Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
 
 
 
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
 
 
 
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
 
  35#include "internal.h"
  36#include "mount.h"
  37
  38#include <asm/runtime-const.h>
  39
  40/*
  41 * Usage:
  42 * dcache->d_inode->i_lock protects:
  43 *   - i_dentry, d_u.d_alias, d_inode of aliases
  44 * dcache_hash_bucket lock protects:
  45 *   - the dcache hash table
  46 * s_roots bl list spinlock protects:
  47 *   - the s_roots list (see __d_drop)
  48 * dentry->d_sb->s_dentry_lru_lock protects:
  49 *   - the dcache lru lists and counters
  50 * d_lock protects:
  51 *   - d_flags
  52 *   - d_name
  53 *   - d_lru
  54 *   - d_count
  55 *   - d_unhashed()
  56 *   - d_parent and d_chilren
  57 *   - childrens' d_sib and d_parent
  58 *   - d_u.d_alias, d_inode
  59 *
  60 * Ordering:
  61 * dentry->d_inode->i_lock
  62 *   dentry->d_lock
  63 *     dentry->d_sb->s_dentry_lru_lock
  64 *     dcache_hash_bucket lock
  65 *     s_roots lock
  66 *
  67 * If there is an ancestor relationship:
  68 * dentry->d_parent->...->d_parent->d_lock
  69 *   ...
  70 *     dentry->d_parent->d_lock
  71 *       dentry->d_lock
  72 *
  73 * If no ancestor relationship:
  74 * arbitrary, since it's serialized on rename_lock
 
 
  75 */
  76int sysctl_vfs_cache_pressure __read_mostly = 100;
  77EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  78
 
  79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  80
  81EXPORT_SYMBOL(rename_lock);
  82
  83static struct kmem_cache *dentry_cache __ro_after_init;
  84
  85const struct qstr empty_name = QSTR_INIT("", 0);
  86EXPORT_SYMBOL(empty_name);
  87const struct qstr slash_name = QSTR_INIT("/", 1);
  88EXPORT_SYMBOL(slash_name);
  89const struct qstr dotdot_name = QSTR_INIT("..", 2);
  90EXPORT_SYMBOL(dotdot_name);
  91
  92/*
  93 * This is the single most critical data structure when it comes
  94 * to the dcache: the hashtable for lookups. Somebody should try
  95 * to make this good - I've just made it work.
  96 *
  97 * This hash-function tries to avoid losing too many bits of hash
  98 * information, yet avoid using a prime hash-size or similar.
  99 *
 100 * Marking the variables "used" ensures that the compiler doesn't
 101 * optimize them away completely on architectures with runtime
 102 * constant infrastructure, this allows debuggers to see their
 103 * values. But updating these values has no effect on those arches.
 104 */
 
 
 105
 106static unsigned int d_hash_shift __ro_after_init __used;
 107
 108static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
 109
 110static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
 111{
 112	return runtime_const_ptr(dentry_hashtable) +
 113		runtime_const_shift_right_32(hashlen, d_hash_shift);
 114}
 115
 116#define IN_LOOKUP_SHIFT 10
 117static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 118
 119static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 120					unsigned int hash)
 121{
 122	hash += (unsigned long) parent / L1_CACHE_BYTES;
 123	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 
 124}
 125
 126struct dentry_stat_t {
 127	long nr_dentry;
 128	long nr_unused;
 129	long age_limit;		/* age in seconds */
 130	long want_pages;	/* pages requested by system */
 131	long nr_negative;	/* # of unused negative dentries */
 132	long dummy;		/* Reserved for future use */
 133};
 134
 135static DEFINE_PER_CPU(long, nr_dentry);
 136static DEFINE_PER_CPU(long, nr_dentry_unused);
 137static DEFINE_PER_CPU(long, nr_dentry_negative);
 138static int dentry_negative_policy;
 139
 140#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 141/* Statistics gathering. */
 142static struct dentry_stat_t dentry_stat = {
 143	.age_limit = 45,
 144};
 145
 146/*
 147 * Here we resort to our own counters instead of using generic per-cpu counters
 148 * for consistency with what the vfs inode code does. We are expected to harvest
 149 * better code and performance by having our own specialized counters.
 150 *
 151 * Please note that the loop is done over all possible CPUs, not over all online
 152 * CPUs. The reason for this is that we don't want to play games with CPUs going
 153 * on and off. If one of them goes off, we will just keep their counters.
 154 *
 155 * glommer: See cffbc8a for details, and if you ever intend to change this,
 156 * please update all vfs counters to match.
 157 */
 158static long get_nr_dentry(void)
 159{
 160	int i;
 161	long sum = 0;
 162	for_each_possible_cpu(i)
 163		sum += per_cpu(nr_dentry, i);
 164	return sum < 0 ? 0 : sum;
 165}
 166
 167static long get_nr_dentry_unused(void)
 168{
 169	int i;
 170	long sum = 0;
 171	for_each_possible_cpu(i)
 172		sum += per_cpu(nr_dentry_unused, i);
 173	return sum < 0 ? 0 : sum;
 174}
 175
 176static long get_nr_dentry_negative(void)
 177{
 178	int i;
 179	long sum = 0;
 180
 181	for_each_possible_cpu(i)
 182		sum += per_cpu(nr_dentry_negative, i);
 183	return sum < 0 ? 0 : sum;
 184}
 185
 186static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
 187			  size_t *lenp, loff_t *ppos)
 188{
 189	dentry_stat.nr_dentry = get_nr_dentry();
 190	dentry_stat.nr_unused = get_nr_dentry_unused();
 191	dentry_stat.nr_negative = get_nr_dentry_negative();
 192	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 193}
 194
 195static struct ctl_table fs_dcache_sysctls[] = {
 196	{
 197		.procname	= "dentry-state",
 198		.data		= &dentry_stat,
 199		.maxlen		= 6*sizeof(long),
 200		.mode		= 0444,
 201		.proc_handler	= proc_nr_dentry,
 202	},
 203	{
 204		.procname	= "dentry-negative",
 205		.data		= &dentry_negative_policy,
 206		.maxlen		= sizeof(dentry_negative_policy),
 207		.mode		= 0644,
 208		.proc_handler	= proc_dointvec_minmax,
 209		.extra1		= SYSCTL_ZERO,
 210		.extra2		= SYSCTL_ONE,
 211	},
 212};
 213
 214static int __init init_fs_dcache_sysctls(void)
 215{
 216	register_sysctl_init("fs", fs_dcache_sysctls);
 217	return 0;
 218}
 219fs_initcall(init_fs_dcache_sysctls);
 220#endif
 221
 222/*
 223 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 224 * The strings are both count bytes long, and count is non-zero.
 225 */
 226#ifdef CONFIG_DCACHE_WORD_ACCESS
 227
 228#include <asm/word-at-a-time.h>
 229/*
 230 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 231 * aligned allocation for this particular component. We don't
 232 * strictly need the load_unaligned_zeropad() safety, but it
 233 * doesn't hurt either.
 234 *
 235 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 236 * need the careful unaligned handling.
 237 */
 238static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 239{
 240	unsigned long a,b,mask;
 241
 242	for (;;) {
 243		a = read_word_at_a_time(cs);
 244		b = load_unaligned_zeropad(ct);
 245		if (tcount < sizeof(unsigned long))
 246			break;
 247		if (unlikely(a != b))
 248			return 1;
 249		cs += sizeof(unsigned long);
 250		ct += sizeof(unsigned long);
 251		tcount -= sizeof(unsigned long);
 252		if (!tcount)
 253			return 0;
 254	}
 255	mask = bytemask_from_count(tcount);
 256	return unlikely(!!((a ^ b) & mask));
 257}
 258
 259#else
 260
 261static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 262{
 263	do {
 264		if (*cs != *ct)
 265			return 1;
 266		cs++;
 267		ct++;
 268		tcount--;
 269	} while (tcount);
 270	return 0;
 271}
 272
 273#endif
 274
 275static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 276{
 
 277	/*
 278	 * Be careful about RCU walk racing with rename:
 279	 * use 'READ_ONCE' to fetch the name pointer.
 280	 *
 281	 * NOTE! Even if a rename will mean that the length
 282	 * was not loaded atomically, we don't care. The
 283	 * RCU walk will check the sequence count eventually,
 284	 * and catch it. And we won't overrun the buffer,
 285	 * because we're reading the name pointer atomically,
 286	 * and a dentry name is guaranteed to be properly
 287	 * terminated with a NUL byte.
 288	 *
 289	 * End result: even if 'len' is wrong, we'll exit
 290	 * early because the data cannot match (there can
 291	 * be no NUL in the ct/tcount data)
 292	 */
 293	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 294
 295	return dentry_string_cmp(cs, ct, tcount);
 296}
 297
 298struct external_name {
 299	union {
 300		atomic_t count;
 301		struct rcu_head head;
 302	} u;
 303	unsigned char name[];
 304};
 305
 306static inline struct external_name *external_name(struct dentry *dentry)
 307{
 308	return container_of(dentry->d_name.name, struct external_name, name[0]);
 309}
 310
 311static void __d_free(struct rcu_head *head)
 312{
 313	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 314
 
 
 
 315	kmem_cache_free(dentry_cache, dentry); 
 316}
 317
 318static void __d_free_external(struct rcu_head *head)
 
 
 
 319{
 320	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 321	kfree(external_name(dentry));
 322	kmem_cache_free(dentry_cache, dentry);
 323}
 324
 325static inline int dname_external(const struct dentry *dentry)
 326{
 327	return dentry->d_name.name != dentry->d_iname;
 
 
 328}
 329
 330void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 331{
 332	spin_lock(&dentry->d_lock);
 333	name->name = dentry->d_name;
 334	if (unlikely(dname_external(dentry))) {
 335		atomic_inc(&external_name(dentry)->u.count);
 336	} else {
 337		memcpy(name->inline_name, dentry->d_iname,
 338		       dentry->d_name.len + 1);
 339		name->name.name = name->inline_name;
 340	}
 341	spin_unlock(&dentry->d_lock);
 342}
 343EXPORT_SYMBOL(take_dentry_name_snapshot);
 344
 345void release_dentry_name_snapshot(struct name_snapshot *name)
 
 
 
 
 
 
 
 346{
 347	if (unlikely(name->name.name != name->inline_name)) {
 348		struct external_name *p;
 349		p = container_of(name->name.name, struct external_name, name[0]);
 350		if (unlikely(atomic_dec_and_test(&p->u.count)))
 351			kfree_rcu(p, u.head);
 
 
 
 
 
 
 
 
 
 352	}
 353}
 354EXPORT_SYMBOL(release_dentry_name_snapshot);
 355
 356static inline void __d_set_inode_and_type(struct dentry *dentry,
 357					  struct inode *inode,
 358					  unsigned type_flags)
 359{
 360	unsigned flags;
 361
 362	dentry->d_inode = inode;
 363	flags = READ_ONCE(dentry->d_flags);
 364	flags &= ~DCACHE_ENTRY_TYPE;
 365	flags |= type_flags;
 366	smp_store_release(&dentry->d_flags, flags);
 367}
 368
 369static inline void __d_clear_type_and_inode(struct dentry *dentry)
 370{
 371	unsigned flags = READ_ONCE(dentry->d_flags);
 372
 373	flags &= ~DCACHE_ENTRY_TYPE;
 374	WRITE_ONCE(dentry->d_flags, flags);
 375	dentry->d_inode = NULL;
 376	/*
 377	 * The negative counter only tracks dentries on the LRU. Don't inc if
 378	 * d_lru is on another list.
 379	 */
 380	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
 381		this_cpu_inc(nr_dentry_negative);
 382}
 383
 384static void dentry_free(struct dentry *dentry)
 385{
 386	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 387	if (unlikely(dname_external(dentry))) {
 388		struct external_name *p = external_name(dentry);
 389		if (likely(atomic_dec_and_test(&p->u.count))) {
 390			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 391			return;
 392		}
 393	}
 394	/* if dentry was never visible to RCU, immediate free is OK */
 395	if (dentry->d_flags & DCACHE_NORCU)
 396		__d_free(&dentry->d_u.d_rcu);
 397	else
 398		call_rcu(&dentry->d_u.d_rcu, __d_free);
 399}
 400
 401/*
 402 * Release the dentry's inode, using the filesystem
 403 * d_iput() operation if defined.
 404 */
 405static void dentry_unlink_inode(struct dentry * dentry)
 406	__releases(dentry->d_lock)
 407	__releases(dentry->d_inode->i_lock)
 408{
 409	struct inode *inode = dentry->d_inode;
 410
 411	raw_write_seqcount_begin(&dentry->d_seq);
 412	__d_clear_type_and_inode(dentry);
 413	hlist_del_init(&dentry->d_u.d_alias);
 414	raw_write_seqcount_end(&dentry->d_seq);
 415	spin_unlock(&dentry->d_lock);
 416	spin_unlock(&inode->i_lock);
 417	if (!inode->i_nlink)
 418		fsnotify_inoderemove(inode);
 419	if (dentry->d_op && dentry->d_op->d_iput)
 420		dentry->d_op->d_iput(dentry, inode);
 421	else
 422		iput(inode);
 423}
 424
 425/*
 426 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 427 * is in use - which includes both the "real" per-superblock
 428 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 429 *
 430 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 431 * on the shrink list (ie not on the superblock LRU list).
 432 *
 433 * The per-cpu "nr_dentry_unused" counters are updated with
 434 * the DCACHE_LRU_LIST bit.
 435 *
 436 * The per-cpu "nr_dentry_negative" counters are only updated
 437 * when deleted from or added to the per-superblock LRU list, not
 438 * from/to the shrink list. That is to avoid an unneeded dec/inc
 439 * pair when moving from LRU to shrink list in select_collect().
 440 *
 441 * These helper functions make sure we always follow the
 442 * rules. d_lock must be held by the caller.
 443 */
 444#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 445static void d_lru_add(struct dentry *dentry)
 446{
 447	D_FLAG_VERIFY(dentry, 0);
 448	dentry->d_flags |= DCACHE_LRU_LIST;
 449	this_cpu_inc(nr_dentry_unused);
 450	if (d_is_negative(dentry))
 451		this_cpu_inc(nr_dentry_negative);
 452	WARN_ON_ONCE(!list_lru_add_obj(
 453			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 454}
 455
 456static void d_lru_del(struct dentry *dentry)
 457{
 458	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 459	dentry->d_flags &= ~DCACHE_LRU_LIST;
 460	this_cpu_dec(nr_dentry_unused);
 461	if (d_is_negative(dentry))
 462		this_cpu_dec(nr_dentry_negative);
 463	WARN_ON_ONCE(!list_lru_del_obj(
 464			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 465}
 466
 467static void d_shrink_del(struct dentry *dentry)
 468{
 469	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 470	list_del_init(&dentry->d_lru);
 471	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 472	this_cpu_dec(nr_dentry_unused);
 
 473}
 474
 475static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 
 
 
 476{
 477	D_FLAG_VERIFY(dentry, 0);
 478	list_add(&dentry->d_lru, list);
 479	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 480	this_cpu_inc(nr_dentry_unused);
 
 481}
 482
 483/*
 484 * These can only be called under the global LRU lock, ie during the
 485 * callback for freeing the LRU list. "isolate" removes it from the
 486 * LRU lists entirely, while shrink_move moves it to the indicated
 487 * private list.
 488 */
 489static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 490{
 491	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 492	dentry->d_flags &= ~DCACHE_LRU_LIST;
 493	this_cpu_dec(nr_dentry_unused);
 494	if (d_is_negative(dentry))
 495		this_cpu_dec(nr_dentry_negative);
 496	list_lru_isolate(lru, &dentry->d_lru);
 
 
 497}
 498
 499static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 500			      struct list_head *list)
 501{
 502	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 503	dentry->d_flags |= DCACHE_SHRINK_LIST;
 504	if (d_is_negative(dentry))
 505		this_cpu_dec(nr_dentry_negative);
 506	list_lru_isolate_move(lru, &dentry->d_lru, list);
 
 
 
 
 507}
 508
 509static void ___d_drop(struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510{
 511	struct hlist_bl_head *b;
 512	/*
 513	 * Hashed dentries are normally on the dentry hashtable,
 514	 * with the exception of those newly allocated by
 515	 * d_obtain_root, which are always IS_ROOT:
 516	 */
 517	if (unlikely(IS_ROOT(dentry)))
 518		b = &dentry->d_sb->s_roots;
 519	else
 520		b = d_hash(dentry->d_name.hash);
 521
 522	hlist_bl_lock(b);
 523	__hlist_bl_del(&dentry->d_hash);
 524	hlist_bl_unlock(b);
 
 
 525}
 526
 527void __d_drop(struct dentry *dentry)
 
 
 
 
 
 528{
 529	if (!d_unhashed(dentry)) {
 530		___d_drop(dentry);
 
 
 
 
 
 
 
 531		dentry->d_hash.pprev = NULL;
 532		write_seqcount_invalidate(&dentry->d_seq);
 533	}
 534}
 535EXPORT_SYMBOL(__d_drop);
 536
 537/**
 538 * d_drop - drop a dentry
 539 * @dentry: dentry to drop
 540 *
 541 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 542 * be found through a VFS lookup any more. Note that this is different from
 543 * deleting the dentry - d_delete will try to mark the dentry negative if
 544 * possible, giving a successful _negative_ lookup, while d_drop will
 545 * just make the cache lookup fail.
 546 *
 547 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 548 * reason (NFS timeouts or autofs deletes).
 549 *
 550 * __d_drop requires dentry->d_lock
 551 *
 552 * ___d_drop doesn't mark dentry as "unhashed"
 553 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 554 */
 555void d_drop(struct dentry *dentry)
 556{
 557	spin_lock(&dentry->d_lock);
 558	__d_drop(dentry);
 559	spin_unlock(&dentry->d_lock);
 560}
 561EXPORT_SYMBOL(d_drop);
 562
 563static inline void dentry_unlist(struct dentry *dentry)
 564{
 565	struct dentry *next;
 566	/*
 567	 * Inform d_walk() and shrink_dentry_list() that we are no longer
 568	 * attached to the dentry tree
 569	 */
 570	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 571	if (unlikely(hlist_unhashed(&dentry->d_sib)))
 572		return;
 573	__hlist_del(&dentry->d_sib);
 574	/*
 575	 * Cursors can move around the list of children.  While we'd been
 576	 * a normal list member, it didn't matter - ->d_sib.next would've
 577	 * been updated.  However, from now on it won't be and for the
 578	 * things like d_walk() it might end up with a nasty surprise.
 579	 * Normally d_walk() doesn't care about cursors moving around -
 580	 * ->d_lock on parent prevents that and since a cursor has no children
 581	 * of its own, we get through it without ever unlocking the parent.
 582	 * There is one exception, though - if we ascend from a child that
 583	 * gets killed as soon as we unlock it, the next sibling is found
 584	 * using the value left in its ->d_sib.next.  And if _that_
 585	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
 586	 * before d_walk() regains parent->d_lock, we'll end up skipping
 587	 * everything the cursor had been moved past.
 588	 *
 589	 * Solution: make sure that the pointer left behind in ->d_sib.next
 590	 * points to something that won't be moving around.  I.e. skip the
 591	 * cursors.
 592	 */
 593	while (dentry->d_sib.next) {
 594		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
 595		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 596			break;
 597		dentry->d_sib.next = next->d_sib.next;
 598	}
 599}
 
 600
 601static struct dentry *__dentry_kill(struct dentry *dentry)
 602{
 603	struct dentry *parent = NULL;
 604	bool can_free = true;
 605
 606	/*
 607	 * The dentry is now unrecoverably dead to the world.
 608	 */
 609	lockref_mark_dead(&dentry->d_lockref);
 610
 611	/*
 612	 * inform the fs via d_prune that this dentry is about to be
 613	 * unhashed and destroyed.
 614	 */
 615	if (dentry->d_flags & DCACHE_OP_PRUNE)
 616		dentry->d_op->d_prune(dentry);
 617
 618	if (dentry->d_flags & DCACHE_LRU_LIST) {
 619		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 620			d_lru_del(dentry);
 621	}
 622	/* if it was on the hash then remove it */
 623	__d_drop(dentry);
 624	if (dentry->d_inode)
 625		dentry_unlink_inode(dentry);
 626	else
 627		spin_unlock(&dentry->d_lock);
 628	this_cpu_dec(nr_dentry);
 629	if (dentry->d_op && dentry->d_op->d_release)
 630		dentry->d_op->d_release(dentry);
 631
 632	cond_resched();
 633	/* now that it's negative, ->d_parent is stable */
 634	if (!IS_ROOT(dentry)) {
 635		parent = dentry->d_parent;
 636		spin_lock(&parent->d_lock);
 637	}
 638	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 639	dentry_unlist(dentry);
 640	if (dentry->d_flags & DCACHE_SHRINK_LIST)
 641		can_free = false;
 642	spin_unlock(&dentry->d_lock);
 643	if (likely(can_free))
 644		dentry_free(dentry);
 645	if (parent && --parent->d_lockref.count) {
 646		spin_unlock(&parent->d_lock);
 647		return NULL;
 648	}
 649	return parent;
 650}
 
 651
 652/*
 653 * Lock a dentry for feeding it to __dentry_kill().
 654 * Called under rcu_read_lock() and dentry->d_lock; the former
 655 * guarantees that nothing we access will be freed under us.
 656 * Note that dentry is *not* protected from concurrent dentry_kill(),
 657 * d_delete(), etc.
 658 *
 659 * Return false if dentry is busy.  Otherwise, return true and have
 660 * that dentry's inode locked.
 
 
 661 */
 662
 663static bool lock_for_kill(struct dentry *dentry)
 664{
 665	struct inode *inode = dentry->d_inode;
 666
 667	if (unlikely(dentry->d_lockref.count))
 668		return false;
 669
 670	if (!inode || likely(spin_trylock(&inode->i_lock)))
 671		return true;
 672
 673	do {
 674		spin_unlock(&dentry->d_lock);
 675		spin_lock(&inode->i_lock);
 676		spin_lock(&dentry->d_lock);
 677		if (likely(inode == dentry->d_inode))
 678			break;
 679		spin_unlock(&inode->i_lock);
 680		inode = dentry->d_inode;
 681	} while (inode);
 682	if (likely(!dentry->d_lockref.count))
 683		return true;
 684	if (inode)
 685		spin_unlock(&inode->i_lock);
 686	return false;
 687}
 688
 689/*
 690 * Decide if dentry is worth retaining.  Usually this is called with dentry
 691 * locked; if not locked, we are more limited and might not be able to tell
 692 * without a lock.  False in this case means "punt to locked path and recheck".
 693 *
 694 * In case we aren't locked, these predicates are not "stable". However, it is
 695 * sufficient that at some point after we dropped the reference the dentry was
 696 * hashed and the flags had the proper value. Other dentry users may have
 697 * re-gotten a reference to the dentry and change that, but our work is done -
 698 * we can leave the dentry around with a zero refcount.
 699 */
 700static inline bool retain_dentry(struct dentry *dentry, bool locked)
 701{
 702	unsigned int d_flags;
 703
 704	smp_rmb();
 705	d_flags = READ_ONCE(dentry->d_flags);
 706
 707	// Unreachable? Nobody would be able to look it up, no point retaining
 708	if (unlikely(d_unhashed(dentry)))
 709		return false;
 710
 711	// Same if it's disconnected
 712	if (unlikely(d_flags & DCACHE_DISCONNECTED))
 713		return false;
 714
 715	// ->d_delete() might tell us not to bother, but that requires
 716	// ->d_lock; can't decide without it
 717	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
 718		if (!locked || dentry->d_op->d_delete(dentry))
 719			return false;
 720	}
 721
 722	// Explicitly told not to bother
 723	if (unlikely(d_flags & DCACHE_DONTCACHE))
 724		return false;
 725
 726	// At this point it looks like we ought to keep it.  We also might
 727	// need to do something - put it on LRU if it wasn't there already
 728	// and mark it referenced if it was on LRU, but not marked yet.
 729	// Unfortunately, both actions require ->d_lock, so in lockless
 730	// case we'd have to punt rather than doing those.
 731	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
 732		if (!locked)
 733			return false;
 734		d_lru_add(dentry);
 735	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
 736		if (!locked)
 737			return false;
 738		dentry->d_flags |= DCACHE_REFERENCED;
 739	}
 740	return true;
 741}
 742
 743void d_mark_dontcache(struct inode *inode)
 744{
 745	struct dentry *de;
 746
 747	spin_lock(&inode->i_lock);
 748	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 749		spin_lock(&de->d_lock);
 750		de->d_flags |= DCACHE_DONTCACHE;
 751		spin_unlock(&de->d_lock);
 752	}
 753	inode->i_state |= I_DONTCACHE;
 754	spin_unlock(&inode->i_lock);
 755}
 756EXPORT_SYMBOL(d_mark_dontcache);
 757
 758/*
 759 * Try to do a lockless dput(), and return whether that was successful.
 760 *
 761 * If unsuccessful, we return false, having already taken the dentry lock.
 762 * In that case refcount is guaranteed to be zero and we have already
 763 * decided that it's not worth keeping around.
 764 *
 765 * The caller needs to hold the RCU read lock, so that the dentry is
 766 * guaranteed to stay around even if the refcount goes down to zero!
 767 */
 768static inline bool fast_dput(struct dentry *dentry)
 
 769{
 770	int ret;
 771
 772	/*
 773	 * try to decrement the lockref optimistically.
 774	 */
 775	ret = lockref_put_return(&dentry->d_lockref);
 776
 777	/*
 778	 * If the lockref_put_return() failed due to the lock being held
 779	 * by somebody else, the fast path has failed. We will need to
 780	 * get the lock, and then check the count again.
 781	 */
 782	if (unlikely(ret < 0)) {
 783		spin_lock(&dentry->d_lock);
 784		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
 785			spin_unlock(&dentry->d_lock);
 786			return true;
 787		}
 788		dentry->d_lockref.count--;
 789		goto locked;
 
