Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/prefetch.h>
  27#include <linux/suspend.h>
  28
  29#include "e1000.h"
  30#define CREATE_TRACE_POINTS
  31#include "e1000e_trace.h"
  32
  33char e1000e_driver_name[] = "e1000e";
  34
  35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  36static int debug = -1;
  37module_param(debug, int, 0);
  38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  39
  40static const struct e1000_info *e1000_info_tbl[] = {
  41	[board_82571]		= &e1000_82571_info,
  42	[board_82572]		= &e1000_82572_info,
  43	[board_82573]		= &e1000_82573_info,
  44	[board_82574]		= &e1000_82574_info,
  45	[board_82583]		= &e1000_82583_info,
  46	[board_80003es2lan]	= &e1000_es2_info,
  47	[board_ich8lan]		= &e1000_ich8_info,
  48	[board_ich9lan]		= &e1000_ich9_info,
  49	[board_ich10lan]	= &e1000_ich10_info,
  50	[board_pchlan]		= &e1000_pch_info,
  51	[board_pch2lan]		= &e1000_pch2_info,
  52	[board_pch_lpt]		= &e1000_pch_lpt_info,
  53	[board_pch_spt]		= &e1000_pch_spt_info,
  54	[board_pch_cnp]		= &e1000_pch_cnp_info,
  55	[board_pch_tgp]		= &e1000_pch_tgp_info,
  56	[board_pch_adp]		= &e1000_pch_adp_info,
  57	[board_pch_mtp]		= &e1000_pch_mtp_info,
  58};
  59
  60struct e1000_reg_info {
  61	u32 ofs;
  62	char *name;
  63};
  64
  65static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  66	/* General Registers */
  67	{E1000_CTRL, "CTRL"},
  68	{E1000_STATUS, "STATUS"},
  69	{E1000_CTRL_EXT, "CTRL_EXT"},
  70
  71	/* Interrupt Registers */
  72	{E1000_ICR, "ICR"},
  73
  74	/* Rx Registers */
  75	{E1000_RCTL, "RCTL"},
  76	{E1000_RDLEN(0), "RDLEN"},
  77	{E1000_RDH(0), "RDH"},
  78	{E1000_RDT(0), "RDT"},
  79	{E1000_RDTR, "RDTR"},
  80	{E1000_RXDCTL(0), "RXDCTL"},
  81	{E1000_ERT, "ERT"},
  82	{E1000_RDBAL(0), "RDBAL"},
  83	{E1000_RDBAH(0), "RDBAH"},
  84	{E1000_RDFH, "RDFH"},
  85	{E1000_RDFT, "RDFT"},
  86	{E1000_RDFHS, "RDFHS"},
  87	{E1000_RDFTS, "RDFTS"},
  88	{E1000_RDFPC, "RDFPC"},
  89
  90	/* Tx Registers */
  91	{E1000_TCTL, "TCTL"},
  92	{E1000_TDBAL(0), "TDBAL"},
  93	{E1000_TDBAH(0), "TDBAH"},
  94	{E1000_TDLEN(0), "TDLEN"},
  95	{E1000_TDH(0), "TDH"},
  96	{E1000_TDT(0), "TDT"},
  97	{E1000_TIDV, "TIDV"},
  98	{E1000_TXDCTL(0), "TXDCTL"},
  99	{E1000_TADV, "TADV"},
 100	{E1000_TARC(0), "TARC"},
 101	{E1000_TDFH, "TDFH"},
 102	{E1000_TDFT, "TDFT"},
 103	{E1000_TDFHS, "TDFHS"},
 104	{E1000_TDFTS, "TDFTS"},
 105	{E1000_TDFPC, "TDFPC"},
 106
 107	/* List Terminator */
 108	{0, NULL}
 109};
 110
 111/**
 112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 113 * @hw: pointer to the HW structure
 114 *
 115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 116 * be accessing the registers at the same time.  Normally, this is handled in
 117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 118 * accesses later than it should which could result in the register to have
 119 * an incorrect value.  Workaround this by checking the FWSM register which
 120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 121 * and try again a number of times.
 122 **/
 123static void __ew32_prepare(struct e1000_hw *hw)
 124{
 125	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 126
 127	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 128		udelay(50);
 129}
 130
 131void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 132{
 133	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 134		__ew32_prepare(hw);
 135
 136	writel(val, hw->hw_addr + reg);
 137}
 138
 139/**
 140 * e1000_regdump - register printout routine
 141 * @hw: pointer to the HW structure
 142 * @reginfo: pointer to the register info table
 143 **/
 144static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 145{
 146	int n = 0;
 147	char rname[16];
 148	u32 regs[8];
 149
 150	switch (reginfo->ofs) {
 151	case E1000_RXDCTL(0):
 152		for (n = 0; n < 2; n++)
 153			regs[n] = __er32(hw, E1000_RXDCTL(n));
 154		break;
 155	case E1000_TXDCTL(0):
 156		for (n = 0; n < 2; n++)
 157			regs[n] = __er32(hw, E1000_TXDCTL(n));
 158		break;
 159	case E1000_TARC(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_TARC(n));
 162		break;
 163	default:
 164		pr_info("%-15s %08x\n",
 165			reginfo->name, __er32(hw, reginfo->ofs));
 166		return;
 167	}
 168
 169	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 170	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 171}
 172
 173static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 174				 struct e1000_buffer *bi)
 175{
 176	int i;
 177	struct e1000_ps_page *ps_page;
 178
 179	for (i = 0; i < adapter->rx_ps_pages; i++) {
 180		ps_page = &bi->ps_pages[i];
 181
 182		if (ps_page->page) {
 183			pr_info("packet dump for ps_page %d:\n", i);
 184			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 185				       16, 1, page_address(ps_page->page),
 186				       PAGE_SIZE, true);
 187		}
 188	}
 189}
 190
 191/**
 192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 193 * @adapter: board private structure
 194 **/
 195static void e1000e_dump(struct e1000_adapter *adapter)
 196{
 197	struct net_device *netdev = adapter->netdev;
 198	struct e1000_hw *hw = &adapter->hw;
 199	struct e1000_reg_info *reginfo;
 200	struct e1000_ring *tx_ring = adapter->tx_ring;
 201	struct e1000_tx_desc *tx_desc;
 202	struct my_u0 {
 203		__le64 a;
 204		__le64 b;
 205	} *u0;
 206	struct e1000_buffer *buffer_info;
 207	struct e1000_ring *rx_ring = adapter->rx_ring;
 208	union e1000_rx_desc_packet_split *rx_desc_ps;
 209	union e1000_rx_desc_extended *rx_desc;
 210	struct my_u1 {
 211		__le64 a;
 212		__le64 b;
 213		__le64 c;
 214		__le64 d;
 215	} *u1;
 216	u32 staterr;
 217	int i = 0;
 218
 219	if (!netif_msg_hw(adapter))
 220		return;
 221
 222	/* Print netdevice Info */
 223	if (netdev) {
 224		dev_info(&adapter->pdev->dev, "Net device Info\n");
 225		pr_info("Device Name     state            trans_start\n");
 226		pr_info("%-15s %016lX %016lX\n", netdev->name,
 227			netdev->state, dev_trans_start(netdev));
 228	}
 229
 230	/* Print Registers */
 231	dev_info(&adapter->pdev->dev, "Register Dump\n");
 232	pr_info(" Register Name   Value\n");
 233	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 234	     reginfo->name; reginfo++) {
 235		e1000_regdump(hw, reginfo);
 236	}
 237
 238	/* Print Tx Ring Summary */
 239	if (!netdev || !netif_running(netdev))
 240		return;
 241
 242	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 243	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 244	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 245	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 246		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 247		(unsigned long long)buffer_info->dma,
 248		buffer_info->length,
 249		buffer_info->next_to_watch,
 250		(unsigned long long)buffer_info->time_stamp);
 251
 252	/* Print Tx Ring */
 253	if (!netif_msg_tx_done(adapter))
 254		goto rx_ring_summary;
 255
 256	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 257
 258	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 259	 *
 260	 * Legacy Transmit Descriptor
 261	 *   +--------------------------------------------------------------+
 262	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 263	 *   +--------------------------------------------------------------+
 264	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 265	 *   +--------------------------------------------------------------+
 266	 *   63       48 47        36 35    32 31     24 23    16 15        0
 267	 *
 268	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 269	 *   63      48 47    40 39       32 31             16 15    8 7      0
 270	 *   +----------------------------------------------------------------+
 271	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 272	 *   +----------------------------------------------------------------+
 273	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 274	 *   +----------------------------------------------------------------+
 275	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 276	 *
 277	 * Extended Data Descriptor (DTYP=0x1)
 278	 *   +----------------------------------------------------------------+
 279	 * 0 |                     Buffer Address [63:0]                      |
 280	 *   +----------------------------------------------------------------+
 281	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 282	 *   +----------------------------------------------------------------+
 283	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 284	 */
 285	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 286	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 287	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 288	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 289		const char *next_desc;
 290		tx_desc = E1000_TX_DESC(*tx_ring, i);
 291		buffer_info = &tx_ring->buffer_info[i];
 292		u0 = (struct my_u0 *)tx_desc;
 293		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 294			next_desc = " NTC/U";
 295		else if (i == tx_ring->next_to_use)
 296			next_desc = " NTU";
 297		else if (i == tx_ring->next_to_clean)
 298			next_desc = " NTC";
 299		else
 300			next_desc = "";
 301		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 302			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 303			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 304			i,
 305			(unsigned long long)le64_to_cpu(u0->a),
 306			(unsigned long long)le64_to_cpu(u0->b),
 307			(unsigned long long)buffer_info->dma,
 308			buffer_info->length, buffer_info->next_to_watch,
 309			(unsigned long long)buffer_info->time_stamp,
 310			buffer_info->skb, next_desc);
 311
 312		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 313			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 314				       16, 1, buffer_info->skb->data,
 315				       buffer_info->skb->len, true);
 316	}
 317
 318	/* Print Rx Ring Summary */
 319rx_ring_summary:
 320	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 321	pr_info("Queue [NTU] [NTC]\n");
 322	pr_info(" %5d %5X %5X\n",
 323		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 324
 325	/* Print Rx Ring */
 326	if (!netif_msg_rx_status(adapter))
 327		return;
 328
 329	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 330	switch (adapter->rx_ps_pages) {
 331	case 1:
 332	case 2:
 333	case 3:
 334		/* [Extended] Packet Split Receive Descriptor Format
 335		 *
 336		 *    +-----------------------------------------------------+
 337		 *  0 |                Buffer Address 0 [63:0]              |
 338		 *    +-----------------------------------------------------+
 339		 *  8 |                Buffer Address 1 [63:0]              |
 340		 *    +-----------------------------------------------------+
 341		 * 16 |                Buffer Address 2 [63:0]              |
 342		 *    +-----------------------------------------------------+
 343		 * 24 |                Buffer Address 3 [63:0]              |
 344		 *    +-----------------------------------------------------+
 345		 */
 346		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 347		/* [Extended] Receive Descriptor (Write-Back) Format
 348		 *
 349		 *   63       48 47    32 31     13 12    8 7    4 3        0
 350		 *   +------------------------------------------------------+
 351		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 352		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 353		 *   +------------------------------------------------------+
 354		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 355		 *   +------------------------------------------------------+
 356		 *   63       48 47    32 31            20 19               0
 357		 */
 358		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 359		for (i = 0; i < rx_ring->count; i++) {
 360			const char *next_desc;
 361			buffer_info = &rx_ring->buffer_info[i];
 362			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 363			u1 = (struct my_u1 *)rx_desc_ps;
 364			staterr =
 365			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 366
 367			if (i == rx_ring->next_to_use)
 368				next_desc = " NTU";
 369			else if (i == rx_ring->next_to_clean)
 370				next_desc = " NTC";
 371			else
 372				next_desc = "";
 373
 374			if (staterr & E1000_RXD_STAT_DD) {
 375				/* Descriptor Done */
 376				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 377					"RWB", i,
 378					(unsigned long long)le64_to_cpu(u1->a),
 379					(unsigned long long)le64_to_cpu(u1->b),
 380					(unsigned long long)le64_to_cpu(u1->c),
 381					(unsigned long long)le64_to_cpu(u1->d),
 382					buffer_info->skb, next_desc);
 383			} else {
 384				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 385					"R  ", i,
 386					(unsigned long long)le64_to_cpu(u1->a),
 387					(unsigned long long)le64_to_cpu(u1->b),
 388					(unsigned long long)le64_to_cpu(u1->c),
 389					(unsigned long long)le64_to_cpu(u1->d),
 390					(unsigned long long)buffer_info->dma,
 391					buffer_info->skb, next_desc);
 392
 393				if (netif_msg_pktdata(adapter))
 394					e1000e_dump_ps_pages(adapter,
 395							     buffer_info);
 396			}
 397		}
 398		break;
 399	default:
 400	case 0:
 401		/* Extended Receive Descriptor (Read) Format
 402		 *
 403		 *   +-----------------------------------------------------+
 404		 * 0 |                Buffer Address [63:0]                |
 405		 *   +-----------------------------------------------------+
 406		 * 8 |                      Reserved                       |
 407		 *   +-----------------------------------------------------+
 408		 */
 409		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 410		/* Extended Receive Descriptor (Write-Back) Format
 411		 *
 412		 *   63       48 47    32 31    24 23            4 3        0
 413		 *   +------------------------------------------------------+
 414		 *   |     RSS Hash      |        |               |         |
 415		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 416		 *   | Packet   | IP     |        |               |  Type   |
 417		 *   | Checksum | Ident  |        |               |         |
 418		 *   +------------------------------------------------------+
 419		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 420		 *   +------------------------------------------------------+
 421		 *   63       48 47    32 31            20 19               0
 422		 */
 423		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 424
 425		for (i = 0; i < rx_ring->count; i++) {
 426			const char *next_desc;
 427
 428			buffer_info = &rx_ring->buffer_info[i];
 429			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 430			u1 = (struct my_u1 *)rx_desc;
 431			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 432
 433			if (i == rx_ring->next_to_use)
 434				next_desc = " NTU";
 435			else if (i == rx_ring->next_to_clean)
 436				next_desc = " NTC";
 437			else
 438				next_desc = "";
 439
 440			if (staterr & E1000_RXD_STAT_DD) {
 441				/* Descriptor Done */
 442				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 443					"RWB", i,
 444					(unsigned long long)le64_to_cpu(u1->a),
 445					(unsigned long long)le64_to_cpu(u1->b),
 446					buffer_info->skb, next_desc);
 447			} else {
 448				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 449					"R  ", i,
 450					(unsigned long long)le64_to_cpu(u1->a),
 451					(unsigned long long)le64_to_cpu(u1->b),
 452					(unsigned long long)buffer_info->dma,
 453					buffer_info->skb, next_desc);
 454
 455				if (netif_msg_pktdata(adapter) &&
 456				    buffer_info->skb)
 457					print_hex_dump(KERN_INFO, "",
 458						       DUMP_PREFIX_ADDRESS, 16,
 459						       1,
 460						       buffer_info->skb->data,
 461						       adapter->rx_buffer_len,
 462						       true);
 463			}
 464		}
 465	}
 466}
 467
 468/**
 469 * e1000_desc_unused - calculate if we have unused descriptors
 470 * @ring: pointer to ring struct to perform calculation on
 471 **/
 472static int e1000_desc_unused(struct e1000_ring *ring)
 473{
 474	if (ring->next_to_clean > ring->next_to_use)
 475		return ring->next_to_clean - ring->next_to_use - 1;
 476
 477	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 478}
 479
 480/**
 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 482 * @adapter: board private structure
 483 * @hwtstamps: time stamp structure to update
 484 * @systim: unsigned 64bit system time value.
 485 *
 486 * Convert the system time value stored in the RX/TXSTMP registers into a
 487 * hwtstamp which can be used by the upper level time stamping functions.
 488 *
 489 * The 'systim_lock' spinlock is used to protect the consistency of the
 490 * system time value. This is needed because reading the 64 bit time
 491 * value involves reading two 32 bit registers. The first read latches the
 492 * value.
 493 **/
 494static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 495				      struct skb_shared_hwtstamps *hwtstamps,
 496				      u64 systim)
 497{
 498	u64 ns;
 499	unsigned long flags;
 500
 501	spin_lock_irqsave(&adapter->systim_lock, flags);
 502	ns = timecounter_cyc2time(&adapter->tc, systim);
 503	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 504
 505	memset(hwtstamps, 0, sizeof(*hwtstamps));
 506	hwtstamps->hwtstamp = ns_to_ktime(ns);
 507}
 508
 509/**
 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 511 * @adapter: board private structure
 512 * @status: descriptor extended error and status field
 513 * @skb: particular skb to include time stamp
 514 *
 515 * If the time stamp is valid, convert it into the timecounter ns value
 516 * and store that result into the shhwtstamps structure which is passed
 517 * up the network stack.
 518 **/
 519static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 520			       struct sk_buff *skb)
 521{
 522	struct e1000_hw *hw = &adapter->hw;
 523	u64 rxstmp;
 524
 525	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 526	    !(status & E1000_RXDEXT_STATERR_TST) ||
 527	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 528		return;
 529
 530	/* The Rx time stamp registers contain the time stamp.  No other
 531	 * received packet will be time stamped until the Rx time stamp
 532	 * registers are read.  Because only one packet can be time stamped
 533	 * at a time, the register values must belong to this packet and
 534	 * therefore none of the other additional attributes need to be
 535	 * compared.
 536	 */
 537	rxstmp = (u64)er32(RXSTMPL);
 538	rxstmp |= (u64)er32(RXSTMPH) << 32;
 539	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 540
 541	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 542}
 543
 544/**
 545 * e1000_receive_skb - helper function to handle Rx indications
 546 * @adapter: board private structure
 547 * @netdev: pointer to netdev struct
 548 * @staterr: descriptor extended error and status field as written by hardware
 549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 550 * @skb: pointer to sk_buff to be indicated to stack
 551 **/
 552static void e1000_receive_skb(struct e1000_adapter *adapter,
 553			      struct net_device *netdev, struct sk_buff *skb,
 554			      u32 staterr, __le16 vlan)
 555{
 556	u16 tag = le16_to_cpu(vlan);
 557
 558	e1000e_rx_hwtstamp(adapter, staterr, skb);
 559
 560	skb->protocol = eth_type_trans(skb, netdev);
 561
 562	if (staterr & E1000_RXD_STAT_VP)
 563		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 564
 565	napi_gro_receive(&adapter->napi, skb);
 566}
 567
 568/**
 569 * e1000_rx_checksum - Receive Checksum Offload
 570 * @adapter: board private structure
 571 * @status_err: receive descriptor status and error fields
 572 * @skb: socket buffer with received data
 573 **/
 574static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 575			      struct sk_buff *skb)
 576{
 577	u16 status = (u16)status_err;
 578	u8 errors = (u8)(status_err >> 24);
 579
 580	skb_checksum_none_assert(skb);
 581
 582	/* Rx checksum disabled */
 583	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 584		return;
 585
 586	/* Ignore Checksum bit is set */
 587	if (status & E1000_RXD_STAT_IXSM)
 588		return;
 589
 590	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 591	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 592		/* let the stack verify checksum errors */
 593		adapter->hw_csum_err++;
 594		return;
 595	}
 596
 597	/* TCP/UDP Checksum has not been calculated */
 598	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 599		return;
 600
 601	/* It must be a TCP or UDP packet with a valid checksum */
 602	skb->ip_summed = CHECKSUM_UNNECESSARY;
 603	adapter->hw_csum_good++;
 604}
 605
 606static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 607{
 608	struct e1000_adapter *adapter = rx_ring->adapter;
 609	struct e1000_hw *hw = &adapter->hw;
 610
 611	__ew32_prepare(hw);
 612	writel(i, rx_ring->tail);
 613
 614	if (unlikely(i != readl(rx_ring->tail))) {
 615		u32 rctl = er32(RCTL);
 616
 617		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 618		e_err("ME firmware caused invalid RDT - resetting\n");
 619		schedule_work(&adapter->reset_task);
 620	}
 621}
 622
 623static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 624{
 625	struct e1000_adapter *adapter = tx_ring->adapter;
 626	struct e1000_hw *hw = &adapter->hw;
 627
 628	__ew32_prepare(hw);
 629	writel(i, tx_ring->tail);
 630
 631	if (unlikely(i != readl(tx_ring->tail))) {
 632		u32 tctl = er32(TCTL);
 633
 634		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 635		e_err("ME firmware caused invalid TDT - resetting\n");
 636		schedule_work(&adapter->reset_task);
 637	}
 638}
 639
 640/**
 641 * e1000_alloc_rx_buffers - Replace used receive buffers
 642 * @rx_ring: Rx descriptor ring
 643 * @cleaned_count: number to reallocate
 644 * @gfp: flags for allocation
 645 **/
 646static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 647				   int cleaned_count, gfp_t gfp)
 648{
 649	struct e1000_adapter *adapter = rx_ring->adapter;
 650	struct net_device *netdev = adapter->netdev;
 651	struct pci_dev *pdev = adapter->pdev;
 652	union e1000_rx_desc_extended *rx_desc;
 653	struct e1000_buffer *buffer_info;
 654	struct sk_buff *skb;
 655	unsigned int i;
 656	unsigned int bufsz = adapter->rx_buffer_len;
 657
 658	i = rx_ring->next_to_use;
 659	buffer_info = &rx_ring->buffer_info[i];
 660
 661	while (cleaned_count--) {
 662		skb = buffer_info->skb;
 663		if (skb) {
 664			skb_trim(skb, 0);
 665			goto map_skb;
 666		}
 667
 668		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 669		if (!skb) {
 670			/* Better luck next round */
 671			adapter->alloc_rx_buff_failed++;
 672			break;
 673		}
 674
 675		buffer_info->skb = skb;
 676map_skb:
 677		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 678						  adapter->rx_buffer_len,
 679						  DMA_FROM_DEVICE);
 680		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 681			dev_err(&pdev->dev, "Rx DMA map failed\n");
 682			adapter->rx_dma_failed++;
 683			break;
 684		}
 685
 686		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 687		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 688
 689		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 690			/* Force memory writes to complete before letting h/w
 691			 * know there are new descriptors to fetch.  (Only
 692			 * applicable for weak-ordered memory model archs,
 693			 * such as IA-64).
 694			 */
 695			wmb();
 696			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 697				e1000e_update_rdt_wa(rx_ring, i);
 698			else
 699				writel(i, rx_ring->tail);
 700		}
 701		i++;
 702		if (i == rx_ring->count)
 703			i = 0;
 704		buffer_info = &rx_ring->buffer_info[i];
 705	}
 706
 707	rx_ring->next_to_use = i;
 708}
 709
 710/**
 711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 712 * @rx_ring: Rx descriptor ring
 713 * @cleaned_count: number to reallocate
 714 * @gfp: flags for allocation
 715 **/
 716static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 717				      int cleaned_count, gfp_t gfp)
 718{
 719	struct e1000_adapter *adapter = rx_ring->adapter;
 720	struct net_device *netdev = adapter->netdev;
 721	struct pci_dev *pdev = adapter->pdev;
 722	union e1000_rx_desc_packet_split *rx_desc;
 723	struct e1000_buffer *buffer_info;
 724	struct e1000_ps_page *ps_page;
 725	struct sk_buff *skb;
 726	unsigned int i, j;
 727
 728	i = rx_ring->next_to_use;
 729	buffer_info = &rx_ring->buffer_info[i];
 730
 731	while (cleaned_count--) {
 732		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 733
 734		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 735			ps_page = &buffer_info->ps_pages[j];
 736			if (j >= adapter->rx_ps_pages) {
 737				/* all unused desc entries get hw null ptr */
 738				rx_desc->read.buffer_addr[j + 1] =
 739				    ~cpu_to_le64(0);
 740				continue;
 741			}
 742			if (!ps_page->page) {
 743				ps_page->page = alloc_page(gfp);
 744				if (!ps_page->page) {
 745					adapter->alloc_rx_buff_failed++;
 746					goto no_buffers;
 747				}
 748				ps_page->dma = dma_map_page(&pdev->dev,
 749							    ps_page->page,
 750							    0, PAGE_SIZE,
 751							    DMA_FROM_DEVICE);
 752				if (dma_mapping_error(&pdev->dev,
 753						      ps_page->dma)) {
 754					dev_err(&adapter->pdev->dev,
 755						"Rx DMA page map failed\n");
 756					adapter->rx_dma_failed++;
 757					goto no_buffers;
 758				}
 759			}
 760			/* Refresh the desc even if buffer_addrs
 761			 * didn't change because each write-back
 762			 * erases this info.
 763			 */
 764			rx_desc->read.buffer_addr[j + 1] =
 765			    cpu_to_le64(ps_page->dma);
 766		}
 767
 768		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 769						  gfp);
 770
 771		if (!skb) {
 772			adapter->alloc_rx_buff_failed++;
 773			break;
 774		}
 775
 776		buffer_info->skb = skb;
 777		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 778						  adapter->rx_ps_bsize0,
 779						  DMA_FROM_DEVICE);
 780		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 781			dev_err(&pdev->dev, "Rx DMA map failed\n");
 782			adapter->rx_dma_failed++;
 783			/* cleanup skb */
 784			dev_kfree_skb_any(skb);
 785			buffer_info->skb = NULL;
 786			break;
 787		}
 788
 789		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 792			/* Force memory writes to complete before letting h/w
 793			 * know there are new descriptors to fetch.  (Only
 794			 * applicable for weak-ordered memory model archs,
 795			 * such as IA-64).
 796			 */
 797			wmb();
 798			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 799				e1000e_update_rdt_wa(rx_ring, i << 1);
 800			else
 801				writel(i << 1, rx_ring->tail);
 802		}
 803
 804		i++;
 805		if (i == rx_ring->count)
 806			i = 0;
 807		buffer_info = &rx_ring->buffer_info[i];
 808	}
 809
 810no_buffers:
 811	rx_ring->next_to_use = i;
 812}
 813
 814/**
 815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 816 * @rx_ring: Rx descriptor ring
 817 * @cleaned_count: number of buffers to allocate this pass
 818 * @gfp: flags for allocation
 819 **/
 820
 821static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 822					 int cleaned_count, gfp_t gfp)
 823{
 824	struct e1000_adapter *adapter = rx_ring->adapter;
 825	struct net_device *netdev = adapter->netdev;
 826	struct pci_dev *pdev = adapter->pdev;
 827	union e1000_rx_desc_extended *rx_desc;
 828	struct e1000_buffer *buffer_info;
 829	struct sk_buff *skb;
 830	unsigned int i;
 831	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 832
 833	i = rx_ring->next_to_use;
 834	buffer_info = &rx_ring->buffer_info[i];
 835
 836	while (cleaned_count--) {
 837		skb = buffer_info->skb;
 838		if (skb) {
 839			skb_trim(skb, 0);
 840			goto check_page;
 841		}
 842
 843		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 844		if (unlikely(!skb)) {
 845			/* Better luck next round */
 846			adapter->alloc_rx_buff_failed++;
 847			break;
 848		}
 849
 850		buffer_info->skb = skb;
 851check_page:
 852		/* allocate a new page if necessary */
 853		if (!buffer_info->page) {
 854			buffer_info->page = alloc_page(gfp);
 855			if (unlikely(!buffer_info->page)) {
 856				adapter->alloc_rx_buff_failed++;
 857				break;
 858			}
 859		}
 860
 861		if (!buffer_info->dma) {
 862			buffer_info->dma = dma_map_page(&pdev->dev,
 863							buffer_info->page, 0,
 864							PAGE_SIZE,
 865							DMA_FROM_DEVICE);
 866			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 867				adapter->alloc_rx_buff_failed++;
 868				break;
 869			}
 870		}
 871
 872		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 873		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 874
 875		if (unlikely(++i == rx_ring->count))
 876			i = 0;
 877		buffer_info = &rx_ring->buffer_info[i];
 878	}
 879
 880	if (likely(rx_ring->next_to_use != i)) {
 881		rx_ring->next_to_use = i;
 882		if (unlikely(i-- == 0))
 883			i = (rx_ring->count - 1);
 884
 885		/* Force memory writes to complete before letting h/w
 886		 * know there are new descriptors to fetch.  (Only
 887		 * applicable for weak-ordered memory model archs,
 888		 * such as IA-64).
 889		 */
 890		wmb();
 891		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 892			e1000e_update_rdt_wa(rx_ring, i);
 893		else
 894			writel(i, rx_ring->tail);
 895	}
 896}
 897
 898static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 899				 struct sk_buff *skb)
 900{
 901	if (netdev->features & NETIF_F_RXHASH)
 902		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 903}
 904
 905/**
 906 * e1000_clean_rx_irq - Send received data up the network stack
 907 * @rx_ring: Rx descriptor ring
 908 * @work_done: output parameter for indicating completed work
 909 * @work_to_do: how many packets we can clean
 910 *
 911 * the return value indicates whether actual cleaning was done, there
 912 * is no guarantee that everything was cleaned
 913 **/
 914static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 915			       int work_to_do)
 916{
 917	struct e1000_adapter *adapter = rx_ring->adapter;
 918	struct net_device *netdev = adapter->netdev;
 919	struct pci_dev *pdev = adapter->pdev;
 920	struct e1000_hw *hw = &adapter->hw;
 921	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 922	struct e1000_buffer *buffer_info, *next_buffer;
 923	u32 length, staterr;
 924	unsigned int i;
 925	int cleaned_count = 0;
 926	bool cleaned = false;
 927	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 928
 929	i = rx_ring->next_to_clean;
 930	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 931	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 932	buffer_info = &rx_ring->buffer_info[i];
 933
 934	while (staterr & E1000_RXD_STAT_DD) {
 935		struct sk_buff *skb;
 936
 937		if (*work_done >= work_to_do)
 938			break;
 939		(*work_done)++;
 940		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 941
 942		skb = buffer_info->skb;
 943		buffer_info->skb = NULL;
 944
 945		prefetch(skb->data - NET_IP_ALIGN);
 946
 947		i++;
 948		if (i == rx_ring->count)
 949			i = 0;
 950		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 951		prefetch(next_rxd);
 952
 953		next_buffer = &rx_ring->buffer_info[i];
 954
 955		cleaned = true;
 956		cleaned_count++;
 957		dma_unmap_single(&pdev->dev, buffer_info->dma,
 958				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 959		buffer_info->dma = 0;
 960
 961		length = le16_to_cpu(rx_desc->wb.upper.length);
 962
 963		/* !EOP means multiple descriptors were used to store a single
 964		 * packet, if that's the case we need to toss it.  In fact, we
 965		 * need to toss every packet with the EOP bit clear and the
 966		 * next frame that _does_ have the EOP bit set, as it is by
 967		 * definition only a frame fragment
 968		 */
 969		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 970			adapter->flags2 |= FLAG2_IS_DISCARDING;
 971
 972		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 973			/* All receives must fit into a single buffer */
 974			e_dbg("Receive packet consumed multiple buffers\n");
 975			/* recycle */
 976			buffer_info->skb = skb;
 977			if (staterr & E1000_RXD_STAT_EOP)
 978				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 979			goto next_desc;
 980		}
 981
 982		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 983			     !(netdev->features & NETIF_F_RXALL))) {
 984			/* recycle */
 985			buffer_info->skb = skb;
 986			goto next_desc;
 987		}
 988
 989		/* adjust length to remove Ethernet CRC */
 990		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 991			/* If configured to store CRC, don't subtract FCS,
 992			 * but keep the FCS bytes out of the total_rx_bytes
 993			 * counter
 994			 */
 995			if (netdev->features & NETIF_F_RXFCS)
 996				total_rx_bytes -= 4;
 997			else
 998				length -= 4;
 999		}
1000
1001		total_rx_bytes += length;
1002		total_rx_packets++;
1003
1004		/* code added for copybreak, this should improve
1005		 * performance for small packets with large amounts
1006		 * of reassembly being done in the stack
1007		 */
1008		if (length < copybreak) {
1009			struct sk_buff *new_skb =
1010				napi_alloc_skb(&adapter->napi, length);
1011			if (new_skb) {
1012				skb_copy_to_linear_data_offset(new_skb,
1013							       -NET_IP_ALIGN,
1014							       (skb->data -
1015								NET_IP_ALIGN),
1016							       (length +
1017								NET_IP_ALIGN));
1018				/* save the skb in buffer_info as good */
1019				buffer_info->skb = skb;
1020				skb = new_skb;
1021			}
1022			/* else just continue with the old one */
1023		}
1024		/* end copybreak code */
1025		skb_put(skb, length);
1026
1027		/* Receive Checksum Offload */
1028		e1000_rx_checksum(adapter, staterr, skb);
1029
1030		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032		e1000_receive_skb(adapter, netdev, skb, staterr,
1033				  rx_desc->wb.upper.vlan);
1034
1035next_desc:
1036		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038		/* return some buffers to hardware, one at a time is too slow */
1039		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041					      GFP_ATOMIC);
1042			cleaned_count = 0;
1043		}
1044
1045		/* use prefetched values */
1046		rx_desc = next_rxd;
1047		buffer_info = next_buffer;
1048
1049		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050	}
1051	rx_ring->next_to_clean = i;
1052
1053	cleaned_count = e1000_desc_unused(rx_ring);
1054	if (cleaned_count)
1055		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057	adapter->total_rx_bytes += total_rx_bytes;
1058	adapter->total_rx_packets += total_rx_packets;
1059	return cleaned;
1060}
1061
1062static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063			    struct e1000_buffer *buffer_info,
1064			    bool drop)
1065{
1066	struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068	if (buffer_info->dma) {
1069		if (buffer_info->mapped_as_page)
1070			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071				       buffer_info->length, DMA_TO_DEVICE);
1072		else
1073			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074					 buffer_info->length, DMA_TO_DEVICE);
1075		buffer_info->dma = 0;
1076	}
1077	if (buffer_info->skb) {
1078		if (drop)
1079			dev_kfree_skb_any(buffer_info->skb);
1080		else
1081			dev_consume_skb_any(buffer_info->skb);
1082		buffer_info->skb = NULL;
1083	}
1084	buffer_info->time_stamp = 0;
1085}
1086
1087static void e1000_print_hw_hang(struct work_struct *work)
1088{
1089	struct e1000_adapter *adapter = container_of(work,
1090						     struct e1000_adapter,
1091						     print_hang_task);
1092	struct net_device *netdev = adapter->netdev;
1093	struct e1000_ring *tx_ring = adapter->tx_ring;
1094	unsigned int i = tx_ring->next_to_clean;
1095	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097	struct e1000_hw *hw = &adapter->hw;
1098	u16 phy_status, phy_1000t_status, phy_ext_status;
1099	u16 pci_status;
1100
1101	if (test_bit(__E1000_DOWN, &adapter->state))
1102		return;
1103
1104	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105		/* May be block on write-back, flush and detect again
1106		 * flush pending descriptor writebacks to memory
1107		 */
1108		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109		/* execute the writes immediately */
1110		e1e_flush();
1111		/* Due to rare timing issues, write to TIDV again to ensure
1112		 * the write is successful
1113		 */
1114		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115		/* execute the writes immediately */
1116		e1e_flush();
1117		adapter->tx_hang_recheck = true;
1118		return;
1119	}
1120	adapter->tx_hang_recheck = false;
1121
1122	if (er32(TDH(0)) == er32(TDT(0))) {
1123		e_dbg("false hang detected, ignoring\n");
1124		return;
1125	}
1126
1127	/* Real hang detected */
1128	netif_stop_queue(netdev);
1129
1130	e1e_rphy(hw, MII_BMSR, &phy_status);
1131	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136	/* detected Hardware unit hang */
1137	e_err("Detected Hardware Unit Hang:\n"
1138	      "  TDH                  <%x>\n"
1139	      "  TDT                  <%x>\n"
1140	      "  next_to_use          <%x>\n"
1141	      "  next_to_clean        <%x>\n"
1142	      "buffer_info[next_to_clean]:\n"
1143	      "  time_stamp           <%lx>\n"
1144	      "  next_to_watch        <%x>\n"
1145	      "  jiffies              <%lx>\n"
1146	      "  next_to_watch.status <%x>\n"
1147	      "MAC Status             <%x>\n"
1148	      "PHY Status             <%x>\n"
1149	      "PHY 1000BASE-T Status  <%x>\n"
1150	      "PHY Extended Status    <%x>\n"
1151	      "PCI Status             <%x>\n",
1152	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157	e1000e_dump(adapter);
1158
1159	/* Suggest workaround for known h/w issue */
1160	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162}
1163
1164/**
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1167 *
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb.  The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1171 */
1172static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173{
1174	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175						     tx_hwtstamp_work);
1176	struct e1000_hw *hw = &adapter->hw;
1177
1178	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180		struct skb_shared_hwtstamps shhwtstamps;
1181		u64 txstmp;
1182
1183		txstmp = er32(TXSTMPL);
1184		txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189		 * prior to notifying the stack of a Tx timestamp.
1190		 */
1191		adapter->tx_hwtstamp_skb = NULL;
1192		wmb(); /* force write prior to skb_tstamp_tx */
1193
1194		skb_tstamp_tx(skb, &shhwtstamps);
1195		dev_consume_skb_any(skb);
1196	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197			      + adapter->tx_timeout_factor * HZ)) {
1198		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199		adapter->tx_hwtstamp_skb = NULL;
1200		adapter->tx_hwtstamp_timeouts++;
1201		e_warn("clearing Tx timestamp hang\n");
1202	} else {
1203		/* reschedule to check later */
1204		schedule_work(&adapter->tx_hwtstamp_work);
1205	}
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217	struct e1000_adapter *adapter = tx_ring->adapter;
1218	struct net_device *netdev = adapter->netdev;
1219	struct e1000_hw *hw = &adapter->hw;
1220	struct e1000_tx_desc *tx_desc, *eop_desc;
1221	struct e1000_buffer *buffer_info;
1222	unsigned int i, eop;
1223	unsigned int count = 0;
1224	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225	unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227	i = tx_ring->next_to_clean;
1228	eop = tx_ring->buffer_info[i].next_to_watch;
1229	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232	       (count < tx_ring->count)) {
1233		bool cleaned = false;
1234
1235		dma_rmb();		/* read buffer_info after eop_desc */
1236		for (; !cleaned; count++) {
1237			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238			buffer_info = &tx_ring->buffer_info[i];
1239			cleaned = (i == eop);
1240
1241			if (cleaned) {
1242				total_tx_packets += buffer_info->segs;
1243				total_tx_bytes += buffer_info->bytecount;
1244				if (buffer_info->skb) {
1245					bytes_compl += buffer_info->skb->len;
1246					pkts_compl++;
1247				}
1248			}
1249
1250			e1000_put_txbuf(tx_ring, buffer_info, false);
1251			tx_desc->upper.data = 0;
1252
1253			i++;
1254			if (i == tx_ring->count)
1255				i = 0;
1256		}
1257
1258		if (i == tx_ring->next_to_use)
1259			break;
1260		eop = tx_ring->buffer_info[i].next_to_watch;
1261		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262	}
1263
1264	tx_ring->next_to_clean = i;
1265
1266	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269	if (count && netif_carrier_ok(netdev) &&
1270	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271		/* Make sure that anybody stopping the queue after this
1272		 * sees the new next_to_clean.
1273		 */
1274		smp_mb();
1275
1276		if (netif_queue_stopped(netdev) &&
1277		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278			netif_wake_queue(netdev);
1279			++adapter->restart_queue;
1280		}
1281	}
1282
1283	if (adapter->detect_tx_hung) {
1284		/* Detect a transmit hang in hardware, this serializes the
1285		 * check with the clearing of time_stamp and movement of i
1286		 */
1287		adapter->detect_tx_hung = false;
1288		if (tx_ring->buffer_info[i].time_stamp &&
1289		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290			       + (adapter->tx_timeout_factor * HZ)) &&
1291		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292			schedule_work(&adapter->print_hang_task);
1293		else
1294			adapter->tx_hang_recheck = false;
1295	}
1296	adapter->total_tx_bytes += total_tx_bytes;
1297	adapter->total_tx_packets += total_tx_packets;
1298	return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1306 *
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1309 **/
1310static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311				  int work_to_do)
1312{
1313	struct e1000_adapter *adapter = rx_ring->adapter;
1314	struct e1000_hw *hw = &adapter->hw;
1315	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316	struct net_device *netdev = adapter->netdev;
1317	struct pci_dev *pdev = adapter->pdev;
1318	struct e1000_buffer *buffer_info, *next_buffer;
1319	struct e1000_ps_page *ps_page;
1320	struct sk_buff *skb;
1321	unsigned int i, j;
1322	u32 length, staterr;
1323	int cleaned_count = 0;
1324	bool cleaned = false;
1325	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327	i = rx_ring->next_to_clean;
1328	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330	buffer_info = &rx_ring->buffer_info[i];
1331
1332	while (staterr & E1000_RXD_STAT_DD) {
1333		if (*work_done >= work_to_do)
1334			break;
1335		(*work_done)++;
1336		skb = buffer_info->skb;
1337		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338
1339		/* in the packet split case this is header only */
1340		prefetch(skb->data - NET_IP_ALIGN);
1341
1342		i++;
1343		if (i == rx_ring->count)
1344			i = 0;
1345		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346		prefetch(next_rxd);
1347
1348		next_buffer = &rx_ring->buffer_info[i];
1349
1350		cleaned = true;
1351		cleaned_count++;
1352		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354		buffer_info->dma = 0;
1355
1356		/* see !EOP comment in other Rx routine */
1357		if (!(staterr & E1000_RXD_STAT_EOP))
1358			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362			dev_kfree_skb_irq(skb);
1363			if (staterr & E1000_RXD_STAT_EOP)
1364				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365			goto next_desc;
1366		}
1367
1368		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369			     !(netdev->features & NETIF_F_RXALL))) {
1370			dev_kfree_skb_irq(skb);
1371			goto next_desc;
1372		}
1373
1374		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376		if (!length) {
1377			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378			dev_kfree_skb_irq(skb);
1379			goto next_desc;
1380		}
1381
1382		/* Good Receive */
1383		skb_put(skb, length);
1384
1385		{
1386			/* this looks ugly, but it seems compiler issues make
1387			 * it more efficient than reusing j
1388			 */
1389			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391			/* page alloc/put takes too long and effects small
1392			 * packet throughput, so unsplit small packets and
1393			 * save the alloc/put
1394			 */
1395			if (l1 && (l1 <= copybreak) &&
1396			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1397				ps_page = &buffer_info->ps_pages[0];
1398
1399				dma_sync_single_for_cpu(&pdev->dev,
1400							ps_page->dma,
1401							PAGE_SIZE,
1402							DMA_FROM_DEVICE);
1403				memcpy(skb_tail_pointer(skb),
1404				       page_address(ps_page->page), l1);
1405				dma_sync_single_for_device(&pdev->dev,
1406							   ps_page->dma,
1407							   PAGE_SIZE,
1408							   DMA_FROM_DEVICE);
1409
1410				/* remove the CRC */
1411				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412					if (!(netdev->features & NETIF_F_RXFCS))
1413						l1 -= 4;
1414				}
1415
1416				skb_put(skb, l1);
1417				goto copydone;
1418			}	/* if */
1419		}
1420
1421		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423			if (!length)
1424				break;
1425
1426			ps_page = &buffer_info->ps_pages[j];
1427			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428				       DMA_FROM_DEVICE);
1429			ps_page->dma = 0;
1430			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431			ps_page->page = NULL;
1432			skb->len += length;
1433			skb->data_len += length;
1434			skb->truesize += PAGE_SIZE;
1435		}
1436
1437		/* strip the ethernet crc, problem is we're using pages now so
1438		 * this whole operation can get a little cpu intensive
1439		 */
1440		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441			if (!(netdev->features & NETIF_F_RXFCS))
1442				pskb_trim(skb, skb->len - 4);
1443		}
1444
1445copydone:
1446		total_rx_bytes += skb->len;
1447		total_rx_packets++;
1448
1449		e1000_rx_checksum(adapter, staterr, skb);
1450
1451		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453		if (rx_desc->wb.upper.header_status &
1454		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455			adapter->rx_hdr_split++;
1456
1457		e1000_receive_skb(adapter, netdev, skb, staterr,
1458				  rx_desc->wb.middle.vlan);
1459
1460next_desc:
1461		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462		buffer_info->skb = NULL;
1463
1464		/* return some buffers to hardware, one at a time is too slow */
1465		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467					      GFP_ATOMIC);
1468			cleaned_count = 0;
1469		}
1470
1471		/* use prefetched values */
1472		rx_desc = next_rxd;
1473		buffer_info = next_buffer;
1474
1475		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476	}
1477	rx_ring->next_to_clean = i;
1478
1479	cleaned_count = e1000_desc_unused(rx_ring);
1480	if (cleaned_count)
1481		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483	adapter->total_rx_bytes += total_rx_bytes;
1484	adapter->total_rx_packets += total_rx_packets;
1485	return cleaned;
1486}
1487
1488static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489			       u16 length)
1490{
1491	bi->page = NULL;
1492	skb->len += length;
1493	skb->data_len += length;
1494	skb->truesize += PAGE_SIZE;
1495}
1496
1497/**
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1502 *
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1505 **/
1506static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507				     int work_to_do)
1508{
1509	struct e1000_adapter *adapter = rx_ring->adapter;
1510	struct net_device *netdev = adapter->netdev;
1511	struct pci_dev *pdev = adapter->pdev;
1512	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513	struct e1000_buffer *buffer_info, *next_buffer;
1514	u32 length, staterr;
1515	unsigned int i;
1516	int cleaned_count = 0;
1517	bool cleaned = false;
1518	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519	struct skb_shared_info *shinfo;
1520
1521	i = rx_ring->next_to_clean;
1522	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524	buffer_info = &rx_ring->buffer_info[i];
1525
1526	while (staterr & E1000_RXD_STAT_DD) {
1527		struct sk_buff *skb;
1528
1529		if (*work_done >= work_to_do)
1530			break;
1531		(*work_done)++;
1532		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533
1534		skb = buffer_info->skb;
1535		buffer_info->skb = NULL;
1536
1537		++i;
1538		if (i == rx_ring->count)
1539			i = 0;
1540		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541		prefetch(next_rxd);
1542
1543		next_buffer = &rx_ring->buffer_info[i];
1544
1545		cleaned = true;
1546		cleaned_count++;
1547		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548			       DMA_FROM_DEVICE);
1549		buffer_info->dma = 0;
1550
1551		length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553		/* errors is only valid for DD + EOP descriptors */
1554		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556			      !(netdev->features & NETIF_F_RXALL)))) {
1557			/* recycle both page and skb */
1558			buffer_info->skb = skb;
1559			/* an error means any chain goes out the window too */
1560			if (rx_ring->rx_skb_top)
1561				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562			rx_ring->rx_skb_top = NULL;
1563			goto next_desc;
1564		}
1565#define rxtop (rx_ring->rx_skb_top)
1566		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567			/* this descriptor is only the beginning (or middle) */
1568			if (!rxtop) {
1569				/* this is the beginning of a chain */
1570				rxtop = skb;
1571				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572						   0, length);
1573			} else {
1574				/* this is the middle of a chain */
1575				shinfo = skb_shinfo(rxtop);
1576				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577						   buffer_info->page, 0,
1578						   length);
1579				/* re-use the skb, only consumed the page */
1580				buffer_info->skb = skb;
1581			}
1582			e1000_consume_page(buffer_info, rxtop, length);
1583			goto next_desc;
1584		} else {
1585			if (rxtop) {
1586				/* end of the chain */
1587				shinfo = skb_shinfo(rxtop);
1588				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589						   buffer_info->page, 0,
1590						   length);
1591				/* re-use the current skb, we only consumed the
1592				 * page
1593				 */
1594				buffer_info->skb = skb;
1595				skb = rxtop;
1596				rxtop = NULL;
1597				e1000_consume_page(buffer_info, skb, length);
1598			} else {
1599				/* no chain, got EOP, this buf is the packet
1600				 * copybreak to save the put_page/alloc_page
1601				 */
1602				if (length <= copybreak &&
1603				    skb_tailroom(skb) >= length) {
1604					memcpy(skb_tail_pointer(skb),
1605					       page_address(buffer_info->page),
1606					       length);
1607					/* re-use the page, so don't erase
1608					 * buffer_info->page
1609					 */
1610					skb_put(skb, length);
1611				} else {
1612					skb_fill_page_desc(skb, 0,
1613							   buffer_info->page, 0,
1614							   length);
1615					e1000_consume_page(buffer_info, skb,
1616							   length);
1617				}
1618			}
1619		}
1620
1621		/* Receive Checksum Offload */
1622		e1000_rx_checksum(adapter, staterr, skb);
1623
1624		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626		/* probably a little skewed due to removing CRC */
1627		total_rx_bytes += skb->len;
1628		total_rx_packets++;
1629
1630		/* eth type trans needs skb->data to point to something */
1631		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632			e_err("pskb_may_pull failed.\n");
1633			dev_kfree_skb_irq(skb);
1634			goto next_desc;
1635		}
1636
1637		e1000_receive_skb(adapter, netdev, skb, staterr,
1638				  rx_desc->wb.upper.vlan);
1639
1640next_desc:
1641		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643		/* return some buffers to hardware, one at a time is too slow */
1644		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646					      GFP_ATOMIC);
1647			cleaned_count = 0;
1648		}
1649
1650		/* use prefetched values */
1651		rx_desc = next_rxd;
1652		buffer_info = next_buffer;
1653
1654		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655	}
1656	rx_ring->next_to_clean = i;
1657
1658	cleaned_count = e1000_desc_unused(rx_ring);
1659	if (cleaned_count)
1660		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662	adapter->total_rx_bytes += total_rx_bytes;
1663	adapter->total_rx_packets += total_rx_packets;
1664	return cleaned;
1665}
1666
1667/**
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1670 **/
1671static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672{
1673	struct e1000_adapter *adapter = rx_ring->adapter;
1674	struct e1000_buffer *buffer_info;
1675	struct e1000_ps_page *ps_page;
1676	struct pci_dev *pdev = adapter->pdev;
1677	unsigned int i, j;
1678
1679	/* Free all the Rx ring sk_buffs */
1680	for (i = 0; i < rx_ring->count; i++) {
1681		buffer_info = &rx_ring->buffer_info[i];
1682		if (buffer_info->dma) {
1683			if (adapter->clean_rx == e1000_clean_rx_irq)
1684				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685						 adapter->rx_buffer_len,
1686						 DMA_FROM_DEVICE);
1687			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689					       PAGE_SIZE, DMA_FROM_DEVICE);
1690			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_ps_bsize0,
1693						 DMA_FROM_DEVICE);
1694			buffer_info->dma = 0;
1695		}
1696
1697		if (buffer_info->page) {
1698			put_page(buffer_info->page);
1699			buffer_info->page = NULL;
1700		}
1701
1702		if (buffer_info->skb) {
1703			dev_kfree_skb(buffer_info->skb);
1704			buffer_info->skb = NULL;
1705		}
1706
1707		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708			ps_page = &buffer_info->ps_pages[j];
1709			if (!ps_page->page)
1710				break;
1711			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712				       DMA_FROM_DEVICE);
1713			ps_page->dma = 0;
1714			put_page(ps_page->page);
1715			ps_page->page = NULL;
1716		}
1717	}
1718
1719	/* there also may be some cached data from a chained receive */
1720	if (rx_ring->rx_skb_top) {
1721		dev_kfree_skb(rx_ring->rx_skb_top);
1722		rx_ring->rx_skb_top = NULL;
1723	}
1724
1725	/* Zero out the descriptor ring */
1726	memset(rx_ring->desc, 0, rx_ring->size);
1727
1728	rx_ring->next_to_clean = 0;
1729	rx_ring->next_to_use = 0;
1730	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731}
1732
1733static void e1000e_downshift_workaround(struct work_struct *work)
1734{
1735	struct e1000_adapter *adapter = container_of(work,
1736						     struct e1000_adapter,
1737						     downshift_task);
1738
1739	if (test_bit(__E1000_DOWN, &adapter->state))
1740		return;
1741
1742	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743}
1744
1745/**
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1749 **/
1750static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751{
1752	struct net_device *netdev = data;
1753	struct e1000_adapter *adapter = netdev_priv(netdev);
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 icr = er32(ICR);
1756
1757	/* read ICR disables interrupts using IAM */
1758	if (icr & E1000_ICR_LSC) {
1759		hw->mac.get_link_status = true;
1760		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761		 * disconnect (LSC) before accessing any PHY registers
1762		 */
1763		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765			schedule_work(&adapter->downshift_task);
1766
1767		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768		 * link down event; disable receives here in the ISR and reset
1769		 * adapter in watchdog
1770		 */
1771		if (netif_carrier_ok(netdev) &&
1772		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773			/* disable receives */
1774			u32 rctl = er32(RCTL);
1775
1776			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777			adapter->flags |= FLAG_RESTART_NOW;
1778		}
1779		/* guard against interrupt when we're going down */
1780		if (!test_bit(__E1000_DOWN, &adapter->state))
1781			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782	}
1783
1784	/* Reset on uncorrectable ECC error */
1785	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786		u32 pbeccsts = er32(PBECCSTS);
1787
1788		adapter->corr_errors +=
1789		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790		adapter->uncorr_errors +=
1791		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1792
1793		/* Do the reset outside of interrupt context */
1794		schedule_work(&adapter->reset_task);
1795
1796		/* return immediately since reset is imminent */
1797		return IRQ_HANDLED;
1798	}
1799
1800	if (napi_schedule_prep(&adapter->napi)) {
1801		adapter->total_tx_bytes = 0;
1802		adapter->total_tx_packets = 0;
1803		adapter->total_rx_bytes = 0;
1804		adapter->total_rx_packets = 0;
1805		__napi_schedule(&adapter->napi);
1806	}
1807
1808	return IRQ_HANDLED;
1809}
1810
1811/**
1812 * e1000_intr - Interrupt Handler
1813 * @irq: interrupt number
1814 * @data: pointer to a network interface device structure
1815 **/
1816static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817{
1818	struct net_device *netdev = data;
1819	struct e1000_adapter *adapter = netdev_priv(netdev);
1820	struct e1000_hw *hw = &adapter->hw;
1821	u32 rctl, icr = er32(ICR);
1822
1823	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824		return IRQ_NONE;	/* Not our interrupt */
1825
1826	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827	 * not set, then the adapter didn't send an interrupt
1828	 */
1829	if (!(icr & E1000_ICR_INT_ASSERTED))
1830		return IRQ_NONE;
1831
1832	/* Interrupt Auto-Mask...upon reading ICR,
1833	 * interrupts are masked.  No need for the
1834	 * IMC write
1835	 */
1836
1837	if (icr & E1000_ICR_LSC) {
1838		hw->mac.get_link_status = true;
1839		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840		 * disconnect (LSC) before accessing any PHY registers
1841		 */
1842		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844			schedule_work(&adapter->downshift_task);
1845
1846		/* 80003ES2LAN workaround--
1847		 * For packet buffer work-around on link down event;
1848		 * disable receives here in the ISR and
1849		 * reset adapter in watchdog
1850		 */
1851		if (netif_carrier_ok(netdev) &&
1852		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853			/* disable receives */
1854			rctl = er32(RCTL);
1855			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856			adapter->flags |= FLAG_RESTART_NOW;
1857		}
1858		/* guard against interrupt when we're going down */
1859		if (!test_bit(__E1000_DOWN, &adapter->state))
1860			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861	}
1862
1863	/* Reset on uncorrectable ECC error */
1864	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865		u32 pbeccsts = er32(PBECCSTS);
1866
1867		adapter->corr_errors +=
1868		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869		adapter->uncorr_errors +=
1870		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1871
1872		/* Do the reset outside of interrupt context */
1873		schedule_work(&adapter->reset_task);
1874
1875		/* return immediately since reset is imminent */
1876		return IRQ_HANDLED;
1877	}
1878
1879	if (napi_schedule_prep(&adapter->napi)) {
1880		adapter->total_tx_bytes = 0;
1881		adapter->total_tx_packets = 0;
1882		adapter->total_rx_bytes = 0;
1883		adapter->total_rx_packets = 0;
1884		__napi_schedule(&adapter->napi);
1885	}
1886
1887	return IRQ_HANDLED;
1888}
1889
1890static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891{
1892	struct net_device *netdev = data;
1893	struct e1000_adapter *adapter = netdev_priv(netdev);
1894	struct e1000_hw *hw = &adapter->hw;
1895	u32 icr = er32(ICR);
1896
1897	if (icr & adapter->eiac_mask)
1898		ew32(ICS, (icr & adapter->eiac_mask));
1899
1900	if (icr & E1000_ICR_LSC) {
1901		hw->mac.get_link_status = true;
1902		/* guard against interrupt when we're going down */
1903		if (!test_bit(__E1000_DOWN, &adapter->state))
1904			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905	}
1906
1907	if (!test_bit(__E1000_DOWN, &adapter->state))
1908		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	struct e1000_ring *tx_ring = adapter->tx_ring;
1919
1920	adapter->total_tx_bytes = 0;
1921	adapter->total_tx_packets = 0;
1922
1923	if (!e1000_clean_tx_irq(tx_ring))
1924		/* Ring was not completely cleaned, so fire another interrupt */
1925		ew32(ICS, tx_ring->ims_val);
1926
1927	if (!test_bit(__E1000_DOWN, &adapter->state))
1928		ew32(IMS, adapter->tx_ring->ims_val);
1929
1930	return IRQ_HANDLED;
1931}
1932
1933static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934{
1935	struct net_device *netdev = data;
1936	struct e1000_adapter *adapter = netdev_priv(netdev);
1937	struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939	/* Write the ITR value calculated at the end of the
1940	 * previous interrupt.
1941	 */
1942	if (rx_ring->set_itr) {
1943		u32 itr = rx_ring->itr_val ?
1944			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946		writel(itr, rx_ring->itr_register);
1947		rx_ring->set_itr = 0;
1948	}
1949
1950	if (napi_schedule_prep(&adapter->napi)) {
1951		adapter->total_rx_bytes = 0;
1952		adapter->total_rx_packets = 0;
1953		__napi_schedule(&adapter->napi);
1954	}
1955	return IRQ_HANDLED;
1956}
1957
1958/**
1959 * e1000_configure_msix - Configure MSI-X hardware
1960 * @adapter: board private structure
1961 *
1962 * e1000_configure_msix sets up the hardware to properly
1963 * generate MSI-X interrupts.
1964 **/
1965static void e1000_configure_msix(struct e1000_adapter *adapter)
1966{
1967	struct e1000_hw *hw = &adapter->hw;
1968	struct e1000_ring *rx_ring = adapter->rx_ring;
1969	struct e1000_ring *tx_ring = adapter->tx_ring;
1970	int vector = 0;
1971	u32 ctrl_ext, ivar = 0;
1972
1973	adapter->eiac_mask = 0;
1974
1975	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976	if (hw->mac.type == e1000_82574) {
1977		u32 rfctl = er32(RFCTL);
1978
1979		rfctl |= E1000_RFCTL_ACK_DIS;
1980		ew32(RFCTL, rfctl);
1981	}
1982
1983	/* Configure Rx vector */
1984	rx_ring->ims_val = E1000_IMS_RXQ0;
1985	adapter->eiac_mask |= rx_ring->ims_val;
1986	if (rx_ring->itr_val)
1987		writel(1000000000 / (rx_ring->itr_val * 256),
1988		       rx_ring->itr_register);
1989	else
1990		writel(1, rx_ring->itr_register);
1991	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993	/* Configure Tx vector */
1994	tx_ring->ims_val = E1000_IMS_TXQ0;
1995	vector++;
1996	if (tx_ring->itr_val)
1997		writel(1000000000 / (tx_ring->itr_val * 256),
1998		       tx_ring->itr_register);
1999	else
2000		writel(1, tx_ring->itr_register);
2001	adapter->eiac_mask |= tx_ring->ims_val;
2002	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004	/* set vector for Other Causes, e.g. link changes */
2005	vector++;
2006	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007	if (rx_ring->itr_val)
2008		writel(1000000000 / (rx_ring->itr_val * 256),
2009		       hw->hw_addr + E1000_EITR_82574(vector));
2010	else
2011		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013	/* Cause Tx interrupts on every write back */
2014	ivar |= BIT(31);
2015
2016	ew32(IVAR, ivar);
2017
2018	/* enable MSI-X PBA support */
2019	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021	ew32(CTRL_EXT, ctrl_ext);
2022	e1e_flush();
2023}
2024
2025void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026{
2027	if (adapter->msix_entries) {
2028		pci_disable_msix(adapter->pdev);
2029		kfree(adapter->msix_entries);
2030		adapter->msix_entries = NULL;
2031	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032		pci_disable_msi(adapter->pdev);
2033		adapter->flags &= ~FLAG_MSI_ENABLED;
2034	}
2035}
2036
2037/**
2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039 * @adapter: board private structure
2040 *
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2043 **/
2044void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045{
2046	int err;
2047	int i;
2048
2049	switch (adapter->int_mode) {
2050	case E1000E_INT_MODE_MSIX:
2051		if (adapter->flags & FLAG_HAS_MSIX) {
2052			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054							sizeof(struct
2055							       msix_entry),
2056							GFP_KERNEL);
2057			if (adapter->msix_entries) {
2058				struct e1000_adapter *a = adapter;
2059
2060				for (i = 0; i < adapter->num_vectors; i++)
2061					adapter->msix_entries[i].entry = i;
2062
2063				err = pci_enable_msix_range(a->pdev,
2064							    a->msix_entries,
2065							    a->num_vectors,
2066							    a->num_vectors);
2067				if (err > 0)
2068					return;
2069			}
2070			/* MSI-X failed, so fall through and try MSI */
2071			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072			e1000e_reset_interrupt_capability(adapter);
2073		}
2074		adapter->int_mode = E1000E_INT_MODE_MSI;
2075		fallthrough;
2076	case E1000E_INT_MODE_MSI:
2077		if (!pci_enable_msi(adapter->pdev)) {
2078			adapter->flags |= FLAG_MSI_ENABLED;
2079		} else {
2080			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082		}
2083		fallthrough;
2084	case E1000E_INT_MODE_LEGACY:
2085		/* Don't do anything; this is the system default */
2086		break;
2087	}
2088
2089	/* store the number of vectors being used */
2090	adapter->num_vectors = 1;
2091}
2092
2093/**
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 * @adapter: board private structure
2096 *
2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098 * kernel.
2099 **/
2100static int e1000_request_msix(struct e1000_adapter *adapter)
2101{
2102	struct net_device *netdev = adapter->netdev;
2103	int err = 0, vector = 0;
2104
2105	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106		snprintf(adapter->rx_ring->name,
2107			 sizeof(adapter->rx_ring->name) - 1,
2108			 "%.14s-rx-0", netdev->name);
2109	else
2110		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111	err = request_irq(adapter->msix_entries[vector].vector,
2112			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113			  netdev);
2114	if (err)
2115		return err;
2116	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117	    E1000_EITR_82574(vector);
2118	adapter->rx_ring->itr_val = adapter->itr;
2119	vector++;
2120
2121	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122		snprintf(adapter->tx_ring->name,
2123			 sizeof(adapter->tx_ring->name) - 1,
2124			 "%.14s-tx-0", netdev->name);
2125	else
2126		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127	err = request_irq(adapter->msix_entries[vector].vector,
2128			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129			  netdev);
2130	if (err)
2131		return err;
2132	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133	    E1000_EITR_82574(vector);
2134	adapter->tx_ring->itr_val = adapter->itr;
2135	vector++;
2136
2137	err = request_irq(adapter->msix_entries[vector].vector,
2138			  e1000_msix_other, 0, netdev->name, netdev);
2139	if (err)
2140		return err;
2141
2142	e1000_configure_msix(adapter);
2143
2144	return 0;
2145}
2146
2147/**
2148 * e1000_request_irq - initialize interrupts
2149 * @adapter: board private structure
2150 *
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2153 **/
2154static int e1000_request_irq(struct e1000_adapter *adapter)
2155{
2156	struct net_device *netdev = adapter->netdev;
2157	int err;
2158
2159	if (adapter->msix_entries) {
2160		err = e1000_request_msix(adapter);
2161		if (!err)
2162			return err;
2163		/* fall back to MSI */
2164		e1000e_reset_interrupt_capability(adapter);
2165		adapter->int_mode = E1000E_INT_MODE_MSI;
2166		e1000e_set_interrupt_capability(adapter);
2167	}
2168	if (adapter->flags & FLAG_MSI_ENABLED) {
2169		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170				  netdev->name, netdev);
2171		if (!err)
2172			return err;
2173
2174		/* fall back to legacy interrupt */
2175		e1000e_reset_interrupt_capability(adapter);
2176		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177	}
2178
2179	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180			  netdev->name, netdev);
2181	if (err)
2182		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184	return err;
2185}
2186
2187static void e1000_free_irq(struct e1000_adapter *adapter)
2188{
2189	struct net_device *netdev = adapter->netdev;
2190
2191	if (adapter->msix_entries) {
2192		int vector = 0;
2193
2194		free_irq(adapter->msix_entries[vector].vector, netdev);
2195		vector++;
2196
2197		free_irq(adapter->msix_entries[vector].vector, netdev);
2198		vector++;
2199
2200		/* Other Causes interrupt vector */
2201		free_irq(adapter->msix_entries[vector].vector, netdev);
2202		return;
2203	}
2204
2205	free_irq(adapter->pdev->irq, netdev);
2206}
2207
2208/**
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2210 * @adapter: board private structure
2211 **/
2212static void e1000_irq_disable(struct e1000_adapter *adapter)
2213{
2214	struct e1000_hw *hw = &adapter->hw;
2215
2216	ew32(IMC, ~0);
2217	if (adapter->msix_entries)
2218		ew32(EIAC_82574, 0);
2219	e1e_flush();
2220
2221	if (adapter->msix_entries) {
2222		int i;
2223
2224		for (i = 0; i < adapter->num_vectors; i++)
2225			synchronize_irq(adapter->msix_entries[i].vector);
2226	} else {
2227		synchronize_irq(adapter->pdev->irq);
2228	}
2229}
2230
2231/**
2232 * e1000_irq_enable - Enable default interrupt generation settings
2233 * @adapter: board private structure
2234 **/
2235static void e1000_irq_enable(struct e1000_adapter *adapter)
2236{
2237	struct e1000_hw *hw = &adapter->hw;
2238
2239	if (adapter->msix_entries) {
2240		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242		     IMS_OTHER_MASK);
2243	} else if (hw->mac.type >= e1000_pch_lpt) {
2244		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245	} else {
2246		ew32(IMS, IMS_ENABLE_MASK);
2247	}
2248	e1e_flush();
2249}
2250
2251/**
2252 * e1000e_get_hw_control - get control of the h/w from f/w
2253 * @adapter: address of board private structure
2254 *
2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256 * For ASF and Pass Through versions of f/w this means that
2257 * the driver is loaded. For AMT version (only with 82573)
2258 * of the f/w this means that the network i/f is open.
2259 **/
2260void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261{
2262	struct e1000_hw *hw = &adapter->hw;
2263	u32 ctrl_ext;
2264	u32 swsm;
2265
2266	/* Let firmware know the driver has taken over */
2267	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268		swsm = er32(SWSM);
2269		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271		ctrl_ext = er32(CTRL_EXT);
2272		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273	}
2274}
2275
2276/**
2277 * e1000e_release_hw_control - release control of the h/w to f/w
2278 * @adapter: address of board private structure
2279 *
2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281 * For ASF and Pass Through versions of f/w this means that the
2282 * driver is no longer loaded. For AMT version (only with 82573) i
2283 * of the f/w this means that the network i/f is closed.
2284 *
2285 **/
2286void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287{
2288	struct e1000_hw *hw = &adapter->hw;
2289	u32 ctrl_ext;
2290	u32 swsm;
2291
2292	/* Let firmware taken over control of h/w */
2293	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294		swsm = er32(SWSM);
2295		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297		ctrl_ext = er32(CTRL_EXT);
2298		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299	}
2300}
2301
2302/**
2303 * e1000_alloc_ring_dma - allocate memory for a ring structure
2304 * @adapter: board private structure
2305 * @ring: ring struct for which to allocate dma
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308				struct e1000_ring *ring)
2309{
2310	struct pci_dev *pdev = adapter->pdev;
2311
2312	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313					GFP_KERNEL);
2314	if (!ring->desc)
2315		return -ENOMEM;
2316
2317	return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328	struct e1000_adapter *adapter = tx_ring->adapter;
2329	int err = -ENOMEM, size;
2330
2331	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332	tx_ring->buffer_info = vzalloc(size);
2333	if (!tx_ring->buffer_info)
2334		goto err;
2335
2336	/* round up to nearest 4K */
2337	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341	if (err)
2342		goto err;
2343
2344	tx_ring->next_to_use = 0;
2345	tx_ring->next_to_clean = 0;
2346
2347	return 0;
2348err:
2349	vfree(tx_ring->buffer_info);
2350	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351	return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362	struct e1000_adapter *adapter = rx_ring->adapter;
2363	struct e1000_buffer *buffer_info;
2364	int i, size, desc_len, err = -ENOMEM;
2365
2366	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367	rx_ring->buffer_info = vzalloc(size);
2368	if (!rx_ring->buffer_info)
2369		goto err;
2370
2371	for (i = 0; i < rx_ring->count; i++) {
2372		buffer_info = &rx_ring->buffer_info[i];
2373		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374						sizeof(struct e1000_ps_page),
2375						GFP_KERNEL);
2376		if (!buffer_info->ps_pages)
2377			goto err_pages;
2378	}
2379
2380	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382	/* Round up to nearest 4K */
2383	rx_ring->size = rx_ring->count * desc_len;
2384	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387	if (err)
2388		goto err_pages;
2389
2390	rx_ring->next_to_clean = 0;
2391	rx_ring->next_to_use = 0;
2392	rx_ring->rx_skb_top = NULL;
2393
2394	return 0;
2395
2396err_pages:
2397	for (i = 0; i < rx_ring->count; i++) {
2398		buffer_info = &rx_ring->buffer_info[i];
2399		kfree(buffer_info->ps_pages);
2400	}
2401err:
2402	vfree(rx_ring->buffer_info);
2403	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404	return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413	struct e1000_adapter *adapter = tx_ring->adapter;
2414	struct e1000_buffer *buffer_info;
2415	unsigned long size;
2416	unsigned int i;
2417
2418	for (i = 0; i < tx_ring->count; i++) {
2419		buffer_info = &tx_ring->buffer_info[i];
2420		e1000_put_txbuf(tx_ring, buffer_info, false);
2421	}
2422
2423	netdev_reset_queue(adapter->netdev);
2424	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425	memset(tx_ring->buffer_info, 0, size);
2426
2427	memset(tx_ring->desc, 0, tx_ring->size);
2428
2429	tx_ring->next_to_use = 0;
2430	tx_ring->next_to_clean = 0;
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441	struct e1000_adapter *adapter = tx_ring->adapter;
2442	struct pci_dev *pdev = adapter->pdev;
2443
2444	e1000_clean_tx_ring(tx_ring);
2445
2446	vfree(tx_ring->buffer_info);
2447	tx_ring->buffer_info = NULL;
2448
2449	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450			  tx_ring->dma);
2451	tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462	struct e1000_adapter *adapter = rx_ring->adapter;
2463	struct pci_dev *pdev = adapter->pdev;
2464	int i;
2465
2466	e1000_clean_rx_ring(rx_ring);
2467
2468	for (i = 0; i < rx_ring->count; i++)
2469		kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471	vfree(rx_ring->buffer_info);
2472	rx_ring->buffer_info = NULL;
2473
2474	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475			  rx_ring->dma);
2476	rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2484 *
2485 *      Stores a new ITR value based on packets and byte
2486 *      counts during the last interrupt.  The advantage of per interrupt
2487 *      computation is faster updates and more accurate ITR for the current
2488 *      traffic pattern.  Constants in this function were computed
2489 *      based on theoretical maximum wire speed and thresholds were set based
2490 *      on testing data as well as attempting to minimize response time
2491 *      while increasing bulk throughput.  This functionality is controlled
2492 *      by the InterruptThrottleRate module parameter.
2493 **/
2494static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495{
2496	unsigned int retval = itr_setting;
2497
2498	if (packets == 0)
2499		return itr_setting;
2500
2501	switch (itr_setting) {
2502	case lowest_latency:
2503		/* handle TSO and jumbo frames */
2504		if (bytes / packets > 8000)
2505			retval = bulk_latency;
2506		else if ((packets < 5) && (bytes > 512))
2507			retval = low_latency;
2508		break;
2509	case low_latency:	/* 50 usec aka 20000 ints/s */
2510		if (bytes > 10000) {
2511			/* this if handles the TSO accounting */
2512			if (bytes / packets > 8000)
2513				retval = bulk_latency;
2514			else if ((packets < 10) || ((bytes / packets) > 1200))
2515				retval = bulk_latency;
2516			else if ((packets > 35))
2517				retval = lowest_latency;
2518		} else if (bytes / packets > 2000) {
2519			retval = bulk_latency;
2520		} else if (packets <= 2 && bytes < 512) {
2521			retval = lowest_latency;
2522		}
2523		break;
2524	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525		if (bytes > 25000) {
2526			if (packets > 35)
2527				retval = low_latency;
2528		} else if (bytes < 6000) {
2529			retval = low_latency;
2530		}
2531		break;
2532	}
2533
2534	return retval;
2535}
2536
2537static void e1000_set_itr(struct e1000_adapter *adapter)
2538{
2539	u16 current_itr;
2540	u32 new_itr = adapter->itr;
2541
2542	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543	if (adapter->link_speed != SPEED_1000) {
2544		new_itr = 4000;
2545		goto set_itr_now;
2546	}
2547
2548	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549		new_itr = 0;
2550		goto set_itr_now;
2551	}
2552
2553	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554					   adapter->total_tx_packets,
2555					   adapter->total_tx_bytes);
2556	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558		adapter->tx_itr = low_latency;
2559
2560	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561					   adapter->total_rx_packets,
2562					   adapter->total_rx_bytes);
2563	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565		adapter->rx_itr = low_latency;
2566
2567	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569	/* counts and packets in update_itr are dependent on these numbers */
2570	switch (current_itr) {
2571	case lowest_latency:
2572		new_itr = 70000;
2573		break;
2574	case low_latency:
2575		new_itr = 20000;	/* aka hwitr = ~200 */
2576		break;
2577	case bulk_latency:
2578		new_itr = 4000;
2579		break;
2580	default:
2581		break;
2582	}
2583
2584set_itr_now:
2585	if (new_itr != adapter->itr) {
2586		/* this attempts to bias the interrupt rate towards Bulk
2587		 * by adding intermediate steps when interrupt rate is
2588		 * increasing
2589		 */
2590		new_itr = new_itr > adapter->itr ?
2591		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592		adapter->itr = new_itr;
2593		adapter->rx_ring->itr_val = new_itr;
2594		if (adapter->msix_entries)
2595			adapter->rx_ring->set_itr = 1;
2596		else
2597			e1000e_write_itr(adapter, new_itr);
2598	}
2599}
2600
2601/**
2602 * e1000e_write_itr - write the ITR value to the appropriate registers
2603 * @adapter: address of board private structure
2604 * @itr: new ITR value to program
2605 *
2606 * e1000e_write_itr determines if the adapter is in MSI-X mode
2607 * and, if so, writes the EITR registers with the ITR value.
2608 * Otherwise, it writes the ITR value into the ITR register.
2609 **/
2610void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611{
2612	struct e1000_hw *hw = &adapter->hw;
2613	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615	if (adapter->msix_entries) {
2616		int vector;
2617
2618		for (vector = 0; vector < adapter->num_vectors; vector++)
2619			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620	} else {
2621		ew32(ITR, new_itr);
2622	}
2623}
2624
2625/**
2626 * e1000_alloc_queues - Allocate memory for all rings
2627 * @adapter: board private structure to initialize
2628 **/
2629static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630{
2631	int size = sizeof(struct e1000_ring);
2632
2633	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634	if (!adapter->tx_ring)
2635		goto err;
2636	adapter->tx_ring->count = adapter->tx_ring_count;
2637	adapter->tx_ring->adapter = adapter;
2638
2639	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640	if (!adapter->rx_ring)
2641		goto err;
2642	adapter->rx_ring->count = adapter->rx_ring_count;
2643	adapter->rx_ring->adapter = adapter;
2644
2645	return 0;
2646err:
2647	e_err("Unable to allocate memory for queues\n");
2648	kfree(adapter->rx_ring);
2649	kfree(adapter->tx_ring);
2650	return -ENOMEM;
2651}
2652
2653/**
2654 * e1000e_poll - NAPI Rx polling callback
2655 * @napi: struct associated with this polling callback
2656 * @budget: number of packets driver is allowed to process this poll
2657 **/
2658static int e1000e_poll(struct napi_struct *napi, int budget)
2659{
2660	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661						     napi);
2662	struct e1000_hw *hw = &adapter->hw;
2663	struct net_device *poll_dev = adapter->netdev;
2664	int tx_cleaned = 1, work_done = 0;
2665
2666	adapter = netdev_priv(poll_dev);
2667
2668	if (!adapter->msix_entries ||
2669	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674	if (!tx_cleaned || work_done == budget)
2675		return budget;
2676
2677	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678	 * poll us due to busy-polling
2679	 */
2680	if (likely(napi_complete_done(napi, work_done))) {
2681		if (adapter->itr_setting & 3)
2682			e1000_set_itr(adapter);
2683		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684			if (adapter->msix_entries)
2685				ew32(IMS, adapter->rx_ring->ims_val);
2686			else
2687				e1000_irq_enable(adapter);
2688		}
2689	}
2690
2691	return work_done;
2692}
2693
2694static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695				 __always_unused __be16 proto, u16 vid)
2696{
2697	struct e1000_adapter *adapter = netdev_priv(netdev);
2698	struct e1000_hw *hw = &adapter->hw;
2699	u32 vfta, index;
2700
2701	/* don't update vlan cookie if already programmed */
2702	if ((adapter->hw.mng_cookie.status &
2703	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704	    (vid == adapter->mng_vlan_id))
2705		return 0;
2706
2707	/* add VID to filter table */
2708	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709		index = (vid >> 5) & 0x7F;
2710		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711		vfta |= BIT((vid & 0x1F));
2712		hw->mac.ops.write_vfta(hw, index, vfta);
2713	}
2714
2715	set_bit(vid, adapter->active_vlans);
2716
2717	return 0;
2718}
2719
2720static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721				  __always_unused __be16 proto, u16 vid)
2722{
2723	struct e1000_adapter *adapter = netdev_priv(netdev);
2724	struct e1000_hw *hw = &adapter->hw;
2725	u32 vfta, index;
2726
2727	if ((adapter->hw.mng_cookie.status &
2728	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729	    (vid == adapter->mng_vlan_id)) {
2730		/* release control to f/w */
2731		e1000e_release_hw_control(adapter);
2732		return 0;
2733	}
2734
2735	/* remove VID from filter table */
2736	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737		index = (vid >> 5) & 0x7F;
2738		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739		vfta &= ~BIT((vid & 0x1F));
2740		hw->mac.ops.write_vfta(hw, index, vfta);
2741	}
2742
2743	clear_bit(vid, adapter->active_vlans);
2744
2745	return 0;
2746}
2747
2748/**
2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750 * @adapter: board private structure to initialize
2751 **/
2752static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753{
2754	struct net_device *netdev = adapter->netdev;
2755	struct e1000_hw *hw = &adapter->hw;
2756	u32 rctl;
2757
2758	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759		/* disable VLAN receive filtering */
2760		rctl = er32(RCTL);
2761		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762		ew32(RCTL, rctl);
2763
2764		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766					       adapter->mng_vlan_id);
2767			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768		}
2769	}
2770}
2771
2772/**
2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774 * @adapter: board private structure to initialize
2775 **/
2776static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777{
2778	struct e1000_hw *hw = &adapter->hw;
2779	u32 rctl;
2780
2781	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782		/* enable VLAN receive filtering */
2783		rctl = er32(RCTL);
2784		rctl |= E1000_RCTL_VFE;
2785		rctl &= ~E1000_RCTL_CFIEN;
2786		ew32(RCTL, rctl);
2787	}
2788}
2789
2790/**
2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792 * @adapter: board private structure to initialize
2793 **/
2794static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795{
2796	struct e1000_hw *hw = &adapter->hw;
2797	u32 ctrl;
2798
2799	/* disable VLAN tag insert/strip */
2800	ctrl = er32(CTRL);
2801	ctrl &= ~E1000_CTRL_VME;
2802	ew32(CTRL, ctrl);
2803}
2804
2805/**
2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807 * @adapter: board private structure to initialize
2808 **/
2809static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810{
2811	struct e1000_hw *hw = &adapter->hw;
2812	u32 ctrl;
2813
2814	/* enable VLAN tag insert/strip */
2815	ctrl = er32(CTRL);
2816	ctrl |= E1000_CTRL_VME;
2817	ew32(CTRL, ctrl);
2818}
2819
2820static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821{
2822	struct net_device *netdev = adapter->netdev;
2823	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824	u16 old_vid = adapter->mng_vlan_id;
2825
2826	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828		adapter->mng_vlan_id = vid;
2829	}
2830
2831	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833}
2834
2835static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836{
2837	u16 vid;
2838
2839	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843}
2844
2845static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846{
2847	struct e1000_hw *hw = &adapter->hw;
2848	u32 manc, manc2h, mdef, i, j;
2849
2850	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851		return;
2852
2853	manc = er32(MANC);
2854
2855	/* enable receiving management packets to the host. this will probably
2856	 * generate destination unreachable messages from the host OS, but
2857	 * the packets will be handled on SMBUS
2858	 */
2859	manc |= E1000_MANC_EN_MNG2HOST;
2860	manc2h = er32(MANC2H);
2861
2862	switch (hw->mac.type) {
2863	default:
2864		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865		break;
2866	case e1000_82574:
2867	case e1000_82583:
2868		/* Check if IPMI pass-through decision filter already exists;
2869		 * if so, enable it.
2870		 */
2871		for (i = 0, j = 0; i < 8; i++) {
2872			mdef = er32(MDEF(i));
2873
2874			/* Ignore filters with anything other than IPMI ports */
2875			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876				continue;
2877
2878			/* Enable this decision filter in MANC2H */
2879			if (mdef)
2880				manc2h |= BIT(i);
2881
2882			j |= mdef;
2883		}
2884
2885		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886			break;
2887
2888		/* Create new decision filter in an empty filter */
2889		for (i = 0, j = 0; i < 8; i++)
2890			if (er32(MDEF(i)) == 0) {
2891				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892					       E1000_MDEF_PORT_664));
2893				manc2h |= BIT(1);
2894				j++;
2895				break;
2896			}
2897
2898		if (!j)
2899			e_warn("Unable to create IPMI pass-through filter\n");
2900		break;
2901	}
2902
2903	ew32(MANC2H, manc2h);
2904	ew32(MANC, manc);
2905}
2906
2907/**
2908 * e1000_configure_tx - Configure Transmit Unit after Reset
2909 * @adapter: board private structure
2910 *
2911 * Configure the Tx unit of the MAC after a reset.
2912 **/
2913static void e1000_configure_tx(struct e1000_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	struct e1000_ring *tx_ring = adapter->tx_ring;
2917	u64 tdba;
2918	u32 tdlen, tctl, tarc;
2919
2920	/* Setup the HW Tx Head and Tail descriptor pointers */
2921	tdba = tx_ring->dma;
2922	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924	ew32(TDBAH(0), (tdba >> 32));
2925	ew32(TDLEN(0), tdlen);
2926	ew32(TDH(0), 0);
2927	ew32(TDT(0), 0);
2928	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
 
