * This is guaranteed by the fact that all LRU management
1182		 * functions are intermediated by the LRU API calls like
1183		 * list_lru_add and list_lru_del. List movement in this file
1184		 * only ever occur through this functions or through callbacks
1185		 * like this one, that are called from the LRU API.
1186		 *
1187		 * The only exceptions to this are functions like
1188		 * shrink_dentry_list, and code that first checks for the
1189		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1190		 * operating only with stack provided lists after they are
1191		 * properly isolated from the main list.  It is thus, always a
1192		 * local access.
1193		 */
1194		return LRU_ROTATE;
1195	}
1196
1197	d_lru_shrink_move(lru, dentry, freeable);
1198	spin_unlock(&dentry->d_lock);
1199
1200	return LRU_REMOVED;
1201}
1202
1203/**
1204 * prune_dcache_sb - shrink the dcache
1205 * @sb: superblock
1206 * @sc: shrink control, passed to list_lru_shrink_walk()
1207 *
1208 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209 * is done when we need more memory and called from the superblock shrinker
1210 * function.
1211 *
1212 * This function may fail to free any resources if all the dentries are in
1213 * use.
1214 */
1215long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1216{
1217	LIST_HEAD(dispose);
1218	long freed;
1219
1220	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221				     dentry_lru_isolate, &dispose);
1222	shrink_dentry_list(&dispose);
1223	return freed;
1224}
1225
1226static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1227		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1228{
1229	struct list_head *freeable = arg;
1230	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1231
1232	/*
1233	 * we are inverting the lru lock/dentry->d_lock here,
1234	 * so use a trylock. If we fail to get the lock, just skip
1235	 * it
1236	 */
1237	if (!spin_trylock(&dentry->d_lock))
1238		return LRU_SKIP;
1239
1240	d_lru_shrink_move(lru, dentry, freeable);
1241	spin_unlock(&dentry->d_lock);
1242
1243	return LRU_REMOVED;
1244}
1245
1246
1247/**
1248 * shrink_dcache_sb - shrink dcache for a superblock
1249 * @sb: superblock
1250 *
1251 * Shrink the dcache for the specified super block. This is used to free
1252 * the dcache before unmounting a file system.
1253 */
1254void shrink_dcache_sb(struct super_block *sb)
1255{
1256	do {
1257		LIST_HEAD(dispose);
1258
1259		list_lru_walk(&sb->s_dentry_lru,
1260			dentry_lru_isolate_shrink, &dispose, 1024);
1261		shrink_dentry_list(&dispose);
1262	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1263}
1264EXPORT_SYMBOL(shrink_dcache_sb);
1265
1266/**
1267 * enum d_walk_ret - action to talke during tree walk
1268 * @D_WALK_CONTINUE:	contrinue walk
1269 * @D_WALK_QUIT:	quit walk
1270 * @D_WALK_NORETRY:	quit when retry is needed
1271 * @D_WALK_SKIP:	skip this dentry and its children
1272 */
1273enum d_walk_ret {
1274	D_WALK_CONTINUE,
1275	D_WALK_QUIT,
1276	D_WALK_NORETRY,
1277	D_WALK_SKIP,
1278};
1279
1280/**
1281 * d_walk - walk the dentry tree
1282 * @parent:	start of walk
1283 * @data:	data passed to @enter() and @finish()
1284 * @enter:	callback when first entering the dentry
1285 *
1286 * The @enter() callbacks are called with d_lock held.
1287 */
1288static void d_walk(struct dentry *parent, void *data,
1289		   enum d_walk_ret (*enter)(void *, struct dentry *))
1290{
1291	struct dentry *this_parent;
1292	struct list_head *next;
1293	unsigned seq = 0;
1294	enum d_walk_ret ret;
1295	bool retry = true;
1296
1297again:
1298	read_seqbegin_or_lock(&rename_lock, &seq);
1299	this_parent = parent;
1300	spin_lock(&this_parent->d_lock);
1301
1302	ret = enter(data, this_parent);
1303	switch (ret) {
1304	case D_WALK_CONTINUE:
1305		break;
1306	case D_WALK_QUIT:
1307	case D_WALK_SKIP:
1308		goto out_unlock;
1309	case D_WALK_NORETRY:
1310		retry = false;
1311		break;
1312	}
1313repeat:
1314	next = this_parent->d_subdirs.next;
1315resume:
1316	while (next != &this_parent->d_subdirs) {
1317		struct list_head *tmp = next;
1318		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1319		next = tmp->next;
1320
1321		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1322			continue;
1323
1324		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1325
1326		ret = enter(data, dentry);
1327		switch (ret) {
1328		case D_WALK_CONTINUE:
1329			break;
1330		case D_WALK_QUIT:
1331			spin_unlock(&dentry->d_lock);
1332			goto out_unlock;
1333		case D_WALK_NORETRY:
1334			retry = false;
1335			break;
1336		case D_WALK_SKIP:
1337			spin_unlock(&dentry->d_lock);
1338			continue;
1339		}
1340
1341		if (!list_empty(&dentry->d_subdirs)) {
1342			spin_unlock(&this_parent->d_lock);
1343			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1344			this_parent = dentry;
1345			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1346			goto repeat;
1347		}
1348		spin_unlock(&dentry->d_lock);
1349	}
1350	/*
1351	 * All done at this level ... ascend and resume the search.
1352	 */
1353	rcu_read_lock();
1354ascend:
1355	if (this_parent != parent) {
1356		struct dentry *child = this_parent;
1357		this_parent = child->d_parent;
1358
1359		spin_unlock(&child->d_lock);
1360		spin_lock(&this_parent->d_lock);
1361
1362		/* might go back up the wrong parent if we have had a rename. */
1363		if (need_seqretry(&rename_lock, seq))
1364			goto rename_retry;
1365		/* go into the first sibling still alive */
1366		do {
1367			next = child->d_child.next;
1368			if (next == &this_parent->d_subdirs)
1369				goto ascend;
1370			child = list_entry(next, struct dentry, d_child);
1371		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1372		rcu_read_unlock();
1373		goto resume;
1374	}
1375	if (need_seqretry(&rename_lock, seq))
1376		goto rename_retry;
1377	rcu_read_unlock();
1378
1379out_unlock:
1380	spin_unlock(&this_parent->d_lock);
1381	done_seqretry(&rename_lock, seq);
1382	return;
1383
1384rename_retry:
1385	spin_unlock(&this_parent->d_lock);
1386	rcu_read_unlock();
1387	BUG_ON(seq & 1);
1388	if (!retry)
1389		return;
1390	seq = 1;
1391	goto again;
1392}
1393
1394struct check_mount {
1395	struct vfsmount *mnt;
1396	unsigned int mounted;
1397};
1398
1399static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1400{
1401	struct check_mount *info = data;
1402	struct path path = { .mnt = info->mnt, .dentry = dentry };
1403
1404	if (likely(!d_mountpoint(dentry)))
1405		return D_WALK_CONTINUE;
1406	if (__path_is_mountpoint(&path)) {
1407		info->mounted = 1;
1408		return D_WALK_QUIT;
1409	}
1410	return D_WALK_CONTINUE;
1411}
1412
1413/**
1414 * path_has_submounts - check for mounts over a dentry in the
1415 *                      current namespace.
1416 * @parent: path to check.
1417 *
1418 * Return true if the parent or its subdirectories contain
1419 * a mount point in the current namespace.
1420 */
1421int path_has_submounts(const struct path *parent)
1422{
1423	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1424
1425	read_seqlock_excl(&mount_lock);
1426	d_walk(parent->dentry, &data, path_check_mount);
1427	read_sequnlock_excl(&mount_lock);
1428
1429	return data.mounted;
1430}
1431EXPORT_SYMBOL(path_has_submounts);
1432
1433/*
1434 * Called by mount code to set a mountpoint and check if the mountpoint is
1435 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1436 * subtree can become unreachable).
1437 *
1438 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1439 * this reason take rename_lock and d_lock on dentry and ancestors.
1440 */
1441int d_set_mounted(struct dentry *dentry)
1442{
1443	struct dentry *p;
1444	int ret = -ENOENT;
1445	write_seqlock(&rename_lock);
1446	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1447		/* Need exclusion wrt. d_invalidate() */
1448		spin_lock(&p->d_lock);
1449		if (unlikely(d_unhashed(p))) {
1450			spin_unlock(&p->d_lock);
1451			goto out;
1452		}
1453		spin_unlock(&p->d_lock);
1454	}
1455	spin_lock(&dentry->d_lock);
1456	if (!d_unlinked(dentry)) {
1457		ret = -EBUSY;
1458		if (!d_mountpoint(dentry)) {
1459			dentry->d_flags |= DCACHE_MOUNTED;
1460			ret = 0;
1461		}
1462	}
1463 	spin_unlock(&dentry->d_lock);
1464out:
1465	write_sequnlock(&rename_lock);
1466	return ret;
1467}
1468
1469/*
1470 * Search the dentry child list of the specified parent,
1471 * and move any unused dentries to the end of the unused
1472 * list for prune_dcache(). We descend to the next level
1473 * whenever the d_subdirs list is non-empty and continue
1474 * searching.
1475 *
1476 * It returns zero iff there are no unused children,
1477 * otherwise  it returns the number of children moved to
1478 * the end of the unused list. This may not be the total
1479 * number of unused children, because select_parent can
1480 * drop the lock and return early due to latency
1481 * constraints.
1482 */
1483
1484struct select_data {
1485	struct dentry *start;
1486	union {
1487		long found;
1488		struct dentry *victim;
1489	};
1490	struct list_head dispose;
1491};
1492
1493static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1494{
1495	struct select_data *data = _data;
1496	enum d_walk_ret ret = D_WALK_CONTINUE;
1497
1498	if (data->start == dentry)
1499		goto out;
1500
1501	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1502		data->found++;
1503	} else {
1504		if (dentry->d_flags & DCACHE_LRU_LIST)
1505			d_lru_del(dentry);
1506		if (!dentry->d_lockref.count) {
1507			d_shrink_add(dentry, &data->dispose);
1508			data->found++;
1509		}
1510	}
1511	/*
1512	 * We can return to the caller if we have found some (this
1513	 * ensures forward progress). We'll be coming back to find
1514	 * the rest.
1515	 */
1516	if (!list_empty(&data->dispose))
1517		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1518out:
1519	return ret;
1520}
1521
1522static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1523{
1524	struct select_data *data = _data;
1525	enum d_walk_ret ret = D_WALK_CONTINUE;
1526
1527	if (data->start == dentry)
1528		goto out;
1529
1530	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1531		if (!dentry->d_lockref.count) {
1532			rcu_read_lock();
1533			data->victim = dentry;
1534			return D_WALK_QUIT;
1535		}
1536	} else {
1537		if (dentry->d_flags & DCACHE_LRU_LIST)
1538			d_lru_del(dentry);
1539		if (!dentry->d_lockref.count)
1540			d_shrink_add(dentry, &data->dispose);
1541	}
1542	/*
1543	 * We can return to the caller if we have found some (this
1544	 * ensures forward progress). We'll be coming back to find
1545	 * the rest.
1546	 */
1547	if (!list_empty(&data->dispose))
1548		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1549out:
1550	return ret;
1551}
1552
1553/**
1554 * shrink_dcache_parent - prune dcache
1555 * @parent: parent of entries to prune
1556 *
1557 * Prune the dcache to remove unused children of the parent dentry.
1558 */
1559void shrink_dcache_parent(struct dentry *parent)
1560{
1561	for (;;) {
1562		struct select_data data = {.start = parent};
1563
1564		INIT_LIST_HEAD(&data.dispose);
1565		d_walk(parent, &data, select_collect);
1566
1567		if (!list_empty(&data.dispose)) {
1568			shrink_dentry_list(&data.dispose);
1569			continue;
1570		}
1571
1572		cond_resched();
1573		if (!data.found)
1574			break;
1575		data.victim = NULL;
1576		d_walk(parent, &data, select_collect2);
1577		if (data.victim) {
1578			struct dentry *parent;
1579			spin_lock(&data.victim->d_lock);
1580			if (!shrink_lock_dentry(data.victim)) {
1581				spin_unlock(&data.victim->d_lock);
1582				rcu_read_unlock();
1583			} else {
1584				rcu_read_unlock();
1585				parent = data.victim->d_parent;
1586				if (parent != data.victim)
1587					__dput_to_list(parent, &data.dispose);
1588				__dentry_kill(data.victim);
1589			}
1590		}
1591		if (!list_empty(&data.dispose))
1592			shrink_dentry_list(&data.dispose);
1593	}
1594}
1595EXPORT_SYMBOL(shrink_dcache_parent);
1596
1597static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1598{
1599	/* it has busy descendents; complain about those instead */
1600	if (!list_empty(&dentry->d_subdirs))
1601		return D_WALK_CONTINUE;
1602
1603	/* root with refcount 1 is fine */
1604	if (dentry == _data && dentry->d_lockref.count == 1)
1605		return D_WALK_CONTINUE;
1606
1607	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1608			" still in use (%d) [unmount of %s %s]\n",
1609		       dentry,
1610		       dentry->d_inode ?
1611		       dentry->d_inode->i_ino : 0UL,
1612		       dentry,
1613		       dentry->d_lockref.count,
1614		       dentry->d_sb->s_type->name,
1615		       dentry->d_sb->s_id);
1616	WARN_ON(1);
1617	return D_WALK_CONTINUE;
1618}
1619
1620static void do_one_tree(struct dentry *dentry)
1621{
1622	shrink_dcache_parent(dentry);
1623	d_walk(dentry, dentry, umount_check);
1624	d_drop(dentry);
1625	dput(dentry);
1626}
1627
1628/*
1629 * destroy the dentries attached to a superblock on unmounting
1630 */
1631void shrink_dcache_for_umount(struct super_block *sb)
1632{
1633	struct dentry *dentry;
1634
1635	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1636
1637	dentry = sb->s_root;
1638	sb->s_root = NULL;
1639	do_one_tree(dentry);
1640
1641	while (!hlist_bl_empty(&sb->s_roots)) {
1642		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1643		do_one_tree(dentry);
1644	}
1645}
1646
1647static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1648{
1649	struct dentry **victim = _data;
1650	if (d_mountpoint(dentry)) {
1651		__dget_dlock(dentry);
1652		*victim = dentry;
1653		return D_WALK_QUIT;
1654	}
1655	return D_WALK_CONTINUE;
1656}
1657
1658/**
1659 * d_invalidate - detach submounts, prune dcache, and drop
1660 * @dentry: dentry to invalidate (aka detach, prune and drop)
1661 */
1662void d_invalidate(struct dentry *dentry)
1663{
1664	bool had_submounts = false;
1665	spin_lock(&dentry->d_lock);
1666	if (d_unhashed(dentry)) {
1667		spin_unlock(&dentry->d_lock);
1668		return;
1669	}
1670	__d_drop(dentry);
1671	spin_unlock(&dentry->d_lock);
1672
1673	/* Negative dentries can be dropped without further checks */
1674	if (!dentry->d_inode)
1675		return;
1676
1677	shrink_dcache_parent(dentry);
1678	for (;;) {
1679		struct dentry *victim = NULL;
1680		d_walk(dentry, &victim, find_submount);
1681		if (!victim) {
1682			if (had_submounts)
1683				shrink_dcache_parent(dentry);
1684			return;
1685		}
1686		had_submounts = true;
1687		detach_mounts(victim);
1688		dput(victim);
1689	}
1690}
1691EXPORT_SYMBOL(d_invalidate);
1692
1693/**
1694 * __d_alloc	-	allocate a dcache entry
1695 * @sb: filesystem it will belong to
1696 * @name: qstr of the name
1697 *
1698 * Allocates a dentry. It returns %NULL if there is insufficient memory
1699 * available. On a success the dentry is returned. The name passed in is
1700 * copied and the copy passed in may be reused after this call.
1701 */
1702 
1703static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1704{
1705	struct dentry *dentry;
1706	char *dname;
1707	int err;
1708
1709	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
 
