Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/prefetch.h>
  27#include <linux/suspend.h>
  28
  29#include "e1000.h"
  30#define CREATE_TRACE_POINTS
  31#include "e1000e_trace.h"
  32
  33char e1000e_driver_name[] = "e1000e";
  34
  35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  36static int debug = -1;
  37module_param(debug, int, 0);
  38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  39
  40static const struct e1000_info *e1000_info_tbl[] = {
  41	[board_82571]		= &e1000_82571_info,
  42	[board_82572]		= &e1000_82572_info,
  43	[board_82573]		= &e1000_82573_info,
  44	[board_82574]		= &e1000_82574_info,
  45	[board_82583]		= &e1000_82583_info,
  46	[board_80003es2lan]	= &e1000_es2_info,
  47	[board_ich8lan]		= &e1000_ich8_info,
  48	[board_ich9lan]		= &e1000_ich9_info,
  49	[board_ich10lan]	= &e1000_ich10_info,
  50	[board_pchlan]		= &e1000_pch_info,
  51	[board_pch2lan]		= &e1000_pch2_info,
  52	[board_pch_lpt]		= &e1000_pch_lpt_info,
  53	[board_pch_spt]		= &e1000_pch_spt_info,
  54	[board_pch_cnp]		= &e1000_pch_cnp_info,
  55	[board_pch_tgp]		= &e1000_pch_tgp_info,
  56	[board_pch_adp]		= &e1000_pch_adp_info,
  57	[board_pch_mtp]		= &e1000_pch_mtp_info,
  58};
  59
  60struct e1000_reg_info {
  61	u32 ofs;
  62	char *name;
  63};
  64
  65static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  66	/* General Registers */
  67	{E1000_CTRL, "CTRL"},
  68	{E1000_STATUS, "STATUS"},
  69	{E1000_CTRL_EXT, "CTRL_EXT"},
  70
  71	/* Interrupt Registers */
  72	{E1000_ICR, "ICR"},
  73
  74	/* Rx Registers */
  75	{E1000_RCTL, "RCTL"},
  76	{E1000_RDLEN(0), "RDLEN"},
  77	{E1000_RDH(0), "RDH"},
  78	{E1000_RDT(0), "RDT"},
  79	{E1000_RDTR, "RDTR"},
  80	{E1000_RXDCTL(0), "RXDCTL"},
  81	{E1000_ERT, "ERT"},
  82	{E1000_RDBAL(0), "RDBAL"},
  83	{E1000_RDBAH(0), "RDBAH"},
  84	{E1000_RDFH, "RDFH"},
  85	{E1000_RDFT, "RDFT"},
  86	{E1000_RDFHS, "RDFHS"},
  87	{E1000_RDFTS, "RDFTS"},
  88	{E1000_RDFPC, "RDFPC"},
  89
  90	/* Tx Registers */
  91	{E1000_TCTL, "TCTL"},
  92	{E1000_TDBAL(0), "TDBAL"},
  93	{E1000_TDBAH(0), "TDBAH"},
  94	{E1000_TDLEN(0), "TDLEN"},
  95	{E1000_TDH(0), "TDH"},
  96	{E1000_TDT(0), "TDT"},
  97	{E1000_TIDV, "TIDV"},
  98	{E1000_TXDCTL(0), "TXDCTL"},
  99	{E1000_TADV, "TADV"},
 100	{E1000_TARC(0), "TARC"},
 101	{E1000_TDFH, "TDFH"},
 102	{E1000_TDFT, "TDFT"},
 103	{E1000_TDFHS, "TDFHS"},
 104	{E1000_TDFTS, "TDFTS"},
 105	{E1000_TDFPC, "TDFPC"},
 106
 107	/* List Terminator */
 108	{0, NULL}
 109};
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111/**
 112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 113 * @hw: pointer to the HW structure
 114 *
 115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 116 * be accessing the registers at the same time.  Normally, this is handled in
 117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 118 * accesses later than it should which could result in the register to have
 119 * an incorrect value.  Workaround this by checking the FWSM register which
 120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 121 * and try again a number of times.
 122 **/
 123static void __ew32_prepare(struct e1000_hw *hw)
 124{
 125	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 126
 127	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 128		udelay(50);
 129}
 130
 131void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 132{
 133	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 134		__ew32_prepare(hw);
 135
 136	writel(val, hw->hw_addr + reg);
 137}
 138
 139/**
 140 * e1000_regdump - register printout routine
 141 * @hw: pointer to the HW structure
 142 * @reginfo: pointer to the register info table
 143 **/
 144static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 145{
 146	int n = 0;
 147	char rname[16];
 148	u32 regs[8];
 149
 150	switch (reginfo->ofs) {
 151	case E1000_RXDCTL(0):
 152		for (n = 0; n < 2; n++)
 153			regs[n] = __er32(hw, E1000_RXDCTL(n));
 154		break;
 155	case E1000_TXDCTL(0):
 156		for (n = 0; n < 2; n++)
 157			regs[n] = __er32(hw, E1000_TXDCTL(n));
 158		break;
 159	case E1000_TARC(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_TARC(n));
 162		break;
 163	default:
 164		pr_info("%-15s %08x\n",
 165			reginfo->name, __er32(hw, reginfo->ofs));
 166		return;
 167	}
 168
 169	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 170	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 171}
 172
 173static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 174				 struct e1000_buffer *bi)
 175{
 176	int i;
 177	struct e1000_ps_page *ps_page;
 178
 179	for (i = 0; i < adapter->rx_ps_pages; i++) {
 180		ps_page = &bi->ps_pages[i];
 181
 182		if (ps_page->page) {
 183			pr_info("packet dump for ps_page %d:\n", i);
 184			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 185				       16, 1, page_address(ps_page->page),
 186				       PAGE_SIZE, true);
 187		}
 188	}
 189}
 190
 191/**
 192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 193 * @adapter: board private structure
 194 **/
 195static void e1000e_dump(struct e1000_adapter *adapter)
 196{
 197	struct net_device *netdev = adapter->netdev;
 198	struct e1000_hw *hw = &adapter->hw;
 199	struct e1000_reg_info *reginfo;
 200	struct e1000_ring *tx_ring = adapter->tx_ring;
 201	struct e1000_tx_desc *tx_desc;
 202	struct my_u0 {
 203		__le64 a;
 204		__le64 b;
 205	} *u0;
 206	struct e1000_buffer *buffer_info;
 207	struct e1000_ring *rx_ring = adapter->rx_ring;
 208	union e1000_rx_desc_packet_split *rx_desc_ps;
 209	union e1000_rx_desc_extended *rx_desc;
 210	struct my_u1 {
 211		__le64 a;
 212		__le64 b;
 213		__le64 c;
 214		__le64 d;
 215	} *u1;
 216	u32 staterr;
 217	int i = 0;
 218
 219	if (!netif_msg_hw(adapter))
 220		return;
 221
 222	/* Print netdevice Info */
 223	if (netdev) {
 224		dev_info(&adapter->pdev->dev, "Net device Info\n");
 225		pr_info("Device Name     state            trans_start\n");
 226		pr_info("%-15s %016lX %016lX\n", netdev->name,
 227			netdev->state, dev_trans_start(netdev));
 228	}
 229
 230	/* Print Registers */
 231	dev_info(&adapter->pdev->dev, "Register Dump\n");
 232	pr_info(" Register Name   Value\n");
 233	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 234	     reginfo->name; reginfo++) {
 235		e1000_regdump(hw, reginfo);
 236	}
 237
 238	/* Print Tx Ring Summary */
 239	if (!netdev || !netif_running(netdev))
 240		return;
 241
 242	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 243	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 244	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 245	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 246		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 247		(unsigned long long)buffer_info->dma,
 248		buffer_info->length,
 249		buffer_info->next_to_watch,
 250		(unsigned long long)buffer_info->time_stamp);
 251
 252	/* Print Tx Ring */
 253	if (!netif_msg_tx_done(adapter))
 254		goto rx_ring_summary;
 255
 256	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 257
 258	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 259	 *
 260	 * Legacy Transmit Descriptor
 261	 *   +--------------------------------------------------------------+
 262	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 263	 *   +--------------------------------------------------------------+
 264	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 265	 *   +--------------------------------------------------------------+
 266	 *   63       48 47        36 35    32 31     24 23    16 15        0
 267	 *
 268	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 269	 *   63      48 47    40 39       32 31             16 15    8 7      0
 270	 *   +----------------------------------------------------------------+
 271	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 272	 *   +----------------------------------------------------------------+
 273	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 274	 *   +----------------------------------------------------------------+
 275	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 276	 *
 277	 * Extended Data Descriptor (DTYP=0x1)
 278	 *   +----------------------------------------------------------------+
 279	 * 0 |                     Buffer Address [63:0]                      |
 280	 *   +----------------------------------------------------------------+
 281	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 282	 *   +----------------------------------------------------------------+
 283	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 284	 */
 285	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 286	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 287	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 288	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 289		const char *next_desc;
 290		tx_desc = E1000_TX_DESC(*tx_ring, i);
 291		buffer_info = &tx_ring->buffer_info[i];
 292		u0 = (struct my_u0 *)tx_desc;
 293		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 294			next_desc = " NTC/U";
 295		else if (i == tx_ring->next_to_use)
 296			next_desc = " NTU";
 297		else if (i == tx_ring->next_to_clean)
 298			next_desc = " NTC";
 299		else
 300			next_desc = "";
 301		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 302			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 303			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 304			i,
 305			(unsigned long long)le64_to_cpu(u0->a),
 306			(unsigned long long)le64_to_cpu(u0->b),
 307			(unsigned long long)buffer_info->dma,
 308			buffer_info->length, buffer_info->next_to_watch,
 309			(unsigned long long)buffer_info->time_stamp,
 310			buffer_info->skb, next_desc);
 311
 312		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 313			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 314				       16, 1, buffer_info->skb->data,
 315				       buffer_info->skb->len, true);
 316	}
 317
 318	/* Print Rx Ring Summary */
 319rx_ring_summary:
 320	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 321	pr_info("Queue [NTU] [NTC]\n");
 322	pr_info(" %5d %5X %5X\n",
 323		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 324
 325	/* Print Rx Ring */
 326	if (!netif_msg_rx_status(adapter))
 327		return;
 328
 329	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 330	switch (adapter->rx_ps_pages) {
 331	case 1:
 332	case 2:
 333	case 3:
 334		/* [Extended] Packet Split Receive Descriptor Format
 335		 *
 336		 *    +-----------------------------------------------------+
 337		 *  0 |                Buffer Address 0 [63:0]              |
 338		 *    +-----------------------------------------------------+
 339		 *  8 |                Buffer Address 1 [63:0]              |
 340		 *    +-----------------------------------------------------+
 341		 * 16 |                Buffer Address 2 [63:0]              |
 342		 *    +-----------------------------------------------------+
 343		 * 24 |                Buffer Address 3 [63:0]              |
 344		 *    +-----------------------------------------------------+
 345		 */
 346		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 347		/* [Extended] Receive Descriptor (Write-Back) Format
 348		 *
 349		 *   63       48 47    32 31     13 12    8 7    4 3        0
 350		 *   +------------------------------------------------------+
 351		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 352		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 353		 *   +------------------------------------------------------+
 354		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 355		 *   +------------------------------------------------------+
 356		 *   63       48 47    32 31            20 19               0
 357		 */
 358		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 359		for (i = 0; i < rx_ring->count; i++) {
 360			const char *next_desc;
 361			buffer_info = &rx_ring->buffer_info[i];
 362			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 363			u1 = (struct my_u1 *)rx_desc_ps;
 364			staterr =
 365			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 366
 367			if (i == rx_ring->next_to_use)
 368				next_desc = " NTU";
 369			else if (i == rx_ring->next_to_clean)
 370				next_desc = " NTC";
 371			else
 372				next_desc = "";
 373
 374			if (staterr & E1000_RXD_STAT_DD) {
 375				/* Descriptor Done */
 376				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 377					"RWB", i,
 378					(unsigned long long)le64_to_cpu(u1->a),
 379					(unsigned long long)le64_to_cpu(u1->b),
 380					(unsigned long long)le64_to_cpu(u1->c),
 381					(unsigned long long)le64_to_cpu(u1->d),
 382					buffer_info->skb, next_desc);
 383			} else {
 384				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 385					"R  ", i,
 386					(unsigned long long)le64_to_cpu(u1->a),
 387					(unsigned long long)le64_to_cpu(u1->b),
 388					(unsigned long long)le64_to_cpu(u1->c),
 389					(unsigned long long)le64_to_cpu(u1->d),
 390					(unsigned long long)buffer_info->dma,
 391					buffer_info->skb, next_desc);
 392
 393				if (netif_msg_pktdata(adapter))
 394					e1000e_dump_ps_pages(adapter,
 395							     buffer_info);
 396			}
 397		}
 398		break;
 399	default:
 400	case 0:
 401		/* Extended Receive Descriptor (Read) Format
 402		 *
 403		 *   +-----------------------------------------------------+
 404		 * 0 |                Buffer Address [63:0]                |
 405		 *   +-----------------------------------------------------+
 406		 * 8 |                      Reserved                       |
 407		 *   +-----------------------------------------------------+
 408		 */
 409		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 410		/* Extended Receive Descriptor (Write-Back) Format
 411		 *
 412		 *   63       48 47    32 31    24 23            4 3        0
 413		 *   +------------------------------------------------------+
 414		 *   |     RSS Hash      |        |               |         |
 415		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 416		 *   | Packet   | IP     |        |               |  Type   |
 417		 *   | Checksum | Ident  |        |               |         |
 418		 *   +------------------------------------------------------+
 419		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 420		 *   +------------------------------------------------------+
 421		 *   63       48 47    32 31            20 19               0
 422		 */
 423		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 424
 425		for (i = 0; i < rx_ring->count; i++) {
 426			const char *next_desc;
 427
 428			buffer_info = &rx_ring->buffer_info[i];
 429			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 430			u1 = (struct my_u1 *)rx_desc;
 431			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 432
 433			if (i == rx_ring->next_to_use)
 434				next_desc = " NTU";
 435			else if (i == rx_ring->next_to_clean)
 436				next_desc = " NTC";
 437			else
 438				next_desc = "";
 439
 440			if (staterr & E1000_RXD_STAT_DD) {
 441				/* Descriptor Done */
 442				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 443					"RWB", i,
 444					(unsigned long long)le64_to_cpu(u1->a),
 445					(unsigned long long)le64_to_cpu(u1->b),
 446					buffer_info->skb, next_desc);
 447			} else {
 448				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 449					"R  ", i,
 450					(unsigned long long)le64_to_cpu(u1->a),
 451					(unsigned long long)le64_to_cpu(u1->b),
 452					(unsigned long long)buffer_info->dma,
 453					buffer_info->skb, next_desc);
 454
 455				if (netif_msg_pktdata(adapter) &&
 456				    buffer_info->skb)
 457					print_hex_dump(KERN_INFO, "",
 458						       DUMP_PREFIX_ADDRESS, 16,
 459						       1,
 460						       buffer_info->skb->data,
 461						       adapter->rx_buffer_len,
 462						       true);
 463			}
 464		}
 465	}
 466}
 467
 468/**
 469 * e1000_desc_unused - calculate if we have unused descriptors
 470 * @ring: pointer to ring struct to perform calculation on
 471 **/
 472static int e1000_desc_unused(struct e1000_ring *ring)
 473{
 474	if (ring->next_to_clean > ring->next_to_use)
 475		return ring->next_to_clean - ring->next_to_use - 1;
 476
 477	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 478}
 479
 480/**
 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 482 * @adapter: board private structure
 483 * @hwtstamps: time stamp structure to update
 484 * @systim: unsigned 64bit system time value.
 485 *
 486 * Convert the system time value stored in the RX/TXSTMP registers into a
 487 * hwtstamp which can be used by the upper level time stamping functions.
 488 *
 489 * The 'systim_lock' spinlock is used to protect the consistency of the
 490 * system time value. This is needed because reading the 64 bit time
 491 * value involves reading two 32 bit registers. The first read latches the
 492 * value.
 493 **/
 494static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 495				      struct skb_shared_hwtstamps *hwtstamps,
 496				      u64 systim)
 497{
 498	u64 ns;
 499	unsigned long flags;
 500
 501	spin_lock_irqsave(&adapter->systim_lock, flags);
 502	ns = timecounter_cyc2time(&adapter->tc, systim);
 503	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 504
 505	memset(hwtstamps, 0, sizeof(*hwtstamps));
 506	hwtstamps->hwtstamp = ns_to_ktime(ns);
 507}
 508
 509/**
 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 511 * @adapter: board private structure
 512 * @status: descriptor extended error and status field
 513 * @skb: particular skb to include time stamp
 514 *
 515 * If the time stamp is valid, convert it into the timecounter ns value
 516 * and store that result into the shhwtstamps structure which is passed
 517 * up the network stack.
 518 **/
 519static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 520			       struct sk_buff *skb)
 521{
 522	struct e1000_hw *hw = &adapter->hw;
 523	u64 rxstmp;
 524
 525	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 526	    !(status & E1000_RXDEXT_STATERR_TST) ||
 527	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 528		return;
 529
 530	/* The Rx time stamp registers contain the time stamp.  No other
 531	 * received packet will be time stamped until the Rx time stamp
 532	 * registers are read.  Because only one packet can be time stamped
 533	 * at a time, the register values must belong to this packet and
 534	 * therefore none of the other additional attributes need to be
 535	 * compared.
 536	 */
 537	rxstmp = (u64)er32(RXSTMPL);
 538	rxstmp |= (u64)er32(RXSTMPH) << 32;
 539	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 540
 541	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 542}
 543
 544/**
 545 * e1000_receive_skb - helper function to handle Rx indications
 546 * @adapter: board private structure
 547 * @netdev: pointer to netdev struct
 548 * @staterr: descriptor extended error and status field as written by hardware
 549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 550 * @skb: pointer to sk_buff to be indicated to stack
 551 **/
 552static void e1000_receive_skb(struct e1000_adapter *adapter,
 553			      struct net_device *netdev, struct sk_buff *skb,
 554			      u32 staterr, __le16 vlan)
 555{
 556	u16 tag = le16_to_cpu(vlan);
 557
 558	e1000e_rx_hwtstamp(adapter, staterr, skb);
 559
 560	skb->protocol = eth_type_trans(skb, netdev);
 561
 562	if (staterr & E1000_RXD_STAT_VP)
 563		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 564
 565	napi_gro_receive(&adapter->napi, skb);
 566}
 567
 568/**
 569 * e1000_rx_checksum - Receive Checksum Offload
 570 * @adapter: board private structure
 571 * @status_err: receive descriptor status and error fields
 572 * @skb: socket buffer with received data
 
 573 **/
 574static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 575			      struct sk_buff *skb)
 576{
 577	u16 status = (u16)status_err;
 578	u8 errors = (u8)(status_err >> 24);
 579
 580	skb_checksum_none_assert(skb);
 581
 582	/* Rx checksum disabled */
 583	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 584		return;
 585
 586	/* Ignore Checksum bit is set */
 587	if (status & E1000_RXD_STAT_IXSM)
 588		return;
 589
 590	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 591	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 592		/* let the stack verify checksum errors */
 593		adapter->hw_csum_err++;
 594		return;
 595	}
 596
 597	/* TCP/UDP Checksum has not been calculated */
 598	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 599		return;
 600
 601	/* It must be a TCP or UDP packet with a valid checksum */
 602	skb->ip_summed = CHECKSUM_UNNECESSARY;
 603	adapter->hw_csum_good++;
 604}
 605
 606static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 607{
 608	struct e1000_adapter *adapter = rx_ring->adapter;
 609	struct e1000_hw *hw = &adapter->hw;
 610
 611	__ew32_prepare(hw);
 612	writel(i, rx_ring->tail);
 613
 614	if (unlikely(i != readl(rx_ring->tail))) {
 615		u32 rctl = er32(RCTL);
 616
 617		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 618		e_err("ME firmware caused invalid RDT - resetting\n");
 619		schedule_work(&adapter->reset_task);
 620	}
 621}
 622
 623static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 624{
 625	struct e1000_adapter *adapter = tx_ring->adapter;
 626	struct e1000_hw *hw = &adapter->hw;
 627
 628	__ew32_prepare(hw);
 629	writel(i, tx_ring->tail);
 630
 631	if (unlikely(i != readl(tx_ring->tail))) {
 632		u32 tctl = er32(TCTL);
 633
 634		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 635		e_err("ME firmware caused invalid TDT - resetting\n");
 636		schedule_work(&adapter->reset_task);
 637	}
 638}
 639
 640/**
 641 * e1000_alloc_rx_buffers - Replace used receive buffers
 642 * @rx_ring: Rx descriptor ring
 643 * @cleaned_count: number to reallocate
 644 * @gfp: flags for allocation
 645 **/
 646static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 647				   int cleaned_count, gfp_t gfp)
 648{
 649	struct e1000_adapter *adapter = rx_ring->adapter;
 650	struct net_device *netdev = adapter->netdev;
 651	struct pci_dev *pdev = adapter->pdev;
 652	union e1000_rx_desc_extended *rx_desc;
 653	struct e1000_buffer *buffer_info;
 654	struct sk_buff *skb;
 655	unsigned int i;
 656	unsigned int bufsz = adapter->rx_buffer_len;
 657
 658	i = rx_ring->next_to_use;
 659	buffer_info = &rx_ring->buffer_info[i];
 660
 661	while (cleaned_count--) {
 662		skb = buffer_info->skb;
 663		if (skb) {
 664			skb_trim(skb, 0);
 665			goto map_skb;
 666		}
 667
 668		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 669		if (!skb) {
 670			/* Better luck next round */
 671			adapter->alloc_rx_buff_failed++;
 672			break;
 673		}
 674
 675		buffer_info->skb = skb;
 676map_skb:
 677		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 678						  adapter->rx_buffer_len,
 679						  DMA_FROM_DEVICE);
 680		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 681			dev_err(&pdev->dev, "Rx DMA map failed\n");
 682			adapter->rx_dma_failed++;
 683			break;
 684		}
 685
 686		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 687		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 688
 689		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 690			/* Force memory writes to complete before letting h/w
 691			 * know there are new descriptors to fetch.  (Only
 692			 * applicable for weak-ordered memory model archs,
 693			 * such as IA-64).
 694			 */
 695			wmb();
 696			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 697				e1000e_update_rdt_wa(rx_ring, i);
 698			else
 699				writel(i, rx_ring->tail);
 700		}
 701		i++;
 702		if (i == rx_ring->count)
 703			i = 0;
 704		buffer_info = &rx_ring->buffer_info[i];
 705	}
 706
 707	rx_ring->next_to_use = i;
 708}
 709
 710/**
 711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 712 * @rx_ring: Rx descriptor ring
 713 * @cleaned_count: number to reallocate
 714 * @gfp: flags for allocation
 715 **/
 716static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 717				      int cleaned_count, gfp_t gfp)
 718{
 719	struct e1000_adapter *adapter = rx_ring->adapter;
 720	struct net_device *netdev = adapter->netdev;
 721	struct pci_dev *pdev = adapter->pdev;
 722	union e1000_rx_desc_packet_split *rx_desc;
 723	struct e1000_buffer *buffer_info;
 724	struct e1000_ps_page *ps_page;
 725	struct sk_buff *skb;
 726	unsigned int i, j;
 727
 728	i = rx_ring->next_to_use;
 729	buffer_info = &rx_ring->buffer_info[i];
 730
 731	while (cleaned_count--) {
 732		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 733
 734		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 735			ps_page = &buffer_info->ps_pages[j];
 736			if (j >= adapter->rx_ps_pages) {
 737				/* all unused desc entries get hw null ptr */
 738				rx_desc->read.buffer_addr[j + 1] =
 739				    ~cpu_to_le64(0);
 740				continue;
 741			}
 742			if (!ps_page->page) {
 743				ps_page->page = alloc_page(gfp);
 744				if (!ps_page->page) {
 745					adapter->alloc_rx_buff_failed++;
 746					goto no_buffers;
 747				}
 748				ps_page->dma = dma_map_page(&pdev->dev,
 749							    ps_page->page,
 750							    0, PAGE_SIZE,
 751							    DMA_FROM_DEVICE);
 752				if (dma_mapping_error(&pdev->dev,
 753						      ps_page->dma)) {
 754					dev_err(&adapter->pdev->dev,
 755						"Rx DMA page map failed\n");
 756					adapter->rx_dma_failed++;
 757					goto no_buffers;
 758				}
 759			}
 760			/* Refresh the desc even if buffer_addrs
 761			 * didn't change because each write-back
 762			 * erases this info.
 763			 */
 764			rx_desc->read.buffer_addr[j + 1] =
 765			    cpu_to_le64(ps_page->dma);
 766		}
 767
 768		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 769						  gfp);
 770
 771		if (!skb) {
 772			adapter->alloc_rx_buff_failed++;
 773			break;
 774		}
 775
 776		buffer_info->skb = skb;
 777		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 778						  adapter->rx_ps_bsize0,
 779						  DMA_FROM_DEVICE);
 780		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 781			dev_err(&pdev->dev, "Rx DMA map failed\n");
 782			adapter->rx_dma_failed++;
 783			/* cleanup skb */
 784			dev_kfree_skb_any(skb);
 785			buffer_info->skb = NULL;
 786			break;
 787		}
 788
 789		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 792			/* Force memory writes to complete before letting h/w
 793			 * know there are new descriptors to fetch.  (Only
 794			 * applicable for weak-ordered memory model archs,
 795			 * such as IA-64).
 796			 */
 797			wmb();
 798			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 799				e1000e_update_rdt_wa(rx_ring, i << 1);
 800			else
 801				writel(i << 1, rx_ring->tail);
 802		}
 803
 804		i++;
 805		if (i == rx_ring->count)
 806			i = 0;
 807		buffer_info = &rx_ring->buffer_info[i];
 808	}
 809
 810no_buffers:
 811	rx_ring->next_to_use = i;
 812}
 813
 814/**
 815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 816 * @rx_ring: Rx descriptor ring
 817 * @cleaned_count: number of buffers to allocate this pass
 818 * @gfp: flags for allocation
 819 **/
 820
 821static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 822					 int cleaned_count, gfp_t gfp)
 823{
 824	struct e1000_adapter *adapter = rx_ring->adapter;
 825	struct net_device *netdev = adapter->netdev;
 826	struct pci_dev *pdev = adapter->pdev;
 827	union e1000_rx_desc_extended *rx_desc;
 828	struct e1000_buffer *buffer_info;
 829	struct sk_buff *skb;
 830	unsigned int i;
 831	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 832
 833	i = rx_ring->next_to_use;
 834	buffer_info = &rx_ring->buffer_info[i];
 835
 836	while (cleaned_count--) {
 837		skb = buffer_info->skb;
 838		if (skb) {
 839			skb_trim(skb, 0);
 840			goto check_page;
 841		}
 842
 843		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 844		if (unlikely(!skb)) {
 845			/* Better luck next round */
 846			adapter->alloc_rx_buff_failed++;
 847			break;
 848		}
 849
 850		buffer_info->skb = skb;
 851check_page:
 852		/* allocate a new page if necessary */
 853		if (!buffer_info->page) {
 854			buffer_info->page = alloc_page(gfp);
 855			if (unlikely(!buffer_info->page)) {
 856				adapter->alloc_rx_buff_failed++;
 857				break;
 858			}
 859		}
 860
 861		if (!buffer_info->dma) {
 862			buffer_info->dma = dma_map_page(&pdev->dev,
 863							buffer_info->page, 0,
 864							PAGE_SIZE,
 865							DMA_FROM_DEVICE);
 866			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 867				adapter->alloc_rx_buff_failed++;
 868				break;
 869			}
 870		}
 871
 872		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 873		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 874
 875		if (unlikely(++i == rx_ring->count))
 876			i = 0;
 877		buffer_info = &rx_ring->buffer_info[i];
 878	}
 879
 880	if (likely(rx_ring->next_to_use != i)) {
 881		rx_ring->next_to_use = i;
 882		if (unlikely(i-- == 0))
 883			i = (rx_ring->count - 1);
 884
 885		/* Force memory writes to complete before letting h/w
 886		 * know there are new descriptors to fetch.  (Only
 887		 * applicable for weak-ordered memory model archs,
 888		 * such as IA-64).
 889		 */
 890		wmb();
 891		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 892			e1000e_update_rdt_wa(rx_ring, i);
 893		else
 894			writel(i, rx_ring->tail);
 895	}
 896}
 897
 898static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 899				 struct sk_buff *skb)
 900{
 901	if (netdev->features & NETIF_F_RXHASH)
 902		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 903}
 904
 905/**
 906 * e1000_clean_rx_irq - Send received data up the network stack
 907 * @rx_ring: Rx descriptor ring
 908 * @work_done: output parameter for indicating completed work
 909 * @work_to_do: how many packets we can clean
 910 *
 911 * the return value indicates whether actual cleaning was done, there
 912 * is no guarantee that everything was cleaned
 913 **/
 914static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 915			       int work_to_do)
 916{
 917	struct e1000_adapter *adapter = rx_ring->adapter;
 918	struct net_device *netdev = adapter->netdev;
 919	struct pci_dev *pdev = adapter->pdev;
 920	struct e1000_hw *hw = &adapter->hw;
 921	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 922	struct e1000_buffer *buffer_info, *next_buffer;
 923	u32 length, staterr;
 924	unsigned int i;
 925	int cleaned_count = 0;
 926	bool cleaned = false;
 927	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 928
 929	i = rx_ring->next_to_clean;
 930	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 931	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 932	buffer_info = &rx_ring->buffer_info[i];
 933
 934	while (staterr & E1000_RXD_STAT_DD) {
 935		struct sk_buff *skb;
 936
 937		if (*work_done >= work_to_do)
 938			break;
 939		(*work_done)++;
 940		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 941
 942		skb = buffer_info->skb;
 943		buffer_info->skb = NULL;
 944
 945		prefetch(skb->data - NET_IP_ALIGN);
 946
 947		i++;
 948		if (i == rx_ring->count)
 949			i = 0;
 950		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 951		prefetch(next_rxd);
 952
 953		next_buffer = &rx_ring->buffer_info[i];
 954
 955		cleaned = true;
 956		cleaned_count++;
 957		dma_unmap_single(&pdev->dev, buffer_info->dma,
 958				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 959		buffer_info->dma = 0;
 960
 961		length = le16_to_cpu(rx_desc->wb.upper.length);
 962
 963		/* !EOP means multiple descriptors were used to store a single
 964		 * packet, if that's the case we need to toss it.  In fact, we
 965		 * need to toss every packet with the EOP bit clear and the
 966		 * next frame that _does_ have the EOP bit set, as it is by
 967		 * definition only a frame fragment
 968		 */
 969		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 970			adapter->flags2 |= FLAG2_IS_DISCARDING;
 971
 972		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 973			/* All receives must fit into a single buffer */
 974			e_dbg("Receive packet consumed multiple buffers\n");
 975			/* recycle */
 976			buffer_info->skb = skb;
 977			if (staterr & E1000_RXD_STAT_EOP)
 978				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 979			goto next_desc;
 980		}
 981
 982		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 983			     !(netdev->features & NETIF_F_RXALL))) {
 984			/* recycle */
 985			buffer_info->skb = skb;
 986			goto next_desc;
 987		}
 988
 989		/* adjust length to remove Ethernet CRC */
 990		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 991			/* If configured to store CRC, don't subtract FCS,
 992			 * but keep the FCS bytes out of the total_rx_bytes
 993			 * counter
 994			 */
 995			if (netdev->features & NETIF_F_RXFCS)
 996				total_rx_bytes -= 4;
 997			else
 998				length -= 4;
 999		}
1000
1001		total_rx_bytes += length;
1002		total_rx_packets++;
1003
1004		/* code added for copybreak, this should improve
1005		 * performance for small packets with large amounts
1006		 * of reassembly being done in the stack
1007		 */
1008		if (length < copybreak) {
1009			struct sk_buff *new_skb =
1010				napi_alloc_skb(&adapter->napi, length);
1011			if (new_skb) {
1012				skb_copy_to_linear_data_offset(new_skb,
1013							       -NET_IP_ALIGN,
1014							       (skb->data -
1015								NET_IP_ALIGN),
1016							       (length +
1017								NET_IP_ALIGN));
1018				/* save the skb in buffer_info as good */
1019				buffer_info->skb = skb;
1020				skb = new_skb;
1021			}
1022			/* else just continue with the old one */
1023		}
1024		/* end copybreak code */
1025		skb_put(skb, length);
1026
1027		/* Receive Checksum Offload */
1028		e1000_rx_checksum(adapter, staterr, skb);
1029
1030		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032		e1000_receive_skb(adapter, netdev, skb, staterr,
1033				  rx_desc->wb.upper.vlan);
1034
1035next_desc:
1036		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038		/* return some buffers to hardware, one at a time is too slow */
1039		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041					      GFP_ATOMIC);
1042			cleaned_count = 0;
1043		}
1044
1045		/* use prefetched values */
1046		rx_desc = next_rxd;
1047		buffer_info = next_buffer;
1048
1049		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050	}
1051	rx_ring->next_to_clean = i;
1052
1053	cleaned_count = e1000_desc_unused(rx_ring);
1054	if (cleaned_count)
1055		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057	adapter->total_rx_bytes += total_rx_bytes;
1058	adapter->total_rx_packets += total_rx_packets;
1059	return cleaned;
1060}
1061
1062static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063			    struct e1000_buffer *buffer_info,
1064			    bool drop)
1065{
1066	struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068	if (buffer_info->dma) {
1069		if (buffer_info->mapped_as_page)
1070			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071				       buffer_info->length, DMA_TO_DEVICE);
1072		else
1073			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074					 buffer_info->length, DMA_TO_DEVICE);
1075		buffer_info->dma = 0;
1076	}
1077	if (buffer_info->skb) {
1078		if (drop)
1079			dev_kfree_skb_any(buffer_info->skb);
1080		else
1081			dev_consume_skb_any(buffer_info->skb);
1082		buffer_info->skb = NULL;
1083	}
1084	buffer_info->time_stamp = 0;
1085}
1086
1087static void e1000_print_hw_hang(struct work_struct *work)
1088{
1089	struct e1000_adapter *adapter = container_of(work,
1090						     struct e1000_adapter,
1091						     print_hang_task);
1092	struct net_device *netdev = adapter->netdev;
1093	struct e1000_ring *tx_ring = adapter->tx_ring;
1094	unsigned int i = tx_ring->next_to_clean;
1095	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097	struct e1000_hw *hw = &adapter->hw;
1098	u16 phy_status, phy_1000t_status, phy_ext_status;
1099	u16 pci_status;
1100
1101	if (test_bit(__E1000_DOWN, &adapter->state))
1102		return;
1103
1104	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105		/* May be block on write-back, flush and detect again
1106		 * flush pending descriptor writebacks to memory
1107		 */
1108		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109		/* execute the writes immediately */
1110		e1e_flush();
1111		/* Due to rare timing issues, write to TIDV again to ensure
1112		 * the write is successful
1113		 */
1114		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115		/* execute the writes immediately */
1116		e1e_flush();
1117		adapter->tx_hang_recheck = true;
1118		return;
1119	}
1120	adapter->tx_hang_recheck = false;
1121
1122	if (er32(TDH(0)) == er32(TDT(0))) {
1123		e_dbg("false hang detected, ignoring\n");
1124		return;
1125	}
1126
1127	/* Real hang detected */
1128	netif_stop_queue(netdev);
1129
1130	e1e_rphy(hw, MII_BMSR, &phy_status);
1131	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136	/* detected Hardware unit hang */
1137	e_err("Detected Hardware Unit Hang:\n"
1138	      "  TDH                  <%x>\n"
1139	      "  TDT                  <%x>\n"
1140	      "  next_to_use          <%x>\n"
1141	      "  next_to_clean        <%x>\n"
1142	      "buffer_info[next_to_clean]:\n"
1143	      "  time_stamp           <%lx>\n"
1144	      "  next_to_watch        <%x>\n"
1145	      "  jiffies              <%lx>\n"
1146	      "  next_to_watch.status <%x>\n"
1147	      "MAC Status             <%x>\n"
1148	      "PHY Status             <%x>\n"
1149	      "PHY 1000BASE-T Status  <%x>\n"
1150	      "PHY Extended Status    <%x>\n"
1151	      "PCI Status             <%x>\n",
1152	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157	e1000e_dump(adapter);
1158
1159	/* Suggest workaround for known h/w issue */
1160	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162}
1163
1164/**
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1167 *
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb.  The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1171 */
1172static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173{
1174	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175						     tx_hwtstamp_work);
1176	struct e1000_hw *hw = &adapter->hw;
1177
1178	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180		struct skb_shared_hwtstamps shhwtstamps;
1181		u64 txstmp;
1182
1183		txstmp = er32(TXSTMPL);
1184		txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189		 * prior to notifying the stack of a Tx timestamp.
1190		 */
1191		adapter->tx_hwtstamp_skb = NULL;
1192		wmb(); /* force write prior to skb_tstamp_tx */
1193
1194		skb_tstamp_tx(skb, &shhwtstamps);
1195		dev_consume_skb_any(skb);
1196	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197			      + adapter->tx_timeout_factor * HZ)) {
1198		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199		adapter->tx_hwtstamp_skb = NULL;
1200		adapter->tx_hwtstamp_timeouts++;
1201		e_warn("clearing Tx timestamp hang\n");
1202	} else {
1203		/* reschedule to check later */
1204		schedule_work(&adapter->tx_hwtstamp_work);
1205	}
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217	struct e1000_adapter *adapter = tx_ring->adapter;
1218	struct net_device *netdev = adapter->netdev;
1219	struct e1000_hw *hw = &adapter->hw;
1220	struct e1000_tx_desc *tx_desc, *eop_desc;
1221	struct e1000_buffer *buffer_info;
1222	unsigned int i, eop;
1223	unsigned int count = 0;
1224	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225	unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227	i = tx_ring->next_to_clean;
1228	eop = tx_ring->buffer_info[i].next_to_watch;
1229	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232	       (count < tx_ring->count)) {
1233		bool cleaned = false;
1234
1235		dma_rmb();		/* read buffer_info after eop_desc */
1236		for (; !cleaned; count++) {
1237			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238			buffer_info = &tx_ring->buffer_info[i];
1239			cleaned = (i == eop);
1240
1241			if (cleaned) {
1242				total_tx_packets += buffer_info->segs;
1243				total_tx_bytes += buffer_info->bytecount;
1244				if (buffer_info->skb) {
1245					bytes_compl += buffer_info->skb->len;
1246					pkts_compl++;
1247				}
1248			}
1249
1250			e1000_put_txbuf(tx_ring, buffer_info, false);
1251			tx_desc->upper.data = 0;
1252
1253			i++;
1254			if (i == tx_ring->count)
1255				i = 0;
1256		}
1257
1258		if (i == tx_ring->next_to_use)
1259			break;
1260		eop = tx_ring->buffer_info[i].next_to_watch;
1261		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262	}
1263
1264	tx_ring->next_to_clean = i;
1265
1266	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269	if (count && netif_carrier_ok(netdev) &&
1270	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271		/* Make sure that anybody stopping the queue after this
1272		 * sees the new next_to_clean.
1273		 */
1274		smp_mb();
1275
1276		if (netif_queue_stopped(netdev) &&
1277		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278			netif_wake_queue(netdev);
1279			++adapter->restart_queue;
1280		}
1281	}
1282
1283	if (adapter->detect_tx_hung) {
1284		/* Detect a transmit hang in hardware, this serializes the
1285		 * check with the clearing of time_stamp and movement of i
1286		 */
1287		adapter->detect_tx_hung = false;
1288		if (tx_ring->buffer_info[i].time_stamp &&
1289		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290			       + (adapter->tx_timeout_factor * HZ)) &&
1291		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292			schedule_work(&adapter->print_hang_task);
1293		else
1294			adapter->tx_hang_recheck = false;
1295	}
1296	adapter->total_tx_bytes += total_tx_bytes;
1297	adapter->total_tx_packets += total_tx_packets;
1298	return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1306 *
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1309 **/
1310static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311				  int work_to_do)
1312{
1313	struct e1000_adapter *adapter = rx_ring->adapter;
1314	struct e1000_hw *hw = &adapter->hw;
1315	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316	struct net_device *netdev = adapter->netdev;
1317	struct pci_dev *pdev = adapter->pdev;
1318	struct e1000_buffer *buffer_info, *next_buffer;
1319	struct e1000_ps_page *ps_page;
1320	struct sk_buff *skb;
1321	unsigned int i, j;
1322	u32 length, staterr;
1323	int cleaned_count = 0;
1324	bool cleaned = false;
1325	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327	i = rx_ring->next_to_clean;
1328	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330	buffer_info = &rx_ring->buffer_info[i];
1331
1332	while (staterr & E1000_RXD_STAT_DD) {
1333		if (*work_done >= work_to_do)
1334			break;
1335		(*work_done)++;
1336		skb = buffer_info->skb;
1337		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338
1339		/* in the packet split case this is header only */
1340		prefetch(skb->data - NET_IP_ALIGN);
1341
1342		i++;
1343		if (i == rx_ring->count)
1344			i = 0;
1345		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346		prefetch(next_rxd);
1347
1348		next_buffer = &rx_ring->buffer_info[i];
1349
1350		cleaned = true;
1351		cleaned_count++;
1352		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354		buffer_info->dma = 0;
1355
1356		/* see !EOP comment in other Rx routine */
1357		if (!(staterr & E1000_RXD_STAT_EOP))
1358			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362			dev_kfree_skb_irq(skb);
1363			if (staterr & E1000_RXD_STAT_EOP)
1364				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365			goto next_desc;
1366		}
1367
1368		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369			     !(netdev->features & NETIF_F_RXALL))) {
1370			dev_kfree_skb_irq(skb);
1371			goto next_desc;
1372		}
1373
1374		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376		if (!length) {
1377			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378			dev_kfree_skb_irq(skb);
1379			goto next_desc;
1380		}
1381
1382		/* Good Receive */
1383		skb_put(skb, length);
1384
1385		{
1386			/* this looks ugly, but it seems compiler issues make
1387			 * it more efficient than reusing j
1388			 */
1389			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391			/* page alloc/put takes too long and effects small
1392			 * packet throughput, so unsplit small packets and
1393			 * save the alloc/put
 
1394			 */
1395			if (l1 && (l1 <= copybreak) &&
1396			    ((length + l1) <= adapter->rx_ps_bsize0)) {
 
 
1397				ps_page = &buffer_info->ps_pages[0];
1398
 
 
 
 
1399				dma_sync_single_for_cpu(&pdev->dev,
1400							ps_page->dma,
1401							PAGE_SIZE,
1402							DMA_FROM_DEVICE);
1403				memcpy(skb_tail_pointer(skb),
1404				       page_address(ps_page->page), l1);
 
1405				dma_sync_single_for_device(&pdev->dev,
1406							   ps_page->dma,
1407							   PAGE_SIZE,
1408							   DMA_FROM_DEVICE);
1409
1410				/* remove the CRC */
1411				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412					if (!(netdev->features & NETIF_F_RXFCS))
1413						l1 -= 4;
1414				}
1415
1416				skb_put(skb, l1);
1417				goto copydone;
1418			}	/* if */
1419		}
1420
1421		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423			if (!length)
1424				break;
1425
1426			ps_page = &buffer_info->ps_pages[j];
1427			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428				       DMA_FROM_DEVICE);
1429			ps_page->dma = 0;
1430			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431			ps_page->page = NULL;
1432			skb->len += length;
1433			skb->data_len += length;
1434			skb->truesize += PAGE_SIZE;
1435		}
1436
1437		/* strip the ethernet crc, problem is we're using pages now so
1438		 * this whole operation can get a little cpu intensive
1439		 */
1440		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441			if (!(netdev->features & NETIF_F_RXFCS))
1442				pskb_trim(skb, skb->len - 4);
1443		}
1444
1445copydone:
1446		total_rx_bytes += skb->len;
1447		total_rx_packets++;
1448
1449		e1000_rx_checksum(adapter, staterr, skb);
1450
1451		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453		if (rx_desc->wb.upper.header_status &
1454		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455			adapter->rx_hdr_split++;
1456
1457		e1000_receive_skb(adapter, netdev, skb, staterr,
1458				  rx_desc->wb.middle.vlan);
1459
1460next_desc:
1461		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462		buffer_info->skb = NULL;
1463
1464		/* return some buffers to hardware, one at a time is too slow */
1465		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467					      GFP_ATOMIC);
1468			cleaned_count = 0;
1469		}
1470
1471		/* use prefetched values */
1472		rx_desc = next_rxd;
1473		buffer_info = next_buffer;
1474
1475		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476	}
1477	rx_ring->next_to_clean = i;
1478
1479	cleaned_count = e1000_desc_unused(rx_ring);
1480	if (cleaned_count)
1481		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483	adapter->total_rx_bytes += total_rx_bytes;
1484	adapter->total_rx_packets += total_rx_packets;
1485	return cleaned;
1486}
1487
 
 
 
1488static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489			       u16 length)
1490{
1491	bi->page = NULL;
1492	skb->len += length;
1493	skb->data_len += length;
1494	skb->truesize += PAGE_SIZE;
1495}
1496
1497/**
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1502 *
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1505 **/
1506static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507				     int work_to_do)
1508{
1509	struct e1000_adapter *adapter = rx_ring->adapter;
1510	struct net_device *netdev = adapter->netdev;
1511	struct pci_dev *pdev = adapter->pdev;
1512	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513	struct e1000_buffer *buffer_info, *next_buffer;
1514	u32 length, staterr;
1515	unsigned int i;
1516	int cleaned_count = 0;
1517	bool cleaned = false;
1518	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519	struct skb_shared_info *shinfo;
1520
1521	i = rx_ring->next_to_clean;
1522	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524	buffer_info = &rx_ring->buffer_info[i];
1525
1526	while (staterr & E1000_RXD_STAT_DD) {
1527		struct sk_buff *skb;
1528
1529		if (*work_done >= work_to_do)
1530			break;
1531		(*work_done)++;
1532		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533
1534		skb = buffer_info->skb;
1535		buffer_info->skb = NULL;
1536
1537		++i;
1538		if (i == rx_ring->count)
1539			i = 0;
1540		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541		prefetch(next_rxd);
1542
1543		next_buffer = &rx_ring->buffer_info[i];
1544
1545		cleaned = true;
1546		cleaned_count++;
1547		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548			       DMA_FROM_DEVICE);
1549		buffer_info->dma = 0;
1550
1551		length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553		/* errors is only valid for DD + EOP descriptors */
1554		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556			      !(netdev->features & NETIF_F_RXALL)))) {
1557			/* recycle both page and skb */
1558			buffer_info->skb = skb;
1559			/* an error means any chain goes out the window too */
1560			if (rx_ring->rx_skb_top)
1561				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562			rx_ring->rx_skb_top = NULL;
1563			goto next_desc;
1564		}
1565#define rxtop (rx_ring->rx_skb_top)
1566		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567			/* this descriptor is only the beginning (or middle) */
1568			if (!rxtop) {
1569				/* this is the beginning of a chain */
1570				rxtop = skb;
1571				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572						   0, length);
1573			} else {
1574				/* this is the middle of a chain */
1575				shinfo = skb_shinfo(rxtop);
1576				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577						   buffer_info->page, 0,
1578						   length);
1579				/* re-use the skb, only consumed the page */
1580				buffer_info->skb = skb;
1581			}
1582			e1000_consume_page(buffer_info, rxtop, length);
1583			goto next_desc;
1584		} else {
1585			if (rxtop) {
1586				/* end of the chain */
1587				shinfo = skb_shinfo(rxtop);
1588				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589						   buffer_info->page, 0,
1590						   length);
1591				/* re-use the current skb, we only consumed the
1592				 * page
1593				 */
1594				buffer_info->skb = skb;
1595				skb = rxtop;
1596				rxtop = NULL;
1597				e1000_consume_page(buffer_info, skb, length);
1598			} else {
1599				/* no chain, got EOP, this buf is the packet
1600				 * copybreak to save the put_page/alloc_page
1601				 */
1602				if (length <= copybreak &&
1603				    skb_tailroom(skb) >= length) {
1604					memcpy(skb_tail_pointer(skb),
1605					       page_address(buffer_info->page),
 
1606					       length);
 
1607					/* re-use the page, so don't erase
1608					 * buffer_info->page
1609					 */
1610					skb_put(skb, length);
1611				} else {
1612					skb_fill_page_desc(skb, 0,
1613							   buffer_info->page, 0,
1614							   length);
1615					e1000_consume_page(buffer_info, skb,
1616							   length);
1617				}
1618			}
1619		}
1620
1621		/* Receive Checksum Offload */
1622		e1000_rx_checksum(adapter, staterr, skb);
1623
1624		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626		/* probably a little skewed due to removing CRC */
1627		total_rx_bytes += skb->len;
1628		total_rx_packets++;
1629
1630		/* eth type trans needs skb->data to point to something */
1631		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632			e_err("pskb_may_pull failed.\n");
1633			dev_kfree_skb_irq(skb);
1634			goto next_desc;
1635		}
1636
1637		e1000_receive_skb(adapter, netdev, skb, staterr,
1638				  rx_desc->wb.upper.vlan);
1639
1640next_desc:
1641		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643		/* return some buffers to hardware, one at a time is too slow */
1644		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646					      GFP_ATOMIC);
1647			cleaned_count = 0;
1648		}
1649
1650		/* use prefetched values */
1651		rx_desc = next_rxd;
1652		buffer_info = next_buffer;
1653
1654		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655	}
1656	rx_ring->next_to_clean = i;
1657
1658	cleaned_count = e1000_desc_unused(rx_ring);
1659	if (cleaned_count)
1660		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662	adapter->total_rx_bytes += total_rx_bytes;
1663	adapter->total_rx_packets += total_rx_packets;
1664	return cleaned;
1665}
1666
1667/**
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1670 **/
1671static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672{
1673	struct e1000_adapter *adapter = rx_ring->adapter;
1674	struct e1000_buffer *buffer_info;
1675	struct e1000_ps_page *ps_page;
1676	struct pci_dev *pdev = adapter->pdev;
1677	unsigned int i, j;
1678
1679	/* Free all the Rx ring sk_buffs */
1680	for (i = 0; i < rx_ring->count; i++) {
1681		buffer_info = &rx_ring->buffer_info[i];
1682		if (buffer_info->dma) {
1683			if (adapter->clean_rx == e1000_clean_rx_irq)
1684				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685						 adapter->rx_buffer_len,
1686						 DMA_FROM_DEVICE);
1687			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689					       PAGE_SIZE, DMA_FROM_DEVICE);
1690			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_ps_bsize0,
1693						 DMA_FROM_DEVICE);
1694			buffer_info->dma = 0;
1695		}
1696
1697		if (buffer_info->page) {
1698			put_page(buffer_info->page);
1699			buffer_info->page = NULL;
1700		}
1701
1702		if (buffer_info->skb) {
1703			dev_kfree_skb(buffer_info->skb);
1704			buffer_info->skb = NULL;
1705		}
1706
1707		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708			ps_page = &buffer_info->ps_pages[j];
1709			if (!ps_page->page)
1710				break;
1711			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712				       DMA_FROM_DEVICE);
1713			ps_page->dma = 0;
1714			put_page(ps_page->page);
1715			ps_page->page = NULL;
1716		}
1717	}
1718
1719	/* there also may be some cached data from a chained receive */
1720	if (rx_ring->rx_skb_top) {
1721		dev_kfree_skb(rx_ring->rx_skb_top);
1722		rx_ring->rx_skb_top = NULL;
1723	}
1724
1725	/* Zero out the descriptor ring */
1726	memset(rx_ring->desc, 0, rx_ring->size);
1727
1728	rx_ring->next_to_clean = 0;
1729	rx_ring->next_to_use = 0;
1730	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731}
1732
1733static void e1000e_downshift_workaround(struct work_struct *work)
1734{
1735	struct e1000_adapter *adapter = container_of(work,
1736						     struct e1000_adapter,
1737						     downshift_task);
1738
1739	if (test_bit(__E1000_DOWN, &adapter->state))
1740		return;
1741
1742	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743}
1744
1745/**
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1749 **/
1750static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751{
1752	struct net_device *netdev = data;
1753	struct e1000_adapter *adapter = netdev_priv(netdev);
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 icr = er32(ICR);
1756
1757	/* read ICR disables interrupts using IAM */
1758	if (icr & E1000_ICR_LSC) {
1759		hw->mac.get_link_status = true;
1760		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761		 * disconnect (LSC) before accessing any PHY registers
1762		 */
1763		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765			schedule_work(&adapter->downshift_task);
1766
1767		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768		 * link down event; disable receives here in the ISR and reset
1769		 * adapter in watchdog
1770		 */
1771		if (netif_carrier_ok(netdev) &&
1772		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773			/* disable receives */
1774			u32 rctl = er32(RCTL);
1775
1776			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777			adapter->flags |= FLAG_RESTART_NOW;
1778		}
1779		/* guard against interrupt when we're going down */
1780		if (!test_bit(__E1000_DOWN, &adapter->state))
1781			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782	}
1783
1784	/* Reset on uncorrectable ECC error */
1785	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786		u32 pbeccsts = er32(PBECCSTS);
1787
1788		adapter->corr_errors +=
1789		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790		adapter->uncorr_errors +=
1791		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1792
1793		/* Do the reset outside of interrupt context */
1794		schedule_work(&adapter->reset_task);
1795
1796		/* return immediately since reset is imminent */
1797		return IRQ_HANDLED;
1798	}
1799
1800	if (napi_schedule_prep(&adapter->napi)) {
1801		adapter->total_tx_bytes = 0;
1802		adapter->total_tx_packets = 0;
1803		adapter->total_rx_bytes = 0;
1804		adapter->total_rx_packets = 0;
1805		__napi_schedule(&adapter->napi);
1806	}
1807
1808	return IRQ_HANDLED;
1809}
1810
1811/**
1812 * e1000_intr - Interrupt Handler
1813 * @irq: interrupt number
1814 * @data: pointer to a network interface device structure
1815 **/
1816static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817{
1818	struct net_device *netdev = data;
1819	struct e1000_adapter *adapter = netdev_priv(netdev);
1820	struct e1000_hw *hw = &adapter->hw;
1821	u32 rctl, icr = er32(ICR);
1822
1823	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824		return IRQ_NONE;	/* Not our interrupt */
1825
1826	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827	 * not set, then the adapter didn't send an interrupt
1828	 */
1829	if (!(icr & E1000_ICR_INT_ASSERTED))
1830		return IRQ_NONE;
1831
1832	/* Interrupt Auto-Mask...upon reading ICR,
1833	 * interrupts are masked.  No need for the
1834	 * IMC write
1835	 */
1836
1837	if (icr & E1000_ICR_LSC) {
1838		hw->mac.get_link_status = true;
1839		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840		 * disconnect (LSC) before accessing any PHY registers
1841		 */
1842		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844			schedule_work(&adapter->downshift_task);
1845
1846		/* 80003ES2LAN workaround--
1847		 * For packet buffer work-around on link down event;
1848		 * disable receives here in the ISR and
1849		 * reset adapter in watchdog
1850		 */
1851		if (netif_carrier_ok(netdev) &&
1852		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853			/* disable receives */
1854			rctl = er32(RCTL);
1855			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856			adapter->flags |= FLAG_RESTART_NOW;
1857		}
1858		/* guard against interrupt when we're going down */
1859		if (!test_bit(__E1000_DOWN, &adapter->state))
1860			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861	}
1862
1863	/* Reset on uncorrectable ECC error */
1864	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865		u32 pbeccsts = er32(PBECCSTS);
1866
1867		adapter->corr_errors +=
1868		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869		adapter->uncorr_errors +=
1870		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1871
1872		/* Do the reset outside of interrupt context */
1873		schedule_work(&adapter->reset_task);
1874
1875		/* return immediately since reset is imminent */
1876		return IRQ_HANDLED;
1877	}
1878
1879	if (napi_schedule_prep(&adapter->napi)) {
1880		adapter->total_tx_bytes = 0;
1881		adapter->total_tx_packets = 0;
1882		adapter->total_rx_bytes = 0;
1883		adapter->total_rx_packets = 0;
1884		__napi_schedule(&adapter->napi);
1885	}
1886
1887	return IRQ_HANDLED;
1888}
1889
1890static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891{
1892	struct net_device *netdev = data;
1893	struct e1000_adapter *adapter = netdev_priv(netdev);
1894	struct e1000_hw *hw = &adapter->hw;
1895	u32 icr = er32(ICR);
1896
1897	if (icr & adapter->eiac_mask)
1898		ew32(ICS, (icr & adapter->eiac_mask));
1899
1900	if (icr & E1000_ICR_LSC) {
1901		hw->mac.get_link_status = true;
1902		/* guard against interrupt when we're going down */
1903		if (!test_bit(__E1000_DOWN, &adapter->state))
1904			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905	}
1906
1907	if (!test_bit(__E1000_DOWN, &adapter->state))
1908		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	struct e1000_ring *tx_ring = adapter->tx_ring;
1919
1920	adapter->total_tx_bytes = 0;
1921	adapter->total_tx_packets = 0;
1922
1923	if (!e1000_clean_tx_irq(tx_ring))
1924		/* Ring was not completely cleaned, so fire another interrupt */
1925		ew32(ICS, tx_ring->ims_val);
1926
1927	if (!test_bit(__E1000_DOWN, &adapter->state))
1928		ew32(IMS, adapter->tx_ring->ims_val);
1929
1930	return IRQ_HANDLED;
1931}
1932
1933static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934{
1935	struct net_device *netdev = data;
1936	struct e1000_adapter *adapter = netdev_priv(netdev);
1937	struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939	/* Write the ITR value calculated at the end of the
1940	 * previous interrupt.
1941	 */
1942	if (rx_ring->set_itr) {
1943		u32 itr = rx_ring->itr_val ?
1944			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946		writel(itr, rx_ring->itr_register);
1947		rx_ring->set_itr = 0;
1948	}
1949
1950	if (napi_schedule_prep(&adapter->napi)) {
1951		adapter->total_rx_bytes = 0;
1952		adapter->total_rx_packets = 0;
1953		__napi_schedule(&adapter->napi);
1954	}
1955	return IRQ_HANDLED;
1956}
1957
1958/**
1959 * e1000_configure_msix - Configure MSI-X hardware
1960 * @adapter: board private structure
1961 *
1962 * e1000_configure_msix sets up the hardware to properly
1963 * generate MSI-X interrupts.
1964 **/
1965static void e1000_configure_msix(struct e1000_adapter *adapter)
1966{
1967	struct e1000_hw *hw = &adapter->hw;
1968	struct e1000_ring *rx_ring = adapter->rx_ring;
1969	struct e1000_ring *tx_ring = adapter->tx_ring;
1970	int vector = 0;
1971	u32 ctrl_ext, ivar = 0;
1972
1973	adapter->eiac_mask = 0;
1974
1975	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976	if (hw->mac.type == e1000_82574) {
1977		u32 rfctl = er32(RFCTL);
1978
1979		rfctl |= E1000_RFCTL_ACK_DIS;
1980		ew32(RFCTL, rfctl);
1981	}
1982
1983	/* Configure Rx vector */
1984	rx_ring->ims_val = E1000_IMS_RXQ0;
1985	adapter->eiac_mask |= rx_ring->ims_val;
1986	if (rx_ring->itr_val)
1987		writel(1000000000 / (rx_ring->itr_val * 256),
1988		       rx_ring->itr_register);
1989	else
1990		writel(1, rx_ring->itr_register);
1991	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993	/* Configure Tx vector */
1994	tx_ring->ims_val = E1000_IMS_TXQ0;
1995	vector++;
1996	if (tx_ring->itr_val)
1997		writel(1000000000 / (tx_ring->itr_val * 256),
1998		       tx_ring->itr_register);
1999	else
2000		writel(1, tx_ring->itr_register);
2001	adapter->eiac_mask |= tx_ring->ims_val;
2002	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004	/* set vector for Other Causes, e.g. link changes */
2005	vector++;
2006	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007	if (rx_ring->itr_val)
2008		writel(1000000000 / (rx_ring->itr_val * 256),
2009		       hw->hw_addr + E1000_EITR_82574(vector));
2010	else
2011		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013	/* Cause Tx interrupts on every write back */
2014	ivar |= BIT(31);
2015
2016	ew32(IVAR, ivar);
2017
2018	/* enable MSI-X PBA support */
2019	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021	ew32(CTRL_EXT, ctrl_ext);
2022	e1e_flush();
2023}
2024
2025void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026{
2027	if (adapter->msix_entries) {
2028		pci_disable_msix(adapter->pdev);
2029		kfree(adapter->msix_entries);
2030		adapter->msix_entries = NULL;
2031	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032		pci_disable_msi(adapter->pdev);
2033		adapter->flags &= ~FLAG_MSI_ENABLED;
2034	}
2035}
2036
2037/**
2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039 * @adapter: board private structure
2040 *
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2043 **/
2044void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045{
2046	int err;
2047	int i;
2048
2049	switch (adapter->int_mode) {
2050	case E1000E_INT_MODE_MSIX:
2051		if (adapter->flags & FLAG_HAS_MSIX) {
2052			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054							sizeof(struct
2055							       msix_entry),
2056							GFP_KERNEL);
2057			if (adapter->msix_entries) {
2058				struct e1000_adapter *a = adapter;
2059
2060				for (i = 0; i < adapter->num_vectors; i++)
2061					adapter->msix_entries[i].entry = i;
2062
2063				err = pci_enable_msix_range(a->pdev,
2064							    a->msix_entries,
2065							    a->num_vectors,
2066							    a->num_vectors);
2067				if (err > 0)
2068					return;
2069			}
2070			/* MSI-X failed, so fall through and try MSI */
2071			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072			e1000e_reset_interrupt_capability(adapter);
2073		}
2074		adapter->int_mode = E1000E_INT_MODE_MSI;
2075		fallthrough;
2076	case E1000E_INT_MODE_MSI:
2077		if (!pci_enable_msi(adapter->pdev)) {
2078			adapter->flags |= FLAG_MSI_ENABLED;
2079		} else {
2080			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082		}
2083		fallthrough;
2084	case E1000E_INT_MODE_LEGACY:
2085		/* Don't do anything; this is the system default */
2086		break;
2087	}
2088
2089	/* store the number of vectors being used */
2090	adapter->num_vectors = 1;
2091}
2092
2093/**
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 * @adapter: board private structure
2096 *
2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098 * kernel.
2099 **/
2100static int e1000_request_msix(struct e1000_adapter *adapter)
2101{
2102	struct net_device *netdev = adapter->netdev;
2103	int err = 0, vector = 0;
2104
2105	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106		snprintf(adapter->rx_ring->name,
2107			 sizeof(adapter->rx_ring->name) - 1,
2108			 "%.14s-rx-0", netdev->name);
2109	else
2110		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111	err = request_irq(adapter->msix_entries[vector].vector,
2112			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113			  netdev);
2114	if (err)
2115		return err;
2116	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117	    E1000_EITR_82574(vector);
2118	adapter->rx_ring->itr_val = adapter->itr;
2119	vector++;
2120
2121	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122		snprintf(adapter->tx_ring->name,
2123			 sizeof(adapter->tx_ring->name) - 1,
2124			 "%.14s-tx-0", netdev->name);
2125	else
2126		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127	err = request_irq(adapter->msix_entries[vector].vector,
2128			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129			  netdev);
2130	if (err)
2131		return err;
2132	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133	    E1000_EITR_82574(vector);
2134	adapter->tx_ring->itr_val = adapter->itr;
2135	vector++;
2136
2137	err = request_irq(adapter->msix_entries[vector].vector,
2138			  e1000_msix_other, 0, netdev->name, netdev);
2139	if (err)
2140		return err;
2141
2142	e1000_configure_msix(adapter);
2143
2144	return 0;
2145}
2146
2147/**
2148 * e1000_request_irq - initialize interrupts
2149 * @adapter: board private structure
2150 *
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2153 **/
2154static int e1000_request_irq(struct e1000_adapter *adapter)
2155{
2156	struct net_device *netdev = adapter->netdev;
2157	int err;
2158
2159	if (adapter->msix_entries) {
2160		err = e1000_request_msix(adapter);
2161		if (!err)
2162			return err;
2163		/* fall back to MSI */
2164		e1000e_reset_interrupt_capability(adapter);
2165		adapter->int_mode = E1000E_INT_MODE_MSI;
2166		e1000e_set_interrupt_capability(adapter);
2167	}
2168	if (adapter->flags & FLAG_MSI_ENABLED) {
2169		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170				  netdev->name, netdev);
2171		if (!err)
2172			return err;
2173
2174		/* fall back to legacy interrupt */
2175		e1000e_reset_interrupt_capability(adapter);
2176		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177	}
2178
2179	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180			  netdev->name, netdev);
2181	if (err)
2182		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184	return err;
2185}
2186
2187static void e1000_free_irq(struct e1000_adapter *adapter)
2188{
2189	struct net_device *netdev = adapter->netdev;
2190
2191	if (adapter->msix_entries) {
2192		int vector = 0;
2193
2194		free_irq(adapter->msix_entries[vector].vector, netdev);
2195		vector++;
2196
2197		free_irq(adapter->msix_entries[vector].vector, netdev);
2198		vector++;
2199
2200		/* Other Causes interrupt vector */
2201		free_irq(adapter->msix_entries[vector].vector, netdev);
2202		return;
2203	}
2204
2205	free_irq(adapter->pdev->irq, netdev);
2206}
2207
2208/**
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2210 * @adapter: board private structure
2211 **/
2212static void e1000_irq_disable(struct e1000_adapter *adapter)
2213{
2214	struct e1000_hw *hw = &adapter->hw;
2215
2216	ew32(IMC, ~0);
2217	if (adapter->msix_entries)
2218		ew32(EIAC_82574, 0);
2219	e1e_flush();
2220
2221	if (adapter->msix_entries) {
2222		int i;
2223
2224		for (i = 0; i < adapter->num_vectors; i++)
2225			synchronize_irq(adapter->msix_entries[i].vector);
2226	} else {
2227		synchronize_irq(adapter->pdev->irq);
2228	}
2229}
2230
2231/**
2232 * e1000_irq_enable - Enable default interrupt generation settings
2233 * @adapter: board private structure
2234 **/
2235static void e1000_irq_enable(struct e1000_adapter *adapter)
2236{
2237	struct e1000_hw *hw = &adapter->hw;
2238
2239	if (adapter->msix_entries) {
2240		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242		     IMS_OTHER_MASK);
2243	} else if (hw->mac.type >= e1000_pch_lpt) {
2244		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245	} else {
2246		ew32(IMS, IMS_ENABLE_MASK);
2247	}
2248	e1e_flush();
2249}
2250
2251/**
2252 * e1000e_get_hw_control - get control of the h/w from f/w
2253 * @adapter: address of board private structure
2254 *
2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256 * For ASF and Pass Through versions of f/w this means that
2257 * the driver is loaded. For AMT version (only with 82573)
2258 * of the f/w this means that the network i/f is open.
2259 **/
2260void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261{
2262	struct e1000_hw *hw = &adapter->hw;
2263	u32 ctrl_ext;
2264	u32 swsm;
2265
2266	/* Let firmware know the driver has taken over */
2267	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268		swsm = er32(SWSM);
2269		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271		ctrl_ext = er32(CTRL_EXT);
2272		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273	}
2274}
2275
2276/**
2277 * e1000e_release_hw_control - release control of the h/w to f/w
2278 * @adapter: address of board private structure
2279 *
2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281 * For ASF and Pass Through versions of f/w this means that the
2282 * driver is no longer loaded. For AMT version (only with 82573) i
2283 * of the f/w this means that the network i/f is closed.
2284 *
2285 **/
2286void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287{
2288	struct e1000_hw *hw = &adapter->hw;
2289	u32 ctrl_ext;
2290	u32 swsm;
2291
2292	/* Let firmware taken over control of h/w */
2293	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294		swsm = er32(SWSM);
2295		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297		ctrl_ext = er32(CTRL_EXT);
2298		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299	}
2300}
2301
2302/**
2303 * e1000_alloc_ring_dma - allocate memory for a ring structure
2304 * @adapter: board private structure
2305 * @ring: ring struct for which to allocate dma
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308				struct e1000_ring *ring)
2309{
2310	struct pci_dev *pdev = adapter->pdev;
2311
2312	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313					GFP_KERNEL);
2314	if (!ring->desc)
2315		return -ENOMEM;
2316
2317	return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328	struct e1000_adapter *adapter = tx_ring->adapter;
2329	int err = -ENOMEM, size;
2330
2331	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332	tx_ring->buffer_info = vzalloc(size);
2333	if (!tx_ring->buffer_info)
2334		goto err;
2335
2336	/* round up to nearest 4K */
2337	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341	if (err)
2342		goto err;
2343
2344	tx_ring->next_to_use = 0;
2345	tx_ring->next_to_clean = 0;
2346
2347	return 0;
2348err:
2349	vfree(tx_ring->buffer_info);
2350	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351	return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362	struct e1000_adapter *adapter = rx_ring->adapter;
2363	struct e1000_buffer *buffer_info;
2364	int i, size, desc_len, err = -ENOMEM;
2365
2366	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367	rx_ring->buffer_info = vzalloc(size);
2368	if (!rx_ring->buffer_info)
2369		goto err;
2370
2371	for (i = 0; i < rx_ring->count; i++) {
2372		buffer_info = &rx_ring->buffer_info[i];
2373		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374						sizeof(struct e1000_ps_page),
2375						GFP_KERNEL);
2376		if (!buffer_info->ps_pages)
2377			goto err_pages;
2378	}
2379
2380	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382	/* Round up to nearest 4K */
2383	rx_ring->size = rx_ring->count * desc_len;
2384	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387	if (err)
2388		goto err_pages;
2389
2390	rx_ring->next_to_clean = 0;
2391	rx_ring->next_to_use = 0;
2392	rx_ring->rx_skb_top = NULL;
2393
2394	return 0;
2395
2396err_pages:
2397	for (i = 0; i < rx_ring->count; i++) {
2398		buffer_info = &rx_ring->buffer_info[i];
2399		kfree(buffer_info->ps_pages);
2400	}
2401err:
2402	vfree(rx_ring->buffer_info);
2403	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404	return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413	struct e1000_adapter *adapter = tx_ring->adapter;
2414	struct e1000_buffer *buffer_info;
2415	unsigned long size;
2416	unsigned int i;
2417
2418	for (i = 0; i < tx_ring->count; i++) {
2419		buffer_info = &tx_ring->buffer_info[i];
2420		e1000_put_txbuf(tx_ring, buffer_info, false);
2421	}
2422
2423	netdev_reset_queue(adapter->netdev);
2424	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425	memset(tx_ring->buffer_info, 0, size);
2426
2427	memset(tx_ring->desc, 0, tx_ring->size);
2428
2429	tx_ring->next_to_use = 0;
2430	tx_ring->next_to_clean = 0;
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441	struct e1000_adapter *adapter = tx_ring->adapter;
2442	struct pci_dev *pdev = adapter->pdev;
2443
2444	e1000_clean_tx_ring(tx_ring);
2445
2446	vfree(tx_ring->buffer_info);
2447	tx_ring->buffer_info = NULL;
2448
2449	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450			  tx_ring->dma);
2451	tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462	struct e1000_adapter *adapter = rx_ring->adapter;
2463	struct pci_dev *pdev = adapter->pdev;
2464	int i;
2465
2466	e1000_clean_rx_ring(rx_ring);
2467
2468	for (i = 0; i < rx_ring->count; i++)
2469		kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471	vfree(rx_ring->buffer_info);
2472	rx_ring->buffer_info = NULL;
2473
2474	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475			  rx_ring->dma);
2476	rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
 