 
 790	}
 791
 
 
 792	/*
 793	 * If we weren't the last ref, we're done.
 794	 */
 795	if (ret)
 796		return true;
 797
 798	/*
 799	 * Can we decide that decrement of refcount is all we needed without
 800	 * taking the lock?  There's a very common case when it's all we need -
 801	 * dentry looks like it ought to be retained and there's nothing else
 802	 * to do.
 803	 */
 804	if (retain_dentry(dentry, false))
 805		return true;
 806
 807	/*
 808	 * Either not worth retaining or we can't tell without the lock.
 809	 * Get the lock, then.  We've already decremented the refcount to 0,
 810	 * but we'll need to re-check the situation after getting the lock.
 811	 */
 812	spin_lock(&dentry->d_lock);
 813
 814	/*
 815	 * Did somebody else grab a reference to it in the meantime, and
 816	 * we're no longer the last user after all? Alternatively, somebody
 817	 * else could have killed it and marked it dead. Either way, we
 818	 * don't need to do anything else.
 819	 */
 820locked:
 821	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
 822		spin_unlock(&dentry->d_lock);
 823		return true;
 824	}
 825	return false;
 826}
 827
 828
 829/* 
 830 * This is dput
 831 *
 832 * This is complicated by the fact that we do not want to put
 833 * dentries that are no longer on any hash chain on the unused
 834 * list: we'd much rather just get rid of them immediately.
 835 *
 836 * However, that implies that we have to traverse the dentry
 837 * tree upwards to the parents which might _also_ now be
 838 * scheduled for deletion (it may have been only waiting for
 839 * its last child to go away).
 840 *
 841 * This tail recursion is done by hand as we don't want to depend
 842 * on the compiler to always get this right (gcc generally doesn't).
 843 * Real recursion would eat up our stack space.
 844 */
 845
 846/*
 847 * dput - release a dentry
 848 * @dentry: dentry to release 
 849 *
 850 * Release a dentry. This will drop the usage count and if appropriate
 851 * call the dentry unlink method as well as removing it from the queues and
 852 * releasing its resources. If the parent dentries were scheduled for release
 853 * they too may now get deleted.
 854 */
 855void dput(struct dentry *dentry)
 856{
 857	if (!dentry)
 858		return;
 859	might_sleep();
 860	rcu_read_lock();
 861	if (likely(fast_dput(dentry))) {
 862		rcu_read_unlock();
 
 
 
 
 
 863		return;
 864	}
 865	while (lock_for_kill(dentry)) {
 866		rcu_read_unlock();
 867		dentry = __dentry_kill(dentry);
 868		if (!dentry)
 869			return;
 870		if (retain_dentry(dentry, true)) {
 871			spin_unlock(&dentry->d_lock);
 872			return;
 873		}
 874		rcu_read_lock();
 875	}
 876	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877	spin_unlock(&dentry->d_lock);
 
 
 
 
 
 
 878}
 879EXPORT_SYMBOL(dput);
 880
 881static void to_shrink_list(struct dentry *dentry, struct list_head *list)
 882__must_hold(&dentry->d_lock)
 
 
 
 
 
 
 
 
 
 
 
 883{
 884	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
 885		if (dentry->d_flags & DCACHE_LRU_LIST)
 886			d_lru_del(dentry);
 887		d_shrink_add(dentry, list);
 
 
 
 888	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889}
 
 890
 891void dput_to_list(struct dentry *dentry, struct list_head *list)
 
 892{
 893	rcu_read_lock();
 894	if (likely(fast_dput(dentry))) {
 895		rcu_read_unlock();
 896		return;
 897	}
 898	rcu_read_unlock();
 899	to_shrink_list(dentry, list);
 900	spin_unlock(&dentry->d_lock);
 901}
 902
 903struct dentry *dget_parent(struct dentry *dentry)
 904{
 905	int gotref;
 906	struct dentry *ret;
 907	unsigned seq;
 908
 909	/*
 910	 * Do optimistic parent lookup without any
 911	 * locking.
 912	 */
 913	rcu_read_lock();
 914	seq = raw_seqcount_begin(&dentry->d_seq);
 915	ret = READ_ONCE(dentry->d_parent);
 916	gotref = lockref_get_not_zero(&ret->d_lockref);
 917	rcu_read_unlock();
 918	if (likely(gotref)) {
 919		if (!read_seqcount_retry(&dentry->d_seq, seq))
 920			return ret;
 921		dput(ret);
 922	}
 923
 924repeat:
 925	/*
 926	 * Don't need rcu_dereference because we re-check it was correct under
 927	 * the lock.
 928	 */
 929	rcu_read_lock();
 930	ret = dentry->d_parent;
 931	spin_lock(&ret->d_lock);
 932	if (unlikely(ret != dentry->d_parent)) {
 933		spin_unlock(&ret->d_lock);
 934		rcu_read_unlock();
 935		goto repeat;
 936	}
 937	rcu_read_unlock();
 938	BUG_ON(!ret->d_lockref.count);
 939	ret->d_lockref.count++;
 940	spin_unlock(&ret->d_lock);
 941	return ret;
 942}
 943EXPORT_SYMBOL(dget_parent);
 944
 945static struct dentry * __d_find_any_alias(struct inode *inode)
 946{
 947	struct dentry *alias;
 948
 949	if (hlist_empty(&inode->i_dentry))
 950		return NULL;
 951	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 952	lockref_get(&alias->d_lockref);
 953	return alias;
 954}
 955
 956/**
 957 * d_find_any_alias - find any alias for a given inode
 958 * @inode: inode to find an alias for
 959 *
 960 * If any aliases exist for the given inode, take and return a
 961 * reference for one of them.  If no aliases exist, return %NULL.
 962 */
 963struct dentry *d_find_any_alias(struct inode *inode)
 964{
 965	struct dentry *de;
 966
 967	spin_lock(&inode->i_lock);
 968	de = __d_find_any_alias(inode);
 969	spin_unlock(&inode->i_lock);
 970	return de;
 971}
 972EXPORT_SYMBOL(d_find_any_alias);
 973
 974static struct dentry *__d_find_alias(struct inode *inode)
 975{
 976	struct dentry *alias;
 977
 978	if (S_ISDIR(inode->i_mode))
 979		return __d_find_any_alias(inode);
 980
 981	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 982		spin_lock(&alias->d_lock);
 983 		if (!d_unhashed(alias)) {
 984			dget_dlock(alias);
 985			spin_unlock(&alias->d_lock);
 986			return alias;
 987		}
 988		spin_unlock(&alias->d_lock);
 989	}
 990	return NULL;
 991}
 992
 993/**
 994 * d_find_alias - grab a hashed alias of inode
 995 * @inode: inode in question
 
 
 996 *
 997 * If inode has a hashed alias, or is a directory and has any alias,
 998 * acquire the reference to alias and return it. Otherwise return NULL.
 999 * Notice that if inode is a directory there can be only one alias and
1000 * it can be unhashed only if it has no children, or if it is the root
1001 * of a filesystem, or if the directory was renamed and d_revalidate
1002 * was the first vfs operation to notice.
1003 *
1004 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1005 * any other hashed alias over that one.
 
1006 */
1007struct dentry *d_find_alias(struct inode *inode)
1008{
1009	struct dentry *de = NULL;
1010
1011	if (!hlist_empty(&inode->i_dentry)) {
1012		spin_lock(&inode->i_lock);
1013		de = __d_find_alias(inode);
1014		spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 
 
 
1015	}
1016	return de;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017}
1018EXPORT_SYMBOL(d_find_alias);
1019
1020/*
1021 *  Caller MUST be holding rcu_read_lock() and be guaranteed
1022 *  that inode won't get freed until rcu_read_unlock().
1023 */
1024struct dentry *d_find_alias_rcu(struct inode *inode)
1025{
1026	struct hlist_head *l = &inode->i_dentry;
1027	struct dentry *de = NULL;
1028
1029	spin_lock(&inode->i_lock);
1030	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1031	// used without having I_FREEING set, which means no aliases left
1032	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1033		if (S_ISDIR(inode->i_mode)) {
1034			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1035		} else {
1036			hlist_for_each_entry(de, l, d_u.d_alias)
1037				if (!d_unhashed(de))
1038					break;
1039		}
1040	}
1041	spin_unlock(&inode->i_lock);
1042	return de;
1043}
 
1044
1045/*
1046 *	Try to kill dentries associated with this inode.
1047 * WARNING: you must own a reference to inode.
1048 */
1049void d_prune_aliases(struct inode *inode)
1050{
1051	LIST_HEAD(dispose);
1052	struct dentry *dentry;
1053
1054	spin_lock(&inode->i_lock);
1055	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1056		spin_lock(&dentry->d_lock);
1057		if (!dentry->d_lockref.count)
1058			to_shrink_list(dentry, &dispose);
 
 
 
 
 
 
1059		spin_unlock(&dentry->d_lock);
1060	}
1061	spin_unlock(&inode->i_lock);
1062	shrink_dentry_list(&dispose);
1063}
1064EXPORT_SYMBOL(d_prune_aliases);
1065
1066static inline void shrink_kill(struct dentry *victim)
 
 
 
 
 
 
 
 
1067{
1068	do {
1069		rcu_read_unlock();
1070		victim = __dentry_kill(victim);
1071		rcu_read_lock();
1072	} while (victim && lock_for_kill(victim));
1073	rcu_read_unlock();
1074	if (victim)
1075		spin_unlock(&victim->d_lock);
1076}
1077
1078void shrink_dentry_list(struct list_head *list)
1079{
1080	while (!list_empty(list)) {
1081		struct dentry *dentry;
 
 
 
 
 
 
 
 
 
 
 
1082
1083		dentry = list_entry(list->prev, struct dentry, d_lru);
 
 
1084		spin_lock(&dentry->d_lock);
1085		rcu_read_lock();
1086		if (!lock_for_kill(dentry)) {
1087			bool can_free;
1088			rcu_read_unlock();
1089			d_shrink_del(dentry);
1090			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1091			spin_unlock(&dentry->d_lock);
1092			if (can_free)
1093				dentry_free(dentry);
1094			continue;
1095		}
1096		d_shrink_del(dentry);
1097		shrink_kill(dentry);
1098	}
1099}
1100
1101static enum lru_status dentry_lru_isolate(struct list_head *item,
1102		struct list_lru_one *lru, void *arg)
1103{
1104	struct list_head *freeable = arg;
1105	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1106
1107
1108	/*
1109	 * we are inverting the lru lock/dentry->d_lock here,
1110	 * so use a trylock. If we fail to get the lock, just skip
1111	 * it
1112	 */
1113	if (!spin_trylock(&dentry->d_lock))
1114		return LRU_SKIP;
1115
1116	/*
1117	 * Referenced dentries are still in use. If they have active
1118	 * counts, just remove them from the LRU. Otherwise give them
1119	 * another pass through the LRU.
1120	 */
1121	if (dentry->d_lockref.count) {
1122		d_lru_isolate(lru, dentry);
1123		spin_unlock(&dentry->d_lock);
1124		return LRU_REMOVED;
1125	}
1126
1127	if (dentry->d_flags & DCACHE_REFERENCED) {
1128		dentry->d_flags &= ~DCACHE_REFERENCED;
1129		spin_unlock(&dentry->d_lock);
 
 
 
 
 
 
 
1130
1131		/*
1132		 * The list move itself will be made by the common LRU code. At
1133		 * this point, we've dropped the dentry->d_lock but keep the
1134		 * lru lock. This is safe to do, since every list movement is
1135		 * protected by the lru lock even if both locks are held.
1136		 *
1137		 * This is guaranteed by the fact that all LRU management
1138		 * functions are intermediated by the LRU API calls like
1139		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1140		 * only ever occur through this functions or through callbacks
1141		 * like this one, that are called from the LRU API.
1142		 *
1143		 * The only exceptions to this are functions like
1144		 * shrink_dentry_list, and code that first checks for the
1145		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1146		 * operating only with stack provided lists after they are
1147		 * properly isolated from the main list.  It is thus, always a
1148		 * local access.
1149		 */
1150		return LRU_ROTATE;
1151	}
 
 
 
1152
1153	d_lru_shrink_move(lru, dentry, freeable);
1154	spin_unlock(&dentry->d_lock);
 
1155
1156	return LRU_REMOVED;
 
 
1157}
1158
1159/**
1160 * prune_dcache_sb - shrink the dcache
1161 * @sb: superblock
1162 * @sc: shrink control, passed to list_lru_shrink_walk()
1163 *
1164 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1165 * is done when we need more memory and called from the superblock shrinker
1166 * function.
1167 *
1168 * This function may fail to free any resources if all the dentries are in
1169 * use.
1170 */
1171long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1172{
1173	LIST_HEAD(dispose);
1174	long freed;
1175
1176	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1177				     dentry_lru_isolate, &dispose);
1178	shrink_dentry_list(&dispose);
1179	return freed;
1180}
1181
1182static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1183		struct list_lru_one *lru, void *arg)
1184{
1185	struct list_head *freeable = arg;
1186	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
 
1187
1188	/*
1189	 * we are inverting the lru lock/dentry->d_lock here,
1190	 * so use a trylock. If we fail to get the lock, just skip
1191	 * it
1192	 */
1193	if (!spin_trylock(&dentry->d_lock))
1194		return LRU_SKIP;
1195
1196	d_lru_shrink_move(lru, dentry, freeable);
1197	spin_unlock(&dentry->d_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199	return LRU_REMOVED;
1200}
1201
1202
1203/**
1204 * shrink_dcache_sb - shrink dcache for a superblock
1205 * @sb: superblock
1206 *
1207 * Shrink the dcache for the specified super block. This is used to free
1208 * the dcache before unmounting a file system.
1209 */
1210void shrink_dcache_sb(struct super_block *sb)
1211{
1212	do {
1213		LIST_HEAD(dispose);
1214
1215		list_lru_walk(&sb->s_dentry_lru,
1216			dentry_lru_isolate_shrink, &dispose, 1024);
1217		shrink_dentry_list(&dispose);
1218	} while (list_lru_count(&sb->s_dentry_lru) > 0);
 
 
 
 
1219}
1220EXPORT_SYMBOL(shrink_dcache_sb);
1221
1222/**
1223 * enum d_walk_ret - action to talke during tree walk
1224 * @D_WALK_CONTINUE:	contrinue walk
1225 * @D_WALK_QUIT:	quit walk
1226 * @D_WALK_NORETRY:	quit when retry is needed
1227 * @D_WALK_SKIP:	skip this dentry and its children
1228 */
1229enum d_walk_ret {
1230	D_WALK_CONTINUE,
1231	D_WALK_QUIT,
1232	D_WALK_NORETRY,
1233	D_WALK_SKIP,
1234};
1235
1236/**
1237 * d_walk - walk the dentry tree
1238 * @parent:	start of walk
1239 * @data:	data passed to @enter() and @finish()
1240 * @enter:	callback when first entering the dentry
1241 *
1242 * The @enter() callbacks are called with d_lock held.
1243 */
1244static void d_walk(struct dentry *parent, void *data,
1245		   enum d_walk_ret (*enter)(void *, struct dentry *))
1246{
1247	struct dentry *this_parent, *dentry;
1248	unsigned seq = 0;
1249	enum d_walk_ret ret;
1250	bool retry = true;
1251
1252again:
1253	read_seqbegin_or_lock(&rename_lock, &seq);
1254	this_parent = parent;
1255	spin_lock(&this_parent->d_lock);
1256
1257	ret = enter(data, this_parent);
1258	switch (ret) {
1259	case D_WALK_CONTINUE:
1260		break;
1261	case D_WALK_QUIT:
1262	case D_WALK_SKIP:
1263		goto out_unlock;
1264	case D_WALK_NORETRY:
1265		retry = false;
1266		break;
1267	}
1268repeat:
1269	dentry = d_first_child(this_parent);
1270resume:
1271	hlist_for_each_entry_from(dentry, d_sib) {
1272		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1273			continue;
1274
1275		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 
 
 
1276
1277		ret = enter(data, dentry);
1278		switch (ret) {
1279		case D_WALK_CONTINUE:
1280			break;
1281		case D_WALK_QUIT:
1282			spin_unlock(&dentry->d_lock);
1283			goto out_unlock;
1284		case D_WALK_NORETRY:
1285			retry = false;
1286			break;
1287		case D_WALK_SKIP:
1288			spin_unlock(&dentry->d_lock);
1289			continue;
1290		}
1291
1292		if (!hlist_empty(&dentry->d_children)) {
1293			spin_unlock(&this_parent->d_lock);
1294			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1295			this_parent = dentry;
1296			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1297			goto repeat;
1298		}
1299		spin_unlock(&dentry->d_lock);
1300	}
1301	/*
1302	 * All done at this level ... ascend and resume the search.
1303	 */
1304	rcu_read_lock();
1305ascend:
1306	if (this_parent != parent) {
1307		dentry = this_parent;
1308		this_parent = dentry->d_parent;
1309
1310		spin_unlock(&dentry->d_lock);
1311		spin_lock(&this_parent->d_lock);
 
 
 
 
 
 
1312
1313		/* might go back up the wrong parent if we have had a rename. */
1314		if (need_seqretry(&rename_lock, seq))
1315			goto rename_retry;
1316		/* go into the first sibling still alive */
1317		hlist_for_each_entry_continue(dentry, d_sib) {
1318			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1319				rcu_read_unlock();
1320				goto resume;
1321			}
1322		}
1323		goto ascend;
1324	}
1325	if (need_seqretry(&rename_lock, seq))
1326		goto rename_retry;
1327	rcu_read_unlock();
1328
1329out_unlock:
1330	spin_unlock(&this_parent->d_lock);
1331	done_seqretry(&rename_lock, seq);
1332	return;
1333
1334rename_retry:
1335	spin_unlock(&this_parent->d_lock);
1336	rcu_read_unlock();
1337	BUG_ON(seq & 1);
1338	if (!retry)
1339		return;
1340	seq = 1;
1341	goto again;
1342}
1343
1344struct check_mount {
1345	struct vfsmount *mnt;
1346	unsigned int mounted;
1347};
1348
1349static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
1350{
1351	struct check_mount *info = data;
1352	struct path path = { .mnt = info->mnt, .dentry = dentry };
1353
1354	if (likely(!d_mountpoint(dentry)))
1355		return D_WALK_CONTINUE;
1356	if (__path_is_mountpoint(&path)) {
1357		info->mounted = 1;
1358		return D_WALK_QUIT;
 
 
 
 
 
 
1359	}
1360	return D_WALK_CONTINUE;
1361}
1362
1363/**
1364 * path_has_submounts - check for mounts over a dentry in the
1365 *                      current namespace.
1366 * @parent: path to check.
1367 *
1368 * Return true if the parent or its subdirectories contain
1369 * a mount point in the current namespace.
1370 */
1371int path_has_submounts(const struct path *parent)
1372{
1373	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1374
1375	read_seqlock_excl(&mount_lock);
1376	d_walk(parent->dentry, &data, path_check_mount);
1377	read_sequnlock_excl(&mount_lock);
1378
1379	return data.mounted;
 
 
 
 
 
 
 
 
 
 
 
1380}
1381EXPORT_SYMBOL(path_has_submounts);
1382
1383/*
1384 * Called by mount code to set a mountpoint and check if the mountpoint is
1385 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1386 * subtree can become unreachable).
 
 
 
 
 
1387 *
1388 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1389 * this reason take rename_lock and d_lock on dentry and ancestors.
1390 */
1391int d_set_mounted(struct dentry *dentry)
1392{
1393	struct dentry *p;
1394	int ret = -ENOENT;
1395	write_seqlock(&rename_lock);
1396	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1397		/* Need exclusion wrt. d_invalidate() */
1398		spin_lock(&p->d_lock);
1399		if (unlikely(d_unhashed(p))) {
1400			spin_unlock(&p->d_lock);
1401			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402		}
1403		spin_unlock(&p->d_lock);
1404	}
1405	spin_lock(&dentry->d_lock);
1406	if (!d_unlinked(dentry)) {
1407		ret = -EBUSY;
1408		if (!d_mountpoint(dentry)) {
1409			dentry->d_flags |= DCACHE_MOUNTED;
1410			ret = 0;
1411		}
 
1412	}
1413 	spin_unlock(&dentry->d_lock);
1414out:
1415	write_sequnlock(&rename_lock);
1416	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417}
 
1418
1419/*
1420 * Search the dentry child list of the specified parent,
1421 * and move any unused dentries to the end of the unused
1422 * list for prune_dcache(). We descend to the next level
1423 * whenever the d_children list is non-empty and continue
1424 * searching.
1425 *
1426 * It returns zero iff there are no unused children,
1427 * otherwise  it returns the number of children moved to
1428 * the end of the unused list. This may not be the total
1429 * number of unused children, because select_parent can
1430 * drop the lock and return early due to latency
1431 * constraints.
1432 */
1433
1434struct select_data {
1435	struct dentry *start;
1436	union {
1437		long found;
1438		struct dentry *victim;
1439	};
1440	struct list_head dispose;
1441};
1442
1443static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1444{
1445	struct select_data *data = _data;
1446	enum d_walk_ret ret = D_WALK_CONTINUE;
1447
1448	if (data->start == dentry)
1449		goto out;
1450
1451	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1452		data->found++;
1453	} else if (!dentry->d_lockref.count) {
1454		to_shrink_list(dentry, &data->dispose);
1455		data->found++;
1456	} else if (dentry->d_lockref.count < 0) {
1457		data->found++;
1458	}
1459	/*
1460	 * We can return to the caller if we have found some (this
1461	 * ensures forward progress). We'll be coming back to find
1462	 * the rest.
1463	 */
1464	if (!list_empty(&data->dispose))
1465		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1466out:
1467	return ret;
1468}
1469
1470static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1471{
1472	struct select_data *data = _data;
1473	enum d_walk_ret ret = D_WALK_CONTINUE;
1474
1475	if (data->start == dentry)
1476		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477
1478	if (!dentry->d_lockref.count) {
1479		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1480			rcu_read_lock();
1481			data->victim = dentry;
1482			return D_WALK_QUIT;
 
 
 
 
1483		}
1484		to_shrink_list(dentry, &data->dispose);
 
1485	}
1486	/*
1487	 * We can return to the caller if we have found some (this
1488	 * ensures forward progress). We'll be coming back to find
1489	 * the rest.
1490	 */
1491	if (!list_empty(&data->dispose))
1492		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
 
 
 
 
 
 
1493out:
1494	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495}
1496
1497/**
1498 * shrink_dcache_parent - prune dcache
1499 * @parent: parent of entries to prune
1500 *
1501 * Prune the dcache to remove unused children of the parent dentry.
1502 */
1503void shrink_dcache_parent(struct dentry *parent)
1504{
1505	for (;;) {
1506		struct select_data data = {.start = parent};
1507
1508		INIT_LIST_HEAD(&data.dispose);
1509		d_walk(parent, &data, select_collect);
1510
1511		if (!list_empty(&data.dispose)) {
1512			shrink_dentry_list(&data.dispose);
1513			continue;
1514		}
1515
1516		cond_resched();
1517		if (!data.found)
1518			break;
1519		data.victim = NULL;
1520		d_walk(parent, &data, select_collect2);
1521		if (data.victim) {
1522			spin_lock(&data.victim->d_lock);
1523			if (!lock_for_kill(data.victim)) {
1524				spin_unlock(&data.victim->d_lock);
1525				rcu_read_unlock();
1526			} else {
1527				shrink_kill(data.victim);
1528			}
1529		}
1530		if (!list_empty(&data.dispose))
1531			shrink_dentry_list(&data.dispose);
1532	}
1533}
1534EXPORT_SYMBOL(shrink_dcache_parent);
1535
1536static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1537{
1538	/* it has busy descendents; complain about those instead */
1539	if (!hlist_empty(&dentry->d_children))
1540		return D_WALK_CONTINUE;
1541
1542	/* root with refcount 1 is fine */
1543	if (dentry == _data && dentry->d_lockref.count == 1)
1544		return D_WALK_CONTINUE;
1545
1546	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1547			" still in use (%d) [unmount of %s %s]\n",
1548		       dentry,
1549		       dentry->d_inode ?
1550		       dentry->d_inode->i_ino : 0UL,
1551		       dentry,
1552		       dentry->d_lockref.count,
1553		       dentry->d_sb->s_type->name,
1554		       dentry->d_sb->s_id);
1555	return D_WALK_CONTINUE;
1556}
1557
1558static void do_one_tree(struct dentry *dentry)
1559{
1560	shrink_dcache_parent(dentry);
1561	d_walk(dentry, dentry, umount_check);
1562	d_drop(dentry);
1563	dput(dentry);
1564}
1565
1566/*
1567 * destroy the dentries attached to a superblock on unmounting
1568 */
1569void shrink_dcache_for_umount(struct super_block *sb)
1570{
1571	struct dentry *dentry;
1572
1573	rwsem_assert_held_write(&sb->s_umount);
1574
1575	dentry = sb->s_root;
1576	sb->s_root = NULL;
1577	do_one_tree(dentry);
1578
1579	while (!hlist_bl_empty(&sb->s_roots)) {
1580		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1581		do_one_tree(dentry);
1582	}
1583}
1584
1585static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1586{
1587	struct dentry **victim = _data;
1588	if (d_mountpoint(dentry)) {
1589		*victim = dget_dlock(dentry);
1590		return D_WALK_QUIT;
1591	}
1592	return D_WALK_CONTINUE;
1593}
1594
1595/**
1596 * d_invalidate - detach submounts, prune dcache, and drop
1597 * @dentry: dentry to invalidate (aka detach, prune and drop)
1598 */
1599void d_invalidate(struct dentry *dentry)
1600{
1601	bool had_submounts = false;
1602	spin_lock(&dentry->d_lock);
1603	if (d_unhashed(dentry)) {
1604		spin_unlock(&dentry->d_lock);
1605		return;
1606	}
1607	__d_drop(dentry);
1608	spin_unlock(&dentry->d_lock);
1609
1610	/* Negative dentries can be dropped without further checks */
1611	if (!dentry->d_inode)
1612		return;
1613
1614	shrink_dcache_parent(dentry);
1615	for (;;) {
1616		struct dentry *victim = NULL;
1617		d_walk(dentry, &victim, find_submount);
1618		if (!victim) {
1619			if (had_submounts)
1620				shrink_dcache_parent(dentry);
1621			return;
1622		}
1623		had_submounts = true;
1624		detach_mounts(victim);
1625		dput(victim);
1626	}
1627}
1628EXPORT_SYMBOL(d_invalidate);
1629
1630/**
1631 * __d_alloc	-	allocate a dcache entry
1632 * @sb: filesystem it will belong to
1633 * @name: qstr of the name
1634 *
1635 * Allocates a dentry. It returns %NULL if there is insufficient memory
1636 * available. On a success the dentry is returned. The name passed in is
1637 * copied and the copy passed in may be reused after this call.
1638 */
1639 
1640static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1641{
1642	struct dentry *dentry;
1643	char *dname;
1644	int err;
1645
1646	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1647				      GFP_KERNEL);
1648	if (!dentry)
1649		return NULL;
1650
1651	/*
1652	 * We guarantee that the inline name is always NUL-terminated.
1653	 * This way the memcpy() done by the name switching in rename
1654	 * will still always have a NUL at the end, even if we might
1655	 * be overwriting an internal NUL character
1656	 */
1657	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1658	if (unlikely(!name)) {
1659		name = &slash_name;
1660		dname = dentry->d_iname;
1661	} else if (name->len > DNAME_INLINE_LEN-1) {
1662		size_t size = offsetof(struct external_name, name[1]);
1663		struct external_name *p = kmalloc(size + name->len,
1664						  GFP_KERNEL_ACCOUNT |
1665						  __GFP_RECLAIMABLE);
1666		if (!p) {
1667			kmem_cache_free(dentry_cache, dentry); 
1668			return NULL;
1669		}
1670		atomic_set(&p->u.count, 1);
1671		dname = p->name;
1672	} else  {
1673		dname = dentry->d_iname;
1674	}	
1675
1676	dentry->d_name.len = name->len;
1677	dentry->d_name.hash = name->hash;
1678	memcpy(dname, name->name, name->len);
1679	dname[name->len] = 0;
1680
1681	/* Make sure we always see the terminating NUL character */
1682	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
 