1710	if (!dentry)
1711		return NULL;
1712
1713	/*
1714	 * We guarantee that the inline name is always NUL-terminated.
1715	 * This way the memcpy() done by the name switching in rename
1716	 * will still always have a NUL at the end, even if we might
1717	 * be overwriting an internal NUL character
1718	 */
1719	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1720	if (unlikely(!name)) {
1721		name = &slash_name;
1722		dname = dentry->d_iname;
1723	} else if (name->len > DNAME_INLINE_LEN-1) {
1724		size_t size = offsetof(struct external_name, name[1]);
1725		struct external_name *p = kmalloc(size + name->len,
1726						  GFP_KERNEL_ACCOUNT |
1727						  __GFP_RECLAIMABLE);
1728		if (!p) {
1729			kmem_cache_free(dentry_cache, dentry); 
1730			return NULL;
1731		}
1732		atomic_set(&p->u.count, 1);
1733		dname = p->name;
1734	} else  {
1735		dname = dentry->d_iname;
1736	}	
1737
1738	dentry->d_name.len = name->len;
1739	dentry->d_name.hash = name->hash;
1740	memcpy(dname, name->name, name->len);
1741	dname[name->len] = 0;
1742
1743	/* Make sure we always see the terminating NUL character */
1744	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1745
1746	dentry->d_lockref.count = 1;
1747	dentry->d_flags = 0;
1748	spin_lock_init(&dentry->d_lock);
1749	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1750	dentry->d_inode = NULL;
1751	dentry->d_parent = dentry;
1752	dentry->d_sb = sb;
1753	dentry->d_op = NULL;
1754	dentry->d_fsdata = NULL;
1755	INIT_HLIST_BL_NODE(&dentry->d_hash);
1756	INIT_LIST_HEAD(&dentry->d_lru);
1757	INIT_LIST_HEAD(&dentry->d_subdirs);
1758	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1759	INIT_LIST_HEAD(&dentry->d_child);
1760	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1761
1762	if (dentry->d_op && dentry->d_op->d_init) {
1763		err = dentry->d_op->d_init(dentry);
1764		if (err) {
1765			if (dname_external(dentry))
1766				kfree(external_name(dentry));
1767			kmem_cache_free(dentry_cache, dentry);
1768			return NULL;
1769		}
1770	}
1771
1772	this_cpu_inc(nr_dentry);
1773
1774	return dentry;
1775}
1776
1777/**
1778 * d_alloc	-	allocate a dcache entry
1779 * @parent: parent of entry to allocate
1780 * @name: qstr of the name
1781 *
1782 * Allocates a dentry. It returns %NULL if there is insufficient memory
1783 * available. On a success the dentry is returned. The name passed in is
1784 * copied and the copy passed in may be reused after this call.
1785 */
1786struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1787{
1788	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1789	if (!dentry)
1790		return NULL;
1791	spin_lock(&parent->d_lock);
1792	/*
1793	 * don't need child lock because it is not subject
1794	 * to concurrency here
1795	 */
1796	__dget_dlock(parent);
1797	dentry->d_parent = parent;
1798	list_add(&dentry->d_child, &parent->d_subdirs);
1799	spin_unlock(&parent->d_lock);
1800
1801	return dentry;
1802}
1803EXPORT_SYMBOL(d_alloc);
1804
1805struct dentry *d_alloc_anon(struct super_block *sb)
1806{
1807	return __d_alloc(sb, NULL);
1808}
1809EXPORT_SYMBOL(d_alloc_anon);
1810
1811struct dentry *d_alloc_cursor(struct dentry * parent)
1812{
1813	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1814	if (dentry) {
1815		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1816		dentry->d_parent = dget(parent);
1817	}
1818	return dentry;
1819}
1820
1821/**
1822 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1823 * @sb: the superblock
1824 * @name: qstr of the name
1825 *
1826 * For a filesystem that just pins its dentries in memory and never
1827 * performs lookups at all, return an unhashed IS_ROOT dentry.
1828 * This is used for pipes, sockets et.al. - the stuff that should
1829 * never be anyone's children or parents.  Unlike all other
1830 * dentries, these will not have RCU delay between dropping the
1831 * last reference and freeing them.
1832 *
1833 * The only user is alloc_file_pseudo() and that's what should
1834 * be considered a public interface.  Don't use directly.
1835 */
1836struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1837{
 
