Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/prefetch.h>
  27#include <linux/suspend.h>
  28
  29#include "e1000.h"
  30#define CREATE_TRACE_POINTS
  31#include "e1000e_trace.h"
  32
  33char e1000e_driver_name[] = "e1000e";
  34
  35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  36static int debug = -1;
  37module_param(debug, int, 0);
  38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  39
  40static const struct e1000_info *e1000_info_tbl[] = {
  41	[board_82571]		= &e1000_82571_info,
  42	[board_82572]		= &e1000_82572_info,
  43	[board_82573]		= &e1000_82573_info,
  44	[board_82574]		= &e1000_82574_info,
  45	[board_82583]		= &e1000_82583_info,
  46	[board_80003es2lan]	= &e1000_es2_info,
  47	[board_ich8lan]		= &e1000_ich8_info,
  48	[board_ich9lan]		= &e1000_ich9_info,
  49	[board_ich10lan]	= &e1000_ich10_info,
  50	[board_pchlan]		= &e1000_pch_info,
  51	[board_pch2lan]		= &e1000_pch2_info,
  52	[board_pch_lpt]		= &e1000_pch_lpt_info,
  53	[board_pch_spt]		= &e1000_pch_spt_info,
  54	[board_pch_cnp]		= &e1000_pch_cnp_info,
  55	[board_pch_tgp]		= &e1000_pch_tgp_info,
  56	[board_pch_adp]		= &e1000_pch_adp_info,
  57	[board_pch_mtp]		= &e1000_pch_mtp_info,
  58};
  59
  60struct e1000_reg_info {
  61	u32 ofs;
  62	char *name;
  63};
  64
  65static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  66	/* General Registers */
  67	{E1000_CTRL, "CTRL"},
  68	{E1000_STATUS, "STATUS"},
  69	{E1000_CTRL_EXT, "CTRL_EXT"},
  70
  71	/* Interrupt Registers */
  72	{E1000_ICR, "ICR"},
  73
  74	/* Rx Registers */
  75	{E1000_RCTL, "RCTL"},
  76	{E1000_RDLEN(0), "RDLEN"},
  77	{E1000_RDH(0), "RDH"},
  78	{E1000_RDT(0), "RDT"},
  79	{E1000_RDTR, "RDTR"},
  80	{E1000_RXDCTL(0), "RXDCTL"},
  81	{E1000_ERT, "ERT"},
  82	{E1000_RDBAL(0), "RDBAL"},
  83	{E1000_RDBAH(0), "RDBAH"},
  84	{E1000_RDFH, "RDFH"},
  85	{E1000_RDFT, "RDFT"},
  86	{E1000_RDFHS, "RDFHS"},
  87	{E1000_RDFTS, "RDFTS"},
  88	{E1000_RDFPC, "RDFPC"},
  89
  90	/* Tx Registers */
  91	{E1000_TCTL, "TCTL"},
  92	{E1000_TDBAL(0), "TDBAL"},
  93	{E1000_TDBAH(0), "TDBAH"},
  94	{E1000_TDLEN(0), "TDLEN"},
  95	{E1000_TDH(0), "TDH"},
  96	{E1000_TDT(0), "TDT"},
  97	{E1000_TIDV, "TIDV"},
  98	{E1000_TXDCTL(0), "TXDCTL"},
  99	{E1000_TADV, "TADV"},
 100	{E1000_TARC(0), "TARC"},
 101	{E1000_TDFH, "TDFH"},
 102	{E1000_TDFT, "TDFT"},
 103	{E1000_TDFHS, "TDFHS"},
 104	{E1000_TDFTS, "TDFTS"},
 105	{E1000_TDFPC, "TDFPC"},
 106
 107	/* List Terminator */
 108	{0, NULL}
 109};
 110
 111/**
 112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 113 * @hw: pointer to the HW structure
 114 *
 115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 116 * be accessing the registers at the same time.  Normally, this is handled in
 117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 118 * accesses later than it should which could result in the register to have
 119 * an incorrect value.  Workaround this by checking the FWSM register which
 120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 121 * and try again a number of times.
 122 **/
 123static void __ew32_prepare(struct e1000_hw *hw)
 124{
 125	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 126
 127	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 128		udelay(50);
 129}
 130
 131void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 132{
 133	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 134		__ew32_prepare(hw);
 135
 136	writel(val, hw->hw_addr + reg);
 137}
 138
 139/**
 140 * e1000_regdump - register printout routine
 141 * @hw: pointer to the HW structure
 142 * @reginfo: pointer to the register info table
 143 **/
 144static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 145{
 146	int n = 0;
 147	char rname[16];
 148	u32 regs[8];
 149
 150	switch (reginfo->ofs) {
 151	case E1000_RXDCTL(0):
 152		for (n = 0; n < 2; n++)
 153			regs[n] = __er32(hw, E1000_RXDCTL(n));
 154		break;
 155	case E1000_TXDCTL(0):
 156		for (n = 0; n < 2; n++)
 157			regs[n] = __er32(hw, E1000_TXDCTL(n));
 158		break;
 159	case E1000_TARC(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_TARC(n));
 162		break;
 163	default:
 164		pr_info("%-15s %08x\n",
 165			reginfo->name, __er32(hw, reginfo->ofs));
 166		return;
 167	}
 168
 169	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 170	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 171}
 172
 173static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 174				 struct e1000_buffer *bi)
 175{
 176	int i;
 177	struct e1000_ps_page *ps_page;
 178
 179	for (i = 0; i < adapter->rx_ps_pages; i++) {
 180		ps_page = &bi->ps_pages[i];
 181
 182		if (ps_page->page) {
 183			pr_info("packet dump for ps_page %d:\n", i);
 184			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 185				       16, 1, page_address(ps_page->page),
 186				       PAGE_SIZE, true);
 187		}
 188	}
 189}
 190
 191/**
 192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 193 * @adapter: board private structure
 194 **/
 195static void e1000e_dump(struct e1000_adapter *adapter)
 196{
 197	struct net_device *netdev = adapter->netdev;
 198	struct e1000_hw *hw = &adapter->hw;
 199	struct e1000_reg_info *reginfo;
 200	struct e1000_ring *tx_ring = adapter->tx_ring;
 201	struct e1000_tx_desc *tx_desc;
 202	struct my_u0 {
 203		__le64 a;
 204		__le64 b;
 205	} *u0;
 206	struct e1000_buffer *buffer_info;
 207	struct e1000_ring *rx_ring = adapter->rx_ring;
 208	union e1000_rx_desc_packet_split *rx_desc_ps;
 209	union e1000_rx_desc_extended *rx_desc;
 210	struct my_u1 {
 211		__le64 a;
 212		__le64 b;
 213		__le64 c;
 214		__le64 d;
 215	} *u1;
 216	u32 staterr;
 217	int i = 0;
 218
 219	if (!netif_msg_hw(adapter))
 220		return;
 221
 222	/* Print netdevice Info */
 223	if (netdev) {
 224		dev_info(&adapter->pdev->dev, "Net device Info\n");
 225		pr_info("Device Name     state            trans_start\n");
 226		pr_info("%-15s %016lX %016lX\n", netdev->name,
 227			netdev->state, dev_trans_start(netdev));
 228	}
 229
 230	/* Print Registers */
 231	dev_info(&adapter->pdev->dev, "Register Dump\n");
 232	pr_info(" Register Name   Value\n");
 233	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 234	     reginfo->name; reginfo++) {
 235		e1000_regdump(hw, reginfo);
 236	}
 237
 238	/* Print Tx Ring Summary */
 239	if (!netdev || !netif_running(netdev))
 240		return;
 241
 242	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 243	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 244	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 245	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 246		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 247		(unsigned long long)buffer_info->dma,
 248		buffer_info->length,
 249		buffer_info->next_to_watch,
 250		(unsigned long long)buffer_info->time_stamp);
 251
 252	/* Print Tx Ring */
 253	if (!netif_msg_tx_done(adapter))
 254		goto rx_ring_summary;
 255
 256	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 257
 258	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 259	 *
 260	 * Legacy Transmit Descriptor
 261	 *   +--------------------------------------------------------------+
 262	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 263	 *   +--------------------------------------------------------------+
 264	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 265	 *   +--------------------------------------------------------------+
 266	 *   63       48 47        36 35    32 31     24 23    16 15        0
 267	 *
 268	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 269	 *   63      48 47    40 39       32 31             16 15    8 7      0
 270	 *   +----------------------------------------------------------------+
 271	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 272	 *   +----------------------------------------------------------------+
 273	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 274	 *   +----------------------------------------------------------------+
 275	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 276	 *
 277	 * Extended Data Descriptor (DTYP=0x1)
 278	 *   +----------------------------------------------------------------+
 279	 * 0 |                     Buffer Address [63:0]                      |
 280	 *   +----------------------------------------------------------------+
 281	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 282	 *   +----------------------------------------------------------------+
 283	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 284	 */
 285	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 286	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 287	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 288	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 289		const char *next_desc;
 290		tx_desc = E1000_TX_DESC(*tx_ring, i);
 291		buffer_info = &tx_ring->buffer_info[i];
 292		u0 = (struct my_u0 *)tx_desc;
 293		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 294			next_desc = " NTC/U";
 295		else if (i == tx_ring->next_to_use)
 296			next_desc = " NTU";
 297		else if (i == tx_ring->next_to_clean)
 298			next_desc = " NTC";
 299		else
 300			next_desc = "";
 301		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 302			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 303			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 304			i,
 305			(unsigned long long)le64_to_cpu(u0->a),
 306			(unsigned long long)le64_to_cpu(u0->b),
 307			(unsigned long long)buffer_info->dma,
 308			buffer_info->length, buffer_info->next_to_watch,
 309			(unsigned long long)buffer_info->time_stamp,
 310			buffer_info->skb, next_desc);
 311
 312		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 313			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 314				       16, 1, buffer_info->skb->data,
 315				       buffer_info->skb->len, true);
 316	}
 317
 318	/* Print Rx Ring Summary */
 319rx_ring_summary:
 320	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 321	pr_info("Queue [NTU] [NTC]\n");
 322	pr_info(" %5d %5X %5X\n",
 323		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 324
 325	/* Print Rx Ring */
 326	if (!netif_msg_rx_status(adapter))
 327		return;
 328
 329	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 330	switch (adapter->rx_ps_pages) {
 331	case 1:
 332	case 2:
 333	case 3:
 334		/* [Extended] Packet Split Receive Descriptor Format
 335		 *
 336		 *    +-----------------------------------------------------+
 337		 *  0 |                Buffer Address 0 [63:0]              |
 338		 *    +-----------------------------------------------------+
 339		 *  8 |                Buffer Address 1 [63:0]              |
 340		 *    +-----------------------------------------------------+
 341		 * 16 |                Buffer Address 2 [63:0]              |
 342		 *    +-----------------------------------------------------+
 343		 * 24 |                Buffer Address 3 [63:0]              |
 344		 *    +-----------------------------------------------------+
 345		 */
 346		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 347		/* [Extended] Receive Descriptor (Write-Back) Format
 348		 *
 349		 *   63       48 47    32 31     13 12    8 7    4 3        0
 350		 *   +------------------------------------------------------+
 351		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 352		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 353		 *   +------------------------------------------------------+
 354		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 355		 *   +------------------------------------------------------+
 356		 *   63       48 47    32 31            20 19               0
 357		 */
 358		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 359		for (i = 0; i < rx_ring->count; i++) {
 360			const char *next_desc;
 361			buffer_info = &rx_ring->buffer_info[i];
 362			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 363			u1 = (struct my_u1 *)rx_desc_ps;
 364			staterr =
 365			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 366
 367			if (i == rx_ring->next_to_use)
 368				next_desc = " NTU";
 369			else if (i == rx_ring->next_to_clean)
 370				next_desc = " NTC";
 371			else
 372				next_desc = "";
 373
 374			if (staterr & E1000_RXD_STAT_DD) {
 375				/* Descriptor Done */
 376				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 377					"RWB", i,
 378					(unsigned long long)le64_to_cpu(u1->a),
 379					(unsigned long long)le64_to_cpu(u1->b),
 380					(unsigned long long)le64_to_cpu(u1->c),
 381					(unsigned long long)le64_to_cpu(u1->d),
 382					buffer_info->skb, next_desc);
 383			} else {
 384				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 385					"R  ", i,
 386					(unsigned long long)le64_to_cpu(u1->a),
 387					(unsigned long long)le64_to_cpu(u1->b),
 388					(unsigned long long)le64_to_cpu(u1->c),
 389					(unsigned long long)le64_to_cpu(u1->d),
 390					(unsigned long long)buffer_info->dma,
 391					buffer_info->skb, next_desc);
 392
 393				if (netif_msg_pktdata(adapter))
 394					e1000e_dump_ps_pages(adapter,
 395							     buffer_info);
 396			}
 397		}
 398		break;
 399	default:
 400	case 0:
 401		/* Extended Receive Descriptor (Read) Format
 402		 *
 403		 *   +-----------------------------------------------------+
 404		 * 0 |                Buffer Address [63:0]                |
 405		 *   +-----------------------------------------------------+
 406		 * 8 |                      Reserved                       |
 407		 *   +-----------------------------------------------------+
 408		 */
 409		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 410		/* Extended Receive Descriptor (Write-Back) Format
 411		 *
 412		 *   63       48 47    32 31    24 23            4 3        0
 413		 *   +------------------------------------------------------+
 414		 *   |     RSS Hash      |        |               |         |
 415		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 416		 *   | Packet   | IP     |        |               |  Type   |
 417		 *   | Checksum | Ident  |        |               |         |
 418		 *   +------------------------------------------------------+
 419		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 420		 *   +------------------------------------------------------+
 421		 *   63       48 47    32 31            20 19               0
 422		 */
 423		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 424
 425		for (i = 0; i < rx_ring->count; i++) {
 426			const char *next_desc;
 427
 428			buffer_info = &rx_ring->buffer_info[i];
 429			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 430			u1 = (struct my_u1 *)rx_desc;
 431			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 432
 433			if (i == rx_ring->next_to_use)
 434				next_desc = " NTU";
 435			else if (i == rx_ring->next_to_clean)
 436				next_desc = " NTC";
 437			else
 438				next_desc = "";
 439
 440			if (staterr & E1000_RXD_STAT_DD) {
 441				/* Descriptor Done */
 442				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 443					"RWB", i,
 444					(unsigned long long)le64_to_cpu(u1->a),
 445					(unsigned long long)le64_to_cpu(u1->b),
 446					buffer_info->skb, next_desc);
 447			} else {
 448				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 449					"R  ", i,
 450					(unsigned long long)le64_to_cpu(u1->a),
 451					(unsigned long long)le64_to_cpu(u1->b),
 452					(unsigned long long)buffer_info->dma,
 453					buffer_info->skb, next_desc);
 454
 455				if (netif_msg_pktdata(adapter) &&
 456				    buffer_info->skb)
 457					print_hex_dump(KERN_INFO, "",
 458						       DUMP_PREFIX_ADDRESS, 16,
 459						       1,
 460						       buffer_info->skb->data,
 461						       adapter->rx_buffer_len,
 462						       true);
 463			}
 464		}
 465	}
 466}
 467
 468/**
 469 * e1000_desc_unused - calculate if we have unused descriptors
 470 * @ring: pointer to ring struct to perform calculation on
 471 **/
 472static int e1000_desc_unused(struct e1000_ring *ring)
 473{
 474	if (ring->next_to_clean > ring->next_to_use)
 475		return ring->next_to_clean - ring->next_to_use - 1;
 476
 477	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 478}
 479
 480/**
 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 482 * @adapter: board private structure
 483 * @hwtstamps: time stamp structure to update
 484 * @systim: unsigned 64bit system time value.
 485 *
 486 * Convert the system time value stored in the RX/TXSTMP registers into a
 487 * hwtstamp which can be used by the upper level time stamping functions.
 488 *
 489 * The 'systim_lock' spinlock is used to protect the consistency of the
 490 * system time value. This is needed because reading the 64 bit time
 491 * value involves reading two 32 bit registers. The first read latches the
 492 * value.
 493 **/
 494static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 495				      struct skb_shared_hwtstamps *hwtstamps,
 496				      u64 systim)
 497{
 498	u64 ns;
 499	unsigned long flags;
 500
 501	spin_lock_irqsave(&adapter->systim_lock, flags);
 502	ns = timecounter_cyc2time(&adapter->tc, systim);
 503	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 504
 505	memset(hwtstamps, 0, sizeof(*hwtstamps));
 506	hwtstamps->hwtstamp = ns_to_ktime(ns);
 507}
 508
 509/**
 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 511 * @adapter: board private structure
 512 * @status: descriptor extended error and status field
 513 * @skb: particular skb to include time stamp
 514 *
 515 * If the time stamp is valid, convert it into the timecounter ns value
 516 * and store that result into the shhwtstamps structure which is passed
 517 * up the network stack.
 518 **/
 519static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 520			       struct sk_buff *skb)
 521{
 522	struct e1000_hw *hw = &adapter->hw;
 523	u64 rxstmp;
 524
 525	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 526	    !(status & E1000_RXDEXT_STATERR_TST) ||
 527	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 528		return;
 529
 530	/* The Rx time stamp registers contain the time stamp.  No other
 531	 * received packet will be time stamped until the Rx time stamp
 532	 * registers are read.  Because only one packet can be time stamped
 533	 * at a time, the register values must belong to this packet and
 534	 * therefore none of the other additional attributes need to be
 535	 * compared.
 536	 */
 537	rxstmp = (u64)er32(RXSTMPL);
 538	rxstmp |= (u64)er32(RXSTMPH) << 32;
 539	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 540
 541	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 542}
 543
 544/**
 545 * e1000_receive_skb - helper function to handle Rx indications
 546 * @adapter: board private structure
 547 * @netdev: pointer to netdev struct
 548 * @staterr: descriptor extended error and status field as written by hardware
 549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 550 * @skb: pointer to sk_buff to be indicated to stack
 551 **/
 552static void e1000_receive_skb(struct e1000_adapter *adapter,
 553			      struct net_device *netdev, struct sk_buff *skb,
 554			      u32 staterr, __le16 vlan)
 555{
 556	u16 tag = le16_to_cpu(vlan);
 557
 558	e1000e_rx_hwtstamp(adapter, staterr, skb);
 559
 560	skb->protocol = eth_type_trans(skb, netdev);
 561
 562	if (staterr & E1000_RXD_STAT_VP)
 563		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 564
 565	napi_gro_receive(&adapter->napi, skb);
 566}
 567
 568/**
 569 * e1000_rx_checksum - Receive Checksum Offload
 570 * @adapter: board private structure
 571 * @status_err: receive descriptor status and error fields
 572 * @skb: socket buffer with received data
 573 **/
 574static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 575			      struct sk_buff *skb)
 576{
 577	u16 status = (u16)status_err;
 578	u8 errors = (u8)(status_err >> 24);
 579
 580	skb_checksum_none_assert(skb);
 581
 582	/* Rx checksum disabled */
 583	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 584		return;
 585
 586	/* Ignore Checksum bit is set */
 587	if (status & E1000_RXD_STAT_IXSM)
 588		return;
 589
 590	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 591	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 592		/* let the stack verify checksum errors */
 593		adapter->hw_csum_err++;
 594		return;
 595	}
 596
 597	/* TCP/UDP Checksum has not been calculated */
 598	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 599		return;
 600
 601	/* It must be a TCP or UDP packet with a valid checksum */
 602	skb->ip_summed = CHECKSUM_UNNECESSARY;
 603	adapter->hw_csum_good++;
 604}
 605
 606static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 607{
 608	struct e1000_adapter *adapter = rx_ring->adapter;
 609	struct e1000_hw *hw = &adapter->hw;
 610
 611	__ew32_prepare(hw);
 612	writel(i, rx_ring->tail);
 613
 614	if (unlikely(i != readl(rx_ring->tail))) {
 615		u32 rctl = er32(RCTL);
 616
 617		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 618		e_err("ME firmware caused invalid RDT - resetting\n");
 619		schedule_work(&adapter->reset_task);
 620	}
 621}
 622
 623static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 624{
 625	struct e1000_adapter *adapter = tx_ring->adapter;
 626	struct e1000_hw *hw = &adapter->hw;
 627
 628	__ew32_prepare(hw);
 629	writel(i, tx_ring->tail);
 630
 631	if (unlikely(i != readl(tx_ring->tail))) {
 632		u32 tctl = er32(TCTL);
 633
 634		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 635		e_err("ME firmware caused invalid TDT - resetting\n");
 636		schedule_work(&adapter->reset_task);
 637	}
 638}
 639
 640/**
 641 * e1000_alloc_rx_buffers - Replace used receive buffers
 642 * @rx_ring: Rx descriptor ring
 643 * @cleaned_count: number to reallocate
 644 * @gfp: flags for allocation
 645 **/
 646static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 647				   int cleaned_count, gfp_t gfp)
 648{
 649	struct e1000_adapter *adapter = rx_ring->adapter;
 650	struct net_device *netdev = adapter->netdev;
 651	struct pci_dev *pdev = adapter->pdev;
 652	union e1000_rx_desc_extended *rx_desc;
 653	struct e1000_buffer *buffer_info;
 654	struct sk_buff *skb;
 655	unsigned int i;
 656	unsigned int bufsz = adapter->rx_buffer_len;
 657
 658	i = rx_ring->next_to_use;
 659	buffer_info = &rx_ring->buffer_info[i];
 660
 661	while (cleaned_count--) {
 662		skb = buffer_info->skb;
 663		if (skb) {
 664			skb_trim(skb, 0);
 665			goto map_skb;
 666		}
 667
 668		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 669		if (!skb) {
 670			/* Better luck next round */
 671			adapter->alloc_rx_buff_failed++;
 672			break;
 673		}
 674
 675		buffer_info->skb = skb;
 676map_skb:
 677		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 678						  adapter->rx_buffer_len,
 679						  DMA_FROM_DEVICE);
 680		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 681			dev_err(&pdev->dev, "Rx DMA map failed\n");
 682			adapter->rx_dma_failed++;
 683			break;
 684		}
 685
 686		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 687		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 688
 689		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 690			/* Force memory writes to complete before letting h/w
 691			 * know there are new descriptors to fetch.  (Only
 692			 * applicable for weak-ordered memory model archs,
 693			 * such as IA-64).
 694			 */
 695			wmb();
 696			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 697				e1000e_update_rdt_wa(rx_ring, i);
 698			else
 699				writel(i, rx_ring->tail);
 700		}
 701		i++;
 702		if (i == rx_ring->count)
 703			i = 0;
 704		buffer_info = &rx_ring->buffer_info[i];
 705	}
 706
 707	rx_ring->next_to_use = i;
 708}
 709
 710/**
 711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 712 * @rx_ring: Rx descriptor ring
 713 * @cleaned_count: number to reallocate
 714 * @gfp: flags for allocation
 715 **/
 716static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 717				      int cleaned_count, gfp_t gfp)
 718{
 719	struct e1000_adapter *adapter = rx_ring->adapter;
 720	struct net_device *netdev = adapter->netdev;
 721	struct pci_dev *pdev = adapter->pdev;
 722	union e1000_rx_desc_packet_split *rx_desc;
 723	struct e1000_buffer *buffer_info;
 724	struct e1000_ps_page *ps_page;
 725	struct sk_buff *skb;
 726	unsigned int i, j;
 727
 728	i = rx_ring->next_to_use;
 729	buffer_info = &rx_ring->buffer_info[i];
 730
 731	while (cleaned_count--) {
 732		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 733
 734		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 735			ps_page = &buffer_info->ps_pages[j];
 736			if (j >= adapter->rx_ps_pages) {
 737				/* all unused desc entries get hw null ptr */
 738				rx_desc->read.buffer_addr[j + 1] =
 739				    ~cpu_to_le64(0);
 740				continue;
 741			}
 742			if (!ps_page->page) {
 743				ps_page->page = alloc_page(gfp);
 744				if (!ps_page->page) {
 745					adapter->alloc_rx_buff_failed++;
 746					goto no_buffers;
 747				}
 748				ps_page->dma = dma_map_page(&pdev->dev,
 749							    ps_page->page,
 750							    0, PAGE_SIZE,
 751							    DMA_FROM_DEVICE);
 752				if (dma_mapping_error(&pdev->dev,
 753						      ps_page->dma)) {
 754					dev_err(&adapter->pdev->dev,
 755						"Rx DMA page map failed\n");
 756					adapter->rx_dma_failed++;
 757					goto no_buffers;
 758				}
 759			}
 760			/* Refresh the desc even if buffer_addrs
 761			 * didn't change because each write-back
 762			 * erases this info.
 763			 */
 764			rx_desc->read.buffer_addr[j + 1] =
 765			    cpu_to_le64(ps_page->dma);
 766		}
 767
 768		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 769						  gfp);
 770
 771		if (!skb) {
 772			adapter->alloc_rx_buff_failed++;
 773			break;
 774		}
 775
 776		buffer_info->skb = skb;
 777		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 778						  adapter->rx_ps_bsize0,
 779						  DMA_FROM_DEVICE);
 780		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 781			dev_err(&pdev->dev, "Rx DMA map failed\n");
 782			adapter->rx_dma_failed++;
 783			/* cleanup skb */
 784			dev_kfree_skb_any(skb);
 785			buffer_info->skb = NULL;
 786			break;
 787		}
 788
 789		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 792			/* Force memory writes to complete before letting h/w
 793			 * know there are new descriptors to fetch.  (Only
 794			 * applicable for weak-ordered memory model archs,
 795			 * such as IA-64).
 796			 */
 797			wmb();
 798			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 799				e1000e_update_rdt_wa(rx_ring, i << 1);
 800			else
 801				writel(i << 1, rx_ring->tail);
 802		}
 803
 804		i++;
 805		if (i == rx_ring->count)
 806			i = 0;
 807		buffer_info = &rx_ring->buffer_info[i];
 808	}
 809
 810no_buffers:
 811	rx_ring->next_to_use = i;
 812}
 813
 814/**
 815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 816 * @rx_ring: Rx descriptor ring
 817 * @cleaned_count: number of buffers to allocate this pass
 818 * @gfp: flags for allocation
 819 **/
 820
 821static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 822					 int cleaned_count, gfp_t gfp)
 823{
 824	struct e1000_adapter *adapter = rx_ring->adapter;
 825	struct net_device *netdev = adapter->netdev;
 826	struct pci_dev *pdev = adapter->pdev;
 827	union e1000_rx_desc_extended *rx_desc;
 828	struct e1000_buffer *buffer_info;
 829	struct sk_buff *skb;
 830	unsigned int i;
 831	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 832
 833	i = rx_ring->next_to_use;
 834	buffer_info = &rx_ring->buffer_info[i];
 835
 836	while (cleaned_count--) {
 837		skb = buffer_info->skb;
 838		if (skb) {
 839			skb_trim(skb, 0);
 840			goto check_page;
 841		}
 842
 843		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 844		if (unlikely(!skb)) {
 845			/* Better luck next round */
 846			adapter->alloc_rx_buff_failed++;
 847			break;
 848		}
 849
 850		buffer_info->skb = skb;
 851check_page:
 852		/* allocate a new page if necessary */
 853		if (!buffer_info->page) {
 854			buffer_info->page = alloc_page(gfp);
 855			if (unlikely(!buffer_info->page)) {
 856				adapter->alloc_rx_buff_failed++;
 857				break;
 858			}
 859		}
 860
 861		if (!buffer_info->dma) {
 862			buffer_info->dma = dma_map_page(&pdev->dev,
 863							buffer_info->page, 0,
 864							PAGE_SIZE,
 865							DMA_FROM_DEVICE);
 866			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 867				adapter->alloc_rx_buff_failed++;
 868				break;
 869			}
 870		}
 871
 872		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 873		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 874
 875		if (unlikely(++i == rx_ring->count))
 876			i = 0;
 877		buffer_info = &rx_ring->buffer_info[i];
 878	}
 879
 880	if (likely(rx_ring->next_to_use != i)) {
 881		rx_ring->next_to_use = i;
 882		if (unlikely(i-- == 0))
 883			i = (rx_ring->count - 1);
 884
 885		/* Force memory writes to complete before letting h/w
 886		 * know there are new descriptors to fetch.  (Only
 887		 * applicable for weak-ordered memory model archs,
 888		 * such as IA-64).
 889		 */
 890		wmb();
 891		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 892			e1000e_update_rdt_wa(rx_ring, i);
 893		else
 894			writel(i, rx_ring->tail);
 895	}
 896}
 897
 898static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 899				 struct sk_buff *skb)
 900{
 901	if (netdev->features & NETIF_F_RXHASH)
 902		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 903}
 904
 905/**
 906 * e1000_clean_rx_irq - Send received data up the network stack
 907 * @rx_ring: Rx descriptor ring
 908 * @work_done: output parameter for indicating completed work
 909 * @work_to_do: how many packets we can clean
 910 *
 911 * the return value indicates whether actual cleaning was done, there
 912 * is no guarantee that everything was cleaned
 913 **/
 914static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 915			       int work_to_do)
 916{
 917	struct e1000_adapter *adapter = rx_ring->adapter;
 918	struct net_device *netdev = adapter->netdev;
 919	struct pci_dev *pdev = adapter->pdev;
 920	struct e1000_hw *hw = &adapter->hw;
 921	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 922	struct e1000_buffer *buffer_info, *next_buffer;
 923	u32 length, staterr;
 924	unsigned int i;
 925	int cleaned_count = 0;
 926	bool cleaned = false;
 927	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 928
 929	i = rx_ring->next_to_clean;
 930	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 931	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 932	buffer_info = &rx_ring->buffer_info[i];
 933
 934	while (staterr & E1000_RXD_STAT_DD) {
 935		struct sk_buff *skb;
 936
 937		if (*work_done >= work_to_do)
 938			break;
 939		(*work_done)++;
 940		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 941
 942		skb = buffer_info->skb;
 943		buffer_info->skb = NULL;
 944
 945		prefetch(skb->data - NET_IP_ALIGN);
 946
 947		i++;
 948		if (i == rx_ring->count)
 949			i = 0;
 950		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 951		prefetch(next_rxd);
 952
 953		next_buffer = &rx_ring->buffer_info[i];
 954
 955		cleaned = true;
 956		cleaned_count++;
 957		dma_unmap_single(&pdev->dev, buffer_info->dma,
 958				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 959		buffer_info->dma = 0;
 960
 961		length = le16_to_cpu(rx_desc->wb.upper.length);
 962
 963		/* !EOP means multiple descriptors were used to store a single
 964		 * packet, if that's the case we need to toss it.  In fact, we
 965		 * need to toss every packet with the EOP bit clear and the
 966		 * next frame that _does_ have the EOP bit set, as it is by
 967		 * definition only a frame fragment
 968		 */
 969		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 970			adapter->flags2 |= FLAG2_IS_DISCARDING;
 971
 972		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 973			/* All receives must fit into a single buffer */
 974			e_dbg("Receive packet consumed multiple buffers\n");
 975			/* recycle */
 976			buffer_info->skb = skb;
 977			if (staterr & E1000_RXD_STAT_EOP)
 978				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 979			goto next_desc;
 980		}
 981
 982		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 983			     !(netdev->features & NETIF_F_RXALL))) {
 984			/* recycle */
 985			buffer_info->skb = skb;
 986			goto next_desc;
 987		}
 988
 989		/* adjust length to remove Ethernet CRC */
 990		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 991			/* If configured to store CRC, don't subtract FCS,
 992			 * but keep the FCS bytes out of the total_rx_bytes
 993			 * counter
 994			 */
 995			if (netdev->features & NETIF_F_RXFCS)
 996				total_rx_bytes -= 4;
 997			else
 998				length -= 4;
 999		}
1000
1001		total_rx_bytes += length;
1002		total_rx_packets++;
1003
1004		/* code added for copybreak, this should improve
1005		 * performance for small packets with large amounts
1006		 * of reassembly being done in the stack
1007		 */
1008		if (length < copybreak) {
1009			struct sk_buff *new_skb =
1010				napi_alloc_skb(&adapter->napi, length);
1011			if (new_skb) {
1012				skb_copy_to_linear_data_offset(new_skb,
1013							       -NET_IP_ALIGN,
1014							       (skb->data -
1015								NET_IP_ALIGN),
1016							       (length +
1017								NET_IP_ALIGN));
1018				/* save the skb in buffer_info as good */
1019				buffer_info->skb = skb;
1020				skb = new_skb;
1021			}
1022			/* else just continue with the old one */
1023		}
1024		/* end copybreak code */
1025		skb_put(skb, length);
1026
1027		/* Receive Checksum Offload */
1028		e1000_rx_checksum(adapter, staterr, skb);
1029
1030		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032		e1000_receive_skb(adapter, netdev, skb, staterr,
1033				  rx_desc->wb.upper.vlan);
1034
1035next_desc:
1036		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038		/* return some buffers to hardware, one at a time is too slow */
1039		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041					      GFP_ATOMIC);
1042			cleaned_count = 0;
1043		}
1044
1045		/* use prefetched values */
1046		rx_desc = next_rxd;
1047		buffer_info = next_buffer;
1048
1049		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050	}
1051	rx_ring->next_to_clean = i;
1052
1053	cleaned_count = e1000_desc_unused(rx_ring);
1054	if (cleaned_count)
1055		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057	adapter->total_rx_bytes += total_rx_bytes;
1058	adapter->total_rx_packets += total_rx_packets;
1059	return cleaned;
1060}
1061
1062static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063			    struct e1000_buffer *buffer_info,
1064			    bool drop)
1065{
1066	struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068	if (buffer_info->dma) {
1069		if (buffer_info->mapped_as_page)
1070			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071				       buffer_info->length, DMA_TO_DEVICE);
1072		else
1073			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074					 buffer_info->length, DMA_TO_DEVICE);
1075		buffer_info->dma = 0;
1076	}
1077	if (buffer_info->skb) {
1078		if (drop)
1079			dev_kfree_skb_any(buffer_info->skb);
1080		else
1081			dev_consume_skb_any(buffer_info->skb);
1082		buffer_info->skb = NULL;
1083	}
1084	buffer_info->time_stamp = 0;
1085}
1086
1087static void e1000_print_hw_hang(struct work_struct *work)
1088{
1089	struct e1000_adapter *adapter = container_of(work,
1090						     struct e1000_adapter,
1091						     print_hang_task);
1092	struct net_device *netdev = adapter->netdev;
1093	struct e1000_ring *tx_ring = adapter->tx_ring;
1094	unsigned int i = tx_ring->next_to_clean;
1095	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097	struct e1000_hw *hw = &adapter->hw;
1098	u16 phy_status, phy_1000t_status, phy_ext_status;
1099	u16 pci_status;
1100
1101	if (test_bit(__E1000_DOWN, &adapter->state))
1102		return;
1103
1104	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105		/* May be block on write-back, flush and detect again
1106		 * flush pending descriptor writebacks to memory
1107		 */
1108		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109		/* execute the writes immediately */
1110		e1e_flush();
1111		/* Due to rare timing issues, write to TIDV again to ensure
1112		 * the write is successful
1113		 */
1114		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115		/* execute the writes immediately */
1116		e1e_flush();
1117		adapter->tx_hang_recheck = true;
1118		return;
1119	}
1120	adapter->tx_hang_recheck = false;
1121
1122	if (er32(TDH(0)) == er32(TDT(0))) {
1123		e_dbg("false hang detected, ignoring\n");
1124		return;
1125	}
1126
1127	/* Real hang detected */
1128	netif_stop_queue(netdev);
1129
1130	e1e_rphy(hw, MII_BMSR, &phy_status);
1131	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136	/* detected Hardware unit hang */
1137	e_err("Detected Hardware Unit Hang:\n"
1138	      "  TDH                  <%x>\n"
1139	      "  TDT                  <%x>\n"
1140	      "  next_to_use          <%x>\n"
1141	      "  next_to_clean        <%x>\n"
1142	      "buffer_info[next_to_clean]:\n"
1143	      "  time_stamp           <%lx>\n"
1144	      "  next_to_watch        <%x>\n"
1145	      "  jiffies              <%lx>\n"
1146	      "  next_to_watch.status <%x>\n"
1147	      "MAC Status             <%x>\n"
1148	      "PHY Status             <%x>\n"
1149	      "PHY 1000BASE-T Status  <%x>\n"
1150	      "PHY Extended Status    <%x>\n"
1151	      "PCI Status             <%x>\n",
1152	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157	e1000e_dump(adapter);
1158
1159	/* Suggest workaround for known h/w issue */
1160	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162}
1163
1164/**
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1167 *
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb.  The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1171 */
1172static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173{
1174	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175						     tx_hwtstamp_work);
1176	struct e1000_hw *hw = &adapter->hw;
1177
1178	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180		struct skb_shared_hwtstamps shhwtstamps;
1181		u64 txstmp;
1182
1183		txstmp = er32(TXSTMPL);
1184		txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189		 * prior to notifying the stack of a Tx timestamp.
1190		 */
1191		adapter->tx_hwtstamp_skb = NULL;
1192		wmb(); /* force write prior to skb_tstamp_tx */
1193
1194		skb_tstamp_tx(skb, &shhwtstamps);
1195		dev_consume_skb_any(skb);
1196	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197			      + adapter->tx_timeout_factor * HZ)) {
1198		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199		adapter->tx_hwtstamp_skb = NULL;
1200		adapter->tx_hwtstamp_timeouts++;
1201		e_warn("clearing Tx timestamp hang\n");
1202	} else {
1203		/* reschedule to check later */
1204		schedule_work(&adapter->tx_hwtstamp_work);
1205	}
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217	struct e1000_adapter *adapter = tx_ring->adapter;
1218	struct net_device *netdev = adapter->netdev;
1219	struct e1000_hw *hw = &adapter->hw;
1220	struct e1000_tx_desc *tx_desc, *eop_desc;
1221	struct e1000_buffer *buffer_info;
1222	unsigned int i, eop;
1223	unsigned int count = 0;
1224	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225	unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227	i = tx_ring->next_to_clean;
1228	eop = tx_ring->buffer_info[i].next_to_watch;
1229	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232	       (count < tx_ring->count)) {
1233		bool cleaned = false;
1234
1235		dma_rmb();		/* read buffer_info after eop_desc */
1236		for (; !cleaned; count++) {
1237			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238			buffer_info = &tx_ring->buffer_info[i];
1239			cleaned = (i == eop);
1240
1241			if (cleaned) {
1242				total_tx_packets += buffer_info->segs;
1243				total_tx_bytes += buffer_info->bytecount;
1244				if (buffer_info->skb) {
1245					bytes_compl += buffer_info->skb->len;
1246					pkts_compl++;
1247				}
1248			}
1249
1250			e1000_put_txbuf(tx_ring, buffer_info, false);
1251			tx_desc->upper.data = 0;
1252
1253			i++;
1254			if (i == tx_ring->count)
1255				i = 0;
1256		}
1257
1258		if (i == tx_ring->next_to_use)
1259			break;
1260		eop = tx_ring->buffer_info[i].next_to_watch;
1261		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262	}
1263
1264	tx_ring->next_to_clean = i;
1265
1266	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269	if (count && netif_carrier_ok(netdev) &&
1270	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271		/* Make sure that anybody stopping the queue after this
1272		 * sees the new next_to_clean.
1273		 */
1274		smp_mb();
1275
1276		if (netif_queue_stopped(netdev) &&
1277		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278			netif_wake_queue(netdev);
1279			++adapter->restart_queue;
1280		}
1281	}
1282
1283	if (adapter->detect_tx_hung) {
1284		/* Detect a transmit hang in hardware, this serializes the
1285		 * check with the clearing of time_stamp and movement of i
1286		 */
1287		adapter->detect_tx_hung = false;
1288		if (tx_ring->buffer_info[i].time_stamp &&
1289		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290			       + (adapter->tx_timeout_factor * HZ)) &&
1291		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292			schedule_work(&adapter->print_hang_task);
1293		else
1294			adapter->tx_hang_recheck = false;
1295	}
1296	adapter->total_tx_bytes += total_tx_bytes;
1297	adapter->total_tx_packets += total_tx_packets;
1298	return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1306 *
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1309 **/
1310static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311				  int work_to_do)
1312{
1313	struct e1000_adapter *adapter = rx_ring->adapter;
1314	struct e1000_hw *hw = &adapter->hw;
1315	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316	struct net_device *netdev = adapter->netdev;
1317	struct pci_dev *pdev = adapter->pdev;
1318	struct e1000_buffer *buffer_info, *next_buffer;
1319	struct e1000_ps_page *ps_page;
1320	struct sk_buff *skb;
1321	unsigned int i, j;
1322	u32 length, staterr;
1323	int cleaned_count = 0;
1324	bool cleaned = false;
1325	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327	i = rx_ring->next_to_clean;
1328	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330	buffer_info = &rx_ring->buffer_info[i];
1331
1332	while (staterr & E1000_RXD_STAT_DD) {
1333		if (*work_done >= work_to_do)
1334			break;
1335		(*work_done)++;
1336		skb = buffer_info->skb;
1337		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338
1339		/* in the packet split case this is header only */
1340		prefetch(skb->data - NET_IP_ALIGN);
1341
1342		i++;
1343		if (i == rx_ring->count)
1344			i = 0;
1345		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346		prefetch(next_rxd);
1347
1348		next_buffer = &rx_ring->buffer_info[i];
1349
1350		cleaned = true;
1351		cleaned_count++;
1352		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354		buffer_info->dma = 0;
1355
1356		/* see !EOP comment in other Rx routine */
1357		if (!(staterr & E1000_RXD_STAT_EOP))
1358			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362			dev_kfree_skb_irq(skb);
1363			if (staterr & E1000_RXD_STAT_EOP)
1364				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365			goto next_desc;
1366		}
1367
1368		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369			     !(netdev->features & NETIF_F_RXALL))) {
1370			dev_kfree_skb_irq(skb);
1371			goto next_desc;
1372		}
1373
1374		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376		if (!length) {
1377			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378			dev_kfree_skb_irq(skb);
1379			goto next_desc;
1380		}
1381
1382		/* Good Receive */
1383		skb_put(skb, length);
1384
1385		{
1386			/* this looks ugly, but it seems compiler issues make
1387			 * it more efficient than reusing j
1388			 */
1389			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391			/* page alloc/put takes too long and effects small
1392			 * packet throughput, so unsplit small packets and
1393			 * save the alloc/put
 