1683
1684	dentry->d_lockref.count = 1;
1685	dentry->d_flags = 0;
1686	spin_lock_init(&dentry->d_lock);
1687	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1688	dentry->d_inode = NULL;
1689	dentry->d_parent = dentry;
1690	dentry->d_sb = sb;
1691	dentry->d_op = NULL;
1692	dentry->d_fsdata = NULL;
1693	INIT_HLIST_BL_NODE(&dentry->d_hash);
1694	INIT_LIST_HEAD(&dentry->d_lru);
1695	INIT_HLIST_HEAD(&dentry->d_children);
1696	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1697	INIT_HLIST_NODE(&dentry->d_sib);
1698	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1699
1700	if (dentry->d_op && dentry->d_op->d_init) {
1701		err = dentry->d_op->d_init(dentry);
1702		if (err) {
1703			if (dname_external(dentry))
1704				kfree(external_name(dentry));
1705			kmem_cache_free(dentry_cache, dentry);
1706			return NULL;
1707		}
1708	}
1709
1710	this_cpu_inc(nr_dentry);
1711
1712	return dentry;
1713}
1714
1715/**
1716 * d_alloc	-	allocate a dcache entry
1717 * @parent: parent of entry to allocate
1718 * @name: qstr of the name
1719 *
1720 * Allocates a dentry. It returns %NULL if there is insufficient memory
1721 * available. On a success the dentry is returned. The name passed in is
1722 * copied and the copy passed in may be reused after this call.
1723 */
1724struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1725{
1726	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1727	if (!dentry)
1728		return NULL;
 
1729	spin_lock(&parent->d_lock);
1730	/*
1731	 * don't need child lock because it is not subject
1732	 * to concurrency here
1733	 */
1734	dentry->d_parent = dget_dlock(parent);
1735	hlist_add_head(&dentry->d_sib, &parent->d_children);
 
1736	spin_unlock(&parent->d_lock);
1737
1738	return dentry;
1739}
1740EXPORT_SYMBOL(d_alloc);
1741
1742struct dentry *d_alloc_anon(struct super_block *sb)
1743{
1744	return __d_alloc(sb, NULL);
1745}
1746EXPORT_SYMBOL(d_alloc_anon);
1747
1748struct dentry *d_alloc_cursor(struct dentry * parent)
1749{
1750	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1751	if (dentry) {
1752		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1753		dentry->d_parent = dget(parent);
1754	}
1755	return dentry;
1756}
1757
1758/**
1759 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1760 * @sb: the superblock
1761 * @name: qstr of the name
1762 *
1763 * For a filesystem that just pins its dentries in memory and never
1764 * performs lookups at all, return an unhashed IS_ROOT dentry.
1765 * This is used for pipes, sockets et.al. - the stuff that should
1766 * never be anyone's children or parents.  Unlike all other
1767 * dentries, these will not have RCU delay between dropping the
1768 * last reference and freeing them.
1769 *
1770 * The only user is alloc_file_pseudo() and that's what should
1771 * be considered a public interface.  Don't use directly.
1772 */
1773struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1774{
1775	static const struct dentry_operations anon_ops = {
1776		.d_dname = simple_dname
1777	};
1778	struct dentry *dentry = __d_alloc(sb, name);
1779	if (likely(dentry)) {
1780		dentry->d_flags |= DCACHE_NORCU;
1781		if (!sb->s_d_op)
1782			d_set_d_op(dentry, &anon_ops);
1783	}
1784	return dentry;
1785}
 
1786
1787struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1788{
1789	struct qstr q;
1790
1791	q.name = name;
1792	q.hash_len = hashlen_string(parent, name);
 
1793	return d_alloc(parent, &q);
1794}
1795EXPORT_SYMBOL(d_alloc_name);
1796
1797void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1798{
1799	WARN_ON_ONCE(dentry->d_op);
1800	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1801				DCACHE_OP_COMPARE	|
1802				DCACHE_OP_REVALIDATE	|
1803				DCACHE_OP_WEAK_REVALIDATE	|
1804				DCACHE_OP_DELETE	|
1805				DCACHE_OP_REAL));
1806	dentry->d_op = op;
1807	if (!op)
1808		return;
1809	if (op->d_hash)
1810		dentry->d_flags |= DCACHE_OP_HASH;
1811	if (op->d_compare)
1812		dentry->d_flags |= DCACHE_OP_COMPARE;
1813	if (op->d_revalidate)
1814		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1815	if (op->d_weak_revalidate)
1816		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1817	if (op->d_delete)
1818		dentry->d_flags |= DCACHE_OP_DELETE;
1819	if (op->d_prune)
1820		dentry->d_flags |= DCACHE_OP_PRUNE;
1821	if (op->d_real)
1822		dentry->d_flags |= DCACHE_OP_REAL;
1823
1824}
1825EXPORT_SYMBOL(d_set_d_op);
1826
1827static unsigned d_flags_for_inode(struct inode *inode)
1828{
1829	unsigned add_flags = DCACHE_REGULAR_TYPE;
1830
1831	if (!inode)
1832		return DCACHE_MISS_TYPE;
1833
1834	if (S_ISDIR(inode->i_mode)) {
1835		add_flags = DCACHE_DIRECTORY_TYPE;
1836		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1837			if (unlikely(!inode->i_op->lookup))
1838				add_flags = DCACHE_AUTODIR_TYPE;
1839			else
1840				inode->i_opflags |= IOP_LOOKUP;
1841		}
1842		goto type_determined;
1843	}
1844
1845	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1846		if (unlikely(inode->i_op->get_link)) {
1847			add_flags = DCACHE_SYMLINK_TYPE;
1848			goto type_determined;
1849		}
1850		inode->i_opflags |= IOP_NOFOLLOW;
1851	}
1852
1853	if (unlikely(!S_ISREG(inode->i_mode)))
1854		add_flags = DCACHE_SPECIAL_TYPE;
1855
1856type_determined:
1857	if (unlikely(IS_AUTOMOUNT(inode)))
1858		add_flags |= DCACHE_NEED_AUTOMOUNT;
1859	return add_flags;
1860}
1861
1862static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1863{
1864	unsigned add_flags = d_flags_for_inode(inode);
1865	WARN_ON(d_in_lookup(dentry));
1866
1867	spin_lock(&dentry->d_lock);
1868	/*
1869	 * The negative counter only tracks dentries on the LRU. Don't dec if
1870	 * d_lru is on another list.
1871	 */
1872	if ((dentry->d_flags &
1873	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1874		this_cpu_dec(nr_dentry_negative);
1875	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1876	raw_write_seqcount_begin(&dentry->d_seq);
1877	__d_set_inode_and_type(dentry, inode, add_flags);
1878	raw_write_seqcount_end(&dentry->d_seq);
1879	fsnotify_update_flags(dentry);
1880	spin_unlock(&dentry->d_lock);
 
1881}
1882
1883/**
1884 * d_instantiate - fill in inode information for a dentry
1885 * @entry: dentry to complete
1886 * @inode: inode to attach to this dentry
1887 *
1888 * Fill in inode information in the entry.
1889 *
1890 * This turns negative dentries into productive full members
1891 * of society.
1892 *
1893 * NOTE! This assumes that the inode count has been incremented
1894 * (or otherwise set) by the caller to indicate that it is now
1895 * in use by the dcache.
1896 */
1897 
1898void d_instantiate(struct dentry *entry, struct inode * inode)
1899{
1900	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1901	if (inode) {
1902		security_d_instantiate(entry, inode);
1903		spin_lock(&inode->i_lock);
1904		__d_instantiate(entry, inode);
 
1905		spin_unlock(&inode->i_lock);
1906	}
1907}
1908EXPORT_SYMBOL(d_instantiate);
1909
1910/*
1911 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1912 * with lockdep-related part of unlock_new_inode() done before
1913 * anything else.  Use that instead of open-coding d_instantiate()/
1914 * unlock_new_inode() combinations.
1915 */
1916void d_instantiate_new(struct dentry *entry, struct inode *inode)
1917{
1918	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1919	BUG_ON(!inode);
1920	lockdep_annotate_inode_mutex_key(inode);
1921	security_d_instantiate(entry, inode);
1922	spin_lock(&inode->i_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923	__d_instantiate(entry, inode);
1924	WARN_ON(!(inode->i_state & I_NEW));
1925	inode->i_state &= ~I_NEW & ~I_CREATING;
1926	/*
1927	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1928	 * ___wait_var_event() either sees the bit cleared or
1929	 * waitqueue_active() check in wake_up_var() sees the waiter.
1930	 */
1931	smp_mb();
1932	inode_wake_up_bit(inode, __I_NEW);
1933	spin_unlock(&inode->i_lock);
1934}
1935EXPORT_SYMBOL(d_instantiate_new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936
1937struct dentry *d_make_root(struct inode *root_inode)
1938{
1939	struct dentry *res = NULL;
1940
1941	if (root_inode) {
1942		res = d_alloc_anon(root_inode->i_sb);
 
 
1943		if (res)
1944			d_instantiate(res, root_inode);
1945		else
1946			iput(root_inode);
1947	}
1948	return res;
1949}
1950EXPORT_SYMBOL(d_make_root);
1951
1952static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1953{
1954	struct super_block *sb;
1955	struct dentry *new, *res;
1956
1957	if (!inode)
1958		return ERR_PTR(-ESTALE);
1959	if (IS_ERR(inode))
1960		return ERR_CAST(inode);
1961
1962	sb = inode->i_sb;
1963
1964	res = d_find_any_alias(inode); /* existing alias? */
1965	if (res)
1966		goto out;
 
 
 
1967
1968	new = d_alloc_anon(sb);
1969	if (!new) {
1970		res = ERR_PTR(-ENOMEM);
1971		goto out;
1972	}
 
 
 
 
 
1973
1974	security_d_instantiate(new, inode);
1975	spin_lock(&inode->i_lock);
1976	res = __d_find_any_alias(inode); /* recheck under lock */
1977	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1978		unsigned add_flags = d_flags_for_inode(inode);
1979
1980		if (disconnected)
1981			add_flags |= DCACHE_DISCONNECTED;
1982
1983		spin_lock(&new->d_lock);
1984		__d_set_inode_and_type(new, inode, add_flags);
1985		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1986		if (!disconnected) {
1987			hlist_bl_lock(&sb->s_roots);
1988			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1989			hlist_bl_unlock(&sb->s_roots);
1990		}
1991		spin_unlock(&new->d_lock);
1992		spin_unlock(&inode->i_lock);
1993		inode = NULL; /* consumed by new->d_inode */
1994		res = new;
1995	} else {
1996		spin_unlock(&inode->i_lock);
1997		dput(new);
1998	}
1999
2000 out:
2001	iput(inode);
2002	return res;
2003}
 
2004
2005/**
2006 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2008 *
2009 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2010 * similar open by handle operations.  The returned dentry may be anonymous,
2011 * or may have a full name (if the inode was already in the cache).
2012 *
2013 * When called on a directory inode, we must ensure that the inode only ever
2014 * has one dentry.  If a dentry is found, that is returned instead of
2015 * allocating a new one.
2016 *
2017 * On successful return, the reference to the inode has been transferred
2018 * to the dentry.  In case of an error the reference on the inode is released.
2019 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2020 * be passed in and the error will be propagated to the return value,
2021 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2022 */
2023struct dentry *d_obtain_alias(struct inode *inode)
2024{
2025	return __d_obtain_alias(inode, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026}
2027EXPORT_SYMBOL(d_obtain_alias);
2028
2029/**
2030 * d_obtain_root - find or allocate a dentry for a given inode
2031 * @inode: inode to allocate the dentry for
 
2032 *
2033 * Obtain an IS_ROOT dentry for the root of a filesystem.
 
 
2034 *
2035 * We must ensure that directory inodes only ever have one dentry.  If a
2036 * dentry is found, that is returned instead of allocating a new one.
 
 
 
2037 *
2038 * On successful return, the reference to the inode has been transferred
2039 * to the dentry.  In case of an error the reference on the inode is
2040 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2041 * error will be propagate to the return value, with a %NULL @inode
2042 * replaced by ERR_PTR(-ESTALE).
2043 */
2044struct dentry *d_obtain_root(struct inode *inode)
2045{
2046	return __d_obtain_alias(inode, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047}
2048EXPORT_SYMBOL(d_obtain_root);
2049
2050/**
2051 * d_add_ci - lookup or allocate new dentry with case-exact name
2052 * @dentry: the negative dentry that was passed to the parent's lookup func
2053 * @inode:  the inode case-insensitive lookup has found
 
2054 * @name:   the case-exact name to be associated with the returned dentry
2055 *
2056 * This is to avoid filling the dcache with case-insensitive names to the
2057 * same inode, only the actual correct case is stored in the dcache for
2058 * case-insensitive filesystems.
2059 *
2060 * For a case-insensitive lookup match and if the case-exact dentry
2061 * already exists in the dcache, use it and return it.
2062 *
2063 * If no entry exists with the exact case name, allocate new dentry with
2064 * the exact case, and return the spliced entry.
2065 */
2066struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2067			struct qstr *name)
2068{
2069	struct dentry *found, *res;
 
 
2070
2071	/*
2072	 * First check if a dentry matching the name already exists,
2073	 * if not go ahead and create it now.
2074	 */
2075	found = d_hash_and_lookup(dentry->d_parent, name);
2076	if (found) {
2077		iput(inode);
2078		return found;
2079	}
2080	if (d_in_lookup(dentry)) {
2081		found = d_alloc_parallel(dentry->d_parent, name,
2082					dentry->d_wait);
2083		if (IS_ERR(found) || !d_in_lookup(found)) {
2084			iput(inode);
 
2085			return found;
2086		}
2087	} else {
2088		found = d_alloc(dentry->d_parent, name);
2089		if (!found) {
2090			iput(inode);
2091			return ERR_PTR(-ENOMEM);
2092		} 
2093	}
2094	res = d_splice_alias(inode, found);
2095	if (res) {
2096		d_lookup_done(found);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097		dput(found);
2098		return res;
2099	}
2100	return found;
2101}
2102EXPORT_SYMBOL(d_add_ci);
2103
2104/**
2105 * d_same_name - compare dentry name with case-exact name
2106 * @dentry: the negative dentry that was passed to the parent's lookup func
2107 * @parent: parent dentry
2108 * @name:   the case-exact name to be associated with the returned dentry
2109 *
2110 * Return: true if names are same, or false
2111 */
2112bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2113		 const struct qstr *name)
2114{
2115	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2116		if (dentry->d_name.len != name->len)
2117			return false;
2118		return dentry_cmp(dentry, name->name, name->len) == 0;
2119	}
2120	return parent->d_op->d_compare(dentry,
2121				       dentry->d_name.len, dentry->d_name.name,
2122				       name) == 0;
2123}
2124EXPORT_SYMBOL_GPL(d_same_name);
2125
2126/*
2127 * This is __d_lookup_rcu() when the parent dentry has
2128 * DCACHE_OP_COMPARE, which makes things much nastier.
2129 */
2130static noinline struct dentry *__d_lookup_rcu_op_compare(
2131	const struct dentry *parent,
2132	const struct qstr *name,
2133	unsigned *seqp)
2134{
2135	u64 hashlen = name->hash_len;
2136	struct hlist_bl_head *b = d_hash(hashlen);
2137	struct hlist_bl_node *node;
2138	struct dentry *dentry;
 
 
 
 
 
 
2139
2140	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2141		int tlen;
2142		const char *tname;
2143		unsigned seq;
 
 
 
 
 
 
2144
2145seqretry:
2146		seq = raw_seqcount_begin(&dentry->d_seq);
2147		if (dentry->d_parent != parent)
2148			continue;
2149		if (d_unhashed(dentry))
2150			continue;
2151		if (dentry->d_name.hash != hashlen_hash(hashlen))
2152			continue;
2153		tlen = dentry->d_name.len;
2154		tname = dentry->d_name.name;
2155		/* we want a consistent (name,len) pair */
2156		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2157			cpu_relax();
2158			goto seqretry;
2159		}
2160		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2161			continue;
2162		*seqp = seq;
2163		return dentry;
2164	}
2165	return NULL;
 
 
 
 
2166}
2167
2168/**
2169 * __d_lookup_rcu - search for a dentry (racy, store-free)
2170 * @parent: parent dentry
2171 * @name: qstr of name we wish to find
2172 * @seqp: returns d_seq value at the point where the dentry was found
 
2173 * Returns: dentry, or NULL
2174 *
2175 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2176 * resolution (store-free path walking) design described in
2177 * Documentation/filesystems/path-lookup.txt.
2178 *
2179 * This is not to be used outside core vfs.
2180 *
2181 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2182 * held, and rcu_read_lock held. The returned dentry must not be stored into
2183 * without taking d_lock and checking d_seq sequence count against @seq
2184 * returned here.
2185 *
 
 
 
2186 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2187 * the returned dentry, so long as its parent's seqlock is checked after the
2188 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2189 * is formed, giving integrity down the path walk.
2190 *
2191 * NOTE! The caller *has* to check the resulting dentry against the sequence
2192 * number we've returned before using any of the resulting dentry state!
2193 */
2194struct dentry *__d_lookup_rcu(const struct dentry *parent,
2195				const struct qstr *name,
2196				unsigned *seqp)
2197{
2198	u64 hashlen = name->hash_len;
2199	const unsigned char *str = name->name;
2200	struct hlist_bl_head *b = d_hash(hashlen);
2201	struct hlist_bl_node *node;
2202	struct dentry *dentry;
2203
2204	/*
2205	 * Note: There is significant duplication with __d_lookup_rcu which is
2206	 * required to prevent single threaded performance regressions
2207	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2208	 * Keep the two functions in sync.
2209	 */
2210
2211	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2212		return __d_lookup_rcu_op_compare(parent, name, seqp);
2213
2214	/*
2215	 * The hash list is protected using RCU.
2216	 *
2217	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2218	 * races with d_move().
2219	 *
2220	 * It is possible that concurrent renames can mess up our list
2221	 * walk here and result in missing our dentry, resulting in the
2222	 * false-negative result. d_lookup() protects against concurrent
2223	 * renames using rename_lock seqlock.
2224	 *
2225	 * See Documentation/filesystems/path-lookup.txt for more details.
2226	 */
2227	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2228		unsigned seq;
2229
 
2230		/*
2231		 * The dentry sequence count protects us from concurrent
2232		 * renames, and thus protects parent and name fields.
2233		 *
2234		 * The caller must perform a seqcount check in order
2235		 * to do anything useful with the returned dentry.
 
2236		 *
2237		 * NOTE! We do a "raw" seqcount_begin here. That means that
2238		 * we don't wait for the sequence count to stabilize if it
2239		 * is in the middle of a sequence change. If we do the slow
2240		 * dentry compare, we will do seqretries until it is stable,
2241		 * and if we end up with a successful lookup, we actually
2242		 * want to exit RCU lookup anyway.
2243		 *
2244		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2245		 * we are still guaranteed NUL-termination of ->d_name.name.
2246		 */
2247		seq = raw_seqcount_begin(&dentry->d_seq);
2248		if (dentry->d_parent != parent)
2249			continue;
2250		if (d_unhashed(dentry))
2251			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252		if (dentry->d_name.hash_len != hashlen)
2253			continue;
2254		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2255			continue;
2256		*seqp = seq;
2257		return dentry;
2258	}
2259	return NULL;
2260}
2261
2262/**
2263 * d_lookup - search for a dentry
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * d_lookup searches the children of the parent dentry for the name in
2269 * question. If the dentry is found its reference count is incremented and the
2270 * dentry is returned. The caller must use dput to free the entry when it has
2271 * finished using it. %NULL is returned if the dentry does not exist.
2272 */
2273struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2274{
2275	struct dentry *dentry;
2276	unsigned seq;
2277
2278	do {
2279		seq = read_seqbegin(&rename_lock);
2280		dentry = __d_lookup(parent, name);
2281		if (dentry)
2282			break;
2283	} while (read_seqretry(&rename_lock, seq));
2284	return dentry;
2285}
2286EXPORT_SYMBOL(d_lookup);
2287
2288/**
2289 * __d_lookup - search for a dentry (racy)
2290 * @parent: parent dentry
2291 * @name: qstr of name we wish to find
2292 * Returns: dentry, or NULL
2293 *
2294 * __d_lookup is like d_lookup, however it may (rarely) return a
2295 * false-negative result due to unrelated rename activity.
2296 *
2297 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2298 * however it must be used carefully, eg. with a following d_lookup in
2299 * the case of failure.
2300 *
2301 * __d_lookup callers must be commented.
2302 */
2303struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2304{
 
2305	unsigned int hash = name->hash;
2306	struct hlist_bl_head *b = d_hash(hash);
 
2307	struct hlist_bl_node *node;
2308	struct dentry *found = NULL;
2309	struct dentry *dentry;
2310
2311	/*
2312	 * Note: There is significant duplication with __d_lookup_rcu which is
2313	 * required to prevent single threaded performance regressions
2314	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2315	 * Keep the two functions in sync.
2316	 */
2317
2318	/*
2319	 * The hash list is protected using RCU.
2320	 *
2321	 * Take d_lock when comparing a candidate dentry, to avoid races
2322	 * with d_move().
2323	 *
2324	 * It is possible that concurrent renames can mess up our list
2325	 * walk here and result in missing our dentry, resulting in the
2326	 * false-negative result. d_lookup() protects against concurrent
2327	 * renames using rename_lock seqlock.
2328	 *
2329	 * See Documentation/filesystems/path-lookup.txt for more details.
2330	 */
2331	rcu_read_lock();
2332	
2333	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2334
2335		if (dentry->d_name.hash != hash)
2336			continue;
2337
2338		spin_lock(&dentry->d_lock);
2339		if (dentry->d_parent != parent)
2340			goto next;
2341		if (d_unhashed(dentry))
2342			goto next;
2343
2344		if (!d_same_name(dentry, parent, name))
2345			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346
2347		dentry->d_lockref.count++;
2348		found = dentry;
2349		spin_unlock(&dentry->d_lock);
2350		break;
2351next:
2352		spin_unlock(&dentry->d_lock);
2353 	}
2354 	rcu_read_unlock();
2355
2356 	return found;
2357}
2358
2359/**
2360 * d_hash_and_lookup - hash the qstr then search for a dentry
2361 * @dir: Directory to search in
2362 * @name: qstr of name we wish to find
2363 *
2364 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2365 */
2366struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2367{
 
 
2368	/*
2369	 * Check for a fs-specific hash function. Note that we must
2370	 * calculate the standard hash first, as the d_op->d_hash()
2371	 * routine may choose to leave the hash value unchanged.
2372	 */
2373	name->hash = full_name_hash(dir, name->name, name->len);
2374	if (dir->d_flags & DCACHE_OP_HASH) {
2375		int err = dir->d_op->d_hash(dir, name);
2376		if (unlikely(err < 0))
2377			return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378	}
2379	return d_lookup(dir, name);
 