 
 
1838	struct dentry *dentry = __d_alloc(sb, name);
1839	if (likely(dentry))
1840		dentry->d_flags |= DCACHE_NORCU;
 
 
 
1841	return dentry;
1842}
1843
1844struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1845{
1846	struct qstr q;
1847
1848	q.name = name;
1849	q.hash_len = hashlen_string(parent, name);
1850	return d_alloc(parent, &q);
1851}
1852EXPORT_SYMBOL(d_alloc_name);
1853
1854void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1855{
1856	WARN_ON_ONCE(dentry->d_op);
1857	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1858				DCACHE_OP_COMPARE	|
1859				DCACHE_OP_REVALIDATE	|
1860				DCACHE_OP_WEAK_REVALIDATE	|
1861				DCACHE_OP_DELETE	|
1862				DCACHE_OP_REAL));
1863	dentry->d_op = op;
1864	if (!op)
1865		return;
1866	if (op->d_hash)
1867		dentry->d_flags |= DCACHE_OP_HASH;
1868	if (op->d_compare)
1869		dentry->d_flags |= DCACHE_OP_COMPARE;
1870	if (op->d_revalidate)
1871		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1872	if (op->d_weak_revalidate)
1873		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1874	if (op->d_delete)
1875		dentry->d_flags |= DCACHE_OP_DELETE;
1876	if (op->d_prune)
1877		dentry->d_flags |= DCACHE_OP_PRUNE;
1878	if (op->d_real)
1879		dentry->d_flags |= DCACHE_OP_REAL;
1880
1881}
1882EXPORT_SYMBOL(d_set_d_op);
1883
1884
1885/*
1886 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1887 * @dentry - The dentry to mark
1888 *
1889 * Mark a dentry as falling through to the lower layer (as set with
1890 * d_pin_lower()).  This flag may be recorded on the medium.
1891 */
1892void d_set_fallthru(struct dentry *dentry)
1893{
1894	spin_lock(&dentry->d_lock);
1895	dentry->d_flags |= DCACHE_FALLTHRU;
1896	spin_unlock(&dentry->d_lock);
1897}
1898EXPORT_SYMBOL(d_set_fallthru);
1899
1900static unsigned d_flags_for_inode(struct inode *inode)
1901{
1902	unsigned add_flags = DCACHE_REGULAR_TYPE;
1903
1904	if (!inode)
1905		return DCACHE_MISS_TYPE;
1906
1907	if (S_ISDIR(inode->i_mode)) {
1908		add_flags = DCACHE_DIRECTORY_TYPE;
1909		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1910			if (unlikely(!inode->i_op->lookup))
1911				add_flags = DCACHE_AUTODIR_TYPE;
1912			else
1913				inode->i_opflags |= IOP_LOOKUP;
1914		}
1915		goto type_determined;
1916	}
1917
1918	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1919		if (unlikely(inode->i_op->get_link)) {
1920			add_flags = DCACHE_SYMLINK_TYPE;
1921			goto type_determined;
1922		}
1923		inode->i_opflags |= IOP_NOFOLLOW;
1924	}
1925
1926	if (unlikely(!S_ISREG(inode->i_mode)))
1927		add_flags = DCACHE_SPECIAL_TYPE;
1928
1929type_determined:
1930	if (unlikely(IS_AUTOMOUNT(inode)))
1931		add_flags |= DCACHE_NEED_AUTOMOUNT;
1932	return add_flags;
1933}
1934
1935static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1936{
1937	unsigned add_flags = d_flags_for_inode(inode);
1938	WARN_ON(d_in_lookup(dentry));
1939
1940	spin_lock(&dentry->d_lock);
1941	/*
1942	 * Decrement negative dentry count if it was in the LRU list.
 