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2484 *
2485 *      Stores a new ITR value based on packets and byte
2486 *      counts during the last interrupt.  The advantage of per interrupt
2487 *      computation is faster updates and more accurate ITR for the current
2488 *      traffic pattern.  Constants in this function were computed
2489 *      based on theoretical maximum wire speed and thresholds were set based
2490 *      on testing data as well as attempting to minimize response time
2491 *      while increasing bulk throughput.  This functionality is controlled
2492 *      by the InterruptThrottleRate module parameter.
2493 **/
2494static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495{
2496	unsigned int retval = itr_setting;
2497
2498	if (packets == 0)
2499		return itr_setting;
2500
2501	switch (itr_setting) {
2502	case lowest_latency:
2503		/* handle TSO and jumbo frames */
2504		if (bytes / packets > 8000)
2505			retval = bulk_latency;
2506		else if ((packets < 5) && (bytes > 512))
2507			retval = low_latency;
2508		break;
2509	case low_latency:	/* 50 usec aka 20000 ints/s */
2510		if (bytes > 10000) {
2511			/* this if handles the TSO accounting */
2512			if (bytes / packets > 8000)
2513				retval = bulk_latency;
2514			else if ((packets < 10) || ((bytes / packets) > 1200))
2515				retval = bulk_latency;
2516			else if ((packets > 35))
2517				retval = lowest_latency;
2518		} else if (bytes / packets > 2000) {
2519			retval = bulk_latency;
2520		} else if (packets <= 2 && bytes < 512) {
2521			retval = lowest_latency;
2522		}
2523		break;
2524	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525		if (bytes > 25000) {
2526			if (packets > 35)
2527				retval = low_latency;
2528		} else if (bytes < 6000) {
2529			retval = low_latency;
2530		}
2531		break;
2532	}
2533
2534	return retval;
2535}
2536
2537static void e1000_set_itr(struct e1000_adapter *adapter)
2538{
2539	u16 current_itr;
2540	u32 new_itr = adapter->itr;
2541
2542	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543	if (adapter->link_speed != SPEED_1000) {
 
2544		new_itr = 4000;
2545		goto set_itr_now;
2546	}
2547
2548	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549		new_itr = 0;
2550		goto set_itr_now;
2551	}
2552
2553	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554					   adapter->total_tx_packets,
2555					   adapter->total_tx_bytes);
2556	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558		adapter->tx_itr = low_latency;
2559
2560	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561					   adapter->total_rx_packets,
2562					   adapter->total_rx_bytes);
2563	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565		adapter->rx_itr = low_latency;
2566
2567	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569	/* counts and packets in update_itr are dependent on these numbers */
2570	switch (current_itr) {
2571	case lowest_latency:
2572		new_itr = 70000;
2573		break;
2574	case low_latency:
2575		new_itr = 20000;	/* aka hwitr = ~200 */
2576		break;
2577	case bulk_latency:
2578		new_itr = 4000;
2579		break;
2580	default:
2581		break;
2582	}
2583
2584set_itr_now:
2585	if (new_itr != adapter->itr) {
2586		/* this attempts to bias the interrupt rate towards Bulk
2587		 * by adding intermediate steps when interrupt rate is
2588		 * increasing
2589		 */
2590		new_itr = new_itr > adapter->itr ?
2591		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592		adapter->itr = new_itr;
2593		adapter->rx_ring->itr_val = new_itr;
2594		if (adapter->msix_entries)
2595			adapter->rx_ring->set_itr = 1;
2596		else
2597			e1000e_write_itr(adapter, new_itr);
2598	}
2599}
2600
2601/**
2602 * e1000e_write_itr - write the ITR value to the appropriate registers
2603 * @adapter: address of board private structure
2604 * @itr: new ITR value to program
2605 *
2606 * e1000e_write_itr determines if the adapter is in MSI-X mode
2607 * and, if so, writes the EITR registers with the ITR value.
2608 * Otherwise, it writes the ITR value into the ITR register.
2609 **/
2610void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611{
2612	struct e1000_hw *hw = &adapter->hw;
2613	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615	if (adapter->msix_entries) {
2616		int vector;
2617
2618		for (vector = 0; vector < adapter->num_vectors; vector++)
2619			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620	} else {
2621		ew32(ITR, new_itr);
2622	}
2623}
2624
2625/**
2626 * e1000_alloc_queues - Allocate memory for all rings
2627 * @adapter: board private structure to initialize
2628 **/
2629static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630{
2631	int size = sizeof(struct e1000_ring);
2632
2633	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634	if (!adapter->tx_ring)
2635		goto err;
2636	adapter->tx_ring->count = adapter->tx_ring_count;
2637	adapter->tx_ring->adapter = adapter;
2638
2639	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640	if (!adapter->rx_ring)
2641		goto err;
2642	adapter->rx_ring->count = adapter->rx_ring_count;
2643	adapter->rx_ring->adapter = adapter;
2644
2645	return 0;
2646err:
2647	e_err("Unable to allocate memory for queues\n");
2648	kfree(adapter->rx_ring);
2649	kfree(adapter->tx_ring);
2650	return -ENOMEM;
2651}
2652
2653/**
2654 * e1000e_poll - NAPI Rx polling callback
2655 * @napi: struct associated with this polling callback
2656 * @budget: number of packets driver is allowed to process this poll
2657 **/
2658static int e1000e_poll(struct napi_struct *napi, int budget)
2659{
2660	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661						     napi);
2662	struct e1000_hw *hw = &adapter->hw;
2663	struct net_device *poll_dev = adapter->netdev;
2664	int tx_cleaned = 1, work_done = 0;
2665
2666	adapter = netdev_priv(poll_dev);
2667
2668	if (!adapter->msix_entries ||
2669	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674	if (!tx_cleaned || work_done == budget)
2675		return budget;
2676
2677	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678	 * poll us due to busy-polling
2679	 */
2680	if (likely(napi_complete_done(napi, work_done))) {
2681		if (adapter->itr_setting & 3)
2682			e1000_set_itr(adapter);
2683		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684			if (adapter->msix_entries)
2685				ew32(IMS, adapter->rx_ring->ims_val);
2686			else
2687				e1000_irq_enable(adapter);
2688		}
2689	}
2690
2691	return work_done;
2692}
2693
2694static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695				 __always_unused __be16 proto, u16 vid)
2696{
2697	struct e1000_adapter *adapter = netdev_priv(netdev);
2698	struct e1000_hw *hw = &adapter->hw;
2699	u32 vfta, index;
2700
2701	/* don't update vlan cookie if already programmed */
2702	if ((adapter->hw.mng_cookie.status &
2703	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704	    (vid == adapter->mng_vlan_id))
2705		return 0;
2706
2707	/* add VID to filter table */
2708	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709		index = (vid >> 5) & 0x7F;
2710		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711		vfta |= BIT((vid & 0x1F));
2712		hw->mac.ops.write_vfta(hw, index, vfta);
2713	}
2714
2715	set_bit(vid, adapter->active_vlans);
2716
2717	return 0;
2718}
2719
2720static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721				  __always_unused __be16 proto, u16 vid)
2722{
2723	struct e1000_adapter *adapter = netdev_priv(netdev);
2724	struct e1000_hw *hw = &adapter->hw;
2725	u32 vfta, index;
2726
2727	if ((adapter->hw.mng_cookie.status &
2728	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729	    (vid == adapter->mng_vlan_id)) {
2730		/* release control to f/w */
2731		e1000e_release_hw_control(adapter);
2732		return 0;
2733	}
2734
2735	/* remove VID from filter table */
2736	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737		index = (vid >> 5) & 0x7F;
2738		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739		vfta &= ~BIT((vid & 0x1F));
2740		hw->mac.ops.write_vfta(hw, index, vfta);
2741	}
2742
2743	clear_bit(vid, adapter->active_vlans);
2744
2745	return 0;
2746}
2747
2748/**
2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750 * @adapter: board private structure to initialize
2751 **/
2752static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753{
2754	struct net_device *netdev = adapter->netdev;
2755	struct e1000_hw *hw = &adapter->hw;
2756	u32 rctl;
2757
2758	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759		/* disable VLAN receive filtering */
2760		rctl = er32(RCTL);
2761		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762		ew32(RCTL, rctl);
2763
2764		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766					       adapter->mng_vlan_id);
2767			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768		}
2769	}
2770}
2771
2772/**
2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774 * @adapter: board private structure to initialize
2775 **/
2776static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777{
2778	struct e1000_hw *hw = &adapter->hw;
2779	u32 rctl;
2780
2781	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782		/* enable VLAN receive filtering */
2783		rctl = er32(RCTL);
2784		rctl |= E1000_RCTL_VFE;
2785		rctl &= ~E1000_RCTL_CFIEN;
2786		ew32(RCTL, rctl);
2787	}
2788}
2789
2790/**
2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792 * @adapter: board private structure to initialize
2793 **/
2794static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795{
2796	struct e1000_hw *hw = &adapter->hw;
2797	u32 ctrl;
2798
2799	/* disable VLAN tag insert/strip */
2800	ctrl = er32(CTRL);
2801	ctrl &= ~E1000_CTRL_VME;
2802	ew32(CTRL, ctrl);
2803}
2804
2805/**
2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807 * @adapter: board private structure to initialize
2808 **/
2809static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810{
2811	struct e1000_hw *hw = &adapter->hw;
2812	u32 ctrl;
2813
2814	/* enable VLAN tag insert/strip */
2815	ctrl = er32(CTRL);
2816	ctrl |= E1000_CTRL_VME;
2817	ew32(CTRL, ctrl);
2818}
2819
2820static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821{
2822	struct net_device *netdev = adapter->netdev;
2823	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824	u16 old_vid = adapter->mng_vlan_id;
2825
2826	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828		adapter->mng_vlan_id = vid;
2829	}
2830
2831	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833}
2834
2835static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836{
2837	u16 vid;
2838
2839	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843}
2844
2845static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846{
2847	struct e1000_hw *hw = &adapter->hw;
2848	u32 manc, manc2h, mdef, i, j;
2849
2850	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851		return;
2852
2853	manc = er32(MANC);
2854
2855	/* enable receiving management packets to the host. this will probably
2856	 * generate destination unreachable messages from the host OS, but
2857	 * the packets will be handled on SMBUS
2858	 */
2859	manc |= E1000_MANC_EN_MNG2HOST;
2860	manc2h = er32(MANC2H);
2861
2862	switch (hw->mac.type) {
2863	default:
2864		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865		break;
2866	case e1000_82574:
2867	case e1000_82583:
2868		/* Check if IPMI pass-through decision filter already exists;
2869		 * if so, enable it.
2870		 */
2871		for (i = 0, j = 0; i < 8; i++) {
2872			mdef = er32(MDEF(i));
2873
2874			/* Ignore filters with anything other than IPMI ports */
2875			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876				continue;
2877
2878			/* Enable this decision filter in MANC2H */
2879			if (mdef)
2880				manc2h |= BIT(i);
2881
2882			j |= mdef;
2883		}
2884
2885		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886			break;
2887
2888		/* Create new decision filter in an empty filter */
2889		for (i = 0, j = 0; i < 8; i++)
2890			if (er32(MDEF(i)) == 0) {
2891				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892					       E1000_MDEF_PORT_664));
2893				manc2h |= BIT(1);
2894				j++;
2895				break;
2896			}
2897
2898		if (!j)
2899			e_warn("Unable to create IPMI pass-through filter\n");
2900		break;
2901	}
2902
2903	ew32(MANC2H, manc2h);
2904	ew32(MANC, manc);
2905}
2906
2907/**
2908 * e1000_configure_tx - Configure Transmit Unit after Reset
2909 * @adapter: board private structure
2910 *
2911 * Configure the Tx unit of the MAC after a reset.
2912 **/
2913static void e1000_configure_tx(struct e1000_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	struct e1000_ring *tx_ring = adapter->tx_ring;
2917	u64 tdba;
2918	u32 tdlen, tctl, tarc;
2919
2920	/* Setup the HW Tx Head and Tail descriptor pointers */
2921	tdba = tx_ring->dma;
2922	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924	ew32(TDBAH(0), (tdba >> 32));
2925	ew32(TDLEN(0), tdlen);
2926	ew32(TDH(0), 0);
2927	ew32(TDT(0), 0);
2928	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
 
2931	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932		e1000e_update_tdt_wa(tx_ring, 0);
 
 
2933
2934	/* Set the Tx Interrupt Delay register */
2935	ew32(TIDV, adapter->tx_int_delay);
2936	/* Tx irq moderation */
2937	ew32(TADV, adapter->tx_abs_int_delay);
2938
2939	if (adapter->flags2 & FLAG2_DMA_BURST) {
2940		u32 txdctl = er32(TXDCTL(0));
2941
2942		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943			    E1000_TXDCTL_WTHRESH);
2944		/* set up some performance related parameters to encourage the
2945		 * hardware to use the bus more efficiently in bursts, depends
2946		 * on the tx_int_delay to be enabled,
2947		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948		 * hthresh = 1 ==> prefetch when one or more available
2949		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950		 * BEWARE: this seems to work but should be considered first if
2951		 * there are Tx hangs or other Tx related bugs
2952		 */
2953		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954		ew32(TXDCTL(0), txdctl);
2955	}
2956	/* erratum work around: set txdctl the same for both queues */
2957	ew32(TXDCTL(1), er32(TXDCTL(0)));
2958
2959	/* Program the Transmit Control Register */
2960	tctl = er32(TCTL);
2961	tctl &= ~E1000_TCTL_CT;
2962	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964
2965	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966		tarc = er32(TARC(0));
2967		/* set the speed mode bit, we'll clear it if we're not at
2968		 * gigabit link later
2969		 */
2970#define SPEED_MODE_BIT BIT(21)
2971		tarc |= SPEED_MODE_BIT;
2972		ew32(TARC(0), tarc);
2973	}
2974
2975	/* errata: program both queues to unweighted RR */
2976	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977		tarc = er32(TARC(0));
2978		tarc |= 1;
2979		ew32(TARC(0), tarc);
2980		tarc = er32(TARC(1));
2981		tarc |= 1;
2982		ew32(TARC(1), tarc);
2983	}
2984
2985	/* Setup Transmit Descriptor Settings for eop descriptor */
2986	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987
2988	/* only set IDE if we are delaying interrupts using the timers */
2989	if (adapter->tx_int_delay)
2990		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991
2992	/* enable Report Status bit */
2993	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994
2995	ew32(TCTL, tctl);
2996
2997	hw->mac.ops.config_collision_dist(hw);
2998
2999	/* SPT and KBL Si errata workaround to avoid data corruption */
3000	if (hw->mac.type == e1000_pch_spt) {
3001		u32 reg_val;
3002
3003		reg_val = er32(IOSFPC);
3004		reg_val |= E1000_RCTL_RDMTS_HEX;
3005		ew32(IOSFPC, reg_val);
3006
3007		reg_val = er32(TARC(0));
3008		/* SPT and KBL Si errata workaround to avoid Tx hang.
3009		 * Dropping the number of outstanding requests from
3010		 * 3 to 2 in order to avoid a buffer overrun.
3011		 */
3012		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014		ew32(TARC(0), reg_val);
3015	}
3016}
3017
3018#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020
3021/**
3022 * e1000_setup_rctl - configure the receive control registers
3023 * @adapter: Board private structure
3024 **/
 
 
3025static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026{
3027	struct e1000_hw *hw = &adapter->hw;
3028	u32 rctl, rfctl;
3029	u32 pages = 0;
3030
3031	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3032	 * If jumbo frames not set, program related MAC/PHY registers
3033	 * to h/w defaults
3034	 */
3035	if (hw->mac.type >= e1000_pch2lan) {
3036		s32 ret_val;
3037
3038		if (adapter->netdev->mtu > ETH_DATA_LEN)
3039			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040		else
3041			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043		if (ret_val)
3044			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045	}
3046
3047	/* Program MC offset vector base */
3048	rctl = er32(RCTL);
3049	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054	/* Do not Store bad packets */
3055	rctl &= ~E1000_RCTL_SBP;
3056
3057	/* Enable Long Packet receive */
3058	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059		rctl &= ~E1000_RCTL_LPE;
3060	else
3061		rctl |= E1000_RCTL_LPE;
3062
3063	/* Some systems expect that the CRC is included in SMBUS traffic. The
3064	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065	 * host memory when this is enabled
3066	 */
3067	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068		rctl |= E1000_RCTL_SECRC;
3069
3070	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072		u16 phy_data;
3073
3074		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075		phy_data &= 0xfff8;
3076		phy_data |= BIT(2);
3077		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079		e1e_rphy(hw, 22, &phy_data);
3080		phy_data &= 0x0fff;
3081		phy_data |= BIT(14);
3082		e1e_wphy(hw, 0x10, 0x2823);
3083		e1e_wphy(hw, 0x11, 0x0003);
3084		e1e_wphy(hw, 22, phy_data);
3085	}
3086
3087	/* Setup buffer sizes */
3088	rctl &= ~E1000_RCTL_SZ_4096;
3089	rctl |= E1000_RCTL_BSEX;
3090	switch (adapter->rx_buffer_len) {
3091	case 2048:
3092	default:
3093		rctl |= E1000_RCTL_SZ_2048;
3094		rctl &= ~E1000_RCTL_BSEX;
3095		break;
3096	case 4096:
3097		rctl |= E1000_RCTL_SZ_4096;
3098		break;
3099	case 8192:
3100		rctl |= E1000_RCTL_SZ_8192;
3101		break;
3102	case 16384:
3103		rctl |= E1000_RCTL_SZ_16384;
3104		break;
3105	}
3106
3107	/* Enable Extended Status in all Receive Descriptors */
3108	rfctl = er32(RFCTL);
3109	rfctl |= E1000_RFCTL_EXTEN;
3110	ew32(RFCTL, rfctl);
3111
3112	/* 82571 and greater support packet-split where the protocol
3113	 * header is placed in skb->data and the packet data is
3114	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115	 * In the case of a non-split, skb->data is linearly filled,
3116	 * followed by the page buffers.  Therefore, skb->data is
3117	 * sized to hold the largest protocol header.
3118	 *
3119	 * allocations using alloc_page take too long for regular MTU
3120	 * so only enable packet split for jumbo frames
3121	 *
3122	 * Using pages when the page size is greater than 16k wastes
3123	 * a lot of memory, since we allocate 3 pages at all times
3124	 * per packet.
3125	 */
3126	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128		adapter->rx_ps_pages = pages;
3129	else
3130		adapter->rx_ps_pages = 0;
3131
3132	if (adapter->rx_ps_pages) {
3133		u32 psrctl = 0;
3134
3135		/* Enable Packet split descriptors */
3136		rctl |= E1000_RCTL_DTYP_PS;
3137
3138		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140		switch (adapter->rx_ps_pages) {
3141		case 3:
3142			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143			fallthrough;
3144		case 2:
3145			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146			fallthrough;
3147		case 1:
3148			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149			break;
3150		}
3151
3152		ew32(PSRCTL, psrctl);
3153	}
3154
3155	/* This is useful for sniffing bad packets. */
3156	if (adapter->netdev->features & NETIF_F_RXALL) {
3157		/* UPE and MPE will be handled by normal PROMISC logic
3158		 * in e1000e_set_rx_mode
3159		 */
3160		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3161			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3162			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3163
3164		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3165			  E1000_RCTL_DPF |	/* Allow filtered pause */
3166			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3167		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168		 * and that breaks VLANs.
3169		 */
3170	}
3171
3172	ew32(RCTL, rctl);
3173	/* just started the receive unit, no need to restart */
3174	adapter->flags &= ~FLAG_RESTART_NOW;
3175}
3176
3177/**
3178 * e1000_configure_rx - Configure Receive Unit after Reset
3179 * @adapter: board private structure
3180 *
3181 * Configure the Rx unit of the MAC after a reset.
3182 **/
3183static void e1000_configure_rx(struct e1000_adapter *adapter)
3184{
3185	struct e1000_hw *hw = &adapter->hw;
3186	struct e1000_ring *rx_ring = adapter->rx_ring;
3187	u64 rdba;
3188	u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190	if (adapter->rx_ps_pages) {
3191		/* this is a 32 byte descriptor */
3192		rdlen = rx_ring->count *
3193		    sizeof(union e1000_rx_desc_packet_split);
3194		adapter->clean_rx = e1000_clean_rx_irq_ps;
3195		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200	} else {
3201		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202		adapter->clean_rx = e1000_clean_rx_irq;
3203		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204	}
3205
3206	/* disable receives while setting up the descriptors */
3207	rctl = er32(RCTL);
3208	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210	e1e_flush();
3211	usleep_range(10000, 11000);
3212
3213	if (adapter->flags2 & FLAG2_DMA_BURST) {
3214		/* set the writeback threshold (only takes effect if the RDTR
3215		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216		 * enable prefetching of 0x20 Rx descriptors
3217		 * granularity = 01
3218		 * wthresh = 04,
3219		 * hthresh = 04,
3220		 * pthresh = 0x20
3221		 */
3222		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224	}
3225
3226	/* set the Receive Delay Timer Register */
3227	ew32(RDTR, adapter->rx_int_delay);
3228
3229	/* irq moderation */
3230	ew32(RADV, adapter->rx_abs_int_delay);
3231	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232		e1000e_write_itr(adapter, adapter->itr);
3233
3234	ctrl_ext = er32(CTRL_EXT);
3235	/* Auto-Mask interrupts upon ICR access */
3236	ctrl_ext |= E1000_CTRL_EXT_IAME;
3237	ew32(IAM, 0xffffffff);
3238	ew32(CTRL_EXT, ctrl_ext);
3239	e1e_flush();
3240
3241	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3242	 * the Base and Length of the Rx Descriptor Ring
3243	 */
3244	rdba = rx_ring->dma;
3245	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246	ew32(RDBAH(0), (rdba >> 32));
3247	ew32(RDLEN(0), rdlen);
3248	ew32(RDH(0), 0);
3249	ew32(RDT(0), 0);
3250	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252
 
3253	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254		e1000e_update_rdt_wa(rx_ring, 0);
 
 
3255
3256	/* Enable Receive Checksum Offload for TCP and UDP */
3257	rxcsum = er32(RXCSUM);
3258	if (adapter->netdev->features & NETIF_F_RXCSUM)
3259		rxcsum |= E1000_RXCSUM_TUOFL;
3260	else
3261		rxcsum &= ~E1000_RXCSUM_TUOFL;
3262	ew32(RXCSUM, rxcsum);
3263
3264	/* With jumbo frames, excessive C-state transition latencies result
3265	 * in dropped transactions.
3266	 */
3267	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268		u32 lat =
3269		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270		     adapter->max_frame_size) * 8 / 1000;
3271
3272		if (adapter->flags & FLAG_IS_ICH) {
3273			u32 rxdctl = er32(RXDCTL(0));
3274
3275			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276		}
3277
3278		dev_info(&adapter->pdev->dev,
3279			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281	} else {
3282		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283					       PM_QOS_DEFAULT_VALUE);
3284	}
3285
3286	/* Enable Receives */
3287	ew32(RCTL, rctl);
3288}
3289
3290/**
3291 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292 * @netdev: network interface device structure
3293 *
3294 * Writes multicast address list to the MTA hash table.
3295 * Returns: -ENOMEM on failure
3296 *                0 on no addresses written
3297 *                X on writing X addresses to MTA
3298 */
3299static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300{
3301	struct e1000_adapter *adapter = netdev_priv(netdev);
3302	struct e1000_hw *hw = &adapter->hw;
3303	struct netdev_hw_addr *ha;
3304	u8 *mta_list;
3305	int i;
3306
3307	if (netdev_mc_empty(netdev)) {
3308		/* nothing to program, so clear mc list */
3309		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310		return 0;
3311	}
3312
3313	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314	if (!mta_list)
3315		return -ENOMEM;
3316
3317	/* update_mc_addr_list expects a packed array of only addresses. */
3318	i = 0;
3319	netdev_for_each_mc_addr(ha, netdev)
3320	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321
3322	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323	kfree(mta_list);
3324
3325	return netdev_mc_count(netdev);
3326}
3327
3328/**
3329 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330 * @netdev: network interface device structure
3331 *
3332 * Writes unicast address list to the RAR table.
3333 * Returns: -ENOMEM on failure/insufficient address space
3334 *                0 on no addresses written
3335 *                X on writing X addresses to the RAR table
3336 **/
3337static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338{
3339	struct e1000_adapter *adapter = netdev_priv(netdev);
3340	struct e1000_hw *hw = &adapter->hw;
3341	unsigned int rar_entries;
3342	int count = 0;
3343
3344	rar_entries = hw->mac.ops.rar_get_count(hw);
3345
3346	/* save a rar entry for our hardware address */
3347	rar_entries--;
3348
3349	/* save a rar entry for the LAA workaround */
3350	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351		rar_entries--;
3352
3353	/* return ENOMEM indicating insufficient memory for addresses */
3354	if (netdev_uc_count(netdev) > rar_entries)
3355		return -ENOMEM;
3356
3357	if (!netdev_uc_empty(netdev) && rar_entries) {
3358		struct netdev_hw_addr *ha;
3359
3360		/* write the addresses in reverse order to avoid write
3361		 * combining
3362		 */
3363		netdev_for_each_uc_addr(ha, netdev) {
3364			int ret_val;
3365
3366			if (!rar_entries)
3367				break;
3368			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369			if (ret_val < 0)
3370				return -ENOMEM;
3371			count++;
3372		}
3373	}
3374
3375	/* zero out the remaining RAR entries not used above */
3376	for (; rar_entries > 0; rar_entries--) {
3377		ew32(RAH(rar_entries), 0);
3378		ew32(RAL(rar_entries), 0);
3379	}
3380	e1e_flush();
3381
3382	return count;
3383}
3384
3385/**
3386 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387 * @netdev: network interface device structure
3388 *
3389 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390 * address list or the network interface flags are updated.  This routine is
3391 * responsible for configuring the hardware for proper unicast, multicast,
3392 * promiscuous mode, and all-multi behavior.
3393 **/
3394static void e1000e_set_rx_mode(struct net_device *netdev)
3395{
3396	struct e1000_adapter *adapter = netdev_priv(netdev);
3397	struct e1000_hw *hw = &adapter->hw;
3398	u32 rctl;
3399
3400	if (pm_runtime_suspended(netdev->dev.parent))
3401		return;
3402
3403	/* Check for Promiscuous and All Multicast modes */
3404	rctl = er32(RCTL);
3405
3406	/* clear the affected bits */
3407	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408
3409	if (netdev->flags & IFF_PROMISC) {
3410		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411		/* Do not hardware filter VLANs in promisc mode */
3412		e1000e_vlan_filter_disable(adapter);
3413	} else {
3414		int count;
3415
3416		if (netdev->flags & IFF_ALLMULTI) {
3417			rctl |= E1000_RCTL_MPE;
3418		} else {
3419			/* Write addresses to the MTA, if the attempt fails
3420			 * then we should just turn on promiscuous mode so
3421			 * that we can at least receive multicast traffic
3422			 */
3423			count = e1000e_write_mc_addr_list(netdev);
3424			if (count < 0)
3425				rctl |= E1000_RCTL_MPE;
3426		}
3427		e1000e_vlan_filter_enable(adapter);
3428		/* Write addresses to available RAR registers, if there is not
3429		 * sufficient space to store all the addresses then enable
3430		 * unicast promiscuous mode
3431		 */
3432		count = e1000e_write_uc_addr_list(netdev);
3433		if (count < 0)
3434			rctl |= E1000_RCTL_UPE;
3435	}
3436
3437	ew32(RCTL, rctl);
3438
3439	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440		e1000e_vlan_strip_enable(adapter);
3441	else
3442		e1000e_vlan_strip_disable(adapter);
3443}
3444
3445static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446{
3447	struct e1000_hw *hw = &adapter->hw;
3448	u32 mrqc, rxcsum;
3449	u32 rss_key[10];
3450	int i;
3451
3452	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453	for (i = 0; i < 10; i++)
3454		ew32(RSSRK(i), rss_key[i]);
3455
3456	/* Direct all traffic to queue 0 */
3457	for (i = 0; i < 32; i++)
3458		ew32(RETA(i), 0);
3459
3460	/* Disable raw packet checksumming so that RSS hash is placed in
3461	 * descriptor on writeback.
3462	 */
3463	rxcsum = er32(RXCSUM);
3464	rxcsum |= E1000_RXCSUM_PCSD;
3465
3466	ew32(RXCSUM, rxcsum);
3467
3468	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470		E1000_MRQC_RSS_FIELD_IPV6 |
3471		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473
3474	ew32(MRQC, mrqc);
3475}
3476
3477/**
3478 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479 * @adapter: board private structure
3480 * @timinca: pointer to returned time increment attributes
3481 *
3482 * Get attributes for incrementing the System Time Register SYSTIML/H at
3483 * the default base frequency, and set the cyclecounter shift value.
3484 **/
3485s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486{
3487	struct e1000_hw *hw = &adapter->hw;
3488	u32 incvalue, incperiod, shift;
3489
3490	/* Make sure clock is enabled on I217/I218/I219  before checking
3491	 * the frequency
3492	 */
3493	if ((hw->mac.type >= e1000_pch_lpt) &&
3494	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496		u32 fextnvm7 = er32(FEXTNVM7);
3497
3498		if (!(fextnvm7 & BIT(0))) {
3499			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500			e1e_flush();
3501		}
3502	}
3503
3504	switch (hw->mac.type) {
3505	case e1000_pch2lan:
3506		/* Stable 96MHz frequency */
3507		incperiod = INCPERIOD_96MHZ;
3508		incvalue = INCVALUE_96MHZ;
3509		shift = INCVALUE_SHIFT_96MHZ;
3510		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511		break;
3512	case e1000_pch_lpt:
3513		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514			/* Stable 96MHz frequency */
3515			incperiod = INCPERIOD_96MHZ;
3516			incvalue = INCVALUE_96MHZ;
3517			shift = INCVALUE_SHIFT_96MHZ;
3518			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519		} else {
3520			/* Stable 25MHz frequency */
3521			incperiod = INCPERIOD_25MHZ;
3522			incvalue = INCVALUE_25MHZ;
3523			shift = INCVALUE_SHIFT_25MHZ;
3524			adapter->cc.shift = shift;
3525		}
3526		break;
3527	case e1000_pch_spt:
3528		/* Stable 24MHz frequency */
3529		incperiod = INCPERIOD_24MHZ;
3530		incvalue = INCVALUE_24MHZ;
3531		shift = INCVALUE_SHIFT_24MHZ;
3532		adapter->cc.shift = shift;
3533		break;
3534	case e1000_pch_cnp:
3535	case e1000_pch_tgp:
3536	case e1000_pch_adp:
3537	case e1000_pch_mtp:
3538	case e1000_pch_lnp:
3539	case e1000_pch_ptp:
3540	case e1000_pch_nvp:
3541		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542			/* Stable 24MHz frequency */
3543			incperiod = INCPERIOD_24MHZ;
3544			incvalue = INCVALUE_24MHZ;
3545			shift = INCVALUE_SHIFT_24MHZ;
3546			adapter->cc.shift = shift;
3547		} else {
3548			/* Stable 38400KHz frequency */
3549			incperiod = INCPERIOD_38400KHZ;
3550			incvalue = INCVALUE_38400KHZ;
3551			shift = INCVALUE_SHIFT_38400KHZ;
3552			adapter->cc.shift = shift;
3553		}
3554		break;
3555	case e1000_82574:
3556	case e1000_82583:
3557		/* Stable 25MHz frequency */
3558		incperiod = INCPERIOD_25MHZ;
3559		incvalue = INCVALUE_25MHZ;
3560		shift = INCVALUE_SHIFT_25MHZ;
3561		adapter->cc.shift = shift;
3562		break;
3563	default:
3564		return -EINVAL;
3565	}
3566
3567	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3568		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569
3570	return 0;
3571}
3572
3573/**
3574 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575 * @adapter: board private structure
3576 * @config: timestamp configuration
3577 *
3578 * Outgoing time stamping can be enabled and disabled. Play nice and
3579 * disable it when requested, although it shouldn't cause any overhead
3580 * when no packet needs it. At most one packet in the queue may be
3581 * marked for time stamping, otherwise it would be impossible to tell
3582 * for sure to which packet the hardware time stamp belongs.
3583 *
3584 * Incoming time stamping has to be configured via the hardware filters.
3585 * Not all combinations are supported, in particular event type has to be
3586 * specified. Matching the kind of event packet is not supported, with the
3587 * exception of "all V2 events regardless of level 2 or 4".
3588 **/
3589static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3590				  struct hwtstamp_config *config)
3591{
3592	struct e1000_hw *hw = &adapter->hw;
3593	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3594	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3595	u32 rxmtrl = 0;
3596	u16 rxudp = 0;
3597	bool is_l4 = false;
3598	bool is_l2 = false;
3599	u32 regval;
3600
3601	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3602		return -EINVAL;
3603
 
 
 