 
2380}
2381EXPORT_SYMBOL(d_hash_and_lookup);
2382
2383/*
2384 * When a file is deleted, we have two options:
2385 * - turn this dentry into a negative dentry
2386 * - unhash this dentry and free it.
2387 *
2388 * Usually, we want to just turn this into
2389 * a negative dentry, but if anybody else is
2390 * currently using the dentry or the inode
2391 * we can't do that and we fall back on removing
2392 * it from the hash queues and waiting for
2393 * it to be deleted later when it has no users
2394 */
2395 
2396/**
2397 * d_delete - delete a dentry
2398 * @dentry: The dentry to delete
2399 *
2400 * Turn the dentry into a negative dentry if possible, otherwise
2401 * remove it from the hash queues so it can be deleted later
2402 */
2403 
2404void d_delete(struct dentry * dentry)
2405{
2406	struct inode *inode = dentry->d_inode;
2407
2408	spin_lock(&inode->i_lock);
2409	spin_lock(&dentry->d_lock);
2410	/*
2411	 * Are we the only user?
2412	 */
2413	if (dentry->d_lockref.count == 1) {
2414		if (dentry_negative_policy)
2415			__d_drop(dentry);
 
 
 
 
 
 
 
2416		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2417		dentry_unlink_inode(dentry);
2418	} else {
2419		__d_drop(dentry);
2420		spin_unlock(&dentry->d_lock);
2421		spin_unlock(&inode->i_lock);
2422	}
 
 
 
 
 
 
 
2423}
2424EXPORT_SYMBOL(d_delete);
2425
2426static void __d_rehash(struct dentry *entry)
2427{
2428	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2429
2430	hlist_bl_lock(b);
 
2431	hlist_bl_add_head_rcu(&entry->d_hash, b);
2432	hlist_bl_unlock(b);
2433}
2434
 
 
 
 
 
2435/**
2436 * d_rehash	- add an entry back to the hash
2437 * @entry: dentry to add to the hash
2438 *
2439 * Adds a dentry to the hash according to its name.
2440 */
2441 
2442void d_rehash(struct dentry * entry)
2443{
2444	spin_lock(&entry->d_lock);
2445	__d_rehash(entry);
2446	spin_unlock(&entry->d_lock);
2447}
2448EXPORT_SYMBOL(d_rehash);
2449
2450static inline unsigned start_dir_add(struct inode *dir)
2451{
2452	preempt_disable_nested();
2453	for (;;) {
2454		unsigned n = dir->i_dir_seq;
2455		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2456			return n;
2457		cpu_relax();
2458	}
2459}
2460
2461static inline void end_dir_add(struct inode *dir, unsigned int n,
2462			       wait_queue_head_t *d_wait)
2463{
2464	smp_store_release(&dir->i_dir_seq, n + 2);
2465	preempt_enable_nested();
2466	wake_up_all(d_wait);
2467}
2468
2469static void d_wait_lookup(struct dentry *dentry)
2470{
2471	if (d_in_lookup(dentry)) {
2472		DECLARE_WAITQUEUE(wait, current);
2473		add_wait_queue(dentry->d_wait, &wait);
2474		do {
2475			set_current_state(TASK_UNINTERRUPTIBLE);
2476			spin_unlock(&dentry->d_lock);
2477			schedule();
2478			spin_lock(&dentry->d_lock);
2479		} while (d_in_lookup(dentry));
2480	}
2481}
2482
2483struct dentry *d_alloc_parallel(struct dentry *parent,
2484				const struct qstr *name,
2485				wait_queue_head_t *wq)
2486{
2487	unsigned int hash = name->hash;
2488	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2489	struct hlist_bl_node *node;
2490	struct dentry *new = d_alloc(parent, name);
2491	struct dentry *dentry;
2492	unsigned seq, r_seq, d_seq;
2493
2494	if (unlikely(!new))
2495		return ERR_PTR(-ENOMEM);
2496
2497retry:
2498	rcu_read_lock();
2499	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2500	r_seq = read_seqbegin(&rename_lock);
2501	dentry = __d_lookup_rcu(parent, name, &d_seq);
2502	if (unlikely(dentry)) {
2503		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2504			rcu_read_unlock();
2505			goto retry;
2506		}
2507		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2508			rcu_read_unlock();
2509			dput(dentry);
2510			goto retry;
2511		}
2512		rcu_read_unlock();
2513		dput(new);
2514		return dentry;
2515	}
2516	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2517		rcu_read_unlock();
2518		goto retry;
2519	}
2520
2521	if (unlikely(seq & 1)) {
2522		rcu_read_unlock();
2523		goto retry;
2524	}
2525
2526	hlist_bl_lock(b);
2527	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2528		hlist_bl_unlock(b);
2529		rcu_read_unlock();
2530		goto retry;
2531	}
2532	/*
2533	 * No changes for the parent since the beginning of d_lookup().
2534	 * Since all removals from the chain happen with hlist_bl_lock(),
2535	 * any potential in-lookup matches are going to stay here until
2536	 * we unlock the chain.  All fields are stable in everything
2537	 * we encounter.
2538	 */
2539	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2540		if (dentry->d_name.hash != hash)
2541			continue;
2542		if (dentry->d_parent != parent)
2543			continue;
2544		if (!d_same_name(dentry, parent, name))
2545			continue;
2546		hlist_bl_unlock(b);
2547		/* now we can try to grab a reference */
2548		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2549			rcu_read_unlock();
2550			goto retry;
2551		}
2552
2553		rcu_read_unlock();
2554		/*
2555		 * somebody is likely to be still doing lookup for it;
2556		 * wait for them to finish
2557		 */
2558		spin_lock(&dentry->d_lock);
2559		d_wait_lookup(dentry);
2560		/*
2561		 * it's not in-lookup anymore; in principle we should repeat
2562		 * everything from dcache lookup, but it's likely to be what
2563		 * d_lookup() would've found anyway.  If it is, just return it;
2564		 * otherwise we really have to repeat the whole thing.
2565		 */
2566		if (unlikely(dentry->d_name.hash != hash))
2567			goto mismatch;
2568		if (unlikely(dentry->d_parent != parent))
2569			goto mismatch;
2570		if (unlikely(d_unhashed(dentry)))
2571			goto mismatch;
2572		if (unlikely(!d_same_name(dentry, parent, name)))
2573			goto mismatch;
2574		/* OK, it *is* a hashed match; return it */
2575		spin_unlock(&dentry->d_lock);
2576		dput(new);
2577		return dentry;
2578	}
2579	rcu_read_unlock();
2580	/* we can't take ->d_lock here; it's OK, though. */
2581	new->d_flags |= DCACHE_PAR_LOOKUP;
2582	new->d_wait = wq;
2583	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2584	hlist_bl_unlock(b);
2585	return new;
2586mismatch:
2587	spin_unlock(&dentry->d_lock);
2588	dput(dentry);
2589	goto retry;
2590}
2591EXPORT_SYMBOL(d_alloc_parallel);
2592
2593/*
2594 * - Unhash the dentry
2595 * - Retrieve and clear the waitqueue head in dentry
2596 * - Return the waitqueue head
2597 */
2598static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2599{
2600	wait_queue_head_t *d_wait;
2601	struct hlist_bl_head *b;
2602
2603	lockdep_assert_held(&dentry->d_lock);
2604
2605	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2606	hlist_bl_lock(b);
2607	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2608	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2609	d_wait = dentry->d_wait;
2610	dentry->d_wait = NULL;
2611	hlist_bl_unlock(b);
2612	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2613	INIT_LIST_HEAD(&dentry->d_lru);
2614	return d_wait;
2615}
2616
2617void __d_lookup_unhash_wake(struct dentry *dentry)
2618{
2619	spin_lock(&dentry->d_lock);
2620	wake_up_all(__d_lookup_unhash(dentry));
2621	spin_unlock(&dentry->d_lock);
2622}
2623EXPORT_SYMBOL(__d_lookup_unhash_wake);
2624
2625/* inode->i_lock held if inode is non-NULL */
2626
2627static inline void __d_add(struct dentry *dentry, struct inode *inode)
2628{
2629	wait_queue_head_t *d_wait;
2630	struct inode *dir = NULL;
2631	unsigned n;
2632	spin_lock(&dentry->d_lock);
2633	if (unlikely(d_in_lookup(dentry))) {
2634		dir = dentry->d_parent->d_inode;
2635		n = start_dir_add(dir);
2636		d_wait = __d_lookup_unhash(dentry);
2637	}
2638	if (inode) {
2639		unsigned add_flags = d_flags_for_inode(inode);
2640		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2641		raw_write_seqcount_begin(&dentry->d_seq);
2642		__d_set_inode_and_type(dentry, inode, add_flags);
2643		raw_write_seqcount_end(&dentry->d_seq);
2644		fsnotify_update_flags(dentry);
2645	}
2646	__d_rehash(dentry);
2647	if (dir)
2648		end_dir_add(dir, n, d_wait);
2649	spin_unlock(&dentry->d_lock);
2650	if (inode)
2651		spin_unlock(&inode->i_lock);
2652}
2653
2654/**
2655 * d_add - add dentry to hash queues
2656 * @entry: dentry to add
2657 * @inode: The inode to attach to this dentry
2658 *
2659 * This adds the entry to the hash queues and initializes @inode.
2660 * The entry was actually filled in earlier during d_alloc().
2661 */
2662
2663void d_add(struct dentry *entry, struct inode *inode)
2664{
2665	if (inode) {
2666		security_d_instantiate(entry, inode);
2667		spin_lock(&inode->i_lock);
2668	}
2669	__d_add(entry, inode);
2670}
2671EXPORT_SYMBOL(d_add);
2672
2673/**
2674 * d_exact_alias - find and hash an exact unhashed alias
2675 * @entry: dentry to add
2676 * @inode: The inode to go with this dentry
2677 *
2678 * If an unhashed dentry with the same name/parent and desired
2679 * inode already exists, hash and return it.  Otherwise, return
2680 * NULL.
2681 *
2682 * Parent directory should be locked.
 
2683 */
2684struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2685{
2686	struct dentry *alias;
2687	unsigned int hash = entry->d_name.hash;
2688
2689	spin_lock(&inode->i_lock);
2690	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2691		/*
2692		 * Don't need alias->d_lock here, because aliases with
2693		 * d_parent == entry->d_parent are not subject to name or
2694		 * parent changes, because the parent inode i_mutex is held.
2695		 */
2696		if (alias->d_name.hash != hash)
2697			continue;
2698		if (alias->d_parent != entry->d_parent)
2699			continue;
2700		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2701			continue;
2702		spin_lock(&alias->d_lock);
2703		if (!d_unhashed(alias)) {
2704			spin_unlock(&alias->d_lock);
2705			alias = NULL;
2706		} else {
2707			dget_dlock(alias);
2708			__d_rehash(alias);
2709			spin_unlock(&alias->d_lock);
2710		}
2711		spin_unlock(&inode->i_lock);
2712		return alias;
2713	}
2714	spin_unlock(&inode->i_lock);
2715	return NULL;
2716}
2717EXPORT_SYMBOL(d_exact_alias);
2718
2719static void swap_names(struct dentry *dentry, struct dentry *target)
2720{
2721	if (unlikely(dname_external(target))) {
2722		if (unlikely(dname_external(dentry))) {
2723			/*
2724			 * Both external: swap the pointers
2725			 */
2726			swap(target->d_name.name, dentry->d_name.name);
2727		} else {
2728			/*
2729			 * dentry:internal, target:external.  Steal target's
2730			 * storage and make target internal.
2731			 */
2732			memcpy(target->d_iname, dentry->d_name.name,
2733					dentry->d_name.len + 1);
2734			dentry->d_name.name = target->d_name.name;
2735			target->d_name.name = target->d_iname;
2736		}
2737	} else {
2738		if (unlikely(dname_external(dentry))) {
2739			/*
2740			 * dentry:external, target:internal.  Give dentry's
2741			 * storage to target and make dentry internal
2742			 */
2743			memcpy(dentry->d_iname, target->d_name.name,
2744					target->d_name.len + 1);
2745			target->d_name.name = dentry->d_name.name;
2746			dentry->d_name.name = dentry->d_iname;
2747		} else {
2748			/*
2749			 * Both are internal.
2750			 */
2751			unsigned int i;
2752			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2753			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2754				swap(((long *) &dentry->d_iname)[i],
2755				     ((long *) &target->d_iname)[i]);
2756			}
2757		}
2758	}
2759	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2760}
2761
2762static void copy_name(struct dentry *dentry, struct dentry *target)
2763{
2764	struct external_name *old_name = NULL;
2765	if (unlikely(dname_external(dentry)))
2766		old_name = external_name(dentry);
2767	if (unlikely(dname_external(target))) {
2768		atomic_inc(&external_name(target)->u.count);
2769		dentry->d_name = target->d_name;
 
 
 
 
 
 
 
 
 
 
 
 
 
2770	} else {
2771		memcpy(dentry->d_iname, target->d_name.name,
2772				target->d_name.len + 1);
2773		dentry->d_name.name = dentry->d_iname;
2774		dentry->d_name.hash_len = target->d_name.hash_len;
2775	}
2776	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2777		kfree_rcu(old_name, u.head);
 
 
 
 
 
 
 
2778}
2779
2780/*
 
 
 
 
 
 
 
 
 
 
 
2781 * __d_move - move a dentry
2782 * @dentry: entry to move
2783 * @target: new dentry
2784 * @exchange: exchange the two dentries
2785 *
2786 * Update the dcache to reflect the move of a file name. Negative
2787 * dcache entries should not be moved in this way. Caller must hold
2788 * rename_lock, the i_mutex of the source and target directories,
2789 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2790 */
2791static void __d_move(struct dentry *dentry, struct dentry *target,
2792		     bool exchange)
2793{
2794	struct dentry *old_parent, *p;
2795	wait_queue_head_t *d_wait;
2796	struct inode *dir = NULL;
2797	unsigned n;
2798
2799	WARN_ON(!dentry->d_inode);
2800	if (WARN_ON(dentry == target))
2801		return;
2802
 
2803	BUG_ON(d_ancestor(target, dentry));
2804	old_parent = dentry->d_parent;
2805	p = d_ancestor(old_parent, target);
2806	if (IS_ROOT(dentry)) {
2807		BUG_ON(p);
2808		spin_lock(&target->d_parent->d_lock);
2809	} else if (!p) {
2810		/* target is not a descendent of dentry->d_parent */
2811		spin_lock(&target->d_parent->d_lock);
2812		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2813	} else {
2814		BUG_ON(p == dentry);
2815		spin_lock(&old_parent->d_lock);
2816		if (p != target)
2817			spin_lock_nested(&target->d_parent->d_lock,
2818					DENTRY_D_LOCK_NESTED);
2819	}
2820	spin_lock_nested(&dentry->d_lock, 2);
2821	spin_lock_nested(&target->d_lock, 3);
2822
2823	if (unlikely(d_in_lookup(target))) {
2824		dir = target->d_parent->d_inode;
2825		n = start_dir_add(dir);
2826		d_wait = __d_lookup_unhash(target);
2827	}
2828
2829	write_seqcount_begin(&dentry->d_seq);
2830	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2831
2832	/* unhash both */
2833	if (!d_unhashed(dentry))
2834		___d_drop(dentry);
2835	if (!d_unhashed(target))
2836		___d_drop(target);
2837
2838	/* ... and switch them in the tree */
2839	dentry->d_parent = target->d_parent;
2840	if (!exchange) {
2841		copy_name(dentry, target);
2842		target->d_hash.pprev = NULL;
2843		dentry->d_parent->d_lockref.count++;
2844		if (dentry != old_parent) /* wasn't IS_ROOT */
2845			WARN_ON(!--old_parent->d_lockref.count);
 
 
 
 
 
 
 
 
 
 
2846	} else {
2847		target->d_parent = old_parent;
2848		swap_names(dentry, target);
2849		if (!hlist_unhashed(&target->d_sib))
2850			__hlist_del(&target->d_sib);
2851		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2852		__d_rehash(target);
2853		fsnotify_update_flags(target);
2854	}
2855	if (!hlist_unhashed(&dentry->d_sib))
2856		__hlist_del(&dentry->d_sib);
2857	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2858	__d_rehash(dentry);
2859	fsnotify_update_flags(dentry);
2860	fscrypt_handle_d_move(dentry);
2861
2862	write_seqcount_end(&target->d_seq);
2863	write_seqcount_end(&dentry->d_seq);
2864
2865	if (dir)
2866		end_dir_add(dir, n, d_wait);
2867
2868	if (dentry->d_parent != old_parent)
2869		spin_unlock(&dentry->d_parent->d_lock);
2870	if (dentry != old_parent)
2871		spin_unlock(&old_parent->d_lock);
2872	spin_unlock(&target->d_lock);
 
2873	spin_unlock(&dentry->d_lock);
2874}
2875
2876/*
2877 * d_move - move a dentry
2878 * @dentry: entry to move
2879 * @target: new dentry
2880 *
2881 * Update the dcache to reflect the move of a file name. Negative
2882 * dcache entries should not be moved in this way. See the locking
2883 * requirements for __d_move.
2884 */
2885void d_move(struct dentry *dentry, struct dentry *target)
2886{
2887	write_seqlock(&rename_lock);
2888	__d_move(dentry, target, false);
2889	write_sequnlock(&rename_lock);
2890}
2891EXPORT_SYMBOL(d_move);
2892
2893/*
2894 * d_exchange - exchange two dentries
2895 * @dentry1: first dentry
2896 * @dentry2: second dentry
2897 */
2898void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2899{
2900	write_seqlock(&rename_lock);
2901
2902	WARN_ON(!dentry1->d_inode);
2903	WARN_ON(!dentry2->d_inode);
2904	WARN_ON(IS_ROOT(dentry1));
2905	WARN_ON(IS_ROOT(dentry2));
2906
2907	__d_move(dentry1, dentry2, true);
2908
2909	write_sequnlock(&rename_lock);
2910}
2911
2912/**
2913 * d_ancestor - search for an ancestor
2914 * @p1: ancestor dentry
2915 * @p2: child dentry
2916 *
2917 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2918 * an ancestor of p2, else NULL.
2919 */
2920struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2921{
2922	struct dentry *p;
2923
2924	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2925		if (p->d_parent == p1)
2926			return p;
2927	}
2928	return NULL;
2929}
2930
2931/*
2932 * This helper attempts to cope with remotely renamed directories
2933 *
2934 * It assumes that the caller is already holding
2935 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2936 *
2937 * Note: If ever the locking in lock_rename() changes, then please
2938 * remember to update this too...
2939 */
2940static int __d_unalias(struct dentry *dentry, struct dentry *alias)
 
2941{
2942	struct mutex *m1 = NULL;
2943	struct rw_semaphore *m2 = NULL;
2944	int ret = -ESTALE;
2945
2946	/* If alias and dentry share a parent, then no extra locks required */
2947	if (alias->d_parent == dentry->d_parent)
2948		goto out_unalias;
2949
2950	/* See lock_rename() */
 
2951	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2952		goto out_err;
2953	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2954	if (!inode_trylock_shared(alias->d_parent->d_inode))
2955		goto out_err;
2956	m2 = &alias->d_parent->d_inode->i_rwsem;
2957out_unalias:
2958	__d_move(alias, dentry, false);
2959	ret = 0;
2960out_err:
 
2961	if (m2)
2962		up_read(m2);
2963	if (m1)
2964		mutex_unlock(m1);
2965	return ret;
2966}
2967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2968/**
2969 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2970 * @inode:  the inode which may have a disconnected dentry
2971 * @dentry: a negative dentry which we want to point to the inode.
2972 *
2973 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2974 * place of the given dentry and return it, else simply d_add the inode
2975 * to the dentry and return NULL.
2976 *
2977 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2978 * we should error out: directories can't have multiple aliases.
2979 *
2980 * This is needed in the lookup routine of any filesystem that is exportable
2981 * (via knfsd) so that we can build dcache paths to directories effectively.
2982 *
2983 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2984 * is returned.  This matches the expected return value of ->lookup.
2985 *
2986 * Cluster filesystems may call this function with a negative, hashed dentry.
2987 * In that case, we know that the inode will be a regular file, and also this
2988 * will only occur during atomic_open. So we need to check for the dentry
2989 * being already hashed only in the final case.
2990 */
2991struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2992{
2993	if (IS_ERR(inode))
2994		return ERR_CAST(inode);
2995
2996	BUG_ON(!d_unhashed(dentry));
2997
2998	if (!inode)
2999		goto out;
 
 
 
 
3000
3001	security_d_instantiate(dentry, inode);
3002	spin_lock(&inode->i_lock);
 
3003	if (S_ISDIR(inode->i_mode)) {
3004		struct dentry *new = __d_find_any_alias(inode);
3005		if (unlikely(new)) {
3006			/* The reference to new ensures it remains an alias */
3007			spin_unlock(&inode->i_lock);
 
 
3008			write_seqlock(&rename_lock);
3009			if (unlikely(d_ancestor(new, dentry))) {
3010				write_sequnlock(&rename_lock);
3011				dput(new);
3012				new = ERR_PTR(-ELOOP);
3013				pr_warn_ratelimited(
3014					"VFS: Lookup of '%s' in %s %s"
3015					" would have caused loop\n",
3016					dentry->d_name.name,
3017					inode->i_sb->s_type->name,
3018					inode->i_sb->s_id);
3019			} else if (!IS_ROOT(new)) {
3020				struct dentry *old_parent = dget(new->d_parent);
3021				int err = __d_unalias(dentry, new);
3022				write_sequnlock(&rename_lock);
3023				if (err) {
3024					dput(new);
3025					new = ERR_PTR(err);
3026				}
3027				dput(old_parent);
3028			} else {
3029				__d_move(new, dentry, false);
3030				write_sequnlock(&rename_lock);
 
3031			}
3032			iput(inode);
3033			return new;
 
 
 
 
 
 
 
 
 
 
3034		}
3035	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3036out:
3037	__d_add(dentry, inode);
3038	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039}
3040EXPORT_SYMBOL(d_splice_alias);
3041
3042/*
3043 * Test whether new_dentry is a subdirectory of old_dentry.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044 *
3045 * Trivially implemented using the dcache structure
 
 
 
 
 
 
 
 
3046 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3047
3048/**
3049 * is_subdir - is new dentry a subdirectory of old_dentry
3050 * @new_dentry: new dentry
3051 * @old_dentry: old dentry
 
3052 *
3053 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3054 * Returns false otherwise.
3055 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3056 */
3057  
3058bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3059{
3060	bool subdir;
3061	unsigned seq;
 
3062
3063	if (new_dentry == old_dentry)
3064		return true;
3065
3066	/* Access d_parent under rcu as d_move() may change it. */
3067	rcu_read_lock();
3068	seq = read_seqbegin(&rename_lock);
3069	subdir = d_ancestor(old_dentry, new_dentry);
3070	 /* Try lockless once... */
3071	if (read_seqretry(&rename_lock, seq)) {
3072		/* ...else acquire lock for progress even on deep chains. */
3073		read_seqlock_excl(&rename_lock);
3074		subdir = d_ancestor(old_dentry, new_dentry);
3075		read_sequnlock_excl(&rename_lock);
3076	}
3077	rcu_read_unlock();
3078	return subdir;
3079}
3080EXPORT_SYMBOL(is_subdir);
3081
3082static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
 
 
 
 
3083{
3084	struct dentry *root = data;
3085	if (dentry != root) {
3086		if (d_unhashed(dentry) || !dentry->d_inode)
3087			return D_WALK_SKIP;
3088
3089		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3090			dentry->d_flags |= DCACHE_GENOCIDE;
3091			dentry->d_lockref.count--;
3092		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093	}
3094	return D_WALK_CONTINUE;
 
 
3095}
3096
3097void d_genocide(struct dentry *parent)
3098{
3099	d_walk(parent, parent, d_genocide_kill);
 
 
 
 
 
 
3100}
 
3101
3102void d_mark_tmpfile(struct file *file, struct inode *inode)
3103{
3104	struct dentry *dentry = file->f_path.dentry;
 
3105
3106	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3107		!hlist_unhashed(&dentry->d_u.d_alias) ||
3108		!d_unlinked(dentry));
3109	spin_lock(&dentry->d_parent->d_lock);
3110	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3111	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3112				(unsigned long long)inode->i_ino);
3113	spin_unlock(&dentry->d_lock);
3114	spin_unlock(&dentry->d_parent->d_lock);
 
 
 
 
 
3115}
3116EXPORT_SYMBOL(d_mark_tmpfile);
3117
3118void d_tmpfile(struct file *file, struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119{
3120	struct dentry *dentry = file->f_path.dentry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3121
3122	inode_dec_link_count(inode);
3123	d_mark_tmpfile(file, inode);
3124	d_instantiate(dentry, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3125}
3126EXPORT_SYMBOL(d_tmpfile);
3127
3128/*
3129 * Obtain inode number of the parent dentry.
 