2931	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932		e1000e_update_tdt_wa(tx_ring, 0);
 
 
2933
2934	/* Set the Tx Interrupt Delay register */
2935	ew32(TIDV, adapter->tx_int_delay);
2936	/* Tx irq moderation */
2937	ew32(TADV, adapter->tx_abs_int_delay);
2938
2939	if (adapter->flags2 & FLAG2_DMA_BURST) {
2940		u32 txdctl = er32(TXDCTL(0));
2941
2942		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943			    E1000_TXDCTL_WTHRESH);
2944		/* set up some performance related parameters to encourage the
2945		 * hardware to use the bus more efficiently in bursts, depends
2946		 * on the tx_int_delay to be enabled,
2947		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948		 * hthresh = 1 ==> prefetch when one or more available
2949		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950		 * BEWARE: this seems to work but should be considered first if
2951		 * there are Tx hangs or other Tx related bugs
2952		 */
2953		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954		ew32(TXDCTL(0), txdctl);
2955	}
2956	/* erratum work around: set txdctl the same for both queues */
2957	ew32(TXDCTL(1), er32(TXDCTL(0)));
2958
2959	/* Program the Transmit Control Register */
2960	tctl = er32(TCTL);
2961	tctl &= ~E1000_TCTL_CT;
2962	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964
2965	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966		tarc = er32(TARC(0));
2967		/* set the speed mode bit, we'll clear it if we're not at
2968		 * gigabit link later
2969		 */
2970#define SPEED_MODE_BIT BIT(21)
2971		tarc |= SPEED_MODE_BIT;
2972		ew32(TARC(0), tarc);
2973	}
2974
2975	/* errata: program both queues to unweighted RR */
2976	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977		tarc = er32(TARC(0));
2978		tarc |= 1;
2979		ew32(TARC(0), tarc);
2980		tarc = er32(TARC(1));
2981		tarc |= 1;
2982		ew32(TARC(1), tarc);
2983	}
2984
2985	/* Setup Transmit Descriptor Settings for eop descriptor */
2986	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987
2988	/* only set IDE if we are delaying interrupts using the timers */
2989	if (adapter->tx_int_delay)
2990		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991
2992	/* enable Report Status bit */
2993	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994
2995	ew32(TCTL, tctl);
2996
2997	hw->mac.ops.config_collision_dist(hw);
2998
2999	/* SPT and KBL Si errata workaround to avoid data corruption */
3000	if (hw->mac.type == e1000_pch_spt) {
3001		u32 reg_val;
3002
3003		reg_val = er32(IOSFPC);
3004		reg_val |= E1000_RCTL_RDMTS_HEX;
3005		ew32(IOSFPC, reg_val);
3006
3007		reg_val = er32(TARC(0));
3008		/* SPT and KBL Si errata workaround to avoid Tx hang.
3009		 * Dropping the number of outstanding requests from
3010		 * 3 to 2 in order to avoid a buffer overrun.
3011		 */
3012		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014		ew32(TARC(0), reg_val);
3015	}
3016}
3017
3018#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020
3021/**
3022 * e1000_setup_rctl - configure the receive control registers
3023 * @adapter: Board private structure
3024 **/
3025static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026{
3027	struct e1000_hw *hw = &adapter->hw;
3028	u32 rctl, rfctl;
3029	u32 pages = 0;
3030
3031	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3032	 * If jumbo frames not set, program related MAC/PHY registers
3033	 * to h/w defaults
3034	 */
3035	if (hw->mac.type >= e1000_pch2lan) {
3036		s32 ret_val;
3037
3038		if (adapter->netdev->mtu > ETH_DATA_LEN)
3039			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040		else
3041			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043		if (ret_val)
3044			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045	}
3046
3047	/* Program MC offset vector base */
3048	rctl = er32(RCTL);
3049	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054	/* Do not Store bad packets */
3055	rctl &= ~E1000_RCTL_SBP;
3056
3057	/* Enable Long Packet receive */
3058	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059		rctl &= ~E1000_RCTL_LPE;
3060	else
3061		rctl |= E1000_RCTL_LPE;
3062
3063	/* Some systems expect that the CRC is included in SMBUS traffic. The
3064	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065	 * host memory when this is enabled
3066	 */
3067	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068		rctl |= E1000_RCTL_SECRC;
3069
3070	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072		u16 phy_data;
3073
3074		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075		phy_data &= 0xfff8;
3076		phy_data |= BIT(2);
3077		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079		e1e_rphy(hw, 22, &phy_data);
3080		phy_data &= 0x0fff;
3081		phy_data |= BIT(14);
3082		e1e_wphy(hw, 0x10, 0x2823);
3083		e1e_wphy(hw, 0x11, 0x0003);
3084		e1e_wphy(hw, 22, phy_data);
3085	}
3086
3087	/* Setup buffer sizes */
3088	rctl &= ~E1000_RCTL_SZ_4096;
3089	rctl |= E1000_RCTL_BSEX;
3090	switch (adapter->rx_buffer_len) {
3091	case 2048:
3092	default:
3093		rctl |= E1000_RCTL_SZ_2048;
3094		rctl &= ~E1000_RCTL_BSEX;
3095		break;
3096	case 4096:
3097		rctl |= E1000_RCTL_SZ_4096;
3098		break;
3099	case 8192:
3100		rctl |= E1000_RCTL_SZ_8192;
3101		break;
3102	case 16384:
3103		rctl |= E1000_RCTL_SZ_16384;
3104		break;
3105	}
3106
3107	/* Enable Extended Status in all Receive Descriptors */
3108	rfctl = er32(RFCTL);
3109	rfctl |= E1000_RFCTL_EXTEN;
3110	ew32(RFCTL, rfctl);
3111
3112	/* 82571 and greater support packet-split where the protocol
3113	 * header is placed in skb->data and the packet data is
3114	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115	 * In the case of a non-split, skb->data is linearly filled,
3116	 * followed by the page buffers.  Therefore, skb->data is
3117	 * sized to hold the largest protocol header.
3118	 *
3119	 * allocations using alloc_page take too long for regular MTU
3120	 * so only enable packet split for jumbo frames
3121	 *
3122	 * Using pages when the page size is greater than 16k wastes
3123	 * a lot of memory, since we allocate 3 pages at all times
3124	 * per packet.
3125	 */
3126	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128		adapter->rx_ps_pages = pages;
3129	else
3130		adapter->rx_ps_pages = 0;
3131
3132	if (adapter->rx_ps_pages) {
3133		u32 psrctl = 0;
3134
3135		/* Enable Packet split descriptors */
3136		rctl |= E1000_RCTL_DTYP_PS;
3137
3138		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140		switch (adapter->rx_ps_pages) {
3141		case 3:
3142			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143			fallthrough;
3144		case 2:
3145			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146			fallthrough;
3147		case 1:
3148			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149			break;
3150		}
3151
3152		ew32(PSRCTL, psrctl);
3153	}
3154
3155	/* This is useful for sniffing bad packets. */
3156	if (adapter->netdev->features & NETIF_F_RXALL) {
3157		/* UPE and MPE will be handled by normal PROMISC logic
3158		 * in e1000e_set_rx_mode
3159		 */
3160		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3161			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3162			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3163
3164		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3165			  E1000_RCTL_DPF |	/* Allow filtered pause */
3166			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3167		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168		 * and that breaks VLANs.
3169		 */
3170	}
3171
3172	ew32(RCTL, rctl);
3173	/* just started the receive unit, no need to restart */
3174	adapter->flags &= ~FLAG_RESTART_NOW;
3175}
3176
3177/**
3178 * e1000_configure_rx - Configure Receive Unit after Reset
3179 * @adapter: board private structure
3180 *
3181 * Configure the Rx unit of the MAC after a reset.
3182 **/
3183static void e1000_configure_rx(struct e1000_adapter *adapter)
3184{
3185	struct e1000_hw *hw = &adapter->hw;
3186	struct e1000_ring *rx_ring = adapter->rx_ring;
3187	u64 rdba;
3188	u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190	if (adapter->rx_ps_pages) {
3191		/* this is a 32 byte descriptor */
3192		rdlen = rx_ring->count *
3193		    sizeof(union e1000_rx_desc_packet_split);
3194		adapter->clean_rx = e1000_clean_rx_irq_ps;
3195		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200	} else {
3201		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202		adapter->clean_rx = e1000_clean_rx_irq;
3203		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204	}
3205
3206	/* disable receives while setting up the descriptors */
3207	rctl = er32(RCTL);
3208	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210	e1e_flush();
3211	usleep_range(10000, 11000);
3212
3213	if (adapter->flags2 & FLAG2_DMA_BURST) {
3214		/* set the writeback threshold (only takes effect if the RDTR
3215		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216		 * enable prefetching of 0x20 Rx descriptors
3217		 * granularity = 01
3218		 * wthresh = 04,
3219		 * hthresh = 04,
3220		 * pthresh = 0x20
3221		 */
3222		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224	}
3225
3226	/* set the Receive Delay Timer Register */
3227	ew32(RDTR, adapter->rx_int_delay);
3228
3229	/* irq moderation */
3230	ew32(RADV, adapter->rx_abs_int_delay);
3231	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232		e1000e_write_itr(adapter, adapter->itr);
3233
3234	ctrl_ext = er32(CTRL_EXT);
3235	/* Auto-Mask interrupts upon ICR access */
3236	ctrl_ext |= E1000_CTRL_EXT_IAME;
3237	ew32(IAM, 0xffffffff);
3238	ew32(CTRL_EXT, ctrl_ext);
3239	e1e_flush();
3240
3241	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3242	 * the Base and Length of the Rx Descriptor Ring
3243	 */
3244	rdba = rx_ring->dma;
3245	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246	ew32(RDBAH(0), (rdba >> 32));
3247	ew32(RDLEN(0), rdlen);
3248	ew32(RDH(0), 0);
3249	ew32(RDT(0), 0);
3250	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252
 
3253	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254		e1000e_update_rdt_wa(rx_ring, 0);
 