1394			 */
1395			if (l1 && (l1 <= copybreak) &&
1396			    ((length + l1) <= adapter->rx_ps_bsize0)) {
 
 
1397				ps_page = &buffer_info->ps_pages[0];
1398
 
 
 
 
1399				dma_sync_single_for_cpu(&pdev->dev,
1400							ps_page->dma,
1401							PAGE_SIZE,
1402							DMA_FROM_DEVICE);
1403				memcpy(skb_tail_pointer(skb),
1404				       page_address(ps_page->page), l1);
 
1405				dma_sync_single_for_device(&pdev->dev,
1406							   ps_page->dma,
1407							   PAGE_SIZE,
1408							   DMA_FROM_DEVICE);
1409
1410				/* remove the CRC */
1411				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412					if (!(netdev->features & NETIF_F_RXFCS))
1413						l1 -= 4;
1414				}
1415
1416				skb_put(skb, l1);
1417				goto copydone;
1418			}	/* if */
1419		}
1420
1421		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423			if (!length)
1424				break;
1425
1426			ps_page = &buffer_info->ps_pages[j];
1427			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428				       DMA_FROM_DEVICE);
1429			ps_page->dma = 0;
1430			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431			ps_page->page = NULL;
1432			skb->len += length;
1433			skb->data_len += length;
1434			skb->truesize += PAGE_SIZE;
1435		}
1436
1437		/* strip the ethernet crc, problem is we're using pages now so
1438		 * this whole operation can get a little cpu intensive
1439		 */
1440		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441			if (!(netdev->features & NETIF_F_RXFCS))
1442				pskb_trim(skb, skb->len - 4);
1443		}
1444
1445copydone:
1446		total_rx_bytes += skb->len;
1447		total_rx_packets++;
1448
1449		e1000_rx_checksum(adapter, staterr, skb);
1450
1451		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453		if (rx_desc->wb.upper.header_status &
1454		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455			adapter->rx_hdr_split++;
1456
1457		e1000_receive_skb(adapter, netdev, skb, staterr,
1458				  rx_desc->wb.middle.vlan);
1459
1460next_desc:
1461		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462		buffer_info->skb = NULL;
1463
1464		/* return some buffers to hardware, one at a time is too slow */
1465		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467					      GFP_ATOMIC);
1468			cleaned_count = 0;
1469		}
1470
1471		/* use prefetched values */
1472		rx_desc = next_rxd;
1473		buffer_info = next_buffer;
1474
1475		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476	}
1477	rx_ring->next_to_clean = i;
1478
1479	cleaned_count = e1000_desc_unused(rx_ring);
1480	if (cleaned_count)
1481		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483	adapter->total_rx_bytes += total_rx_bytes;
1484	adapter->total_rx_packets += total_rx_packets;
1485	return cleaned;
1486}
1487
1488static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489			       u16 length)
1490{
1491	bi->page = NULL;
1492	skb->len += length;
1493	skb->data_len += length;
1494	skb->truesize += PAGE_SIZE;
1495}
1496
1497/**
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1502 *
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1505 **/
1506static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507				     int work_to_do)
1508{
1509	struct e1000_adapter *adapter = rx_ring->adapter;
1510	struct net_device *netdev = adapter->netdev;
1511	struct pci_dev *pdev = adapter->pdev;
1512	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513	struct e1000_buffer *buffer_info, *next_buffer;
1514	u32 length, staterr;
1515	unsigned int i;
1516	int cleaned_count = 0;
1517	bool cleaned = false;
1518	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519	struct skb_shared_info *shinfo;
1520
1521	i = rx_ring->next_to_clean;
1522	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524	buffer_info = &rx_ring->buffer_info[i];
1525
1526	while (staterr & E1000_RXD_STAT_DD) {
1527		struct sk_buff *skb;
1528
1529		if (*work_done >= work_to_do)
1530			break;
1531		(*work_done)++;
1532		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533
1534		skb = buffer_info->skb;
1535		buffer_info->skb = NULL;
1536
1537		++i;
1538		if (i == rx_ring->count)
1539			i = 0;
1540		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541		prefetch(next_rxd);
1542
1543		next_buffer = &rx_ring->buffer_info[i];
1544
1545		cleaned = true;
1546		cleaned_count++;
1547		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548			       DMA_FROM_DEVICE);
1549		buffer_info->dma = 0;
1550
1551		length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553		/* errors is only valid for DD + EOP descriptors */
1554		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556			      !(netdev->features & NETIF_F_RXALL)))) {
1557			/* recycle both page and skb */
1558			buffer_info->skb = skb;
1559			/* an error means any chain goes out the window too */
1560			if (rx_ring->rx_skb_top)
1561				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562			rx_ring->rx_skb_top = NULL;
1563			goto next_desc;
1564		}
1565#define rxtop (rx_ring->rx_skb_top)
1566		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567			/* this descriptor is only the beginning (or middle) */
1568			if (!rxtop) {
1569				/* this is the beginning of a chain */
1570				rxtop = skb;
1571				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572						   0, length);
1573			} else {
1574				/* this is the middle of a chain */
1575				shinfo = skb_shinfo(rxtop);
1576				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577						   buffer_info->page, 0,
1578						   length);
1579				/* re-use the skb, only consumed the page */
1580				buffer_info->skb = skb;
1581			}
1582			e1000_consume_page(buffer_info, rxtop, length);
1583			goto next_desc;
1584		} else {
1585			if (rxtop) {
1586				/* end of the chain */
1587				shinfo = skb_shinfo(rxtop);
1588				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589						   buffer_info->page, 0,
1590						   length);
1591				/* re-use the current skb, we only consumed the
1592				 * page
1593				 */
1594				buffer_info->skb = skb;
1595				skb = rxtop;
1596				rxtop = NULL;
1597				e1000_consume_page(buffer_info, skb, length);
1598			} else {
1599				/* no chain, got EOP, this buf is the packet
1600				 * copybreak to save the put_page/alloc_page
1601				 */
1602				if (length <= copybreak &&
1603				    skb_tailroom(skb) >= length) {
1604					memcpy(skb_tail_pointer(skb),
1605					       page_address(buffer_info->page),
 
1606					       length);
 
1607					/* re-use the page, so don't erase
1608					 * buffer_info->page
1609					 */
1610					skb_put(skb, length);
1611				} else {
1612					skb_fill_page_desc(skb, 0,
1613							   buffer_info->page, 0,
1614							   length);
1615					e1000_consume_page(buffer_info, skb,
1616							   length);
1617				}
1618			}
1619		}
1620
1621		/* Receive Checksum Offload */
1622		e1000_rx_checksum(adapter, staterr, skb);
1623
1624		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626		/* probably a little skewed due to removing CRC */
1627		total_rx_bytes += skb->len;
1628		total_rx_packets++;
1629
1630		/* eth type trans needs skb->data to point to something */
1631		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632			e_err("pskb_may_pull failed.\n");
1633			dev_kfree_skb_irq(skb);
1634			goto next_desc;
1635		}
1636
1637		e1000_receive_skb(adapter, netdev, skb, staterr,
1638				  rx_desc->wb.upper.vlan);
1639
1640next_desc:
1641		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643		/* return some buffers to hardware, one at a time is too slow */
1644		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646					      GFP_ATOMIC);
1647			cleaned_count = 0;
1648		}
1649
1650		/* use prefetched values */
1651		rx_desc = next_rxd;
1652		buffer_info = next_buffer;
1653
1654		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655	}
1656	rx_ring->next_to_clean = i;
1657
1658	cleaned_count = e1000_desc_unused(rx_ring);
1659	if (cleaned_count)
1660		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662	adapter->total_rx_bytes += total_rx_bytes;
1663	adapter->total_rx_packets += total_rx_packets;
1664	return cleaned;
1665}
1666
1667/**
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1670 **/
1671static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672{
1673	struct e1000_adapter *adapter = rx_ring->adapter;
1674	struct e1000_buffer *buffer_info;
1675	struct e1000_ps_page *ps_page;
1676	struct pci_dev *pdev = adapter->pdev;
1677	unsigned int i, j;
1678
1679	/* Free all the Rx ring sk_buffs */
1680	for (i = 0; i < rx_ring->count; i++) {
1681		buffer_info = &rx_ring->buffer_info[i];
1682		if (buffer_info->dma) {
1683			if (adapter->clean_rx == e1000_clean_rx_irq)
1684				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685						 adapter->rx_buffer_len,
1686						 DMA_FROM_DEVICE);
1687			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689					       PAGE_SIZE, DMA_FROM_DEVICE);
1690			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_ps_bsize0,
1693						 DMA_FROM_DEVICE);
1694			buffer_info->dma = 0;
1695		}
1696
1697		if (buffer_info->page) {
1698			put_page(buffer_info->page);
1699			buffer_info->page = NULL;
1700		}
1701
1702		if (buffer_info->skb) {
1703			dev_kfree_skb(buffer_info->skb);
1704			buffer_info->skb = NULL;
1705		}
1706
1707		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708			ps_page = &buffer_info->ps_pages[j];
1709			if (!ps_page->page)
1710				break;
1711			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712				       DMA_FROM_DEVICE);
1713			ps_page->dma = 0;
1714			put_page(ps_page->page);
1715			ps_page->page = NULL;
1716		}
1717	}
1718
1719	/* there also may be some cached data from a chained receive */
1720	if (rx_ring->rx_skb_top) {
1721		dev_kfree_skb(rx_ring->rx_skb_top);
1722		rx_ring->rx_skb_top = NULL;
1723	}
1724
1725	/* Zero out the descriptor ring */
1726	memset(rx_ring->desc, 0, rx_ring->size);
1727
1728	rx_ring->next_to_clean = 0;
1729	rx_ring->next_to_use = 0;
1730	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731}
1732
1733static void e1000e_downshift_workaround(struct work_struct *work)
1734{
1735	struct e1000_adapter *adapter = container_of(work,
1736						     struct e1000_adapter,
1737						     downshift_task);
1738
1739	if (test_bit(__E1000_DOWN, &adapter->state))
1740		return;
1741
1742	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743}
1744
1745/**
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1749 **/
1750static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751{
1752	struct net_device *netdev = data;
1753	struct e1000_adapter *adapter = netdev_priv(netdev);
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 icr = er32(ICR);
1756
1757	/* read ICR disables interrupts using IAM */
1758	if (icr & E1000_ICR_LSC) {
1759		hw->mac.get_link_status = true;
1760		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761		 * disconnect (LSC) before accessing any PHY registers
1762		 */
1763		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765			schedule_work(&adapter->downshift_task);
1766
1767		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768		 * link down event; disable receives here in the ISR and reset
1769		 * adapter in watchdog
1770		 */
1771		if (netif_carrier_ok(netdev) &&
1772		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773			/* disable receives */
1774			u32 rctl = er32(RCTL);
1775
1776			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777			adapter->flags |= FLAG_RESTART_NOW;
1778		}
1779		/* guard against interrupt when we're going down */
1780		if (!test_bit(__E1000_DOWN, &adapter->state))
1781			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782	}
1783
1784	/* Reset on uncorrectable ECC error */
1785	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786		u32 pbeccsts = er32(PBECCSTS);
1787
1788		adapter->corr_errors +=
1789		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790		adapter->uncorr_errors +=
1791		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1792
1793		/* Do the reset outside of interrupt context */
1794		schedule_work(&adapter->reset_task);
1795
1796		/* return immediately since reset is imminent */
1797		return IRQ_HANDLED;
1798	}
1799
1800	if (napi_schedule_prep(&adapter->napi)) {
1801		adapter->total_tx_bytes = 0;
1802		adapter->total_tx_packets = 0;
1803		adapter->total_rx_bytes = 0;
1804		adapter->total_rx_packets = 0;
1805		__napi_schedule(&adapter->napi);
1806	}
1807
1808	return IRQ_HANDLED;
1809}
1810
1811/**
1812 * e1000_intr - Interrupt Handler
1813 * @irq: interrupt number
1814 * @data: pointer to a network interface device structure
1815 **/
1816static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817{
1818	struct net_device *netdev = data;
1819	struct e1000_adapter *adapter = netdev_priv(netdev);
1820	struct e1000_hw *hw = &adapter->hw;
1821	u32 rctl, icr = er32(ICR);
1822
1823	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824		return IRQ_NONE;	/* Not our interrupt */
1825
1826	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827	 * not set, then the adapter didn't send an interrupt
1828	 */
1829	if (!(icr & E1000_ICR_INT_ASSERTED))
1830		return IRQ_NONE;
1831
1832	/* Interrupt Auto-Mask...upon reading ICR,
1833	 * interrupts are masked.  No need for the
1834	 * IMC write
1835	 */
1836
1837	if (icr & E1000_ICR_LSC) {
1838		hw->mac.get_link_status = true;
1839		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840		 * disconnect (LSC) before accessing any PHY registers
1841		 */
1842		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844			schedule_work(&adapter->downshift_task);
1845
1846		/* 80003ES2LAN workaround--
1847		 * For packet buffer work-around on link down event;
1848		 * disable receives here in the ISR and
1849		 * reset adapter in watchdog
1850		 */
1851		if (netif_carrier_ok(netdev) &&
1852		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853			/* disable receives */
1854			rctl = er32(RCTL);
1855			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856			adapter->flags |= FLAG_RESTART_NOW;
1857		}
1858		/* guard against interrupt when we're going down */
1859		if (!test_bit(__E1000_DOWN, &adapter->state))
1860			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861	}
1862
1863	/* Reset on uncorrectable ECC error */
1864	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865		u32 pbeccsts = er32(PBECCSTS);
1866
1867		adapter->corr_errors +=
1868		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869		adapter->uncorr_errors +=
1870		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1871
1872		/* Do the reset outside of interrupt context */
1873		schedule_work(&adapter->reset_task);
1874
1875		/* return immediately since reset is imminent */
1876		return IRQ_HANDLED;
1877	}
1878
1879	if (napi_schedule_prep(&adapter->napi)) {
1880		adapter->total_tx_bytes = 0;
1881		adapter->total_tx_packets = 0;
1882		adapter->total_rx_bytes = 0;
1883		adapter->total_rx_packets = 0;
1884		__napi_schedule(&adapter->napi);
1885	}
1886
1887	return IRQ_HANDLED;
1888}
1889
1890static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891{
1892	struct net_device *netdev = data;
1893	struct e1000_adapter *adapter = netdev_priv(netdev);
1894	struct e1000_hw *hw = &adapter->hw;
1895	u32 icr = er32(ICR);
1896
1897	if (icr & adapter->eiac_mask)
1898		ew32(ICS, (icr & adapter->eiac_mask));
1899
1900	if (icr & E1000_ICR_LSC) {
1901		hw->mac.get_link_status = true;
1902		/* guard against interrupt when we're going down */
1903		if (!test_bit(__E1000_DOWN, &adapter->state))
1904			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905	}
1906
1907	if (!test_bit(__E1000_DOWN, &adapter->state))
1908		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	struct e1000_ring *tx_ring = adapter->tx_ring;
1919
1920	adapter->total_tx_bytes = 0;
1921	adapter->total_tx_packets = 0;
1922
1923	if (!e1000_clean_tx_irq(tx_ring))
1924		/* Ring was not completely cleaned, so fire another interrupt */
1925		ew32(ICS, tx_ring->ims_val);
1926
1927	if (!test_bit(__E1000_DOWN, &adapter->state))
1928		ew32(IMS, adapter->tx_ring->ims_val);
1929
1930	return IRQ_HANDLED;
1931}
1932
1933static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934{
1935	struct net_device *netdev = data;
1936	struct e1000_adapter *adapter = netdev_priv(netdev);
1937	struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939	/* Write the ITR value calculated at the end of the
1940	 * previous interrupt.
1941	 */
1942	if (rx_ring->set_itr) {
1943		u32 itr = rx_ring->itr_val ?
1944			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946		writel(itr, rx_ring->itr_register);
1947		rx_ring->set_itr = 0;
1948	}
1949
1950	if (napi_schedule_prep(&adapter->napi)) {
1951		adapter->total_rx_bytes = 0;
1952		adapter->total_rx_packets = 0;
1953		__napi_schedule(&adapter->napi);
1954	}
1955	return IRQ_HANDLED;
1956}
1957
1958/**
1959 * e1000_configure_msix - Configure MSI-X hardware
1960 * @adapter: board private structure
1961 *
1962 * e1000_configure_msix sets up the hardware to properly
1963 * generate MSI-X interrupts.
1964 **/
1965static void e1000_configure_msix(struct e1000_adapter *adapter)
1966{
1967	struct e1000_hw *hw = &adapter->hw;
1968	struct e1000_ring *rx_ring = adapter->rx_ring;
1969	struct e1000_ring *tx_ring = adapter->tx_ring;
1970	int vector = 0;
1971	u32 ctrl_ext, ivar = 0;
1972
1973	adapter->eiac_mask = 0;
1974
1975	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976	if (hw->mac.type == e1000_82574) {
1977		u32 rfctl = er32(RFCTL);
1978
1979		rfctl |= E1000_RFCTL_ACK_DIS;
1980		ew32(RFCTL, rfctl);
1981	}
1982
1983	/* Configure Rx vector */
1984	rx_ring->ims_val = E1000_IMS_RXQ0;
1985	adapter->eiac_mask |= rx_ring->ims_val;
1986	if (rx_ring->itr_val)
1987		writel(1000000000 / (rx_ring->itr_val * 256),
1988		       rx_ring->itr_register);
1989	else
1990		writel(1, rx_ring->itr_register);
1991	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993	/* Configure Tx vector */
1994	tx_ring->ims_val = E1000_IMS_TXQ0;
1995	vector++;
1996	if (tx_ring->itr_val)
1997		writel(1000000000 / (tx_ring->itr_val * 256),
1998		       tx_ring->itr_register);
1999	else
2000		writel(1, tx_ring->itr_register);
2001	adapter->eiac_mask |= tx_ring->ims_val;
2002	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004	/* set vector for Other Causes, e.g. link changes */
2005	vector++;
2006	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007	if (rx_ring->itr_val)
2008		writel(1000000000 / (rx_ring->itr_val * 256),
2009		       hw->hw_addr + E1000_EITR_82574(vector));
2010	else
2011		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013	/* Cause Tx interrupts on every write back */
2014	ivar |= BIT(31);
2015
2016	ew32(IVAR, ivar);
2017
2018	/* enable MSI-X PBA support */
2019	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021	ew32(CTRL_EXT, ctrl_ext);
2022	e1e_flush();
2023}
2024
2025void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026{
2027	if (adapter->msix_entries) {
2028		pci_disable_msix(adapter->pdev);
2029		kfree(adapter->msix_entries);
2030		adapter->msix_entries = NULL;
2031	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032		pci_disable_msi(adapter->pdev);
2033		adapter->flags &= ~FLAG_MSI_ENABLED;
2034	}
2035}
2036
2037/**
2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039 * @adapter: board private structure
2040 *
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2043 **/
2044void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045{
2046	int err;
2047	int i;
2048
2049	switch (adapter->int_mode) {
2050	case E1000E_INT_MODE_MSIX:
2051		if (adapter->flags & FLAG_HAS_MSIX) {
2052			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054							sizeof(struct
2055							       msix_entry),
2056							GFP_KERNEL);
2057			if (adapter->msix_entries) {
2058				struct e1000_adapter *a = adapter;
2059
2060				for (i = 0; i < adapter->num_vectors; i++)
2061					adapter->msix_entries[i].entry = i;
2062
2063				err = pci_enable_msix_range(a->pdev,
2064							    a->msix_entries,
2065							    a->num_vectors,
2066							    a->num_vectors);
2067				if (err > 0)
2068					return;
2069			}
2070			/* MSI-X failed, so fall through and try MSI */
2071			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072			e1000e_reset_interrupt_capability(adapter);
2073		}
2074		adapter->int_mode = E1000E_INT_MODE_MSI;
2075		fallthrough;
2076	case E1000E_INT_MODE_MSI:
2077		if (!pci_enable_msi(adapter->pdev)) {
2078			adapter->flags |= FLAG_MSI_ENABLED;
2079		} else {
2080			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082		}
2083		fallthrough;
2084	case E1000E_INT_MODE_LEGACY:
2085		/* Don't do anything; this is the system default */
2086		break;
2087	}
2088
2089	/* store the number of vectors being used */
2090	adapter->num_vectors = 1;
2091}
2092
2093/**
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 * @adapter: board private structure
2096 *
2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098 * kernel.
2099 **/
2100static int e1000_request_msix(struct e1000_adapter *adapter)
2101{
2102	struct net_device *netdev = adapter->netdev;
2103	int err = 0, vector = 0;
2104
2105	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106		snprintf(adapter->rx_ring->name,
2107			 sizeof(adapter->rx_ring->name) - 1,
2108			 "%.14s-rx-0", netdev->name);
2109	else
2110		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111	err = request_irq(adapter->msix_entries[vector].vector,
2112			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113			  netdev);
2114	if (err)
2115		return err;
2116	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117	    E1000_EITR_82574(vector);
2118	adapter->rx_ring->itr_val = adapter->itr;
2119	vector++;
2120
2121	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122		snprintf(adapter->tx_ring->name,
2123			 sizeof(adapter->tx_ring->name) - 1,
2124			 "%.14s-tx-0", netdev->name);
2125	else
2126		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127	err = request_irq(adapter->msix_entries[vector].vector,
2128			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129			  netdev);
2130	if (err)
2131		return err;
2132	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133	    E1000_EITR_82574(vector);
2134	adapter->tx_ring->itr_val = adapter->itr;
2135	vector++;
2136
2137	err = request_irq(adapter->msix_entries[vector].vector,
2138			  e1000_msix_other, 0, netdev->name, netdev);
2139	if (err)
2140		return err;
2141
2142	e1000_configure_msix(adapter);
2143
2144	return 0;
2145}
2146
2147/**
2148 * e1000_request_irq - initialize interrupts
2149 * @adapter: board private structure
2150 *
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2153 **/
2154static int e1000_request_irq(struct e1000_adapter *adapter)
2155{
2156	struct net_device *netdev = adapter->netdev;
2157	int err;
2158
2159	if (adapter->msix_entries) {
2160		err = e1000_request_msix(adapter);
2161		if (!err)
2162			return err;
2163		/* fall back to MSI */
2164		e1000e_reset_interrupt_capability(adapter);
2165		adapter->int_mode = E1000E_INT_MODE_MSI;
2166		e1000e_set_interrupt_capability(adapter);
2167	}
2168	if (adapter->flags & FLAG_MSI_ENABLED) {
2169		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170				  netdev->name, netdev);
2171		if (!err)
2172			return err;
2173
2174		/* fall back to legacy interrupt */
2175		e1000e_reset_interrupt_capability(adapter);
2176		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177	}
2178
2179	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180			  netdev->name, netdev);
2181	if (err)
2182		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184	return err;
2185}
2186
2187static void e1000_free_irq(struct e1000_adapter *adapter)
2188{
2189	struct net_device *netdev = adapter->netdev;
2190
2191	if (adapter->msix_entries) {
2192		int vector = 0;
2193
2194		free_irq(adapter->msix_entries[vector].vector, netdev);
2195		vector++;
2196
2197		free_irq(adapter->msix_entries[vector].vector, netdev);
2198		vector++;
2199
2200		/* Other Causes interrupt vector */
2201		free_irq(adapter->msix_entries[vector].vector, netdev);
2202		return;
2203	}
2204
2205	free_irq(adapter->pdev->irq, netdev);
2206}
2207
2208/**
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2210 * @adapter: board private structure
2211 **/
2212static void e1000_irq_disable(struct e1000_adapter *adapter)
2213{
2214	struct e1000_hw *hw = &adapter->hw;
2215
2216	ew32(IMC, ~0);
2217	if (adapter->msix_entries)
2218		ew32(EIAC_82574, 0);
2219	e1e_flush();
2220
2221	if (adapter->msix_entries) {
2222		int i;
2223
2224		for (i = 0; i < adapter->num_vectors; i++)
2225			synchronize_irq(adapter->msix_entries[i].vector);
2226	} else {
2227		synchronize_irq(adapter->pdev->irq);
2228	}
2229}
2230
2231/**
2232 * e1000_irq_enable - Enable default interrupt generation settings
2233 * @adapter: board private structure
2234 **/
2235static void e1000_irq_enable(struct e1000_adapter *adapter)
2236{
2237	struct e1000_hw *hw = &adapter->hw;
2238
2239	if (adapter->msix_entries) {
2240		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242		     IMS_OTHER_MASK);
2243	} else if (hw->mac.type >= e1000_pch_lpt) {
2244		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245	} else {
2246		ew32(IMS, IMS_ENABLE_MASK);
2247	}
2248	e1e_flush();
2249}
2250
2251/**
2252 * e1000e_get_hw_control - get control of the h/w from f/w
2253 * @adapter: address of board private structure
2254 *
2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256 * For ASF and Pass Through versions of f/w this means that
2257 * the driver is loaded. For AMT version (only with 82573)
2258 * of the f/w this means that the network i/f is open.
2259 **/
2260void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261{
2262	struct e1000_hw *hw = &adapter->hw;
2263	u32 ctrl_ext;
2264	u32 swsm;
2265
2266	/* Let firmware know the driver has taken over */
2267	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268		swsm = er32(SWSM);
2269		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271		ctrl_ext = er32(CTRL_EXT);
2272		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273	}
2274}
2275
2276/**
2277 * e1000e_release_hw_control - release control of the h/w to f/w
2278 * @adapter: address of board private structure
2279 *
2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281 * For ASF and Pass Through versions of f/w this means that the
2282 * driver is no longer loaded. For AMT version (only with 82573) i
2283 * of the f/w this means that the network i/f is closed.
2284 *
2285 **/
2286void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287{
2288	struct e1000_hw *hw = &adapter->hw;
2289	u32 ctrl_ext;
2290	u32 swsm;
2291
2292	/* Let firmware taken over control of h/w */
2293	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294		swsm = er32(SWSM);
2295		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297		ctrl_ext = er32(CTRL_EXT);
2298		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299	}
2300}
2301
2302/**
2303 * e1000_alloc_ring_dma - allocate memory for a ring structure
2304 * @adapter: board private structure
2305 * @ring: ring struct for which to allocate dma
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308				struct e1000_ring *ring)
2309{
2310	struct pci_dev *pdev = adapter->pdev;
2311
2312	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313					GFP_KERNEL);
2314	if (!ring->desc)
2315		return -ENOMEM;
2316
2317	return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328	struct e1000_adapter *adapter = tx_ring->adapter;
2329	int err = -ENOMEM, size;
2330
2331	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332	tx_ring->buffer_info = vzalloc(size);
2333	if (!tx_ring->buffer_info)
2334		goto err;
2335
2336	/* round up to nearest 4K */
2337	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341	if (err)
2342		goto err;
2343
2344	tx_ring->next_to_use = 0;
2345	tx_ring->next_to_clean = 0;
2346
2347	return 0;
2348err:
2349	vfree(tx_ring->buffer_info);
2350	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351	return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362	struct e1000_adapter *adapter = rx_ring->adapter;
2363	struct e1000_buffer *buffer_info;
2364	int i, size, desc_len, err = -ENOMEM;
2365
2366	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367	rx_ring->buffer_info = vzalloc(size);
2368	if (!rx_ring->buffer_info)
2369		goto err;
2370
2371	for (i = 0; i < rx_ring->count; i++) {
2372		buffer_info = &rx_ring->buffer_info[i];
2373		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374						sizeof(struct e1000_ps_page),
2375						GFP_KERNEL);
2376		if (!buffer_info->ps_pages)
2377			goto err_pages;
2378	}
2379
2380	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382	/* Round up to nearest 4K */
2383	rx_ring->size = rx_ring->count * desc_len;
2384	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387	if (err)
2388		goto err_pages;
2389
2390	rx_ring->next_to_clean = 0;
2391	rx_ring->next_to_use = 0;
2392	rx_ring->rx_skb_top = NULL;
2393
2394	return 0;
2395
2396err_pages:
2397	for (i = 0; i < rx_ring->count; i++) {
2398		buffer_info = &rx_ring->buffer_info[i];
2399		kfree(buffer_info->ps_pages);
2400	}
2401err:
2402	vfree(rx_ring->buffer_info);
2403	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404	return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413	struct e1000_adapter *adapter = tx_ring->adapter;
2414	struct e1000_buffer *buffer_info;
2415	unsigned long size;
2416	unsigned int i;
2417
2418	for (i = 0; i < tx_ring->count; i++) {
2419		buffer_info = &tx_ring->buffer_info[i];
2420		e1000_put_txbuf(tx_ring, buffer_info, false);
2421	}
2422
2423	netdev_reset_queue(adapter->netdev);
2424	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425	memset(tx_ring->buffer_info, 0, size);
2426
2427	memset(tx_ring->desc, 0, tx_ring->size);
2428
2429	tx_ring->next_to_use = 0;
2430	tx_ring->next_to_clean = 0;
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441	struct e1000_adapter *adapter = tx_ring->adapter;
2442	struct pci_dev *pdev = adapter->pdev;
2443
2444	e1000_clean_tx_ring(tx_ring);
2445
2446	vfree(tx_ring->buffer_info);
2447	tx_ring->buffer_info = NULL;
2448
2449	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450			  tx_ring->dma);
2451	tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462	struct e1000_adapter *adapter = rx_ring->adapter;
2463	struct pci_dev *pdev = adapter->pdev;
2464	int i;
2465
2466	e1000_clean_rx_ring(rx_ring);
2467
2468	for (i = 0; i < rx_ring->count; i++)
2469		kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471	vfree(rx_ring->buffer_info);
2472	rx_ring->buffer_info = NULL;
2473
2474	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475			  rx_ring->dma);
2476	rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2484 *
2485 *      Stores a new ITR value based on packets and byte
2486 *      counts during the last interrupt.  The advantage of per interrupt
2487 *      computation is faster updates and more accurate ITR for the current
2488 *      traffic pattern.  Constants in this function were computed
2489 *      based on theoretical maximum wire speed and thresholds were set based
2490 *      on testing data as well as attempting to minimize response time
2491 *      while increasing bulk throughput.  This functionality is controlled
2492 *      by the InterruptThrottleRate module parameter.
2493 **/
2494static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495{
2496	unsigned int retval = itr_setting;
2497
2498	if (packets == 0)
2499		return itr_setting;
2500
2501	switch (itr_setting) {
2502	case lowest_latency:
2503		/* handle TSO and jumbo frames */
2504		if (bytes / packets > 8000)
2505			retval = bulk_latency;
2506		else if ((packets < 5) && (bytes > 512))
2507			retval = low_latency;
2508		break;
2509	case low_latency:	/* 50 usec aka 20000 ints/s */
2510		if (bytes > 10000) {
2511			/* this if handles the TSO accounting */
2512			if (bytes / packets > 8000)
2513				retval = bulk_latency;
2514			else if ((packets < 10) || ((bytes / packets) > 1200))
2515				retval = bulk_latency;
2516			else if ((packets > 35))
2517				retval = lowest_latency;
2518		} else if (bytes / packets > 2000) {
2519			retval = bulk_latency;
2520		} else if (packets <= 2 && bytes < 512) {
2521			retval = lowest_latency;
2522		}
2523		break;
2524	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525		if (bytes > 25000) {
2526			if (packets > 35)
2527				retval = low_latency;
2528		} else if (bytes < 6000) {
2529			retval = low_latency;
2530		}
2531		break;
2532	}
2533
2534	return retval;
2535}
2536
2537static void e1000_set_itr(struct e1000_adapter *adapter)
2538{
2539	u16 current_itr;
2540	u32 new_itr = adapter->itr;
2541
2542	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543	if (adapter->link_speed != SPEED_1000) {
 