1943	 */
1944	if (dentry->d_flags & DCACHE_LRU_LIST)
 
1945		this_cpu_dec(nr_dentry_negative);
1946	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1947	raw_write_seqcount_begin(&dentry->d_seq);
1948	__d_set_inode_and_type(dentry, inode, add_flags);
1949	raw_write_seqcount_end(&dentry->d_seq);
1950	fsnotify_update_flags(dentry);
1951	spin_unlock(&dentry->d_lock);
1952}
1953
1954/**
1955 * d_instantiate - fill in inode information for a dentry
1956 * @entry: dentry to complete
1957 * @inode: inode to attach to this dentry
1958 *
1959 * Fill in inode information in the entry.
1960 *
1961 * This turns negative dentries into productive full members
1962 * of society.
1963 *
1964 * NOTE! This assumes that the inode count has been incremented
1965 * (or otherwise set) by the caller to indicate that it is now
1966 * in use by the dcache.
1967 */
1968 
1969void d_instantiate(struct dentry *entry, struct inode * inode)
1970{
1971	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1972	if (inode) {
1973		security_d_instantiate(entry, inode);
1974		spin_lock(&inode->i_lock);
1975		__d_instantiate(entry, inode);
1976		spin_unlock(&inode->i_lock);
1977	}
1978}
1979EXPORT_SYMBOL(d_instantiate);
1980
1981/*
1982 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1983 * with lockdep-related part of unlock_new_inode() done before
1984 * anything else.  Use that instead of open-coding d_instantiate()/
1985 * unlock_new_inode() combinations.
1986 */
1987void d_instantiate_new(struct dentry *entry, struct inode *inode)
1988{
1989	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1990	BUG_ON(!inode);
1991	lockdep_annotate_inode_mutex_key(inode);
1992	security_d_instantiate(entry, inode);
1993	spin_lock(&inode->i_lock);
1994	__d_instantiate(entry, inode);
1995	WARN_ON(!(inode->i_state & I_NEW));
1996	inode->i_state &= ~I_NEW & ~I_CREATING;
 
 
 
 
 
1997	smp_mb();
1998	wake_up_bit(&inode->i_state, __I_NEW);
1999	spin_unlock(&inode->i_lock);
2000}
2001EXPORT_SYMBOL(d_instantiate_new);
2002
2003struct dentry *d_make_root(struct inode *root_inode)
2004{
2005	struct dentry *res = NULL;
2006
2007	if (root_inode) {
2008		res = d_alloc_anon(root_inode->i_sb);
2009		if (res)
2010			d_instantiate(res, root_inode);
2011		else
2012			iput(root_inode);
2013	}
2014	return res;
2015}
2016EXPORT_SYMBOL(d_make_root);
2017
2018static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2019					   struct inode *inode,
2020					   bool disconnected)
2021{
2022	struct dentry *res;
2023	unsigned add_flags;
2024
2025	security_d_instantiate(dentry, inode);
2026	spin_lock(&inode->i_lock);
2027	res = __d_find_any_alias(inode);
2028	if (res) {
2029		spin_unlock(&inode->i_lock);
2030		dput(dentry);
2031		goto out_iput;
2032	}
2033
2034	/* attach a disconnected dentry */
2035	add_flags = d_flags_for_inode(inode);
2036
2037	if (disconnected)
2038		add_flags |= DCACHE_DISCONNECTED;
2039
2040	spin_lock(&dentry->d_lock);
2041	__d_set_inode_and_type(dentry, inode, add_flags);
2042	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2043	if (!disconnected) {
2044		hlist_bl_lock(&dentry->d_sb->s_roots);
2045		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2046		hlist_bl_unlock(&dentry->d_sb->s_roots);
2047	}
2048	spin_unlock(&dentry->d_lock);
2049	spin_unlock(&inode->i_lock);
2050
2051	return dentry;
2052
2053 out_iput:
2054	iput(inode);
2055	return res;
2056}
2057
2058struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2059{
2060	return __d_instantiate_anon(dentry, inode, true);
2061}
2062EXPORT_SYMBOL(d_instantiate_anon);
2063
2064static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2065{
2066	struct dentry *tmp;
2067	struct dentry *res;
2068
2069	if (!inode)
2070		return ERR_PTR(-ESTALE);
2071	if (IS_ERR(inode))
2072		return ERR_CAST(inode);
2073
2074	res = d_find_any_alias(inode);
 
 
2075	if (res)
2076		goto out_iput;
2077
2078	tmp = d_alloc_anon(inode->i_sb);
2079	if (!tmp) {
2080		res = ERR_PTR(-ENOMEM);
2081		goto out_iput;
2082	}
2083
2084	return __d_instantiate_anon(tmp, inode, disconnected);
 
 
 
 
 
 
 
2085
2086out_iput:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087	iput(inode);
2088	return res;
2089}
2090
2091/**
2092 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2093 * @inode: inode to allocate the dentry for
2094 *
2095 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2096 * similar open by handle operations.  The returned dentry may be anonymous,
2097 * or may have a full name (if the inode was already in the cache).
2098 *
2099 * When called on a directory inode, we must ensure that the inode only ever
2100 * has one dentry.  If a dentry is found, that is returned instead of
2101 * allocating a new one.
2102 *
2103 * On successful return, the reference to the inode has been transferred
2104 * to the dentry.  In case of an error the reference on the inode is released.
2105 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2106 * be passed in and the error will be propagated to the return value,
2107 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2108 */
2109struct dentry *d_obtain_alias(struct inode *inode)
2110{
2111	return __d_obtain_alias(inode, true);
2112}
2113EXPORT_SYMBOL(d_obtain_alias);
2114
2115/**
2116 * d_obtain_root - find or allocate a dentry for a given inode
2117 * @inode: inode to allocate the dentry for
2118 *
2119 * Obtain an IS_ROOT dentry for the root of a filesystem.
2120 *
2121 * We must ensure that directory inodes only ever have one dentry.  If a
2122 * dentry is found, that is returned instead of allocating a new one.
2123 *
2124 * On successful return, the reference to the inode has been transferred
2125 * to the dentry.  In case of an error the reference on the inode is
2126 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2127 * error will be propagate to the return value, with a %NULL @inode
2128 * replaced by ERR_PTR(-ESTALE).
2129 */
2130struct dentry *d_obtain_root(struct inode *inode)
2131{
2132	return __d_obtain_alias(inode, false);
2133}
2134EXPORT_SYMBOL(d_obtain_root);
2135
2136/**
2137 * d_add_ci - lookup or allocate new dentry with case-exact name
 
2138 * @inode:  the inode case-insensitive lookup has found
2139 * @dentry: the negative dentry that was passed to the parent's lookup func
2140 * @name:   the case-exact name to be associated with the returned dentry
2141 *
2142 * This is to avoid filling the dcache with case-insensitive names to the
2143 * same inode, only the actual correct case is stored in the dcache for
2144 * case-insensitive filesystems.
2145 *
2146 * For a case-insensitive lookup match and if the the case-exact dentry
2147 * already exists in in the dcache, use it and return it.
2148 *
2149 * If no entry exists with the exact case name, allocate new dentry with
2150 * the exact case, and return the spliced entry.
2151 */
2152struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2153			struct qstr *name)
2154{
2155	struct dentry *found, *res;
2156
2157	/*
2158	 * First check if a dentry matching the name already exists,
2159	 * if not go ahead and create it now.
2160	 */
2161	found = d_hash_and_lookup(dentry->d_parent, name);
2162	if (found) {
2163		iput(inode);
2164		return found;
2165	}
2166	if (d_in_lookup(dentry)) {
2167		found = d_alloc_parallel(dentry->d_parent, name,
2168					dentry->d_wait);
2169		if (IS_ERR(found) || !d_in_lookup(found)) {
2170			iput(inode);
2171			return found;
2172		}
2173	} else {
2174		found = d_alloc(dentry->d_parent, name);
2175		if (!found) {
2176			iput(inode);
2177			return ERR_PTR(-ENOMEM);
2178		} 
2179	}
2180	res = d_splice_alias(inode, found);
2181	if (res) {
 
2182		dput(found);
2183		return res;
2184	}
2185	return found;
2186}
2187EXPORT_SYMBOL(d_add_ci);
2188
2189
2190static inline bool d_same_name(const struct dentry *dentry,
2191				const struct dentry *parent,
2192				const struct qstr *name)
 
 
 
 
 