 
3604	switch (config->tx_type) {
3605	case HWTSTAMP_TX_OFF:
3606		tsync_tx_ctl = 0;
3607		break;
3608	case HWTSTAMP_TX_ON:
3609		break;
3610	default:
3611		return -ERANGE;
3612	}
3613
3614	switch (config->rx_filter) {
3615	case HWTSTAMP_FILTER_NONE:
3616		tsync_rx_ctl = 0;
3617		break;
3618	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621		is_l4 = true;
3622		break;
3623	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626		is_l4 = true;
3627		break;
3628	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629		/* Also time stamps V2 L2 Path Delay Request/Response */
3630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632		is_l2 = true;
3633		break;
3634	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635		/* Also time stamps V2 L2 Path Delay Request/Response. */
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638		is_l2 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641		/* Hardware cannot filter just V2 L4 Sync messages */
3642		fallthrough;
3643	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3644		/* Also time stamps V2 Path Delay Request/Response. */
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647		is_l2 = true;
3648		is_l4 = true;
3649		break;
3650	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3651		/* Hardware cannot filter just V2 L4 Delay Request messages */
3652		fallthrough;
3653	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654		/* Also time stamps V2 Path Delay Request/Response. */
3655		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657		is_l2 = true;
3658		is_l4 = true;
3659		break;
3660	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3663		fallthrough;
3664	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667		is_l2 = true;
3668		is_l4 = true;
3669		break;
3670	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671		/* For V1, the hardware can only filter Sync messages or
3672		 * Delay Request messages but not both so fall-through to
3673		 * time stamp all packets.
3674		 */
3675		fallthrough;
3676	case HWTSTAMP_FILTER_NTP_ALL:
3677	case HWTSTAMP_FILTER_ALL:
3678		is_l2 = true;
3679		is_l4 = true;
3680		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3681		config->rx_filter = HWTSTAMP_FILTER_ALL;
3682		break;
3683	default:
3684		return -ERANGE;
3685	}
3686
3687	adapter->hwtstamp_config = *config;
3688
3689	/* enable/disable Tx h/w time stamping */
3690	regval = er32(TSYNCTXCTL);
3691	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3692	regval |= tsync_tx_ctl;
3693	ew32(TSYNCTXCTL, regval);
3694	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3695	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3696		e_err("Timesync Tx Control register not set as expected\n");
3697		return -EAGAIN;
3698	}
3699
3700	/* enable/disable Rx h/w time stamping */
3701	regval = er32(TSYNCRXCTL);
3702	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3703	regval |= tsync_rx_ctl;
3704	ew32(TSYNCRXCTL, regval);
3705	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3706				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3707	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3708		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3709		e_err("Timesync Rx Control register not set as expected\n");
3710		return -EAGAIN;
3711	}
3712
3713	/* L2: define ethertype filter for time stamped packets */
3714	if (is_l2)
3715		rxmtrl |= ETH_P_1588;
3716
3717	/* define which PTP packets get time stamped */
3718	ew32(RXMTRL, rxmtrl);
3719
3720	/* Filter by destination port */
3721	if (is_l4) {
3722		rxudp = PTP_EV_PORT;
3723		cpu_to_be16s(&rxudp);
3724	}
3725	ew32(RXUDP, rxudp);
3726
3727	e1e_flush();
3728
3729	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3730	er32(RXSTMPH);
3731	er32(TXSTMPH);
3732
3733	return 0;
3734}
3735
3736/**
3737 * e1000_configure - configure the hardware for Rx and Tx
3738 * @adapter: private board structure
3739 **/
3740static void e1000_configure(struct e1000_adapter *adapter)
3741{
3742	struct e1000_ring *rx_ring = adapter->rx_ring;
3743
3744	e1000e_set_rx_mode(adapter->netdev);
3745
3746	e1000_restore_vlan(adapter);
3747	e1000_init_manageability_pt(adapter);
3748
3749	e1000_configure_tx(adapter);
3750
3751	if (adapter->netdev->features & NETIF_F_RXHASH)
3752		e1000e_setup_rss_hash(adapter);
3753	e1000_setup_rctl(adapter);
3754	e1000_configure_rx(adapter);
3755	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3756}
3757
3758/**
3759 * e1000e_power_up_phy - restore link in case the phy was powered down
3760 * @adapter: address of board private structure
3761 *
3762 * The phy may be powered down to save power and turn off link when the
3763 * driver is unloaded and wake on lan is not enabled (among others)
3764 * *** this routine MUST be followed by a call to e1000e_reset ***
3765 **/
3766void e1000e_power_up_phy(struct e1000_adapter *adapter)
3767{
3768	if (adapter->hw.phy.ops.power_up)
3769		adapter->hw.phy.ops.power_up(&adapter->hw);
3770
3771	adapter->hw.mac.ops.setup_link(&adapter->hw);
3772}
3773
3774/**
3775 * e1000_power_down_phy - Power down the PHY
3776 * @adapter: board private structure
3777 *
3778 * Power down the PHY so no link is implied when interface is down.
3779 * The PHY cannot be powered down if management or WoL is active.
3780 */
3781static void e1000_power_down_phy(struct e1000_adapter *adapter)
3782{
3783	if (adapter->hw.phy.ops.power_down)
3784		adapter->hw.phy.ops.power_down(&adapter->hw);
3785}
3786
3787/**
3788 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789 * @adapter: board private structure
3790 *
3791 * We want to clear all pending descriptors from the TX ring.
3792 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793 * the data of the next descriptor. We don't care about the data we are about
3794 * to reset the HW.
3795 */
3796static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797{
3798	struct e1000_hw *hw = &adapter->hw;
3799	struct e1000_ring *tx_ring = adapter->tx_ring;
3800	struct e1000_tx_desc *tx_desc = NULL;
3801	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802	u16 size = 512;
3803
3804	tctl = er32(TCTL);
3805	ew32(TCTL, tctl | E1000_TCTL_EN);
3806	tdt = er32(TDT(0));
3807	BUG_ON(tdt != tx_ring->next_to_use);
3808	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3810
3811	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812	tx_desc->upper.data = 0;
3813	/* flush descriptors to memory before notifying the HW */
3814	wmb();
3815	tx_ring->next_to_use++;
3816	if (tx_ring->next_to_use == tx_ring->count)
3817		tx_ring->next_to_use = 0;
3818	ew32(TDT(0), tx_ring->next_to_use);
3819	usleep_range(200, 250);
3820}
3821
3822/**
3823 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824 * @adapter: board private structure
3825 *
3826 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3827 */
3828static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3829{
3830	u32 rctl, rxdctl;
3831	struct e1000_hw *hw = &adapter->hw;
3832
3833	rctl = er32(RCTL);
3834	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3835	e1e_flush();
3836	usleep_range(100, 150);
3837
3838	rxdctl = er32(RXDCTL(0));
3839	/* zero the lower 14 bits (prefetch and host thresholds) */
3840	rxdctl &= 0xffffc000;
3841
3842	/* update thresholds: prefetch threshold to 31, host threshold to 1
3843	 * and make sure the granularity is "descriptors" and not "cache lines"
3844	 */
3845	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3846
3847	ew32(RXDCTL(0), rxdctl);
3848	/* momentarily enable the RX ring for the changes to take effect */
3849	ew32(RCTL, rctl | E1000_RCTL_EN);
3850	e1e_flush();
3851	usleep_range(100, 150);
3852	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853}
3854
3855/**
3856 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857 * @adapter: board private structure
3858 *
3859 * In i219, the descriptor rings must be emptied before resetting the HW
3860 * or before changing the device state to D3 during runtime (runtime PM).
3861 *
3862 * Failure to do this will cause the HW to enter a unit hang state which can
3863 * only be released by PCI reset on the device
3864 *
3865 */
3866
3867static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3868{
3869	u16 hang_state;
3870	u32 fext_nvm11, tdlen;
3871	struct e1000_hw *hw = &adapter->hw;
3872
3873	/* First, disable MULR fix in FEXTNVM11 */
3874	fext_nvm11 = er32(FEXTNVM11);
3875	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3876	ew32(FEXTNVM11, fext_nvm11);
3877	/* do nothing if we're not in faulty state, or if the queue is empty */
3878	tdlen = er32(TDLEN(0));
3879	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3880			     &hang_state);
3881	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3882		return;
3883	e1000_flush_tx_ring(adapter);
3884	/* recheck, maybe the fault is caused by the rx ring */
3885	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886			     &hang_state);
3887	if (hang_state & FLUSH_DESC_REQUIRED)
3888		e1000_flush_rx_ring(adapter);
3889}
3890
3891/**
3892 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893 * @adapter: board private structure
3894 *
3895 * When the MAC is reset, all hardware bits for timesync will be reset to the
3896 * default values. This function will restore the settings last in place.
3897 * Since the clock SYSTIME registers are reset, we will simply restore the
3898 * cyclecounter to the kernel real clock time.
3899 **/
3900static void e1000e_systim_reset(struct e1000_adapter *adapter)
3901{
3902	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3903	struct e1000_hw *hw = &adapter->hw;
3904	unsigned long flags;
3905	u32 timinca;
3906	s32 ret_val;
3907
3908	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3909		return;
3910
3911	if (info->adjfine) {
3912		/* restore the previous ptp frequency delta */
3913		ret_val = info->adjfine(info, adapter->ptp_delta);
3914	} else {
3915		/* set the default base frequency if no adjustment possible */
3916		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3917		if (!ret_val)
3918			ew32(TIMINCA, timinca);
3919	}
3920
3921	if (ret_val) {
3922		dev_warn(&adapter->pdev->dev,
3923			 "Failed to restore TIMINCA clock rate delta: %d\n",
3924			 ret_val);
3925		return;
3926	}
3927
3928	/* reset the systim ns time counter */
3929	spin_lock_irqsave(&adapter->systim_lock, flags);
3930	timecounter_init(&adapter->tc, &adapter->cc,
3931			 ktime_to_ns(ktime_get_real()));
3932	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3933
3934	/* restore the previous hwtstamp configuration settings */
3935	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3936}
3937
3938/**
3939 * e1000e_reset - bring the hardware into a known good state
3940 * @adapter: board private structure
3941 *
3942 * This function boots the hardware and enables some settings that
3943 * require a configuration cycle of the hardware - those cannot be
3944 * set/changed during runtime. After reset the device needs to be
3945 * properly configured for Rx, Tx etc.
3946 */
3947void e1000e_reset(struct e1000_adapter *adapter)
3948{
3949	struct e1000_mac_info *mac = &adapter->hw.mac;
3950	struct e1000_fc_info *fc = &adapter->hw.fc;
3951	struct e1000_hw *hw = &adapter->hw;
3952	u32 tx_space, min_tx_space, min_rx_space;
3953	u32 pba = adapter->pba;
3954	u16 hwm;
3955
3956	/* reset Packet Buffer Allocation to default */
3957	ew32(PBA, pba);
3958
3959	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3960		/* To maintain wire speed transmits, the Tx FIFO should be
3961		 * large enough to accommodate two full transmit packets,
3962		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3963		 * the Rx FIFO should be large enough to accommodate at least
3964		 * one full receive packet and is similarly rounded up and
3965		 * expressed in KB.
3966		 */
3967		pba = er32(PBA);
3968		/* upper 16 bits has Tx packet buffer allocation size in KB */
3969		tx_space = pba >> 16;
3970		/* lower 16 bits has Rx packet buffer allocation size in KB */
3971		pba &= 0xffff;
3972		/* the Tx fifo also stores 16 bytes of information about the Tx
3973		 * but don't include ethernet FCS because hardware appends it
3974		 */
3975		min_tx_space = (adapter->max_frame_size +
3976				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3977		min_tx_space = ALIGN(min_tx_space, 1024);
3978		min_tx_space >>= 10;
3979		/* software strips receive CRC, so leave room for it */
3980		min_rx_space = adapter->max_frame_size;
3981		min_rx_space = ALIGN(min_rx_space, 1024);
3982		min_rx_space >>= 10;
3983
3984		/* If current Tx allocation is less than the min Tx FIFO size,
3985		 * and the min Tx FIFO size is less than the current Rx FIFO
3986		 * allocation, take space away from current Rx allocation
3987		 */
3988		if ((tx_space < min_tx_space) &&
3989		    ((min_tx_space - tx_space) < pba)) {
3990			pba -= min_tx_space - tx_space;
3991
3992			/* if short on Rx space, Rx wins and must trump Tx
3993			 * adjustment
3994			 */
3995			if (pba < min_rx_space)
3996				pba = min_rx_space;
3997		}
3998
3999		ew32(PBA, pba);
4000	}
4001
4002	/* flow control settings
4003	 *
4004	 * The high water mark must be low enough to fit one full frame
4005	 * (or the size used for early receive) above it in the Rx FIFO.
4006	 * Set it to the lower of:
4007	 * - 90% of the Rx FIFO size, and
4008	 * - the full Rx FIFO size minus one full frame
4009	 */
4010	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4011		fc->pause_time = 0xFFFF;
4012	else
4013		fc->pause_time = E1000_FC_PAUSE_TIME;
4014	fc->send_xon = true;
4015	fc->current_mode = fc->requested_mode;
4016
4017	switch (hw->mac.type) {
4018	case e1000_ich9lan:
4019	case e1000_ich10lan:
4020		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4021			pba = 14;
4022			ew32(PBA, pba);
4023			fc->high_water = 0x2800;
4024			fc->low_water = fc->high_water - 8;
4025			break;
4026		}
4027		fallthrough;
4028	default:
4029		hwm = min(((pba << 10) * 9 / 10),
4030			  ((pba << 10) - adapter->max_frame_size));
4031
4032		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4033		fc->low_water = fc->high_water - 8;
4034		break;
4035	case e1000_pchlan:
4036		/* Workaround PCH LOM adapter hangs with certain network
4037		 * loads.  If hangs persist, try disabling Tx flow control.
4038		 */
4039		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040			fc->high_water = 0x3500;
4041			fc->low_water = 0x1500;
4042		} else {
4043			fc->high_water = 0x5000;
4044			fc->low_water = 0x3000;
4045		}
4046		fc->refresh_time = 0x1000;
4047		break;
4048	case e1000_pch2lan:
4049	case e1000_pch_lpt:
4050	case e1000_pch_spt:
4051	case e1000_pch_cnp:
4052	case e1000_pch_tgp:
4053	case e1000_pch_adp:
4054	case e1000_pch_mtp:
4055	case e1000_pch_lnp:
4056	case e1000_pch_ptp:
4057	case e1000_pch_nvp:
4058		fc->refresh_time = 0xFFFF;
4059		fc->pause_time = 0xFFFF;
4060
4061		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4062			fc->high_water = 0x05C20;
4063			fc->low_water = 0x05048;
4064			break;
4065		}
4066
4067		pba = 14;
4068		ew32(PBA, pba);
4069		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4070		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4071		break;
4072	}
4073
4074	/* Alignment of Tx data is on an arbitrary byte boundary with the
4075	 * maximum size per Tx descriptor limited only to the transmit
4076	 * allocation of the packet buffer minus 96 bytes with an upper
4077	 * limit of 24KB due to receive synchronization limitations.
4078	 */
4079	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4080				       24 << 10);
4081
4082	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4083	 * fit in receive buffer.
4084	 */
4085	if (adapter->itr_setting & 0x3) {
4086		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4087			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4088				dev_info(&adapter->pdev->dev,
4089					 "Interrupt Throttle Rate off\n");
4090				adapter->flags2 |= FLAG2_DISABLE_AIM;
4091				e1000e_write_itr(adapter, 0);
4092			}
4093		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4094			dev_info(&adapter->pdev->dev,
4095				 "Interrupt Throttle Rate on\n");
4096			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4097			adapter->itr = 20000;
4098			e1000e_write_itr(adapter, adapter->itr);
4099		}
4100	}
4101
4102	if (hw->mac.type >= e1000_pch_spt)
4103		e1000_flush_desc_rings(adapter);
4104	/* Allow time for pending master requests to run */
4105	mac->ops.reset_hw(hw);
4106
4107	/* For parts with AMT enabled, let the firmware know
4108	 * that the network interface is in control
4109	 */
4110	if (adapter->flags & FLAG_HAS_AMT)
4111		e1000e_get_hw_control(adapter);
4112
4113	ew32(WUC, 0);
4114
4115	if (mac->ops.init_hw(hw))
4116		e_err("Hardware Error\n");
4117
4118	e1000_update_mng_vlan(adapter);
4119
4120	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4121	ew32(VET, ETH_P_8021Q);
4122
4123	e1000e_reset_adaptive(hw);
4124
4125	/* restore systim and hwtstamp settings */
4126	e1000e_systim_reset(adapter);
4127
4128	/* Set EEE advertisement as appropriate */
4129	if (adapter->flags2 & FLAG2_HAS_EEE) {
4130		s32 ret_val;
4131		u16 adv_addr;
4132
4133		switch (hw->phy.type) {
4134		case e1000_phy_82579:
4135			adv_addr = I82579_EEE_ADVERTISEMENT;
4136			break;
4137		case e1000_phy_i217:
4138			adv_addr = I217_EEE_ADVERTISEMENT;
4139			break;
4140		default:
4141			dev_err(&adapter->pdev->dev,
4142				"Invalid PHY type setting EEE advertisement\n");
4143			return;
4144		}
4145
4146		ret_val = hw->phy.ops.acquire(hw);
4147		if (ret_val) {
4148			dev_err(&adapter->pdev->dev,
4149				"EEE advertisement - unable to acquire PHY\n");
4150			return;
4151		}
4152
4153		e1000_write_emi_reg_locked(hw, adv_addr,
4154					   hw->dev_spec.ich8lan.eee_disable ?
4155					   0 : adapter->eee_advert);
4156
4157		hw->phy.ops.release(hw);
4158	}
4159
4160	if (!netif_running(adapter->netdev) &&
4161	    !test_bit(__E1000_TESTING, &adapter->state))
4162		e1000_power_down_phy(adapter);
4163
4164	e1000_get_phy_info(hw);
4165
4166	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4167	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4168		u16 phy_data = 0;
4169		/* speed up time to link by disabling smart power down, ignore
4170		 * the return value of this function because there is nothing
4171		 * different we would do if it failed
4172		 */
4173		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4174		phy_data &= ~IGP02E1000_PM_SPD;
4175		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4176	}
4177	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4178		u32 reg;
4179
4180		/* Fextnvm7 @ 0xe4[2] = 1 */
4181		reg = er32(FEXTNVM7);
4182		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4183		ew32(FEXTNVM7, reg);
4184		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4185		reg = er32(FEXTNVM9);
4186		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4187		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4188		ew32(FEXTNVM9, reg);
4189	}
4190
4191}
4192
4193/**
4194 * e1000e_trigger_lsc - trigger an LSC interrupt
4195 * @adapter: board private structure
4196 *
4197 * Fire a link status change interrupt to start the watchdog.
4198 **/
4199static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4200{
4201	struct e1000_hw *hw = &adapter->hw;
4202
4203	if (adapter->msix_entries)
4204		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4205	else
4206		ew32(ICS, E1000_ICS_LSC);
4207}
4208
4209void e1000e_up(struct e1000_adapter *adapter)
4210{
4211	/* hardware has been reset, we need to reload some things */
4212	e1000_configure(adapter);
4213
4214	clear_bit(__E1000_DOWN, &adapter->state);
4215
4216	if (adapter->msix_entries)
4217		e1000_configure_msix(adapter);
4218	e1000_irq_enable(adapter);
4219
4220	/* Tx queue started by watchdog timer when link is up */
4221
4222	e1000e_trigger_lsc(adapter);
4223}
4224
4225static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4226{
4227	struct e1000_hw *hw = &adapter->hw;
4228
4229	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4230		return;
4231
4232	/* flush pending descriptor writebacks to memory */
4233	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235
4236	/* execute the writes immediately */
4237	e1e_flush();
4238
4239	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4240	 * write is successful
4241	 */
4242	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4243	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4244
4245	/* execute the writes immediately */
4246	e1e_flush();
4247}
4248
4249static void e1000e_update_stats(struct e1000_adapter *adapter);
4250
4251/**
4252 * e1000e_down - quiesce the device and optionally reset the hardware
4253 * @adapter: board private structure
4254 * @reset: boolean flag to reset the hardware or not
4255 */
4256void e1000e_down(struct e1000_adapter *adapter, bool reset)
4257{
4258	struct net_device *netdev = adapter->netdev;
4259	struct e1000_hw *hw = &adapter->hw;
4260	u32 tctl, rctl;
4261
4262	/* signal that we're down so the interrupt handler does not
4263	 * reschedule our watchdog timer
4264	 */
4265	set_bit(__E1000_DOWN, &adapter->state);
4266
4267	netif_carrier_off(netdev);
4268
4269	/* disable receives in the hardware */
4270	rctl = er32(RCTL);
4271	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4272		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4273	/* flush and sleep below */
4274
4275	netif_stop_queue(netdev);
4276
4277	/* disable transmits in the hardware */
4278	tctl = er32(TCTL);
4279	tctl &= ~E1000_TCTL_EN;
4280	ew32(TCTL, tctl);
4281
4282	/* flush both disables and wait for them to finish */
4283	e1e_flush();
4284	usleep_range(10000, 11000);
4285
4286	e1000_irq_disable(adapter);
4287
4288	napi_synchronize(&adapter->napi);
4289
4290	del_timer_sync(&adapter->watchdog_timer);
4291	del_timer_sync(&adapter->phy_info_timer);
4292
4293	spin_lock(&adapter->stats64_lock);
4294	e1000e_update_stats(adapter);
4295	spin_unlock(&adapter->stats64_lock);
4296
4297	e1000e_flush_descriptors(adapter);
4298
4299	adapter->link_speed = 0;
4300	adapter->link_duplex = 0;
4301
4302	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4303	if ((hw->mac.type >= e1000_pch2lan) &&
4304	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4305	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4306		e_dbg("failed to disable jumbo frame workaround mode\n");
4307
4308	if (!pci_channel_offline(adapter->pdev)) {
4309		if (reset)
4310			e1000e_reset(adapter);
4311		else if (hw->mac.type >= e1000_pch_spt)
4312			e1000_flush_desc_rings(adapter);
4313	}
4314	e1000_clean_tx_ring(adapter->tx_ring);
4315	e1000_clean_rx_ring(adapter->rx_ring);
4316}
4317
4318void e1000e_reinit_locked(struct e1000_adapter *adapter)
4319{
4320	might_sleep();
4321	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4322		usleep_range(1000, 1100);
4323	e1000e_down(adapter, true);
4324	e1000e_up(adapter);
4325	clear_bit(__E1000_RESETTING, &adapter->state);
4326}
4327
4328/**
4329 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4330 * @hw: pointer to the HW structure
4331 * @systim: PHC time value read, sanitized and returned
4332 * @sts: structure to hold system time before and after reading SYSTIML,
4333 * may be NULL
4334 *
4335 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4336 * check to see that the time is incrementing at a reasonable
4337 * rate and is a multiple of incvalue.
4338 **/
4339static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4340				  struct ptp_system_timestamp *sts)
4341{
4342	u64 time_delta, rem, temp;
4343	u64 systim_next;
4344	u32 incvalue;
4345	int i;
4346
4347	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349		/* latch SYSTIMH on read of SYSTIML */
4350		ptp_read_system_prets(sts);
4351		systim_next = (u64)er32(SYSTIML);
4352		ptp_read_system_postts(sts);
4353		systim_next |= (u64)er32(SYSTIMH) << 32;
4354
4355		time_delta = systim_next - systim;
4356		temp = time_delta;
4357		/* VMWare users have seen incvalue of zero, don't div / 0 */
4358		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4359
4360		systim = systim_next;
4361
4362		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4363			break;
4364	}
4365
4366	return systim;
4367}
4368
4369/**
4370 * e1000e_read_systim - read SYSTIM register
4371 * @adapter: board private structure
4372 * @sts: structure which will contain system time before and after reading
4373 * SYSTIML, may be NULL
4374 **/
4375u64 e1000e_read_systim(struct e1000_adapter *adapter,
4376		       struct ptp_system_timestamp *sts)
4377{
4378	struct e1000_hw *hw = &adapter->hw;
4379	u32 systimel, systimel_2, systimeh;
4380	u64 systim;
4381	/* SYSTIMH latching upon SYSTIML read does not work well.
4382	 * This means that if SYSTIML overflows after we read it but before
4383	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4384	 * will experience a huge non linear increment in the systime value
4385	 * to fix that we test for overflow and if true, we re-read systime.
4386	 */
4387	ptp_read_system_prets(sts);
4388	systimel = er32(SYSTIML);
4389	ptp_read_system_postts(sts);
4390	systimeh = er32(SYSTIMH);
4391	/* Is systimel is so large that overflow is possible? */
4392	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4393		ptp_read_system_prets(sts);
4394		systimel_2 = er32(SYSTIML);
4395		ptp_read_system_postts(sts);
4396		if (systimel > systimel_2) {
4397			/* There was an overflow, read again SYSTIMH, and use
4398			 * systimel_2
4399			 */
4400			systimeh = er32(SYSTIMH);
4401			systimel = systimel_2;
4402		}
4403	}
4404	systim = (u64)systimel;
4405	systim |= (u64)systimeh << 32;
4406
4407	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4408		systim = e1000e_sanitize_systim(hw, systim, sts);
4409
4410	return systim;
4411}
4412
4413/**
4414 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4415 * @cc: cyclecounter structure
4416 **/
4417static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4418{
4419	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4420						     cc);
4421
4422	return e1000e_read_systim(adapter, NULL);
4423}
4424
4425/**
4426 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4427 * @adapter: board private structure to initialize
4428 *
4429 * e1000_sw_init initializes the Adapter private data structure.
4430 * Fields are initialized based on PCI device information and
4431 * OS network device settings (MTU size).
4432 **/
4433static int e1000_sw_init(struct e1000_adapter *adapter)
4434{
4435	struct net_device *netdev = adapter->netdev;
4436
4437	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4438	adapter->rx_ps_bsize0 = 128;
4439	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4440	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4441	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4442	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4443
4444	spin_lock_init(&adapter->stats64_lock);
4445
4446	e1000e_set_interrupt_capability(adapter);
4447
4448	if (e1000_alloc_queues(adapter))
4449		return -ENOMEM;
4450
4451	/* Setup hardware time stamping cyclecounter */
4452	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4453		adapter->cc.read = e1000e_cyclecounter_read;
4454		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4455		adapter->cc.mult = 1;
4456		/* cc.shift set in e1000e_get_base_tininca() */
4457
4458		spin_lock_init(&adapter->systim_lock);
4459		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4460	}
4461
4462	/* Explicitly disable IRQ since the NIC can be in any state. */
4463	e1000_irq_disable(adapter);
4464
4465	set_bit(__E1000_DOWN, &adapter->state);
4466	return 0;
4467}
4468
4469/**
4470 * e1000_intr_msi_test - Interrupt Handler
4471 * @irq: interrupt number
4472 * @data: pointer to a network interface device structure
4473 **/
4474static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4475{
4476	struct net_device *netdev = data;
4477	struct e1000_adapter *adapter = netdev_priv(netdev);
4478	struct e1000_hw *hw = &adapter->hw;
4479	u32 icr = er32(ICR);
4480
4481	e_dbg("icr is %08X\n", icr);
4482	if (icr & E1000_ICR_RXSEQ) {
4483		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4484		/* Force memory writes to complete before acknowledging the
4485		 * interrupt is handled.
4486		 */
4487		wmb();
4488	}
4489
4490	return IRQ_HANDLED;
4491}
4492
4493/**
4494 * e1000_test_msi_interrupt - Returns 0 for successful test
4495 * @adapter: board private struct
4496 *
4497 * code flow taken from tg3.c
4498 **/
4499static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4500{
4501	struct net_device *netdev = adapter->netdev;
4502	struct e1000_hw *hw = &adapter->hw;
4503	int err;
4504
4505	/* poll_enable hasn't been called yet, so don't need disable */
4506	/* clear any pending events */
4507	er32(ICR);
4508
4509	/* free the real vector and request a test handler */
4510	e1000_free_irq(adapter);
4511	e1000e_reset_interrupt_capability(adapter);
4512
4513	/* Assume that the test fails, if it succeeds then the test
4514	 * MSI irq handler will unset this flag
4515	 */
4516	adapter->flags |= FLAG_MSI_TEST_FAILED;
4517
4518	err = pci_enable_msi(adapter->pdev);
4519	if (err)
4520		goto msi_test_failed;
4521
4522	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4523			  netdev->name, netdev);
4524	if (err) {
4525		pci_disable_msi(adapter->pdev);
4526		goto msi_test_failed;
4527	}
4528
4529	/* Force memory writes to complete before enabling and firing an
4530	 * interrupt.
4531	 */
4532	wmb();
4533
4534	e1000_irq_enable(adapter);
4535
4536	/* fire an unusual interrupt on the test handler */
4537	ew32(ICS, E1000_ICS_RXSEQ);
4538	e1e_flush();
4539	msleep(100);
4540
4541	e1000_irq_disable(adapter);
4542
4543	rmb();			/* read flags after interrupt has been fired */
4544
4545	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4546		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4547		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4548	} else {
4549		e_dbg("MSI interrupt test succeeded!\n");
4550	}
4551
4552	free_irq(adapter->pdev->irq, netdev);
4553	pci_disable_msi(adapter->pdev);
4554
4555msi_test_failed:
4556	e1000e_set_interrupt_capability(adapter);
4557	return e1000_request_irq(adapter);
4558}
4559
4560/**
4561 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4562 * @adapter: board private struct
4563 *
4564 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4565 **/
4566static int e1000_test_msi(struct e1000_adapter *adapter)
4567{
4568	int err;
4569	u16 pci_cmd;
4570
4571	if (!(adapter->flags & FLAG_MSI_ENABLED))
4572		return 0;
4573
4574	/* disable SERR in case the MSI write causes a master abort */
4575	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576	if (pci_cmd & PCI_COMMAND_SERR)
4577		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4578				      pci_cmd & ~PCI_COMMAND_SERR);
4579
4580	err = e1000_test_msi_interrupt(adapter);
4581
4582	/* re-enable SERR */
4583	if (pci_cmd & PCI_COMMAND_SERR) {
4584		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4585		pci_cmd |= PCI_COMMAND_SERR;
4586		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4587	}
4588
4589	return err;
4590}
4591
4592/**
4593 * e1000e_open - Called when a network interface is made active
4594 * @netdev: network interface device structure
4595 *
4596 * Returns 0 on success, negative value on failure
4597 *
4598 * The open entry point is called when a network interface is made
4599 * active by the system (IFF_UP).  At this point all resources needed
4600 * for transmit and receive operations are allocated, the interrupt
4601 * handler is registered with the OS, the watchdog timer is started,
4602 * and the stack is notified that the interface is ready.
4603 **/
4604int e1000e_open(struct net_device *netdev)
4605{
4606	struct e1000_adapter *adapter = netdev_priv(netdev);
4607	struct e1000_hw *hw = &adapter->hw;
4608	struct pci_dev *pdev = adapter->pdev;
4609	int err;
4610	int irq;
4611
4612	/* disallow open during test */
4613	if (test_bit(__E1000_TESTING, &adapter->state))
4614		return -EBUSY;
4615
4616	pm_runtime_get_sync(&pdev->dev);
4617
4618	netif_carrier_off(netdev);
4619	netif_stop_queue(netdev);
4620
4621	/* allocate transmit descriptors */
4622	err = e1000e_setup_tx_resources(adapter->tx_ring);
4623	if (err)
4624		goto err_setup_tx;
4625
4626	/* allocate receive descriptors */
4627	err = e1000e_setup_rx_resources(adapter->rx_ring);
4628	if (err)
4629		goto err_setup_rx;
4630
4631	/* If AMT is enabled, let the firmware know that the network
4632	 * interface is now open and reset the part to a known state.
4633	 */
4634	if (adapter->flags & FLAG_HAS_AMT) {
4635		e1000e_get_hw_control(adapter);
4636		e1000e_reset(adapter);
4637	}
4638
4639	e1000e_power_up_phy(adapter);
4640
4641	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4642	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4643		e1000_update_mng_vlan(adapter);
4644
4645	/* DMA latency requirement to workaround jumbo issue */
4646	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4647
4648	/* before we allocate an interrupt, we must be ready to handle it.
4649	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650	 * as soon as we call pci_request_irq, so we have to setup our
4651	 * clean_rx handler before we do so.
4652	 */
4653	e1000_configure(adapter);
4654
4655	err = e1000_request_irq(adapter);
4656	if (err)
4657		goto err_req_irq;
4658
4659	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4660	 * ignore e1000e MSI messages, which means we need to test our MSI
4661	 * interrupt now
4662	 */
4663	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4664		err = e1000_test_msi(adapter);
4665		if (err) {
4666			e_err("Interrupt allocation failed\n");
4667			goto err_req_irq;
4668		}
4669	}
4670
4671	/* From here on the code is the same as e1000e_up() */
4672	clear_bit(__E1000_DOWN, &adapter->state);
4673
4674	if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4675		irq = adapter->msix_entries[0].vector;
4676	else
4677		irq = adapter->pdev->irq;
4678
4679	netif_napi_set_irq(&adapter->napi, irq);
4680	napi_enable(&adapter->napi);
4681	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4682	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4683
4684	e1000_irq_enable(adapter);
4685
4686	adapter->tx_hang_recheck = false;
4687
4688	hw->mac.get_link_status = true;
4689	pm_runtime_put(&pdev->dev);
4690
4691	e1000e_trigger_lsc(adapter);
4692
4693	return 0;
4694
4695err_req_irq:
4696	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4697	e1000e_release_hw_control(adapter);
4698	e1000_power_down_phy(adapter);
4699	e1000e_free_rx_resources(adapter->rx_ring);
4700err_setup_rx:
4701	e1000e_free_tx_resources(adapter->tx_ring);
4702err_setup_tx:
4703	e1000e_reset(adapter);
4704	pm_runtime_put_sync(&pdev->dev);
4705
4706	return err;
4707}
4708
4709/**
4710 * e1000e_close - Disables a network interface
4711 * @netdev: network interface device structure
4712 *
4713 * Returns 0, this is not allowed to fail
4714 *
4715 * The close entry point is called when an interface is de-activated
4716 * by the OS.  The hardware is still under the drivers control, but
4717 * needs to be disabled.  A global MAC reset is issued to stop the
4718 * hardware, and all transmit and receive resources are freed.
4719 **/
4720int e1000e_close(struct net_device *netdev)
4721{
4722	struct e1000_adapter *adapter = netdev_priv(netdev);
4723	struct pci_dev *pdev = adapter->pdev;
4724	int count = E1000_CHECK_RESET_COUNT;
4725
4726	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4727		usleep_range(10000, 11000);
4728
4729	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4730
4731	pm_runtime_get_sync(&pdev->dev);
4732
4733	if (netif_device_present(netdev)) {
4734		e1000e_down(adapter, true);
4735		e1000_free_irq(adapter);
4736
4737		/* Link status message must follow this format */
4738		netdev_info(netdev, "NIC Link is Down\n");
4739	}
4740
4741	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4742	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4743	napi_disable(&adapter->napi);
4744
4745	e1000e_free_tx_resources(adapter->tx_ring);
4746	e1000e_free_rx_resources(adapter->rx_ring);
4747
4748	/* kill manageability vlan ID if supported, but not if a vlan with
4749	 * the same ID is registered on the host OS (let 8021q kill it)
4750	 */
4751	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4752		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4753				       adapter->mng_vlan_id);
4754
4755	/* If AMT is enabled, let the firmware know that the network
4756	 * interface is now closed
4757	 */
4758	if ((adapter->flags & FLAG_HAS_AMT) &&
4759	    !test_bit(__E1000_TESTING, &adapter->state))
4760		e1000e_release_hw_control(adapter);
4761
4762	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4763
4764	pm_runtime_put_sync(&pdev->dev);
4765
4766	return 0;
4767}
4768
4769/**
4770 * e1000_set_mac - Change the Ethernet Address of the NIC
4771 * @netdev: network interface device structure
4772 * @p: pointer to an address structure
4773 *
4774 * Returns 0 on success, negative on failure
4775 **/
4776static int e1000_set_mac(struct net_device *netdev, void *p)
4777{
4778	struct e1000_adapter *adapter = netdev_priv(netdev);
4779	struct e1000_hw *hw = &adapter->hw;
4780	struct sockaddr *addr = p;
4781
4782	if (!is_valid_ether_addr(addr->sa_data))
4783		return -EADDRNOTAVAIL;
4784
4785	eth_hw_addr_set(netdev, addr->sa_data);
4786	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4787
4788	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4789
4790	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4791		/* activate the work around */
4792		e1000e_set_laa_state_82571(&adapter->hw, 1);
4793
4794		/* Hold a copy of the LAA in RAR[14] This is done so that
4795		 * between the time RAR[0] gets clobbered  and the time it
4796		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4797		 * of the RARs and no incoming packets directed to this port
4798		 * are dropped. Eventually the LAA will be in RAR[0] and
4799		 * RAR[14]
4800		 */
4801		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4802				    adapter->hw.mac.rar_entry_count - 1);
4803	}
4804
4805	return 0;
4806}
4807
4808/**
4809 * e1000e_update_phy_task - work thread to update phy
4810 * @work: pointer to our work struct
4811 *
4812 * this worker thread exists because we must acquire a
4813 * semaphore to read the phy, which we could msleep while
4814 * waiting for it, and we can't msleep in a timer.
4815 **/
4816static void e1000e_update_phy_task(struct work_struct *work)
4817{
4818	struct e1000_adapter *adapter = container_of(work,
4819						     struct e1000_adapter,
4820						     update_phy_task);
4821	struct e1000_hw *hw = &adapter->hw;
4822
4823	if (test_bit(__E1000_DOWN, &adapter->state))
4824		return;
4825
4826	e1000_get_phy_info(hw);
4827
4828	/* Enable EEE on 82579 after link up */
4829	if (hw->phy.type >= e1000_phy_82579)
4830		e1000_set_eee_pchlan(hw);
4831}
4832
4833/**
4834 * e1000_update_phy_info - timre call-back to update PHY info
4835 * @t: pointer to timer_list containing private info adapter
4836 *
4837 * Need to wait a few seconds after link up to get diagnostic information from
4838 * the phy
4839 **/
4840static void e1000_update_phy_info(struct timer_list *t)
4841{
4842	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4843
4844	if (test_bit(__E1000_DOWN, &adapter->state))
4845		return;
4846
4847	schedule_work(&adapter->update_phy_task);
4848}
4849
4850/**
4851 * e1000e_update_phy_stats - Update the PHY statistics counters
4852 * @adapter: board private structure
4853 *
4854 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4855 **/
4856static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4857{
4858	struct e1000_hw *hw = &adapter->hw;
4859	s32 ret_val;
4860	u16 phy_data;
4861
4862	ret_val = hw->phy.ops.acquire(hw);
4863	if (ret_val)
4864		return;
4865
4866	/* A page set is expensive so check if already on desired page.
4867	 * If not, set to the page with the PHY status registers.
4868	 */
4869	hw->phy.addr = 1;
4870	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4871					   &phy_data);
4872	if (ret_val)
4873		goto release;
4874	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4875		ret_val = hw->phy.ops.set_page(hw,
4876					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4877		if (ret_val)
4878			goto release;
4879	}
4880
4881	/* Single Collision Count */
4882	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4883	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4884	if (!ret_val)
4885		adapter->stats.scc += phy_data;
4886
4887	/* Excessive Collision Count */
4888	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4889	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4890	if (!ret_val)
4891		adapter->stats.ecol += phy_data;
4892
4893	/* Multiple Collision Count */
4894	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4895	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4896	if (!ret_val)
4897		adapter->stats.mcc += phy_data;
4898
4899	/* Late Collision Count */
4900	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4901	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4902	if (!ret_val)
4903		adapter->stats.latecol += phy_data;
4904
4905	/* Collision Count - also used for adaptive IFS */
4906	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4907	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4908	if (!ret_val)
4909		hw->mac.collision_delta = phy_data;
4910
4911	/* Defer Count */
4912	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4913	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4914	if (!ret_val)
4915		adapter->stats.dc += phy_data;
4916
4917	/* Transmit with no CRS */
4918	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4919	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4920	if (!ret_val)
4921		adapter->stats.tncrs += phy_data;
4922
4923release:
4924	hw->phy.ops.release(hw);
4925}
4926
4927/**
4928 * e1000e_update_stats - Update the board statistics counters
4929 * @adapter: board private structure
4930 **/
4931static void e1000e_update_stats(struct e1000_adapter *adapter)
4932{
4933	struct net_device *netdev = adapter->netdev;
4934	struct e1000_hw *hw = &adapter->hw;
4935	struct pci_dev *pdev = adapter->pdev;
4936
4937	/* Prevent stats update while adapter is being reset, or if the pci
4938	 * connection is down.
4939	 */
4940	if (adapter->link_speed == 0)
4941		return;
4942	if (pci_channel_offline(pdev))
4943		return;
4944
4945	adapter->stats.crcerrs += er32(CRCERRS);
4946	adapter->stats.gprc += er32(GPRC);
4947	adapter->stats.gorc += er32(GORCL);
4948	er32(GORCH);		/* Clear gorc */
4949	adapter->stats.bprc += er32(BPRC);
4950	adapter->stats.mprc += er32(MPRC);
4951	adapter->stats.roc += er32(ROC);
4952
4953	adapter->stats.mpc += er32(MPC);
4954
4955	/* Half-duplex statistics */
4956	if (adapter->link_duplex == HALF_DUPLEX) {
4957		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4958			e1000e_update_phy_stats(adapter);
4959		} else {
4960			adapter->stats.scc += er32(SCC);
4961			adapter->stats.ecol += er32(ECOL);
4962			adapter->stats.mcc += er32(MCC);
4963			adapter->stats.latecol += er32(LATECOL);
4964			adapter->stats.dc += er32(DC);
4965
4966			hw->mac.collision_delta = er32(COLC);
4967
4968			if ((hw->mac.type != e1000_82574) &&
4969			    (hw->mac.type != e1000_82583))
4970				adapter->stats.tncrs += er32(TNCRS);
4971		}
4972		adapter->stats.colc += hw->mac.collision_delta;
4973	}
4974
4975	adapter->stats.xonrxc += er32(XONRXC);
4976	adapter->stats.xontxc += er32(XONTXC);
4977	adapter->stats.xoffrxc += er32(XOFFRXC);
4978	adapter->stats.xofftxc += er32(XOFFTXC);
4979	adapter->stats.gptc += er32(GPTC);
4980	adapter->stats.gotc += er32(GOTCL);
4981	er32(GOTCH);		/* Clear gotc */
4982	adapter->stats.rnbc += er32(RNBC);
4983	adapter->stats.ruc += er32(RUC);
4984
4985	adapter->stats.mptc += er32(MPTC);
4986	adapter->stats.bptc += er32(BPTC);
4987
4988	/* used for adaptive IFS */
4989
4990	hw->mac.tx_packet_delta = er32(TPT);
4991	adapter->stats.tpt += hw->mac.tx_packet_delta;
4992
4993	adapter->stats.algnerrc += er32(ALGNERRC);
4994	adapter->stats.rxerrc += er32(RXERRC);
4995	adapter->stats.cexterr += er32(CEXTERR);
4996	adapter->stats.tsctc += er32(TSCTC);
4997	adapter->stats.tsctfc += er32(TSCTFC);
4998
4999	/* Fill out the OS statistics structure */
5000	netdev->stats.multicast = adapter->stats.mprc;
5001	netdev->stats.collisions = adapter->stats.colc;
5002
5003	/* Rx Errors */
5004
5005	/* RLEC on some newer hardware can be incorrect so build
5006	 * our own version based on RUC and ROC
5007	 */
5008	netdev->stats.rx_errors = adapter->stats.rxerrc +
5009	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5010	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5011	netdev->stats.rx_length_errors = adapter->stats.ruc +
5012	    adapter->stats.roc;
5013	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5014	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5015	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5016
5017	/* Tx Errors */
5018	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5019	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5020	netdev->stats.tx_window_errors = adapter->stats.latecol;
5021	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5022
5023	/* Tx Dropped needs to be maintained elsewhere */
5024
5025	/* Management Stats */
5026	adapter->stats.mgptc += er32(MGTPTC);
5027	adapter->stats.mgprc += er32(MGTPRC);
5028	adapter->stats.mgpdc += er32(MGTPDC);
5029
5030	/* Correctable ECC Errors */
5031	if (hw->mac.type >= e1000_pch_lpt) {
5032		u32 pbeccsts = er32(PBECCSTS);
5033
5034		adapter->corr_errors +=
5035		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5036		adapter->uncorr_errors +=
5037		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
5038	}
5039}
5040
5041/**
5042 * e1000_phy_read_status - Update the PHY register status snapshot
5043 * @adapter: board private structure
5044 **/
5045static void e1000_phy_read_status(struct e1000_adapter *adapter)
5046{
5047	struct e1000_hw *hw = &adapter->hw;
5048	struct e1000_phy_regs *phy = &adapter->phy_regs;
5049
5050	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5051	    (er32(STATUS) & E1000_STATUS_LU) &&
5052	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5053		int ret_val;
5054
5055		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5056		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5057		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5058		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5059		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5060		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5061		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5062		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5063		if (ret_val)
5064			e_warn("Error reading PHY register\n");
5065	} else {
5066		/* Do not read PHY registers if link is not up
5067		 * Set values to typical power-on defaults
5068		 */
5069		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5070		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5071			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5072			     BMSR_ERCAP);
5073		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5074				  ADVERTISE_ALL | ADVERTISE_CSMA);
5075		phy->lpa = 0;
5076		phy->expansion = EXPANSION_ENABLENPAGE;
5077		phy->ctrl1000 = ADVERTISE_1000FULL;
5078		phy->stat1000 = 0;
5079		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5080	}
5081}
5082
5083static void e1000_print_link_info(struct e1000_adapter *adapter)
5084{
5085	struct e1000_hw *hw = &adapter->hw;
5086	u32 ctrl = er32(CTRL);
5087
5088	/* Link status message must follow this format for user tools */
5089	netdev_info(adapter->netdev,
5090		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5091		    adapter->link_speed,
5092		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5093		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5094		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5095		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5096}
5097
5098static bool e1000e_has_link(struct e1000_adapter *adapter)
5099{
5100	struct e1000_hw *hw = &adapter->hw;
5101	bool link_active = false;
5102	s32 ret_val = 0;
5103
5104	/* get_link_status is set on LSC (link status) interrupt or
5105	 * Rx sequence error interrupt.  get_link_status will stay
5106	 * true until the check_for_link establishes link
5107	 * for copper adapters ONLY
5108	 */
5109	switch (hw->phy.media_type) {
5110	case e1000_media_type_copper:
5111		if (hw->mac.get_link_status) {
5112			ret_val = hw->mac.ops.check_for_link(hw);
5113			link_active = !hw->mac.get_link_status;
5114		} else {
5115			link_active = true;
5116		}
5117		break;
5118	case e1000_media_type_fiber:
5119		ret_val = hw->mac.ops.check_for_link(hw);
5120		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5121		break;
5122	case e1000_media_type_internal_serdes:
5123		ret_val = hw->mac.ops.check_for_link(hw);
5124		link_active = hw->mac.serdes_has_link;
5125		break;
5126	default:
5127	case e1000_media_type_unknown:
5128		break;
5129	}
5130
5131	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5132	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5133		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5134		e_info("Gigabit has been disabled, downgrading speed\n");
5135	}
5136
5137	return link_active;
5138}
5139
5140static void e1000e_enable_receives(struct e1000_adapter *adapter)
5141{
5142	/* make sure the receive unit is started */
5143	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5144	    (adapter->flags & FLAG_RESTART_NOW)) {
5145		struct e1000_hw *hw = &adapter->hw;
5146		u32 rctl = er32(RCTL);
5147
5148		ew32(RCTL, rctl | E1000_RCTL_EN);
5149		adapter->flags &= ~FLAG_RESTART_NOW;
5150	}
5151}
5152
5153static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5154{
5155	struct e1000_hw *hw = &adapter->hw;
5156
5157	/* With 82574 controllers, PHY needs to be checked periodically
5158	 * for hung state and reset, if two calls return true
5159	 */
5160	if (e1000_check_phy_82574(hw))
5161		adapter->phy_hang_count++;
5162	else
5163		adapter->phy_hang_count = 0;
5164
5165	if (adapter->phy_hang_count > 1) {
5166		adapter->phy_hang_count = 0;
5167		e_dbg("PHY appears hung - resetting\n");
5168		schedule_work(&adapter->reset_task);
5169	}
5170}
5171
5172/**
5173 * e1000_watchdog - Timer Call-back
5174 * @t: pointer to timer_list containing private info adapter
5175 **/
5176static void e1000_watchdog(struct timer_list *t)
5177{
5178	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5179
5180	/* Do the rest outside of interrupt context */
5181	schedule_work(&adapter->watchdog_task);
5182
5183	/* TODO: make this use queue_delayed_work() */
5184}
5185
5186static void e1000_watchdog_task(struct work_struct *work)
5187{
5188	struct e1000_adapter *adapter = container_of(work,
5189						     struct e1000_adapter,
5190						     watchdog_task);
5191	struct net_device *netdev = adapter->netdev;
5192	struct e1000_mac_info *mac = &adapter->hw.mac;
5193	struct e1000_phy_info *phy = &adapter->hw.phy;
5194	struct e1000_ring *tx_ring = adapter->tx_ring;
5195	u32 dmoff_exit_timeout = 100, tries = 0;
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 link, tctl, pcim_state;
5198
5199	if (test_bit(__E1000_DOWN, &adapter->state))
5200		return;
5201
5202	link = e1000e_has_link(adapter);
5203	if ((netif_carrier_ok(netdev)) && link) {
5204		/* Cancel scheduled suspend requests. */
5205		pm_runtime_resume(netdev->dev.parent);
5206
5207		e1000e_enable_receives(adapter);
5208		goto link_up;
5209	}
5210
5211	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5212	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5213		e1000_update_mng_vlan(adapter);
5214
5215	if (link) {
5216		if (!netif_carrier_ok(netdev)) {
5217			bool txb2b = true;
5218
5219			/* Cancel scheduled suspend requests. */
5220			pm_runtime_resume(netdev->dev.parent);
5221
5222			/* Checking if MAC is in DMoff state*/
5223			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5224				pcim_state = er32(STATUS);
5225				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5226					if (tries++ == dmoff_exit_timeout) {
5227						e_dbg("Error in exiting dmoff\n");
5228						break;
5229					}
5230					usleep_range(10000, 20000);
5231					pcim_state = er32(STATUS);
5232
5233					/* Checking if MAC exited DMoff state */
5234					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5235						e1000_phy_hw_reset(&adapter->hw);
5236				}
 
 
 
 
 
 
5237			}
5238
5239			/* update snapshot of PHY registers on LSC */
5240			e1000_phy_read_status(adapter);
5241			mac->ops.get_link_up_info(&adapter->hw,
5242						  &adapter->link_speed,
5243						  &adapter->link_duplex);
5244			e1000_print_link_info(adapter);
5245
5246			/* check if SmartSpeed worked */
5247			e1000e_check_downshift(hw);
5248			if (phy->speed_downgraded)
5249				netdev_warn(netdev,
5250					    "Link Speed was downgraded by SmartSpeed\n");
5251
5252			/* On supported PHYs, check for duplex mismatch only
5253			 * if link has autonegotiated at 10/100 half
5254			 */
5255			if ((hw->phy.type == e1000_phy_igp_3 ||
5256			     hw->phy.type == e1000_phy_bm) &&
5257			    hw->mac.autoneg &&
5258			    (adapter->link_speed == SPEED_10 ||
5259			     adapter->link_speed == SPEED_100) &&
5260			    (adapter->link_duplex == HALF_DUPLEX)) {
5261				u16 autoneg_exp;
5262
5263				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5264
5265				if (!(autoneg_exp & EXPANSION_NWAY))
5266					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5267			}
5268
5269			/* adjust timeout factor according to speed/duplex */
5270			adapter->tx_timeout_factor = 1;
5271			switch (adapter->link_speed) {
5272			case SPEED_10:
5273				txb2b = false;
5274				adapter->tx_timeout_factor = 16;
5275				break;
5276			case SPEED_100:
5277				txb2b = false;
5278				adapter->tx_timeout_factor = 10;
5279				break;
5280			}
5281
5282			/* workaround: re-program speed mode bit after
5283			 * link-up event
5284			 */
5285			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286			    !txb2b) {
5287				u32 tarc0;
5288
5289				tarc0 = er32(TARC(0));
5290				tarc0 &= ~SPEED_MODE_BIT;
5291				ew32(TARC(0), tarc0);
5292			}
5293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5294			/* enable transmits in the hardware, need to do this
5295			 * after setting TARC(0)
5296			 */
5297			tctl = er32(TCTL);
5298			tctl |= E1000_TCTL_EN;
5299			ew32(TCTL, tctl);
5300
5301			/* Perform any post-link-up configuration before
5302			 * reporting link up.
5303			 */
5304			if (phy->ops.cfg_on_link_up)
5305				phy->ops.cfg_on_link_up(hw);
5306
5307			netif_wake_queue(netdev);
5308			netif_carrier_on(netdev);
5309
5310			if (!test_bit(__E1000_DOWN, &adapter->state))
5311				mod_timer(&adapter->phy_info_timer,
5312					  round_jiffies(jiffies + 2 * HZ));
5313		}
5314	} else {
5315		if (netif_carrier_ok(netdev)) {
5316			adapter->link_speed = 0;
5317			adapter->link_duplex = 0;
5318			/* Link status message must follow this format */
5319			netdev_info(netdev, "NIC Link is Down\n");
5320			netif_carrier_off(netdev);
5321			netif_stop_queue(netdev);
5322			if (!test_bit(__E1000_DOWN, &adapter->state))
5323				mod_timer(&adapter->phy_info_timer,
5324					  round_jiffies(jiffies + 2 * HZ));
5325
5326			/* 8000ES2LAN requires a Rx packet buffer work-around
5327			 * on link down event; reset the controller to flush
5328			 * the Rx packet buffer.
5329			 */
5330			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5331				adapter->flags |= FLAG_RESTART_NOW;
5332			else
5333				pm_schedule_suspend(netdev->dev.parent,
5334						    LINK_TIMEOUT);
5335		}
5336	}
5337
5338link_up:
5339	spin_lock(&adapter->stats64_lock);
5340	e1000e_update_stats(adapter);
5341
5342	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5343	adapter->tpt_old = adapter->stats.tpt;
5344	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5345	adapter->colc_old = adapter->stats.colc;
5346
5347	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5348	adapter->gorc_old = adapter->stats.gorc;
5349	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5350	adapter->gotc_old = adapter->stats.gotc;
5351	spin_unlock(&adapter->stats64_lock);
5352
5353	/* If the link is lost the controller stops DMA, but
5354	 * if there is queued Tx work it cannot be done.  So
5355	 * reset the controller to flush the Tx packet buffers.
5356	 */
5357	if (!netif_carrier_ok(netdev) &&
5358	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5359		adapter->flags |= FLAG_RESTART_NOW;
5360
5361	/* If reset is necessary, do it outside of interrupt context. */
5362	if (adapter->flags & FLAG_RESTART_NOW) {
5363		schedule_work(&adapter->reset_task);
5364		/* return immediately since reset is imminent */
5365		return;
5366	}
5367
5368	e1000e_update_adaptive(&adapter->hw);
5369
5370	/* Simple mode for Interrupt Throttle Rate (ITR) */
5371	if (adapter->itr_setting == 4) {
5372		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5373		 * Total asymmetrical Tx or Rx gets ITR=8000;
5374		 * everyone else is between 2000-8000.
5375		 */
5376		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5377		u32 dif = (adapter->gotc > adapter->gorc ?
5378			   adapter->gotc - adapter->gorc :
5379			   adapter->gorc - adapter->gotc) / 10000;
5380		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5381
5382		e1000e_write_itr(adapter, itr);
5383	}
5384
5385	/* Cause software interrupt to ensure Rx ring is cleaned */
5386	if (adapter->msix_entries)
5387		ew32(ICS, adapter->rx_ring->ims_val);
5388	else
5389		ew32(ICS, E1000_ICS_RXDMT0);
5390
5391	/* flush pending descriptors to memory before detecting Tx hang */
5392	e1000e_flush_descriptors(adapter);
5393
5394	/* Force detection of hung controller every watchdog period */
5395	adapter->detect_tx_hung = true;
5396
5397	/* With 82571 controllers, LAA may be overwritten due to controller
5398	 * reset from the other port. Set the appropriate LAA in RAR[0]
5399	 */
5400	if (e1000e_get_laa_state_82571(hw))
5401		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5402
5403	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5404		e1000e_check_82574_phy_workaround(adapter);
5405
5406	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5408		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5409		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5410			er32(RXSTMPH);
5411			adapter->rx_hwtstamp_cleared++;
5412		} else {
5413			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5414		}
5415	}
5416
5417	/* Reset the timer */
5418	if (!test_bit(__E1000_DOWN, &adapter->state))
5419		mod_timer(&adapter->watchdog_timer,
5420			  round_jiffies(jiffies + 2 * HZ));
5421}
5422
5423#define E1000_TX_FLAGS_CSUM		0x00000001
5424#define E1000_TX_FLAGS_VLAN		0x00000002
5425#define E1000_TX_FLAGS_TSO		0x00000004
5426#define E1000_TX_FLAGS_IPV4		0x00000008
5427#define E1000_TX_FLAGS_NO_FCS		0x00000010
5428#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5429#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5430#define E1000_TX_FLAGS_VLAN_SHIFT	16
5431
5432static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5433		     __be16 protocol)
5434{
5435	struct e1000_context_desc *context_desc;
5436	struct e1000_buffer *buffer_info;
5437	unsigned int i;
5438	u32 cmd_length = 0;
5439	u16 ipcse = 0, mss;
5440	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5441	int err;
5442
5443	if (!skb_is_gso(skb))
5444		return 0;
5445
5446	err = skb_cow_head(skb, 0);
5447	if (err < 0)
5448		return err;
5449
5450	hdr_len = skb_tcp_all_headers(skb);
5451	mss = skb_shinfo(skb)->gso_size;
5452	if (protocol == htons(ETH_P_IP)) {
5453		struct iphdr *iph = ip_hdr(skb);
5454		iph->tot_len = 0;
5455		iph->check = 0;
5456		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5457							 0, IPPROTO_TCP, 0);
5458		cmd_length = E1000_TXD_CMD_IP;
5459		ipcse = skb_transport_offset(skb) - 1;
5460	} else if (skb_is_gso_v6(skb)) {
5461		tcp_v6_gso_csum_prep(skb);
5462		ipcse = 0;
5463	}
5464	ipcss = skb_network_offset(skb);
5465	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5466	tucss = skb_transport_offset(skb);
5467	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5468
5469	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5470		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5471
5472	i = tx_ring->next_to_use;
5473	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5474	buffer_info = &tx_ring->buffer_info[i];
5475
5476	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5477	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5478	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5479	context_desc->upper_setup.tcp_fields.tucss = tucss;
5480	context_desc->upper_setup.tcp_fields.tucso = tucso;
5481	context_desc->upper_setup.tcp_fields.tucse = 0;
5482	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5483	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5484	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5485
5486	buffer_info->time_stamp = jiffies;
5487	buffer_info->next_to_watch = i;
5488
5489	i++;
5490	if (i == tx_ring->count)
5491		i = 0;
5492	tx_ring->next_to_use = i;
5493
5494	return 1;
5495}
5496
5497static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5498			  __be16 protocol)
5499{
5500	struct e1000_adapter *adapter = tx_ring->adapter;
5501	struct e1000_context_desc *context_desc;
5502	struct e1000_buffer *buffer_info;
5503	unsigned int i;
5504	u8 css;
5505	u32 cmd_len = E1000_TXD_CMD_DEXT;
5506
5507	if (skb->ip_summed != CHECKSUM_PARTIAL)
5508		return false;
5509
5510	switch (protocol) {
5511	case cpu_to_be16(ETH_P_IP):
5512		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5513			cmd_len |= E1000_TXD_CMD_TCP;
5514		break;
5515	case cpu_to_be16(ETH_P_IPV6):
5516		/* XXX not handling all IPV6 headers */
5517		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5518			cmd_len |= E1000_TXD_CMD_TCP;
5519		break;
5520	default:
5521		if (unlikely(net_ratelimit()))
5522			e_warn("checksum_partial proto=%x!\n",
5523			       be16_to_cpu(protocol));
5524		break;
5525	}
5526
5527	css = skb_checksum_start_offset(skb);
5528
5529	i = tx_ring->next_to_use;
5530	buffer_info = &tx_ring->buffer_info[i];
5531	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5532
5533	context_desc->lower_setup.ip_config = 0;
5534	context_desc->upper_setup.tcp_fields.tucss = css;
5535	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5536	context_desc->upper_setup.tcp_fields.tucse = 0;
5537	context_desc->tcp_seg_setup.data = 0;
5538	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5539
5540	buffer_info->time_stamp = jiffies;
5541	buffer_info->next_to_watch = i;
5542
5543	i++;
5544	if (i == tx_ring->count)
5545		i = 0;
5546	tx_ring->next_to_use = i;
5547
5548	return true;
5549}
5550
5551static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5552			unsigned int first, unsigned int max_per_txd,
5553			unsigned int nr_frags)
5554{
5555	struct e1000_adapter *adapter = tx_ring->adapter;
5556	struct pci_dev *pdev = adapter->pdev;
5557	struct e1000_buffer *buffer_info;
5558	unsigned int len = skb_headlen(skb);
5559	unsigned int offset = 0, size, count = 0, i;
5560	unsigned int f, bytecount, segs;
5561
5562	i = tx_ring->next_to_use;
5563
5564	while (len) {
5565		buffer_info = &tx_ring->buffer_info[i];
5566		size = min(len, max_per_txd);
5567
5568		buffer_info->length = size;
5569		buffer_info->time_stamp = jiffies;
5570		buffer_info->next_to_watch = i;
5571		buffer_info->dma = dma_map_single(&pdev->dev,
5572						  skb->data + offset,
5573						  size, DMA_TO_DEVICE);
5574		buffer_info->mapped_as_page = false;
5575		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5576			goto dma_error;
5577
5578		len -= size;
5579		offset += size;
5580		count++;
5581
5582		if (len) {
5583			i++;
5584			if (i == tx_ring->count)
5585				i = 0;
5586		}
5587	}
5588
5589	for (f = 0; f < nr_frags; f++) {
5590		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5591
5592		len = skb_frag_size(frag);
5593		offset = 0;
5594
5595		while (len) {
5596			i++;
5597			if (i == tx_ring->count)
5598				i = 0;
5599
5600			buffer_info = &tx_ring->buffer_info[i];
5601			size = min(len, max_per_txd);
5602
5603			buffer_info->length = size;
5604			buffer_info->time_stamp = jiffies;
5605			buffer_info->next_to_watch = i;
5606			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5607							    offset, size,
5608							    DMA_TO_DEVICE);
5609			buffer_info->mapped_as_page = true;
5610			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5611				goto dma_error;
5612
5613			len -= size;
5614			offset += size;
5615			count++;
5616		}
5617	}
5618
5619	segs = skb_shinfo(skb)->gso_segs ? : 1;
5620	/* multiply data chunks by size of headers */
5621	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5622
5623	tx_ring->buffer_info[i].skb = skb;
5624	tx_ring->buffer_info[i].segs = segs;
5625	tx_ring->buffer_info[i].bytecount = bytecount;
5626	tx_ring->buffer_info[first].next_to_watch = i;
5627
5628	return count;
5629
5630dma_error:
5631	dev_err(&pdev->dev, "Tx DMA map failed\n");
5632	buffer_info->dma = 0;
5633	if (count)
5634		count--;
5635
5636	while (count--) {
5637		if (i == 0)
5638			i += tx_ring->count;
5639		i--;
5640		buffer_info = &tx_ring->buffer_info[i];
5641		e1000_put_txbuf(tx_ring, buffer_info, true);
5642	}
5643
5644	return 0;
5645}
5646
5647static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5648{
5649	struct e1000_adapter *adapter = tx_ring->adapter;
5650	struct e1000_tx_desc *tx_desc = NULL;
5651	struct e1000_buffer *buffer_info;
5652	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5653	unsigned int i;
5654
5655	if (tx_flags & E1000_TX_FLAGS_TSO) {
5656		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5657		    E1000_TXD_CMD_TSE;
5658		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5659
5660		if (tx_flags & E1000_TX_FLAGS_IPV4)
5661			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5662	}
5663
5664	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5665		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5666		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5667	}
5668
5669	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5670		txd_lower |= E1000_TXD_CMD_VLE;
5671		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5672	}
5673
5674	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5675		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5676
5677	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5678		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5679		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5680	}
5681
5682	i = tx_ring->next_to_use;
5683
5684	do {
5685		buffer_info = &tx_ring->buffer_info[i];
5686		tx_desc = E1000_TX_DESC(*tx_ring, i);
5687		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5688		tx_desc->lower.data = cpu_to_le32(txd_lower |
5689						  buffer_info->length);
5690		tx_desc->upper.data = cpu_to_le32(txd_upper);
5691
5692		i++;
5693		if (i == tx_ring->count)
5694			i = 0;
5695	} while (--count > 0);
5696
5697	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5698
5699	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5700	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5701		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5702
5703	/* Force memory writes to complete before letting h/w
5704	 * know there are new descriptors to fetch.  (Only
5705	 * applicable for weak-ordered memory model archs,
5706	 * such as IA-64).
5707	 */
5708	wmb();
5709
5710	tx_ring->next_to_use = i;
5711}
5712
5713#define MINIMUM_DHCP_PACKET_SIZE 282
5714static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5715				    struct sk_buff *skb)
5716{
5717	struct e1000_hw *hw = &adapter->hw;
5718	u16 length, offset;
5719
5720	if (skb_vlan_tag_present(skb) &&
5721	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5722	      (adapter->hw.mng_cookie.status &
5723	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5724		return 0;
5725
5726	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5727		return 0;
5728
5729	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5730		return 0;
5731
5732	{
5733		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5734		struct udphdr *udp;
5735
5736		if (ip->protocol != IPPROTO_UDP)
5737			return 0;
5738
5739		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5740		if (ntohs(udp->dest) != 67)
5741			return 0;
5742
5743		offset = (u8 *)udp + 8 - skb->data;
5744		length = skb->len - offset;
5745		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5746	}
5747
5748	return 0;
5749}
5750
5751static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5752{
5753	struct e1000_adapter *adapter = tx_ring->adapter;
5754
5755	netif_stop_queue(adapter->netdev);
5756	/* Herbert's original patch had:
5757	 *  smp_mb__after_netif_stop_queue();
5758	 * but since that doesn't exist yet, just open code it.
5759	 */
5760	smp_mb();
5761
5762	/* We need to check again in a case another CPU has just
5763	 * made room available.
5764	 */
5765	if (e1000_desc_unused(tx_ring) < size)
5766		return -EBUSY;
5767
5768	/* A reprieve! */
5769	netif_start_queue(adapter->netdev);
5770	++adapter->restart_queue;
5771	return 0;
5772}
5773
5774static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5775{
5776	BUG_ON(size > tx_ring->count);
5777
5778	if (e1000_desc_unused(tx_ring) >= size)
5779		return 0;
5780	return __e1000_maybe_stop_tx(tx_ring, size);
5781}
5782
5783static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5784				    struct net_device *netdev)
5785{
5786	struct e1000_adapter *adapter = netdev_priv(netdev);
5787	struct e1000_ring *tx_ring = adapter->tx_ring;
5788	unsigned int first;
5789	unsigned int tx_flags = 0;
5790	unsigned int len = skb_headlen(skb);
5791	unsigned int nr_frags;
5792	unsigned int mss;
5793	int count = 0;
5794	int tso;
5795	unsigned int f;
5796	__be16 protocol = vlan_get_protocol(skb);
5797
5798	if (test_bit(__E1000_DOWN, &adapter->state)) {
5799		dev_kfree_skb_any(skb);
5800		return NETDEV_TX_OK;
5801	}
5802
5803	if (skb->len <= 0) {
5804		dev_kfree_skb_any(skb);
5805		return NETDEV_TX_OK;
5806	}
5807
5808	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5809	 * pad skb in order to meet this minimum size requirement
5810	 */
5811	if (skb_put_padto(skb, 17))
5812		return NETDEV_TX_OK;
5813
5814	mss = skb_shinfo(skb)->gso_size;
5815	if (mss) {
5816		u8 hdr_len;
5817
5818		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5819		 * points to just header, pull a few bytes of payload from
5820		 * frags into skb->data
5821		 */
5822		hdr_len = skb_tcp_all_headers(skb);
5823		/* we do this workaround for ES2LAN, but it is un-necessary,
5824		 * avoiding it could save a lot of cycles
5825		 */
5826		if (skb->data_len && (hdr_len == len)) {
5827			unsigned int pull_size;
5828
5829			pull_size = min_t(unsigned int, 4, skb->data_len);
5830			if (!__pskb_pull_tail(skb, pull_size)) {
5831				e_err("__pskb_pull_tail failed.\n");
5832				dev_kfree_skb_any(skb);
5833				return NETDEV_TX_OK;
5834			}
5835			len = skb_headlen(skb);
5836		}
5837	}
5838
5839	/* reserve a descriptor for the offload context */
5840	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5841		count++;
5842	count++;
5843
5844	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5845
5846	nr_frags = skb_shinfo(skb)->nr_frags;
5847	for (f = 0; f < nr_frags; f++)
5848		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5849				      adapter->tx_fifo_limit);
5850
5851	if (adapter->hw.mac.tx_pkt_filtering)
5852		e1000_transfer_dhcp_info(adapter, skb);
5853
5854	/* need: count + 2 desc gap to keep tail from touching
5855	 * head, otherwise try next time
5856	 */
5857	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5858		return NETDEV_TX_BUSY;
5859
5860	if (skb_vlan_tag_present(skb)) {
5861		tx_flags |= E1000_TX_FLAGS_VLAN;
5862		tx_flags |= (skb_vlan_tag_get(skb) <<
5863			     E1000_TX_FLAGS_VLAN_SHIFT);
5864	}
5865
5866	first = tx_ring->next_to_use;
5867
5868	tso = e1000_tso(tx_ring, skb, protocol);
5869	if (tso < 0) {
5870		dev_kfree_skb_any(skb);
5871		return NETDEV_TX_OK;
5872	}
5873
5874	if (tso)
5875		tx_flags |= E1000_TX_FLAGS_TSO;
5876	else if (e1000_tx_csum(tx_ring, skb, protocol))
5877		tx_flags |= E1000_TX_FLAGS_CSUM;
5878
5879	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5880	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5881	 * no longer assume, we must.
5882	 */
5883	if (protocol == htons(ETH_P_IP))
5884		tx_flags |= E1000_TX_FLAGS_IPV4;
5885
5886	if (unlikely(skb->no_fcs))
5887		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5888
5889	/* if count is 0 then mapping error has occurred */
5890	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5891			     nr_frags);
5892	if (count) {
5893		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5894		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5895			if (!adapter->tx_hwtstamp_skb) {
5896				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5897				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5898				adapter->tx_hwtstamp_skb = skb_get(skb);
5899				adapter->tx_hwtstamp_start = jiffies;
5900				schedule_work(&adapter->tx_hwtstamp_work);
5901			} else {
5902				adapter->tx_hwtstamp_skipped++;
5903			}
5904		}
5905
5906		skb_tx_timestamp(skb);
5907
5908		netdev_sent_queue(netdev, skb->len);
5909		e1000_tx_queue(tx_ring, tx_flags, count);
5910		/* Make sure there is space in the ring for the next send. */
5911		e1000_maybe_stop_tx(tx_ring,
5912				    ((MAX_SKB_FRAGS + 1) *
5913				     DIV_ROUND_UP(PAGE_SIZE,
5914						  adapter->tx_fifo_limit) + 4));
5915
5916		if (!netdev_xmit_more() ||
5917		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5918			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5919				e1000e_update_tdt_wa(tx_ring,
5920						     tx_ring->next_to_use);
5921			else
5922				writel(tx_ring->next_to_use, tx_ring->tail);
5923		}
5924	} else {
5925		dev_kfree_skb_any(skb);
5926		tx_ring->buffer_info[first].time_stamp = 0;
5927		tx_ring->next_to_use = first;
5928	}
5929
5930	return NETDEV_TX_OK;
5931}
5932
5933/**
5934 * e1000_tx_timeout - Respond to a Tx Hang
5935 * @netdev: network interface device structure
5936 * @txqueue: index of the hung queue (unused)
5937 **/
5938static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5939{
5940	struct e1000_adapter *adapter = netdev_priv(netdev);
5941
5942	/* Do the reset outside of interrupt context */
5943	adapter->tx_timeout_count++;
5944	schedule_work(&adapter->reset_task);
5945}
5946
5947static void e1000_reset_task(struct work_struct *work)
5948{
5949	struct e1000_adapter *adapter;
5950	adapter = container_of(work, struct e1000_adapter, reset_task);
5951
5952	rtnl_lock();
5953	/* don't run the task if already down */
5954	if (test_bit(__E1000_DOWN, &adapter->state)) {
5955		rtnl_unlock();
5956		return;
5957	}
5958
5959	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5960		e1000e_dump(adapter);
5961		e_err("Reset adapter unexpectedly\n");
5962	}
5963	e1000e_reinit_locked(adapter);
5964	rtnl_unlock();
5965}
5966
5967/**
5968 * e1000e_get_stats64 - Get System Network Statistics
5969 * @netdev: network interface device structure
5970 * @stats: rtnl_link_stats64 pointer
5971 *
5972 * Returns the address of the device statistics structure.
5973 **/
5974void e1000e_get_stats64(struct net_device *netdev,
5975			struct rtnl_link_stats64 *stats)
5976{
5977	struct e1000_adapter *adapter = netdev_priv(netdev);
5978
5979	spin_lock(&adapter->stats64_lock);
5980	e1000e_update_stats(adapter);
5981	/* Fill out the OS statistics structure */
5982	stats->rx_bytes = adapter->stats.gorc;
5983	stats->rx_packets = adapter->stats.gprc;
5984	stats->tx_bytes = adapter->stats.gotc;
5985	stats->tx_packets = adapter->stats.gptc;
5986	stats->multicast = adapter->stats.mprc;
5987	stats->collisions = adapter->stats.colc;
5988
5989	/* Rx Errors */
5990
5991	/* RLEC on some newer hardware can be incorrect so build
5992	 * our own version based on RUC and ROC
5993	 */
5994	stats->rx_errors = adapter->stats.rxerrc +
5995	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5996	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5997	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5998	stats->rx_crc_errors = adapter->stats.crcerrs;
5999	stats->rx_frame_errors = adapter->stats.algnerrc;
6000	stats->rx_missed_errors = adapter->stats.mpc;
6001
6002	/* Tx Errors */
6003	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6004	stats->tx_aborted_errors = adapter->stats.ecol;
6005	stats->tx_window_errors = adapter->stats.latecol;
6006	stats->tx_carrier_errors = adapter->stats.tncrs;
6007
6008	/* Tx Dropped needs to be maintained elsewhere */
6009
6010	spin_unlock(&adapter->stats64_lock);
6011}
6012
6013/**
6014 * e1000_change_mtu - Change the Maximum Transfer Unit
6015 * @netdev: network interface device structure
6016 * @new_mtu: new value for maximum frame size
6017 *
6018 * Returns 0 on success, negative on failure
6019 **/
6020static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6021{
6022	struct e1000_adapter *adapter = netdev_priv(netdev);
6023	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6024
6025	/* Jumbo frame support */
6026	if ((new_mtu > ETH_DATA_LEN) &&
6027	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6028		e_err("Jumbo Frames not supported.\n");
6029		return -EINVAL;
6030	}
6031
6032	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6034	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6035	    (new_mtu > ETH_DATA_LEN)) {
6036		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037		return -EINVAL;
6038	}
6039
6040	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6041		usleep_range(1000, 1100);
6042	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043	adapter->max_frame_size = max_frame;
6044	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6045		   netdev->mtu, new_mtu);
6046	WRITE_ONCE(netdev->mtu, new_mtu);
6047
6048	pm_runtime_get_sync(netdev->dev.parent);
6049
6050	if (netif_running(netdev))
6051		e1000e_down(adapter, true);
6052
6053	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6054	 * means we reserve 2 more, this pushes us to allocate from the next
6055	 * larger slab size.
6056	 * i.e. RXBUFFER_2048 --> size-4096 slab
6057	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6058	 * fragmented skbs
6059	 */
6060
6061	if (max_frame <= 2048)
6062		adapter->rx_buffer_len = 2048;
6063	else
6064		adapter->rx_buffer_len = 4096;
6065
6066	/* adjust allocation if LPE protects us, and we aren't using SBP */
6067	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6068		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6069
6070	if (netif_running(netdev))
6071		e1000e_up(adapter);
6072	else
6073		e1000e_reset(adapter);
6074
6075	pm_runtime_put_sync(netdev->dev.parent);
6076
6077	clear_bit(__E1000_RESETTING, &adapter->state);
6078
6079	return 0;
6080}
6081
6082static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6083			   int cmd)
6084{
6085	struct e1000_adapter *adapter = netdev_priv(netdev);
6086	struct mii_ioctl_data *data = if_mii(ifr);
6087
6088	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089		return -EOPNOTSUPP;
6090
6091	switch (cmd) {
6092	case SIOCGMIIPHY:
6093		data->phy_id = adapter->hw.phy.addr;
6094		break;
6095	case SIOCGMIIREG:
6096		e1000_phy_read_status(adapter);
6097
6098		switch (data->reg_num & 0x1F) {
6099		case MII_BMCR:
6100			data->val_out = adapter->phy_regs.bmcr;
6101			break;
6102		case MII_BMSR:
6103			data->val_out = adapter->phy_regs.bmsr;
6104			break;
6105		case MII_PHYSID1:
6106			data->val_out = (adapter->hw.phy.id >> 16);
6107			break;
6108		case MII_PHYSID2:
6109			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6110			break;
6111		case MII_ADVERTISE:
6112			data->val_out = adapter->phy_regs.advertise;
6113			break;
6114		case MII_LPA:
6115			data->val_out = adapter->phy_regs.lpa;
6116			break;
6117		case MII_EXPANSION:
6118			data->val_out = adapter->phy_regs.expansion;
6119			break;
6120		case MII_CTRL1000:
6121			data->val_out = adapter->phy_regs.ctrl1000;
6122			break;
6123		case MII_STAT1000:
6124			data->val_out = adapter->phy_regs.stat1000;
6125			break;
6126		case MII_ESTATUS:
6127			data->val_out = adapter->phy_regs.estatus;
6128			break;
6129		default:
6130			return -EIO;
6131		}
6132		break;
6133	case SIOCSMIIREG:
6134	default:
6135		return -EOPNOTSUPP;
6136	}
6137	return 0;
6138}
6139
6140/**
6141 * e1000e_hwtstamp_set - control hardware time stamping
6142 * @netdev: network interface device structure
6143 * @ifr: interface request
6144 *
6145 * Outgoing time stamping can be enabled and disabled. Play nice and
6146 * disable it when requested, although it shouldn't cause any overhead
6147 * when no packet needs it. At most one packet in the queue may be
6148 * marked for time stamping, otherwise it would be impossible to tell
6149 * for sure to which packet the hardware time stamp belongs.
6150 *
6151 * Incoming time stamping has to be configured via the hardware filters.
6152 * Not all combinations are supported, in particular event type has to be
6153 * specified. Matching the kind of event packet is not supported, with the
6154 * exception of "all V2 events regardless of level 2 or 4".
6155 **/
6156static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6157{
6158	struct e1000_adapter *adapter = netdev_priv(netdev);
6159	struct hwtstamp_config config;
6160	int ret_val;
6161
6162	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6163		return -EFAULT;
6164
6165	ret_val = e1000e_config_hwtstamp(adapter, &config);
6166	if (ret_val)
6167		return ret_val;
6168
6169	switch (config.rx_filter) {
6170	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6171	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6172	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6173	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6174	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6175	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6176		/* With V2 type filters which specify a Sync or Delay Request,
6177		 * Path Delay Request/Response messages are also time stamped
6178		 * by hardware so notify the caller the requested packets plus
6179		 * some others are time stamped.
6180		 */
6181		config.rx_filter = HWTSTAMP_FILTER_SOME;
6182		break;
6183	default:
6184		break;
6185	}
6186
6187	return copy_to_user(ifr->ifr_data, &config,
6188			    sizeof(config)) ? -EFAULT : 0;
6189}
6190
6191static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6192{
6193	struct e1000_adapter *adapter = netdev_priv(netdev);
6194
6195	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6196			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6197}
6198
6199static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6200{
6201	switch (cmd) {
6202	case SIOCGMIIPHY:
6203	case SIOCGMIIREG:
6204	case SIOCSMIIREG:
6205		return e1000_mii_ioctl(netdev, ifr, cmd);
6206	case SIOCSHWTSTAMP:
6207		return e1000e_hwtstamp_set(netdev, ifr);
6208	case SIOCGHWTSTAMP:
6209		return e1000e_hwtstamp_get(netdev, ifr);
6210	default:
6211		return -EOPNOTSUPP;
6212	}
6213}
6214
6215static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6216{
6217	struct e1000_hw *hw = &adapter->hw;
6218	u32 i, mac_reg, wuc;
6219	u16 phy_reg, wuc_enable;
6220	int retval;
6221
6222	/* copy MAC RARs to PHY RARs */
6223	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6224
6225	retval = hw->phy.ops.acquire(hw);
6226	if (retval) {
6227		e_err("Could not acquire PHY\n");
6228		return retval;
6229	}
6230
6231	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6233	if (retval)
6234		goto release;
6235
6236	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6237	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6238		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6239		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6240					   (u16)(mac_reg & 0xFFFF));
6241		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6242					   (u16)((mac_reg >> 16) & 0xFFFF));
6243	}
6244
6245	/* configure PHY Rx Control register */
6246	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6247	mac_reg = er32(RCTL);
6248	if (mac_reg & E1000_RCTL_UPE)
6249		phy_reg |= BM_RCTL_UPE;
6250	if (mac_reg & E1000_RCTL_MPE)
6251		phy_reg |= BM_RCTL_MPE;
6252	phy_reg &= ~(BM_RCTL_MO_MASK);
6253	if (mac_reg & E1000_RCTL_MO_3)
6254		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6255			    << BM_RCTL_MO_SHIFT);
6256	if (mac_reg & E1000_RCTL_BAM)
6257		phy_reg |= BM_RCTL_BAM;
6258	if (mac_reg & E1000_RCTL_PMCF)
6259		phy_reg |= BM_RCTL_PMCF;
6260	mac_reg = er32(CTRL);
6261	if (mac_reg & E1000_CTRL_RFCE)
6262		phy_reg |= BM_RCTL_RFCE;
6263	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6264
6265	wuc = E1000_WUC_PME_EN;
6266	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6267		wuc |= E1000_WUC_APME;
6268
6269	/* enable PHY wakeup in MAC register */
6270	ew32(WUFC, wufc);
6271	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6272		   E1000_WUC_PME_STATUS | wuc));
6273
6274	/* configure and enable PHY wakeup in PHY registers */
6275	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6276	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6277
6278	/* activate PHY wakeup */
6279	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6280	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6281	if (retval)
6282		e_err("Could not set PHY Host Wakeup bit\n");
6283release:
6284	hw->phy.ops.release(hw);
6285
6286	return retval;
6287}
6288
6289static void e1000e_flush_lpic(struct pci_dev *pdev)
6290{
6291	struct net_device *netdev = pci_get_drvdata(pdev);
6292	struct e1000_adapter *adapter = netdev_priv(netdev);
6293	struct e1000_hw *hw = &adapter->hw;
6294	u32 ret_val;
6295
6296	pm_runtime_get_sync(netdev->dev.parent);
6297
6298	ret_val = hw->phy.ops.acquire(hw);
6299	if (ret_val)
6300		goto fl_out;
6301
6302	pr_info("EEE TX LPI TIMER: %08X\n",
6303		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6304
6305	hw->phy.ops.release(hw);
6306
6307fl_out:
6308	pm_runtime_put_sync(netdev->dev.parent);
6309}
6310
6311/* S0ix implementation */
6312static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6313{
6314	struct e1000_hw *hw = &adapter->hw;
6315	u32 mac_data;
6316	u16 phy_data;
6317
6318	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6319	    hw->mac.type >= e1000_pch_adp) {
6320		/* Request ME configure the device for S0ix */
6321		mac_data = er32(H2ME);
6322		mac_data |= E1000_H2ME_START_DPG;
6323		mac_data &= ~E1000_H2ME_EXIT_DPG;
6324		trace_e1000e_trace_mac_register(mac_data);
6325		ew32(H2ME, mac_data);
6326	} else {
6327		/* Request driver configure the device to S0ix */
6328		/* Disable the periodic inband message,
6329		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6330		 */
6331		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6332		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6333		phy_data |= BIT(10);
6334		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6335
6336		/* Make sure we don't exit K1 every time a new packet arrives
6337		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6338		 */
6339		e1e_rphy(hw, I217_CGFREG, &phy_data);
6340		phy_data |= BIT(5);
6341		e1e_wphy(hw, I217_CGFREG, phy_data);
6342
6343		/* Change the MAC/PHY interface to SMBus
6344		 * Force the SMBus in PHY page769_23[0] = 1
6345		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6346		 */
6347		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6348		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6349		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6350		mac_data = er32(CTRL_EXT);
6351		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6352		ew32(CTRL_EXT, mac_data);
6353
6354		/* DFT control: PHY bit: page769_20[0] = 1
6355		 * page769_20[7] - PHY PLL stop
6356		 * page769_20[8] - PHY go to the electrical idle
6357		 * page769_20[9] - PHY serdes disable
6358		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6359		 */
6360		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6361		phy_data |= BIT(0);
6362		phy_data |= BIT(7);
6363		phy_data |= BIT(8);
6364		phy_data |= BIT(9);
6365		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6366
6367		mac_data = er32(EXTCNF_CTRL);
6368		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6369		ew32(EXTCNF_CTRL, mac_data);
6370
6371		/* Disable disconnected cable conditioning for Power Gating */
6372		mac_data = er32(DPGFR);
6373		mac_data |= BIT(2);
6374		ew32(DPGFR, mac_data);
6375
6376		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6377		mac_data = er32(CTRL_EXT);
6378		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6379		ew32(CTRL_EXT, mac_data);
6380	}
6381
6382	/* Enable the Dynamic Power Gating in the MAC */
6383	mac_data = er32(FEXTNVM7);
6384	mac_data |= BIT(22);
6385	ew32(FEXTNVM7, mac_data);
6386
6387	/* Don't wake from dynamic Power Gating with clock request */
6388	mac_data = er32(FEXTNVM12);
6389	mac_data |= BIT(12);
6390	ew32(FEXTNVM12, mac_data);
6391
6392	/* Ungate PGCB clock */
6393	mac_data = er32(FEXTNVM9);
6394	mac_data &= ~BIT(28);
6395	ew32(FEXTNVM9, mac_data);
6396
6397	/* Enable K1 off to enable mPHY Power Gating */
6398	mac_data = er32(FEXTNVM6);
6399	mac_data |= BIT(31);
6400	ew32(FEXTNVM6, mac_data);
6401
6402	/* Enable mPHY power gating for any link and speed */
6403	mac_data = er32(FEXTNVM8);
6404	mac_data |= BIT(9);
6405	ew32(FEXTNVM8, mac_data);
6406
6407	/* No MAC DPG gating SLP_S0 in modern standby
6408	 * Switch the logic of the lanphypc to use PMC counter
6409	 */
6410	mac_data = er32(FEXTNVM5);
6411	mac_data |= BIT(7);
6412	ew32(FEXTNVM5, mac_data);
6413
6414	/* Disable the time synchronization clock */
6415	mac_data = er32(FEXTNVM7);
6416	mac_data |= BIT(31);
6417	mac_data &= ~BIT(0);
6418	ew32(FEXTNVM7, mac_data);
6419
6420	/* Dynamic Power Gating Enable */
 