 
3255
3256	/* Enable Receive Checksum Offload for TCP and UDP */
3257	rxcsum = er32(RXCSUM);
3258	if (adapter->netdev->features & NETIF_F_RXCSUM)
3259		rxcsum |= E1000_RXCSUM_TUOFL;
3260	else
3261		rxcsum &= ~E1000_RXCSUM_TUOFL;
3262	ew32(RXCSUM, rxcsum);
3263
3264	/* With jumbo frames, excessive C-state transition latencies result
3265	 * in dropped transactions.
3266	 */
3267	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268		u32 lat =
3269		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270		     adapter->max_frame_size) * 8 / 1000;
3271
3272		if (adapter->flags & FLAG_IS_ICH) {
3273			u32 rxdctl = er32(RXDCTL(0));
3274
3275			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276		}
3277
3278		dev_info(&adapter->pdev->dev,
3279			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281	} else {
3282		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283					       PM_QOS_DEFAULT_VALUE);
3284	}
3285
3286	/* Enable Receives */
3287	ew32(RCTL, rctl);
3288}
3289
3290/**
3291 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292 * @netdev: network interface device structure
3293 *
3294 * Writes multicast address list to the MTA hash table.
3295 * Returns: -ENOMEM on failure
3296 *                0 on no addresses written
3297 *                X on writing X addresses to MTA
3298 */
3299static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300{
3301	struct e1000_adapter *adapter = netdev_priv(netdev);
3302	struct e1000_hw *hw = &adapter->hw;
3303	struct netdev_hw_addr *ha;
3304	u8 *mta_list;
3305	int i;
3306
3307	if (netdev_mc_empty(netdev)) {
3308		/* nothing to program, so clear mc list */
3309		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310		return 0;
3311	}
3312
3313	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314	if (!mta_list)
3315		return -ENOMEM;
3316
3317	/* update_mc_addr_list expects a packed array of only addresses. */
3318	i = 0;
3319	netdev_for_each_mc_addr(ha, netdev)
3320	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321
3322	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323	kfree(mta_list);
3324
3325	return netdev_mc_count(netdev);
3326}
3327
3328/**
3329 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330 * @netdev: network interface device structure
3331 *
3332 * Writes unicast address list to the RAR table.
3333 * Returns: -ENOMEM on failure/insufficient address space
3334 *                0 on no addresses written
3335 *                X on writing X addresses to the RAR table
3336 **/
3337static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338{
3339	struct e1000_adapter *adapter = netdev_priv(netdev);
3340	struct e1000_hw *hw = &adapter->hw;
3341	unsigned int rar_entries;
3342	int count = 0;
3343
3344	rar_entries = hw->mac.ops.rar_get_count(hw);
3345
3346	/* save a rar entry for our hardware address */
3347	rar_entries--;
3348
3349	/* save a rar entry for the LAA workaround */
3350	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351		rar_entries--;
3352
3353	/* return ENOMEM indicating insufficient memory for addresses */
3354	if (netdev_uc_count(netdev) > rar_entries)
3355		return -ENOMEM;
3356
3357	if (!netdev_uc_empty(netdev) && rar_entries) {
3358		struct netdev_hw_addr *ha;
3359
3360		/* write the addresses in reverse order to avoid write
3361		 * combining
3362		 */
3363		netdev_for_each_uc_addr(ha, netdev) {
3364			int ret_val;
3365
3366			if (!rar_entries)
3367				break;
3368			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369			if (ret_val < 0)
3370				return -ENOMEM;
3371			count++;
3372		}
3373	}
3374
3375	/* zero out the remaining RAR entries not used above */
3376	for (; rar_entries > 0; rar_entries--) {
3377		ew32(RAH(rar_entries), 0);
3378		ew32(RAL(rar_entries), 0);
3379	}
3380	e1e_flush();
3381
3382	return count;
3383}
3384
3385/**
3386 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387 * @netdev: network interface device structure
3388 *
3389 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390 * address list or the network interface flags are updated.  This routine is
3391 * responsible for configuring the hardware for proper unicast, multicast,
3392 * promiscuous mode, and all-multi behavior.
3393 **/
3394static void e1000e_set_rx_mode(struct net_device *netdev)
3395{
3396	struct e1000_adapter *adapter = netdev_priv(netdev);
3397	struct e1000_hw *hw = &adapter->hw;
3398	u32 rctl;
3399
3400	if (pm_runtime_suspended(netdev->dev.parent))
3401		return;
3402
3403	/* Check for Promiscuous and All Multicast modes */
3404	rctl = er32(RCTL);
3405
3406	/* clear the affected bits */
3407	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408
3409	if (netdev->flags & IFF_PROMISC) {
3410		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411		/* Do not hardware filter VLANs in promisc mode */
3412		e1000e_vlan_filter_disable(adapter);
3413	} else {
3414		int count;
3415
3416		if (netdev->flags & IFF_ALLMULTI) {
3417			rctl |= E1000_RCTL_MPE;
3418		} else {
3419			/* Write addresses to the MTA, if the attempt fails
3420			 * then we should just turn on promiscuous mode so
3421			 * that we can at least receive multicast traffic
3422			 */
3423			count = e1000e_write_mc_addr_list(netdev);
3424			if (count < 0)
3425				rctl |= E1000_RCTL_MPE;
3426		}
3427		e1000e_vlan_filter_enable(adapter);
3428		/* Write addresses to available RAR registers, if there is not
3429		 * sufficient space to store all the addresses then enable
3430		 * unicast promiscuous mode
3431		 */
3432		count = e1000e_write_uc_addr_list(netdev);
3433		if (count < 0)
3434			rctl |= E1000_RCTL_UPE;
3435	}
3436
3437	ew32(RCTL, rctl);
3438
3439	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440		e1000e_vlan_strip_enable(adapter);
3441	else
3442		e1000e_vlan_strip_disable(adapter);
3443}
3444
3445static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446{
3447	struct e1000_hw *hw = &adapter->hw;
3448	u32 mrqc, rxcsum;
3449	u32 rss_key[10];
3450	int i;
3451
3452	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453	for (i = 0; i < 10; i++)
3454		ew32(RSSRK(i), rss_key[i]);
3455
3456	/* Direct all traffic to queue 0 */
3457	for (i = 0; i < 32; i++)
3458		ew32(RETA(i), 0);
3459
3460	/* Disable raw packet checksumming so that RSS hash is placed in
3461	 * descriptor on writeback.
3462	 */
3463	rxcsum = er32(RXCSUM);
3464	rxcsum |= E1000_RXCSUM_PCSD;
3465
3466	ew32(RXCSUM, rxcsum);
3467
3468	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470		E1000_MRQC_RSS_FIELD_IPV6 |
3471		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473
3474	ew32(MRQC, mrqc);
3475}
3476
3477/**
3478 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479 * @adapter: board private structure
3480 * @timinca: pointer to returned time increment attributes
3481 *
3482 * Get attributes for incrementing the System Time Register SYSTIML/H at
3483 * the default base frequency, and set the cyclecounter shift value.
3484 **/
3485s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486{
3487	struct e1000_hw *hw = &adapter->hw;
3488	u32 incvalue, incperiod, shift;
3489
3490	/* Make sure clock is enabled on I217/I218/I219  before checking
3491	 * the frequency
3492	 */
3493	if ((hw->mac.type >= e1000_pch_lpt) &&
3494	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496		u32 fextnvm7 = er32(FEXTNVM7);
3497
3498		if (!(fextnvm7 & BIT(0))) {
3499			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500			e1e_flush();
3501		}
3502	}
3503
3504	switch (hw->mac.type) {
3505	case e1000_pch2lan:
3506		/* Stable 96MHz frequency */
3507		incperiod = INCPERIOD_96MHZ;
3508		incvalue = INCVALUE_96MHZ;
3509		shift = INCVALUE_SHIFT_96MHZ;
3510		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511		break;
3512	case e1000_pch_lpt:
3513		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514			/* Stable 96MHz frequency */
3515			incperiod = INCPERIOD_96MHZ;
3516			incvalue = INCVALUE_96MHZ;
3517			shift = INCVALUE_SHIFT_96MHZ;
3518			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519		} else {
3520			/* Stable 25MHz frequency */
3521			incperiod = INCPERIOD_25MHZ;
3522			incvalue = INCVALUE_25MHZ;
3523			shift = INCVALUE_SHIFT_25MHZ;
3524			adapter->cc.shift = shift;
3525		}
3526		break;
3527	case e1000_pch_spt:
3528		/* Stable 24MHz frequency */
3529		incperiod = INCPERIOD_24MHZ;
3530		incvalue = INCVALUE_24MHZ;
3531		shift = INCVALUE_SHIFT_24MHZ;
3532		adapter->cc.shift = shift;
3533		break;
3534	case e1000_pch_cnp:
3535	case e1000_pch_tgp:
3536	case e1000_pch_adp:
3537	case e1000_pch_mtp:
3538	case e1000_pch_lnp:
3539	case e1000_pch_ptp:
3540	case e1000_pch_nvp:
3541		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542			/* Stable 24MHz frequency */
3543			incperiod = INCPERIOD_24MHZ;
3544			incvalue = INCVALUE_24MHZ;
3545			shift = INCVALUE_SHIFT_24MHZ;
3546			adapter->cc.shift = shift;
3547		} else {
3548			/* Stable 38400KHz frequency */
3549			incperiod = INCPERIOD_38400KHZ;
3550			incvalue = INCVALUE_38400KHZ;
3551			shift = INCVALUE_SHIFT_38400KHZ;
3552			adapter->cc.shift = shift;
3553		}
3554		break;
3555	case e1000_82574:
3556	case e1000_82583:
3557		/* Stable 25MHz frequency */
3558		incperiod = INCPERIOD_25MHZ;
3559		incvalue = INCVALUE_25MHZ;
3560		shift = INCVALUE_SHIFT_25MHZ;
3561		adapter->cc.shift = shift;
3562		break;
3563	default:
3564		return -EINVAL;
3565	}
3566
3567	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3568		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569
3570	return 0;
3571}
3572
3573/**
3574 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575 * @adapter: board private structure
3576 * @config: timestamp configuration
3577 *
3578 * Outgoing time stamping can be enabled and disabled. Play nice and
3579 * disable it when requested, although it shouldn't cause any overhead
3580 * when no packet needs it. At most one packet in the queue may be
3581 * marked for time stamping, otherwise it would be impossible to tell
3582 * for sure to which packet the hardware time stamp belongs.
3583 *
3584 * Incoming time stamping has to be configured via the hardware filters.
3585 * Not all combinations are supported, in particular event type has to be
3586 * specified. Matching the kind of event packet is not supported, with the
3587 * exception of "all V2 events regardless of level 2 or 4".
3588 **/
3589static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3590				  struct hwtstamp_config *config)
3591{
3592	struct e1000_hw *hw = &adapter->hw;
3593	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3594	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3595	u32 rxmtrl = 0;
3596	u16 rxudp = 0;
3597	bool is_l4 = false;
3598	bool is_l2 = false;
3599	u32 regval;
3600
3601	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3602		return -EINVAL;
3603
3604	switch (config->tx_type) {
3605	case HWTSTAMP_TX_OFF:
3606		tsync_tx_ctl = 0;
3607		break;
3608	case HWTSTAMP_TX_ON:
3609		break;
3610	default:
3611		return -ERANGE;
3612	}
3613
3614	switch (config->rx_filter) {
3615	case HWTSTAMP_FILTER_NONE:
3616		tsync_rx_ctl = 0;
3617		break;
3618	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621		is_l4 = true;
3622		break;
3623	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626		is_l4 = true;
3627		break;
3628	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629		/* Also time stamps V2 L2 Path Delay Request/Response */
3630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632		is_l2 = true;
3633		break;
3634	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635		/* Also time stamps V2 L2 Path Delay Request/Response. */
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638		is_l2 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641		/* Hardware cannot filter just V2 L4 Sync messages */
3642		fallthrough;
3643	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3644		/* Also time stamps V2 Path Delay Request/Response. */
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647		is_l2 = true;
3648		is_l4 = true;
3649		break;
3650	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3651		/* Hardware cannot filter just V2 L4 Delay Request messages */
3652		fallthrough;
3653	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654		/* Also time stamps V2 Path Delay Request/Response. */
3655		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657		is_l2 = true;
3658		is_l4 = true;
3659		break;
3660	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3663		fallthrough;
3664	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667		is_l2 = true;
3668		is_l4 = true;
3669		break;
3670	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671		/* For V1, the hardware can only filter Sync messages or
3672		 * Delay Request messages but not both so fall-through to
3673		 * time stamp all packets.
3674		 */
3675		fallthrough;
3676	case HWTSTAMP_FILTER_NTP_ALL:
3677	case HWTSTAMP_FILTER_ALL:
3678		is_l2 = true;
3679		is_l4 = true;
3680		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3681		config->rx_filter = HWTSTAMP_FILTER_ALL;
3682		break;
3683	default:
3684		return -ERANGE;
3685	}
3686
3687	adapter->hwtstamp_config = *config;
3688
3689	/* enable/disable Tx h/w time stamping */
3690	regval = er32(TSYNCTXCTL);
3691	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3692	regval |= tsync_tx_ctl;
3693	ew32(TSYNCTXCTL, regval);
3694	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3695	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3696		e_err("Timesync Tx Control register not set as expected\n");
3697		return -EAGAIN;
3698	}
3699
3700	/* enable/disable Rx h/w time stamping */
3701	regval = er32(TSYNCRXCTL);
3702	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3703	regval |= tsync_rx_ctl;
3704	ew32(TSYNCRXCTL, regval);
3705	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3706				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3707	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3708		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3709		e_err("Timesync Rx Control register not set as expected\n");
3710		return -EAGAIN;
3711	}
3712
3713	/* L2: define ethertype filter for time stamped packets */
3714	if (is_l2)
3715		rxmtrl |= ETH_P_1588;
3716
3717	/* define which PTP packets get time stamped */
3718	ew32(RXMTRL, rxmtrl);
3719
3720	/* Filter by destination port */
3721	if (is_l4) {
3722		rxudp = PTP_EV_PORT;
3723		cpu_to_be16s(&rxudp);
3724	}
3725	ew32(RXUDP, rxudp);
3726
3727	e1e_flush();
3728
3729	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3730	er32(RXSTMPH);
3731	er32(TXSTMPH);
3732
3733	return 0;
3734}
3735
3736/**
3737 * e1000_configure - configure the hardware for Rx and Tx
3738 * @adapter: private board structure
3739 **/
3740static void e1000_configure(struct e1000_adapter *adapter)
3741{
3742	struct e1000_ring *rx_ring = adapter->rx_ring;
3743
3744	e1000e_set_rx_mode(adapter->netdev);
3745
3746	e1000_restore_vlan(adapter);
3747	e1000_init_manageability_pt(adapter);
3748
3749	e1000_configure_tx(adapter);
3750
3751	if (adapter->netdev->features & NETIF_F_RXHASH)
3752		e1000e_setup_rss_hash(adapter);
3753	e1000_setup_rctl(adapter);
3754	e1000_configure_rx(adapter);
3755	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3756}
3757
3758/**
3759 * e1000e_power_up_phy - restore link in case the phy was powered down
3760 * @adapter: address of board private structure
3761 *
3762 * The phy may be powered down to save power and turn off link when the
3763 * driver is unloaded and wake on lan is not enabled (among others)
3764 * *** this routine MUST be followed by a call to e1000e_reset ***
3765 **/
3766void e1000e_power_up_phy(struct e1000_adapter *adapter)
3767{
3768	if (adapter->hw.phy.ops.power_up)
3769		adapter->hw.phy.ops.power_up(&adapter->hw);
3770
3771	adapter->hw.mac.ops.setup_link(&adapter->hw);
3772}
3773
3774/**
3775 * e1000_power_down_phy - Power down the PHY
3776 * @adapter: board private structure
3777 *
3778 * Power down the PHY so no link is implied when interface is down.
3779 * The PHY cannot be powered down if management or WoL is active.
3780 */
3781static void e1000_power_down_phy(struct e1000_adapter *adapter)
3782{
3783	if (adapter->hw.phy.ops.power_down)
3784		adapter->hw.phy.ops.power_down(&adapter->hw);
3785}
3786
3787/**
3788 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789 * @adapter: board private structure
3790 *
3791 * We want to clear all pending descriptors from the TX ring.
3792 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793 * the data of the next descriptor. We don't care about the data we are about
3794 * to reset the HW.
3795 */
3796static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797{
3798	struct e1000_hw *hw = &adapter->hw;
3799	struct e1000_ring *tx_ring = adapter->tx_ring;
3800	struct e1000_tx_desc *tx_desc = NULL;
3801	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802	u16 size = 512;
3803
3804	tctl = er32(TCTL);
3805	ew32(TCTL, tctl | E1000_TCTL_EN);
3806	tdt = er32(TDT(0));
3807	BUG_ON(tdt != tx_ring->next_to_use);
3808	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3810
3811	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812	tx_desc->upper.data = 0;
3813	/* flush descriptors to memory before notifying the HW */
3814	wmb();
3815	tx_ring->next_to_use++;
3816	if (tx_ring->next_to_use == tx_ring->count)
3817		tx_ring->next_to_use = 0;
3818	ew32(TDT(0), tx_ring->next_to_use);
3819	usleep_range(200, 250);
3820}
3821
3822/**
3823 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824 * @adapter: board private structure
3825 *
3826 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3827 */
3828static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3829{
3830	u32 rctl, rxdctl;
3831	struct e1000_hw *hw = &adapter->hw;
3832
3833	rctl = er32(RCTL);
3834	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3835	e1e_flush();
3836	usleep_range(100, 150);
3837
3838	rxdctl = er32(RXDCTL(0));
3839	/* zero the lower 14 bits (prefetch and host thresholds) */
3840	rxdctl &= 0xffffc000;
3841
3842	/* update thresholds: prefetch threshold to 31, host threshold to 1
3843	 * and make sure the granularity is "descriptors" and not "cache lines"
3844	 */
3845	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3846
3847	ew32(RXDCTL(0), rxdctl);
3848	/* momentarily enable the RX ring for the changes to take effect */
3849	ew32(RCTL, rctl | E1000_RCTL_EN);
3850	e1e_flush();
3851	usleep_range(100, 150);
3852	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853}
3854
3855/**
3856 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857 * @adapter: board private structure
3858 *
3859 * In i219, the descriptor rings must be emptied before resetting the HW
3860 * or before changing the device state to D3 during runtime (runtime PM).
3861 *
3862 * Failure to do this will cause the HW to enter a unit hang state which can
3863 * only be released by PCI reset on the device
3864 *
3865 */
3866
3867static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3868{
3869	u16 hang_state;
3870	u32 fext_nvm11, tdlen;
3871	struct e1000_hw *hw = &adapter->hw;
3872
3873	/* First, disable MULR fix in FEXTNVM11 */
3874	fext_nvm11 = er32(FEXTNVM11);
3875	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3876	ew32(FEXTNVM11, fext_nvm11);
3877	/* do nothing if we're not in faulty state, or if the queue is empty */
3878	tdlen = er32(TDLEN(0));
3879	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3880			     &hang_state);
3881	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3882		return;
3883	e1000_flush_tx_ring(adapter);
3884	/* recheck, maybe the fault is caused by the rx ring */
3885	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886			     &hang_state);
3887	if (hang_state & FLUSH_DESC_REQUIRED)
3888		e1000_flush_rx_ring(adapter);
3889}
3890
3891/**
3892 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893 * @adapter: board private structure
3894 *
3895 * When the MAC is reset, all hardware bits for timesync will be reset to the
3896 * default values. This function will restore the settings last in place.
3897 * Since the clock SYSTIME registers are reset, we will simply restore the
3898 * cyclecounter to the kernel real clock time.
3899 **/
3900static void e1000e_systim_reset(struct e1000_adapter *adapter)
3901{
3902	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3903	struct e1000_hw *hw = &adapter->hw;
3904	unsigned long flags;
3905	u32 timinca;
3906	s32 ret_val;
3907
3908	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3909		return;
3910
3911	if (info->adjfine) {
3912		/* restore the previous ptp frequency delta */
3913		ret_val = info->adjfine(info, adapter->ptp_delta);
3914	} else {
3915		/* set the default base frequency if no adjustment possible */
3916		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3917		if (!ret_val)
3918			ew32(TIMINCA, timinca);
3919	}
3920
3921	if (ret_val) {
3922		dev_warn(&adapter->pdev->dev,
3923			 "Failed to restore TIMINCA clock rate delta: %d\n",
3924			 ret_val);
3925		return;
3926	}
3927
3928	/* reset the systim ns time counter */
3929	spin_lock_irqsave(&adapter->systim_lock, flags);
3930	timecounter_init(&adapter->tc, &adapter->cc,
3931			 ktime_to_ns(ktime_get_real()));
3932	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3933
3934	/* restore the previous hwtstamp configuration settings */
3935	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3936}
3937
3938/**
3939 * e1000e_reset - bring the hardware into a known good state
3940 * @adapter: board private structure
3941 *
3942 * This function boots the hardware and enables some settings that
3943 * require a configuration cycle of the hardware - those cannot be
3944 * set/changed during runtime. After reset the device needs to be
3945 * properly configured for Rx, Tx etc.
3946 */
3947void e1000e_reset(struct e1000_adapter *adapter)
3948{
3949	struct e1000_mac_info *mac = &adapter->hw.mac;
3950	struct e1000_fc_info *fc = &adapter->hw.fc;
3951	struct e1000_hw *hw = &adapter->hw;
3952	u32 tx_space, min_tx_space, min_rx_space;
3953	u32 pba = adapter->pba;
3954	u16 hwm;
3955
3956	/* reset Packet Buffer Allocation to default */
3957	ew32(PBA, pba);
3958
3959	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3960		/* To maintain wire speed transmits, the Tx FIFO should be
3961		 * large enough to accommodate two full transmit packets,
3962		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3963		 * the Rx FIFO should be large enough to accommodate at least
3964		 * one full receive packet and is similarly rounded up and
3965		 * expressed in KB.
3966		 */
3967		pba = er32(PBA);
3968		/* upper 16 bits has Tx packet buffer allocation size in KB */
3969		tx_space = pba >> 16;
3970		/* lower 16 bits has Rx packet buffer allocation size in KB */
3971		pba &= 0xffff;
3972		/* the Tx fifo also stores 16 bytes of information about the Tx
3973		 * but don't include ethernet FCS because hardware appends it
3974		 */
3975		min_tx_space = (adapter->max_frame_size +
3976				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3977		min_tx_space = ALIGN(min_tx_space, 1024);
3978		min_tx_space >>= 10;
3979		/* software strips receive CRC, so leave room for it */
3980		min_rx_space = adapter->max_frame_size;
3981		min_rx_space = ALIGN(min_rx_space, 1024);
3982		min_rx_space >>= 10;
3983
3984		/* If current Tx allocation is less than the min Tx FIFO size,
3985		 * and the min Tx FIFO size is less than the current Rx FIFO
3986		 * allocation, take space away from current Rx allocation
3987		 */
3988		if ((tx_space < min_tx_space) &&
3989		    ((min_tx_space - tx_space) < pba)) {
3990			pba -= min_tx_space - tx_space;
3991
3992			/* if short on Rx space, Rx wins and must trump Tx
3993			 * adjustment
3994			 */
3995			if (pba < min_rx_space)
3996				pba = min_rx_space;
3997		}
3998
3999		ew32(PBA, pba);
4000	}
4001
4002	/* flow control settings
4003	 *
4004	 * The high water mark must be low enough to fit one full frame
4005	 * (or the size used for early receive) above it in the Rx FIFO.
4006	 * Set it to the lower of:
4007	 * - 90% of the Rx FIFO size, and
4008	 * - the full Rx FIFO size minus one full frame
4009	 */
4010	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4011		fc->pause_time = 0xFFFF;
4012	else
4013		fc->pause_time = E1000_FC_PAUSE_TIME;
4014	fc->send_xon = true;
4015	fc->current_mode = fc->requested_mode;
4016
4017	switch (hw->mac.type) {
4018	case e1000_ich9lan:
4019	case e1000_ich10lan:
4020		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4021			pba = 14;
4022			ew32(PBA, pba);
4023			fc->high_water = 0x2800;
4024			fc->low_water = fc->high_water - 8;
4025			break;
4026		}
4027		fallthrough;
4028	default:
4029		hwm = min(((pba << 10) * 9 / 10),
4030			  ((pba << 10) - adapter->max_frame_size));
4031
4032		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4033		fc->low_water = fc->high_water - 8;
4034		break;
4035	case e1000_pchlan:
4036		/* Workaround PCH LOM adapter hangs with certain network
4037		 * loads.  If hangs persist, try disabling Tx flow control.
4038		 */
4039		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040			fc->high_water = 0x3500;
4041			fc->low_water = 0x1500;
4042		} else {
4043			fc->high_water = 0x5000;
4044			fc->low_water = 0x3000;
4045		}
4046		fc->refresh_time = 0x1000;
4047		break;
4048	case e1000_pch2lan:
4049	case e1000_pch_lpt:
4050	case e1000_pch_spt:
4051	case e1000_pch_cnp:
4052	case e1000_pch_tgp:
4053	case e1000_pch_adp:
4054	case e1000_pch_mtp:
4055	case e1000_pch_lnp:
4056	case e1000_pch_ptp:
4057	case e1000_pch_nvp:
4058		fc->refresh_time = 0xFFFF;
4059		fc->pause_time = 0xFFFF;
4060
4061		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4062			fc->high_water = 0x05C20;
4063			fc->low_water = 0x05048;
4064			break;
4065		}
4066
4067		pba = 14;
4068		ew32(PBA, pba);
4069		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4070		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4071		break;
4072	}
4073
4074	/* Alignment of Tx data is on an arbitrary byte boundary with the
4075	 * maximum size per Tx descriptor limited only to the transmit
4076	 * allocation of the packet buffer minus 96 bytes with an upper
4077	 * limit of 24KB due to receive synchronization limitations.
4078	 */
4079	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4080				       24 << 10);
4081
4082	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4083	 * fit in receive buffer.
4084	 */
4085	if (adapter->itr_setting & 0x3) {
4086		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4087			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4088				dev_info(&adapter->pdev->dev,
4089					 "Interrupt Throttle Rate off\n");
4090				adapter->flags2 |= FLAG2_DISABLE_AIM;
4091				e1000e_write_itr(adapter, 0);
4092			}
4093		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4094			dev_info(&adapter->pdev->dev,
4095				 "Interrupt Throttle Rate on\n");
4096			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4097			adapter->itr = 20000;
4098			e1000e_write_itr(adapter, adapter->itr);
4099		}
4100	}
4101
4102	if (hw->mac.type >= e1000_pch_spt)
4103		e1000_flush_desc_rings(adapter);
4104	/* Allow time for pending master requests to run */
4105	mac->ops.reset_hw(hw);
4106
4107	/* For parts with AMT enabled, let the firmware know
4108	 * that the network interface is in control
4109	 */
4110	if (adapter->flags & FLAG_HAS_AMT)
4111		e1000e_get_hw_control(adapter);
4112
4113	ew32(WUC, 0);
4114
4115	if (mac->ops.init_hw(hw))
4116		e_err("Hardware Error\n");
4117
4118	e1000_update_mng_vlan(adapter);
4119
4120	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4121	ew32(VET, ETH_P_8021Q);
4122
4123	e1000e_reset_adaptive(hw);
4124
4125	/* restore systim and hwtstamp settings */
4126	e1000e_systim_reset(adapter);
4127
4128	/* Set EEE advertisement as appropriate */
4129	if (adapter->flags2 & FLAG2_HAS_EEE) {
4130		s32 ret_val;
4131		u16 adv_addr;
4132
4133		switch (hw->phy.type) {
4134		case e1000_phy_82579:
4135			adv_addr = I82579_EEE_ADVERTISEMENT;
4136			break;
4137		case e1000_phy_i217:
4138			adv_addr = I217_EEE_ADVERTISEMENT;
4139			break;
4140		default:
4141			dev_err(&adapter->pdev->dev,
4142				"Invalid PHY type setting EEE advertisement\n");
4143			return;
4144		}
4145
4146		ret_val = hw->phy.ops.acquire(hw);
4147		if (ret_val) {
4148			dev_err(&adapter->pdev->dev,
4149				"EEE advertisement - unable to acquire PHY\n");
4150			return;
4151		}
4152
4153		e1000_write_emi_reg_locked(hw, adv_addr,
4154					   hw->dev_spec.ich8lan.eee_disable ?
4155					   0 : adapter->eee_advert);
4156
4157		hw->phy.ops.release(hw);
4158	}
4159
4160	if (!netif_running(adapter->netdev) &&
4161	    !test_bit(__E1000_TESTING, &adapter->state))
4162		e1000_power_down_phy(adapter);
4163
4164	e1000_get_phy_info(hw);
4165
4166	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4167	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4168		u16 phy_data = 0;
4169		/* speed up time to link by disabling smart power down, ignore
4170		 * the return value of this function because there is nothing
4171		 * different we would do if it failed
4172		 */
4173		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4174		phy_data &= ~IGP02E1000_PM_SPD;
4175		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4176	}
4177	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4178		u32 reg;
4179
4180		/* Fextnvm7 @ 0xe4[2] = 1 */
4181		reg = er32(FEXTNVM7);
4182		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4183		ew32(FEXTNVM7, reg);
4184		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4185		reg = er32(FEXTNVM9);
4186		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4187		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4188		ew32(FEXTNVM9, reg);
4189	}
4190
4191}
4192
4193/**
4194 * e1000e_trigger_lsc - trigger an LSC interrupt
4195 * @adapter: board private structure
4196 *
4197 * Fire a link status change interrupt to start the watchdog.
4198 **/
4199static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4200{
4201	struct e1000_hw *hw = &adapter->hw;
4202
4203	if (adapter->msix_entries)
4204		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4205	else
4206		ew32(ICS, E1000_ICS_LSC);
4207}
4208
4209void e1000e_up(struct e1000_adapter *adapter)
4210{
4211	/* hardware has been reset, we need to reload some things */
4212	e1000_configure(adapter);
4213
4214	clear_bit(__E1000_DOWN, &adapter->state);
4215
4216	if (adapter->msix_entries)
4217		e1000_configure_msix(adapter);
4218	e1000_irq_enable(adapter);
4219
4220	/* Tx queue started by watchdog timer when link is up */
4221
4222	e1000e_trigger_lsc(adapter);
4223}
4224
4225static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4226{
4227	struct e1000_hw *hw = &adapter->hw;
4228
4229	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4230		return;
4231
4232	/* flush pending descriptor writebacks to memory */
4233	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235
4236	/* execute the writes immediately */
4237	e1e_flush();
4238
4239	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4240	 * write is successful
4241	 */
4242	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4243	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4244
4245	/* execute the writes immediately */
4246	e1e_flush();
4247}
4248
4249static void e1000e_update_stats(struct e1000_adapter *adapter);
4250
4251/**
4252 * e1000e_down - quiesce the device and optionally reset the hardware
4253 * @adapter: board private structure
4254 * @reset: boolean flag to reset the hardware or not
4255 */
4256void e1000e_down(struct e1000_adapter *adapter, bool reset)
4257{
4258	struct net_device *netdev = adapter->netdev;
4259	struct e1000_hw *hw = &adapter->hw;
4260	u32 tctl, rctl;
4261
4262	/* signal that we're down so the interrupt handler does not
4263	 * reschedule our watchdog timer
4264	 */
4265	set_bit(__E1000_DOWN, &adapter->state);
4266
4267	netif_carrier_off(netdev);
4268
4269	/* disable receives in the hardware */
4270	rctl = er32(RCTL);
4271	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4272		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4273	/* flush and sleep below */
4274
4275	netif_stop_queue(netdev);
4276
4277	/* disable transmits in the hardware */
4278	tctl = er32(TCTL);
4279	tctl &= ~E1000_TCTL_EN;
4280	ew32(TCTL, tctl);
4281
4282	/* flush both disables and wait for them to finish */
4283	e1e_flush();
4284	usleep_range(10000, 11000);
4285
4286	e1000_irq_disable(adapter);
4287
4288	napi_synchronize(&adapter->napi);
4289
4290	del_timer_sync(&adapter->watchdog_timer);
4291	del_timer_sync(&adapter->phy_info_timer);
4292
4293	spin_lock(&adapter->stats64_lock);
4294	e1000e_update_stats(adapter);
4295	spin_unlock(&adapter->stats64_lock);
4296
4297	e1000e_flush_descriptors(adapter);
4298
4299	adapter->link_speed = 0;
4300	adapter->link_duplex = 0;
4301
4302	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4303	if ((hw->mac.type >= e1000_pch2lan) &&
4304	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4305	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4306		e_dbg("failed to disable jumbo frame workaround mode\n");
4307
4308	if (!pci_channel_offline(adapter->pdev)) {
4309		if (reset)
4310			e1000e_reset(adapter);
4311		else if (hw->mac.type >= e1000_pch_spt)
4312			e1000_flush_desc_rings(adapter);
4313	}
4314	e1000_clean_tx_ring(adapter->tx_ring);
4315	e1000_clean_rx_ring(adapter->rx_ring);
4316}
4317
4318void e1000e_reinit_locked(struct e1000_adapter *adapter)
4319{
4320	might_sleep();
4321	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4322		usleep_range(1000, 1100);
4323	e1000e_down(adapter, true);
4324	e1000e_up(adapter);
4325	clear_bit(__E1000_RESETTING, &adapter->state);
4326}
4327
4328/**
4329 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4330 * @hw: pointer to the HW structure
4331 * @systim: PHC time value read, sanitized and returned
4332 * @sts: structure to hold system time before and after reading SYSTIML,
4333 * may be NULL
4334 *
4335 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4336 * check to see that the time is incrementing at a reasonable
4337 * rate and is a multiple of incvalue.
4338 **/
4339static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4340				  struct ptp_system_timestamp *sts)
4341{
4342	u64 time_delta, rem, temp;
4343	u64 systim_next;
4344	u32 incvalue;
4345	int i;
4346
4347	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349		/* latch SYSTIMH on read of SYSTIML */
4350		ptp_read_system_prets(sts);
4351		systim_next = (u64)er32(SYSTIML);
4352		ptp_read_system_postts(sts);
4353		systim_next |= (u64)er32(SYSTIMH) << 32;
4354
4355		time_delta = systim_next - systim;
4356		temp = time_delta;
4357		/* VMWare users have seen incvalue of zero, don't div / 0 */
4358		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4359
4360		systim = systim_next;
4361
4362		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4363			break;
4364	}
4365
4366	return systim;
4367}
4368
4369/**
4370 * e1000e_read_systim - read SYSTIM register
4371 * @adapter: board private structure
4372 * @sts: structure which will contain system time before and after reading
4373 * SYSTIML, may be NULL
4374 **/
4375u64 e1000e_read_systim(struct e1000_adapter *adapter,
4376		       struct ptp_system_timestamp *sts)
4377{
4378	struct e1000_hw *hw = &adapter->hw;
4379	u32 systimel, systimel_2, systimeh;
4380	u64 systim;
4381	/* SYSTIMH latching upon SYSTIML read does not work well.
4382	 * This means that if SYSTIML overflows after we read it but before
4383	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4384	 * will experience a huge non linear increment in the systime value
4385	 * to fix that we test for overflow and if true, we re-read systime.
4386	 */
4387	ptp_read_system_prets(sts);
4388	systimel = er32(SYSTIML);
4389	ptp_read_system_postts(sts);
4390	systimeh = er32(SYSTIMH);
4391	/* Is systimel is so large that overflow is possible? */
4392	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4393		ptp_read_system_prets(sts);
4394		systimel_2 = er32(SYSTIML);
4395		ptp_read_system_postts(sts);
4396		if (systimel > systimel_2) {
4397			/* There was an overflow, read again SYSTIMH, and use
4398			 * systimel_2
4399			 */
4400			systimeh = er32(SYSTIMH);
4401			systimel = systimel_2;
4402		}
4403	}
4404	systim = (u64)systimel;
4405	systim |= (u64)systimeh << 32;
4406
4407	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4408		systim = e1000e_sanitize_systim(hw, systim, sts);
4409
4410	return systim;
4411}
4412
4413/**
4414 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4415 * @cc: cyclecounter structure
4416 **/
4417static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4418{
4419	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4420						     cc);
4421
4422	return e1000e_read_systim(adapter, NULL);
4423}
4424
4425/**
4426 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4427 * @adapter: board private structure to initialize
4428 *
4429 * e1000_sw_init initializes the Adapter private data structure.
4430 * Fields are initialized based on PCI device information and
4431 * OS network device settings (MTU size).
4432 **/
4433static int e1000_sw_init(struct e1000_adapter *adapter)
4434{
4435	struct net_device *netdev = adapter->netdev;
4436
4437	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4438	adapter->rx_ps_bsize0 = 128;
4439	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4440	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4441	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4442	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4443
4444	spin_lock_init(&adapter->stats64_lock);
4445
4446	e1000e_set_interrupt_capability(adapter);
4447
4448	if (e1000_alloc_queues(adapter))
4449		return -ENOMEM;
4450
4451	/* Setup hardware time stamping cyclecounter */
4452	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4453		adapter->cc.read = e1000e_cyclecounter_read;
4454		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4455		adapter->cc.mult = 1;
4456		/* cc.shift set in e1000e_get_base_tininca() */
4457
4458		spin_lock_init(&adapter->systim_lock);
4459		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4460	}
4461
4462	/* Explicitly disable IRQ since the NIC can be in any state. */
4463	e1000_irq_disable(adapter);
4464
4465	set_bit(__E1000_DOWN, &adapter->state);
4466	return 0;
4467}
4468
4469/**
4470 * e1000_intr_msi_test - Interrupt Handler
4471 * @irq: interrupt number
4472 * @data: pointer to a network interface device structure
4473 **/
4474static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4475{
4476	struct net_device *netdev = data;
4477	struct e1000_adapter *adapter = netdev_priv(netdev);
4478	struct e1000_hw *hw = &adapter->hw;
4479	u32 icr = er32(ICR);
4480
4481	e_dbg("icr is %08X\n", icr);
4482	if (icr & E1000_ICR_RXSEQ) {
4483		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4484		/* Force memory writes to complete before acknowledging the
4485		 * interrupt is handled.
4486		 */
4487		wmb();
4488	}
4489
4490	return IRQ_HANDLED;
4491}
4492
4493/**
4494 * e1000_test_msi_interrupt - Returns 0 for successful test
4495 * @adapter: board private struct
4496 *
4497 * code flow taken from tg3.c
4498 **/
4499static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4500{
4501	struct net_device *netdev = adapter->netdev;
4502	struct e1000_hw *hw = &adapter->hw;
4503	int err;
4504
4505	/* poll_enable hasn't been called yet, so don't need disable */
4506	/* clear any pending events */
4507	er32(ICR);
4508
4509	/* free the real vector and request a test handler */
4510	e1000_free_irq(adapter);
4511	e1000e_reset_interrupt_capability(adapter);
4512
4513	/* Assume that the test fails, if it succeeds then the test
4514	 * MSI irq handler will unset this flag
4515	 */
4516	adapter->flags |= FLAG_MSI_TEST_FAILED;
4517
4518	err = pci_enable_msi(adapter->pdev);
4519	if (err)
4520		goto msi_test_failed;
4521
4522	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4523			  netdev->name, netdev);
4524	if (err) {
4525		pci_disable_msi(adapter->pdev);
4526		goto msi_test_failed;
4527	}
4528
4529	/* Force memory writes to complete before enabling and firing an
4530	 * interrupt.
4531	 */
4532	wmb();
4533
4534	e1000_irq_enable(adapter);
4535
4536	/* fire an unusual interrupt on the test handler */
4537	ew32(ICS, E1000_ICS_RXSEQ);
4538	e1e_flush();
4539	msleep(100);
4540
4541	e1000_irq_disable(adapter);
4542
4543	rmb();			/* read flags after interrupt has been fired */
4544
4545	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4546		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4547		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4548	} else {
4549		e_dbg("MSI interrupt test succeeded!\n");
4550	}
4551
4552	free_irq(adapter->pdev->irq, netdev);
4553	pci_disable_msi(adapter->pdev);
4554
4555msi_test_failed:
4556	e1000e_set_interrupt_capability(adapter);
4557	return e1000_request_irq(adapter);
4558}
4559
4560/**
4561 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4562 * @adapter: board private struct
4563 *
4564 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4565 **/
4566static int e1000_test_msi(struct e1000_adapter *adapter)
4567{
4568	int err;
4569	u16 pci_cmd;
4570
4571	if (!(adapter->flags & FLAG_MSI_ENABLED))
4572		return 0;
4573
4574	/* disable SERR in case the MSI write causes a master abort */
4575	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576	if (pci_cmd & PCI_COMMAND_SERR)
4577		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4578				      pci_cmd & ~PCI_COMMAND_SERR);
4579
4580	err = e1000_test_msi_interrupt(adapter);
4581
4582	/* re-enable SERR */
4583	if (pci_cmd & PCI_COMMAND_SERR) {
4584		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4585		pci_cmd |= PCI_COMMAND_SERR;
4586		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4587	}
4588
4589	return err;
4590}
4591
4592/**
4593 * e1000e_open - Called when a network interface is made active
4594 * @netdev: network interface device structure
4595 *
4596 * Returns 0 on success, negative value on failure
4597 *
4598 * The open entry point is called when a network interface is made
4599 * active by the system (IFF_UP).  At this point all resources needed
4600 * for transmit and receive operations are allocated, the interrupt
4601 * handler is registered with the OS, the watchdog timer is started,
4602 * and the stack is notified that the interface is ready.
4603 **/
4604int e1000e_open(struct net_device *netdev)
4605{
4606	struct e1000_adapter *adapter = netdev_priv(netdev);
4607	struct e1000_hw *hw = &adapter->hw;
4608	struct pci_dev *pdev = adapter->pdev;
4609	int err;
4610	int irq;
4611
4612	/* disallow open during test */
4613	if (test_bit(__E1000_TESTING, &adapter->state))
4614		return -EBUSY;
4615
4616	pm_runtime_get_sync(&pdev->dev);
4617
4618	netif_carrier_off(netdev);
4619	netif_stop_queue(netdev);
4620
4621	/* allocate transmit descriptors */
4622	err = e1000e_setup_tx_resources(adapter->tx_ring);
4623	if (err)
4624		goto err_setup_tx;
4625
4626	/* allocate receive descriptors */
4627	err = e1000e_setup_rx_resources(adapter->rx_ring);
4628	if (err)
4629		goto err_setup_rx;
4630
4631	/* If AMT is enabled, let the firmware know that the network
4632	 * interface is now open and reset the part to a known state.
4633	 */
4634	if (adapter->flags & FLAG_HAS_AMT) {
4635		e1000e_get_hw_control(adapter);
4636		e1000e_reset(adapter);
4637	}
4638
4639	e1000e_power_up_phy(adapter);
4640
4641	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4642	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4643		e1000_update_mng_vlan(adapter);
4644
4645	/* DMA latency requirement to workaround jumbo issue */
4646	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4647
4648	/* before we allocate an interrupt, we must be ready to handle it.
4649	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650	 * as soon as we call pci_request_irq, so we have to setup our
4651	 * clean_rx handler before we do so.
4652	 */
4653	e1000_configure(adapter);
4654
4655	err = e1000_request_irq(adapter);
4656	if (err)
4657		goto err_req_irq;
4658
4659	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4660	 * ignore e1000e MSI messages, which means we need to test our MSI
4661	 * interrupt now
4662	 */
4663	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4664		err = e1000_test_msi(adapter);
4665		if (err) {
4666			e_err("Interrupt allocation failed\n");
4667			goto err_req_irq;
4668		}
4669	}
4670
4671	/* From here on the code is the same as e1000e_up() */
4672	clear_bit(__E1000_DOWN, &adapter->state);
4673
4674	if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4675		irq = adapter->msix_entries[0].vector;
4676	else
4677		irq = adapter->pdev->irq;
4678
4679	netif_napi_set_irq(&adapter->napi, irq);
4680	napi_enable(&adapter->napi);
4681	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4682	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4683
4684	e1000_irq_enable(adapter);
4685
4686	adapter->tx_hang_recheck = false;
4687
4688	hw->mac.get_link_status = true;
4689	pm_runtime_put(&pdev->dev);
4690
4691	e1000e_trigger_lsc(adapter);
4692
4693	return 0;
4694
4695err_req_irq:
4696	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4697	e1000e_release_hw_control(adapter);
4698	e1000_power_down_phy(adapter);
4699	e1000e_free_rx_resources(adapter->rx_ring);
4700err_setup_rx:
4701	e1000e_free_tx_resources(adapter->tx_ring);
4702err_setup_tx:
4703	e1000e_reset(adapter);
4704	pm_runtime_put_sync(&pdev->dev);
4705
4706	return err;
4707}
4708
4709/**
4710 * e1000e_close - Disables a network interface
4711 * @netdev: network interface device structure
4712 *
4713 * Returns 0, this is not allowed to fail
4714 *
4715 * The close entry point is called when an interface is de-activated
4716 * by the OS.  The hardware is still under the drivers control, but
4717 * needs to be disabled.  A global MAC reset is issued to stop the
4718 * hardware, and all transmit and receive resources are freed.
4719 **/
4720int e1000e_close(struct net_device *netdev)
4721{
4722	struct e1000_adapter *adapter = netdev_priv(netdev);
4723	struct pci_dev *pdev = adapter->pdev;
4724	int count = E1000_CHECK_RESET_COUNT;
4725
4726	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4727		usleep_range(10000, 11000);
4728
4729	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4730
4731	pm_runtime_get_sync(&pdev->dev);
4732
4733	if (netif_device_present(netdev)) {
4734		e1000e_down(adapter, true);
4735		e1000_free_irq(adapter);
4736
4737		/* Link status message must follow this format */
4738		netdev_info(netdev, "NIC Link is Down\n");
4739	}
4740
4741	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4742	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4743	napi_disable(&adapter->napi);
4744
4745	e1000e_free_tx_resources(adapter->tx_ring);
4746	e1000e_free_rx_resources(adapter->rx_ring);
4747
4748	/* kill manageability vlan ID if supported, but not if a vlan with
4749	 * the same ID is registered on the host OS (let 8021q kill it)
4750	 */
4751	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4752		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4753				       adapter->mng_vlan_id);
4754
4755	/* If AMT is enabled, let the firmware know that the network
4756	 * interface is now closed
4757	 */
4758	if ((adapter->flags & FLAG_HAS_AMT) &&
4759	    !test_bit(__E1000_TESTING, &adapter->state))
4760		e1000e_release_hw_control(adapter);
4761
4762	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4763
4764	pm_runtime_put_sync(&pdev->dev);
4765
4766	return 0;
4767}
4768
4769/**
4770 * e1000_set_mac - Change the Ethernet Address of the NIC
4771 * @netdev: network interface device structure
4772 * @p: pointer to an address structure
4773 *
4774 * Returns 0 on success, negative on failure
4775 **/
4776static int e1000_set_mac(struct net_device *netdev, void *p)
4777{
4778	struct e1000_adapter *adapter = netdev_priv(netdev);
4779	struct e1000_hw *hw = &adapter->hw;
4780	struct sockaddr *addr = p;
4781
4782	if (!is_valid_ether_addr(addr->sa_data))
4783		return -EADDRNOTAVAIL;
4784
4785	eth_hw_addr_set(netdev, addr->sa_data);
4786	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4787
4788	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4789
4790	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4791		/* activate the work around */
4792		e1000e_set_laa_state_82571(&adapter->hw, 1);
4793
4794		/* Hold a copy of the LAA in RAR[14] This is done so that
4795		 * between the time RAR[0] gets clobbered  and the time it
4796		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4797		 * of the RARs and no incoming packets directed to this port
4798		 * are dropped. Eventually the LAA will be in RAR[0] and
4799		 * RAR[14]
4800		 */
4801		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4802				    adapter->hw.mac.rar_entry_count - 1);
4803	}
4804
4805	return 0;
4806}
4807
4808/**
4809 * e1000e_update_phy_task - work thread to update phy
4810 * @work: pointer to our work struct
4811 *
4812 * this worker thread exists because we must acquire a
4813 * semaphore to read the phy, which we could msleep while
4814 * waiting for it, and we can't msleep in a timer.
4815 **/
4816static void e1000e_update_phy_task(struct work_struct *work)
4817{
4818	struct e1000_adapter *adapter = container_of(work,
4819						     struct e1000_adapter,
4820						     update_phy_task);
4821	struct e1000_hw *hw = &adapter->hw;
4822
4823	if (test_bit(__E1000_DOWN, &adapter->state))
4824		return;
4825
4826	e1000_get_phy_info(hw);
4827
4828	/* Enable EEE on 82579 after link up */
4829	if (hw->phy.type >= e1000_phy_82579)
4830		e1000_set_eee_pchlan(hw);
4831}
4832
4833/**
4834 * e1000_update_phy_info - timre call-back to update PHY info
4835 * @t: pointer to timer_list containing private info adapter
4836 *
4837 * Need to wait a few seconds after link up to get diagnostic information from
4838 * the phy
4839 **/
4840static void e1000_update_phy_info(struct timer_list *t)
4841{
4842	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4843
4844	if (test_bit(__E1000_DOWN, &adapter->state))
4845		return;
4846
4847	schedule_work(&adapter->update_phy_task);
4848}
4849
4850/**
4851 * e1000e_update_phy_stats - Update the PHY statistics counters
4852 * @adapter: board private structure
4853 *
4854 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4855 **/
4856static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4857{
4858	struct e1000_hw *hw = &adapter->hw;
4859	s32 ret_val;
4860	u16 phy_data;
4861
4862	ret_val = hw->phy.ops.acquire(hw);
4863	if (ret_val)
4864		return;
4865
4866	/* A page set is expensive so check if already on desired page.
4867	 * If not, set to the page with the PHY status registers.
4868	 */
4869	hw->phy.addr = 1;
4870	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4871					   &phy_data);
4872	if (ret_val)
4873		goto release;
4874	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4875		ret_val = hw->phy.ops.set_page(hw,
4876					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4877		if (ret_val)
4878			goto release;
4879	}
4880
4881	/* Single Collision Count */
4882	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4883	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4884	if (!ret_val)
4885		adapter->stats.scc += phy_data;
4886
4887	/* Excessive Collision Count */
4888	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4889	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4890	if (!ret_val)
4891		adapter->stats.ecol += phy_data;
4892
4893	/* Multiple Collision Count */
4894	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4895	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4896	if (!ret_val)
4897		adapter->stats.mcc += phy_data;
4898
4899	/* Late Collision Count */
4900	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4901	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4902	if (!ret_val)
4903		adapter->stats.latecol += phy_data;
4904
4905	/* Collision Count - also used for adaptive IFS */
4906	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4907	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4908	if (!ret_val)
4909		hw->mac.collision_delta = phy_data;
4910
4911	/* Defer Count */
4912	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4913	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4914	if (!ret_val)
4915		adapter->stats.dc += phy_data;
4916
4917	/* Transmit with no CRS */
4918	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4919	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4920	if (!ret_val)
4921		adapter->stats.tncrs += phy_data;
4922
4923release:
4924	hw->phy.ops.release(hw);
4925}
4926
4927/**
4928 * e1000e_update_stats - Update the board statistics counters
4929 * @adapter: board private structure
4930 **/
4931static void e1000e_update_stats(struct e1000_adapter *adapter)
4932{
4933	struct net_device *netdev = adapter->netdev;
4934	struct e1000_hw *hw = &adapter->hw;
4935	struct pci_dev *pdev = adapter->pdev;
4936
4937	/* Prevent stats update while adapter is being reset, or if the pci
4938	 * connection is down.
4939	 */
4940	if (adapter->link_speed == 0)
4941		return;
4942	if (pci_channel_offline(pdev))
4943		return;
4944
4945	adapter->stats.crcerrs += er32(CRCERRS);
4946	adapter->stats.gprc += er32(GPRC);
4947	adapter->stats.gorc += er32(GORCL);
4948	er32(GORCH);		/* Clear gorc */
4949	adapter->stats.bprc += er32(BPRC);
4950	adapter->stats.mprc += er32(MPRC);
4951	adapter->stats.roc += er32(ROC);
4952
4953	adapter->stats.mpc += er32(MPC);
4954
4955	/* Half-duplex statistics */
4956	if (adapter->link_duplex == HALF_DUPLEX) {
4957		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4958			e1000e_update_phy_stats(adapter);
4959		} else {
4960			adapter->stats.scc += er32(SCC);
4961			adapter->stats.ecol += er32(ECOL);
4962			adapter->stats.mcc += er32(MCC);
4963			adapter->stats.latecol += er32(LATECOL);
4964			adapter->stats.dc += er32(DC);
4965
4966			hw->mac.collision_delta = er32(COLC);
4967
4968			if ((hw->mac.type != e1000_82574) &&
4969			    (hw->mac.type != e1000_82583))
4970				adapter->stats.tncrs += er32(TNCRS);
4971		}
4972		adapter->stats.colc += hw->mac.collision_delta;
4973	}
4974
4975	adapter->stats.xonrxc += er32(XONRXC);
4976	adapter->stats.xontxc += er32(XONTXC);
4977	adapter->stats.xoffrxc += er32(XOFFRXC);
4978	adapter->stats.xofftxc += er32(XOFFTXC);
4979	adapter->stats.gptc += er32(GPTC);
4980	adapter->stats.gotc += er32(GOTCL);
4981	er32(GOTCH);		/* Clear gotc */
4982	adapter->stats.rnbc += er32(RNBC);
4983	adapter->stats.ruc += er32(RUC);
4984
4985	adapter->stats.mptc += er32(MPTC);
4986	adapter->stats.bptc += er32(BPTC);
4987
4988	/* used for adaptive IFS */
4989
4990	hw->mac.tx_packet_delta = er32(TPT);
4991	adapter->stats.tpt += hw->mac.tx_packet_delta;
4992
4993	adapter->stats.algnerrc += er32(ALGNERRC);
4994	adapter->stats.rxerrc += er32(RXERRC);
4995	adapter->stats.cexterr += er32(CEXTERR);
4996	adapter->stats.tsctc += er32(TSCTC);
4997	adapter->stats.tsctfc += er32(TSCTFC);
4998
4999	/* Fill out the OS statistics structure */
5000	netdev->stats.multicast = adapter->stats.mprc;
5001	netdev->stats.collisions = adapter->stats.colc;
5002
5003	/* Rx Errors */
5004
5005	/* RLEC on some newer hardware can be incorrect so build
5006	 * our own version based on RUC and ROC
5007	 */
5008	netdev->stats.rx_errors = adapter->stats.rxerrc +
5009	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5010	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5011	netdev->stats.rx_length_errors = adapter->stats.ruc +
5012	    adapter->stats.roc;
5013	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5014	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5015	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5016
5017	/* Tx Errors */
5018	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5019	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5020	netdev->stats.tx_window_errors = adapter->stats.latecol;
5021	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5022
5023	/* Tx Dropped needs to be maintained elsewhere */
5024
5025	/* Management Stats */
5026	adapter->stats.mgptc += er32(MGTPTC);
5027	adapter->stats.mgprc += er32(MGTPRC);
5028	adapter->stats.mgpdc += er32(MGTPDC);
5029
5030	/* Correctable ECC Errors */
5031	if (hw->mac.type >= e1000_pch_lpt) {
5032		u32 pbeccsts = er32(PBECCSTS);
5033
5034		adapter->corr_errors +=
5035		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5036		adapter->uncorr_errors +=
5037		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
5038	}
5039}
5040
5041/**
5042 * e1000_phy_read_status - Update the PHY register status snapshot
5043 * @adapter: board private structure
5044 **/
5045static void e1000_phy_read_status(struct e1000_adapter *adapter)
5046{
5047	struct e1000_hw *hw = &adapter->hw;
5048	struct e1000_phy_regs *phy = &adapter->phy_regs;
5049
5050	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5051	    (er32(STATUS) & E1000_STATUS_LU) &&
5052	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5053		int ret_val;
5054
5055		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5056		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5057		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5058		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5059		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5060		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5061		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5062		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5063		if (ret_val)
5064			e_warn("Error reading PHY register\n");
5065	} else {
5066		/* Do not read PHY registers if link is not up
5067		 * Set values to typical power-on defaults
5068		 */
5069		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5070		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5071			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5072			     BMSR_ERCAP);
5073		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5074				  ADVERTISE_ALL | ADVERTISE_CSMA);
5075		phy->lpa = 0;
5076		phy->expansion = EXPANSION_ENABLENPAGE;
5077		phy->ctrl1000 = ADVERTISE_1000FULL;
5078		phy->stat1000 = 0;
5079		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5080	}
5081}
5082
5083static void e1000_print_link_info(struct e1000_adapter *adapter)
5084{
5085	struct e1000_hw *hw = &adapter->hw;
5086	u32 ctrl = er32(CTRL);
5087
5088	/* Link status message must follow this format for user tools */
5089	netdev_info(adapter->netdev,
5090		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5091		    adapter->link_speed,
5092		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5093		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5094		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5095		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5096}
5097
5098static bool e1000e_has_link(struct e1000_adapter *adapter)
5099{
5100	struct e1000_hw *hw = &adapter->hw;
5101	bool link_active = false;
5102	s32 ret_val = 0;
5103
5104	/* get_link_status is set on LSC (link status) interrupt or
5105	 * Rx sequence error interrupt.  get_link_status will stay
5106	 * true until the check_for_link establishes link
5107	 * for copper adapters ONLY
5108	 */
5109	switch (hw->phy.media_type) {
5110	case e1000_media_type_copper:
5111		if (hw->mac.get_link_status) {
5112			ret_val = hw->mac.ops.check_for_link(hw);
5113			link_active = !hw->mac.get_link_status;
5114		} else {
5115			link_active = true;
5116		}
5117		break;
5118	case e1000_media_type_fiber:
5119		ret_val = hw->mac.ops.check_for_link(hw);
5120		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5121		break;
5122	case e1000_media_type_internal_serdes:
5123		ret_val = hw->mac.ops.check_for_link(hw);
5124		link_active = hw->mac.serdes_has_link;
5125		break;
5126	default:
5127	case e1000_media_type_unknown:
5128		break;
5129	}
5130
5131	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5132	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5133		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5134		e_info("Gigabit has been disabled, downgrading speed\n");
5135	}
5136
5137	return link_active;
5138}
5139
5140static void e1000e_enable_receives(struct e1000_adapter *adapter)
5141{
5142	/* make sure the receive unit is started */
5143	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5144	    (adapter->flags & FLAG_RESTART_NOW)) {
5145		struct e1000_hw *hw = &adapter->hw;
5146		u32 rctl = er32(RCTL);
5147
5148		ew32(RCTL, rctl | E1000_RCTL_EN);
5149		adapter->flags &= ~FLAG_RESTART_NOW;
5150	}
5151}
5152
5153static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5154{
5155	struct e1000_hw *hw = &adapter->hw;
5156
5157	/* With 82574 controllers, PHY needs to be checked periodically
5158	 * for hung state and reset, if two calls return true
5159	 */
5160	if (e1000_check_phy_82574(hw))
5161		adapter->phy_hang_count++;
5162	else
5163		adapter->phy_hang_count = 0;
5164
5165	if (adapter->phy_hang_count > 1) {
5166		adapter->phy_hang_count = 0;
5167		e_dbg("PHY appears hung - resetting\n");
5168		schedule_work(&adapter->reset_task);
5169	}
5170}
5171
5172/**
5173 * e1000_watchdog - Timer Call-back
5174 * @t: pointer to timer_list containing private info adapter
5175 **/
5176static void e1000_watchdog(struct timer_list *t)
5177{
5178	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5179
5180	/* Do the rest outside of interrupt context */
5181	schedule_work(&adapter->watchdog_task);
5182
5183	/* TODO: make this use queue_delayed_work() */
5184}
5185
5186static void e1000_watchdog_task(struct work_struct *work)
5187{
5188	struct e1000_adapter *adapter = container_of(work,
5189						     struct e1000_adapter,
5190						     watchdog_task);
5191	struct net_device *netdev = adapter->netdev;
5192	struct e1000_mac_info *mac = &adapter->hw.mac;
5193	struct e1000_phy_info *phy = &adapter->hw.phy;
5194	struct e1000_ring *tx_ring = adapter->tx_ring;
5195	u32 dmoff_exit_timeout = 100, tries = 0;
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 link, tctl, pcim_state;
5198
5199	if (test_bit(__E1000_DOWN, &adapter->state))
5200		return;
5201
5202	link = e1000e_has_link(adapter);
5203	if ((netif_carrier_ok(netdev)) && link) {
5204		/* Cancel scheduled suspend requests. */
5205		pm_runtime_resume(netdev->dev.parent);
5206
5207		e1000e_enable_receives(adapter);
5208		goto link_up;
5209	}
5210
5211	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5212	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5213		e1000_update_mng_vlan(adapter);
5214
5215	if (link) {
5216		if (!netif_carrier_ok(netdev)) {
5217			bool txb2b = true;
5218
5219			/* Cancel scheduled suspend requests. */
5220			pm_runtime_resume(netdev->dev.parent);
5221
5222			/* Checking if MAC is in DMoff state*/
5223			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5224				pcim_state = er32(STATUS);
5225				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5226					if (tries++ == dmoff_exit_timeout) {
5227						e_dbg("Error in exiting dmoff\n");
5228						break;
5229					}
5230					usleep_range(10000, 20000);
5231					pcim_state = er32(STATUS);
5232
5233					/* Checking if MAC exited DMoff state */
5234					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5235						e1000_phy_hw_reset(&adapter->hw);
5236				}
5237			}
5238
5239			/* update snapshot of PHY registers on LSC */
5240			e1000_phy_read_status(adapter);
5241			mac->ops.get_link_up_info(&adapter->hw,
5242						  &adapter->link_speed,
5243						  &adapter->link_duplex);
5244			e1000_print_link_info(adapter);
5245
5246			/* check if SmartSpeed worked */
5247			e1000e_check_downshift(hw);
5248			if (phy->speed_downgraded)
5249				netdev_warn(netdev,
5250					    "Link Speed was downgraded by SmartSpeed\n");
5251
5252			/* On supported PHYs, check for duplex mismatch only
5253			 * if link has autonegotiated at 10/100 half
5254			 */
5255			if ((hw->phy.type == e1000_phy_igp_3 ||
5256			     hw->phy.type == e1000_phy_bm) &&
5257			    hw->mac.autoneg &&
5258			    (adapter->link_speed == SPEED_10 ||
5259			     adapter->link_speed == SPEED_100) &&
5260			    (adapter->link_duplex == HALF_DUPLEX)) {
5261				u16 autoneg_exp;
5262
5263				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5264
5265				if (!(autoneg_exp & EXPANSION_NWAY))
5266					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5267			}
5268
5269			/* adjust timeout factor according to speed/duplex */
5270			adapter->tx_timeout_factor = 1;
5271			switch (adapter->link_speed) {
5272			case SPEED_10:
5273				txb2b = false;
5274				adapter->tx_timeout_factor = 16;
5275				break;
5276			case SPEED_100:
5277				txb2b = false;
5278				adapter->tx_timeout_factor = 10;
5279				break;
5280			}
5281
5282			/* workaround: re-program speed mode bit after
5283			 * link-up event
5284			 */
5285			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286			    !txb2b) {
5287				u32 tarc0;
5288
5289				tarc0 = er32(TARC(0));
5290				tarc0 &= ~SPEED_MODE_BIT;
5291				ew32(TARC(0), tarc0);
5292			}
5293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5294			/* enable transmits in the hardware, need to do this
5295			 * after setting TARC(0)
5296			 */
5297			tctl = er32(TCTL);
5298			tctl |= E1000_TCTL_EN;
5299			ew32(TCTL, tctl);
5300
5301			/* Perform any post-link-up configuration before
5302			 * reporting link up.
5303			 */
5304			if (phy->ops.cfg_on_link_up)
5305				phy->ops.cfg_on_link_up(hw);
5306
5307			netif_wake_queue(netdev);
5308			netif_carrier_on(netdev);
5309
5310			if (!test_bit(__E1000_DOWN, &adapter->state))
5311				mod_timer(&adapter->phy_info_timer,
5312					  round_jiffies(jiffies + 2 * HZ));
5313		}
5314	} else {
5315		if (netif_carrier_ok(netdev)) {
5316			adapter->link_speed = 0;
5317			adapter->link_duplex = 0;
5318			/* Link status message must follow this format */
5319			netdev_info(netdev, "NIC Link is Down\n");
5320			netif_carrier_off(netdev);
5321			netif_stop_queue(netdev);
5322			if (!test_bit(__E1000_DOWN, &adapter->state))
5323				mod_timer(&adapter->phy_info_timer,
5324					  round_jiffies(jiffies + 2 * HZ));
5325
5326			/* 8000ES2LAN requires a Rx packet buffer work-around
5327			 * on link down event; reset the controller to flush
5328			 * the Rx packet buffer.
5329			 */
5330			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5331				adapter->flags |= FLAG_RESTART_NOW;
5332			else
5333				pm_schedule_suspend(netdev->dev.parent,
5334						    LINK_TIMEOUT);
5335		}
5336	}
5337
5338link_up:
5339	spin_lock(&adapter->stats64_lock);
5340	e1000e_update_stats(adapter);
5341
5342	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5343	adapter->tpt_old = adapter->stats.tpt;
5344	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5345	adapter->colc_old = adapter->stats.colc;
5346
5347	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5348	adapter->gorc_old = adapter->stats.gorc;
5349	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5350	adapter->gotc_old = adapter->stats.gotc;
5351	spin_unlock(&adapter->stats64_lock);
5352
5353	/* If the link is lost the controller stops DMA, but
5354	 * if there is queued Tx work it cannot be done.  So
5355	 * reset the controller to flush the Tx packet buffers.
5356	 */
5357	if (!netif_carrier_ok(netdev) &&
5358	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5359		adapter->flags |= FLAG_RESTART_NOW;
5360
5361	/* If reset is necessary, do it outside of interrupt context. */
5362	if (adapter->flags & FLAG_RESTART_NOW) {
5363		schedule_work(&adapter->reset_task);
5364		/* return immediately since reset is imminent */
5365		return;
5366	}
5367
5368	e1000e_update_adaptive(&adapter->hw);
5369
5370	/* Simple mode for Interrupt Throttle Rate (ITR) */
5371	if (adapter->itr_setting == 4) {
5372		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5373		 * Total asymmetrical Tx or Rx gets ITR=8000;
5374		 * everyone else is between 2000-8000.
5375		 */
5376		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5377		u32 dif = (adapter->gotc > adapter->gorc ?
5378			   adapter->gotc - adapter->gorc :
5379			   adapter->gorc - adapter->gotc) / 10000;
5380		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5381
5382		e1000e_write_itr(adapter, itr);
5383	}
5384
5385	/* Cause software interrupt to ensure Rx ring is cleaned */
5386	if (adapter->msix_entries)
5387		ew32(ICS, adapter->rx_ring->ims_val);
5388	else
5389		ew32(ICS, E1000_ICS_RXDMT0);
5390
5391	/* flush pending descriptors to memory before detecting Tx hang */
5392	e1000e_flush_descriptors(adapter);
5393
5394	/* Force detection of hung controller every watchdog period */
5395	adapter->detect_tx_hung = true;
5396
5397	/* With 82571 controllers, LAA may be overwritten due to controller
5398	 * reset from the other port. Set the appropriate LAA in RAR[0]
5399	 */
5400	if (e1000e_get_laa_state_82571(hw))
5401		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5402
5403	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5404		e1000e_check_82574_phy_workaround(adapter);
5405
5406	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5408		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5409		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5410			er32(RXSTMPH);
5411			adapter->rx_hwtstamp_cleared++;
5412		} else {
5413			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5414		}
5415	}
5416
5417	/* Reset the timer */
5418	if (!test_bit(__E1000_DOWN, &adapter->state))
5419		mod_timer(&adapter->watchdog_timer,
5420			  round_jiffies(jiffies + 2 * HZ));
5421}
5422
5423#define E1000_TX_FLAGS_CSUM		0x00000001
5424#define E1000_TX_FLAGS_VLAN		0x00000002
5425#define E1000_TX_FLAGS_TSO		0x00000004
5426#define E1000_TX_FLAGS_IPV4		0x00000008
5427#define E1000_TX_FLAGS_NO_FCS		0x00000010
5428#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5429#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5430#define E1000_TX_FLAGS_VLAN_SHIFT	16
5431
5432static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5433		     __be16 protocol)
5434{
5435	struct e1000_context_desc *context_desc;
5436	struct e1000_buffer *buffer_info;
5437	unsigned int i;
5438	u32 cmd_length = 0;
5439	u16 ipcse = 0, mss;
5440	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5441	int err;
5442
5443	if (!skb_is_gso(skb))
5444		return 0;
5445
5446	err = skb_cow_head(skb, 0);
5447	if (err < 0)
5448		return err;
5449
5450	hdr_len = skb_tcp_all_headers(skb);
5451	mss = skb_shinfo(skb)->gso_size;
5452	if (protocol == htons(ETH_P_IP)) {
5453		struct iphdr *iph = ip_hdr(skb);
5454		iph->tot_len = 0;
5455		iph->check = 0;
5456		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5457							 0, IPPROTO_TCP, 0);
5458		cmd_length = E1000_TXD_CMD_IP;
5459		ipcse = skb_transport_offset(skb) - 1;
5460	} else if (skb_is_gso_v6(skb)) {
5461		tcp_v6_gso_csum_prep(skb);
5462		ipcse = 0;
5463	}
5464	ipcss = skb_network_offset(skb);
5465	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5466	tucss = skb_transport_offset(skb);
5467	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5468
5469	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5470		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5471
5472	i = tx_ring->next_to_use;
5473	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5474	buffer_info = &tx_ring->buffer_info[i];
5475
5476	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5477	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5478	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5479	context_desc->upper_setup.tcp_fields.tucss = tucss;
5480	context_desc->upper_setup.tcp_fields.tucso = tucso;
5481	context_desc->upper_setup.tcp_fields.tucse = 0;
5482	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5483	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5484	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5485
5486	buffer_info->time_stamp = jiffies;
5487	buffer_info->next_to_watch = i;
5488
5489	i++;
5490	if (i == tx_ring->count)
5491		i = 0;
5492	tx_ring->next_to_use = i;
5493
5494	return 1;
5495}
5496
5497static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5498			  __be16 protocol)
5499{
5500	struct e1000_adapter *adapter = tx_ring->adapter;
5501	struct e1000_context_desc *context_desc;
5502	struct e1000_buffer *buffer_info;
5503	unsigned int i;
5504	u8 css;
5505	u32 cmd_len = E1000_TXD_CMD_DEXT;
5506
5507	if (skb->ip_summed != CHECKSUM_PARTIAL)
5508		return false;
5509
5510	switch (protocol) {
5511	case cpu_to_be16(ETH_P_IP):
5512		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5513			cmd_len |= E1000_TXD_CMD_TCP;
5514		break;
5515	case cpu_to_be16(ETH_P_IPV6):
5516		/* XXX not handling all IPV6 headers */
5517		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5518			cmd_len |= E1000_TXD_CMD_TCP;
5519		break;
5520	default:
5521		if (unlikely(net_ratelimit()))
5522			e_warn("checksum_partial proto=%x!\n",
5523			       be16_to_cpu(protocol));
5524		break;
5525	}
5526
5527	css = skb_checksum_start_offset(skb);
5528
5529	i = tx_ring->next_to_use;
5530	buffer_info = &tx_ring->buffer_info[i];
5531	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5532
5533	context_desc->lower_setup.ip_config = 0;
5534	context_desc->upper_setup.tcp_fields.tucss = css;
5535	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5536	context_desc->upper_setup.tcp_fields.tucse = 0;
5537	context_desc->tcp_seg_setup.data = 0;
5538	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5539
5540	buffer_info->time_stamp = jiffies;
5541	buffer_info->next_to_watch = i;
5542
5543	i++;
5544	if (i == tx_ring->count)
5545		i = 0;
5546	tx_ring->next_to_use = i;
5547
5548	return true;
5549}
5550
5551static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5552			unsigned int first, unsigned int max_per_txd,
5553			unsigned int nr_frags)
5554{
5555	struct e1000_adapter *adapter = tx_ring->adapter;
5556	struct pci_dev *pdev = adapter->pdev;
5557	struct e1000_buffer *buffer_info;
5558	unsigned int len = skb_headlen(skb);
5559	unsigned int offset = 0, size, count = 0, i;
5560	unsigned int f, bytecount, segs;
5561
5562	i = tx_ring->next_to_use;
5563
5564	while (len) {
5565		buffer_info = &tx_ring->buffer_info[i];
5566		size = min(len, max_per_txd);
5567
5568		buffer_info->length = size;
5569		buffer_info->time_stamp = jiffies;
5570		buffer_info->next_to_watch = i;
5571		buffer_info->dma = dma_map_single(&pdev->dev,
5572						  skb->data + offset,
5573						  size, DMA_TO_DEVICE);
5574		buffer_info->mapped_as_page = false;
5575		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5576			goto dma_error;
5577
5578		len -= size;
5579		offset += size;
5580		count++;
5581
5582		if (len) {
5583			i++;
5584			if (i == tx_ring->count)
5585				i = 0;
5586		}
5587	}
5588
5589	for (f = 0; f < nr_frags; f++) {
5590		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5591
5592		len = skb_frag_size(frag);
5593		offset = 0;
5594
5595		while (len) {
5596			i++;
5597			if (i == tx_ring->count)
5598				i = 0;
5599
5600			buffer_info = &tx_ring->buffer_info[i];
5601			size = min(len, max_per_txd);
5602
5603			buffer_info->length = size;
5604			buffer_info->time_stamp = jiffies;
5605			buffer_info->next_to_watch = i;
5606			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5607							    offset, size,
5608							    DMA_TO_DEVICE);
5609			buffer_info->mapped_as_page = true;
5610			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5611				goto dma_error;
5612
5613			len -= size;
5614			offset += size;
5615			count++;
5616		}
5617	}
5618
5619	segs = skb_shinfo(skb)->gso_segs ? : 1;
5620	/* multiply data chunks by size of headers */
5621	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5622
5623	tx_ring->buffer_info[i].skb = skb;
5624	tx_ring->buffer_info[i].segs = segs;
5625	tx_ring->buffer_info[i].bytecount = bytecount;
5626	tx_ring->buffer_info[first].next_to_watch = i;
5627
5628	return count;
5629
5630dma_error:
5631	dev_err(&pdev->dev, "Tx DMA map failed\n");
5632	buffer_info->dma = 0;
5633	if (count)
5634		count--;
5635
5636	while (count--) {
5637		if (i == 0)
5638			i += tx_ring->count;
5639		i--;
5640		buffer_info = &tx_ring->buffer_info[i];
5641		e1000_put_txbuf(tx_ring, buffer_info, true);
5642	}
5643
5644	return 0;
5645}
5646
5647static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5648{
5649	struct e1000_adapter *adapter = tx_ring->adapter;
5650	struct e1000_tx_desc *tx_desc = NULL;
5651	struct e1000_buffer *buffer_info;
5652	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5653	unsigned int i;
5654
5655	if (tx_flags & E1000_TX_FLAGS_TSO) {
5656		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5657		    E1000_TXD_CMD_TSE;
5658		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5659
5660		if (tx_flags & E1000_TX_FLAGS_IPV4)
5661			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5662	}
5663
5664	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5665		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5666		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5667	}
5668
5669	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5670		txd_lower |= E1000_TXD_CMD_VLE;
5671		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5672	}
5673
5674	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5675		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5676
5677	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5678		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5679		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5680	}
5681
5682	i = tx_ring->next_to_use;
5683
5684	do {
5685		buffer_info = &tx_ring->buffer_info[i];
5686		tx_desc = E1000_TX_DESC(*tx_ring, i);
5687		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5688		tx_desc->lower.data = cpu_to_le32(txd_lower |
5689						  buffer_info->length);
5690		tx_desc->upper.data = cpu_to_le32(txd_upper);
5691
5692		i++;
5693		if (i == tx_ring->count)
5694			i = 0;
5695	} while (--count > 0);
5696
5697	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5698
5699	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5700	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5701		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5702
5703	/* Force memory writes to complete before letting h/w
5704	 * know there are new descriptors to fetch.  (Only
5705	 * applicable for weak-ordered memory model archs,
5706	 * such as IA-64).
5707	 */
5708	wmb();
5709
5710	tx_ring->next_to_use = i;
5711}
5712
5713#define MINIMUM_DHCP_PACKET_SIZE 282
5714static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5715				    struct sk_buff *skb)
5716{
5717	struct e1000_hw *hw = &adapter->hw;
5718	u16 length, offset;
5719
5720	if (skb_vlan_tag_present(skb) &&
5721	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5722	      (adapter->hw.mng_cookie.status &
5723	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5724		return 0;
5725
5726	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5727		return 0;
5728
5729	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5730		return 0;
5731
5732	{
5733		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5734		struct udphdr *udp;
5735
5736		if (ip->protocol != IPPROTO_UDP)
5737			return 0;
5738
5739		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5740		if (ntohs(udp->dest) != 67)
5741			return 0;
5742
5743		offset = (u8 *)udp + 8 - skb->data;
5744		length = skb->len - offset;
5745		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5746	}
5747
5748	return 0;
5749}
5750
5751static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5752{
5753	struct e1000_adapter *adapter = tx_ring->adapter;
5754
5755	netif_stop_queue(adapter->netdev);
5756	/* Herbert's original patch had:
5757	 *  smp_mb__after_netif_stop_queue();
5758	 * but since that doesn't exist yet, just open code it.
5759	 */
5760	smp_mb();
5761
5762	/* We need to check again in a case another CPU has just
5763	 * made room available.
5764	 */
5765	if (e1000_desc_unused(tx_ring) < size)
5766		return -EBUSY;
5767
5768	/* A reprieve! */
5769	netif_start_queue(adapter->netdev);
5770	++adapter->restart_queue;
5771	return 0;
5772}
5773
5774static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5775{
5776	BUG_ON(size > tx_ring->count);
5777
5778	if (e1000_desc_unused(tx_ring) >= size)
5779		return 0;
5780	return __e1000_maybe_stop_tx(tx_ring, size);
5781}
5782
5783static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5784				    struct net_device *netdev)
5785{
5786	struct e1000_adapter *adapter = netdev_priv(netdev);
5787	struct e1000_ring *tx_ring = adapter->tx_ring;
5788	unsigned int first;
5789	unsigned int tx_flags = 0;
5790	unsigned int len = skb_headlen(skb);
5791	unsigned int nr_frags;
5792	unsigned int mss;
5793	int count = 0;
5794	int tso;
5795	unsigned int f;
5796	__be16 protocol = vlan_get_protocol(skb);
5797
5798	if (test_bit(__E1000_DOWN, &adapter->state)) {
5799		dev_kfree_skb_any(skb);
5800		return NETDEV_TX_OK;
5801	}
5802
5803	if (skb->len <= 0) {
5804		dev_kfree_skb_any(skb);
5805		return NETDEV_TX_OK;
5806	}
5807
5808	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5809	 * pad skb in order to meet this minimum size requirement
5810	 */
5811	if (skb_put_padto(skb, 17))
5812		return NETDEV_TX_OK;
5813
5814	mss = skb_shinfo(skb)->gso_size;
5815	if (mss) {
5816		u8 hdr_len;
5817
5818		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5819		 * points to just header, pull a few bytes of payload from
5820		 * frags into skb->data
5821		 */
5822		hdr_len = skb_tcp_all_headers(skb);
5823		/* we do this workaround for ES2LAN, but it is un-necessary,
5824		 * avoiding it could save a lot of cycles
5825		 */
5826		if (skb->data_len && (hdr_len == len)) {
5827			unsigned int pull_size;
5828
5829			pull_size = min_t(unsigned int, 4, skb->data_len);
5830			if (!__pskb_pull_tail(skb, pull_size)) {
5831				e_err("__pskb_pull_tail failed.\n");
5832				dev_kfree_skb_any(skb);
5833				return NETDEV_TX_OK;
5834			}
5835			len = skb_headlen(skb);
5836		}
5837	}
5838
5839	/* reserve a descriptor for the offload context */
5840	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5841		count++;
5842	count++;
5843
5844	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5845
5846	nr_frags = skb_shinfo(skb)->nr_frags;
5847	for (f = 0; f < nr_frags; f++)
5848		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5849				      adapter->tx_fifo_limit);
5850
5851	if (adapter->hw.mac.tx_pkt_filtering)
5852		e1000_transfer_dhcp_info(adapter, skb);
5853
5854	/* need: count + 2 desc gap to keep tail from touching
5855	 * head, otherwise try next time
5856	 */
5857	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5858		return NETDEV_TX_BUSY;
5859
5860	if (skb_vlan_tag_present(skb)) {
5861		tx_flags |= E1000_TX_FLAGS_VLAN;
5862		tx_flags |= (skb_vlan_tag_get(skb) <<
5863			     E1000_TX_FLAGS_VLAN_SHIFT);
5864	}
5865
5866	first = tx_ring->next_to_use;
5867
5868	tso = e1000_tso(tx_ring, skb, protocol);
5869	if (tso < 0) {
5870		dev_kfree_skb_any(skb);
5871		return NETDEV_TX_OK;
5872	}
5873
5874	if (tso)
5875		tx_flags |= E1000_TX_FLAGS_TSO;
5876	else if (e1000_tx_csum(tx_ring, skb, protocol))
5877		tx_flags |= E1000_TX_FLAGS_CSUM;
5878
5879	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5880	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5881	 * no longer assume, we must.
5882	 */
5883	if (protocol == htons(ETH_P_IP))
5884		tx_flags |= E1000_TX_FLAGS_IPV4;
5885
5886	if (unlikely(skb->no_fcs))
5887		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5888
5889	/* if count is 0 then mapping error has occurred */
5890	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5891			     nr_frags);
5892	if (count) {
5893		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5894		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5895			if (!adapter->tx_hwtstamp_skb) {
5896				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5897				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5898				adapter->tx_hwtstamp_skb = skb_get(skb);
5899				adapter->tx_hwtstamp_start = jiffies;
5900				schedule_work(&adapter->tx_hwtstamp_work);
5901			} else {
5902				adapter->tx_hwtstamp_skipped++;
5903			}
5904		}
5905
5906		skb_tx_timestamp(skb);
5907
5908		netdev_sent_queue(netdev, skb->len);
5909		e1000_tx_queue(tx_ring, tx_flags, count);
5910		/* Make sure there is space in the ring for the next send. */
5911		e1000_maybe_stop_tx(tx_ring,
5912				    ((MAX_SKB_FRAGS + 1) *
5913				     DIV_ROUND_UP(PAGE_SIZE,
5914						  adapter->tx_fifo_limit) + 4));
5915
5916		if (!netdev_xmit_more() ||
5917		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5918			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5919				e1000e_update_tdt_wa(tx_ring,
5920						     tx_ring->next_to_use);
5921			else
5922				writel(tx_ring->next_to_use, tx_ring->tail);
5923		}
5924	} else {
5925		dev_kfree_skb_any(skb);
5926		tx_ring->buffer_info[first].time_stamp = 0;
5927		tx_ring->next_to_use = first;
5928	}
5929
5930	return NETDEV_TX_OK;
5931}
5932
5933/**
5934 * e1000_tx_timeout - Respond to a Tx Hang
5935 * @netdev: network interface device structure
5936 * @txqueue: index of the hung queue (unused)
5937 **/
5938static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5939{
5940	struct e1000_adapter *adapter = netdev_priv(netdev);
5941
5942	/* Do the reset outside of interrupt context */
5943	adapter->tx_timeout_count++;
5944	schedule_work(&adapter->reset_task);
5945}
5946
5947static void e1000_reset_task(struct work_struct *work)
5948{
5949	struct e1000_adapter *adapter;
5950	adapter = container_of(work, struct e1000_adapter, reset_task);
5951
5952	rtnl_lock();
5953	/* don't run the task if already down */
5954	if (test_bit(__E1000_DOWN, &adapter->state)) {
5955		rtnl_unlock();
5956		return;
5957	}
5958
5959	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5960		e1000e_dump(adapter);
5961		e_err("Reset adapter unexpectedly\n");
5962	}
5963	e1000e_reinit_locked(adapter);
5964	rtnl_unlock();
5965}
5966
5967/**
5968 * e1000e_get_stats64 - Get System Network Statistics
5969 * @netdev: network interface device structure
5970 * @stats: rtnl_link_stats64 pointer
5971 *
5972 * Returns the address of the device statistics structure.
5973 **/
5974void e1000e_get_stats64(struct net_device *netdev,
5975			struct rtnl_link_stats64 *stats)
5976{
5977	struct e1000_adapter *adapter = netdev_priv(netdev);
5978
5979	spin_lock(&adapter->stats64_lock);
5980	e1000e_update_stats(adapter);
5981	/* Fill out the OS statistics structure */
5982	stats->rx_bytes = adapter->stats.gorc;
5983	stats->rx_packets = adapter->stats.gprc;
5984	stats->tx_bytes = adapter->stats.gotc;
5985	stats->tx_packets = adapter->stats.gptc;
5986	stats->multicast = adapter->stats.mprc;
5987	stats->collisions = adapter->stats.colc;
5988
5989	/* Rx Errors */
5990
5991	/* RLEC on some newer hardware can be incorrect so build
5992	 * our own version based on RUC and ROC
5993	 */
5994	stats->rx_errors = adapter->stats.rxerrc +
5995	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5996	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5997	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5998	stats->rx_crc_errors = adapter->stats.crcerrs;
5999	stats->rx_frame_errors = adapter->stats.algnerrc;
6000	stats->rx_missed_errors = adapter->stats.mpc;
6001
6002	/* Tx Errors */
6003	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6004	stats->tx_aborted_errors = adapter->stats.ecol;
6005	stats->tx_window_errors = adapter->stats.latecol;
6006	stats->tx_carrier_errors = adapter->stats.tncrs;
6007
6008	/* Tx Dropped needs to be maintained elsewhere */
6009
6010	spin_unlock(&adapter->stats64_lock);
6011}
6012
6013/**
6014 * e1000_change_mtu - Change the Maximum Transfer Unit
6015 * @netdev: network interface device structure
6016 * @new_mtu: new value for maximum frame size
6017 *
6018 * Returns 0 on success, negative on failure
6019 **/
6020static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6021{
6022	struct e1000_adapter *adapter = netdev_priv(netdev);
6023	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6024
6025	/* Jumbo frame support */
6026	if ((new_mtu > ETH_DATA_LEN) &&
6027	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6028		e_err("Jumbo Frames not supported.\n");
6029		return -EINVAL;
6030	}
6031
6032	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6034	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6035	    (new_mtu > ETH_DATA_LEN)) {
6036		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037		return -EINVAL;
6038	}
6039
6040	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6041		usleep_range(1000, 1100);
6042	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043	adapter->max_frame_size = max_frame;
6044	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6045		   netdev->mtu, new_mtu);
6046	WRITE_ONCE(netdev->mtu, new_mtu);
6047
6048	pm_runtime_get_sync(netdev->dev.parent);
6049
6050	if (netif_running(netdev))
6051		e1000e_down(adapter, true);
6052
6053	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6054	 * means we reserve 2 more, this pushes us to allocate from the next
6055	 * larger slab size.
6056	 * i.e. RXBUFFER_2048 --> size-4096 slab
6057	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6058	 * fragmented skbs
6059	 */
6060
6061	if (max_frame <= 2048)
6062		adapter->rx_buffer_len = 2048;
6063	else
6064		adapter->rx_buffer_len = 4096;
6065
6066	/* adjust allocation if LPE protects us, and we aren't using SBP */
6067	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6068		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6069
6070	if (netif_running(netdev))
6071		e1000e_up(adapter);
6072	else
6073		e1000e_reset(adapter);
6074
6075	pm_runtime_put_sync(netdev->dev.parent);
6076
6077	clear_bit(__E1000_RESETTING, &adapter->state);
6078
6079	return 0;
6080}
6081
6082static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6083			   int cmd)
6084{
6085	struct e1000_adapter *adapter = netdev_priv(netdev);
6086	struct mii_ioctl_data *data = if_mii(ifr);
6087
6088	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089		return -EOPNOTSUPP;
6090
6091	switch (cmd) {
6092	case SIOCGMIIPHY:
6093		data->phy_id = adapter->hw.phy.addr;
6094		break;
6095	case SIOCGMIIREG:
6096		e1000_phy_read_status(adapter);
6097
6098		switch (data->reg_num & 0x1F) {
6099		case MII_BMCR:
6100			data->val_out = adapter->phy_regs.bmcr;
6101			break;
6102		case MII_BMSR:
6103			data->val_out = adapter->phy_regs.bmsr;
6104			break;
6105		case MII_PHYSID1:
6106			data->val_out = (adapter->hw.phy.id >> 16);
6107			break;
6108		case MII_PHYSID2:
6109			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6110			break;
6111		case MII_ADVERTISE:
6112			data->val_out = adapter->phy_regs.advertise;
6113			break;
6114		case MII_LPA:
6115			data->val_out = adapter->phy_regs.lpa;
6116			break;
6117		case MII_EXPANSION:
6118			data->val_out = adapter->phy_regs.expansion;
6119			break;
6120		case MII_CTRL1000:
6121			data->val_out = adapter->phy_regs.ctrl1000;
6122			break;
6123		case MII_STAT1000:
6124			data->val_out = adapter->phy_regs.stat1000;
6125			break;
6126		case MII_ESTATUS:
6127			data->val_out = adapter->phy_regs.estatus;
6128			break;
6129		default:
6130			return -EIO;
6131		}
6132		break;
6133	case SIOCSMIIREG:
6134	default:
6135		return -EOPNOTSUPP;
6136	}
6137	return 0;
6138}
6139
6140/**
6141 * e1000e_hwtstamp_set - control hardware time stamping
6142 * @netdev: network interface device structure
6143 * @ifr: interface request
6144 *
6145 * Outgoing time stamping can be enabled and disabled. Play nice and
6146 * disable it when requested, although it shouldn't cause any overhead
6147 * when no packet needs it. At most one packet in the queue may be
6148 * marked for time stamping, otherwise it would be impossible to tell
6149 * for sure to which packet the hardware time stamp belongs.
6150 *
6151 * Incoming time stamping has to be configured via the hardware filters.
6152 * Not all combinations are supported, in particular event type has to be
6153 * specified. Matching the kind of event packet is not supported, with the
6154 * exception of "all V2 events regardless of level 2 or 4".
6155 **/
6156static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6157{
6158	struct e1000_adapter *adapter = netdev_priv(netdev);
6159	struct hwtstamp_config config;
6160	int ret_val;
6161
6162	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6163		return -EFAULT;
6164
6165	ret_val = e1000e_config_hwtstamp(adapter, &config);
6166	if (ret_val)
6167		return ret_val;
6168
6169	switch (config.rx_filter) {
6170	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6171	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6172	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6173	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6174	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6175	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6176		/* With V2 type filters which specify a Sync or Delay Request,
6177		 * Path Delay Request/Response messages are also time stamped
6178		 * by hardware so notify the caller the requested packets plus
6179		 * some others are time stamped.
6180		 */
6181		config.rx_filter = HWTSTAMP_FILTER_SOME;
6182		break;
6183	default:
6184		break;
6185	}
6186
6187	return copy_to_user(ifr->ifr_data, &config,
6188			    sizeof(config)) ? -EFAULT : 0;
6189}
6190
6191static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6192{
6193	struct e1000_adapter *adapter = netdev_priv(netdev);
6194
6195	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6196			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6197}
6198
6199static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6200{
6201	switch (cmd) {
6202	case SIOCGMIIPHY:
6203	case SIOCGMIIREG:
6204	case SIOCSMIIREG:
6205		return e1000_mii_ioctl(netdev, ifr, cmd);
6206	case SIOCSHWTSTAMP:
6207		return e1000e_hwtstamp_set(netdev, ifr);
6208	case SIOCGHWTSTAMP:
6209		return e1000e_hwtstamp_get(netdev, ifr);
6210	default:
6211		return -EOPNOTSUPP;
6212	}
6213}
6214
6215static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6216{
6217	struct e1000_hw *hw = &adapter->hw;
6218	u32 i, mac_reg, wuc;
6219	u16 phy_reg, wuc_enable;
6220	int retval;
6221
6222	/* copy MAC RARs to PHY RARs */
6223	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6224
6225	retval = hw->phy.ops.acquire(hw);
6226	if (retval) {
6227		e_err("Could not acquire PHY\n");
6228		return retval;
6229	}
6230
6231	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6233	if (retval)
6234		goto release;
6235
6236	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6237	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6238		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6239		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6240					   (u16)(mac_reg & 0xFFFF));
6241		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6242					   (u16)((mac_reg >> 16) & 0xFFFF));
6243	}
6244
6245	/* configure PHY Rx Control register */
6246	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6247	mac_reg = er32(RCTL);
6248	if (mac_reg & E1000_RCTL_UPE)
6249		phy_reg |= BM_RCTL_UPE;
6250	if (mac_reg & E1000_RCTL_MPE)
6251		phy_reg |= BM_RCTL_MPE;
6252	phy_reg &= ~(BM_RCTL_MO_MASK);
6253	if (mac_reg & E1000_RCTL_MO_3)
6254		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6255			    << BM_RCTL_MO_SHIFT);
6256	if (mac_reg & E1000_RCTL_BAM)
6257		phy_reg |= BM_RCTL_BAM;
6258	if (mac_reg & E1000_RCTL_PMCF)
6259		phy_reg |= BM_RCTL_PMCF;
6260	mac_reg = er32(CTRL);
6261	if (mac_reg & E1000_CTRL_RFCE)
6262		phy_reg |= BM_RCTL_RFCE;
6263	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6264
6265	wuc = E1000_WUC_PME_EN;
6266	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6267		wuc |= E1000_WUC_APME;
6268
6269	/* enable PHY wakeup in MAC register */
6270	ew32(WUFC, wufc);
6271	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6272		   E1000_WUC_PME_STATUS | wuc));
6273
6274	/* configure and enable PHY wakeup in PHY registers */
6275	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6276	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6277
6278	/* activate PHY wakeup */
6279	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6280	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6281	if (retval)
6282		e_err("Could not set PHY Host Wakeup bit\n");
6283release:
6284	hw->phy.ops.release(hw);
6285
6286	return retval;
6287}
6288
6289static void e1000e_flush_lpic(struct pci_dev *pdev)
6290{
6291	struct net_device *netdev = pci_get_drvdata(pdev);
6292	struct e1000_adapter *adapter = netdev_priv(netdev);
6293	struct e1000_hw *hw = &adapter->hw;
6294	u32 ret_val;
6295
6296	pm_runtime_get_sync(netdev->dev.parent);
6297
6298	ret_val = hw->phy.ops.acquire(hw);
6299	if (ret_val)
6300		goto fl_out;
6301
6302	pr_info("EEE TX LPI TIMER: %08X\n",
6303		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6304
6305	hw->phy.ops.release(hw);
6306
6307fl_out:
6308	pm_runtime_put_sync(netdev->dev.parent);
6309}
6310
6311/* S0ix implementation */
6312static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6313{
6314	struct e1000_hw *hw = &adapter->hw;
6315	u32 mac_data;
6316	u16 phy_data;
6317
6318	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6319	    hw->mac.type >= e1000_pch_adp) {
6320		/* Request ME configure the device for S0ix */
6321		mac_data = er32(H2ME);
6322		mac_data |= E1000_H2ME_START_DPG;
6323		mac_data &= ~E1000_H2ME_EXIT_DPG;
6324		trace_e1000e_trace_mac_register(mac_data);
6325		ew32(H2ME, mac_data);
6326	} else {
6327		/* Request driver configure the device to S0ix */
6328		/* Disable the periodic inband message,
6329		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6330		 */
6331		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6332		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6333		phy_data |= BIT(10);
6334		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6335
6336		/* Make sure we don't exit K1 every time a new packet arrives
6337		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6338		 */
6339		e1e_rphy(hw, I217_CGFREG, &phy_data);
6340		phy_data |= BIT(5);
6341		e1e_wphy(hw, I217_CGFREG, phy_data);
6342
6343		/* Change the MAC/PHY interface to SMBus
6344		 * Force the SMBus in PHY page769_23[0] = 1
6345		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6346		 */
6347		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6348		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6349		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6350		mac_data = er32(CTRL_EXT);
6351		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6352		ew32(CTRL_EXT, mac_data);
6353
6354		/* DFT control: PHY bit: page769_20[0] = 1
6355		 * page769_20[7] - PHY PLL stop
6356		 * page769_20[8] - PHY go to the electrical idle
6357		 * page769_20[9] - PHY serdes disable
6358		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6359		 */
6360		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6361		phy_data |= BIT(0);
6362		phy_data |= BIT(7);
6363		phy_data |= BIT(8);
6364		phy_data |= BIT(9);
6365		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6366
6367		mac_data = er32(EXTCNF_CTRL);
6368		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6369		ew32(EXTCNF_CTRL, mac_data);
6370
 