 
2193{
2194	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2195		if (dentry->d_name.len != name->len)
2196			return false;
2197		return dentry_cmp(dentry, name->name, name->len) == 0;
2198	}
2199	return parent->d_op->d_compare(dentry,
2200				       dentry->d_name.len, dentry->d_name.name,
2201				       name) == 0;
2202}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203
2204/**
2205 * __d_lookup_rcu - search for a dentry (racy, store-free)
2206 * @parent: parent dentry
2207 * @name: qstr of name we wish to find
2208 * @seqp: returns d_seq value at the point where the dentry was found
2209 * Returns: dentry, or NULL
2210 *
2211 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2212 * resolution (store-free path walking) design described in
2213 * Documentation/filesystems/path-lookup.txt.
2214 *
2215 * This is not to be used outside core vfs.
2216 *
2217 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2218 * held, and rcu_read_lock held. The returned dentry must not be stored into
2219 * without taking d_lock and checking d_seq sequence count against @seq
2220 * returned here.
2221 *
2222 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2223 * function.
2224 *
2225 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2226 * the returned dentry, so long as its parent's seqlock is checked after the
2227 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2228 * is formed, giving integrity down the path walk.
2229 *
2230 * NOTE! The caller *has* to check the resulting dentry against the sequence
2231 * number we've returned before using any of the resulting dentry state!
2232 */
2233struct dentry *__d_lookup_rcu(const struct dentry *parent,
2234				const struct qstr *name,
2235				unsigned *seqp)
2236{
2237	u64 hashlen = name->hash_len;
2238	const unsigned char *str = name->name;
2239	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2240	struct hlist_bl_node *node;
2241	struct dentry *dentry;
2242
2243	/*
2244	 * Note: There is significant duplication with __d_lookup_rcu which is
2245	 * required to prevent single threaded performance regressions
2246	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2247	 * Keep the two functions in sync.
2248	 */
2249
 
 
 
2250	/*
2251	 * The hash list is protected using RCU.
2252	 *
2253	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2254	 * races with d_move().
2255	 *
2256	 * It is possible that concurrent renames can mess up our list
2257	 * walk here and result in missing our dentry, resulting in the
2258	 * false-negative result. d_lookup() protects against concurrent
2259	 * renames using rename_lock seqlock.
2260	 *
2261	 * See Documentation/filesystems/path-lookup.txt for more details.
2262	 */
2263	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2264		unsigned seq;
2265
2266seqretry:
2267		/*
2268		 * The dentry sequence count protects us from concurrent
2269		 * renames, and thus protects parent and name fields.
2270		 *
2271		 * The caller must perform a seqcount check in order
2272		 * to do anything useful with the returned dentry.
2273		 *
2274		 * NOTE! We do a "raw" seqcount_begin here. That means that
2275		 * we don't wait for the sequence count to stabilize if it
2276		 * is in the middle of a sequence change. If we do the slow
2277		 * dentry compare, we will do seqretries until it is stable,
2278		 * and if we end up with a successful lookup, we actually
2279		 * want to exit RCU lookup anyway.
2280		 *
2281		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2282		 * we are still guaranteed NUL-termination of ->d_name.name.
2283		 */
2284		seq = raw_seqcount_begin(&dentry->d_seq);
2285		if (dentry->d_parent != parent)
2286			continue;
2287		if (d_unhashed(dentry))
2288			continue;
2289
2290		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2291			int tlen;
2292			const char *tname;
2293			if (dentry->d_name.hash != hashlen_hash(hashlen))
2294				continue;
2295			tlen = dentry->d_name.len;
2296			tname = dentry->d_name.name;
2297			/* we want a consistent (name,len) pair */
2298			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2299				cpu_relax();
2300				goto seqretry;
2301			}
2302			if (parent->d_op->d_compare(dentry,
2303						    tlen, tname, name) != 0)
2304				continue;
2305		} else {
2306			if (dentry->d_name.hash_len != hashlen)
2307				continue;
2308			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2309				continue;
2310		}
2311		*seqp = seq;
2312		return dentry;
2313	}
2314	return NULL;
2315}
2316
2317/**
2318 * d_lookup - search for a dentry
2319 * @parent: parent dentry
2320 * @name: qstr of name we wish to find
2321 * Returns: dentry, or NULL
2322 *
2323 * d_lookup searches the children of the parent dentry for the name in
2324 * question. If the dentry is found its reference count is incremented and the
2325 * dentry is returned. The caller must use dput to free the entry when it has
2326 * finished using it. %NULL is returned if the dentry does not exist.
2327 */
2328struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2329{
2330	struct dentry *dentry;
2331	unsigned seq;
2332
2333	do {
2334		seq = read_seqbegin(&rename_lock);
2335		dentry = __d_lookup(parent, name);
2336		if (dentry)
2337			break;
2338	} while (read_seqretry(&rename_lock, seq));
2339	return dentry;
2340}
2341EXPORT_SYMBOL(d_lookup);
2342
2343/**
2344 * __d_lookup - search for a dentry (racy)
2345 * @parent: parent dentry
2346 * @name: qstr of name we wish to find
2347 * Returns: dentry, or NULL
2348 *
2349 * __d_lookup is like d_lookup, however it may (rarely) return a
2350 * false-negative result due to unrelated rename activity.
2351 *
2352 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2353 * however it must be used carefully, eg. with a following d_lookup in
2354 * the case of failure.
2355 *
2356 * __d_lookup callers must be commented.
2357 */
2358struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2359{
2360	unsigned int hash = name->hash;
2361	struct hlist_bl_head *b = d_hash(hash);
2362	struct hlist_bl_node *node;
2363	struct dentry *found = NULL;
2364	struct dentry *dentry;
2365
2366	/*
2367	 * Note: There is significant duplication with __d_lookup_rcu which is
2368	 * required to prevent single threaded performance regressions
2369	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2370	 * Keep the two functions in sync.
2371	 */
2372
2373	/*
2374	 * The hash list is protected using RCU.
2375	 *
2376	 * Take d_lock when comparing a candidate dentry, to avoid races
2377	 * with d_move().
2378	 *
2379	 * It is possible that concurrent renames can mess up our list
2380	 * walk here and result in missing our dentry, resulting in the
2381	 * false-negative result. d_lookup() protects against concurrent
2382	 * renames using rename_lock seqlock.
2383	 *
2384	 * See Documentation/filesystems/path-lookup.txt for more details.
2385	 */
2386	rcu_read_lock();
2387	
2388	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2389
2390		if (dentry->d_name.hash != hash)
2391			continue;
2392
2393		spin_lock(&dentry->d_lock);
2394		if (dentry->d_parent != parent)
2395			goto next;
2396		if (d_unhashed(dentry))
2397			goto next;
2398
2399		if (!d_same_name(dentry, parent, name))
2400			goto next;
2401
2402		dentry->d_lockref.count++;
2403		found = dentry;
2404		spin_unlock(&dentry->d_lock);
2405		break;
2406next:
2407		spin_unlock(&dentry->d_lock);
2408 	}
2409 	rcu_read_unlock();
2410
2411 	return found;
2412}
2413
2414/**
2415 * d_hash_and_lookup - hash the qstr then search for a dentry
2416 * @dir: Directory to search in
2417 * @name: qstr of name we wish to find
2418 *
2419 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2420 */
2421struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2422{
2423	/*
2424	 * Check for a fs-specific hash function. Note that we must
2425	 * calculate the standard hash first, as the d_op->d_hash()
2426	 * routine may choose to leave the hash value unchanged.
2427	 */
2428	name->hash = full_name_hash(dir, name->name, name->len);
2429	if (dir->d_flags & DCACHE_OP_HASH) {
2430		int err = dir->d_op->d_hash(dir, name);
2431		if (unlikely(err < 0))
2432			return ERR_PTR(err);
2433	}
2434	return d_lookup(dir, name);
2435}
2436EXPORT_SYMBOL(d_hash_and_lookup);
2437
2438/*
2439 * When a file is deleted, we have two options:
2440 * - turn this dentry into a negative dentry
2441 * - unhash this dentry and free it.
2442 *
2443 * Usually, we want to just turn this into
2444 * a negative dentry, but if anybody else is
2445 * currently using the dentry or the inode
2446 * we can't do that and we fall back on removing
2447 * it from the hash queues and waiting for
2448 * it to be deleted later when it has no users
2449 */
2450 
2451/**
2452 * d_delete - delete a dentry
2453 * @dentry: The dentry to delete
2454 *
2455 * Turn the dentry into a negative dentry if possible, otherwise
2456 * remove it from the hash queues so it can be deleted later
2457 */
2458 
2459void d_delete(struct dentry * dentry)
2460{
2461	struct inode *inode = dentry->d_inode;
2462
2463	spin_lock(&inode->i_lock);
2464	spin_lock(&dentry->d_lock);
2465	/*
2466	 * Are we the only user?
2467	 */
2468	if (dentry->d_lockref.count == 1) {
 