2544		new_itr = 4000;
2545		goto set_itr_now;
2546	}
2547
2548	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549		new_itr = 0;
2550		goto set_itr_now;
2551	}
2552
2553	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554					   adapter->total_tx_packets,
2555					   adapter->total_tx_bytes);
2556	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558		adapter->tx_itr = low_latency;
2559
2560	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561					   adapter->total_rx_packets,
2562					   adapter->total_rx_bytes);
2563	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565		adapter->rx_itr = low_latency;
2566
2567	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569	/* counts and packets in update_itr are dependent on these numbers */
2570	switch (current_itr) {
2571	case lowest_latency:
2572		new_itr = 70000;
2573		break;
2574	case low_latency:
2575		new_itr = 20000;	/* aka hwitr = ~200 */
2576		break;
2577	case bulk_latency:
2578		new_itr = 4000;
2579		break;
2580	default:
2581		break;
2582	}
2583
2584set_itr_now:
2585	if (new_itr != adapter->itr) {
2586		/* this attempts to bias the interrupt rate towards Bulk
2587		 * by adding intermediate steps when interrupt rate is
2588		 * increasing
2589		 */
2590		new_itr = new_itr > adapter->itr ?
2591		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592		adapter->itr = new_itr;
2593		adapter->rx_ring->itr_val = new_itr;
2594		if (adapter->msix_entries)
2595			adapter->rx_ring->set_itr = 1;
2596		else
2597			e1000e_write_itr(adapter, new_itr);
2598	}
2599}
2600
2601/**
2602 * e1000e_write_itr - write the ITR value to the appropriate registers
2603 * @adapter: address of board private structure
2604 * @itr: new ITR value to program
2605 *
2606 * e1000e_write_itr determines if the adapter is in MSI-X mode
2607 * and, if so, writes the EITR registers with the ITR value.
2608 * Otherwise, it writes the ITR value into the ITR register.
2609 **/
2610void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611{
2612	struct e1000_hw *hw = &adapter->hw;
2613	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615	if (adapter->msix_entries) {
2616		int vector;
2617
2618		for (vector = 0; vector < adapter->num_vectors; vector++)
2619			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620	} else {
2621		ew32(ITR, new_itr);
2622	}
2623}
2624
2625/**
2626 * e1000_alloc_queues - Allocate memory for all rings
2627 * @adapter: board private structure to initialize
2628 **/
2629static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630{
2631	int size = sizeof(struct e1000_ring);
2632
2633	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634	if (!adapter->tx_ring)
2635		goto err;
2636	adapter->tx_ring->count = adapter->tx_ring_count;
2637	adapter->tx_ring->adapter = adapter;
2638
2639	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640	if (!adapter->rx_ring)
2641		goto err;
2642	adapter->rx_ring->count = adapter->rx_ring_count;
2643	adapter->rx_ring->adapter = adapter;
2644
2645	return 0;
2646err:
2647	e_err("Unable to allocate memory for queues\n");
2648	kfree(adapter->rx_ring);
2649	kfree(adapter->tx_ring);
2650	return -ENOMEM;
2651}
2652
2653/**
2654 * e1000e_poll - NAPI Rx polling callback
2655 * @napi: struct associated with this polling callback
2656 * @budget: number of packets driver is allowed to process this poll
2657 **/
2658static int e1000e_poll(struct napi_struct *napi, int budget)
2659{
2660	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661						     napi);
2662	struct e1000_hw *hw = &adapter->hw;
2663	struct net_device *poll_dev = adapter->netdev;
2664	int tx_cleaned = 1, work_done = 0;
2665
2666	adapter = netdev_priv(poll_dev);
2667
2668	if (!adapter->msix_entries ||
2669	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674	if (!tx_cleaned || work_done == budget)
2675		return budget;
2676
2677	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678	 * poll us due to busy-polling
2679	 */
2680	if (likely(napi_complete_done(napi, work_done))) {
2681		if (adapter->itr_setting & 3)
2682			e1000_set_itr(adapter);
2683		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684			if (adapter->msix_entries)
2685				ew32(IMS, adapter->rx_ring->ims_val);
2686			else
2687				e1000_irq_enable(adapter);
2688		}
2689	}
2690
2691	return work_done;
2692}
2693
2694static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695				 __always_unused __be16 proto, u16 vid)
2696{
2697	struct e1000_adapter *adapter = netdev_priv(netdev);
2698	struct e1000_hw *hw = &adapter->hw;
2699	u32 vfta, index;
2700
2701	/* don't update vlan cookie if already programmed */
2702	if ((adapter->hw.mng_cookie.status &
2703	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704	    (vid == adapter->mng_vlan_id))
2705		return 0;
2706
2707	/* add VID to filter table */
2708	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709		index = (vid >> 5) & 0x7F;
2710		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711		vfta |= BIT((vid & 0x1F));
2712		hw->mac.ops.write_vfta(hw, index, vfta);
2713	}
2714
2715	set_bit(vid, adapter->active_vlans);
2716
2717	return 0;
2718}
2719
2720static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721				  __always_unused __be16 proto, u16 vid)
2722{
2723	struct e1000_adapter *adapter = netdev_priv(netdev);
2724	struct e1000_hw *hw = &adapter->hw;
2725	u32 vfta, index;
2726
2727	if ((adapter->hw.mng_cookie.status &
2728	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729	    (vid == adapter->mng_vlan_id)) {
2730		/* release control to f/w */
2731		e1000e_release_hw_control(adapter);
2732		return 0;
2733	}
2734
2735	/* remove VID from filter table */
2736	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737		index = (vid >> 5) & 0x7F;
2738		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739		vfta &= ~BIT((vid & 0x1F));
2740		hw->mac.ops.write_vfta(hw, index, vfta);
2741	}
2742
2743	clear_bit(vid, adapter->active_vlans);
2744
2745	return 0;
2746}
2747
2748/**
2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750 * @adapter: board private structure to initialize
2751 **/
2752static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753{
2754	struct net_device *netdev = adapter->netdev;
2755	struct e1000_hw *hw = &adapter->hw;
2756	u32 rctl;
2757
2758	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759		/* disable VLAN receive filtering */
2760		rctl = er32(RCTL);
2761		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762		ew32(RCTL, rctl);
2763
2764		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766					       adapter->mng_vlan_id);
2767			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768		}
2769	}
2770}
2771
2772/**
2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774 * @adapter: board private structure to initialize
2775 **/
2776static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777{
2778	struct e1000_hw *hw = &adapter->hw;
2779	u32 rctl;
2780
2781	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782		/* enable VLAN receive filtering */
2783		rctl = er32(RCTL);
2784		rctl |= E1000_RCTL_VFE;
2785		rctl &= ~E1000_RCTL_CFIEN;
2786		ew32(RCTL, rctl);
2787	}
2788}
2789
2790/**
2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792 * @adapter: board private structure to initialize
2793 **/
2794static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795{
2796	struct e1000_hw *hw = &adapter->hw;
2797	u32 ctrl;
2798
2799	/* disable VLAN tag insert/strip */
2800	ctrl = er32(CTRL);
2801	ctrl &= ~E1000_CTRL_VME;
2802	ew32(CTRL, ctrl);
2803}
2804
2805/**
2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807 * @adapter: board private structure to initialize
2808 **/
2809static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810{
2811	struct e1000_hw *hw = &adapter->hw;
2812	u32 ctrl;
2813
2814	/* enable VLAN tag insert/strip */
2815	ctrl = er32(CTRL);
2816	ctrl |= E1000_CTRL_VME;
2817	ew32(CTRL, ctrl);
2818}
2819
2820static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821{
2822	struct net_device *netdev = adapter->netdev;
2823	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824	u16 old_vid = adapter->mng_vlan_id;
2825
2826	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828		adapter->mng_vlan_id = vid;
2829	}
2830
2831	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833}
2834
2835static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836{
2837	u16 vid;
2838
2839	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843}
2844
2845static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846{
2847	struct e1000_hw *hw = &adapter->hw;
2848	u32 manc, manc2h, mdef, i, j;
2849
2850	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851		return;
2852
2853	manc = er32(MANC);
2854
2855	/* enable receiving management packets to the host. this will probably
2856	 * generate destination unreachable messages from the host OS, but
2857	 * the packets will be handled on SMBUS
2858	 */
2859	manc |= E1000_MANC_EN_MNG2HOST;
2860	manc2h = er32(MANC2H);
2861
2862	switch (hw->mac.type) {
2863	default:
2864		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865		break;
2866	case e1000_82574:
2867	case e1000_82583:
2868		/* Check if IPMI pass-through decision filter already exists;
2869		 * if so, enable it.
2870		 */
2871		for (i = 0, j = 0; i < 8; i++) {
2872			mdef = er32(MDEF(i));
2873
2874			/* Ignore filters with anything other than IPMI ports */
2875			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876				continue;
2877
2878			/* Enable this decision filter in MANC2H */
2879			if (mdef)
2880				manc2h |= BIT(i);
2881
2882			j |= mdef;
2883		}
2884
2885		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886			break;
2887
2888		/* Create new decision filter in an empty filter */
2889		for (i = 0, j = 0; i < 8; i++)
2890			if (er32(MDEF(i)) == 0) {
2891				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892					       E1000_MDEF_PORT_664));
2893				manc2h |= BIT(1);
2894				j++;
2895				break;
2896			}
2897
2898		if (!j)
2899			e_warn("Unable to create IPMI pass-through filter\n");
2900		break;
2901	}
2902
2903	ew32(MANC2H, manc2h);
2904	ew32(MANC, manc);
2905}
2906
2907/**
2908 * e1000_configure_tx - Configure Transmit Unit after Reset
2909 * @adapter: board private structure
2910 *
2911 * Configure the Tx unit of the MAC after a reset.
2912 **/
2913static void e1000_configure_tx(struct e1000_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	struct e1000_ring *tx_ring = adapter->tx_ring;
2917	u64 tdba;
2918	u32 tdlen, tctl, tarc;
2919
2920	/* Setup the HW Tx Head and Tail descriptor pointers */
2921	tdba = tx_ring->dma;
2922	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924	ew32(TDBAH(0), (tdba >> 32));
2925	ew32(TDLEN(0), tdlen);
2926	ew32(TDH(0), 0);
2927	ew32(TDT(0), 0);
2928	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
 
2931	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932		e1000e_update_tdt_wa(tx_ring, 0);
 
 
2933
2934	/* Set the Tx Interrupt Delay register */
2935	ew32(TIDV, adapter->tx_int_delay);
2936	/* Tx irq moderation */
2937	ew32(TADV, adapter->tx_abs_int_delay);
2938
2939	if (adapter->flags2 & FLAG2_DMA_BURST) {
2940		u32 txdctl = er32(TXDCTL(0));
2941
2942		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943			    E1000_TXDCTL_WTHRESH);
2944		/* set up some performance related parameters to encourage the
2945		 * hardware to use the bus more efficiently in bursts, depends
2946		 * on the tx_int_delay to be enabled,
2947		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948		 * hthresh = 1 ==> prefetch when one or more available
2949		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950		 * BEWARE: this seems to work but should be considered first if
2951		 * there are Tx hangs or other Tx related bugs
2952		 */
2953		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954		ew32(TXDCTL(0), txdctl);
2955	}
2956	/* erratum work around: set txdctl the same for both queues */
2957	ew32(TXDCTL(1), er32(TXDCTL(0)));
2958
2959	/* Program the Transmit Control Register */
2960	tctl = er32(TCTL);
2961	tctl &= ~E1000_TCTL_CT;
2962	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964
2965	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966		tarc = er32(TARC(0));
2967		/* set the speed mode bit, we'll clear it if we're not at
2968		 * gigabit link later
2969		 */
2970#define SPEED_MODE_BIT BIT(21)
2971		tarc |= SPEED_MODE_BIT;
2972		ew32(TARC(0), tarc);
2973	}
2974
2975	/* errata: program both queues to unweighted RR */
2976	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977		tarc = er32(TARC(0));
2978		tarc |= 1;
2979		ew32(TARC(0), tarc);
2980		tarc = er32(TARC(1));
2981		tarc |= 1;
2982		ew32(TARC(1), tarc);
2983	}
2984
2985	/* Setup Transmit Descriptor Settings for eop descriptor */
2986	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987
2988	/* only set IDE if we are delaying interrupts using the timers */
2989	if (adapter->tx_int_delay)
2990		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991
2992	/* enable Report Status bit */
2993	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994
2995	ew32(TCTL, tctl);
2996
2997	hw->mac.ops.config_collision_dist(hw);
2998
2999	/* SPT and KBL Si errata workaround to avoid data corruption */
3000	if (hw->mac.type == e1000_pch_spt) {
3001		u32 reg_val;
3002
3003		reg_val = er32(IOSFPC);
3004		reg_val |= E1000_RCTL_RDMTS_HEX;
3005		ew32(IOSFPC, reg_val);
3006
3007		reg_val = er32(TARC(0));
3008		/* SPT and KBL Si errata workaround to avoid Tx hang.
3009		 * Dropping the number of outstanding requests from
3010		 * 3 to 2 in order to avoid a buffer overrun.
3011		 */
3012		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014		ew32(TARC(0), reg_val);
3015	}
3016}
3017
3018#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020
3021/**
3022 * e1000_setup_rctl - configure the receive control registers
3023 * @adapter: Board private structure
3024 **/
3025static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026{
3027	struct e1000_hw *hw = &adapter->hw;
3028	u32 rctl, rfctl;
3029	u32 pages = 0;
3030
3031	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3032	 * If jumbo frames not set, program related MAC/PHY registers
3033	 * to h/w defaults
3034	 */
3035	if (hw->mac.type >= e1000_pch2lan) {
3036		s32 ret_val;
3037
3038		if (adapter->netdev->mtu > ETH_DATA_LEN)
3039			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040		else
3041			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043		if (ret_val)
3044			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045	}
3046
3047	/* Program MC offset vector base */
3048	rctl = er32(RCTL);
3049	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054	/* Do not Store bad packets */
3055	rctl &= ~E1000_RCTL_SBP;
3056
3057	/* Enable Long Packet receive */
3058	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059		rctl &= ~E1000_RCTL_LPE;
3060	else
3061		rctl |= E1000_RCTL_LPE;
3062
3063	/* Some systems expect that the CRC is included in SMBUS traffic. The
3064	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065	 * host memory when this is enabled
3066	 */
3067	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068		rctl |= E1000_RCTL_SECRC;
3069
3070	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072		u16 phy_data;
3073
3074		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075		phy_data &= 0xfff8;
3076		phy_data |= BIT(2);
3077		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079		e1e_rphy(hw, 22, &phy_data);
3080		phy_data &= 0x0fff;
3081		phy_data |= BIT(14);
3082		e1e_wphy(hw, 0x10, 0x2823);
3083		e1e_wphy(hw, 0x11, 0x0003);
3084		e1e_wphy(hw, 22, phy_data);
3085	}
3086
3087	/* Setup buffer sizes */
3088	rctl &= ~E1000_RCTL_SZ_4096;
3089	rctl |= E1000_RCTL_BSEX;
3090	switch (adapter->rx_buffer_len) {
3091	case 2048:
3092	default:
3093		rctl |= E1000_RCTL_SZ_2048;
3094		rctl &= ~E1000_RCTL_BSEX;
3095		break;
3096	case 4096:
3097		rctl |= E1000_RCTL_SZ_4096;
3098		break;
3099	case 8192:
3100		rctl |= E1000_RCTL_SZ_8192;
3101		break;
3102	case 16384:
3103		rctl |= E1000_RCTL_SZ_16384;
3104		break;
3105	}
3106
3107	/* Enable Extended Status in all Receive Descriptors */
3108	rfctl = er32(RFCTL);
3109	rfctl |= E1000_RFCTL_EXTEN;
3110	ew32(RFCTL, rfctl);
3111
3112	/* 82571 and greater support packet-split where the protocol
3113	 * header is placed in skb->data and the packet data is
3114	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115	 * In the case of a non-split, skb->data is linearly filled,
3116	 * followed by the page buffers.  Therefore, skb->data is
3117	 * sized to hold the largest protocol header.
3118	 *
3119	 * allocations using alloc_page take too long for regular MTU
3120	 * so only enable packet split for jumbo frames
3121	 *
3122	 * Using pages when the page size is greater than 16k wastes
3123	 * a lot of memory, since we allocate 3 pages at all times
3124	 * per packet.
3125	 */
3126	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128		adapter->rx_ps_pages = pages;
3129	else
3130		adapter->rx_ps_pages = 0;
3131
3132	if (adapter->rx_ps_pages) {
3133		u32 psrctl = 0;
3134
3135		/* Enable Packet split descriptors */
3136		rctl |= E1000_RCTL_DTYP_PS;
3137
3138		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140		switch (adapter->rx_ps_pages) {
3141		case 3:
3142			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143			fallthrough;
3144		case 2:
3145			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146			fallthrough;
3147		case 1:
3148			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149			break;
3150		}
3151
3152		ew32(PSRCTL, psrctl);
3153	}
3154
3155	/* This is useful for sniffing bad packets. */
3156	if (adapter->netdev->features & NETIF_F_RXALL) {
3157		/* UPE and MPE will be handled by normal PROMISC logic
3158		 * in e1000e_set_rx_mode
3159		 */
3160		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3161			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3162			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3163
3164		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3165			  E1000_RCTL_DPF |	/* Allow filtered pause */
3166			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3167		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168		 * and that breaks VLANs.
3169		 */
3170	}
3171
3172	ew32(RCTL, rctl);
3173	/* just started the receive unit, no need to restart */
3174	adapter->flags &= ~FLAG_RESTART_NOW;
3175}
3176
3177/**
3178 * e1000_configure_rx - Configure Receive Unit after Reset
3179 * @adapter: board private structure
3180 *
3181 * Configure the Rx unit of the MAC after a reset.
3182 **/
3183static void e1000_configure_rx(struct e1000_adapter *adapter)
3184{
3185	struct e1000_hw *hw = &adapter->hw;
3186	struct e1000_ring *rx_ring = adapter->rx_ring;
3187	u64 rdba;
3188	u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190	if (adapter->rx_ps_pages) {
3191		/* this is a 32 byte descriptor */
3192		rdlen = rx_ring->count *
3193		    sizeof(union e1000_rx_desc_packet_split);
3194		adapter->clean_rx = e1000_clean_rx_irq_ps;
3195		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200	} else {
3201		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202		adapter->clean_rx = e1000_clean_rx_irq;
3203		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204	}
3205
3206	/* disable receives while setting up the descriptors */
3207	rctl = er32(RCTL);
3208	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210	e1e_flush();
3211	usleep_range(10000, 11000);
3212
3213	if (adapter->flags2 & FLAG2_DMA_BURST) {
3214		/* set the writeback threshold (only takes effect if the RDTR
3215		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216		 * enable prefetching of 0x20 Rx descriptors
3217		 * granularity = 01
3218		 * wthresh = 04,
3219		 * hthresh = 04,
3220		 * pthresh = 0x20
3221		 */
3222		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224	}
3225
3226	/* set the Receive Delay Timer Register */
3227	ew32(RDTR, adapter->rx_int_delay);
3228
3229	/* irq moderation */
3230	ew32(RADV, adapter->rx_abs_int_delay);
3231	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232		e1000e_write_itr(adapter, adapter->itr);
3233
3234	ctrl_ext = er32(CTRL_EXT);
3235	/* Auto-Mask interrupts upon ICR access */
3236	ctrl_ext |= E1000_CTRL_EXT_IAME;
3237	ew32(IAM, 0xffffffff);
3238	ew32(CTRL_EXT, ctrl_ext);
3239	e1e_flush();
3240
3241	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3242	 * the Base and Length of the Rx Descriptor Ring
3243	 */
3244	rdba = rx_ring->dma;
3245	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246	ew32(RDBAH(0), (rdba >> 32));
3247	ew32(RDLEN(0), rdlen);
3248	ew32(RDH(0), 0);
3249	ew32(RDT(0), 0);
3250	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252
 
3253	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254		e1000e_update_rdt_wa(rx_ring, 0);
 
 
3255
3256	/* Enable Receive Checksum Offload for TCP and UDP */
3257	rxcsum = er32(RXCSUM);
3258	if (adapter->netdev->features & NETIF_F_RXCSUM)
3259		rxcsum |= E1000_RXCSUM_TUOFL;
3260	else
3261		rxcsum &= ~E1000_RXCSUM_TUOFL;
3262	ew32(RXCSUM, rxcsum);
3263
3264	/* With jumbo frames, excessive C-state transition latencies result
3265	 * in dropped transactions.
3266	 */
3267	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268		u32 lat =
3269		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270		     adapter->max_frame_size) * 8 / 1000;
3271
3272		if (adapter->flags & FLAG_IS_ICH) {
3273			u32 rxdctl = er32(RXDCTL(0));
3274
3275			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276		}
3277
3278		dev_info(&adapter->pdev->dev,
3279			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281	} else {
3282		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283					       PM_QOS_DEFAULT_VALUE);
3284	}
3285
3286	/* Enable Receives */
3287	ew32(RCTL, rctl);
3288}
3289
3290/**
3291 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292 * @netdev: network interface device structure
3293 *
3294 * Writes multicast address list to the MTA hash table.
3295 * Returns: -ENOMEM on failure
3296 *                0 on no addresses written
3297 *                X on writing X addresses to MTA
3298 */
3299static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300{
3301	struct e1000_adapter *adapter = netdev_priv(netdev);
3302	struct e1000_hw *hw = &adapter->hw;
3303	struct netdev_hw_addr *ha;
3304	u8 *mta_list;
3305	int i;
3306
3307	if (netdev_mc_empty(netdev)) {
3308		/* nothing to program, so clear mc list */
3309		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310		return 0;
3311	}
3312
3313	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314	if (!mta_list)
3315		return -ENOMEM;
3316
3317	/* update_mc_addr_list expects a packed array of only addresses. */
3318	i = 0;
3319	netdev_for_each_mc_addr(ha, netdev)
3320	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321
3322	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323	kfree(mta_list);
3324
3325	return netdev_mc_count(netdev);
3326}
3327
3328/**
3329 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330 * @netdev: network interface device structure
3331 *
3332 * Writes unicast address list to the RAR table.
3333 * Returns: -ENOMEM on failure/insufficient address space
3334 *                0 on no addresses written
3335 *                X on writing X addresses to the RAR table
3336 **/
3337static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338{
3339	struct e1000_adapter *adapter = netdev_priv(netdev);
3340	struct e1000_hw *hw = &adapter->hw;
3341	unsigned int rar_entries;
3342	int count = 0;
3343
3344	rar_entries = hw->mac.ops.rar_get_count(hw);
3345
3346	/* save a rar entry for our hardware address */
3347	rar_entries--;
3348
3349	/* save a rar entry for the LAA workaround */
3350	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351		rar_entries--;
3352
3353	/* return ENOMEM indicating insufficient memory for addresses */
3354	if (netdev_uc_count(netdev) > rar_entries)
3355		return -ENOMEM;
3356
3357	if (!netdev_uc_empty(netdev) && rar_entries) {
3358		struct netdev_hw_addr *ha;
3359
3360		/* write the addresses in reverse order to avoid write
3361		 * combining
3362		 */
3363		netdev_for_each_uc_addr(ha, netdev) {
3364			int ret_val;
3365
3366			if (!rar_entries)
3367				break;
3368			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369			if (ret_val < 0)
3370				return -ENOMEM;
3371			count++;
3372		}
3373	}
3374
3375	/* zero out the remaining RAR entries not used above */
3376	for (; rar_entries > 0; rar_entries--) {
3377		ew32(RAH(rar_entries), 0);
3378		ew32(RAL(rar_entries), 0);
3379	}
3380	e1e_flush();
3381
3382	return count;
3383}
3384
3385/**
3386 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387 * @netdev: network interface device structure
3388 *
3389 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390 * address list or the network interface flags are updated.  This routine is
3391 * responsible for configuring the hardware for proper unicast, multicast,
3392 * promiscuous mode, and all-multi behavior.
3393 **/
3394static void e1000e_set_rx_mode(struct net_device *netdev)
3395{
3396	struct e1000_adapter *adapter = netdev_priv(netdev);
3397	struct e1000_hw *hw = &adapter->hw;
3398	u32 rctl;
3399
3400	if (pm_runtime_suspended(netdev->dev.parent))
3401		return;
3402
3403	/* Check for Promiscuous and All Multicast modes */
3404	rctl = er32(RCTL);
3405
3406	/* clear the affected bits */
3407	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408
3409	if (netdev->flags & IFF_PROMISC) {
3410		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411		/* Do not hardware filter VLANs in promisc mode */
3412		e1000e_vlan_filter_disable(adapter);
3413	} else {
3414		int count;
3415
3416		if (netdev->flags & IFF_ALLMULTI) {
3417			rctl |= E1000_RCTL_MPE;
3418		} else {
3419			/* Write addresses to the MTA, if the attempt fails
3420			 * then we should just turn on promiscuous mode so
3421			 * that we can at least receive multicast traffic
3422			 */
3423			count = e1000e_write_mc_addr_list(netdev);
3424			if (count < 0)
3425				rctl |= E1000_RCTL_MPE;
3426		}
3427		e1000e_vlan_filter_enable(adapter);
3428		/* Write addresses to available RAR registers, if there is not
3429		 * sufficient space to store all the addresses then enable
3430		 * unicast promiscuous mode
3431		 */
3432		count = e1000e_write_uc_addr_list(netdev);
3433		if (count < 0)
3434			rctl |= E1000_RCTL_UPE;
3435	}
3436
3437	ew32(RCTL, rctl);
3438
3439	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440		e1000e_vlan_strip_enable(adapter);
3441	else
3442		e1000e_vlan_strip_disable(adapter);
3443}
3444
3445static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446{
3447	struct e1000_hw *hw = &adapter->hw;
3448	u32 mrqc, rxcsum;
3449	u32 rss_key[10];
3450	int i;
3451
3452	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453	for (i = 0; i < 10; i++)
3454		ew32(RSSRK(i), rss_key[i]);
3455
3456	/* Direct all traffic to queue 0 */
3457	for (i = 0; i < 32; i++)
3458		ew32(RETA(i), 0);
3459
3460	/* Disable raw packet checksumming so that RSS hash is placed in
3461	 * descriptor on writeback.
3462	 */
3463	rxcsum = er32(RXCSUM);
3464	rxcsum |= E1000_RXCSUM_PCSD;
3465
3466	ew32(RXCSUM, rxcsum);
3467
3468	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470		E1000_MRQC_RSS_FIELD_IPV6 |
3471		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473
3474	ew32(MRQC, mrqc);
3475}
3476
3477/**
3478 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479 * @adapter: board private structure
3480 * @timinca: pointer to returned time increment attributes
3481 *
3482 * Get attributes for incrementing the System Time Register SYSTIML/H at
3483 * the default base frequency, and set the cyclecounter shift value.
3484 **/
3485s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486{
3487	struct e1000_hw *hw = &adapter->hw;
3488	u32 incvalue, incperiod, shift;
3489
3490	/* Make sure clock is enabled on I217/I218/I219  before checking
3491	 * the frequency
3492	 */
3493	if ((hw->mac.type >= e1000_pch_lpt) &&
3494	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496		u32 fextnvm7 = er32(FEXTNVM7);
3497
3498		if (!(fextnvm7 & BIT(0))) {
3499			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500			e1e_flush();
3501		}
3502	}
3503
3504	switch (hw->mac.type) {
3505	case e1000_pch2lan:
3506		/* Stable 96MHz frequency */
3507		incperiod = INCPERIOD_96MHZ;
3508		incvalue = INCVALUE_96MHZ;
3509		shift = INCVALUE_SHIFT_96MHZ;
3510		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511		break;
3512	case e1000_pch_lpt:
3513		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514			/* Stable 96MHz frequency */
3515			incperiod = INCPERIOD_96MHZ;
3516			incvalue = INCVALUE_96MHZ;
3517			shift = INCVALUE_SHIFT_96MHZ;
3518			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519		} else {
3520			/* Stable 25MHz frequency */
3521			incperiod = INCPERIOD_25MHZ;
3522			incvalue = INCVALUE_25MHZ;
3523			shift = INCVALUE_SHIFT_25MHZ;
3524			adapter->cc.shift = shift;
3525		}
3526		break;
3527	case e1000_pch_spt:
3528		/* Stable 24MHz frequency */
3529		incperiod = INCPERIOD_24MHZ;
3530		incvalue = INCVALUE_24MHZ;
3531		shift = INCVALUE_SHIFT_24MHZ;
3532		adapter->cc.shift = shift;
3533		break;
3534	case e1000_pch_cnp:
3535	case e1000_pch_tgp:
3536	case e1000_pch_adp:
3537	case e1000_pch_mtp:
3538	case e1000_pch_lnp:
3539	case e1000_pch_ptp:
3540	case e1000_pch_nvp:
3541		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542			/* Stable 24MHz frequency */
3543			incperiod = INCPERIOD_24MHZ;
3544			incvalue = INCVALUE_24MHZ;
3545			shift = INCVALUE_SHIFT_24MHZ;
3546			adapter->cc.shift = shift;
3547		} else {
3548			/* Stable 38400KHz frequency */
3549			incperiod = INCPERIOD_38400KHZ;
3550			incvalue = INCVALUE_38400KHZ;
3551			shift = INCVALUE_SHIFT_38400KHZ;
3552			adapter->cc.shift = shift;
3553		}
3554		break;
3555	case e1000_82574:
3556	case e1000_82583:
3557		/* Stable 25MHz frequency */
3558		incperiod = INCPERIOD_25MHZ;
3559		incvalue = INCVALUE_25MHZ;
3560		shift = INCVALUE_SHIFT_25MHZ;
3561		adapter->cc.shift = shift;
3562		break;
3563	default:
3564		return -EINVAL;
3565	}
3566
3567	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3568		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569
3570	return 0;
3571}
3572
3573/**
3574 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575 * @adapter: board private structure
3576 * @config: timestamp configuration
3577 *
3578 * Outgoing time stamping can be enabled and disabled. Play nice and
3579 * disable it when requested, although it shouldn't cause any overhead
3580 * when no packet needs it. At most one packet in the queue may be
3581 * marked for time stamping, otherwise it would be impossible to tell
3582 * for sure to which packet the hardware time stamp belongs.
3583 *
3584 * Incoming time stamping has to be configured via the hardware filters.
3585 * Not all combinations are supported, in particular event type has to be
3586 * specified. Matching the kind of event packet is not supported, with the
3587 * exception of "all V2 events regardless of level 2 or 4".
3588 **/
3589static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3590				  struct hwtstamp_config *config)
3591{
3592	struct e1000_hw *hw = &adapter->hw;
3593	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3594	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3595	u32 rxmtrl = 0;
3596	u16 rxudp = 0;
3597	bool is_l4 = false;
3598	bool is_l2 = false;
3599	u32 regval;
3600
3601	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3602		return -EINVAL;
3603
 