 
 
 
 
6371		/* Disable disconnected cable conditioning for Power Gating */
6372		mac_data = er32(DPGFR);
6373		mac_data |= BIT(2);
6374		ew32(DPGFR, mac_data);
6375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6376		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6377		mac_data = er32(CTRL_EXT);
6378		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6379		ew32(CTRL_EXT, mac_data);
6380	}
6381
6382	/* Enable the Dynamic Power Gating in the MAC */
6383	mac_data = er32(FEXTNVM7);
6384	mac_data |= BIT(22);
6385	ew32(FEXTNVM7, mac_data);
6386
6387	/* Don't wake from dynamic Power Gating with clock request */
6388	mac_data = er32(FEXTNVM12);
6389	mac_data |= BIT(12);
6390	ew32(FEXTNVM12, mac_data);
6391
6392	/* Ungate PGCB clock */
6393	mac_data = er32(FEXTNVM9);
6394	mac_data &= ~BIT(28);
6395	ew32(FEXTNVM9, mac_data);
6396
6397	/* Enable K1 off to enable mPHY Power Gating */
6398	mac_data = er32(FEXTNVM6);
6399	mac_data |= BIT(31);
6400	ew32(FEXTNVM6, mac_data);
6401
6402	/* Enable mPHY power gating for any link and speed */
6403	mac_data = er32(FEXTNVM8);
6404	mac_data |= BIT(9);
6405	ew32(FEXTNVM8, mac_data);
6406
6407	/* No MAC DPG gating SLP_S0 in modern standby
6408	 * Switch the logic of the lanphypc to use PMC counter
6409	 */
6410	mac_data = er32(FEXTNVM5);
6411	mac_data |= BIT(7);
6412	ew32(FEXTNVM5, mac_data);
6413
6414	/* Disable the time synchronization clock */
6415	mac_data = er32(FEXTNVM7);
6416	mac_data |= BIT(31);
6417	mac_data &= ~BIT(0);
6418	ew32(FEXTNVM7, mac_data);
6419
6420	/* Dynamic Power Gating Enable */
6421	mac_data = er32(CTRL_EXT);
6422	mac_data |= BIT(3);
6423	ew32(CTRL_EXT, mac_data);
6424
6425	/* Check MAC Tx/Rx packet buffer pointers.
6426	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6427	 * pending traffic indication that would prevent power gating.
6428	 */
6429	mac_data = er32(TDFH);
6430	if (mac_data)
6431		ew32(TDFH, 0);
6432	mac_data = er32(TDFT);
6433	if (mac_data)
6434		ew32(TDFT, 0);
6435	mac_data = er32(TDFHS);
6436	if (mac_data)
6437		ew32(TDFHS, 0);
6438	mac_data = er32(TDFTS);
6439	if (mac_data)
6440		ew32(TDFTS, 0);
6441	mac_data = er32(TDFPC);
6442	if (mac_data)
6443		ew32(TDFPC, 0);
6444	mac_data = er32(RDFH);
6445	if (mac_data)
6446		ew32(RDFH, 0);
6447	mac_data = er32(RDFT);
6448	if (mac_data)
6449		ew32(RDFT, 0);
6450	mac_data = er32(RDFHS);
6451	if (mac_data)
6452		ew32(RDFHS, 0);
6453	mac_data = er32(RDFTS);
6454	if (mac_data)
6455		ew32(RDFTS, 0);
6456	mac_data = er32(RDFPC);
6457	if (mac_data)
6458		ew32(RDFPC, 0);
6459}
6460
6461static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6462{
6463	struct e1000_hw *hw = &adapter->hw;
6464	bool firmware_bug = false;
6465	u32 mac_data;
6466	u16 phy_data;
6467	u32 i = 0;
6468
6469	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6470	    hw->mac.type >= e1000_pch_adp) {
6471		/* Keep the GPT clock enabled for CSME */
6472		mac_data = er32(FEXTNVM);
6473		mac_data |= BIT(3);
6474		ew32(FEXTNVM, mac_data);
6475		/* Request ME unconfigure the device from S0ix */
6476		mac_data = er32(H2ME);
6477		mac_data &= ~E1000_H2ME_START_DPG;
6478		mac_data |= E1000_H2ME_EXIT_DPG;
6479		trace_e1000e_trace_mac_register(mac_data);
6480		ew32(H2ME, mac_data);
6481
6482		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6483		 * If this takes more than 1 second, show a warning indicating a
6484		 * firmware bug
6485		 */
6486		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6487			if (i > 100 && !firmware_bug)
6488				firmware_bug = true;
6489
6490			if (i++ == 250) {
6491				e_dbg("Timeout (firmware bug): %d msec\n",
6492				      i * 10);
6493				break;
6494			}
6495
6496			usleep_range(10000, 11000);
6497		}
6498		if (firmware_bug)
6499			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6500			       i * 10);
6501		else
6502			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6503	} else {
6504		/* Request driver unconfigure the device from S0ix */
6505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6506		/* Cancel disable disconnected cable conditioning
6507		 * for Power Gating
6508		 */
6509		mac_data = er32(DPGFR);
6510		mac_data &= ~BIT(2);
6511		ew32(DPGFR, mac_data);
6512
6513		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6514		mac_data = er32(CTRL_EXT);
6515		mac_data &= 0xFFF7FFFF;
6516		ew32(CTRL_EXT, mac_data);
6517
 
 
 
 
 
 
 
6518		/* Enable the periodic inband message,
6519		 * Request PCIe clock in K1 page770_17[10:9] =01b
6520		 */
6521		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6522		phy_data &= 0xFBFF;
6523		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6524		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6525
6526		/* Return back configuration
6527		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6528		 */
6529		e1e_rphy(hw, I217_CGFREG, &phy_data);
6530		phy_data &= 0xFFDF;
6531		e1e_wphy(hw, I217_CGFREG, phy_data);
6532
6533		/* Change the MAC/PHY interface to Kumeran
6534		 * Unforce the SMBus in PHY page769_23[0] = 0
6535		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6536		 */
6537		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6538		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6539		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6540		mac_data = er32(CTRL_EXT);
6541		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6542		ew32(CTRL_EXT, mac_data);
6543	}
6544
6545	/* Disable Dynamic Power Gating */
6546	mac_data = er32(CTRL_EXT);
6547	mac_data &= 0xFFFFFFF7;
6548	ew32(CTRL_EXT, mac_data);
6549
6550	/* Enable the time synchronization clock */
6551	mac_data = er32(FEXTNVM7);
6552	mac_data &= ~BIT(31);
6553	mac_data |= BIT(0);
6554	ew32(FEXTNVM7, mac_data);
6555
6556	/* Disable the Dynamic Power Gating in the MAC */
6557	mac_data = er32(FEXTNVM7);
6558	mac_data &= 0xFFBFFFFF;
6559	ew32(FEXTNVM7, mac_data);
6560
6561	/* Disable mPHY power gating for any link and speed */
6562	mac_data = er32(FEXTNVM8);
6563	mac_data &= ~BIT(9);
6564	ew32(FEXTNVM8, mac_data);
6565
6566	/* Disable K1 off */
6567	mac_data = er32(FEXTNVM6);
6568	mac_data &= ~BIT(31);
6569	ew32(FEXTNVM6, mac_data);
6570
6571	/* Disable Ungate PGCB clock */
6572	mac_data = er32(FEXTNVM9);
6573	mac_data |= BIT(28);
6574	ew32(FEXTNVM9, mac_data);
6575
6576	/* Cancel not waking from dynamic
6577	 * Power Gating with clock request
6578	 */
6579	mac_data = er32(FEXTNVM12);
6580	mac_data &= ~BIT(12);
6581	ew32(FEXTNVM12, mac_data);
6582
6583	/* Revert the lanphypc logic to use the internal Gbe counter
6584	 * and not the PMC counter
6585	 */
6586	mac_data = er32(FEXTNVM5);
6587	mac_data &= 0xFFFFFF7F;
6588	ew32(FEXTNVM5, mac_data);
6589}
6590
6591static int e1000e_pm_freeze(struct device *dev)
6592{
6593	struct net_device *netdev = dev_get_drvdata(dev);
6594	struct e1000_adapter *adapter = netdev_priv(netdev);
6595	bool present;
6596
6597	rtnl_lock();
6598
6599	present = netif_device_present(netdev);
6600	netif_device_detach(netdev);
6601
6602	if (present && netif_running(netdev)) {
6603		int count = E1000_CHECK_RESET_COUNT;
6604
6605		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6606			usleep_range(10000, 11000);
6607
6608		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6609
6610		/* Quiesce the device without resetting the hardware */
6611		e1000e_down(adapter, false);
6612		e1000_free_irq(adapter);
6613	}
6614	rtnl_unlock();
6615
6616	e1000e_reset_interrupt_capability(adapter);
6617
6618	/* Allow time for pending master requests to run */
6619	e1000e_disable_pcie_master(&adapter->hw);
6620
6621	return 0;
6622}
6623
6624static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6625{
6626	struct net_device *netdev = pci_get_drvdata(pdev);
6627	struct e1000_adapter *adapter = netdev_priv(netdev);
6628	struct e1000_hw *hw = &adapter->hw;
6629	u32 ctrl, ctrl_ext, rctl, status, wufc;
6630	int retval = 0;
6631
6632	/* Runtime suspend should only enable wakeup for link changes */
6633	if (runtime)
6634		wufc = E1000_WUFC_LNKC;
6635	else if (device_may_wakeup(&pdev->dev))
6636		wufc = adapter->wol;
6637	else
6638		wufc = 0;
6639
6640	status = er32(STATUS);
6641	if (status & E1000_STATUS_LU)
6642		wufc &= ~E1000_WUFC_LNKC;
6643
6644	if (wufc) {
6645		e1000_setup_rctl(adapter);
6646		e1000e_set_rx_mode(netdev);
6647
6648		/* turn on all-multi mode if wake on multicast is enabled */
6649		if (wufc & E1000_WUFC_MC) {
6650			rctl = er32(RCTL);
6651			rctl |= E1000_RCTL_MPE;
6652			ew32(RCTL, rctl);
6653		}
6654
6655		ctrl = er32(CTRL);
6656		ctrl |= E1000_CTRL_ADVD3WUC;
6657		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6658			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6659		ew32(CTRL, ctrl);
6660
6661		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6662		    adapter->hw.phy.media_type ==
6663		    e1000_media_type_internal_serdes) {
6664			/* keep the laser running in D3 */
6665			ctrl_ext = er32(CTRL_EXT);
6666			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6667			ew32(CTRL_EXT, ctrl_ext);
6668		}
6669
6670		if (!runtime)
6671			e1000e_power_up_phy(adapter);
6672
6673		if (adapter->flags & FLAG_IS_ICH)
6674			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6675
6676		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6677			/* enable wakeup by the PHY */
6678			retval = e1000_init_phy_wakeup(adapter, wufc);
6679			if (retval) {
6680				e_err("Failed to enable wakeup\n");
6681				goto skip_phy_configurations;
6682			}
6683		} else {
6684			/* enable wakeup by the MAC */
6685			ew32(WUFC, wufc);
6686			ew32(WUC, E1000_WUC_PME_EN);
6687		}
6688	} else {
6689		ew32(WUC, 0);
6690		ew32(WUFC, 0);
6691
6692		e1000_power_down_phy(adapter);
6693	}
6694
6695	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6696		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6697	} else if (hw->mac.type >= e1000_pch_lpt) {
6698		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6699			/* ULP does not support wake from unicast, multicast
6700			 * or broadcast.
6701			 */
6702			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6703			if (retval) {
6704				e_err("Failed to enable ULP\n");
6705				goto skip_phy_configurations;
6706			}
6707		}
6708	}
6709
6710	/* Ensure that the appropriate bits are set in LPI_CTRL
6711	 * for EEE in Sx
6712	 */
6713	if ((hw->phy.type >= e1000_phy_i217) &&
6714	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6715		u16 lpi_ctrl = 0;
6716
6717		retval = hw->phy.ops.acquire(hw);
6718		if (!retval) {
6719			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6720						 &lpi_ctrl);
6721			if (!retval) {
6722				if (adapter->eee_advert &
6723				    hw->dev_spec.ich8lan.eee_lp_ability &
6724				    I82579_EEE_100_SUPPORTED)
6725					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6726				if (adapter->eee_advert &
6727				    hw->dev_spec.ich8lan.eee_lp_ability &
6728				    I82579_EEE_1000_SUPPORTED)
6729					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6730
6731				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6732							 lpi_ctrl);
6733			}
6734		}
6735		hw->phy.ops.release(hw);
6736	}
6737
6738skip_phy_configurations:
6739	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6740	 * would have already happened in close and is redundant.
6741	 */
6742	e1000e_release_hw_control(adapter);
6743
6744	pci_clear_master(pdev);
6745
6746	/* The pci-e switch on some quad port adapters will report a
6747	 * correctable error when the MAC transitions from D0 to D3.  To
6748	 * prevent this we need to mask off the correctable errors on the
6749	 * downstream port of the pci-e switch.
6750	 *
6751	 * We don't have the associated upstream bridge while assigning
6752	 * the PCI device into guest. For example, the KVM on power is
6753	 * one of the cases.
6754	 */
6755	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6756		struct pci_dev *us_dev = pdev->bus->self;
6757		u16 devctl;
6758
6759		if (!us_dev)
6760			return 0;
6761
6762		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6763		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6764					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6765
6766		pci_save_state(pdev);
6767		pci_prepare_to_sleep(pdev);
6768
6769		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6770	}
6771
6772	return 0;
6773}
6774
6775/**
6776 * __e1000e_disable_aspm - Disable ASPM states
6777 * @pdev: pointer to PCI device struct
6778 * @state: bit-mask of ASPM states to disable
6779 * @locked: indication if this context holds pci_bus_sem locked.
6780 *
6781 * Some devices *must* have certain ASPM states disabled per hardware errata.
6782 **/
6783static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6784{
6785	struct pci_dev *parent = pdev->bus->self;
6786	u16 aspm_dis_mask = 0;
6787	u16 pdev_aspmc, parent_aspmc;
6788
6789	switch (state) {
6790	case PCIE_LINK_STATE_L0S:
6791	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6792		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6793		fallthrough; /* can't have L1 without L0s */
6794	case PCIE_LINK_STATE_L1:
6795		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6796		break;
6797	default:
6798		return;
6799	}
6800
6801	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6802	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6803
6804	if (parent) {
6805		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6806					  &parent_aspmc);
6807		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6808	}
6809
6810	/* Nothing to do if the ASPM states to be disabled already are */
6811	if (!(pdev_aspmc & aspm_dis_mask) &&
6812	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6813		return;
6814
6815	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6816		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6817		 "L0s" : "",
6818		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6819		 "L1" : "");
6820
6821#ifdef CONFIG_PCIEASPM
6822	if (locked)
6823		pci_disable_link_state_locked(pdev, state);
6824	else
6825		pci_disable_link_state(pdev, state);
6826
6827	/* Double-check ASPM control.  If not disabled by the above, the
6828	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6829	 * not enabled); override by writing PCI config space directly.
6830	 */
6831	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6832	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6833
6834	if (!(aspm_dis_mask & pdev_aspmc))
6835		return;
6836#endif
6837
6838	/* Both device and parent should have the same ASPM setting.
6839	 * Disable ASPM in downstream component first and then upstream.
6840	 */
6841	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6842
6843	if (parent)
6844		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6845					   aspm_dis_mask);
6846}
6847
6848/**
6849 * e1000e_disable_aspm - Disable ASPM states.
6850 * @pdev: pointer to PCI device struct
6851 * @state: bit-mask of ASPM states to disable
6852 *
6853 * This function acquires the pci_bus_sem!
6854 * Some devices *must* have certain ASPM states disabled per hardware errata.
6855 **/
6856static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6857{
6858	__e1000e_disable_aspm(pdev, state, 0);
6859}
6860
6861/**
6862 * e1000e_disable_aspm_locked - Disable ASPM states.
6863 * @pdev: pointer to PCI device struct
6864 * @state: bit-mask of ASPM states to disable
6865 *
6866 * This function must be called with pci_bus_sem acquired!
6867 * Some devices *must* have certain ASPM states disabled per hardware errata.
6868 **/
6869static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6870{
6871	__e1000e_disable_aspm(pdev, state, 1);
6872}
6873
6874static int e1000e_pm_thaw(struct device *dev)
6875{
6876	struct net_device *netdev = dev_get_drvdata(dev);
6877	struct e1000_adapter *adapter = netdev_priv(netdev);
6878	int rc = 0;
6879
6880	e1000e_set_interrupt_capability(adapter);
6881
6882	rtnl_lock();
6883	if (netif_running(netdev)) {
6884		rc = e1000_request_irq(adapter);
6885		if (rc)
6886			goto err_irq;
6887
6888		e1000e_up(adapter);
6889	}
6890
6891	netif_device_attach(netdev);
6892err_irq:
6893	rtnl_unlock();
6894
6895	return rc;
6896}
6897
6898static int __e1000_resume(struct pci_dev *pdev)
6899{
6900	struct net_device *netdev = pci_get_drvdata(pdev);
6901	struct e1000_adapter *adapter = netdev_priv(netdev);
6902	struct e1000_hw *hw = &adapter->hw;
6903	u16 aspm_disable_flag = 0;
6904
6905	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6906		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6907	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6908		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6909	if (aspm_disable_flag)
6910		e1000e_disable_aspm(pdev, aspm_disable_flag);
6911
6912	pci_set_master(pdev);
6913
6914	if (hw->mac.type >= e1000_pch2lan)
6915		e1000_resume_workarounds_pchlan(&adapter->hw);
6916
6917	e1000e_power_up_phy(adapter);
6918
6919	/* report the system wakeup cause from S3/S4 */
6920	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6921		u16 phy_data;
6922
6923		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6924		if (phy_data) {
6925			e_info("PHY Wakeup cause - %s\n",
6926			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6927			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6928			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6929			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6930			       phy_data & E1000_WUS_LNKC ?
6931			       "Link Status Change" : "other");
6932		}
6933		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6934	} else {
6935		u32 wus = er32(WUS);
6936
6937		if (wus) {
6938			e_info("MAC Wakeup cause - %s\n",
6939			       wus & E1000_WUS_EX ? "Unicast Packet" :
6940			       wus & E1000_WUS_MC ? "Multicast Packet" :
6941			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6942			       wus & E1000_WUS_MAG ? "Magic Packet" :
6943			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6944			       "other");
6945		}
6946		ew32(WUS, ~0);
6947	}
6948
6949	e1000e_reset(adapter);
6950
6951	e1000_init_manageability_pt(adapter);
6952
6953	/* If the controller has AMT, do not set DRV_LOAD until the interface
6954	 * is up.  For all other cases, let the f/w know that the h/w is now
6955	 * under the control of the driver.
6956	 */
6957	if (!(adapter->flags & FLAG_HAS_AMT))
6958		e1000e_get_hw_control(adapter);
6959
6960	return 0;
6961}
6962
6963static int e1000e_pm_prepare(struct device *dev)
6964{
6965	return pm_runtime_suspended(dev) &&
6966		pm_suspend_via_firmware();
6967}
6968
6969static int e1000e_pm_suspend(struct device *dev)
6970{
6971	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6972	struct e1000_adapter *adapter = netdev_priv(netdev);
6973	struct pci_dev *pdev = to_pci_dev(dev);
6974	int rc;
6975
6976	e1000e_flush_lpic(pdev);
6977
6978	e1000e_pm_freeze(dev);
6979
6980	rc = __e1000_shutdown(pdev, false);
6981	if (!rc) {
 
 
6982		/* Introduce S0ix implementation */
6983		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6984			e1000e_s0ix_entry_flow(adapter);
6985	}
6986
6987	return 0;
6988}
6989
6990static int e1000e_pm_resume(struct device *dev)
6991{
6992	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6993	struct e1000_adapter *adapter = netdev_priv(netdev);
6994	struct pci_dev *pdev = to_pci_dev(dev);
6995	int rc;
6996
6997	/* Introduce S0ix implementation */
6998	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6999		e1000e_s0ix_exit_flow(adapter);
7000
7001	rc = __e1000_resume(pdev);
7002	if (rc)
7003		return rc;
7004
7005	return e1000e_pm_thaw(dev);
7006}
7007
7008static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7009{
7010	struct net_device *netdev = dev_get_drvdata(dev);
7011	struct e1000_adapter *adapter = netdev_priv(netdev);
7012	u16 eee_lp;
7013
7014	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7015
7016	if (!e1000e_has_link(adapter)) {
7017		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7018		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7019	}
7020
7021	return -EBUSY;
7022}
7023
7024static int e1000e_pm_runtime_resume(struct device *dev)
7025{
7026	struct pci_dev *pdev = to_pci_dev(dev);
7027	struct net_device *netdev = pci_get_drvdata(pdev);
7028	struct e1000_adapter *adapter = netdev_priv(netdev);
7029	int rc;
7030
7031	pdev->pme_poll = true;
7032
7033	rc = __e1000_resume(pdev);
7034	if (rc)
7035		return rc;
7036
7037	if (netdev->flags & IFF_UP)
7038		e1000e_up(adapter);
7039
7040	return rc;
7041}
7042
7043static int e1000e_pm_runtime_suspend(struct device *dev)
7044{
7045	struct pci_dev *pdev = to_pci_dev(dev);
7046	struct net_device *netdev = pci_get_drvdata(pdev);
7047	struct e1000_adapter *adapter = netdev_priv(netdev);
7048
7049	if (netdev->flags & IFF_UP) {
7050		int count = E1000_CHECK_RESET_COUNT;
7051
7052		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7053			usleep_range(10000, 11000);
7054
7055		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7056
7057		/* Down the device without resetting the hardware */
7058		e1000e_down(adapter, false);
7059	}
7060
7061	if (__e1000_shutdown(pdev, true)) {
7062		e1000e_pm_runtime_resume(dev);
7063		return -EBUSY;
7064	}
7065
7066	return 0;
7067}
7068
7069static void e1000_shutdown(struct pci_dev *pdev)
7070{
7071	e1000e_flush_lpic(pdev);
7072
7073	e1000e_pm_freeze(&pdev->dev);
7074
7075	__e1000_shutdown(pdev, false);
7076}
7077
7078#ifdef CONFIG_NET_POLL_CONTROLLER
7079
7080static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7081{
7082	struct net_device *netdev = data;
7083	struct e1000_adapter *adapter = netdev_priv(netdev);
7084
7085	if (adapter->msix_entries) {
7086		int vector, msix_irq;
7087
7088		vector = 0;
7089		msix_irq = adapter->msix_entries[vector].vector;
7090		if (disable_hardirq(msix_irq))
7091			e1000_intr_msix_rx(msix_irq, netdev);
7092		enable_irq(msix_irq);
7093
7094		vector++;
7095		msix_irq = adapter->msix_entries[vector].vector;
7096		if (disable_hardirq(msix_irq))
7097			e1000_intr_msix_tx(msix_irq, netdev);
7098		enable_irq(msix_irq);
7099
7100		vector++;
7101		msix_irq = adapter->msix_entries[vector].vector;
7102		if (disable_hardirq(msix_irq))
7103			e1000_msix_other(msix_irq, netdev);
7104		enable_irq(msix_irq);
7105	}
7106
7107	return IRQ_HANDLED;
7108}
7109
7110/**
7111 * e1000_netpoll
7112 * @netdev: network interface device structure
7113 *
7114 * Polling 'interrupt' - used by things like netconsole to send skbs
7115 * without having to re-enable interrupts. It's not called while
7116 * the interrupt routine is executing.
7117 */
7118static void e1000_netpoll(struct net_device *netdev)
7119{
7120	struct e1000_adapter *adapter = netdev_priv(netdev);
7121
7122	switch (adapter->int_mode) {
7123	case E1000E_INT_MODE_MSIX:
7124		e1000_intr_msix(adapter->pdev->irq, netdev);
7125		break;
7126	case E1000E_INT_MODE_MSI:
7127		if (disable_hardirq(adapter->pdev->irq))
7128			e1000_intr_msi(adapter->pdev->irq, netdev);
7129		enable_irq(adapter->pdev->irq);
7130		break;
7131	default:		/* E1000E_INT_MODE_LEGACY */
7132		if (disable_hardirq(adapter->pdev->irq))
7133			e1000_intr(adapter->pdev->irq, netdev);
7134		enable_irq(adapter->pdev->irq);
7135		break;
7136	}
7137}
7138#endif
7139
7140/**
7141 * e1000_io_error_detected - called when PCI error is detected
7142 * @pdev: Pointer to PCI device
7143 * @state: The current pci connection state
7144 *
7145 * This function is called after a PCI bus error affecting
7146 * this device has been detected.
7147 */
7148static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7149						pci_channel_state_t state)
7150{
7151	e1000e_pm_freeze(&pdev->dev);
7152
7153	if (state == pci_channel_io_perm_failure)
7154		return PCI_ERS_RESULT_DISCONNECT;
7155
7156	pci_disable_device(pdev);
7157
7158	/* Request a slot reset. */
7159	return PCI_ERS_RESULT_NEED_RESET;
7160}
7161
7162/**
7163 * e1000_io_slot_reset - called after the pci bus has been reset.
7164 * @pdev: Pointer to PCI device
7165 *
7166 * Restart the card from scratch, as if from a cold-boot. Implementation
7167 * resembles the first-half of the e1000e_pm_resume routine.
7168 */
7169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7170{
7171	struct net_device *netdev = pci_get_drvdata(pdev);
7172	struct e1000_adapter *adapter = netdev_priv(netdev);
7173	struct e1000_hw *hw = &adapter->hw;
7174	u16 aspm_disable_flag = 0;
7175	int err;
7176	pci_ers_result_t result;
7177
7178	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7179		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7180	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7181		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7182	if (aspm_disable_flag)
7183		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7184
7185	err = pci_enable_device_mem(pdev);
7186	if (err) {
7187		dev_err(&pdev->dev,
7188			"Cannot re-enable PCI device after reset.\n");
7189		result = PCI_ERS_RESULT_DISCONNECT;
7190	} else {
7191		pdev->state_saved = true;
7192		pci_restore_state(pdev);
7193		pci_set_master(pdev);
7194
7195		pci_enable_wake(pdev, PCI_D3hot, 0);
7196		pci_enable_wake(pdev, PCI_D3cold, 0);
7197
7198		e1000e_reset(adapter);
7199		ew32(WUS, ~0);
7200		result = PCI_ERS_RESULT_RECOVERED;
7201	}
7202
7203	return result;
7204}
7205
7206/**
7207 * e1000_io_resume - called when traffic can start flowing again.
7208 * @pdev: Pointer to PCI device
7209 *
7210 * This callback is called when the error recovery driver tells us that
7211 * its OK to resume normal operation. Implementation resembles the
7212 * second-half of the e1000e_pm_resume routine.
7213 */
7214static void e1000_io_resume(struct pci_dev *pdev)
7215{
7216	struct net_device *netdev = pci_get_drvdata(pdev);
7217	struct e1000_adapter *adapter = netdev_priv(netdev);
7218
7219	e1000_init_manageability_pt(adapter);
7220
7221	e1000e_pm_thaw(&pdev->dev);
7222
7223	/* If the controller has AMT, do not set DRV_LOAD until the interface
7224	 * is up.  For all other cases, let the f/w know that the h/w is now
7225	 * under the control of the driver.
7226	 */
7227	if (!(adapter->flags & FLAG_HAS_AMT))
7228		e1000e_get_hw_control(adapter);
7229}
7230
7231static void e1000_print_device_info(struct e1000_adapter *adapter)
7232{
7233	struct e1000_hw *hw = &adapter->hw;
7234	struct net_device *netdev = adapter->netdev;
7235	u32 ret_val;
7236	u8 pba_str[E1000_PBANUM_LENGTH];
7237
7238	/* print bus type/speed/width info */
7239	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7240	       /* bus width */
7241	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7242		"Width x1"),
7243	       /* MAC address */
7244	       netdev->dev_addr);
7245	e_info("Intel(R) PRO/%s Network Connection\n",
7246	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7247	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7248						E1000_PBANUM_LENGTH);
7249	if (ret_val)
7250		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7251	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7252	       hw->mac.type, hw->phy.type, pba_str);
7253}
7254
7255static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7256{
7257	struct e1000_hw *hw = &adapter->hw;
7258	int ret_val;
7259	u16 buf = 0;
7260
7261	if (hw->mac.type != e1000_82573)
7262		return;
7263
7264	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7265	le16_to_cpus(&buf);
7266	if (!ret_val && (!(buf & BIT(0)))) {
7267		/* Deep Smart Power Down (DSPD) */
7268		dev_warn(&adapter->pdev->dev,
7269			 "Warning: detected DSPD enabled in EEPROM\n");
7270	}
7271}
7272
7273static netdev_features_t e1000_fix_features(struct net_device *netdev,
7274					    netdev_features_t features)
7275{
7276	struct e1000_adapter *adapter = netdev_priv(netdev);
7277	struct e1000_hw *hw = &adapter->hw;
7278
7279	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7280	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7281		features &= ~NETIF_F_RXFCS;
7282
7283	/* Since there is no support for separate Rx/Tx vlan accel
7284	 * enable/disable make sure Tx flag is always in same state as Rx.
7285	 */
7286	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7287		features |= NETIF_F_HW_VLAN_CTAG_TX;
7288	else
7289		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7290
7291	return features;
7292}
7293
7294static int e1000_set_features(struct net_device *netdev,
7295			      netdev_features_t features)
7296{
7297	struct e1000_adapter *adapter = netdev_priv(netdev);
7298	netdev_features_t changed = features ^ netdev->features;
7299
7300	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7301		adapter->flags |= FLAG_TSO_FORCE;
7302
7303	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7304			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7305			 NETIF_F_RXALL)))
7306		return 0;
7307
7308	if (changed & NETIF_F_RXFCS) {
7309		if (features & NETIF_F_RXFCS) {
7310			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311		} else {
7312			/* We need to take it back to defaults, which might mean
7313			 * stripping is still disabled at the adapter level.
7314			 */
7315			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7316				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7317			else
7318				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7319		}
7320	}
7321
7322	netdev->features = features;
7323
7324	if (netif_running(netdev))
7325		e1000e_reinit_locked(adapter);
7326	else
7327		e1000e_reset(adapter);
7328
7329	return 1;
7330}
7331
7332static const struct net_device_ops e1000e_netdev_ops = {
7333	.ndo_open		= e1000e_open,
7334	.ndo_stop		= e1000e_close,
7335	.ndo_start_xmit		= e1000_xmit_frame,
7336	.ndo_get_stats64	= e1000e_get_stats64,
7337	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7338	.ndo_set_mac_address	= e1000_set_mac,
7339	.ndo_change_mtu		= e1000_change_mtu,
7340	.ndo_eth_ioctl		= e1000_ioctl,
7341	.ndo_tx_timeout		= e1000_tx_timeout,
7342	.ndo_validate_addr	= eth_validate_addr,
7343
7344	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7345	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7346#ifdef CONFIG_NET_POLL_CONTROLLER
7347	.ndo_poll_controller	= e1000_netpoll,
7348#endif
7349	.ndo_set_features = e1000_set_features,
7350	.ndo_fix_features = e1000_fix_features,
7351	.ndo_features_check	= passthru_features_check,
7352};
7353
7354/**
7355 * e1000_probe - Device Initialization Routine
7356 * @pdev: PCI device information struct
7357 * @ent: entry in e1000_pci_tbl
7358 *
7359 * Returns 0 on success, negative on failure
7360 *
7361 * e1000_probe initializes an adapter identified by a pci_dev structure.
7362 * The OS initialization, configuring of the adapter private structure,
7363 * and a hardware reset occur.
7364 **/
7365static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7366{
7367	struct net_device *netdev;
7368	struct e1000_adapter *adapter;
7369	struct e1000_hw *hw;
7370	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7371	resource_size_t mmio_start, mmio_len;
7372	resource_size_t flash_start, flash_len;
7373	static int cards_found;
7374	u16 aspm_disable_flag = 0;
7375	u16 eeprom_data = 0;
7376	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7377	int bars, i, err;
7378	s32 ret_val = 0;
7379
7380	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7381		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7382	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7383		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7384	if (aspm_disable_flag)
7385		e1000e_disable_aspm(pdev, aspm_disable_flag);
7386
7387	err = pci_enable_device_mem(pdev);
7388	if (err)
7389		return err;
7390
7391	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7392	if (err) {
7393		dev_err(&pdev->dev,
7394			"No usable DMA configuration, aborting\n");
7395		goto err_dma;
7396	}
7397
7398	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7399	err = pci_request_selected_regions_exclusive(pdev, bars,
7400						     e1000e_driver_name);
7401	if (err)
7402		goto err_pci_reg;
7403
 
 
 
7404	pci_set_master(pdev);
7405	/* PCI config space info */
7406	err = pci_save_state(pdev);
7407	if (err)
7408		goto err_alloc_etherdev;
7409
7410	err = -ENOMEM;
7411	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7412	if (!netdev)
7413		goto err_alloc_etherdev;
7414
7415	SET_NETDEV_DEV(netdev, &pdev->dev);
7416
7417	netdev->irq = pdev->irq;
7418
7419	pci_set_drvdata(pdev, netdev);
7420	adapter = netdev_priv(netdev);
7421	hw = &adapter->hw;
7422	adapter->netdev = netdev;
7423	adapter->pdev = pdev;
7424	adapter->ei = ei;
7425	adapter->pba = ei->pba;
7426	adapter->flags = ei->flags;
7427	adapter->flags2 = ei->flags2;
7428	adapter->hw.adapter = adapter;
7429	adapter->hw.mac.type = ei->mac;
7430	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7431	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7432
7433	mmio_start = pci_resource_start(pdev, 0);
7434	mmio_len = pci_resource_len(pdev, 0);
7435
7436	err = -EIO;
7437	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7438	if (!adapter->hw.hw_addr)
7439		goto err_ioremap;
7440
7441	if ((adapter->flags & FLAG_HAS_FLASH) &&
7442	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7443	    (hw->mac.type < e1000_pch_spt)) {
7444		flash_start = pci_resource_start(pdev, 1);
7445		flash_len = pci_resource_len(pdev, 1);
7446		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7447		if (!adapter->hw.flash_address)
7448			goto err_flashmap;
7449	}
7450
7451	/* Set default EEE advertisement */
7452	if (adapter->flags2 & FLAG2_HAS_EEE)
7453		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7454
7455	/* construct the net_device struct */
7456	netdev->netdev_ops = &e1000e_netdev_ops;
7457	e1000e_set_ethtool_ops(netdev);
7458	netdev->watchdog_timeo = 5 * HZ;
7459	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7460	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7461
7462	netdev->mem_start = mmio_start;
7463	netdev->mem_end = mmio_start + mmio_len;
7464
7465	adapter->bd_number = cards_found++;
7466
7467	e1000e_check_options(adapter);
7468
7469	/* setup adapter struct */
7470	err = e1000_sw_init(adapter);
7471	if (err)
7472		goto err_sw_init;
7473
7474	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7475	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7476	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7477
7478	err = ei->get_variants(adapter);
7479	if (err)
7480		goto err_hw_init;
7481
7482	if ((adapter->flags & FLAG_IS_ICH) &&
7483	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7484	    (hw->mac.type < e1000_pch_spt))
7485		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7486
7487	hw->mac.ops.get_bus_info(&adapter->hw);
7488
7489	adapter->hw.phy.autoneg_wait_to_complete = 0;
7490
7491	/* Copper options */
7492	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7493		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7494		adapter->hw.phy.disable_polarity_correction = 0;
7495		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7496	}
7497
7498	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7499		dev_info(&pdev->dev,
7500			 "PHY reset is blocked due to SOL/IDER session.\n");
7501
7502	/* Set initial default active device features */
7503	netdev->features = (NETIF_F_SG |
7504			    NETIF_F_HW_VLAN_CTAG_RX |
7505			    NETIF_F_HW_VLAN_CTAG_TX |
7506			    NETIF_F_TSO |
7507			    NETIF_F_TSO6 |
7508			    NETIF_F_RXHASH |
7509			    NETIF_F_RXCSUM |
7510			    NETIF_F_HW_CSUM);
7511
7512	/* disable TSO for pcie and 10/100 speeds to avoid
7513	 * some hardware issues and for i219 to fix transfer
7514	 * speed being capped at 60%
7515	 */
7516	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7517		switch (adapter->link_speed) {
7518		case SPEED_10:
7519		case SPEED_100:
7520			e_info("10/100 speed: disabling TSO\n");
7521			netdev->features &= ~NETIF_F_TSO;
7522			netdev->features &= ~NETIF_F_TSO6;
7523			break;
7524		case SPEED_1000:
7525			netdev->features |= NETIF_F_TSO;
7526			netdev->features |= NETIF_F_TSO6;
7527			break;
7528		default:
7529			/* oops */
7530			break;
7531		}
7532		if (hw->mac.type == e1000_pch_spt) {
7533			netdev->features &= ~NETIF_F_TSO;
7534			netdev->features &= ~NETIF_F_TSO6;
7535		}
7536	}
7537
7538	/* Set user-changeable features (subset of all device features) */
7539	netdev->hw_features = netdev->features;
7540	netdev->hw_features |= NETIF_F_RXFCS;
7541	netdev->priv_flags |= IFF_SUPP_NOFCS;
7542	netdev->hw_features |= NETIF_F_RXALL;
7543
7544	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7545		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7546
7547	netdev->vlan_features |= (NETIF_F_SG |
7548				  NETIF_F_TSO |
7549				  NETIF_F_TSO6 |
7550				  NETIF_F_HW_CSUM);
7551
7552	netdev->priv_flags |= IFF_UNICAST_FLT;
7553
7554	netdev->features |= NETIF_F_HIGHDMA;
7555	netdev->vlan_features |= NETIF_F_HIGHDMA;
7556
7557	/* MTU range: 68 - max_hw_frame_size */
7558	netdev->min_mtu = ETH_MIN_MTU;
7559	netdev->max_mtu = adapter->max_hw_frame_size -
7560			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7561
7562	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7563		adapter->flags |= FLAG_MNG_PT_ENABLED;
7564
7565	/* before reading the NVM, reset the controller to
7566	 * put the device in a known good starting state
7567	 */
7568	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7569
7570	/* systems with ASPM and others may see the checksum fail on the first
7571	 * attempt. Let's give it a few tries
7572	 */
7573	for (i = 0;; i++) {
7574		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7575			break;
7576		if (i == 2) {
7577			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7578			err = -EIO;
7579			goto err_eeprom;
7580		}
7581	}
7582
7583	e1000_eeprom_checks(adapter);
7584
7585	/* copy the MAC address */
7586	if (e1000e_read_mac_addr(&adapter->hw))
7587		dev_err(&pdev->dev,
7588			"NVM Read Error while reading MAC address\n");
7589
7590	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7591
7592	if (!is_valid_ether_addr(netdev->dev_addr)) {
7593		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7594			netdev->dev_addr);
7595		err = -EIO;
7596		goto err_eeprom;
7597	}
7598
7599	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7600	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7601
7602	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7603	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7604	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7605	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7606	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7607
7608	/* Initialize link parameters. User can change them with ethtool */
7609	adapter->hw.mac.autoneg = 1;
7610	adapter->fc_autoneg = true;
7611	adapter->hw.fc.requested_mode = e1000_fc_default;
7612	adapter->hw.fc.current_mode = e1000_fc_default;
7613	adapter->hw.phy.autoneg_advertised = 0x2f;
7614
7615	/* Initial Wake on LAN setting - If APM wake is enabled in
7616	 * the EEPROM, enable the ACPI Magic Packet filter
7617	 */
7618	if (adapter->flags & FLAG_APME_IN_WUC) {
7619		/* APME bit in EEPROM is mapped to WUC.APME */
7620		eeprom_data = er32(WUC);
7621		eeprom_apme_mask = E1000_WUC_APME;
7622		if ((hw->mac.type > e1000_ich10lan) &&
7623		    (eeprom_data & E1000_WUC_PHY_WAKE))
7624			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7625	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7626		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7627		    (adapter->hw.bus.func == 1))
7628			ret_val = e1000_read_nvm(&adapter->hw,
7629					      NVM_INIT_CONTROL3_PORT_B,
7630					      1, &eeprom_data);
7631		else
7632			ret_val = e1000_read_nvm(&adapter->hw,
7633					      NVM_INIT_CONTROL3_PORT_A,
7634					      1, &eeprom_data);
7635	}
7636
7637	/* fetch WoL from EEPROM */
7638	if (ret_val)
7639		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7640	else if (eeprom_data & eeprom_apme_mask)
7641		adapter->eeprom_wol |= E1000_WUFC_MAG;
7642
7643	/* now that we have the eeprom settings, apply the special cases
7644	 * where the eeprom may be wrong or the board simply won't support
7645	 * wake on lan on a particular port
7646	 */
7647	if (!(adapter->flags & FLAG_HAS_WOL))
7648		adapter->eeprom_wol = 0;
7649
7650	/* initialize the wol settings based on the eeprom settings */
7651	adapter->wol = adapter->eeprom_wol;
7652
7653	/* make sure adapter isn't asleep if manageability is enabled */
7654	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7655	    (hw->mac.ops.check_mng_mode(hw)))
7656		device_wakeup_enable(&pdev->dev);
7657
7658	/* save off EEPROM version number */
7659	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7660
7661	if (ret_val) {
7662		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7663		adapter->eeprom_vers = 0;
7664	}
7665
7666	/* init PTP hardware clock */
7667	e1000e_ptp_init(adapter);
7668
7669	/* reset the hardware with the new settings */
7670	e1000e_reset(adapter);
7671
7672	/* If the controller has AMT, do not set DRV_LOAD until the interface
7673	 * is up.  For all other cases, let the f/w know that the h/w is now
7674	 * under the control of the driver.
7675	 */
7676	if (!(adapter->flags & FLAG_HAS_AMT))
7677		e1000e_get_hw_control(adapter);
7678
7679	if (hw->mac.type >= e1000_pch_cnp)
7680		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7681
7682	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7683	err = register_netdev(netdev);
7684	if (err)
7685		goto err_register;
7686
7687	/* carrier off reporting is important to ethtool even BEFORE open */
7688	netif_carrier_off(netdev);
7689
7690	e1000_print_device_info(adapter);
7691
7692	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7693
7694	if (pci_dev_run_wake(pdev))
7695		pm_runtime_put_noidle(&pdev->dev);
7696
7697	return 0;
7698
7699err_register:
7700	if (!(adapter->flags & FLAG_HAS_AMT))
7701		e1000e_release_hw_control(adapter);
7702err_eeprom:
7703	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7704		e1000_phy_hw_reset(&adapter->hw);
7705err_hw_init:
7706	kfree(adapter->tx_ring);
7707	kfree(adapter->rx_ring);
7708err_sw_init:
7709	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7710		iounmap(adapter->hw.flash_address);
7711	e1000e_reset_interrupt_capability(adapter);
7712err_flashmap:
7713	iounmap(adapter->hw.hw_addr);
7714err_ioremap:
7715	free_netdev(netdev);
7716err_alloc_etherdev:
 
7717	pci_release_mem_regions(pdev);
7718err_pci_reg:
7719err_dma:
7720	pci_disable_device(pdev);
7721	return err;
7722}
7723
7724/**
7725 * e1000_remove - Device Removal Routine
7726 * @pdev: PCI device information struct
7727 *
7728 * e1000_remove is called by the PCI subsystem to alert the driver
7729 * that it should release a PCI device.  This could be caused by a
7730 * Hot-Plug event, or because the driver is going to be removed from
7731 * memory.
7732 **/
7733static void e1000_remove(struct pci_dev *pdev)
7734{
7735	struct net_device *netdev = pci_get_drvdata(pdev);
7736	struct e1000_adapter *adapter = netdev_priv(netdev);
7737
7738	e1000e_ptp_remove(adapter);
7739
7740	/* The timers may be rescheduled, so explicitly disable them
7741	 * from being rescheduled.
7742	 */
7743	set_bit(__E1000_DOWN, &adapter->state);
7744	del_timer_sync(&adapter->watchdog_timer);
7745	del_timer_sync(&adapter->phy_info_timer);
7746
7747	cancel_work_sync(&adapter->reset_task);
7748	cancel_work_sync(&adapter->watchdog_task);
7749	cancel_work_sync(&adapter->downshift_task);
7750	cancel_work_sync(&adapter->update_phy_task);
7751	cancel_work_sync(&adapter->print_hang_task);
7752
7753	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7754		cancel_work_sync(&adapter->tx_hwtstamp_work);
7755		if (adapter->tx_hwtstamp_skb) {
7756			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7757			adapter->tx_hwtstamp_skb = NULL;
7758		}
7759	}
7760
7761	unregister_netdev(netdev);
7762
7763	if (pci_dev_run_wake(pdev))
7764		pm_runtime_get_noresume(&pdev->dev);
7765
7766	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7767	 * would have already happened in close and is redundant.
7768	 */
7769	e1000e_release_hw_control(adapter);
7770
7771	e1000e_reset_interrupt_capability(adapter);
7772	kfree(adapter->tx_ring);
7773	kfree(adapter->rx_ring);
7774
7775	iounmap(adapter->hw.hw_addr);
7776	if ((adapter->hw.flash_address) &&
7777	    (adapter->hw.mac.type < e1000_pch_spt))
7778		iounmap(adapter->hw.flash_address);
7779	pci_release_mem_regions(pdev);
7780
7781	free_netdev(netdev);
7782
 
 
 
7783	pci_disable_device(pdev);
7784}
7785
7786/* PCI Error Recovery (ERS) */
7787static const struct pci_error_handlers e1000_err_handler = {
7788	.error_detected = e1000_io_error_detected,
7789	.slot_reset = e1000_io_slot_reset,
7790	.resume = e1000_io_resume,
7791};
7792
7793static const struct pci_device_id e1000_pci_tbl[] = {
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7796	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7798	  board_82571 },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7804
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7809
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7811	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7813
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7815	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7817
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7819	  board_80003es2lan },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7821	  board_80003es2lan },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7823	  board_80003es2lan },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7825	  board_80003es2lan },
7826
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7835
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7845
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7849
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7853
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7858
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7861
7862	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7865	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7866	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7867	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7868	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7869	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7870	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7871	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7872	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7873	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7874	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7875	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7876	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7877	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7878	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7879	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7880	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7881	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7882	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7883	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7886	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7887	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7888	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7889	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7890	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7891	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7892	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7893	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7894	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7895	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7896	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7897	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7898	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7899	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7900	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7901	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7902	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7903	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7904	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7905	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7906	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7907	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7908	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7909	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7910	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
 
 
7911	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7912	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7913	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7914	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7915	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7916	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7917	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7918	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7919	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7920	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7921	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7922	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7923	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7924	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7925
7926	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7927};
7928MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7929
7930static const struct dev_pm_ops e1000e_pm_ops = {
 
7931	.prepare	= e1000e_pm_prepare,
7932	.suspend	= e1000e_pm_suspend,
7933	.resume		= e1000e_pm_resume,
7934	.freeze		= e1000e_pm_freeze,
7935	.thaw		= e1000e_pm_thaw,
7936	.poweroff	= e1000e_pm_suspend,
7937	.restore	= e1000e_pm_resume,
7938	RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7939		       e1000e_pm_runtime_idle)
 
7940};
7941
7942/* PCI Device API Driver */
7943static struct pci_driver e1000_driver = {
7944	.name     = e1000e_driver_name,
7945	.id_table = e1000_pci_tbl,
7946	.probe    = e1000_probe,
7947	.remove   = e1000_remove,
7948	.driver.pm = pm_ptr(&e1000e_pm_ops),
 
 
7949	.shutdown = e1000_shutdown,
7950	.err_handler = &e1000_err_handler
7951};
7952
7953/**
7954 * e1000_init_module - Driver Registration Routine
7955 *
7956 * e1000_init_module is the first routine called when the driver is
7957 * loaded. All it does is register with the PCI subsystem.
7958 **/
7959static int __init e1000_init_module(void)
7960{
7961	pr_info("Intel(R) PRO/1000 Network Driver\n");
7962	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7963
7964	return pci_register_driver(&e1000_driver);
7965}
7966module_init(e1000_init_module);
7967
7968/**
7969 * e1000_exit_module - Driver Exit Cleanup Routine
7970 *
7971 * e1000_exit_module is called just before the driver is removed
7972 * from memory.
7973 **/
7974static void __exit e1000_exit_module(void)
7975{
7976	pci_unregister_driver(&e1000_driver);
7977}
7978module_exit(e1000_exit_module);
7979
 