 
2469		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2470		dentry_unlink_inode(dentry);
2471	} else {
2472		__d_drop(dentry);
2473		spin_unlock(&dentry->d_lock);
2474		spin_unlock(&inode->i_lock);
2475	}
2476}
2477EXPORT_SYMBOL(d_delete);
2478
2479static void __d_rehash(struct dentry *entry)
2480{
2481	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2482
2483	hlist_bl_lock(b);
2484	hlist_bl_add_head_rcu(&entry->d_hash, b);
2485	hlist_bl_unlock(b);
2486}
2487
2488/**
2489 * d_rehash	- add an entry back to the hash
2490 * @entry: dentry to add to the hash
2491 *
2492 * Adds a dentry to the hash according to its name.
2493 */
2494 
2495void d_rehash(struct dentry * entry)
2496{
2497	spin_lock(&entry->d_lock);
2498	__d_rehash(entry);
2499	spin_unlock(&entry->d_lock);
2500}
2501EXPORT_SYMBOL(d_rehash);
2502
2503static inline unsigned start_dir_add(struct inode *dir)
2504{
2505
2506	for (;;) {
2507		unsigned n = dir->i_dir_seq;
2508		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2509			return n;
2510		cpu_relax();
2511	}
2512}
2513
2514static inline void end_dir_add(struct inode *dir, unsigned n)
 
2515{
2516	smp_store_release(&dir->i_dir_seq, n + 2);
 
 
2517}
2518
2519static void d_wait_lookup(struct dentry *dentry)
2520{
2521	if (d_in_lookup(dentry)) {
2522		DECLARE_WAITQUEUE(wait, current);
2523		add_wait_queue(dentry->d_wait, &wait);
2524		do {
2525			set_current_state(TASK_UNINTERRUPTIBLE);
2526			spin_unlock(&dentry->d_lock);
2527			schedule();
2528			spin_lock(&dentry->d_lock);
2529		} while (d_in_lookup(dentry));
2530	}
2531}
2532
2533struct dentry *d_alloc_parallel(struct dentry *parent,
2534				const struct qstr *name,
2535				wait_queue_head_t *wq)
2536{
2537	unsigned int hash = name->hash;
2538	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2539	struct hlist_bl_node *node;
2540	struct dentry *new = d_alloc(parent, name);
2541	struct dentry *dentry;
2542	unsigned seq, r_seq, d_seq;
2543
2544	if (unlikely(!new))
2545		return ERR_PTR(-ENOMEM);
2546
2547retry:
2548	rcu_read_lock();
2549	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2550	r_seq = read_seqbegin(&rename_lock);
2551	dentry = __d_lookup_rcu(parent, name, &d_seq);
2552	if (unlikely(dentry)) {
2553		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2554			rcu_read_unlock();
2555			goto retry;
2556		}
2557		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2558			rcu_read_unlock();
2559			dput(dentry);
2560			goto retry;
2561		}
2562		rcu_read_unlock();
2563		dput(new);
2564		return dentry;
2565	}
2566	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2567		rcu_read_unlock();
2568		goto retry;
2569	}
2570
2571	if (unlikely(seq & 1)) {
2572		rcu_read_unlock();
2573		goto retry;
2574	}
2575
2576	hlist_bl_lock(b);
2577	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2578		hlist_bl_unlock(b);
2579		rcu_read_unlock();
2580		goto retry;
2581	}
2582	/*
2583	 * No changes for the parent since the beginning of d_lookup().
2584	 * Since all removals from the chain happen with hlist_bl_lock(),
2585	 * any potential in-lookup matches are going to stay here until
2586	 * we unlock the chain.  All fields are stable in everything
2587	 * we encounter.
2588	 */
2589	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2590		if (dentry->d_name.hash != hash)
2591			continue;
2592		if (dentry->d_parent != parent)
2593			continue;
2594		if (!d_same_name(dentry, parent, name))
2595			continue;
2596		hlist_bl_unlock(b);
2597		/* now we can try to grab a reference */
2598		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2599			rcu_read_unlock();
2600			goto retry;
2601		}
2602
2603		rcu_read_unlock();
2604		/*
2605		 * somebody is likely to be still doing lookup for it;
2606		 * wait for them to finish
2607		 */
2608		spin_lock(&dentry->d_lock);
2609		d_wait_lookup(dentry);
2610		/*
2611		 * it's not in-lookup anymore; in principle we should repeat
2612		 * everything from dcache lookup, but it's likely to be what
2613		 * d_lookup() would've found anyway.  If it is, just return it;
2614		 * otherwise we really have to repeat the whole thing.
2615		 */
2616		if (unlikely(dentry->d_name.hash != hash))
2617			goto mismatch;
2618		if (unlikely(dentry->d_parent != parent))
2619			goto mismatch;
2620		if (unlikely(d_unhashed(dentry)))
2621			goto mismatch;
2622		if (unlikely(!d_same_name(dentry, parent, name)))
2623			goto mismatch;
2624		/* OK, it *is* a hashed match; return it */
2625		spin_unlock(&dentry->d_lock);
2626		dput(new);
2627		return dentry;
2628	}
2629	rcu_read_unlock();
2630	/* we can't take ->d_lock here; it's OK, though. */
2631	new->d_flags |= DCACHE_PAR_LOOKUP;
2632	new->d_wait = wq;
2633	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2634	hlist_bl_unlock(b);
2635	return new;
2636mismatch:
2637	spin_unlock(&dentry->d_lock);
2638	dput(dentry);
2639	goto retry;
2640}
2641EXPORT_SYMBOL(d_alloc_parallel);
2642
2643void __d_lookup_done(struct dentry *dentry)
 
 
 
 
 
2644{
2645	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2646						 dentry->d_name.hash);
 
 
 
 
2647	hlist_bl_lock(b);
2648	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2649	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2650	wake_up_all(dentry->d_wait);
2651	dentry->d_wait = NULL;
2652	hlist_bl_unlock(b);
2653	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2654	INIT_LIST_HEAD(&dentry->d_lru);
 
2655}
2656EXPORT_SYMBOL(__d_lookup_done);
 
 
 
 
 
 
 
2657
2658/* inode->i_lock held if inode is non-NULL */
2659
2660static inline void __d_add(struct dentry *dentry, struct inode *inode)
2661{
 