 
 
 
 
 
 
 
6421	mac_data = er32(CTRL_EXT);
6422	mac_data |= BIT(3);
6423	ew32(CTRL_EXT, mac_data);
6424
 
 
 
 
 
 
 
 
 
 
 
6425	/* Check MAC Tx/Rx packet buffer pointers.
6426	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6427	 * pending traffic indication that would prevent power gating.
6428	 */
6429	mac_data = er32(TDFH);
6430	if (mac_data)
6431		ew32(TDFH, 0);
6432	mac_data = er32(TDFT);
6433	if (mac_data)
6434		ew32(TDFT, 0);
6435	mac_data = er32(TDFHS);
6436	if (mac_data)
6437		ew32(TDFHS, 0);
6438	mac_data = er32(TDFTS);
6439	if (mac_data)
6440		ew32(TDFTS, 0);
6441	mac_data = er32(TDFPC);
6442	if (mac_data)
6443		ew32(TDFPC, 0);
6444	mac_data = er32(RDFH);
6445	if (mac_data)
6446		ew32(RDFH, 0);
6447	mac_data = er32(RDFT);
6448	if (mac_data)
6449		ew32(RDFT, 0);
6450	mac_data = er32(RDFHS);
6451	if (mac_data)
6452		ew32(RDFHS, 0);
6453	mac_data = er32(RDFTS);
6454	if (mac_data)
6455		ew32(RDFTS, 0);
6456	mac_data = er32(RDFPC);
6457	if (mac_data)
6458		ew32(RDFPC, 0);
6459}
6460
6461static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6462{
6463	struct e1000_hw *hw = &adapter->hw;
6464	bool firmware_bug = false;
6465	u32 mac_data;
6466	u16 phy_data;
6467	u32 i = 0;
6468
6469	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6470	    hw->mac.type >= e1000_pch_adp) {
6471		/* Keep the GPT clock enabled for CSME */
6472		mac_data = er32(FEXTNVM);
6473		mac_data |= BIT(3);
6474		ew32(FEXTNVM, mac_data);
6475		/* Request ME unconfigure the device from S0ix */
6476		mac_data = er32(H2ME);
6477		mac_data &= ~E1000_H2ME_START_DPG;
6478		mac_data |= E1000_H2ME_EXIT_DPG;
6479		trace_e1000e_trace_mac_register(mac_data);
6480		ew32(H2ME, mac_data);
6481
6482		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6483		 * If this takes more than 1 second, show a warning indicating a
6484		 * firmware bug
6485		 */
6486		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6487			if (i > 100 && !firmware_bug)
6488				firmware_bug = true;
6489
6490			if (i++ == 250) {
6491				e_dbg("Timeout (firmware bug): %d msec\n",
6492				      i * 10);
6493				break;
6494			}
6495
6496			usleep_range(10000, 11000);
6497		}
6498		if (firmware_bug)
6499			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6500			       i * 10);
6501		else
6502			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6503	} else {
6504		/* Request driver unconfigure the device from S0ix */
6505
6506		/* Cancel disable disconnected cable conditioning
6507		 * for Power Gating
6508		 */
6509		mac_data = er32(DPGFR);
6510		mac_data &= ~BIT(2);
6511		ew32(DPGFR, mac_data);
6512
6513		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6514		mac_data = er32(CTRL_EXT);
6515		mac_data &= 0xFFF7FFFF;
6516		ew32(CTRL_EXT, mac_data);
6517
6518		/* Enable the periodic inband message,
6519		 * Request PCIe clock in K1 page770_17[10:9] =01b
6520		 */
6521		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6522		phy_data &= 0xFBFF;
6523		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6524		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6525
6526		/* Return back configuration
6527		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6528		 */
6529		e1e_rphy(hw, I217_CGFREG, &phy_data);
6530		phy_data &= 0xFFDF;
6531		e1e_wphy(hw, I217_CGFREG, phy_data);
6532
6533		/* Change the MAC/PHY interface to Kumeran
6534		 * Unforce the SMBus in PHY page769_23[0] = 0
6535		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6536		 */
6537		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6538		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6539		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6540		mac_data = er32(CTRL_EXT);
6541		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6542		ew32(CTRL_EXT, mac_data);
6543	}
6544
6545	/* Disable Dynamic Power Gating */
 
 
 
 
 
 
 
 
 
 
6546	mac_data = er32(CTRL_EXT);
6547	mac_data &= 0xFFFFFFF7;
6548	ew32(CTRL_EXT, mac_data);
6549
6550	/* Enable the time synchronization clock */
6551	mac_data = er32(FEXTNVM7);
6552	mac_data &= ~BIT(31);
6553	mac_data |= BIT(0);
6554	ew32(FEXTNVM7, mac_data);
 
 
 
 
 
 
 
 
6555
6556	/* Disable the Dynamic Power Gating in the MAC */
6557	mac_data = er32(FEXTNVM7);
6558	mac_data &= 0xFFBFFFFF;
6559	ew32(FEXTNVM7, mac_data);
6560
 
 
 
 
 
6561	/* Disable mPHY power gating for any link and speed */
6562	mac_data = er32(FEXTNVM8);
6563	mac_data &= ~BIT(9);
6564	ew32(FEXTNVM8, mac_data);
6565
6566	/* Disable K1 off */
6567	mac_data = er32(FEXTNVM6);
6568	mac_data &= ~BIT(31);
6569	ew32(FEXTNVM6, mac_data);
6570
6571	/* Disable Ungate PGCB clock */
6572	mac_data = er32(FEXTNVM9);
6573	mac_data |= BIT(28);
6574	ew32(FEXTNVM9, mac_data);
6575
6576	/* Cancel not waking from dynamic
6577	 * Power Gating with clock request
6578	 */
6579	mac_data = er32(FEXTNVM12);
6580	mac_data &= ~BIT(12);
6581	ew32(FEXTNVM12, mac_data);
6582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583	/* Revert the lanphypc logic to use the internal Gbe counter
6584	 * and not the PMC counter
6585	 */
6586	mac_data = er32(FEXTNVM5);
6587	mac_data &= 0xFFFFFF7F;
6588	ew32(FEXTNVM5, mac_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6589}
6590
6591static int e1000e_pm_freeze(struct device *dev)
6592{
6593	struct net_device *netdev = dev_get_drvdata(dev);
6594	struct e1000_adapter *adapter = netdev_priv(netdev);
6595	bool present;
6596
6597	rtnl_lock();
6598
6599	present = netif_device_present(netdev);
6600	netif_device_detach(netdev);
6601
6602	if (present && netif_running(netdev)) {
6603		int count = E1000_CHECK_RESET_COUNT;
6604
6605		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6606			usleep_range(10000, 11000);
6607
6608		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6609
6610		/* Quiesce the device without resetting the hardware */
6611		e1000e_down(adapter, false);
6612		e1000_free_irq(adapter);
6613	}
6614	rtnl_unlock();
6615
6616	e1000e_reset_interrupt_capability(adapter);
6617
6618	/* Allow time for pending master requests to run */
6619	e1000e_disable_pcie_master(&adapter->hw);
6620
6621	return 0;
6622}
6623
6624static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6625{
6626	struct net_device *netdev = pci_get_drvdata(pdev);
6627	struct e1000_adapter *adapter = netdev_priv(netdev);
6628	struct e1000_hw *hw = &adapter->hw;
6629	u32 ctrl, ctrl_ext, rctl, status, wufc;
6630	int retval = 0;
6631
6632	/* Runtime suspend should only enable wakeup for link changes */
6633	if (runtime)
6634		wufc = E1000_WUFC_LNKC;
6635	else if (device_may_wakeup(&pdev->dev))
6636		wufc = adapter->wol;
6637	else
6638		wufc = 0;
6639
6640	status = er32(STATUS);
6641	if (status & E1000_STATUS_LU)
6642		wufc &= ~E1000_WUFC_LNKC;
6643
6644	if (wufc) {
6645		e1000_setup_rctl(adapter);
6646		e1000e_set_rx_mode(netdev);
6647
6648		/* turn on all-multi mode if wake on multicast is enabled */
6649		if (wufc & E1000_WUFC_MC) {
6650			rctl = er32(RCTL);
6651			rctl |= E1000_RCTL_MPE;
6652			ew32(RCTL, rctl);
6653		}
6654
6655		ctrl = er32(CTRL);
6656		ctrl |= E1000_CTRL_ADVD3WUC;
6657		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6658			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6659		ew32(CTRL, ctrl);
6660
6661		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6662		    adapter->hw.phy.media_type ==
6663		    e1000_media_type_internal_serdes) {
6664			/* keep the laser running in D3 */
6665			ctrl_ext = er32(CTRL_EXT);
6666			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6667			ew32(CTRL_EXT, ctrl_ext);
6668		}
6669
6670		if (!runtime)
6671			e1000e_power_up_phy(adapter);
6672
6673		if (adapter->flags & FLAG_IS_ICH)
6674			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6675
6676		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6677			/* enable wakeup by the PHY */
6678			retval = e1000_init_phy_wakeup(adapter, wufc);
6679			if (retval) {
6680				e_err("Failed to enable wakeup\n");
6681				goto skip_phy_configurations;
6682			}
6683		} else {
6684			/* enable wakeup by the MAC */
6685			ew32(WUFC, wufc);
6686			ew32(WUC, E1000_WUC_PME_EN);
6687		}
6688	} else {
6689		ew32(WUC, 0);
6690		ew32(WUFC, 0);
6691
6692		e1000_power_down_phy(adapter);
6693	}
6694
6695	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6696		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6697	} else if (hw->mac.type >= e1000_pch_lpt) {
6698		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6699			/* ULP does not support wake from unicast, multicast
6700			 * or broadcast.
6701			 */
6702			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6703			if (retval) {
6704				e_err("Failed to enable ULP\n");
6705				goto skip_phy_configurations;
6706			}
6707		}
6708	}
6709
6710	/* Ensure that the appropriate bits are set in LPI_CTRL
6711	 * for EEE in Sx
6712	 */
6713	if ((hw->phy.type >= e1000_phy_i217) &&
6714	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6715		u16 lpi_ctrl = 0;
6716
6717		retval = hw->phy.ops.acquire(hw);
6718		if (!retval) {
6719			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6720						 &lpi_ctrl);
6721			if (!retval) {
6722				if (adapter->eee_advert &
6723				    hw->dev_spec.ich8lan.eee_lp_ability &
6724				    I82579_EEE_100_SUPPORTED)
6725					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6726				if (adapter->eee_advert &
6727				    hw->dev_spec.ich8lan.eee_lp_ability &
6728				    I82579_EEE_1000_SUPPORTED)
6729					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6730
6731				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6732							 lpi_ctrl);
6733			}
6734		}
6735		hw->phy.ops.release(hw);
6736	}
6737
6738skip_phy_configurations:
6739	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6740	 * would have already happened in close and is redundant.
6741	 */
6742	e1000e_release_hw_control(adapter);
6743
6744	pci_clear_master(pdev);
6745
6746	/* The pci-e switch on some quad port adapters will report a
6747	 * correctable error when the MAC transitions from D0 to D3.  To
6748	 * prevent this we need to mask off the correctable errors on the
6749	 * downstream port of the pci-e switch.
6750	 *
6751	 * We don't have the associated upstream bridge while assigning
6752	 * the PCI device into guest. For example, the KVM on power is
6753	 * one of the cases.
6754	 */
6755	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6756		struct pci_dev *us_dev = pdev->bus->self;
6757		u16 devctl;
6758
6759		if (!us_dev)
6760			return 0;
6761
6762		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6763		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6764					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6765
6766		pci_save_state(pdev);
6767		pci_prepare_to_sleep(pdev);
6768
6769		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6770	}
6771
6772	return 0;
6773}
6774
6775/**
6776 * __e1000e_disable_aspm - Disable ASPM states
6777 * @pdev: pointer to PCI device struct
6778 * @state: bit-mask of ASPM states to disable
6779 * @locked: indication if this context holds pci_bus_sem locked.
6780 *
6781 * Some devices *must* have certain ASPM states disabled per hardware errata.
6782 **/
6783static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6784{
6785	struct pci_dev *parent = pdev->bus->self;
6786	u16 aspm_dis_mask = 0;
6787	u16 pdev_aspmc, parent_aspmc;
6788
6789	switch (state) {
6790	case PCIE_LINK_STATE_L0S:
6791	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6792		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6793		fallthrough; /* can't have L1 without L0s */
6794	case PCIE_LINK_STATE_L1:
6795		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6796		break;
6797	default:
6798		return;
6799	}
6800
6801	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6802	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6803
6804	if (parent) {
6805		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6806					  &parent_aspmc);
6807		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6808	}
6809
6810	/* Nothing to do if the ASPM states to be disabled already are */
6811	if (!(pdev_aspmc & aspm_dis_mask) &&
6812	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6813		return;
6814
6815	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6816		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6817		 "L0s" : "",
6818		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6819		 "L1" : "");
6820
6821#ifdef CONFIG_PCIEASPM
6822	if (locked)
6823		pci_disable_link_state_locked(pdev, state);
6824	else
6825		pci_disable_link_state(pdev, state);
6826
6827	/* Double-check ASPM control.  If not disabled by the above, the
6828	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6829	 * not enabled); override by writing PCI config space directly.
6830	 */
6831	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6832	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6833
6834	if (!(aspm_dis_mask & pdev_aspmc))
6835		return;
6836#endif
6837
6838	/* Both device and parent should have the same ASPM setting.
6839	 * Disable ASPM in downstream component first and then upstream.
6840	 */
6841	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6842
6843	if (parent)
6844		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6845					   aspm_dis_mask);
6846}
6847
6848/**
6849 * e1000e_disable_aspm - Disable ASPM states.
6850 * @pdev: pointer to PCI device struct
6851 * @state: bit-mask of ASPM states to disable
6852 *
6853 * This function acquires the pci_bus_sem!
6854 * Some devices *must* have certain ASPM states disabled per hardware errata.
6855 **/
6856static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6857{
6858	__e1000e_disable_aspm(pdev, state, 0);
6859}
6860
6861/**
6862 * e1000e_disable_aspm_locked - Disable ASPM states.
6863 * @pdev: pointer to PCI device struct
6864 * @state: bit-mask of ASPM states to disable
6865 *
6866 * This function must be called with pci_bus_sem acquired!
6867 * Some devices *must* have certain ASPM states disabled per hardware errata.
6868 **/
6869static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6870{
6871	__e1000e_disable_aspm(pdev, state, 1);
6872}
6873
6874static int e1000e_pm_thaw(struct device *dev)
6875{
6876	struct net_device *netdev = dev_get_drvdata(dev);
6877	struct e1000_adapter *adapter = netdev_priv(netdev);
6878	int rc = 0;
6879
6880	e1000e_set_interrupt_capability(adapter);
6881
6882	rtnl_lock();
6883	if (netif_running(netdev)) {
6884		rc = e1000_request_irq(adapter);
6885		if (rc)
6886			goto err_irq;
6887
6888		e1000e_up(adapter);
6889	}
6890
6891	netif_device_attach(netdev);
6892err_irq:
6893	rtnl_unlock();
6894
6895	return rc;
6896}
6897
6898static int __e1000_resume(struct pci_dev *pdev)
6899{
6900	struct net_device *netdev = pci_get_drvdata(pdev);
6901	struct e1000_adapter *adapter = netdev_priv(netdev);
6902	struct e1000_hw *hw = &adapter->hw;
6903	u16 aspm_disable_flag = 0;
6904
6905	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6906		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6907	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6908		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6909	if (aspm_disable_flag)
6910		e1000e_disable_aspm(pdev, aspm_disable_flag);
6911
6912	pci_set_master(pdev);
6913
6914	if (hw->mac.type >= e1000_pch2lan)
6915		e1000_resume_workarounds_pchlan(&adapter->hw);
6916
6917	e1000e_power_up_phy(adapter);
6918
6919	/* report the system wakeup cause from S3/S4 */
6920	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6921		u16 phy_data;
6922
6923		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6924		if (phy_data) {
6925			e_info("PHY Wakeup cause - %s\n",
6926			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6927			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6928			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6929			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6930			       phy_data & E1000_WUS_LNKC ?
6931			       "Link Status Change" : "other");
6932		}
6933		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6934	} else {
6935		u32 wus = er32(WUS);
6936
6937		if (wus) {
6938			e_info("MAC Wakeup cause - %s\n",
6939			       wus & E1000_WUS_EX ? "Unicast Packet" :
6940			       wus & E1000_WUS_MC ? "Multicast Packet" :
6941			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6942			       wus & E1000_WUS_MAG ? "Magic Packet" :
6943			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6944			       "other");
6945		}
6946		ew32(WUS, ~0);
6947	}
6948
6949	e1000e_reset(adapter);
6950
6951	e1000_init_manageability_pt(adapter);
6952
6953	/* If the controller has AMT, do not set DRV_LOAD until the interface
6954	 * is up.  For all other cases, let the f/w know that the h/w is now
6955	 * under the control of the driver.
6956	 */
6957	if (!(adapter->flags & FLAG_HAS_AMT))
6958		e1000e_get_hw_control(adapter);
6959
6960	return 0;
6961}
6962
6963static int e1000e_pm_prepare(struct device *dev)
6964{
6965	return pm_runtime_suspended(dev) &&
6966		pm_suspend_via_firmware();
6967}
6968
6969static int e1000e_pm_suspend(struct device *dev)
6970{
6971	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6972	struct e1000_adapter *adapter = netdev_priv(netdev);
6973	struct pci_dev *pdev = to_pci_dev(dev);
 
6974	int rc;
6975
6976	e1000e_flush_lpic(pdev);
6977
6978	e1000e_pm_freeze(dev);
6979
6980	rc = __e1000_shutdown(pdev, false);
6981	if (!rc) {
6982		/* Introduce S0ix implementation */
6983		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6984			e1000e_s0ix_entry_flow(adapter);
6985	}
6986
6987	return 0;
 
 
 
 
 
6988}
6989
6990static int e1000e_pm_resume(struct device *dev)
6991{
6992	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6993	struct e1000_adapter *adapter = netdev_priv(netdev);
6994	struct pci_dev *pdev = to_pci_dev(dev);
 
6995	int rc;
6996
6997	/* Introduce S0ix implementation */
6998	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
 
6999		e1000e_s0ix_exit_flow(adapter);
7000
7001	rc = __e1000_resume(pdev);
7002	if (rc)
7003		return rc;
7004
7005	return e1000e_pm_thaw(dev);
7006}
7007
7008static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7009{
7010	struct net_device *netdev = dev_get_drvdata(dev);
7011	struct e1000_adapter *adapter = netdev_priv(netdev);
7012	u16 eee_lp;
7013
7014	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7015
7016	if (!e1000e_has_link(adapter)) {
7017		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7018		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7019	}
7020
7021	return -EBUSY;
7022}
7023
7024static int e1000e_pm_runtime_resume(struct device *dev)
7025{
7026	struct pci_dev *pdev = to_pci_dev(dev);
7027	struct net_device *netdev = pci_get_drvdata(pdev);
7028	struct e1000_adapter *adapter = netdev_priv(netdev);
7029	int rc;
7030
7031	pdev->pme_poll = true;
7032
7033	rc = __e1000_resume(pdev);
7034	if (rc)
7035		return rc;
7036
7037	if (netdev->flags & IFF_UP)
7038		e1000e_up(adapter);
7039
7040	return rc;
7041}
7042
7043static int e1000e_pm_runtime_suspend(struct device *dev)
7044{
7045	struct pci_dev *pdev = to_pci_dev(dev);
7046	struct net_device *netdev = pci_get_drvdata(pdev);
7047	struct e1000_adapter *adapter = netdev_priv(netdev);
7048
7049	if (netdev->flags & IFF_UP) {
7050		int count = E1000_CHECK_RESET_COUNT;
7051
7052		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7053			usleep_range(10000, 11000);
7054
7055		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7056
7057		/* Down the device without resetting the hardware */
7058		e1000e_down(adapter, false);
7059	}
7060
7061	if (__e1000_shutdown(pdev, true)) {
7062		e1000e_pm_runtime_resume(dev);
7063		return -EBUSY;
7064	}
7065
7066	return 0;
7067}
7068
7069static void e1000_shutdown(struct pci_dev *pdev)
7070{
7071	e1000e_flush_lpic(pdev);
7072
7073	e1000e_pm_freeze(&pdev->dev);
7074
7075	__e1000_shutdown(pdev, false);
7076}
7077
7078#ifdef CONFIG_NET_POLL_CONTROLLER
7079
7080static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7081{
7082	struct net_device *netdev = data;
7083	struct e1000_adapter *adapter = netdev_priv(netdev);
7084
7085	if (adapter->msix_entries) {
7086		int vector, msix_irq;
7087
7088		vector = 0;
7089		msix_irq = adapter->msix_entries[vector].vector;
7090		if (disable_hardirq(msix_irq))
7091			e1000_intr_msix_rx(msix_irq, netdev);
7092		enable_irq(msix_irq);
7093
7094		vector++;
7095		msix_irq = adapter->msix_entries[vector].vector;
7096		if (disable_hardirq(msix_irq))
7097			e1000_intr_msix_tx(msix_irq, netdev);
7098		enable_irq(msix_irq);
7099
7100		vector++;
7101		msix_irq = adapter->msix_entries[vector].vector;
7102		if (disable_hardirq(msix_irq))
7103			e1000_msix_other(msix_irq, netdev);
7104		enable_irq(msix_irq);
7105	}
7106
7107	return IRQ_HANDLED;
7108}
7109
7110/**
7111 * e1000_netpoll
7112 * @netdev: network interface device structure
7113 *
7114 * Polling 'interrupt' - used by things like netconsole to send skbs
7115 * without having to re-enable interrupts. It's not called while
7116 * the interrupt routine is executing.
7117 */
7118static void e1000_netpoll(struct net_device *netdev)
7119{
7120	struct e1000_adapter *adapter = netdev_priv(netdev);
7121
7122	switch (adapter->int_mode) {
7123	case E1000E_INT_MODE_MSIX:
7124		e1000_intr_msix(adapter->pdev->irq, netdev);
7125		break;
7126	case E1000E_INT_MODE_MSI:
7127		if (disable_hardirq(adapter->pdev->irq))
7128			e1000_intr_msi(adapter->pdev->irq, netdev);
7129		enable_irq(adapter->pdev->irq);
7130		break;
7131	default:		/* E1000E_INT_MODE_LEGACY */
7132		if (disable_hardirq(adapter->pdev->irq))
7133			e1000_intr(adapter->pdev->irq, netdev);
7134		enable_irq(adapter->pdev->irq);
7135		break;
7136	}
7137}
7138#endif
7139
7140/**
7141 * e1000_io_error_detected - called when PCI error is detected
7142 * @pdev: Pointer to PCI device
7143 * @state: The current pci connection state
7144 *
7145 * This function is called after a PCI bus error affecting
7146 * this device has been detected.
7147 */
7148static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7149						pci_channel_state_t state)
7150{
7151	e1000e_pm_freeze(&pdev->dev);
7152
7153	if (state == pci_channel_io_perm_failure)
7154		return PCI_ERS_RESULT_DISCONNECT;
7155
7156	pci_disable_device(pdev);
7157
7158	/* Request a slot reset. */
7159	return PCI_ERS_RESULT_NEED_RESET;
7160}
7161
7162/**
7163 * e1000_io_slot_reset - called after the pci bus has been reset.
7164 * @pdev: Pointer to PCI device
7165 *
7166 * Restart the card from scratch, as if from a cold-boot. Implementation
7167 * resembles the first-half of the e1000e_pm_resume routine.
7168 */
7169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7170{
7171	struct net_device *netdev = pci_get_drvdata(pdev);
7172	struct e1000_adapter *adapter = netdev_priv(netdev);
7173	struct e1000_hw *hw = &adapter->hw;
7174	u16 aspm_disable_flag = 0;
7175	int err;
7176	pci_ers_result_t result;
7177
7178	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7179		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7180	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7181		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7182	if (aspm_disable_flag)
7183		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7184
7185	err = pci_enable_device_mem(pdev);
7186	if (err) {
7187		dev_err(&pdev->dev,
7188			"Cannot re-enable PCI device after reset.\n");
7189		result = PCI_ERS_RESULT_DISCONNECT;
7190	} else {
7191		pdev->state_saved = true;
7192		pci_restore_state(pdev);
7193		pci_set_master(pdev);
7194
7195		pci_enable_wake(pdev, PCI_D3hot, 0);
7196		pci_enable_wake(pdev, PCI_D3cold, 0);
7197
7198		e1000e_reset(adapter);
7199		ew32(WUS, ~0);
7200		result = PCI_ERS_RESULT_RECOVERED;
7201	}
7202
7203	return result;
7204}
7205
7206/**
7207 * e1000_io_resume - called when traffic can start flowing again.
7208 * @pdev: Pointer to PCI device
7209 *
7210 * This callback is called when the error recovery driver tells us that
7211 * its OK to resume normal operation. Implementation resembles the
7212 * second-half of the e1000e_pm_resume routine.
7213 */
7214static void e1000_io_resume(struct pci_dev *pdev)
7215{
7216	struct net_device *netdev = pci_get_drvdata(pdev);
7217	struct e1000_adapter *adapter = netdev_priv(netdev);
7218
7219	e1000_init_manageability_pt(adapter);
7220
7221	e1000e_pm_thaw(&pdev->dev);
7222
7223	/* If the controller has AMT, do not set DRV_LOAD until the interface
7224	 * is up.  For all other cases, let the f/w know that the h/w is now
7225	 * under the control of the driver.
7226	 */
7227	if (!(adapter->flags & FLAG_HAS_AMT))
7228		e1000e_get_hw_control(adapter);
7229}
7230
7231static void e1000_print_device_info(struct e1000_adapter *adapter)
7232{
7233	struct e1000_hw *hw = &adapter->hw;
7234	struct net_device *netdev = adapter->netdev;
7235	u32 ret_val;
7236	u8 pba_str[E1000_PBANUM_LENGTH];
7237
7238	/* print bus type/speed/width info */
7239	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7240	       /* bus width */
7241	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7242		"Width x1"),
7243	       /* MAC address */
7244	       netdev->dev_addr);
7245	e_info("Intel(R) PRO/%s Network Connection\n",
7246	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7247	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7248						E1000_PBANUM_LENGTH);
7249	if (ret_val)
7250		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7251	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7252	       hw->mac.type, hw->phy.type, pba_str);
7253}
7254
7255static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7256{
7257	struct e1000_hw *hw = &adapter->hw;
7258	int ret_val;
7259	u16 buf = 0;
7260
7261	if (hw->mac.type != e1000_82573)
7262		return;
7263
7264	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7265	le16_to_cpus(&buf);
7266	if (!ret_val && (!(buf & BIT(0)))) {
7267		/* Deep Smart Power Down (DSPD) */
7268		dev_warn(&adapter->pdev->dev,
7269			 "Warning: detected DSPD enabled in EEPROM\n");
7270	}
7271}
7272
7273static netdev_features_t e1000_fix_features(struct net_device *netdev,
7274					    netdev_features_t features)
7275{
7276	struct e1000_adapter *adapter = netdev_priv(netdev);
7277	struct e1000_hw *hw = &adapter->hw;
7278
7279	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7280	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7281		features &= ~NETIF_F_RXFCS;
7282
7283	/* Since there is no support for separate Rx/Tx vlan accel
7284	 * enable/disable make sure Tx flag is always in same state as Rx.
7285	 */
7286	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7287		features |= NETIF_F_HW_VLAN_CTAG_TX;
7288	else
7289		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7290
7291	return features;
7292}
7293
7294static int e1000_set_features(struct net_device *netdev,
7295			      netdev_features_t features)
7296{
7297	struct e1000_adapter *adapter = netdev_priv(netdev);
7298	netdev_features_t changed = features ^ netdev->features;
7299
7300	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7301		adapter->flags |= FLAG_TSO_FORCE;
7302
7303	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7304			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7305			 NETIF_F_RXALL)))
7306		return 0;
7307
7308	if (changed & NETIF_F_RXFCS) {
7309		if (features & NETIF_F_RXFCS) {
7310			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311		} else {
7312			/* We need to take it back to defaults, which might mean
7313			 * stripping is still disabled at the adapter level.
7314			 */
7315			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7316				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7317			else
7318				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7319		}
7320	}
7321
7322	netdev->features = features;
7323
7324	if (netif_running(netdev))
7325		e1000e_reinit_locked(adapter);
7326	else
7327		e1000e_reset(adapter);
7328
7329	return 1;
7330}
7331
7332static const struct net_device_ops e1000e_netdev_ops = {
7333	.ndo_open		= e1000e_open,
7334	.ndo_stop		= e1000e_close,
7335	.ndo_start_xmit		= e1000_xmit_frame,
7336	.ndo_get_stats64	= e1000e_get_stats64,
7337	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7338	.ndo_set_mac_address	= e1000_set_mac,
7339	.ndo_change_mtu		= e1000_change_mtu,
7340	.ndo_eth_ioctl		= e1000_ioctl,
7341	.ndo_tx_timeout		= e1000_tx_timeout,
7342	.ndo_validate_addr	= eth_validate_addr,
7343
7344	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7345	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7346#ifdef CONFIG_NET_POLL_CONTROLLER
7347	.ndo_poll_controller	= e1000_netpoll,
7348#endif
7349	.ndo_set_features = e1000_set_features,
7350	.ndo_fix_features = e1000_fix_features,
7351	.ndo_features_check	= passthru_features_check,
7352};
7353
7354/**
7355 * e1000_probe - Device Initialization Routine
7356 * @pdev: PCI device information struct
7357 * @ent: entry in e1000_pci_tbl
7358 *
7359 * Returns 0 on success, negative on failure
7360 *
7361 * e1000_probe initializes an adapter identified by a pci_dev structure.
7362 * The OS initialization, configuring of the adapter private structure,
7363 * and a hardware reset occur.
7364 **/
7365static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7366{
7367	struct net_device *netdev;
7368	struct e1000_adapter *adapter;
7369	struct e1000_hw *hw;
7370	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7371	resource_size_t mmio_start, mmio_len;
7372	resource_size_t flash_start, flash_len;
7373	static int cards_found;
7374	u16 aspm_disable_flag = 0;
 
7375	u16 eeprom_data = 0;
7376	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7377	int bars, i, err;
7378	s32 ret_val = 0;
7379
7380	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7381		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7382	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7383		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7384	if (aspm_disable_flag)
7385		e1000e_disable_aspm(pdev, aspm_disable_flag);
7386
7387	err = pci_enable_device_mem(pdev);
7388	if (err)
7389		return err;
7390
 
7391	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7392	if (err) {
7393		dev_err(&pdev->dev,
7394			"No usable DMA configuration, aborting\n");
7395		goto err_dma;
 
 
 
 
 
7396	}
7397
7398	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7399	err = pci_request_selected_regions_exclusive(pdev, bars,
7400						     e1000e_driver_name);
7401	if (err)
7402		goto err_pci_reg;
7403
 
 
 
7404	pci_set_master(pdev);
7405	/* PCI config space info */
7406	err = pci_save_state(pdev);
7407	if (err)
7408		goto err_alloc_etherdev;
7409
7410	err = -ENOMEM;
7411	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7412	if (!netdev)
7413		goto err_alloc_etherdev;
7414
7415	SET_NETDEV_DEV(netdev, &pdev->dev);
7416
7417	netdev->irq = pdev->irq;
7418
7419	pci_set_drvdata(pdev, netdev);
7420	adapter = netdev_priv(netdev);
7421	hw = &adapter->hw;
7422	adapter->netdev = netdev;
7423	adapter->pdev = pdev;
7424	adapter->ei = ei;
7425	adapter->pba = ei->pba;
7426	adapter->flags = ei->flags;
7427	adapter->flags2 = ei->flags2;
7428	adapter->hw.adapter = adapter;
7429	adapter->hw.mac.type = ei->mac;
7430	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7431	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7432
7433	mmio_start = pci_resource_start(pdev, 0);
7434	mmio_len = pci_resource_len(pdev, 0);
7435
7436	err = -EIO;
7437	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7438	if (!adapter->hw.hw_addr)
7439		goto err_ioremap;
7440
7441	if ((adapter->flags & FLAG_HAS_FLASH) &&
7442	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7443	    (hw->mac.type < e1000_pch_spt)) {
7444		flash_start = pci_resource_start(pdev, 1);
7445		flash_len = pci_resource_len(pdev, 1);
7446		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7447		if (!adapter->hw.flash_address)
7448			goto err_flashmap;
7449	}
7450
7451	/* Set default EEE advertisement */
7452	if (adapter->flags2 & FLAG2_HAS_EEE)
7453		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7454
7455	/* construct the net_device struct */
7456	netdev->netdev_ops = &e1000e_netdev_ops;
7457	e1000e_set_ethtool_ops(netdev);
7458	netdev->watchdog_timeo = 5 * HZ;
7459	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7460	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7461
7462	netdev->mem_start = mmio_start;
7463	netdev->mem_end = mmio_start + mmio_len;
7464
7465	adapter->bd_number = cards_found++;
7466
7467	e1000e_check_options(adapter);
7468
7469	/* setup adapter struct */
7470	err = e1000_sw_init(adapter);
7471	if (err)
7472		goto err_sw_init;
7473
7474	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7475	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7476	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7477
7478	err = ei->get_variants(adapter);
7479	if (err)
7480		goto err_hw_init;
7481
7482	if ((adapter->flags & FLAG_IS_ICH) &&
7483	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7484	    (hw->mac.type < e1000_pch_spt))
7485		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7486
7487	hw->mac.ops.get_bus_info(&adapter->hw);
7488
7489	adapter->hw.phy.autoneg_wait_to_complete = 0;
7490
7491	/* Copper options */
7492	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7493		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7494		adapter->hw.phy.disable_polarity_correction = 0;
7495		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7496	}
7497
7498	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7499		dev_info(&pdev->dev,
7500			 "PHY reset is blocked due to SOL/IDER session.\n");
7501
7502	/* Set initial default active device features */
7503	netdev->features = (NETIF_F_SG |
7504			    NETIF_F_HW_VLAN_CTAG_RX |
7505			    NETIF_F_HW_VLAN_CTAG_TX |
7506			    NETIF_F_TSO |
7507			    NETIF_F_TSO6 |
7508			    NETIF_F_RXHASH |
7509			    NETIF_F_RXCSUM |
7510			    NETIF_F_HW_CSUM);
7511
7512	/* disable TSO for pcie and 10/100 speeds to avoid
7513	 * some hardware issues and for i219 to fix transfer
7514	 * speed being capped at 60%
7515	 */
7516	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7517		switch (adapter->link_speed) {
7518		case SPEED_10:
7519		case SPEED_100:
7520			e_info("10/100 speed: disabling TSO\n");
7521			netdev->features &= ~NETIF_F_TSO;
7522			netdev->features &= ~NETIF_F_TSO6;
7523			break;
7524		case SPEED_1000:
7525			netdev->features |= NETIF_F_TSO;
7526			netdev->features |= NETIF_F_TSO6;
7527			break;
7528		default:
7529			/* oops */
7530			break;
7531		}
7532		if (hw->mac.type == e1000_pch_spt) {
7533			netdev->features &= ~NETIF_F_TSO;
7534			netdev->features &= ~NETIF_F_TSO6;
7535		}
7536	}
7537
7538	/* Set user-changeable features (subset of all device features) */
7539	netdev->hw_features = netdev->features;
7540	netdev->hw_features |= NETIF_F_RXFCS;
7541	netdev->priv_flags |= IFF_SUPP_NOFCS;
7542	netdev->hw_features |= NETIF_F_RXALL;
7543
7544	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7545		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7546
7547	netdev->vlan_features |= (NETIF_F_SG |
7548				  NETIF_F_TSO |
7549				  NETIF_F_TSO6 |
7550				  NETIF_F_HW_CSUM);
7551
7552	netdev->priv_flags |= IFF_UNICAST_FLT;
7553
7554	netdev->features |= NETIF_F_HIGHDMA;
7555	netdev->vlan_features |= NETIF_F_HIGHDMA;
 
 
7556
7557	/* MTU range: 68 - max_hw_frame_size */
7558	netdev->min_mtu = ETH_MIN_MTU;
7559	netdev->max_mtu = adapter->max_hw_frame_size -
7560			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7561
7562	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7563		adapter->flags |= FLAG_MNG_PT_ENABLED;
7564
7565	/* before reading the NVM, reset the controller to
7566	 * put the device in a known good starting state
7567	 */
7568	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7569
7570	/* systems with ASPM and others may see the checksum fail on the first
7571	 * attempt. Let's give it a few tries
7572	 */
7573	for (i = 0;; i++) {
7574		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7575			break;
7576		if (i == 2) {
7577			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7578			err = -EIO;
7579			goto err_eeprom;
7580		}
7581	}
7582
7583	e1000_eeprom_checks(adapter);
7584
7585	/* copy the MAC address */
7586	if (e1000e_read_mac_addr(&adapter->hw))
7587		dev_err(&pdev->dev,
7588			"NVM Read Error while reading MAC address\n");
7589
7590	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7591
7592	if (!is_valid_ether_addr(netdev->dev_addr)) {
7593		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7594			netdev->dev_addr);
7595		err = -EIO;
7596		goto err_eeprom;
7597	}
7598
7599	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7600	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7601
7602	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7603	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7604	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7605	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7606	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7607
7608	/* Initialize link parameters. User can change them with ethtool */
7609	adapter->hw.mac.autoneg = 1;
7610	adapter->fc_autoneg = true;
7611	adapter->hw.fc.requested_mode = e1000_fc_default;
7612	adapter->hw.fc.current_mode = e1000_fc_default;
7613	adapter->hw.phy.autoneg_advertised = 0x2f;
7614
7615	/* Initial Wake on LAN setting - If APM wake is enabled in
7616	 * the EEPROM, enable the ACPI Magic Packet filter
7617	 */
7618	if (adapter->flags & FLAG_APME_IN_WUC) {
7619		/* APME bit in EEPROM is mapped to WUC.APME */
7620		eeprom_data = er32(WUC);
7621		eeprom_apme_mask = E1000_WUC_APME;
7622		if ((hw->mac.type > e1000_ich10lan) &&
7623		    (eeprom_data & E1000_WUC_PHY_WAKE))
7624			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7625	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7626		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7627		    (adapter->hw.bus.func == 1))
7628			ret_val = e1000_read_nvm(&adapter->hw,
7629					      NVM_INIT_CONTROL3_PORT_B,
7630					      1, &eeprom_data);
7631		else
7632			ret_val = e1000_read_nvm(&adapter->hw,
7633					      NVM_INIT_CONTROL3_PORT_A,
7634					      1, &eeprom_data);
7635	}
7636
7637	/* fetch WoL from EEPROM */
7638	if (ret_val)
7639		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7640	else if (eeprom_data & eeprom_apme_mask)
7641		adapter->eeprom_wol |= E1000_WUFC_MAG;
7642
7643	/* now that we have the eeprom settings, apply the special cases
7644	 * where the eeprom may be wrong or the board simply won't support
7645	 * wake on lan on a particular port
7646	 */
7647	if (!(adapter->flags & FLAG_HAS_WOL))
7648		adapter->eeprom_wol = 0;
7649
7650	/* initialize the wol settings based on the eeprom settings */
7651	adapter->wol = adapter->eeprom_wol;
7652
7653	/* make sure adapter isn't asleep if manageability is enabled */
7654	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7655	    (hw->mac.ops.check_mng_mode(hw)))
7656		device_wakeup_enable(&pdev->dev);
7657
7658	/* save off EEPROM version number */
7659	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7660
7661	if (ret_val) {
7662		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7663		adapter->eeprom_vers = 0;
7664	}
7665
7666	/* init PTP hardware clock */
7667	e1000e_ptp_init(adapter);
7668
7669	/* reset the hardware with the new settings */
7670	e1000e_reset(adapter);
7671
7672	/* If the controller has AMT, do not set DRV_LOAD until the interface
7673	 * is up.  For all other cases, let the f/w know that the h/w is now
7674	 * under the control of the driver.
7675	 */
7676	if (!(adapter->flags & FLAG_HAS_AMT))
7677		e1000e_get_hw_control(adapter);
7678
7679	if (hw->mac.type >= e1000_pch_cnp)
7680		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7681
7682	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7683	err = register_netdev(netdev);
7684	if (err)
7685		goto err_register;
7686
7687	/* carrier off reporting is important to ethtool even BEFORE open */
7688	netif_carrier_off(netdev);
7689
7690	e1000_print_device_info(adapter);
7691
7692	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7693
7694	if (pci_dev_run_wake(pdev))
7695		pm_runtime_put_noidle(&pdev->dev);
7696
7697	return 0;
7698
7699err_register:
7700	if (!(adapter->flags & FLAG_HAS_AMT))
7701		e1000e_release_hw_control(adapter);
7702err_eeprom:
7703	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7704		e1000_phy_hw_reset(&adapter->hw);
7705err_hw_init:
7706	kfree(adapter->tx_ring);
7707	kfree(adapter->rx_ring);
7708err_sw_init:
7709	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7710		iounmap(adapter->hw.flash_address);
7711	e1000e_reset_interrupt_capability(adapter);
7712err_flashmap:
7713	iounmap(adapter->hw.hw_addr);
7714err_ioremap:
7715	free_netdev(netdev);
7716err_alloc_etherdev:
7717	pci_release_mem_regions(pdev);
7718err_pci_reg:
7719err_dma:
7720	pci_disable_device(pdev);
7721	return err;
7722}
7723
7724/**
7725 * e1000_remove - Device Removal Routine
7726 * @pdev: PCI device information struct
7727 *
7728 * e1000_remove is called by the PCI subsystem to alert the driver
7729 * that it should release a PCI device.  This could be caused by a
7730 * Hot-Plug event, or because the driver is going to be removed from
7731 * memory.
7732 **/
7733static void e1000_remove(struct pci_dev *pdev)
7734{
7735	struct net_device *netdev = pci_get_drvdata(pdev);
7736	struct e1000_adapter *adapter = netdev_priv(netdev);
7737
7738	e1000e_ptp_remove(adapter);
7739
7740	/* The timers may be rescheduled, so explicitly disable them
7741	 * from being rescheduled.
7742	 */
7743	set_bit(__E1000_DOWN, &adapter->state);
7744	del_timer_sync(&adapter->watchdog_timer);
7745	del_timer_sync(&adapter->phy_info_timer);
7746
7747	cancel_work_sync(&adapter->reset_task);
7748	cancel_work_sync(&adapter->watchdog_task);
7749	cancel_work_sync(&adapter->downshift_task);
7750	cancel_work_sync(&adapter->update_phy_task);
7751	cancel_work_sync(&adapter->print_hang_task);
7752
7753	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7754		cancel_work_sync(&adapter->tx_hwtstamp_work);
7755		if (adapter->tx_hwtstamp_skb) {
7756			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7757			adapter->tx_hwtstamp_skb = NULL;
7758		}
7759	}
7760
7761	unregister_netdev(netdev);
7762
7763	if (pci_dev_run_wake(pdev))
7764		pm_runtime_get_noresume(&pdev->dev);
7765
7766	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7767	 * would have already happened in close and is redundant.
7768	 */
7769	e1000e_release_hw_control(adapter);
7770
7771	e1000e_reset_interrupt_capability(adapter);
7772	kfree(adapter->tx_ring);
7773	kfree(adapter->rx_ring);
7774
7775	iounmap(adapter->hw.hw_addr);
7776	if ((adapter->hw.flash_address) &&
7777	    (adapter->hw.mac.type < e1000_pch_spt))
7778		iounmap(adapter->hw.flash_address);
7779	pci_release_mem_regions(pdev);
7780
7781	free_netdev(netdev);
7782
 
 
 
7783	pci_disable_device(pdev);
7784}
7785
7786/* PCI Error Recovery (ERS) */
7787static const struct pci_error_handlers e1000_err_handler = {
7788	.error_detected = e1000_io_error_detected,
7789	.slot_reset = e1000_io_slot_reset,
7790	.resume = e1000_io_resume,
7791};
7792
7793static const struct pci_device_id e1000_pci_tbl[] = {
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7796	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7798	  board_82571 },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7804
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7809
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7811	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7813
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7815	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7817
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7819	  board_80003es2lan },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7821	  board_80003es2lan },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7823	  board_80003es2lan },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7825	  board_80003es2lan },
7826
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7835
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7845
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7849
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7853
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7858
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7861
7862	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7865	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7866	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7867	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7868	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7869	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7870	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7871	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7872	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7873	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7874	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7875	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7876	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7877	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7878	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7879	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7880	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7881	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7882	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7883	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7886	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7887	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7888	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7889	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7890	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7891	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7892	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7893	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7894	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7895	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7896	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7897	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7898	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7899	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7900	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7901	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7902	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7903	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7904	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7905	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7906	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7907	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7908	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7909	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7910	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7911	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7912	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7913	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7914	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7915	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7916	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7917	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7918	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7919	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7920	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7921	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7922	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7923	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7924	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7925
7926	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7927};
7928MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7929
7930static const struct dev_pm_ops e1000e_pm_ops = {
7931	.prepare	= e1000e_pm_prepare,
7932	.suspend	= e1000e_pm_suspend,
7933	.resume		= e1000e_pm_resume,
7934	.freeze		= e1000e_pm_freeze,
7935	.thaw		= e1000e_pm_thaw,
7936	.poweroff	= e1000e_pm_suspend,
7937	.restore	= e1000e_pm_resume,
7938	RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7939		       e1000e_pm_runtime_idle)
 
7940};
7941
7942/* PCI Device API Driver */
7943static struct pci_driver e1000_driver = {
7944	.name     = e1000e_driver_name,
7945	.id_table = e1000_pci_tbl,
7946	.probe    = e1000_probe,
7947	.remove   = e1000_remove,
7948	.driver.pm = pm_ptr(&e1000e_pm_ops),
 
 
7949	.shutdown = e1000_shutdown,
7950	.err_handler = &e1000_err_handler
7951};
7952
7953/**
7954 * e1000_init_module - Driver Registration Routine
7955 *
7956 * e1000_init_module is the first routine called when the driver is
7957 * loaded. All it does is register with the PCI subsystem.
7958 **/
7959static int __init e1000_init_module(void)
7960{
7961	pr_info("Intel(R) PRO/1000 Network Driver\n");
7962	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7963
7964	return pci_register_driver(&e1000_driver);
7965}
7966module_init(e1000_init_module);
7967
7968/**
7969 * e1000_exit_module - Driver Exit Cleanup Routine
7970 *
7971 * e1000_exit_module is called just before the driver is removed
7972 * from memory.
7973 **/
7974static void __exit e1000_exit_module(void)
7975{
7976	pci_unregister_driver(&e1000_driver);
7977}
7978module_exit(e1000_exit_module);
7979
 
7980MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7981MODULE_LICENSE("GPL v2");
7982
7983/* netdev.c */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/aer.h>
  27#include <linux/prefetch.h>
 
  28
  29#include "e1000.h"
 
 
  30
  31char e1000e_driver_name[] = "e1000e";
  32
  33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  34static int debug = -1;
  35module_param(debug, int, 0);
  36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  37
  38static const struct e1000_info *e1000_info_tbl[] = {
  39	[board_82571]		= &e1000_82571_info,
  40	[board_82572]		= &e1000_82572_info,
  41	[board_82573]		= &e1000_82573_info,
  42	[board_82574]		= &e1000_82574_info,
  43	[board_82583]		= &e1000_82583_info,
  44	[board_80003es2lan]	= &e1000_es2_info,
  45	[board_ich8lan]		= &e1000_ich8_info,
  46	[board_ich9lan]		= &e1000_ich9_info,
  47	[board_ich10lan]	= &e1000_ich10_info,
  48	[board_pchlan]		= &e1000_pch_info,
  49	[board_pch2lan]		= &e1000_pch2_info,
  50	[board_pch_lpt]		= &e1000_pch_lpt_info,
  51	[board_pch_spt]		= &e1000_pch_spt_info,
  52	[board_pch_cnp]		= &e1000_pch_cnp_info,
 
 
 