 
 
 
3604	switch (config->tx_type) {
3605	case HWTSTAMP_TX_OFF:
3606		tsync_tx_ctl = 0;
3607		break;
3608	case HWTSTAMP_TX_ON:
3609		break;
3610	default:
3611		return -ERANGE;
3612	}
3613
3614	switch (config->rx_filter) {
3615	case HWTSTAMP_FILTER_NONE:
3616		tsync_rx_ctl = 0;
3617		break;
3618	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621		is_l4 = true;
3622		break;
3623	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626		is_l4 = true;
3627		break;
3628	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629		/* Also time stamps V2 L2 Path Delay Request/Response */
3630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632		is_l2 = true;
3633		break;
3634	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635		/* Also time stamps V2 L2 Path Delay Request/Response. */
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638		is_l2 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641		/* Hardware cannot filter just V2 L4 Sync messages */
3642		fallthrough;
3643	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3644		/* Also time stamps V2 Path Delay Request/Response. */
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647		is_l2 = true;
3648		is_l4 = true;
3649		break;
3650	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3651		/* Hardware cannot filter just V2 L4 Delay Request messages */
3652		fallthrough;
3653	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654		/* Also time stamps V2 Path Delay Request/Response. */
3655		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657		is_l2 = true;
3658		is_l4 = true;
3659		break;
3660	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3663		fallthrough;
3664	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667		is_l2 = true;
3668		is_l4 = true;
3669		break;
3670	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671		/* For V1, the hardware can only filter Sync messages or
3672		 * Delay Request messages but not both so fall-through to
3673		 * time stamp all packets.
3674		 */
3675		fallthrough;
3676	case HWTSTAMP_FILTER_NTP_ALL:
3677	case HWTSTAMP_FILTER_ALL:
3678		is_l2 = true;
3679		is_l4 = true;
3680		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3681		config->rx_filter = HWTSTAMP_FILTER_ALL;
3682		break;
3683	default:
3684		return -ERANGE;
3685	}
3686
3687	adapter->hwtstamp_config = *config;
3688
3689	/* enable/disable Tx h/w time stamping */
3690	regval = er32(TSYNCTXCTL);
3691	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3692	regval |= tsync_tx_ctl;
3693	ew32(TSYNCTXCTL, regval);
3694	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3695	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3696		e_err("Timesync Tx Control register not set as expected\n");
3697		return -EAGAIN;
3698	}
3699
3700	/* enable/disable Rx h/w time stamping */
3701	regval = er32(TSYNCRXCTL);
3702	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3703	regval |= tsync_rx_ctl;
3704	ew32(TSYNCRXCTL, regval);
3705	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3706				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3707	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3708		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3709		e_err("Timesync Rx Control register not set as expected\n");
3710		return -EAGAIN;
3711	}
3712
3713	/* L2: define ethertype filter for time stamped packets */
3714	if (is_l2)
3715		rxmtrl |= ETH_P_1588;
3716
3717	/* define which PTP packets get time stamped */
3718	ew32(RXMTRL, rxmtrl);
3719
3720	/* Filter by destination port */
3721	if (is_l4) {
3722		rxudp = PTP_EV_PORT;
3723		cpu_to_be16s(&rxudp);
3724	}
3725	ew32(RXUDP, rxudp);
3726
3727	e1e_flush();
3728
3729	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3730	er32(RXSTMPH);
3731	er32(TXSTMPH);
3732
3733	return 0;
3734}
3735
3736/**
3737 * e1000_configure - configure the hardware for Rx and Tx
3738 * @adapter: private board structure
3739 **/
3740static void e1000_configure(struct e1000_adapter *adapter)
3741{
3742	struct e1000_ring *rx_ring = adapter->rx_ring;
3743
3744	e1000e_set_rx_mode(adapter->netdev);
3745
3746	e1000_restore_vlan(adapter);
3747	e1000_init_manageability_pt(adapter);
3748
3749	e1000_configure_tx(adapter);
3750
3751	if (adapter->netdev->features & NETIF_F_RXHASH)
3752		e1000e_setup_rss_hash(adapter);
3753	e1000_setup_rctl(adapter);
3754	e1000_configure_rx(adapter);
3755	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3756}
3757
3758/**
3759 * e1000e_power_up_phy - restore link in case the phy was powered down
3760 * @adapter: address of board private structure
3761 *
3762 * The phy may be powered down to save power and turn off link when the
3763 * driver is unloaded and wake on lan is not enabled (among others)
3764 * *** this routine MUST be followed by a call to e1000e_reset ***
3765 **/
3766void e1000e_power_up_phy(struct e1000_adapter *adapter)
3767{
3768	if (adapter->hw.phy.ops.power_up)
3769		adapter->hw.phy.ops.power_up(&adapter->hw);
3770
3771	adapter->hw.mac.ops.setup_link(&adapter->hw);
3772}
3773
3774/**
3775 * e1000_power_down_phy - Power down the PHY
3776 * @adapter: board private structure
3777 *
3778 * Power down the PHY so no link is implied when interface is down.
3779 * The PHY cannot be powered down if management or WoL is active.
3780 */
3781static void e1000_power_down_phy(struct e1000_adapter *adapter)
3782{
3783	if (adapter->hw.phy.ops.power_down)
3784		adapter->hw.phy.ops.power_down(&adapter->hw);
3785}
3786
3787/**
3788 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789 * @adapter: board private structure
3790 *
3791 * We want to clear all pending descriptors from the TX ring.
3792 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793 * the data of the next descriptor. We don't care about the data we are about
3794 * to reset the HW.
3795 */
3796static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797{
3798	struct e1000_hw *hw = &adapter->hw;
3799	struct e1000_ring *tx_ring = adapter->tx_ring;
3800	struct e1000_tx_desc *tx_desc = NULL;
3801	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802	u16 size = 512;
3803
3804	tctl = er32(TCTL);
3805	ew32(TCTL, tctl | E1000_TCTL_EN);
3806	tdt = er32(TDT(0));
3807	BUG_ON(tdt != tx_ring->next_to_use);
3808	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3810
3811	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812	tx_desc->upper.data = 0;
3813	/* flush descriptors to memory before notifying the HW */
3814	wmb();
3815	tx_ring->next_to_use++;
3816	if (tx_ring->next_to_use == tx_ring->count)
3817		tx_ring->next_to_use = 0;
3818	ew32(TDT(0), tx_ring->next_to_use);
3819	usleep_range(200, 250);
3820}
3821
3822/**
3823 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824 * @adapter: board private structure
3825 *
3826 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3827 */
3828static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3829{
3830	u32 rctl, rxdctl;
3831	struct e1000_hw *hw = &adapter->hw;
3832
3833	rctl = er32(RCTL);
3834	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3835	e1e_flush();
3836	usleep_range(100, 150);
3837
3838	rxdctl = er32(RXDCTL(0));
3839	/* zero the lower 14 bits (prefetch and host thresholds) */
3840	rxdctl &= 0xffffc000;
3841
3842	/* update thresholds: prefetch threshold to 31, host threshold to 1
3843	 * and make sure the granularity is "descriptors" and not "cache lines"
3844	 */
3845	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3846
3847	ew32(RXDCTL(0), rxdctl);
3848	/* momentarily enable the RX ring for the changes to take effect */
3849	ew32(RCTL, rctl | E1000_RCTL_EN);
3850	e1e_flush();
3851	usleep_range(100, 150);
3852	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853}
3854
3855/**
3856 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857 * @adapter: board private structure
3858 *
3859 * In i219, the descriptor rings must be emptied before resetting the HW
3860 * or before changing the device state to D3 during runtime (runtime PM).
3861 *
3862 * Failure to do this will cause the HW to enter a unit hang state which can
3863 * only be released by PCI reset on the device
3864 *
3865 */
3866
3867static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3868{
3869	u16 hang_state;
3870	u32 fext_nvm11, tdlen;
3871	struct e1000_hw *hw = &adapter->hw;
3872
3873	/* First, disable MULR fix in FEXTNVM11 */
3874	fext_nvm11 = er32(FEXTNVM11);
3875	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3876	ew32(FEXTNVM11, fext_nvm11);
3877	/* do nothing if we're not in faulty state, or if the queue is empty */
3878	tdlen = er32(TDLEN(0));
3879	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3880			     &hang_state);
3881	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3882		return;
3883	e1000_flush_tx_ring(adapter);
3884	/* recheck, maybe the fault is caused by the rx ring */
3885	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886			     &hang_state);
3887	if (hang_state & FLUSH_DESC_REQUIRED)
3888		e1000_flush_rx_ring(adapter);
3889}
3890
3891/**
3892 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893 * @adapter: board private structure
3894 *
3895 * When the MAC is reset, all hardware bits for timesync will be reset to the
3896 * default values. This function will restore the settings last in place.
3897 * Since the clock SYSTIME registers are reset, we will simply restore the
3898 * cyclecounter to the kernel real clock time.
3899 **/
3900static void e1000e_systim_reset(struct e1000_adapter *adapter)
3901{
3902	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3903	struct e1000_hw *hw = &adapter->hw;
3904	unsigned long flags;
3905	u32 timinca;
3906	s32 ret_val;
3907
3908	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3909		return;
3910
3911	if (info->adjfine) {
3912		/* restore the previous ptp frequency delta */
3913		ret_val = info->adjfine(info, adapter->ptp_delta);
3914	} else {
3915		/* set the default base frequency if no adjustment possible */
3916		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3917		if (!ret_val)
3918			ew32(TIMINCA, timinca);
3919	}
3920
3921	if (ret_val) {
3922		dev_warn(&adapter->pdev->dev,
3923			 "Failed to restore TIMINCA clock rate delta: %d\n",
3924			 ret_val);
3925		return;
3926	}
3927
3928	/* reset the systim ns time counter */
3929	spin_lock_irqsave(&adapter->systim_lock, flags);
3930	timecounter_init(&adapter->tc, &adapter->cc,
3931			 ktime_to_ns(ktime_get_real()));
3932	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3933
3934	/* restore the previous hwtstamp configuration settings */
3935	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3936}
3937
3938/**
3939 * e1000e_reset - bring the hardware into a known good state
3940 * @adapter: board private structure
3941 *
3942 * This function boots the hardware and enables some settings that
3943 * require a configuration cycle of the hardware - those cannot be
3944 * set/changed during runtime. After reset the device needs to be
3945 * properly configured for Rx, Tx etc.
3946 */
3947void e1000e_reset(struct e1000_adapter *adapter)
3948{
3949	struct e1000_mac_info *mac = &adapter->hw.mac;
3950	struct e1000_fc_info *fc = &adapter->hw.fc;
3951	struct e1000_hw *hw = &adapter->hw;
3952	u32 tx_space, min_tx_space, min_rx_space;
3953	u32 pba = adapter->pba;
3954	u16 hwm;
3955
3956	/* reset Packet Buffer Allocation to default */
3957	ew32(PBA, pba);
3958
3959	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3960		/* To maintain wire speed transmits, the Tx FIFO should be
3961		 * large enough to accommodate two full transmit packets,
3962		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3963		 * the Rx FIFO should be large enough to accommodate at least
3964		 * one full receive packet and is similarly rounded up and
3965		 * expressed in KB.
3966		 */
3967		pba = er32(PBA);
3968		/* upper 16 bits has Tx packet buffer allocation size in KB */
3969		tx_space = pba >> 16;
3970		/* lower 16 bits has Rx packet buffer allocation size in KB */
3971		pba &= 0xffff;
3972		/* the Tx fifo also stores 16 bytes of information about the Tx
3973		 * but don't include ethernet FCS because hardware appends it
3974		 */
3975		min_tx_space = (adapter->max_frame_size +
3976				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3977		min_tx_space = ALIGN(min_tx_space, 1024);
3978		min_tx_space >>= 10;
3979		/* software strips receive CRC, so leave room for it */
3980		min_rx_space = adapter->max_frame_size;
3981		min_rx_space = ALIGN(min_rx_space, 1024);
3982		min_rx_space >>= 10;
3983
3984		/* If current Tx allocation is less than the min Tx FIFO size,
3985		 * and the min Tx FIFO size is less than the current Rx FIFO
3986		 * allocation, take space away from current Rx allocation
3987		 */
3988		if ((tx_space < min_tx_space) &&
3989		    ((min_tx_space - tx_space) < pba)) {
3990			pba -= min_tx_space - tx_space;
3991
3992			/* if short on Rx space, Rx wins and must trump Tx
3993			 * adjustment
3994			 */
3995			if (pba < min_rx_space)
3996				pba = min_rx_space;
3997		}
3998
3999		ew32(PBA, pba);
4000	}
4001
4002	/* flow control settings
4003	 *
4004	 * The high water mark must be low enough to fit one full frame
4005	 * (or the size used for early receive) above it in the Rx FIFO.
4006	 * Set it to the lower of:
4007	 * - 90% of the Rx FIFO size, and
4008	 * - the full Rx FIFO size minus one full frame
4009	 */
4010	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4011		fc->pause_time = 0xFFFF;
4012	else
4013		fc->pause_time = E1000_FC_PAUSE_TIME;
4014	fc->send_xon = true;
4015	fc->current_mode = fc->requested_mode;
4016
4017	switch (hw->mac.type) {
4018	case e1000_ich9lan:
4019	case e1000_ich10lan:
4020		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4021			pba = 14;
4022			ew32(PBA, pba);
4023			fc->high_water = 0x2800;
4024			fc->low_water = fc->high_water - 8;
4025			break;
4026		}
4027		fallthrough;
4028	default:
4029		hwm = min(((pba << 10) * 9 / 10),
4030			  ((pba << 10) - adapter->max_frame_size));
4031
4032		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4033		fc->low_water = fc->high_water - 8;
4034		break;
4035	case e1000_pchlan:
4036		/* Workaround PCH LOM adapter hangs with certain network
4037		 * loads.  If hangs persist, try disabling Tx flow control.
4038		 */
4039		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040			fc->high_water = 0x3500;
4041			fc->low_water = 0x1500;
4042		} else {
4043			fc->high_water = 0x5000;
4044			fc->low_water = 0x3000;
4045		}
4046		fc->refresh_time = 0x1000;
4047		break;
4048	case e1000_pch2lan:
4049	case e1000_pch_lpt:
4050	case e1000_pch_spt:
4051	case e1000_pch_cnp:
4052	case e1000_pch_tgp:
4053	case e1000_pch_adp:
4054	case e1000_pch_mtp:
4055	case e1000_pch_lnp:
4056	case e1000_pch_ptp:
4057	case e1000_pch_nvp:
4058		fc->refresh_time = 0xFFFF;
4059		fc->pause_time = 0xFFFF;
4060
4061		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4062			fc->high_water = 0x05C20;
4063			fc->low_water = 0x05048;
4064			break;
4065		}
4066
4067		pba = 14;
4068		ew32(PBA, pba);
4069		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4070		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4071		break;
4072	}
4073
4074	/* Alignment of Tx data is on an arbitrary byte boundary with the
4075	 * maximum size per Tx descriptor limited only to the transmit
4076	 * allocation of the packet buffer minus 96 bytes with an upper
4077	 * limit of 24KB due to receive synchronization limitations.
4078	 */
4079	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4080				       24 << 10);
4081
4082	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4083	 * fit in receive buffer.
4084	 */
4085	if (adapter->itr_setting & 0x3) {
4086		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4087			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4088				dev_info(&adapter->pdev->dev,
4089					 "Interrupt Throttle Rate off\n");
4090				adapter->flags2 |= FLAG2_DISABLE_AIM;
4091				e1000e_write_itr(adapter, 0);
4092			}
4093		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4094			dev_info(&adapter->pdev->dev,
4095				 "Interrupt Throttle Rate on\n");
4096			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4097			adapter->itr = 20000;
4098			e1000e_write_itr(adapter, adapter->itr);
4099		}
4100	}
4101
4102	if (hw->mac.type >= e1000_pch_spt)
4103		e1000_flush_desc_rings(adapter);
4104	/* Allow time for pending master requests to run */
4105	mac->ops.reset_hw(hw);
4106
4107	/* For parts with AMT enabled, let the firmware know
4108	 * that the network interface is in control
4109	 */
4110	if (adapter->flags & FLAG_HAS_AMT)
4111		e1000e_get_hw_control(adapter);
4112
4113	ew32(WUC, 0);
4114
4115	if (mac->ops.init_hw(hw))
4116		e_err("Hardware Error\n");
4117
4118	e1000_update_mng_vlan(adapter);
4119
4120	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4121	ew32(VET, ETH_P_8021Q);
4122
4123	e1000e_reset_adaptive(hw);
4124
4125	/* restore systim and hwtstamp settings */
4126	e1000e_systim_reset(adapter);
4127
4128	/* Set EEE advertisement as appropriate */
4129	if (adapter->flags2 & FLAG2_HAS_EEE) {
4130		s32 ret_val;
4131		u16 adv_addr;
4132
4133		switch (hw->phy.type) {
4134		case e1000_phy_82579:
4135			adv_addr = I82579_EEE_ADVERTISEMENT;
4136			break;
4137		case e1000_phy_i217:
4138			adv_addr = I217_EEE_ADVERTISEMENT;
4139			break;
4140		default:
4141			dev_err(&adapter->pdev->dev,
4142				"Invalid PHY type setting EEE advertisement\n");
4143			return;
4144		}
4145
4146		ret_val = hw->phy.ops.acquire(hw);
4147		if (ret_val) {
4148			dev_err(&adapter->pdev->dev,
4149				"EEE advertisement - unable to acquire PHY\n");
4150			return;
4151		}
4152
4153		e1000_write_emi_reg_locked(hw, adv_addr,
4154					   hw->dev_spec.ich8lan.eee_disable ?
4155					   0 : adapter->eee_advert);
4156
4157		hw->phy.ops.release(hw);
4158	}
4159
4160	if (!netif_running(adapter->netdev) &&
4161	    !test_bit(__E1000_TESTING, &adapter->state))
4162		e1000_power_down_phy(adapter);
4163
4164	e1000_get_phy_info(hw);
4165
4166	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4167	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4168		u16 phy_data = 0;
4169		/* speed up time to link by disabling smart power down, ignore
4170		 * the return value of this function because there is nothing
4171		 * different we would do if it failed
4172		 */
4173		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4174		phy_data &= ~IGP02E1000_PM_SPD;
4175		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4176	}
4177	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4178		u32 reg;
4179
4180		/* Fextnvm7 @ 0xe4[2] = 1 */
4181		reg = er32(FEXTNVM7);
4182		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4183		ew32(FEXTNVM7, reg);
4184		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4185		reg = er32(FEXTNVM9);
4186		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4187		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4188		ew32(FEXTNVM9, reg);
4189	}
4190
4191}
4192
4193/**
4194 * e1000e_trigger_lsc - trigger an LSC interrupt
4195 * @adapter: board private structure
4196 *
4197 * Fire a link status change interrupt to start the watchdog.
4198 **/
4199static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4200{
4201	struct e1000_hw *hw = &adapter->hw;
4202
4203	if (adapter->msix_entries)
4204		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4205	else
4206		ew32(ICS, E1000_ICS_LSC);
4207}
4208
4209void e1000e_up(struct e1000_adapter *adapter)
4210{
4211	/* hardware has been reset, we need to reload some things */
4212	e1000_configure(adapter);
4213
4214	clear_bit(__E1000_DOWN, &adapter->state);
4215
4216	if (adapter->msix_entries)
4217		e1000_configure_msix(adapter);
4218	e1000_irq_enable(adapter);
4219
4220	/* Tx queue started by watchdog timer when link is up */
4221
4222	e1000e_trigger_lsc(adapter);
4223}
4224
4225static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4226{
4227	struct e1000_hw *hw = &adapter->hw;
4228
4229	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4230		return;
4231
4232	/* flush pending descriptor writebacks to memory */
4233	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235
4236	/* execute the writes immediately */
4237	e1e_flush();
4238
4239	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4240	 * write is successful
4241	 */
4242	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4243	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4244
4245	/* execute the writes immediately */
4246	e1e_flush();
4247}
4248
4249static void e1000e_update_stats(struct e1000_adapter *adapter);
4250
4251/**
4252 * e1000e_down - quiesce the device and optionally reset the hardware
4253 * @adapter: board private structure
4254 * @reset: boolean flag to reset the hardware or not
4255 */
4256void e1000e_down(struct e1000_adapter *adapter, bool reset)
4257{
4258	struct net_device *netdev = adapter->netdev;
4259	struct e1000_hw *hw = &adapter->hw;
4260	u32 tctl, rctl;
4261
4262	/* signal that we're down so the interrupt handler does not
4263	 * reschedule our watchdog timer
4264	 */
4265	set_bit(__E1000_DOWN, &adapter->state);
4266
4267	netif_carrier_off(netdev);
4268
4269	/* disable receives in the hardware */
4270	rctl = er32(RCTL);
4271	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4272		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4273	/* flush and sleep below */
4274
4275	netif_stop_queue(netdev);
4276
4277	/* disable transmits in the hardware */
4278	tctl = er32(TCTL);
4279	tctl &= ~E1000_TCTL_EN;
4280	ew32(TCTL, tctl);
4281
4282	/* flush both disables and wait for them to finish */
4283	e1e_flush();
4284	usleep_range(10000, 11000);
4285
4286	e1000_irq_disable(adapter);
4287
4288	napi_synchronize(&adapter->napi);
4289
4290	del_timer_sync(&adapter->watchdog_timer);
4291	del_timer_sync(&adapter->phy_info_timer);
4292
4293	spin_lock(&adapter->stats64_lock);
4294	e1000e_update_stats(adapter);
4295	spin_unlock(&adapter->stats64_lock);
4296
4297	e1000e_flush_descriptors(adapter);
4298
4299	adapter->link_speed = 0;
4300	adapter->link_duplex = 0;
4301
4302	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4303	if ((hw->mac.type >= e1000_pch2lan) &&
4304	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4305	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4306		e_dbg("failed to disable jumbo frame workaround mode\n");
4307
4308	if (!pci_channel_offline(adapter->pdev)) {
4309		if (reset)
4310			e1000e_reset(adapter);
4311		else if (hw->mac.type >= e1000_pch_spt)
4312			e1000_flush_desc_rings(adapter);
4313	}
4314	e1000_clean_tx_ring(adapter->tx_ring);
4315	e1000_clean_rx_ring(adapter->rx_ring);
4316}
4317
4318void e1000e_reinit_locked(struct e1000_adapter *adapter)
4319{
4320	might_sleep();
4321	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4322		usleep_range(1000, 1100);
4323	e1000e_down(adapter, true);
4324	e1000e_up(adapter);
4325	clear_bit(__E1000_RESETTING, &adapter->state);
4326}
4327
4328/**
4329 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4330 * @hw: pointer to the HW structure
4331 * @systim: PHC time value read, sanitized and returned
4332 * @sts: structure to hold system time before and after reading SYSTIML,
4333 * may be NULL
4334 *
4335 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4336 * check to see that the time is incrementing at a reasonable
4337 * rate and is a multiple of incvalue.
4338 **/
4339static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4340				  struct ptp_system_timestamp *sts)
4341{
4342	u64 time_delta, rem, temp;
4343	u64 systim_next;
4344	u32 incvalue;
4345	int i;
4346
4347	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349		/* latch SYSTIMH on read of SYSTIML */
4350		ptp_read_system_prets(sts);
4351		systim_next = (u64)er32(SYSTIML);
4352		ptp_read_system_postts(sts);
4353		systim_next |= (u64)er32(SYSTIMH) << 32;
4354
4355		time_delta = systim_next - systim;
4356		temp = time_delta;
4357		/* VMWare users have seen incvalue of zero, don't div / 0 */
4358		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4359
4360		systim = systim_next;
4361
4362		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4363			break;
4364	}
4365
4366	return systim;
4367}
4368
4369/**
4370 * e1000e_read_systim - read SYSTIM register
4371 * @adapter: board private structure
4372 * @sts: structure which will contain system time before and after reading
4373 * SYSTIML, may be NULL
4374 **/
4375u64 e1000e_read_systim(struct e1000_adapter *adapter,
4376		       struct ptp_system_timestamp *sts)
4377{
4378	struct e1000_hw *hw = &adapter->hw;
4379	u32 systimel, systimel_2, systimeh;
4380	u64 systim;
4381	/* SYSTIMH latching upon SYSTIML read does not work well.
4382	 * This means that if SYSTIML overflows after we read it but before
4383	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4384	 * will experience a huge non linear increment in the systime value
4385	 * to fix that we test for overflow and if true, we re-read systime.
4386	 */
4387	ptp_read_system_prets(sts);
4388	systimel = er32(SYSTIML);
4389	ptp_read_system_postts(sts);
4390	systimeh = er32(SYSTIMH);
4391	/* Is systimel is so large that overflow is possible? */
4392	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4393		ptp_read_system_prets(sts);
4394		systimel_2 = er32(SYSTIML);
4395		ptp_read_system_postts(sts);
4396		if (systimel > systimel_2) {
4397			/* There was an overflow, read again SYSTIMH, and use
4398			 * systimel_2
4399			 */
4400			systimeh = er32(SYSTIMH);
4401			systimel = systimel_2;
4402		}
4403	}
4404	systim = (u64)systimel;
4405	systim |= (u64)systimeh << 32;
4406
4407	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4408		systim = e1000e_sanitize_systim(hw, systim, sts);
4409
4410	return systim;
4411}
4412
4413/**
4414 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4415 * @cc: cyclecounter structure
4416 **/
4417static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4418{
4419	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4420						     cc);
4421
4422	return e1000e_read_systim(adapter, NULL);
4423}
4424
4425/**
4426 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4427 * @adapter: board private structure to initialize
4428 *
4429 * e1000_sw_init initializes the Adapter private data structure.
4430 * Fields are initialized based on PCI device information and
4431 * OS network device settings (MTU size).
4432 **/
4433static int e1000_sw_init(struct e1000_adapter *adapter)
4434{
4435	struct net_device *netdev = adapter->netdev;
4436
4437	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4438	adapter->rx_ps_bsize0 = 128;
4439	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4440	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4441	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4442	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4443
4444	spin_lock_init(&adapter->stats64_lock);
4445
4446	e1000e_set_interrupt_capability(adapter);
4447
4448	if (e1000_alloc_queues(adapter))
4449		return -ENOMEM;
4450
4451	/* Setup hardware time stamping cyclecounter */
4452	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4453		adapter->cc.read = e1000e_cyclecounter_read;
4454		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4455		adapter->cc.mult = 1;
4456		/* cc.shift set in e1000e_get_base_tininca() */
4457
4458		spin_lock_init(&adapter->systim_lock);
4459		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4460	}
4461
4462	/* Explicitly disable IRQ since the NIC can be in any state. */
4463	e1000_irq_disable(adapter);
4464
4465	set_bit(__E1000_DOWN, &adapter->state);
4466	return 0;
4467}
4468
4469/**
4470 * e1000_intr_msi_test - Interrupt Handler
4471 * @irq: interrupt number
4472 * @data: pointer to a network interface device structure
4473 **/
4474static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4475{
4476	struct net_device *netdev = data;
4477	struct e1000_adapter *adapter = netdev_priv(netdev);
4478	struct e1000_hw *hw = &adapter->hw;
4479	u32 icr = er32(ICR);
4480
4481	e_dbg("icr is %08X\n", icr);
4482	if (icr & E1000_ICR_RXSEQ) {
4483		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4484		/* Force memory writes to complete before acknowledging the
4485		 * interrupt is handled.
4486		 */
4487		wmb();
4488	}
4489
4490	return IRQ_HANDLED;
4491}
4492
4493/**
4494 * e1000_test_msi_interrupt - Returns 0 for successful test
4495 * @adapter: board private struct
4496 *
4497 * code flow taken from tg3.c
4498 **/
4499static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4500{
4501	struct net_device *netdev = adapter->netdev;
4502	struct e1000_hw *hw = &adapter->hw;
4503	int err;
4504
4505	/* poll_enable hasn't been called yet, so don't need disable */
4506	/* clear any pending events */
4507	er32(ICR);
4508
4509	/* free the real vector and request a test handler */
4510	e1000_free_irq(adapter);
4511	e1000e_reset_interrupt_capability(adapter);
4512
4513	/* Assume that the test fails, if it succeeds then the test
4514	 * MSI irq handler will unset this flag
4515	 */
4516	adapter->flags |= FLAG_MSI_TEST_FAILED;
4517
4518	err = pci_enable_msi(adapter->pdev);
4519	if (err)
4520		goto msi_test_failed;
4521
4522	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4523			  netdev->name, netdev);
4524	if (err) {
4525		pci_disable_msi(adapter->pdev);
4526		goto msi_test_failed;
4527	}
4528
4529	/* Force memory writes to complete before enabling and firing an
4530	 * interrupt.
4531	 */
4532	wmb();
4533
4534	e1000_irq_enable(adapter);
4535
4536	/* fire an unusual interrupt on the test handler */
4537	ew32(ICS, E1000_ICS_RXSEQ);
4538	e1e_flush();
4539	msleep(100);
4540
4541	e1000_irq_disable(adapter);
4542
4543	rmb();			/* read flags after interrupt has been fired */
4544
4545	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4546		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4547		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4548	} else {
4549		e_dbg("MSI interrupt test succeeded!\n");
4550	}
4551
4552	free_irq(adapter->pdev->irq, netdev);
4553	pci_disable_msi(adapter->pdev);
4554
4555msi_test_failed:
4556	e1000e_set_interrupt_capability(adapter);
4557	return e1000_request_irq(adapter);
4558}
4559
4560/**
4561 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4562 * @adapter: board private struct
4563 *
4564 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4565 **/
4566static int e1000_test_msi(struct e1000_adapter *adapter)
4567{
4568	int err;
4569	u16 pci_cmd;
4570
4571	if (!(adapter->flags & FLAG_MSI_ENABLED))
4572		return 0;
4573
4574	/* disable SERR in case the MSI write causes a master abort */
4575	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576	if (pci_cmd & PCI_COMMAND_SERR)
4577		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4578				      pci_cmd & ~PCI_COMMAND_SERR);
4579
4580	err = e1000_test_msi_interrupt(adapter);
4581
4582	/* re-enable SERR */
4583	if (pci_cmd & PCI_COMMAND_SERR) {
4584		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4585		pci_cmd |= PCI_COMMAND_SERR;
4586		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4587	}
4588
4589	return err;
4590}
4591
4592/**
4593 * e1000e_open - Called when a network interface is made active
4594 * @netdev: network interface device structure
4595 *
4596 * Returns 0 on success, negative value on failure
4597 *
4598 * The open entry point is called when a network interface is made
4599 * active by the system (IFF_UP).  At this point all resources needed
4600 * for transmit and receive operations are allocated, the interrupt
4601 * handler is registered with the OS, the watchdog timer is started,
4602 * and the stack is notified that the interface is ready.
4603 **/
4604int e1000e_open(struct net_device *netdev)
4605{
4606	struct e1000_adapter *adapter = netdev_priv(netdev);
4607	struct e1000_hw *hw = &adapter->hw;
4608	struct pci_dev *pdev = adapter->pdev;
4609	int err;
4610	int irq;
4611
4612	/* disallow open during test */
4613	if (test_bit(__E1000_TESTING, &adapter->state))
4614		return -EBUSY;
4615
4616	pm_runtime_get_sync(&pdev->dev);
4617
4618	netif_carrier_off(netdev);
4619	netif_stop_queue(netdev);
4620
4621	/* allocate transmit descriptors */
4622	err = e1000e_setup_tx_resources(adapter->tx_ring);
4623	if (err)
4624		goto err_setup_tx;
4625
4626	/* allocate receive descriptors */
4627	err = e1000e_setup_rx_resources(adapter->rx_ring);
4628	if (err)
4629		goto err_setup_rx;
4630
4631	/* If AMT is enabled, let the firmware know that the network
4632	 * interface is now open and reset the part to a known state.
4633	 */
4634	if (adapter->flags & FLAG_HAS_AMT) {
4635		e1000e_get_hw_control(adapter);
4636		e1000e_reset(adapter);
4637	}
4638
4639	e1000e_power_up_phy(adapter);
4640
4641	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4642	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4643		e1000_update_mng_vlan(adapter);
4644
4645	/* DMA latency requirement to workaround jumbo issue */
4646	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4647
4648	/* before we allocate an interrupt, we must be ready to handle it.
4649	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650	 * as soon as we call pci_request_irq, so we have to setup our
4651	 * clean_rx handler before we do so.
4652	 */
4653	e1000_configure(adapter);
4654
4655	err = e1000_request_irq(adapter);
4656	if (err)
4657		goto err_req_irq;
4658
4659	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4660	 * ignore e1000e MSI messages, which means we need to test our MSI
4661	 * interrupt now
4662	 */
4663	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4664		err = e1000_test_msi(adapter);
4665		if (err) {
4666			e_err("Interrupt allocation failed\n");
4667			goto err_req_irq;
4668		}
4669	}
4670
4671	/* From here on the code is the same as e1000e_up() */
4672	clear_bit(__E1000_DOWN, &adapter->state);
4673
4674	if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4675		irq = adapter->msix_entries[0].vector;
4676	else
4677		irq = adapter->pdev->irq;
4678
4679	netif_napi_set_irq(&adapter->napi, irq);
4680	napi_enable(&adapter->napi);
4681	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4682	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4683
4684	e1000_irq_enable(adapter);
4685
4686	adapter->tx_hang_recheck = false;
4687
4688	hw->mac.get_link_status = true;
4689	pm_runtime_put(&pdev->dev);
4690
4691	e1000e_trigger_lsc(adapter);
4692
4693	return 0;
4694
4695err_req_irq:
4696	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4697	e1000e_release_hw_control(adapter);
4698	e1000_power_down_phy(adapter);
4699	e1000e_free_rx_resources(adapter->rx_ring);
4700err_setup_rx:
4701	e1000e_free_tx_resources(adapter->tx_ring);
4702err_setup_tx:
4703	e1000e_reset(adapter);
4704	pm_runtime_put_sync(&pdev->dev);
4705
4706	return err;
4707}
4708
4709/**
4710 * e1000e_close - Disables a network interface
4711 * @netdev: network interface device structure
4712 *
4713 * Returns 0, this is not allowed to fail
4714 *
4715 * The close entry point is called when an interface is de-activated
4716 * by the OS.  The hardware is still under the drivers control, but
4717 * needs to be disabled.  A global MAC reset is issued to stop the
4718 * hardware, and all transmit and receive resources are freed.
4719 **/
4720int e1000e_close(struct net_device *netdev)
4721{
4722	struct e1000_adapter *adapter = netdev_priv(netdev);
4723	struct pci_dev *pdev = adapter->pdev;
4724	int count = E1000_CHECK_RESET_COUNT;
4725
4726	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4727		usleep_range(10000, 11000);
4728
4729	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4730
4731	pm_runtime_get_sync(&pdev->dev);
4732
4733	if (netif_device_present(netdev)) {
4734		e1000e_down(adapter, true);
4735		e1000_free_irq(adapter);
4736
4737		/* Link status message must follow this format */
4738		netdev_info(netdev, "NIC Link is Down\n");
4739	}
4740
4741	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4742	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4743	napi_disable(&adapter->napi);
4744
4745	e1000e_free_tx_resources(adapter->tx_ring);
4746	e1000e_free_rx_resources(adapter->rx_ring);
4747
4748	/* kill manageability vlan ID if supported, but not if a vlan with
4749	 * the same ID is registered on the host OS (let 8021q kill it)
4750	 */
4751	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4752		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4753				       adapter->mng_vlan_id);
4754
4755	/* If AMT is enabled, let the firmware know that the network
4756	 * interface is now closed
4757	 */
4758	if ((adapter->flags & FLAG_HAS_AMT) &&
4759	    !test_bit(__E1000_TESTING, &adapter->state))
4760		e1000e_release_hw_control(adapter);
4761
4762	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4763
4764	pm_runtime_put_sync(&pdev->dev);
4765
4766	return 0;
4767}
4768
4769/**
4770 * e1000_set_mac - Change the Ethernet Address of the NIC
4771 * @netdev: network interface device structure
4772 * @p: pointer to an address structure
4773 *
4774 * Returns 0 on success, negative on failure
4775 **/
4776static int e1000_set_mac(struct net_device *netdev, void *p)
4777{
4778	struct e1000_adapter *adapter = netdev_priv(netdev);
4779	struct e1000_hw *hw = &adapter->hw;
4780	struct sockaddr *addr = p;
4781
4782	if (!is_valid_ether_addr(addr->sa_data))
4783		return -EADDRNOTAVAIL;
4784
4785	eth_hw_addr_set(netdev, addr->sa_data);
4786	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4787
4788	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4789
4790	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4791		/* activate the work around */
4792		e1000e_set_laa_state_82571(&adapter->hw, 1);
4793
4794		/* Hold a copy of the LAA in RAR[14] This is done so that
4795		 * between the time RAR[0] gets clobbered  and the time it
4796		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4797		 * of the RARs and no incoming packets directed to this port
4798		 * are dropped. Eventually the LAA will be in RAR[0] and
4799		 * RAR[14]
4800		 */
4801		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4802				    adapter->hw.mac.rar_entry_count - 1);
4803	}
4804
4805	return 0;
4806}
4807
4808/**
4809 * e1000e_update_phy_task - work thread to update phy
4810 * @work: pointer to our work struct
4811 *
4812 * this worker thread exists because we must acquire a
4813 * semaphore to read the phy, which we could msleep while
4814 * waiting for it, and we can't msleep in a timer.
4815 **/
4816static void e1000e_update_phy_task(struct work_struct *work)
4817{
4818	struct e1000_adapter *adapter = container_of(work,
4819						     struct e1000_adapter,
4820						     update_phy_task);
4821	struct e1000_hw *hw = &adapter->hw;
4822
4823	if (test_bit(__E1000_DOWN, &adapter->state))
4824		return;
4825
4826	e1000_get_phy_info(hw);
4827
4828	/* Enable EEE on 82579 after link up */
4829	if (hw->phy.type >= e1000_phy_82579)
4830		e1000_set_eee_pchlan(hw);
4831}
4832
4833/**
4834 * e1000_update_phy_info - timre call-back to update PHY info
4835 * @t: pointer to timer_list containing private info adapter
4836 *
4837 * Need to wait a few seconds after link up to get diagnostic information from
4838 * the phy
4839 **/
4840static void e1000_update_phy_info(struct timer_list *t)
4841{
4842	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4843
4844	if (test_bit(__E1000_DOWN, &adapter->state))
4845		return;
4846
4847	schedule_work(&adapter->update_phy_task);
4848}
4849
4850/**
4851 * e1000e_update_phy_stats - Update the PHY statistics counters
4852 * @adapter: board private structure
4853 *
4854 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4855 **/
4856static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4857{
4858	struct e1000_hw *hw = &adapter->hw;
4859	s32 ret_val;
4860	u16 phy_data;
4861
4862	ret_val = hw->phy.ops.acquire(hw);
4863	if (ret_val)
4864		return;
4865
4866	/* A page set is expensive so check if already on desired page.
4867	 * If not, set to the page with the PHY status registers.
4868	 */
4869	hw->phy.addr = 1;
4870	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4871					   &phy_data);
4872	if (ret_val)
4873		goto release;
4874	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4875		ret_val = hw->phy.ops.set_page(hw,
4876					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4877		if (ret_val)
4878			goto release;
4879	}
4880
4881	/* Single Collision Count */
4882	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4883	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4884	if (!ret_val)
4885		adapter->stats.scc += phy_data;
4886
4887	/* Excessive Collision Count */
4888	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4889	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4890	if (!ret_val)
4891		adapter->stats.ecol += phy_data;
4892
4893	/* Multiple Collision Count */
4894	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4895	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4896	if (!ret_val)
4897		adapter->stats.mcc += phy_data;
4898
4899	/* Late Collision Count */
4900	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4901	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4902	if (!ret_val)
4903		adapter->stats.latecol += phy_data;
4904
4905	/* Collision Count - also used for adaptive IFS */
4906	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4907	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4908	if (!ret_val)
4909		hw->mac.collision_delta = phy_data;
4910
4911	/* Defer Count */
4912	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4913	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4914	if (!ret_val)
4915		adapter->stats.dc += phy_data;
4916
4917	/* Transmit with no CRS */
4918	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4919	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4920	if (!ret_val)
4921		adapter->stats.tncrs += phy_data;
4922
4923release:
4924	hw->phy.ops.release(hw);
4925}
4926
4927/**
4928 * e1000e_update_stats - Update the board statistics counters
4929 * @adapter: board private structure
4930 **/
4931static void e1000e_update_stats(struct e1000_adapter *adapter)
4932{
4933	struct net_device *netdev = adapter->netdev;
4934	struct e1000_hw *hw = &adapter->hw;
4935	struct pci_dev *pdev = adapter->pdev;
4936
4937	/* Prevent stats update while adapter is being reset, or if the pci
4938	 * connection is down.
4939	 */
4940	if (adapter->link_speed == 0)
4941		return;
4942	if (pci_channel_offline(pdev))
4943		return;
4944
4945	adapter->stats.crcerrs += er32(CRCERRS);
4946	adapter->stats.gprc += er32(GPRC);
4947	adapter->stats.gorc += er32(GORCL);
4948	er32(GORCH);		/* Clear gorc */
4949	adapter->stats.bprc += er32(BPRC);
4950	adapter->stats.mprc += er32(MPRC);
4951	adapter->stats.roc += er32(ROC);
4952
4953	adapter->stats.mpc += er32(MPC);
4954
4955	/* Half-duplex statistics */
4956	if (adapter->link_duplex == HALF_DUPLEX) {
4957		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4958			e1000e_update_phy_stats(adapter);
4959		} else {
4960			adapter->stats.scc += er32(SCC);
4961			adapter->stats.ecol += er32(ECOL);
4962			adapter->stats.mcc += er32(MCC);
4963			adapter->stats.latecol += er32(LATECOL);
4964			adapter->stats.dc += er32(DC);
4965
4966			hw->mac.collision_delta = er32(COLC);
4967
4968			if ((hw->mac.type != e1000_82574) &&
4969			    (hw->mac.type != e1000_82583))
4970				adapter->stats.tncrs += er32(TNCRS);
4971		}
4972		adapter->stats.colc += hw->mac.collision_delta;
4973	}
4974
4975	adapter->stats.xonrxc += er32(XONRXC);
4976	adapter->stats.xontxc += er32(XONTXC);
4977	adapter->stats.xoffrxc += er32(XOFFRXC);
4978	adapter->stats.xofftxc += er32(XOFFTXC);
4979	adapter->stats.gptc += er32(GPTC);
4980	adapter->stats.gotc += er32(GOTCL);
4981	er32(GOTCH);		/* Clear gotc */
4982	adapter->stats.rnbc += er32(RNBC);
4983	adapter->stats.ruc += er32(RUC);
4984
4985	adapter->stats.mptc += er32(MPTC);
4986	adapter->stats.bptc += er32(BPTC);
4987
4988	/* used for adaptive IFS */
4989
4990	hw->mac.tx_packet_delta = er32(TPT);
4991	adapter->stats.tpt += hw->mac.tx_packet_delta;
4992
4993	adapter->stats.algnerrc += er32(ALGNERRC);
4994	adapter->stats.rxerrc += er32(RXERRC);
4995	adapter->stats.cexterr += er32(CEXTERR);
4996	adapter->stats.tsctc += er32(TSCTC);
4997	adapter->stats.tsctfc += er32(TSCTFC);
4998
4999	/* Fill out the OS statistics structure */
5000	netdev->stats.multicast = adapter->stats.mprc;
5001	netdev->stats.collisions = adapter->stats.colc;
5002
5003	/* Rx Errors */
5004
5005	/* RLEC on some newer hardware can be incorrect so build
5006	 * our own version based on RUC and ROC
5007	 */
5008	netdev->stats.rx_errors = adapter->stats.rxerrc +
5009	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5010	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5011	netdev->stats.rx_length_errors = adapter->stats.ruc +
5012	    adapter->stats.roc;
5013	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5014	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5015	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5016