 
3130 */
3131ino_t d_parent_ino(struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
3132{
3133	struct dentry *parent;
3134	struct inode *iparent;
3135	unsigned seq;
3136	ino_t ret;
3137
3138	scoped_guard(rcu) {
3139		seq = raw_seqcount_begin(&dentry->d_seq);
3140		parent = READ_ONCE(dentry->d_parent);
3141		iparent = d_inode_rcu(parent);
3142		if (likely(iparent)) {
3143			ret = iparent->i_ino;
3144			if (!read_seqcount_retry(&dentry->d_seq, seq))
3145				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3147	}
 
 
 
 
 
 
3148
3149	spin_lock(&dentry->d_lock);
3150	ret = dentry->d_parent->d_inode->i_ino;
3151	spin_unlock(&dentry->d_lock);
3152	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153}
3154EXPORT_SYMBOL(d_parent_ino);
3155
3156static __initdata unsigned long dhash_entries;
3157static int __init set_dhash_entries(char *str)
3158{
3159	if (!str)
3160		return 0;
3161	dhash_entries = simple_strtoul(str, &str, 0);
3162	return 1;
3163}
3164__setup("dhash_entries=", set_dhash_entries);
3165
3166static void __init dcache_init_early(void)
3167{
 
 
3168	/* If hashes are distributed across NUMA nodes, defer
3169	 * hash allocation until vmalloc space is available.
3170	 */
3171	if (hashdist)
3172		return;
3173
3174	dentry_hashtable =
3175		alloc_large_system_hash("Dentry cache",
3176					sizeof(struct hlist_bl_head),
3177					dhash_entries,
3178					13,
3179					HASH_EARLY | HASH_ZERO,
3180					&d_hash_shift,
3181					NULL,
3182					0,
3183					0);
3184	d_hash_shift = 32 - d_hash_shift;
3185
3186	runtime_const_init(shift, d_hash_shift);
3187	runtime_const_init(ptr, dentry_hashtable);
3188}
3189
3190static void __init dcache_init(void)
3191{
3192	/*
 
 
3193	 * A constructor could be added for stable state like the lists,
3194	 * but it is probably not worth it because of the cache nature
3195	 * of the dcache.
3196	 */
3197	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3198		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3199		d_iname);
3200
3201	/* Hash may have been set up in dcache_init_early */
3202	if (!hashdist)
3203		return;
3204
3205	dentry_hashtable =
3206		alloc_large_system_hash("Dentry cache",
3207					sizeof(struct hlist_bl_head),
3208					dhash_entries,
3209					13,
3210					HASH_ZERO,
3211					&d_hash_shift,
3212					NULL,
3213					0,
3214					0);
3215	d_hash_shift = 32 - d_hash_shift;
3216
3217	runtime_const_init(shift, d_hash_shift);
3218	runtime_const_init(ptr, dentry_hashtable);
3219}
3220
3221/* SLAB cache for __getname() consumers */
3222struct kmem_cache *names_cachep __ro_after_init;
3223EXPORT_SYMBOL(names_cachep);
3224
 
 
3225void __init vfs_caches_init_early(void)
3226{
3227	int i;
3228
3229	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3230		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3231
3232	dcache_init_early();
3233	inode_init_early();
3234}
3235
3236void __init vfs_caches_init(void)
3237{
3238	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3239			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
 
 
 
 
 
 
 
 
3240
3241	dcache_init();
3242	inode_init();
3243	files_init();
3244	files_maxfiles_init();
3245	mnt_init();
3246	bdev_cache_init();
3247	chrdev_init();
3248}
v3.5.6
 
   1/*
   2 * fs/dcache.c
   3 *
   4 * Complete reimplementation
   5 * (C) 1997 Thomas Schoebel-Theuer,
   6 * with heavy changes by Linus Torvalds
   7 */
   8
   9/*
  10 * Notes on the allocation strategy:
  11 *
  12 * The dcache is a master of the icache - whenever a dcache entry
  13 * exists, the inode will always exist. "iput()" is done either when
  14 * the dcache entry is deleted or garbage collected.
  15 */
  16
  17#include <linux/syscalls.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/fs.h>
 
  21#include <linux/fsnotify.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/cache.h>
  26#include <linux/export.h>
  27#include <linux/mount.h>
  28#include <linux/file.h>
  29#include <asm/uaccess.h>
  30#include <linux/security.h>
  31#include <linux/seqlock.h>
  32#include <linux/swap.h>
  33#include <linux/bootmem.h>
  34#include <linux/fs_struct.h>
  35#include <linux/hardirq.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/rculist_bl.h>
  38#include <linux/prefetch.h>
  39#include <linux/ratelimit.h>
  40#include "internal.h"
  41#include "mount.h"
  42
 
 
  43/*
  44 * Usage:
  45 * dcache->d_inode->i_lock protects:
  46 *   - i_dentry, d_alias, d_inode of aliases
  47 * dcache_hash_bucket lock protects:
  48 *   - the dcache hash table
  49 * s_anon bl list spinlock protects:
  50 *   - the s_anon list (see __d_drop)
  51 * dcache_lru_lock protects:
  52 *   - the dcache lru lists and counters
  53 * d_lock protects:
  54 *   - d_flags
  55 *   - d_name
  56 *   - d_lru
  57 *   - d_count
  58 *   - d_unhashed()
  59 *   - d_parent and d_subdirs
  60 *   - childrens' d_child and d_parent
  61 *   - d_alias, d_inode
  62 *
  63 * Ordering:
  64 * dentry->d_inode->i_lock
  65 *   dentry->d_lock
  66 *     dcache_lru_lock
  67 *     dcache_hash_bucket lock
  68 *     s_anon lock
  69 *
  70 * If there is an ancestor relationship:
  71 * dentry->d_parent->...->d_parent->d_lock
  72 *   ...
  73 *     dentry->d_parent->d_lock
  74 *       dentry->d_lock
  75 *
  76 * If no ancestor relationship:
  77 * if (dentry1 < dentry2)
  78 *   dentry1->d_lock
  79 *     dentry2->d_lock
  80 */
  81int sysctl_vfs_cache_pressure __read_mostly = 100;
  82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  83
  84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
  85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  86
  87EXPORT_SYMBOL(rename_lock);
  88
  89static struct kmem_cache *dentry_cache __read_mostly;
 
 
 
 
 
 
 
  90
  91/*
  92 * This is the single most critical data structure when it comes
  93 * to the dcache: the hashtable for lookups. Somebody should try
  94 * to make this good - I've just made it work.
  95 *
  96 * This hash-function tries to avoid losing too many bits of hash
  97 * information, yet avoid using a prime hash-size or similar.
 
 
 
 
 
  98 */
  99#define D_HASHBITS     d_hash_shift
 100#define D_HASHMASK     d_hash_mask
 101
 102static unsigned int d_hash_mask __read_mostly;
 103static unsigned int d_hash_shift __read_mostly;
 
 104
 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
 
 
 
 
 
 
 
 106
 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
 108					unsigned int hash)
 109{
 110	hash += (unsigned long) parent / L1_CACHE_BYTES;
 111	hash = hash + (hash >> D_HASHBITS);
 112	return dentry_hashtable + (hash & D_HASHMASK);
 113}
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115/* Statistics gathering. */
 116struct dentry_stat_t dentry_stat = {
 117	.age_limit = 45,
 118};
 119
 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 123static int get_nr_dentry(void)
 
 
 
 
 
 
 
 
 124{
 125	int i;
 126	int sum = 0;
 
 127	for_each_possible_cpu(i)
 128		sum += per_cpu(nr_dentry, i);
 129	return sum < 0 ? 0 : sum;
 130}
 131
 132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
 133		   size_t *lenp, loff_t *ppos)
 134{
 135	dentry_stat.nr_dentry = get_nr_dentry();
 136	return proc_dointvec(table, write, buffer, lenp, ppos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137}
 
 138#endif
 139
 140/*
 141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 142 * The strings are both count bytes long, and count is non-zero.
 143 */
 144#ifdef CONFIG_DCACHE_WORD_ACCESS
 145
 146#include <asm/word-at-a-time.h>
 147/*
 148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 149 * aligned allocation for this particular component. We don't
 150 * strictly need the load_unaligned_zeropad() safety, but it
 151 * doesn't hurt either.
 152 *
 153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 154 * need the careful unaligned handling.
 155 */
 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 157{
 158	unsigned long a,b,mask;
 159
 160	for (;;) {
 161		a = *(unsigned long *)cs;
 162		b = load_unaligned_zeropad(ct);
 163		if (tcount < sizeof(unsigned long))
 164			break;
 165		if (unlikely(a != b))
 166			return 1;
 167		cs += sizeof(unsigned long);
 168		ct += sizeof(unsigned long);
 169		tcount -= sizeof(unsigned long);
 170		if (!tcount)
 171			return 0;
 172	}
 173	mask = ~(~0ul << tcount*8);
 174	return unlikely(!!((a ^ b) & mask));
 175}
 176
 177#else
 178
 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 180{
 181	do {
 182		if (*cs != *ct)
 183			return 1;
 184		cs++;
 185		ct++;
 186		tcount--;
 187	} while (tcount);
 188	return 0;
 189}
 190
 191#endif
 192
 193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 194{
 195	const unsigned char *cs;
 196	/*
 197	 * Be careful about RCU walk racing with rename:
 198	 * use ACCESS_ONCE to fetch the name pointer.
 199	 *
 200	 * NOTE! Even if a rename will mean that the length
 201	 * was not loaded atomically, we don't care. The
 202	 * RCU walk will check the sequence count eventually,
 203	 * and catch it. And we won't overrun the buffer,
 204	 * because we're reading the name pointer atomically,
 205	 * and a dentry name is guaranteed to be properly
 206	 * terminated with a NUL byte.
 207	 *
 208	 * End result: even if 'len' is wrong, we'll exit
 209	 * early because the data cannot match (there can
 210	 * be no NUL in the ct/tcount data)
 211	 */
 212	cs = ACCESS_ONCE(dentry->d_name.name);
 213	smp_read_barrier_depends();
 214	return dentry_string_cmp(cs, ct, tcount);
 215}
 216
 
 
 
 
 
 
 
 
 
 
 
 
 
 217static void __d_free(struct rcu_head *head)
 218{
 219	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 220
 221	WARN_ON(!list_empty(&dentry->d_alias));
 222	if (dname_external(dentry))
 223		kfree(dentry->d_name.name);
 224	kmem_cache_free(dentry_cache, dentry); 
 225}
 226
 227/*
 228 * no locks, please.
 229 */
 230static void d_free(struct dentry *dentry)
 231{
 232	BUG_ON(dentry->d_count);
 233	this_cpu_dec(nr_dentry);
 234	if (dentry->d_op && dentry->d_op->d_release)
 235		dentry->d_op->d_release(dentry);
 236
 237	/* if dentry was never visible to RCU, immediate free is OK */
 238	if (!(dentry->d_flags & DCACHE_RCUACCESS))
 239		__d_free(&dentry->d_u.d_rcu);
 240	else
 241		call_rcu(&dentry->d_u.d_rcu, __d_free);
 242}
 243
 244/**
 245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
 246 * @dentry: the target dentry
 247 * After this call, in-progress rcu-walk path lookup will fail. This
 248 * should be called after unhashing, and after changing d_inode (if
 249 * the dentry has not already been unhashed).
 250 */
 251static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
 252{
 253	assert_spin_locked(&dentry->d_lock);
 254	/* Go through a barrier */
 255	write_seqcount_barrier(&dentry->d_seq);
 256}
 
 257
 258/*
 259 * Release the dentry's inode, using the filesystem
 260 * d_iput() operation if defined. Dentry has no refcount
 261 * and is unhashed.
 262 */
 263static void dentry_iput(struct dentry * dentry)
 264	__releases(dentry->d_lock)
 265	__releases(dentry->d_inode->i_lock)
 266{
 267	struct inode *inode = dentry->d_inode;
 268	if (inode) {
 269		dentry->d_inode = NULL;
 270		list_del_init(&dentry->d_alias);
 271		spin_unlock(&dentry->d_lock);
 272		spin_unlock(&inode->i_lock);
 273		if (!inode->i_nlink)
 274			fsnotify_inoderemove(inode);
 275		if (dentry->d_op && dentry->d_op->d_iput)
 276			dentry->d_op->d_iput(dentry, inode);
 277		else
 278			iput(inode);
 279	} else {
 280		spin_unlock(&dentry->d_lock);
 281	}
 282}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283
 284/*
 285 * Release the dentry's inode, using the filesystem
 286 * d_iput() operation if defined. dentry remains in-use.
 287 */
 288static void dentry_unlink_inode(struct dentry * dentry)
 289	__releases(dentry->d_lock)
 290	__releases(dentry->d_inode->i_lock)
 291{
 292	struct inode *inode = dentry->d_inode;
 293	dentry->d_inode = NULL;
 294	list_del_init(&dentry->d_alias);
 295	dentry_rcuwalk_barrier(dentry);
 
 
 296	spin_unlock(&dentry->d_lock);
 297	spin_unlock(&inode->i_lock);
 298	if (!inode->i_nlink)
 299		fsnotify_inoderemove(inode);
 300	if (dentry->d_op && dentry->d_op->d_iput)
 301		dentry->d_op->d_iput(dentry, inode);
 302	else
 303		iput(inode);
 304}
 305
 306/*
 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308 */
 309static void dentry_lru_add(struct dentry *dentry)
 
 310{
 311	if (list_empty(&dentry->d_lru)) {
 312		spin_lock(&dcache_lru_lock);
 313		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 314		dentry->d_sb->s_nr_dentry_unused++;
 315		dentry_stat.nr_unused++;
 316		spin_unlock(&dcache_lru_lock);
 317	}
 
 
 
 
 
 
 
 
 
 
 
 318}
 319
 320static void __dentry_lru_del(struct dentry *dentry)
 321{
 
 322	list_del_init(&dentry->d_lru);
 323	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
 324	dentry->d_sb->s_nr_dentry_unused--;
 325	dentry_stat.nr_unused--;
 326}
 327
 328/*
 329 * Remove a dentry with references from the LRU.
 330 */
 331static void dentry_lru_del(struct dentry *dentry)
 332{
 333	if (!list_empty(&dentry->d_lru)) {
 334		spin_lock(&dcache_lru_lock);
 335		__dentry_lru_del(dentry);
 336		spin_unlock(&dcache_lru_lock);
 337	}
 338}
 339
 340/*
 341 * Remove a dentry that is unreferenced and about to be pruned
 342 * (unhashed and destroyed) from the LRU, and inform the file system.
 343 * This wrapper should be called _prior_ to unhashing a victim dentry.
 
 344 */
 345static void dentry_lru_prune(struct dentry *dentry)
 346{
 347	if (!list_empty(&dentry->d_lru)) {
 348		if (dentry->d_flags & DCACHE_OP_PRUNE)
 349			dentry->d_op->d_prune(dentry);
 350
 351		spin_lock(&dcache_lru_lock);
 352		__dentry_lru_del(dentry);
 353		spin_unlock(&dcache_lru_lock);
 354	}
 355}
 356
 357static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
 
 358{
 359	spin_lock(&dcache_lru_lock);
 360	if (list_empty(&dentry->d_lru)) {
 361		list_add_tail(&dentry->d_lru, list);
 362		dentry->d_sb->s_nr_dentry_unused++;
 363		dentry_stat.nr_unused++;
 364	} else {
 365		list_move_tail(&dentry->d_lru, list);
 366	}
 367	spin_unlock(&dcache_lru_lock);
 368}
 369
 370/**
 371 * d_kill - kill dentry and return parent
 372 * @dentry: dentry to kill
 373 * @parent: parent dentry
 374 *
 375 * The dentry must already be unhashed and removed from the LRU.
 376 *
 377 * If this is the root of the dentry tree, return NULL.
 378 *
 379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
 380 * d_kill.
 381 */
 382static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
 383	__releases(dentry->d_lock)
 384	__releases(parent->d_lock)
 385	__releases(dentry->d_inode->i_lock)
 386{
 387	list_del(&dentry->d_u.d_child);
 388	/*
 389	 * Inform try_to_ascend() that we are no longer attached to the
 390	 * dentry tree
 
 391	 */
 392	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 393	if (parent)
 394		spin_unlock(&parent->d_lock);
 395	dentry_iput(dentry);
 396	/*
 397	 * dentry_iput drops the locks, at which point nobody (except
 398	 * transient RCU lookups) can reach this dentry.
 399	 */
 400	d_free(dentry);
 401	return parent;
 402}
 403
 404/*
 405 * Unhash a dentry without inserting an RCU walk barrier or checking that
 406 * dentry->d_lock is locked.  The caller must take care of that, if
 407 * appropriate.
 408 */
 409static void __d_shrink(struct dentry *dentry)
 410{
 411	if (!d_unhashed(dentry)) {
 412		struct hlist_bl_head *b;
 413		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 414			b = &dentry->d_sb->s_anon;
 415		else
 416			b = d_hash(dentry->d_parent, dentry->d_name.hash);
 417
 418		hlist_bl_lock(b);
 419		__hlist_bl_del(&dentry->d_hash);
 420		dentry->d_hash.pprev = NULL;
 421		hlist_bl_unlock(b);
 422	}
 423}
 
 424
 425/**
 426 * d_drop - drop a dentry
 427 * @dentry: dentry to drop
 428 *
 429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 430 * be found through a VFS lookup any more. Note that this is different from
 431 * deleting the dentry - d_delete will try to mark the dentry negative if
 432 * possible, giving a successful _negative_ lookup, while d_drop will
 433 * just make the cache lookup fail.
 434 *
 435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 436 * reason (NFS timeouts or autofs deletes).
 437 *
 438 * __d_drop requires dentry->d_lock.
 
 
 
 439 */
 440void __d_drop(struct dentry *dentry)
 
 
 
 
 
 
 
 
 441{
 442	if (!d_unhashed(dentry)) {
 443		__d_shrink(dentry);
 444		dentry_rcuwalk_barrier(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445	}
 446}
 447EXPORT_SYMBOL(__d_drop);
 448
 449void d_drop(struct dentry *dentry)
 450{
 451	spin_lock(&dentry->d_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452	__d_drop(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453	spin_unlock(&dentry->d_lock);
 
 
 
 
 
 
 
 454}
 455EXPORT_SYMBOL(d_drop);
 456
 457/*
 458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
 459 * @dentry: dentry to drop
 
 
 
 460 *
 461 * This is called when we do a lookup on a placeholder dentry that needed to be
 462 * looked up.  The dentry should have been hashed in order for it to be found by
 463 * the lookup code, but now needs to be unhashed while we do the actual lookup
 464 * and clear the DCACHE_NEED_LOOKUP flag.
 465 */
 466void d_clear_need_lookup(struct dentry *dentry)
 
 467{
 468	spin_lock(&dentry->d_lock);
 469	__d_drop(dentry);
 470	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
 471	spin_unlock(&dentry->d_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472}
 473EXPORT_SYMBOL(d_clear_need_lookup);
 474
 475/*
 476 * Finish off a dentry we've decided to kill.
 477 * dentry->d_lock must be held, returns with it unlocked.
 478 * If ref is non-zero, then decrement the refcount too.
 479 * Returns dentry requiring refcount drop, or NULL if we're done.
 
 
 
 
 480 */
 481static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
 482	__releases(dentry->d_lock)
 483{
 484	struct inode *inode;
 485	struct dentry *parent;
 
 
 
 
 486
 487	inode = dentry->d_inode;
 488	if (inode && !spin_trylock(&inode->i_lock)) {
 489relock:
 490		spin_unlock(&dentry->d_lock);
 491		cpu_relax();
 492		return dentry; /* try again with same dentry */
 493	}
 494	if (IS_ROOT(dentry))
 495		parent = NULL;
 496	else
 497		parent = dentry->d_parent;
 498	if (parent && !spin_trylock(&parent->d_lock)) {
 499		if (inode)
 500			spin_unlock(&inode->i_lock);
 501		goto relock;
 502	}
 503
 504	if (ref)
 505		dentry->d_count--;
 506	/*
 507	 * if dentry was on the d_lru list delete it from there.
 508	 * inform the fs via d_prune that this dentry is about to be
 509	 * unhashed and destroyed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510	 */
 511	dentry_lru_prune(dentry);
 512	/* if it was on the hash then remove it */
 513	__d_drop(dentry);
 514	return d_kill(dentry, parent);
 
 
 515}
 516
 
 517/* 
 518 * This is dput
 519 *
 520 * This is complicated by the fact that we do not want to put
 521 * dentries that are no longer on any hash chain on the unused
 522 * list: we'd much rather just get rid of them immediately.
 523 *
 524 * However, that implies that we have to traverse the dentry
 525 * tree upwards to the parents which might _also_ now be
 526 * scheduled for deletion (it may have been only waiting for
 527 * its last child to go away).
 528 *
 529 * This tail recursion is done by hand as we don't want to depend
 530 * on the compiler to always get this right (gcc generally doesn't).
 531 * Real recursion would eat up our stack space.
 532 */
 533
 534/*
 535 * dput - release a dentry
 536 * @dentry: dentry to release 
 537 *
 538 * Release a dentry. This will drop the usage count and if appropriate
 539 * call the dentry unlink method as well as removing it from the queues and
 540 * releasing its resources. If the parent dentries were scheduled for release
 541 * they too may now get deleted.
 542 */
 543void dput(struct dentry *dentry)
 544{
 545	if (!dentry)
 546		return;
 547
 548repeat:
 549	if (dentry->d_count == 1)
 550		might_sleep();
 551	spin_lock(&dentry->d_lock);
 552	BUG_ON(!dentry->d_count);
 553	if (dentry->d_count > 1) {
 554		dentry->d_count--;
 555		spin_unlock(&dentry->d_lock);
 556		return;
 557	}
 558
 559	if (dentry->d_flags & DCACHE_OP_DELETE) {
 560		if (dentry->d_op->d_delete(dentry))
 561			goto kill_it;
 
 
 
 
 
 
 562	}
 563
 564	/* Unreachable? Get rid of it */
 565 	if (d_unhashed(dentry))
 566		goto kill_it;
 567
 568	/*
 569	 * If this dentry needs lookup, don't set the referenced flag so that it
 570	 * is more likely to be cleaned up by the dcache shrinker in case of
 571	 * memory pressure.
 572	 */
 573	if (!d_need_lookup(dentry))
 574		dentry->d_flags |= DCACHE_REFERENCED;
 575	dentry_lru_add(dentry);
 576
 577	dentry->d_count--;
 578	spin_unlock(&dentry->d_lock);
 579	return;
 580
 581kill_it:
 582	dentry = dentry_kill(dentry, 1);
 583	if (dentry)
 584		goto repeat;
 585}
 586EXPORT_SYMBOL(dput);
 587
 588/**
 589 * d_invalidate - invalidate a dentry
 590 * @dentry: dentry to invalidate
 591 *
 592 * Try to invalidate the dentry if it turns out to be
 593 * possible. If there are other dentries that can be
 594 * reached through this one we can't delete it and we
 595 * return -EBUSY. On success we return 0.
 596 *
 597 * no dcache lock.
 598 */
 599 
 600int d_invalidate(struct dentry * dentry)
 601{
 602	/*
 603	 * If it's already been dropped, return OK.
 604	 */
 605	spin_lock(&dentry->d_lock);
 606	if (d_unhashed(dentry)) {
 607		spin_unlock(&dentry->d_lock);
 608		return 0;
 609	}
 610	/*
 611	 * Check whether to do a partial shrink_dcache
 612	 * to get rid of unused child entries.
 613	 */
 614	if (!list_empty(&dentry->d_subdirs)) {
 615		spin_unlock(&dentry->d_lock);
 616		shrink_dcache_parent(dentry);
 617		spin_lock(&dentry->d_lock);
 618	}
 619
 620	/*
 621	 * Somebody else still using it?
 622	 *
 623	 * If it's a directory, we can't drop it
 624	 * for fear of somebody re-populating it
 625	 * with children (even though dropping it
 626	 * would make it unreachable from the root,
 627	 * we might still populate it if it was a
 628	 * working directory or similar).
 629	 * We also need to leave mountpoints alone,
 630	 * directory or not.
 631	 */
 632	if (dentry->d_count > 1 && dentry->d_inode) {
 633		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
 634			spin_unlock(&dentry->d_lock);
 635			return -EBUSY;
 636		}
 637	}
 638
 639	__d_drop(dentry);
 640	spin_unlock(&dentry->d_lock);
 641	return 0;
 642}
 643EXPORT_SYMBOL(d_invalidate);
 644
 645/* This must be called with d_lock held */
 646static inline void __dget_dlock(struct dentry *dentry)
 647{
 648	dentry->d_count++;
 649}
 650
 651static inline void __dget(struct dentry *dentry)
 652{
 653	spin_lock(&dentry->d_lock);
 654	__dget_dlock(dentry);
 655	spin_unlock(&dentry->d_lock);
 656}
 657
 658struct dentry *dget_parent(struct dentry *dentry)
 659{
 
 660	struct dentry *ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661
 662repeat:
 663	/*
 664	 * Don't need rcu_dereference because we re-check it was correct under
 665	 * the lock.
 666	 */
 667	rcu_read_lock();
 668	ret = dentry->d_parent;
 669	spin_lock(&ret->d_lock);
 670	if (unlikely(ret != dentry->d_parent)) {
 671		spin_unlock(&ret->d_lock);
 672		rcu_read_unlock();
 673		goto repeat;
 674	}
 675	rcu_read_unlock();
 676	BUG_ON(!ret->d_count);
 677	ret->d_count++;
 678	spin_unlock(&ret->d_lock);
 679	return ret;
 680}
 681EXPORT_SYMBOL(dget_parent);
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683/**
 684 * d_find_alias - grab a hashed alias of inode
 685 * @inode: inode in question
 686 * @want_discon:  flag, used by d_splice_alias, to request
 687 *          that only a DISCONNECTED alias be returned.
 688 *
 689 * If inode has a hashed alias, or is a directory and has any alias,
 690 * acquire the reference to alias and return it. Otherwise return NULL.
 691 * Notice that if inode is a directory there can be only one alias and
 692 * it can be unhashed only if it has no children, or if it is the root
 693 * of a filesystem.
 