2662	struct inode *dir = NULL;
2663	unsigned n;
2664	spin_lock(&dentry->d_lock);
2665	if (unlikely(d_in_lookup(dentry))) {
2666		dir = dentry->d_parent->d_inode;
2667		n = start_dir_add(dir);
2668		__d_lookup_done(dentry);
2669	}
2670	if (inode) {
2671		unsigned add_flags = d_flags_for_inode(inode);
2672		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2673		raw_write_seqcount_begin(&dentry->d_seq);
2674		__d_set_inode_and_type(dentry, inode, add_flags);
2675		raw_write_seqcount_end(&dentry->d_seq);
2676		fsnotify_update_flags(dentry);
2677	}
2678	__d_rehash(dentry);
2679	if (dir)
2680		end_dir_add(dir, n);
2681	spin_unlock(&dentry->d_lock);
2682	if (inode)
2683		spin_unlock(&inode->i_lock);
2684}
2685
2686/**
2687 * d_add - add dentry to hash queues
2688 * @entry: dentry to add
2689 * @inode: The inode to attach to this dentry
2690 *
2691 * This adds the entry to the hash queues and initializes @inode.
2692 * The entry was actually filled in earlier during d_alloc().
2693 */
2694
2695void d_add(struct dentry *entry, struct inode *inode)
2696{
2697	if (inode) {
2698		security_d_instantiate(entry, inode);
2699		spin_lock(&inode->i_lock);
2700	}
2701	__d_add(entry, inode);
2702}
2703EXPORT_SYMBOL(d_add);
2704
2705/**
2706 * d_exact_alias - find and hash an exact unhashed alias
2707 * @entry: dentry to add
2708 * @inode: The inode to go with this dentry
2709 *
2710 * If an unhashed dentry with the same name/parent and desired
2711 * inode already exists, hash and return it.  Otherwise, return
2712 * NULL.
2713 *
2714 * Parent directory should be locked.
2715 */
2716struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2717{
2718	struct dentry *alias;
2719	unsigned int hash = entry->d_name.hash;
2720
2721	spin_lock(&inode->i_lock);
2722	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2723		/*
2724		 * Don't need alias->d_lock here, because aliases with
2725		 * d_parent == entry->d_parent are not subject to name or
2726		 * parent changes, because the parent inode i_mutex is held.
2727		 */
2728		if (alias->d_name.hash != hash)
2729			continue;
2730		if (alias->d_parent != entry->d_parent)
2731			continue;
2732		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2733			continue;
2734		spin_lock(&alias->d_lock);
2735		if (!d_unhashed(alias)) {
2736			spin_unlock(&alias->d_lock);
2737			alias = NULL;
2738		} else {
2739			__dget_dlock(alias);
2740			__d_rehash(alias);
2741			spin_unlock(&alias->d_lock);
2742		}
2743		spin_unlock(&inode->i_lock);
2744		return alias;
2745	}
2746	spin_unlock(&inode->i_lock);
2747	return NULL;
2748}
2749EXPORT_SYMBOL(d_exact_alias);
2750
2751static void swap_names(struct dentry *dentry, struct dentry *target)
2752{
2753	if (unlikely(dname_external(target))) {
2754		if (unlikely(dname_external(dentry))) {
2755			/*
2756			 * Both external: swap the pointers
2757			 */
2758			swap(target->d_name.name, dentry->d_name.name);
2759		} else {
2760			/*
2761			 * dentry:internal, target:external.  Steal target's
2762			 * storage and make target internal.
2763			 */
2764			memcpy(target->d_iname, dentry->d_name.name,
2765					dentry->d_name.len + 1);
2766			dentry->d_name.name = target->d_name.name;
2767			target->d_name.name = target->d_iname;
2768		}
2769	} else {
2770		if (unlikely(dname_external(dentry))) {
2771			/*
2772			 * dentry:external, target:internal.  Give dentry's
2773			 * storage to target and make dentry internal
2774			 */
2775			memcpy(dentry->d_iname, target->d_name.name,
2776					target->d_name.len + 1);
2777			target->d_name.name = dentry->d_name.name;
2778			dentry->d_name.name = dentry->d_iname;
2779		} else {
2780			/*
2781			 * Both are internal.
2782			 */
2783			unsigned int i;
2784			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2785			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2786				swap(((long *) &dentry->d_iname)[i],
2787				     ((long *) &target->d_iname)[i]);
2788			}
2789		}
2790	}
2791	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2792}
2793
2794static void copy_name(struct dentry *dentry, struct dentry *target)
2795{
2796	struct external_name *old_name = NULL;
2797	if (unlikely(dname_external(dentry)))
2798		old_name = external_name(dentry);
2799	if (unlikely(dname_external(target))) {
2800		atomic_inc(&external_name(target)->u.count);
2801		dentry->d_name = target->d_name;
2802	} else {
2803		memcpy(dentry->d_iname, target->d_name.name,
2804				target->d_name.len + 1);
2805		dentry->d_name.name = dentry->d_iname;
2806		dentry->d_name.hash_len = target->d_name.hash_len;
2807	}
2808	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2809		kfree_rcu(old_name, u.head);
2810}
2811
2812/*
2813 * __d_move - move a dentry
2814 * @dentry: entry to move
2815 * @target: new dentry
2816 * @exchange: exchange the two dentries
2817 *
2818 * Update the dcache to reflect the move of a file name. Negative
2819 * dcache entries should not be moved in this way. Caller must hold
2820 * rename_lock, the i_mutex of the source and target directories,
2821 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2822 */
2823static void __d_move(struct dentry *dentry, struct dentry *target,
2824		     bool exchange)
2825{
2826	struct dentry *old_parent, *p;
 
2827	struct inode *dir = NULL;
2828	unsigned n;
2829
2830	WARN_ON(!dentry->d_inode);
2831	if (WARN_ON(dentry == target))
2832		return;
2833
2834	BUG_ON(d_ancestor(target, dentry));
2835	old_parent = dentry->d_parent;
2836	p = d_ancestor(old_parent, target);
2837	if (IS_ROOT(dentry)) {
2838		BUG_ON(p);
2839		spin_lock(&target->d_parent->d_lock);
2840	} else if (!p) {
2841		/* target is not a descendent of dentry->d_parent */
2842		spin_lock(&target->d_parent->d_lock);
2843		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2844	} else {
2845		BUG_ON(p == dentry);
2846		spin_lock(&old_parent->d_lock);
2847		if (p != target)
2848			spin_lock_nested(&target->d_parent->d_lock,
2849					DENTRY_D_LOCK_NESTED);
2850	}
2851	spin_lock_nested(&dentry->d_lock, 2);
2852	spin_lock_nested(&target->d_lock, 3);
2853
2854	if (unlikely(d_in_lookup(target))) {
2855		dir = target->d_parent->d_inode;
2856		n = start_dir_add(dir);
2857		__d_lookup_done(target);
2858	}
2859
2860	write_seqcount_begin(&dentry->d_seq);
2861	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2862
2863	/* unhash both */
2864	if (!d_unhashed(dentry))
2865		___d_drop(dentry);
2866	if (!d_unhashed(target))
2867		___d_drop(target);
2868
2869	/* ... and switch them in the tree */
2870	dentry->d_parent = target->d_parent;
2871	if (!exchange) {
2872		copy_name(dentry, target);
2873		target->d_hash.pprev = NULL;
2874		dentry->d_parent->d_lockref.count++;
2875		if (dentry != old_parent) /* wasn't IS_ROOT */
2876			WARN_ON(!--old_parent->d_lockref.count);
2877	} else {
2878		target->d_parent = old_parent;
2879		swap_names(dentry, target);
2880		list_move(&target->d_child, &target->d_parent->d_subdirs);
 
 
2881		__d_rehash(target);
2882		fsnotify_update_flags(target);
2883	}
2884	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
 