7980MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7981MODULE_LICENSE("GPL v2");
7982
7983/* netdev.c */
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/aer.h>
  27#include <linux/prefetch.h>
  28#include <linux/suspend.h>
  29
  30#include "e1000.h"
  31#define CREATE_TRACE_POINTS
  32#include "e1000e_trace.h"
  33
  34char e1000e_driver_name[] = "e1000e";
  35
  36#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  37static int debug = -1;
  38module_param(debug, int, 0);
  39MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  40
  41static const struct e1000_info *e1000_info_tbl[] = {
  42	[board_82571]		= &e1000_82571_info,
  43	[board_82572]		= &e1000_82572_info,
  44	[board_82573]		= &e1000_82573_info,
  45	[board_82574]		= &e1000_82574_info,
  46	[board_82583]		= &e1000_82583_info,
  47	[board_80003es2lan]	= &e1000_es2_info,
  48	[board_ich8lan]		= &e1000_ich8_info,
  49	[board_ich9lan]		= &e1000_ich9_info,
  50	[board_ich10lan]	= &e1000_ich10_info,
  51	[board_pchlan]		= &e1000_pch_info,
  52	[board_pch2lan]		= &e1000_pch2_info,
  53	[board_pch_lpt]		= &e1000_pch_lpt_info,
  54	[board_pch_spt]		= &e1000_pch_spt_info,
  55	[board_pch_cnp]		= &e1000_pch_cnp_info,
  56	[board_pch_tgp]		= &e1000_pch_tgp_info,
  57	[board_pch_adp]		= &e1000_pch_adp_info,
  58	[board_pch_mtp]		= &e1000_pch_mtp_info,
  59};
  60
  61struct e1000_reg_info {
  62	u32 ofs;
  63	char *name;
  64};
  65
  66static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  67	/* General Registers */
  68	{E1000_CTRL, "CTRL"},
  69	{E1000_STATUS, "STATUS"},
  70	{E1000_CTRL_EXT, "CTRL_EXT"},
  71
  72	/* Interrupt Registers */
  73	{E1000_ICR, "ICR"},
  74
  75	/* Rx Registers */
  76	{E1000_RCTL, "RCTL"},
  77	{E1000_RDLEN(0), "RDLEN"},
  78	{E1000_RDH(0), "RDH"},
  79	{E1000_RDT(0), "RDT"},
  80	{E1000_RDTR, "RDTR"},
  81	{E1000_RXDCTL(0), "RXDCTL"},
  82	{E1000_ERT, "ERT"},
  83	{E1000_RDBAL(0), "RDBAL"},
  84	{E1000_RDBAH(0), "RDBAH"},
  85	{E1000_RDFH, "RDFH"},
  86	{E1000_RDFT, "RDFT"},
  87	{E1000_RDFHS, "RDFHS"},
  88	{E1000_RDFTS, "RDFTS"},
  89	{E1000_RDFPC, "RDFPC"},
  90
  91	/* Tx Registers */
  92	{E1000_TCTL, "TCTL"},
  93	{E1000_TDBAL(0), "TDBAL"},
  94	{E1000_TDBAH(0), "TDBAH"},
  95	{E1000_TDLEN(0), "TDLEN"},
  96	{E1000_TDH(0), "TDH"},
  97	{E1000_TDT(0), "TDT"},
  98	{E1000_TIDV, "TIDV"},
  99	{E1000_TXDCTL(0), "TXDCTL"},
 100	{E1000_TADV, "TADV"},
 101	{E1000_TARC(0), "TARC"},
 102	{E1000_TDFH, "TDFH"},
 103	{E1000_TDFT, "TDFT"},
 104	{E1000_TDFHS, "TDFHS"},
 105	{E1000_TDFTS, "TDFTS"},
 106	{E1000_TDFPC, "TDFPC"},
 107
 108	/* List Terminator */
 109	{0, NULL}
 110};
 111
 112/**
 113 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 114 * @hw: pointer to the HW structure
 115 *
 116 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 117 * be accessing the registers at the same time.  Normally, this is handled in
 118 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 119 * accesses later than it should which could result in the register to have
 120 * an incorrect value.  Workaround this by checking the FWSM register which
 121 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 122 * and try again a number of times.
 123 **/
 124static void __ew32_prepare(struct e1000_hw *hw)
 125{
 126	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 127
 128	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 129		udelay(50);
 130}
 131
 132void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 133{
 134	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 135		__ew32_prepare(hw);
 136
 137	writel(val, hw->hw_addr + reg);
 138}
 139
 140/**
 141 * e1000_regdump - register printout routine
 142 * @hw: pointer to the HW structure
 143 * @reginfo: pointer to the register info table
 144 **/
 145static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 146{
 147	int n = 0;
 148	char rname[16];
 149	u32 regs[8];
 150
 151	switch (reginfo->ofs) {
 152	case E1000_RXDCTL(0):
 153		for (n = 0; n < 2; n++)
 154			regs[n] = __er32(hw, E1000_RXDCTL(n));
 155		break;
 156	case E1000_TXDCTL(0):
 157		for (n = 0; n < 2; n++)
 158			regs[n] = __er32(hw, E1000_TXDCTL(n));
 159		break;
 160	case E1000_TARC(0):
 161		for (n = 0; n < 2; n++)
 162			regs[n] = __er32(hw, E1000_TARC(n));
 163		break;
 164	default:
 165		pr_info("%-15s %08x\n",
 166			reginfo->name, __er32(hw, reginfo->ofs));
 167		return;
 168	}
 169
 170	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 171	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 172}
 173
 174static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 175				 struct e1000_buffer *bi)
 176{
 177	int i;
 178	struct e1000_ps_page *ps_page;
 179
 180	for (i = 0; i < adapter->rx_ps_pages; i++) {
 181		ps_page = &bi->ps_pages[i];
 182
 183		if (ps_page->page) {
 184			pr_info("packet dump for ps_page %d:\n", i);
 185			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 186				       16, 1, page_address(ps_page->page),
 187				       PAGE_SIZE, true);
 188		}
 189	}
 190}
 191
 192/**
 193 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 194 * @adapter: board private structure
 195 **/
 196static void e1000e_dump(struct e1000_adapter *adapter)
 197{
 198	struct net_device *netdev = adapter->netdev;
 199	struct e1000_hw *hw = &adapter->hw;
 200	struct e1000_reg_info *reginfo;
 201	struct e1000_ring *tx_ring = adapter->tx_ring;
 202	struct e1000_tx_desc *tx_desc;
 203	struct my_u0 {
 204		__le64 a;
 205		__le64 b;
 206	} *u0;
 207	struct e1000_buffer *buffer_info;
 208	struct e1000_ring *rx_ring = adapter->rx_ring;
 209	union e1000_rx_desc_packet_split *rx_desc_ps;
 210	union e1000_rx_desc_extended *rx_desc;
 211	struct my_u1 {
 212		__le64 a;
 213		__le64 b;
 214		__le64 c;
 215		__le64 d;
 216	} *u1;
 217	u32 staterr;
 218	int i = 0;
 219
 220	if (!netif_msg_hw(adapter))
 221		return;
 222
 223	/* Print netdevice Info */
 224	if (netdev) {
 225		dev_info(&adapter->pdev->dev, "Net device Info\n");
 226		pr_info("Device Name     state            trans_start\n");
 227		pr_info("%-15s %016lX %016lX\n", netdev->name,
 228			netdev->state, dev_trans_start(netdev));
 229	}
 230
 231	/* Print Registers */
 232	dev_info(&adapter->pdev->dev, "Register Dump\n");
 233	pr_info(" Register Name   Value\n");
 234	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 235	     reginfo->name; reginfo++) {
 236		e1000_regdump(hw, reginfo);
 237	}
 238
 239	/* Print Tx Ring Summary */
 240	if (!netdev || !netif_running(netdev))
 241		return;
 242
 243	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 244	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 245	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 246	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 247		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 248		(unsigned long long)buffer_info->dma,
 249		buffer_info->length,
 250		buffer_info->next_to_watch,
 251		(unsigned long long)buffer_info->time_stamp);
 252
 253	/* Print Tx Ring */
 254	if (!netif_msg_tx_done(adapter))
 255		goto rx_ring_summary;
 256
 257	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 258
 259	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 260	 *
 261	 * Legacy Transmit Descriptor
 262	 *   +--------------------------------------------------------------+
 263	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 264	 *   +--------------------------------------------------------------+
 265	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 266	 *   +--------------------------------------------------------------+
 267	 *   63       48 47        36 35    32 31     24 23    16 15        0
 268	 *
 269	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 270	 *   63      48 47    40 39       32 31             16 15    8 7      0
 271	 *   +----------------------------------------------------------------+
 272	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 273	 *   +----------------------------------------------------------------+
 274	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 275	 *   +----------------------------------------------------------------+
 276	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 277	 *
 278	 * Extended Data Descriptor (DTYP=0x1)
 279	 *   +----------------------------------------------------------------+
 280	 * 0 |                     Buffer Address [63:0]                      |
 281	 *   +----------------------------------------------------------------+
 282	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 283	 *   +----------------------------------------------------------------+
 284	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 285	 */
 286	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 287	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 288	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 289	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 290		const char *next_desc;
 291		tx_desc = E1000_TX_DESC(*tx_ring, i);
 292		buffer_info = &tx_ring->buffer_info[i];
 293		u0 = (struct my_u0 *)tx_desc;
 294		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 295			next_desc = " NTC/U";
 296		else if (i == tx_ring->next_to_use)
 297			next_desc = " NTU";
 298		else if (i == tx_ring->next_to_clean)
 299			next_desc = " NTC";
 300		else
 301			next_desc = "";
 302		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 303			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 304			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 305			i,
 306			(unsigned long long)le64_to_cpu(u0->a),
 307			(unsigned long long)le64_to_cpu(u0->b),
 308			(unsigned long long)buffer_info->dma,
 309			buffer_info->length, buffer_info->next_to_watch,
 310			(unsigned long long)buffer_info->time_stamp,
 311			buffer_info->skb, next_desc);
 312
 313		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 314			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 315				       16, 1, buffer_info->skb->data,
 316				       buffer_info->skb->len, true);
 317	}
 318
 319	/* Print Rx Ring Summary */
 320rx_ring_summary:
 321	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 322	pr_info("Queue [NTU] [NTC]\n");
 323	pr_info(" %5d %5X %5X\n",
 324		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 325
 326	/* Print Rx Ring */
 327	if (!netif_msg_rx_status(adapter))
 328		return;
 329
 330	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 331	switch (adapter->rx_ps_pages) {
 332	case 1:
 333	case 2:
 334	case 3:
 335		/* [Extended] Packet Split Receive Descriptor Format
 336		 *
 337		 *    +-----------------------------------------------------+
 338		 *  0 |                Buffer Address 0 [63:0]              |
 339		 *    +-----------------------------------------------------+
 340		 *  8 |                Buffer Address 1 [63:0]              |
 341		 *    +-----------------------------------------------------+
 342		 * 16 |                Buffer Address 2 [63:0]              |
 343		 *    +-----------------------------------------------------+
 344		 * 24 |                Buffer Address 3 [63:0]              |
 345		 *    +-----------------------------------------------------+
 346		 */
 347		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 348		/* [Extended] Receive Descriptor (Write-Back) Format
 349		 *
 350		 *   63       48 47    32 31     13 12    8 7    4 3        0
 351		 *   +------------------------------------------------------+
 352		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 353		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 354		 *   +------------------------------------------------------+
 355		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 356		 *   +------------------------------------------------------+
 357		 *   63       48 47    32 31            20 19               0
 358		 */
 359		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 360		for (i = 0; i < rx_ring->count; i++) {
 361			const char *next_desc;
 362			buffer_info = &rx_ring->buffer_info[i];
 363			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 364			u1 = (struct my_u1 *)rx_desc_ps;
 365			staterr =
 366			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 367
 368			if (i == rx_ring->next_to_use)
 369				next_desc = " NTU";
 370			else if (i == rx_ring->next_to_clean)
 371				next_desc = " NTC";
 372			else
 373				next_desc = "";
 374
 375			if (staterr & E1000_RXD_STAT_DD) {
 376				/* Descriptor Done */
 377				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 378					"RWB", i,
 379					(unsigned long long)le64_to_cpu(u1->a),
 380					(unsigned long long)le64_to_cpu(u1->b),
 381					(unsigned long long)le64_to_cpu(u1->c),
 382					(unsigned long long)le64_to_cpu(u1->d),
 383					buffer_info->skb, next_desc);
 384			} else {
 385				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 386					"R  ", i,
 387					(unsigned long long)le64_to_cpu(u1->a),
 388					(unsigned long long)le64_to_cpu(u1->b),
 389					(unsigned long long)le64_to_cpu(u1->c),
 390					(unsigned long long)le64_to_cpu(u1->d),
 391					(unsigned long long)buffer_info->dma,
 392					buffer_info->skb, next_desc);
 393
 394				if (netif_msg_pktdata(adapter))
 395					e1000e_dump_ps_pages(adapter,
 396							     buffer_info);
 397			}
 398		}
 399		break;
 400	default:
 401	case 0:
 402		/* Extended Receive Descriptor (Read) Format
 403		 *
 404		 *   +-----------------------------------------------------+
 405		 * 0 |                Buffer Address [63:0]                |
 406		 *   +-----------------------------------------------------+
 407		 * 8 |                      Reserved                       |
 408		 *   +-----------------------------------------------------+
 409		 */
 410		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 411		/* Extended Receive Descriptor (Write-Back) Format
 412		 *
 413		 *   63       48 47    32 31    24 23            4 3        0
 414		 *   +------------------------------------------------------+
 415		 *   |     RSS Hash      |        |               |         |
 416		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 417		 *   | Packet   | IP     |        |               |  Type   |
 418		 *   | Checksum | Ident  |        |               |         |
 419		 *   +------------------------------------------------------+
 420		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 421		 *   +------------------------------------------------------+
 422		 *   63       48 47    32 31            20 19               0
 423		 */
 424		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 425
 426		for (i = 0; i < rx_ring->count; i++) {
 427			const char *next_desc;
 428
 429			buffer_info = &rx_ring->buffer_info[i];
 430			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 431			u1 = (struct my_u1 *)rx_desc;
 432			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 433
 434			if (i == rx_ring->next_to_use)
 435				next_desc = " NTU";
 436			else if (i == rx_ring->next_to_clean)
 437				next_desc = " NTC";
 438			else
 439				next_desc = "";
 440
 441			if (staterr & E1000_RXD_STAT_DD) {
 442				/* Descriptor Done */
 443				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 444					"RWB", i,
 445					(unsigned long long)le64_to_cpu(u1->a),
 446					(unsigned long long)le64_to_cpu(u1->b),
 447					buffer_info->skb, next_desc);
 448			} else {
 449				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 450					"R  ", i,
 451					(unsigned long long)le64_to_cpu(u1->a),
 452					(unsigned long long)le64_to_cpu(u1->b),
 453					(unsigned long long)buffer_info->dma,
 454					buffer_info->skb, next_desc);
 455
 456				if (netif_msg_pktdata(adapter) &&
 457				    buffer_info->skb)
 458					print_hex_dump(KERN_INFO, "",
 459						       DUMP_PREFIX_ADDRESS, 16,
 460						       1,
 461						       buffer_info->skb->data,
 462						       adapter->rx_buffer_len,
 463						       true);
 464			}
 465		}
 466	}
 467}
 468
 469/**
 470 * e1000_desc_unused - calculate if we have unused descriptors
 471 * @ring: pointer to ring struct to perform calculation on
 472 **/
 473static int e1000_desc_unused(struct e1000_ring *ring)
 474{
 475	if (ring->next_to_clean > ring->next_to_use)
 476		return ring->next_to_clean - ring->next_to_use - 1;
 477
 478	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 479}
 480
 481/**
 482 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 483 * @adapter: board private structure
 484 * @hwtstamps: time stamp structure to update
 485 * @systim: unsigned 64bit system time value.
 486 *
 487 * Convert the system time value stored in the RX/TXSTMP registers into a
 488 * hwtstamp which can be used by the upper level time stamping functions.
 489 *
 490 * The 'systim_lock' spinlock is used to protect the consistency of the
 491 * system time value. This is needed because reading the 64 bit time
 492 * value involves reading two 32 bit registers. The first read latches the
 493 * value.
 494 **/
 495static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 496				      struct skb_shared_hwtstamps *hwtstamps,
 497				      u64 systim)
 498{
 499	u64 ns;
 500	unsigned long flags;
 501
 502	spin_lock_irqsave(&adapter->systim_lock, flags);
 503	ns = timecounter_cyc2time(&adapter->tc, systim);
 504	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 505
 506	memset(hwtstamps, 0, sizeof(*hwtstamps));
 507	hwtstamps->hwtstamp = ns_to_ktime(ns);
 508}
 509
 510/**
 511 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 512 * @adapter: board private structure
 513 * @status: descriptor extended error and status field
 514 * @skb: particular skb to include time stamp
 515 *
 516 * If the time stamp is valid, convert it into the timecounter ns value
 517 * and store that result into the shhwtstamps structure which is passed
 518 * up the network stack.
 519 **/
 520static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 521			       struct sk_buff *skb)
 522{
 523	struct e1000_hw *hw = &adapter->hw;
 524	u64 rxstmp;
 525
 526	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 527	    !(status & E1000_RXDEXT_STATERR_TST) ||
 528	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 529		return;
 530
 531	/* The Rx time stamp registers contain the time stamp.  No other
 532	 * received packet will be time stamped until the Rx time stamp
 533	 * registers are read.  Because only one packet can be time stamped
 534	 * at a time, the register values must belong to this packet and
 535	 * therefore none of the other additional attributes need to be
 536	 * compared.
 537	 */
 538	rxstmp = (u64)er32(RXSTMPL);
 539	rxstmp |= (u64)er32(RXSTMPH) << 32;
 540	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 541
 542	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 543}
 544
 545/**
 546 * e1000_receive_skb - helper function to handle Rx indications
 547 * @adapter: board private structure
 548 * @netdev: pointer to netdev struct
 549 * @staterr: descriptor extended error and status field as written by hardware
 550 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 551 * @skb: pointer to sk_buff to be indicated to stack
 552 **/
 553static void e1000_receive_skb(struct e1000_adapter *adapter,
 554			      struct net_device *netdev, struct sk_buff *skb,
 555			      u32 staterr, __le16 vlan)
 556{
 557	u16 tag = le16_to_cpu(vlan);
 558
 559	e1000e_rx_hwtstamp(adapter, staterr, skb);
 560
 561	skb->protocol = eth_type_trans(skb, netdev);
 562
 563	if (staterr & E1000_RXD_STAT_VP)
 564		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 565
 566	napi_gro_receive(&adapter->napi, skb);
 567}
 568
 569/**
 570 * e1000_rx_checksum - Receive Checksum Offload
 571 * @adapter: board private structure
 572 * @status_err: receive descriptor status and error fields
 573 * @skb: socket buffer with received data
 574 **/
 575static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 576			      struct sk_buff *skb)
 577{
 578	u16 status = (u16)status_err;
 579	u8 errors = (u8)(status_err >> 24);
 580
 581	skb_checksum_none_assert(skb);
 582
 583	/* Rx checksum disabled */
 584	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 585		return;
 586
 587	/* Ignore Checksum bit is set */
 588	if (status & E1000_RXD_STAT_IXSM)
 589		return;
 590
 591	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 592	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 593		/* let the stack verify checksum errors */
 594		adapter->hw_csum_err++;
 595		return;
 596	}
 597
 598	/* TCP/UDP Checksum has not been calculated */
 599	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 600		return;
 601
 602	/* It must be a TCP or UDP packet with a valid checksum */
 603	skb->ip_summed = CHECKSUM_UNNECESSARY;
 604	adapter->hw_csum_good++;
 605}
 606
 607static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 608{
 609	struct e1000_adapter *adapter = rx_ring->adapter;
 610	struct e1000_hw *hw = &adapter->hw;
 611
 612	__ew32_prepare(hw);
 613	writel(i, rx_ring->tail);
 614
 615	if (unlikely(i != readl(rx_ring->tail))) {
 616		u32 rctl = er32(RCTL);
 617
 618		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 619		e_err("ME firmware caused invalid RDT - resetting\n");
 620		schedule_work(&adapter->reset_task);
 621	}
 622}
 623
 624static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 625{
 626	struct e1000_adapter *adapter = tx_ring->adapter;
 627	struct e1000_hw *hw = &adapter->hw;
 628
 629	__ew32_prepare(hw);
 630	writel(i, tx_ring->tail);
 631
 632	if (unlikely(i != readl(tx_ring->tail))) {
 633		u32 tctl = er32(TCTL);
 634
 635		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 636		e_err("ME firmware caused invalid TDT - resetting\n");
 637		schedule_work(&adapter->reset_task);
 638	}
 639}
 640
 641/**
 642 * e1000_alloc_rx_buffers - Replace used receive buffers
 643 * @rx_ring: Rx descriptor ring
 644 * @cleaned_count: number to reallocate
 645 * @gfp: flags for allocation
 646 **/
 647static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 648				   int cleaned_count, gfp_t gfp)
 649{
 650	struct e1000_adapter *adapter = rx_ring->adapter;
 651	struct net_device *netdev = adapter->netdev;
 652	struct pci_dev *pdev = adapter->pdev;
 653	union e1000_rx_desc_extended *rx_desc;
 654	struct e1000_buffer *buffer_info;
 655	struct sk_buff *skb;
 656	unsigned int i;
 657	unsigned int bufsz = adapter->rx_buffer_len;
 658
 659	i = rx_ring->next_to_use;
 660	buffer_info = &rx_ring->buffer_info[i];
 661
 662	while (cleaned_count--) {
 663		skb = buffer_info->skb;
 664		if (skb) {
 665			skb_trim(skb, 0);
 666			goto map_skb;
 667		}
 668
 669		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 670		if (!skb) {
 671			/* Better luck next round */
 672			adapter->alloc_rx_buff_failed++;
 673			break;
 674		}
 675
 676		buffer_info->skb = skb;
 677map_skb:
 678		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 679						  adapter->rx_buffer_len,
 680						  DMA_FROM_DEVICE);
 681		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 682			dev_err(&pdev->dev, "Rx DMA map failed\n");
 683			adapter->rx_dma_failed++;
 684			break;
 685		}
 686
 687		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 688		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 689
 690		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 691			/* Force memory writes to complete before letting h/w
 692			 * know there are new descriptors to fetch.  (Only
 693			 * applicable for weak-ordered memory model archs,
 694			 * such as IA-64).
 695			 */
 696			wmb();
 697			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 698				e1000e_update_rdt_wa(rx_ring, i);
 699			else
 700				writel(i, rx_ring->tail);
 701		}
 702		i++;
 703		if (i == rx_ring->count)
 704			i = 0;
 705		buffer_info = &rx_ring->buffer_info[i];
 706	}
 707
 708	rx_ring->next_to_use = i;
 709}
 710
 711/**
 712 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 713 * @rx_ring: Rx descriptor ring
 714 * @cleaned_count: number to reallocate
 715 * @gfp: flags for allocation
 716 **/
 717static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 718				      int cleaned_count, gfp_t gfp)
 719{
 720	struct e1000_adapter *adapter = rx_ring->adapter;
 721	struct net_device *netdev = adapter->netdev;
 722	struct pci_dev *pdev = adapter->pdev;
 723	union e1000_rx_desc_packet_split *rx_desc;
 724	struct e1000_buffer *buffer_info;
 725	struct e1000_ps_page *ps_page;
 726	struct sk_buff *skb;
 727	unsigned int i, j;
 728
 729	i = rx_ring->next_to_use;
 730	buffer_info = &rx_ring->buffer_info[i];
 731
 732	while (cleaned_count--) {
 733		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 734
 735		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 736			ps_page = &buffer_info->ps_pages[j];
 737			if (j >= adapter->rx_ps_pages) {
 738				/* all unused desc entries get hw null ptr */
 739				rx_desc->read.buffer_addr[j + 1] =
 740				    ~cpu_to_le64(0);
 741				continue;
 742			}
 743			if (!ps_page->page) {
 744				ps_page->page = alloc_page(gfp);
 745				if (!ps_page->page) {
 746					adapter->alloc_rx_buff_failed++;
 747					goto no_buffers;
 748				}
 749				ps_page->dma = dma_map_page(&pdev->dev,
 750							    ps_page->page,
 751							    0, PAGE_SIZE,
 752							    DMA_FROM_DEVICE);
 753				if (dma_mapping_error(&pdev->dev,
 754						      ps_page->dma)) {
 755					dev_err(&adapter->pdev->dev,
 756						"Rx DMA page map failed\n");
 757					adapter->rx_dma_failed++;
 758					goto no_buffers;
 759				}
 760			}
 761			/* Refresh the desc even if buffer_addrs
 762			 * didn't change because each write-back
 763			 * erases this info.
 764			 */
 765			rx_desc->read.buffer_addr[j + 1] =
 766			    cpu_to_le64(ps_page->dma);
 767		}
 768
 769		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 770						  gfp);
 771
 772		if (!skb) {
 773			adapter->alloc_rx_buff_failed++;
 774			break;
 775		}
 776
 777		buffer_info->skb = skb;
 778		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 779						  adapter->rx_ps_bsize0,
 780						  DMA_FROM_DEVICE);
 781		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 782			dev_err(&pdev->dev, "Rx DMA map failed\n");
 783			adapter->rx_dma_failed++;
 784			/* cleanup skb */
 785			dev_kfree_skb_any(skb);
 786			buffer_info->skb = NULL;
 787			break;
 788		}
 789
 790		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 791
 792		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 793			/* Force memory writes to complete before letting h/w
 794			 * know there are new descriptors to fetch.  (Only
 795			 * applicable for weak-ordered memory model archs,
 796			 * such as IA-64).
 797			 */
 798			wmb();
 799			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 800				e1000e_update_rdt_wa(rx_ring, i << 1);
 801			else
 802				writel(i << 1, rx_ring->tail);
 803		}
 804
 805		i++;
 806		if (i == rx_ring->count)
 807			i = 0;
 808		buffer_info = &rx_ring->buffer_info[i];
 809	}
 810
 811no_buffers:
 812	rx_ring->next_to_use = i;
 813}
 814
 815/**
 816 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 817 * @rx_ring: Rx descriptor ring
 818 * @cleaned_count: number of buffers to allocate this pass
 819 * @gfp: flags for allocation
 820 **/
 821
 822static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 823					 int cleaned_count, gfp_t gfp)
 824{
 825	struct e1000_adapter *adapter = rx_ring->adapter;
 826	struct net_device *netdev = adapter->netdev;
 827	struct pci_dev *pdev = adapter->pdev;
 828	union e1000_rx_desc_extended *rx_desc;
 829	struct e1000_buffer *buffer_info;
 830	struct sk_buff *skb;
 831	unsigned int i;
 832	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 833
 834	i = rx_ring->next_to_use;
 835	buffer_info = &rx_ring->buffer_info[i];
 836
 837	while (cleaned_count--) {
 838		skb = buffer_info->skb;
 839		if (skb) {
 840			skb_trim(skb, 0);
 841			goto check_page;
 842		}
 843
 844		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 845		if (unlikely(!skb)) {
 846			/* Better luck next round */
 847			adapter->alloc_rx_buff_failed++;
 848			break;
 849		}
 850
 851		buffer_info->skb = skb;
 852check_page:
 853		/* allocate a new page if necessary */
 854		if (!buffer_info->page) {
 855			buffer_info->page = alloc_page(gfp);
 856			if (unlikely(!buffer_info->page)) {
 857				adapter->alloc_rx_buff_failed++;
 858				break;
 859			}
 860		}
 861
 862		if (!buffer_info->dma) {
 863			buffer_info->dma = dma_map_page(&pdev->dev,
 864							buffer_info->page, 0,
 865							PAGE_SIZE,
 866							DMA_FROM_DEVICE);
 867			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 868				adapter->alloc_rx_buff_failed++;
 869				break;
 870			}
 871		}
 872
 873		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 874		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 875
 876		if (unlikely(++i == rx_ring->count))
 877			i = 0;
 878		buffer_info = &rx_ring->buffer_info[i];
 879	}
 880
 881	if (likely(rx_ring->next_to_use != i)) {
 882		rx_ring->next_to_use = i;
 883		if (unlikely(i-- == 0))
 884			i = (rx_ring->count - 1);
 885
 886		/* Force memory writes to complete before letting h/w
 887		 * know there are new descriptors to fetch.  (Only
 888		 * applicable for weak-ordered memory model archs,
 889		 * such as IA-64).
 890		 */
 891		wmb();
 892		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 893			e1000e_update_rdt_wa(rx_ring, i);
 894		else
 895			writel(i, rx_ring->tail);
 896	}
 897}
 898
 899static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 900				 struct sk_buff *skb)
 901{
 902	if (netdev->features & NETIF_F_RXHASH)
 903		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 904}
 905
 906/**
 907 * e1000_clean_rx_irq - Send received data up the network stack
 908 * @rx_ring: Rx descriptor ring
 909 * @work_done: output parameter for indicating completed work
 910 * @work_to_do: how many packets we can clean
 911 *
 912 * the return value indicates whether actual cleaning was done, there
 913 * is no guarantee that everything was cleaned
 914 **/
 915static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 916			       int work_to_do)
 917{
 918	struct e1000_adapter *adapter = rx_ring->adapter;
 919	struct net_device *netdev = adapter->netdev;
 920	struct pci_dev *pdev = adapter->pdev;
 921	struct e1000_hw *hw = &adapter->hw;
 922	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 923	struct e1000_buffer *buffer_info, *next_buffer;
 924	u32 length, staterr;
 925	unsigned int i;
 926	int cleaned_count = 0;
 927	bool cleaned = false;
 928	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 929
 930	i = rx_ring->next_to_clean;
 931	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 932	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 933	buffer_info = &rx_ring->buffer_info[i];
 934
 935	while (staterr & E1000_RXD_STAT_DD) {
 936		struct sk_buff *skb;
 937
 938		if (*work_done >= work_to_do)
 939			break;
 940		(*work_done)++;
 941		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 942
 943		skb = buffer_info->skb;
 944		buffer_info->skb = NULL;
 945
 946		prefetch(skb->data - NET_IP_ALIGN);
 947
 948		i++;
 949		if (i == rx_ring->count)
 950			i = 0;
 951		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 952		prefetch(next_rxd);
 953
 954		next_buffer = &rx_ring->buffer_info[i];
 955
 956		cleaned = true;
 957		cleaned_count++;
 958		dma_unmap_single(&pdev->dev, buffer_info->dma,
 959				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 960		buffer_info->dma = 0;
 961
 962		length = le16_to_cpu(rx_desc->wb.upper.length);
 963
 964		/* !EOP means multiple descriptors were used to store a single
 965		 * packet, if that's the case we need to toss it.  In fact, we
 966		 * need to toss every packet with the EOP bit clear and the
 967		 * next frame that _does_ have the EOP bit set, as it is by
 968		 * definition only a frame fragment
 969		 */
 970		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 971			adapter->flags2 |= FLAG2_IS_DISCARDING;
 972
 973		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 974			/* All receives must fit into a single buffer */
 975			e_dbg("Receive packet consumed multiple buffers\n");
 976			/* recycle */
 977			buffer_info->skb = skb;
 978			if (staterr & E1000_RXD_STAT_EOP)
 979				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 980			goto next_desc;
 981		}
 982
 983		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 984			     !(netdev->features & NETIF_F_RXALL))) {
 985			/* recycle */
 986			buffer_info->skb = skb;
 987			goto next_desc;
 988		}
 989
 990		/* adjust length to remove Ethernet CRC */
 991		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 992			/* If configured to store CRC, don't subtract FCS,
 993			 * but keep the FCS bytes out of the total_rx_bytes
 994			 * counter
 995			 */
 996			if (netdev->features & NETIF_F_RXFCS)
 997				total_rx_bytes -= 4;
 998			else
 999				length -= 4;
1000		}
1001
1002		total_rx_bytes += length;
1003		total_rx_packets++;
1004
1005		/* code added for copybreak, this should improve
1006		 * performance for small packets with large amounts
1007		 * of reassembly being done in the stack
1008		 */
1009		if (length < copybreak) {
1010			struct sk_buff *new_skb =
1011				napi_alloc_skb(&adapter->napi, length);
1012			if (new_skb) {
1013				skb_copy_to_linear_data_offset(new_skb,
1014							       -NET_IP_ALIGN,
1015							       (skb->data -
1016								NET_IP_ALIGN),
1017							       (length +
1018								NET_IP_ALIGN));
1019				/* save the skb in buffer_info as good */
1020				buffer_info->skb = skb;
1021				skb = new_skb;
1022			}
1023			/* else just continue with the old one */
1024		}
1025		/* end copybreak code */
1026		skb_put(skb, length);
1027
1028		/* Receive Checksum Offload */
1029		e1000_rx_checksum(adapter, staterr, skb);
1030
1031		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1032
1033		e1000_receive_skb(adapter, netdev, skb, staterr,
1034				  rx_desc->wb.upper.vlan);
1035
1036next_desc:
1037		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1038
1039		/* return some buffers to hardware, one at a time is too slow */
1040		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1041			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1042					      GFP_ATOMIC);
1043			cleaned_count = 0;
1044		}
1045
1046		/* use prefetched values */
1047		rx_desc = next_rxd;
1048		buffer_info = next_buffer;
1049
1050		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1051	}
1052	rx_ring->next_to_clean = i;
1053
1054	cleaned_count = e1000_desc_unused(rx_ring);
1055	if (cleaned_count)
1056		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1057
1058	adapter->total_rx_bytes += total_rx_bytes;
1059	adapter->total_rx_packets += total_rx_packets;
1060	return cleaned;
1061}
1062
1063static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1064			    struct e1000_buffer *buffer_info,
1065			    bool drop)
1066{
1067	struct e1000_adapter *adapter = tx_ring->adapter;
1068
1069	if (buffer_info->dma) {
1070		if (buffer_info->mapped_as_page)
1071			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1072				       buffer_info->length, DMA_TO_DEVICE);
1073		else
1074			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1075					 buffer_info->length, DMA_TO_DEVICE);
1076		buffer_info->dma = 0;
1077	}
1078	if (buffer_info->skb) {
1079		if (drop)
1080			dev_kfree_skb_any(buffer_info->skb);
1081		else
1082			dev_consume_skb_any(buffer_info->skb);
1083		buffer_info->skb = NULL;
1084	}
1085	buffer_info->time_stamp = 0;
1086}
1087
1088static void e1000_print_hw_hang(struct work_struct *work)
1089{
1090	struct e1000_adapter *adapter = container_of(work,
1091						     struct e1000_adapter,
1092						     print_hang_task);
1093	struct net_device *netdev = adapter->netdev;
1094	struct e1000_ring *tx_ring = adapter->tx_ring;
1095	unsigned int i = tx_ring->next_to_clean;
1096	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1097	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1098	struct e1000_hw *hw = &adapter->hw;
1099	u16 phy_status, phy_1000t_status, phy_ext_status;
1100	u16 pci_status;
1101
1102	if (test_bit(__E1000_DOWN, &adapter->state))
1103		return;
1104
1105	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1106		/* May be block on write-back, flush and detect again
1107		 * flush pending descriptor writebacks to memory
1108		 */
1109		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1110		/* execute the writes immediately */
1111		e1e_flush();
1112		/* Due to rare timing issues, write to TIDV again to ensure
1113		 * the write is successful
1114		 */
1115		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1116		/* execute the writes immediately */
1117		e1e_flush();
1118		adapter->tx_hang_recheck = true;
1119		return;
1120	}
1121	adapter->tx_hang_recheck = false;
1122
1123	if (er32(TDH(0)) == er32(TDT(0))) {
1124		e_dbg("false hang detected, ignoring\n");
1125		return;
1126	}
1127
1128	/* Real hang detected */
1129	netif_stop_queue(netdev);
1130
1131	e1e_rphy(hw, MII_BMSR, &phy_status);
1132	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1133	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1134
1135	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1136
1137	/* detected Hardware unit hang */
1138	e_err("Detected Hardware Unit Hang:\n"
1139	      "  TDH                  <%x>\n"
1140	      "  TDT                  <%x>\n"
1141	      "  next_to_use          <%x>\n"
1142	      "  next_to_clean        <%x>\n"
1143	      "buffer_info[next_to_clean]:\n"
1144	      "  time_stamp           <%lx>\n"
1145	      "  next_to_watch        <%x>\n"
1146	      "  jiffies              <%lx>\n"
1147	      "  next_to_watch.status <%x>\n"
1148	      "MAC Status             <%x>\n"
1149	      "PHY Status             <%x>\n"
1150	      "PHY 1000BASE-T Status  <%x>\n"
1151	      "PHY Extended Status    <%x>\n"
1152	      "PCI Status             <%x>\n",
1153	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1154	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1155	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1156	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1157
1158	e1000e_dump(adapter);
1159
1160	/* Suggest workaround for known h/w issue */
1161	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1162		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1163}
1164
1165/**
1166 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1167 * @work: pointer to work struct
1168 *
1169 * This work function polls the TSYNCTXCTL valid bit to determine when a
1170 * timestamp has been taken for the current stored skb.  The timestamp must
1171 * be for this skb because only one such packet is allowed in the queue.
1172 */
1173static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1174{
1175	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1176						     tx_hwtstamp_work);
1177	struct e1000_hw *hw = &adapter->hw;
1178
1179	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1180		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1181		struct skb_shared_hwtstamps shhwtstamps;
1182		u64 txstmp;
1183
1184		txstmp = er32(TXSTMPL);
1185		txstmp |= (u64)er32(TXSTMPH) << 32;
1186
1187		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1188
1189		/* Clear the global tx_hwtstamp_skb pointer and force writes
1190		 * prior to notifying the stack of a Tx timestamp.
1191		 */
1192		adapter->tx_hwtstamp_skb = NULL;
1193		wmb(); /* force write prior to skb_tstamp_tx */
1194
1195		skb_tstamp_tx(skb, &shhwtstamps);
1196		dev_consume_skb_any(skb);
1197	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1198			      + adapter->tx_timeout_factor * HZ)) {
1199		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1200		adapter->tx_hwtstamp_skb = NULL;
1201		adapter->tx_hwtstamp_timeouts++;
1202		e_warn("clearing Tx timestamp hang\n");
1203	} else {
1204		/* reschedule to check later */
1205		schedule_work(&adapter->tx_hwtstamp_work);
1206	}
1207}
1208
1209/**
1210 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1211 * @tx_ring: Tx descriptor ring
1212 *
1213 * the return value indicates whether actual cleaning was done, there
1214 * is no guarantee that everything was cleaned
1215 **/
1216static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1217{
1218	struct e1000_adapter *adapter = tx_ring->adapter;
1219	struct net_device *netdev = adapter->netdev;
1220	struct e1000_hw *hw = &adapter->hw;
1221	struct e1000_tx_desc *tx_desc, *eop_desc;
1222	struct e1000_buffer *buffer_info;
1223	unsigned int i, eop;
1224	unsigned int count = 0;
1225	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1226	unsigned int bytes_compl = 0, pkts_compl = 0;
1227
1228	i = tx_ring->next_to_clean;
1229	eop = tx_ring->buffer_info[i].next_to_watch;
1230	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1231
1232	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1233	       (count < tx_ring->count)) {
1234		bool cleaned = false;
1235
1236		dma_rmb();		/* read buffer_info after eop_desc */
1237		for (; !cleaned; count++) {
1238			tx_desc = E1000_TX_DESC(*tx_ring, i);
1239			buffer_info = &tx_ring->buffer_info[i];
1240			cleaned = (i == eop);
1241
1242			if (cleaned) {
1243				total_tx_packets += buffer_info->segs;
1244				total_tx_bytes += buffer_info->bytecount;
1245				if (buffer_info->skb) {
1246					bytes_compl += buffer_info->skb->len;
1247					pkts_compl++;
1248				}
1249			}
1250
1251			e1000_put_txbuf(tx_ring, buffer_info, false);
1252			tx_desc->upper.data = 0;
1253
1254			i++;
1255			if (i == tx_ring->count)
1256				i = 0;
1257		}
1258
1259		if (i == tx_ring->next_to_use)
1260			break;
1261		eop = tx_ring->buffer_info[i].next_to_watch;
1262		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1263	}
1264
1265	tx_ring->next_to_clean = i;
1266
1267	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1268
1269#define TX_WAKE_THRESHOLD 32
1270	if (count && netif_carrier_ok(netdev) &&
1271	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1272		/* Make sure that anybody stopping the queue after this
1273		 * sees the new next_to_clean.
1274		 */
1275		smp_mb();
1276
1277		if (netif_queue_stopped(netdev) &&
1278		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1279			netif_wake_queue(netdev);
1280			++adapter->restart_queue;
1281		}
1282	}
1283
1284	if (adapter->detect_tx_hung) {
1285		/* Detect a transmit hang in hardware, this serializes the
1286		 * check with the clearing of time_stamp and movement of i
1287		 */
1288		adapter->detect_tx_hung = false;
1289		if (tx_ring->buffer_info[i].time_stamp &&
1290		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1291			       + (adapter->tx_timeout_factor * HZ)) &&
1292		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1293			schedule_work(&adapter->print_hang_task);
1294		else
1295			adapter->tx_hang_recheck = false;
1296	}
1297	adapter->total_tx_bytes += total_tx_bytes;
1298	adapter->total_tx_packets += total_tx_packets;
1299	return count < tx_ring->count;
1300}
1301
1302/**
1303 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1304 * @rx_ring: Rx descriptor ring
1305 * @work_done: output parameter for indicating completed work
1306 * @work_to_do: how many packets we can clean
1307 *
1308 * the return value indicates whether actual cleaning was done, there
1309 * is no guarantee that everything was cleaned
1310 **/
1311static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1312				  int work_to_do)
1313{
1314	struct e1000_adapter *adapter = rx_ring->adapter;
1315	struct e1000_hw *hw = &adapter->hw;
1316	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1317	struct net_device *netdev = adapter->netdev;
1318	struct pci_dev *pdev = adapter->pdev;
1319	struct e1000_buffer *buffer_info, *next_buffer;
1320	struct e1000_ps_page *ps_page;
1321	struct sk_buff *skb;
1322	unsigned int i, j;
1323	u32 length, staterr;
1324	int cleaned_count = 0;
1325	bool cleaned = false;
1326	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1327
1328	i = rx_ring->next_to_clean;
1329	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1330	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1331	buffer_info = &rx_ring->buffer_info[i];
1332
1333	while (staterr & E1000_RXD_STAT_DD) {
1334		if (*work_done >= work_to_do)
1335			break;
1336		(*work_done)++;
1337		skb = buffer_info->skb;
1338		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1339
1340		/* in the packet split case this is header only */
1341		prefetch(skb->data - NET_IP_ALIGN);
1342
1343		i++;
1344		if (i == rx_ring->count)
1345			i = 0;
1346		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1347		prefetch(next_rxd);
1348
1349		next_buffer = &rx_ring->buffer_info[i];
1350
1351		cleaned = true;
1352		cleaned_count++;
1353		dma_unmap_single(&pdev->dev, buffer_info->dma,
1354				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1355		buffer_info->dma = 0;
1356
1357		/* see !EOP comment in other Rx routine */
1358		if (!(staterr & E1000_RXD_STAT_EOP))
1359			adapter->flags2 |= FLAG2_IS_DISCARDING;
1360
1361		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1362			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1363			dev_kfree_skb_irq(skb);
1364			if (staterr & E1000_RXD_STAT_EOP)
1365				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1366			goto next_desc;
1367		}
1368
1369		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1370			     !(netdev->features & NETIF_F_RXALL))) {
1371			dev_kfree_skb_irq(skb);
1372			goto next_desc;
1373		}
1374
1375		length = le16_to_cpu(rx_desc->wb.middle.length0);
1376
1377		if (!length) {
1378			e_dbg("Last part of the packet spanning multiple descriptors\n");
1379			dev_kfree_skb_irq(skb);
1380			goto next_desc;
1381		}
1382
1383		/* Good Receive */
1384		skb_put(skb, length);
1385
1386		{
1387			/* this looks ugly, but it seems compiler issues make
1388			 * it more efficient than reusing j
1389			 */
1390			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1391
1392			/* page alloc/put takes too long and effects small
1393			 * packet throughput, so unsplit small packets and
1394			 * save the alloc/put
1395			 */
1396			if (l1 && (l1 <= copybreak) &&
1397			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1398				ps_page = &buffer_info->ps_pages[0];
1399
1400				dma_sync_single_for_cpu(&pdev->dev,
1401							ps_page->dma,
1402							PAGE_SIZE,
1403							DMA_FROM_DEVICE);
1404				memcpy(skb_tail_pointer(skb),
1405				       page_address(ps_page->page), l1);
1406				dma_sync_single_for_device(&pdev->dev,
1407							   ps_page->dma,
1408							   PAGE_SIZE,
1409							   DMA_FROM_DEVICE);
1410
1411				/* remove the CRC */
1412				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1413					if (!(netdev->features & NETIF_F_RXFCS))
1414						l1 -= 4;
1415				}
1416
1417				skb_put(skb, l1);
1418				goto copydone;
1419			}	/* if */
1420		}
1421
1422		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1423			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1424			if (!length)
1425				break;
1426
1427			ps_page = &buffer_info->ps_pages[j];
1428			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1429				       DMA_FROM_DEVICE);
1430			ps_page->dma = 0;
1431			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1432			ps_page->page = NULL;
1433			skb->len += length;
1434			skb->data_len += length;
1435			skb->truesize += PAGE_SIZE;
1436		}
1437
1438		/* strip the ethernet crc, problem is we're using pages now so
1439		 * this whole operation can get a little cpu intensive
1440		 */
1441		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1442			if (!(netdev->features & NETIF_F_RXFCS))
1443				pskb_trim(skb, skb->len - 4);
1444		}
1445
1446copydone:
1447		total_rx_bytes += skb->len;
1448		total_rx_packets++;
1449
1450		e1000_rx_checksum(adapter, staterr, skb);
1451
1452		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1453
1454		if (rx_desc->wb.upper.header_status &
1455		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1456			adapter->rx_hdr_split++;
1457
1458		e1000_receive_skb(adapter, netdev, skb, staterr,
1459				  rx_desc->wb.middle.vlan);
1460
1461next_desc:
1462		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1463		buffer_info->skb = NULL;
1464
1465		/* return some buffers to hardware, one at a time is too slow */
1466		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1467			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1468					      GFP_ATOMIC);
1469			cleaned_count = 0;
1470		}
1471
1472		/* use prefetched values */
1473		rx_desc = next_rxd;
1474		buffer_info = next_buffer;
1475
1476		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1477	}
1478	rx_ring->next_to_clean = i;
1479
1480	cleaned_count = e1000_desc_unused(rx_ring);
1481	if (cleaned_count)
1482		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1483
1484	adapter->total_rx_bytes += total_rx_bytes;
1485	adapter->total_rx_packets += total_rx_packets;
1486	return cleaned;
1487}
1488
1489static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1490			       u16 length)
1491{
1492	bi->page = NULL;
1493	skb->len += length;
1494	skb->data_len += length;
1495	skb->truesize += PAGE_SIZE;
1496}
1497
1498/**
1499 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1500 * @rx_ring: Rx descriptor ring
1501 * @work_done: output parameter for indicating completed work
1502 * @work_to_do: how many packets we can clean
1503 *
1504 * the return value indicates whether actual cleaning was done, there
1505 * is no guarantee that everything was cleaned
1506 **/
1507static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1508				     int work_to_do)
1509{
1510	struct e1000_adapter *adapter = rx_ring->adapter;
1511	struct net_device *netdev = adapter->netdev;
1512	struct pci_dev *pdev = adapter->pdev;
1513	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1514	struct e1000_buffer *buffer_info, *next_buffer;
1515	u32 length, staterr;
1516	unsigned int i;
1517	int cleaned_count = 0;
1518	bool cleaned = false;
1519	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1520	struct skb_shared_info *shinfo;
1521
1522	i = rx_ring->next_to_clean;
1523	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1524	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1525	buffer_info = &rx_ring->buffer_info[i];
1526
1527	while (staterr & E1000_RXD_STAT_DD) {
1528		struct sk_buff *skb;
1529
1530		if (*work_done >= work_to_do)
1531			break;
1532		(*work_done)++;
1533		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1534
1535		skb = buffer_info->skb;
1536		buffer_info->skb = NULL;
1537
1538		++i;
1539		if (i == rx_ring->count)
1540			i = 0;
1541		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1542		prefetch(next_rxd);
1543
1544		next_buffer = &rx_ring->buffer_info[i];
1545
1546		cleaned = true;
1547		cleaned_count++;
1548		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1549			       DMA_FROM_DEVICE);
1550		buffer_info->dma = 0;
1551
1552		length = le16_to_cpu(rx_desc->wb.upper.length);
1553
1554		/* errors is only valid for DD + EOP descriptors */
1555		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1556			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1557			      !(netdev->features & NETIF_F_RXALL)))) {
1558			/* recycle both page and skb */
1559			buffer_info->skb = skb;
1560			/* an error means any chain goes out the window too */
1561			if (rx_ring->rx_skb_top)
1562				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1563			rx_ring->rx_skb_top = NULL;
1564			goto next_desc;
1565		}
1566#define rxtop (rx_ring->rx_skb_top)
1567		if (!(staterr & E1000_RXD_STAT_EOP)) {
1568			/* this descriptor is only the beginning (or middle) */
1569			if (!rxtop) {
1570				/* this is the beginning of a chain */
1571				rxtop = skb;
1572				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1573						   0, length);
1574			} else {
1575				/* this is the middle of a chain */
1576				shinfo = skb_shinfo(rxtop);
1577				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1578						   buffer_info->page, 0,
1579						   length);
1580				/* re-use the skb, only consumed the page */
1581				buffer_info->skb = skb;
1582			}
1583			e1000_consume_page(buffer_info, rxtop, length);
1584			goto next_desc;
1585		} else {
1586			if (rxtop) {
1587				/* end of the chain */
1588				shinfo = skb_shinfo(rxtop);
1589				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1590						   buffer_info->page, 0,
1591						   length);
1592				/* re-use the current skb, we only consumed the
1593				 * page
1594				 */
1595				buffer_info->skb = skb;
1596				skb = rxtop;
1597				rxtop = NULL;
1598				e1000_consume_page(buffer_info, skb, length);
1599			} else {
1600				/* no chain, got EOP, this buf is the packet
1601				 * copybreak to save the put_page/alloc_page
1602				 */
1603				if (length <= copybreak &&
1604				    skb_tailroom(skb) >= length) {
1605					memcpy(skb_tail_pointer(skb),
1606					       page_address(buffer_info->page),
1607					       length);
1608					/* re-use the page, so don't erase
1609					 * buffer_info->page
1610					 */
1611					skb_put(skb, length);
1612				} else {
1613					skb_fill_page_desc(skb, 0,
1614							   buffer_info->page, 0,
1615							   length);
1616					e1000_consume_page(buffer_info, skb,
1617							   length);
1618				}
1619			}
1620		}
1621
1622		/* Receive Checksum Offload */
1623		e1000_rx_checksum(adapter, staterr, skb);
1624
1625		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1626
1627		/* probably a little skewed due to removing CRC */
1628		total_rx_bytes += skb->len;
1629		total_rx_packets++;
1630
1631		/* eth type trans needs skb->data to point to something */
1632		if (!pskb_may_pull(skb, ETH_HLEN)) {
1633			e_err("pskb_may_pull failed.\n");
1634			dev_kfree_skb_irq(skb);
1635			goto next_desc;
1636		}
1637
1638		e1000_receive_skb(adapter, netdev, skb, staterr,
1639				  rx_desc->wb.upper.vlan);
1640
1641next_desc:
1642		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1643
1644		/* return some buffers to hardware, one at a time is too slow */
1645		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1646			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1647					      GFP_ATOMIC);
1648			cleaned_count = 0;
1649		}
1650
1651		/* use prefetched values */
1652		rx_desc = next_rxd;
1653		buffer_info = next_buffer;
1654
1655		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1656	}
1657	rx_ring->next_to_clean = i;
1658
1659	cleaned_count = e1000_desc_unused(rx_ring);
1660	if (cleaned_count)
1661		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1662
1663	adapter->total_rx_bytes += total_rx_bytes;
1664	adapter->total_rx_packets += total_rx_packets;
1665	return cleaned;
1666}
1667
1668/**
1669 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1670 * @rx_ring: Rx descriptor ring
1671 **/
1672static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1673{
1674	struct e1000_adapter *adapter = rx_ring->adapter;
1675	struct e1000_buffer *buffer_info;
1676	struct e1000_ps_page *ps_page;
1677	struct pci_dev *pdev = adapter->pdev;
1678	unsigned int i, j;
1679
1680	/* Free all the Rx ring sk_buffs */
1681	for (i = 0; i < rx_ring->count; i++) {
1682		buffer_info = &rx_ring->buffer_info[i];
1683		if (buffer_info->dma) {
1684			if (adapter->clean_rx == e1000_clean_rx_irq)
1685				dma_unmap_single(&pdev->dev, buffer_info->dma,
1686						 adapter->rx_buffer_len,
1687						 DMA_FROM_DEVICE);
1688			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1689				dma_unmap_page(&pdev->dev, buffer_info->dma,
1690					       PAGE_SIZE, DMA_FROM_DEVICE);
1691			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1692				dma_unmap_single(&pdev->dev, buffer_info->dma,
1693						 adapter->rx_ps_bsize0,
1694						 DMA_FROM_DEVICE);
1695			buffer_info->dma = 0;
1696		}
1697
1698		if (buffer_info->page) {
1699			put_page(buffer_info->page);
1700			buffer_info->page = NULL;
1701		}
1702
1703		if (buffer_info->skb) {
1704			dev_kfree_skb(buffer_info->skb);
1705			buffer_info->skb = NULL;
1706		}
1707
1708		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1709			ps_page = &buffer_info->ps_pages[j];
1710			if (!ps_page->page)
1711				break;
1712			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1713				       DMA_FROM_DEVICE);
1714			ps_page->dma = 0;
1715			put_page(ps_page->page);
1716			ps_page->page = NULL;
1717		}
1718	}
1719
1720	/* there also may be some cached data from a chained receive */
1721	if (rx_ring->rx_skb_top) {
1722		dev_kfree_skb(rx_ring->rx_skb_top);
1723		rx_ring->rx_skb_top = NULL;
1724	}
1725
1726	/* Zero out the descriptor ring */
1727	memset(rx_ring->desc, 0, rx_ring->size);
1728
1729	rx_ring->next_to_clean = 0;
1730	rx_ring->next_to_use = 0;
1731	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1732}
1733
1734static void e1000e_downshift_workaround(struct work_struct *work)
1735{
1736	struct e1000_adapter *adapter = container_of(work,
1737						     struct e1000_adapter,
1738						     downshift_task);
1739
1740	if (test_bit(__E1000_DOWN, &adapter->state))
1741		return;
1742
1743	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1744}
1745
1746/**
1747 * e1000_intr_msi - Interrupt Handler
1748 * @irq: interrupt number
1749 * @data: pointer to a network interface device structure
1750 **/
1751static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1752{
1753	struct net_device *netdev = data;
1754	struct e1000_adapter *adapter = netdev_priv(netdev);
1755	struct e1000_hw *hw = &adapter->hw;
1756	u32 icr = er32(ICR);
1757
1758	/* read ICR disables interrupts using IAM */
1759	if (icr & E1000_ICR_LSC) {
1760		hw->mac.get_link_status = true;
1761		/* ICH8 workaround-- Call gig speed drop workaround on cable
1762		 * disconnect (LSC) before accessing any PHY registers
1763		 */
1764		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1765		    (!(er32(STATUS) & E1000_STATUS_LU)))
1766			schedule_work(&adapter->downshift_task);
1767
1768		/* 80003ES2LAN workaround-- For packet buffer work-around on
1769		 * link down event; disable receives here in the ISR and reset
1770		 * adapter in watchdog
1771		 */
1772		if (netif_carrier_ok(netdev) &&
1773		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1774			/* disable receives */
1775			u32 rctl = er32(RCTL);
1776
1777			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1778			adapter->flags |= FLAG_RESTART_NOW;
1779		}
1780		/* guard against interrupt when we're going down */
1781		if (!test_bit(__E1000_DOWN, &adapter->state))
1782			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1783	}
1784
1785	/* Reset on uncorrectable ECC error */
1786	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1787		u32 pbeccsts = er32(PBECCSTS);
1788
1789		adapter->corr_errors +=
1790		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1791		adapter->uncorr_errors +=
1792		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1793		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1794
1795		/* Do the reset outside of interrupt context */
1796		schedule_work(&adapter->reset_task);
1797
1798		/* return immediately since reset is imminent */
1799		return IRQ_HANDLED;
1800	}
1801
1802	if (napi_schedule_prep(&adapter->napi)) {
1803		adapter->total_tx_bytes = 0;
1804		adapter->total_tx_packets = 0;
1805		adapter->total_rx_bytes = 0;
1806		adapter->total_rx_packets = 0;
1807		__napi_schedule(&adapter->napi);
1808	}
1809
1810	return IRQ_HANDLED;
1811}
1812
1813/**
1814 * e1000_intr - Interrupt Handler
1815 * @irq: interrupt number
1816 * @data: pointer to a network interface device structure
1817 **/
1818static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1819{
1820	struct net_device *netdev = data;
1821	struct e1000_adapter *adapter = netdev_priv(netdev);
1822	struct e1000_hw *hw = &adapter->hw;
1823	u32 rctl, icr = er32(ICR);
1824
1825	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1826		return IRQ_NONE;	/* Not our interrupt */
1827
1828	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1829	 * not set, then the adapter didn't send an interrupt
1830	 */
1831	if (!(icr & E1000_ICR_INT_ASSERTED))
1832		return IRQ_NONE;
1833
1834	/* Interrupt Auto-Mask...upon reading ICR,
1835	 * interrupts are masked.  No need for the
1836	 * IMC write
1837	 */
1838
1839	if (icr & E1000_ICR_LSC) {
1840		hw->mac.get_link_status = true;
1841		/* ICH8 workaround-- Call gig speed drop workaround on cable
1842		 * disconnect (LSC) before accessing any PHY registers
1843		 */
1844		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1845		    (!(er32(STATUS) & E1000_STATUS_LU)))
1846			schedule_work(&adapter->downshift_task);
1847
1848		/* 80003ES2LAN workaround--
1849		 * For packet buffer work-around on link down event;
1850		 * disable receives here in the ISR and
1851		 * reset adapter in watchdog
1852		 */
1853		if (netif_carrier_ok(netdev) &&
1854		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1855			/* disable receives */
1856			rctl = er32(RCTL);
1857			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1858			adapter->flags |= FLAG_RESTART_NOW;
1859		}
1860		/* guard against interrupt when we're going down */
1861		if (!test_bit(__E1000_DOWN, &adapter->state))
1862			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1863	}
1864
1865	/* Reset on uncorrectable ECC error */
1866	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1867		u32 pbeccsts = er32(PBECCSTS);
1868
1869		adapter->corr_errors +=
1870		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1871		adapter->uncorr_errors +=
1872		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1873		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1874
1875		/* Do the reset outside of interrupt context */
1876		schedule_work(&adapter->reset_task);
1877
1878		/* return immediately since reset is imminent */
1879		return IRQ_HANDLED;
1880	}
1881
1882	if (napi_schedule_prep(&adapter->napi)) {
1883		adapter->total_tx_bytes = 0;
1884		adapter->total_tx_packets = 0;
1885		adapter->total_rx_bytes = 0;
1886		adapter->total_rx_packets = 0;
1887		__napi_schedule(&adapter->napi);
1888	}
1889
1890	return IRQ_HANDLED;
1891}
1892
1893static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1894{
1895	struct net_device *netdev = data;
1896	struct e1000_adapter *adapter = netdev_priv(netdev);
1897	struct e1000_hw *hw = &adapter->hw;
1898	u32 icr = er32(ICR);
1899
1900	if (icr & adapter->eiac_mask)
1901		ew32(ICS, (icr & adapter->eiac_mask));
1902
1903	if (icr & E1000_ICR_LSC) {
1904		hw->mac.get_link_status = true;
1905		/* guard against interrupt when we're going down */
1906		if (!test_bit(__E1000_DOWN, &adapter->state))
1907			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1908	}
1909
1910	if (!test_bit(__E1000_DOWN, &adapter->state))
1911		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1912
1913	return IRQ_HANDLED;
1914}
1915
1916static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1917{
1918	struct net_device *netdev = data;
1919	struct e1000_adapter *adapter = netdev_priv(netdev);
1920	struct e1000_hw *hw = &adapter->hw;
1921	struct e1000_ring *tx_ring = adapter->tx_ring;
1922
1923	adapter->total_tx_bytes = 0;
1924	adapter->total_tx_packets = 0;
1925
1926	if (!e1000_clean_tx_irq(tx_ring))
1927		/* Ring was not completely cleaned, so fire another interrupt */
1928		ew32(ICS, tx_ring->ims_val);
1929
1930	if (!test_bit(__E1000_DOWN, &adapter->state))
1931		ew32(IMS, adapter->tx_ring->ims_val);
1932
1933	return IRQ_HANDLED;
1934}
1935
1936static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1937{
1938	struct net_device *netdev = data;
1939	struct e1000_adapter *adapter = netdev_priv(netdev);
1940	struct e1000_ring *rx_ring = adapter->rx_ring;
1941
1942	/* Write the ITR value calculated at the end of the
1943	 * previous interrupt.
1944	 */
1945	if (rx_ring->set_itr) {
1946		u32 itr = rx_ring->itr_val ?
1947			  1000000000 / (rx_ring->itr_val * 256) : 0;
1948
1949		writel(itr, rx_ring->itr_register);
1950		rx_ring->set_itr = 0;
1951	}
1952
1953	if (napi_schedule_prep(&adapter->napi)) {
1954		adapter->total_rx_bytes = 0;
1955		adapter->total_rx_packets = 0;
1956		__napi_schedule(&adapter->napi);
1957	}
1958	return IRQ_HANDLED;
1959}
1960
1961/**
1962 * e1000_configure_msix - Configure MSI-X hardware
1963 * @adapter: board private structure
1964 *
1965 * e1000_configure_msix sets up the hardware to properly
1966 * generate MSI-X interrupts.
1967 **/
1968static void e1000_configure_msix(struct e1000_adapter *adapter)
1969{
1970	struct e1000_hw *hw = &adapter->hw;
1971	struct e1000_ring *rx_ring = adapter->rx_ring;
1972	struct e1000_ring *tx_ring = adapter->tx_ring;
1973	int vector = 0;
1974	u32 ctrl_ext, ivar = 0;
1975
1976	adapter->eiac_mask = 0;
1977
1978	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1979	if (hw->mac.type == e1000_82574) {
1980		u32 rfctl = er32(RFCTL);
1981
1982		rfctl |= E1000_RFCTL_ACK_DIS;
1983		ew32(RFCTL, rfctl);
1984	}
1985
1986	/* Configure Rx vector */
1987	rx_ring->ims_val = E1000_IMS_RXQ0;
1988	adapter->eiac_mask |= rx_ring->ims_val;
1989	if (rx_ring->itr_val)
1990		writel(1000000000 / (rx_ring->itr_val * 256),
1991		       rx_ring->itr_register);
1992	else
1993		writel(1, rx_ring->itr_register);
1994	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1995
1996	/* Configure Tx vector */
1997	tx_ring->ims_val = E1000_IMS_TXQ0;
1998	vector++;
1999	if (tx_ring->itr_val)
2000		writel(1000000000 / (tx_ring->itr_val * 256),
2001		       tx_ring->itr_register);
2002	else
2003		writel(1, tx_ring->itr_register);
2004	adapter->eiac_mask |= tx_ring->ims_val;
2005	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2006
2007	/* set vector for Other Causes, e.g. link changes */
2008	vector++;
2009	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2010	if (rx_ring->itr_val)
2011		writel(1000000000 / (rx_ring->itr_val * 256),
2012		       hw->hw_addr + E1000_EITR_82574(vector));
2013	else
2014		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2015
2016	/* Cause Tx interrupts on every write back */
2017	ivar |= BIT(31);
2018
2019	ew32(IVAR, ivar);
2020
2021	/* enable MSI-X PBA support */
2022	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2023	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2024	ew32(CTRL_EXT, ctrl_ext);
2025	e1e_flush();
2026}
2027
2028void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2029{
2030	if (adapter->msix_entries) {
2031		pci_disable_msix(adapter->pdev);
2032		kfree(adapter->msix_entries);
2033		adapter->msix_entries = NULL;
2034	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2035		pci_disable_msi(adapter->pdev);
2036		adapter->flags &= ~FLAG_MSI_ENABLED;
2037	}
2038}
2039
2040/**
2041 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2042 * @adapter: board private structure
2043 *
2044 * Attempt to configure interrupts using the best available
2045 * capabilities of the hardware and kernel.
2046 **/
2047void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2048{
2049	int err;
2050	int i;
2051
2052	switch (adapter->int_mode) {
2053	case E1000E_INT_MODE_MSIX:
2054		if (adapter->flags & FLAG_HAS_MSIX) {
2055			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2056			adapter->msix_entries = kcalloc(adapter->num_vectors,
2057							sizeof(struct
2058							       msix_entry),
2059							GFP_KERNEL);
2060			if (adapter->msix_entries) {
2061				struct e1000_adapter *a = adapter;
2062
2063				for (i = 0; i < adapter->num_vectors; i++)
2064					adapter->msix_entries[i].entry = i;
2065
2066				err = pci_enable_msix_range(a->pdev,
2067							    a->msix_entries,
2068							    a->num_vectors,
2069							    a->num_vectors);
2070				if (err > 0)
2071					return;
2072			}
2073			/* MSI-X failed, so fall through and try MSI */
2074			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2075			e1000e_reset_interrupt_capability(adapter);
2076		}
2077		adapter->int_mode = E1000E_INT_MODE_MSI;
2078		fallthrough;
2079	case E1000E_INT_MODE_MSI:
2080		if (!pci_enable_msi(adapter->pdev)) {
2081			adapter->flags |= FLAG_MSI_ENABLED;
2082		} else {
2083			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2084			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2085		}
2086		fallthrough;
2087	case E1000E_INT_MODE_LEGACY:
2088		/* Don't do anything; this is the system default */
2089		break;
2090	}
2091
2092	/* store the number of vectors being used */
2093	adapter->num_vectors = 1;
2094}
2095
2096/**
2097 * e1000_request_msix - Initialize MSI-X interrupts
2098 * @adapter: board private structure
2099 *
2100 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2101 * kernel.
2102 **/
2103static int e1000_request_msix(struct e1000_adapter *adapter)
2104{
2105	struct net_device *netdev = adapter->netdev;
2106	int err = 0, vector = 0;
2107
2108	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2109		snprintf(adapter->rx_ring->name,
2110			 sizeof(adapter->rx_ring->name) - 1,
2111			 "%.14s-rx-0", netdev->name);
2112	else
2113		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2114	err = request_irq(adapter->msix_entries[vector].vector,
2115			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2116			  netdev);
2117	if (err)
2118		return err;
2119	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2120	    E1000_EITR_82574(vector);
2121	adapter->rx_ring->itr_val = adapter->itr;
2122	vector++;
2123
2124	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2125		snprintf(adapter->tx_ring->name,
2126			 sizeof(adapter->tx_ring->name) - 1,
2127			 "%.14s-tx-0", netdev->name);
2128	else
2129		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2130	err = request_irq(adapter->msix_entries[vector].vector,
2131			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2132			  netdev);
2133	if (err)
2134		return err;
2135	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2136	    E1000_EITR_82574(vector);
2137	adapter->tx_ring->itr_val = adapter->itr;
2138	vector++;
2139
2140	err = request_irq(adapter->msix_entries[vector].vector,
2141			  e1000_msix_other, 0, netdev->name, netdev);
2142	if (err)
2143		return err;
2144
2145	e1000_configure_msix(adapter);
2146
2147	return 0;
2148}
2149
2150/**
2151 * e1000_request_irq - initialize interrupts
2152 * @adapter: board private structure
2153 *
2154 * Attempts to configure interrupts using the best available
2155 * capabilities of the hardware and kernel.
2156 **/
2157static int e1000_request_irq(struct e1000_adapter *adapter)
2158{
2159	struct net_device *netdev = adapter->netdev;
2160	int err;
2161
2162	if (adapter->msix_entries) {
2163		err = e1000_request_msix(adapter);
2164		if (!err)
2165			return err;
2166		/* fall back to MSI */
2167		e1000e_reset_interrupt_capability(adapter);
2168		adapter->int_mode = E1000E_INT_MODE_MSI;
2169		e1000e_set_interrupt_capability(adapter);
2170	}
2171	if (adapter->flags & FLAG_MSI_ENABLED) {
2172		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2173				  netdev->name, netdev);
2174		if (!err)
2175			return err;
2176
2177		/* fall back to legacy interrupt */
2178		e1000e_reset_interrupt_capability(adapter);
2179		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2180	}
2181
2182	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2183			  netdev->name, netdev);
2184	if (err)
2185		e_err("Unable to allocate interrupt, Error: %d\n", err);
2186
2187	return err;
2188}
2189
2190static void e1000_free_irq(struct e1000_adapter *adapter)
2191{
2192	struct net_device *netdev = adapter->netdev;
2193
2194	if (adapter->msix_entries) {
2195		int vector = 0;
2196
2197		free_irq(adapter->msix_entries[vector].vector, netdev);
2198		vector++;
2199
2200		free_irq(adapter->msix_entries[vector].vector, netdev);
2201		vector++;
2202
2203		/* Other Causes interrupt vector */
2204		free_irq(adapter->msix_entries[vector].vector, netdev);
2205		return;
2206	}
2207
2208	free_irq(adapter->pdev->irq, netdev);
2209}
2210
2211/**
2212 * e1000_irq_disable - Mask off interrupt generation on the NIC
2213 * @adapter: board private structure
2214 **/
2215static void e1000_irq_disable(struct e1000_adapter *adapter)
2216{
2217	struct e1000_hw *hw = &adapter->hw;
2218
2219	ew32(IMC, ~0);
2220	if (adapter->msix_entries)
2221		ew32(EIAC_82574, 0);
2222	e1e_flush();
2223
2224	if (adapter->msix_entries) {
2225		int i;
2226
2227		for (i = 0; i < adapter->num_vectors; i++)
2228			synchronize_irq(adapter->msix_entries[i].vector);
2229	} else {
2230		synchronize_irq(adapter->pdev->irq);
2231	}
2232}
2233
2234/**
2235 * e1000_irq_enable - Enable default interrupt generation settings
2236 * @adapter: board private structure
2237 **/
2238static void e1000_irq_enable(struct e1000_adapter *adapter)
2239{
2240	struct e1000_hw *hw = &adapter->hw;
2241
2242	if (adapter->msix_entries) {
2243		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2244		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2245		     IMS_OTHER_MASK);
2246	} else if (hw->mac.type >= e1000_pch_lpt) {
2247		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2248	} else {
2249		ew32(IMS, IMS_ENABLE_MASK);
2250	}
2251	e1e_flush();
2252}
2253
2254/**
2255 * e1000e_get_hw_control - get control of the h/w from f/w
2256 * @adapter: address of board private structure
2257 *
2258 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2259 * For ASF and Pass Through versions of f/w this means that
2260 * the driver is loaded. For AMT version (only with 82573)
2261 * of the f/w this means that the network i/f is open.
2262 **/
2263void e1000e_get_hw_control(struct e1000_adapter *adapter)
2264{
2265	struct e1000_hw *hw = &adapter->hw;
2266	u32 ctrl_ext;
2267	u32 swsm;
2268
2269	/* Let firmware know the driver has taken over */
2270	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2271		swsm = er32(SWSM);
2272		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2273	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2274		ctrl_ext = er32(CTRL_EXT);
2275		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2276	}
2277}
2278
2279/**
2280 * e1000e_release_hw_control - release control of the h/w to f/w
2281 * @adapter: address of board private structure
2282 *
2283 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2284 * For ASF and Pass Through versions of f/w this means that the
2285 * driver is no longer loaded. For AMT version (only with 82573) i
2286 * of the f/w this means that the network i/f is closed.
2287 *
2288 **/
2289void e1000e_release_hw_control(struct e1000_adapter *adapter)
2290{
2291	struct e1000_hw *hw = &adapter->hw;
2292	u32 ctrl_ext;
2293	u32 swsm;
2294
2295	/* Let firmware taken over control of h/w */
2296	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2297		swsm = er32(SWSM);
2298		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2299	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2300		ctrl_ext = er32(CTRL_EXT);
2301		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2302	}
2303}
2304
2305/**
2306 * e1000_alloc_ring_dma - allocate memory for a ring structure
2307 * @adapter: board private structure
2308 * @ring: ring struct for which to allocate dma
2309 **/
2310static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2311				struct e1000_ring *ring)
2312{
2313	struct pci_dev *pdev = adapter->pdev;
2314
2315	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2316					GFP_KERNEL);
2317	if (!ring->desc)
2318		return -ENOMEM;
2319
2320	return 0;
2321}
2322
2323/**
2324 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2325 * @tx_ring: Tx descriptor ring
2326 *
2327 * Return 0 on success, negative on failure
2328 **/
2329int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2330{
2331	struct e1000_adapter *adapter = tx_ring->adapter;
2332	int err = -ENOMEM, size;
2333
2334	size = sizeof(struct e1000_buffer) * tx_ring->count;
2335	tx_ring->buffer_info = vzalloc(size);
2336	if (!tx_ring->buffer_info)
2337		goto err;
2338
2339	/* round up to nearest 4K */
2340	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2341	tx_ring->size = ALIGN(tx_ring->size, 4096);
2342
2343	err = e1000_alloc_ring_dma(adapter, tx_ring);
2344	if (err)
2345		goto err;
2346
2347	tx_ring->next_to_use = 0;
2348	tx_ring->next_to_clean = 0;
2349
2350	return 0;
2351err:
2352	vfree(tx_ring->buffer_info);
2353	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2354	return err;
2355}
2356
2357/**
2358 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2359 * @rx_ring: Rx descriptor ring
2360 *
2361 * Returns 0 on success, negative on failure
2362 **/
2363int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2364{
2365	struct e1000_adapter *adapter = rx_ring->adapter;
2366	struct e1000_buffer *buffer_info;
2367	int i, size, desc_len, err = -ENOMEM;
2368
2369	size = sizeof(struct e1000_buffer) * rx_ring->count;
2370	rx_ring->buffer_info = vzalloc(size);
2371	if (!rx_ring->buffer_info)
2372		goto err;
2373
2374	for (i = 0; i < rx_ring->count; i++) {
2375		buffer_info = &rx_ring->buffer_info[i];
2376		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2377						sizeof(struct e1000_ps_page),
2378						GFP_KERNEL);
2379		if (!buffer_info->ps_pages)
2380			goto err_pages;
2381	}
2382
2383	desc_len = sizeof(union e1000_rx_desc_packet_split);
2384
2385	/* Round up to nearest 4K */
2386	rx_ring->size = rx_ring->count * desc_len;
2387	rx_ring->size = ALIGN(rx_ring->size, 4096);
2388
2389	err = e1000_alloc_ring_dma(adapter, rx_ring);
2390	if (err)
2391		goto err_pages;
2392
2393	rx_ring->next_to_clean = 0;
2394	rx_ring->next_to_use = 0;
2395	rx_ring->rx_skb_top = NULL;
2396
2397	return 0;
2398
2399err_pages:
2400	for (i = 0; i < rx_ring->count; i++) {
2401		buffer_info = &rx_ring->buffer_info[i];
2402		kfree(buffer_info->ps_pages);
2403	}
2404err:
2405	vfree(rx_ring->buffer_info);
2406	e_err("Unable to allocate memory for the receive descriptor ring\n");
2407	return err;
2408}
2409
2410/**
2411 * e1000_clean_tx_ring - Free Tx Buffers
2412 * @tx_ring: Tx descriptor ring
2413 **/
2414static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2415{
2416	struct e1000_adapter *adapter = tx_ring->adapter;
2417	struct e1000_buffer *buffer_info;
2418	unsigned long size;
2419	unsigned int i;
2420
2421	for (i = 0; i < tx_ring->count; i++) {
2422		buffer_info = &tx_ring->buffer_info[i];
2423		e1000_put_txbuf(tx_ring, buffer_info, false);
2424	}
2425
2426	netdev_reset_queue(adapter->netdev);
2427	size = sizeof(struct e1000_buffer) * tx_ring->count;
2428	memset(tx_ring->buffer_info, 0, size);
2429
2430	memset(tx_ring->desc, 0, tx_ring->size);
2431
2432	tx_ring->next_to_use = 0;
2433	tx_ring->next_to_clean = 0;
2434}
2435
2436/**
2437 * e1000e_free_tx_resources - Free Tx Resources per Queue
2438 * @tx_ring: Tx descriptor ring
2439 *
2440 * Free all transmit software resources
2441 **/
2442void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2443{
2444	struct e1000_adapter *adapter = tx_ring->adapter;
2445	struct pci_dev *pdev = adapter->pdev;
2446
2447	e1000_clean_tx_ring(tx_ring);
2448
2449	vfree(tx_ring->buffer_info);
2450	tx_ring->buffer_info = NULL;
2451
2452	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2453			  tx_ring->dma);
2454	tx_ring->desc = NULL;
2455}
2456
2457/**
2458 * e1000e_free_rx_resources - Free Rx Resources
2459 * @rx_ring: Rx descriptor ring
2460 *
2461 * Free all receive software resources
2462 **/
2463void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2464{
2465	struct e1000_adapter *adapter = rx_ring->adapter;
2466	struct pci_dev *pdev = adapter->pdev;
2467	int i;
2468
2469	e1000_clean_rx_ring(rx_ring);
2470
2471	for (i = 0; i < rx_ring->count; i++)
2472		kfree(rx_ring->buffer_info[i].ps_pages);
2473
2474	vfree(rx_ring->buffer_info);
2475	rx_ring->buffer_info = NULL;
2476
2477	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2478			  rx_ring->dma);
2479	rx_ring->desc = NULL;
2480}
2481
2482/**
2483 * e1000_update_itr - update the dynamic ITR value based on statistics
2484 * @itr_setting: current adapter->itr
2485 * @packets: the number of packets during this measurement interval
2486 * @bytes: the number of bytes during this measurement interval
2487 *
2488 *      Stores a new ITR value based on packets and byte
2489 *      counts during the last interrupt.  The advantage of per interrupt
2490 *      computation is faster updates and more accurate ITR for the current
2491 *      traffic pattern.  Constants in this function were computed
2492 *      based on theoretical maximum wire speed and thresholds were set based
2493 *      on testing data as well as attempting to minimize response time
2494 *      while increasing bulk throughput.  This functionality is controlled
2495 *      by the InterruptThrottleRate module parameter.
2496 **/
2497static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2498{
2499	unsigned int retval = itr_setting;
2500
2501	if (packets == 0)
2502		return itr_setting;
2503
2504	switch (itr_setting) {
2505	case lowest_latency:
2506		/* handle TSO and jumbo frames */
2507		if (bytes / packets > 8000)
2508			retval = bulk_latency;
2509		else if ((packets < 5) && (bytes > 512))
2510			retval = low_latency;
2511		break;
2512	case low_latency:	/* 50 usec aka 20000 ints/s */
2513		if (bytes > 10000) {
2514			/* this if handles the TSO accounting */
2515			if (bytes / packets > 8000)
2516				retval = bulk_latency;
2517			else if ((packets < 10) || ((bytes / packets) > 1200))
2518				retval = bulk_latency;
2519			else if ((packets > 35))
2520				retval = lowest_latency;
2521		} else if (bytes / packets > 2000) {
2522			retval = bulk_latency;
2523		} else if (packets <= 2 && bytes < 512) {
2524			retval = lowest_latency;
2525		}
2526		break;
2527	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2528		if (bytes > 25000) {
2529			if (packets > 35)
2530				retval = low_latency;
2531		} else if (bytes < 6000) {
2532			retval = low_latency;
2533		}
2534		break;
2535	}
2536
2537	return retval;
2538}
2539
2540static void e1000_set_itr(struct e1000_adapter *adapter)
2541{
2542	u16 current_itr;
2543	u32 new_itr = adapter->itr;
2544
2545	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2546	if (adapter->link_speed != SPEED_1000) {
2547		new_itr = 4000;
2548		goto set_itr_now;
2549	}
2550
2551	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2552		new_itr = 0;
2553		goto set_itr_now;
2554	}
2555
2556	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2557					   adapter->total_tx_packets,
2558					   adapter->total_tx_bytes);
2559	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2560	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2561		adapter->tx_itr = low_latency;
2562
2563	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2564					   adapter->total_rx_packets,
2565					   adapter->total_rx_bytes);
2566	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2567	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2568		adapter->rx_itr = low_latency;
2569
2570	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2571
2572	/* counts and packets in update_itr are dependent on these numbers */
2573	switch (current_itr) {
2574	case lowest_latency:
2575		new_itr = 70000;
2576		break;
2577	case low_latency:
2578		new_itr = 20000;	/* aka hwitr = ~200 */
2579		break;
2580	case bulk_latency:
2581		new_itr = 4000;
2582		break;
2583	default:
2584		break;
2585	}
2586
2587set_itr_now:
2588	if (new_itr != adapter->itr) {
2589		/* this attempts to bias the interrupt rate towards Bulk
2590		 * by adding intermediate steps when interrupt rate is
2591		 * increasing
2592		 */
2593		new_itr = new_itr > adapter->itr ?
2594		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2595		adapter->itr = new_itr;
2596		adapter->rx_ring->itr_val = new_itr;
2597		if (adapter->msix_entries)
2598			adapter->rx_ring->set_itr = 1;
2599		else
2600			e1000e_write_itr(adapter, new_itr);
2601	}
2602}
2603
2604/**
2605 * e1000e_write_itr - write the ITR value to the appropriate registers
2606 * @adapter: address of board private structure
2607 * @itr: new ITR value to program
2608 *
2609 * e1000e_write_itr determines if the adapter is in MSI-X mode
2610 * and, if so, writes the EITR registers with the ITR value.
2611 * Otherwise, it writes the ITR value into the ITR register.
2612 **/
2613void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2614{
2615	struct e1000_hw *hw = &adapter->hw;
2616	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2617
2618	if (adapter->msix_entries) {
2619		int vector;
2620
2621		for (vector = 0; vector < adapter->num_vectors; vector++)
2622			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2623	} else {
2624		ew32(ITR, new_itr);
2625	}
2626}
2627
2628/**
2629 * e1000_alloc_queues - Allocate memory for all rings
2630 * @adapter: board private structure to initialize
2631 **/
2632static int e1000_alloc_queues(struct e1000_adapter *adapter)
2633{
2634	int size = sizeof(struct e1000_ring);
2635
2636	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2637	if (!adapter->tx_ring)
2638		goto err;
2639	adapter->tx_ring->count = adapter->tx_ring_count;
2640	adapter->tx_ring->adapter = adapter;
2641
2642	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2643	if (!adapter->rx_ring)
2644		goto err;
2645	adapter->rx_ring->count = adapter->rx_ring_count;
2646	adapter->rx_ring->adapter = adapter;
2647
2648	return 0;
2649err:
2650	e_err("Unable to allocate memory for queues\n");
2651	kfree(adapter->rx_ring);
2652	kfree(adapter->tx_ring);
2653	return -ENOMEM;
2654}
2655
2656/**
2657 * e1000e_poll - NAPI Rx polling callback
2658 * @napi: struct associated with this polling callback
2659 * @budget: number of packets driver is allowed to process this poll
2660 **/
2661static int e1000e_poll(struct napi_struct *napi, int budget)
2662{
2663	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2664						     napi);
2665	struct e1000_hw *hw = &adapter->hw;
2666	struct net_device *poll_dev = adapter->netdev;
2667	int tx_cleaned = 1, work_done = 0;
2668
2669	adapter = netdev_priv(poll_dev);
2670
2671	if (!adapter->msix_entries ||
2672	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2673		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2674
2675	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2676
2677	if (!tx_cleaned || work_done == budget)
2678		return budget;
2679
2680	/* Exit the polling mode, but don't re-enable interrupts if stack might
2681	 * poll us due to busy-polling
2682	 */
2683	if (likely(napi_complete_done(napi, work_done))) {
2684		if (adapter->itr_setting & 3)
2685			e1000_set_itr(adapter);
2686		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2687			if (adapter->msix_entries)
2688				ew32(IMS, adapter->rx_ring->ims_val);
2689			else
2690				e1000_irq_enable(adapter);
2691		}
2692	}
2693
2694	return work_done;
2695}
2696
2697static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2698				 __always_unused __be16 proto, u16 vid)
2699{
2700	struct e1000_adapter *adapter = netdev_priv(netdev);
2701	struct e1000_hw *hw = &adapter->hw;
2702	u32 vfta, index;
2703
2704	/* don't update vlan cookie if already programmed */
2705	if ((adapter->hw.mng_cookie.status &
2706	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2707	    (vid == adapter->mng_vlan_id))
2708		return 0;
2709
2710	/* add VID to filter table */
2711	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2712		index = (vid >> 5) & 0x7F;
2713		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2714		vfta |= BIT((vid & 0x1F));
2715		hw->mac.ops.write_vfta(hw, index, vfta);
2716	}
2717
2718	set_bit(vid, adapter->active_vlans);
2719
2720	return 0;
2721}
2722
2723static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2724				  __always_unused __be16 proto, u16 vid)
2725{
2726	struct e1000_adapter *adapter = netdev_priv(netdev);
2727	struct e1000_hw *hw = &adapter->hw;
2728	u32 vfta, index;
2729
2730	if ((adapter->hw.mng_cookie.status &
2731	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2732	    (vid == adapter->mng_vlan_id)) {
2733		/* release control to f/w */
2734		e1000e_release_hw_control(adapter);
2735		return 0;
2736	}
2737
2738	/* remove VID from filter table */
2739	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740		index = (vid >> 5) & 0x7F;
2741		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2742		vfta &= ~BIT((vid & 0x1F));
2743		hw->mac.ops.write_vfta(hw, index, vfta);
2744	}
2745
2746	clear_bit(vid, adapter->active_vlans);
2747
2748	return 0;
2749}
2750
2751/**
2752 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2753 * @adapter: board private structure to initialize
2754 **/
2755static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2756{
2757	struct net_device *netdev = adapter->netdev;
2758	struct e1000_hw *hw = &adapter->hw;
2759	u32 rctl;
2760
2761	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2762		/* disable VLAN receive filtering */
2763		rctl = er32(RCTL);
2764		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2765		ew32(RCTL, rctl);
2766
2767		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2768			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2769					       adapter->mng_vlan_id);
2770			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2771		}
2772	}
2773}
2774
2775/**
2776 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2777 * @adapter: board private structure to initialize
2778 **/
2779static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2780{
2781	struct e1000_hw *hw = &adapter->hw;
2782	u32 rctl;
2783
2784	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785		/* enable VLAN receive filtering */
2786		rctl = er32(RCTL);
2787		rctl |= E1000_RCTL_VFE;
2788		rctl &= ~E1000_RCTL_CFIEN;
2789		ew32(RCTL, rctl);
2790	}
2791}
2792
2793/**
2794 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2795 * @adapter: board private structure to initialize
2796 **/
2797static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2798{
2799	struct e1000_hw *hw = &adapter->hw;
2800	u32 ctrl;
2801
2802	/* disable VLAN tag insert/strip */
2803	ctrl = er32(CTRL);
2804	ctrl &= ~E1000_CTRL_VME;
2805	ew32(CTRL, ctrl);
2806}
2807
2808/**
2809 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2810 * @adapter: board private structure to initialize
2811 **/
2812static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2813{
2814	struct e1000_hw *hw = &adapter->hw;
2815	u32 ctrl;
2816
2817	/* enable VLAN tag insert/strip */
2818	ctrl = er32(CTRL);
2819	ctrl |= E1000_CTRL_VME;
2820	ew32(CTRL, ctrl);
2821}
2822
2823static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2824{
2825	struct net_device *netdev = adapter->netdev;
2826	u16 vid = adapter->hw.mng_cookie.vlan_id;
2827	u16 old_vid = adapter->mng_vlan_id;
2828
2829	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2830		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2831		adapter->mng_vlan_id = vid;
2832	}
2833
2834	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2835		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2836}
2837
2838static void e1000_restore_vlan(struct e1000_adapter *adapter)
2839{
2840	u16 vid;
2841
2842	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2843
2844	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2845	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2846}
2847
2848static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2849{
2850	struct e1000_hw *hw = &adapter->hw;
2851	u32 manc, manc2h, mdef, i, j;
2852
2853	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2854		return;
2855
2856	manc = er32(MANC);
2857
2858	/* enable receiving management packets to the host. this will probably
2859	 * generate destination unreachable messages from the host OS, but
2860	 * the packets will be handled on SMBUS
2861	 */
2862	manc |= E1000_MANC_EN_MNG2HOST;
2863	manc2h = er32(MANC2H);
2864
2865	switch (hw->mac.type) {
2866	default:
2867		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2868		break;
2869	case e1000_82574:
2870	case e1000_82583:
2871		/* Check if IPMI pass-through decision filter already exists;
2872		 * if so, enable it.
2873		 */
2874		for (i = 0, j = 0; i < 8; i++) {
2875			mdef = er32(MDEF(i));
2876
2877			/* Ignore filters with anything other than IPMI ports */
2878			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2879				continue;
2880
2881			/* Enable this decision filter in MANC2H */
2882			if (mdef)
2883				manc2h |= BIT(i);
2884
2885			j |= mdef;
2886		}
2887
2888		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2889			break;
2890
2891		/* Create new decision filter in an empty filter */
2892		for (i = 0, j = 0; i < 8; i++)
2893			if (er32(MDEF(i)) == 0) {
2894				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2895					       E1000_MDEF_PORT_664));
2896				manc2h |= BIT(1);
2897				j++;
2898				break;
2899			}
2900
2901		if (!j)
2902			e_warn("Unable to create IPMI pass-through filter\n");
2903		break;
2904	}
2905
2906	ew32(MANC2H, manc2h);
2907	ew32(MANC, manc);
2908}
2909
2910/**
2911 * e1000_configure_tx - Configure Transmit Unit after Reset
2912 * @adapter: board private structure
2913 *
2914 * Configure the Tx unit of the MAC after a reset.
2915 **/
2916static void e1000_configure_tx(struct e1000_adapter *adapter)
2917{
2918	struct e1000_hw *hw = &adapter->hw;
2919	struct e1000_ring *tx_ring = adapter->tx_ring;
2920	u64 tdba;
2921	u32 tdlen, tctl, tarc;
2922
2923	/* Setup the HW Tx Head and Tail descriptor pointers */
2924	tdba = tx_ring->dma;
2925	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2926	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2927	ew32(TDBAH(0), (tdba >> 32));
2928	ew32(TDLEN(0), tdlen);
2929	ew32(TDH(0), 0);
2930	ew32(TDT(0), 0);
2931	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2932	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2933
2934	writel(0, tx_ring->head);
2935	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2936		e1000e_update_tdt_wa(tx_ring, 0);
2937	else
2938		writel(0, tx_ring->tail);
2939
2940	/* Set the Tx Interrupt Delay register */
2941	ew32(TIDV, adapter->tx_int_delay);
2942	/* Tx irq moderation */
2943	ew32(TADV, adapter->tx_abs_int_delay);
2944
2945	if (adapter->flags2 & FLAG2_DMA_BURST) {
2946		u32 txdctl = er32(TXDCTL(0));
2947
2948		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2949			    E1000_TXDCTL_WTHRESH);
2950		/* set up some performance related parameters to encourage the
2951		 * hardware to use the bus more efficiently in bursts, depends
2952		 * on the tx_int_delay to be enabled,
2953		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2954		 * hthresh = 1 ==> prefetch when one or more available
2955		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2956		 * BEWARE: this seems to work but should be considered first if
2957		 * there are Tx hangs or other Tx related bugs
2958		 */
2959		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2960		ew32(TXDCTL(0), txdctl);
2961	}
2962	/* erratum work around: set txdctl the same for both queues */
2963	ew32(TXDCTL(1), er32(TXDCTL(0)));
2964
2965	/* Program the Transmit Control Register */
2966	tctl = er32(TCTL);
2967	tctl &= ~E1000_TCTL_CT;
2968	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2969		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2970
2971	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2972		tarc = er32(TARC(0));
2973		/* set the speed mode bit, we'll clear it if we're not at
2974		 * gigabit link later
2975		 */
2976#define SPEED_MODE_BIT BIT(21)
2977		tarc |= SPEED_MODE_BIT;
2978		ew32(TARC(0), tarc);
2979	}
2980
2981	/* errata: program both queues to unweighted RR */
2982	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2983		tarc = er32(TARC(0));
2984		tarc |= 1;
2985		ew32(TARC(0), tarc);
2986		tarc = er32(TARC(1));
2987		tarc |= 1;
2988		ew32(TARC(1), tarc);
2989	}
2990
2991	/* Setup Transmit Descriptor Settings for eop descriptor */
2992	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2993
2994	/* only set IDE if we are delaying interrupts using the timers */
2995	if (adapter->tx_int_delay)
2996		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2997
2998	/* enable Report Status bit */
2999	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3000
3001	ew32(TCTL, tctl);
3002
3003	hw->mac.ops.config_collision_dist(hw);
3004
3005	/* SPT and KBL Si errata workaround to avoid data corruption */
3006	if (hw->mac.type == e1000_pch_spt) {
3007		u32 reg_val;
3008
3009		reg_val = er32(IOSFPC);
3010		reg_val |= E1000_RCTL_RDMTS_HEX;
3011		ew32(IOSFPC, reg_val);
3012
3013		reg_val = er32(TARC(0));
3014		/* SPT and KBL Si errata workaround to avoid Tx hang.
3015		 * Dropping the number of outstanding requests from
3016		 * 3 to 2 in order to avoid a buffer overrun.
3017		 */
3018		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3019		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3020		ew32(TARC(0), reg_val);
3021	}
3022}
3023
3024#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3025			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3026
3027/**
3028 * e1000_setup_rctl - configure the receive control registers
3029 * @adapter: Board private structure
3030 **/
3031static void e1000_setup_rctl(struct e1000_adapter *adapter)
3032{
3033	struct e1000_hw *hw = &adapter->hw;
3034	u32 rctl, rfctl;
3035	u32 pages = 0;
3036
3037	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3038	 * If jumbo frames not set, program related MAC/PHY registers
3039	 * to h/w defaults
3040	 */
3041	if (hw->mac.type >= e1000_pch2lan) {
3042		s32 ret_val;
3043
3044		if (adapter->netdev->mtu > ETH_DATA_LEN)
3045			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3046		else
3047			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3048
3049		if (ret_val)
3050			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3051	}
3052
3053	/* Program MC offset vector base */
3054	rctl = er32(RCTL);
3055	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3056	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3057	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3058	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3059
3060	/* Do not Store bad packets */
3061	rctl &= ~E1000_RCTL_SBP;
3062
3063	/* Enable Long Packet receive */
3064	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3065		rctl &= ~E1000_RCTL_LPE;
3066	else
3067		rctl |= E1000_RCTL_LPE;
3068
3069	/* Some systems expect that the CRC is included in SMBUS traffic. The
3070	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3071	 * host memory when this is enabled
3072	 */
3073	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3074		rctl |= E1000_RCTL_SECRC;
3075
3076	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3077	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3078		u16 phy_data;
3079
3080		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3081		phy_data &= 0xfff8;
3082		phy_data |= BIT(2);
3083		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3084
3085		e1e_rphy(hw, 22, &phy_data);
3086		phy_data &= 0x0fff;
3087		phy_data |= BIT(14);
3088		e1e_wphy(hw, 0x10, 0x2823);
3089		e1e_wphy(hw, 0x11, 0x0003);
3090		e1e_wphy(hw, 22, phy_data);
3091	}
3092
3093	/* Setup buffer sizes */
3094	rctl &= ~E1000_RCTL_SZ_4096;
3095	rctl |= E1000_RCTL_BSEX;
3096	switch (adapter->rx_buffer_len) {
3097	case 2048:
3098	default:
3099		rctl |= E1000_RCTL_SZ_2048;
3100		rctl &= ~E1000_RCTL_BSEX;
3101		break;
3102	case 4096:
3103		rctl |= E1000_RCTL_SZ_4096;
3104		break;
3105	case 8192:
3106		rctl |= E1000_RCTL_SZ_8192;
3107		break;
3108	case 16384:
3109		rctl |= E1000_RCTL_SZ_16384;
3110		break;
3111	}
3112
3113	/* Enable Extended Status in all Receive Descriptors */
3114	rfctl = er32(RFCTL);
3115	rfctl |= E1000_RFCTL_EXTEN;
3116	ew32(RFCTL, rfctl);
3117
3118	/* 82571 and greater support packet-split where the protocol
3119	 * header is placed in skb->data and the packet data is
3120	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3121	 * In the case of a non-split, skb->data is linearly filled,
3122	 * followed by the page buffers.  Therefore, skb->data is
3123	 * sized to hold the largest protocol header.
3124	 *
3125	 * allocations using alloc_page take too long for regular MTU
3126	 * so only enable packet split for jumbo frames
3127	 *
3128	 * Using pages when the page size is greater than 16k wastes
3129	 * a lot of memory, since we allocate 3 pages at all times
3130	 * per packet.
3131	 */
3132	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3133	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3134		adapter->rx_ps_pages = pages;
3135	else
3136		adapter->rx_ps_pages = 0;
3137
3138	if (adapter->rx_ps_pages) {
3139		u32 psrctl = 0;
3140
3141		/* Enable Packet split descriptors */
3142		rctl |= E1000_RCTL_DTYP_PS;
3143
3144		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3145
3146		switch (adapter->rx_ps_pages) {
3147		case 3:
3148			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3149			fallthrough;
3150		case 2:
3151			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3152			fallthrough;
3153		case 1:
3154			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3155			break;
3156		}
3157
3158		ew32(PSRCTL, psrctl);
3159	}
3160
3161	/* This is useful for sniffing bad packets. */
3162	if (adapter->netdev->features & NETIF_F_RXALL) {
3163		/* UPE and MPE will be handled by normal PROMISC logic
3164		 * in e1000e_set_rx_mode
3165		 */
3166		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3167			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3168			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3169
3170		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3171			  E1000_RCTL_DPF |	/* Allow filtered pause */
3172			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3173		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3174		 * and that breaks VLANs.
3175		 */
3176	}
3177
3178	ew32(RCTL, rctl);
3179	/* just started the receive unit, no need to restart */
3180	adapter->flags &= ~FLAG_RESTART_NOW;
3181}
3182
3183/**
3184 * e1000_configure_rx - Configure Receive Unit after Reset
3185 * @adapter: board private structure
3186 *
3187 * Configure the Rx unit of the MAC after a reset.
3188 **/
3189static void e1000_configure_rx(struct e1000_adapter *adapter)
3190{
3191	struct e1000_hw *hw = &adapter->hw;
3192	struct e1000_ring *rx_ring = adapter->rx_ring;
3193	u64 rdba;
3194	u32 rdlen, rctl, rxcsum, ctrl_ext;
3195
3196	if (adapter->rx_ps_pages) {
3197		/* this is a 32 byte descriptor */
3198		rdlen = rx_ring->count *
3199		    sizeof(union e1000_rx_desc_packet_split);
3200		adapter->clean_rx = e1000_clean_rx_irq_ps;
3201		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3202	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3203		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3204		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3205		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3206	} else {
3207		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3208		adapter->clean_rx = e1000_clean_rx_irq;
3209		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3210	}
3211
3212	/* disable receives while setting up the descriptors */
3213	rctl = er32(RCTL);
3214	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3215		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3216	e1e_flush();
3217	usleep_range(10000, 11000);
3218
3219	if (adapter->flags2 & FLAG2_DMA_BURST) {
3220		/* set the writeback threshold (only takes effect if the RDTR
3221		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3222		 * enable prefetching of 0x20 Rx descriptors
3223		 * granularity = 01
3224		 * wthresh = 04,
3225		 * hthresh = 04,
3226		 * pthresh = 0x20
3227		 */
3228		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3229		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3230	}
3231
3232	/* set the Receive Delay Timer Register */
3233	ew32(RDTR, adapter->rx_int_delay);
3234
3235	/* irq moderation */
3236	ew32(RADV, adapter->rx_abs_int_delay);
3237	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3238		e1000e_write_itr(adapter, adapter->itr);
3239
3240	ctrl_ext = er32(CTRL_EXT);
3241	/* Auto-Mask interrupts upon ICR access */
3242	ctrl_ext |= E1000_CTRL_EXT_IAME;
3243	ew32(IAM, 0xffffffff);
3244	ew32(CTRL_EXT, ctrl_ext);
3245	e1e_flush();
3246
3247	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3248	 * the Base and Length of the Rx Descriptor Ring
3249	 */
3250	rdba = rx_ring->dma;
3251	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3252	ew32(RDBAH(0), (rdba >> 32));
3253	ew32(RDLEN(0), rdlen);
3254	ew32(RDH(0), 0);
3255	ew32(RDT(0), 0);
3256	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3257	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3258
3259	writel(0, rx_ring->head);
3260	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3261		e1000e_update_rdt_wa(rx_ring, 0);
3262	else
3263		writel(0, rx_ring->tail);
3264
3265	/* Enable Receive Checksum Offload for TCP and UDP */
3266	rxcsum = er32(RXCSUM);
3267	if (adapter->netdev->features & NETIF_F_RXCSUM)
3268		rxcsum |= E1000_RXCSUM_TUOFL;
3269	else
3270		rxcsum &= ~E1000_RXCSUM_TUOFL;
3271	ew32(RXCSUM, rxcsum);
3272
3273	/* With jumbo frames, excessive C-state transition latencies result
3274	 * in dropped transactions.
3275	 */
3276	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3277		u32 lat =
3278		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3279		     adapter->max_frame_size) * 8 / 1000;
3280
3281		if (adapter->flags & FLAG_IS_ICH) {
3282			u32 rxdctl = er32(RXDCTL(0));
3283
3284			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3285		}
3286
3287		dev_info(&adapter->pdev->dev,
3288			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3289		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3290	} else {
3291		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3292					       PM_QOS_DEFAULT_VALUE);
3293	}
3294
3295	/* Enable Receives */
3296	ew32(RCTL, rctl);
3297}
3298
3299/**
3300 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3301 * @netdev: network interface device structure
3302 *
3303 * Writes multicast address list to the MTA hash table.
3304 * Returns: -ENOMEM on failure
3305 *                0 on no addresses written
3306 *                X on writing X addresses to MTA
3307 */
3308static int e1000e_write_mc_addr_list(struct net_device *netdev)
3309{
3310	struct e1000_adapter *adapter = netdev_priv(netdev);
3311	struct e1000_hw *hw = &adapter->hw;
3312	struct netdev_hw_addr *ha;
3313	u8 *mta_list;
3314	int i;
3315
3316	if (netdev_mc_empty(netdev)) {
3317		/* nothing to program, so clear mc list */
3318		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3319		return 0;
3320	}
3321
3322	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3323	if (!mta_list)
3324		return -ENOMEM;
3325
3326	/* update_mc_addr_list expects a packed array of only addresses. */
3327	i = 0;
3328	netdev_for_each_mc_addr(ha, netdev)
3329	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3330
3331	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3332	kfree(mta_list);
3333
3334	return netdev_mc_count(netdev);
3335}
3336
3337/**
3338 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3339 * @netdev: network interface device structure
3340 *
3341 * Writes unicast address list to the RAR table.
3342 * Returns: -ENOMEM on failure/insufficient address space
3343 *                0 on no addresses written
3344 *                X on writing X addresses to the RAR table
3345 **/
3346static int e1000e_write_uc_addr_list(struct net_device *netdev)
3347{
3348	struct e1000_adapter *adapter = netdev_priv(netdev);
3349	struct e1000_hw *hw = &adapter->hw;
3350	unsigned int rar_entries;
3351	int count = 0;
3352
3353	rar_entries = hw->mac.ops.rar_get_count(hw);
3354
3355	/* save a rar entry for our hardware address */
3356	rar_entries--;
3357
3358	/* save a rar entry for the LAA workaround */
3359	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3360		rar_entries--;
3361
3362	/* return ENOMEM indicating insufficient memory for addresses */
3363	if (netdev_uc_count(netdev) > rar_entries)
3364		return -ENOMEM;
3365
3366	if (!netdev_uc_empty(netdev) && rar_entries) {
3367		struct netdev_hw_addr *ha;
3368
3369		/* write the addresses in reverse order to avoid write
3370		 * combining
3371		 */
3372		netdev_for_each_uc_addr(ha, netdev) {
3373			int ret_val;
3374
3375			if (!rar_entries)
3376				break;
3377			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3378			if (ret_val < 0)
3379				return -ENOMEM;
3380			count++;
3381		}
3382	}
3383
3384	/* zero out the remaining RAR entries not used above */
3385	for (; rar_entries > 0; rar_entries--) {
3386		ew32(RAH(rar_entries), 0);
3387		ew32(RAL(rar_entries), 0);
3388	}
3389	e1e_flush();
3390
3391	return count;
3392}
3393
3394/**
3395 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3396 * @netdev: network interface device structure
3397 *
3398 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3399 * address list or the network interface flags are updated.  This routine is
3400 * responsible for configuring the hardware for proper unicast, multicast,
3401 * promiscuous mode, and all-multi behavior.
3402 **/
3403static void e1000e_set_rx_mode(struct net_device *netdev)
3404{
3405	struct e1000_adapter *adapter = netdev_priv(netdev);
3406	struct e1000_hw *hw = &adapter->hw;
3407	u32 rctl;
3408
3409	if (pm_runtime_suspended(netdev->dev.parent))
3410		return;
3411
3412	/* Check for Promiscuous and All Multicast modes */
3413	rctl = er32(RCTL);
3414
3415	/* clear the affected bits */
3416	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3417
3418	if (netdev->flags & IFF_PROMISC) {
3419		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3420		/* Do not hardware filter VLANs in promisc mode */
3421		e1000e_vlan_filter_disable(adapter);
3422	} else {
3423		int count;
3424
3425		if (netdev->flags & IFF_ALLMULTI) {
3426			rctl |= E1000_RCTL_MPE;
3427		} else {
3428			/* Write addresses to the MTA, if the attempt fails
3429			 * then we should just turn on promiscuous mode so
3430			 * that we can at least receive multicast traffic
3431			 */
3432			count = e1000e_write_mc_addr_list(netdev);
3433			if (count < 0)
3434				rctl |= E1000_RCTL_MPE;
3435		}
3436		e1000e_vlan_filter_enable(adapter);
3437		/* Write addresses to available RAR registers, if there is not
3438		 * sufficient space to store all the addresses then enable
3439		 * unicast promiscuous mode
3440		 */
3441		count = e1000e_write_uc_addr_list(netdev);
3442		if (count < 0)
3443			rctl |= E1000_RCTL_UPE;
3444	}
3445
3446	ew32(RCTL, rctl);
3447
3448	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3449		e1000e_vlan_strip_enable(adapter);
3450	else
3451		e1000e_vlan_strip_disable(adapter);
3452}
3453
3454static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3455{
3456	struct e1000_hw *hw = &adapter->hw;
3457	u32 mrqc, rxcsum;
3458	u32 rss_key[10];
3459	int i;
3460
3461	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3462	for (i = 0; i < 10; i++)
3463		ew32(RSSRK(i), rss_key[i]);
3464
3465	/* Direct all traffic to queue 0 */
3466	for (i = 0; i < 32; i++)
3467		ew32(RETA(i), 0);
3468
3469	/* Disable raw packet checksumming so that RSS hash is placed in
3470	 * descriptor on writeback.
3471	 */
3472	rxcsum = er32(RXCSUM);
3473	rxcsum |= E1000_RXCSUM_PCSD;
3474
3475	ew32(RXCSUM, rxcsum);
3476
3477	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3478		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3479		E1000_MRQC_RSS_FIELD_IPV6 |
3480		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3481		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3482
3483	ew32(MRQC, mrqc);
3484}
3485
3486/**
3487 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3488 * @adapter: board private structure
3489 * @timinca: pointer to returned time increment attributes
3490 *
3491 * Get attributes for incrementing the System Time Register SYSTIML/H at
3492 * the default base frequency, and set the cyclecounter shift value.
3493 **/
3494s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3495{
3496	struct e1000_hw *hw = &adapter->hw;
3497	u32 incvalue, incperiod, shift;
3498
3499	/* Make sure clock is enabled on I217/I218/I219  before checking
3500	 * the frequency
3501	 */
3502	if ((hw->mac.type >= e1000_pch_lpt) &&
3503	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3504	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3505		u32 fextnvm7 = er32(FEXTNVM7);
3506
3507		if (!(fextnvm7 & BIT(0))) {
3508			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3509			e1e_flush();
3510		}
3511	}
3512
3513	switch (hw->mac.type) {
3514	case e1000_pch2lan:
3515		/* Stable 96MHz frequency */
3516		incperiod = INCPERIOD_96MHZ;
3517		incvalue = INCVALUE_96MHZ;
3518		shift = INCVALUE_SHIFT_96MHZ;
3519		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3520		break;
3521	case e1000_pch_lpt:
3522		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3523			/* Stable 96MHz frequency */
3524			incperiod = INCPERIOD_96MHZ;
3525			incvalue = INCVALUE_96MHZ;
3526			shift = INCVALUE_SHIFT_96MHZ;
3527			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3528		} else {
3529			/* Stable 25MHz frequency */
3530			incperiod = INCPERIOD_25MHZ;
3531			incvalue = INCVALUE_25MHZ;
3532			shift = INCVALUE_SHIFT_25MHZ;
3533			adapter->cc.shift = shift;
3534		}
3535		break;
3536	case e1000_pch_spt:
3537		/* Stable 24MHz frequency */
3538		incperiod = INCPERIOD_24MHZ;
3539		incvalue = INCVALUE_24MHZ;
3540		shift = INCVALUE_SHIFT_24MHZ;
3541		adapter->cc.shift = shift;
3542		break;
3543	case e1000_pch_cnp:
3544	case e1000_pch_tgp:
3545	case e1000_pch_adp:
3546	case e1000_pch_mtp:
3547	case e1000_pch_lnp:
3548	case e1000_pch_ptp:
 