 694 *
 695 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 696 * any other hashed alias over that one unless @want_discon is set,
 697 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
 698 */
 699static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
 700{
 701	struct dentry *alias, *discon_alias;
 702
 703again:
 704	discon_alias = NULL;
 705	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
 706		spin_lock(&alias->d_lock);
 707 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 708			if (IS_ROOT(alias) &&
 709			    (alias->d_flags & DCACHE_DISCONNECTED)) {
 710				discon_alias = alias;
 711			} else if (!want_discon) {
 712				__dget_dlock(alias);
 713				spin_unlock(&alias->d_lock);
 714				return alias;
 715			}
 716		}
 717		spin_unlock(&alias->d_lock);
 718	}
 719	if (discon_alias) {
 720		alias = discon_alias;
 721		spin_lock(&alias->d_lock);
 722		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 723			if (IS_ROOT(alias) &&
 724			    (alias->d_flags & DCACHE_DISCONNECTED)) {
 725				__dget_dlock(alias);
 726				spin_unlock(&alias->d_lock);
 727				return alias;
 728			}
 729		}
 730		spin_unlock(&alias->d_lock);
 731		goto again;
 732	}
 733	return NULL;
 734}
 
 735
 736struct dentry *d_find_alias(struct inode *inode)
 
 
 
 
 737{
 
 738	struct dentry *de = NULL;
 739
 740	if (!list_empty(&inode->i_dentry)) {
 741		spin_lock(&inode->i_lock);
 742		de = __d_find_alias(inode, 0);
 743		spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 744	}
 
 745	return de;
 746}
 747EXPORT_SYMBOL(d_find_alias);
 748
 749/*
 750 *	Try to kill dentries associated with this inode.
 751 * WARNING: you must own a reference to inode.
 752 */
 753void d_prune_aliases(struct inode *inode)
 754{
 
 755	struct dentry *dentry;
 756restart:
 757	spin_lock(&inode->i_lock);
 758	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
 759		spin_lock(&dentry->d_lock);
 760		if (!dentry->d_count) {
 761			__dget_dlock(dentry);
 762			__d_drop(dentry);
 763			spin_unlock(&dentry->d_lock);
 764			spin_unlock(&inode->i_lock);
 765			dput(dentry);
 766			goto restart;
 767		}
 768		spin_unlock(&dentry->d_lock);
 769	}
 770	spin_unlock(&inode->i_lock);
 
 771}
 772EXPORT_SYMBOL(d_prune_aliases);
 773
 774/*
 775 * Try to throw away a dentry - free the inode, dput the parent.
 776 * Requires dentry->d_lock is held, and dentry->d_count == 0.
 777 * Releases dentry->d_lock.
 778 *
 779 * This may fail if locks cannot be acquired no problem, just try again.
 780 */
 781static void try_prune_one_dentry(struct dentry *dentry)
 782	__releases(dentry->d_lock)
 783{
 784	struct dentry *parent;
 
 
 
 
 
 
 
 
 785
 786	parent = dentry_kill(dentry, 0);
 787	/*
 788	 * If dentry_kill returns NULL, we have nothing more to do.
 789	 * if it returns the same dentry, trylocks failed. In either
 790	 * case, just loop again.
 791	 *
 792	 * Otherwise, we need to prune ancestors too. This is necessary
 793	 * to prevent quadratic behavior of shrink_dcache_parent(), but
 794	 * is also expected to be beneficial in reducing dentry cache
 795	 * fragmentation.
 796	 */
 797	if (!parent)
 798		return;
 799	if (parent == dentry)
 800		return;
 801
 802	/* Prune ancestors. */
 803	dentry = parent;
 804	while (dentry) {
 805		spin_lock(&dentry->d_lock);
 806		if (dentry->d_count > 1) {
 807			dentry->d_count--;
 
 
 
 
 808			spin_unlock(&dentry->d_lock);
 809			return;
 
 
 810		}
 811		dentry = dentry_kill(dentry, 1);
 
 812	}
 813}
 814
 815static void shrink_dentry_list(struct list_head *list)
 
 816{
 817	struct dentry *dentry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819	rcu_read_lock();
 820	for (;;) {
 821		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
 822		if (&dentry->d_lru == list)
 823			break; /* empty */
 824		spin_lock(&dentry->d_lock);
 825		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
 826			spin_unlock(&dentry->d_lock);
 827			continue;
 828		}
 829
 830		/*
 831		 * We found an inuse dentry which was not removed from
 832		 * the LRU because of laziness during lookup.  Do not free
 833		 * it - just keep it off the LRU list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834		 */
 835		if (dentry->d_count) {
 836			dentry_lru_del(dentry);
 837			spin_unlock(&dentry->d_lock);
 838			continue;
 839		}
 840
 841		rcu_read_unlock();
 842
 843		try_prune_one_dentry(dentry);
 844
 845		rcu_read_lock();
 846	}
 847	rcu_read_unlock();
 848}
 849
 850/**
 851 * prune_dcache_sb - shrink the dcache
 852 * @sb: superblock
 853 * @count: number of entries to try to free
 854 *
 855 * Attempt to shrink the superblock dcache LRU by @count entries. This is
 856 * done when we need more memory an called from the superblock shrinker
 857 * function.
 858 *
 859 * This function may fail to free any resources if all the dentries are in
 860 * use.
 861 */
 862void prune_dcache_sb(struct super_block *sb, int count)
 863{
 864	struct dentry *dentry;
 865	LIST_HEAD(referenced);
 866	LIST_HEAD(tmp);
 
 
 
 
 
 867
 868relock:
 869	spin_lock(&dcache_lru_lock);
 870	while (!list_empty(&sb->s_dentry_lru)) {
 871		dentry = list_entry(sb->s_dentry_lru.prev,
 872				struct dentry, d_lru);
 873		BUG_ON(dentry->d_sb != sb);
 874
 875		if (!spin_trylock(&dentry->d_lock)) {
 876			spin_unlock(&dcache_lru_lock);
 877			cpu_relax();
 878			goto relock;
 879		}
 
 
 880
 881		if (dentry->d_flags & DCACHE_REFERENCED) {
 882			dentry->d_flags &= ~DCACHE_REFERENCED;
 883			list_move(&dentry->d_lru, &referenced);
 884			spin_unlock(&dentry->d_lock);
 885		} else {
 886			list_move_tail(&dentry->d_lru, &tmp);
 887			dentry->d_flags |= DCACHE_SHRINK_LIST;
 888			spin_unlock(&dentry->d_lock);
 889			if (!--count)
 890				break;
 891		}
 892		cond_resched_lock(&dcache_lru_lock);
 893	}
 894	if (!list_empty(&referenced))
 895		list_splice(&referenced, &sb->s_dentry_lru);
 896	spin_unlock(&dcache_lru_lock);
 897
 898	shrink_dentry_list(&tmp);
 899}
 900
 
 901/**
 902 * shrink_dcache_sb - shrink dcache for a superblock
 903 * @sb: superblock
 904 *
 905 * Shrink the dcache for the specified super block. This is used to free
 906 * the dcache before unmounting a file system.
 907 */
 908void shrink_dcache_sb(struct super_block *sb)
 909{
 910	LIST_HEAD(tmp);
 
 911
 912	spin_lock(&dcache_lru_lock);
 913	while (!list_empty(&sb->s_dentry_lru)) {
 914		list_splice_init(&sb->s_dentry_lru, &tmp);
 915		spin_unlock(&dcache_lru_lock);
 916		shrink_dentry_list(&tmp);
 917		spin_lock(&dcache_lru_lock);
 918	}
 919	spin_unlock(&dcache_lru_lock);
 920}
 921EXPORT_SYMBOL(shrink_dcache_sb);
 922
 923/*
 924 * destroy a single subtree of dentries for unmount
 925 * - see the comments on shrink_dcache_for_umount() for a description of the
 926 *   locking
 927 */
 928static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
 929{
 930	struct dentry *parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932	BUG_ON(!IS_ROOT(dentry));
 
 
 
 933
 934	for (;;) {
 935		/* descend to the first leaf in the current subtree */
 936		while (!list_empty(&dentry->d_subdirs))
 937			dentry = list_entry(dentry->d_subdirs.next,
 938					    struct dentry, d_u.d_child);
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940		/* consume the dentries from this leaf up through its parents
 941		 * until we find one with children or run out altogether */
 942		do {
 943			struct inode *inode;
 944
 945			/*
 946			 * remove the dentry from the lru, and inform
 947			 * the fs that this dentry is about to be
 948			 * unhashed and destroyed.
 949			 */
 950			dentry_lru_prune(dentry);
 951			__d_shrink(dentry);
 
 
 
 
 
 
 
 952
 953			if (dentry->d_count != 0) {
 954				printk(KERN_ERR
 955				       "BUG: Dentry %p{i=%lx,n=%s}"
 956				       " still in use (%d)"
 957				       " [unmount of %s %s]\n",
 958				       dentry,
 959				       dentry->d_inode ?
 960				       dentry->d_inode->i_ino : 0UL,
 961				       dentry->d_name.name,
 962				       dentry->d_count,
 963				       dentry->d_sb->s_type->name,
 964				       dentry->d_sb->s_id);
 965				BUG();
 966			}
 
 
 
 967
 968			if (IS_ROOT(dentry)) {
 969				parent = NULL;
 970				list_del(&dentry->d_u.d_child);
 971			} else {
 972				parent = dentry->d_parent;
 973				parent->d_count--;
 974				list_del(&dentry->d_u.d_child);
 975			}
 976
 977			inode = dentry->d_inode;
 978			if (inode) {
 979				dentry->d_inode = NULL;
 980				list_del_init(&dentry->d_alias);
 981				if (dentry->d_op && dentry->d_op->d_iput)
 982					dentry->d_op->d_iput(dentry, inode);
 983				else
 984					iput(inode);
 985			}
 
 
 
 
 
 
 986
 987			d_free(dentry);
 
 
 
 988
 989			/* finished when we fall off the top of the tree,
 990			 * otherwise we ascend to the parent and move to the
 991			 * next sibling if there is one */
 992			if (!parent)
 993				return;
 994			dentry = parent;
 995		} while (list_empty(&dentry->d_subdirs));
 
 
 996
 997		dentry = list_entry(dentry->d_subdirs.next,
 998				    struct dentry, d_u.d_child);
 999	}
1000}
1001
1002/*
1003 * destroy the dentries attached to a superblock on unmounting
1004 * - we don't need to use dentry->d_lock because:
1005 *   - the superblock is detached from all mountings and open files, so the
1006 *     dentry trees will not be rearranged by the VFS
1007 *   - s_umount is write-locked, so the memory pressure shrinker will ignore
1008 *     any dentries belonging to this superblock that it comes across
1009 *   - the filesystem itself is no longer permitted to rearrange the dentries
1010 *     in this superblock
1011 */
1012void shrink_dcache_for_umount(struct super_block *sb)
1013{
1014	struct dentry *dentry;
 
1015
1016	if (down_read_trylock(&sb->s_umount))
1017		BUG();
1018
1019	dentry = sb->s_root;
1020	sb->s_root = NULL;
1021	dentry->d_count--;
1022	shrink_dcache_for_umount_subtree(dentry);
1023
1024	while (!hlist_bl_empty(&sb->s_anon)) {
1025		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1026		shrink_dcache_for_umount_subtree(dentry);
1027	}
 
1028}
1029
1030/*
1031 * This tries to ascend one level of parenthood, but
1032 * we can race with renaming, so we need to re-check
1033 * the parenthood after dropping the lock and check
1034 * that the sequence number still matches.
 
 
1035 */
1036static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1037{
1038	struct dentry *new = old->d_parent;
1039
1040	rcu_read_lock();
1041	spin_unlock(&old->d_lock);
1042	spin_lock(&new->d_lock);
1043
1044	/*
1045	 * might go back up the wrong parent if we have had a rename
1046	 * or deletion
1047	 */
1048	if (new != old->d_parent ||
1049		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1050		 (!locked && read_seqretry(&rename_lock, seq))) {
1051		spin_unlock(&new->d_lock);
1052		new = NULL;
1053	}
1054	rcu_read_unlock();
1055	return new;
1056}
1057
1058
1059/*
1060 * Search for at least 1 mount point in the dentry's subdirs.
1061 * We descend to the next level whenever the d_subdirs
1062 * list is non-empty and continue searching.
1063 */
1064 
1065/**
1066 * have_submounts - check for mounts over a dentry
1067 * @parent: dentry to check.
1068 *
1069 * Return true if the parent or its subdirectories contain
1070 * a mount point
1071 */
1072int have_submounts(struct dentry *parent)
1073{
1074	struct dentry *this_parent;
1075	struct list_head *next;
1076	unsigned seq;
1077	int locked = 0;
1078
1079	seq = read_seqbegin(&rename_lock);
1080again:
1081	this_parent = parent;
1082
1083	if (d_mountpoint(parent))
1084		goto positive;
1085	spin_lock(&this_parent->d_lock);
1086repeat:
1087	next = this_parent->d_subdirs.next;
1088resume:
1089	while (next != &this_parent->d_subdirs) {
1090		struct list_head *tmp = next;
1091		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1092		next = tmp->next;
1093
1094		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1095		/* Have we found a mount point ? */
1096		if (d_mountpoint(dentry)) {
1097			spin_unlock(&dentry->d_lock);
1098			spin_unlock(&this_parent->d_lock);
1099			goto positive;
1100		}
1101		if (!list_empty(&dentry->d_subdirs)) {
1102			spin_unlock(&this_parent->d_lock);
1103			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1104			this_parent = dentry;
1105			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1106			goto repeat;
 
 
1107		}
1108		spin_unlock(&dentry->d_lock);
1109	}
1110	/*
1111	 * All done at this level ... ascend and resume the search.
1112	 */
1113	if (this_parent != parent) {
1114		struct dentry *child = this_parent;
1115		this_parent = try_to_ascend(this_parent, locked, seq);
1116		if (!this_parent)
1117			goto rename_retry;
1118		next = child->d_u.d_child.next;
1119		goto resume;
1120	}
1121	spin_unlock(&this_parent->d_lock);
1122	if (!locked && read_seqretry(&rename_lock, seq))
1123		goto rename_retry;
1124	if (locked)
1125		write_sequnlock(&rename_lock);
1126	return 0; /* No mount points found in tree */
1127positive:
1128	if (!locked && read_seqretry(&rename_lock, seq))
1129		goto rename_retry;
1130	if (locked)
1131		write_sequnlock(&rename_lock);
1132	return 1;
1133
1134rename_retry:
1135	if (locked)
1136		goto again;
1137	locked = 1;
1138	write_seqlock(&rename_lock);
1139	goto again;
1140}
1141EXPORT_SYMBOL(have_submounts);
1142
1143/*
1144 * Search the dentry child list for the specified parent,
1145 * and move any unused dentries to the end of the unused
1146 * list for prune_dcache(). We descend to the next level
1147 * whenever the d_subdirs list is non-empty and continue
1148 * searching.
1149 *
1150 * It returns zero iff there are no unused children,
1151 * otherwise  it returns the number of children moved to
1152 * the end of the unused list. This may not be the total
1153 * number of unused children, because select_parent can
1154 * drop the lock and return early due to latency
1155 * constraints.
1156 */
1157static int select_parent(struct dentry *parent, struct list_head *dispose)
 
 
 
 
 
 
 
 
 
 
1158{
1159	struct dentry *this_parent;
1160	struct list_head *next;
1161	unsigned seq;
1162	int found = 0;
1163	int locked = 0;
1164
1165	seq = read_seqbegin(&rename_lock);
1166again:
1167	this_parent = parent;
1168	spin_lock(&this_parent->d_lock);
1169repeat:
1170	next = this_parent->d_subdirs.next;
1171resume:
1172	while (next != &this_parent->d_subdirs) {
1173		struct list_head *tmp = next;
1174		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1175		next = tmp->next;
 
 
 
 
 
 
 
1176
1177		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 
 
 
1178
1179		/*
1180		 * move only zero ref count dentries to the dispose list.
1181		 *
1182		 * Those which are presently on the shrink list, being processed
1183		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1184		 * loop in shrink_dcache_parent() might not make any progress
1185		 * and loop forever.
1186		 */
1187		if (dentry->d_count) {
1188			dentry_lru_del(dentry);
1189		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1190			dentry_lru_move_list(dentry, dispose);
1191			dentry->d_flags |= DCACHE_SHRINK_LIST;
1192			found++;
1193		}
1194		/*
1195		 * We can return to the caller if we have found some (this
1196		 * ensures forward progress). We'll be coming back to find
1197		 * the rest.
1198		 */
1199		if (found && need_resched()) {
1200			spin_unlock(&dentry->d_lock);
1201			goto out;
1202		}
1203
1204		/*
1205		 * Descend a level if the d_subdirs list is non-empty.
1206		 */
1207		if (!list_empty(&dentry->d_subdirs)) {
1208			spin_unlock(&this_parent->d_lock);
1209			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1210			this_parent = dentry;
1211			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1212			goto repeat;
1213		}
1214
1215		spin_unlock(&dentry->d_lock);
1216	}
1217	/*
1218	 * All done at this level ... ascend and resume the search.
 
 
1219	 */
1220	if (this_parent != parent) {
1221		struct dentry *child = this_parent;
1222		this_parent = try_to_ascend(this_parent, locked, seq);
1223		if (!this_parent)
1224			goto rename_retry;
1225		next = child->d_u.d_child.next;
1226		goto resume;
1227	}
1228out:
1229	spin_unlock(&this_parent->d_lock);
1230	if (!locked && read_seqretry(&rename_lock, seq))
1231		goto rename_retry;
1232	if (locked)
1233		write_sequnlock(&rename_lock);
1234	return found;
1235
1236rename_retry:
1237	if (found)
1238		return found;
1239	if (locked)
1240		goto again;
1241	locked = 1;
1242	write_seqlock(&rename_lock);
1243	goto again;
1244}
1245
1246/**
1247 * shrink_dcache_parent - prune dcache
1248 * @parent: parent of entries to prune
1249 *
1250 * Prune the dcache to remove unused children of the parent dentry.
1251 */
1252void shrink_dcache_parent(struct dentry * parent)
1253{
1254	LIST_HEAD(dispose);
1255	int found;
 
 
 
 
 
 
 
 
1256
1257	while ((found = select_parent(parent, &dispose)) != 0)
1258		shrink_dentry_list(&dispose);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259}
1260EXPORT_SYMBOL(shrink_dcache_parent);
1261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262/**
1263 * __d_alloc	-	allocate a dcache entry
1264 * @sb: filesystem it will belong to
1265 * @name: qstr of the name
1266 *
1267 * Allocates a dentry. It returns %NULL if there is insufficient memory
1268 * available. On a success the dentry is returned. The name passed in is
1269 * copied and the copy passed in may be reused after this call.
1270 */
1271 
1272struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1273{
1274	struct dentry *dentry;
1275	char *dname;
 
1276
1277	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
 
1278	if (!dentry)
1279		return NULL;
1280
1281	/*
1282	 * We guarantee that the inline name is always NUL-terminated.
1283	 * This way the memcpy() done by the name switching in rename
1284	 * will still always have a NUL at the end, even if we might
1285	 * be overwriting an internal NUL character
1286	 */
1287	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1288	if (name->len > DNAME_INLINE_LEN-1) {
1289		dname = kmalloc(name->len + 1, GFP_KERNEL);
1290		if (!dname) {
 
 
 
 
 
 
1291			kmem_cache_free(dentry_cache, dentry); 
1292			return NULL;
1293		}
 
 
1294	} else  {
1295		dname = dentry->d_iname;
1296	}	
1297
1298	dentry->d_name.len = name->len;
1299	dentry->d_name.hash = name->hash;
1300	memcpy(dname, name->name, name->len);
1301	dname[name->len] = 0;
1302
1303	/* Make sure we always see the terminating NUL character */
1304	smp_wmb();
1305	dentry->d_name.name = dname;
1306
1307	dentry->d_count = 1;
1308	dentry->d_flags = 0;
1309	spin_lock_init(&dentry->d_lock);
1310	seqcount_init(&dentry->d_seq);
1311	dentry->d_inode = NULL;
1312	dentry->d_parent = dentry;
1313	dentry->d_sb = sb;
1314	dentry->d_op = NULL;
1315	dentry->d_fsdata = NULL;
1316	INIT_HLIST_BL_NODE(&dentry->d_hash);
1317	INIT_LIST_HEAD(&dentry->d_lru);
1318	INIT_LIST_HEAD(&dentry->d_subdirs);
1319	INIT_LIST_HEAD(&dentry->d_alias);
1320	INIT_LIST_HEAD(&dentry->d_u.d_child);
1321	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1322
 
 
 
 
 
 
 
 
 
 
1323	this_cpu_inc(nr_dentry);
1324
1325	return dentry;
1326}
1327
1328/**
1329 * d_alloc	-	allocate a dcache entry
1330 * @parent: parent of entry to allocate
1331 * @name: qstr of the name
1332 *
1333 * Allocates a dentry. It returns %NULL if there is insufficient memory
1334 * available. On a success the dentry is returned. The name passed in is
1335 * copied and the copy passed in may be reused after this call.
1336 */
1337struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1338{
1339	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1340	if (!dentry)
1341		return NULL;
1342
1343	spin_lock(&parent->d_lock);
1344	/*
1345	 * don't need child lock because it is not subject
1346	 * to concurrency here
1347	 */
1348	__dget_dlock(parent);
1349	dentry->d_parent = parent;
1350	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1351	spin_unlock(&parent->d_lock);
1352
1353	return dentry;
1354}
1355EXPORT_SYMBOL(d_alloc);
1356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1358{
 
 
 
1359	struct dentry *dentry = __d_alloc(sb, name);
1360	if (dentry)
1361		dentry->d_flags |= DCACHE_DISCONNECTED;
 
 
 
1362	return dentry;
1363}
1364EXPORT_SYMBOL(d_alloc_pseudo);
1365
1366struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1367{
1368	struct qstr q;
1369
1370	q.name = name;
1371	q.len = strlen(name);
1372	q.hash = full_name_hash(q.name, q.len);
1373	return d_alloc(parent, &q);
1374}
1375EXPORT_SYMBOL(d_alloc_name);
1376
1377void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1378{
1379	WARN_ON_ONCE(dentry->d_op);
1380	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1381				DCACHE_OP_COMPARE	|
1382				DCACHE_OP_REVALIDATE	|
1383				DCACHE_OP_DELETE ));
 
 
1384	dentry->d_op = op;
1385	if (!op)
1386		return;
1387	if (op->d_hash)
1388		dentry->d_flags |= DCACHE_OP_HASH;
1389	if (op->d_compare)
1390		dentry->d_flags |= DCACHE_OP_COMPARE;
1391	if (op->d_revalidate)
1392		dentry->d_flags |= DCACHE_OP_REVALIDATE;
 
 
1393	if (op->d_delete)
1394		dentry->d_flags |= DCACHE_OP_DELETE;
1395	if (op->d_prune)
1396		dentry->d_flags |= DCACHE_OP_PRUNE;
 
 
1397
1398}
1399EXPORT_SYMBOL(d_set_d_op);
1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1402{
 
 
 
1403	spin_lock(&dentry->d_lock);
1404	if (inode) {
1405		if (unlikely(IS_AUTOMOUNT(inode)))
1406			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1407		list_add(&dentry->d_alias, &inode->i_dentry);
1408	}
1409	dentry->d_inode = inode;
1410	dentry_rcuwalk_barrier(dentry);
 
 
 
 
 
1411	spin_unlock(&dentry->d_lock);
1412	fsnotify_d_instantiate(dentry, inode);
1413}
1414
1415/**
1416 * d_instantiate - fill in inode information for a dentry
1417 * @entry: dentry to complete
1418 * @inode: inode to attach to this dentry
1419 *
1420 * Fill in inode information in the entry.
1421 *
1422 * This turns negative dentries into productive full members
1423 * of society.
1424 *
1425 * NOTE! This assumes that the inode count has been incremented
1426 * (or otherwise set) by the caller to indicate that it is now
1427 * in use by the dcache.
1428 */
1429 
1430void d_instantiate(struct dentry *entry, struct inode * inode)
1431{
1432	BUG_ON(!list_empty(&entry->d_alias));
1433	if (inode)
 
1434		spin_lock(&inode->i_lock);
1435	__d_instantiate(entry, inode);
1436	if (inode)
1437		spin_unlock(&inode->i_lock);
1438	security_d_instantiate(entry, inode);
1439}
1440EXPORT_SYMBOL(d_instantiate);
1441
1442/**
1443 * d_instantiate_unique - instantiate a non-aliased dentry
1444 * @entry: dentry to instantiate
1445 * @inode: inode to attach to this dentry
1446 *
1447 * Fill in inode information in the entry. On success, it returns NULL.
1448 * If an unhashed alias of "entry" already exists, then we return the
1449 * aliased dentry instead and drop one reference to inode.
1450 *
1451 * Note that in order to avoid conflicts with rename() etc, the caller
1452 * had better be holding the parent directory semaphore.
1453 *
1454 * This also assumes that the inode count has been incremented
1455 * (or otherwise set) by the caller to indicate that it is now
1456 * in use by the dcache.
1457 */
1458static struct dentry *__d_instantiate_unique(struct dentry *entry,
1459					     struct inode *inode)
1460{
1461	struct dentry *alias;
1462	int len = entry->d_name.len;
1463	const char *name = entry->d_name.name;
1464	unsigned int hash = entry->d_name.hash;
1465
1466	if (!inode) {
1467		__d_instantiate(entry, NULL);
1468		return NULL;
1469	}
1470
1471	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1472		/*
1473		 * Don't need alias->d_lock here, because aliases with
1474		 * d_parent == entry->d_parent are not subject to name or
1475		 * parent changes, because the parent inode i_mutex is held.
1476		 */
1477		if (alias->d_name.hash != hash)
1478			continue;
1479		if (alias->d_parent != entry->d_parent)
1480			continue;
1481		if (alias->d_name.len != len)
1482			continue;
1483		if (dentry_cmp(alias, name, len))
1484			continue;
1485		__dget(alias);
1486		return alias;
1487	}
1488
1489	__d_instantiate(entry, inode);
1490	return NULL;
 
 
 
 
 
 
 
 
 