 
2885	__d_rehash(dentry);
2886	fsnotify_update_flags(dentry);
2887	fscrypt_handle_d_move(dentry);
2888
2889	write_seqcount_end(&target->d_seq);
2890	write_seqcount_end(&dentry->d_seq);
2891
2892	if (dir)
2893		end_dir_add(dir, n);
2894
2895	if (dentry->d_parent != old_parent)
2896		spin_unlock(&dentry->d_parent->d_lock);
2897	if (dentry != old_parent)
2898		spin_unlock(&old_parent->d_lock);
2899	spin_unlock(&target->d_lock);
2900	spin_unlock(&dentry->d_lock);
2901}
2902
2903/*
2904 * d_move - move a dentry
2905 * @dentry: entry to move
2906 * @target: new dentry
2907 *
2908 * Update the dcache to reflect the move of a file name. Negative
2909 * dcache entries should not be moved in this way. See the locking
2910 * requirements for __d_move.
2911 */
2912void d_move(struct dentry *dentry, struct dentry *target)
2913{
2914	write_seqlock(&rename_lock);
2915	__d_move(dentry, target, false);
2916	write_sequnlock(&rename_lock);
2917}
2918EXPORT_SYMBOL(d_move);
2919
2920/*
2921 * d_exchange - exchange two dentries
2922 * @dentry1: first dentry
2923 * @dentry2: second dentry
2924 */
2925void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2926{
2927	write_seqlock(&rename_lock);
2928
2929	WARN_ON(!dentry1->d_inode);
2930	WARN_ON(!dentry2->d_inode);
2931	WARN_ON(IS_ROOT(dentry1));
2932	WARN_ON(IS_ROOT(dentry2));
2933
2934	__d_move(dentry1, dentry2, true);
2935
2936	write_sequnlock(&rename_lock);
2937}
2938
2939/**
2940 * d_ancestor - search for an ancestor
2941 * @p1: ancestor dentry
2942 * @p2: child dentry
2943 *
2944 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2945 * an ancestor of p2, else NULL.
2946 */
2947struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2948{
2949	struct dentry *p;
2950
2951	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2952		if (p->d_parent == p1)
2953			return p;
2954	}
2955	return NULL;
2956}
2957
2958/*
2959 * This helper attempts to cope with remotely renamed directories
2960 *
2961 * It assumes that the caller is already holding
2962 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2963 *
2964 * Note: If ever the locking in lock_rename() changes, then please
2965 * remember to update this too...
2966 */
2967static int __d_unalias(struct inode *inode,
2968		struct dentry *dentry, struct dentry *alias)
2969{
2970	struct mutex *m1 = NULL;
2971	struct rw_semaphore *m2 = NULL;
2972	int ret = -ESTALE;
2973
2974	/* If alias and dentry share a parent, then no extra locks required */
2975	if (alias->d_parent == dentry->d_parent)
2976		goto out_unalias;
2977
2978	/* See lock_rename() */
2979	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2980		goto out_err;
2981	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2982	if (!inode_trylock_shared(alias->d_parent->d_inode))
2983		goto out_err;
2984	m2 = &alias->d_parent->d_inode->i_rwsem;
2985out_unalias:
2986	__d_move(alias, dentry, false);
2987	ret = 0;
2988out_err:
2989	if (m2)
2990		up_read(m2);
2991	if (m1)
2992		mutex_unlock(m1);
2993	return ret;
2994}
2995
2996/**
2997 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2998 * @inode:  the inode which may have a disconnected dentry
2999 * @dentry: a negative dentry which we want to point to the inode.
3000 *
3001 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3002 * place of the given dentry and return it, else simply d_add the inode
3003 * to the dentry and return NULL.
3004 *
3005 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3006 * we should error out: directories can't have multiple aliases.
3007 *
3008 * This is needed in the lookup routine of any filesystem that is exportable
3009 * (via knfsd) so that we can build dcache paths to directories effectively.
3010 *
3011 * If a dentry was found and moved, then it is returned.  Otherwise NULL
3012 * is returned.  This matches the expected return value of ->lookup.
3013 *
3014 * Cluster filesystems may call this function with a negative, hashed dentry.
3015 * In that case, we know that the inode will be a regular file, and also this
3016 * will only occur during atomic_open. So we need to check for the dentry
3017 * being already hashed only in the final case.
3018 */
3019struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3020{
3021	if (IS_ERR(inode))
3022		return ERR_CAST(inode);
3023
3024	BUG_ON(!d_unhashed(dentry));
3025
3026	if (!inode)
3027		goto out;
3028
3029	security_d_instantiate(dentry, inode);
3030	spin_lock(&inode->i_lock);
3031	if (S_ISDIR(inode->i_mode)) {
3032		struct dentry *new = __d_find_any_alias(inode);
3033		if (unlikely(new)) {
3034			/* The reference to new ensures it remains an alias */
3035			spin_unlock(&inode->i_lock);
3036			write_seqlock(&rename_lock);
3037			if (unlikely(d_ancestor(new, dentry))) {
3038				write_sequnlock(&rename_lock);
3039				dput(new);
3040				new = ERR_PTR(-ELOOP);
3041				pr_warn_ratelimited(
3042					"VFS: Lookup of '%s' in %s %s"
3043					" would have caused loop\n",
3044					dentry->d_name.name,
3045					inode->i_sb->s_type->name,
3046					inode->i_sb->s_id);
3047			} else if (!IS_ROOT(new)) {
3048				struct dentry *old_parent = dget(new->d_parent);
3049				int err = __d_unalias(inode, dentry, new);
3050				write_sequnlock(&rename_lock);
3051				if (err) {
3052					dput(new);
3053					new = ERR_PTR(err);
3054				}
3055				dput(old_parent);
3056			} else {
3057				__d_move(new, dentry, false);
3058				write_sequnlock(&rename_lock);
3059			}
3060			iput(inode);
3061			return new;
3062		}
3063	}
3064out:
3065	__d_add(dentry, inode);
3066	return NULL;
3067}
3068EXPORT_SYMBOL(d_splice_alias);
3069
3070/*
3071 * Test whether new_dentry is a subdirectory of old_dentry.
3072 *
3073 * Trivially implemented using the dcache structure
3074 */
3075
3076/**
3077 * is_subdir - is new dentry a subdirectory of old_dentry
3078 * @new_dentry: new dentry
3079 * @old_dentry: old dentry
3080 *
3081 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3082 * Returns false otherwise.
3083 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3084 */
3085  
3086bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3087{
3088	bool result;
3089	unsigned seq;
3090
3091	if (new_dentry == old_dentry)
3092		return true;
3093
3094	do {
3095		/* for restarting inner loop in case of seq retry */
3096		seq = read_seqbegin(&rename_lock);
3097		/*
3098		 * Need rcu_readlock to protect against the d_parent trashing
3099		 * due to d_move
3100		 */
3101		rcu_read_lock();
3102		if (d_ancestor(old_dentry, new_dentry))
3103			result = true;
3104		else
3105			result = false;
3106		rcu_read_unlock();
3107	} while (read_seqretry(&rename_lock, seq));
3108
3109	return result;
3110}
3111EXPORT_SYMBOL(is_subdir);
3112
3113static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3114{
3115	struct dentry *root = data;
3116	if (dentry != root) {
3117		if (d_unhashed(dentry) || !dentry->d_inode)
3118			return D_WALK_SKIP;
3119
3120		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3121			dentry->d_flags |= DCACHE_GENOCIDE;
3122			dentry->d_lockref.count--;
3123		}
3124	}
3125	return D_WALK_CONTINUE;
3126}
3127
3128void d_genocide(struct dentry *parent)
3129{
3130	d_walk(parent, parent, d_genocide_kill);
3131}
3132
3133EXPORT_SYMBOL(d_genocide);
 
 
3134
3135void d_tmpfile(struct dentry *dentry, struct inode *inode)
3136{
3137	inode_dec_link_count(inode);
3138	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3139		!hlist_unhashed(&dentry->d_u.d_alias) ||
3140		!d_unlinked(dentry));
3141	spin_lock(&dentry->d_parent->d_lock);
3142	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3143	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3144				(unsigned long long)inode->i_ino);
3145	spin_unlock(&dentry->d_lock);
3146	spin_unlock(&dentry->d_parent->d_lock);
 
 
 
 
 
 
 
 
 
3147	d_instantiate(dentry, inode);
3148}
3149EXPORT_SYMBOL(d_tmpfile);
3150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3151static __initdata unsigned long dhash_entries;
3152static int __init set_dhash_entries(char *str)
3153{
3154	if (!str)
3155		return 0;
3156	dhash_entries = simple_strtoul(str, &str, 0);
3157	return 1;
3158}
3159__setup("dhash_entries=", set_dhash_entries);
3160
3161static void __init dcache_init_early(void)
3162{
3163	/* If hashes are distributed across NUMA nodes, defer
3164	 * hash allocation until vmalloc space is available.
3165	 */
3166	if (hashdist)
3167		return;
3168
3169	dentry_hashtable =
3170		alloc_large_system_hash("Dentry cache",
3171					sizeof(struct hlist_bl_head),
3172					dhash_entries,
3173					13,
3174					HASH_EARLY | HASH_ZERO,
3175					&d_hash_shift,
3176					NULL,
3177					0,
3178					0);
3179	d_hash_shift = 32 - d_hash_shift;
 
 
 
3180}
3181
3182static void __init dcache_init(void)
3183{
3184	/*
3185	 * A constructor could be added for stable state like the lists,
3186	 * but it is probably not worth it because of the cache nature
3187	 * of the dcache.
3188	 */
3189	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3190		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3191		d_iname);
3192
3193	/* Hash may have been set up in dcache_init_early */
3194	if (!hashdist)
3195		return;
3196
3197	dentry_hashtable =
3198		alloc_large_system_hash("Dentry cache",
3199					sizeof(struct hlist_bl_head),
3200					dhash_entries,
3201					13,
3202					HASH_ZERO,
3203					&d_hash_shift,
3204					NULL,
3205					0,
3206					0);
3207	d_hash_shift = 32 - d_hash_shift;
 
 
 
3208}
3209
3210/* SLAB cache for __getname() consumers */
3211struct kmem_cache *names_cachep __read_mostly;
3212EXPORT_SYMBOL(names_cachep);
3213
3214void __init vfs_caches_init_early(void)
3215{
3216	int i;
3217
3218	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3219		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3220
3221	dcache_init_early();
3222	inode_init_early();
3223}
3224
3225void __init vfs_caches_init(void)
3226{
3227	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3228			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3229
3230	dcache_init();
3231	inode_init();
3232	files_init();
3233	files_maxfiles_init();
3234	mnt_init();
3235	bdev_cache_init();
3236	chrdev_init();
3237}