5017	/* Tx Errors */
5018	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5019	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5020	netdev->stats.tx_window_errors = adapter->stats.latecol;
5021	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5022
5023	/* Tx Dropped needs to be maintained elsewhere */
5024
5025	/* Management Stats */
5026	adapter->stats.mgptc += er32(MGTPTC);
5027	adapter->stats.mgprc += er32(MGTPRC);
5028	adapter->stats.mgpdc += er32(MGTPDC);
5029
5030	/* Correctable ECC Errors */
5031	if (hw->mac.type >= e1000_pch_lpt) {
5032		u32 pbeccsts = er32(PBECCSTS);
5033
5034		adapter->corr_errors +=
5035		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5036		adapter->uncorr_errors +=
5037		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
5038	}
5039}
5040
5041/**
5042 * e1000_phy_read_status - Update the PHY register status snapshot
5043 * @adapter: board private structure
5044 **/
5045static void e1000_phy_read_status(struct e1000_adapter *adapter)
5046{
5047	struct e1000_hw *hw = &adapter->hw;
5048	struct e1000_phy_regs *phy = &adapter->phy_regs;
5049
5050	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5051	    (er32(STATUS) & E1000_STATUS_LU) &&
5052	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5053		int ret_val;
5054
5055		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5056		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5057		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5058		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5059		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5060		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5061		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5062		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5063		if (ret_val)
5064			e_warn("Error reading PHY register\n");
5065	} else {
5066		/* Do not read PHY registers if link is not up
5067		 * Set values to typical power-on defaults
5068		 */
5069		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5070		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5071			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5072			     BMSR_ERCAP);
5073		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5074				  ADVERTISE_ALL | ADVERTISE_CSMA);
5075		phy->lpa = 0;
5076		phy->expansion = EXPANSION_ENABLENPAGE;
5077		phy->ctrl1000 = ADVERTISE_1000FULL;
5078		phy->stat1000 = 0;
5079		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5080	}
5081}
5082
5083static void e1000_print_link_info(struct e1000_adapter *adapter)
5084{
5085	struct e1000_hw *hw = &adapter->hw;
5086	u32 ctrl = er32(CTRL);
5087
5088	/* Link status message must follow this format for user tools */
5089	netdev_info(adapter->netdev,
5090		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5091		    adapter->link_speed,
5092		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5093		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5094		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5095		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5096}
5097
5098static bool e1000e_has_link(struct e1000_adapter *adapter)
5099{
5100	struct e1000_hw *hw = &adapter->hw;
5101	bool link_active = false;
5102	s32 ret_val = 0;
5103
5104	/* get_link_status is set on LSC (link status) interrupt or
5105	 * Rx sequence error interrupt.  get_link_status will stay
5106	 * true until the check_for_link establishes link
5107	 * for copper adapters ONLY
5108	 */
5109	switch (hw->phy.media_type) {
5110	case e1000_media_type_copper:
5111		if (hw->mac.get_link_status) {
5112			ret_val = hw->mac.ops.check_for_link(hw);
5113			link_active = !hw->mac.get_link_status;
5114		} else {
5115			link_active = true;
5116		}
5117		break;
5118	case e1000_media_type_fiber:
5119		ret_val = hw->mac.ops.check_for_link(hw);
5120		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5121		break;
5122	case e1000_media_type_internal_serdes:
5123		ret_val = hw->mac.ops.check_for_link(hw);
5124		link_active = hw->mac.serdes_has_link;
5125		break;
5126	default:
5127	case e1000_media_type_unknown:
5128		break;
5129	}
5130
5131	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5132	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5133		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5134		e_info("Gigabit has been disabled, downgrading speed\n");
5135	}
5136
5137	return link_active;
5138}
5139
5140static void e1000e_enable_receives(struct e1000_adapter *adapter)
5141{
5142	/* make sure the receive unit is started */
5143	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5144	    (adapter->flags & FLAG_RESTART_NOW)) {
5145		struct e1000_hw *hw = &adapter->hw;
5146		u32 rctl = er32(RCTL);
5147
5148		ew32(RCTL, rctl | E1000_RCTL_EN);
5149		adapter->flags &= ~FLAG_RESTART_NOW;
5150	}
5151}
5152
5153static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5154{
5155	struct e1000_hw *hw = &adapter->hw;
5156
5157	/* With 82574 controllers, PHY needs to be checked periodically
5158	 * for hung state and reset, if two calls return true
5159	 */
5160	if (e1000_check_phy_82574(hw))
5161		adapter->phy_hang_count++;
5162	else
5163		adapter->phy_hang_count = 0;
5164
5165	if (adapter->phy_hang_count > 1) {
5166		adapter->phy_hang_count = 0;
5167		e_dbg("PHY appears hung - resetting\n");
5168		schedule_work(&adapter->reset_task);
5169	}
5170}
5171
5172/**
5173 * e1000_watchdog - Timer Call-back
5174 * @t: pointer to timer_list containing private info adapter
5175 **/
5176static void e1000_watchdog(struct timer_list *t)
5177{
5178	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5179
5180	/* Do the rest outside of interrupt context */
5181	schedule_work(&adapter->watchdog_task);
5182
5183	/* TODO: make this use queue_delayed_work() */
5184}
5185
5186static void e1000_watchdog_task(struct work_struct *work)
5187{
5188	struct e1000_adapter *adapter = container_of(work,
5189						     struct e1000_adapter,
5190						     watchdog_task);
5191	struct net_device *netdev = adapter->netdev;
5192	struct e1000_mac_info *mac = &adapter->hw.mac;
5193	struct e1000_phy_info *phy = &adapter->hw.phy;
5194	struct e1000_ring *tx_ring = adapter->tx_ring;
5195	u32 dmoff_exit_timeout = 100, tries = 0;
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 link, tctl, pcim_state;
5198
5199	if (test_bit(__E1000_DOWN, &adapter->state))
5200		return;
5201
5202	link = e1000e_has_link(adapter);
5203	if ((netif_carrier_ok(netdev)) && link) {
5204		/* Cancel scheduled suspend requests. */
5205		pm_runtime_resume(netdev->dev.parent);
5206
5207		e1000e_enable_receives(adapter);
5208		goto link_up;
5209	}
5210
5211	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5212	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5213		e1000_update_mng_vlan(adapter);
5214
5215	if (link) {
5216		if (!netif_carrier_ok(netdev)) {
5217			bool txb2b = true;
5218
5219			/* Cancel scheduled suspend requests. */
5220			pm_runtime_resume(netdev->dev.parent);
5221
5222			/* Checking if MAC is in DMoff state*/
5223			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5224				pcim_state = er32(STATUS);
5225				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5226					if (tries++ == dmoff_exit_timeout) {
5227						e_dbg("Error in exiting dmoff\n");
5228						break;
5229					}
5230					usleep_range(10000, 20000);
5231					pcim_state = er32(STATUS);
5232
5233					/* Checking if MAC exited DMoff state */
5234					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5235						e1000_phy_hw_reset(&adapter->hw);
5236				}
5237			}
5238
5239			/* update snapshot of PHY registers on LSC */
5240			e1000_phy_read_status(adapter);
5241			mac->ops.get_link_up_info(&adapter->hw,
5242						  &adapter->link_speed,
5243						  &adapter->link_duplex);
5244			e1000_print_link_info(adapter);
5245
5246			/* check if SmartSpeed worked */
5247			e1000e_check_downshift(hw);
5248			if (phy->speed_downgraded)
5249				netdev_warn(netdev,
5250					    "Link Speed was downgraded by SmartSpeed\n");
5251
5252			/* On supported PHYs, check for duplex mismatch only
5253			 * if link has autonegotiated at 10/100 half
5254			 */
5255			if ((hw->phy.type == e1000_phy_igp_3 ||
5256			     hw->phy.type == e1000_phy_bm) &&
5257			    hw->mac.autoneg &&
5258			    (adapter->link_speed == SPEED_10 ||
5259			     adapter->link_speed == SPEED_100) &&
5260			    (adapter->link_duplex == HALF_DUPLEX)) {
5261				u16 autoneg_exp;
5262
5263				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5264
5265				if (!(autoneg_exp & EXPANSION_NWAY))
5266					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5267			}
5268
5269			/* adjust timeout factor according to speed/duplex */
5270			adapter->tx_timeout_factor = 1;
5271			switch (adapter->link_speed) {
5272			case SPEED_10:
5273				txb2b = false;
5274				adapter->tx_timeout_factor = 16;
5275				break;
5276			case SPEED_100:
5277				txb2b = false;
5278				adapter->tx_timeout_factor = 10;
5279				break;
5280			}
5281
5282			/* workaround: re-program speed mode bit after
5283			 * link-up event
5284			 */
5285			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286			    !txb2b) {
5287				u32 tarc0;
5288
5289				tarc0 = er32(TARC(0));
5290				tarc0 &= ~SPEED_MODE_BIT;
5291				ew32(TARC(0), tarc0);
5292			}
5293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5294			/* enable transmits in the hardware, need to do this
5295			 * after setting TARC(0)
5296			 */
5297			tctl = er32(TCTL);
5298			tctl |= E1000_TCTL_EN;
5299			ew32(TCTL, tctl);
5300
5301			/* Perform any post-link-up configuration before
5302			 * reporting link up.
5303			 */
5304			if (phy->ops.cfg_on_link_up)
5305				phy->ops.cfg_on_link_up(hw);
5306
5307			netif_wake_queue(netdev);
5308			netif_carrier_on(netdev);
5309
5310			if (!test_bit(__E1000_DOWN, &adapter->state))
5311				mod_timer(&adapter->phy_info_timer,
5312					  round_jiffies(jiffies + 2 * HZ));
5313		}
5314	} else {
5315		if (netif_carrier_ok(netdev)) {
5316			adapter->link_speed = 0;
5317			adapter->link_duplex = 0;
5318			/* Link status message must follow this format */
5319			netdev_info(netdev, "NIC Link is Down\n");
5320			netif_carrier_off(netdev);
5321			netif_stop_queue(netdev);
5322			if (!test_bit(__E1000_DOWN, &adapter->state))
5323				mod_timer(&adapter->phy_info_timer,
5324					  round_jiffies(jiffies + 2 * HZ));
5325
5326			/* 8000ES2LAN requires a Rx packet buffer work-around
5327			 * on link down event; reset the controller to flush
5328			 * the Rx packet buffer.
5329			 */
5330			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5331				adapter->flags |= FLAG_RESTART_NOW;
5332			else
5333				pm_schedule_suspend(netdev->dev.parent,
5334						    LINK_TIMEOUT);
5335		}
5336	}
5337
5338link_up:
5339	spin_lock(&adapter->stats64_lock);
5340	e1000e_update_stats(adapter);
5341
5342	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5343	adapter->tpt_old = adapter->stats.tpt;
5344	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5345	adapter->colc_old = adapter->stats.colc;
5346
5347	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5348	adapter->gorc_old = adapter->stats.gorc;
5349	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5350	adapter->gotc_old = adapter->stats.gotc;
5351	spin_unlock(&adapter->stats64_lock);
5352
5353	/* If the link is lost the controller stops DMA, but
5354	 * if there is queued Tx work it cannot be done.  So
5355	 * reset the controller to flush the Tx packet buffers.
5356	 */
5357	if (!netif_carrier_ok(netdev) &&
5358	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5359		adapter->flags |= FLAG_RESTART_NOW;
5360
5361	/* If reset is necessary, do it outside of interrupt context. */
5362	if (adapter->flags & FLAG_RESTART_NOW) {
5363		schedule_work(&adapter->reset_task);
5364		/* return immediately since reset is imminent */
5365		return;
5366	}
5367
5368	e1000e_update_adaptive(&adapter->hw);
5369
5370	/* Simple mode for Interrupt Throttle Rate (ITR) */
5371	if (adapter->itr_setting == 4) {
5372		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5373		 * Total asymmetrical Tx or Rx gets ITR=8000;
5374		 * everyone else is between 2000-8000.
5375		 */
5376		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5377		u32 dif = (adapter->gotc > adapter->gorc ?
5378			   adapter->gotc - adapter->gorc :
5379			   adapter->gorc - adapter->gotc) / 10000;
5380		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5381
5382		e1000e_write_itr(adapter, itr);
5383	}
5384
5385	/* Cause software interrupt to ensure Rx ring is cleaned */
5386	if (adapter->msix_entries)
5387		ew32(ICS, adapter->rx_ring->ims_val);
5388	else
5389		ew32(ICS, E1000_ICS_RXDMT0);
5390
5391	/* flush pending descriptors to memory before detecting Tx hang */
5392	e1000e_flush_descriptors(adapter);
5393
5394	/* Force detection of hung controller every watchdog period */
5395	adapter->detect_tx_hung = true;
5396
5397	/* With 82571 controllers, LAA may be overwritten due to controller
5398	 * reset from the other port. Set the appropriate LAA in RAR[0]
5399	 */
5400	if (e1000e_get_laa_state_82571(hw))
5401		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5402
5403	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5404		e1000e_check_82574_phy_workaround(adapter);
5405
5406	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5408		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5409		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5410			er32(RXSTMPH);
5411			adapter->rx_hwtstamp_cleared++;
5412		} else {
5413			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5414		}
5415	}
5416
5417	/* Reset the timer */
5418	if (!test_bit(__E1000_DOWN, &adapter->state))
5419		mod_timer(&adapter->watchdog_timer,
5420			  round_jiffies(jiffies + 2 * HZ));
5421}
5422
5423#define E1000_TX_FLAGS_CSUM		0x00000001
5424#define E1000_TX_FLAGS_VLAN		0x00000002
5425#define E1000_TX_FLAGS_TSO		0x00000004
5426#define E1000_TX_FLAGS_IPV4		0x00000008
5427#define E1000_TX_FLAGS_NO_FCS		0x00000010
5428#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5429#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5430#define E1000_TX_FLAGS_VLAN_SHIFT	16
5431
5432static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5433		     __be16 protocol)
5434{
5435	struct e1000_context_desc *context_desc;
5436	struct e1000_buffer *buffer_info;
5437	unsigned int i;
5438	u32 cmd_length = 0;
5439	u16 ipcse = 0, mss;
5440	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5441	int err;
5442
5443	if (!skb_is_gso(skb))
5444		return 0;
5445
5446	err = skb_cow_head(skb, 0);
5447	if (err < 0)
5448		return err;
5449
5450	hdr_len = skb_tcp_all_headers(skb);
5451	mss = skb_shinfo(skb)->gso_size;
5452	if (protocol == htons(ETH_P_IP)) {
5453		struct iphdr *iph = ip_hdr(skb);
5454		iph->tot_len = 0;
5455		iph->check = 0;
5456		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5457							 0, IPPROTO_TCP, 0);
5458		cmd_length = E1000_TXD_CMD_IP;
5459		ipcse = skb_transport_offset(skb) - 1;
5460	} else if (skb_is_gso_v6(skb)) {
5461		tcp_v6_gso_csum_prep(skb);
5462		ipcse = 0;
5463	}
5464	ipcss = skb_network_offset(skb);
5465	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5466	tucss = skb_transport_offset(skb);
5467	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5468
5469	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5470		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5471
5472	i = tx_ring->next_to_use;
5473	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5474	buffer_info = &tx_ring->buffer_info[i];
5475
5476	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5477	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5478	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5479	context_desc->upper_setup.tcp_fields.tucss = tucss;
5480	context_desc->upper_setup.tcp_fields.tucso = tucso;
5481	context_desc->upper_setup.tcp_fields.tucse = 0;
5482	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5483	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5484	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5485
5486	buffer_info->time_stamp = jiffies;
5487	buffer_info->next_to_watch = i;
5488
5489	i++;
5490	if (i == tx_ring->count)
5491		i = 0;
5492	tx_ring->next_to_use = i;
5493
5494	return 1;
5495}
5496
5497static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5498			  __be16 protocol)
5499{
5500	struct e1000_adapter *adapter = tx_ring->adapter;
5501	struct e1000_context_desc *context_desc;
5502	struct e1000_buffer *buffer_info;
5503	unsigned int i;
5504	u8 css;
5505	u32 cmd_len = E1000_TXD_CMD_DEXT;
5506
5507	if (skb->ip_summed != CHECKSUM_PARTIAL)
5508		return false;
5509
5510	switch (protocol) {
5511	case cpu_to_be16(ETH_P_IP):
5512		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5513			cmd_len |= E1000_TXD_CMD_TCP;
5514		break;
5515	case cpu_to_be16(ETH_P_IPV6):
5516		/* XXX not handling all IPV6 headers */
5517		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5518			cmd_len |= E1000_TXD_CMD_TCP;
5519		break;
5520	default:
5521		if (unlikely(net_ratelimit()))
5522			e_warn("checksum_partial proto=%x!\n",
5523			       be16_to_cpu(protocol));
5524		break;
5525	}
5526
5527	css = skb_checksum_start_offset(skb);
5528
5529	i = tx_ring->next_to_use;
5530	buffer_info = &tx_ring->buffer_info[i];
5531	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5532
5533	context_desc->lower_setup.ip_config = 0;
5534	context_desc->upper_setup.tcp_fields.tucss = css;
5535	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5536	context_desc->upper_setup.tcp_fields.tucse = 0;
5537	context_desc->tcp_seg_setup.data = 0;
5538	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5539
5540	buffer_info->time_stamp = jiffies;
5541	buffer_info->next_to_watch = i;
5542
5543	i++;
5544	if (i == tx_ring->count)
5545		i = 0;
5546	tx_ring->next_to_use = i;
5547
5548	return true;
5549}
5550
5551static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5552			unsigned int first, unsigned int max_per_txd,
5553			unsigned int nr_frags)
5554{
5555	struct e1000_adapter *adapter = tx_ring->adapter;
5556	struct pci_dev *pdev = adapter->pdev;
5557	struct e1000_buffer *buffer_info;
5558	unsigned int len = skb_headlen(skb);
5559	unsigned int offset = 0, size, count = 0, i;
5560	unsigned int f, bytecount, segs;
5561
5562	i = tx_ring->next_to_use;
5563
5564	while (len) {
5565		buffer_info = &tx_ring->buffer_info[i];
5566		size = min(len, max_per_txd);
5567
5568		buffer_info->length = size;
5569		buffer_info->time_stamp = jiffies;
5570		buffer_info->next_to_watch = i;
5571		buffer_info->dma = dma_map_single(&pdev->dev,
5572						  skb->data + offset,
5573						  size, DMA_TO_DEVICE);
5574		buffer_info->mapped_as_page = false;
5575		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5576			goto dma_error;
5577
5578		len -= size;
5579		offset += size;
5580		count++;
5581
5582		if (len) {
5583			i++;
5584			if (i == tx_ring->count)
5585				i = 0;
5586		}
5587	}
5588
5589	for (f = 0; f < nr_frags; f++) {
5590		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5591
5592		len = skb_frag_size(frag);
5593		offset = 0;
5594
5595		while (len) {
5596			i++;
5597			if (i == tx_ring->count)
5598				i = 0;
5599
5600			buffer_info = &tx_ring->buffer_info[i];
5601			size = min(len, max_per_txd);
5602
5603			buffer_info->length = size;
5604			buffer_info->time_stamp = jiffies;
5605			buffer_info->next_to_watch = i;
5606			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5607							    offset, size,
5608							    DMA_TO_DEVICE);
5609			buffer_info->mapped_as_page = true;
5610			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5611				goto dma_error;
5612
5613			len -= size;
5614			offset += size;
5615			count++;
5616		}
5617	}
5618
5619	segs = skb_shinfo(skb)->gso_segs ? : 1;
5620	/* multiply data chunks by size of headers */
5621	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5622
5623	tx_ring->buffer_info[i].skb = skb;
5624	tx_ring->buffer_info[i].segs = segs;
5625	tx_ring->buffer_info[i].bytecount = bytecount;
5626	tx_ring->buffer_info[first].next_to_watch = i;
5627
5628	return count;
5629
5630dma_error:
5631	dev_err(&pdev->dev, "Tx DMA map failed\n");
5632	buffer_info->dma = 0;
5633	if (count)
5634		count--;
5635
5636	while (count--) {
5637		if (i == 0)
5638			i += tx_ring->count;
5639		i--;
5640		buffer_info = &tx_ring->buffer_info[i];
5641		e1000_put_txbuf(tx_ring, buffer_info, true);
5642	}
5643
5644	return 0;
5645}
5646
5647static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5648{
5649	struct e1000_adapter *adapter = tx_ring->adapter;
5650	struct e1000_tx_desc *tx_desc = NULL;
5651	struct e1000_buffer *buffer_info;
5652	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5653	unsigned int i;
5654
5655	if (tx_flags & E1000_TX_FLAGS_TSO) {
5656		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5657		    E1000_TXD_CMD_TSE;
5658		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5659
5660		if (tx_flags & E1000_TX_FLAGS_IPV4)
5661			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5662	}
5663
5664	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5665		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5666		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5667	}
5668
5669	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5670		txd_lower |= E1000_TXD_CMD_VLE;
5671		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5672	}
5673
5674	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5675		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5676
5677	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5678		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5679		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5680	}
5681
5682	i = tx_ring->next_to_use;
5683
5684	do {
5685		buffer_info = &tx_ring->buffer_info[i];
5686		tx_desc = E1000_TX_DESC(*tx_ring, i);
5687		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5688		tx_desc->lower.data = cpu_to_le32(txd_lower |
5689						  buffer_info->length);
5690		tx_desc->upper.data = cpu_to_le32(txd_upper);
5691
5692		i++;
5693		if (i == tx_ring->count)
5694			i = 0;
5695	} while (--count > 0);
5696
5697	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5698
5699	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5700	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5701		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5702
5703	/* Force memory writes to complete before letting h/w
5704	 * know there are new descriptors to fetch.  (Only
5705	 * applicable for weak-ordered memory model archs,
5706	 * such as IA-64).
5707	 */
5708	wmb();
5709
5710	tx_ring->next_to_use = i;
5711}
5712
5713#define MINIMUM_DHCP_PACKET_SIZE 282
5714static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5715				    struct sk_buff *skb)
5716{
5717	struct e1000_hw *hw = &adapter->hw;
5718	u16 length, offset;
5719
5720	if (skb_vlan_tag_present(skb) &&
5721	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5722	      (adapter->hw.mng_cookie.status &
5723	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5724		return 0;
5725
5726	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5727		return 0;
5728
5729	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5730		return 0;
5731
5732	{
5733		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5734		struct udphdr *udp;
5735
5736		if (ip->protocol != IPPROTO_UDP)
5737			return 0;
5738
5739		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5740		if (ntohs(udp->dest) != 67)
5741			return 0;
5742
5743		offset = (u8 *)udp + 8 - skb->data;
5744		length = skb->len - offset;
5745		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5746	}
5747
5748	return 0;
5749}
5750
5751static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5752{
5753	struct e1000_adapter *adapter = tx_ring->adapter;
5754
5755	netif_stop_queue(adapter->netdev);
5756	/* Herbert's original patch had:
5757	 *  smp_mb__after_netif_stop_queue();
5758	 * but since that doesn't exist yet, just open code it.
5759	 */
5760	smp_mb();
5761
5762	/* We need to check again in a case another CPU has just
5763	 * made room available.
5764	 */
5765	if (e1000_desc_unused(tx_ring) < size)
5766		return -EBUSY;
5767
5768	/* A reprieve! */
5769	netif_start_queue(adapter->netdev);
5770	++adapter->restart_queue;
5771	return 0;
5772}
5773
5774static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5775{
5776	BUG_ON(size > tx_ring->count);
5777
5778	if (e1000_desc_unused(tx_ring) >= size)
5779		return 0;
5780	return __e1000_maybe_stop_tx(tx_ring, size);
5781}
5782
5783static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5784				    struct net_device *netdev)
5785{
5786	struct e1000_adapter *adapter = netdev_priv(netdev);
5787	struct e1000_ring *tx_ring = adapter->tx_ring;
5788	unsigned int first;
5789	unsigned int tx_flags = 0;
5790	unsigned int len = skb_headlen(skb);
5791	unsigned int nr_frags;
5792	unsigned int mss;
5793	int count = 0;
5794	int tso;
5795	unsigned int f;
5796	__be16 protocol = vlan_get_protocol(skb);
5797
5798	if (test_bit(__E1000_DOWN, &adapter->state)) {
5799		dev_kfree_skb_any(skb);
5800		return NETDEV_TX_OK;
5801	}
5802
5803	if (skb->len <= 0) {
5804		dev_kfree_skb_any(skb);
5805		return NETDEV_TX_OK;
5806	}
5807
5808	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5809	 * pad skb in order to meet this minimum size requirement
5810	 */
5811	if (skb_put_padto(skb, 17))
5812		return NETDEV_TX_OK;
5813
5814	mss = skb_shinfo(skb)->gso_size;
5815	if (mss) {
5816		u8 hdr_len;
5817
5818		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5819		 * points to just header, pull a few bytes of payload from
5820		 * frags into skb->data
5821		 */
5822		hdr_len = skb_tcp_all_headers(skb);
5823		/* we do this workaround for ES2LAN, but it is un-necessary,
5824		 * avoiding it could save a lot of cycles
5825		 */
5826		if (skb->data_len && (hdr_len == len)) {
5827			unsigned int pull_size;
5828
5829			pull_size = min_t(unsigned int, 4, skb->data_len);
5830			if (!__pskb_pull_tail(skb, pull_size)) {
5831				e_err("__pskb_pull_tail failed.\n");
5832				dev_kfree_skb_any(skb);
5833				return NETDEV_TX_OK;
5834			}
5835			len = skb_headlen(skb);
5836		}
5837	}
5838
5839	/* reserve a descriptor for the offload context */
5840	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5841		count++;
5842	count++;
5843
5844	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5845
5846	nr_frags = skb_shinfo(skb)->nr_frags;
5847	for (f = 0; f < nr_frags; f++)
5848		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5849				      adapter->tx_fifo_limit);
5850
5851	if (adapter->hw.mac.tx_pkt_filtering)
5852		e1000_transfer_dhcp_info(adapter, skb);
5853
5854	/* need: count + 2 desc gap to keep tail from touching
5855	 * head, otherwise try next time
5856	 */
5857	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5858		return NETDEV_TX_BUSY;
5859
5860	if (skb_vlan_tag_present(skb)) {
5861		tx_flags |= E1000_TX_FLAGS_VLAN;
5862		tx_flags |= (skb_vlan_tag_get(skb) <<
5863			     E1000_TX_FLAGS_VLAN_SHIFT);
5864	}
5865
5866	first = tx_ring->next_to_use;
5867
5868	tso = e1000_tso(tx_ring, skb, protocol);
5869	if (tso < 0) {
5870		dev_kfree_skb_any(skb);
5871		return NETDEV_TX_OK;
5872	}
5873
5874	if (tso)
5875		tx_flags |= E1000_TX_FLAGS_TSO;
5876	else if (e1000_tx_csum(tx_ring, skb, protocol))
5877		tx_flags |= E1000_TX_FLAGS_CSUM;
5878
5879	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5880	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5881	 * no longer assume, we must.
5882	 */
5883	if (protocol == htons(ETH_P_IP))
5884		tx_flags |= E1000_TX_FLAGS_IPV4;
5885
5886	if (unlikely(skb->no_fcs))
5887		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5888
5889	/* if count is 0 then mapping error has occurred */
5890	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5891			     nr_frags);
5892	if (count) {
5893		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5894		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5895			if (!adapter->tx_hwtstamp_skb) {
5896				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5897				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5898				adapter->tx_hwtstamp_skb = skb_get(skb);
5899				adapter->tx_hwtstamp_start = jiffies;
5900				schedule_work(&adapter->tx_hwtstamp_work);
5901			} else {
5902				adapter->tx_hwtstamp_skipped++;
5903			}
5904		}
5905
5906		skb_tx_timestamp(skb);
5907
5908		netdev_sent_queue(netdev, skb->len);
5909		e1000_tx_queue(tx_ring, tx_flags, count);
5910		/* Make sure there is space in the ring for the next send. */
5911		e1000_maybe_stop_tx(tx_ring,
5912				    ((MAX_SKB_FRAGS + 1) *
5913				     DIV_ROUND_UP(PAGE_SIZE,
5914						  adapter->tx_fifo_limit) + 4));
5915
5916		if (!netdev_xmit_more() ||
5917		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5918			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5919				e1000e_update_tdt_wa(tx_ring,
5920						     tx_ring->next_to_use);
5921			else
5922				writel(tx_ring->next_to_use, tx_ring->tail);
5923		}
5924	} else {
5925		dev_kfree_skb_any(skb);
5926		tx_ring->buffer_info[first].time_stamp = 0;
5927		tx_ring->next_to_use = first;
5928	}
5929
5930	return NETDEV_TX_OK;
5931}
5932
5933/**
5934 * e1000_tx_timeout - Respond to a Tx Hang
5935 * @netdev: network interface device structure
5936 * @txqueue: index of the hung queue (unused)
5937 **/
5938static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5939{
5940	struct e1000_adapter *adapter = netdev_priv(netdev);
5941
5942	/* Do the reset outside of interrupt context */
5943	adapter->tx_timeout_count++;
5944	schedule_work(&adapter->reset_task);
5945}
5946
5947static void e1000_reset_task(struct work_struct *work)
5948{
5949	struct e1000_adapter *adapter;
5950	adapter = container_of(work, struct e1000_adapter, reset_task);
5951
5952	rtnl_lock();
5953	/* don't run the task if already down */
5954	if (test_bit(__E1000_DOWN, &adapter->state)) {
5955		rtnl_unlock();
5956		return;
5957	}
5958
5959	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5960		e1000e_dump(adapter);
5961		e_err("Reset adapter unexpectedly\n");
5962	}
5963	e1000e_reinit_locked(adapter);
5964	rtnl_unlock();
5965}
5966
5967/**
5968 * e1000e_get_stats64 - Get System Network Statistics
5969 * @netdev: network interface device structure
5970 * @stats: rtnl_link_stats64 pointer
5971 *
5972 * Returns the address of the device statistics structure.
5973 **/
5974void e1000e_get_stats64(struct net_device *netdev,
5975			struct rtnl_link_stats64 *stats)
5976{
5977	struct e1000_adapter *adapter = netdev_priv(netdev);
5978
5979	spin_lock(&adapter->stats64_lock);
5980	e1000e_update_stats(adapter);
5981	/* Fill out the OS statistics structure */
5982	stats->rx_bytes = adapter->stats.gorc;
5983	stats->rx_packets = adapter->stats.gprc;
5984	stats->tx_bytes = adapter->stats.gotc;
5985	stats->tx_packets = adapter->stats.gptc;
5986	stats->multicast = adapter->stats.mprc;
5987	stats->collisions = adapter->stats.colc;
5988
5989	/* Rx Errors */
5990
5991	/* RLEC on some newer hardware can be incorrect so build
5992	 * our own version based on RUC and ROC
5993	 */
5994	stats->rx_errors = adapter->stats.rxerrc +
5995	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5996	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5997	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5998	stats->rx_crc_errors = adapter->stats.crcerrs;
5999	stats->rx_frame_errors = adapter->stats.algnerrc;
6000	stats->rx_missed_errors = adapter->stats.mpc;
6001
6002	/* Tx Errors */
6003	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6004	stats->tx_aborted_errors = adapter->stats.ecol;
6005	stats->tx_window_errors = adapter->stats.latecol;
6006	stats->tx_carrier_errors = adapter->stats.tncrs;
6007
6008	/* Tx Dropped needs to be maintained elsewhere */
6009
6010	spin_unlock(&adapter->stats64_lock);
6011}
6012
6013/**
6014 * e1000_change_mtu - Change the Maximum Transfer Unit
6015 * @netdev: network interface device structure
6016 * @new_mtu: new value for maximum frame size
6017 *
6018 * Returns 0 on success, negative on failure
6019 **/
6020static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6021{
6022	struct e1000_adapter *adapter = netdev_priv(netdev);
6023	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6024
6025	/* Jumbo frame support */
6026	if ((new_mtu > ETH_DATA_LEN) &&
6027	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6028		e_err("Jumbo Frames not supported.\n");
6029		return -EINVAL;
6030	}
6031
6032	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6034	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6035	    (new_mtu > ETH_DATA_LEN)) {
6036		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037		return -EINVAL;
6038	}
6039
6040	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6041		usleep_range(1000, 1100);
6042	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043	adapter->max_frame_size = max_frame;
6044	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6045		   netdev->mtu, new_mtu);
6046	WRITE_ONCE(netdev->mtu, new_mtu);
6047
6048	pm_runtime_get_sync(netdev->dev.parent);
6049
6050	if (netif_running(netdev))
6051		e1000e_down(adapter, true);
6052
6053	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6054	 * means we reserve 2 more, this pushes us to allocate from the next
6055	 * larger slab size.
6056	 * i.e. RXBUFFER_2048 --> size-4096 slab
6057	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6058	 * fragmented skbs
6059	 */
6060
6061	if (max_frame <= 2048)
6062		adapter->rx_buffer_len = 2048;
6063	else
6064		adapter->rx_buffer_len = 4096;
6065
6066	/* adjust allocation if LPE protects us, and we aren't using SBP */
6067	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6068		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6069
6070	if (netif_running(netdev))
6071		e1000e_up(adapter);
6072	else
6073		e1000e_reset(adapter);
6074
6075	pm_runtime_put_sync(netdev->dev.parent);
6076
6077	clear_bit(__E1000_RESETTING, &adapter->state);
6078
6079	return 0;
6080}
6081
6082static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6083			   int cmd)
6084{
6085	struct e1000_adapter *adapter = netdev_priv(netdev);
6086	struct mii_ioctl_data *data = if_mii(ifr);
6087
6088	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089		return -EOPNOTSUPP;
6090
6091	switch (cmd) {
6092	case SIOCGMIIPHY:
6093		data->phy_id = adapter->hw.phy.addr;
6094		break;
6095	case SIOCGMIIREG:
6096		e1000_phy_read_status(adapter);
6097
6098		switch (data->reg_num & 0x1F) {
6099		case MII_BMCR:
6100			data->val_out = adapter->phy_regs.bmcr;
6101			break;
6102		case MII_BMSR:
6103			data->val_out = adapter->phy_regs.bmsr;
6104			break;
6105		case MII_PHYSID1:
6106			data->val_out = (adapter->hw.phy.id >> 16);
6107			break;
6108		case MII_PHYSID2:
6109			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6110			break;
6111		case MII_ADVERTISE:
6112			data->val_out = adapter->phy_regs.advertise;
6113			break;
6114		case MII_LPA:
6115			data->val_out = adapter->phy_regs.lpa;
6116			break;
6117		case MII_EXPANSION:
6118			data->val_out = adapter->phy_regs.expansion;
6119			break;
6120		case MII_CTRL1000:
6121			data->val_out = adapter->phy_regs.ctrl1000;
6122			break;
6123		case MII_STAT1000:
6124			data->val_out = adapter->phy_regs.stat1000;
6125			break;
6126		case MII_ESTATUS:
6127			data->val_out = adapter->phy_regs.estatus;
6128			break;
6129		default:
6130			return -EIO;
6131		}
6132		break;
6133	case SIOCSMIIREG:
6134	default:
6135		return -EOPNOTSUPP;
6136	}
6137	return 0;
6138}
6139
6140/**
6141 * e1000e_hwtstamp_set - control hardware time stamping
6142 * @netdev: network interface device structure
6143 * @ifr: interface request
6144 *
6145 * Outgoing time stamping can be enabled and disabled. Play nice and
6146 * disable it when requested, although it shouldn't cause any overhead
6147 * when no packet needs it. At most one packet in the queue may be
6148 * marked for time stamping, otherwise it would be impossible to tell
6149 * for sure to which packet the hardware time stamp belongs.
6150 *
6151 * Incoming time stamping has to be configured via the hardware filters.
6152 * Not all combinations are supported, in particular event type has to be
6153 * specified. Matching the kind of event packet is not supported, with the
6154 * exception of "all V2 events regardless of level 2 or 4".
6155 **/
6156static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6157{
6158	struct e1000_adapter *adapter = netdev_priv(netdev);
6159	struct hwtstamp_config config;
6160	int ret_val;
6161
6162	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6163		return -EFAULT;
6164
6165	ret_val = e1000e_config_hwtstamp(adapter, &config);
6166	if (ret_val)
6167		return ret_val;
6168
6169	switch (config.rx_filter) {
6170	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6171	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6172	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6173	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6174	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6175	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6176		/* With V2 type filters which specify a Sync or Delay Request,
6177		 * Path Delay Request/Response messages are also time stamped
6178		 * by hardware so notify the caller the requested packets plus
6179		 * some others are time stamped.
6180		 */
6181		config.rx_filter = HWTSTAMP_FILTER_SOME;
6182		break;
6183	default:
6184		break;
6185	}
6186
6187	return copy_to_user(ifr->ifr_data, &config,
6188			    sizeof(config)) ? -EFAULT : 0;
6189}
6190
6191static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6192{
6193	struct e1000_adapter *adapter = netdev_priv(netdev);
6194
6195	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6196			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6197}
6198
6199static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6200{
6201	switch (cmd) {
6202	case SIOCGMIIPHY:
6203	case SIOCGMIIREG:
6204	case SIOCSMIIREG:
6205		return e1000_mii_ioctl(netdev, ifr, cmd);
6206	case SIOCSHWTSTAMP:
6207		return e1000e_hwtstamp_set(netdev, ifr);
6208	case SIOCGHWTSTAMP:
6209		return e1000e_hwtstamp_get(netdev, ifr);
6210	default:
6211		return -EOPNOTSUPP;
6212	}
6213}
6214
6215static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6216{
6217	struct e1000_hw *hw = &adapter->hw;
6218	u32 i, mac_reg, wuc;
6219	u16 phy_reg, wuc_enable;
6220	int retval;
6221
6222	/* copy MAC RARs to PHY RARs */
6223	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6224
6225	retval = hw->phy.ops.acquire(hw);
6226	if (retval) {
6227		e_err("Could not acquire PHY\n");
6228		return retval;
6229	}
6230
6231	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6233	if (retval)
6234		goto release;
6235
6236	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6237	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6238		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6239		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6240					   (u16)(mac_reg & 0xFFFF));
6241		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6242					   (u16)((mac_reg >> 16) & 0xFFFF));
6243	}
6244
6245	/* configure PHY Rx Control register */
6246	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6247	mac_reg = er32(RCTL);
6248	if (mac_reg & E1000_RCTL_UPE)
6249		phy_reg |= BM_RCTL_UPE;
6250	if (mac_reg & E1000_RCTL_MPE)
6251		phy_reg |= BM_RCTL_MPE;
6252	phy_reg &= ~(BM_RCTL_MO_MASK);
6253	if (mac_reg & E1000_RCTL_MO_3)
6254		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6255			    << BM_RCTL_MO_SHIFT);
6256	if (mac_reg & E1000_RCTL_BAM)
6257		phy_reg |= BM_RCTL_BAM;
6258	if (mac_reg & E1000_RCTL_PMCF)
6259		phy_reg |= BM_RCTL_PMCF;
6260	mac_reg = er32(CTRL);
6261	if (mac_reg & E1000_CTRL_RFCE)
6262		phy_reg |= BM_RCTL_RFCE;
6263	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6264
6265	wuc = E1000_WUC_PME_EN;
6266	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6267		wuc |= E1000_WUC_APME;
6268
6269	/* enable PHY wakeup in MAC register */
6270	ew32(WUFC, wufc);
6271	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6272		   E1000_WUC_PME_STATUS | wuc));
6273
6274	/* configure and enable PHY wakeup in PHY registers */
6275	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6276	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6277
6278	/* activate PHY wakeup */
6279	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6280	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6281	if (retval)
6282		e_err("Could not set PHY Host Wakeup bit\n");
6283release:
6284	hw->phy.ops.release(hw);
6285
6286	return retval;
6287}
6288
6289static void e1000e_flush_lpic(struct pci_dev *pdev)
6290{
6291	struct net_device *netdev = pci_get_drvdata(pdev);
6292	struct e1000_adapter *adapter = netdev_priv(netdev);
6293	struct e1000_hw *hw = &adapter->hw;
6294	u32 ret_val;
6295
6296	pm_runtime_get_sync(netdev->dev.parent);
6297
6298	ret_val = hw->phy.ops.acquire(hw);
6299	if (ret_val)
6300		goto fl_out;
6301
6302	pr_info("EEE TX LPI TIMER: %08X\n",
6303		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6304
6305	hw->phy.ops.release(hw);
6306
6307fl_out:
6308	pm_runtime_put_sync(netdev->dev.parent);
6309}
6310
6311/* S0ix implementation */
6312static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6313{
6314	struct e1000_hw *hw = &adapter->hw;
6315	u32 mac_data;
6316	u16 phy_data;
6317
6318	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6319	    hw->mac.type >= e1000_pch_adp) {
6320		/* Request ME configure the device for S0ix */
6321		mac_data = er32(H2ME);
6322		mac_data |= E1000_H2ME_START_DPG;
6323		mac_data &= ~E1000_H2ME_EXIT_DPG;
6324		trace_e1000e_trace_mac_register(mac_data);
6325		ew32(H2ME, mac_data);
6326	} else {
6327		/* Request driver configure the device to S0ix */
6328		/* Disable the periodic inband message,
6329		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6330		 */
6331		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6332		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6333		phy_data |= BIT(10);
6334		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6335
6336		/* Make sure we don't exit K1 every time a new packet arrives
6337		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6338		 */
6339		e1e_rphy(hw, I217_CGFREG, &phy_data);
6340		phy_data |= BIT(5);
6341		e1e_wphy(hw, I217_CGFREG, phy_data);
6342
6343		/* Change the MAC/PHY interface to SMBus
6344		 * Force the SMBus in PHY page769_23[0] = 1
6345		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6346		 */
6347		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6348		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6349		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6350		mac_data = er32(CTRL_EXT);
6351		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6352		ew32(CTRL_EXT, mac_data);
6353
6354		/* DFT control: PHY bit: page769_20[0] = 1
6355		 * page769_20[7] - PHY PLL stop
6356		 * page769_20[8] - PHY go to the electrical idle
6357		 * page769_20[9] - PHY serdes disable
6358		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6359		 */
6360		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6361		phy_data |= BIT(0);
6362		phy_data |= BIT(7);
6363		phy_data |= BIT(8);
6364		phy_data |= BIT(9);
6365		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6366
6367		mac_data = er32(EXTCNF_CTRL);
6368		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6369		ew32(EXTCNF_CTRL, mac_data);
6370
6371		/* Disable disconnected cable conditioning for Power Gating */
6372		mac_data = er32(DPGFR);
6373		mac_data |= BIT(2);
6374		ew32(DPGFR, mac_data);
6375
6376		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6377		mac_data = er32(CTRL_EXT);
6378		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6379		ew32(CTRL_EXT, mac_data);
6380	}
6381
6382	/* Enable the Dynamic Power Gating in the MAC */
6383	mac_data = er32(FEXTNVM7);
6384	mac_data |= BIT(22);
6385	ew32(FEXTNVM7, mac_data);
6386
6387	/* Don't wake from dynamic Power Gating with clock request */
6388	mac_data = er32(FEXTNVM12);
6389	mac_data |= BIT(12);
6390	ew32(FEXTNVM12, mac_data);
6391
6392	/* Ungate PGCB clock */
6393	mac_data = er32(FEXTNVM9);
6394	mac_data &= ~BIT(28);
6395	ew32(FEXTNVM9, mac_data);
6396
6397	/* Enable K1 off to enable mPHY Power Gating */
6398	mac_data = er32(FEXTNVM6);
6399	mac_data |= BIT(31);
6400	ew32(FEXTNVM6, mac_data);
6401
6402	/* Enable mPHY power gating for any link and speed */
6403	mac_data = er32(FEXTNVM8);
6404	mac_data |= BIT(9);
6405	ew32(FEXTNVM8, mac_data);
6406
6407	/* No MAC DPG gating SLP_S0 in modern standby
6408	 * Switch the logic of the lanphypc to use PMC counter
6409	 */
6410	mac_data = er32(FEXTNVM5);
6411	mac_data |= BIT(7);
6412	ew32(FEXTNVM5, mac_data);
6413
6414	/* Disable the time synchronization clock */
6415	mac_data = er32(FEXTNVM7);
6416	mac_data |= BIT(31);
6417	mac_data &= ~BIT(0);
6418	ew32(FEXTNVM7, mac_data);
6419
6420	/* Dynamic Power Gating Enable */
 