1491}
1492
1493struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1494{
1495	struct dentry *result;
1496
1497	BUG_ON(!list_empty(&entry->d_alias));
1498
1499	if (inode)
1500		spin_lock(&inode->i_lock);
1501	result = __d_instantiate_unique(entry, inode);
1502	if (inode)
1503		spin_unlock(&inode->i_lock);
1504
1505	if (!result) {
1506		security_d_instantiate(entry, inode);
1507		return NULL;
1508	}
1509
1510	BUG_ON(!d_unhashed(result));
1511	iput(inode);
1512	return result;
1513}
1514
1515EXPORT_SYMBOL(d_instantiate_unique);
1516
1517struct dentry *d_make_root(struct inode *root_inode)
1518{
1519	struct dentry *res = NULL;
1520
1521	if (root_inode) {
1522		static const struct qstr name = QSTR_INIT("/", 1);
1523
1524		res = __d_alloc(root_inode->i_sb, &name);
1525		if (res)
1526			d_instantiate(res, root_inode);
1527		else
1528			iput(root_inode);
1529	}
1530	return res;
1531}
1532EXPORT_SYMBOL(d_make_root);
1533
1534static struct dentry * __d_find_any_alias(struct inode *inode)
1535{
1536	struct dentry *alias;
 
 
 
 
 
 
 
 
1537
1538	if (list_empty(&inode->i_dentry))
1539		return NULL;
1540	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1541	__dget(alias);
1542	return alias;
1543}
1544
1545/**
1546 * d_find_any_alias - find any alias for a given inode
1547 * @inode: inode to find an alias for
1548 *
1549 * If any aliases exist for the given inode, take and return a
1550 * reference for one of them.  If no aliases exist, return %NULL.
1551 */
1552struct dentry *d_find_any_alias(struct inode *inode)
1553{
1554	struct dentry *de;
1555
 
1556	spin_lock(&inode->i_lock);
1557	de = __d_find_any_alias(inode);
1558	spin_unlock(&inode->i_lock);
1559	return de;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560}
1561EXPORT_SYMBOL(d_find_any_alias);
1562
1563/**
1564 * d_obtain_alias - find or allocate a dentry for a given inode
1565 * @inode: inode to allocate the dentry for
1566 *
1567 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1568 * similar open by handle operations.  The returned dentry may be anonymous,
1569 * or may have a full name (if the inode was already in the cache).
1570 *
1571 * When called on a directory inode, we must ensure that the inode only ever
1572 * has one dentry.  If a dentry is found, that is returned instead of
1573 * allocating a new one.
1574 *
1575 * On successful return, the reference to the inode has been transferred
1576 * to the dentry.  In case of an error the reference on the inode is released.
1577 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1578 * be passed in and will be the error will be propagate to the return value,
1579 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1580 */
1581struct dentry *d_obtain_alias(struct inode *inode)
1582{
1583	static const struct qstr anonstring = { .name = "" };
1584	struct dentry *tmp;
1585	struct dentry *res;
1586
1587	if (!inode)
1588		return ERR_PTR(-ESTALE);
1589	if (IS_ERR(inode))
1590		return ERR_CAST(inode);
1591
1592	res = d_find_any_alias(inode);
1593	if (res)
1594		goto out_iput;
1595
1596	tmp = __d_alloc(inode->i_sb, &anonstring);
1597	if (!tmp) {
1598		res = ERR_PTR(-ENOMEM);
1599		goto out_iput;
1600	}
1601
1602	spin_lock(&inode->i_lock);
1603	res = __d_find_any_alias(inode);
1604	if (res) {
1605		spin_unlock(&inode->i_lock);
1606		dput(tmp);
1607		goto out_iput;
1608	}
1609
1610	/* attach a disconnected dentry */
1611	spin_lock(&tmp->d_lock);
1612	tmp->d_inode = inode;
1613	tmp->d_flags |= DCACHE_DISCONNECTED;
1614	list_add(&tmp->d_alias, &inode->i_dentry);
1615	hlist_bl_lock(&tmp->d_sb->s_anon);
1616	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1617	hlist_bl_unlock(&tmp->d_sb->s_anon);
1618	spin_unlock(&tmp->d_lock);
1619	spin_unlock(&inode->i_lock);
1620	security_d_instantiate(tmp, inode);
1621
1622	return tmp;
1623
1624 out_iput:
1625	if (res && !IS_ERR(res))
1626		security_d_instantiate(res, inode);
1627	iput(inode);
1628	return res;
1629}
1630EXPORT_SYMBOL(d_obtain_alias);
1631
1632/**
1633 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1634 * @inode:  the inode which may have a disconnected dentry
1635 * @dentry: a negative dentry which we want to point to the inode.
1636 *
1637 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1638 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1639 * and return it, else simply d_add the inode to the dentry and return NULL.
1640 *
1641 * This is needed in the lookup routine of any filesystem that is exportable
1642 * (via knfsd) so that we can build dcache paths to directories effectively.
1643 *
1644 * If a dentry was found and moved, then it is returned.  Otherwise NULL
1645 * is returned.  This matches the expected return value of ->lookup.
1646 *
 
 
 
 
 
1647 */
1648struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1649{
1650	struct dentry *new = NULL;
1651
1652	if (IS_ERR(inode))
1653		return ERR_CAST(inode);
1654
1655	if (inode && S_ISDIR(inode->i_mode)) {
1656		spin_lock(&inode->i_lock);
1657		new = __d_find_alias(inode, 1);
1658		if (new) {
1659			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1660			spin_unlock(&inode->i_lock);
1661			security_d_instantiate(new, inode);
1662			d_move(new, dentry);
1663			iput(inode);
1664		} else {
1665			/* already taking inode->i_lock, so d_add() by hand */
1666			__d_instantiate(dentry, inode);
1667			spin_unlock(&inode->i_lock);
1668			security_d_instantiate(dentry, inode);
1669			d_rehash(dentry);
1670		}
1671	} else
1672		d_add(dentry, inode);
1673	return new;
1674}
1675EXPORT_SYMBOL(d_splice_alias);
1676
1677/**
1678 * d_add_ci - lookup or allocate new dentry with case-exact name
 
1679 * @inode:  the inode case-insensitive lookup has found
1680 * @dentry: the negative dentry that was passed to the parent's lookup func
1681 * @name:   the case-exact name to be associated with the returned dentry
1682 *
1683 * This is to avoid filling the dcache with case-insensitive names to the
1684 * same inode, only the actual correct case is stored in the dcache for
1685 * case-insensitive filesystems.
1686 *
1687 * For a case-insensitive lookup match and if the the case-exact dentry
1688 * already exists in in the dcache, use it and return it.
1689 *
1690 * If no entry exists with the exact case name, allocate new dentry with
1691 * the exact case, and return the spliced entry.
1692 */
1693struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1694			struct qstr *name)
1695{
1696	int error;
1697	struct dentry *found;
1698	struct dentry *new;
1699
1700	/*
1701	 * First check if a dentry matching the name already exists,
1702	 * if not go ahead and create it now.
1703	 */
1704	found = d_hash_and_lookup(dentry->d_parent, name);
1705	if (!found) {
1706		new = d_alloc(dentry->d_parent, name);
1707		if (!new) {
1708			error = -ENOMEM;
1709			goto err_out;
1710		}
1711
1712		found = d_splice_alias(inode, new);
1713		if (found) {
1714			dput(new);
1715			return found;
1716		}
1717		return new;
 
 
 
 
 
1718	}
1719
1720	/*
1721	 * If a matching dentry exists, and it's not negative use it.
1722	 *
1723	 * Decrement the reference count to balance the iget() done
1724	 * earlier on.
1725	 */
1726	if (found->d_inode) {
1727		if (unlikely(found->d_inode != inode)) {
1728			/* This can't happen because bad inodes are unhashed. */
1729			BUG_ON(!is_bad_inode(inode));
1730			BUG_ON(!is_bad_inode(found->d_inode));
1731		}
1732		iput(inode);
1733		return found;
1734	}
1735
1736	/*
1737	 * We are going to instantiate this dentry, unhash it and clear the
1738	 * lookup flag so we can do that.
1739	 */
1740	if (unlikely(d_need_lookup(found)))
1741		d_clear_need_lookup(found);
1742
1743	/*
1744	 * Negative dentry: instantiate it unless the inode is a directory and
1745	 * already has a dentry.
1746	 */
1747	new = d_splice_alias(inode, found);
1748	if (new) {
1749		dput(found);
1750		found = new;
1751	}
1752	return found;
 
 
1753
1754err_out:
1755	iput(inode);
1756	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757}
1758EXPORT_SYMBOL(d_add_ci);
1759
1760/*
1761 * Do the slow-case of the dentry name compare.
1762 *
1763 * Unlike the dentry_cmp() function, we need to atomically
1764 * load the name, length and inode information, so that the
1765 * filesystem can rely on them, and can use the 'name' and
1766 * 'len' information without worrying about walking off the
1767 * end of memory etc.
1768 *
1769 * Thus the read_seqcount_retry() and the "duplicate" info
1770 * in arguments (the low-level filesystem should not look
1771 * at the dentry inode or name contents directly, since
1772 * rename can change them while we're in RCU mode).
1773 */
1774enum slow_d_compare {
1775	D_COMP_OK,
1776	D_COMP_NOMATCH,
1777	D_COMP_SEQRETRY,
1778};
1779
1780static noinline enum slow_d_compare slow_dentry_cmp(
1781		const struct dentry *parent,
1782		struct inode *inode,
1783		struct dentry *dentry,
1784		unsigned int seq,
1785		const struct qstr *name)
1786{
1787	int tlen = dentry->d_name.len;
1788	const char *tname = dentry->d_name.name;
1789	struct inode *i = dentry->d_inode;
1790
1791	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1792		cpu_relax();
1793		return D_COMP_SEQRETRY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794	}
1795	if (parent->d_op->d_compare(parent, inode,
1796				dentry, i,
1797				tlen, tname, name))
1798		return D_COMP_NOMATCH;
1799	return D_COMP_OK;
1800}
1801
1802/**
1803 * __d_lookup_rcu - search for a dentry (racy, store-free)
1804 * @parent: parent dentry
1805 * @name: qstr of name we wish to find
1806 * @seqp: returns d_seq value at the point where the dentry was found
1807 * @inode: returns dentry->d_inode when the inode was found valid.
1808 * Returns: dentry, or NULL
1809 *
1810 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1811 * resolution (store-free path walking) design described in
1812 * Documentation/filesystems/path-lookup.txt.
1813 *
1814 * This is not to be used outside core vfs.
1815 *
1816 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1817 * held, and rcu_read_lock held. The returned dentry must not be stored into
1818 * without taking d_lock and checking d_seq sequence count against @seq
1819 * returned here.
1820 *
1821 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1822 * function.
1823 *
1824 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1825 * the returned dentry, so long as its parent's seqlock is checked after the
1826 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1827 * is formed, giving integrity down the path walk.
1828 *
1829 * NOTE! The caller *has* to check the resulting dentry against the sequence
1830 * number we've returned before using any of the resulting dentry state!
1831 */
1832struct dentry *__d_lookup_rcu(const struct dentry *parent,
1833				const struct qstr *name,
1834				unsigned *seqp, struct inode *inode)
1835{
1836	u64 hashlen = name->hash_len;
1837	const unsigned char *str = name->name;
1838	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1839	struct hlist_bl_node *node;
1840	struct dentry *dentry;
1841
1842	/*
1843	 * Note: There is significant duplication with __d_lookup_rcu which is
1844	 * required to prevent single threaded performance regressions
1845	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1846	 * Keep the two functions in sync.
1847	 */
1848
 
 
 
1849	/*
1850	 * The hash list is protected using RCU.
1851	 *
1852	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1853	 * races with d_move().
1854	 *
1855	 * It is possible that concurrent renames can mess up our list
1856	 * walk here and result in missing our dentry, resulting in the
1857	 * false-negative result. d_lookup() protects against concurrent
1858	 * renames using rename_lock seqlock.
1859	 *
1860	 * See Documentation/filesystems/path-lookup.txt for more details.
1861	 */
1862	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1863		unsigned seq;
1864
1865seqretry:
1866		/*
1867		 * The dentry sequence count protects us from concurrent
1868		 * renames, and thus protects inode, parent and name fields.
1869		 *
1870		 * The caller must perform a seqcount check in order
1871		 * to do anything useful with the returned dentry,
1872		 * including using the 'd_inode' pointer.
1873		 *
1874		 * NOTE! We do a "raw" seqcount_begin here. That means that
1875		 * we don't wait for the sequence count to stabilize if it
1876		 * is in the middle of a sequence change. If we do the slow
1877		 * dentry compare, we will do seqretries until it is stable,
1878		 * and if we end up with a successful lookup, we actually
1879		 * want to exit RCU lookup anyway.
 
 
 
1880		 */
1881		seq = raw_seqcount_begin(&dentry->d_seq);
1882		if (dentry->d_parent != parent)
1883			continue;
1884		if (d_unhashed(dentry))
1885			continue;
1886		*seqp = seq;
1887
1888		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1889			if (dentry->d_name.hash != hashlen_hash(hashlen))
1890				continue;
1891			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1892			case D_COMP_OK:
1893				return dentry;
1894			case D_COMP_NOMATCH:
1895				continue;
1896			default:
1897				goto seqretry;
1898			}
1899		}
1900
1901		if (dentry->d_name.hash_len != hashlen)
1902			continue;
1903		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1904			return dentry;
 
 
1905	}
1906	return NULL;
1907}
1908
1909/**
1910 * d_lookup - search for a dentry
1911 * @parent: parent dentry
1912 * @name: qstr of name we wish to find
1913 * Returns: dentry, or NULL
1914 *
1915 * d_lookup searches the children of the parent dentry for the name in
1916 * question. If the dentry is found its reference count is incremented and the
1917 * dentry is returned. The caller must use dput to free the entry when it has
1918 * finished using it. %NULL is returned if the dentry does not exist.
1919 */
1920struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1921{
1922	struct dentry *dentry;
1923	unsigned seq;
1924
1925        do {
1926                seq = read_seqbegin(&rename_lock);
1927                dentry = __d_lookup(parent, name);
1928                if (dentry)
1929			break;
1930	} while (read_seqretry(&rename_lock, seq));
1931	return dentry;
1932}
1933EXPORT_SYMBOL(d_lookup);
1934
1935/**
1936 * __d_lookup - search for a dentry (racy)
1937 * @parent: parent dentry
1938 * @name: qstr of name we wish to find
1939 * Returns: dentry, or NULL
1940 *
1941 * __d_lookup is like d_lookup, however it may (rarely) return a
1942 * false-negative result due to unrelated rename activity.
1943 *
1944 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1945 * however it must be used carefully, eg. with a following d_lookup in
1946 * the case of failure.
1947 *
1948 * __d_lookup callers must be commented.
1949 */
1950struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1951{
1952	unsigned int len = name->len;
1953	unsigned int hash = name->hash;
1954	const unsigned char *str = name->name;
1955	struct hlist_bl_head *b = d_hash(parent, hash);
1956	struct hlist_bl_node *node;
1957	struct dentry *found = NULL;
1958	struct dentry *dentry;
1959
1960	/*
1961	 * Note: There is significant duplication with __d_lookup_rcu which is
1962	 * required to prevent single threaded performance regressions
1963	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1964	 * Keep the two functions in sync.
1965	 */
1966
1967	/*
1968	 * The hash list is protected using RCU.
1969	 *
1970	 * Take d_lock when comparing a candidate dentry, to avoid races
1971	 * with d_move().
1972	 *
1973	 * It is possible that concurrent renames can mess up our list
1974	 * walk here and result in missing our dentry, resulting in the
1975	 * false-negative result. d_lookup() protects against concurrent
1976	 * renames using rename_lock seqlock.
1977	 *
1978	 * See Documentation/filesystems/path-lookup.txt for more details.
1979	 */
1980	rcu_read_lock();
1981	
1982	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1983
1984		if (dentry->d_name.hash != hash)
1985			continue;
1986
1987		spin_lock(&dentry->d_lock);
1988		if (dentry->d_parent != parent)
1989			goto next;
1990		if (d_unhashed(dentry))
1991			goto next;
1992
1993		/*
1994		 * It is safe to compare names since d_move() cannot
1995		 * change the qstr (protected by d_lock).
1996		 */
1997		if (parent->d_flags & DCACHE_OP_COMPARE) {
1998			int tlen = dentry->d_name.len;
1999			const char *tname = dentry->d_name.name;
2000			if (parent->d_op->d_compare(parent, parent->d_inode,
2001						dentry, dentry->d_inode,
2002						tlen, tname, name))
2003				goto next;
2004		} else {
2005			if (dentry->d_name.len != len)
2006				goto next;
2007			if (dentry_cmp(dentry, str, len))
2008				goto next;
2009		}
2010
2011		dentry->d_count++;
2012		found = dentry;
2013		spin_unlock(&dentry->d_lock);
2014		break;
2015next:
2016		spin_unlock(&dentry->d_lock);
2017 	}
2018 	rcu_read_unlock();
2019
2020 	return found;
2021}
2022
2023/**
2024 * d_hash_and_lookup - hash the qstr then search for a dentry
2025 * @dir: Directory to search in
2026 * @name: qstr of name we wish to find
2027 *
2028 * On hash failure or on lookup failure NULL is returned.
2029 */
2030struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2031{
2032	struct dentry *dentry = NULL;
2033
2034	/*
2035	 * Check for a fs-specific hash function. Note that we must
2036	 * calculate the standard hash first, as the d_op->d_hash()
2037	 * routine may choose to leave the hash value unchanged.
2038	 */
2039	name->hash = full_name_hash(name->name, name->len);
2040	if (dir->d_flags & DCACHE_OP_HASH) {
2041		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2042			goto out;
2043	}
2044	dentry = d_lookup(dir, name);
2045out:
2046	return dentry;
2047}
2048
2049/**
2050 * d_validate - verify dentry provided from insecure source (deprecated)
2051 * @dentry: The dentry alleged to be valid child of @dparent
2052 * @dparent: The parent dentry (known to be valid)
2053 *
2054 * An insecure source has sent us a dentry, here we verify it and dget() it.
2055 * This is used by ncpfs in its readdir implementation.
2056 * Zero is returned in the dentry is invalid.
2057 *
2058 * This function is slow for big directories, and deprecated, do not use it.
2059 */
2060int d_validate(struct dentry *dentry, struct dentry *dparent)
2061{
2062	struct dentry *child;
2063
2064	spin_lock(&dparent->d_lock);
2065	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2066		if (dentry == child) {
2067			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2068			__dget_dlock(dentry);
2069			spin_unlock(&dentry->d_lock);
2070			spin_unlock(&dparent->d_lock);
2071			return 1;
2072		}
2073	}
2074	spin_unlock(&dparent->d_lock);
2075
2076	return 0;
2077}
2078EXPORT_SYMBOL(d_validate);
2079
2080/*
2081 * When a file is deleted, we have two options:
2082 * - turn this dentry into a negative dentry
2083 * - unhash this dentry and free it.
2084 *
2085 * Usually, we want to just turn this into
2086 * a negative dentry, but if anybody else is
2087 * currently using the dentry or the inode
2088 * we can't do that and we fall back on removing
2089 * it from the hash queues and waiting for
2090 * it to be deleted later when it has no users
2091 */
2092 
2093/**
2094 * d_delete - delete a dentry
2095 * @dentry: The dentry to delete
2096 *
2097 * Turn the dentry into a negative dentry if possible, otherwise
2098 * remove it from the hash queues so it can be deleted later
2099 */
2100 
2101void d_delete(struct dentry * dentry)
2102{
2103	struct inode *inode;
2104	int isdir = 0;
 
 
2105	/*
2106	 * Are we the only user?
2107	 */
2108again:
2109	spin_lock(&dentry->d_lock);
2110	inode = dentry->d_inode;
2111	isdir = S_ISDIR(inode->i_mode);
2112	if (dentry->d_count == 1) {
2113		if (inode && !spin_trylock(&inode->i_lock)) {
2114			spin_unlock(&dentry->d_lock);
2115			cpu_relax();
2116			goto again;
2117		}
2118		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2119		dentry_unlink_inode(dentry);
2120		fsnotify_nameremove(dentry, isdir);
2121		return;
 
 
2122	}
2123
2124	if (!d_unhashed(dentry))
2125		__d_drop(dentry);
2126
2127	spin_unlock(&dentry->d_lock);
2128
2129	fsnotify_nameremove(dentry, isdir);
2130}
2131EXPORT_SYMBOL(d_delete);
2132
2133static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2134{
2135	BUG_ON(!d_unhashed(entry));
 
2136	hlist_bl_lock(b);
2137	entry->d_flags |= DCACHE_RCUACCESS;
2138	hlist_bl_add_head_rcu(&entry->d_hash, b);
2139	hlist_bl_unlock(b);
2140}
2141
2142static void _d_rehash(struct dentry * entry)
2143{
2144	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2145}
2146
2147/**
2148 * d_rehash	- add an entry back to the hash
2149 * @entry: dentry to add to the hash
2150 *
2151 * Adds a dentry to the hash according to its name.
2152 */
2153 
2154void d_rehash(struct dentry * entry)
2155{
2156	spin_lock(&entry->d_lock);
2157	_d_rehash(entry);
2158	spin_unlock(&entry->d_lock);
2159}
2160EXPORT_SYMBOL(d_rehash);
2161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162/**
2163 * dentry_update_name_case - update case insensitive dentry with a new name
2164 * @dentry: dentry to be updated
2165 * @name: new name
2166 *
2167 * Update a case insensitive dentry with new case of name.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168 *
2169 * dentry must have been returned by d_lookup with name @name. Old and new
2170 * name lengths must match (ie. no d_compare which allows mismatched name
2171 * lengths).
2172 *
2173 * Parent inode i_mutex must be held over d_lookup and into this call (to
2174 * keep renames and concurrent inserts, and readdir(2) away).
2175 */
2176void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2177{
2178	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2179	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2180
2181	spin_lock(&dentry->d_lock);
2182	write_seqcount_begin(&dentry->d_seq);
2183	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2184	write_seqcount_end(&dentry->d_seq);
2185	spin_unlock(&dentry->d_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186}
2187EXPORT_SYMBOL(dentry_update_name_case);
2188
2189static void switch_names(struct dentry *dentry, struct dentry *target)
2190{
2191	if (dname_external(target)) {
2192		if (dname_external(dentry)) {
2193			/*
2194			 * Both external: swap the pointers
2195			 */
2196			swap(target->d_name.name, dentry->d_name.name);
2197		} else {
2198			/*
2199			 * dentry:internal, target:external.  Steal target's
2200			 * storage and make target internal.
2201			 */
2202			memcpy(target->d_iname, dentry->d_name.name,
2203					dentry->d_name.len + 1);
2204			dentry->d_name.name = target->d_name.name;
2205			target->d_name.name = target->d_iname;
2206		}
2207	} else {
2208		if (dname_external(dentry)) {
2209			/*
2210			 * dentry:external, target:internal.  Give dentry's
2211			 * storage to target and make dentry internal
2212			 */
2213			memcpy(dentry->d_iname, target->d_name.name,
2214					target->d_name.len + 1);
2215			target->d_name.name = dentry->d_name.name;
2216			dentry->d_name.name = dentry->d_iname;
2217		} else {
2218			/*
2219			 * Both are internal.  Just copy target to dentry
2220			 */
2221			memcpy(dentry->d_iname, target->d_name.name,
2222					target->d_name.len + 1);
2223			dentry->d_name.len = target->d_name.len;
2224			return;
 
 
2225		}
2226	}
2227	swap(dentry->d_name.len, target->d_name.len);
2228}
2229
2230static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2231{
2232	/*
2233	 * XXXX: do we really need to take target->d_lock?
2234	 */
2235	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2236		spin_lock(&target->d_parent->d_lock);
2237	else {
2238		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2239			spin_lock(&dentry->d_parent->d_lock);
2240			spin_lock_nested(&target->d_parent->d_lock,
2241						DENTRY_D_LOCK_NESTED);
2242		} else {
2243			spin_lock(&target->d_parent->d_lock);
2244			spin_lock_nested(&dentry->d_parent->d_lock,
2245						DENTRY_D_LOCK_NESTED);
2246		}
2247	}
2248	if (target < dentry) {
2249		spin_lock_nested(&target->d_lock, 2);
2250		spin_lock_nested(&dentry->d_lock, 3);
2251	} else {
2252		spin_lock_nested(&dentry->d_lock, 2);
2253		spin_lock_nested(&target->d_lock, 3);
 
 
2254	}
2255}
2256
2257static void dentry_unlock_parents_for_move(struct dentry *dentry,
2258					struct dentry *target)
2259{
2260	if (target->d_parent != dentry->d_parent)
2261		spin_unlock(&dentry->d_parent->d_lock);
2262	if (target->d_parent != target)
2263		spin_unlock(&target->d_parent->d_lock);
2264}
2265
2266/*
2267 * When switching names, the actual string doesn't strictly have to
2268 * be preserved in the target - because we're dropping the target
2269 * anyway. As such, we can just do a simple memcpy() to copy over
2270 * the new name before we switch.
2271 *
2272 * Note that we have to be a lot more careful about getting the hash
2273 * switched - we have to switch the hash value properly even if it
2274 * then no longer matches the actual (corrupted) string of the target.
2275 * The hash value has to match the hash queue that the dentry is on..
2276 */
2277/*
2278 * __d_move - move a dentry
2279 * @dentry: entry to move
2280 * @target: new dentry
 
2281 *
2282 * Update the dcache to reflect the move of a file name. Negative
2283 * dcache entries should not be moved in this way. Caller must hold
2284 * rename_lock, the i_mutex of the source and target directories,
2285 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2286 */
2287static void __d_move(struct dentry * dentry, struct dentry * target)
 
2288{
2289	if (!dentry->d_inode)
2290		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
 
 
 
 
 
 
2291
2292	BUG_ON(d_ancestor(dentry, target));
2293	BUG_ON(d_ancestor(target, dentry));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2294
2295	dentry_lock_for_move(dentry, target);
 
 
 