  53};
  54
  55struct e1000_reg_info {
  56	u32 ofs;
  57	char *name;
  58};
  59
  60static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  61	/* General Registers */
  62	{E1000_CTRL, "CTRL"},
  63	{E1000_STATUS, "STATUS"},
  64	{E1000_CTRL_EXT, "CTRL_EXT"},
  65
  66	/* Interrupt Registers */
  67	{E1000_ICR, "ICR"},
  68
  69	/* Rx Registers */
  70	{E1000_RCTL, "RCTL"},
  71	{E1000_RDLEN(0), "RDLEN"},
  72	{E1000_RDH(0), "RDH"},
  73	{E1000_RDT(0), "RDT"},
  74	{E1000_RDTR, "RDTR"},
  75	{E1000_RXDCTL(0), "RXDCTL"},
  76	{E1000_ERT, "ERT"},
  77	{E1000_RDBAL(0), "RDBAL"},
  78	{E1000_RDBAH(0), "RDBAH"},
  79	{E1000_RDFH, "RDFH"},
  80	{E1000_RDFT, "RDFT"},
  81	{E1000_RDFHS, "RDFHS"},
  82	{E1000_RDFTS, "RDFTS"},
  83	{E1000_RDFPC, "RDFPC"},
  84
  85	/* Tx Registers */
  86	{E1000_TCTL, "TCTL"},
  87	{E1000_TDBAL(0), "TDBAL"},
  88	{E1000_TDBAH(0), "TDBAH"},
  89	{E1000_TDLEN(0), "TDLEN"},
  90	{E1000_TDH(0), "TDH"},
  91	{E1000_TDT(0), "TDT"},
  92	{E1000_TIDV, "TIDV"},
  93	{E1000_TXDCTL(0), "TXDCTL"},
  94	{E1000_TADV, "TADV"},
  95	{E1000_TARC(0), "TARC"},
  96	{E1000_TDFH, "TDFH"},
  97	{E1000_TDFT, "TDFT"},
  98	{E1000_TDFHS, "TDFHS"},
  99	{E1000_TDFTS, "TDFTS"},
 100	{E1000_TDFPC, "TDFPC"},
 101
 102	/* List Terminator */
 103	{0, NULL}
 104};
 105
 106struct e1000e_me_supported {
 107	u16 device_id;		/* supported device ID */
 108};
 109
 110static const struct e1000e_me_supported me_supported[] = {
 111	{E1000_DEV_ID_PCH_LPT_I217_LM},
 112	{E1000_DEV_ID_PCH_LPTLP_I218_LM},
 113	{E1000_DEV_ID_PCH_I218_LM2},
 114	{E1000_DEV_ID_PCH_I218_LM3},
 115	{E1000_DEV_ID_PCH_SPT_I219_LM},
 116	{E1000_DEV_ID_PCH_SPT_I219_LM2},
 117	{E1000_DEV_ID_PCH_LBG_I219_LM3},
 118	{E1000_DEV_ID_PCH_SPT_I219_LM4},
 119	{E1000_DEV_ID_PCH_SPT_I219_LM5},
 120	{E1000_DEV_ID_PCH_CNP_I219_LM6},
 121	{E1000_DEV_ID_PCH_CNP_I219_LM7},
 122	{E1000_DEV_ID_PCH_ICP_I219_LM8},
 123	{E1000_DEV_ID_PCH_ICP_I219_LM9},
 124	{E1000_DEV_ID_PCH_CMP_I219_LM10},
 125	{E1000_DEV_ID_PCH_CMP_I219_LM11},
 126	{E1000_DEV_ID_PCH_CMP_I219_LM12},
 127	{E1000_DEV_ID_PCH_TGP_I219_LM13},
 128	{E1000_DEV_ID_PCH_TGP_I219_LM14},
 129	{E1000_DEV_ID_PCH_TGP_I219_LM15},
 130	{0}
 131};
 132
 133static bool e1000e_check_me(u16 device_id)
 134{
 135	struct e1000e_me_supported *id;
 136
 137	for (id = (struct e1000e_me_supported *)me_supported;
 138	     id->device_id; id++)
 139		if (device_id == id->device_id)
 140			return true;
 141
 142	return false;
 143}
 144
 145/**
 146 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 147 * @hw: pointer to the HW structure
 148 *
 149 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 150 * be accessing the registers at the same time.  Normally, this is handled in
 151 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 152 * accesses later than it should which could result in the register to have
 153 * an incorrect value.  Workaround this by checking the FWSM register which
 154 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 155 * and try again a number of times.
 156 **/
 157static void __ew32_prepare(struct e1000_hw *hw)
 158{
 159	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 160
 161	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 162		udelay(50);
 163}
 164
 165void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 166{
 167	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 168		__ew32_prepare(hw);
 169
 170	writel(val, hw->hw_addr + reg);
 171}
 172
 173/**
 174 * e1000_regdump - register printout routine
 175 * @hw: pointer to the HW structure
 176 * @reginfo: pointer to the register info table
 177 **/
 178static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 179{
 180	int n = 0;
 181	char rname[16];
 182	u32 regs[8];
 183
 184	switch (reginfo->ofs) {
 185	case E1000_RXDCTL(0):
 186		for (n = 0; n < 2; n++)
 187			regs[n] = __er32(hw, E1000_RXDCTL(n));
 188		break;
 189	case E1000_TXDCTL(0):
 190		for (n = 0; n < 2; n++)
 191			regs[n] = __er32(hw, E1000_TXDCTL(n));
 192		break;
 193	case E1000_TARC(0):
 194		for (n = 0; n < 2; n++)
 195			regs[n] = __er32(hw, E1000_TARC(n));
 196		break;
 197	default:
 198		pr_info("%-15s %08x\n",
 199			reginfo->name, __er32(hw, reginfo->ofs));
 200		return;
 201	}
 202
 203	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 204	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 205}
 206
 207static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 208				 struct e1000_buffer *bi)
 209{
 210	int i;
 211	struct e1000_ps_page *ps_page;
 212
 213	for (i = 0; i < adapter->rx_ps_pages; i++) {
 214		ps_page = &bi->ps_pages[i];
 215
 216		if (ps_page->page) {
 217			pr_info("packet dump for ps_page %d:\n", i);
 218			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 219				       16, 1, page_address(ps_page->page),
 220				       PAGE_SIZE, true);
 221		}
 222	}
 223}
 224
 225/**
 226 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 227 * @adapter: board private structure
 228 **/
 229static void e1000e_dump(struct e1000_adapter *adapter)
 230{
 231	struct net_device *netdev = adapter->netdev;
 232	struct e1000_hw *hw = &adapter->hw;
 233	struct e1000_reg_info *reginfo;
 234	struct e1000_ring *tx_ring = adapter->tx_ring;
 235	struct e1000_tx_desc *tx_desc;
 236	struct my_u0 {
 237		__le64 a;
 238		__le64 b;
 239	} *u0;
 240	struct e1000_buffer *buffer_info;
 241	struct e1000_ring *rx_ring = adapter->rx_ring;
 242	union e1000_rx_desc_packet_split *rx_desc_ps;
 243	union e1000_rx_desc_extended *rx_desc;
 244	struct my_u1 {
 245		__le64 a;
 246		__le64 b;
 247		__le64 c;
 248		__le64 d;
 249	} *u1;
 250	u32 staterr;
 251	int i = 0;
 252
 253	if (!netif_msg_hw(adapter))
 254		return;
 255
 256	/* Print netdevice Info */
 257	if (netdev) {
 258		dev_info(&adapter->pdev->dev, "Net device Info\n");
 259		pr_info("Device Name     state            trans_start\n");
 260		pr_info("%-15s %016lX %016lX\n", netdev->name,
 261			netdev->state, dev_trans_start(netdev));
 262	}
 263
 264	/* Print Registers */
 265	dev_info(&adapter->pdev->dev, "Register Dump\n");
 266	pr_info(" Register Name   Value\n");
 267	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 268	     reginfo->name; reginfo++) {
 269		e1000_regdump(hw, reginfo);
 270	}
 271
 272	/* Print Tx Ring Summary */
 273	if (!netdev || !netif_running(netdev))
 274		return;
 275
 276	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 277	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 278	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 279	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 280		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 281		(unsigned long long)buffer_info->dma,
 282		buffer_info->length,
 283		buffer_info->next_to_watch,
 284		(unsigned long long)buffer_info->time_stamp);
 285
 286	/* Print Tx Ring */
 287	if (!netif_msg_tx_done(adapter))
 288		goto rx_ring_summary;
 289
 290	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 291
 292	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 293	 *
 294	 * Legacy Transmit Descriptor
 295	 *   +--------------------------------------------------------------+
 296	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 297	 *   +--------------------------------------------------------------+
 298	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 299	 *   +--------------------------------------------------------------+
 300	 *   63       48 47        36 35    32 31     24 23    16 15        0
 301	 *
 302	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 303	 *   63      48 47    40 39       32 31             16 15    8 7      0
 304	 *   +----------------------------------------------------------------+
 305	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 306	 *   +----------------------------------------------------------------+
 307	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 308	 *   +----------------------------------------------------------------+
 309	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 310	 *
 311	 * Extended Data Descriptor (DTYP=0x1)
 312	 *   +----------------------------------------------------------------+
 313	 * 0 |                     Buffer Address [63:0]                      |
 314	 *   +----------------------------------------------------------------+
 315	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 316	 *   +----------------------------------------------------------------+
 317	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 318	 */
 319	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 320	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 321	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 322	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 323		const char *next_desc;
 324		tx_desc = E1000_TX_DESC(*tx_ring, i);
 325		buffer_info = &tx_ring->buffer_info[i];
 326		u0 = (struct my_u0 *)tx_desc;
 327		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 328			next_desc = " NTC/U";
 329		else if (i == tx_ring->next_to_use)
 330			next_desc = " NTU";
 331		else if (i == tx_ring->next_to_clean)
 332			next_desc = " NTC";
 333		else
 334			next_desc = "";
 335		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 336			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 337			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 338			i,
 339			(unsigned long long)le64_to_cpu(u0->a),
 340			(unsigned long long)le64_to_cpu(u0->b),
 341			(unsigned long long)buffer_info->dma,
 342			buffer_info->length, buffer_info->next_to_watch,
 343			(unsigned long long)buffer_info->time_stamp,
 344			buffer_info->skb, next_desc);
 345
 346		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 347			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 348				       16, 1, buffer_info->skb->data,
 349				       buffer_info->skb->len, true);
 350	}
 351
 352	/* Print Rx Ring Summary */
 353rx_ring_summary:
 354	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 355	pr_info("Queue [NTU] [NTC]\n");
 356	pr_info(" %5d %5X %5X\n",
 357		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 358
 359	/* Print Rx Ring */
 360	if (!netif_msg_rx_status(adapter))
 361		return;
 362
 363	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 364	switch (adapter->rx_ps_pages) {
 365	case 1:
 366	case 2:
 367	case 3:
 368		/* [Extended] Packet Split Receive Descriptor Format
 369		 *
 370		 *    +-----------------------------------------------------+
 371		 *  0 |                Buffer Address 0 [63:0]              |
 372		 *    +-----------------------------------------------------+
 373		 *  8 |                Buffer Address 1 [63:0]              |
 374		 *    +-----------------------------------------------------+
 375		 * 16 |                Buffer Address 2 [63:0]              |
 376		 *    +-----------------------------------------------------+
 377		 * 24 |                Buffer Address 3 [63:0]              |
 378		 *    +-----------------------------------------------------+
 379		 */
 380		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 381		/* [Extended] Receive Descriptor (Write-Back) Format
 382		 *
 383		 *   63       48 47    32 31     13 12    8 7    4 3        0
 384		 *   +------------------------------------------------------+
 385		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 386		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 387		 *   +------------------------------------------------------+
 388		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 389		 *   +------------------------------------------------------+
 390		 *   63       48 47    32 31            20 19               0
 391		 */
 392		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 393		for (i = 0; i < rx_ring->count; i++) {
 394			const char *next_desc;
 395			buffer_info = &rx_ring->buffer_info[i];
 396			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 397			u1 = (struct my_u1 *)rx_desc_ps;
 398			staterr =
 399			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 400
 401			if (i == rx_ring->next_to_use)
 402				next_desc = " NTU";
 403			else if (i == rx_ring->next_to_clean)
 404				next_desc = " NTC";
 405			else
 406				next_desc = "";
 407
 408			if (staterr & E1000_RXD_STAT_DD) {
 409				/* Descriptor Done */
 410				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 411					"RWB", i,
 412					(unsigned long long)le64_to_cpu(u1->a),
 413					(unsigned long long)le64_to_cpu(u1->b),
 414					(unsigned long long)le64_to_cpu(u1->c),
 415					(unsigned long long)le64_to_cpu(u1->d),
 416					buffer_info->skb, next_desc);
 417			} else {
 418				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 419					"R  ", i,
 420					(unsigned long long)le64_to_cpu(u1->a),
 421					(unsigned long long)le64_to_cpu(u1->b),
 422					(unsigned long long)le64_to_cpu(u1->c),
 423					(unsigned long long)le64_to_cpu(u1->d),
 424					(unsigned long long)buffer_info->dma,
 425					buffer_info->skb, next_desc);
 426
 427				if (netif_msg_pktdata(adapter))
 428					e1000e_dump_ps_pages(adapter,
 429							     buffer_info);
 430			}
 431		}
 432		break;
 433	default:
 434	case 0:
 435		/* Extended Receive Descriptor (Read) Format
 436		 *
 437		 *   +-----------------------------------------------------+
 438		 * 0 |                Buffer Address [63:0]                |
 439		 *   +-----------------------------------------------------+
 440		 * 8 |                      Reserved                       |
 441		 *   +-----------------------------------------------------+
 442		 */
 443		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 444		/* Extended Receive Descriptor (Write-Back) Format
 445		 *
 446		 *   63       48 47    32 31    24 23            4 3        0
 447		 *   +------------------------------------------------------+
 448		 *   |     RSS Hash      |        |               |         |
 449		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 450		 *   | Packet   | IP     |        |               |  Type   |
 451		 *   | Checksum | Ident  |        |               |         |
 452		 *   +------------------------------------------------------+
 453		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 454		 *   +------------------------------------------------------+
 455		 *   63       48 47    32 31            20 19               0
 456		 */
 457		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 458
 459		for (i = 0; i < rx_ring->count; i++) {
 460			const char *next_desc;
 461
 462			buffer_info = &rx_ring->buffer_info[i];
 463			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 464			u1 = (struct my_u1 *)rx_desc;
 465			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 466
 467			if (i == rx_ring->next_to_use)
 468				next_desc = " NTU";
 469			else if (i == rx_ring->next_to_clean)
 470				next_desc = " NTC";
 471			else
 472				next_desc = "";
 473
 474			if (staterr & E1000_RXD_STAT_DD) {
 475				/* Descriptor Done */
 476				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 477					"RWB", i,
 478					(unsigned long long)le64_to_cpu(u1->a),
 479					(unsigned long long)le64_to_cpu(u1->b),
 480					buffer_info->skb, next_desc);
 481			} else {
 482				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 483					"R  ", i,
 484					(unsigned long long)le64_to_cpu(u1->a),
 485					(unsigned long long)le64_to_cpu(u1->b),
 486					(unsigned long long)buffer_info->dma,
 487					buffer_info->skb, next_desc);
 488
 489				if (netif_msg_pktdata(adapter) &&
 490				    buffer_info->skb)
 491					print_hex_dump(KERN_INFO, "",
 492						       DUMP_PREFIX_ADDRESS, 16,
 493						       1,
 494						       buffer_info->skb->data,
 495						       adapter->rx_buffer_len,
 496						       true);
 497			}
 498		}
 499	}
 500}
 501
 502/**
 503 * e1000_desc_unused - calculate if we have unused descriptors
 
 504 **/
 505static int e1000_desc_unused(struct e1000_ring *ring)
 506{
 507	if (ring->next_to_clean > ring->next_to_use)
 508		return ring->next_to_clean - ring->next_to_use - 1;
 509
 510	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 511}
 512
 513/**
 514 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 515 * @adapter: board private structure
 516 * @hwtstamps: time stamp structure to update
 517 * @systim: unsigned 64bit system time value.
 518 *
 519 * Convert the system time value stored in the RX/TXSTMP registers into a
 520 * hwtstamp which can be used by the upper level time stamping functions.
 521 *
 522 * The 'systim_lock' spinlock is used to protect the consistency of the
 523 * system time value. This is needed because reading the 64 bit time
 524 * value involves reading two 32 bit registers. The first read latches the
 525 * value.
 526 **/
 527static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 528				      struct skb_shared_hwtstamps *hwtstamps,
 529				      u64 systim)
 530{
 531	u64 ns;
 532	unsigned long flags;
 533
 534	spin_lock_irqsave(&adapter->systim_lock, flags);
 535	ns = timecounter_cyc2time(&adapter->tc, systim);
 536	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 537
 538	memset(hwtstamps, 0, sizeof(*hwtstamps));
 539	hwtstamps->hwtstamp = ns_to_ktime(ns);
 540}
 541
 542/**
 543 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 544 * @adapter: board private structure
 545 * @status: descriptor extended error and status field
 546 * @skb: particular skb to include time stamp
 547 *
 548 * If the time stamp is valid, convert it into the timecounter ns value
 549 * and store that result into the shhwtstamps structure which is passed
 550 * up the network stack.
 551 **/
 552static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 553			       struct sk_buff *skb)
 554{
 555	struct e1000_hw *hw = &adapter->hw;
 556	u64 rxstmp;
 557
 558	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 559	    !(status & E1000_RXDEXT_STATERR_TST) ||
 560	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 561		return;
 562
 563	/* The Rx time stamp registers contain the time stamp.  No other
 564	 * received packet will be time stamped until the Rx time stamp
 565	 * registers are read.  Because only one packet can be time stamped
 566	 * at a time, the register values must belong to this packet and
 567	 * therefore none of the other additional attributes need to be
 568	 * compared.
 569	 */
 570	rxstmp = (u64)er32(RXSTMPL);
 571	rxstmp |= (u64)er32(RXSTMPH) << 32;
 572	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 573
 574	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 575}
 576
 577/**
 578 * e1000_receive_skb - helper function to handle Rx indications
 579 * @adapter: board private structure
 
 580 * @staterr: descriptor extended error and status field as written by hardware
 581 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 582 * @skb: pointer to sk_buff to be indicated to stack
 583 **/
 584static void e1000_receive_skb(struct e1000_adapter *adapter,
 585			      struct net_device *netdev, struct sk_buff *skb,
 586			      u32 staterr, __le16 vlan)
 587{
 588	u16 tag = le16_to_cpu(vlan);
 589
 590	e1000e_rx_hwtstamp(adapter, staterr, skb);
 591
 592	skb->protocol = eth_type_trans(skb, netdev);
 593
 594	if (staterr & E1000_RXD_STAT_VP)
 595		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 596
 597	napi_gro_receive(&adapter->napi, skb);
 598}
 599
 600/**
 601 * e1000_rx_checksum - Receive Checksum Offload
 602 * @adapter: board private structure
 603 * @status_err: receive descriptor status and error fields
 604 * @csum: receive descriptor csum field
 605 * @sk_buff: socket buffer with received data
 606 **/
 607static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 608			      struct sk_buff *skb)
 609{
 610	u16 status = (u16)status_err;
 611	u8 errors = (u8)(status_err >> 24);
 612
 613	skb_checksum_none_assert(skb);
 614
 615	/* Rx checksum disabled */
 616	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 617		return;
 618
 619	/* Ignore Checksum bit is set */
 620	if (status & E1000_RXD_STAT_IXSM)
 621		return;
 622
 623	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 624	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 625		/* let the stack verify checksum errors */
 626		adapter->hw_csum_err++;
 627		return;
 628	}
 629
 630	/* TCP/UDP Checksum has not been calculated */
 631	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 632		return;
 633
 634	/* It must be a TCP or UDP packet with a valid checksum */
 635	skb->ip_summed = CHECKSUM_UNNECESSARY;
 636	adapter->hw_csum_good++;
 637}
 638
 639static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 640{
 641	struct e1000_adapter *adapter = rx_ring->adapter;
 642	struct e1000_hw *hw = &adapter->hw;
 643
 644	__ew32_prepare(hw);
 645	writel(i, rx_ring->tail);
 646
 647	if (unlikely(i != readl(rx_ring->tail))) {
 648		u32 rctl = er32(RCTL);
 649
 650		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 651		e_err("ME firmware caused invalid RDT - resetting\n");
 652		schedule_work(&adapter->reset_task);
 653	}
 654}
 655
 656static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 657{
 658	struct e1000_adapter *adapter = tx_ring->adapter;
 659	struct e1000_hw *hw = &adapter->hw;
 660
 661	__ew32_prepare(hw);
 662	writel(i, tx_ring->tail);
 663
 664	if (unlikely(i != readl(tx_ring->tail))) {
 665		u32 tctl = er32(TCTL);
 666
 667		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 668		e_err("ME firmware caused invalid TDT - resetting\n");
 669		schedule_work(&adapter->reset_task);
 670	}
 671}
 672
 673/**
 674 * e1000_alloc_rx_buffers - Replace used receive buffers
 675 * @rx_ring: Rx descriptor ring
 
 
 676 **/
 677static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 678				   int cleaned_count, gfp_t gfp)
 679{
 680	struct e1000_adapter *adapter = rx_ring->adapter;
 681	struct net_device *netdev = adapter->netdev;
 682	struct pci_dev *pdev = adapter->pdev;
 683	union e1000_rx_desc_extended *rx_desc;
 684	struct e1000_buffer *buffer_info;
 685	struct sk_buff *skb;
 686	unsigned int i;
 687	unsigned int bufsz = adapter->rx_buffer_len;
 688
 689	i = rx_ring->next_to_use;
 690	buffer_info = &rx_ring->buffer_info[i];
 691
 692	while (cleaned_count--) {
 693		skb = buffer_info->skb;
 694		if (skb) {
 695			skb_trim(skb, 0);
 696			goto map_skb;
 697		}
 698
 699		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 700		if (!skb) {
 701			/* Better luck next round */
 702			adapter->alloc_rx_buff_failed++;
 703			break;
 704		}
 705
 706		buffer_info->skb = skb;
 707map_skb:
 708		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 709						  adapter->rx_buffer_len,
 710						  DMA_FROM_DEVICE);
 711		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 712			dev_err(&pdev->dev, "Rx DMA map failed\n");
 713			adapter->rx_dma_failed++;
 714			break;
 715		}
 716
 717		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 718		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 719
 720		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 721			/* Force memory writes to complete before letting h/w
 722			 * know there are new descriptors to fetch.  (Only
 723			 * applicable for weak-ordered memory model archs,
 724			 * such as IA-64).
 725			 */
 726			wmb();
 727			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 728				e1000e_update_rdt_wa(rx_ring, i);
 729			else
 730				writel(i, rx_ring->tail);
 731		}
 732		i++;
 733		if (i == rx_ring->count)
 734			i = 0;
 735		buffer_info = &rx_ring->buffer_info[i];
 736	}
 737
 738	rx_ring->next_to_use = i;
 739}
 740
 741/**
 742 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 743 * @rx_ring: Rx descriptor ring
 
 
 744 **/
 745static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 746				      int cleaned_count, gfp_t gfp)
 747{
 748	struct e1000_adapter *adapter = rx_ring->adapter;
 749	struct net_device *netdev = adapter->netdev;
 750	struct pci_dev *pdev = adapter->pdev;
 751	union e1000_rx_desc_packet_split *rx_desc;
 752	struct e1000_buffer *buffer_info;
 753	struct e1000_ps_page *ps_page;
 754	struct sk_buff *skb;
 755	unsigned int i, j;
 756
 757	i = rx_ring->next_to_use;
 758	buffer_info = &rx_ring->buffer_info[i];
 759
 760	while (cleaned_count--) {
 761		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 762
 763		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 764			ps_page = &buffer_info->ps_pages[j];
 765			if (j >= adapter->rx_ps_pages) {
 766				/* all unused desc entries get hw null ptr */
 767				rx_desc->read.buffer_addr[j + 1] =
 768				    ~cpu_to_le64(0);
 769				continue;
 770			}
 771			if (!ps_page->page) {
 772				ps_page->page = alloc_page(gfp);
 773				if (!ps_page->page) {
 774					adapter->alloc_rx_buff_failed++;
 775					goto no_buffers;
 776				}
 777				ps_page->dma = dma_map_page(&pdev->dev,
 778							    ps_page->page,
 779							    0, PAGE_SIZE,
 780							    DMA_FROM_DEVICE);
 781				if (dma_mapping_error(&pdev->dev,
 782						      ps_page->dma)) {
 783					dev_err(&adapter->pdev->dev,
 784						"Rx DMA page map failed\n");
 785					adapter->rx_dma_failed++;
 786					goto no_buffers;
 787				}
 788			}
 789			/* Refresh the desc even if buffer_addrs
 790			 * didn't change because each write-back
 791			 * erases this info.
 792			 */
 793			rx_desc->read.buffer_addr[j + 1] =
 794			    cpu_to_le64(ps_page->dma);
 795		}
 796
 797		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 798						  gfp);
 799
 800		if (!skb) {
 801			adapter->alloc_rx_buff_failed++;
 802			break;
 803		}
 804
 805		buffer_info->skb = skb;
 806		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 807						  adapter->rx_ps_bsize0,
 808						  DMA_FROM_DEVICE);
 809		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 810			dev_err(&pdev->dev, "Rx DMA map failed\n");
 811			adapter->rx_dma_failed++;
 812			/* cleanup skb */
 813			dev_kfree_skb_any(skb);
 814			buffer_info->skb = NULL;
 815			break;
 816		}
 817
 818		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 819
 820		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 821			/* Force memory writes to complete before letting h/w
 822			 * know there are new descriptors to fetch.  (Only
 823			 * applicable for weak-ordered memory model archs,
 824			 * such as IA-64).
 825			 */
 826			wmb();
 827			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 828				e1000e_update_rdt_wa(rx_ring, i << 1);
 829			else
 830				writel(i << 1, rx_ring->tail);
 831		}
 832
 833		i++;
 834		if (i == rx_ring->count)
 835			i = 0;
 836		buffer_info = &rx_ring->buffer_info[i];
 837	}
 838
 839no_buffers:
 840	rx_ring->next_to_use = i;
 841}
 842
 843/**
 844 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 845 * @rx_ring: Rx descriptor ring
 846 * @cleaned_count: number of buffers to allocate this pass
 
 847 **/
 848
 849static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 850					 int cleaned_count, gfp_t gfp)
 851{
 852	struct e1000_adapter *adapter = rx_ring->adapter;
 853	struct net_device *netdev = adapter->netdev;
 854	struct pci_dev *pdev = adapter->pdev;
 855	union e1000_rx_desc_extended *rx_desc;
 856	struct e1000_buffer *buffer_info;
 857	struct sk_buff *skb;
 858	unsigned int i;
 859	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 860
 861	i = rx_ring->next_to_use;
 862	buffer_info = &rx_ring->buffer_info[i];
 863
 864	while (cleaned_count--) {
 865		skb = buffer_info->skb;
 866		if (skb) {
 867			skb_trim(skb, 0);
 868			goto check_page;
 869		}
 870
 871		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 872		if (unlikely(!skb)) {
 873			/* Better luck next round */
 874			adapter->alloc_rx_buff_failed++;
 875			break;
 876		}
 877
 878		buffer_info->skb = skb;
 879check_page:
 880		/* allocate a new page if necessary */
 881		if (!buffer_info->page) {
 882			buffer_info->page = alloc_page(gfp);
 883			if (unlikely(!buffer_info->page)) {
 884				adapter->alloc_rx_buff_failed++;
 885				break;
 886			}
 887		}
 888
 889		if (!buffer_info->dma) {
 890			buffer_info->dma = dma_map_page(&pdev->dev,
 891							buffer_info->page, 0,
 892							PAGE_SIZE,
 893							DMA_FROM_DEVICE);
 894			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 895				adapter->alloc_rx_buff_failed++;
 896				break;
 897			}
 898		}
 899
 900		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 901		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 902
 903		if (unlikely(++i == rx_ring->count))
 904			i = 0;
 905		buffer_info = &rx_ring->buffer_info[i];
 906	}
 907
 908	if (likely(rx_ring->next_to_use != i)) {
 909		rx_ring->next_to_use = i;
 910		if (unlikely(i-- == 0))
 911			i = (rx_ring->count - 1);
 912
 913		/* Force memory writes to complete before letting h/w
 914		 * know there are new descriptors to fetch.  (Only
 915		 * applicable for weak-ordered memory model archs,
 916		 * such as IA-64).
 917		 */
 918		wmb();
 919		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 920			e1000e_update_rdt_wa(rx_ring, i);
 921		else
 922			writel(i, rx_ring->tail);
 923	}
 924}
 925
 926static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 927				 struct sk_buff *skb)
 928{
 929	if (netdev->features & NETIF_F_RXHASH)
 930		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 931}
 932
 933/**
 934 * e1000_clean_rx_irq - Send received data up the network stack
 935 * @rx_ring: Rx descriptor ring
 
 
 936 *
 937 * the return value indicates whether actual cleaning was done, there
 938 * is no guarantee that everything was cleaned
 939 **/
 940static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 941			       int work_to_do)
 942{
 943	struct e1000_adapter *adapter = rx_ring->adapter;
 944	struct net_device *netdev = adapter->netdev;
 945	struct pci_dev *pdev = adapter->pdev;
 946	struct e1000_hw *hw = &adapter->hw;
 947	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 948	struct e1000_buffer *buffer_info, *next_buffer;
 949	u32 length, staterr;
 950	unsigned int i;
 951	int cleaned_count = 0;
 952	bool cleaned = false;
 953	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 954
 955	i = rx_ring->next_to_clean;
 956	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 957	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 958	buffer_info = &rx_ring->buffer_info[i];
 959
 960	while (staterr & E1000_RXD_STAT_DD) {
 961		struct sk_buff *skb;
 962
 963		if (*work_done >= work_to_do)
 964			break;
 965		(*work_done)++;
 966		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 967
 968		skb = buffer_info->skb;
 969		buffer_info->skb = NULL;
 970
 971		prefetch(skb->data - NET_IP_ALIGN);
 972
 973		i++;
 974		if (i == rx_ring->count)
 975			i = 0;
 976		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 977		prefetch(next_rxd);
 978
 979		next_buffer = &rx_ring->buffer_info[i];
 980
 981		cleaned = true;
 982		cleaned_count++;
 983		dma_unmap_single(&pdev->dev, buffer_info->dma,
 984				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 985		buffer_info->dma = 0;
 986
 987		length = le16_to_cpu(rx_desc->wb.upper.length);
 988
 989		/* !EOP means multiple descriptors were used to store a single
 990		 * packet, if that's the case we need to toss it.  In fact, we
 991		 * need to toss every packet with the EOP bit clear and the
 992		 * next frame that _does_ have the EOP bit set, as it is by
 993		 * definition only a frame fragment
 994		 */
 995		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 996			adapter->flags2 |= FLAG2_IS_DISCARDING;
 997
 998		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 999			/* All receives must fit into a single buffer */
1000			e_dbg("Receive packet consumed multiple buffers\n");
1001			/* recycle */
1002			buffer_info->skb = skb;
1003			if (staterr & E1000_RXD_STAT_EOP)
1004				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1005			goto next_desc;
1006		}
1007
1008		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1009			     !(netdev->features & NETIF_F_RXALL))) {
1010			/* recycle */
1011			buffer_info->skb = skb;
1012			goto next_desc;
1013		}
1014
1015		/* adjust length to remove Ethernet CRC */
1016		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1017			/* If configured to store CRC, don't subtract FCS,
1018			 * but keep the FCS bytes out of the total_rx_bytes
1019			 * counter
1020			 */
1021			if (netdev->features & NETIF_F_RXFCS)
1022				total_rx_bytes -= 4;
1023			else
1024				length -= 4;
1025		}
1026
1027		total_rx_bytes += length;
1028		total_rx_packets++;
1029
1030		/* code added for copybreak, this should improve
1031		 * performance for small packets with large amounts
1032		 * of reassembly being done in the stack
1033		 */
1034		if (length < copybreak) {
1035			struct sk_buff *new_skb =
1036				napi_alloc_skb(&adapter->napi, length);
1037			if (new_skb) {
1038				skb_copy_to_linear_data_offset(new_skb,
1039							       -NET_IP_ALIGN,
1040							       (skb->data -
1041								NET_IP_ALIGN),
1042							       (length +
1043								NET_IP_ALIGN));
1044				/* save the skb in buffer_info as good */
1045				buffer_info->skb = skb;
1046				skb = new_skb;
1047			}
1048			/* else just continue with the old one */
1049		}
1050		/* end copybreak code */
1051		skb_put(skb, length);
1052
1053		/* Receive Checksum Offload */
1054		e1000_rx_checksum(adapter, staterr, skb);
1055
1056		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1057
1058		e1000_receive_skb(adapter, netdev, skb, staterr,
1059				  rx_desc->wb.upper.vlan);
1060
1061next_desc:
1062		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1063
1064		/* return some buffers to hardware, one at a time is too slow */
1065		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1066			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1067					      GFP_ATOMIC);
1068			cleaned_count = 0;
1069		}
1070
1071		/* use prefetched values */
1072		rx_desc = next_rxd;
1073		buffer_info = next_buffer;
1074
1075		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1076	}
1077	rx_ring->next_to_clean = i;
1078
1079	cleaned_count = e1000_desc_unused(rx_ring);
1080	if (cleaned_count)
1081		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1082
1083	adapter->total_rx_bytes += total_rx_bytes;
1084	adapter->total_rx_packets += total_rx_packets;
1085	return cleaned;
1086}
1087
1088static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1089			    struct e1000_buffer *buffer_info,
1090			    bool drop)
1091{
1092	struct e1000_adapter *adapter = tx_ring->adapter;
1093
1094	if (buffer_info->dma) {
1095		if (buffer_info->mapped_as_page)
1096			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1097				       buffer_info->length, DMA_TO_DEVICE);
1098		else
1099			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1100					 buffer_info->length, DMA_TO_DEVICE);
1101		buffer_info->dma = 0;
1102	}
1103	if (buffer_info->skb) {
1104		if (drop)
1105			dev_kfree_skb_any(buffer_info->skb);
1106		else
1107			dev_consume_skb_any(buffer_info->skb);
1108		buffer_info->skb = NULL;
1109	}
1110	buffer_info->time_stamp = 0;
1111}
1112
1113static void e1000_print_hw_hang(struct work_struct *work)
1114{
1115	struct e1000_adapter *adapter = container_of(work,
1116						     struct e1000_adapter,
1117						     print_hang_task);
1118	struct net_device *netdev = adapter->netdev;
1119	struct e1000_ring *tx_ring = adapter->tx_ring;
1120	unsigned int i = tx_ring->next_to_clean;
1121	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1122	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1123	struct e1000_hw *hw = &adapter->hw;
1124	u16 phy_status, phy_1000t_status, phy_ext_status;
1125	u16 pci_status;
1126
1127	if (test_bit(__E1000_DOWN, &adapter->state))
1128		return;
1129
1130	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1131		/* May be block on write-back, flush and detect again
1132		 * flush pending descriptor writebacks to memory
1133		 */
1134		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1135		/* execute the writes immediately */
1136		e1e_flush();
1137		/* Due to rare timing issues, write to TIDV again to ensure
1138		 * the write is successful
1139		 */
1140		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1141		/* execute the writes immediately */
1142		e1e_flush();
1143		adapter->tx_hang_recheck = true;
1144		return;
1145	}
1146	adapter->tx_hang_recheck = false;
1147
1148	if (er32(TDH(0)) == er32(TDT(0))) {
1149		e_dbg("false hang detected, ignoring\n");
1150		return;
1151	}
1152
1153	/* Real hang detected */
1154	netif_stop_queue(netdev);
1155
1156	e1e_rphy(hw, MII_BMSR, &phy_status);
1157	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1158	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1159
1160	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1161
1162	/* detected Hardware unit hang */
1163	e_err("Detected Hardware Unit Hang:\n"
1164	      "  TDH                  <%x>\n"
1165	      "  TDT                  <%x>\n"
1166	      "  next_to_use          <%x>\n"
1167	      "  next_to_clean        <%x>\n"
1168	      "buffer_info[next_to_clean]:\n"
1169	      "  time_stamp           <%lx>\n"
1170	      "  next_to_watch        <%x>\n"
1171	      "  jiffies              <%lx>\n"
1172	      "  next_to_watch.status <%x>\n"
1173	      "MAC Status             <%x>\n"
1174	      "PHY Status             <%x>\n"
1175	      "PHY 1000BASE-T Status  <%x>\n"
1176	      "PHY Extended Status    <%x>\n"
1177	      "PCI Status             <%x>\n",
1178	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1179	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1180	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1181	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1182
1183	e1000e_dump(adapter);
1184
1185	/* Suggest workaround for known h/w issue */
1186	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1187		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1188}
1189
1190/**
1191 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1192 * @work: pointer to work struct
1193 *
1194 * This work function polls the TSYNCTXCTL valid bit to determine when a
1195 * timestamp has been taken for the current stored skb.  The timestamp must
1196 * be for this skb because only one such packet is allowed in the queue.
1197 */
1198static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1199{
1200	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1201						     tx_hwtstamp_work);
1202	struct e1000_hw *hw = &adapter->hw;
1203
1204	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1205		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1206		struct skb_shared_hwtstamps shhwtstamps;
1207		u64 txstmp;
1208
1209		txstmp = er32(TXSTMPL);
1210		txstmp |= (u64)er32(TXSTMPH) << 32;
1211
1212		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1213
1214		/* Clear the global tx_hwtstamp_skb pointer and force writes
1215		 * prior to notifying the stack of a Tx timestamp.
1216		 */
1217		adapter->tx_hwtstamp_skb = NULL;
1218		wmb(); /* force write prior to skb_tstamp_tx */
1219
1220		skb_tstamp_tx(skb, &shhwtstamps);
1221		dev_consume_skb_any(skb);
1222	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1223			      + adapter->tx_timeout_factor * HZ)) {
1224		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1225		adapter->tx_hwtstamp_skb = NULL;
1226		adapter->tx_hwtstamp_timeouts++;
1227		e_warn("clearing Tx timestamp hang\n");
1228	} else {
1229		/* reschedule to check later */
1230		schedule_work(&adapter->tx_hwtstamp_work);
1231	}
1232}
1233
1234/**
1235 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1236 * @tx_ring: Tx descriptor ring
1237 *
1238 * the return value indicates whether actual cleaning was done, there
1239 * is no guarantee that everything was cleaned
1240 **/
1241static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1242{
1243	struct e1000_adapter *adapter = tx_ring->adapter;
1244	struct net_device *netdev = adapter->netdev;
1245	struct e1000_hw *hw = &adapter->hw;
1246	struct e1000_tx_desc *tx_desc, *eop_desc;
1247	struct e1000_buffer *buffer_info;
1248	unsigned int i, eop;
1249	unsigned int count = 0;
1250	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1251	unsigned int bytes_compl = 0, pkts_compl = 0;
1252
1253	i = tx_ring->next_to_clean;
1254	eop = tx_ring->buffer_info[i].next_to_watch;
1255	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1256
1257	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1258	       (count < tx_ring->count)) {
1259		bool cleaned = false;
1260
1261		dma_rmb();		/* read buffer_info after eop_desc */
1262		for (; !cleaned; count++) {
1263			tx_desc = E1000_TX_DESC(*tx_ring, i);
1264			buffer_info = &tx_ring->buffer_info[i];
1265			cleaned = (i == eop);
1266
1267			if (cleaned) {
1268				total_tx_packets += buffer_info->segs;
1269				total_tx_bytes += buffer_info->bytecount;
1270				if (buffer_info->skb) {
1271					bytes_compl += buffer_info->skb->len;
1272					pkts_compl++;
1273				}
1274			}
1275
1276			e1000_put_txbuf(tx_ring, buffer_info, false);
1277			tx_desc->upper.data = 0;
1278
1279			i++;
1280			if (i == tx_ring->count)
1281				i = 0;
1282		}
1283
1284		if (i == tx_ring->next_to_use)
1285			break;
1286		eop = tx_ring->buffer_info[i].next_to_watch;
1287		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1288	}
1289
1290	tx_ring->next_to_clean = i;
1291
1292	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1293
1294#define TX_WAKE_THRESHOLD 32
1295	if (count && netif_carrier_ok(netdev) &&
1296	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1297		/* Make sure that anybody stopping the queue after this
1298		 * sees the new next_to_clean.
1299		 */
1300		smp_mb();
1301
1302		if (netif_queue_stopped(netdev) &&
1303		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1304			netif_wake_queue(netdev);
1305			++adapter->restart_queue;
1306		}
1307	}
1308
1309	if (adapter->detect_tx_hung) {
1310		/* Detect a transmit hang in hardware, this serializes the
1311		 * check with the clearing of time_stamp and movement of i
1312		 */
1313		adapter->detect_tx_hung = false;
1314		if (tx_ring->buffer_info[i].time_stamp &&
1315		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1316			       + (adapter->tx_timeout_factor * HZ)) &&
1317		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1318			schedule_work(&adapter->print_hang_task);
1319		else
1320			adapter->tx_hang_recheck = false;
1321	}
1322	adapter->total_tx_bytes += total_tx_bytes;
1323	adapter->total_tx_packets += total_tx_packets;
1324	return count < tx_ring->count;
1325}
1326
1327/**
1328 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1329 * @rx_ring: Rx descriptor ring
 
 
1330 *
1331 * the return value indicates whether actual cleaning was done, there
1332 * is no guarantee that everything was cleaned
1333 **/
1334static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1335				  int work_to_do)
1336{
1337	struct e1000_adapter *adapter = rx_ring->adapter;
1338	struct e1000_hw *hw = &adapter->hw;
1339	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1340	struct net_device *netdev = adapter->netdev;
1341	struct pci_dev *pdev = adapter->pdev;
1342	struct e1000_buffer *buffer_info, *next_buffer;
1343	struct e1000_ps_page *ps_page;
1344	struct sk_buff *skb;
1345	unsigned int i, j;
1346	u32 length, staterr;
1347	int cleaned_count = 0;
1348	bool cleaned = false;
1349	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1350
1351	i = rx_ring->next_to_clean;
1352	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1353	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1354	buffer_info = &rx_ring->buffer_info[i];
1355
1356	while (staterr & E1000_RXD_STAT_DD) {
1357		if (*work_done >= work_to_do)
1358			break;
1359		(*work_done)++;
1360		skb = buffer_info->skb;
1361		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1362
1363		/* in the packet split case this is header only */
1364		prefetch(skb->data - NET_IP_ALIGN);
1365
1366		i++;
1367		if (i == rx_ring->count)
1368			i = 0;
1369		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1370		prefetch(next_rxd);
1371
1372		next_buffer = &rx_ring->buffer_info[i];
1373
1374		cleaned = true;
1375		cleaned_count++;
1376		dma_unmap_single(&pdev->dev, buffer_info->dma,
1377				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1378		buffer_info->dma = 0;
1379
1380		/* see !EOP comment in other Rx routine */
1381		if (!(staterr & E1000_RXD_STAT_EOP))
1382			adapter->flags2 |= FLAG2_IS_DISCARDING;
1383
1384		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1385			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1386			dev_kfree_skb_irq(skb);
1387			if (staterr & E1000_RXD_STAT_EOP)
1388				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1389			goto next_desc;
1390		}
1391
1392		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1393			     !(netdev->features & NETIF_F_RXALL))) {
1394			dev_kfree_skb_irq(skb);
1395			goto next_desc;
1396		}
1397
1398		length = le16_to_cpu(rx_desc->wb.middle.length0);
1399
1400		if (!length) {
1401			e_dbg("Last part of the packet spanning multiple descriptors\n");
1402			dev_kfree_skb_irq(skb);
1403			goto next_desc;
1404		}
1405
1406		/* Good Receive */
1407		skb_put(skb, length);
1408
1409		{
1410			/* this looks ugly, but it seems compiler issues make
1411			 * it more efficient than reusing j
1412			 */
1413			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1414
1415			/* page alloc/put takes too long and effects small
1416			 * packet throughput, so unsplit small packets and
1417			 * save the alloc/put only valid in softirq (napi)
1418			 * context to call kmap_*
1419			 */
1420			if (l1 && (l1 <= copybreak) &&
1421			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1422				u8 *vaddr;
1423
1424				ps_page = &buffer_info->ps_pages[0];
1425
1426				/* there is no documentation about how to call
1427				 * kmap_atomic, so we can't hold the mapping
1428				 * very long
1429				 */
1430				dma_sync_single_for_cpu(&pdev->dev,
1431							ps_page->dma,
1432							PAGE_SIZE,
1433							DMA_FROM_DEVICE);
1434				vaddr = kmap_atomic(ps_page->page);
1435				memcpy(skb_tail_pointer(skb), vaddr, l1);
1436				kunmap_atomic(vaddr);
1437				dma_sync_single_for_device(&pdev->dev,
1438							   ps_page->dma,
1439							   PAGE_SIZE,
1440							   DMA_FROM_DEVICE);
1441
1442				/* remove the CRC */
1443				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1444					if (!(netdev->features & NETIF_F_RXFCS))
1445						l1 -= 4;
1446				}
1447
1448				skb_put(skb, l1);
1449				goto copydone;
1450			}	/* if */
1451		}
1452
1453		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1454			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1455			if (!length)
1456				break;
1457
1458			ps_page = &buffer_info->ps_pages[j];
1459			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1460				       DMA_FROM_DEVICE);
1461			ps_page->dma = 0;
1462			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1463			ps_page->page = NULL;
1464			skb->len += length;
1465			skb->data_len += length;
1466			skb->truesize += PAGE_SIZE;
1467		}
1468
1469		/* strip the ethernet crc, problem is we're using pages now so
1470		 * this whole operation can get a little cpu intensive
1471		 */
1472		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1473			if (!(netdev->features & NETIF_F_RXFCS))
1474				pskb_trim(skb, skb->len - 4);
1475		}
1476
1477copydone:
1478		total_rx_bytes += skb->len;
1479		total_rx_packets++;
1480
1481		e1000_rx_checksum(adapter, staterr, skb);
1482
1483		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1484
1485		if (rx_desc->wb.upper.header_status &
1486		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1487			adapter->rx_hdr_split++;
1488
1489		e1000_receive_skb(adapter, netdev, skb, staterr,
1490				  rx_desc->wb.middle.vlan);
1491
1492next_desc:
1493		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1494		buffer_info->skb = NULL;
1495
1496		/* return some buffers to hardware, one at a time is too slow */
1497		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1498			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1499					      GFP_ATOMIC);
1500			cleaned_count = 0;
1501		}
1502
1503		/* use prefetched values */
1504		rx_desc = next_rxd;
1505		buffer_info = next_buffer;
1506
1507		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1508	}
1509	rx_ring->next_to_clean = i;
1510
1511	cleaned_count = e1000_desc_unused(rx_ring);
1512	if (cleaned_count)
1513		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1514
1515	adapter->total_rx_bytes += total_rx_bytes;
1516	adapter->total_rx_packets += total_rx_packets;
1517	return cleaned;
1518}
1519
1520/**
1521 * e1000_consume_page - helper function
1522 **/
1523static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1524			       u16 length)
1525{
1526	bi->page = NULL;
1527	skb->len += length;
1528	skb->data_len += length;
1529	skb->truesize += PAGE_SIZE;
1530}
1531
1532/**
1533 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1534 * @adapter: board private structure
 
 
1535 *
1536 * the return value indicates whether actual cleaning was done, there
1537 * is no guarantee that everything was cleaned
1538 **/
1539static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1540				     int work_to_do)
1541{
1542	struct e1000_adapter *adapter = rx_ring->adapter;
1543	struct net_device *netdev = adapter->netdev;
1544	struct pci_dev *pdev = adapter->pdev;
1545	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1546	struct e1000_buffer *buffer_info, *next_buffer;
1547	u32 length, staterr;
1548	unsigned int i;
1549	int cleaned_count = 0;
1550	bool cleaned = false;
1551	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1552	struct skb_shared_info *shinfo;
1553
1554	i = rx_ring->next_to_clean;
1555	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1556	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1557	buffer_info = &rx_ring->buffer_info[i];
1558
1559	while (staterr & E1000_RXD_STAT_DD) {
1560		struct sk_buff *skb;
1561
1562		if (*work_done >= work_to_do)
1563			break;
1564		(*work_done)++;
1565		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1566
1567		skb = buffer_info->skb;
1568		buffer_info->skb = NULL;
1569
1570		++i;
1571		if (i == rx_ring->count)
1572			i = 0;
1573		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1574		prefetch(next_rxd);
1575
1576		next_buffer = &rx_ring->buffer_info[i];
1577
1578		cleaned = true;
1579		cleaned_count++;
1580		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1581			       DMA_FROM_DEVICE);
1582		buffer_info->dma = 0;
1583
1584		length = le16_to_cpu(rx_desc->wb.upper.length);
1585
1586		/* errors is only valid for DD + EOP descriptors */
1587		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1588			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1589			      !(netdev->features & NETIF_F_RXALL)))) {
1590			/* recycle both page and skb */
1591			buffer_info->skb = skb;
1592			/* an error means any chain goes out the window too */
1593			if (rx_ring->rx_skb_top)
1594				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1595			rx_ring->rx_skb_top = NULL;
1596			goto next_desc;
1597		}
1598#define rxtop (rx_ring->rx_skb_top)
1599		if (!(staterr & E1000_RXD_STAT_EOP)) {
1600			/* this descriptor is only the beginning (or middle) */
1601			if (!rxtop) {
1602				/* this is the beginning of a chain */
1603				rxtop = skb;
1604				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1605						   0, length);
1606			} else {
1607				/* this is the middle of a chain */
1608				shinfo = skb_shinfo(rxtop);
1609				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1610						   buffer_info->page, 0,
1611						   length);
1612				/* re-use the skb, only consumed the page */
1613				buffer_info->skb = skb;
1614			}
1615			e1000_consume_page(buffer_info, rxtop, length);
1616			goto next_desc;
1617		} else {
1618			if (rxtop) {
1619				/* end of the chain */
1620				shinfo = skb_shinfo(rxtop);
1621				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1622						   buffer_info->page, 0,
1623						   length);
1624				/* re-use the current skb, we only consumed the
1625				 * page
1626				 */
1627				buffer_info->skb = skb;
1628				skb = rxtop;
1629				rxtop = NULL;
1630				e1000_consume_page(buffer_info, skb, length);
1631			} else {
1632				/* no chain, got EOP, this buf is the packet
1633				 * copybreak to save the put_page/alloc_page
1634				 */
1635				if (length <= copybreak &&
1636				    skb_tailroom(skb) >= length) {
1637					u8 *vaddr;
1638					vaddr = kmap_atomic(buffer_info->page);
1639					memcpy(skb_tail_pointer(skb), vaddr,
1640					       length);
1641					kunmap_atomic(vaddr);
1642					/* re-use the page, so don't erase
1643					 * buffer_info->page
1644					 */
1645					skb_put(skb, length);
1646				} else {
1647					skb_fill_page_desc(skb, 0,
1648							   buffer_info->page, 0,
1649							   length);
1650					e1000_consume_page(buffer_info, skb,
1651							   length);
1652				}
1653			}
1654		}
1655
1656		/* Receive Checksum Offload */
1657		e1000_rx_checksum(adapter, staterr, skb);
1658
1659		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1660
1661		/* probably a little skewed due to removing CRC */
1662		total_rx_bytes += skb->len;
1663		total_rx_packets++;
1664
1665		/* eth type trans needs skb->data to point to something */
1666		if (!pskb_may_pull(skb, ETH_HLEN)) {
1667			e_err("pskb_may_pull failed.\n");
1668			dev_kfree_skb_irq(skb);
1669			goto next_desc;
1670		}
1671
1672		e1000_receive_skb(adapter, netdev, skb, staterr,
1673				  rx_desc->wb.upper.vlan);
1674
1675next_desc:
1676		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1677
1678		/* return some buffers to hardware, one at a time is too slow */
1679		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1680			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1681					      GFP_ATOMIC);
1682			cleaned_count = 0;
1683		}
1684
1685		/* use prefetched values */
1686		rx_desc = next_rxd;
1687		buffer_info = next_buffer;
1688
1689		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1690	}
1691	rx_ring->next_to_clean = i;
1692
1693	cleaned_count = e1000_desc_unused(rx_ring);
1694	if (cleaned_count)
1695		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1696
1697	adapter->total_rx_bytes += total_rx_bytes;
1698	adapter->total_rx_packets += total_rx_packets;
1699	return cleaned;
1700}
1701
1702/**
1703 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1704 * @rx_ring: Rx descriptor ring
1705 **/
1706static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1707{
1708	struct e1000_adapter *adapter = rx_ring->adapter;
1709	struct e1000_buffer *buffer_info;
1710	struct e1000_ps_page *ps_page;
1711	struct pci_dev *pdev = adapter->pdev;
1712	unsigned int i, j;
1713
1714	/* Free all the Rx ring sk_buffs */
1715	for (i = 0; i < rx_ring->count; i++) {
1716		buffer_info = &rx_ring->buffer_info[i];
1717		if (buffer_info->dma) {
1718			if (adapter->clean_rx == e1000_clean_rx_irq)
1719				dma_unmap_single(&pdev->dev, buffer_info->dma,
1720						 adapter->rx_buffer_len,
1721						 DMA_FROM_DEVICE);
1722			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1723				dma_unmap_page(&pdev->dev, buffer_info->dma,
1724					       PAGE_SIZE, DMA_FROM_DEVICE);
1725			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1726				dma_unmap_single(&pdev->dev, buffer_info->dma,
1727						 adapter->rx_ps_bsize0,
1728						 DMA_FROM_DEVICE);
1729			buffer_info->dma = 0;
1730		}
1731
1732		if (buffer_info->page) {
1733			put_page(buffer_info->page);
1734			buffer_info->page = NULL;
1735		}
1736
1737		if (buffer_info->skb) {
1738			dev_kfree_skb(buffer_info->skb);
1739			buffer_info->skb = NULL;
1740		}
1741
1742		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1743			ps_page = &buffer_info->ps_pages[j];
1744			if (!ps_page->page)
1745				break;
1746			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1747				       DMA_FROM_DEVICE);
1748			ps_page->dma = 0;
1749			put_page(ps_page->page);
1750			ps_page->page = NULL;
1751		}
1752	}
1753
1754	/* there also may be some cached data from a chained receive */
1755	if (rx_ring->rx_skb_top) {
1756		dev_kfree_skb(rx_ring->rx_skb_top);
1757		rx_ring->rx_skb_top = NULL;
1758	}
1759
1760	/* Zero out the descriptor ring */
1761	memset(rx_ring->desc, 0, rx_ring->size);
1762
1763	rx_ring->next_to_clean = 0;
1764	rx_ring->next_to_use = 0;
1765	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1766}
1767
1768static void e1000e_downshift_workaround(struct work_struct *work)
1769{
1770	struct e1000_adapter *adapter = container_of(work,
1771						     struct e1000_adapter,
1772						     downshift_task);
1773
1774	if (test_bit(__E1000_DOWN, &adapter->state))
1775		return;
1776
1777	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1778}
1779
1780/**
1781 * e1000_intr_msi - Interrupt Handler
1782 * @irq: interrupt number
1783 * @data: pointer to a network interface device structure
1784 **/
1785static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1786{
1787	struct net_device *netdev = data;
1788	struct e1000_adapter *adapter = netdev_priv(netdev);
1789	struct e1000_hw *hw = &adapter->hw;
1790	u32 icr = er32(ICR);
1791
1792	/* read ICR disables interrupts using IAM */
1793	if (icr & E1000_ICR_LSC) {
1794		hw->mac.get_link_status = true;
1795		/* ICH8 workaround-- Call gig speed drop workaround on cable
1796		 * disconnect (LSC) before accessing any PHY registers
1797		 */
1798		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1799		    (!(er32(STATUS) & E1000_STATUS_LU)))
1800			schedule_work(&adapter->downshift_task);
1801
1802		/* 80003ES2LAN workaround-- For packet buffer work-around on
1803		 * link down event; disable receives here in the ISR and reset
1804		 * adapter in watchdog
1805		 */
1806		if (netif_carrier_ok(netdev) &&
1807		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1808			/* disable receives */
1809			u32 rctl = er32(RCTL);
1810
1811			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1812			adapter->flags |= FLAG_RESTART_NOW;
1813		}
1814		/* guard against interrupt when we're going down */
1815		if (!test_bit(__E1000_DOWN, &adapter->state))
1816			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1817	}
1818
1819	/* Reset on uncorrectable ECC error */
1820	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1821		u32 pbeccsts = er32(PBECCSTS);
1822
1823		adapter->corr_errors +=
1824		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1825		adapter->uncorr_errors +=
1826		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1827		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1828
1829		/* Do the reset outside of interrupt context */
1830		schedule_work(&adapter->reset_task);
1831
1832		/* return immediately since reset is imminent */
1833		return IRQ_HANDLED;
1834	}
1835
1836	if (napi_schedule_prep(&adapter->napi)) {
1837		adapter->total_tx_bytes = 0;
1838		adapter->total_tx_packets = 0;
1839		adapter->total_rx_bytes = 0;
1840		adapter->total_rx_packets = 0;
1841		__napi_schedule(&adapter->napi);
1842	}
1843
1844	return IRQ_HANDLED;
1845}
1846
1847/**
1848 * e1000_intr - Interrupt Handler
1849 * @irq: interrupt number
1850 * @data: pointer to a network interface device structure
1851 **/
1852static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1853{
1854	struct net_device *netdev = data;
1855	struct e1000_adapter *adapter = netdev_priv(netdev);
1856	struct e1000_hw *hw = &adapter->hw;
1857	u32 rctl, icr = er32(ICR);
1858
1859	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1860		return IRQ_NONE;	/* Not our interrupt */
1861
1862	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1863	 * not set, then the adapter didn't send an interrupt
1864	 */
1865	if (!(icr & E1000_ICR_INT_ASSERTED))
1866		return IRQ_NONE;
1867
1868	/* Interrupt Auto-Mask...upon reading ICR,
1869	 * interrupts are masked.  No need for the
1870	 * IMC write
1871	 */
1872
1873	if (icr & E1000_ICR_LSC) {
1874		hw->mac.get_link_status = true;
1875		/* ICH8 workaround-- Call gig speed drop workaround on cable
1876		 * disconnect (LSC) before accessing any PHY registers
1877		 */
1878		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1879		    (!(er32(STATUS) & E1000_STATUS_LU)))
1880			schedule_work(&adapter->downshift_task);
1881
1882		/* 80003ES2LAN workaround--
1883		 * For packet buffer work-around on link down event;
1884		 * disable receives here in the ISR and
1885		 * reset adapter in watchdog
1886		 */
1887		if (netif_carrier_ok(netdev) &&
1888		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1889			/* disable receives */
1890			rctl = er32(RCTL);
1891			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1892			adapter->flags |= FLAG_RESTART_NOW;
1893		}
1894		/* guard against interrupt when we're going down */
1895		if (!test_bit(__E1000_DOWN, &adapter->state))
1896			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1897	}
1898
1899	/* Reset on uncorrectable ECC error */
1900	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1901		u32 pbeccsts = er32(PBECCSTS);
1902
1903		adapter->corr_errors +=
1904		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1905		adapter->uncorr_errors +=
1906		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1907		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1908
1909		/* Do the reset outside of interrupt context */
1910		schedule_work(&adapter->reset_task);
1911
1912		/* return immediately since reset is imminent */
1913		return IRQ_HANDLED;
1914	}
1915
1916	if (napi_schedule_prep(&adapter->napi)) {
1917		adapter->total_tx_bytes = 0;
1918		adapter->total_tx_packets = 0;
1919		adapter->total_rx_bytes = 0;
1920		adapter->total_rx_packets = 0;
1921		__napi_schedule(&adapter->napi);
1922	}
1923
1924	return IRQ_HANDLED;
1925}
1926
1927static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1928{
1929	struct net_device *netdev = data;
1930	struct e1000_adapter *adapter = netdev_priv(netdev);
1931	struct e1000_hw *hw = &adapter->hw;
1932	u32 icr = er32(ICR);
1933
1934	if (icr & adapter->eiac_mask)
1935		ew32(ICS, (icr & adapter->eiac_mask));
1936
1937	if (icr & E1000_ICR_LSC) {
1938		hw->mac.get_link_status = true;
1939		/* guard against interrupt when we're going down */
1940		if (!test_bit(__E1000_DOWN, &adapter->state))
1941			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1942	}
1943
1944	if (!test_bit(__E1000_DOWN, &adapter->state))
1945		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1946
1947	return IRQ_HANDLED;
1948}
1949
1950static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1951{
1952	struct net_device *netdev = data;
1953	struct e1000_adapter *adapter = netdev_priv(netdev);
1954	struct e1000_hw *hw = &adapter->hw;
1955	struct e1000_ring *tx_ring = adapter->tx_ring;
1956
1957	adapter->total_tx_bytes = 0;
1958	adapter->total_tx_packets = 0;
1959
1960	if (!e1000_clean_tx_irq(tx_ring))
1961		/* Ring was not completely cleaned, so fire another interrupt */
1962		ew32(ICS, tx_ring->ims_val);
1963
1964	if (!test_bit(__E1000_DOWN, &adapter->state))
1965		ew32(IMS, adapter->tx_ring->ims_val);
1966
1967	return IRQ_HANDLED;
1968}
1969
1970static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1971{
1972	struct net_device *netdev = data;
1973	struct e1000_adapter *adapter = netdev_priv(netdev);
1974	struct e1000_ring *rx_ring = adapter->rx_ring;
1975
1976	/* Write the ITR value calculated at the end of the
1977	 * previous interrupt.
1978	 */
1979	if (rx_ring->set_itr) {
1980		u32 itr = rx_ring->itr_val ?
1981			  1000000000 / (rx_ring->itr_val * 256) : 0;
1982
1983		writel(itr, rx_ring->itr_register);
1984		rx_ring->set_itr = 0;
1985	}
1986
1987	if (napi_schedule_prep(&adapter->napi)) {
1988		adapter->total_rx_bytes = 0;
1989		adapter->total_rx_packets = 0;
1990		__napi_schedule(&adapter->napi);
1991	}
1992	return IRQ_HANDLED;
1993}
1994
1995/**
1996 * e1000_configure_msix - Configure MSI-X hardware
 