 
 
 
 
 
 
 
6421	mac_data = er32(CTRL_EXT);
6422	mac_data |= BIT(3);
6423	ew32(CTRL_EXT, mac_data);
6424
 
 
 
 
 
 
 
 
 
 
 
6425	/* Check MAC Tx/Rx packet buffer pointers.
6426	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6427	 * pending traffic indication that would prevent power gating.
6428	 */
6429	mac_data = er32(TDFH);
6430	if (mac_data)
6431		ew32(TDFH, 0);
6432	mac_data = er32(TDFT);
6433	if (mac_data)
6434		ew32(TDFT, 0);
6435	mac_data = er32(TDFHS);
6436	if (mac_data)
6437		ew32(TDFHS, 0);
6438	mac_data = er32(TDFTS);
6439	if (mac_data)
6440		ew32(TDFTS, 0);
6441	mac_data = er32(TDFPC);
6442	if (mac_data)
6443		ew32(TDFPC, 0);
6444	mac_data = er32(RDFH);
6445	if (mac_data)
6446		ew32(RDFH, 0);
6447	mac_data = er32(RDFT);
6448	if (mac_data)
6449		ew32(RDFT, 0);
6450	mac_data = er32(RDFHS);
6451	if (mac_data)
6452		ew32(RDFHS, 0);
6453	mac_data = er32(RDFTS);
6454	if (mac_data)
6455		ew32(RDFTS, 0);
6456	mac_data = er32(RDFPC);
6457	if (mac_data)
6458		ew32(RDFPC, 0);
6459}
6460
6461static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6462{
6463	struct e1000_hw *hw = &adapter->hw;
6464	bool firmware_bug = false;
6465	u32 mac_data;
6466	u16 phy_data;
6467	u32 i = 0;
6468
6469	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6470	    hw->mac.type >= e1000_pch_adp) {
6471		/* Keep the GPT clock enabled for CSME */
6472		mac_data = er32(FEXTNVM);
6473		mac_data |= BIT(3);
6474		ew32(FEXTNVM, mac_data);
6475		/* Request ME unconfigure the device from S0ix */
6476		mac_data = er32(H2ME);
6477		mac_data &= ~E1000_H2ME_START_DPG;
6478		mac_data |= E1000_H2ME_EXIT_DPG;
6479		trace_e1000e_trace_mac_register(mac_data);
6480		ew32(H2ME, mac_data);
6481
6482		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6483		 * If this takes more than 1 second, show a warning indicating a
6484		 * firmware bug
6485		 */
6486		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6487			if (i > 100 && !firmware_bug)
6488				firmware_bug = true;
6489
6490			if (i++ == 250) {
6491				e_dbg("Timeout (firmware bug): %d msec\n",
6492				      i * 10);
6493				break;
6494			}
6495
6496			usleep_range(10000, 11000);
6497		}
6498		if (firmware_bug)
6499			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6500			       i * 10);
6501		else
6502			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6503	} else {
6504		/* Request driver unconfigure the device from S0ix */
6505
6506		/* Cancel disable disconnected cable conditioning
6507		 * for Power Gating
6508		 */
6509		mac_data = er32(DPGFR);
6510		mac_data &= ~BIT(2);
6511		ew32(DPGFR, mac_data);
6512
6513		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6514		mac_data = er32(CTRL_EXT);
6515		mac_data &= 0xFFF7FFFF;
6516		ew32(CTRL_EXT, mac_data);
6517
6518		/* Enable the periodic inband message,
6519		 * Request PCIe clock in K1 page770_17[10:9] =01b
6520		 */
6521		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6522		phy_data &= 0xFBFF;
6523		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6524		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6525
6526		/* Return back configuration
6527		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6528		 */
6529		e1e_rphy(hw, I217_CGFREG, &phy_data);
6530		phy_data &= 0xFFDF;
6531		e1e_wphy(hw, I217_CGFREG, phy_data);
6532
6533		/* Change the MAC/PHY interface to Kumeran
6534		 * Unforce the SMBus in PHY page769_23[0] = 0
6535		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6536		 */
6537		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6538		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6539		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6540		mac_data = er32(CTRL_EXT);
6541		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6542		ew32(CTRL_EXT, mac_data);
6543	}
6544
6545	/* Disable Dynamic Power Gating */
 
 
 
 
 
 
 
 
 
 
6546	mac_data = er32(CTRL_EXT);
6547	mac_data &= 0xFFFFFFF7;
6548	ew32(CTRL_EXT, mac_data);
6549
6550	/* Enable the time synchronization clock */
6551	mac_data = er32(FEXTNVM7);
6552	mac_data &= ~BIT(31);
6553	mac_data |= BIT(0);
6554	ew32(FEXTNVM7, mac_data);
 
 
 
 
 
 
 
 
6555
6556	/* Disable the Dynamic Power Gating in the MAC */
6557	mac_data = er32(FEXTNVM7);
6558	mac_data &= 0xFFBFFFFF;
6559	ew32(FEXTNVM7, mac_data);
6560
 
 
 
 
 