3549		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550			/* Stable 24MHz frequency */
3551			incperiod = INCPERIOD_24MHZ;
3552			incvalue = INCVALUE_24MHZ;
3553			shift = INCVALUE_SHIFT_24MHZ;
3554			adapter->cc.shift = shift;
3555		} else {
3556			/* Stable 38400KHz frequency */
3557			incperiod = INCPERIOD_38400KHZ;
3558			incvalue = INCVALUE_38400KHZ;
3559			shift = INCVALUE_SHIFT_38400KHZ;
3560			adapter->cc.shift = shift;
3561		}
3562		break;
3563	case e1000_82574:
3564	case e1000_82583:
3565		/* Stable 25MHz frequency */
3566		incperiod = INCPERIOD_25MHZ;
3567		incvalue = INCVALUE_25MHZ;
3568		shift = INCVALUE_SHIFT_25MHZ;
3569		adapter->cc.shift = shift;
3570		break;
3571	default:
3572		return -EINVAL;
3573	}
3574
3575	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3576		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3577
3578	return 0;
3579}
3580
3581/**
3582 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3583 * @adapter: board private structure
3584 * @config: timestamp configuration
3585 *
3586 * Outgoing time stamping can be enabled and disabled. Play nice and
3587 * disable it when requested, although it shouldn't cause any overhead
3588 * when no packet needs it. At most one packet in the queue may be
3589 * marked for time stamping, otherwise it would be impossible to tell
3590 * for sure to which packet the hardware time stamp belongs.
3591 *
3592 * Incoming time stamping has to be configured via the hardware filters.
3593 * Not all combinations are supported, in particular event type has to be
3594 * specified. Matching the kind of event packet is not supported, with the
3595 * exception of "all V2 events regardless of level 2 or 4".
3596 **/
3597static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3598				  struct hwtstamp_config *config)
3599{
3600	struct e1000_hw *hw = &adapter->hw;
3601	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3602	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3603	u32 rxmtrl = 0;
3604	u16 rxudp = 0;
3605	bool is_l4 = false;
3606	bool is_l2 = false;
3607	u32 regval;
3608
3609	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3610		return -EINVAL;
3611
3612	switch (config->tx_type) {
3613	case HWTSTAMP_TX_OFF:
3614		tsync_tx_ctl = 0;
3615		break;
3616	case HWTSTAMP_TX_ON:
3617		break;
3618	default:
3619		return -ERANGE;
3620	}
3621
3622	switch (config->rx_filter) {
3623	case HWTSTAMP_FILTER_NONE:
3624		tsync_rx_ctl = 0;
3625		break;
3626	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3627		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3628		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3629		is_l4 = true;
3630		break;
3631	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3632		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3633		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3634		is_l4 = true;
3635		break;
3636	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3637		/* Also time stamps V2 L2 Path Delay Request/Response */
3638		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3639		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3640		is_l2 = true;
3641		break;
3642	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3643		/* Also time stamps V2 L2 Path Delay Request/Response. */
3644		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3645		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3646		is_l2 = true;
3647		break;
3648	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3649		/* Hardware cannot filter just V2 L4 Sync messages */
3650		fallthrough;
3651	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3652		/* Also time stamps V2 Path Delay Request/Response. */
3653		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3654		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3655		is_l2 = true;
3656		is_l4 = true;
3657		break;
3658	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3659		/* Hardware cannot filter just V2 L4 Delay Request messages */
3660		fallthrough;
3661	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3662		/* Also time stamps V2 Path Delay Request/Response. */
3663		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3664		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3665		is_l2 = true;
3666		is_l4 = true;
3667		break;
3668	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3669	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3670		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3671		fallthrough;
3672	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3673		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3674		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3675		is_l2 = true;
3676		is_l4 = true;
3677		break;
3678	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3679		/* For V1, the hardware can only filter Sync messages or
3680		 * Delay Request messages but not both so fall-through to
3681		 * time stamp all packets.
3682		 */
3683		fallthrough;
3684	case HWTSTAMP_FILTER_NTP_ALL:
3685	case HWTSTAMP_FILTER_ALL:
3686		is_l2 = true;
3687		is_l4 = true;
3688		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3689		config->rx_filter = HWTSTAMP_FILTER_ALL;
3690		break;
3691	default:
3692		return -ERANGE;
3693	}
3694
3695	adapter->hwtstamp_config = *config;
3696
3697	/* enable/disable Tx h/w time stamping */
3698	regval = er32(TSYNCTXCTL);
3699	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3700	regval |= tsync_tx_ctl;
3701	ew32(TSYNCTXCTL, regval);
3702	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3703	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3704		e_err("Timesync Tx Control register not set as expected\n");
3705		return -EAGAIN;
3706	}
3707
3708	/* enable/disable Rx h/w time stamping */
3709	regval = er32(TSYNCRXCTL);
3710	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3711	regval |= tsync_rx_ctl;
3712	ew32(TSYNCRXCTL, regval);
3713	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3714				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3715	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3716		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3717		e_err("Timesync Rx Control register not set as expected\n");
3718		return -EAGAIN;
3719	}
3720
3721	/* L2: define ethertype filter for time stamped packets */
3722	if (is_l2)
3723		rxmtrl |= ETH_P_1588;
3724
3725	/* define which PTP packets get time stamped */
3726	ew32(RXMTRL, rxmtrl);
3727
3728	/* Filter by destination port */
3729	if (is_l4) {
3730		rxudp = PTP_EV_PORT;
3731		cpu_to_be16s(&rxudp);
3732	}
3733	ew32(RXUDP, rxudp);
3734
3735	e1e_flush();
3736
3737	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3738	er32(RXSTMPH);
3739	er32(TXSTMPH);
3740
3741	return 0;
3742}
3743
3744/**
3745 * e1000_configure - configure the hardware for Rx and Tx
3746 * @adapter: private board structure
3747 **/
3748static void e1000_configure(struct e1000_adapter *adapter)
3749{
3750	struct e1000_ring *rx_ring = adapter->rx_ring;
3751
3752	e1000e_set_rx_mode(adapter->netdev);
3753
3754	e1000_restore_vlan(adapter);
3755	e1000_init_manageability_pt(adapter);
3756
3757	e1000_configure_tx(adapter);
3758
3759	if (adapter->netdev->features & NETIF_F_RXHASH)
3760		e1000e_setup_rss_hash(adapter);
3761	e1000_setup_rctl(adapter);
3762	e1000_configure_rx(adapter);
3763	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3764}
3765
3766/**
3767 * e1000e_power_up_phy - restore link in case the phy was powered down
3768 * @adapter: address of board private structure
3769 *
3770 * The phy may be powered down to save power and turn off link when the
3771 * driver is unloaded and wake on lan is not enabled (among others)
3772 * *** this routine MUST be followed by a call to e1000e_reset ***
3773 **/
3774void e1000e_power_up_phy(struct e1000_adapter *adapter)
3775{
3776	if (adapter->hw.phy.ops.power_up)
3777		adapter->hw.phy.ops.power_up(&adapter->hw);
3778
3779	adapter->hw.mac.ops.setup_link(&adapter->hw);
3780}
3781
3782/**
3783 * e1000_power_down_phy - Power down the PHY
3784 * @adapter: board private structure
3785 *
3786 * Power down the PHY so no link is implied when interface is down.
3787 * The PHY cannot be powered down if management or WoL is active.
3788 */
3789static void e1000_power_down_phy(struct e1000_adapter *adapter)
3790{
3791	if (adapter->hw.phy.ops.power_down)
3792		adapter->hw.phy.ops.power_down(&adapter->hw);
3793}
3794
3795/**
3796 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3797 * @adapter: board private structure
3798 *
3799 * We want to clear all pending descriptors from the TX ring.
3800 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3801 * the data of the next descriptor. We don't care about the data we are about
3802 * to reset the HW.
3803 */
3804static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3805{
3806	struct e1000_hw *hw = &adapter->hw;
3807	struct e1000_ring *tx_ring = adapter->tx_ring;
3808	struct e1000_tx_desc *tx_desc = NULL;
3809	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3810	u16 size = 512;
3811
3812	tctl = er32(TCTL);
3813	ew32(TCTL, tctl | E1000_TCTL_EN);
3814	tdt = er32(TDT(0));
3815	BUG_ON(tdt != tx_ring->next_to_use);
3816	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3817	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3818
3819	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3820	tx_desc->upper.data = 0;
3821	/* flush descriptors to memory before notifying the HW */
3822	wmb();
3823	tx_ring->next_to_use++;
3824	if (tx_ring->next_to_use == tx_ring->count)
3825		tx_ring->next_to_use = 0;
3826	ew32(TDT(0), tx_ring->next_to_use);
3827	usleep_range(200, 250);
3828}
3829
3830/**
3831 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3832 * @adapter: board private structure
3833 *
3834 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3835 */
3836static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3837{
3838	u32 rctl, rxdctl;
3839	struct e1000_hw *hw = &adapter->hw;
3840
3841	rctl = er32(RCTL);
3842	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3843	e1e_flush();
3844	usleep_range(100, 150);
3845
3846	rxdctl = er32(RXDCTL(0));
3847	/* zero the lower 14 bits (prefetch and host thresholds) */
3848	rxdctl &= 0xffffc000;
3849
3850	/* update thresholds: prefetch threshold to 31, host threshold to 1
3851	 * and make sure the granularity is "descriptors" and not "cache lines"
3852	 */
3853	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3854
3855	ew32(RXDCTL(0), rxdctl);
3856	/* momentarily enable the RX ring for the changes to take effect */
3857	ew32(RCTL, rctl | E1000_RCTL_EN);
3858	e1e_flush();
3859	usleep_range(100, 150);
3860	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3861}
3862
3863/**
3864 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3865 * @adapter: board private structure
3866 *
3867 * In i219, the descriptor rings must be emptied before resetting the HW
3868 * or before changing the device state to D3 during runtime (runtime PM).
3869 *
3870 * Failure to do this will cause the HW to enter a unit hang state which can
3871 * only be released by PCI reset on the device
3872 *
3873 */
3874
3875static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3876{
3877	u16 hang_state;
3878	u32 fext_nvm11, tdlen;
3879	struct e1000_hw *hw = &adapter->hw;
3880
3881	/* First, disable MULR fix in FEXTNVM11 */
3882	fext_nvm11 = er32(FEXTNVM11);
3883	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3884	ew32(FEXTNVM11, fext_nvm11);
3885	/* do nothing if we're not in faulty state, or if the queue is empty */
3886	tdlen = er32(TDLEN(0));
3887	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3888			     &hang_state);
3889	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3890		return;
3891	e1000_flush_tx_ring(adapter);
3892	/* recheck, maybe the fault is caused by the rx ring */
3893	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3894			     &hang_state);
3895	if (hang_state & FLUSH_DESC_REQUIRED)
3896		e1000_flush_rx_ring(adapter);
3897}
3898
3899/**
3900 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3901 * @adapter: board private structure
3902 *
3903 * When the MAC is reset, all hardware bits for timesync will be reset to the
3904 * default values. This function will restore the settings last in place.
3905 * Since the clock SYSTIME registers are reset, we will simply restore the
3906 * cyclecounter to the kernel real clock time.
3907 **/
3908static void e1000e_systim_reset(struct e1000_adapter *adapter)
3909{
3910	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3911	struct e1000_hw *hw = &adapter->hw;
3912	unsigned long flags;
3913	u32 timinca;
3914	s32 ret_val;
3915
3916	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3917		return;
3918
3919	if (info->adjfine) {
3920		/* restore the previous ptp frequency delta */
3921		ret_val = info->adjfine(info, adapter->ptp_delta);
3922	} else {
3923		/* set the default base frequency if no adjustment possible */
3924		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3925		if (!ret_val)
3926			ew32(TIMINCA, timinca);
3927	}
3928
3929	if (ret_val) {
3930		dev_warn(&adapter->pdev->dev,
3931			 "Failed to restore TIMINCA clock rate delta: %d\n",
3932			 ret_val);
3933		return;
3934	}
3935
3936	/* reset the systim ns time counter */
3937	spin_lock_irqsave(&adapter->systim_lock, flags);
3938	timecounter_init(&adapter->tc, &adapter->cc,
3939			 ktime_to_ns(ktime_get_real()));
3940	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3941
3942	/* restore the previous hwtstamp configuration settings */
3943	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3944}
3945
3946/**
3947 * e1000e_reset - bring the hardware into a known good state
3948 * @adapter: board private structure
3949 *
3950 * This function boots the hardware and enables some settings that
3951 * require a configuration cycle of the hardware - those cannot be
3952 * set/changed during runtime. After reset the device needs to be
3953 * properly configured for Rx, Tx etc.
3954 */
3955void e1000e_reset(struct e1000_adapter *adapter)
3956{
3957	struct e1000_mac_info *mac = &adapter->hw.mac;
3958	struct e1000_fc_info *fc = &adapter->hw.fc;
3959	struct e1000_hw *hw = &adapter->hw;
3960	u32 tx_space, min_tx_space, min_rx_space;
3961	u32 pba = adapter->pba;
3962	u16 hwm;
3963
3964	/* reset Packet Buffer Allocation to default */
3965	ew32(PBA, pba);
3966
3967	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3968		/* To maintain wire speed transmits, the Tx FIFO should be
3969		 * large enough to accommodate two full transmit packets,
3970		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3971		 * the Rx FIFO should be large enough to accommodate at least
3972		 * one full receive packet and is similarly rounded up and
3973		 * expressed in KB.
3974		 */
3975		pba = er32(PBA);
3976		/* upper 16 bits has Tx packet buffer allocation size in KB */
3977		tx_space = pba >> 16;
3978		/* lower 16 bits has Rx packet buffer allocation size in KB */
3979		pba &= 0xffff;
3980		/* the Tx fifo also stores 16 bytes of information about the Tx
3981		 * but don't include ethernet FCS because hardware appends it
3982		 */
3983		min_tx_space = (adapter->max_frame_size +
3984				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3985		min_tx_space = ALIGN(min_tx_space, 1024);
3986		min_tx_space >>= 10;
3987		/* software strips receive CRC, so leave room for it */
3988		min_rx_space = adapter->max_frame_size;
3989		min_rx_space = ALIGN(min_rx_space, 1024);
3990		min_rx_space >>= 10;
3991
3992		/* If current Tx allocation is less than the min Tx FIFO size,
3993		 * and the min Tx FIFO size is less than the current Rx FIFO
3994		 * allocation, take space away from current Rx allocation
3995		 */
3996		if ((tx_space < min_tx_space) &&
3997		    ((min_tx_space - tx_space) < pba)) {
3998			pba -= min_tx_space - tx_space;
3999
4000			/* if short on Rx space, Rx wins and must trump Tx
4001			 * adjustment
4002			 */
4003			if (pba < min_rx_space)
4004				pba = min_rx_space;
4005		}
4006
4007		ew32(PBA, pba);
4008	}
4009
4010	/* flow control settings
4011	 *
4012	 * The high water mark must be low enough to fit one full frame
4013	 * (or the size used for early receive) above it in the Rx FIFO.
4014	 * Set it to the lower of:
4015	 * - 90% of the Rx FIFO size, and
4016	 * - the full Rx FIFO size minus one full frame
4017	 */
4018	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4019		fc->pause_time = 0xFFFF;
4020	else
4021		fc->pause_time = E1000_FC_PAUSE_TIME;
4022	fc->send_xon = true;
4023	fc->current_mode = fc->requested_mode;
4024
4025	switch (hw->mac.type) {
4026	case e1000_ich9lan:
4027	case e1000_ich10lan:
4028		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4029			pba = 14;
4030			ew32(PBA, pba);
4031			fc->high_water = 0x2800;
4032			fc->low_water = fc->high_water - 8;
4033			break;
4034		}
4035		fallthrough;
4036	default:
4037		hwm = min(((pba << 10) * 9 / 10),
4038			  ((pba << 10) - adapter->max_frame_size));
4039
4040		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4041		fc->low_water = fc->high_water - 8;
4042		break;
4043	case e1000_pchlan:
4044		/* Workaround PCH LOM adapter hangs with certain network
4045		 * loads.  If hangs persist, try disabling Tx flow control.
4046		 */
4047		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4048			fc->high_water = 0x3500;
4049			fc->low_water = 0x1500;
4050		} else {
4051			fc->high_water = 0x5000;
4052			fc->low_water = 0x3000;
4053		}
4054		fc->refresh_time = 0x1000;
4055		break;
4056	case e1000_pch2lan:
4057	case e1000_pch_lpt:
4058	case e1000_pch_spt:
4059	case e1000_pch_cnp:
4060	case e1000_pch_tgp:
4061	case e1000_pch_adp:
4062	case e1000_pch_mtp:
4063	case e1000_pch_lnp:
4064	case e1000_pch_ptp:
 