1997 *
1998 * e1000_configure_msix sets up the hardware to properly
1999 * generate MSI-X interrupts.
2000 **/
2001static void e1000_configure_msix(struct e1000_adapter *adapter)
2002{
2003	struct e1000_hw *hw = &adapter->hw;
2004	struct e1000_ring *rx_ring = adapter->rx_ring;
2005	struct e1000_ring *tx_ring = adapter->tx_ring;
2006	int vector = 0;
2007	u32 ctrl_ext, ivar = 0;
2008
2009	adapter->eiac_mask = 0;
2010
2011	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2012	if (hw->mac.type == e1000_82574) {
2013		u32 rfctl = er32(RFCTL);
2014
2015		rfctl |= E1000_RFCTL_ACK_DIS;
2016		ew32(RFCTL, rfctl);
2017	}
2018
2019	/* Configure Rx vector */
2020	rx_ring->ims_val = E1000_IMS_RXQ0;
2021	adapter->eiac_mask |= rx_ring->ims_val;
2022	if (rx_ring->itr_val)
2023		writel(1000000000 / (rx_ring->itr_val * 256),
2024		       rx_ring->itr_register);
2025	else
2026		writel(1, rx_ring->itr_register);
2027	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2028
2029	/* Configure Tx vector */
2030	tx_ring->ims_val = E1000_IMS_TXQ0;
2031	vector++;
2032	if (tx_ring->itr_val)
2033		writel(1000000000 / (tx_ring->itr_val * 256),
2034		       tx_ring->itr_register);
2035	else
2036		writel(1, tx_ring->itr_register);
2037	adapter->eiac_mask |= tx_ring->ims_val;
2038	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2039
2040	/* set vector for Other Causes, e.g. link changes */
2041	vector++;
2042	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2043	if (rx_ring->itr_val)
2044		writel(1000000000 / (rx_ring->itr_val * 256),
2045		       hw->hw_addr + E1000_EITR_82574(vector));
2046	else
2047		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2048
2049	/* Cause Tx interrupts on every write back */
2050	ivar |= BIT(31);
2051
2052	ew32(IVAR, ivar);
2053
2054	/* enable MSI-X PBA support */
2055	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2056	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2057	ew32(CTRL_EXT, ctrl_ext);
2058	e1e_flush();
2059}
2060
2061void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2062{
2063	if (adapter->msix_entries) {
2064		pci_disable_msix(adapter->pdev);
2065		kfree(adapter->msix_entries);
2066		adapter->msix_entries = NULL;
2067	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2068		pci_disable_msi(adapter->pdev);
2069		adapter->flags &= ~FLAG_MSI_ENABLED;
2070	}
2071}
2072
2073/**
2074 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 
2075 *
2076 * Attempt to configure interrupts using the best available
2077 * capabilities of the hardware and kernel.
2078 **/
2079void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2080{
2081	int err;
2082	int i;
2083
2084	switch (adapter->int_mode) {
2085	case E1000E_INT_MODE_MSIX:
2086		if (adapter->flags & FLAG_HAS_MSIX) {
2087			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2088			adapter->msix_entries = kcalloc(adapter->num_vectors,
2089							sizeof(struct
2090							       msix_entry),
2091							GFP_KERNEL);
2092			if (adapter->msix_entries) {
2093				struct e1000_adapter *a = adapter;
2094
2095				for (i = 0; i < adapter->num_vectors; i++)
2096					adapter->msix_entries[i].entry = i;
2097
2098				err = pci_enable_msix_range(a->pdev,
2099							    a->msix_entries,
2100							    a->num_vectors,
2101							    a->num_vectors);
2102				if (err > 0)
2103					return;
2104			}
2105			/* MSI-X failed, so fall through and try MSI */
2106			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2107			e1000e_reset_interrupt_capability(adapter);
2108		}
2109		adapter->int_mode = E1000E_INT_MODE_MSI;
2110		fallthrough;
2111	case E1000E_INT_MODE_MSI:
2112		if (!pci_enable_msi(adapter->pdev)) {
2113			adapter->flags |= FLAG_MSI_ENABLED;
2114		} else {
2115			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2116			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2117		}
2118		fallthrough;
2119	case E1000E_INT_MODE_LEGACY:
2120		/* Don't do anything; this is the system default */
2121		break;
2122	}
2123
2124	/* store the number of vectors being used */
2125	adapter->num_vectors = 1;
2126}
2127
2128/**
2129 * e1000_request_msix - Initialize MSI-X interrupts
 
2130 *
2131 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2132 * kernel.
2133 **/
2134static int e1000_request_msix(struct e1000_adapter *adapter)
2135{
2136	struct net_device *netdev = adapter->netdev;
2137	int err = 0, vector = 0;
2138
2139	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2140		snprintf(adapter->rx_ring->name,
2141			 sizeof(adapter->rx_ring->name) - 1,
2142			 "%.14s-rx-0", netdev->name);
2143	else
2144		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2145	err = request_irq(adapter->msix_entries[vector].vector,
2146			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2147			  netdev);
2148	if (err)
2149		return err;
2150	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2151	    E1000_EITR_82574(vector);
2152	adapter->rx_ring->itr_val = adapter->itr;
2153	vector++;
2154
2155	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2156		snprintf(adapter->tx_ring->name,
2157			 sizeof(adapter->tx_ring->name) - 1,
2158			 "%.14s-tx-0", netdev->name);
2159	else
2160		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2161	err = request_irq(adapter->msix_entries[vector].vector,
2162			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2163			  netdev);
2164	if (err)
2165		return err;
2166	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2167	    E1000_EITR_82574(vector);
2168	adapter->tx_ring->itr_val = adapter->itr;
2169	vector++;
2170
2171	err = request_irq(adapter->msix_entries[vector].vector,
2172			  e1000_msix_other, 0, netdev->name, netdev);
2173	if (err)
2174		return err;
2175
2176	e1000_configure_msix(adapter);
2177
2178	return 0;
2179}
2180
2181/**
2182 * e1000_request_irq - initialize interrupts
 
2183 *
2184 * Attempts to configure interrupts using the best available
2185 * capabilities of the hardware and kernel.
2186 **/
2187static int e1000_request_irq(struct e1000_adapter *adapter)
2188{
2189	struct net_device *netdev = adapter->netdev;
2190	int err;
2191
2192	if (adapter->msix_entries) {
2193		err = e1000_request_msix(adapter);
2194		if (!err)
2195			return err;
2196		/* fall back to MSI */
2197		e1000e_reset_interrupt_capability(adapter);
2198		adapter->int_mode = E1000E_INT_MODE_MSI;
2199		e1000e_set_interrupt_capability(adapter);
2200	}
2201	if (adapter->flags & FLAG_MSI_ENABLED) {
2202		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2203				  netdev->name, netdev);
2204		if (!err)
2205			return err;
2206
2207		/* fall back to legacy interrupt */
2208		e1000e_reset_interrupt_capability(adapter);
2209		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2210	}
2211
2212	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2213			  netdev->name, netdev);
2214	if (err)
2215		e_err("Unable to allocate interrupt, Error: %d\n", err);
2216
2217	return err;
2218}
2219
2220static void e1000_free_irq(struct e1000_adapter *adapter)
2221{
2222	struct net_device *netdev = adapter->netdev;
2223
2224	if (adapter->msix_entries) {
2225		int vector = 0;
2226
2227		free_irq(adapter->msix_entries[vector].vector, netdev);
2228		vector++;
2229
2230		free_irq(adapter->msix_entries[vector].vector, netdev);
2231		vector++;
2232
2233		/* Other Causes interrupt vector */
2234		free_irq(adapter->msix_entries[vector].vector, netdev);
2235		return;
2236	}
2237
2238	free_irq(adapter->pdev->irq, netdev);
2239}
2240
2241/**
2242 * e1000_irq_disable - Mask off interrupt generation on the NIC
 
2243 **/
2244static void e1000_irq_disable(struct e1000_adapter *adapter)
2245{
2246	struct e1000_hw *hw = &adapter->hw;
2247
2248	ew32(IMC, ~0);
2249	if (adapter->msix_entries)
2250		ew32(EIAC_82574, 0);
2251	e1e_flush();
2252
2253	if (adapter->msix_entries) {
2254		int i;
2255
2256		for (i = 0; i < adapter->num_vectors; i++)
2257			synchronize_irq(adapter->msix_entries[i].vector);
2258	} else {
2259		synchronize_irq(adapter->pdev->irq);
2260	}
2261}
2262
2263/**
2264 * e1000_irq_enable - Enable default interrupt generation settings
 
2265 **/
2266static void e1000_irq_enable(struct e1000_adapter *adapter)
2267{
2268	struct e1000_hw *hw = &adapter->hw;
2269
2270	if (adapter->msix_entries) {
2271		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2272		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2273		     IMS_OTHER_MASK);
2274	} else if (hw->mac.type >= e1000_pch_lpt) {
2275		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2276	} else {
2277		ew32(IMS, IMS_ENABLE_MASK);
2278	}
2279	e1e_flush();
2280}
2281
2282/**
2283 * e1000e_get_hw_control - get control of the h/w from f/w
2284 * @adapter: address of board private structure
2285 *
2286 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2287 * For ASF and Pass Through versions of f/w this means that
2288 * the driver is loaded. For AMT version (only with 82573)
2289 * of the f/w this means that the network i/f is open.
2290 **/
2291void e1000e_get_hw_control(struct e1000_adapter *adapter)
2292{
2293	struct e1000_hw *hw = &adapter->hw;
2294	u32 ctrl_ext;
2295	u32 swsm;
2296
2297	/* Let firmware know the driver has taken over */
2298	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2299		swsm = er32(SWSM);
2300		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2301	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2302		ctrl_ext = er32(CTRL_EXT);
2303		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2304	}
2305}
2306
2307/**
2308 * e1000e_release_hw_control - release control of the h/w to f/w
2309 * @adapter: address of board private structure
2310 *
2311 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2312 * For ASF and Pass Through versions of f/w this means that the
2313 * driver is no longer loaded. For AMT version (only with 82573) i
2314 * of the f/w this means that the network i/f is closed.
2315 *
2316 **/
2317void e1000e_release_hw_control(struct e1000_adapter *adapter)
2318{
2319	struct e1000_hw *hw = &adapter->hw;
2320	u32 ctrl_ext;
2321	u32 swsm;
2322
2323	/* Let firmware taken over control of h/w */
2324	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2325		swsm = er32(SWSM);
2326		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2327	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2328		ctrl_ext = er32(CTRL_EXT);
2329		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2330	}
2331}
2332
2333/**
2334 * e1000_alloc_ring_dma - allocate memory for a ring structure
 
 
2335 **/
2336static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2337				struct e1000_ring *ring)
2338{
2339	struct pci_dev *pdev = adapter->pdev;
2340
2341	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2342					GFP_KERNEL);
2343	if (!ring->desc)
2344		return -ENOMEM;
2345
2346	return 0;
2347}
2348
2349/**
2350 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2351 * @tx_ring: Tx descriptor ring
2352 *
2353 * Return 0 on success, negative on failure
2354 **/
2355int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2356{
2357	struct e1000_adapter *adapter = tx_ring->adapter;
2358	int err = -ENOMEM, size;
2359
2360	size = sizeof(struct e1000_buffer) * tx_ring->count;
2361	tx_ring->buffer_info = vzalloc(size);
2362	if (!tx_ring->buffer_info)
2363		goto err;
2364
2365	/* round up to nearest 4K */
2366	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2367	tx_ring->size = ALIGN(tx_ring->size, 4096);
2368
2369	err = e1000_alloc_ring_dma(adapter, tx_ring);
2370	if (err)
2371		goto err;
2372
2373	tx_ring->next_to_use = 0;
2374	tx_ring->next_to_clean = 0;
2375
2376	return 0;
2377err:
2378	vfree(tx_ring->buffer_info);
2379	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2380	return err;
2381}
2382
2383/**
2384 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2385 * @rx_ring: Rx descriptor ring
2386 *
2387 * Returns 0 on success, negative on failure
2388 **/
2389int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2390{
2391	struct e1000_adapter *adapter = rx_ring->adapter;
2392	struct e1000_buffer *buffer_info;
2393	int i, size, desc_len, err = -ENOMEM;
2394
2395	size = sizeof(struct e1000_buffer) * rx_ring->count;
2396	rx_ring->buffer_info = vzalloc(size);
2397	if (!rx_ring->buffer_info)
2398		goto err;
2399
2400	for (i = 0; i < rx_ring->count; i++) {
2401		buffer_info = &rx_ring->buffer_info[i];
2402		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2403						sizeof(struct e1000_ps_page),
2404						GFP_KERNEL);
2405		if (!buffer_info->ps_pages)
2406			goto err_pages;
2407	}
2408
2409	desc_len = sizeof(union e1000_rx_desc_packet_split);
2410
2411	/* Round up to nearest 4K */
2412	rx_ring->size = rx_ring->count * desc_len;
2413	rx_ring->size = ALIGN(rx_ring->size, 4096);
2414
2415	err = e1000_alloc_ring_dma(adapter, rx_ring);
2416	if (err)
2417		goto err_pages;
2418
2419	rx_ring->next_to_clean = 0;
2420	rx_ring->next_to_use = 0;
2421	rx_ring->rx_skb_top = NULL;
2422
2423	return 0;
2424
2425err_pages:
2426	for (i = 0; i < rx_ring->count; i++) {
2427		buffer_info = &rx_ring->buffer_info[i];
2428		kfree(buffer_info->ps_pages);
2429	}
2430err:
2431	vfree(rx_ring->buffer_info);
2432	e_err("Unable to allocate memory for the receive descriptor ring\n");
2433	return err;
2434}
2435
2436/**
2437 * e1000_clean_tx_ring - Free Tx Buffers
2438 * @tx_ring: Tx descriptor ring
2439 **/
2440static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2441{
2442	struct e1000_adapter *adapter = tx_ring->adapter;
2443	struct e1000_buffer *buffer_info;
2444	unsigned long size;
2445	unsigned int i;
2446
2447	for (i = 0; i < tx_ring->count; i++) {
2448		buffer_info = &tx_ring->buffer_info[i];
2449		e1000_put_txbuf(tx_ring, buffer_info, false);
2450	}
2451
2452	netdev_reset_queue(adapter->netdev);
2453	size = sizeof(struct e1000_buffer) * tx_ring->count;
2454	memset(tx_ring->buffer_info, 0, size);
2455
2456	memset(tx_ring->desc, 0, tx_ring->size);
2457
2458	tx_ring->next_to_use = 0;
2459	tx_ring->next_to_clean = 0;
2460}
2461
2462/**
2463 * e1000e_free_tx_resources - Free Tx Resources per Queue
2464 * @tx_ring: Tx descriptor ring
2465 *
2466 * Free all transmit software resources
2467 **/
2468void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2469{
2470	struct e1000_adapter *adapter = tx_ring->adapter;
2471	struct pci_dev *pdev = adapter->pdev;
2472
2473	e1000_clean_tx_ring(tx_ring);
2474
2475	vfree(tx_ring->buffer_info);
2476	tx_ring->buffer_info = NULL;
2477
2478	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2479			  tx_ring->dma);
2480	tx_ring->desc = NULL;
2481}
2482
2483/**
2484 * e1000e_free_rx_resources - Free Rx Resources
2485 * @rx_ring: Rx descriptor ring
2486 *
2487 * Free all receive software resources
2488 **/
2489void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2490{
2491	struct e1000_adapter *adapter = rx_ring->adapter;
2492	struct pci_dev *pdev = adapter->pdev;
2493	int i;
2494
2495	e1000_clean_rx_ring(rx_ring);
2496
2497	for (i = 0; i < rx_ring->count; i++)
2498		kfree(rx_ring->buffer_info[i].ps_pages);
2499
2500	vfree(rx_ring->buffer_info);
2501	rx_ring->buffer_info = NULL;
2502
2503	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2504			  rx_ring->dma);
2505	rx_ring->desc = NULL;
2506}
2507
2508/**
2509 * e1000_update_itr - update the dynamic ITR value based on statistics
2510 * @adapter: pointer to adapter
2511 * @itr_setting: current adapter->itr
2512 * @packets: the number of packets during this measurement interval
2513 * @bytes: the number of bytes during this measurement interval
2514 *
2515 *      Stores a new ITR value based on packets and byte
2516 *      counts during the last interrupt.  The advantage of per interrupt
2517 *      computation is faster updates and more accurate ITR for the current
2518 *      traffic pattern.  Constants in this function were computed
2519 *      based on theoretical maximum wire speed and thresholds were set based
2520 *      on testing data as well as attempting to minimize response time
2521 *      while increasing bulk throughput.  This functionality is controlled
2522 *      by the InterruptThrottleRate module parameter.
2523 **/
2524static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2525{
2526	unsigned int retval = itr_setting;
2527
2528	if (packets == 0)
2529		return itr_setting;
2530
2531	switch (itr_setting) {
2532	case lowest_latency:
2533		/* handle TSO and jumbo frames */
2534		if (bytes / packets > 8000)
2535			retval = bulk_latency;
2536		else if ((packets < 5) && (bytes > 512))
2537			retval = low_latency;
2538		break;
2539	case low_latency:	/* 50 usec aka 20000 ints/s */
2540		if (bytes > 10000) {
2541			/* this if handles the TSO accounting */
2542			if (bytes / packets > 8000)
2543				retval = bulk_latency;
2544			else if ((packets < 10) || ((bytes / packets) > 1200))
2545				retval = bulk_latency;
2546			else if ((packets > 35))
2547				retval = lowest_latency;
2548		} else if (bytes / packets > 2000) {
2549			retval = bulk_latency;
2550		} else if (packets <= 2 && bytes < 512) {
2551			retval = lowest_latency;
2552		}
2553		break;
2554	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2555		if (bytes > 25000) {
2556			if (packets > 35)
2557				retval = low_latency;
2558		} else if (bytes < 6000) {
2559			retval = low_latency;
2560		}
2561		break;
2562	}
2563
2564	return retval;
2565}
2566
2567static void e1000_set_itr(struct e1000_adapter *adapter)
2568{
2569	u16 current_itr;
2570	u32 new_itr = adapter->itr;
2571
2572	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2573	if (adapter->link_speed != SPEED_1000) {
2574		current_itr = 0;
2575		new_itr = 4000;
2576		goto set_itr_now;
2577	}
2578
2579	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2580		new_itr = 0;
2581		goto set_itr_now;
2582	}
2583
2584	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2585					   adapter->total_tx_packets,
2586					   adapter->total_tx_bytes);
2587	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2588	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2589		adapter->tx_itr = low_latency;
2590
2591	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2592					   adapter->total_rx_packets,
2593					   adapter->total_rx_bytes);
2594	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2595	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2596		adapter->rx_itr = low_latency;
2597
2598	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2599
2600	/* counts and packets in update_itr are dependent on these numbers */
2601	switch (current_itr) {
2602	case lowest_latency:
2603		new_itr = 70000;
2604		break;
2605	case low_latency:
2606		new_itr = 20000;	/* aka hwitr = ~200 */
2607		break;
2608	case bulk_latency:
2609		new_itr = 4000;
2610		break;
2611	default:
2612		break;
2613	}
2614
2615set_itr_now:
2616	if (new_itr != adapter->itr) {
2617		/* this attempts to bias the interrupt rate towards Bulk
2618		 * by adding intermediate steps when interrupt rate is
2619		 * increasing
2620		 */
2621		new_itr = new_itr > adapter->itr ?
2622		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2623		adapter->itr = new_itr;
2624		adapter->rx_ring->itr_val = new_itr;
2625		if (adapter->msix_entries)
2626			adapter->rx_ring->set_itr = 1;
2627		else
2628			e1000e_write_itr(adapter, new_itr);
2629	}
2630}
2631
2632/**
2633 * e1000e_write_itr - write the ITR value to the appropriate registers
2634 * @adapter: address of board private structure
2635 * @itr: new ITR value to program
2636 *
2637 * e1000e_write_itr determines if the adapter is in MSI-X mode
2638 * and, if so, writes the EITR registers with the ITR value.
2639 * Otherwise, it writes the ITR value into the ITR register.
2640 **/
2641void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2642{
2643	struct e1000_hw *hw = &adapter->hw;
2644	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2645
2646	if (adapter->msix_entries) {
2647		int vector;
2648
2649		for (vector = 0; vector < adapter->num_vectors; vector++)
2650			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2651	} else {
2652		ew32(ITR, new_itr);
2653	}
2654}
2655
2656/**
2657 * e1000_alloc_queues - Allocate memory for all rings
2658 * @adapter: board private structure to initialize
2659 **/
2660static int e1000_alloc_queues(struct e1000_adapter *adapter)
2661{
2662	int size = sizeof(struct e1000_ring);
2663
2664	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2665	if (!adapter->tx_ring)
2666		goto err;
2667	adapter->tx_ring->count = adapter->tx_ring_count;
2668	adapter->tx_ring->adapter = adapter;
2669
2670	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2671	if (!adapter->rx_ring)
2672		goto err;
2673	adapter->rx_ring->count = adapter->rx_ring_count;
2674	adapter->rx_ring->adapter = adapter;
2675
2676	return 0;
2677err:
2678	e_err("Unable to allocate memory for queues\n");
2679	kfree(adapter->rx_ring);
2680	kfree(adapter->tx_ring);
2681	return -ENOMEM;
2682}
2683
2684/**
2685 * e1000e_poll - NAPI Rx polling callback
2686 * @napi: struct associated with this polling callback
2687 * @budget: number of packets driver is allowed to process this poll
2688 **/
2689static int e1000e_poll(struct napi_struct *napi, int budget)
2690{
2691	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2692						     napi);
2693	struct e1000_hw *hw = &adapter->hw;
2694	struct net_device *poll_dev = adapter->netdev;
2695	int tx_cleaned = 1, work_done = 0;
2696
2697	adapter = netdev_priv(poll_dev);
2698
2699	if (!adapter->msix_entries ||
2700	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2701		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2702
2703	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2704
2705	if (!tx_cleaned || work_done == budget)
2706		return budget;
2707
2708	/* Exit the polling mode, but don't re-enable interrupts if stack might
2709	 * poll us due to busy-polling
2710	 */
2711	if (likely(napi_complete_done(napi, work_done))) {
2712		if (adapter->itr_setting & 3)
2713			e1000_set_itr(adapter);
2714		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2715			if (adapter->msix_entries)
2716				ew32(IMS, adapter->rx_ring->ims_val);
2717			else
2718				e1000_irq_enable(adapter);
2719		}
2720	}
2721
2722	return work_done;
2723}
2724
2725static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2726				 __always_unused __be16 proto, u16 vid)
2727{
2728	struct e1000_adapter *adapter = netdev_priv(netdev);
2729	struct e1000_hw *hw = &adapter->hw;
2730	u32 vfta, index;
2731
2732	/* don't update vlan cookie if already programmed */
2733	if ((adapter->hw.mng_cookie.status &
2734	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2735	    (vid == adapter->mng_vlan_id))
2736		return 0;
2737
2738	/* add VID to filter table */
2739	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740		index = (vid >> 5) & 0x7F;
2741		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2742		vfta |= BIT((vid & 0x1F));
2743		hw->mac.ops.write_vfta(hw, index, vfta);
2744	}
2745
2746	set_bit(vid, adapter->active_vlans);
2747
2748	return 0;
2749}
2750
2751static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2752				  __always_unused __be16 proto, u16 vid)
2753{
2754	struct e1000_adapter *adapter = netdev_priv(netdev);
2755	struct e1000_hw *hw = &adapter->hw;
2756	u32 vfta, index;
2757
2758	if ((adapter->hw.mng_cookie.status &
2759	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2760	    (vid == adapter->mng_vlan_id)) {
2761		/* release control to f/w */
2762		e1000e_release_hw_control(adapter);
2763		return 0;
2764	}
2765
2766	/* remove VID from filter table */
2767	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768		index = (vid >> 5) & 0x7F;
2769		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2770		vfta &= ~BIT((vid & 0x1F));
2771		hw->mac.ops.write_vfta(hw, index, vfta);
2772	}
2773
2774	clear_bit(vid, adapter->active_vlans);
2775
2776	return 0;
2777}
2778
2779/**
2780 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2781 * @adapter: board private structure to initialize
2782 **/
2783static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2784{
2785	struct net_device *netdev = adapter->netdev;
2786	struct e1000_hw *hw = &adapter->hw;
2787	u32 rctl;
2788
2789	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2790		/* disable VLAN receive filtering */
2791		rctl = er32(RCTL);
2792		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2793		ew32(RCTL, rctl);
2794
2795		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2796			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2797					       adapter->mng_vlan_id);
2798			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2799		}
2800	}
2801}
2802
2803/**
2804 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2805 * @adapter: board private structure to initialize
2806 **/
2807static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2808{
2809	struct e1000_hw *hw = &adapter->hw;
2810	u32 rctl;
2811
2812	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2813		/* enable VLAN receive filtering */
2814		rctl = er32(RCTL);
2815		rctl |= E1000_RCTL_VFE;
2816		rctl &= ~E1000_RCTL_CFIEN;
2817		ew32(RCTL, rctl);
2818	}
2819}
2820
2821/**
2822 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2823 * @adapter: board private structure to initialize
2824 **/
2825static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2826{
2827	struct e1000_hw *hw = &adapter->hw;
2828	u32 ctrl;
2829
2830	/* disable VLAN tag insert/strip */
2831	ctrl = er32(CTRL);
2832	ctrl &= ~E1000_CTRL_VME;
2833	ew32(CTRL, ctrl);
2834}
2835
2836/**
2837 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2838 * @adapter: board private structure to initialize
2839 **/
2840static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2841{
2842	struct e1000_hw *hw = &adapter->hw;
2843	u32 ctrl;
2844
2845	/* enable VLAN tag insert/strip */
2846	ctrl = er32(CTRL);
2847	ctrl |= E1000_CTRL_VME;
2848	ew32(CTRL, ctrl);
2849}
2850
2851static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2852{
2853	struct net_device *netdev = adapter->netdev;
2854	u16 vid = adapter->hw.mng_cookie.vlan_id;
2855	u16 old_vid = adapter->mng_vlan_id;
2856
2857	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2858		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2859		adapter->mng_vlan_id = vid;
2860	}
2861
2862	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2863		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2864}
2865
2866static void e1000_restore_vlan(struct e1000_adapter *adapter)
2867{
2868	u16 vid;
2869
2870	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2871
2872	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2873	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2874}
2875
2876static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2877{
2878	struct e1000_hw *hw = &adapter->hw;
2879	u32 manc, manc2h, mdef, i, j;
2880
2881	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2882		return;
2883
2884	manc = er32(MANC);
2885
2886	/* enable receiving management packets to the host. this will probably
2887	 * generate destination unreachable messages from the host OS, but
2888	 * the packets will be handled on SMBUS
2889	 */
2890	manc |= E1000_MANC_EN_MNG2HOST;
2891	manc2h = er32(MANC2H);
2892
2893	switch (hw->mac.type) {
2894	default:
2895		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2896		break;
2897	case e1000_82574:
2898	case e1000_82583:
2899		/* Check if IPMI pass-through decision filter already exists;
2900		 * if so, enable it.
2901		 */
2902		for (i = 0, j = 0; i < 8; i++) {
2903			mdef = er32(MDEF(i));
2904
2905			/* Ignore filters with anything other than IPMI ports */
2906			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2907				continue;
2908
2909			/* Enable this decision filter in MANC2H */
2910			if (mdef)
2911				manc2h |= BIT(i);
2912
2913			j |= mdef;
2914		}
2915
2916		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2917			break;
2918
2919		/* Create new decision filter in an empty filter */
2920		for (i = 0, j = 0; i < 8; i++)
2921			if (er32(MDEF(i)) == 0) {
2922				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2923					       E1000_MDEF_PORT_664));
2924				manc2h |= BIT(1);
2925				j++;
2926				break;
2927			}
2928
2929		if (!j)
2930			e_warn("Unable to create IPMI pass-through filter\n");
2931		break;
2932	}
2933
2934	ew32(MANC2H, manc2h);
2935	ew32(MANC, manc);
2936}
2937
2938/**
2939 * e1000_configure_tx - Configure Transmit Unit after Reset
2940 * @adapter: board private structure
2941 *
2942 * Configure the Tx unit of the MAC after a reset.
2943 **/
2944static void e1000_configure_tx(struct e1000_adapter *adapter)
2945{
2946	struct e1000_hw *hw = &adapter->hw;
2947	struct e1000_ring *tx_ring = adapter->tx_ring;
2948	u64 tdba;
2949	u32 tdlen, tctl, tarc;
2950
2951	/* Setup the HW Tx Head and Tail descriptor pointers */
2952	tdba = tx_ring->dma;
2953	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2954	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2955	ew32(TDBAH(0), (tdba >> 32));
2956	ew32(TDLEN(0), tdlen);
2957	ew32(TDH(0), 0);
2958	ew32(TDT(0), 0);
2959	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2960	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2961
2962	writel(0, tx_ring->head);
2963	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2964		e1000e_update_tdt_wa(tx_ring, 0);
2965	else
2966		writel(0, tx_ring->tail);
2967
2968	/* Set the Tx Interrupt Delay register */
2969	ew32(TIDV, adapter->tx_int_delay);
2970	/* Tx irq moderation */
2971	ew32(TADV, adapter->tx_abs_int_delay);
2972
2973	if (adapter->flags2 & FLAG2_DMA_BURST) {
2974		u32 txdctl = er32(TXDCTL(0));
2975
2976		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2977			    E1000_TXDCTL_WTHRESH);
2978		/* set up some performance related parameters to encourage the
2979		 * hardware to use the bus more efficiently in bursts, depends
2980		 * on the tx_int_delay to be enabled,
2981		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2982		 * hthresh = 1 ==> prefetch when one or more available
2983		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2984		 * BEWARE: this seems to work but should be considered first if
2985		 * there are Tx hangs or other Tx related bugs
2986		 */
2987		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2988		ew32(TXDCTL(0), txdctl);
2989	}
2990	/* erratum work around: set txdctl the same for both queues */
2991	ew32(TXDCTL(1), er32(TXDCTL(0)));
2992
2993	/* Program the Transmit Control Register */
2994	tctl = er32(TCTL);
2995	tctl &= ~E1000_TCTL_CT;
2996	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2997		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2998
2999	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
3000		tarc = er32(TARC(0));
3001		/* set the speed mode bit, we'll clear it if we're not at
3002		 * gigabit link later
3003		 */
3004#define SPEED_MODE_BIT BIT(21)
3005		tarc |= SPEED_MODE_BIT;
3006		ew32(TARC(0), tarc);
3007	}
3008
3009	/* errata: program both queues to unweighted RR */
3010	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3011		tarc = er32(TARC(0));
3012		tarc |= 1;
3013		ew32(TARC(0), tarc);
3014		tarc = er32(TARC(1));
3015		tarc |= 1;
3016		ew32(TARC(1), tarc);
3017	}
3018
3019	/* Setup Transmit Descriptor Settings for eop descriptor */
3020	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3021
3022	/* only set IDE if we are delaying interrupts using the timers */
3023	if (adapter->tx_int_delay)
3024		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3025
3026	/* enable Report Status bit */
3027	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3028
3029	ew32(TCTL, tctl);
3030
3031	hw->mac.ops.config_collision_dist(hw);
3032
3033	/* SPT and KBL Si errata workaround to avoid data corruption */
3034	if (hw->mac.type == e1000_pch_spt) {
3035		u32 reg_val;
3036
3037		reg_val = er32(IOSFPC);
3038		reg_val |= E1000_RCTL_RDMTS_HEX;
3039		ew32(IOSFPC, reg_val);
3040
3041		reg_val = er32(TARC(0));
3042		/* SPT and KBL Si errata workaround to avoid Tx hang.
3043		 * Dropping the number of outstanding requests from
3044		 * 3 to 2 in order to avoid a buffer overrun.
3045		 */
3046		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3047		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3048		ew32(TARC(0), reg_val);
3049	}
3050}
3051
 
 
 
3052/**
3053 * e1000_setup_rctl - configure the receive control registers
3054 * @adapter: Board private structure
3055 **/
3056#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3057			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3058static void e1000_setup_rctl(struct e1000_adapter *adapter)
3059{
3060	struct e1000_hw *hw = &adapter->hw;
3061	u32 rctl, rfctl;
3062	u32 pages = 0;
3063
3064	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3065	 * If jumbo frames not set, program related MAC/PHY registers
3066	 * to h/w defaults
3067	 */
3068	if (hw->mac.type >= e1000_pch2lan) {
3069		s32 ret_val;
3070
3071		if (adapter->netdev->mtu > ETH_DATA_LEN)
3072			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3073		else
3074			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3075
3076		if (ret_val)
3077			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3078	}
3079
3080	/* Program MC offset vector base */
3081	rctl = er32(RCTL);
3082	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3083	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3084	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3085	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3086
3087	/* Do not Store bad packets */
3088	rctl &= ~E1000_RCTL_SBP;
3089
3090	/* Enable Long Packet receive */
3091	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3092		rctl &= ~E1000_RCTL_LPE;
3093	else
3094		rctl |= E1000_RCTL_LPE;
3095
3096	/* Some systems expect that the CRC is included in SMBUS traffic. The
3097	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3098	 * host memory when this is enabled
3099	 */
3100	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3101		rctl |= E1000_RCTL_SECRC;
3102
3103	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3104	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3105		u16 phy_data;
3106
3107		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3108		phy_data &= 0xfff8;
3109		phy_data |= BIT(2);
3110		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3111
3112		e1e_rphy(hw, 22, &phy_data);
3113		phy_data &= 0x0fff;
3114		phy_data |= BIT(14);
3115		e1e_wphy(hw, 0x10, 0x2823);
3116		e1e_wphy(hw, 0x11, 0x0003);
3117		e1e_wphy(hw, 22, phy_data);
3118	}
3119
3120	/* Setup buffer sizes */
3121	rctl &= ~E1000_RCTL_SZ_4096;
3122	rctl |= E1000_RCTL_BSEX;
3123	switch (adapter->rx_buffer_len) {
3124	case 2048:
3125	default:
3126		rctl |= E1000_RCTL_SZ_2048;
3127		rctl &= ~E1000_RCTL_BSEX;
3128		break;
3129	case 4096:
3130		rctl |= E1000_RCTL_SZ_4096;
3131		break;
3132	case 8192:
3133		rctl |= E1000_RCTL_SZ_8192;
3134		break;
3135	case 16384:
3136		rctl |= E1000_RCTL_SZ_16384;
3137		break;
3138	}
3139
3140	/* Enable Extended Status in all Receive Descriptors */
3141	rfctl = er32(RFCTL);
3142	rfctl |= E1000_RFCTL_EXTEN;
3143	ew32(RFCTL, rfctl);
3144
3145	/* 82571 and greater support packet-split where the protocol
3146	 * header is placed in skb->data and the packet data is
3147	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3148	 * In the case of a non-split, skb->data is linearly filled,
3149	 * followed by the page buffers.  Therefore, skb->data is
3150	 * sized to hold the largest protocol header.
3151	 *
3152	 * allocations using alloc_page take too long for regular MTU
3153	 * so only enable packet split for jumbo frames
3154	 *
3155	 * Using pages when the page size is greater than 16k wastes
3156	 * a lot of memory, since we allocate 3 pages at all times
3157	 * per packet.
3158	 */
3159	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3160	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3161		adapter->rx_ps_pages = pages;
3162	else
3163		adapter->rx_ps_pages = 0;
3164
3165	if (adapter->rx_ps_pages) {
3166		u32 psrctl = 0;
3167
3168		/* Enable Packet split descriptors */
3169		rctl |= E1000_RCTL_DTYP_PS;
3170
3171		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3172
3173		switch (adapter->rx_ps_pages) {
3174		case 3:
3175			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3176			fallthrough;
3177		case 2:
3178			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3179			fallthrough;
3180		case 1:
3181			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3182			break;
3183		}
3184
3185		ew32(PSRCTL, psrctl);
3186	}
3187
3188	/* This is useful for sniffing bad packets. */
3189	if (adapter->netdev->features & NETIF_F_RXALL) {
3190		/* UPE and MPE will be handled by normal PROMISC logic
3191		 * in e1000e_set_rx_mode
3192		 */
3193		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3194			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3195			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3196
3197		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3198			  E1000_RCTL_DPF |	/* Allow filtered pause */
3199			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3200		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3201		 * and that breaks VLANs.
3202		 */
3203	}
3204
3205	ew32(RCTL, rctl);
3206	/* just started the receive unit, no need to restart */
3207	adapter->flags &= ~FLAG_RESTART_NOW;
3208}
3209
3210/**
3211 * e1000_configure_rx - Configure Receive Unit after Reset
3212 * @adapter: board private structure
3213 *
3214 * Configure the Rx unit of the MAC after a reset.
3215 **/
3216static void e1000_configure_rx(struct e1000_adapter *adapter)
3217{
3218	struct e1000_hw *hw = &adapter->hw;
3219	struct e1000_ring *rx_ring = adapter->rx_ring;
3220	u64 rdba;
3221	u32 rdlen, rctl, rxcsum, ctrl_ext;
3222
3223	if (adapter->rx_ps_pages) {
3224		/* this is a 32 byte descriptor */
3225		rdlen = rx_ring->count *
3226		    sizeof(union e1000_rx_desc_packet_split);
3227		adapter->clean_rx = e1000_clean_rx_irq_ps;
3228		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3229	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3230		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3231		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3232		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3233	} else {
3234		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3235		adapter->clean_rx = e1000_clean_rx_irq;
3236		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3237	}
3238
3239	/* disable receives while setting up the descriptors */
3240	rctl = er32(RCTL);
3241	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3242		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3243	e1e_flush();
3244	usleep_range(10000, 11000);
3245
3246	if (adapter->flags2 & FLAG2_DMA_BURST) {
3247		/* set the writeback threshold (only takes effect if the RDTR
3248		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3249		 * enable prefetching of 0x20 Rx descriptors
3250		 * granularity = 01
3251		 * wthresh = 04,
3252		 * hthresh = 04,
3253		 * pthresh = 0x20
3254		 */
3255		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3256		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3257	}
3258
3259	/* set the Receive Delay Timer Register */
3260	ew32(RDTR, adapter->rx_int_delay);
3261
3262	/* irq moderation */
3263	ew32(RADV, adapter->rx_abs_int_delay);
3264	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3265		e1000e_write_itr(adapter, adapter->itr);
3266
3267	ctrl_ext = er32(CTRL_EXT);
3268	/* Auto-Mask interrupts upon ICR access */
3269	ctrl_ext |= E1000_CTRL_EXT_IAME;
3270	ew32(IAM, 0xffffffff);
3271	ew32(CTRL_EXT, ctrl_ext);
3272	e1e_flush();
3273
3274	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3275	 * the Base and Length of the Rx Descriptor Ring
3276	 */
3277	rdba = rx_ring->dma;
3278	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3279	ew32(RDBAH(0), (rdba >> 32));
3280	ew32(RDLEN(0), rdlen);
3281	ew32(RDH(0), 0);
3282	ew32(RDT(0), 0);
3283	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3284	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3285
3286	writel(0, rx_ring->head);
3287	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3288		e1000e_update_rdt_wa(rx_ring, 0);
3289	else
3290		writel(0, rx_ring->tail);
3291
3292	/* Enable Receive Checksum Offload for TCP and UDP */
3293	rxcsum = er32(RXCSUM);
3294	if (adapter->netdev->features & NETIF_F_RXCSUM)
3295		rxcsum |= E1000_RXCSUM_TUOFL;
3296	else
3297		rxcsum &= ~E1000_RXCSUM_TUOFL;
3298	ew32(RXCSUM, rxcsum);
3299
3300	/* With jumbo frames, excessive C-state transition latencies result
3301	 * in dropped transactions.
3302	 */
3303	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3304		u32 lat =
3305		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3306		     adapter->max_frame_size) * 8 / 1000;
3307
3308		if (adapter->flags & FLAG_IS_ICH) {
3309			u32 rxdctl = er32(RXDCTL(0));
3310
3311			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3312		}
3313
3314		dev_info(&adapter->pdev->dev,
3315			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3316		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3317	} else {
3318		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3319					       PM_QOS_DEFAULT_VALUE);
3320	}
3321
3322	/* Enable Receives */
3323	ew32(RCTL, rctl);
3324}
3325
3326/**
3327 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3328 * @netdev: network interface device structure
3329 *
3330 * Writes multicast address list to the MTA hash table.
3331 * Returns: -ENOMEM on failure
3332 *                0 on no addresses written
3333 *                X on writing X addresses to MTA
3334 */
3335static int e1000e_write_mc_addr_list(struct net_device *netdev)
3336{
3337	struct e1000_adapter *adapter = netdev_priv(netdev);
3338	struct e1000_hw *hw = &adapter->hw;
3339	struct netdev_hw_addr *ha;
3340	u8 *mta_list;
3341	int i;
3342
3343	if (netdev_mc_empty(netdev)) {
3344		/* nothing to program, so clear mc list */
3345		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3346		return 0;
3347	}
3348
3349	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3350	if (!mta_list)
3351		return -ENOMEM;
3352
3353	/* update_mc_addr_list expects a packed array of only addresses. */
3354	i = 0;
3355	netdev_for_each_mc_addr(ha, netdev)
3356	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3357
3358	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3359	kfree(mta_list);
3360
3361	return netdev_mc_count(netdev);
3362}
3363
3364/**
3365 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3366 * @netdev: network interface device structure
3367 *
3368 * Writes unicast address list to the RAR table.
3369 * Returns: -ENOMEM on failure/insufficient address space
3370 *                0 on no addresses written
3371 *                X on writing X addresses to the RAR table
3372 **/
3373static int e1000e_write_uc_addr_list(struct net_device *netdev)
3374{
3375	struct e1000_adapter *adapter = netdev_priv(netdev);
3376	struct e1000_hw *hw = &adapter->hw;
3377	unsigned int rar_entries;
3378	int count = 0;
3379
3380	rar_entries = hw->mac.ops.rar_get_count(hw);
3381
3382	/* save a rar entry for our hardware address */
3383	rar_entries--;
3384
3385	/* save a rar entry for the LAA workaround */
3386	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3387		rar_entries--;
3388
3389	/* return ENOMEM indicating insufficient memory for addresses */
3390	if (netdev_uc_count(netdev) > rar_entries)
3391		return -ENOMEM;
3392
3393	if (!netdev_uc_empty(netdev) && rar_entries) {
3394		struct netdev_hw_addr *ha;
3395
3396		/* write the addresses in reverse order to avoid write
3397		 * combining
3398		 */
3399		netdev_for_each_uc_addr(ha, netdev) {
3400			int ret_val;
3401
3402			if (!rar_entries)
3403				break;
3404			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3405			if (ret_val < 0)
3406				return -ENOMEM;
3407			count++;
3408		}
3409	}
3410
3411	/* zero out the remaining RAR entries not used above */
3412	for (; rar_entries > 0; rar_entries--) {
3413		ew32(RAH(rar_entries), 0);
3414		ew32(RAL(rar_entries), 0);
3415	}
3416	e1e_flush();
3417
3418	return count;
3419}
3420
3421/**
3422 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3423 * @netdev: network interface device structure
3424 *
3425 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3426 * address list or the network interface flags are updated.  This routine is
3427 * responsible for configuring the hardware for proper unicast, multicast,
3428 * promiscuous mode, and all-multi behavior.
3429 **/
3430static void e1000e_set_rx_mode(struct net_device *netdev)
3431{
3432	struct e1000_adapter *adapter = netdev_priv(netdev);
3433	struct e1000_hw *hw = &adapter->hw;
3434	u32 rctl;
3435
3436	if (pm_runtime_suspended(netdev->dev.parent))
3437		return;
3438
3439	/* Check for Promiscuous and All Multicast modes */
3440	rctl = er32(RCTL);
3441
3442	/* clear the affected bits */
3443	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3444
3445	if (netdev->flags & IFF_PROMISC) {
3446		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3447		/* Do not hardware filter VLANs in promisc mode */
3448		e1000e_vlan_filter_disable(adapter);
3449	} else {
3450		int count;
3451
3452		if (netdev->flags & IFF_ALLMULTI) {
3453			rctl |= E1000_RCTL_MPE;
3454		} else {
3455			/* Write addresses to the MTA, if the attempt fails
3456			 * then we should just turn on promiscuous mode so
3457			 * that we can at least receive multicast traffic
3458			 */
3459			count = e1000e_write_mc_addr_list(netdev);
3460			if (count < 0)
3461				rctl |= E1000_RCTL_MPE;
3462		}
3463		e1000e_vlan_filter_enable(adapter);
3464		/* Write addresses to available RAR registers, if there is not
3465		 * sufficient space to store all the addresses then enable
3466		 * unicast promiscuous mode
3467		 */
3468		count = e1000e_write_uc_addr_list(netdev);
3469		if (count < 0)
3470			rctl |= E1000_RCTL_UPE;
3471	}
3472
3473	ew32(RCTL, rctl);
3474
3475	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3476		e1000e_vlan_strip_enable(adapter);
3477	else
3478		e1000e_vlan_strip_disable(adapter);
3479}
3480
3481static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3482{
3483	struct e1000_hw *hw = &adapter->hw;
3484	u32 mrqc, rxcsum;
3485	u32 rss_key[10];
3486	int i;
3487
3488	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3489	for (i = 0; i < 10; i++)
3490		ew32(RSSRK(i), rss_key[i]);
3491
3492	/* Direct all traffic to queue 0 */
3493	for (i = 0; i < 32; i++)
3494		ew32(RETA(i), 0);
3495
3496	/* Disable raw packet checksumming so that RSS hash is placed in
3497	 * descriptor on writeback.
3498	 */
3499	rxcsum = er32(RXCSUM);
3500	rxcsum |= E1000_RXCSUM_PCSD;
3501
3502	ew32(RXCSUM, rxcsum);
3503
3504	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3505		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3506		E1000_MRQC_RSS_FIELD_IPV6 |
3507		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3508		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3509
3510	ew32(MRQC, mrqc);
3511}
3512
3513/**
3514 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3515 * @adapter: board private structure
3516 * @timinca: pointer to returned time increment attributes
3517 *
3518 * Get attributes for incrementing the System Time Register SYSTIML/H at
3519 * the default base frequency, and set the cyclecounter shift value.
3520 **/
3521s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3522{
3523	struct e1000_hw *hw = &adapter->hw;
3524	u32 incvalue, incperiod, shift;
3525
3526	/* Make sure clock is enabled on I217/I218/I219  before checking
3527	 * the frequency
3528	 */
3529	if ((hw->mac.type >= e1000_pch_lpt) &&
3530	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3531	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3532		u32 fextnvm7 = er32(FEXTNVM7);
3533
3534		if (!(fextnvm7 & BIT(0))) {
3535			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3536			e1e_flush();
3537		}
3538	}
3539
3540	switch (hw->mac.type) {
3541	case e1000_pch2lan:
3542		/* Stable 96MHz frequency */
3543		incperiod = INCPERIOD_96MHZ;
3544		incvalue = INCVALUE_96MHZ;
3545		shift = INCVALUE_SHIFT_96MHZ;
3546		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3547		break;
3548	case e1000_pch_lpt:
3549		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550			/* Stable 96MHz frequency */
3551			incperiod = INCPERIOD_96MHZ;
3552			incvalue = INCVALUE_96MHZ;
3553			shift = INCVALUE_SHIFT_96MHZ;
3554			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3555		} else {
3556			/* Stable 25MHz frequency */
3557			incperiod = INCPERIOD_25MHZ;
3558			incvalue = INCVALUE_25MHZ;
3559			shift = INCVALUE_SHIFT_25MHZ;
3560			adapter->cc.shift = shift;
3561		}
3562		break;
3563	case e1000_pch_spt:
3564		/* Stable 24MHz frequency */
3565		incperiod = INCPERIOD_24MHZ;
3566		incvalue = INCVALUE_24MHZ;
3567		shift = INCVALUE_SHIFT_24MHZ;
3568		adapter->cc.shift = shift;
3569		break;
3570	case e1000_pch_cnp:
3571	case e1000_pch_tgp:
3572	case e1000_pch_adp:
 
 
 
 
3573		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3574			/* Stable 24MHz frequency */
3575			incperiod = INCPERIOD_24MHZ;
3576			incvalue = INCVALUE_24MHZ;
3577			shift = INCVALUE_SHIFT_24MHZ;
3578			adapter->cc.shift = shift;
3579		} else {
3580			/* Stable 38400KHz frequency */
3581			incperiod = INCPERIOD_38400KHZ;
3582			incvalue = INCVALUE_38400KHZ;
3583			shift = INCVALUE_SHIFT_38400KHZ;
3584			adapter->cc.shift = shift;
3585		}
3586		break;
3587	case e1000_82574:
3588	case e1000_82583:
3589		/* Stable 25MHz frequency */
3590		incperiod = INCPERIOD_25MHZ;
3591		incvalue = INCVALUE_25MHZ;
3592		shift = INCVALUE_SHIFT_25MHZ;
3593		adapter->cc.shift = shift;
3594		break;
3595	default:
3596		return -EINVAL;
3597	}
3598
3599	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3600		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3601
3602	return 0;
3603}
3604
3605/**
3606 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3607 * @adapter: board private structure
 
3608 *
3609 * Outgoing time stamping can be enabled and disabled. Play nice and
3610 * disable it when requested, although it shouldn't cause any overhead
3611 * when no packet needs it. At most one packet in the queue may be
3612 * marked for time stamping, otherwise it would be impossible to tell
3613 * for sure to which packet the hardware time stamp belongs.
3614 *
3615 * Incoming time stamping has to be configured via the hardware filters.
3616 * Not all combinations are supported, in particular event type has to be
3617 * specified. Matching the kind of event packet is not supported, with the
3618 * exception of "all V2 events regardless of level 2 or 4".
3619 **/
3620static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3621				  struct hwtstamp_config *config)
3622{
3623	struct e1000_hw *hw = &adapter->hw;
3624	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3625	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3626	u32 rxmtrl = 0;
3627	u16 rxudp = 0;
3628	bool is_l4 = false;
3629	bool is_l2 = false;
3630	u32 regval;
3631
3632	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3633		return -EINVAL;
3634
3635	/* flags reserved for future extensions - must be zero */
3636	if (config->flags)
3637		return -EINVAL;
3638
3639	switch (config->tx_type) {
3640	case HWTSTAMP_TX_OFF:
3641		tsync_tx_ctl = 0;
3642		break;
3643	case HWTSTAMP_TX_ON:
3644		break;
3645	default:
3646		return -ERANGE;
3647	}
3648
3649	switch (config->rx_filter) {
3650	case HWTSTAMP_FILTER_NONE:
3651		tsync_rx_ctl = 0;
3652		break;
3653	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3654		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3655		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3656		is_l4 = true;
3657		break;
3658	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3659		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3660		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3661		is_l4 = true;
3662		break;
3663	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3664		/* Also time stamps V2 L2 Path Delay Request/Response */
3665		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3666		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3667		is_l2 = true;
3668		break;
3669	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3670		/* Also time stamps V2 L2 Path Delay Request/Response. */
3671		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3672		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3673		is_l2 = true;
3674		break;
3675	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3676		/* Hardware cannot filter just V2 L4 Sync messages */
3677		fallthrough;
3678	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3679		/* Also time stamps V2 Path Delay Request/Response. */
3680		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3681		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3682		is_l2 = true;
3683		is_l4 = true;
3684		break;
3685	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3686		/* Hardware cannot filter just V2 L4 Delay Request messages */
3687		fallthrough;
3688	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3689		/* Also time stamps V2 Path Delay Request/Response. */
3690		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3691		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3692		is_l2 = true;
3693		is_l4 = true;
3694		break;
3695	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3696	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3697		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3698		fallthrough;
3699	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3700		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3701		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3702		is_l2 = true;
3703		is_l4 = true;
3704		break;
3705	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3706		/* For V1, the hardware can only filter Sync messages or
3707		 * Delay Request messages but not both so fall-through to
3708		 * time stamp all packets.
3709		 */
3710		fallthrough;
3711	case HWTSTAMP_FILTER_NTP_ALL:
3712	case HWTSTAMP_FILTER_ALL:
3713		is_l2 = true;
3714		is_l4 = true;
3715		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3716		config->rx_filter = HWTSTAMP_FILTER_ALL;
3717		break;
3718	default:
3719		return -ERANGE;
3720	}
3721
3722	adapter->hwtstamp_config = *config;
3723
3724	/* enable/disable Tx h/w time stamping */
3725	regval = er32(TSYNCTXCTL);
3726	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3727	regval |= tsync_tx_ctl;
3728	ew32(TSYNCTXCTL, regval);
3729	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3730	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3731		e_err("Timesync Tx Control register not set as expected\n");
3732		return -EAGAIN;
3733	}
3734
3735	/* enable/disable Rx h/w time stamping */
3736	regval = er32(TSYNCRXCTL);
3737	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3738	regval |= tsync_rx_ctl;
3739	ew32(TSYNCRXCTL, regval);
3740	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3741				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3742	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3743		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3744		e_err("Timesync Rx Control register not set as expected\n");
3745		return -EAGAIN;
3746	}
3747
3748	/* L2: define ethertype filter for time stamped packets */
3749	if (is_l2)
3750		rxmtrl |= ETH_P_1588;
3751
3752	/* define which PTP packets get time stamped */
3753	ew32(RXMTRL, rxmtrl);
3754
3755	/* Filter by destination port */
3756	if (is_l4) {
3757		rxudp = PTP_EV_PORT;
3758		cpu_to_be16s(&rxudp);
3759	}
3760	ew32(RXUDP, rxudp);
3761
3762	e1e_flush();
3763
3764	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3765	er32(RXSTMPH);
3766	er32(TXSTMPH);
3767
3768	return 0;
3769}
3770
3771/**
3772 * e1000_configure - configure the hardware for Rx and Tx
3773 * @adapter: private board structure
3774 **/
3775static void e1000_configure(struct e1000_adapter *adapter)
3776{
3777	struct e1000_ring *rx_ring = adapter->rx_ring;
3778
3779	e1000e_set_rx_mode(adapter->netdev);
3780
3781	e1000_restore_vlan(adapter);
3782	e1000_init_manageability_pt(adapter);
3783
3784	e1000_configure_tx(adapter);
3785
3786	if (adapter->netdev->features & NETIF_F_RXHASH)
3787		e1000e_setup_rss_hash(adapter);
3788	e1000_setup_rctl(adapter);
3789	e1000_configure_rx(adapter);
3790	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3791}
3792
3793/**
3794 * e1000e_power_up_phy - restore link in case the phy was powered down
3795 * @adapter: address of board private structure
3796 *
3797 * The phy may be powered down to save power and turn off link when the
3798 * driver is unloaded and wake on lan is not enabled (among others)
3799 * *** this routine MUST be followed by a call to e1000e_reset ***
3800 **/
3801void e1000e_power_up_phy(struct e1000_adapter *adapter)
3802{
3803	if (adapter->hw.phy.ops.power_up)
3804		adapter->hw.phy.ops.power_up(&adapter->hw);
3805
3806	adapter->hw.mac.ops.setup_link(&adapter->hw);
3807}
3808
3809/**
3810 * e1000_power_down_phy - Power down the PHY
 
3811 *
3812 * Power down the PHY so no link is implied when interface is down.
3813 * The PHY cannot be powered down if management or WoL is active.
3814 */
3815static void e1000_power_down_phy(struct e1000_adapter *adapter)
3816{
3817	if (adapter->hw.phy.ops.power_down)
3818		adapter->hw.phy.ops.power_down(&adapter->hw);
3819}
3820
3821/**
3822 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
 
3823 *
3824 * We want to clear all pending descriptors from the TX ring.
3825 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3826 * the data of the next descriptor. We don't care about the data we are about
3827 * to reset the HW.
3828 */
3829static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3830{
3831	struct e1000_hw *hw = &adapter->hw;
3832	struct e1000_ring *tx_ring = adapter->tx_ring;
3833	struct e1000_tx_desc *tx_desc = NULL;
3834	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3835	u16 size = 512;
3836
3837	tctl = er32(TCTL);
3838	ew32(TCTL, tctl | E1000_TCTL_EN);
3839	tdt = er32(TDT(0));
3840	BUG_ON(tdt != tx_ring->next_to_use);
3841	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3842	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3843
3844	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3845	tx_desc->upper.data = 0;
3846	/* flush descriptors to memory before notifying the HW */
3847	wmb();
3848	tx_ring->next_to_use++;
3849	if (tx_ring->next_to_use == tx_ring->count)
3850		tx_ring->next_to_use = 0;
3851	ew32(TDT(0), tx_ring->next_to_use);
3852	usleep_range(200, 250);
3853}
3854
3855/**
3856 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
 
3857 *
3858 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3859 */
3860static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3861{
3862	u32 rctl, rxdctl;
3863	struct e1000_hw *hw = &adapter->hw;
3864
3865	rctl = er32(RCTL);
3866	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3867	e1e_flush();
3868	usleep_range(100, 150);
3869
3870	rxdctl = er32(RXDCTL(0));
3871	/* zero the lower 14 bits (prefetch and host thresholds) */
3872	rxdctl &= 0xffffc000;
3873
3874	/* update thresholds: prefetch threshold to 31, host threshold to 1
3875	 * and make sure the granularity is "descriptors" and not "cache lines"
3876	 */
3877	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3878
3879	ew32(RXDCTL(0), rxdctl);
3880	/* momentarily enable the RX ring for the changes to take effect */
3881	ew32(RCTL, rctl | E1000_RCTL_EN);
3882	e1e_flush();
3883	usleep_range(100, 150);
3884	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3885}
3886
3887/**
3888 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
 
3889 *
3890 * In i219, the descriptor rings must be emptied before resetting the HW
3891 * or before changing the device state to D3 during runtime (runtime PM).
3892 *
3893 * Failure to do this will cause the HW to enter a unit hang state which can
3894 * only be released by PCI reset on the device
3895 *
3896 */
3897
3898static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3899{
3900	u16 hang_state;
3901	u32 fext_nvm11, tdlen;
3902	struct e1000_hw *hw = &adapter->hw;
3903
3904	/* First, disable MULR fix in FEXTNVM11 */
3905	fext_nvm11 = er32(FEXTNVM11);
3906	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3907	ew32(FEXTNVM11, fext_nvm11);
3908	/* do nothing if we're not in faulty state, or if the queue is empty */
3909	tdlen = er32(TDLEN(0));
3910	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3911			     &hang_state);
3912	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3913		return;
3914	e1000_flush_tx_ring(adapter);
3915	/* recheck, maybe the fault is caused by the rx ring */
3916	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3917			     &hang_state);
3918	if (hang_state & FLUSH_DESC_REQUIRED)
3919		e1000_flush_rx_ring(adapter);
3920}
3921
3922/**
3923 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3924 * @adapter: board private structure
3925 *
3926 * When the MAC is reset, all hardware bits for timesync will be reset to the
3927 * default values. This function will restore the settings last in place.
3928 * Since the clock SYSTIME registers are reset, we will simply restore the
3929 * cyclecounter to the kernel real clock time.
3930 **/
3931static void e1000e_systim_reset(struct e1000_adapter *adapter)
3932{
3933	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3934	struct e1000_hw *hw = &adapter->hw;
3935	unsigned long flags;
3936	u32 timinca;
3937	s32 ret_val;
3938
3939	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3940		return;
3941
3942	if (info->adjfreq) {
3943		/* restore the previous ptp frequency delta */
3944		ret_val = info->adjfreq(info, adapter->ptp_delta);
3945	} else {
3946		/* set the default base frequency if no adjustment possible */
3947		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3948		if (!ret_val)
3949			ew32(TIMINCA, timinca);
3950	}
3951
3952	if (ret_val) {
3953		dev_warn(&adapter->pdev->dev,
3954			 "Failed to restore TIMINCA clock rate delta: %d\n",
3955			 ret_val);
3956		return;
3957	}
3958
3959	/* reset the systim ns time counter */
3960	spin_lock_irqsave(&adapter->systim_lock, flags);
3961	timecounter_init(&adapter->tc, &adapter->cc,
3962			 ktime_to_ns(ktime_get_real()));
3963	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3964
3965	/* restore the previous hwtstamp configuration settings */
3966	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3967}
3968
3969/**
3970 * e1000e_reset - bring the hardware into a known good state
 