6561	/* Disable mPHY power gating for any link and speed */
6562	mac_data = er32(FEXTNVM8);
6563	mac_data &= ~BIT(9);
6564	ew32(FEXTNVM8, mac_data);
6565
6566	/* Disable K1 off */
6567	mac_data = er32(FEXTNVM6);
6568	mac_data &= ~BIT(31);
6569	ew32(FEXTNVM6, mac_data);
6570
6571	/* Disable Ungate PGCB clock */
6572	mac_data = er32(FEXTNVM9);
6573	mac_data |= BIT(28);
6574	ew32(FEXTNVM9, mac_data);
6575
6576	/* Cancel not waking from dynamic
6577	 * Power Gating with clock request
6578	 */
6579	mac_data = er32(FEXTNVM12);
6580	mac_data &= ~BIT(12);
6581	ew32(FEXTNVM12, mac_data);
6582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583	/* Revert the lanphypc logic to use the internal Gbe counter
6584	 * and not the PMC counter
6585	 */
6586	mac_data = er32(FEXTNVM5);
6587	mac_data &= 0xFFFFFF7F;
6588	ew32(FEXTNVM5, mac_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6589}
6590
6591static int e1000e_pm_freeze(struct device *dev)
6592{
6593	struct net_device *netdev = dev_get_drvdata(dev);
6594	struct e1000_adapter *adapter = netdev_priv(netdev);
6595	bool present;
6596
6597	rtnl_lock();
6598
6599	present = netif_device_present(netdev);
6600	netif_device_detach(netdev);
6601
6602	if (present && netif_running(netdev)) {
6603		int count = E1000_CHECK_RESET_COUNT;
6604
6605		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6606			usleep_range(10000, 11000);
6607
6608		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6609
6610		/* Quiesce the device without resetting the hardware */
6611		e1000e_down(adapter, false);
6612		e1000_free_irq(adapter);
6613	}
6614	rtnl_unlock();
6615
6616	e1000e_reset_interrupt_capability(adapter);
6617
6618	/* Allow time for pending master requests to run */
6619	e1000e_disable_pcie_master(&adapter->hw);
6620
6621	return 0;
6622}
6623
6624static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6625{
6626	struct net_device *netdev = pci_get_drvdata(pdev);
6627	struct e1000_adapter *adapter = netdev_priv(netdev);
6628	struct e1000_hw *hw = &adapter->hw;
6629	u32 ctrl, ctrl_ext, rctl, status, wufc;
6630	int retval = 0;
6631
6632	/* Runtime suspend should only enable wakeup for link changes */
6633	if (runtime)
6634		wufc = E1000_WUFC_LNKC;
6635	else if (device_may_wakeup(&pdev->dev))
6636		wufc = adapter->wol;
6637	else
6638		wufc = 0;
6639
6640	status = er32(STATUS);
6641	if (status & E1000_STATUS_LU)
6642		wufc &= ~E1000_WUFC_LNKC;
6643
6644	if (wufc) {
6645		e1000_setup_rctl(adapter);
6646		e1000e_set_rx_mode(netdev);
6647
6648		/* turn on all-multi mode if wake on multicast is enabled */
6649		if (wufc & E1000_WUFC_MC) {
6650			rctl = er32(RCTL);
6651			rctl |= E1000_RCTL_MPE;
6652			ew32(RCTL, rctl);
6653		}
6654
6655		ctrl = er32(CTRL);
6656		ctrl |= E1000_CTRL_ADVD3WUC;
6657		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6658			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6659		ew32(CTRL, ctrl);
6660
6661		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6662		    adapter->hw.phy.media_type ==
6663		    e1000_media_type_internal_serdes) {
6664			/* keep the laser running in D3 */
6665			ctrl_ext = er32(CTRL_EXT);
6666			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6667			ew32(CTRL_EXT, ctrl_ext);
6668		}
6669
6670		if (!runtime)
6671			e1000e_power_up_phy(adapter);
6672
6673		if (adapter->flags & FLAG_IS_ICH)
6674			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6675
6676		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6677			/* enable wakeup by the PHY */
6678			retval = e1000_init_phy_wakeup(adapter, wufc);
6679			if (retval) {
6680				e_err("Failed to enable wakeup\n");
6681				goto skip_phy_configurations;
6682			}
6683		} else {
6684			/* enable wakeup by the MAC */
6685			ew32(WUFC, wufc);
6686			ew32(WUC, E1000_WUC_PME_EN);
6687		}
6688	} else {
6689		ew32(WUC, 0);
6690		ew32(WUFC, 0);
6691
6692		e1000_power_down_phy(adapter);
6693	}
6694
6695	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6696		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6697	} else if (hw->mac.type >= e1000_pch_lpt) {
6698		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6699			/* ULP does not support wake from unicast, multicast
6700			 * or broadcast.
6701			 */
6702			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6703			if (retval) {
6704				e_err("Failed to enable ULP\n");
6705				goto skip_phy_configurations;
6706			}
6707		}
6708	}
6709
6710	/* Ensure that the appropriate bits are set in LPI_CTRL
6711	 * for EEE in Sx
6712	 */
6713	if ((hw->phy.type >= e1000_phy_i217) &&
6714	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6715		u16 lpi_ctrl = 0;
6716
6717		retval = hw->phy.ops.acquire(hw);
6718		if (!retval) {
6719			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6720						 &lpi_ctrl);
6721			if (!retval) {
6722				if (adapter->eee_advert &
6723				    hw->dev_spec.ich8lan.eee_lp_ability &
6724				    I82579_EEE_100_SUPPORTED)
6725					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6726				if (adapter->eee_advert &
6727				    hw->dev_spec.ich8lan.eee_lp_ability &
6728				    I82579_EEE_1000_SUPPORTED)
6729					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6730
6731				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6732							 lpi_ctrl);
6733			}
6734		}
6735		hw->phy.ops.release(hw);
6736	}
6737
6738skip_phy_configurations:
6739	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6740	 * would have already happened in close and is redundant.
6741	 */
6742	e1000e_release_hw_control(adapter);
6743
6744	pci_clear_master(pdev);
6745
6746	/* The pci-e switch on some quad port adapters will report a
6747	 * correctable error when the MAC transitions from D0 to D3.  To
6748	 * prevent this we need to mask off the correctable errors on the
6749	 * downstream port of the pci-e switch.
6750	 *
6751	 * We don't have the associated upstream bridge while assigning
6752	 * the PCI device into guest. For example, the KVM on power is
6753	 * one of the cases.
6754	 */
6755	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6756		struct pci_dev *us_dev = pdev->bus->self;
6757		u16 devctl;
6758
6759		if (!us_dev)
6760			return 0;
6761
6762		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6763		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6764					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6765
6766		pci_save_state(pdev);
6767		pci_prepare_to_sleep(pdev);
6768
6769		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6770	}
6771
6772	return 0;
6773}
6774
6775/**
6776 * __e1000e_disable_aspm - Disable ASPM states
6777 * @pdev: pointer to PCI device struct
6778 * @state: bit-mask of ASPM states to disable
6779 * @locked: indication if this context holds pci_bus_sem locked.
6780 *
6781 * Some devices *must* have certain ASPM states disabled per hardware errata.
6782 **/
6783static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6784{
6785	struct pci_dev *parent = pdev->bus->self;
6786	u16 aspm_dis_mask = 0;
6787	u16 pdev_aspmc, parent_aspmc;
6788
6789	switch (state) {
6790	case PCIE_LINK_STATE_L0S:
6791	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6792		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6793		fallthrough; /* can't have L1 without L0s */
6794	case PCIE_LINK_STATE_L1:
6795		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6796		break;
6797	default:
6798		return;
6799	}
6800
6801	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6802	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6803
6804	if (parent) {
6805		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6806					  &parent_aspmc);
6807		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6808	}
6809
6810	/* Nothing to do if the ASPM states to be disabled already are */
6811	if (!(pdev_aspmc & aspm_dis_mask) &&
6812	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6813		return;
6814
6815	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6816		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6817		 "L0s" : "",
6818		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6819		 "L1" : "");
6820
6821#ifdef CONFIG_PCIEASPM
6822	if (locked)
6823		pci_disable_link_state_locked(pdev, state);
6824	else
6825		pci_disable_link_state(pdev, state);
6826
6827	/* Double-check ASPM control.  If not disabled by the above, the
6828	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6829	 * not enabled); override by writing PCI config space directly.
6830	 */
6831	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6832	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6833
6834	if (!(aspm_dis_mask & pdev_aspmc))
6835		return;
6836#endif
6837
6838	/* Both device and parent should have the same ASPM setting.
6839	 * Disable ASPM in downstream component first and then upstream.
6840	 */
6841	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6842
6843	if (parent)
6844		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6845					   aspm_dis_mask);
6846}
6847
6848/**
6849 * e1000e_disable_aspm - Disable ASPM states.
6850 * @pdev: pointer to PCI device struct
6851 * @state: bit-mask of ASPM states to disable
6852 *
6853 * This function acquires the pci_bus_sem!
6854 * Some devices *must* have certain ASPM states disabled per hardware errata.
6855 **/
6856static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6857{
6858	__e1000e_disable_aspm(pdev, state, 0);
6859}
6860
6861/**
6862 * e1000e_disable_aspm_locked - Disable ASPM states.
6863 * @pdev: pointer to PCI device struct
6864 * @state: bit-mask of ASPM states to disable
6865 *
6866 * This function must be called with pci_bus_sem acquired!
6867 * Some devices *must* have certain ASPM states disabled per hardware errata.
6868 **/
6869static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6870{
6871	__e1000e_disable_aspm(pdev, state, 1);
6872}
6873
6874static int e1000e_pm_thaw(struct device *dev)
6875{
6876	struct net_device *netdev = dev_get_drvdata(dev);
6877	struct e1000_adapter *adapter = netdev_priv(netdev);
6878	int rc = 0;
6879
6880	e1000e_set_interrupt_capability(adapter);
6881
6882	rtnl_lock();
6883	if (netif_running(netdev)) {
6884		rc = e1000_request_irq(adapter);
6885		if (rc)
6886			goto err_irq;
6887
6888		e1000e_up(adapter);
6889	}
6890
6891	netif_device_attach(netdev);
6892err_irq:
6893	rtnl_unlock();
6894
6895	return rc;
6896}
6897
6898static int __e1000_resume(struct pci_dev *pdev)
6899{
6900	struct net_device *netdev = pci_get_drvdata(pdev);
6901	struct e1000_adapter *adapter = netdev_priv(netdev);
6902	struct e1000_hw *hw = &adapter->hw;
6903	u16 aspm_disable_flag = 0;
6904
6905	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6906		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6907	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6908		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6909	if (aspm_disable_flag)
6910		e1000e_disable_aspm(pdev, aspm_disable_flag);
6911
6912	pci_set_master(pdev);
6913
6914	if (hw->mac.type >= e1000_pch2lan)
6915		e1000_resume_workarounds_pchlan(&adapter->hw);
6916
6917	e1000e_power_up_phy(adapter);
6918
6919	/* report the system wakeup cause from S3/S4 */
6920	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6921		u16 phy_data;
6922
6923		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6924		if (phy_data) {
6925			e_info("PHY Wakeup cause - %s\n",
6926			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6927			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6928			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6929			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6930			       phy_data & E1000_WUS_LNKC ?
6931			       "Link Status Change" : "other");
6932		}
6933		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6934	} else {
6935		u32 wus = er32(WUS);
6936
6937		if (wus) {
6938			e_info("MAC Wakeup cause - %s\n",
6939			       wus & E1000_WUS_EX ? "Unicast Packet" :
6940			       wus & E1000_WUS_MC ? "Multicast Packet" :
6941			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6942			       wus & E1000_WUS_MAG ? "Magic Packet" :
6943			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6944			       "other");
6945		}
6946		ew32(WUS, ~0);
6947	}
6948
6949	e1000e_reset(adapter);
6950
6951	e1000_init_manageability_pt(adapter);
6952
6953	/* If the controller has AMT, do not set DRV_LOAD until the interface
6954	 * is up.  For all other cases, let the f/w know that the h/w is now
6955	 * under the control of the driver.
6956	 */
6957	if (!(adapter->flags & FLAG_HAS_AMT))
6958		e1000e_get_hw_control(adapter);
6959
6960	return 0;
6961}
6962
6963static int e1000e_pm_prepare(struct device *dev)
6964{
6965	return pm_runtime_suspended(dev) &&
6966		pm_suspend_via_firmware();
6967}
6968
6969static int e1000e_pm_suspend(struct device *dev)
6970{
6971	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6972	struct e1000_adapter *adapter = netdev_priv(netdev);
6973	struct pci_dev *pdev = to_pci_dev(dev);
6974	int rc;
6975
6976	e1000e_flush_lpic(pdev);
6977
6978	e1000e_pm_freeze(dev);
6979
6980	rc = __e1000_shutdown(pdev, false);
6981	if (!rc) {
 
 
6982		/* Introduce S0ix implementation */
6983		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6984			e1000e_s0ix_entry_flow(adapter);
6985	}
6986
6987	return 0;
6988}
6989
6990static int e1000e_pm_resume(struct device *dev)
6991{
6992	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6993	struct e1000_adapter *adapter = netdev_priv(netdev);
6994	struct pci_dev *pdev = to_pci_dev(dev);
6995	int rc;
6996
6997	/* Introduce S0ix implementation */
6998	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6999		e1000e_s0ix_exit_flow(adapter);
7000
7001	rc = __e1000_resume(pdev);
7002	if (rc)
7003		return rc;
7004
7005	return e1000e_pm_thaw(dev);
7006}
7007
7008static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7009{
7010	struct net_device *netdev = dev_get_drvdata(dev);
7011	struct e1000_adapter *adapter = netdev_priv(netdev);
7012	u16 eee_lp;
7013
7014	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7015
7016	if (!e1000e_has_link(adapter)) {
7017		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7018		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7019	}
7020
7021	return -EBUSY;
7022}
7023
7024static int e1000e_pm_runtime_resume(struct device *dev)
7025{
7026	struct pci_dev *pdev = to_pci_dev(dev);
7027	struct net_device *netdev = pci_get_drvdata(pdev);
7028	struct e1000_adapter *adapter = netdev_priv(netdev);
7029	int rc;
7030
7031	pdev->pme_poll = true;
7032
7033	rc = __e1000_resume(pdev);
7034	if (rc)
7035		return rc;
7036
7037	if (netdev->flags & IFF_UP)
7038		e1000e_up(adapter);
7039
7040	return rc;
7041}
7042
7043static int e1000e_pm_runtime_suspend(struct device *dev)
7044{
7045	struct pci_dev *pdev = to_pci_dev(dev);
7046	struct net_device *netdev = pci_get_drvdata(pdev);
7047	struct e1000_adapter *adapter = netdev_priv(netdev);
7048
7049	if (netdev->flags & IFF_UP) {
7050		int count = E1000_CHECK_RESET_COUNT;
7051
7052		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7053			usleep_range(10000, 11000);
7054
7055		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7056
7057		/* Down the device without resetting the hardware */
7058		e1000e_down(adapter, false);
7059	}
7060
7061	if (__e1000_shutdown(pdev, true)) {
7062		e1000e_pm_runtime_resume(dev);
7063		return -EBUSY;
7064	}
7065
7066	return 0;
7067}
7068
7069static void e1000_shutdown(struct pci_dev *pdev)
7070{
7071	e1000e_flush_lpic(pdev);
7072
7073	e1000e_pm_freeze(&pdev->dev);
7074
7075	__e1000_shutdown(pdev, false);
7076}
7077
7078#ifdef CONFIG_NET_POLL_CONTROLLER
7079
7080static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7081{
7082	struct net_device *netdev = data;
7083	struct e1000_adapter *adapter = netdev_priv(netdev);
7084
7085	if (adapter->msix_entries) {
7086		int vector, msix_irq;
7087
7088		vector = 0;
7089		msix_irq = adapter->msix_entries[vector].vector;
7090		if (disable_hardirq(msix_irq))
7091			e1000_intr_msix_rx(msix_irq, netdev);
7092		enable_irq(msix_irq);
7093
7094		vector++;
7095		msix_irq = adapter->msix_entries[vector].vector;
7096		if (disable_hardirq(msix_irq))
7097			e1000_intr_msix_tx(msix_irq, netdev);
7098		enable_irq(msix_irq);
7099
7100		vector++;
7101		msix_irq = adapter->msix_entries[vector].vector;
7102		if (disable_hardirq(msix_irq))
7103			e1000_msix_other(msix_irq, netdev);
7104		enable_irq(msix_irq);
7105	}
7106
7107	return IRQ_HANDLED;
7108}
7109
7110/**
7111 * e1000_netpoll
7112 * @netdev: network interface device structure
7113 *
7114 * Polling 'interrupt' - used by things like netconsole to send skbs
7115 * without having to re-enable interrupts. It's not called while
7116 * the interrupt routine is executing.
7117 */
7118static void e1000_netpoll(struct net_device *netdev)
7119{
7120	struct e1000_adapter *adapter = netdev_priv(netdev);
7121
7122	switch (adapter->int_mode) {
7123	case E1000E_INT_MODE_MSIX:
7124		e1000_intr_msix(adapter->pdev->irq, netdev);
7125		break;
7126	case E1000E_INT_MODE_MSI:
7127		if (disable_hardirq(adapter->pdev->irq))
7128			e1000_intr_msi(adapter->pdev->irq, netdev);
7129		enable_irq(adapter->pdev->irq);
7130		break;
7131	default:		/* E1000E_INT_MODE_LEGACY */
7132		if (disable_hardirq(adapter->pdev->irq))
7133			e1000_intr(adapter->pdev->irq, netdev);
7134		enable_irq(adapter->pdev->irq);
7135		break;
7136	}
7137}
7138#endif
7139
7140/**
7141 * e1000_io_error_detected - called when PCI error is detected
7142 * @pdev: Pointer to PCI device
7143 * @state: The current pci connection state
7144 *
7145 * This function is called after a PCI bus error affecting
7146 * this device has been detected.
7147 */
7148static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7149						pci_channel_state_t state)
7150{
7151	e1000e_pm_freeze(&pdev->dev);
7152
7153	if (state == pci_channel_io_perm_failure)
7154		return PCI_ERS_RESULT_DISCONNECT;
7155
7156	pci_disable_device(pdev);
7157
7158	/* Request a slot reset. */
7159	return PCI_ERS_RESULT_NEED_RESET;
7160}
7161
7162/**
7163 * e1000_io_slot_reset - called after the pci bus has been reset.
7164 * @pdev: Pointer to PCI device
7165 *
7166 * Restart the card from scratch, as if from a cold-boot. Implementation
7167 * resembles the first-half of the e1000e_pm_resume routine.
7168 */
7169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7170{
7171	struct net_device *netdev = pci_get_drvdata(pdev);
7172	struct e1000_adapter *adapter = netdev_priv(netdev);
7173	struct e1000_hw *hw = &adapter->hw;
7174	u16 aspm_disable_flag = 0;
7175	int err;
7176	pci_ers_result_t result;
7177
7178	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7179		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7180	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7181		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7182	if (aspm_disable_flag)
7183		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7184
7185	err = pci_enable_device_mem(pdev);
7186	if (err) {
7187		dev_err(&pdev->dev,
7188			"Cannot re-enable PCI device after reset.\n");
7189		result = PCI_ERS_RESULT_DISCONNECT;
7190	} else {
7191		pdev->state_saved = true;
7192		pci_restore_state(pdev);
7193		pci_set_master(pdev);
7194
7195		pci_enable_wake(pdev, PCI_D3hot, 0);
7196		pci_enable_wake(pdev, PCI_D3cold, 0);
7197
7198		e1000e_reset(adapter);
7199		ew32(WUS, ~0);
7200		result = PCI_ERS_RESULT_RECOVERED;
7201	}
7202
7203	return result;
7204}
7205
7206/**
7207 * e1000_io_resume - called when traffic can start flowing again.
7208 * @pdev: Pointer to PCI device
7209 *
7210 * This callback is called when the error recovery driver tells us that
7211 * its OK to resume normal operation. Implementation resembles the
7212 * second-half of the e1000e_pm_resume routine.
7213 */
7214static void e1000_io_resume(struct pci_dev *pdev)
7215{
7216	struct net_device *netdev = pci_get_drvdata(pdev);
7217	struct e1000_adapter *adapter = netdev_priv(netdev);
7218
7219	e1000_init_manageability_pt(adapter);
7220
7221	e1000e_pm_thaw(&pdev->dev);
7222
7223	/* If the controller has AMT, do not set DRV_LOAD until the interface
7224	 * is up.  For all other cases, let the f/w know that the h/w is now
7225	 * under the control of the driver.
7226	 */
7227	if (!(adapter->flags & FLAG_HAS_AMT))
7228		e1000e_get_hw_control(adapter);
7229}
7230
7231static void e1000_print_device_info(struct e1000_adapter *adapter)
7232{
7233	struct e1000_hw *hw = &adapter->hw;
7234	struct net_device *netdev = adapter->netdev;
7235	u32 ret_val;
7236	u8 pba_str[E1000_PBANUM_LENGTH];
7237
7238	/* print bus type/speed/width info */
7239	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7240	       /* bus width */
7241	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7242		"Width x1"),
7243	       /* MAC address */
7244	       netdev->dev_addr);
7245	e_info("Intel(R) PRO/%s Network Connection\n",
7246	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7247	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7248						E1000_PBANUM_LENGTH);
7249	if (ret_val)
7250		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7251	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7252	       hw->mac.type, hw->phy.type, pba_str);
7253}
7254
7255static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7256{
7257	struct e1000_hw *hw = &adapter->hw;
7258	int ret_val;
7259	u16 buf = 0;
7260
7261	if (hw->mac.type != e1000_82573)
7262		return;
7263
7264	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7265	le16_to_cpus(&buf);
7266	if (!ret_val && (!(buf & BIT(0)))) {
7267		/* Deep Smart Power Down (DSPD) */
7268		dev_warn(&adapter->pdev->dev,
7269			 "Warning: detected DSPD enabled in EEPROM\n");
7270	}
7271}
7272
7273static netdev_features_t e1000_fix_features(struct net_device *netdev,
7274					    netdev_features_t features)
7275{
7276	struct e1000_adapter *adapter = netdev_priv(netdev);
7277	struct e1000_hw *hw = &adapter->hw;
7278
7279	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7280	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7281		features &= ~NETIF_F_RXFCS;
7282
7283	/* Since there is no support for separate Rx/Tx vlan accel
7284	 * enable/disable make sure Tx flag is always in same state as Rx.
7285	 */
7286	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7287		features |= NETIF_F_HW_VLAN_CTAG_TX;
7288	else
7289		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7290
7291	return features;
7292}
7293
7294static int e1000_set_features(struct net_device *netdev,
7295			      netdev_features_t features)
7296{
7297	struct e1000_adapter *adapter = netdev_priv(netdev);
7298	netdev_features_t changed = features ^ netdev->features;
7299
7300	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7301		adapter->flags |= FLAG_TSO_FORCE;
7302
7303	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7304			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7305			 NETIF_F_RXALL)))
7306		return 0;
7307
7308	if (changed & NETIF_F_RXFCS) {
7309		if (features & NETIF_F_RXFCS) {
7310			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311		} else {
7312			/* We need to take it back to defaults, which might mean
7313			 * stripping is still disabled at the adapter level.
7314			 */
7315			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7316				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7317			else
7318				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7319		}
7320	}
7321
7322	netdev->features = features;
7323
7324	if (netif_running(netdev))
7325		e1000e_reinit_locked(adapter);
7326	else
7327		e1000e_reset(adapter);
7328
7329	return 1;
7330}
7331
7332static const struct net_device_ops e1000e_netdev_ops = {
7333	.ndo_open		= e1000e_open,
7334	.ndo_stop		= e1000e_close,
7335	.ndo_start_xmit		= e1000_xmit_frame,
7336	.ndo_get_stats64	= e1000e_get_stats64,
7337	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7338	.ndo_set_mac_address	= e1000_set_mac,
7339	.ndo_change_mtu		= e1000_change_mtu,
7340	.ndo_eth_ioctl		= e1000_ioctl,
7341	.ndo_tx_timeout		= e1000_tx_timeout,
7342	.ndo_validate_addr	= eth_validate_addr,
7343
7344	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7345	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7346#ifdef CONFIG_NET_POLL_CONTROLLER
7347	.ndo_poll_controller	= e1000_netpoll,
7348#endif
7349	.ndo_set_features = e1000_set_features,
7350	.ndo_fix_features = e1000_fix_features,
7351	.ndo_features_check	= passthru_features_check,
7352};
7353
7354/**
7355 * e1000_probe - Device Initialization Routine
7356 * @pdev: PCI device information struct
7357 * @ent: entry in e1000_pci_tbl
7358 *
7359 * Returns 0 on success, negative on failure
7360 *
7361 * e1000_probe initializes an adapter identified by a pci_dev structure.
7362 * The OS initialization, configuring of the adapter private structure,
7363 * and a hardware reset occur.
7364 **/
7365static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7366{
7367	struct net_device *netdev;
7368	struct e1000_adapter *adapter;
7369	struct e1000_hw *hw;
7370	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7371	resource_size_t mmio_start, mmio_len;
7372	resource_size_t flash_start, flash_len;
7373	static int cards_found;
7374	u16 aspm_disable_flag = 0;
 
7375	u16 eeprom_data = 0;
7376	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7377	int bars, i, err;
7378	s32 ret_val = 0;
7379
7380	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7381		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7382	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7383		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7384	if (aspm_disable_flag)
7385		e1000e_disable_aspm(pdev, aspm_disable_flag);
7386
7387	err = pci_enable_device_mem(pdev);
7388	if (err)
7389		return err;
7390
 
7391	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7392	if (err) {
7393		dev_err(&pdev->dev,
7394			"No usable DMA configuration, aborting\n");
7395		goto err_dma;
 
 
 
 
 
7396	}
7397
7398	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7399	err = pci_request_selected_regions_exclusive(pdev, bars,
7400						     e1000e_driver_name);
7401	if (err)
7402		goto err_pci_reg;
7403
 
 
 
7404	pci_set_master(pdev);
7405	/* PCI config space info */
7406	err = pci_save_state(pdev);
7407	if (err)
7408		goto err_alloc_etherdev;
7409
7410	err = -ENOMEM;
7411	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7412	if (!netdev)
7413		goto err_alloc_etherdev;
7414
7415	SET_NETDEV_DEV(netdev, &pdev->dev);
7416
7417	netdev->irq = pdev->irq;
7418
7419	pci_set_drvdata(pdev, netdev);
7420	adapter = netdev_priv(netdev);
7421	hw = &adapter->hw;
7422	adapter->netdev = netdev;
7423	adapter->pdev = pdev;
7424	adapter->ei = ei;
7425	adapter->pba = ei->pba;
7426	adapter->flags = ei->flags;
7427	adapter->flags2 = ei->flags2;
7428	adapter->hw.adapter = adapter;
7429	adapter->hw.mac.type = ei->mac;
7430	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7431	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7432
7433	mmio_start = pci_resource_start(pdev, 0);
7434	mmio_len = pci_resource_len(pdev, 0);
7435
7436	err = -EIO;
7437	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7438	if (!adapter->hw.hw_addr)
7439		goto err_ioremap;
7440
7441	if ((adapter->flags & FLAG_HAS_FLASH) &&
7442	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7443	    (hw->mac.type < e1000_pch_spt)) {
7444		flash_start = pci_resource_start(pdev, 1);
7445		flash_len = pci_resource_len(pdev, 1);
7446		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7447		if (!adapter->hw.flash_address)
7448			goto err_flashmap;
7449	}
7450
7451	/* Set default EEE advertisement */
7452	if (adapter->flags2 & FLAG2_HAS_EEE)
7453		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7454
7455	/* construct the net_device struct */
7456	netdev->netdev_ops = &e1000e_netdev_ops;
7457	e1000e_set_ethtool_ops(netdev);
7458	netdev->watchdog_timeo = 5 * HZ;
7459	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7460	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7461
7462	netdev->mem_start = mmio_start;
7463	netdev->mem_end = mmio_start + mmio_len;
7464
7465	adapter->bd_number = cards_found++;
7466
7467	e1000e_check_options(adapter);
7468
7469	/* setup adapter struct */
7470	err = e1000_sw_init(adapter);
7471	if (err)
7472		goto err_sw_init;
7473
7474	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7475	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7476	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7477
7478	err = ei->get_variants(adapter);
7479	if (err)
7480		goto err_hw_init;
7481
7482	if ((adapter->flags & FLAG_IS_ICH) &&
7483	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7484	    (hw->mac.type < e1000_pch_spt))
7485		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7486
7487	hw->mac.ops.get_bus_info(&adapter->hw);
7488
7489	adapter->hw.phy.autoneg_wait_to_complete = 0;
7490
7491	/* Copper options */
7492	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7493		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7494		adapter->hw.phy.disable_polarity_correction = 0;
7495		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7496	}
7497
7498	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7499		dev_info(&pdev->dev,
7500			 "PHY reset is blocked due to SOL/IDER session.\n");
7501
7502	/* Set initial default active device features */
7503	netdev->features = (NETIF_F_SG |
7504			    NETIF_F_HW_VLAN_CTAG_RX |
7505			    NETIF_F_HW_VLAN_CTAG_TX |
7506			    NETIF_F_TSO |
7507			    NETIF_F_TSO6 |
7508			    NETIF_F_RXHASH |
7509			    NETIF_F_RXCSUM |
7510			    NETIF_F_HW_CSUM);
7511
7512	/* disable TSO for pcie and 10/100 speeds to avoid
7513	 * some hardware issues and for i219 to fix transfer
7514	 * speed being capped at 60%
7515	 */
7516	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7517		switch (adapter->link_speed) {
7518		case SPEED_10:
7519		case SPEED_100:
7520			e_info("10/100 speed: disabling TSO\n");
7521			netdev->features &= ~NETIF_F_TSO;
7522			netdev->features &= ~NETIF_F_TSO6;
7523			break;
7524		case SPEED_1000:
7525			netdev->features |= NETIF_F_TSO;
7526			netdev->features |= NETIF_F_TSO6;
7527			break;
7528		default:
7529			/* oops */
7530			break;
7531		}
7532		if (hw->mac.type == e1000_pch_spt) {
7533			netdev->features &= ~NETIF_F_TSO;
7534			netdev->features &= ~NETIF_F_TSO6;
7535		}
7536	}
7537
7538	/* Set user-changeable features (subset of all device features) */
7539	netdev->hw_features = netdev->features;
7540	netdev->hw_features |= NETIF_F_RXFCS;
7541	netdev->priv_flags |= IFF_SUPP_NOFCS;
7542	netdev->hw_features |= NETIF_F_RXALL;
7543
7544	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7545		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7546
7547	netdev->vlan_features |= (NETIF_F_SG |
7548				  NETIF_F_TSO |
7549				  NETIF_F_TSO6 |
7550				  NETIF_F_HW_CSUM);
7551
7552	netdev->priv_flags |= IFF_UNICAST_FLT;
7553
7554	netdev->features |= NETIF_F_HIGHDMA;
7555	netdev->vlan_features |= NETIF_F_HIGHDMA;
 
 
7556
7557	/* MTU range: 68 - max_hw_frame_size */
7558	netdev->min_mtu = ETH_MIN_MTU;
7559	netdev->max_mtu = adapter->max_hw_frame_size -
7560			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7561
7562	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7563		adapter->flags |= FLAG_MNG_PT_ENABLED;
7564
7565	/* before reading the NVM, reset the controller to
7566	 * put the device in a known good starting state
7567	 */
7568	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7569
7570	/* systems with ASPM and others may see the checksum fail on the first
7571	 * attempt. Let's give it a few tries
7572	 */
7573	for (i = 0;; i++) {
7574		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7575			break;
7576		if (i == 2) {
7577			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7578			err = -EIO;
7579			goto err_eeprom;
7580		}
7581	}
7582
7583	e1000_eeprom_checks(adapter);
7584
7585	/* copy the MAC address */
7586	if (e1000e_read_mac_addr(&adapter->hw))
7587		dev_err(&pdev->dev,
7588			"NVM Read Error while reading MAC address\n");
7589
7590	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7591
7592	if (!is_valid_ether_addr(netdev->dev_addr)) {
7593		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7594			netdev->dev_addr);
7595		err = -EIO;
7596		goto err_eeprom;
7597	}
7598
7599	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7600	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7601
7602	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7603	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7604	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7605	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7606	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7607
7608	/* Initialize link parameters. User can change them with ethtool */
7609	adapter->hw.mac.autoneg = 1;
7610	adapter->fc_autoneg = true;
7611	adapter->hw.fc.requested_mode = e1000_fc_default;
7612	adapter->hw.fc.current_mode = e1000_fc_default;
7613	adapter->hw.phy.autoneg_advertised = 0x2f;
7614
7615	/* Initial Wake on LAN setting - If APM wake is enabled in
7616	 * the EEPROM, enable the ACPI Magic Packet filter
7617	 */
7618	if (adapter->flags & FLAG_APME_IN_WUC) {
7619		/* APME bit in EEPROM is mapped to WUC.APME */
7620		eeprom_data = er32(WUC);
7621		eeprom_apme_mask = E1000_WUC_APME;
7622		if ((hw->mac.type > e1000_ich10lan) &&
7623		    (eeprom_data & E1000_WUC_PHY_WAKE))
7624			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7625	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7626		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7627		    (adapter->hw.bus.func == 1))
7628			ret_val = e1000_read_nvm(&adapter->hw,
7629					      NVM_INIT_CONTROL3_PORT_B,
7630					      1, &eeprom_data);
7631		else
7632			ret_val = e1000_read_nvm(&adapter->hw,
7633					      NVM_INIT_CONTROL3_PORT_A,
7634					      1, &eeprom_data);
7635	}
7636
7637	/* fetch WoL from EEPROM */
7638	if (ret_val)
7639		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7640	else if (eeprom_data & eeprom_apme_mask)
7641		adapter->eeprom_wol |= E1000_WUFC_MAG;
7642
7643	/* now that we have the eeprom settings, apply the special cases
7644	 * where the eeprom may be wrong or the board simply won't support
7645	 * wake on lan on a particular port
7646	 */
7647	if (!(adapter->flags & FLAG_HAS_WOL))
7648		adapter->eeprom_wol = 0;
7649
7650	/* initialize the wol settings based on the eeprom settings */
7651	adapter->wol = adapter->eeprom_wol;
7652
7653	/* make sure adapter isn't asleep if manageability is enabled */
7654	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7655	    (hw->mac.ops.check_mng_mode(hw)))
7656		device_wakeup_enable(&pdev->dev);
7657
7658	/* save off EEPROM version number */
7659	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7660
7661	if (ret_val) {
7662		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7663		adapter->eeprom_vers = 0;
7664	}
7665
7666	/* init PTP hardware clock */
7667	e1000e_ptp_init(adapter);
7668
7669	/* reset the hardware with the new settings */
7670	e1000e_reset(adapter);
7671
7672	/* If the controller has AMT, do not set DRV_LOAD until the interface
7673	 * is up.  For all other cases, let the f/w know that the h/w is now
7674	 * under the control of the driver.
7675	 */
7676	if (!(adapter->flags & FLAG_HAS_AMT))
7677		e1000e_get_hw_control(adapter);
7678
7679	if (hw->mac.type >= e1000_pch_cnp)
7680		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7681
7682	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7683	err = register_netdev(netdev);
7684	if (err)
7685		goto err_register;
7686
7687	/* carrier off reporting is important to ethtool even BEFORE open */
7688	netif_carrier_off(netdev);
7689
7690	e1000_print_device_info(adapter);
7691
7692	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7693
7694	if (pci_dev_run_wake(pdev))
7695		pm_runtime_put_noidle(&pdev->dev);
7696
7697	return 0;
7698
7699err_register:
7700	if (!(adapter->flags & FLAG_HAS_AMT))
7701		e1000e_release_hw_control(adapter);
7702err_eeprom:
7703	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7704		e1000_phy_hw_reset(&adapter->hw);
7705err_hw_init:
7706	kfree(adapter->tx_ring);
7707	kfree(adapter->rx_ring);
7708err_sw_init:
7709	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7710		iounmap(adapter->hw.flash_address);
7711	e1000e_reset_interrupt_capability(adapter);
7712err_flashmap:
7713	iounmap(adapter->hw.hw_addr);
7714err_ioremap:
7715	free_netdev(netdev);
7716err_alloc_etherdev:
 
7717	pci_release_mem_regions(pdev);
7718err_pci_reg:
7719err_dma:
7720	pci_disable_device(pdev);
7721	return err;
7722}
7723
7724/**
7725 * e1000_remove - Device Removal Routine
7726 * @pdev: PCI device information struct
7727 *
7728 * e1000_remove is called by the PCI subsystem to alert the driver
7729 * that it should release a PCI device.  This could be caused by a
7730 * Hot-Plug event, or because the driver is going to be removed from
7731 * memory.
7732 **/
7733static void e1000_remove(struct pci_dev *pdev)
7734{
7735	struct net_device *netdev = pci_get_drvdata(pdev);
7736	struct e1000_adapter *adapter = netdev_priv(netdev);
7737
7738	e1000e_ptp_remove(adapter);
7739
7740	/* The timers may be rescheduled, so explicitly disable them
7741	 * from being rescheduled.
7742	 */
7743	set_bit(__E1000_DOWN, &adapter->state);
7744	del_timer_sync(&adapter->watchdog_timer);
7745	del_timer_sync(&adapter->phy_info_timer);
7746
7747	cancel_work_sync(&adapter->reset_task);
7748	cancel_work_sync(&adapter->watchdog_task);
7749	cancel_work_sync(&adapter->downshift_task);
7750	cancel_work_sync(&adapter->update_phy_task);
7751	cancel_work_sync(&adapter->print_hang_task);
7752
7753	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7754		cancel_work_sync(&adapter->tx_hwtstamp_work);
7755		if (adapter->tx_hwtstamp_skb) {
7756			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7757			adapter->tx_hwtstamp_skb = NULL;
7758		}
7759	}
7760
7761	unregister_netdev(netdev);
7762
7763	if (pci_dev_run_wake(pdev))
7764		pm_runtime_get_noresume(&pdev->dev);
7765
7766	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7767	 * would have already happened in close and is redundant.
7768	 */
7769	e1000e_release_hw_control(adapter);
7770
7771	e1000e_reset_interrupt_capability(adapter);
7772	kfree(adapter->tx_ring);
7773	kfree(adapter->rx_ring);
7774
7775	iounmap(adapter->hw.hw_addr);
7776	if ((adapter->hw.flash_address) &&
7777	    (adapter->hw.mac.type < e1000_pch_spt))
7778		iounmap(adapter->hw.flash_address);
7779	pci_release_mem_regions(pdev);
7780
7781	free_netdev(netdev);
7782
 
 
 
7783	pci_disable_device(pdev);
7784}
7785
7786/* PCI Error Recovery (ERS) */
7787static const struct pci_error_handlers e1000_err_handler = {
7788	.error_detected = e1000_io_error_detected,
7789	.slot_reset = e1000_io_slot_reset,
7790	.resume = e1000_io_resume,
7791};
7792
7793static const struct pci_device_id e1000_pci_tbl[] = {
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7796	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7798	  board_82571 },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7804
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7809
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7811	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7813
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7815	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7817
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7819	  board_80003es2lan },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7821	  board_80003es2lan },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7823	  board_80003es2lan },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7825	  board_80003es2lan },
7826
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7835
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7845
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7849
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7853
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7858
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7861
7862	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7865	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7866	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7867	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7868	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7869	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7870	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7871	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7872	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7873	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7874	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7875	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7876	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7877	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7878	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7879	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7880	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7881	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7882	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7883	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7886	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7887	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7888	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7889	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7890	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7891	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7892	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7893	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7894	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7895	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7896	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7897	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7898	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7899	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7900	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7901	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7902	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7903	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7904	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7905	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7906	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7907	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7908	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7909	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7910	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7911	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7912	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7913	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7914	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7915	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7916	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7917	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7918	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7919	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7920	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7921	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7922	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7923	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7924	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7925
7926	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7927};
7928MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7929
7930static const struct dev_pm_ops e1000e_pm_ops = {
 