4065		fc->refresh_time = 0xFFFF;
4066		fc->pause_time = 0xFFFF;
4067
4068		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4069			fc->high_water = 0x05C20;
4070			fc->low_water = 0x05048;
4071			break;
4072		}
4073
4074		pba = 14;
4075		ew32(PBA, pba);
4076		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4077		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4078		break;
4079	}
4080
4081	/* Alignment of Tx data is on an arbitrary byte boundary with the
4082	 * maximum size per Tx descriptor limited only to the transmit
4083	 * allocation of the packet buffer minus 96 bytes with an upper
4084	 * limit of 24KB due to receive synchronization limitations.
4085	 */
4086	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4087				       24 << 10);
4088
4089	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4090	 * fit in receive buffer.
4091	 */
4092	if (adapter->itr_setting & 0x3) {
4093		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4094			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4095				dev_info(&adapter->pdev->dev,
4096					 "Interrupt Throttle Rate off\n");
4097				adapter->flags2 |= FLAG2_DISABLE_AIM;
4098				e1000e_write_itr(adapter, 0);
4099			}
4100		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4101			dev_info(&adapter->pdev->dev,
4102				 "Interrupt Throttle Rate on\n");
4103			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4104			adapter->itr = 20000;
4105			e1000e_write_itr(adapter, adapter->itr);
4106		}
4107	}
4108
4109	if (hw->mac.type >= e1000_pch_spt)
4110		e1000_flush_desc_rings(adapter);
4111	/* Allow time for pending master requests to run */
4112	mac->ops.reset_hw(hw);
4113
4114	/* For parts with AMT enabled, let the firmware know
4115	 * that the network interface is in control
4116	 */
4117	if (adapter->flags & FLAG_HAS_AMT)
4118		e1000e_get_hw_control(adapter);
4119
4120	ew32(WUC, 0);
4121
4122	if (mac->ops.init_hw(hw))
4123		e_err("Hardware Error\n");
4124
4125	e1000_update_mng_vlan(adapter);
4126
4127	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4128	ew32(VET, ETH_P_8021Q);
4129
4130	e1000e_reset_adaptive(hw);
4131
4132	/* restore systim and hwtstamp settings */
4133	e1000e_systim_reset(adapter);
4134
4135	/* Set EEE advertisement as appropriate */
4136	if (adapter->flags2 & FLAG2_HAS_EEE) {
4137		s32 ret_val;
4138		u16 adv_addr;
4139
4140		switch (hw->phy.type) {
4141		case e1000_phy_82579:
4142			adv_addr = I82579_EEE_ADVERTISEMENT;
4143			break;
4144		case e1000_phy_i217:
4145			adv_addr = I217_EEE_ADVERTISEMENT;
4146			break;
4147		default:
4148			dev_err(&adapter->pdev->dev,
4149				"Invalid PHY type setting EEE advertisement\n");
4150			return;
4151		}
4152
4153		ret_val = hw->phy.ops.acquire(hw);
4154		if (ret_val) {
4155			dev_err(&adapter->pdev->dev,
4156				"EEE advertisement - unable to acquire PHY\n");
4157			return;
4158		}
4159
4160		e1000_write_emi_reg_locked(hw, adv_addr,
4161					   hw->dev_spec.ich8lan.eee_disable ?
4162					   0 : adapter->eee_advert);
4163
4164		hw->phy.ops.release(hw);
4165	}
4166
4167	if (!netif_running(adapter->netdev) &&
4168	    !test_bit(__E1000_TESTING, &adapter->state))
4169		e1000_power_down_phy(adapter);
4170
4171	e1000_get_phy_info(hw);
4172
4173	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4174	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4175		u16 phy_data = 0;
4176		/* speed up time to link by disabling smart power down, ignore
4177		 * the return value of this function because there is nothing
4178		 * different we would do if it failed
4179		 */
4180		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4181		phy_data &= ~IGP02E1000_PM_SPD;
4182		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4183	}
4184	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4185		u32 reg;
4186
4187		/* Fextnvm7 @ 0xe4[2] = 1 */
4188		reg = er32(FEXTNVM7);
4189		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4190		ew32(FEXTNVM7, reg);
4191		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4192		reg = er32(FEXTNVM9);
4193		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4194		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4195		ew32(FEXTNVM9, reg);
4196	}
4197
4198}
4199
4200/**
4201 * e1000e_trigger_lsc - trigger an LSC interrupt
4202 * @adapter: 
4203 *
4204 * Fire a link status change interrupt to start the watchdog.
4205 **/
4206static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4207{
4208	struct e1000_hw *hw = &adapter->hw;
4209
4210	if (adapter->msix_entries)
4211		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4212	else
4213		ew32(ICS, E1000_ICS_LSC);
4214}
4215
4216void e1000e_up(struct e1000_adapter *adapter)
4217{
4218	/* hardware has been reset, we need to reload some things */
4219	e1000_configure(adapter);
4220
4221	clear_bit(__E1000_DOWN, &adapter->state);
4222
4223	if (adapter->msix_entries)
4224		e1000_configure_msix(adapter);
4225	e1000_irq_enable(adapter);
4226
4227	/* Tx queue started by watchdog timer when link is up */
4228
4229	e1000e_trigger_lsc(adapter);
4230}
4231
4232static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4233{
4234	struct e1000_hw *hw = &adapter->hw;
4235
4236	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4237		return;
4238
4239	/* flush pending descriptor writebacks to memory */
4240	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4241	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4242
4243	/* execute the writes immediately */
4244	e1e_flush();
4245
4246	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4247	 * write is successful
4248	 */
4249	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4250	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4251
4252	/* execute the writes immediately */
4253	e1e_flush();
4254}
4255
4256static void e1000e_update_stats(struct e1000_adapter *adapter);
4257
4258/**
4259 * e1000e_down - quiesce the device and optionally reset the hardware
4260 * @adapter: board private structure
4261 * @reset: boolean flag to reset the hardware or not
4262 */
4263void e1000e_down(struct e1000_adapter *adapter, bool reset)
4264{
4265	struct net_device *netdev = adapter->netdev;
4266	struct e1000_hw *hw = &adapter->hw;
4267	u32 tctl, rctl;
4268
4269	/* signal that we're down so the interrupt handler does not
4270	 * reschedule our watchdog timer
4271	 */
4272	set_bit(__E1000_DOWN, &adapter->state);
4273
4274	netif_carrier_off(netdev);
4275
4276	/* disable receives in the hardware */
4277	rctl = er32(RCTL);
4278	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4279		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4280	/* flush and sleep below */
4281
4282	netif_stop_queue(netdev);
4283
4284	/* disable transmits in the hardware */
4285	tctl = er32(TCTL);
4286	tctl &= ~E1000_TCTL_EN;
4287	ew32(TCTL, tctl);
4288
4289	/* flush both disables and wait for them to finish */
4290	e1e_flush();
4291	usleep_range(10000, 11000);
4292
4293	e1000_irq_disable(adapter);
4294
4295	napi_synchronize(&adapter->napi);
4296
4297	del_timer_sync(&adapter->watchdog_timer);
4298	del_timer_sync(&adapter->phy_info_timer);
4299
4300	spin_lock(&adapter->stats64_lock);
4301	e1000e_update_stats(adapter);
4302	spin_unlock(&adapter->stats64_lock);
4303
4304	e1000e_flush_descriptors(adapter);
4305
4306	adapter->link_speed = 0;
4307	adapter->link_duplex = 0;
4308
4309	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4310	if ((hw->mac.type >= e1000_pch2lan) &&
4311	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4312	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4313		e_dbg("failed to disable jumbo frame workaround mode\n");
4314
4315	if (!pci_channel_offline(adapter->pdev)) {
4316		if (reset)
4317			e1000e_reset(adapter);
4318		else if (hw->mac.type >= e1000_pch_spt)
4319			e1000_flush_desc_rings(adapter);
4320	}
4321	e1000_clean_tx_ring(adapter->tx_ring);
4322	e1000_clean_rx_ring(adapter->rx_ring);
4323}
4324
4325void e1000e_reinit_locked(struct e1000_adapter *adapter)
4326{
4327	might_sleep();
4328	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4329		usleep_range(1000, 1100);
4330	e1000e_down(adapter, true);
4331	e1000e_up(adapter);
4332	clear_bit(__E1000_RESETTING, &adapter->state);
4333}
4334
4335/**
4336 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4337 * @hw: pointer to the HW structure
4338 * @systim: PHC time value read, sanitized and returned
4339 * @sts: structure to hold system time before and after reading SYSTIML,
4340 * may be NULL
4341 *
4342 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4343 * check to see that the time is incrementing at a reasonable
4344 * rate and is a multiple of incvalue.
4345 **/
4346static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4347				  struct ptp_system_timestamp *sts)
4348{
4349	u64 time_delta, rem, temp;
4350	u64 systim_next;
4351	u32 incvalue;
4352	int i;
4353
4354	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4355	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4356		/* latch SYSTIMH on read of SYSTIML */
4357		ptp_read_system_prets(sts);
4358		systim_next = (u64)er32(SYSTIML);
4359		ptp_read_system_postts(sts);
4360		systim_next |= (u64)er32(SYSTIMH) << 32;
4361
4362		time_delta = systim_next - systim;
4363		temp = time_delta;
4364		/* VMWare users have seen incvalue of zero, don't div / 0 */
4365		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4366
4367		systim = systim_next;
4368
4369		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4370			break;
4371	}
4372
4373	return systim;
4374}
4375
4376/**
4377 * e1000e_read_systim - read SYSTIM register
4378 * @adapter: board private structure
4379 * @sts: structure which will contain system time before and after reading
4380 * SYSTIML, may be NULL
4381 **/
4382u64 e1000e_read_systim(struct e1000_adapter *adapter,
4383		       struct ptp_system_timestamp *sts)
4384{
4385	struct e1000_hw *hw = &adapter->hw;
4386	u32 systimel, systimel_2, systimeh;
4387	u64 systim;
4388	/* SYSTIMH latching upon SYSTIML read does not work well.
4389	 * This means that if SYSTIML overflows after we read it but before
4390	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4391	 * will experience a huge non linear increment in the systime value
4392	 * to fix that we test for overflow and if true, we re-read systime.
4393	 */
4394	ptp_read_system_prets(sts);
4395	systimel = er32(SYSTIML);
4396	ptp_read_system_postts(sts);
4397	systimeh = er32(SYSTIMH);
4398	/* Is systimel is so large that overflow is possible? */
4399	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4400		ptp_read_system_prets(sts);
4401		systimel_2 = er32(SYSTIML);
4402		ptp_read_system_postts(sts);
4403		if (systimel > systimel_2) {
4404			/* There was an overflow, read again SYSTIMH, and use
4405			 * systimel_2
4406			 */
4407			systimeh = er32(SYSTIMH);
4408			systimel = systimel_2;
4409		}
4410	}
4411	systim = (u64)systimel;
4412	systim |= (u64)systimeh << 32;
4413
4414	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4415		systim = e1000e_sanitize_systim(hw, systim, sts);
4416
4417	return systim;
4418}
4419
4420/**
4421 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4422 * @cc: cyclecounter structure
4423 **/
4424static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4425{
4426	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4427						     cc);
4428
4429	return e1000e_read_systim(adapter, NULL);
4430}
4431
4432/**
4433 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4434 * @adapter: board private structure to initialize
4435 *
4436 * e1000_sw_init initializes the Adapter private data structure.
4437 * Fields are initialized based on PCI device information and
4438 * OS network device settings (MTU size).
4439 **/
4440static int e1000_sw_init(struct e1000_adapter *adapter)
4441{
4442	struct net_device *netdev = adapter->netdev;
4443
4444	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4445	adapter->rx_ps_bsize0 = 128;
4446	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4447	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4448	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4449	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4450
4451	spin_lock_init(&adapter->stats64_lock);
4452
4453	e1000e_set_interrupt_capability(adapter);
4454
4455	if (e1000_alloc_queues(adapter))
4456		return -ENOMEM;
4457
4458	/* Setup hardware time stamping cyclecounter */
4459	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4460		adapter->cc.read = e1000e_cyclecounter_read;
4461		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4462		adapter->cc.mult = 1;
4463		/* cc.shift set in e1000e_get_base_tininca() */
4464
4465		spin_lock_init(&adapter->systim_lock);
4466		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4467	}
4468
4469	/* Explicitly disable IRQ since the NIC can be in any state. */
4470	e1000_irq_disable(adapter);
4471
4472	set_bit(__E1000_DOWN, &adapter->state);
4473	return 0;
4474}
4475
4476/**
4477 * e1000_intr_msi_test - Interrupt Handler
4478 * @irq: interrupt number
4479 * @data: pointer to a network interface device structure
4480 **/
4481static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4482{
4483	struct net_device *netdev = data;
4484	struct e1000_adapter *adapter = netdev_priv(netdev);
4485	struct e1000_hw *hw = &adapter->hw;
4486	u32 icr = er32(ICR);
4487
4488	e_dbg("icr is %08X\n", icr);
4489	if (icr & E1000_ICR_RXSEQ) {
4490		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4491		/* Force memory writes to complete before acknowledging the
4492		 * interrupt is handled.
4493		 */
4494		wmb();
4495	}
4496
4497	return IRQ_HANDLED;
4498}
4499
4500/**
4501 * e1000_test_msi_interrupt - Returns 0 for successful test
4502 * @adapter: board private struct
4503 *
4504 * code flow taken from tg3.c
4505 **/
4506static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4507{
4508	struct net_device *netdev = adapter->netdev;
4509	struct e1000_hw *hw = &adapter->hw;
4510	int err;
4511
4512	/* poll_enable hasn't been called yet, so don't need disable */
4513	/* clear any pending events */
4514	er32(ICR);
4515
4516	/* free the real vector and request a test handler */
4517	e1000_free_irq(adapter);
4518	e1000e_reset_interrupt_capability(adapter);
4519
4520	/* Assume that the test fails, if it succeeds then the test
4521	 * MSI irq handler will unset this flag
4522	 */
4523	adapter->flags |= FLAG_MSI_TEST_FAILED;
4524
4525	err = pci_enable_msi(adapter->pdev);
4526	if (err)
4527		goto msi_test_failed;
4528
4529	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4530			  netdev->name, netdev);
4531	if (err) {
4532		pci_disable_msi(adapter->pdev);
4533		goto msi_test_failed;
4534	}
4535
4536	/* Force memory writes to complete before enabling and firing an
4537	 * interrupt.
4538	 */
4539	wmb();
4540
4541	e1000_irq_enable(adapter);
4542
4543	/* fire an unusual interrupt on the test handler */
4544	ew32(ICS, E1000_ICS_RXSEQ);
4545	e1e_flush();
4546	msleep(100);
4547
4548	e1000_irq_disable(adapter);
4549
4550	rmb();			/* read flags after interrupt has been fired */
4551
4552	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4553		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4554		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4555	} else {
4556		e_dbg("MSI interrupt test succeeded!\n");
4557	}
4558
4559	free_irq(adapter->pdev->irq, netdev);
4560	pci_disable_msi(adapter->pdev);
4561
4562msi_test_failed:
4563	e1000e_set_interrupt_capability(adapter);
4564	return e1000_request_irq(adapter);
4565}
4566
4567/**
4568 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4569 * @adapter: board private struct
4570 *
4571 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4572 **/
4573static int e1000_test_msi(struct e1000_adapter *adapter)
4574{
4575	int err;
4576	u16 pci_cmd;
4577
4578	if (!(adapter->flags & FLAG_MSI_ENABLED))
4579		return 0;
4580
4581	/* disable SERR in case the MSI write causes a master abort */
4582	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4583	if (pci_cmd & PCI_COMMAND_SERR)
4584		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4585				      pci_cmd & ~PCI_COMMAND_SERR);
4586
4587	err = e1000_test_msi_interrupt(adapter);
4588
4589	/* re-enable SERR */
4590	if (pci_cmd & PCI_COMMAND_SERR) {
4591		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4592		pci_cmd |= PCI_COMMAND_SERR;
4593		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4594	}
4595
4596	return err;
4597}
4598
4599/**
4600 * e1000e_open - Called when a network interface is made active
4601 * @netdev: network interface device structure
4602 *
4603 * Returns 0 on success, negative value on failure
4604 *
4605 * The open entry point is called when a network interface is made
4606 * active by the system (IFF_UP).  At this point all resources needed
4607 * for transmit and receive operations are allocated, the interrupt
4608 * handler is registered with the OS, the watchdog timer is started,
4609 * and the stack is notified that the interface is ready.
4610 **/
4611int e1000e_open(struct net_device *netdev)
4612{
4613	struct e1000_adapter *adapter = netdev_priv(netdev);
4614	struct e1000_hw *hw = &adapter->hw;
4615	struct pci_dev *pdev = adapter->pdev;
4616	int err;
 
4617
4618	/* disallow open during test */
4619	if (test_bit(__E1000_TESTING, &adapter->state))
4620		return -EBUSY;
4621
4622	pm_runtime_get_sync(&pdev->dev);
4623
4624	netif_carrier_off(netdev);
4625	netif_stop_queue(netdev);
4626
4627	/* allocate transmit descriptors */
4628	err = e1000e_setup_tx_resources(adapter->tx_ring);
4629	if (err)
4630		goto err_setup_tx;
4631
4632	/* allocate receive descriptors */
4633	err = e1000e_setup_rx_resources(adapter->rx_ring);
4634	if (err)
4635		goto err_setup_rx;
4636
4637	/* If AMT is enabled, let the firmware know that the network
4638	 * interface is now open and reset the part to a known state.
4639	 */
4640	if (adapter->flags & FLAG_HAS_AMT) {
4641		e1000e_get_hw_control(adapter);
4642		e1000e_reset(adapter);
4643	}
4644
4645	e1000e_power_up_phy(adapter);
4646
4647	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4648	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4649		e1000_update_mng_vlan(adapter);
4650
4651	/* DMA latency requirement to workaround jumbo issue */
4652	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4653
4654	/* before we allocate an interrupt, we must be ready to handle it.
4655	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4656	 * as soon as we call pci_request_irq, so we have to setup our
4657	 * clean_rx handler before we do so.
4658	 */
4659	e1000_configure(adapter);
4660
4661	err = e1000_request_irq(adapter);
4662	if (err)
4663		goto err_req_irq;
4664
4665	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4666	 * ignore e1000e MSI messages, which means we need to test our MSI
4667	 * interrupt now
4668	 */
4669	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4670		err = e1000_test_msi(adapter);
4671		if (err) {
4672			e_err("Interrupt allocation failed\n");
4673			goto err_req_irq;
4674		}
4675	}
4676
4677	/* From here on the code is the same as e1000e_up() */
4678	clear_bit(__E1000_DOWN, &adapter->state);
4679
 
 
 
 
 
 
4680	napi_enable(&adapter->napi);
 
 
4681
4682	e1000_irq_enable(adapter);
4683
4684	adapter->tx_hang_recheck = false;
4685
4686	hw->mac.get_link_status = true;
4687	pm_runtime_put(&pdev->dev);
4688
4689	e1000e_trigger_lsc(adapter);
4690
4691	return 0;
4692
4693err_req_irq:
4694	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4695	e1000e_release_hw_control(adapter);
4696	e1000_power_down_phy(adapter);
4697	e1000e_free_rx_resources(adapter->rx_ring);
4698err_setup_rx:
4699	e1000e_free_tx_resources(adapter->tx_ring);
4700err_setup_tx:
4701	e1000e_reset(adapter);
4702	pm_runtime_put_sync(&pdev->dev);
4703
4704	return err;
4705}
4706
4707/**
4708 * e1000e_close - Disables a network interface
4709 * @netdev: network interface device structure
4710 *
4711 * Returns 0, this is not allowed to fail
4712 *
4713 * The close entry point is called when an interface is de-activated
4714 * by the OS.  The hardware is still under the drivers control, but
4715 * needs to be disabled.  A global MAC reset is issued to stop the
4716 * hardware, and all transmit and receive resources are freed.
4717 **/
4718int e1000e_close(struct net_device *netdev)
4719{
4720	struct e1000_adapter *adapter = netdev_priv(netdev);
4721	struct pci_dev *pdev = adapter->pdev;
4722	int count = E1000_CHECK_RESET_COUNT;
4723
4724	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4725		usleep_range(10000, 11000);
4726
4727	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4728
4729	pm_runtime_get_sync(&pdev->dev);
4730
4731	if (netif_device_present(netdev)) {
4732		e1000e_down(adapter, true);
4733		e1000_free_irq(adapter);
4734
4735		/* Link status message must follow this format */
4736		netdev_info(netdev, "NIC Link is Down\n");
4737	}
4738
 
 
4739	napi_disable(&adapter->napi);
4740
4741	e1000e_free_tx_resources(adapter->tx_ring);
4742	e1000e_free_rx_resources(adapter->rx_ring);
4743
4744	/* kill manageability vlan ID if supported, but not if a vlan with
4745	 * the same ID is registered on the host OS (let 8021q kill it)
4746	 */
4747	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4748		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4749				       adapter->mng_vlan_id);
4750
4751	/* If AMT is enabled, let the firmware know that the network
4752	 * interface is now closed
4753	 */
4754	if ((adapter->flags & FLAG_HAS_AMT) &&
4755	    !test_bit(__E1000_TESTING, &adapter->state))
4756		e1000e_release_hw_control(adapter);
4757
4758	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4759
4760	pm_runtime_put_sync(&pdev->dev);
4761
4762	return 0;
4763}
4764
4765/**
4766 * e1000_set_mac - Change the Ethernet Address of the NIC
4767 * @netdev: network interface device structure
4768 * @p: pointer to an address structure
4769 *
4770 * Returns 0 on success, negative on failure
4771 **/
4772static int e1000_set_mac(struct net_device *netdev, void *p)
4773{
4774	struct e1000_adapter *adapter = netdev_priv(netdev);
4775	struct e1000_hw *hw = &adapter->hw;
4776	struct sockaddr *addr = p;
4777
4778	if (!is_valid_ether_addr(addr->sa_data))
4779		return -EADDRNOTAVAIL;
4780
4781	eth_hw_addr_set(netdev, addr->sa_data);
4782	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4783
4784	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4785
4786	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4787		/* activate the work around */
4788		e1000e_set_laa_state_82571(&adapter->hw, 1);
4789
4790		/* Hold a copy of the LAA in RAR[14] This is done so that
4791		 * between the time RAR[0] gets clobbered  and the time it
4792		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4793		 * of the RARs and no incoming packets directed to this port
4794		 * are dropped. Eventually the LAA will be in RAR[0] and
4795		 * RAR[14]
4796		 */
4797		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4798				    adapter->hw.mac.rar_entry_count - 1);
4799	}
4800
4801	return 0;
4802}
4803
4804/**
4805 * e1000e_update_phy_task - work thread to update phy
4806 * @work: pointer to our work struct
4807 *
4808 * this worker thread exists because we must acquire a
4809 * semaphore to read the phy, which we could msleep while
4810 * waiting for it, and we can't msleep in a timer.
4811 **/
4812static void e1000e_update_phy_task(struct work_struct *work)
4813{
4814	struct e1000_adapter *adapter = container_of(work,
4815						     struct e1000_adapter,
4816						     update_phy_task);
4817	struct e1000_hw *hw = &adapter->hw;
4818
4819	if (test_bit(__E1000_DOWN, &adapter->state))
4820		return;
4821
4822	e1000_get_phy_info(hw);
4823
4824	/* Enable EEE on 82579 after link up */
4825	if (hw->phy.type >= e1000_phy_82579)
4826		e1000_set_eee_pchlan(hw);
4827}
4828
4829/**
4830 * e1000_update_phy_info - timre call-back to update PHY info
4831 * @t: pointer to timer_list containing private info adapter
4832 *
4833 * Need to wait a few seconds after link up to get diagnostic information from
4834 * the phy
4835 **/
4836static void e1000_update_phy_info(struct timer_list *t)
4837{
4838	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4839
4840	if (test_bit(__E1000_DOWN, &adapter->state))
4841		return;
4842
4843	schedule_work(&adapter->update_phy_task);
4844}
4845
4846/**
4847 * e1000e_update_phy_stats - Update the PHY statistics counters
4848 * @adapter: board private structure
4849 *
4850 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4851 **/
4852static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4853{
4854	struct e1000_hw *hw = &adapter->hw;
4855	s32 ret_val;
4856	u16 phy_data;
4857
4858	ret_val = hw->phy.ops.acquire(hw);
4859	if (ret_val)
4860		return;
4861
4862	/* A page set is expensive so check if already on desired page.
4863	 * If not, set to the page with the PHY status registers.
4864	 */
4865	hw->phy.addr = 1;
4866	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4867					   &phy_data);
4868	if (ret_val)
4869		goto release;
4870	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4871		ret_val = hw->phy.ops.set_page(hw,
4872					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4873		if (ret_val)
4874			goto release;
4875	}
4876
4877	/* Single Collision Count */
4878	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4879	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4880	if (!ret_val)
4881		adapter->stats.scc += phy_data;
4882
4883	/* Excessive Collision Count */
4884	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4885	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4886	if (!ret_val)
4887		adapter->stats.ecol += phy_data;
4888
4889	/* Multiple Collision Count */
4890	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4891	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4892	if (!ret_val)
4893		adapter->stats.mcc += phy_data;
4894
4895	/* Late Collision Count */
4896	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4897	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4898	if (!ret_val)
4899		adapter->stats.latecol += phy_data;
4900
4901	/* Collision Count - also used for adaptive IFS */
4902	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4903	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4904	if (!ret_val)
4905		hw->mac.collision_delta = phy_data;
4906
4907	/* Defer Count */
4908	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4909	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4910	if (!ret_val)
4911		adapter->stats.dc += phy_data;
4912
4913	/* Transmit with no CRS */
4914	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4915	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4916	if (!ret_val)
4917		adapter->stats.tncrs += phy_data;
4918
4919release:
4920	hw->phy.ops.release(hw);
4921}
4922
4923/**
4924 * e1000e_update_stats - Update the board statistics counters
4925 * @adapter: board private structure
4926 **/
4927static void e1000e_update_stats(struct e1000_adapter *adapter)
4928{
4929	struct net_device *netdev = adapter->netdev;
4930	struct e1000_hw *hw = &adapter->hw;
4931	struct pci_dev *pdev = adapter->pdev;
4932
4933	/* Prevent stats update while adapter is being reset, or if the pci
4934	 * connection is down.
4935	 */
4936	if (adapter->link_speed == 0)
4937		return;
4938	if (pci_channel_offline(pdev))
4939		return;
4940
4941	adapter->stats.crcerrs += er32(CRCERRS);
4942	adapter->stats.gprc += er32(GPRC);
4943	adapter->stats.gorc += er32(GORCL);
4944	er32(GORCH);		/* Clear gorc */
4945	adapter->stats.bprc += er32(BPRC);
4946	adapter->stats.mprc += er32(MPRC);
4947	adapter->stats.roc += er32(ROC);
4948
4949	adapter->stats.mpc += er32(MPC);
4950
4951	/* Half-duplex statistics */
4952	if (adapter->link_duplex == HALF_DUPLEX) {
4953		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4954			e1000e_update_phy_stats(adapter);
4955		} else {
4956			adapter->stats.scc += er32(SCC);
4957			adapter->stats.ecol += er32(ECOL);
4958			adapter->stats.mcc += er32(MCC);
4959			adapter->stats.latecol += er32(LATECOL);
4960			adapter->stats.dc += er32(DC);
4961
4962			hw->mac.collision_delta = er32(COLC);
4963
4964			if ((hw->mac.type != e1000_82574) &&
4965			    (hw->mac.type != e1000_82583))
4966				adapter->stats.tncrs += er32(TNCRS);
4967		}
4968		adapter->stats.colc += hw->mac.collision_delta;
4969	}
4970
4971	adapter->stats.xonrxc += er32(XONRXC);
4972	adapter->stats.xontxc += er32(XONTXC);
4973	adapter->stats.xoffrxc += er32(XOFFRXC);
4974	adapter->stats.xofftxc += er32(XOFFTXC);
4975	adapter->stats.gptc += er32(GPTC);
4976	adapter->stats.gotc += er32(GOTCL);
4977	er32(GOTCH);		/* Clear gotc */
4978	adapter->stats.rnbc += er32(RNBC);
4979	adapter->stats.ruc += er32(RUC);
4980
4981	adapter->stats.mptc += er32(MPTC);
4982	adapter->stats.bptc += er32(BPTC);
4983
4984	/* used for adaptive IFS */
4985
4986	hw->mac.tx_packet_delta = er32(TPT);
4987	adapter->stats.tpt += hw->mac.tx_packet_delta;
4988
4989	adapter->stats.algnerrc += er32(ALGNERRC);
4990	adapter->stats.rxerrc += er32(RXERRC);
4991	adapter->stats.cexterr += er32(CEXTERR);
4992	adapter->stats.tsctc += er32(TSCTC);
4993	adapter->stats.tsctfc += er32(TSCTFC);
4994
4995	/* Fill out the OS statistics structure */
4996	netdev->stats.multicast = adapter->stats.mprc;
4997	netdev->stats.collisions = adapter->stats.colc;
4998
4999	/* Rx Errors */
5000
5001	/* RLEC on some newer hardware can be incorrect so build
5002	 * our own version based on RUC and ROC
5003	 */
5004	netdev->stats.rx_errors = adapter->stats.rxerrc +
5005	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5006	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5007	netdev->stats.rx_length_errors = adapter->stats.ruc +
5008	    adapter->stats.roc;
5009	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5010	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5011	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5012
5013	/* Tx Errors */
5014	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5015	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5016	netdev->stats.tx_window_errors = adapter->stats.latecol;
5017	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5018
5019	/* Tx Dropped needs to be maintained elsewhere */
5020
5021	/* Management Stats */
5022	adapter->stats.mgptc += er32(MGTPTC);
5023	adapter->stats.mgprc += er32(MGTPRC);
5024	adapter->stats.mgpdc += er32(MGTPDC);
5025
5026	/* Correctable ECC Errors */
5027	if (hw->mac.type >= e1000_pch_lpt) {
5028		u32 pbeccsts = er32(PBECCSTS);
5029
5030		adapter->corr_errors +=
5031		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5032		adapter->uncorr_errors +=
5033		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5034		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5035	}
5036}
5037
5038/**
5039 * e1000_phy_read_status - Update the PHY register status snapshot
5040 * @adapter: board private structure
5041 **/
5042static void e1000_phy_read_status(struct e1000_adapter *adapter)
5043{
5044	struct e1000_hw *hw = &adapter->hw;
5045	struct e1000_phy_regs *phy = &adapter->phy_regs;
5046
5047	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5048	    (er32(STATUS) & E1000_STATUS_LU) &&
5049	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5050		int ret_val;
5051
5052		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5053		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5054		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5055		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5056		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5057		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5058		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5059		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5060		if (ret_val)
5061			e_warn("Error reading PHY register\n");
5062	} else {
5063		/* Do not read PHY registers if link is not up
5064		 * Set values to typical power-on defaults
5065		 */
5066		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5067		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5068			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5069			     BMSR_ERCAP);
5070		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5071				  ADVERTISE_ALL | ADVERTISE_CSMA);
5072		phy->lpa = 0;
5073		phy->expansion = EXPANSION_ENABLENPAGE;
5074		phy->ctrl1000 = ADVERTISE_1000FULL;
5075		phy->stat1000 = 0;
5076		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5077	}
5078}
5079
5080static void e1000_print_link_info(struct e1000_adapter *adapter)
5081{
5082	struct e1000_hw *hw = &adapter->hw;
5083	u32 ctrl = er32(CTRL);
5084
5085	/* Link status message must follow this format for user tools */
5086	netdev_info(adapter->netdev,
5087		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5088		    adapter->link_speed,
5089		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5090		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5091		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5092		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5093}
5094
5095static bool e1000e_has_link(struct e1000_adapter *adapter)
5096{
5097	struct e1000_hw *hw = &adapter->hw;
5098	bool link_active = false;
5099	s32 ret_val = 0;
5100
5101	/* get_link_status is set on LSC (link status) interrupt or
5102	 * Rx sequence error interrupt.  get_link_status will stay
5103	 * true until the check_for_link establishes link
5104	 * for copper adapters ONLY
5105	 */
5106	switch (hw->phy.media_type) {
5107	case e1000_media_type_copper:
5108		if (hw->mac.get_link_status) {
5109			ret_val = hw->mac.ops.check_for_link(hw);
5110			link_active = !hw->mac.get_link_status;
5111		} else {
5112			link_active = true;
5113		}
5114		break;
5115	case e1000_media_type_fiber:
5116		ret_val = hw->mac.ops.check_for_link(hw);
5117		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5118		break;
5119	case e1000_media_type_internal_serdes:
5120		ret_val = hw->mac.ops.check_for_link(hw);
5121		link_active = hw->mac.serdes_has_link;
5122		break;
5123	default:
5124	case e1000_media_type_unknown:
5125		break;
5126	}
5127
5128	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5129	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5130		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5131		e_info("Gigabit has been disabled, downgrading speed\n");
5132	}
5133
5134	return link_active;
5135}
5136
5137static void e1000e_enable_receives(struct e1000_adapter *adapter)
5138{
5139	/* make sure the receive unit is started */
5140	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5141	    (adapter->flags & FLAG_RESTART_NOW)) {
5142		struct e1000_hw *hw = &adapter->hw;
5143		u32 rctl = er32(RCTL);
5144
5145		ew32(RCTL, rctl | E1000_RCTL_EN);
5146		adapter->flags &= ~FLAG_RESTART_NOW;
5147	}
5148}
5149
5150static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5151{
5152	struct e1000_hw *hw = &adapter->hw;
5153
5154	/* With 82574 controllers, PHY needs to be checked periodically
5155	 * for hung state and reset, if two calls return true
5156	 */
5157	if (e1000_check_phy_82574(hw))
5158		adapter->phy_hang_count++;
5159	else
5160		adapter->phy_hang_count = 0;
5161
5162	if (adapter->phy_hang_count > 1) {
5163		adapter->phy_hang_count = 0;
5164		e_dbg("PHY appears hung - resetting\n");
5165		schedule_work(&adapter->reset_task);
5166	}
5167}
5168
5169/**
5170 * e1000_watchdog - Timer Call-back
5171 * @t: pointer to timer_list containing private info adapter
5172 **/
5173static void e1000_watchdog(struct timer_list *t)
5174{
5175	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5176
5177	/* Do the rest outside of interrupt context */
5178	schedule_work(&adapter->watchdog_task);
5179
5180	/* TODO: make this use queue_delayed_work() */
5181}
5182
5183static void e1000_watchdog_task(struct work_struct *work)
5184{
5185	struct e1000_adapter *adapter = container_of(work,
5186						     struct e1000_adapter,
5187						     watchdog_task);
5188	struct net_device *netdev = adapter->netdev;
5189	struct e1000_mac_info *mac = &adapter->hw.mac;
5190	struct e1000_phy_info *phy = &adapter->hw.phy;
5191	struct e1000_ring *tx_ring = adapter->tx_ring;
5192	u32 dmoff_exit_timeout = 100, tries = 0;
5193	struct e1000_hw *hw = &adapter->hw;
5194	u32 link, tctl, pcim_state;
5195
5196	if (test_bit(__E1000_DOWN, &adapter->state))
5197		return;
5198
5199	link = e1000e_has_link(adapter);
5200	if ((netif_carrier_ok(netdev)) && link) {
5201		/* Cancel scheduled suspend requests. */
5202		pm_runtime_resume(netdev->dev.parent);
5203
5204		e1000e_enable_receives(adapter);
5205		goto link_up;
5206	}
5207
5208	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5209	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5210		e1000_update_mng_vlan(adapter);
5211
5212	if (link) {
5213		if (!netif_carrier_ok(netdev)) {
5214			bool txb2b = true;
5215
5216			/* Cancel scheduled suspend requests. */
5217			pm_runtime_resume(netdev->dev.parent);
5218
5219			/* Checking if MAC is in DMoff state*/
5220			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5221				pcim_state = er32(STATUS);
5222				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5223					if (tries++ == dmoff_exit_timeout) {
5224						e_dbg("Error in exiting dmoff\n");
5225						break;
5226					}
5227					usleep_range(10000, 20000);
5228					pcim_state = er32(STATUS);
5229
5230					/* Checking if MAC exited DMoff state */
5231					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5232						e1000_phy_hw_reset(&adapter->hw);
5233				}
5234			}
5235
5236			/* update snapshot of PHY registers on LSC */
5237			e1000_phy_read_status(adapter);
5238			mac->ops.get_link_up_info(&adapter->hw,
5239						  &adapter->link_speed,
5240						  &adapter->link_duplex);
5241			e1000_print_link_info(adapter);
5242
5243			/* check if SmartSpeed worked */
5244			e1000e_check_downshift(hw);
5245			if (phy->speed_downgraded)
5246				netdev_warn(netdev,
5247					    "Link Speed was downgraded by SmartSpeed\n");
5248
5249			/* On supported PHYs, check for duplex mismatch only
5250			 * if link has autonegotiated at 10/100 half
5251			 */
5252			if ((hw->phy.type == e1000_phy_igp_3 ||
5253			     hw->phy.type == e1000_phy_bm) &&
5254			    hw->mac.autoneg &&
5255			    (adapter->link_speed == SPEED_10 ||
5256			     adapter->link_speed == SPEED_100) &&
5257			    (adapter->link_duplex == HALF_DUPLEX)) {
5258				u16 autoneg_exp;
5259
5260				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5261
5262				if (!(autoneg_exp & EXPANSION_NWAY))
5263					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5264			}
5265
5266			/* adjust timeout factor according to speed/duplex */
5267			adapter->tx_timeout_factor = 1;
5268			switch (adapter->link_speed) {
5269			case SPEED_10:
5270				txb2b = false;
5271				adapter->tx_timeout_factor = 16;
5272				break;
5273			case SPEED_100:
5274				txb2b = false;
5275				adapter->tx_timeout_factor = 10;
5276				break;
5277			}
5278
5279			/* workaround: re-program speed mode bit after
5280			 * link-up event
5281			 */
5282			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5283			    !txb2b) {
5284				u32 tarc0;
5285
5286				tarc0 = er32(TARC(0));
5287				tarc0 &= ~SPEED_MODE_BIT;
5288				ew32(TARC(0), tarc0);
5289			}
5290
5291			/* disable TSO for pcie and 10/100 speeds, to avoid
5292			 * some hardware issues
5293			 */
5294			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5295				switch (adapter->link_speed) {
5296				case SPEED_10:
5297				case SPEED_100:
5298					e_info("10/100 speed: disabling TSO\n");
5299					netdev->features &= ~NETIF_F_TSO;
5300					netdev->features &= ~NETIF_F_TSO6;
5301					break;
5302				case SPEED_1000:
5303					netdev->features |= NETIF_F_TSO;
5304					netdev->features |= NETIF_F_TSO6;
5305					break;
5306				default:
5307					/* oops */
5308					break;
5309				}
5310				if (hw->mac.type == e1000_pch_spt) {
5311					netdev->features &= ~NETIF_F_TSO;
5312					netdev->features &= ~NETIF_F_TSO6;
5313				}
5314			}
5315
5316			/* enable transmits in the hardware, need to do this
5317			 * after setting TARC(0)
5318			 */
5319			tctl = er32(TCTL);
5320			tctl |= E1000_TCTL_EN;
5321			ew32(TCTL, tctl);
5322
5323			/* Perform any post-link-up configuration before
5324			 * reporting link up.
5325			 */
5326			if (phy->ops.cfg_on_link_up)
5327				phy->ops.cfg_on_link_up(hw);
5328
5329			netif_wake_queue(netdev);
5330			netif_carrier_on(netdev);
5331
5332			if (!test_bit(__E1000_DOWN, &adapter->state))
5333				mod_timer(&adapter->phy_info_timer,
5334					  round_jiffies(jiffies + 2 * HZ));
5335		}
5336	} else {
5337		if (netif_carrier_ok(netdev)) {
5338			adapter->link_speed = 0;
5339			adapter->link_duplex = 0;
5340			/* Link status message must follow this format */
5341			netdev_info(netdev, "NIC Link is Down\n");
5342			netif_carrier_off(netdev);
5343			netif_stop_queue(netdev);
5344			if (!test_bit(__E1000_DOWN, &adapter->state))
5345				mod_timer(&adapter->phy_info_timer,
5346					  round_jiffies(jiffies + 2 * HZ));
5347
5348			/* 8000ES2LAN requires a Rx packet buffer work-around
5349			 * on link down event; reset the controller to flush
5350			 * the Rx packet buffer.
5351			 */
5352			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5353				adapter->flags |= FLAG_RESTART_NOW;
5354			else
5355				pm_schedule_suspend(netdev->dev.parent,
5356						    LINK_TIMEOUT);
5357		}
5358	}
5359
5360link_up:
5361	spin_lock(&adapter->stats64_lock);
5362	e1000e_update_stats(adapter);
5363
5364	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5365	adapter->tpt_old = adapter->stats.tpt;
5366	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5367	adapter->colc_old = adapter->stats.colc;
5368
5369	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5370	adapter->gorc_old = adapter->stats.gorc;
5371	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5372	adapter->gotc_old = adapter->stats.gotc;
5373	spin_unlock(&adapter->stats64_lock);
5374
5375	/* If the link is lost the controller stops DMA, but
5376	 * if there is queued Tx work it cannot be done.  So
5377	 * reset the controller to flush the Tx packet buffers.
5378	 */
5379	if (!netif_carrier_ok(netdev) &&
5380	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5381		adapter->flags |= FLAG_RESTART_NOW;
5382
5383	/* If reset is necessary, do it outside of interrupt context. */
5384	if (adapter->flags & FLAG_RESTART_NOW) {
5385		schedule_work(&adapter->reset_task);
5386		/* return immediately since reset is imminent */
5387		return;
5388	}
5389
5390	e1000e_update_adaptive(&adapter->hw);
5391
5392	/* Simple mode for Interrupt Throttle Rate (ITR) */
5393	if (adapter->itr_setting == 4) {
5394		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5395		 * Total asymmetrical Tx or Rx gets ITR=8000;
5396		 * everyone else is between 2000-8000.
5397		 */
5398		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5399		u32 dif = (adapter->gotc > adapter->gorc ?
5400			   adapter->gotc - adapter->gorc :
5401			   adapter->gorc - adapter->gotc) / 10000;
5402		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5403
5404		e1000e_write_itr(adapter, itr);
5405	}
5406
5407	/* Cause software interrupt to ensure Rx ring is cleaned */
5408	if (adapter->msix_entries)
5409		ew32(ICS, adapter->rx_ring->ims_val);
5410	else
5411		ew32(ICS, E1000_ICS_RXDMT0);
5412
5413	/* flush pending descriptors to memory before detecting Tx hang */
5414	e1000e_flush_descriptors(adapter);
5415
5416	/* Force detection of hung controller every watchdog period */
5417	adapter->detect_tx_hung = true;
5418
5419	/* With 82571 controllers, LAA may be overwritten due to controller
5420	 * reset from the other port. Set the appropriate LAA in RAR[0]
5421	 */
5422	if (e1000e_get_laa_state_82571(hw))
5423		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5424
5425	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5426		e1000e_check_82574_phy_workaround(adapter);
5427
5428	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5429	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5430		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5431		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5432			er32(RXSTMPH);
5433			adapter->rx_hwtstamp_cleared++;
5434		} else {
5435			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5436		}
5437	}
5438
5439	/* Reset the timer */
5440	if (!test_bit(__E1000_DOWN, &adapter->state))
5441		mod_timer(&adapter->watchdog_timer,
5442			  round_jiffies(jiffies + 2 * HZ));
5443}
5444
5445#define E1000_TX_FLAGS_CSUM		0x00000001
5446#define E1000_TX_FLAGS_VLAN		0x00000002
5447#define E1000_TX_FLAGS_TSO		0x00000004
5448#define E1000_TX_FLAGS_IPV4		0x00000008
5449#define E1000_TX_FLAGS_NO_FCS		0x00000010
5450#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5451#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5452#define E1000_TX_FLAGS_VLAN_SHIFT	16
5453
5454static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5455		     __be16 protocol)
5456{
5457	struct e1000_context_desc *context_desc;
5458	struct e1000_buffer *buffer_info;
5459	unsigned int i;
5460	u32 cmd_length = 0;
5461	u16 ipcse = 0, mss;
5462	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5463	int err;
5464
5465	if (!skb_is_gso(skb))
5466		return 0;
5467
5468	err = skb_cow_head(skb, 0);
5469	if (err < 0)
5470		return err;
5471
5472	hdr_len = skb_tcp_all_headers(skb);
5473	mss = skb_shinfo(skb)->gso_size;
5474	if (protocol == htons(ETH_P_IP)) {
5475		struct iphdr *iph = ip_hdr(skb);
5476		iph->tot_len = 0;
5477		iph->check = 0;
5478		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5479							 0, IPPROTO_TCP, 0);
5480		cmd_length = E1000_TXD_CMD_IP;
5481		ipcse = skb_transport_offset(skb) - 1;
5482	} else if (skb_is_gso_v6(skb)) {
5483		tcp_v6_gso_csum_prep(skb);
5484		ipcse = 0;
5485	}
5486	ipcss = skb_network_offset(skb);
5487	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5488	tucss = skb_transport_offset(skb);
5489	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5490
5491	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5492		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5493
5494	i = tx_ring->next_to_use;
5495	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5496	buffer_info = &tx_ring->buffer_info[i];
5497
5498	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5499	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5500	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5501	context_desc->upper_setup.tcp_fields.tucss = tucss;
5502	context_desc->upper_setup.tcp_fields.tucso = tucso;
5503	context_desc->upper_setup.tcp_fields.tucse = 0;
5504	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5505	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5506	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5507
5508	buffer_info->time_stamp = jiffies;
5509	buffer_info->next_to_watch = i;
5510
5511	i++;
5512	if (i == tx_ring->count)
5513		i = 0;
5514	tx_ring->next_to_use = i;
5515
5516	return 1;
5517}
5518
5519static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5520			  __be16 protocol)
5521{
5522	struct e1000_adapter *adapter = tx_ring->adapter;
5523	struct e1000_context_desc *context_desc;
5524	struct e1000_buffer *buffer_info;
5525	unsigned int i;
5526	u8 css;
5527	u32 cmd_len = E1000_TXD_CMD_DEXT;
5528
5529	if (skb->ip_summed != CHECKSUM_PARTIAL)
5530		return false;
5531
5532	switch (protocol) {
5533	case cpu_to_be16(ETH_P_IP):
5534		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5535			cmd_len |= E1000_TXD_CMD_TCP;
5536		break;
5537	case cpu_to_be16(ETH_P_IPV6):
5538		/* XXX not handling all IPV6 headers */
5539		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5540			cmd_len |= E1000_TXD_CMD_TCP;
5541		break;
5542	default:
5543		if (unlikely(net_ratelimit()))
5544			e_warn("checksum_partial proto=%x!\n",
5545			       be16_to_cpu(protocol));
5546		break;
5547	}
5548
5549	css = skb_checksum_start_offset(skb);
5550
5551	i = tx_ring->next_to_use;
5552	buffer_info = &tx_ring->buffer_info[i];
5553	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5554
5555	context_desc->lower_setup.ip_config = 0;
5556	context_desc->upper_setup.tcp_fields.tucss = css;
5557	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5558	context_desc->upper_setup.tcp_fields.tucse = 0;
5559	context_desc->tcp_seg_setup.data = 0;
5560	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5561
5562	buffer_info->time_stamp = jiffies;
5563	buffer_info->next_to_watch = i;
5564
5565	i++;
5566	if (i == tx_ring->count)
5567		i = 0;
5568	tx_ring->next_to_use = i;
5569
5570	return true;
5571}
5572
5573static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5574			unsigned int first, unsigned int max_per_txd,
5575			unsigned int nr_frags)
5576{
5577	struct e1000_adapter *adapter = tx_ring->adapter;
5578	struct pci_dev *pdev = adapter->pdev;
5579	struct e1000_buffer *buffer_info;
5580	unsigned int len = skb_headlen(skb);
5581	unsigned int offset = 0, size, count = 0, i;
5582	unsigned int f, bytecount, segs;
5583
5584	i = tx_ring->next_to_use;
5585
5586	while (len) {
5587		buffer_info = &tx_ring->buffer_info[i];
5588		size = min(len, max_per_txd);
5589
5590		buffer_info->length = size;
5591		buffer_info->time_stamp = jiffies;
5592		buffer_info->next_to_watch = i;
5593		buffer_info->dma = dma_map_single(&pdev->dev,
5594						  skb->data + offset,
5595						  size, DMA_TO_DEVICE);
5596		buffer_info->mapped_as_page = false;
5597		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5598			goto dma_error;
5599
5600		len -= size;
5601		offset += size;
5602		count++;
5603
5604		if (len) {
5605			i++;
5606			if (i == tx_ring->count)
5607				i = 0;
5608		}
5609	}
5610
5611	for (f = 0; f < nr_frags; f++) {
5612		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5613
5614		len = skb_frag_size(frag);
5615		offset = 0;
5616
5617		while (len) {
5618			i++;
5619			if (i == tx_ring->count)
5620				i = 0;
5621
5622			buffer_info = &tx_ring->buffer_info[i];
5623			size = min(len, max_per_txd);
5624
5625			buffer_info->length = size;
5626			buffer_info->time_stamp = jiffies;
5627			buffer_info->next_to_watch = i;
5628			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5629							    offset, size,
5630							    DMA_TO_DEVICE);
5631			buffer_info->mapped_as_page = true;
5632			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5633				goto dma_error;
5634
5635			len -= size;
5636			offset += size;
5637			count++;
5638		}
5639	}
5640
5641	segs = skb_shinfo(skb)->gso_segs ? : 1;
5642	/* multiply data chunks by size of headers */
5643	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5644
5645	tx_ring->buffer_info[i].skb = skb;
5646	tx_ring->buffer_info[i].segs = segs;
5647	tx_ring->buffer_info[i].bytecount = bytecount;
5648	tx_ring->buffer_info[first].next_to_watch = i;
5649
5650	return count;
5651
5652dma_error:
5653	dev_err(&pdev->dev, "Tx DMA map failed\n");
5654	buffer_info->dma = 0;
5655	if (count)
5656		count--;
5657
5658	while (count--) {
5659		if (i == 0)
5660			i += tx_ring->count;
5661		i--;
5662		buffer_info = &tx_ring->buffer_info[i];
5663		e1000_put_txbuf(tx_ring, buffer_info, true);
5664	}
5665
5666	return 0;
5667}
5668
5669static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5670{
5671	struct e1000_adapter *adapter = tx_ring->adapter;
5672	struct e1000_tx_desc *tx_desc = NULL;
5673	struct e1000_buffer *buffer_info;
5674	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5675	unsigned int i;
5676
5677	if (tx_flags & E1000_TX_FLAGS_TSO) {
5678		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5679		    E1000_TXD_CMD_TSE;
5680		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5681
5682		if (tx_flags & E1000_TX_FLAGS_IPV4)
5683			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5684	}
5685
5686	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5687		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5688		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5689	}
5690
5691	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5692		txd_lower |= E1000_TXD_CMD_VLE;
5693		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5694	}
5695
5696	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5697		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5698
5699	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5700		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5701		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5702	}
5703
5704	i = tx_ring->next_to_use;
5705
5706	do {
5707		buffer_info = &tx_ring->buffer_info[i];
5708		tx_desc = E1000_TX_DESC(*tx_ring, i);
5709		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5710		tx_desc->lower.data = cpu_to_le32(txd_lower |
5711						  buffer_info->length);
5712		tx_desc->upper.data = cpu_to_le32(txd_upper);
5713
5714		i++;
5715		if (i == tx_ring->count)
5716			i = 0;
5717	} while (--count > 0);
5718
5719	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5720
5721	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5722	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5723		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5724
5725	/* Force memory writes to complete before letting h/w
5726	 * know there are new descriptors to fetch.  (Only
5727	 * applicable for weak-ordered memory model archs,
5728	 * such as IA-64).
5729	 */
5730	wmb();
5731
5732	tx_ring->next_to_use = i;
5733}
5734
5735#define MINIMUM_DHCP_PACKET_SIZE 282
5736static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5737				    struct sk_buff *skb)
5738{
5739	struct e1000_hw *hw = &adapter->hw;
5740	u16 length, offset;
5741
5742	if (skb_vlan_tag_present(skb) &&
5743	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5744	      (adapter->hw.mng_cookie.status &
5745	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5746		return 0;
5747
5748	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5749		return 0;
5750
5751	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5752		return 0;
5753
5754	{
5755		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5756		struct udphdr *udp;
5757
5758		if (ip->protocol != IPPROTO_UDP)
5759			return 0;
5760
5761		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5762		if (ntohs(udp->dest) != 67)
5763			return 0;
5764
5765		offset = (u8 *)udp + 8 - skb->data;
5766		length = skb->len - offset;
5767		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5768	}
5769
5770	return 0;
5771}
5772
5773static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5774{
5775	struct e1000_adapter *adapter = tx_ring->adapter;
5776
5777	netif_stop_queue(adapter->netdev);
5778	/* Herbert's original patch had:
5779	 *  smp_mb__after_netif_stop_queue();
5780	 * but since that doesn't exist yet, just open code it.
5781	 */
5782	smp_mb();
5783
5784	/* We need to check again in a case another CPU has just
5785	 * made room available.
5786	 */
5787	if (e1000_desc_unused(tx_ring) < size)
5788		return -EBUSY;
5789
5790	/* A reprieve! */
5791	netif_start_queue(adapter->netdev);
5792	++adapter->restart_queue;
5793	return 0;
5794}
5795
5796static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5797{
5798	BUG_ON(size > tx_ring->count);
5799
5800	if (e1000_desc_unused(tx_ring) >= size)
5801		return 0;
5802	return __e1000_maybe_stop_tx(tx_ring, size);
5803}
5804
5805static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5806				    struct net_device *netdev)
5807{
5808	struct e1000_adapter *adapter = netdev_priv(netdev);
5809	struct e1000_ring *tx_ring = adapter->tx_ring;
5810	unsigned int first;
5811	unsigned int tx_flags = 0;
5812	unsigned int len = skb_headlen(skb);
5813	unsigned int nr_frags;
5814	unsigned int mss;
5815	int count = 0;
5816	int tso;
5817	unsigned int f;
5818	__be16 protocol = vlan_get_protocol(skb);
5819
5820	if (test_bit(__E1000_DOWN, &adapter->state)) {
5821		dev_kfree_skb_any(skb);
5822		return NETDEV_TX_OK;
5823	}
5824
5825	if (skb->len <= 0) {
5826		dev_kfree_skb_any(skb);
5827		return NETDEV_TX_OK;
5828	}
5829
5830	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5831	 * pad skb in order to meet this minimum size requirement
5832	 */
5833	if (skb_put_padto(skb, 17))
5834		return NETDEV_TX_OK;
5835
5836	mss = skb_shinfo(skb)->gso_size;
5837	if (mss) {
5838		u8 hdr_len;
5839
5840		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5841		 * points to just header, pull a few bytes of payload from
5842		 * frags into skb->data
5843		 */
5844		hdr_len = skb_tcp_all_headers(skb);
5845		/* we do this workaround for ES2LAN, but it is un-necessary,
5846		 * avoiding it could save a lot of cycles
5847		 */
5848		if (skb->data_len && (hdr_len == len)) {
5849			unsigned int pull_size;
5850
5851			pull_size = min_t(unsigned int, 4, skb->data_len);
5852			if (!__pskb_pull_tail(skb, pull_size)) {
5853				e_err("__pskb_pull_tail failed.\n");
5854				dev_kfree_skb_any(skb);
5855				return NETDEV_TX_OK;
5856			}
5857			len = skb_headlen(skb);
5858		}
5859	}
5860
5861	/* reserve a descriptor for the offload context */
5862	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5863		count++;
5864	count++;
5865
5866	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5867
5868	nr_frags = skb_shinfo(skb)->nr_frags;
5869	for (f = 0; f < nr_frags; f++)
5870		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5871				      adapter->tx_fifo_limit);
5872
5873	if (adapter->hw.mac.tx_pkt_filtering)
5874		e1000_transfer_dhcp_info(adapter, skb);
5875
5876	/* need: count + 2 desc gap to keep tail from touching
5877	 * head, otherwise try next time
5878	 */
5879	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5880		return NETDEV_TX_BUSY;
5881
5882	if (skb_vlan_tag_present(skb)) {
5883		tx_flags |= E1000_TX_FLAGS_VLAN;
5884		tx_flags |= (skb_vlan_tag_get(skb) <<
5885			     E1000_TX_FLAGS_VLAN_SHIFT);
5886	}
5887
5888	first = tx_ring->next_to_use;
5889
5890	tso = e1000_tso(tx_ring, skb, protocol);
5891	if (tso < 0) {
5892		dev_kfree_skb_any(skb);
5893		return NETDEV_TX_OK;
5894	}
5895
5896	if (tso)
5897		tx_flags |= E1000_TX_FLAGS_TSO;
5898	else if (e1000_tx_csum(tx_ring, skb, protocol))
5899		tx_flags |= E1000_TX_FLAGS_CSUM;
5900
5901	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5902	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5903	 * no longer assume, we must.
5904	 */
5905	if (protocol == htons(ETH_P_IP))
5906		tx_flags |= E1000_TX_FLAGS_IPV4;
5907
5908	if (unlikely(skb->no_fcs))
5909		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5910
5911	/* if count is 0 then mapping error has occurred */
5912	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5913			     nr_frags);
5914	if (count) {
5915		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5916		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5917			if (!adapter->tx_hwtstamp_skb) {
5918				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5919				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5920				adapter->tx_hwtstamp_skb = skb_get(skb);
5921				adapter->tx_hwtstamp_start = jiffies;
5922				schedule_work(&adapter->tx_hwtstamp_work);
5923			} else {
5924				adapter->tx_hwtstamp_skipped++;
5925			}
5926		}
5927
5928		skb_tx_timestamp(skb);
5929
5930		netdev_sent_queue(netdev, skb->len);
5931		e1000_tx_queue(tx_ring, tx_flags, count);
5932		/* Make sure there is space in the ring for the next send. */
5933		e1000_maybe_stop_tx(tx_ring,
5934				    ((MAX_SKB_FRAGS + 1) *
5935				     DIV_ROUND_UP(PAGE_SIZE,
5936						  adapter->tx_fifo_limit) + 4));
5937
5938		if (!netdev_xmit_more() ||
5939		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5940			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5941				e1000e_update_tdt_wa(tx_ring,
5942						     tx_ring->next_to_use);
5943			else
5944				writel(tx_ring->next_to_use, tx_ring->tail);
5945		}
5946	} else {
5947		dev_kfree_skb_any(skb);
5948		tx_ring->buffer_info[first].time_stamp = 0;
5949		tx_ring->next_to_use = first;
5950	}
5951
5952	return NETDEV_TX_OK;
5953}
5954
5955/**
5956 * e1000_tx_timeout - Respond to a Tx Hang
5957 * @netdev: network interface device structure
5958 * @txqueue: index of the hung queue (unused)
5959 **/
5960static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5961{
5962	struct e1000_adapter *adapter = netdev_priv(netdev);
5963
5964	/* Do the reset outside of interrupt context */
5965	adapter->tx_timeout_count++;
5966	schedule_work(&adapter->reset_task);
5967}
5968
5969static void e1000_reset_task(struct work_struct *work)
5970{
5971	struct e1000_adapter *adapter;
5972	adapter = container_of(work, struct e1000_adapter, reset_task);
5973
5974	rtnl_lock();
5975	/* don't run the task if already down */
5976	if (test_bit(__E1000_DOWN, &adapter->state)) {
5977		rtnl_unlock();
5978		return;
5979	}
5980
5981	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5982		e1000e_dump(adapter);
5983		e_err("Reset adapter unexpectedly\n");
5984	}
5985	e1000e_reinit_locked(adapter);
5986	rtnl_unlock();
5987}
5988
5989/**
5990 * e1000e_get_stats64 - Get System Network Statistics
5991 * @netdev: network interface device structure
5992 * @stats: rtnl_link_stats64 pointer
5993 *
5994 * Returns the address of the device statistics structure.
5995 **/
5996void e1000e_get_stats64(struct net_device *netdev,
5997			struct rtnl_link_stats64 *stats)
5998{
5999	struct e1000_adapter *adapter = netdev_priv(netdev);
6000
6001	spin_lock(&adapter->stats64_lock);
6002	e1000e_update_stats(adapter);
6003	/* Fill out the OS statistics structure */
6004	stats->rx_bytes = adapter->stats.gorc;
6005	stats->rx_packets = adapter->stats.gprc;
6006	stats->tx_bytes = adapter->stats.gotc;
6007	stats->tx_packets = adapter->stats.gptc;
6008	stats->multicast = adapter->stats.mprc;
6009	stats->collisions = adapter->stats.colc;
6010
6011	/* Rx Errors */
6012
6013	/* RLEC on some newer hardware can be incorrect so build
6014	 * our own version based on RUC and ROC
6015	 */
6016	stats->rx_errors = adapter->stats.rxerrc +
6017	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6018	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6019	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6020	stats->rx_crc_errors = adapter->stats.crcerrs;
6021	stats->rx_frame_errors = adapter->stats.algnerrc;
6022	stats->rx_missed_errors = adapter->stats.mpc;
6023
6024	/* Tx Errors */
6025	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6026	stats->tx_aborted_errors = adapter->stats.ecol;
6027	stats->tx_window_errors = adapter->stats.latecol;
6028	stats->tx_carrier_errors = adapter->stats.tncrs;
6029
6030	/* Tx Dropped needs to be maintained elsewhere */
6031
6032	spin_unlock(&adapter->stats64_lock);
6033}
6034
6035/**
6036 * e1000_change_mtu - Change the Maximum Transfer Unit
6037 * @netdev: network interface device structure
6038 * @new_mtu: new value for maximum frame size
6039 *
6040 * Returns 0 on success, negative on failure
6041 **/
6042static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6043{
6044	struct e1000_adapter *adapter = netdev_priv(netdev);
6045	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6046
6047	/* Jumbo frame support */
6048	if ((new_mtu > ETH_DATA_LEN) &&
6049	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6050		e_err("Jumbo Frames not supported.\n");
6051		return -EINVAL;
6052	}
6053
6054	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6055	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6056	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6057	    (new_mtu > ETH_DATA_LEN)) {
6058		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6059		return -EINVAL;
6060	}
6061
6062	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6063		usleep_range(1000, 1100);
6064	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6065	adapter->max_frame_size = max_frame;
6066	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6067		   netdev->mtu, new_mtu);
6068	netdev->mtu = new_mtu;
6069
6070	pm_runtime_get_sync(netdev->dev.parent);
6071
6072	if (netif_running(netdev))
6073		e1000e_down(adapter, true);
6074
6075	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6076	 * means we reserve 2 more, this pushes us to allocate from the next
6077	 * larger slab size.
6078	 * i.e. RXBUFFER_2048 --> size-4096 slab
6079	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6080	 * fragmented skbs
6081	 */
6082
6083	if (max_frame <= 2048)
6084		adapter->rx_buffer_len = 2048;
6085	else
6086		adapter->rx_buffer_len = 4096;
6087
6088	/* adjust allocation if LPE protects us, and we aren't using SBP */
6089	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6090		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6091
6092	if (netif_running(netdev))
6093		e1000e_up(adapter);
6094	else
6095		e1000e_reset(adapter);
6096
6097	pm_runtime_put_sync(netdev->dev.parent);
6098
6099	clear_bit(__E1000_RESETTING, &adapter->state);
6100
6101	return 0;
6102}
6103
6104static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6105			   int cmd)
6106{
6107	struct e1000_adapter *adapter = netdev_priv(netdev);
6108	struct mii_ioctl_data *data = if_mii(ifr);
6109
6110	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6111		return -EOPNOTSUPP;
6112
6113	switch (cmd) {
6114	case SIOCGMIIPHY:
6115		data->phy_id = adapter->hw.phy.addr;
6116		break;
6117	case SIOCGMIIREG:
6118		e1000_phy_read_status(adapter);
6119
6120		switch (data->reg_num & 0x1F) {
6121		case MII_BMCR:
6122			data->val_out = adapter->phy_regs.bmcr;
6123			break;
6124		case MII_BMSR:
6125			data->val_out = adapter->phy_regs.bmsr;
6126			break;
6127		case MII_PHYSID1:
6128			data->val_out = (adapter->hw.phy.id >> 16);
6129			break;
6130		case MII_PHYSID2:
6131			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6132			break;
6133		case MII_ADVERTISE:
6134			data->val_out = adapter->phy_regs.advertise;
6135			break;
6136		case MII_LPA:
6137			data->val_out = adapter->phy_regs.lpa;
6138			break;
6139		case MII_EXPANSION:
6140			data->val_out = adapter->phy_regs.expansion;
6141			break;
6142		case MII_CTRL1000:
6143			data->val_out = adapter->phy_regs.ctrl1000;
6144			break;
6145		case MII_STAT1000:
6146			data->val_out = adapter->phy_regs.stat1000;
6147			break;
6148		case MII_ESTATUS:
6149			data->val_out = adapter->phy_regs.estatus;
6150			break;
6151		default:
6152			return -EIO;
6153		}
6154		break;
6155	case SIOCSMIIREG:
6156	default:
6157		return -EOPNOTSUPP;
6158	}
6159	return 0;
6160}
6161
6162/**
6163 * e1000e_hwtstamp_set - control hardware time stamping
6164 * @netdev: network interface device structure
6165 * @ifr: interface request
6166 *
6167 * Outgoing time stamping can be enabled and disabled. Play nice and
6168 * disable it when requested, although it shouldn't cause any overhead
6169 * when no packet needs it. At most one packet in the queue may be
6170 * marked for time stamping, otherwise it would be impossible to tell
6171 * for sure to which packet the hardware time stamp belongs.
6172 *
6173 * Incoming time stamping has to be configured via the hardware filters.
6174 * Not all combinations are supported, in particular event type has to be
6175 * specified. Matching the kind of event packet is not supported, with the
6176 * exception of "all V2 events regardless of level 2 or 4".
6177 **/
6178static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6179{
6180	struct e1000_adapter *adapter = netdev_priv(netdev);
6181	struct hwtstamp_config config;
6182	int ret_val;
6183
6184	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6185		return -EFAULT;
6186
6187	ret_val = e1000e_config_hwtstamp(adapter, &config);
6188	if (ret_val)
6189		return ret_val;
6190
6191	switch (config.rx_filter) {
6192	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6193	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6194	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6195	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6196	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6197	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6198		/* With V2 type filters which specify a Sync or Delay Request,
6199		 * Path Delay Request/Response messages are also time stamped
6200		 * by hardware so notify the caller the requested packets plus
6201		 * some others are time stamped.
6202		 */
6203		config.rx_filter = HWTSTAMP_FILTER_SOME;
6204		break;
6205	default:
6206		break;
6207	}
6208
6209	return copy_to_user(ifr->ifr_data, &config,
6210			    sizeof(config)) ? -EFAULT : 0;
6211}
6212
6213static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6214{
6215	struct e1000_adapter *adapter = netdev_priv(netdev);
6216
6217	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6218			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6219}
6220
6221static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6222{
6223	switch (cmd) {
6224	case SIOCGMIIPHY:
6225	case SIOCGMIIREG:
6226	case SIOCSMIIREG:
6227		return e1000_mii_ioctl(netdev, ifr, cmd);
6228	case SIOCSHWTSTAMP:
6229		return e1000e_hwtstamp_set(netdev, ifr);
6230	case SIOCGHWTSTAMP:
6231		return e1000e_hwtstamp_get(netdev, ifr);
6232	default:
6233		return -EOPNOTSUPP;
6234	}
6235}
6236
6237static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6238{
6239	struct e1000_hw *hw = &adapter->hw;
6240	u32 i, mac_reg, wuc;
6241	u16 phy_reg, wuc_enable;
6242	int retval;
6243
6244	/* copy MAC RARs to PHY RARs */
6245	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6246
6247	retval = hw->phy.ops.acquire(hw);
6248	if (retval) {
6249		e_err("Could not acquire PHY\n");
6250		return retval;
6251	}
6252
6253	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6254	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6255	if (retval)
6256		goto release;
6257
6258	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6259	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6260		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6261		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6262					   (u16)(mac_reg & 0xFFFF));
6263		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6264					   (u16)((mac_reg >> 16) & 0xFFFF));
6265	}
6266
6267	/* configure PHY Rx Control register */
6268	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6269	mac_reg = er32(RCTL);
6270	if (mac_reg & E1000_RCTL_UPE)
6271		phy_reg |= BM_RCTL_UPE;
6272	if (mac_reg & E1000_RCTL_MPE)
6273		phy_reg |= BM_RCTL_MPE;
6274	phy_reg &= ~(BM_RCTL_MO_MASK);
6275	if (mac_reg & E1000_RCTL_MO_3)
6276		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6277			    << BM_RCTL_MO_SHIFT);
6278	if (mac_reg & E1000_RCTL_BAM)
6279		phy_reg |= BM_RCTL_BAM;
6280	if (mac_reg & E1000_RCTL_PMCF)
6281		phy_reg |= BM_RCTL_PMCF;
6282	mac_reg = er32(CTRL);
6283	if (mac_reg & E1000_CTRL_RFCE)
6284		phy_reg |= BM_RCTL_RFCE;
6285	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6286
6287	wuc = E1000_WUC_PME_EN;
6288	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6289		wuc |= E1000_WUC_APME;
6290
6291	/* enable PHY wakeup in MAC register */
6292	ew32(WUFC, wufc);
6293	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6294		   E1000_WUC_PME_STATUS | wuc));
6295
6296	/* configure and enable PHY wakeup in PHY registers */
6297	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6298	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6299
6300	/* activate PHY wakeup */
6301	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6302	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6303	if (retval)
6304		e_err("Could not set PHY Host Wakeup bit\n");
6305release:
6306	hw->phy.ops.release(hw);
6307
6308	return retval;
6309}
6310
6311static void e1000e_flush_lpic(struct pci_dev *pdev)
6312{
6313	struct net_device *netdev = pci_get_drvdata(pdev);
6314	struct e1000_adapter *adapter = netdev_priv(netdev);
6315	struct e1000_hw *hw = &adapter->hw;
6316	u32 ret_val;
6317
6318	pm_runtime_get_sync(netdev->dev.parent);
6319
6320	ret_val = hw->phy.ops.acquire(hw);
6321	if (ret_val)
6322		goto fl_out;
6323
6324	pr_info("EEE TX LPI TIMER: %08X\n",
6325		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6326
6327	hw->phy.ops.release(hw);
6328
6329fl_out:
6330	pm_runtime_put_sync(netdev->dev.parent);
6331}
6332
6333/* S0ix implementation */
6334static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6335{
6336	struct e1000_hw *hw = &adapter->hw;
6337	u32 mac_data;
6338	u16 phy_data;
6339
6340	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6341	    hw->mac.type >= e1000_pch_adp) {
6342		/* Request ME configure the device for S0ix */
6343		mac_data = er32(H2ME);
6344		mac_data |= E1000_H2ME_START_DPG;
6345		mac_data &= ~E1000_H2ME_EXIT_DPG;
6346		trace_e1000e_trace_mac_register(mac_data);
6347		ew32(H2ME, mac_data);
6348	} else {
6349		/* Request driver configure the device to S0ix */
6350		/* Disable the periodic inband message,
6351		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6352		 */
6353		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6354		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6355		phy_data |= BIT(10);
6356		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6357
6358		/* Make sure we don't exit K1 every time a new packet arrives
6359		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6360		 */
6361		e1e_rphy(hw, I217_CGFREG, &phy_data);
6362		phy_data |= BIT(5);
6363		e1e_wphy(hw, I217_CGFREG, phy_data);
6364
6365		/* Change the MAC/PHY interface to SMBus
6366		 * Force the SMBus in PHY page769_23[0] = 1
6367		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6368		 */
6369		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6370		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6371		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6372		mac_data = er32(CTRL_EXT);
6373		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6374		ew32(CTRL_EXT, mac_data);
6375
6376		/* DFT control: PHY bit: page769_20[0] = 1
6377		 * page769_20[7] - PHY PLL stop
6378		 * page769_20[8] - PHY go to the electrical idle
6379		 * page769_20[9] - PHY serdes disable
6380		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6381		 */
6382		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6383		phy_data |= BIT(0);
6384		phy_data |= BIT(7);
6385		phy_data |= BIT(8);
6386		phy_data |= BIT(9);
6387		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6388
6389		mac_data = er32(EXTCNF_CTRL);
6390		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6391		ew32(EXTCNF_CTRL, mac_data);
6392
6393		/* Enable the Dynamic Power Gating in the MAC */
6394		mac_data = er32(FEXTNVM7);
6395		mac_data |= BIT(22);
6396		ew32(FEXTNVM7, mac_data);
6397
6398		/* Disable disconnected cable conditioning for Power Gating */
6399		mac_data = er32(DPGFR);
6400		mac_data |= BIT(2);
6401		ew32(DPGFR, mac_data);
6402
6403		/* Don't wake from dynamic Power Gating with clock request */
6404		mac_data = er32(FEXTNVM12);
6405		mac_data |= BIT(12);
6406		ew32(FEXTNVM12, mac_data);
6407
6408		/* Ungate PGCB clock */
6409		mac_data = er32(FEXTNVM9);
6410		mac_data &= ~BIT(28);
6411		ew32(FEXTNVM9, mac_data);
6412
6413		/* Enable K1 off to enable mPHY Power Gating */
6414		mac_data = er32(FEXTNVM6);
6415		mac_data |= BIT(31);
6416		ew32(FEXTNVM6, mac_data);
6417
6418		/* Enable mPHY power gating for any link and speed */
6419		mac_data = er32(FEXTNVM8);
6420		mac_data |= BIT(9);
6421		ew32(FEXTNVM8, mac_data);
6422
6423		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6424		mac_data = er32(CTRL_EXT);
6425		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6426		ew32(CTRL_EXT, mac_data);
 