3971 *
3972 * This function boots the hardware and enables some settings that
3973 * require a configuration cycle of the hardware - those cannot be
3974 * set/changed during runtime. After reset the device needs to be
3975 * properly configured for Rx, Tx etc.
3976 */
3977void e1000e_reset(struct e1000_adapter *adapter)
3978{
3979	struct e1000_mac_info *mac = &adapter->hw.mac;
3980	struct e1000_fc_info *fc = &adapter->hw.fc;
3981	struct e1000_hw *hw = &adapter->hw;
3982	u32 tx_space, min_tx_space, min_rx_space;
3983	u32 pba = adapter->pba;
3984	u16 hwm;
3985
3986	/* reset Packet Buffer Allocation to default */
3987	ew32(PBA, pba);
3988
3989	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3990		/* To maintain wire speed transmits, the Tx FIFO should be
3991		 * large enough to accommodate two full transmit packets,
3992		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3993		 * the Rx FIFO should be large enough to accommodate at least
3994		 * one full receive packet and is similarly rounded up and
3995		 * expressed in KB.
3996		 */
3997		pba = er32(PBA);
3998		/* upper 16 bits has Tx packet buffer allocation size in KB */
3999		tx_space = pba >> 16;
4000		/* lower 16 bits has Rx packet buffer allocation size in KB */
4001		pba &= 0xffff;
4002		/* the Tx fifo also stores 16 bytes of information about the Tx
4003		 * but don't include ethernet FCS because hardware appends it
4004		 */
4005		min_tx_space = (adapter->max_frame_size +
4006				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4007		min_tx_space = ALIGN(min_tx_space, 1024);
4008		min_tx_space >>= 10;
4009		/* software strips receive CRC, so leave room for it */
4010		min_rx_space = adapter->max_frame_size;
4011		min_rx_space = ALIGN(min_rx_space, 1024);
4012		min_rx_space >>= 10;
4013
4014		/* If current Tx allocation is less than the min Tx FIFO size,
4015		 * and the min Tx FIFO size is less than the current Rx FIFO
4016		 * allocation, take space away from current Rx allocation
4017		 */
4018		if ((tx_space < min_tx_space) &&
4019		    ((min_tx_space - tx_space) < pba)) {
4020			pba -= min_tx_space - tx_space;
4021
4022			/* if short on Rx space, Rx wins and must trump Tx
4023			 * adjustment
4024			 */
4025			if (pba < min_rx_space)
4026				pba = min_rx_space;
4027		}
4028
4029		ew32(PBA, pba);
4030	}
4031
4032	/* flow control settings
4033	 *
4034	 * The high water mark must be low enough to fit one full frame
4035	 * (or the size used for early receive) above it in the Rx FIFO.
4036	 * Set it to the lower of:
4037	 * - 90% of the Rx FIFO size, and
4038	 * - the full Rx FIFO size minus one full frame
4039	 */
4040	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4041		fc->pause_time = 0xFFFF;
4042	else
4043		fc->pause_time = E1000_FC_PAUSE_TIME;
4044	fc->send_xon = true;
4045	fc->current_mode = fc->requested_mode;
4046
4047	switch (hw->mac.type) {
4048	case e1000_ich9lan:
4049	case e1000_ich10lan:
4050		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4051			pba = 14;
4052			ew32(PBA, pba);
4053			fc->high_water = 0x2800;
4054			fc->low_water = fc->high_water - 8;
4055			break;
4056		}
4057		fallthrough;
4058	default:
4059		hwm = min(((pba << 10) * 9 / 10),
4060			  ((pba << 10) - adapter->max_frame_size));
4061
4062		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4063		fc->low_water = fc->high_water - 8;
4064		break;
4065	case e1000_pchlan:
4066		/* Workaround PCH LOM adapter hangs with certain network
4067		 * loads.  If hangs persist, try disabling Tx flow control.
4068		 */
4069		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4070			fc->high_water = 0x3500;
4071			fc->low_water = 0x1500;
4072		} else {
4073			fc->high_water = 0x5000;
4074			fc->low_water = 0x3000;
4075		}
4076		fc->refresh_time = 0x1000;
4077		break;
4078	case e1000_pch2lan:
4079	case e1000_pch_lpt:
4080	case e1000_pch_spt:
4081	case e1000_pch_cnp:
4082	case e1000_pch_tgp:
4083	case e1000_pch_adp:
 
 
 
 
4084		fc->refresh_time = 0xFFFF;
4085		fc->pause_time = 0xFFFF;
4086
4087		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4088			fc->high_water = 0x05C20;
4089			fc->low_water = 0x05048;
4090			break;
4091		}
4092
4093		pba = 14;
4094		ew32(PBA, pba);
4095		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4096		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4097		break;
4098	}
4099
4100	/* Alignment of Tx data is on an arbitrary byte boundary with the
4101	 * maximum size per Tx descriptor limited only to the transmit
4102	 * allocation of the packet buffer minus 96 bytes with an upper
4103	 * limit of 24KB due to receive synchronization limitations.
4104	 */
4105	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4106				       24 << 10);
4107
4108	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4109	 * fit in receive buffer.
4110	 */
4111	if (adapter->itr_setting & 0x3) {
4112		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4113			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4114				dev_info(&adapter->pdev->dev,
4115					 "Interrupt Throttle Rate off\n");
4116				adapter->flags2 |= FLAG2_DISABLE_AIM;
4117				e1000e_write_itr(adapter, 0);
4118			}
4119		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4120			dev_info(&adapter->pdev->dev,
4121				 "Interrupt Throttle Rate on\n");
4122			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4123			adapter->itr = 20000;
4124			e1000e_write_itr(adapter, adapter->itr);
4125		}
4126	}
4127
4128	if (hw->mac.type >= e1000_pch_spt)
4129		e1000_flush_desc_rings(adapter);
4130	/* Allow time for pending master requests to run */
4131	mac->ops.reset_hw(hw);
4132
4133	/* For parts with AMT enabled, let the firmware know
4134	 * that the network interface is in control
4135	 */
4136	if (adapter->flags & FLAG_HAS_AMT)
4137		e1000e_get_hw_control(adapter);
4138
4139	ew32(WUC, 0);
4140
4141	if (mac->ops.init_hw(hw))
4142		e_err("Hardware Error\n");
4143
4144	e1000_update_mng_vlan(adapter);
4145
4146	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4147	ew32(VET, ETH_P_8021Q);
4148
4149	e1000e_reset_adaptive(hw);
4150
4151	/* restore systim and hwtstamp settings */
4152	e1000e_systim_reset(adapter);
4153
4154	/* Set EEE advertisement as appropriate */
4155	if (adapter->flags2 & FLAG2_HAS_EEE) {
4156		s32 ret_val;
4157		u16 adv_addr;
4158
4159		switch (hw->phy.type) {
4160		case e1000_phy_82579:
4161			adv_addr = I82579_EEE_ADVERTISEMENT;
4162			break;
4163		case e1000_phy_i217:
4164			adv_addr = I217_EEE_ADVERTISEMENT;
4165			break;
4166		default:
4167			dev_err(&adapter->pdev->dev,
4168				"Invalid PHY type setting EEE advertisement\n");
4169			return;
4170		}
4171
4172		ret_val = hw->phy.ops.acquire(hw);
4173		if (ret_val) {
4174			dev_err(&adapter->pdev->dev,
4175				"EEE advertisement - unable to acquire PHY\n");
4176			return;
4177		}
4178
4179		e1000_write_emi_reg_locked(hw, adv_addr,
4180					   hw->dev_spec.ich8lan.eee_disable ?
4181					   0 : adapter->eee_advert);
4182
4183		hw->phy.ops.release(hw);
4184	}
4185
4186	if (!netif_running(adapter->netdev) &&
4187	    !test_bit(__E1000_TESTING, &adapter->state))
4188		e1000_power_down_phy(adapter);
4189
4190	e1000_get_phy_info(hw);
4191
4192	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4193	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4194		u16 phy_data = 0;
4195		/* speed up time to link by disabling smart power down, ignore
4196		 * the return value of this function because there is nothing
4197		 * different we would do if it failed
4198		 */
4199		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4200		phy_data &= ~IGP02E1000_PM_SPD;
4201		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4202	}
4203	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4204		u32 reg;
4205
4206		/* Fextnvm7 @ 0xe4[2] = 1 */
4207		reg = er32(FEXTNVM7);
4208		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4209		ew32(FEXTNVM7, reg);
4210		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4211		reg = er32(FEXTNVM9);
4212		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4213		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4214		ew32(FEXTNVM9, reg);
4215	}
4216
4217}
4218
4219/**
4220 * e1000e_trigger_lsc - trigger an LSC interrupt
4221 * @adapter: 
4222 *
4223 * Fire a link status change interrupt to start the watchdog.
4224 **/
4225static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4226{
4227	struct e1000_hw *hw = &adapter->hw;
4228
4229	if (adapter->msix_entries)
4230		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4231	else
4232		ew32(ICS, E1000_ICS_LSC);
4233}
4234
4235void e1000e_up(struct e1000_adapter *adapter)
4236{
4237	/* hardware has been reset, we need to reload some things */
4238	e1000_configure(adapter);
4239
4240	clear_bit(__E1000_DOWN, &adapter->state);
4241
4242	if (adapter->msix_entries)
4243		e1000_configure_msix(adapter);
4244	e1000_irq_enable(adapter);
4245
4246	/* Tx queue started by watchdog timer when link is up */
4247
4248	e1000e_trigger_lsc(adapter);
4249}
4250
4251static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4252{
4253	struct e1000_hw *hw = &adapter->hw;
4254
4255	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4256		return;
4257
4258	/* flush pending descriptor writebacks to memory */
4259	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4260	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4261
4262	/* execute the writes immediately */
4263	e1e_flush();
4264
4265	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4266	 * write is successful
4267	 */
4268	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4269	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4270
4271	/* execute the writes immediately */
4272	e1e_flush();
4273}
4274
4275static void e1000e_update_stats(struct e1000_adapter *adapter);
4276
4277/**
4278 * e1000e_down - quiesce the device and optionally reset the hardware
4279 * @adapter: board private structure
4280 * @reset: boolean flag to reset the hardware or not
4281 */
4282void e1000e_down(struct e1000_adapter *adapter, bool reset)
4283{
4284	struct net_device *netdev = adapter->netdev;
4285	struct e1000_hw *hw = &adapter->hw;
4286	u32 tctl, rctl;
4287
4288	/* signal that we're down so the interrupt handler does not
4289	 * reschedule our watchdog timer
4290	 */
4291	set_bit(__E1000_DOWN, &adapter->state);
4292
4293	netif_carrier_off(netdev);
4294
4295	/* disable receives in the hardware */
4296	rctl = er32(RCTL);
4297	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4298		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4299	/* flush and sleep below */
4300
4301	netif_stop_queue(netdev);
4302
4303	/* disable transmits in the hardware */
4304	tctl = er32(TCTL);
4305	tctl &= ~E1000_TCTL_EN;
4306	ew32(TCTL, tctl);
4307
4308	/* flush both disables and wait for them to finish */
4309	e1e_flush();
4310	usleep_range(10000, 11000);
4311
4312	e1000_irq_disable(adapter);
4313
4314	napi_synchronize(&adapter->napi);
4315
4316	del_timer_sync(&adapter->watchdog_timer);
4317	del_timer_sync(&adapter->phy_info_timer);
4318
4319	spin_lock(&adapter->stats64_lock);
4320	e1000e_update_stats(adapter);
4321	spin_unlock(&adapter->stats64_lock);
4322
4323	e1000e_flush_descriptors(adapter);
4324
4325	adapter->link_speed = 0;
4326	adapter->link_duplex = 0;
4327
4328	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4329	if ((hw->mac.type >= e1000_pch2lan) &&
4330	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4331	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4332		e_dbg("failed to disable jumbo frame workaround mode\n");
4333
4334	if (!pci_channel_offline(adapter->pdev)) {
4335		if (reset)
4336			e1000e_reset(adapter);
4337		else if (hw->mac.type >= e1000_pch_spt)
4338			e1000_flush_desc_rings(adapter);
4339	}
4340	e1000_clean_tx_ring(adapter->tx_ring);
4341	e1000_clean_rx_ring(adapter->rx_ring);
4342}
4343
4344void e1000e_reinit_locked(struct e1000_adapter *adapter)
4345{
4346	might_sleep();
4347	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4348		usleep_range(1000, 1100);
4349	e1000e_down(adapter, true);
4350	e1000e_up(adapter);
4351	clear_bit(__E1000_RESETTING, &adapter->state);
4352}
4353
4354/**
4355 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4356 * @hw: pointer to the HW structure
4357 * @systim: PHC time value read, sanitized and returned
4358 * @sts: structure to hold system time before and after reading SYSTIML,
4359 * may be NULL
4360 *
4361 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4362 * check to see that the time is incrementing at a reasonable
4363 * rate and is a multiple of incvalue.
4364 **/
4365static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4366				  struct ptp_system_timestamp *sts)
4367{
4368	u64 time_delta, rem, temp;
4369	u64 systim_next;
4370	u32 incvalue;
4371	int i;
4372
4373	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4374	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4375		/* latch SYSTIMH on read of SYSTIML */
4376		ptp_read_system_prets(sts);
4377		systim_next = (u64)er32(SYSTIML);
4378		ptp_read_system_postts(sts);
4379		systim_next |= (u64)er32(SYSTIMH) << 32;
4380
4381		time_delta = systim_next - systim;
4382		temp = time_delta;
4383		/* VMWare users have seen incvalue of zero, don't div / 0 */
4384		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4385
4386		systim = systim_next;
4387
4388		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4389			break;
4390	}
4391
4392	return systim;
4393}
4394
4395/**
4396 * e1000e_read_systim - read SYSTIM register
4397 * @adapter: board private structure
4398 * @sts: structure which will contain system time before and after reading
4399 * SYSTIML, may be NULL
4400 **/
4401u64 e1000e_read_systim(struct e1000_adapter *adapter,
4402		       struct ptp_system_timestamp *sts)
4403{
4404	struct e1000_hw *hw = &adapter->hw;
4405	u32 systimel, systimel_2, systimeh;
4406	u64 systim;
4407	/* SYSTIMH latching upon SYSTIML read does not work well.
4408	 * This means that if SYSTIML overflows after we read it but before
4409	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4410	 * will experience a huge non linear increment in the systime value
4411	 * to fix that we test for overflow and if true, we re-read systime.
4412	 */
4413	ptp_read_system_prets(sts);
4414	systimel = er32(SYSTIML);
4415	ptp_read_system_postts(sts);
4416	systimeh = er32(SYSTIMH);
4417	/* Is systimel is so large that overflow is possible? */
4418	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4419		ptp_read_system_prets(sts);
4420		systimel_2 = er32(SYSTIML);
4421		ptp_read_system_postts(sts);
4422		if (systimel > systimel_2) {
4423			/* There was an overflow, read again SYSTIMH, and use
4424			 * systimel_2
4425			 */
4426			systimeh = er32(SYSTIMH);
4427			systimel = systimel_2;
4428		}
4429	}
4430	systim = (u64)systimel;
4431	systim |= (u64)systimeh << 32;
4432
4433	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4434		systim = e1000e_sanitize_systim(hw, systim, sts);
4435
4436	return systim;
4437}
4438
4439/**
4440 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4441 * @cc: cyclecounter structure
4442 **/
4443static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4444{
4445	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4446						     cc);
4447
4448	return e1000e_read_systim(adapter, NULL);
4449}
4450
4451/**
4452 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4453 * @adapter: board private structure to initialize
4454 *
4455 * e1000_sw_init initializes the Adapter private data structure.
4456 * Fields are initialized based on PCI device information and
4457 * OS network device settings (MTU size).
4458 **/
4459static int e1000_sw_init(struct e1000_adapter *adapter)
4460{
4461	struct net_device *netdev = adapter->netdev;
4462
4463	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4464	adapter->rx_ps_bsize0 = 128;
4465	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4466	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4467	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4468	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4469
4470	spin_lock_init(&adapter->stats64_lock);
4471
4472	e1000e_set_interrupt_capability(adapter);
4473
4474	if (e1000_alloc_queues(adapter))
4475		return -ENOMEM;
4476
4477	/* Setup hardware time stamping cyclecounter */
4478	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4479		adapter->cc.read = e1000e_cyclecounter_read;
4480		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4481		adapter->cc.mult = 1;
4482		/* cc.shift set in e1000e_get_base_tininca() */
4483
4484		spin_lock_init(&adapter->systim_lock);
4485		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4486	}
4487
4488	/* Explicitly disable IRQ since the NIC can be in any state. */
4489	e1000_irq_disable(adapter);
4490
4491	set_bit(__E1000_DOWN, &adapter->state);
4492	return 0;
4493}
4494
4495/**
4496 * e1000_intr_msi_test - Interrupt Handler
4497 * @irq: interrupt number
4498 * @data: pointer to a network interface device structure
4499 **/
4500static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4501{
4502	struct net_device *netdev = data;
4503	struct e1000_adapter *adapter = netdev_priv(netdev);
4504	struct e1000_hw *hw = &adapter->hw;
4505	u32 icr = er32(ICR);
4506
4507	e_dbg("icr is %08X\n", icr);
4508	if (icr & E1000_ICR_RXSEQ) {
4509		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4510		/* Force memory writes to complete before acknowledging the
4511		 * interrupt is handled.
4512		 */
4513		wmb();
4514	}
4515
4516	return IRQ_HANDLED;
4517}
4518
4519/**
4520 * e1000_test_msi_interrupt - Returns 0 for successful test
4521 * @adapter: board private struct
4522 *
4523 * code flow taken from tg3.c
4524 **/
4525static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4526{
4527	struct net_device *netdev = adapter->netdev;
4528	struct e1000_hw *hw = &adapter->hw;
4529	int err;
4530
4531	/* poll_enable hasn't been called yet, so don't need disable */
4532	/* clear any pending events */
4533	er32(ICR);
4534
4535	/* free the real vector and request a test handler */
4536	e1000_free_irq(adapter);
4537	e1000e_reset_interrupt_capability(adapter);
4538
4539	/* Assume that the test fails, if it succeeds then the test
4540	 * MSI irq handler will unset this flag
4541	 */
4542	adapter->flags |= FLAG_MSI_TEST_FAILED;
4543
4544	err = pci_enable_msi(adapter->pdev);
4545	if (err)
4546		goto msi_test_failed;
4547
4548	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4549			  netdev->name, netdev);
4550	if (err) {
4551		pci_disable_msi(adapter->pdev);
4552		goto msi_test_failed;
4553	}
4554
4555	/* Force memory writes to complete before enabling and firing an
4556	 * interrupt.
4557	 */
4558	wmb();
4559
4560	e1000_irq_enable(adapter);
4561
4562	/* fire an unusual interrupt on the test handler */
4563	ew32(ICS, E1000_ICS_RXSEQ);
4564	e1e_flush();
4565	msleep(100);
4566
4567	e1000_irq_disable(adapter);
4568
4569	rmb();			/* read flags after interrupt has been fired */
4570
4571	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4572		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4573		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4574	} else {
4575		e_dbg("MSI interrupt test succeeded!\n");
4576	}
4577
4578	free_irq(adapter->pdev->irq, netdev);
4579	pci_disable_msi(adapter->pdev);
4580
4581msi_test_failed:
4582	e1000e_set_interrupt_capability(adapter);
4583	return e1000_request_irq(adapter);
4584}
4585
4586/**
4587 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4588 * @adapter: board private struct
4589 *
4590 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4591 **/
4592static int e1000_test_msi(struct e1000_adapter *adapter)
4593{
4594	int err;
4595	u16 pci_cmd;
4596
4597	if (!(adapter->flags & FLAG_MSI_ENABLED))
4598		return 0;
4599
4600	/* disable SERR in case the MSI write causes a master abort */
4601	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4602	if (pci_cmd & PCI_COMMAND_SERR)
4603		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4604				      pci_cmd & ~PCI_COMMAND_SERR);
4605
4606	err = e1000_test_msi_interrupt(adapter);
4607
4608	/* re-enable SERR */
4609	if (pci_cmd & PCI_COMMAND_SERR) {
4610		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4611		pci_cmd |= PCI_COMMAND_SERR;
4612		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4613	}
4614
4615	return err;
4616}
4617
4618/**
4619 * e1000e_open - Called when a network interface is made active
4620 * @netdev: network interface device structure
4621 *
4622 * Returns 0 on success, negative value on failure
4623 *
4624 * The open entry point is called when a network interface is made
4625 * active by the system (IFF_UP).  At this point all resources needed
4626 * for transmit and receive operations are allocated, the interrupt
4627 * handler is registered with the OS, the watchdog timer is started,
4628 * and the stack is notified that the interface is ready.
4629 **/
4630int e1000e_open(struct net_device *netdev)
4631{
4632	struct e1000_adapter *adapter = netdev_priv(netdev);
4633	struct e1000_hw *hw = &adapter->hw;
4634	struct pci_dev *pdev = adapter->pdev;
4635	int err;
 
4636
4637	/* disallow open during test */
4638	if (test_bit(__E1000_TESTING, &adapter->state))
4639		return -EBUSY;
4640
4641	pm_runtime_get_sync(&pdev->dev);
4642
4643	netif_carrier_off(netdev);
4644	netif_stop_queue(netdev);
4645
4646	/* allocate transmit descriptors */
4647	err = e1000e_setup_tx_resources(adapter->tx_ring);
4648	if (err)
4649		goto err_setup_tx;
4650
4651	/* allocate receive descriptors */
4652	err = e1000e_setup_rx_resources(adapter->rx_ring);
4653	if (err)
4654		goto err_setup_rx;
4655
4656	/* If AMT is enabled, let the firmware know that the network
4657	 * interface is now open and reset the part to a known state.
4658	 */
4659	if (adapter->flags & FLAG_HAS_AMT) {
4660		e1000e_get_hw_control(adapter);
4661		e1000e_reset(adapter);
4662	}
4663
4664	e1000e_power_up_phy(adapter);
4665
4666	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4667	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4668		e1000_update_mng_vlan(adapter);
4669
4670	/* DMA latency requirement to workaround jumbo issue */
4671	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4672
4673	/* before we allocate an interrupt, we must be ready to handle it.
4674	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4675	 * as soon as we call pci_request_irq, so we have to setup our
4676	 * clean_rx handler before we do so.
4677	 */
4678	e1000_configure(adapter);
4679
4680	err = e1000_request_irq(adapter);
4681	if (err)
4682		goto err_req_irq;
4683
4684	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4685	 * ignore e1000e MSI messages, which means we need to test our MSI
4686	 * interrupt now
4687	 */
4688	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4689		err = e1000_test_msi(adapter);
4690		if (err) {
4691			e_err("Interrupt allocation failed\n");
4692			goto err_req_irq;
4693		}
4694	}
4695
4696	/* From here on the code is the same as e1000e_up() */
4697	clear_bit(__E1000_DOWN, &adapter->state);
4698
 
 
 
 
 
 
4699	napi_enable(&adapter->napi);
 
 
4700
4701	e1000_irq_enable(adapter);
4702
4703	adapter->tx_hang_recheck = false;
4704
4705	hw->mac.get_link_status = true;
4706	pm_runtime_put(&pdev->dev);
4707
4708	e1000e_trigger_lsc(adapter);
4709
4710	return 0;
4711
4712err_req_irq:
4713	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4714	e1000e_release_hw_control(adapter);
4715	e1000_power_down_phy(adapter);
4716	e1000e_free_rx_resources(adapter->rx_ring);
4717err_setup_rx:
4718	e1000e_free_tx_resources(adapter->tx_ring);
4719err_setup_tx:
4720	e1000e_reset(adapter);
4721	pm_runtime_put_sync(&pdev->dev);
4722
4723	return err;
4724}
4725
4726/**
4727 * e1000e_close - Disables a network interface
4728 * @netdev: network interface device structure
4729 *
4730 * Returns 0, this is not allowed to fail
4731 *
4732 * The close entry point is called when an interface is de-activated
4733 * by the OS.  The hardware is still under the drivers control, but
4734 * needs to be disabled.  A global MAC reset is issued to stop the
4735 * hardware, and all transmit and receive resources are freed.
4736 **/
4737int e1000e_close(struct net_device *netdev)
4738{
4739	struct e1000_adapter *adapter = netdev_priv(netdev);
4740	struct pci_dev *pdev = adapter->pdev;
4741	int count = E1000_CHECK_RESET_COUNT;
4742
4743	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4744		usleep_range(10000, 11000);
4745
4746	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4747
4748	pm_runtime_get_sync(&pdev->dev);
4749
4750	if (netif_device_present(netdev)) {
4751		e1000e_down(adapter, true);
4752		e1000_free_irq(adapter);
4753
4754		/* Link status message must follow this format */
4755		netdev_info(netdev, "NIC Link is Down\n");
4756	}
4757
 
 
4758	napi_disable(&adapter->napi);
4759
4760	e1000e_free_tx_resources(adapter->tx_ring);
4761	e1000e_free_rx_resources(adapter->rx_ring);
4762
4763	/* kill manageability vlan ID if supported, but not if a vlan with
4764	 * the same ID is registered on the host OS (let 8021q kill it)
4765	 */
4766	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4767		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4768				       adapter->mng_vlan_id);
4769
4770	/* If AMT is enabled, let the firmware know that the network
4771	 * interface is now closed
4772	 */
4773	if ((adapter->flags & FLAG_HAS_AMT) &&
4774	    !test_bit(__E1000_TESTING, &adapter->state))
4775		e1000e_release_hw_control(adapter);
4776
4777	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4778
4779	pm_runtime_put_sync(&pdev->dev);
4780
4781	return 0;
4782}
4783
4784/**
4785 * e1000_set_mac - Change the Ethernet Address of the NIC
4786 * @netdev: network interface device structure
4787 * @p: pointer to an address structure
4788 *
4789 * Returns 0 on success, negative on failure
4790 **/
4791static int e1000_set_mac(struct net_device *netdev, void *p)
4792{
4793	struct e1000_adapter *adapter = netdev_priv(netdev);
4794	struct e1000_hw *hw = &adapter->hw;
4795	struct sockaddr *addr = p;
4796
4797	if (!is_valid_ether_addr(addr->sa_data))
4798		return -EADDRNOTAVAIL;
4799
4800	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4801	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4802
4803	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4804
4805	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4806		/* activate the work around */
4807		e1000e_set_laa_state_82571(&adapter->hw, 1);
4808
4809		/* Hold a copy of the LAA in RAR[14] This is done so that
4810		 * between the time RAR[0] gets clobbered  and the time it
4811		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4812		 * of the RARs and no incoming packets directed to this port
4813		 * are dropped. Eventually the LAA will be in RAR[0] and
4814		 * RAR[14]
4815		 */
4816		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4817				    adapter->hw.mac.rar_entry_count - 1);
4818	}
4819
4820	return 0;
4821}
4822
4823/**
4824 * e1000e_update_phy_task - work thread to update phy
4825 * @work: pointer to our work struct
4826 *
4827 * this worker thread exists because we must acquire a
4828 * semaphore to read the phy, which we could msleep while
4829 * waiting for it, and we can't msleep in a timer.
4830 **/
4831static void e1000e_update_phy_task(struct work_struct *work)
4832{
4833	struct e1000_adapter *adapter = container_of(work,
4834						     struct e1000_adapter,
4835						     update_phy_task);
4836	struct e1000_hw *hw = &adapter->hw;
4837
4838	if (test_bit(__E1000_DOWN, &adapter->state))
4839		return;
4840
4841	e1000_get_phy_info(hw);
4842
4843	/* Enable EEE on 82579 after link up */
4844	if (hw->phy.type >= e1000_phy_82579)
4845		e1000_set_eee_pchlan(hw);
4846}
4847
4848/**
4849 * e1000_update_phy_info - timre call-back to update PHY info
4850 * @data: pointer to adapter cast into an unsigned long
4851 *
4852 * Need to wait a few seconds after link up to get diagnostic information from
4853 * the phy
4854 **/
4855static void e1000_update_phy_info(struct timer_list *t)
4856{
4857	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4858
4859	if (test_bit(__E1000_DOWN, &adapter->state))
4860		return;
4861
4862	schedule_work(&adapter->update_phy_task);
4863}
4864
4865/**
4866 * e1000e_update_phy_stats - Update the PHY statistics counters
4867 * @adapter: board private structure
4868 *
4869 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4870 **/
4871static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4872{
4873	struct e1000_hw *hw = &adapter->hw;
4874	s32 ret_val;
4875	u16 phy_data;
4876
4877	ret_val = hw->phy.ops.acquire(hw);
4878	if (ret_val)
4879		return;
4880
4881	/* A page set is expensive so check if already on desired page.
4882	 * If not, set to the page with the PHY status registers.
4883	 */
4884	hw->phy.addr = 1;
4885	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4886					   &phy_data);
4887	if (ret_val)
4888		goto release;
4889	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4890		ret_val = hw->phy.ops.set_page(hw,
4891					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4892		if (ret_val)
4893			goto release;
4894	}
4895
4896	/* Single Collision Count */
4897	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4898	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4899	if (!ret_val)
4900		adapter->stats.scc += phy_data;
4901
4902	/* Excessive Collision Count */
4903	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4904	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4905	if (!ret_val)
4906		adapter->stats.ecol += phy_data;
4907
4908	/* Multiple Collision Count */
4909	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4910	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4911	if (!ret_val)
4912		adapter->stats.mcc += phy_data;
4913
4914	/* Late Collision Count */
4915	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4916	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4917	if (!ret_val)
4918		adapter->stats.latecol += phy_data;
4919
4920	/* Collision Count - also used for adaptive IFS */
4921	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4922	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4923	if (!ret_val)
4924		hw->mac.collision_delta = phy_data;
4925
4926	/* Defer Count */
4927	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4928	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4929	if (!ret_val)
4930		adapter->stats.dc += phy_data;
4931
4932	/* Transmit with no CRS */
4933	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4934	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4935	if (!ret_val)
4936		adapter->stats.tncrs += phy_data;
4937
4938release:
4939	hw->phy.ops.release(hw);
4940}
4941
4942/**
4943 * e1000e_update_stats - Update the board statistics counters
4944 * @adapter: board private structure
4945 **/
4946static void e1000e_update_stats(struct e1000_adapter *adapter)
4947{
4948	struct net_device *netdev = adapter->netdev;
4949	struct e1000_hw *hw = &adapter->hw;
4950	struct pci_dev *pdev = adapter->pdev;
4951
4952	/* Prevent stats update while adapter is being reset, or if the pci
4953	 * connection is down.
4954	 */
4955	if (adapter->link_speed == 0)
4956		return;
4957	if (pci_channel_offline(pdev))
4958		return;
4959
4960	adapter->stats.crcerrs += er32(CRCERRS);
4961	adapter->stats.gprc += er32(GPRC);
4962	adapter->stats.gorc += er32(GORCL);
4963	er32(GORCH);		/* Clear gorc */
4964	adapter->stats.bprc += er32(BPRC);
4965	adapter->stats.mprc += er32(MPRC);
4966	adapter->stats.roc += er32(ROC);
4967
4968	adapter->stats.mpc += er32(MPC);
4969
4970	/* Half-duplex statistics */
4971	if (adapter->link_duplex == HALF_DUPLEX) {
4972		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4973			e1000e_update_phy_stats(adapter);
4974		} else {
4975			adapter->stats.scc += er32(SCC);
4976			adapter->stats.ecol += er32(ECOL);
4977			adapter->stats.mcc += er32(MCC);
4978			adapter->stats.latecol += er32(LATECOL);
4979			adapter->stats.dc += er32(DC);
4980
4981			hw->mac.collision_delta = er32(COLC);
4982
4983			if ((hw->mac.type != e1000_82574) &&
4984			    (hw->mac.type != e1000_82583))
4985				adapter->stats.tncrs += er32(TNCRS);
4986		}
4987		adapter->stats.colc += hw->mac.collision_delta;
4988	}
4989
4990	adapter->stats.xonrxc += er32(XONRXC);
4991	adapter->stats.xontxc += er32(XONTXC);
4992	adapter->stats.xoffrxc += er32(XOFFRXC);
4993	adapter->stats.xofftxc += er32(XOFFTXC);
4994	adapter->stats.gptc += er32(GPTC);
4995	adapter->stats.gotc += er32(GOTCL);
4996	er32(GOTCH);		/* Clear gotc */
4997	adapter->stats.rnbc += er32(RNBC);
4998	adapter->stats.ruc += er32(RUC);
4999
5000	adapter->stats.mptc += er32(MPTC);
5001	adapter->stats.bptc += er32(BPTC);
5002
5003	/* used for adaptive IFS */
5004
5005	hw->mac.tx_packet_delta = er32(TPT);
5006	adapter->stats.tpt += hw->mac.tx_packet_delta;
5007
5008	adapter->stats.algnerrc += er32(ALGNERRC);
5009	adapter->stats.rxerrc += er32(RXERRC);
5010	adapter->stats.cexterr += er32(CEXTERR);
5011	adapter->stats.tsctc += er32(TSCTC);
5012	adapter->stats.tsctfc += er32(TSCTFC);
5013
5014	/* Fill out the OS statistics structure */
5015	netdev->stats.multicast = adapter->stats.mprc;
5016	netdev->stats.collisions = adapter->stats.colc;
5017
5018	/* Rx Errors */
5019
5020	/* RLEC on some newer hardware can be incorrect so build
5021	 * our own version based on RUC and ROC
5022	 */
5023	netdev->stats.rx_errors = adapter->stats.rxerrc +
5024	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5025	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5026	netdev->stats.rx_length_errors = adapter->stats.ruc +
5027	    adapter->stats.roc;
5028	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5029	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5030	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5031
5032	/* Tx Errors */
5033	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5034	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5035	netdev->stats.tx_window_errors = adapter->stats.latecol;
5036	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5037
5038	/* Tx Dropped needs to be maintained elsewhere */
5039
5040	/* Management Stats */
5041	adapter->stats.mgptc += er32(MGTPTC);
5042	adapter->stats.mgprc += er32(MGTPRC);
5043	adapter->stats.mgpdc += er32(MGTPDC);
5044
5045	/* Correctable ECC Errors */
5046	if (hw->mac.type >= e1000_pch_lpt) {
5047		u32 pbeccsts = er32(PBECCSTS);
5048
5049		adapter->corr_errors +=
5050		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5051		adapter->uncorr_errors +=
5052		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5053		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5054	}
5055}
5056
5057/**
5058 * e1000_phy_read_status - Update the PHY register status snapshot
5059 * @adapter: board private structure
5060 **/
5061static void e1000_phy_read_status(struct e1000_adapter *adapter)
5062{
5063	struct e1000_hw *hw = &adapter->hw;
5064	struct e1000_phy_regs *phy = &adapter->phy_regs;
5065
5066	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5067	    (er32(STATUS) & E1000_STATUS_LU) &&
5068	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5069		int ret_val;
5070
5071		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5072		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5073		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5074		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5075		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5076		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5077		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5078		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5079		if (ret_val)
5080			e_warn("Error reading PHY register\n");
5081	} else {
5082		/* Do not read PHY registers if link is not up
5083		 * Set values to typical power-on defaults
5084		 */
5085		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5086		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5087			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5088			     BMSR_ERCAP);
5089		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5090				  ADVERTISE_ALL | ADVERTISE_CSMA);
5091		phy->lpa = 0;
5092		phy->expansion = EXPANSION_ENABLENPAGE;
5093		phy->ctrl1000 = ADVERTISE_1000FULL;
5094		phy->stat1000 = 0;
5095		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5096	}
5097}
5098
5099static void e1000_print_link_info(struct e1000_adapter *adapter)
5100{
5101	struct e1000_hw *hw = &adapter->hw;
5102	u32 ctrl = er32(CTRL);
5103
5104	/* Link status message must follow this format for user tools */
5105	netdev_info(adapter->netdev,
5106		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5107		    adapter->link_speed,
5108		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5109		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5110		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5111		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5112}
5113
5114static bool e1000e_has_link(struct e1000_adapter *adapter)
5115{
5116	struct e1000_hw *hw = &adapter->hw;
5117	bool link_active = false;
5118	s32 ret_val = 0;
5119
5120	/* get_link_status is set on LSC (link status) interrupt or
5121	 * Rx sequence error interrupt.  get_link_status will stay
5122	 * true until the check_for_link establishes link
5123	 * for copper adapters ONLY
5124	 */
5125	switch (hw->phy.media_type) {
5126	case e1000_media_type_copper:
5127		if (hw->mac.get_link_status) {
5128			ret_val = hw->mac.ops.check_for_link(hw);
5129			link_active = !hw->mac.get_link_status;
5130		} else {
5131			link_active = true;
5132		}
5133		break;
5134	case e1000_media_type_fiber:
5135		ret_val = hw->mac.ops.check_for_link(hw);
5136		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5137		break;
5138	case e1000_media_type_internal_serdes:
5139		ret_val = hw->mac.ops.check_for_link(hw);
5140		link_active = hw->mac.serdes_has_link;
5141		break;
5142	default:
5143	case e1000_media_type_unknown:
5144		break;
5145	}
5146
5147	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5148	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5149		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5150		e_info("Gigabit has been disabled, downgrading speed\n");
5151	}
5152
5153	return link_active;
5154}
5155
5156static void e1000e_enable_receives(struct e1000_adapter *adapter)
5157{
5158	/* make sure the receive unit is started */
5159	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5160	    (adapter->flags & FLAG_RESTART_NOW)) {
5161		struct e1000_hw *hw = &adapter->hw;
5162		u32 rctl = er32(RCTL);
5163
5164		ew32(RCTL, rctl | E1000_RCTL_EN);
5165		adapter->flags &= ~FLAG_RESTART_NOW;
5166	}
5167}
5168
5169static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5170{
5171	struct e1000_hw *hw = &adapter->hw;
5172
5173	/* With 82574 controllers, PHY needs to be checked periodically
5174	 * for hung state and reset, if two calls return true
5175	 */
5176	if (e1000_check_phy_82574(hw))
5177		adapter->phy_hang_count++;
5178	else
5179		adapter->phy_hang_count = 0;
5180
5181	if (adapter->phy_hang_count > 1) {
5182		adapter->phy_hang_count = 0;
5183		e_dbg("PHY appears hung - resetting\n");
5184		schedule_work(&adapter->reset_task);
5185	}
5186}
5187
5188/**
5189 * e1000_watchdog - Timer Call-back
5190 * @data: pointer to adapter cast into an unsigned long
5191 **/
5192static void e1000_watchdog(struct timer_list *t)
5193{
5194	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5195
5196	/* Do the rest outside of interrupt context */
5197	schedule_work(&adapter->watchdog_task);
5198
5199	/* TODO: make this use queue_delayed_work() */
5200}
5201
5202static void e1000_watchdog_task(struct work_struct *work)
5203{
5204	struct e1000_adapter *adapter = container_of(work,
5205						     struct e1000_adapter,
5206						     watchdog_task);
5207	struct net_device *netdev = adapter->netdev;
5208	struct e1000_mac_info *mac = &adapter->hw.mac;
5209	struct e1000_phy_info *phy = &adapter->hw.phy;
5210	struct e1000_ring *tx_ring = adapter->tx_ring;
5211	u32 dmoff_exit_timeout = 100, tries = 0;
5212	struct e1000_hw *hw = &adapter->hw;
5213	u32 link, tctl, pcim_state;
5214
5215	if (test_bit(__E1000_DOWN, &adapter->state))
5216		return;
5217
5218	link = e1000e_has_link(adapter);
5219	if ((netif_carrier_ok(netdev)) && link) {
5220		/* Cancel scheduled suspend requests. */
5221		pm_runtime_resume(netdev->dev.parent);
5222
5223		e1000e_enable_receives(adapter);
5224		goto link_up;
5225	}
5226
5227	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5228	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5229		e1000_update_mng_vlan(adapter);
5230
5231	if (link) {
5232		if (!netif_carrier_ok(netdev)) {
5233			bool txb2b = true;
5234
5235			/* Cancel scheduled suspend requests. */
5236			pm_runtime_resume(netdev->dev.parent);
5237
5238			/* Checking if MAC is in DMoff state*/
5239			pcim_state = er32(STATUS);
5240			while (pcim_state & E1000_STATUS_PCIM_STATE) {
5241				if (tries++ == dmoff_exit_timeout) {
5242					e_dbg("Error in exiting dmoff\n");
5243					break;
 
 
 
 
 
 
 
 
5244				}
5245				usleep_range(10000, 20000);
5246				pcim_state = er32(STATUS);
5247
5248				/* Checking if MAC exited DMoff state */
5249				if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5250					e1000_phy_hw_reset(&adapter->hw);
5251			}
5252
5253			/* update snapshot of PHY registers on LSC */
5254			e1000_phy_read_status(adapter);
5255			mac->ops.get_link_up_info(&adapter->hw,
5256						  &adapter->link_speed,
5257						  &adapter->link_duplex);
5258			e1000_print_link_info(adapter);
5259
5260			/* check if SmartSpeed worked */
5261			e1000e_check_downshift(hw);
5262			if (phy->speed_downgraded)
5263				netdev_warn(netdev,
5264					    "Link Speed was downgraded by SmartSpeed\n");
5265
5266			/* On supported PHYs, check for duplex mismatch only
5267			 * if link has autonegotiated at 10/100 half
5268			 */
5269			if ((hw->phy.type == e1000_phy_igp_3 ||
5270			     hw->phy.type == e1000_phy_bm) &&
5271			    hw->mac.autoneg &&
5272			    (adapter->link_speed == SPEED_10 ||
5273			     adapter->link_speed == SPEED_100) &&
5274			    (adapter->link_duplex == HALF_DUPLEX)) {
5275				u16 autoneg_exp;
5276
5277				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5278
5279				if (!(autoneg_exp & EXPANSION_NWAY))
5280					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5281			}
5282
5283			/* adjust timeout factor according to speed/duplex */
5284			adapter->tx_timeout_factor = 1;
5285			switch (adapter->link_speed) {
5286			case SPEED_10:
5287				txb2b = false;
5288				adapter->tx_timeout_factor = 16;
5289				break;
5290			case SPEED_100:
5291				txb2b = false;
5292				adapter->tx_timeout_factor = 10;
5293				break;
5294			}
5295
5296			/* workaround: re-program speed mode bit after
5297			 * link-up event
5298			 */
5299			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5300			    !txb2b) {
5301				u32 tarc0;
5302
5303				tarc0 = er32(TARC(0));
5304				tarc0 &= ~SPEED_MODE_BIT;
5305				ew32(TARC(0), tarc0);
5306			}
5307
5308			/* disable TSO for pcie and 10/100 speeds, to avoid
5309			 * some hardware issues
5310			 */
5311			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5312				switch (adapter->link_speed) {
5313				case SPEED_10:
5314				case SPEED_100:
5315					e_info("10/100 speed: disabling TSO\n");
5316					netdev->features &= ~NETIF_F_TSO;
5317					netdev->features &= ~NETIF_F_TSO6;
5318					break;
5319				case SPEED_1000:
5320					netdev->features |= NETIF_F_TSO;
5321					netdev->features |= NETIF_F_TSO6;
5322					break;
5323				default:
5324					/* oops */
5325					break;
5326				}
5327				if (hw->mac.type == e1000_pch_spt) {
5328					netdev->features &= ~NETIF_F_TSO;
5329					netdev->features &= ~NETIF_F_TSO6;
5330				}
5331			}
5332
5333			/* enable transmits in the hardware, need to do this
5334			 * after setting TARC(0)
5335			 */
5336			tctl = er32(TCTL);
5337			tctl |= E1000_TCTL_EN;
5338			ew32(TCTL, tctl);
5339
5340			/* Perform any post-link-up configuration before
5341			 * reporting link up.
5342			 */
5343			if (phy->ops.cfg_on_link_up)
5344				phy->ops.cfg_on_link_up(hw);
5345
5346			netif_wake_queue(netdev);
5347			netif_carrier_on(netdev);
5348
5349			if (!test_bit(__E1000_DOWN, &adapter->state))
5350				mod_timer(&adapter->phy_info_timer,
5351					  round_jiffies(jiffies + 2 * HZ));
5352		}
5353	} else {
5354		if (netif_carrier_ok(netdev)) {
5355			adapter->link_speed = 0;
5356			adapter->link_duplex = 0;
5357			/* Link status message must follow this format */
5358			netdev_info(netdev, "NIC Link is Down\n");
5359			netif_carrier_off(netdev);
5360			netif_stop_queue(netdev);
5361			if (!test_bit(__E1000_DOWN, &adapter->state))
5362				mod_timer(&adapter->phy_info_timer,
5363					  round_jiffies(jiffies + 2 * HZ));
5364
5365			/* 8000ES2LAN requires a Rx packet buffer work-around
5366			 * on link down event; reset the controller to flush
5367			 * the Rx packet buffer.
5368			 */
5369			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5370				adapter->flags |= FLAG_RESTART_NOW;
5371			else
5372				pm_schedule_suspend(netdev->dev.parent,
5373						    LINK_TIMEOUT);
5374		}
5375	}
5376
5377link_up:
5378	spin_lock(&adapter->stats64_lock);
5379	e1000e_update_stats(adapter);
5380
5381	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5382	adapter->tpt_old = adapter->stats.tpt;
5383	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5384	adapter->colc_old = adapter->stats.colc;
5385
5386	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5387	adapter->gorc_old = adapter->stats.gorc;
5388	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5389	adapter->gotc_old = adapter->stats.gotc;
5390	spin_unlock(&adapter->stats64_lock);
5391
5392	/* If the link is lost the controller stops DMA, but
5393	 * if there is queued Tx work it cannot be done.  So
5394	 * reset the controller to flush the Tx packet buffers.
5395	 */
5396	if (!netif_carrier_ok(netdev) &&
5397	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5398		adapter->flags |= FLAG_RESTART_NOW;
5399
5400	/* If reset is necessary, do it outside of interrupt context. */
5401	if (adapter->flags & FLAG_RESTART_NOW) {
5402		schedule_work(&adapter->reset_task);
5403		/* return immediately since reset is imminent */
5404		return;
5405	}
5406
5407	e1000e_update_adaptive(&adapter->hw);
5408
5409	/* Simple mode for Interrupt Throttle Rate (ITR) */
5410	if (adapter->itr_setting == 4) {
5411		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5412		 * Total asymmetrical Tx or Rx gets ITR=8000;
5413		 * everyone else is between 2000-8000.
5414		 */
5415		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5416		u32 dif = (adapter->gotc > adapter->gorc ?
5417			   adapter->gotc - adapter->gorc :
5418			   adapter->gorc - adapter->gotc) / 10000;
5419		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5420
5421		e1000e_write_itr(adapter, itr);
5422	}
5423
5424	/* Cause software interrupt to ensure Rx ring is cleaned */
5425	if (adapter->msix_entries)
5426		ew32(ICS, adapter->rx_ring->ims_val);
5427	else
5428		ew32(ICS, E1000_ICS_RXDMT0);
5429
5430	/* flush pending descriptors to memory before detecting Tx hang */
5431	e1000e_flush_descriptors(adapter);
5432
5433	/* Force detection of hung controller every watchdog period */
5434	adapter->detect_tx_hung = true;
5435
5436	/* With 82571 controllers, LAA may be overwritten due to controller
5437	 * reset from the other port. Set the appropriate LAA in RAR[0]
5438	 */
5439	if (e1000e_get_laa_state_82571(hw))
5440		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5441
5442	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5443		e1000e_check_82574_phy_workaround(adapter);
5444
5445	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5446	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5447		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5448		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5449			er32(RXSTMPH);
5450			adapter->rx_hwtstamp_cleared++;
5451		} else {
5452			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5453		}
5454	}
5455
5456	/* Reset the timer */
5457	if (!test_bit(__E1000_DOWN, &adapter->state))
5458		mod_timer(&adapter->watchdog_timer,
5459			  round_jiffies(jiffies + 2 * HZ));
5460}
5461
5462#define E1000_TX_FLAGS_CSUM		0x00000001
5463#define E1000_TX_FLAGS_VLAN		0x00000002
5464#define E1000_TX_FLAGS_TSO		0x00000004
5465#define E1000_TX_FLAGS_IPV4		0x00000008
5466#define E1000_TX_FLAGS_NO_FCS		0x00000010
5467#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5468#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5469#define E1000_TX_FLAGS_VLAN_SHIFT	16
5470
5471static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5472		     __be16 protocol)
5473{
5474	struct e1000_context_desc *context_desc;
5475	struct e1000_buffer *buffer_info;
5476	unsigned int i;
5477	u32 cmd_length = 0;
5478	u16 ipcse = 0, mss;
5479	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5480	int err;
5481
5482	if (!skb_is_gso(skb))
5483		return 0;
5484
5485	err = skb_cow_head(skb, 0);
5486	if (err < 0)
5487		return err;
5488
5489	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5490	mss = skb_shinfo(skb)->gso_size;
5491	if (protocol == htons(ETH_P_IP)) {
5492		struct iphdr *iph = ip_hdr(skb);
5493		iph->tot_len = 0;
5494		iph->check = 0;
5495		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5496							 0, IPPROTO_TCP, 0);
5497		cmd_length = E1000_TXD_CMD_IP;
5498		ipcse = skb_transport_offset(skb) - 1;
5499	} else if (skb_is_gso_v6(skb)) {
5500		tcp_v6_gso_csum_prep(skb);
5501		ipcse = 0;
5502	}
5503	ipcss = skb_network_offset(skb);
5504	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5505	tucss = skb_transport_offset(skb);
5506	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5507
5508	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5509		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5510
5511	i = tx_ring->next_to_use;
5512	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5513	buffer_info = &tx_ring->buffer_info[i];
5514
5515	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5516	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5517	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5518	context_desc->upper_setup.tcp_fields.tucss = tucss;
5519	context_desc->upper_setup.tcp_fields.tucso = tucso;
5520	context_desc->upper_setup.tcp_fields.tucse = 0;
5521	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5522	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5523	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5524
5525	buffer_info->time_stamp = jiffies;
5526	buffer_info->next_to_watch = i;
5527
5528	i++;
5529	if (i == tx_ring->count)
5530		i = 0;
5531	tx_ring->next_to_use = i;
5532
5533	return 1;
5534}
5535
5536static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5537			  __be16 protocol)
5538{
5539	struct e1000_adapter *adapter = tx_ring->adapter;
5540	struct e1000_context_desc *context_desc;
5541	struct e1000_buffer *buffer_info;
5542	unsigned int i;
5543	u8 css;
5544	u32 cmd_len = E1000_TXD_CMD_DEXT;
5545
5546	if (skb->ip_summed != CHECKSUM_PARTIAL)
5547		return false;
5548
5549	switch (protocol) {
5550	case cpu_to_be16(ETH_P_IP):
5551		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5552			cmd_len |= E1000_TXD_CMD_TCP;
5553		break;
5554	case cpu_to_be16(ETH_P_IPV6):
5555		/* XXX not handling all IPV6 headers */
5556		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5557			cmd_len |= E1000_TXD_CMD_TCP;
5558		break;
5559	default:
5560		if (unlikely(net_ratelimit()))
5561			e_warn("checksum_partial proto=%x!\n",
5562			       be16_to_cpu(protocol));
5563		break;
5564	}
5565
5566	css = skb_checksum_start_offset(skb);
5567
5568	i = tx_ring->next_to_use;
5569	buffer_info = &tx_ring->buffer_info[i];
5570	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5571
5572	context_desc->lower_setup.ip_config = 0;
5573	context_desc->upper_setup.tcp_fields.tucss = css;
5574	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5575	context_desc->upper_setup.tcp_fields.tucse = 0;
5576	context_desc->tcp_seg_setup.data = 0;
5577	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5578
5579	buffer_info->time_stamp = jiffies;
5580	buffer_info->next_to_watch = i;
5581
5582	i++;
5583	if (i == tx_ring->count)
5584		i = 0;
5585	tx_ring->next_to_use = i;
5586
5587	return true;
5588}
5589
5590static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5591			unsigned int first, unsigned int max_per_txd,
5592			unsigned int nr_frags)
5593{
5594	struct e1000_adapter *adapter = tx_ring->adapter;
5595	struct pci_dev *pdev = adapter->pdev;
5596	struct e1000_buffer *buffer_info;
5597	unsigned int len = skb_headlen(skb);
5598	unsigned int offset = 0, size, count = 0, i;
5599	unsigned int f, bytecount, segs;
5600
5601	i = tx_ring->next_to_use;
5602
5603	while (len) {
5604		buffer_info = &tx_ring->buffer_info[i];
5605		size = min(len, max_per_txd);
5606
5607		buffer_info->length = size;
5608		buffer_info->time_stamp = jiffies;
5609		buffer_info->next_to_watch = i;
5610		buffer_info->dma = dma_map_single(&pdev->dev,
5611						  skb->data + offset,
5612						  size, DMA_TO_DEVICE);
5613		buffer_info->mapped_as_page = false;
5614		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5615			goto dma_error;
5616
5617		len -= size;
5618		offset += size;
5619		count++;
5620
5621		if (len) {
5622			i++;
5623			if (i == tx_ring->count)
5624				i = 0;
5625		}
5626	}
5627
5628	for (f = 0; f < nr_frags; f++) {
5629		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5630
5631		len = skb_frag_size(frag);
5632		offset = 0;
5633
5634		while (len) {
5635			i++;
5636			if (i == tx_ring->count)
5637				i = 0;
5638
5639			buffer_info = &tx_ring->buffer_info[i];
5640			size = min(len, max_per_txd);
5641
5642			buffer_info->length = size;
5643			buffer_info->time_stamp = jiffies;
5644			buffer_info->next_to_watch = i;
5645			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5646							    offset, size,
5647							    DMA_TO_DEVICE);
5648			buffer_info->mapped_as_page = true;
5649			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5650				goto dma_error;
5651
5652			len -= size;
5653			offset += size;
5654			count++;
5655		}
5656	}
5657
5658	segs = skb_shinfo(skb)->gso_segs ? : 1;
5659	/* multiply data chunks by size of headers */
5660	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5661
5662	tx_ring->buffer_info[i].skb = skb;
5663	tx_ring->buffer_info[i].segs = segs;
5664	tx_ring->buffer_info[i].bytecount = bytecount;
5665	tx_ring->buffer_info[first].next_to_watch = i;
5666
5667	return count;
5668
5669dma_error:
5670	dev_err(&pdev->dev, "Tx DMA map failed\n");
5671	buffer_info->dma = 0;
5672	if (count)
5673		count--;
5674
5675	while (count--) {
5676		if (i == 0)
5677			i += tx_ring->count;
5678		i--;
5679		buffer_info = &tx_ring->buffer_info[i];
5680		e1000_put_txbuf(tx_ring, buffer_info, true);
5681	}
5682
5683	return 0;
5684}
5685
5686static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5687{
5688	struct e1000_adapter *adapter = tx_ring->adapter;
5689	struct e1000_tx_desc *tx_desc = NULL;
5690	struct e1000_buffer *buffer_info;
5691	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5692	unsigned int i;
5693
5694	if (tx_flags & E1000_TX_FLAGS_TSO) {
5695		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5696		    E1000_TXD_CMD_TSE;
5697		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5698
5699		if (tx_flags & E1000_TX_FLAGS_IPV4)
5700			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5701	}
5702
5703	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5704		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5705		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5706	}
5707
5708	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5709		txd_lower |= E1000_TXD_CMD_VLE;
5710		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5711	}
5712
5713	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5714		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5715
5716	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5717		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5718		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5719	}
5720
5721	i = tx_ring->next_to_use;
5722
5723	do {
5724		buffer_info = &tx_ring->buffer_info[i];
5725		tx_desc = E1000_TX_DESC(*tx_ring, i);
5726		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5727		tx_desc->lower.data = cpu_to_le32(txd_lower |
5728						  buffer_info->length);
5729		tx_desc->upper.data = cpu_to_le32(txd_upper);
5730
5731		i++;
5732		if (i == tx_ring->count)
5733			i = 0;
5734	} while (--count > 0);
5735
5736	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5737
5738	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5739	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5740		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5741
5742	/* Force memory writes to complete before letting h/w
5743	 * know there are new descriptors to fetch.  (Only
5744	 * applicable for weak-ordered memory model archs,
5745	 * such as IA-64).
5746	 */
5747	wmb();
5748
5749	tx_ring->next_to_use = i;
5750}
5751
5752#define MINIMUM_DHCP_PACKET_SIZE 282
5753static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5754				    struct sk_buff *skb)
5755{
5756	struct e1000_hw *hw = &adapter->hw;
5757	u16 length, offset;
5758
5759	if (skb_vlan_tag_present(skb) &&
5760	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5761	      (adapter->hw.mng_cookie.status &
5762	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5763		return 0;
5764
5765	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5766		return 0;
5767
5768	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5769		return 0;
5770
5771	{
5772		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5773		struct udphdr *udp;
5774
5775		if (ip->protocol != IPPROTO_UDP)
5776			return 0;
5777
5778		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5779		if (ntohs(udp->dest) != 67)
5780			return 0;
5781
5782		offset = (u8 *)udp + 8 - skb->data;
5783		length = skb->len - offset;
5784		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5785	}
5786
5787	return 0;
5788}
5789
5790static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5791{
5792	struct e1000_adapter *adapter = tx_ring->adapter;
5793
5794	netif_stop_queue(adapter->netdev);
5795	/* Herbert's original patch had:
5796	 *  smp_mb__after_netif_stop_queue();
5797	 * but since that doesn't exist yet, just open code it.
5798	 */
5799	smp_mb();
5800
5801	/* We need to check again in a case another CPU has just
5802	 * made room available.
5803	 */
5804	if (e1000_desc_unused(tx_ring) < size)
5805		return -EBUSY;
5806
5807	/* A reprieve! */
5808	netif_start_queue(adapter->netdev);
5809	++adapter->restart_queue;
5810	return 0;
5811}
5812
5813static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5814{
5815	BUG_ON(size > tx_ring->count);
5816
5817	if (e1000_desc_unused(tx_ring) >= size)
5818		return 0;
5819	return __e1000_maybe_stop_tx(tx_ring, size);
5820}
5821
5822static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5823				    struct net_device *netdev)
5824{
5825	struct e1000_adapter *adapter = netdev_priv(netdev);
5826	struct e1000_ring *tx_ring = adapter->tx_ring;
5827	unsigned int first;
5828	unsigned int tx_flags = 0;
5829	unsigned int len = skb_headlen(skb);
5830	unsigned int nr_frags;
5831	unsigned int mss;
5832	int count = 0;
5833	int tso;
5834	unsigned int f;
5835	__be16 protocol = vlan_get_protocol(skb);
5836
5837	if (test_bit(__E1000_DOWN, &adapter->state)) {
5838		dev_kfree_skb_any(skb);
5839		return NETDEV_TX_OK;
5840	}
5841
5842	if (skb->len <= 0) {
5843		dev_kfree_skb_any(skb);
5844		return NETDEV_TX_OK;
5845	}
5846
5847	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5848	 * pad skb in order to meet this minimum size requirement
5849	 */
5850	if (skb_put_padto(skb, 17))
5851		return NETDEV_TX_OK;
5852
5853	mss = skb_shinfo(skb)->gso_size;
5854	if (mss) {
5855		u8 hdr_len;
5856
5857		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5858		 * points to just header, pull a few bytes of payload from
5859		 * frags into skb->data
5860		 */
5861		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5862		/* we do this workaround for ES2LAN, but it is un-necessary,
5863		 * avoiding it could save a lot of cycles
5864		 */
5865		if (skb->data_len && (hdr_len == len)) {
5866			unsigned int pull_size;
5867
5868			pull_size = min_t(unsigned int, 4, skb->data_len);
5869			if (!__pskb_pull_tail(skb, pull_size)) {
5870				e_err("__pskb_pull_tail failed.\n");
5871				dev_kfree_skb_any(skb);
5872				return NETDEV_TX_OK;
5873			}
5874			len = skb_headlen(skb);
5875		}
5876	}
5877
5878	/* reserve a descriptor for the offload context */
5879	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5880		count++;
5881	count++;
5882
5883	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5884
5885	nr_frags = skb_shinfo(skb)->nr_frags;
5886	for (f = 0; f < nr_frags; f++)
5887		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5888				      adapter->tx_fifo_limit);
5889
5890	if (adapter->hw.mac.tx_pkt_filtering)
5891		e1000_transfer_dhcp_info(adapter, skb);
5892
5893	/* need: count + 2 desc gap to keep tail from touching
5894	 * head, otherwise try next time
5895	 */
5896	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5897		return NETDEV_TX_BUSY;
5898
5899	if (skb_vlan_tag_present(skb)) {
5900		tx_flags |= E1000_TX_FLAGS_VLAN;
5901		tx_flags |= (skb_vlan_tag_get(skb) <<
5902			     E1000_TX_FLAGS_VLAN_SHIFT);
5903	}
5904
5905	first = tx_ring->next_to_use;
5906
5907	tso = e1000_tso(tx_ring, skb, protocol);
5908	if (tso < 0) {
5909		dev_kfree_skb_any(skb);
5910		return NETDEV_TX_OK;
5911	}
5912
5913	if (tso)
5914		tx_flags |= E1000_TX_FLAGS_TSO;
5915	else if (e1000_tx_csum(tx_ring, skb, protocol))
5916		tx_flags |= E1000_TX_FLAGS_CSUM;
5917
5918	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5919	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5920	 * no longer assume, we must.
5921	 */
5922	if (protocol == htons(ETH_P_IP))
5923		tx_flags |= E1000_TX_FLAGS_IPV4;
5924
5925	if (unlikely(skb->no_fcs))
5926		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5927
5928	/* if count is 0 then mapping error has occurred */
5929	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5930			     nr_frags);
5931	if (count) {
5932		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5933		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5934			if (!adapter->tx_hwtstamp_skb) {
5935				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5936				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5937				adapter->tx_hwtstamp_skb = skb_get(skb);
5938				adapter->tx_hwtstamp_start = jiffies;
5939				schedule_work(&adapter->tx_hwtstamp_work);
5940			} else {
5941				adapter->tx_hwtstamp_skipped++;
5942			}
5943		}
5944
5945		skb_tx_timestamp(skb);
5946
5947		netdev_sent_queue(netdev, skb->len);
5948		e1000_tx_queue(tx_ring, tx_flags, count);
5949		/* Make sure there is space in the ring for the next send. */
5950		e1000_maybe_stop_tx(tx_ring,
5951				    (MAX_SKB_FRAGS *
5952				     DIV_ROUND_UP(PAGE_SIZE,
5953						  adapter->tx_fifo_limit) + 2));
5954
5955		if (!netdev_xmit_more() ||
5956		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5957			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5958				e1000e_update_tdt_wa(tx_ring,
5959						     tx_ring->next_to_use);
5960			else
5961				writel(tx_ring->next_to_use, tx_ring->tail);
5962		}
5963	} else {
5964		dev_kfree_skb_any(skb);
5965		tx_ring->buffer_info[first].time_stamp = 0;
5966		tx_ring->next_to_use = first;
5967	}
5968
5969	return NETDEV_TX_OK;
5970}
5971
5972/**
5973 * e1000_tx_timeout - Respond to a Tx Hang
5974 * @netdev: network interface device structure
 