 
2296
2297	write_seqcount_begin(&dentry->d_seq);
2298	write_seqcount_begin(&target->d_seq);
2299
2300	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2301
2302	/*
2303	 * Move the dentry to the target hash queue. Don't bother checking
2304	 * for the same hash queue because of how unlikely it is.
2305	 */
2306	__d_drop(dentry);
2307	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2308
2309	/* Unhash the target: dput() will then get rid of it */
2310	__d_drop(target);
2311
2312	list_del(&dentry->d_u.d_child);
2313	list_del(&target->d_u.d_child);
2314
2315	/* Switch the names.. */
2316	switch_names(dentry, target);
2317	swap(dentry->d_name.hash, target->d_name.hash);
2318
2319	/* ... and switch the parents */
2320	if (IS_ROOT(dentry)) {
2321		dentry->d_parent = target->d_parent;
2322		target->d_parent = target;
2323		INIT_LIST_HEAD(&target->d_u.d_child);
2324	} else {
2325		swap(dentry->d_parent, target->d_parent);
2326
2327		/* And add them back to the (new) parent lists */
2328		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2329	}
2330
2331	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
 
 
 
 
 
 
 
2332
2333	write_seqcount_end(&target->d_seq);
2334	write_seqcount_end(&dentry->d_seq);
2335
2336	dentry_unlock_parents_for_move(dentry, target);
 
 
 
 
 
 
2337	spin_unlock(&target->d_lock);
2338	fsnotify_d_move(dentry);
2339	spin_unlock(&dentry->d_lock);
2340}
2341
2342/*
2343 * d_move - move a dentry
2344 * @dentry: entry to move
2345 * @target: new dentry
2346 *
2347 * Update the dcache to reflect the move of a file name. Negative
2348 * dcache entries should not be moved in this way. See the locking
2349 * requirements for __d_move.
2350 */
2351void d_move(struct dentry *dentry, struct dentry *target)
2352{
2353	write_seqlock(&rename_lock);
2354	__d_move(dentry, target);
2355	write_sequnlock(&rename_lock);
2356}
2357EXPORT_SYMBOL(d_move);
2358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359/**
2360 * d_ancestor - search for an ancestor
2361 * @p1: ancestor dentry
2362 * @p2: child dentry
2363 *
2364 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2365 * an ancestor of p2, else NULL.
2366 */
2367struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2368{
2369	struct dentry *p;
2370
2371	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2372		if (p->d_parent == p1)
2373			return p;
2374	}
2375	return NULL;
2376}
2377
2378/*
2379 * This helper attempts to cope with remotely renamed directories
2380 *
2381 * It assumes that the caller is already holding
2382 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2383 *
2384 * Note: If ever the locking in lock_rename() changes, then please
2385 * remember to update this too...
2386 */
2387static struct dentry *__d_unalias(struct inode *inode,
2388		struct dentry *dentry, struct dentry *alias)
2389{
2390	struct mutex *m1 = NULL, *m2 = NULL;
2391	struct dentry *ret;
 
2392
2393	/* If alias and dentry share a parent, then no extra locks required */
2394	if (alias->d_parent == dentry->d_parent)
2395		goto out_unalias;
2396
2397	/* See lock_rename() */
2398	ret = ERR_PTR(-EBUSY);
2399	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2400		goto out_err;
2401	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2402	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2403		goto out_err;
2404	m2 = &alias->d_parent->d_inode->i_mutex;
2405out_unalias:
2406	__d_move(alias, dentry);
2407	ret = alias;
2408out_err:
2409	spin_unlock(&inode->i_lock);
2410	if (m2)
2411		mutex_unlock(m2);
2412	if (m1)
2413		mutex_unlock(m1);
2414	return ret;
2415}
2416
2417/*
2418 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2419 * named dentry in place of the dentry to be replaced.
2420 * returns with anon->d_lock held!
2421 */
2422static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2423{
2424	struct dentry *dparent, *aparent;
2425
2426	dentry_lock_for_move(anon, dentry);
2427
2428	write_seqcount_begin(&dentry->d_seq);
2429	write_seqcount_begin(&anon->d_seq);
2430
2431	dparent = dentry->d_parent;
2432	aparent = anon->d_parent;
2433
2434	switch_names(dentry, anon);
2435	swap(dentry->d_name.hash, anon->d_name.hash);
2436
2437	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2438	list_del(&dentry->d_u.d_child);
2439	if (!IS_ROOT(dentry))
2440		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2441	else
2442		INIT_LIST_HEAD(&dentry->d_u.d_child);
2443
2444	anon->d_parent = (dparent == dentry) ? anon : dparent;
2445	list_del(&anon->d_u.d_child);
2446	if (!IS_ROOT(anon))
2447		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2448	else
2449		INIT_LIST_HEAD(&anon->d_u.d_child);
2450
2451	write_seqcount_end(&dentry->d_seq);
2452	write_seqcount_end(&anon->d_seq);
2453
2454	dentry_unlock_parents_for_move(anon, dentry);
2455	spin_unlock(&dentry->d_lock);
2456
2457	/* anon->d_lock still locked, returns locked */
2458	anon->d_flags &= ~DCACHE_DISCONNECTED;
2459}
2460
2461/**
2462 * d_materialise_unique - introduce an inode into the tree
2463 * @dentry: candidate dentry
2464 * @inode: inode to bind to the dentry, to which aliases may be attached
2465 *
2466 * Introduces an dentry into the tree, substituting an extant disconnected
2467 * root directory alias in its place if there is one. Caller must hold the
2468 * i_mutex of the parent directory.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2469 */
2470struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2471{
2472	struct dentry *actual;
 
2473
2474	BUG_ON(!d_unhashed(dentry));
2475
2476	if (!inode) {
2477		actual = dentry;
2478		__d_instantiate(dentry, NULL);
2479		d_rehash(actual);
2480		goto out_nolock;
2481	}
2482
 
2483	spin_lock(&inode->i_lock);
2484
2485	if (S_ISDIR(inode->i_mode)) {
2486		struct dentry *alias;
2487
2488		/* Does an aliased dentry already exist? */
2489		alias = __d_find_alias(inode, 0);
2490		if (alias) {
2491			actual = alias;
2492			write_seqlock(&rename_lock);
2493
2494			if (d_ancestor(alias, dentry)) {
2495				/* Check for loops */
2496				actual = ERR_PTR(-ELOOP);
2497				spin_unlock(&inode->i_lock);
2498			} else if (IS_ROOT(alias)) {
2499				/* Is this an anonymous mountpoint that we
2500				 * could splice into our tree? */
2501				__d_materialise_dentry(dentry, alias);
 
 
 
 
2502				write_sequnlock(&rename_lock);
2503				__d_drop(alias);
2504				goto found;
 
 
 
2505			} else {
2506				/* Nope, but we must(!) avoid directory
2507				 * aliasing. This drops inode->i_lock */
2508				actual = __d_unalias(inode, dentry, alias);
2509			}
2510			write_sequnlock(&rename_lock);
2511			if (IS_ERR(actual)) {
2512				if (PTR_ERR(actual) == -ELOOP)
2513					pr_warn_ratelimited(
2514						"VFS: Lookup of '%s' in %s %s"
2515						" would have caused loop\n",
2516						dentry->d_name.name,
2517						inode->i_sb->s_type->name,
2518						inode->i_sb->s_id);
2519				dput(alias);
2520			}
2521			goto out_nolock;
2522		}
2523	}
2524
2525	/* Add a unique reference */
2526	actual = __d_instantiate_unique(dentry, inode);
2527	if (!actual)
2528		actual = dentry;
2529	else
2530		BUG_ON(!d_unhashed(actual));
2531
2532	spin_lock(&actual->d_lock);
2533found:
2534	_d_rehash(actual);
2535	spin_unlock(&actual->d_lock);
2536	spin_unlock(&inode->i_lock);
2537out_nolock:
2538	if (actual == dentry) {
2539		security_d_instantiate(dentry, inode);
2540		return NULL;
2541	}
2542
2543	iput(inode);
2544	return actual;
2545}
2546EXPORT_SYMBOL_GPL(d_materialise_unique);
2547
2548static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2549{
2550	*buflen -= namelen;
2551	if (*buflen < 0)
2552		return -ENAMETOOLONG;
2553	*buffer -= namelen;
2554	memcpy(*buffer, str, namelen);
2555	return 0;
2556}
2557
2558static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2559{
2560	return prepend(buffer, buflen, name->name, name->len);
2561}
2562
2563/**
2564 * prepend_path - Prepend path string to a buffer
2565 * @path: the dentry/vfsmount to report
2566 * @root: root vfsmnt/dentry
2567 * @buffer: pointer to the end of the buffer
2568 * @buflen: pointer to buffer length
2569 *
2570 * Caller holds the rename_lock.
2571 */
2572static int prepend_path(const struct path *path,
2573			const struct path *root,
2574			char **buffer, int *buflen)
2575{
2576	struct dentry *dentry = path->dentry;
2577	struct vfsmount *vfsmnt = path->mnt;
2578	struct mount *mnt = real_mount(vfsmnt);
2579	bool slash = false;
2580	int error = 0;
2581
2582	br_read_lock(&vfsmount_lock);
2583	while (dentry != root->dentry || vfsmnt != root->mnt) {
2584		struct dentry * parent;
2585
2586		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2587			/* Global root? */
2588			if (!mnt_has_parent(mnt))
2589				goto global_root;
2590			dentry = mnt->mnt_mountpoint;
2591			mnt = mnt->mnt_parent;
2592			vfsmnt = &mnt->mnt;
2593			continue;
2594		}
2595		parent = dentry->d_parent;
2596		prefetch(parent);
2597		spin_lock(&dentry->d_lock);
2598		error = prepend_name(buffer, buflen, &dentry->d_name);
2599		spin_unlock(&dentry->d_lock);
2600		if (!error)
2601			error = prepend(buffer, buflen, "/", 1);
2602		if (error)
2603			break;
2604
2605		slash = true;
2606		dentry = parent;
2607	}
2608
2609	if (!error && !slash)
2610		error = prepend(buffer, buflen, "/", 1);
2611
2612out:
2613	br_read_unlock(&vfsmount_lock);
2614	return error;
2615
2616global_root:
2617	/*
2618	 * Filesystems needing to implement special "root names"
2619	 * should do so with ->d_dname()
2620	 */
2621	if (IS_ROOT(dentry) &&
2622	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2623		WARN(1, "Root dentry has weird name <%.*s>\n",
2624		     (int) dentry->d_name.len, dentry->d_name.name);
2625	}
2626	if (!slash)
2627		error = prepend(buffer, buflen, "/", 1);
2628	if (!error)
2629		error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2630	goto out;
2631}
2632
2633/**
2634 * __d_path - return the path of a dentry
2635 * @path: the dentry/vfsmount to report
2636 * @root: root vfsmnt/dentry
2637 * @buf: buffer to return value in
2638 * @buflen: buffer length
2639 *
2640 * Convert a dentry into an ASCII path name.
2641 *
2642 * Returns a pointer into the buffer or an error code if the
2643 * path was too long.
2644 *
2645 * "buflen" should be positive.
2646 *
2647 * If the path is not reachable from the supplied root, return %NULL.
2648 */
2649char *__d_path(const struct path *path,
2650	       const struct path *root,
2651	       char *buf, int buflen)
2652{
2653	char *res = buf + buflen;
2654	int error;
2655
2656	prepend(&res, &buflen, "\0", 1);
2657	write_seqlock(&rename_lock);
2658	error = prepend_path(path, root, &res, &buflen);
2659	write_sequnlock(&rename_lock);
2660
2661	if (error < 0)
2662		return ERR_PTR(error);
2663	if (error > 0)
2664		return NULL;
2665	return res;
2666}
2667
2668char *d_absolute_path(const struct path *path,
2669	       char *buf, int buflen)
2670{
2671	struct path root = {};
2672	char *res = buf + buflen;
2673	int error;
2674
2675	prepend(&res, &buflen, "\0", 1);
2676	write_seqlock(&rename_lock);
2677	error = prepend_path(path, &root, &res, &buflen);
2678	write_sequnlock(&rename_lock);
2679
2680	if (error > 1)
2681		error = -EINVAL;
2682	if (error < 0)
2683		return ERR_PTR(error);
2684	return res;
2685}
 
2686
2687/*
2688 * same as __d_path but appends "(deleted)" for unlinked files.
2689 */
2690static int path_with_deleted(const struct path *path,
2691			     const struct path *root,
2692			     char **buf, int *buflen)
2693{
2694	prepend(buf, buflen, "\0", 1);
2695	if (d_unlinked(path->dentry)) {
2696		int error = prepend(buf, buflen, " (deleted)", 10);
2697		if (error)
2698			return error;
2699	}
2700
2701	return prepend_path(path, root, buf, buflen);
2702}
2703
2704static int prepend_unreachable(char **buffer, int *buflen)
2705{
2706	return prepend(buffer, buflen, "(unreachable)", 13);
2707}
2708
2709/**
2710 * d_path - return the path of a dentry
2711 * @path: path to report
2712 * @buf: buffer to return value in
2713 * @buflen: buffer length
2714 *
2715 * Convert a dentry into an ASCII path name. If the entry has been deleted
2716 * the string " (deleted)" is appended. Note that this is ambiguous.
2717 *
2718 * Returns a pointer into the buffer or an error code if the path was
2719 * too long. Note: Callers should use the returned pointer, not the passed
2720 * in buffer, to use the name! The implementation often starts at an offset
2721 * into the buffer, and may leave 0 bytes at the start.
2722 *
2723 * "buflen" should be positive.
2724 */
2725char *d_path(const struct path *path, char *buf, int buflen)
2726{
2727	char *res = buf + buflen;
2728	struct path root;
2729	int error;
2730
2731	/*
2732	 * We have various synthetic filesystems that never get mounted.  On
2733	 * these filesystems dentries are never used for lookup purposes, and
2734	 * thus don't need to be hashed.  They also don't need a name until a
2735	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2736	 * below allows us to generate a name for these objects on demand:
2737	 */
2738	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2739		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2740
2741	get_fs_root(current->fs, &root);
2742	write_seqlock(&rename_lock);
2743	error = path_with_deleted(path, &root, &res, &buflen);
2744	if (error < 0)
2745		res = ERR_PTR(error);
2746	write_sequnlock(&rename_lock);
2747	path_put(&root);
2748	return res;
2749}
2750EXPORT_SYMBOL(d_path);
2751
2752/**
2753 * d_path_with_unreachable - return the path of a dentry
2754 * @path: path to report
2755 * @buf: buffer to return value in
2756 * @buflen: buffer length
2757 *
2758 * The difference from d_path() is that this prepends "(unreachable)"
2759 * to paths which are unreachable from the current process' root.
 
2760 */
2761char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
 
2762{
2763	char *res = buf + buflen;
2764	struct path root;
2765	int error;
2766
2767	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2768		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2769
2770	get_fs_root(current->fs, &root);
2771	write_seqlock(&rename_lock);
2772	error = path_with_deleted(path, &root, &res, &buflen);
2773	if (error > 0)
2774		error = prepend_unreachable(&res, &buflen);
2775	write_sequnlock(&rename_lock);
2776	path_put(&root);
2777	if (error)
2778		res =  ERR_PTR(error);
2779
2780	return res;
 
 
2781}
 
2782
2783/*
2784 * Helper function for dentry_operations.d_dname() members
2785 */
2786char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2787			const char *fmt, ...)
2788{
2789	va_list args;
2790	char temp[64];
2791	int sz;
 
2792
2793	va_start(args, fmt);
2794	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2795	va_end(args);
2796
2797	if (sz > sizeof(temp) || sz > buflen)
2798		return ERR_PTR(-ENAMETOOLONG);
2799
2800	buffer += buflen - sz;
2801	return memcpy(buffer, temp, sz);
2802}
2803
2804/*
2805 * Write full pathname from the root of the filesystem into the buffer.
2806 */
2807static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2808{
2809	char *end = buf + buflen;
2810	char *retval;
2811
2812	prepend(&end, &buflen, "\0", 1);
2813	if (buflen < 1)
2814		goto Elong;
2815	/* Get '/' right */
2816	retval = end-1;
2817	*retval = '/';
2818
2819	while (!IS_ROOT(dentry)) {
2820		struct dentry *parent = dentry->d_parent;
2821		int error;
2822
2823		prefetch(parent);
2824		spin_lock(&dentry->d_lock);
2825		error = prepend_name(&end, &buflen, &dentry->d_name);
2826		spin_unlock(&dentry->d_lock);
2827		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2828			goto Elong;
2829
2830		retval = end;
2831		dentry = parent;
2832	}
2833	return retval;
2834Elong:
2835	return ERR_PTR(-ENAMETOOLONG);
2836}
2837
2838char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2839{
2840	char *retval;
2841
2842	write_seqlock(&rename_lock);
2843	retval = __dentry_path(dentry, buf, buflen);
2844	write_sequnlock(&rename_lock);
2845
2846	return retval;
2847}
2848EXPORT_SYMBOL(dentry_path_raw);
2849
2850char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2851{
2852	char *p = NULL;
2853	char *retval;
2854
2855	write_seqlock(&rename_lock);
2856	if (d_unlinked(dentry)) {
2857		p = buf + buflen;
2858		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2859			goto Elong;
2860		buflen++;
2861	}
2862	retval = __dentry_path(dentry, buf, buflen);
2863	write_sequnlock(&rename_lock);
2864	if (!IS_ERR(retval) && p)
2865		*p = '/';	/* restore '/' overriden with '\0' */
2866	return retval;
2867Elong:
2868	return ERR_PTR(-ENAMETOOLONG);
2869}
 
2870
2871/*
2872 * NOTE! The user-level library version returns a
2873 * character pointer. The kernel system call just
2874 * returns the length of the buffer filled (which
2875 * includes the ending '\0' character), or a negative
2876 * error value. So libc would do something like
2877 *
2878 *	char *getcwd(char * buf, size_t size)
2879 *	{
2880 *		int retval;
2881 *
2882 *		retval = sys_getcwd(buf, size);
2883 *		if (retval >= 0)
2884 *			return buf;
2885 *		errno = -retval;
2886 *		return NULL;
2887 *	}
2888 */
2889SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2890{
2891	int error;
2892	struct path pwd, root;
2893	char *page = (char *) __get_free_page(GFP_USER);
2894
2895	if (!page)
2896		return -ENOMEM;
2897
2898	get_fs_root_and_pwd(current->fs, &root, &pwd);
2899
2900	error = -ENOENT;
2901	write_seqlock(&rename_lock);
2902	if (!d_unlinked(pwd.dentry)) {
2903		unsigned long len;
2904		char *cwd = page + PAGE_SIZE;
2905		int buflen = PAGE_SIZE;
2906
2907		prepend(&cwd, &buflen, "\0", 1);
2908		error = prepend_path(&pwd, &root, &cwd, &buflen);
2909		write_sequnlock(&rename_lock);
2910
2911		if (error < 0)
2912			goto out;
2913
2914		/* Unreachable from current root */
2915		if (error > 0) {
2916			error = prepend_unreachable(&cwd, &buflen);
2917			if (error)
2918				goto out;
2919		}
2920
2921		error = -ERANGE;
2922		len = PAGE_SIZE + page - cwd;
2923		if (len <= size) {
2924			error = len;
2925			if (copy_to_user(buf, cwd, len))
2926				error = -EFAULT;
2927		}
2928	} else {
2929		write_sequnlock(&rename_lock);
2930	}
2931
2932out:
2933	path_put(&pwd);
2934	path_put(&root);
2935	free_page((unsigned long) page);
2936	return error;
2937}
 
2938
2939/*
2940 * Test whether new_dentry is a subdirectory of old_dentry.
2941 *
2942 * Trivially implemented using the dcache structure
2943 */
2944
2945/**
2946 * is_subdir - is new dentry a subdirectory of old_dentry
2947 * @new_dentry: new dentry
2948 * @old_dentry: old dentry
2949 *
2950 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2951 * Returns 0 otherwise.
2952 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2953 */
2954  
2955int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2956{
2957	int result;
 
2958	unsigned seq;
 
2959
2960	if (new_dentry == old_dentry)
2961		return 1;
2962
2963	do {
2964		/* for restarting inner loop in case of seq retry */
2965		seq = read_seqbegin(&rename_lock);
2966		/*
2967		 * Need rcu_readlock to protect against the d_parent trashing
2968		 * due to d_move
2969		 */
2970		rcu_read_lock();
2971		if (d_ancestor(old_dentry, new_dentry))
2972			result = 1;
2973		else
2974			result = 0;
2975		rcu_read_unlock();
2976	} while (read_seqretry(&rename_lock, seq));
2977
2978	return result;
2979}
2980
2981void d_genocide(struct dentry *root)
2982{
2983	struct dentry *this_parent;
2984	struct list_head *next;
2985	unsigned seq;
2986	int locked = 0;
2987
2988	seq = read_seqbegin(&rename_lock);
2989again:
2990	this_parent = root;
2991	spin_lock(&this_parent->d_lock);
2992repeat:
2993	next = this_parent->d_subdirs.next;
2994resume:
2995	while (next != &this_parent->d_subdirs) {
2996		struct list_head *tmp = next;
2997		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2998		next = tmp->next;
2999
3000		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3001		if (d_unhashed(dentry) || !dentry->d_inode) {
3002			spin_unlock(&dentry->d_lock);
3003			continue;
3004		}
3005		if (!list_empty(&dentry->d_subdirs)) {
3006			spin_unlock(&this_parent->d_lock);
3007			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3008			this_parent = dentry;
3009			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3010			goto repeat;
3011		}
3012		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3013			dentry->d_flags |= DCACHE_GENOCIDE;
3014			dentry->d_count--;
3015		}
3016		spin_unlock(&dentry->d_lock);
3017	}
3018	if (this_parent != root) {
3019		struct dentry *child = this_parent;
3020		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3021			this_parent->d_flags |= DCACHE_GENOCIDE;
3022			this_parent->d_count--;
3023		}
3024		this_parent = try_to_ascend(this_parent, locked, seq);
3025		if (!this_parent)
3026			goto rename_retry;
3027		next = child->d_u.d_child.next;
3028		goto resume;
3029	}
3030	spin_unlock(&this_parent->d_lock);
3031	if (!locked && read_seqretry(&rename_lock, seq))
3032		goto rename_retry;
3033	if (locked)
3034		write_sequnlock(&rename_lock);
3035	return;
3036
3037rename_retry:
3038	if (locked)
3039		goto again;
3040	locked = 1;
3041	write_seqlock(&rename_lock);
3042	goto again;
3043}
3044
3045/**
3046 * find_inode_number - check for dentry with name
3047 * @dir: directory to check
3048 * @name: Name to find.
3049 *
3050 * Check whether a dentry already exists for the given name,
3051 * and return the inode number if it has an inode. Otherwise
3052 * 0 is returned.
3053 *
3054 * This routine is used to post-process directory listings for
3055 * filesystems using synthetic inode numbers, and is necessary
3056 * to keep getcwd() working.
3057 */
3058 
3059ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3060{
3061	struct dentry * dentry;
3062	ino_t ino = 0;
3063
3064	dentry = d_hash_and_lookup(dir, name);
3065	if (dentry) {
3066		if (dentry->d_inode)
3067			ino = dentry->d_inode->i_ino;
3068		dput(dentry);
3069	}
3070	return ino;
3071}
3072EXPORT_SYMBOL(find_inode_number);
3073
3074static __initdata unsigned long dhash_entries;
3075static int __init set_dhash_entries(char *str)
3076{
3077	if (!str)
3078		return 0;
3079	dhash_entries = simple_strtoul(str, &str, 0);
3080	return 1;
3081}
3082__setup("dhash_entries=", set_dhash_entries);
3083
3084static void __init dcache_init_early(void)
3085{
3086	unsigned int loop;
3087
3088	/* If hashes are distributed across NUMA nodes, defer
3089	 * hash allocation until vmalloc space is available.
3090	 */
3091	if (hashdist)
3092		return;
3093
3094	dentry_hashtable =
3095		alloc_large_system_hash("Dentry cache",
3096					sizeof(struct hlist_bl_head),
3097					dhash_entries,
3098					13,
3099					HASH_EARLY,
3100					&d_hash_shift,
3101					&d_hash_mask,
3102					0,
3103					0);
 
3104
3105	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3106		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3107}
3108
3109static void __init dcache_init(void)
3110{
3111	unsigned int loop;
3112
3113	/* 
3114	 * A constructor could be added for stable state like the lists,
3115	 * but it is probably not worth it because of the cache nature
3116	 * of the dcache. 
3117	 */
3118	dentry_cache = KMEM_CACHE(dentry,
3119		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
 
3120
3121	/* Hash may have been set up in dcache_init_early */
3122	if (!hashdist)
3123		return;
3124
3125	dentry_hashtable =
3126		alloc_large_system_hash("Dentry cache",
3127					sizeof(struct hlist_bl_head),
3128					dhash_entries,
3129					13,
3130					0,
3131					&d_hash_shift,
3132					&d_hash_mask,
3133					0,
3134					0);
 
3135
3136	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3137		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3138}
3139
3140/* SLAB cache for __getname() consumers */
3141struct kmem_cache *names_cachep __read_mostly;
3142EXPORT_SYMBOL(names_cachep);
3143
3144EXPORT_SYMBOL(d_genocide);
3145
3146void __init vfs_caches_init_early(void)
3147{
 
 
 
 
 
3148	dcache_init_early();
3149	inode_init_early();
3150}
3151
3152void __init vfs_caches_init(unsigned long mempages)
3153{
3154	unsigned long reserve;
3155
3156	/* Base hash sizes on available memory, with a reserve equal to
3157           150% of current kernel size */
3158
3159	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3160	mempages -= reserve;
3161
3162	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3163			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3164
3165	dcache_init();
3166	inode_init();
3167	files_init(mempages);
 
3168	mnt_init();
3169	bdev_cache_init();
3170	chrdev_init();
3171}