6427
6428		/* No MAC DPG gating SLP_S0 in modern standby
6429		 * Switch the logic of the lanphypc to use PMC counter
6430		 */
6431		mac_data = er32(FEXTNVM5);
6432		mac_data |= BIT(7);
6433		ew32(FEXTNVM5, mac_data);
6434	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6435
6436	/* Disable the time synchronization clock */
6437	mac_data = er32(FEXTNVM7);
6438	mac_data |= BIT(31);
6439	mac_data &= ~BIT(0);
6440	ew32(FEXTNVM7, mac_data);
6441
6442	/* Dynamic Power Gating Enable */
6443	mac_data = er32(CTRL_EXT);
6444	mac_data |= BIT(3);
6445	ew32(CTRL_EXT, mac_data);
6446
6447	/* Check MAC Tx/Rx packet buffer pointers.
6448	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6449	 * pending traffic indication that would prevent power gating.
6450	 */
6451	mac_data = er32(TDFH);
6452	if (mac_data)
6453		ew32(TDFH, 0);
6454	mac_data = er32(TDFT);
6455	if (mac_data)
6456		ew32(TDFT, 0);
6457	mac_data = er32(TDFHS);
6458	if (mac_data)
6459		ew32(TDFHS, 0);
6460	mac_data = er32(TDFTS);
6461	if (mac_data)
6462		ew32(TDFTS, 0);
6463	mac_data = er32(TDFPC);
6464	if (mac_data)
6465		ew32(TDFPC, 0);
6466	mac_data = er32(RDFH);
6467	if (mac_data)
6468		ew32(RDFH, 0);
6469	mac_data = er32(RDFT);
6470	if (mac_data)
6471		ew32(RDFT, 0);
6472	mac_data = er32(RDFHS);
6473	if (mac_data)
6474		ew32(RDFHS, 0);
6475	mac_data = er32(RDFTS);
6476	if (mac_data)
6477		ew32(RDFTS, 0);
6478	mac_data = er32(RDFPC);
6479	if (mac_data)
6480		ew32(RDFPC, 0);
6481}
6482
6483static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6484{
6485	struct e1000_hw *hw = &adapter->hw;
6486	bool firmware_bug = false;
6487	u32 mac_data;
6488	u16 phy_data;
6489	u32 i = 0;
6490
6491	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6492	    hw->mac.type >= e1000_pch_adp) {
6493		/* Keep the GPT clock enabled for CSME */
6494		mac_data = er32(FEXTNVM);
6495		mac_data |= BIT(3);
6496		ew32(FEXTNVM, mac_data);
6497		/* Request ME unconfigure the device from S0ix */
6498		mac_data = er32(H2ME);
6499		mac_data &= ~E1000_H2ME_START_DPG;
6500		mac_data |= E1000_H2ME_EXIT_DPG;
6501		trace_e1000e_trace_mac_register(mac_data);
6502		ew32(H2ME, mac_data);
6503
6504		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6505		 * If this takes more than 1 second, show a warning indicating a
6506		 * firmware bug
6507		 */
6508		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6509			if (i > 100 && !firmware_bug)
6510				firmware_bug = true;
6511
6512			if (i++ == 250) {
6513				e_dbg("Timeout (firmware bug): %d msec\n",
6514				      i * 10);
6515				break;
6516			}
6517
6518			usleep_range(10000, 11000);
6519		}
6520		if (firmware_bug)
6521			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6522			       i * 10);
6523		else
6524			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6525	} else {
6526		/* Request driver unconfigure the device from S0ix */
6527
6528		/* Disable the Dynamic Power Gating in the MAC */
6529		mac_data = er32(FEXTNVM7);
6530		mac_data &= 0xFFBFFFFF;
6531		ew32(FEXTNVM7, mac_data);
6532
6533		/* Disable mPHY power gating for any link and speed */
6534		mac_data = er32(FEXTNVM8);
6535		mac_data &= ~BIT(9);
6536		ew32(FEXTNVM8, mac_data);
6537
6538		/* Disable K1 off */
6539		mac_data = er32(FEXTNVM6);
6540		mac_data &= ~BIT(31);
6541		ew32(FEXTNVM6, mac_data);
6542
6543		/* Disable Ungate PGCB clock */
6544		mac_data = er32(FEXTNVM9);
6545		mac_data |= BIT(28);
6546		ew32(FEXTNVM9, mac_data);
6547
6548		/* Cancel not waking from dynamic
6549		 * Power Gating with clock request
6550		 */
6551		mac_data = er32(FEXTNVM12);
6552		mac_data &= ~BIT(12);
6553		ew32(FEXTNVM12, mac_data);
6554
6555		/* Cancel disable disconnected cable conditioning
6556		 * for Power Gating
6557		 */
6558		mac_data = er32(DPGFR);
6559		mac_data &= ~BIT(2);
6560		ew32(DPGFR, mac_data);
6561
6562		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6563		mac_data = er32(CTRL_EXT);
6564		mac_data &= 0xFFF7FFFF;
6565		ew32(CTRL_EXT, mac_data);
6566
6567		/* Revert the lanphypc logic to use the internal Gbe counter
6568		 * and not the PMC counter
6569		 */
6570		mac_data = er32(FEXTNVM5);
6571		mac_data &= 0xFFFFFF7F;
6572		ew32(FEXTNVM5, mac_data);
6573
6574		/* Enable the periodic inband message,
6575		 * Request PCIe clock in K1 page770_17[10:9] =01b
6576		 */
6577		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6578		phy_data &= 0xFBFF;
6579		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6580		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6581
6582		/* Return back configuration
6583		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6584		 */
6585		e1e_rphy(hw, I217_CGFREG, &phy_data);
6586		phy_data &= 0xFFDF;
6587		e1e_wphy(hw, I217_CGFREG, phy_data);
6588
6589		/* Change the MAC/PHY interface to Kumeran
6590		 * Unforce the SMBus in PHY page769_23[0] = 0
6591		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6592		 */
6593		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6594		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6595		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6596		mac_data = er32(CTRL_EXT);
6597		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6598		ew32(CTRL_EXT, mac_data);
6599	}
6600
6601	/* Disable Dynamic Power Gating */
6602	mac_data = er32(CTRL_EXT);
6603	mac_data &= 0xFFFFFFF7;
6604	ew32(CTRL_EXT, mac_data);
6605
6606	/* Enable the time synchronization clock */
6607	mac_data = er32(FEXTNVM7);
6608	mac_data &= ~BIT(31);
6609	mac_data |= BIT(0);
6610	ew32(FEXTNVM7, mac_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6611}
6612
6613static int e1000e_pm_freeze(struct device *dev)
6614{
6615	struct net_device *netdev = dev_get_drvdata(dev);
6616	struct e1000_adapter *adapter = netdev_priv(netdev);
6617	bool present;
6618
6619	rtnl_lock();
6620
6621	present = netif_device_present(netdev);
6622	netif_device_detach(netdev);
6623
6624	if (present && netif_running(netdev)) {
6625		int count = E1000_CHECK_RESET_COUNT;
6626
6627		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6628			usleep_range(10000, 11000);
6629
6630		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6631
6632		/* Quiesce the device without resetting the hardware */
6633		e1000e_down(adapter, false);
6634		e1000_free_irq(adapter);
6635	}
6636	rtnl_unlock();
6637
6638	e1000e_reset_interrupt_capability(adapter);
6639
6640	/* Allow time for pending master requests to run */
6641	e1000e_disable_pcie_master(&adapter->hw);
6642
6643	return 0;
6644}
6645
6646static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6647{
6648	struct net_device *netdev = pci_get_drvdata(pdev);
6649	struct e1000_adapter *adapter = netdev_priv(netdev);
6650	struct e1000_hw *hw = &adapter->hw;
6651	u32 ctrl, ctrl_ext, rctl, status, wufc;
6652	int retval = 0;
6653
6654	/* Runtime suspend should only enable wakeup for link changes */
6655	if (runtime)
6656		wufc = E1000_WUFC_LNKC;
6657	else if (device_may_wakeup(&pdev->dev))
6658		wufc = adapter->wol;
6659	else
6660		wufc = 0;
6661
6662	status = er32(STATUS);
6663	if (status & E1000_STATUS_LU)
6664		wufc &= ~E1000_WUFC_LNKC;
6665
6666	if (wufc) {
6667		e1000_setup_rctl(adapter);
6668		e1000e_set_rx_mode(netdev);
6669
6670		/* turn on all-multi mode if wake on multicast is enabled */
6671		if (wufc & E1000_WUFC_MC) {
6672			rctl = er32(RCTL);
6673			rctl |= E1000_RCTL_MPE;
6674			ew32(RCTL, rctl);
6675		}
6676
6677		ctrl = er32(CTRL);
6678		ctrl |= E1000_CTRL_ADVD3WUC;
6679		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6680			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6681		ew32(CTRL, ctrl);
6682
6683		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6684		    adapter->hw.phy.media_type ==
6685		    e1000_media_type_internal_serdes) {
6686			/* keep the laser running in D3 */
6687			ctrl_ext = er32(CTRL_EXT);
6688			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6689			ew32(CTRL_EXT, ctrl_ext);
6690		}
6691
6692		if (!runtime)
6693			e1000e_power_up_phy(adapter);
6694
6695		if (adapter->flags & FLAG_IS_ICH)
6696			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6697
6698		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6699			/* enable wakeup by the PHY */
6700			retval = e1000_init_phy_wakeup(adapter, wufc);
6701			if (retval)
6702				return retval;
 
 
6703		} else {
6704			/* enable wakeup by the MAC */
6705			ew32(WUFC, wufc);
6706			ew32(WUC, E1000_WUC_PME_EN);
6707		}
6708	} else {
6709		ew32(WUC, 0);
6710		ew32(WUFC, 0);
6711
6712		e1000_power_down_phy(adapter);
6713	}
6714
6715	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6716		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6717	} else if (hw->mac.type >= e1000_pch_lpt) {
6718		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6719			/* ULP does not support wake from unicast, multicast
6720			 * or broadcast.
6721			 */
6722			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6723
6724		if (retval)
6725			return retval;
 
 
6726	}
6727
6728	/* Ensure that the appropriate bits are set in LPI_CTRL
6729	 * for EEE in Sx
6730	 */
6731	if ((hw->phy.type >= e1000_phy_i217) &&
6732	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6733		u16 lpi_ctrl = 0;
6734
6735		retval = hw->phy.ops.acquire(hw);
6736		if (!retval) {
6737			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6738						 &lpi_ctrl);
6739			if (!retval) {
6740				if (adapter->eee_advert &
6741				    hw->dev_spec.ich8lan.eee_lp_ability &
6742				    I82579_EEE_100_SUPPORTED)
6743					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6744				if (adapter->eee_advert &
6745				    hw->dev_spec.ich8lan.eee_lp_ability &
6746				    I82579_EEE_1000_SUPPORTED)
6747					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6748
6749				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6750							 lpi_ctrl);
6751			}
6752		}
6753		hw->phy.ops.release(hw);
6754	}
6755
 
6756	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6757	 * would have already happened in close and is redundant.
6758	 */
6759	e1000e_release_hw_control(adapter);
6760
6761	pci_clear_master(pdev);
6762
6763	/* The pci-e switch on some quad port adapters will report a
6764	 * correctable error when the MAC transitions from D0 to D3.  To
6765	 * prevent this we need to mask off the correctable errors on the
6766	 * downstream port of the pci-e switch.
6767	 *
6768	 * We don't have the associated upstream bridge while assigning
6769	 * the PCI device into guest. For example, the KVM on power is
6770	 * one of the cases.
6771	 */
6772	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6773		struct pci_dev *us_dev = pdev->bus->self;
6774		u16 devctl;
6775
6776		if (!us_dev)
6777			return 0;
6778
6779		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6780		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6781					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6782
6783		pci_save_state(pdev);
6784		pci_prepare_to_sleep(pdev);
6785
6786		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6787	}
6788
6789	return 0;
6790}
6791
6792/**
6793 * __e1000e_disable_aspm - Disable ASPM states
6794 * @pdev: pointer to PCI device struct
6795 * @state: bit-mask of ASPM states to disable
6796 * @locked: indication if this context holds pci_bus_sem locked.
6797 *
6798 * Some devices *must* have certain ASPM states disabled per hardware errata.
6799 **/
6800static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6801{
6802	struct pci_dev *parent = pdev->bus->self;
6803	u16 aspm_dis_mask = 0;
6804	u16 pdev_aspmc, parent_aspmc;
6805
6806	switch (state) {
6807	case PCIE_LINK_STATE_L0S:
6808	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6809		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6810		fallthrough; /* can't have L1 without L0s */
6811	case PCIE_LINK_STATE_L1:
6812		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6813		break;
6814	default:
6815		return;
6816	}
6817
6818	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6819	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6820
6821	if (parent) {
6822		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6823					  &parent_aspmc);
6824		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6825	}
6826
6827	/* Nothing to do if the ASPM states to be disabled already are */
6828	if (!(pdev_aspmc & aspm_dis_mask) &&
6829	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6830		return;
6831
6832	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6833		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6834		 "L0s" : "",
6835		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6836		 "L1" : "");
6837
6838#ifdef CONFIG_PCIEASPM
6839	if (locked)
6840		pci_disable_link_state_locked(pdev, state);
6841	else
6842		pci_disable_link_state(pdev, state);
6843
6844	/* Double-check ASPM control.  If not disabled by the above, the
6845	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6846	 * not enabled); override by writing PCI config space directly.
6847	 */
6848	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6849	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6850
6851	if (!(aspm_dis_mask & pdev_aspmc))
6852		return;
6853#endif
6854
6855	/* Both device and parent should have the same ASPM setting.
6856	 * Disable ASPM in downstream component first and then upstream.
6857	 */
6858	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6859
6860	if (parent)
6861		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6862					   aspm_dis_mask);
6863}
6864
6865/**
6866 * e1000e_disable_aspm - Disable ASPM states.
6867 * @pdev: pointer to PCI device struct
6868 * @state: bit-mask of ASPM states to disable
6869 *
6870 * This function acquires the pci_bus_sem!
6871 * Some devices *must* have certain ASPM states disabled per hardware errata.
6872 **/
6873static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6874{
6875	__e1000e_disable_aspm(pdev, state, 0);
6876}
6877
6878/**
6879 * e1000e_disable_aspm_locked - Disable ASPM states.
6880 * @pdev: pointer to PCI device struct
6881 * @state: bit-mask of ASPM states to disable
6882 *
6883 * This function must be called with pci_bus_sem acquired!
6884 * Some devices *must* have certain ASPM states disabled per hardware errata.
6885 **/
6886static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6887{
6888	__e1000e_disable_aspm(pdev, state, 1);
6889}
6890
6891static int e1000e_pm_thaw(struct device *dev)
6892{
6893	struct net_device *netdev = dev_get_drvdata(dev);
6894	struct e1000_adapter *adapter = netdev_priv(netdev);
6895	int rc = 0;
6896
6897	e1000e_set_interrupt_capability(adapter);
6898
6899	rtnl_lock();
6900	if (netif_running(netdev)) {
6901		rc = e1000_request_irq(adapter);
6902		if (rc)
6903			goto err_irq;
6904
6905		e1000e_up(adapter);
6906	}
6907
6908	netif_device_attach(netdev);
6909err_irq:
6910	rtnl_unlock();
6911
6912	return rc;
6913}
6914
6915static int __e1000_resume(struct pci_dev *pdev)
6916{
6917	struct net_device *netdev = pci_get_drvdata(pdev);
6918	struct e1000_adapter *adapter = netdev_priv(netdev);
6919	struct e1000_hw *hw = &adapter->hw;
6920	u16 aspm_disable_flag = 0;
6921
6922	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6923		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6924	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6925		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6926	if (aspm_disable_flag)
6927		e1000e_disable_aspm(pdev, aspm_disable_flag);
6928
6929	pci_set_master(pdev);
6930
6931	if (hw->mac.type >= e1000_pch2lan)
6932		e1000_resume_workarounds_pchlan(&adapter->hw);
6933
6934	e1000e_power_up_phy(adapter);
6935
6936	/* report the system wakeup cause from S3/S4 */
6937	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6938		u16 phy_data;
6939
6940		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6941		if (phy_data) {
6942			e_info("PHY Wakeup cause - %s\n",
6943			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6944			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6945			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6946			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6947			       phy_data & E1000_WUS_LNKC ?
6948			       "Link Status Change" : "other");
6949		}
6950		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6951	} else {
6952		u32 wus = er32(WUS);
6953
6954		if (wus) {
6955			e_info("MAC Wakeup cause - %s\n",
6956			       wus & E1000_WUS_EX ? "Unicast Packet" :
6957			       wus & E1000_WUS_MC ? "Multicast Packet" :
6958			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6959			       wus & E1000_WUS_MAG ? "Magic Packet" :
6960			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6961			       "other");
6962		}
6963		ew32(WUS, ~0);
6964	}
6965
6966	e1000e_reset(adapter);
6967
6968	e1000_init_manageability_pt(adapter);
6969
6970	/* If the controller has AMT, do not set DRV_LOAD until the interface
6971	 * is up.  For all other cases, let the f/w know that the h/w is now
6972	 * under the control of the driver.
6973	 */
6974	if (!(adapter->flags & FLAG_HAS_AMT))
6975		e1000e_get_hw_control(adapter);
6976
6977	return 0;
6978}
6979
6980static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6981{
6982	return pm_runtime_suspended(dev) &&
6983		pm_suspend_via_firmware();
6984}
6985
6986static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6987{
6988	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6989	struct e1000_adapter *adapter = netdev_priv(netdev);
6990	struct pci_dev *pdev = to_pci_dev(dev);
6991	int rc;
6992
6993	e1000e_flush_lpic(pdev);
6994
6995	e1000e_pm_freeze(dev);
6996
6997	rc = __e1000_shutdown(pdev, false);
6998	if (rc) {
6999		e1000e_pm_thaw(dev);
7000	} else {
7001		/* Introduce S0ix implementation */
7002		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7003			e1000e_s0ix_entry_flow(adapter);
7004	}
7005
7006	return rc;
7007}
7008
7009static __maybe_unused int e1000e_pm_resume(struct device *dev)
7010{
7011	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7012	struct e1000_adapter *adapter = netdev_priv(netdev);
7013	struct pci_dev *pdev = to_pci_dev(dev);
7014	int rc;
7015
7016	/* Introduce S0ix implementation */
7017	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7018		e1000e_s0ix_exit_flow(adapter);
7019
7020	rc = __e1000_resume(pdev);
7021	if (rc)
7022		return rc;
7023
7024	return e1000e_pm_thaw(dev);
7025}
7026
7027static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7028{
7029	struct net_device *netdev = dev_get_drvdata(dev);
7030	struct e1000_adapter *adapter = netdev_priv(netdev);
7031	u16 eee_lp;
7032
7033	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7034
7035	if (!e1000e_has_link(adapter)) {
7036		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7037		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7038	}
7039
7040	return -EBUSY;
7041}
7042
7043static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7044{
7045	struct pci_dev *pdev = to_pci_dev(dev);
7046	struct net_device *netdev = pci_get_drvdata(pdev);
7047	struct e1000_adapter *adapter = netdev_priv(netdev);
7048	int rc;
7049
 
 
7050	rc = __e1000_resume(pdev);
7051	if (rc)
7052		return rc;
7053
7054	if (netdev->flags & IFF_UP)
7055		e1000e_up(adapter);
7056
7057	return rc;
7058}
7059
7060static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7061{
7062	struct pci_dev *pdev = to_pci_dev(dev);
7063	struct net_device *netdev = pci_get_drvdata(pdev);
7064	struct e1000_adapter *adapter = netdev_priv(netdev);
7065
7066	if (netdev->flags & IFF_UP) {
7067		int count = E1000_CHECK_RESET_COUNT;
7068
7069		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7070			usleep_range(10000, 11000);
7071
7072		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7073
7074		/* Down the device without resetting the hardware */
7075		e1000e_down(adapter, false);
7076	}
7077
7078	if (__e1000_shutdown(pdev, true)) {
7079		e1000e_pm_runtime_resume(dev);
7080		return -EBUSY;
7081	}
7082
7083	return 0;
7084}
7085
7086static void e1000_shutdown(struct pci_dev *pdev)
7087{
7088	e1000e_flush_lpic(pdev);
7089
7090	e1000e_pm_freeze(&pdev->dev);
7091
7092	__e1000_shutdown(pdev, false);
7093}
7094
7095#ifdef CONFIG_NET_POLL_CONTROLLER
7096
7097static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7098{
7099	struct net_device *netdev = data;
7100	struct e1000_adapter *adapter = netdev_priv(netdev);
7101
7102	if (adapter->msix_entries) {
7103		int vector, msix_irq;
7104
7105		vector = 0;
7106		msix_irq = adapter->msix_entries[vector].vector;
7107		if (disable_hardirq(msix_irq))
7108			e1000_intr_msix_rx(msix_irq, netdev);
7109		enable_irq(msix_irq);
7110
7111		vector++;
7112		msix_irq = adapter->msix_entries[vector].vector;
7113		if (disable_hardirq(msix_irq))
7114			e1000_intr_msix_tx(msix_irq, netdev);
7115		enable_irq(msix_irq);
7116
7117		vector++;
7118		msix_irq = adapter->msix_entries[vector].vector;
7119		if (disable_hardirq(msix_irq))
7120			e1000_msix_other(msix_irq, netdev);
7121		enable_irq(msix_irq);
7122	}
7123
7124	return IRQ_HANDLED;
7125}
7126
7127/**
7128 * e1000_netpoll
7129 * @netdev: network interface device structure
7130 *
7131 * Polling 'interrupt' - used by things like netconsole to send skbs
7132 * without having to re-enable interrupts. It's not called while
7133 * the interrupt routine is executing.
7134 */
7135static void e1000_netpoll(struct net_device *netdev)
7136{
7137	struct e1000_adapter *adapter = netdev_priv(netdev);
7138
7139	switch (adapter->int_mode) {
7140	case E1000E_INT_MODE_MSIX:
7141		e1000_intr_msix(adapter->pdev->irq, netdev);
7142		break;
7143	case E1000E_INT_MODE_MSI:
7144		if (disable_hardirq(adapter->pdev->irq))
7145			e1000_intr_msi(adapter->pdev->irq, netdev);
7146		enable_irq(adapter->pdev->irq);
7147		break;
7148	default:		/* E1000E_INT_MODE_LEGACY */
7149		if (disable_hardirq(adapter->pdev->irq))
7150			e1000_intr(adapter->pdev->irq, netdev);
7151		enable_irq(adapter->pdev->irq);
7152		break;
7153	}
7154}
7155#endif
7156
7157/**
7158 * e1000_io_error_detected - called when PCI error is detected
7159 * @pdev: Pointer to PCI device
7160 * @state: The current pci connection state
7161 *
7162 * This function is called after a PCI bus error affecting
7163 * this device has been detected.
7164 */
7165static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7166						pci_channel_state_t state)
7167{
7168	e1000e_pm_freeze(&pdev->dev);
7169
7170	if (state == pci_channel_io_perm_failure)
7171		return PCI_ERS_RESULT_DISCONNECT;
7172
7173	pci_disable_device(pdev);
7174
7175	/* Request a slot reset. */
7176	return PCI_ERS_RESULT_NEED_RESET;
7177}
7178
7179/**
7180 * e1000_io_slot_reset - called after the pci bus has been reset.
7181 * @pdev: Pointer to PCI device
7182 *
7183 * Restart the card from scratch, as if from a cold-boot. Implementation
7184 * resembles the first-half of the e1000e_pm_resume routine.
7185 */
7186static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7187{
7188	struct net_device *netdev = pci_get_drvdata(pdev);
7189	struct e1000_adapter *adapter = netdev_priv(netdev);
7190	struct e1000_hw *hw = &adapter->hw;
7191	u16 aspm_disable_flag = 0;
7192	int err;
7193	pci_ers_result_t result;
7194
7195	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7196		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7197	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7198		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7199	if (aspm_disable_flag)
7200		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7201
7202	err = pci_enable_device_mem(pdev);
7203	if (err) {
7204		dev_err(&pdev->dev,
7205			"Cannot re-enable PCI device after reset.\n");
7206		result = PCI_ERS_RESULT_DISCONNECT;
7207	} else {
7208		pdev->state_saved = true;
7209		pci_restore_state(pdev);
7210		pci_set_master(pdev);
7211
7212		pci_enable_wake(pdev, PCI_D3hot, 0);
7213		pci_enable_wake(pdev, PCI_D3cold, 0);
7214
7215		e1000e_reset(adapter);
7216		ew32(WUS, ~0);
7217		result = PCI_ERS_RESULT_RECOVERED;
7218	}
7219
7220	return result;
7221}
7222
7223/**
7224 * e1000_io_resume - called when traffic can start flowing again.
7225 * @pdev: Pointer to PCI device
7226 *
7227 * This callback is called when the error recovery driver tells us that
7228 * its OK to resume normal operation. Implementation resembles the
7229 * second-half of the e1000e_pm_resume routine.
7230 */
7231static void e1000_io_resume(struct pci_dev *pdev)
7232{
7233	struct net_device *netdev = pci_get_drvdata(pdev);
7234	struct e1000_adapter *adapter = netdev_priv(netdev);
7235
7236	e1000_init_manageability_pt(adapter);
7237
7238	e1000e_pm_thaw(&pdev->dev);
7239
7240	/* If the controller has AMT, do not set DRV_LOAD until the interface
7241	 * is up.  For all other cases, let the f/w know that the h/w is now
7242	 * under the control of the driver.
7243	 */
7244	if (!(adapter->flags & FLAG_HAS_AMT))
7245		e1000e_get_hw_control(adapter);
7246}
7247
7248static void e1000_print_device_info(struct e1000_adapter *adapter)
7249{
7250	struct e1000_hw *hw = &adapter->hw;
7251	struct net_device *netdev = adapter->netdev;
7252	u32 ret_val;
7253	u8 pba_str[E1000_PBANUM_LENGTH];
7254
7255	/* print bus type/speed/width info */
7256	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7257	       /* bus width */
7258	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7259		"Width x1"),
7260	       /* MAC address */
7261	       netdev->dev_addr);
7262	e_info("Intel(R) PRO/%s Network Connection\n",
7263	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7264	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7265						E1000_PBANUM_LENGTH);
7266	if (ret_val)
7267		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7268	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7269	       hw->mac.type, hw->phy.type, pba_str);
7270}
7271
7272static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7273{
7274	struct e1000_hw *hw = &adapter->hw;
7275	int ret_val;
7276	u16 buf = 0;
7277
7278	if (hw->mac.type != e1000_82573)
7279		return;
7280
7281	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7282	le16_to_cpus(&buf);
7283	if (!ret_val && (!(buf & BIT(0)))) {
7284		/* Deep Smart Power Down (DSPD) */
7285		dev_warn(&adapter->pdev->dev,
7286			 "Warning: detected DSPD enabled in EEPROM\n");
7287	}
7288}
7289
7290static netdev_features_t e1000_fix_features(struct net_device *netdev,
7291					    netdev_features_t features)
7292{
7293	struct e1000_adapter *adapter = netdev_priv(netdev);
7294	struct e1000_hw *hw = &adapter->hw;
7295
7296	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7297	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7298		features &= ~NETIF_F_RXFCS;
7299
7300	/* Since there is no support for separate Rx/Tx vlan accel
7301	 * enable/disable make sure Tx flag is always in same state as Rx.
7302	 */
7303	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7304		features |= NETIF_F_HW_VLAN_CTAG_TX;
7305	else
7306		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7307
7308	return features;
7309}
7310
7311static int e1000_set_features(struct net_device *netdev,
7312			      netdev_features_t features)
7313{
7314	struct e1000_adapter *adapter = netdev_priv(netdev);
7315	netdev_features_t changed = features ^ netdev->features;
7316
7317	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7318		adapter->flags |= FLAG_TSO_FORCE;
7319
7320	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7321			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7322			 NETIF_F_RXALL)))
7323		return 0;
7324
7325	if (changed & NETIF_F_RXFCS) {
7326		if (features & NETIF_F_RXFCS) {
7327			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7328		} else {
7329			/* We need to take it back to defaults, which might mean
7330			 * stripping is still disabled at the adapter level.
7331			 */
7332			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7333				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7334			else
7335				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7336		}
7337	}
7338
7339	netdev->features = features;
7340
7341	if (netif_running(netdev))
7342		e1000e_reinit_locked(adapter);
7343	else
7344		e1000e_reset(adapter);
7345
7346	return 1;
7347}
7348
7349static const struct net_device_ops e1000e_netdev_ops = {
7350	.ndo_open		= e1000e_open,
7351	.ndo_stop		= e1000e_close,
7352	.ndo_start_xmit		= e1000_xmit_frame,
7353	.ndo_get_stats64	= e1000e_get_stats64,
7354	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7355	.ndo_set_mac_address	= e1000_set_mac,
7356	.ndo_change_mtu		= e1000_change_mtu,
7357	.ndo_eth_ioctl		= e1000_ioctl,
7358	.ndo_tx_timeout		= e1000_tx_timeout,
7359	.ndo_validate_addr	= eth_validate_addr,
7360
7361	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7362	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7363#ifdef CONFIG_NET_POLL_CONTROLLER
7364	.ndo_poll_controller	= e1000_netpoll,
7365#endif
7366	.ndo_set_features = e1000_set_features,
7367	.ndo_fix_features = e1000_fix_features,
7368	.ndo_features_check	= passthru_features_check,
7369};
7370
7371/**
7372 * e1000_probe - Device Initialization Routine
7373 * @pdev: PCI device information struct
7374 * @ent: entry in e1000_pci_tbl
7375 *
7376 * Returns 0 on success, negative on failure
7377 *
7378 * e1000_probe initializes an adapter identified by a pci_dev structure.
7379 * The OS initialization, configuring of the adapter private structure,
7380 * and a hardware reset occur.
7381 **/
7382static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7383{
7384	struct net_device *netdev;
7385	struct e1000_adapter *adapter;
7386	struct e1000_hw *hw;
7387	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7388	resource_size_t mmio_start, mmio_len;
7389	resource_size_t flash_start, flash_len;
7390	static int cards_found;
7391	u16 aspm_disable_flag = 0;
7392	u16 eeprom_data = 0;
7393	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7394	int bars, i, err;
7395	s32 ret_val = 0;
7396
7397	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7398		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7399	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7400		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7401	if (aspm_disable_flag)
7402		e1000e_disable_aspm(pdev, aspm_disable_flag);
7403
7404	err = pci_enable_device_mem(pdev);
7405	if (err)
7406		return err;
7407
7408	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7409	if (err) {
7410		dev_err(&pdev->dev,
7411			"No usable DMA configuration, aborting\n");
7412		goto err_dma;
7413	}
7414
7415	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7416	err = pci_request_selected_regions_exclusive(pdev, bars,
7417						     e1000e_driver_name);
7418	if (err)
7419		goto err_pci_reg;
7420
7421	/* AER (Advanced Error Reporting) hooks */
7422	pci_enable_pcie_error_reporting(pdev);
7423
7424	pci_set_master(pdev);
7425	/* PCI config space info */
7426	err = pci_save_state(pdev);
7427	if (err)
7428		goto err_alloc_etherdev;
7429
7430	err = -ENOMEM;
7431	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7432	if (!netdev)
7433		goto err_alloc_etherdev;
7434
7435	SET_NETDEV_DEV(netdev, &pdev->dev);
7436
7437	netdev->irq = pdev->irq;
7438
7439	pci_set_drvdata(pdev, netdev);
7440	adapter = netdev_priv(netdev);
7441	hw = &adapter->hw;
7442	adapter->netdev = netdev;
7443	adapter->pdev = pdev;
7444	adapter->ei = ei;
7445	adapter->pba = ei->pba;
7446	adapter->flags = ei->flags;
7447	adapter->flags2 = ei->flags2;
7448	adapter->hw.adapter = adapter;
7449	adapter->hw.mac.type = ei->mac;
7450	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7451	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7452
7453	mmio_start = pci_resource_start(pdev, 0);
7454	mmio_len = pci_resource_len(pdev, 0);
7455
7456	err = -EIO;
7457	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7458	if (!adapter->hw.hw_addr)
7459		goto err_ioremap;
7460
7461	if ((adapter->flags & FLAG_HAS_FLASH) &&
7462	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7463	    (hw->mac.type < e1000_pch_spt)) {
7464		flash_start = pci_resource_start(pdev, 1);
7465		flash_len = pci_resource_len(pdev, 1);
7466		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7467		if (!adapter->hw.flash_address)
7468			goto err_flashmap;
7469	}
7470
7471	/* Set default EEE advertisement */
7472	if (adapter->flags2 & FLAG2_HAS_EEE)
7473		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7474
7475	/* construct the net_device struct */
7476	netdev->netdev_ops = &e1000e_netdev_ops;
7477	e1000e_set_ethtool_ops(netdev);
7478	netdev->watchdog_timeo = 5 * HZ;
7479	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7480	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7481
7482	netdev->mem_start = mmio_start;
7483	netdev->mem_end = mmio_start + mmio_len;
7484
7485	adapter->bd_number = cards_found++;
7486
7487	e1000e_check_options(adapter);
7488
7489	/* setup adapter struct */
7490	err = e1000_sw_init(adapter);
7491	if (err)
7492		goto err_sw_init;
7493
7494	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7495	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7496	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7497
7498	err = ei->get_variants(adapter);
7499	if (err)
7500		goto err_hw_init;
7501
7502	if ((adapter->flags & FLAG_IS_ICH) &&
7503	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7504	    (hw->mac.type < e1000_pch_spt))
7505		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7506
7507	hw->mac.ops.get_bus_info(&adapter->hw);
7508
7509	adapter->hw.phy.autoneg_wait_to_complete = 0;
7510
7511	/* Copper options */
7512	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7513		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7514		adapter->hw.phy.disable_polarity_correction = 0;
7515		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7516	}
7517
7518	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7519		dev_info(&pdev->dev,
7520			 "PHY reset is blocked due to SOL/IDER session.\n");
7521
7522	/* Set initial default active device features */
7523	netdev->features = (NETIF_F_SG |
7524			    NETIF_F_HW_VLAN_CTAG_RX |
7525			    NETIF_F_HW_VLAN_CTAG_TX |
7526			    NETIF_F_TSO |
7527			    NETIF_F_TSO6 |
7528			    NETIF_F_RXHASH |
7529			    NETIF_F_RXCSUM |
7530			    NETIF_F_HW_CSUM);
7531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7532	/* Set user-changeable features (subset of all device features) */
7533	netdev->hw_features = netdev->features;
7534	netdev->hw_features |= NETIF_F_RXFCS;
7535	netdev->priv_flags |= IFF_SUPP_NOFCS;
7536	netdev->hw_features |= NETIF_F_RXALL;
7537
7538	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7539		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7540
7541	netdev->vlan_features |= (NETIF_F_SG |
7542				  NETIF_F_TSO |
7543				  NETIF_F_TSO6 |
7544				  NETIF_F_HW_CSUM);
7545
7546	netdev->priv_flags |= IFF_UNICAST_FLT;
7547
7548	netdev->features |= NETIF_F_HIGHDMA;
7549	netdev->vlan_features |= NETIF_F_HIGHDMA;
7550
7551	/* MTU range: 68 - max_hw_frame_size */
7552	netdev->min_mtu = ETH_MIN_MTU;
7553	netdev->max_mtu = adapter->max_hw_frame_size -
7554			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7555
7556	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7557		adapter->flags |= FLAG_MNG_PT_ENABLED;
7558
7559	/* before reading the NVM, reset the controller to
7560	 * put the device in a known good starting state
7561	 */
7562	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7563
7564	/* systems with ASPM and others may see the checksum fail on the first
7565	 * attempt. Let's give it a few tries
7566	 */
7567	for (i = 0;; i++) {
7568		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7569			break;
7570		if (i == 2) {
7571			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7572			err = -EIO;
7573			goto err_eeprom;
7574		}
7575	}
7576
7577	e1000_eeprom_checks(adapter);
7578
7579	/* copy the MAC address */
7580	if (e1000e_read_mac_addr(&adapter->hw))
7581		dev_err(&pdev->dev,
7582			"NVM Read Error while reading MAC address\n");
7583
7584	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7585
7586	if (!is_valid_ether_addr(netdev->dev_addr)) {
7587		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7588			netdev->dev_addr);
7589		err = -EIO;
7590		goto err_eeprom;
7591	}
7592
7593	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7594	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7595
7596	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7597	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7598	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7599	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7600	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7601
7602	/* Initialize link parameters. User can change them with ethtool */
7603	adapter->hw.mac.autoneg = 1;
7604	adapter->fc_autoneg = true;
7605	adapter->hw.fc.requested_mode = e1000_fc_default;
7606	adapter->hw.fc.current_mode = e1000_fc_default;
7607	adapter->hw.phy.autoneg_advertised = 0x2f;
7608
7609	/* Initial Wake on LAN setting - If APM wake is enabled in
7610	 * the EEPROM, enable the ACPI Magic Packet filter
7611	 */
7612	if (adapter->flags & FLAG_APME_IN_WUC) {
7613		/* APME bit in EEPROM is mapped to WUC.APME */
7614		eeprom_data = er32(WUC);
7615		eeprom_apme_mask = E1000_WUC_APME;
7616		if ((hw->mac.type > e1000_ich10lan) &&
7617		    (eeprom_data & E1000_WUC_PHY_WAKE))
7618			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7619	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7620		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7621		    (adapter->hw.bus.func == 1))
7622			ret_val = e1000_read_nvm(&adapter->hw,
7623					      NVM_INIT_CONTROL3_PORT_B,
7624					      1, &eeprom_data);
7625		else
7626			ret_val = e1000_read_nvm(&adapter->hw,
7627					      NVM_INIT_CONTROL3_PORT_A,
7628					      1, &eeprom_data);
7629	}
7630
7631	/* fetch WoL from EEPROM */
7632	if (ret_val)
7633		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7634	else if (eeprom_data & eeprom_apme_mask)
7635		adapter->eeprom_wol |= E1000_WUFC_MAG;
7636
7637	/* now that we have the eeprom settings, apply the special cases
7638	 * where the eeprom may be wrong or the board simply won't support
7639	 * wake on lan on a particular port
7640	 */
7641	if (!(adapter->flags & FLAG_HAS_WOL))
7642		adapter->eeprom_wol = 0;
7643
7644	/* initialize the wol settings based on the eeprom settings */
7645	adapter->wol = adapter->eeprom_wol;
7646
7647	/* make sure adapter isn't asleep if manageability is enabled */
7648	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7649	    (hw->mac.ops.check_mng_mode(hw)))
7650		device_wakeup_enable(&pdev->dev);
7651
7652	/* save off EEPROM version number */
7653	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7654
7655	if (ret_val) {
7656		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7657		adapter->eeprom_vers = 0;
7658	}
7659
7660	/* init PTP hardware clock */
7661	e1000e_ptp_init(adapter);
7662
7663	/* reset the hardware with the new settings */
7664	e1000e_reset(adapter);
7665
7666	/* If the controller has AMT, do not set DRV_LOAD until the interface
7667	 * is up.  For all other cases, let the f/w know that the h/w is now
7668	 * under the control of the driver.
7669	 */
7670	if (!(adapter->flags & FLAG_HAS_AMT))
7671		e1000e_get_hw_control(adapter);
7672
7673	if (hw->mac.type >= e1000_pch_cnp)
7674		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7675
7676	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7677	err = register_netdev(netdev);
7678	if (err)
7679		goto err_register;
7680
7681	/* carrier off reporting is important to ethtool even BEFORE open */
7682	netif_carrier_off(netdev);
7683
7684	e1000_print_device_info(adapter);
7685
7686	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7687
7688	if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7689		pm_runtime_put_noidle(&pdev->dev);
7690
7691	return 0;
7692
7693err_register:
7694	if (!(adapter->flags & FLAG_HAS_AMT))
7695		e1000e_release_hw_control(adapter);
7696err_eeprom:
7697	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7698		e1000_phy_hw_reset(&adapter->hw);
7699err_hw_init:
7700	kfree(adapter->tx_ring);
7701	kfree(adapter->rx_ring);
7702err_sw_init:
7703	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7704		iounmap(adapter->hw.flash_address);
7705	e1000e_reset_interrupt_capability(adapter);
7706err_flashmap:
7707	iounmap(adapter->hw.hw_addr);
7708err_ioremap:
7709	free_netdev(netdev);
7710err_alloc_etherdev:
7711	pci_disable_pcie_error_reporting(pdev);
7712	pci_release_mem_regions(pdev);
7713err_pci_reg:
7714err_dma:
7715	pci_disable_device(pdev);
7716	return err;
7717}
7718
7719/**
7720 * e1000_remove - Device Removal Routine
7721 * @pdev: PCI device information struct
7722 *
7723 * e1000_remove is called by the PCI subsystem to alert the driver
7724 * that it should release a PCI device.  This could be caused by a
7725 * Hot-Plug event, or because the driver is going to be removed from
7726 * memory.
7727 **/
7728static void e1000_remove(struct pci_dev *pdev)
7729{
7730	struct net_device *netdev = pci_get_drvdata(pdev);
7731	struct e1000_adapter *adapter = netdev_priv(netdev);
7732
7733	e1000e_ptp_remove(adapter);
7734
7735	/* The timers may be rescheduled, so explicitly disable them
7736	 * from being rescheduled.
7737	 */
7738	set_bit(__E1000_DOWN, &adapter->state);
7739	del_timer_sync(&adapter->watchdog_timer);
7740	del_timer_sync(&adapter->phy_info_timer);
7741
7742	cancel_work_sync(&adapter->reset_task);
7743	cancel_work_sync(&adapter->watchdog_task);
7744	cancel_work_sync(&adapter->downshift_task);
7745	cancel_work_sync(&adapter->update_phy_task);
7746	cancel_work_sync(&adapter->print_hang_task);
7747
7748	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7749		cancel_work_sync(&adapter->tx_hwtstamp_work);
7750		if (adapter->tx_hwtstamp_skb) {
7751			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7752			adapter->tx_hwtstamp_skb = NULL;
7753		}
7754	}
7755
7756	unregister_netdev(netdev);
7757
7758	if (pci_dev_run_wake(pdev))
7759		pm_runtime_get_noresume(&pdev->dev);
7760
7761	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7762	 * would have already happened in close and is redundant.
7763	 */
7764	e1000e_release_hw_control(adapter);
7765
7766	e1000e_reset_interrupt_capability(adapter);
7767	kfree(adapter->tx_ring);
7768	kfree(adapter->rx_ring);
7769
7770	iounmap(adapter->hw.hw_addr);
7771	if ((adapter->hw.flash_address) &&
7772	    (adapter->hw.mac.type < e1000_pch_spt))
7773		iounmap(adapter->hw.flash_address);
7774	pci_release_mem_regions(pdev);
7775
7776	free_netdev(netdev);
7777
7778	/* AER disable */
7779	pci_disable_pcie_error_reporting(pdev);
7780
7781	pci_disable_device(pdev);
7782}
7783
7784/* PCI Error Recovery (ERS) */
7785static const struct pci_error_handlers e1000_err_handler = {
7786	.error_detected = e1000_io_error_detected,
7787	.slot_reset = e1000_io_slot_reset,
7788	.resume = e1000_io_resume,
7789};
7790
7791static const struct pci_device_id e1000_pci_tbl[] = {
7792	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7793	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7796	  board_82571 },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7798	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7802
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7804	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7807
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7809	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7811
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7813	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7815
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7817	  board_80003es2lan },
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7819	  board_80003es2lan },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7821	  board_80003es2lan },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7823	  board_80003es2lan },
7824
7825	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7826	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7833
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7835	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7843
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7845	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7847
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7849	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7851
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7853	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7856
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7858	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7859
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7861	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7862	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7865	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7866	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7867	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7868	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7869	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7870	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7871	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7872	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7873	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7874	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7875	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7876	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7877	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7878	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7879	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7880	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7881	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7882	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7883	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7886	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7887	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7888	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7889	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7890	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7891	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7892	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7893	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7894	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7895	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7896	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7897	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7898	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7899	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7900	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7901	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7902	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7903	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7904	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
 
 
7905	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7906	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7907	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7908	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7909	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7910	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7911	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7912	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7913	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7914	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7915	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7916	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7917	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7918	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7919	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7920	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
 
 
7921
7922	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7923};
7924MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7925
7926static const struct dev_pm_ops e1000_pm_ops = {
7927#ifdef CONFIG_PM_SLEEP
7928	.prepare	= e1000e_pm_prepare,
7929	.suspend	= e1000e_pm_suspend,
7930	.resume		= e1000e_pm_resume,
7931	.freeze		= e1000e_pm_freeze,
7932	.thaw		= e1000e_pm_thaw,
7933	.poweroff	= e1000e_pm_suspend,
7934	.restore	= e1000e_pm_resume,
7935#endif
7936	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7937			   e1000e_pm_runtime_idle)
7938};
7939
7940/* PCI Device API Driver */
7941static struct pci_driver e1000_driver = {
7942	.name     = e1000e_driver_name,
7943	.id_table = e1000_pci_tbl,
7944	.probe    = e1000_probe,
7945	.remove   = e1000_remove,
7946	.driver   = {
7947		.pm = &e1000_pm_ops,
7948	},
7949	.shutdown = e1000_shutdown,
7950	.err_handler = &e1000_err_handler
7951};
7952
7953/**
7954 * e1000_init_module - Driver Registration Routine
7955 *
7956 * e1000_init_module is the first routine called when the driver is
7957 * loaded. All it does is register with the PCI subsystem.
7958 **/
7959static int __init e1000_init_module(void)
7960{
7961	pr_info("Intel(R) PRO/1000 Network Driver\n");
7962	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7963
7964	return pci_register_driver(&e1000_driver);
7965}
7966module_init(e1000_init_module);
7967
7968/**
7969 * e1000_exit_module - Driver Exit Cleanup Routine
7970 *
7971 * e1000_exit_module is called just before the driver is removed
7972 * from memory.
7973 **/
7974static void __exit e1000_exit_module(void)
7975{
7976	pci_unregister_driver(&e1000_driver);
7977}
7978module_exit(e1000_exit_module);
7979
7980MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7981MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7982MODULE_LICENSE("GPL v2");
7983
7984/* netdev.c */