5975 **/
5976static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5977{
5978	struct e1000_adapter *adapter = netdev_priv(netdev);
5979
5980	/* Do the reset outside of interrupt context */
5981	adapter->tx_timeout_count++;
5982	schedule_work(&adapter->reset_task);
5983}
5984
5985static void e1000_reset_task(struct work_struct *work)
5986{
5987	struct e1000_adapter *adapter;
5988	adapter = container_of(work, struct e1000_adapter, reset_task);
5989
 
5990	/* don't run the task if already down */
5991	if (test_bit(__E1000_DOWN, &adapter->state))
 
5992		return;
 
5993
5994	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5995		e1000e_dump(adapter);
5996		e_err("Reset adapter unexpectedly\n");
5997	}
5998	e1000e_reinit_locked(adapter);
 
5999}
6000
6001/**
6002 * e1000_get_stats64 - Get System Network Statistics
6003 * @netdev: network interface device structure
6004 * @stats: rtnl_link_stats64 pointer
6005 *
6006 * Returns the address of the device statistics structure.
6007 **/
6008void e1000e_get_stats64(struct net_device *netdev,
6009			struct rtnl_link_stats64 *stats)
6010{
6011	struct e1000_adapter *adapter = netdev_priv(netdev);
6012
6013	spin_lock(&adapter->stats64_lock);
6014	e1000e_update_stats(adapter);
6015	/* Fill out the OS statistics structure */
6016	stats->rx_bytes = adapter->stats.gorc;
6017	stats->rx_packets = adapter->stats.gprc;
6018	stats->tx_bytes = adapter->stats.gotc;
6019	stats->tx_packets = adapter->stats.gptc;
6020	stats->multicast = adapter->stats.mprc;
6021	stats->collisions = adapter->stats.colc;
6022
6023	/* Rx Errors */
6024
6025	/* RLEC on some newer hardware can be incorrect so build
6026	 * our own version based on RUC and ROC
6027	 */
6028	stats->rx_errors = adapter->stats.rxerrc +
6029	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6030	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6031	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6032	stats->rx_crc_errors = adapter->stats.crcerrs;
6033	stats->rx_frame_errors = adapter->stats.algnerrc;
6034	stats->rx_missed_errors = adapter->stats.mpc;
6035
6036	/* Tx Errors */
6037	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6038	stats->tx_aborted_errors = adapter->stats.ecol;
6039	stats->tx_window_errors = adapter->stats.latecol;
6040	stats->tx_carrier_errors = adapter->stats.tncrs;
6041
6042	/* Tx Dropped needs to be maintained elsewhere */
6043
6044	spin_unlock(&adapter->stats64_lock);
6045}
6046
6047/**
6048 * e1000_change_mtu - Change the Maximum Transfer Unit
6049 * @netdev: network interface device structure
6050 * @new_mtu: new value for maximum frame size
6051 *
6052 * Returns 0 on success, negative on failure
6053 **/
6054static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6055{
6056	struct e1000_adapter *adapter = netdev_priv(netdev);
6057	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6058
6059	/* Jumbo frame support */
6060	if ((new_mtu > ETH_DATA_LEN) &&
6061	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6062		e_err("Jumbo Frames not supported.\n");
6063		return -EINVAL;
6064	}
6065
6066	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6067	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6068	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6069	    (new_mtu > ETH_DATA_LEN)) {
6070		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6071		return -EINVAL;
6072	}
6073
6074	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6075		usleep_range(1000, 1100);
6076	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6077	adapter->max_frame_size = max_frame;
6078	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6079		   netdev->mtu, new_mtu);
6080	netdev->mtu = new_mtu;
6081
6082	pm_runtime_get_sync(netdev->dev.parent);
6083
6084	if (netif_running(netdev))
6085		e1000e_down(adapter, true);
6086
6087	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6088	 * means we reserve 2 more, this pushes us to allocate from the next
6089	 * larger slab size.
6090	 * i.e. RXBUFFER_2048 --> size-4096 slab
6091	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6092	 * fragmented skbs
6093	 */
6094
6095	if (max_frame <= 2048)
6096		adapter->rx_buffer_len = 2048;
6097	else
6098		adapter->rx_buffer_len = 4096;
6099
6100	/* adjust allocation if LPE protects us, and we aren't using SBP */
6101	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6102		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6103
6104	if (netif_running(netdev))
6105		e1000e_up(adapter);
6106	else
6107		e1000e_reset(adapter);
6108
6109	pm_runtime_put_sync(netdev->dev.parent);
6110
6111	clear_bit(__E1000_RESETTING, &adapter->state);
6112
6113	return 0;
6114}
6115
6116static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6117			   int cmd)
6118{
6119	struct e1000_adapter *adapter = netdev_priv(netdev);
6120	struct mii_ioctl_data *data = if_mii(ifr);
6121
6122	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6123		return -EOPNOTSUPP;
6124
6125	switch (cmd) {
6126	case SIOCGMIIPHY:
6127		data->phy_id = adapter->hw.phy.addr;
6128		break;
6129	case SIOCGMIIREG:
6130		e1000_phy_read_status(adapter);
6131
6132		switch (data->reg_num & 0x1F) {
6133		case MII_BMCR:
6134			data->val_out = adapter->phy_regs.bmcr;
6135			break;
6136		case MII_BMSR:
6137			data->val_out = adapter->phy_regs.bmsr;
6138			break;
6139		case MII_PHYSID1:
6140			data->val_out = (adapter->hw.phy.id >> 16);
6141			break;
6142		case MII_PHYSID2:
6143			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6144			break;
6145		case MII_ADVERTISE:
6146			data->val_out = adapter->phy_regs.advertise;
6147			break;
6148		case MII_LPA:
6149			data->val_out = adapter->phy_regs.lpa;
6150			break;
6151		case MII_EXPANSION:
6152			data->val_out = adapter->phy_regs.expansion;
6153			break;
6154		case MII_CTRL1000:
6155			data->val_out = adapter->phy_regs.ctrl1000;
6156			break;
6157		case MII_STAT1000:
6158			data->val_out = adapter->phy_regs.stat1000;
6159			break;
6160		case MII_ESTATUS:
6161			data->val_out = adapter->phy_regs.estatus;
6162			break;
6163		default:
6164			return -EIO;
6165		}
6166		break;
6167	case SIOCSMIIREG:
6168	default:
6169		return -EOPNOTSUPP;
6170	}
6171	return 0;
6172}
6173
6174/**
6175 * e1000e_hwtstamp_ioctl - control hardware time stamping
6176 * @netdev: network interface device structure
6177 * @ifreq: interface request
6178 *
6179 * Outgoing time stamping can be enabled and disabled. Play nice and
6180 * disable it when requested, although it shouldn't cause any overhead
6181 * when no packet needs it. At most one packet in the queue may be
6182 * marked for time stamping, otherwise it would be impossible to tell
6183 * for sure to which packet the hardware time stamp belongs.
6184 *
6185 * Incoming time stamping has to be configured via the hardware filters.
6186 * Not all combinations are supported, in particular event type has to be
6187 * specified. Matching the kind of event packet is not supported, with the
6188 * exception of "all V2 events regardless of level 2 or 4".
6189 **/
6190static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6191{
6192	struct e1000_adapter *adapter = netdev_priv(netdev);
6193	struct hwtstamp_config config;
6194	int ret_val;
6195
6196	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6197		return -EFAULT;
6198
6199	ret_val = e1000e_config_hwtstamp(adapter, &config);
6200	if (ret_val)
6201		return ret_val;
6202
6203	switch (config.rx_filter) {
6204	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6205	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6206	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6207	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6208	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6209	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6210		/* With V2 type filters which specify a Sync or Delay Request,
6211		 * Path Delay Request/Response messages are also time stamped
6212		 * by hardware so notify the caller the requested packets plus
6213		 * some others are time stamped.
6214		 */
6215		config.rx_filter = HWTSTAMP_FILTER_SOME;
6216		break;
6217	default:
6218		break;
6219	}
6220
6221	return copy_to_user(ifr->ifr_data, &config,
6222			    sizeof(config)) ? -EFAULT : 0;
6223}
6224
6225static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6226{
6227	struct e1000_adapter *adapter = netdev_priv(netdev);
6228
6229	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6230			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6231}
6232
6233static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6234{
6235	switch (cmd) {
6236	case SIOCGMIIPHY:
6237	case SIOCGMIIREG:
6238	case SIOCSMIIREG:
6239		return e1000_mii_ioctl(netdev, ifr, cmd);
6240	case SIOCSHWTSTAMP:
6241		return e1000e_hwtstamp_set(netdev, ifr);
6242	case SIOCGHWTSTAMP:
6243		return e1000e_hwtstamp_get(netdev, ifr);
6244	default:
6245		return -EOPNOTSUPP;
6246	}
6247}
6248
6249static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6250{
6251	struct e1000_hw *hw = &adapter->hw;
6252	u32 i, mac_reg, wuc;
6253	u16 phy_reg, wuc_enable;
6254	int retval;
6255
6256	/* copy MAC RARs to PHY RARs */
6257	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6258
6259	retval = hw->phy.ops.acquire(hw);
6260	if (retval) {
6261		e_err("Could not acquire PHY\n");
6262		return retval;
6263	}
6264
6265	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6266	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6267	if (retval)
6268		goto release;
6269
6270	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6271	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6272		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6273		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6274					   (u16)(mac_reg & 0xFFFF));
6275		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6276					   (u16)((mac_reg >> 16) & 0xFFFF));
6277	}
6278
6279	/* configure PHY Rx Control register */
6280	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6281	mac_reg = er32(RCTL);
6282	if (mac_reg & E1000_RCTL_UPE)
6283		phy_reg |= BM_RCTL_UPE;
6284	if (mac_reg & E1000_RCTL_MPE)
6285		phy_reg |= BM_RCTL_MPE;
6286	phy_reg &= ~(BM_RCTL_MO_MASK);
6287	if (mac_reg & E1000_RCTL_MO_3)
6288		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6289			    << BM_RCTL_MO_SHIFT);
6290	if (mac_reg & E1000_RCTL_BAM)
6291		phy_reg |= BM_RCTL_BAM;
6292	if (mac_reg & E1000_RCTL_PMCF)
6293		phy_reg |= BM_RCTL_PMCF;
6294	mac_reg = er32(CTRL);
6295	if (mac_reg & E1000_CTRL_RFCE)
6296		phy_reg |= BM_RCTL_RFCE;
6297	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6298
6299	wuc = E1000_WUC_PME_EN;
6300	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6301		wuc |= E1000_WUC_APME;
6302
6303	/* enable PHY wakeup in MAC register */
6304	ew32(WUFC, wufc);
6305	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6306		   E1000_WUC_PME_STATUS | wuc));
6307
6308	/* configure and enable PHY wakeup in PHY registers */
6309	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6310	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6311
6312	/* activate PHY wakeup */
6313	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6314	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6315	if (retval)
6316		e_err("Could not set PHY Host Wakeup bit\n");
6317release:
6318	hw->phy.ops.release(hw);
6319
6320	return retval;
6321}
6322
6323static void e1000e_flush_lpic(struct pci_dev *pdev)
6324{
6325	struct net_device *netdev = pci_get_drvdata(pdev);
6326	struct e1000_adapter *adapter = netdev_priv(netdev);
6327	struct e1000_hw *hw = &adapter->hw;
6328	u32 ret_val;
6329
6330	pm_runtime_get_sync(netdev->dev.parent);
6331
6332	ret_val = hw->phy.ops.acquire(hw);
6333	if (ret_val)
6334		goto fl_out;
6335
6336	pr_info("EEE TX LPI TIMER: %08X\n",
6337		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6338
6339	hw->phy.ops.release(hw);
6340
6341fl_out:
6342	pm_runtime_put_sync(netdev->dev.parent);
6343}
6344
6345/* S0ix implementation */
6346static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6347{
6348	struct e1000_hw *hw = &adapter->hw;
6349	u32 mac_data;
6350	u16 phy_data;
6351
6352	/* Disable the periodic inband message,
6353	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6354	 */
6355	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6356	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6357	phy_data |= BIT(10);
6358	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6359
6360	/* Make sure we don't exit K1 every time a new packet arrives
6361	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6362	 */
6363	e1e_rphy(hw, I217_CGFREG, &phy_data);
6364	phy_data |= BIT(5);
6365	e1e_wphy(hw, I217_CGFREG, phy_data);
6366
6367	/* Change the MAC/PHY interface to SMBus
6368	 * Force the SMBus in PHY page769_23[0] = 1
6369	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6370	 */
6371	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6372	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6373	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6374	mac_data = er32(CTRL_EXT);
6375	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6376	ew32(CTRL_EXT, mac_data);
6377
6378	/* DFT control: PHY bit: page769_20[0] = 1
6379	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6380	 */
6381	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6382	phy_data |= BIT(0);
6383	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6384
6385	mac_data = er32(EXTCNF_CTRL);
6386	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6387	ew32(EXTCNF_CTRL, mac_data);
6388
6389	/* Check MAC Tx/Rx packet buffer pointers.
6390	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6391	 * pending traffic indication that would prevent power gating.
6392	 */
6393	mac_data = er32(TDFH);
6394	if (mac_data)
6395		ew32(TDFH, 0);
6396	mac_data = er32(TDFT);
6397	if (mac_data)
6398		ew32(TDFT, 0);
6399	mac_data = er32(TDFHS);
6400	if (mac_data)
6401		ew32(TDFHS, 0);
6402	mac_data = er32(TDFTS);
6403	if (mac_data)
6404		ew32(TDFTS, 0);
6405	mac_data = er32(TDFPC);
6406	if (mac_data)
6407		ew32(TDFPC, 0);
6408	mac_data = er32(RDFH);
6409	if (mac_data)
6410		ew32(RDFH, 0);
6411	mac_data = er32(RDFT);
6412	if (mac_data)
6413		ew32(RDFT, 0);
6414	mac_data = er32(RDFHS);
6415	if (mac_data)
6416		ew32(RDFHS, 0);
6417	mac_data = er32(RDFTS);
6418	if (mac_data)
6419		ew32(RDFTS, 0);
6420	mac_data = er32(RDFPC);
6421	if (mac_data)
6422		ew32(RDFPC, 0);
 
6423
6424	/* Enable the Dynamic Power Gating in the MAC */
6425	mac_data = er32(FEXTNVM7);
6426	mac_data |= BIT(22);
6427	ew32(FEXTNVM7, mac_data);
 
 
 
6428
6429	/* Disable the time synchronization clock */
6430	mac_data = er32(FEXTNVM7);
6431	mac_data |= BIT(31);
6432	mac_data &= ~BIT(0);
6433	ew32(FEXTNVM7, mac_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6434
6435	/* Dynamic Power Gating Enable */
6436	mac_data = er32(CTRL_EXT);
6437	mac_data |= BIT(3);
6438	ew32(CTRL_EXT, mac_data);
 
 
 
 
 
6439
6440	/* Disable disconnected cable conditioning for Power Gating */
6441	mac_data = er32(DPGFR);
6442	mac_data |= BIT(2);
6443	ew32(DPGFR, mac_data);
 
 
 
 
 
 
 
6444
6445	/* Don't wake from dynamic Power Gating with clock request */
6446	mac_data = er32(FEXTNVM12);
6447	mac_data |= BIT(12);
6448	ew32(FEXTNVM12, mac_data);
 
 
 
6449
6450	/* Ungate PGCB clock */
6451	mac_data = er32(FEXTNVM9);
6452	mac_data |= BIT(28);
6453	ew32(FEXTNVM9, mac_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6454
6455	/* Enable K1 off to enable mPHY Power Gating */
6456	mac_data = er32(FEXTNVM6);
6457	mac_data |= BIT(31);
6458	ew32(FEXTNVM12, mac_data);
6459
6460	/* Enable mPHY power gating for any link and speed */
6461	mac_data = er32(FEXTNVM8);
6462	mac_data |= BIT(9);
6463	ew32(FEXTNVM8, mac_data);
6464
6465	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6466	mac_data = er32(CTRL_EXT);
6467	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6468	ew32(CTRL_EXT, mac_data);
6469
6470	/* No MAC DPG gating SLP_S0 in modern standby
6471	 * Switch the logic of the lanphypc to use PMC counter
6472	 */
6473	mac_data = er32(FEXTNVM5);
6474	mac_data |= BIT(7);
6475	ew32(FEXTNVM5, mac_data);
6476}
6477
6478static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6479{
6480	struct e1000_hw *hw = &adapter->hw;
6481	u32 mac_data;
6482	u16 phy_data;
6483
6484	/* Disable the Dynamic Power Gating in the MAC */
6485	mac_data = er32(FEXTNVM7);
6486	mac_data &= 0xFFBFFFFF;
6487	ew32(FEXTNVM7, mac_data);
6488
6489	/* Enable the time synchronization clock */
6490	mac_data = er32(FEXTNVM7);
6491	mac_data |= BIT(0);
6492	ew32(FEXTNVM7, mac_data);
6493
6494	/* Disable mPHY power gating for any link and speed */
6495	mac_data = er32(FEXTNVM8);
6496	mac_data &= ~BIT(9);
6497	ew32(FEXTNVM8, mac_data);
6498
6499	/* Disable K1 off */
6500	mac_data = er32(FEXTNVM6);
6501	mac_data &= ~BIT(31);
6502	ew32(FEXTNVM12, mac_data);
6503
6504	/* Disable Ungate PGCB clock */
6505	mac_data = er32(FEXTNVM9);
6506	mac_data &= ~BIT(28);
6507	ew32(FEXTNVM9, mac_data);
6508
6509	/* Cancel not waking from dynamic
6510	 * Power Gating with clock request
6511	 */
6512	mac_data = er32(FEXTNVM12);
6513	mac_data &= ~BIT(12);
6514	ew32(FEXTNVM12, mac_data);
6515
6516	/* Cancel disable disconnected cable conditioning
6517	 * for Power Gating
6518	 */
6519	mac_data = er32(DPGFR);
6520	mac_data &= ~BIT(2);
6521	ew32(DPGFR, mac_data);
6522
6523	/* Disable Dynamic Power Gating */
6524	mac_data = er32(CTRL_EXT);
6525	mac_data &= 0xFFFFFFF7;
6526	ew32(CTRL_EXT, mac_data);
6527
6528	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6529	mac_data = er32(CTRL_EXT);
6530	mac_data &= 0xFFF7FFFF;
6531	ew32(CTRL_EXT, mac_data);
6532
6533	/* Revert the lanphypc logic to use the internal Gbe counter
6534	 * and not the PMC counter
6535	 */
6536	mac_data = er32(FEXTNVM5);
6537	mac_data &= 0xFFFFFF7F;
6538	ew32(FEXTNVM5, mac_data);
6539
6540	/* Enable the periodic inband message,
6541	 * Request PCIe clock in K1 page770_17[10:9] =01b
6542	 */
6543	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6544	phy_data &= 0xFBFF;
6545	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6546	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6547
6548	/* Return back configuration
6549	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6550	 */
6551	e1e_rphy(hw, I217_CGFREG, &phy_data);
6552	phy_data &= 0xFFDF;
6553	e1e_wphy(hw, I217_CGFREG, phy_data);
6554
6555	/* Change the MAC/PHY interface to Kumeran
6556	 * Unforce the SMBus in PHY page769_23[0] = 0
6557	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6558	 */
6559	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6560	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6561	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6562	mac_data = er32(CTRL_EXT);
6563	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6564	ew32(CTRL_EXT, mac_data);
6565}
6566
6567static int e1000e_pm_freeze(struct device *dev)
6568{
6569	struct net_device *netdev = dev_get_drvdata(dev);
6570	struct e1000_adapter *adapter = netdev_priv(netdev);
6571	bool present;
6572
6573	rtnl_lock();
6574
6575	present = netif_device_present(netdev);
6576	netif_device_detach(netdev);
6577
6578	if (present && netif_running(netdev)) {
6579		int count = E1000_CHECK_RESET_COUNT;
6580
6581		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6582			usleep_range(10000, 11000);
6583
6584		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6585
6586		/* Quiesce the device without resetting the hardware */
6587		e1000e_down(adapter, false);
6588		e1000_free_irq(adapter);
6589	}
6590	rtnl_unlock();
6591
6592	e1000e_reset_interrupt_capability(adapter);
6593
6594	/* Allow time for pending master requests to run */
6595	e1000e_disable_pcie_master(&adapter->hw);
6596
6597	return 0;
6598}
6599
6600static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6601{
6602	struct net_device *netdev = pci_get_drvdata(pdev);
6603	struct e1000_adapter *adapter = netdev_priv(netdev);
6604	struct e1000_hw *hw = &adapter->hw;
6605	u32 ctrl, ctrl_ext, rctl, status, wufc;
6606	int retval = 0;
6607
6608	/* Runtime suspend should only enable wakeup for link changes */
6609	if (runtime)
6610		wufc = E1000_WUFC_LNKC;
6611	else if (device_may_wakeup(&pdev->dev))
6612		wufc = adapter->wol;
6613	else
6614		wufc = 0;
6615
6616	status = er32(STATUS);
6617	if (status & E1000_STATUS_LU)
6618		wufc &= ~E1000_WUFC_LNKC;
6619
6620	if (wufc) {
6621		e1000_setup_rctl(adapter);
6622		e1000e_set_rx_mode(netdev);
6623
6624		/* turn on all-multi mode if wake on multicast is enabled */
6625		if (wufc & E1000_WUFC_MC) {
6626			rctl = er32(RCTL);
6627			rctl |= E1000_RCTL_MPE;
6628			ew32(RCTL, rctl);
6629		}
6630
6631		ctrl = er32(CTRL);
6632		ctrl |= E1000_CTRL_ADVD3WUC;
6633		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6634			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6635		ew32(CTRL, ctrl);
6636
6637		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6638		    adapter->hw.phy.media_type ==
6639		    e1000_media_type_internal_serdes) {
6640			/* keep the laser running in D3 */
6641			ctrl_ext = er32(CTRL_EXT);
6642			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6643			ew32(CTRL_EXT, ctrl_ext);
6644		}
6645
6646		if (!runtime)
6647			e1000e_power_up_phy(adapter);
6648
6649		if (adapter->flags & FLAG_IS_ICH)
6650			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6651
6652		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6653			/* enable wakeup by the PHY */
6654			retval = e1000_init_phy_wakeup(adapter, wufc);
6655			if (retval)
6656				return retval;
 
 
6657		} else {
6658			/* enable wakeup by the MAC */
6659			ew32(WUFC, wufc);
6660			ew32(WUC, E1000_WUC_PME_EN);
6661		}
6662	} else {
6663		ew32(WUC, 0);
6664		ew32(WUFC, 0);
6665
6666		e1000_power_down_phy(adapter);
6667	}
6668
6669	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6670		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6671	} else if (hw->mac.type >= e1000_pch_lpt) {
6672		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6673			/* ULP does not support wake from unicast, multicast
6674			 * or broadcast.
6675			 */
6676			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6677
6678		if (retval)
6679			return retval;
 
 
6680	}
6681
6682	/* Ensure that the appropriate bits are set in LPI_CTRL
6683	 * for EEE in Sx
6684	 */
6685	if ((hw->phy.type >= e1000_phy_i217) &&
6686	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6687		u16 lpi_ctrl = 0;
6688
6689		retval = hw->phy.ops.acquire(hw);
6690		if (!retval) {
6691			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6692						 &lpi_ctrl);
6693			if (!retval) {
6694				if (adapter->eee_advert &
6695				    hw->dev_spec.ich8lan.eee_lp_ability &
6696				    I82579_EEE_100_SUPPORTED)
6697					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6698				if (adapter->eee_advert &
6699				    hw->dev_spec.ich8lan.eee_lp_ability &
6700				    I82579_EEE_1000_SUPPORTED)
6701					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6702
6703				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6704							 lpi_ctrl);
6705			}
6706		}
6707		hw->phy.ops.release(hw);
6708	}
6709
 
6710	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6711	 * would have already happened in close and is redundant.
6712	 */
6713	e1000e_release_hw_control(adapter);
6714
6715	pci_clear_master(pdev);
6716
6717	/* The pci-e switch on some quad port adapters will report a
6718	 * correctable error when the MAC transitions from D0 to D3.  To
6719	 * prevent this we need to mask off the correctable errors on the
6720	 * downstream port of the pci-e switch.
6721	 *
6722	 * We don't have the associated upstream bridge while assigning
6723	 * the PCI device into guest. For example, the KVM on power is
6724	 * one of the cases.
6725	 */
6726	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6727		struct pci_dev *us_dev = pdev->bus->self;
6728		u16 devctl;
6729
6730		if (!us_dev)
6731			return 0;
6732
6733		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6734		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6735					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6736
6737		pci_save_state(pdev);
6738		pci_prepare_to_sleep(pdev);
6739
6740		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6741	}
6742
6743	return 0;
6744}
6745
6746/**
6747 * __e1000e_disable_aspm - Disable ASPM states
6748 * @pdev: pointer to PCI device struct
6749 * @state: bit-mask of ASPM states to disable
6750 * @locked: indication if this context holds pci_bus_sem locked.
6751 *
6752 * Some devices *must* have certain ASPM states disabled per hardware errata.
6753 **/
6754static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6755{
6756	struct pci_dev *parent = pdev->bus->self;
6757	u16 aspm_dis_mask = 0;
6758	u16 pdev_aspmc, parent_aspmc;
6759
6760	switch (state) {
6761	case PCIE_LINK_STATE_L0S:
6762	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6763		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6764		fallthrough; /* can't have L1 without L0s */
6765	case PCIE_LINK_STATE_L1:
6766		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6767		break;
6768	default:
6769		return;
6770	}
6771
6772	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6773	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6774
6775	if (parent) {
6776		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6777					  &parent_aspmc);
6778		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6779	}
6780
6781	/* Nothing to do if the ASPM states to be disabled already are */
6782	if (!(pdev_aspmc & aspm_dis_mask) &&
6783	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6784		return;
6785
6786	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6787		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6788		 "L0s" : "",
6789		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6790		 "L1" : "");
6791
6792#ifdef CONFIG_PCIEASPM
6793	if (locked)
6794		pci_disable_link_state_locked(pdev, state);
6795	else
6796		pci_disable_link_state(pdev, state);
6797
6798	/* Double-check ASPM control.  If not disabled by the above, the
6799	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6800	 * not enabled); override by writing PCI config space directly.
6801	 */
6802	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6803	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6804
6805	if (!(aspm_dis_mask & pdev_aspmc))
6806		return;
6807#endif
6808
6809	/* Both device and parent should have the same ASPM setting.
6810	 * Disable ASPM in downstream component first and then upstream.
6811	 */
6812	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6813
6814	if (parent)
6815		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6816					   aspm_dis_mask);
6817}
6818
6819/**
6820 * e1000e_disable_aspm - Disable ASPM states.
6821 * @pdev: pointer to PCI device struct
6822 * @state: bit-mask of ASPM states to disable
6823 *
6824 * This function acquires the pci_bus_sem!
6825 * Some devices *must* have certain ASPM states disabled per hardware errata.
6826 **/
6827static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6828{
6829	__e1000e_disable_aspm(pdev, state, 0);
6830}
6831
6832/**
6833 * e1000e_disable_aspm_locked   Disable ASPM states.
6834 * @pdev: pointer to PCI device struct
6835 * @state: bit-mask of ASPM states to disable
6836 *
6837 * This function must be called with pci_bus_sem acquired!
6838 * Some devices *must* have certain ASPM states disabled per hardware errata.
6839 **/
6840static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6841{
6842	__e1000e_disable_aspm(pdev, state, 1);
6843}
6844
6845static int e1000e_pm_thaw(struct device *dev)
6846{
6847	struct net_device *netdev = dev_get_drvdata(dev);
6848	struct e1000_adapter *adapter = netdev_priv(netdev);
6849	int rc = 0;
6850
6851	e1000e_set_interrupt_capability(adapter);
6852
6853	rtnl_lock();
6854	if (netif_running(netdev)) {
6855		rc = e1000_request_irq(adapter);
6856		if (rc)
6857			goto err_irq;
6858
6859		e1000e_up(adapter);
6860	}
6861
6862	netif_device_attach(netdev);
6863err_irq:
6864	rtnl_unlock();
6865
6866	return rc;
6867}
6868
6869static int __e1000_resume(struct pci_dev *pdev)
6870{
6871	struct net_device *netdev = pci_get_drvdata(pdev);
6872	struct e1000_adapter *adapter = netdev_priv(netdev);
6873	struct e1000_hw *hw = &adapter->hw;
6874	u16 aspm_disable_flag = 0;
6875
6876	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6877		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6878	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6879		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6880	if (aspm_disable_flag)
6881		e1000e_disable_aspm(pdev, aspm_disable_flag);
6882
6883	pci_set_master(pdev);
6884
6885	if (hw->mac.type >= e1000_pch2lan)
6886		e1000_resume_workarounds_pchlan(&adapter->hw);
6887
6888	e1000e_power_up_phy(adapter);
6889
6890	/* report the system wakeup cause from S3/S4 */
6891	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6892		u16 phy_data;
6893
6894		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6895		if (phy_data) {
6896			e_info("PHY Wakeup cause - %s\n",
6897			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6898			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6899			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6900			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6901			       phy_data & E1000_WUS_LNKC ?
6902			       "Link Status Change" : "other");
6903		}
6904		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6905	} else {
6906		u32 wus = er32(WUS);
6907
6908		if (wus) {
6909			e_info("MAC Wakeup cause - %s\n",
6910			       wus & E1000_WUS_EX ? "Unicast Packet" :
6911			       wus & E1000_WUS_MC ? "Multicast Packet" :
6912			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6913			       wus & E1000_WUS_MAG ? "Magic Packet" :
6914			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6915			       "other");
6916		}
6917		ew32(WUS, ~0);
6918	}
6919
6920	e1000e_reset(adapter);
6921
6922	e1000_init_manageability_pt(adapter);
6923
6924	/* If the controller has AMT, do not set DRV_LOAD until the interface
6925	 * is up.  For all other cases, let the f/w know that the h/w is now
6926	 * under the control of the driver.
6927	 */
6928	if (!(adapter->flags & FLAG_HAS_AMT))
6929		e1000e_get_hw_control(adapter);
6930
6931	return 0;
6932}
6933
6934static __maybe_unused int e1000e_pm_suspend(struct device *dev)
 
 
 
 
 
 
6935{
6936	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6937	struct e1000_adapter *adapter = netdev_priv(netdev);
6938	struct pci_dev *pdev = to_pci_dev(dev);
6939	struct e1000_hw *hw = &adapter->hw;
6940	int rc;
6941
6942	e1000e_flush_lpic(pdev);
6943
6944	e1000e_pm_freeze(dev);
6945
6946	rc = __e1000_shutdown(pdev, false);
6947	if (rc)
6948		e1000e_pm_thaw(dev);
 
 
 
6949
6950	/* Introduce S0ix implementation */
6951	if (hw->mac.type >= e1000_pch_cnp &&
6952	    !e1000e_check_me(hw->adapter->pdev->device))
6953		e1000e_s0ix_entry_flow(adapter);
6954
6955	return rc;
6956}
6957
6958static __maybe_unused int e1000e_pm_resume(struct device *dev)
6959{
6960	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6961	struct e1000_adapter *adapter = netdev_priv(netdev);
6962	struct pci_dev *pdev = to_pci_dev(dev);
6963	struct e1000_hw *hw = &adapter->hw;
6964	int rc;
6965
6966	/* Introduce S0ix implementation */
6967	if (hw->mac.type >= e1000_pch_cnp &&
6968	    !e1000e_check_me(hw->adapter->pdev->device))
6969		e1000e_s0ix_exit_flow(adapter);
6970
6971	rc = __e1000_resume(pdev);
6972	if (rc)
6973		return rc;
6974
6975	return e1000e_pm_thaw(dev);
6976}
6977
6978static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6979{
6980	struct net_device *netdev = dev_get_drvdata(dev);
6981	struct e1000_adapter *adapter = netdev_priv(netdev);
6982	u16 eee_lp;
6983
6984	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6985
6986	if (!e1000e_has_link(adapter)) {
6987		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6988		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6989	}
6990
6991	return -EBUSY;
6992}
6993
6994static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6995{
6996	struct pci_dev *pdev = to_pci_dev(dev);
6997	struct net_device *netdev = pci_get_drvdata(pdev);
6998	struct e1000_adapter *adapter = netdev_priv(netdev);
6999	int rc;
7000
 
 
7001	rc = __e1000_resume(pdev);
7002	if (rc)
7003		return rc;
7004
7005	if (netdev->flags & IFF_UP)
7006		e1000e_up(adapter);
7007
7008	return rc;
7009}
7010
7011static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7012{
7013	struct pci_dev *pdev = to_pci_dev(dev);
7014	struct net_device *netdev = pci_get_drvdata(pdev);
7015	struct e1000_adapter *adapter = netdev_priv(netdev);
7016
7017	if (netdev->flags & IFF_UP) {
7018		int count = E1000_CHECK_RESET_COUNT;
7019
7020		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7021			usleep_range(10000, 11000);
7022
7023		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7024
7025		/* Down the device without resetting the hardware */
7026		e1000e_down(adapter, false);
7027	}
7028
7029	if (__e1000_shutdown(pdev, true)) {
7030		e1000e_pm_runtime_resume(dev);
7031		return -EBUSY;
7032	}
7033
7034	return 0;
7035}
7036
7037static void e1000_shutdown(struct pci_dev *pdev)
7038{
7039	e1000e_flush_lpic(pdev);
7040
7041	e1000e_pm_freeze(&pdev->dev);
7042
7043	__e1000_shutdown(pdev, false);
7044}
7045
7046#ifdef CONFIG_NET_POLL_CONTROLLER
7047
7048static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7049{
7050	struct net_device *netdev = data;
7051	struct e1000_adapter *adapter = netdev_priv(netdev);
7052
7053	if (adapter->msix_entries) {
7054		int vector, msix_irq;
7055
7056		vector = 0;
7057		msix_irq = adapter->msix_entries[vector].vector;
7058		if (disable_hardirq(msix_irq))
7059			e1000_intr_msix_rx(msix_irq, netdev);
7060		enable_irq(msix_irq);
7061
7062		vector++;
7063		msix_irq = adapter->msix_entries[vector].vector;
7064		if (disable_hardirq(msix_irq))
7065			e1000_intr_msix_tx(msix_irq, netdev);
7066		enable_irq(msix_irq);
7067
7068		vector++;
7069		msix_irq = adapter->msix_entries[vector].vector;
7070		if (disable_hardirq(msix_irq))
7071			e1000_msix_other(msix_irq, netdev);
7072		enable_irq(msix_irq);
7073	}
7074
7075	return IRQ_HANDLED;
7076}
7077
7078/**
7079 * e1000_netpoll
7080 * @netdev: network interface device structure
7081 *
7082 * Polling 'interrupt' - used by things like netconsole to send skbs
7083 * without having to re-enable interrupts. It's not called while
7084 * the interrupt routine is executing.
7085 */
7086static void e1000_netpoll(struct net_device *netdev)
7087{
7088	struct e1000_adapter *adapter = netdev_priv(netdev);
7089
7090	switch (adapter->int_mode) {
7091	case E1000E_INT_MODE_MSIX:
7092		e1000_intr_msix(adapter->pdev->irq, netdev);
7093		break;
7094	case E1000E_INT_MODE_MSI:
7095		if (disable_hardirq(adapter->pdev->irq))
7096			e1000_intr_msi(adapter->pdev->irq, netdev);
7097		enable_irq(adapter->pdev->irq);
7098		break;
7099	default:		/* E1000E_INT_MODE_LEGACY */
7100		if (disable_hardirq(adapter->pdev->irq))
7101			e1000_intr(adapter->pdev->irq, netdev);
7102		enable_irq(adapter->pdev->irq);
7103		break;
7104	}
7105}
7106#endif
7107
7108/**
7109 * e1000_io_error_detected - called when PCI error is detected
7110 * @pdev: Pointer to PCI device
7111 * @state: The current pci connection state
7112 *
7113 * This function is called after a PCI bus error affecting
7114 * this device has been detected.
7115 */
7116static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7117						pci_channel_state_t state)
7118{
7119	e1000e_pm_freeze(&pdev->dev);
7120
7121	if (state == pci_channel_io_perm_failure)
7122		return PCI_ERS_RESULT_DISCONNECT;
7123
7124	pci_disable_device(pdev);
7125
7126	/* Request a slot slot reset. */
7127	return PCI_ERS_RESULT_NEED_RESET;
7128}
7129
7130/**
7131 * e1000_io_slot_reset - called after the pci bus has been reset.
7132 * @pdev: Pointer to PCI device
7133 *
7134 * Restart the card from scratch, as if from a cold-boot. Implementation
7135 * resembles the first-half of the e1000e_pm_resume routine.
7136 */
7137static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7138{
7139	struct net_device *netdev = pci_get_drvdata(pdev);
7140	struct e1000_adapter *adapter = netdev_priv(netdev);
7141	struct e1000_hw *hw = &adapter->hw;
7142	u16 aspm_disable_flag = 0;
7143	int err;
7144	pci_ers_result_t result;
7145
7146	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7147		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7148	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7149		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7150	if (aspm_disable_flag)
7151		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7152
7153	err = pci_enable_device_mem(pdev);
7154	if (err) {
7155		dev_err(&pdev->dev,
7156			"Cannot re-enable PCI device after reset.\n");
7157		result = PCI_ERS_RESULT_DISCONNECT;
7158	} else {
7159		pdev->state_saved = true;
7160		pci_restore_state(pdev);
7161		pci_set_master(pdev);
7162
7163		pci_enable_wake(pdev, PCI_D3hot, 0);
7164		pci_enable_wake(pdev, PCI_D3cold, 0);
7165
7166		e1000e_reset(adapter);
7167		ew32(WUS, ~0);
7168		result = PCI_ERS_RESULT_RECOVERED;
7169	}
7170
7171	return result;
7172}
7173
7174/**
7175 * e1000_io_resume - called when traffic can start flowing again.
7176 * @pdev: Pointer to PCI device
7177 *
7178 * This callback is called when the error recovery driver tells us that
7179 * its OK to resume normal operation. Implementation resembles the
7180 * second-half of the e1000e_pm_resume routine.
7181 */
7182static void e1000_io_resume(struct pci_dev *pdev)
7183{
7184	struct net_device *netdev = pci_get_drvdata(pdev);
7185	struct e1000_adapter *adapter = netdev_priv(netdev);
7186
7187	e1000_init_manageability_pt(adapter);
7188
7189	e1000e_pm_thaw(&pdev->dev);
7190
7191	/* If the controller has AMT, do not set DRV_LOAD until the interface
7192	 * is up.  For all other cases, let the f/w know that the h/w is now
7193	 * under the control of the driver.
7194	 */
7195	if (!(adapter->flags & FLAG_HAS_AMT))
7196		e1000e_get_hw_control(adapter);
7197}
7198
7199static void e1000_print_device_info(struct e1000_adapter *adapter)
7200{
7201	struct e1000_hw *hw = &adapter->hw;
7202	struct net_device *netdev = adapter->netdev;
7203	u32 ret_val;
7204	u8 pba_str[E1000_PBANUM_LENGTH];
7205
7206	/* print bus type/speed/width info */
7207	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7208	       /* bus width */
7209	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7210		"Width x1"),
7211	       /* MAC address */
7212	       netdev->dev_addr);
7213	e_info("Intel(R) PRO/%s Network Connection\n",
7214	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7215	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7216						E1000_PBANUM_LENGTH);
7217	if (ret_val)
7218		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7219	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7220	       hw->mac.type, hw->phy.type, pba_str);
7221}
7222
7223static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7224{
7225	struct e1000_hw *hw = &adapter->hw;
7226	int ret_val;
7227	u16 buf = 0;
7228
7229	if (hw->mac.type != e1000_82573)
7230		return;
7231
7232	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7233	le16_to_cpus(&buf);
7234	if (!ret_val && (!(buf & BIT(0)))) {
7235		/* Deep Smart Power Down (DSPD) */
7236		dev_warn(&adapter->pdev->dev,
7237			 "Warning: detected DSPD enabled in EEPROM\n");
7238	}
7239}
7240
7241static netdev_features_t e1000_fix_features(struct net_device *netdev,
7242					    netdev_features_t features)
7243{
7244	struct e1000_adapter *adapter = netdev_priv(netdev);
7245	struct e1000_hw *hw = &adapter->hw;
7246
7247	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7248	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7249		features &= ~NETIF_F_RXFCS;
7250
7251	/* Since there is no support for separate Rx/Tx vlan accel
7252	 * enable/disable make sure Tx flag is always in same state as Rx.
7253	 */
7254	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7255		features |= NETIF_F_HW_VLAN_CTAG_TX;
7256	else
7257		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7258
7259	return features;
7260}
7261
7262static int e1000_set_features(struct net_device *netdev,
7263			      netdev_features_t features)
7264{
7265	struct e1000_adapter *adapter = netdev_priv(netdev);
7266	netdev_features_t changed = features ^ netdev->features;
7267
7268	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7269		adapter->flags |= FLAG_TSO_FORCE;
7270
7271	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7272			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7273			 NETIF_F_RXALL)))
7274		return 0;
7275
7276	if (changed & NETIF_F_RXFCS) {
7277		if (features & NETIF_F_RXFCS) {
7278			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7279		} else {
7280			/* We need to take it back to defaults, which might mean
7281			 * stripping is still disabled at the adapter level.
7282			 */
7283			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7284				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7285			else
7286				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7287		}
7288	}
7289
7290	netdev->features = features;
7291
7292	if (netif_running(netdev))
7293		e1000e_reinit_locked(adapter);
7294	else
7295		e1000e_reset(adapter);
7296
7297	return 1;
7298}
7299
7300static const struct net_device_ops e1000e_netdev_ops = {
7301	.ndo_open		= e1000e_open,
7302	.ndo_stop		= e1000e_close,
7303	.ndo_start_xmit		= e1000_xmit_frame,
7304	.ndo_get_stats64	= e1000e_get_stats64,
7305	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7306	.ndo_set_mac_address	= e1000_set_mac,
7307	.ndo_change_mtu		= e1000_change_mtu,
7308	.ndo_do_ioctl		= e1000_ioctl,
7309	.ndo_tx_timeout		= e1000_tx_timeout,
7310	.ndo_validate_addr	= eth_validate_addr,
7311
7312	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7313	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7314#ifdef CONFIG_NET_POLL_CONTROLLER
7315	.ndo_poll_controller	= e1000_netpoll,
7316#endif
7317	.ndo_set_features = e1000_set_features,
7318	.ndo_fix_features = e1000_fix_features,
7319	.ndo_features_check	= passthru_features_check,
7320};
7321
7322/**
7323 * e1000_probe - Device Initialization Routine
7324 * @pdev: PCI device information struct
7325 * @ent: entry in e1000_pci_tbl
7326 *
7327 * Returns 0 on success, negative on failure
7328 *
7329 * e1000_probe initializes an adapter identified by a pci_dev structure.
7330 * The OS initialization, configuring of the adapter private structure,
7331 * and a hardware reset occur.
7332 **/
7333static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7334{
7335	struct net_device *netdev;
7336	struct e1000_adapter *adapter;
7337	struct e1000_hw *hw;
7338	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7339	resource_size_t mmio_start, mmio_len;
7340	resource_size_t flash_start, flash_len;
7341	static int cards_found;
7342	u16 aspm_disable_flag = 0;
7343	int bars, i, err, pci_using_dac;
7344	u16 eeprom_data = 0;
7345	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
7346	s32 ret_val = 0;
7347
7348	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7349		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7350	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7351		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7352	if (aspm_disable_flag)
7353		e1000e_disable_aspm(pdev, aspm_disable_flag);
7354
7355	err = pci_enable_device_mem(pdev);
7356	if (err)
7357		return err;
7358
7359	pci_using_dac = 0;
7360	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7361	if (!err) {
7362		pci_using_dac = 1;
7363	} else {
7364		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7365		if (err) {
7366			dev_err(&pdev->dev,
7367				"No usable DMA configuration, aborting\n");
7368			goto err_dma;
7369		}
7370	}
7371
7372	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7373	err = pci_request_selected_regions_exclusive(pdev, bars,
7374						     e1000e_driver_name);
7375	if (err)
7376		goto err_pci_reg;
7377
7378	/* AER (Advanced Error Reporting) hooks */
7379	pci_enable_pcie_error_reporting(pdev);
7380
7381	pci_set_master(pdev);
7382	/* PCI config space info */
7383	err = pci_save_state(pdev);
7384	if (err)
7385		goto err_alloc_etherdev;
7386
7387	err = -ENOMEM;
7388	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7389	if (!netdev)
7390		goto err_alloc_etherdev;
7391
7392	SET_NETDEV_DEV(netdev, &pdev->dev);
7393
7394	netdev->irq = pdev->irq;
7395
7396	pci_set_drvdata(pdev, netdev);
7397	adapter = netdev_priv(netdev);
7398	hw = &adapter->hw;
7399	adapter->netdev = netdev;
7400	adapter->pdev = pdev;
7401	adapter->ei = ei;
7402	adapter->pba = ei->pba;
7403	adapter->flags = ei->flags;
7404	adapter->flags2 = ei->flags2;
7405	adapter->hw.adapter = adapter;
7406	adapter->hw.mac.type = ei->mac;
7407	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7408	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7409
7410	mmio_start = pci_resource_start(pdev, 0);
7411	mmio_len = pci_resource_len(pdev, 0);
7412
7413	err = -EIO;
7414	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7415	if (!adapter->hw.hw_addr)
7416		goto err_ioremap;
7417
7418	if ((adapter->flags & FLAG_HAS_FLASH) &&
7419	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7420	    (hw->mac.type < e1000_pch_spt)) {
7421		flash_start = pci_resource_start(pdev, 1);
7422		flash_len = pci_resource_len(pdev, 1);
7423		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7424		if (!adapter->hw.flash_address)
7425			goto err_flashmap;
7426	}
7427
7428	/* Set default EEE advertisement */
7429	if (adapter->flags2 & FLAG2_HAS_EEE)
7430		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7431
7432	/* construct the net_device struct */
7433	netdev->netdev_ops = &e1000e_netdev_ops;
7434	e1000e_set_ethtool_ops(netdev);
7435	netdev->watchdog_timeo = 5 * HZ;
7436	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7437	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7438
7439	netdev->mem_start = mmio_start;
7440	netdev->mem_end = mmio_start + mmio_len;
7441
7442	adapter->bd_number = cards_found++;
7443
7444	e1000e_check_options(adapter);
7445
7446	/* setup adapter struct */
7447	err = e1000_sw_init(adapter);
7448	if (err)
7449		goto err_sw_init;
7450
7451	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7452	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7453	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7454
7455	err = ei->get_variants(adapter);
7456	if (err)
7457		goto err_hw_init;
7458
7459	if ((adapter->flags & FLAG_IS_ICH) &&
7460	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7461	    (hw->mac.type < e1000_pch_spt))
7462		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7463
7464	hw->mac.ops.get_bus_info(&adapter->hw);
7465
7466	adapter->hw.phy.autoneg_wait_to_complete = 0;
7467
7468	/* Copper options */
7469	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7470		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7471		adapter->hw.phy.disable_polarity_correction = 0;
7472		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7473	}
7474
7475	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7476		dev_info(&pdev->dev,
7477			 "PHY reset is blocked due to SOL/IDER session.\n");
7478
7479	/* Set initial default active device features */
7480	netdev->features = (NETIF_F_SG |
7481			    NETIF_F_HW_VLAN_CTAG_RX |
7482			    NETIF_F_HW_VLAN_CTAG_TX |
7483			    NETIF_F_TSO |
7484			    NETIF_F_TSO6 |
7485			    NETIF_F_RXHASH |
7486			    NETIF_F_RXCSUM |
7487			    NETIF_F_HW_CSUM);
7488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7489	/* Set user-changeable features (subset of all device features) */
7490	netdev->hw_features = netdev->features;
7491	netdev->hw_features |= NETIF_F_RXFCS;
7492	netdev->priv_flags |= IFF_SUPP_NOFCS;
7493	netdev->hw_features |= NETIF_F_RXALL;
7494
7495	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7496		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7497
7498	netdev->vlan_features |= (NETIF_F_SG |
7499				  NETIF_F_TSO |
7500				  NETIF_F_TSO6 |
7501				  NETIF_F_HW_CSUM);
7502
7503	netdev->priv_flags |= IFF_UNICAST_FLT;
7504
7505	if (pci_using_dac) {
7506		netdev->features |= NETIF_F_HIGHDMA;
7507		netdev->vlan_features |= NETIF_F_HIGHDMA;
7508	}
7509
7510	/* MTU range: 68 - max_hw_frame_size */
7511	netdev->min_mtu = ETH_MIN_MTU;
7512	netdev->max_mtu = adapter->max_hw_frame_size -
7513			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7514
7515	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7516		adapter->flags |= FLAG_MNG_PT_ENABLED;
7517
7518	/* before reading the NVM, reset the controller to
7519	 * put the device in a known good starting state
7520	 */
7521	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7522
7523	/* systems with ASPM and others may see the checksum fail on the first
7524	 * attempt. Let's give it a few tries
7525	 */
7526	for (i = 0;; i++) {
7527		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7528			break;
7529		if (i == 2) {
7530			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7531			err = -EIO;
7532			goto err_eeprom;
7533		}
7534	}
7535
7536	e1000_eeprom_checks(adapter);
7537
7538	/* copy the MAC address */
7539	if (e1000e_read_mac_addr(&adapter->hw))
7540		dev_err(&pdev->dev,
7541			"NVM Read Error while reading MAC address\n");
7542
7543	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7544
7545	if (!is_valid_ether_addr(netdev->dev_addr)) {
7546		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7547			netdev->dev_addr);
7548		err = -EIO;
7549		goto err_eeprom;
7550	}
7551
7552	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7553	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7554
7555	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7556	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7557	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7558	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7559	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7560
7561	/* Initialize link parameters. User can change them with ethtool */
7562	adapter->hw.mac.autoneg = 1;
7563	adapter->fc_autoneg = true;
7564	adapter->hw.fc.requested_mode = e1000_fc_default;
7565	adapter->hw.fc.current_mode = e1000_fc_default;
7566	adapter->hw.phy.autoneg_advertised = 0x2f;
7567
7568	/* Initial Wake on LAN setting - If APM wake is enabled in
7569	 * the EEPROM, enable the ACPI Magic Packet filter
7570	 */
7571	if (adapter->flags & FLAG_APME_IN_WUC) {
7572		/* APME bit in EEPROM is mapped to WUC.APME */
7573		eeprom_data = er32(WUC);
7574		eeprom_apme_mask = E1000_WUC_APME;
7575		if ((hw->mac.type > e1000_ich10lan) &&
7576		    (eeprom_data & E1000_WUC_PHY_WAKE))
7577			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7578	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7579		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7580		    (adapter->hw.bus.func == 1))
7581			ret_val = e1000_read_nvm(&adapter->hw,
7582					      NVM_INIT_CONTROL3_PORT_B,
7583					      1, &eeprom_data);
7584		else
7585			ret_val = e1000_read_nvm(&adapter->hw,
7586					      NVM_INIT_CONTROL3_PORT_A,
7587					      1, &eeprom_data);
7588	}
7589
7590	/* fetch WoL from EEPROM */
7591	if (ret_val)
7592		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7593	else if (eeprom_data & eeprom_apme_mask)
7594		adapter->eeprom_wol |= E1000_WUFC_MAG;
7595
7596	/* now that we have the eeprom settings, apply the special cases
7597	 * where the eeprom may be wrong or the board simply won't support
7598	 * wake on lan on a particular port
7599	 */
7600	if (!(adapter->flags & FLAG_HAS_WOL))
7601		adapter->eeprom_wol = 0;
7602
7603	/* initialize the wol settings based on the eeprom settings */
7604	adapter->wol = adapter->eeprom_wol;
7605
7606	/* make sure adapter isn't asleep if manageability is enabled */
7607	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7608	    (hw->mac.ops.check_mng_mode(hw)))
7609		device_wakeup_enable(&pdev->dev);
7610
7611	/* save off EEPROM version number */
7612	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7613
7614	if (ret_val) {
7615		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7616		adapter->eeprom_vers = 0;
7617	}
7618
7619	/* init PTP hardware clock */
7620	e1000e_ptp_init(adapter);
7621
7622	/* reset the hardware with the new settings */
7623	e1000e_reset(adapter);
7624
7625	/* If the controller has AMT, do not set DRV_LOAD until the interface
7626	 * is up.  For all other cases, let the f/w know that the h/w is now
7627	 * under the control of the driver.
7628	 */
7629	if (!(adapter->flags & FLAG_HAS_AMT))
7630		e1000e_get_hw_control(adapter);
7631
7632	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
 
 
 
7633	err = register_netdev(netdev);
7634	if (err)
7635		goto err_register;
7636
7637	/* carrier off reporting is important to ethtool even BEFORE open */
7638	netif_carrier_off(netdev);
7639
7640	e1000_print_device_info(adapter);
7641
7642	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7643
7644	if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7645		pm_runtime_put_noidle(&pdev->dev);
7646
7647	return 0;
7648
7649err_register:
7650	if (!(adapter->flags & FLAG_HAS_AMT))
7651		e1000e_release_hw_control(adapter);
7652err_eeprom:
7653	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7654		e1000_phy_hw_reset(&adapter->hw);
7655err_hw_init:
7656	kfree(adapter->tx_ring);
7657	kfree(adapter->rx_ring);
7658err_sw_init:
7659	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7660		iounmap(adapter->hw.flash_address);
7661	e1000e_reset_interrupt_capability(adapter);
7662err_flashmap:
7663	iounmap(adapter->hw.hw_addr);
7664err_ioremap:
7665	free_netdev(netdev);
7666err_alloc_etherdev:
7667	pci_release_mem_regions(pdev);
7668err_pci_reg:
7669err_dma:
7670	pci_disable_device(pdev);
7671	return err;
7672}
7673
7674/**
7675 * e1000_remove - Device Removal Routine
7676 * @pdev: PCI device information struct
7677 *
7678 * e1000_remove is called by the PCI subsystem to alert the driver
7679 * that it should release a PCI device.  The could be caused by a
7680 * Hot-Plug event, or because the driver is going to be removed from
7681 * memory.
7682 **/
7683static void e1000_remove(struct pci_dev *pdev)
7684{
7685	struct net_device *netdev = pci_get_drvdata(pdev);
7686	struct e1000_adapter *adapter = netdev_priv(netdev);
7687
7688	e1000e_ptp_remove(adapter);
7689
7690	/* The timers may be rescheduled, so explicitly disable them
7691	 * from being rescheduled.
7692	 */
7693	set_bit(__E1000_DOWN, &adapter->state);
7694	del_timer_sync(&adapter->watchdog_timer);
7695	del_timer_sync(&adapter->phy_info_timer);
7696
7697	cancel_work_sync(&adapter->reset_task);
7698	cancel_work_sync(&adapter->watchdog_task);
7699	cancel_work_sync(&adapter->downshift_task);
7700	cancel_work_sync(&adapter->update_phy_task);
7701	cancel_work_sync(&adapter->print_hang_task);
7702
7703	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7704		cancel_work_sync(&adapter->tx_hwtstamp_work);
7705		if (adapter->tx_hwtstamp_skb) {
7706			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7707			adapter->tx_hwtstamp_skb = NULL;
7708		}
7709	}
7710
7711	unregister_netdev(netdev);
7712
7713	if (pci_dev_run_wake(pdev))
7714		pm_runtime_get_noresume(&pdev->dev);
7715
7716	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7717	 * would have already happened in close and is redundant.
7718	 */
7719	e1000e_release_hw_control(adapter);
7720
7721	e1000e_reset_interrupt_capability(adapter);
7722	kfree(adapter->tx_ring);
7723	kfree(adapter->rx_ring);
7724
7725	iounmap(adapter->hw.hw_addr);
7726	if ((adapter->hw.flash_address) &&
7727	    (adapter->hw.mac.type < e1000_pch_spt))
7728		iounmap(adapter->hw.flash_address);
7729	pci_release_mem_regions(pdev);
7730
7731	free_netdev(netdev);
7732
7733	/* AER disable */
7734	pci_disable_pcie_error_reporting(pdev);
7735
7736	pci_disable_device(pdev);
7737}
7738
7739/* PCI Error Recovery (ERS) */
7740static const struct pci_error_handlers e1000_err_handler = {
7741	.error_detected = e1000_io_error_detected,
7742	.slot_reset = e1000_io_slot_reset,
7743	.resume = e1000_io_resume,
7744};
7745
7746static const struct pci_device_id e1000_pci_tbl[] = {
7747	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7748	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7749	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7750	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7751	  board_82571 },
7752	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7753	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7754	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7755	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7756	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7757
7758	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7759	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7760	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7761	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7762
7763	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7764	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7765	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7766
7767	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7768	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7769	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7770
7771	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7772	  board_80003es2lan },
7773	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7774	  board_80003es2lan },
7775	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7776	  board_80003es2lan },
7777	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7778	  board_80003es2lan },
7779
7780	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7781	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7782	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7783	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7784	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7785	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7786	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7787	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7788
7789	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7790	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7791	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7792	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7793	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7796	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7798
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7802
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7804	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7806
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7809	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7811
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7813	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7814
7815	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7817	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7819	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7821	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7823	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7825	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7826	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7835	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7845	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7849	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7853	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7856
7857	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7858};
7859MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7860
7861static const struct dev_pm_ops e1000_pm_ops = {
7862#ifdef CONFIG_PM_SLEEP
7863	.suspend	= e1000e_pm_suspend,
7864	.resume		= e1000e_pm_resume,
7865	.freeze		= e1000e_pm_freeze,
7866	.thaw		= e1000e_pm_thaw,
7867	.poweroff	= e1000e_pm_suspend,
7868	.restore	= e1000e_pm_resume,
7869#endif
7870	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7871			   e1000e_pm_runtime_idle)
7872};
7873
7874/* PCI Device API Driver */
7875static struct pci_driver e1000_driver = {
7876	.name     = e1000e_driver_name,
7877	.id_table = e1000_pci_tbl,
7878	.probe    = e1000_probe,
7879	.remove   = e1000_remove,
7880	.driver   = {
7881		.pm = &e1000_pm_ops,
7882	},
7883	.shutdown = e1000_shutdown,
7884	.err_handler = &e1000_err_handler
7885};
7886
7887/**
7888 * e1000_init_module - Driver Registration Routine
7889 *
7890 * e1000_init_module is the first routine called when the driver is
7891 * loaded. All it does is register with the PCI subsystem.
7892 **/
7893static int __init e1000_init_module(void)
7894{
7895	pr_info("Intel(R) PRO/1000 Network Driver\n");
7896	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7897
7898	return pci_register_driver(&e1000_driver);
7899}
7900module_init(e1000_init_module);
7901
7902/**
7903 * e1000_exit_module - Driver Exit Cleanup Routine
7904 *
7905 * e1000_exit_module is called just before the driver is removed
7906 * from memory.
7907 **/
7908static void __exit e1000_exit_module(void)
7909{
7910	pci_unregister_driver(&e1000_driver);
7911}
7912module_exit(e1000_exit_module);
7913
7914MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7915MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7916MODULE_LICENSE("GPL v2");
7917
7918/* netdev.c */