7931	.prepare	= e1000e_pm_prepare,
7932	.suspend	= e1000e_pm_suspend,
7933	.resume		= e1000e_pm_resume,
7934	.freeze		= e1000e_pm_freeze,
7935	.thaw		= e1000e_pm_thaw,
7936	.poweroff	= e1000e_pm_suspend,
7937	.restore	= e1000e_pm_resume,
7938	RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7939		       e1000e_pm_runtime_idle)
 
7940};
7941
7942/* PCI Device API Driver */
7943static struct pci_driver e1000_driver = {
7944	.name     = e1000e_driver_name,
7945	.id_table = e1000_pci_tbl,
7946	.probe    = e1000_probe,
7947	.remove   = e1000_remove,
7948	.driver.pm = pm_ptr(&e1000e_pm_ops),
 
 
7949	.shutdown = e1000_shutdown,
7950	.err_handler = &e1000_err_handler
7951};
7952
7953/**
7954 * e1000_init_module - Driver Registration Routine
7955 *
7956 * e1000_init_module is the first routine called when the driver is
7957 * loaded. All it does is register with the PCI subsystem.
7958 **/
7959static int __init e1000_init_module(void)
7960{
7961	pr_info("Intel(R) PRO/1000 Network Driver\n");
7962	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7963
7964	return pci_register_driver(&e1000_driver);
7965}
7966module_init(e1000_init_module);
7967
7968/**
7969 * e1000_exit_module - Driver Exit Cleanup Routine
7970 *
7971 * e1000_exit_module is called just before the driver is removed
7972 * from memory.
7973 **/
7974static void __exit e1000_exit_module(void)
7975{
7976	pci_unregister_driver(&e1000_driver);
7977}
7978module_exit(e1000_exit_module);
7979
 
7980MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7981MODULE_LICENSE("GPL v2");
7982
7983/* netdev.c */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/aer.h>
  27#include <linux/prefetch.h>
  28#include <linux/suspend.h>
  29
  30#include "e1000.h"
 
 
  31
  32char e1000e_driver_name[] = "e1000e";
  33
  34#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  35static int debug = -1;
  36module_param(debug, int, 0);
  37MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  38
  39static const struct e1000_info *e1000_info_tbl[] = {
  40	[board_82571]		= &e1000_82571_info,
  41	[board_82572]		= &e1000_82572_info,
  42	[board_82573]		= &e1000_82573_info,
  43	[board_82574]		= &e1000_82574_info,
  44	[board_82583]		= &e1000_82583_info,
  45	[board_80003es2lan]	= &e1000_es2_info,
  46	[board_ich8lan]		= &e1000_ich8_info,
  47	[board_ich9lan]		= &e1000_ich9_info,
  48	[board_ich10lan]	= &e1000_ich10_info,
  49	[board_pchlan]		= &e1000_pch_info,
  50	[board_pch2lan]		= &e1000_pch2_info,
  51	[board_pch_lpt]		= &e1000_pch_lpt_info,
  52	[board_pch_spt]		= &e1000_pch_spt_info,
  53	[board_pch_cnp]		= &e1000_pch_cnp_info,
  54	[board_pch_tgp]		= &e1000_pch_tgp_info,
 
 
  55};
  56
  57struct e1000_reg_info {
  58	u32 ofs;
  59	char *name;
  60};
  61
  62static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  63	/* General Registers */
  64	{E1000_CTRL, "CTRL"},
  65	{E1000_STATUS, "STATUS"},
  66	{E1000_CTRL_EXT, "CTRL_EXT"},
  67
  68	/* Interrupt Registers */
  69	{E1000_ICR, "ICR"},
  70
  71	/* Rx Registers */
  72	{E1000_RCTL, "RCTL"},
  73	{E1000_RDLEN(0), "RDLEN"},
  74	{E1000_RDH(0), "RDH"},
  75	{E1000_RDT(0), "RDT"},
  76	{E1000_RDTR, "RDTR"},
  77	{E1000_RXDCTL(0), "RXDCTL"},
  78	{E1000_ERT, "ERT"},
  79	{E1000_RDBAL(0), "RDBAL"},
  80	{E1000_RDBAH(0), "RDBAH"},
  81	{E1000_RDFH, "RDFH"},
  82	{E1000_RDFT, "RDFT"},
  83	{E1000_RDFHS, "RDFHS"},
  84	{E1000_RDFTS, "RDFTS"},
  85	{E1000_RDFPC, "RDFPC"},
  86
  87	/* Tx Registers */
  88	{E1000_TCTL, "TCTL"},
  89	{E1000_TDBAL(0), "TDBAL"},
  90	{E1000_TDBAH(0), "TDBAH"},
  91	{E1000_TDLEN(0), "TDLEN"},
  92	{E1000_TDH(0), "TDH"},
  93	{E1000_TDT(0), "TDT"},
  94	{E1000_TIDV, "TIDV"},
  95	{E1000_TXDCTL(0), "TXDCTL"},
  96	{E1000_TADV, "TADV"},
  97	{E1000_TARC(0), "TARC"},
  98	{E1000_TDFH, "TDFH"},
  99	{E1000_TDFT, "TDFT"},
 100	{E1000_TDFHS, "TDFHS"},
 101	{E1000_TDFTS, "TDFTS"},
 102	{E1000_TDFPC, "TDFPC"},
 103
 104	/* List Terminator */
 105	{0, NULL}
 106};
 107
 108/**
 109 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 110 * @hw: pointer to the HW structure
 111 *
 112 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 113 * be accessing the registers at the same time.  Normally, this is handled in
 114 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 115 * accesses later than it should which could result in the register to have
 116 * an incorrect value.  Workaround this by checking the FWSM register which
 117 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 118 * and try again a number of times.
 119 **/
 120static void __ew32_prepare(struct e1000_hw *hw)
 121{
 122	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 123
 124	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 125		udelay(50);
 126}
 127
 128void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 129{
 130	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 131		__ew32_prepare(hw);
 132
 133	writel(val, hw->hw_addr + reg);
 134}
 135
 136/**
 137 * e1000_regdump - register printout routine
 138 * @hw: pointer to the HW structure
 139 * @reginfo: pointer to the register info table
 140 **/
 141static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 142{
 143	int n = 0;
 144	char rname[16];
 145	u32 regs[8];
 146
 147	switch (reginfo->ofs) {
 148	case E1000_RXDCTL(0):
 149		for (n = 0; n < 2; n++)
 150			regs[n] = __er32(hw, E1000_RXDCTL(n));
 151		break;
 152	case E1000_TXDCTL(0):
 153		for (n = 0; n < 2; n++)
 154			regs[n] = __er32(hw, E1000_TXDCTL(n));
 155		break;
 156	case E1000_TARC(0):
 157		for (n = 0; n < 2; n++)
 158			regs[n] = __er32(hw, E1000_TARC(n));
 159		break;
 160	default:
 161		pr_info("%-15s %08x\n",
 162			reginfo->name, __er32(hw, reginfo->ofs));
 163		return;
 164	}
 165
 166	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 167	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 168}
 169
 170static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 171				 struct e1000_buffer *bi)
 172{
 173	int i;
 174	struct e1000_ps_page *ps_page;
 175
 176	for (i = 0; i < adapter->rx_ps_pages; i++) {
 177		ps_page = &bi->ps_pages[i];
 178
 179		if (ps_page->page) {
 180			pr_info("packet dump for ps_page %d:\n", i);
 181			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 182				       16, 1, page_address(ps_page->page),
 183				       PAGE_SIZE, true);
 184		}
 185	}
 186}
 187
 188/**
 189 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 190 * @adapter: board private structure
 191 **/
 192static void e1000e_dump(struct e1000_adapter *adapter)
 193{
 194	struct net_device *netdev = adapter->netdev;
 195	struct e1000_hw *hw = &adapter->hw;
 196	struct e1000_reg_info *reginfo;
 197	struct e1000_ring *tx_ring = adapter->tx_ring;
 198	struct e1000_tx_desc *tx_desc;
 199	struct my_u0 {
 200		__le64 a;
 201		__le64 b;
 202	} *u0;
 203	struct e1000_buffer *buffer_info;
 204	struct e1000_ring *rx_ring = adapter->rx_ring;
 205	union e1000_rx_desc_packet_split *rx_desc_ps;
 206	union e1000_rx_desc_extended *rx_desc;
 207	struct my_u1 {
 208		__le64 a;
 209		__le64 b;
 210		__le64 c;
 211		__le64 d;
 212	} *u1;
 213	u32 staterr;
 214	int i = 0;
 215
 216	if (!netif_msg_hw(adapter))
 217		return;
 218
 219	/* Print netdevice Info */
 220	if (netdev) {
 221		dev_info(&adapter->pdev->dev, "Net device Info\n");
 222		pr_info("Device Name     state            trans_start\n");
 223		pr_info("%-15s %016lX %016lX\n", netdev->name,
 224			netdev->state, dev_trans_start(netdev));
 225	}
 226
 227	/* Print Registers */
 228	dev_info(&adapter->pdev->dev, "Register Dump\n");
 229	pr_info(" Register Name   Value\n");
 230	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 231	     reginfo->name; reginfo++) {
 232		e1000_regdump(hw, reginfo);
 233	}
 234
 235	/* Print Tx Ring Summary */
 236	if (!netdev || !netif_running(netdev))
 237		return;
 238
 239	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 240	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 241	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 242	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 243		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 244		(unsigned long long)buffer_info->dma,
 245		buffer_info->length,
 246		buffer_info->next_to_watch,
 247		(unsigned long long)buffer_info->time_stamp);
 248
 249	/* Print Tx Ring */
 250	if (!netif_msg_tx_done(adapter))
 251		goto rx_ring_summary;
 252
 253	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 254
 255	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 256	 *
 257	 * Legacy Transmit Descriptor
 258	 *   +--------------------------------------------------------------+
 259	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 260	 *   +--------------------------------------------------------------+
 261	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 262	 *   +--------------------------------------------------------------+
 263	 *   63       48 47        36 35    32 31     24 23    16 15        0
 264	 *
 265	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 266	 *   63      48 47    40 39       32 31             16 15    8 7      0
 267	 *   +----------------------------------------------------------------+
 268	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 269	 *   +----------------------------------------------------------------+
 270	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 271	 *   +----------------------------------------------------------------+
 272	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 273	 *
 274	 * Extended Data Descriptor (DTYP=0x1)
 275	 *   +----------------------------------------------------------------+
 276	 * 0 |                     Buffer Address [63:0]                      |
 277	 *   +----------------------------------------------------------------+
 278	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 279	 *   +----------------------------------------------------------------+
 280	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 281	 */
 282	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 283	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 284	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 285	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 286		const char *next_desc;
 287		tx_desc = E1000_TX_DESC(*tx_ring, i);
 288		buffer_info = &tx_ring->buffer_info[i];
 289		u0 = (struct my_u0 *)tx_desc;
 290		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 291			next_desc = " NTC/U";
 292		else if (i == tx_ring->next_to_use)
 293			next_desc = " NTU";
 294		else if (i == tx_ring->next_to_clean)
 295			next_desc = " NTC";
 296		else
 297			next_desc = "";
 298		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 299			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 300			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 301			i,
 302			(unsigned long long)le64_to_cpu(u0->a),
 303			(unsigned long long)le64_to_cpu(u0->b),
 304			(unsigned long long)buffer_info->dma,
 305			buffer_info->length, buffer_info->next_to_watch,
 306			(unsigned long long)buffer_info->time_stamp,
 307			buffer_info->skb, next_desc);
 308
 309		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 310			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 311				       16, 1, buffer_info->skb->data,
 312				       buffer_info->skb->len, true);
 313	}
 314
 315	/* Print Rx Ring Summary */
 316rx_ring_summary:
 317	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 318	pr_info("Queue [NTU] [NTC]\n");
 319	pr_info(" %5d %5X %5X\n",
 320		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 321
 322	/* Print Rx Ring */
 323	if (!netif_msg_rx_status(adapter))
 324		return;
 325
 326	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 327	switch (adapter->rx_ps_pages) {
 328	case 1:
 329	case 2:
 330	case 3:
 331		/* [Extended] Packet Split Receive Descriptor Format
 332		 *
 333		 *    +-----------------------------------------------------+
 334		 *  0 |                Buffer Address 0 [63:0]              |
 335		 *    +-----------------------------------------------------+
 336		 *  8 |                Buffer Address 1 [63:0]              |
 337		 *    +-----------------------------------------------------+
 338		 * 16 |                Buffer Address 2 [63:0]              |
 339		 *    +-----------------------------------------------------+
 340		 * 24 |                Buffer Address 3 [63:0]              |
 341		 *    +-----------------------------------------------------+
 342		 */
 343		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 344		/* [Extended] Receive Descriptor (Write-Back) Format
 345		 *
 346		 *   63       48 47    32 31     13 12    8 7    4 3        0
 347		 *   +------------------------------------------------------+
 348		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 349		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 350		 *   +------------------------------------------------------+
 351		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 352		 *   +------------------------------------------------------+
 353		 *   63       48 47    32 31            20 19               0
 354		 */
 355		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 356		for (i = 0; i < rx_ring->count; i++) {
 357			const char *next_desc;
 358			buffer_info = &rx_ring->buffer_info[i];
 359			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 360			u1 = (struct my_u1 *)rx_desc_ps;
 361			staterr =
 362			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 363
 364			if (i == rx_ring->next_to_use)
 365				next_desc = " NTU";
 366			else if (i == rx_ring->next_to_clean)
 367				next_desc = " NTC";
 368			else
 369				next_desc = "";
 370
 371			if (staterr & E1000_RXD_STAT_DD) {
 372				/* Descriptor Done */
 373				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 374					"RWB", i,
 375					(unsigned long long)le64_to_cpu(u1->a),
 376					(unsigned long long)le64_to_cpu(u1->b),
 377					(unsigned long long)le64_to_cpu(u1->c),
 378					(unsigned long long)le64_to_cpu(u1->d),
 379					buffer_info->skb, next_desc);
 380			} else {
 381				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 382					"R  ", i,
 383					(unsigned long long)le64_to_cpu(u1->a),
 384					(unsigned long long)le64_to_cpu(u1->b),
 385					(unsigned long long)le64_to_cpu(u1->c),
 386					(unsigned long long)le64_to_cpu(u1->d),
 387					(unsigned long long)buffer_info->dma,
 388					buffer_info->skb, next_desc);
 389
 390				if (netif_msg_pktdata(adapter))
 391					e1000e_dump_ps_pages(adapter,
 392							     buffer_info);
 393			}
 394		}
 395		break;
 396	default:
 397	case 0:
 398		/* Extended Receive Descriptor (Read) Format
 399		 *
 400		 *   +-----------------------------------------------------+
 401		 * 0 |                Buffer Address [63:0]                |
 402		 *   +-----------------------------------------------------+
 403		 * 8 |                      Reserved                       |
 404		 *   +-----------------------------------------------------+
 405		 */
 406		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 407		/* Extended Receive Descriptor (Write-Back) Format
 408		 *
 409		 *   63       48 47    32 31    24 23            4 3        0
 410		 *   +------------------------------------------------------+
 411		 *   |     RSS Hash      |        |               |         |
 412		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 413		 *   | Packet   | IP     |        |               |  Type   |
 414		 *   | Checksum | Ident  |        |               |         |
 415		 *   +------------------------------------------------------+
 416		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 417		 *   +------------------------------------------------------+
 418		 *   63       48 47    32 31            20 19               0
 419		 */
 420		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 421
 422		for (i = 0; i < rx_ring->count; i++) {
 423			const char *next_desc;
 424
 425			buffer_info = &rx_ring->buffer_info[i];
 426			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 427			u1 = (struct my_u1 *)rx_desc;
 428			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 429
 430			if (i == rx_ring->next_to_use)
 431				next_desc = " NTU";
 432			else if (i == rx_ring->next_to_clean)
 433				next_desc = " NTC";
 434			else
 435				next_desc = "";
 436
 437			if (staterr & E1000_RXD_STAT_DD) {
 438				/* Descriptor Done */
 439				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 440					"RWB", i,
 441					(unsigned long long)le64_to_cpu(u1->a),
 442					(unsigned long long)le64_to_cpu(u1->b),
 443					buffer_info->skb, next_desc);
 444			} else {
 445				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 446					"R  ", i,
 447					(unsigned long long)le64_to_cpu(u1->a),
 448					(unsigned long long)le64_to_cpu(u1->b),
 449					(unsigned long long)buffer_info->dma,
 450					buffer_info->skb, next_desc);
 451
 452				if (netif_msg_pktdata(adapter) &&
 453				    buffer_info->skb)
 454					print_hex_dump(KERN_INFO, "",
 455						       DUMP_PREFIX_ADDRESS, 16,
 456						       1,
 457						       buffer_info->skb->data,
 458						       adapter->rx_buffer_len,
 459						       true);
 460			}
 461		}
 462	}
 463}
 464
 465/**
 466 * e1000_desc_unused - calculate if we have unused descriptors
 467 * @ring: pointer to ring struct to perform calculation on
 468 **/
 469static int e1000_desc_unused(struct e1000_ring *ring)
 470{
 471	if (ring->next_to_clean > ring->next_to_use)
 472		return ring->next_to_clean - ring->next_to_use - 1;
 473
 474	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 475}
 476
 477/**
 478 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 479 * @adapter: board private structure
 480 * @hwtstamps: time stamp structure to update
 481 * @systim: unsigned 64bit system time value.
 482 *
 483 * Convert the system time value stored in the RX/TXSTMP registers into a
 484 * hwtstamp which can be used by the upper level time stamping functions.
 485 *
 486 * The 'systim_lock' spinlock is used to protect the consistency of the
 487 * system time value. This is needed because reading the 64 bit time
 488 * value involves reading two 32 bit registers. The first read latches the
 489 * value.
 490 **/
 491static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 492				      struct skb_shared_hwtstamps *hwtstamps,
 493				      u64 systim)
 494{
 495	u64 ns;
 496	unsigned long flags;
 497
 498	spin_lock_irqsave(&adapter->systim_lock, flags);
 499	ns = timecounter_cyc2time(&adapter->tc, systim);
 500	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 501
 502	memset(hwtstamps, 0, sizeof(*hwtstamps));
 503	hwtstamps->hwtstamp = ns_to_ktime(ns);
 504}
 505
 506/**
 507 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 508 * @adapter: board private structure
 509 * @status: descriptor extended error and status field
 510 * @skb: particular skb to include time stamp
 511 *
 512 * If the time stamp is valid, convert it into the timecounter ns value
 513 * and store that result into the shhwtstamps structure which is passed
 514 * up the network stack.
 515 **/
 516static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 517			       struct sk_buff *skb)
 518{
 519	struct e1000_hw *hw = &adapter->hw;
 520	u64 rxstmp;
 521
 522	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 523	    !(status & E1000_RXDEXT_STATERR_TST) ||
 524	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 525		return;
 526
 527	/* The Rx time stamp registers contain the time stamp.  No other
 528	 * received packet will be time stamped until the Rx time stamp
 529	 * registers are read.  Because only one packet can be time stamped
 530	 * at a time, the register values must belong to this packet and
 531	 * therefore none of the other additional attributes need to be
 532	 * compared.
 533	 */
 534	rxstmp = (u64)er32(RXSTMPL);
 535	rxstmp |= (u64)er32(RXSTMPH) << 32;
 536	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 537
 538	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 539}
 540
 541/**
 542 * e1000_receive_skb - helper function to handle Rx indications
 543 * @adapter: board private structure
 544 * @netdev: pointer to netdev struct
 545 * @staterr: descriptor extended error and status field as written by hardware
 546 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 547 * @skb: pointer to sk_buff to be indicated to stack
 548 **/
 549static void e1000_receive_skb(struct e1000_adapter *adapter,
 550			      struct net_device *netdev, struct sk_buff *skb,
 551			      u32 staterr, __le16 vlan)
 552{
 553	u16 tag = le16_to_cpu(vlan);
 554
 555	e1000e_rx_hwtstamp(adapter, staterr, skb);
 556
 557	skb->protocol = eth_type_trans(skb, netdev);
 558
 559	if (staterr & E1000_RXD_STAT_VP)
 560		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 561
 562	napi_gro_receive(&adapter->napi, skb);
 563}
 564
 565/**
 566 * e1000_rx_checksum - Receive Checksum Offload
 567 * @adapter: board private structure
 568 * @status_err: receive descriptor status and error fields
 569 * @skb: socket buffer with received data
 570 **/
 571static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 572			      struct sk_buff *skb)
 573{
 574	u16 status = (u16)status_err;
 575	u8 errors = (u8)(status_err >> 24);
 576
 577	skb_checksum_none_assert(skb);
 578
 579	/* Rx checksum disabled */
 580	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 581		return;
 582
 583	/* Ignore Checksum bit is set */
 584	if (status & E1000_RXD_STAT_IXSM)
 585		return;
 586
 587	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 588	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 589		/* let the stack verify checksum errors */
 590		adapter->hw_csum_err++;
 591		return;
 592	}
 593
 594	/* TCP/UDP Checksum has not been calculated */
 595	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 596		return;
 597
 598	/* It must be a TCP or UDP packet with a valid checksum */
 599	skb->ip_summed = CHECKSUM_UNNECESSARY;
 600	adapter->hw_csum_good++;
 601}
 602
 603static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 604{
 605	struct e1000_adapter *adapter = rx_ring->adapter;
 606	struct e1000_hw *hw = &adapter->hw;
 607
 608	__ew32_prepare(hw);
 609	writel(i, rx_ring->tail);
 610
 611	if (unlikely(i != readl(rx_ring->tail))) {
 612		u32 rctl = er32(RCTL);
 613
 614		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 615		e_err("ME firmware caused invalid RDT - resetting\n");
 616		schedule_work(&adapter->reset_task);
 617	}
 618}
 619
 620static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 621{
 622	struct e1000_adapter *adapter = tx_ring->adapter;
 623	struct e1000_hw *hw = &adapter->hw;
 624
 625	__ew32_prepare(hw);
 626	writel(i, tx_ring->tail);
 627
 628	if (unlikely(i != readl(tx_ring->tail))) {
 629		u32 tctl = er32(TCTL);
 630
 631		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 632		e_err("ME firmware caused invalid TDT - resetting\n");
 633		schedule_work(&adapter->reset_task);
 634	}
 635}
 636
 637/**
 638 * e1000_alloc_rx_buffers - Replace used receive buffers
 639 * @rx_ring: Rx descriptor ring
 640 * @cleaned_count: number to reallocate
 641 * @gfp: flags for allocation
 642 **/
 643static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 644				   int cleaned_count, gfp_t gfp)
 645{
 646	struct e1000_adapter *adapter = rx_ring->adapter;
 647	struct net_device *netdev = adapter->netdev;
 648	struct pci_dev *pdev = adapter->pdev;
 649	union e1000_rx_desc_extended *rx_desc;
 650	struct e1000_buffer *buffer_info;
 651	struct sk_buff *skb;
 652	unsigned int i;
 653	unsigned int bufsz = adapter->rx_buffer_len;
 654
 655	i = rx_ring->next_to_use;
 656	buffer_info = &rx_ring->buffer_info[i];
 657
 658	while (cleaned_count--) {
 659		skb = buffer_info->skb;
 660		if (skb) {
 661			skb_trim(skb, 0);
 662			goto map_skb;
 663		}
 664
 665		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 666		if (!skb) {
 667			/* Better luck next round */
 668			adapter->alloc_rx_buff_failed++;
 669			break;
 670		}
 671
 672		buffer_info->skb = skb;
 673map_skb:
 674		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 675						  adapter->rx_buffer_len,
 676						  DMA_FROM_DEVICE);
 677		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 678			dev_err(&pdev->dev, "Rx DMA map failed\n");
 679			adapter->rx_dma_failed++;
 680			break;
 681		}
 682
 683		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 684		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 685
 686		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 687			/* Force memory writes to complete before letting h/w
 688			 * know there are new descriptors to fetch.  (Only
 689			 * applicable for weak-ordered memory model archs,
 690			 * such as IA-64).
 691			 */
 692			wmb();
 693			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 694				e1000e_update_rdt_wa(rx_ring, i);
 695			else
 696				writel(i, rx_ring->tail);
 697		}
 698		i++;
 699		if (i == rx_ring->count)
 700			i = 0;
 701		buffer_info = &rx_ring->buffer_info[i];
 702	}
 703
 704	rx_ring->next_to_use = i;
 705}
 706
 707/**
 708 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 709 * @rx_ring: Rx descriptor ring
 710 * @cleaned_count: number to reallocate
 711 * @gfp: flags for allocation
 712 **/
 713static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 714				      int cleaned_count, gfp_t gfp)
 715{
 716	struct e1000_adapter *adapter = rx_ring->adapter;
 717	struct net_device *netdev = adapter->netdev;
 718	struct pci_dev *pdev = adapter->pdev;
 719	union e1000_rx_desc_packet_split *rx_desc;
 720	struct e1000_buffer *buffer_info;
 721	struct e1000_ps_page *ps_page;
 722	struct sk_buff *skb;
 723	unsigned int i, j;
 724
 725	i = rx_ring->next_to_use;
 726	buffer_info = &rx_ring->buffer_info[i];
 727
 728	while (cleaned_count--) {
 729		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 730
 731		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 732			ps_page = &buffer_info->ps_pages[j];
 733			if (j >= adapter->rx_ps_pages) {
 734				/* all unused desc entries get hw null ptr */
 735				rx_desc->read.buffer_addr[j + 1] =
 736				    ~cpu_to_le64(0);
 737				continue;
 738			}
 739			if (!ps_page->page) {
 740				ps_page->page = alloc_page(gfp);
 741				if (!ps_page->page) {
 742					adapter->alloc_rx_buff_failed++;
 743					goto no_buffers;
 744				}
 745				ps_page->dma = dma_map_page(&pdev->dev,
 746							    ps_page->page,
 747							    0, PAGE_SIZE,
 748							    DMA_FROM_DEVICE);
 749				if (dma_mapping_error(&pdev->dev,
 750						      ps_page->dma)) {
 751					dev_err(&adapter->pdev->dev,
 752						"Rx DMA page map failed\n");
 753					adapter->rx_dma_failed++;
 754					goto no_buffers;
 755				}
 756			}
 757			/* Refresh the desc even if buffer_addrs
 758			 * didn't change because each write-back
 759			 * erases this info.
 760			 */
 761			rx_desc->read.buffer_addr[j + 1] =
 762			    cpu_to_le64(ps_page->dma);
 763		}
 764
 765		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 766						  gfp);
 767
 768		if (!skb) {
 769			adapter->alloc_rx_buff_failed++;
 770			break;
 771		}
 772
 773		buffer_info->skb = skb;
 774		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 775						  adapter->rx_ps_bsize0,
 776						  DMA_FROM_DEVICE);
 777		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 778			dev_err(&pdev->dev, "Rx DMA map failed\n");
 779			adapter->rx_dma_failed++;
 780			/* cleanup skb */
 781			dev_kfree_skb_any(skb);
 782			buffer_info->skb = NULL;
 783			break;
 784		}
 785
 786		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 787
 788		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 789			/* Force memory writes to complete before letting h/w
 790			 * know there are new descriptors to fetch.  (Only
 791			 * applicable for weak-ordered memory model archs,
 792			 * such as IA-64).
 793			 */
 794			wmb();
 795			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 796				e1000e_update_rdt_wa(rx_ring, i << 1);
 797			else
 798				writel(i << 1, rx_ring->tail);
 799		}
 800
 801		i++;
 802		if (i == rx_ring->count)
 803			i = 0;
 804		buffer_info = &rx_ring->buffer_info[i];
 805	}
 806
 807no_buffers:
 808	rx_ring->next_to_use = i;
 809}
 810
 811/**
 812 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 813 * @rx_ring: Rx descriptor ring
 814 * @cleaned_count: number of buffers to allocate this pass
 815 * @gfp: flags for allocation
 816 **/
 817
 818static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 819					 int cleaned_count, gfp_t gfp)
 820{
 821	struct e1000_adapter *adapter = rx_ring->adapter;
 822	struct net_device *netdev = adapter->netdev;
 823	struct pci_dev *pdev = adapter->pdev;
 824	union e1000_rx_desc_extended *rx_desc;
 825	struct e1000_buffer *buffer_info;
 826	struct sk_buff *skb;
 827	unsigned int i;
 828	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 829
 830	i = rx_ring->next_to_use;
 831	buffer_info = &rx_ring->buffer_info[i];
 832
 833	while (cleaned_count--) {
 834		skb = buffer_info->skb;
 835		if (skb) {
 836			skb_trim(skb, 0);
 837			goto check_page;
 838		}
 839
 840		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 841		if (unlikely(!skb)) {
 842			/* Better luck next round */
 843			adapter->alloc_rx_buff_failed++;
 844			break;
 845		}
 846
 847		buffer_info->skb = skb;
 848check_page:
 849		/* allocate a new page if necessary */
 850		if (!buffer_info->page) {
 851			buffer_info->page = alloc_page(gfp);
 852			if (unlikely(!buffer_info->page)) {
 853				adapter->alloc_rx_buff_failed++;
 854				break;
 855			}
 856		}
 857
 858		if (!buffer_info->dma) {
 859			buffer_info->dma = dma_map_page(&pdev->dev,
 860							buffer_info->page, 0,
 861							PAGE_SIZE,
 862							DMA_FROM_DEVICE);
 863			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 864				adapter->alloc_rx_buff_failed++;
 865				break;
 866			}
 867		}
 868
 869		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 870		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 871
 872		if (unlikely(++i == rx_ring->count))
 873			i = 0;
 874		buffer_info = &rx_ring->buffer_info[i];
 875	}
 876
 877	if (likely(rx_ring->next_to_use != i)) {
 878		rx_ring->next_to_use = i;
 879		if (unlikely(i-- == 0))
 880			i = (rx_ring->count - 1);
 881
 882		/* Force memory writes to complete before letting h/w
 883		 * know there are new descriptors to fetch.  (Only
 884		 * applicable for weak-ordered memory model archs,
 885		 * such as IA-64).
 886		 */
 887		wmb();
 888		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 889			e1000e_update_rdt_wa(rx_ring, i);
 890		else
 891			writel(i, rx_ring->tail);
 892	}
 893}
 894
 895static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 896				 struct sk_buff *skb)
 897{
 898	if (netdev->features & NETIF_F_RXHASH)
 899		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 900}
 901
 902/**
 903 * e1000_clean_rx_irq - Send received data up the network stack
 904 * @rx_ring: Rx descriptor ring
 905 * @work_done: output parameter for indicating completed work
 906 * @work_to_do: how many packets we can clean
 907 *
 908 * the return value indicates whether actual cleaning was done, there
 909 * is no guarantee that everything was cleaned
 910 **/
 911static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 912			       int work_to_do)
 913{
 914	struct e1000_adapter *adapter = rx_ring->adapter;
 915	struct net_device *netdev = adapter->netdev;
 916	struct pci_dev *pdev = adapter->pdev;
 917	struct e1000_hw *hw = &adapter->hw;
 918	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 919	struct e1000_buffer *buffer_info, *next_buffer;
 920	u32 length, staterr;
 921	unsigned int i;
 922	int cleaned_count = 0;
 923	bool cleaned = false;
 924	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 925
 926	i = rx_ring->next_to_clean;
 927	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 928	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 929	buffer_info = &rx_ring->buffer_info[i];
 930
 931	while (staterr & E1000_RXD_STAT_DD) {
 932		struct sk_buff *skb;
 933
 934		if (*work_done >= work_to_do)
 935			break;
 936		(*work_done)++;
 937		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 938
 939		skb = buffer_info->skb;
 940		buffer_info->skb = NULL;
 941
 942		prefetch(skb->data - NET_IP_ALIGN);
 943
 944		i++;
 945		if (i == rx_ring->count)
 946			i = 0;
 947		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 948		prefetch(next_rxd);
 949
 950		next_buffer = &rx_ring->buffer_info[i];
 951
 952		cleaned = true;
 953		cleaned_count++;
 954		dma_unmap_single(&pdev->dev, buffer_info->dma,
 955				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 956		buffer_info->dma = 0;
 957
 958		length = le16_to_cpu(rx_desc->wb.upper.length);
 959
 960		/* !EOP means multiple descriptors were used to store a single
 961		 * packet, if that's the case we need to toss it.  In fact, we
 962		 * need to toss every packet with the EOP bit clear and the
 963		 * next frame that _does_ have the EOP bit set, as it is by
 964		 * definition only a frame fragment
 965		 */
 966		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 967			adapter->flags2 |= FLAG2_IS_DISCARDING;
 968
 969		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 970			/* All receives must fit into a single buffer */
 971			e_dbg("Receive packet consumed multiple buffers\n");
 972			/* recycle */
 973			buffer_info->skb = skb;
 974			if (staterr & E1000_RXD_STAT_EOP)
 975				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 976			goto next_desc;
 977		}
 978
 979		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 980			     !(netdev->features & NETIF_F_RXALL))) {
 981			/* recycle */
 982			buffer_info->skb = skb;
 983			goto next_desc;
 984		}
 985
 986		/* adjust length to remove Ethernet CRC */
 987		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 988			/* If configured to store CRC, don't subtract FCS,
 989			 * but keep the FCS bytes out of the total_rx_bytes
 990			 * counter
 991			 */
 992			if (netdev->features & NETIF_F_RXFCS)
 993				total_rx_bytes -= 4;
 994			else
 995				length -= 4;
 996		}
 997
 998		total_rx_bytes += length;
 999		total_rx_packets++;
1000
1001		/* code added for copybreak, this should improve
1002		 * performance for small packets with large amounts
1003		 * of reassembly being done in the stack
1004		 */
1005		if (length < copybreak) {
1006			struct sk_buff *new_skb =
1007				napi_alloc_skb(&adapter->napi, length);
1008			if (new_skb) {
1009				skb_copy_to_linear_data_offset(new_skb,
1010							       -NET_IP_ALIGN,
1011							       (skb->data -
1012								NET_IP_ALIGN),
1013							       (length +
1014								NET_IP_ALIGN));
1015				/* save the skb in buffer_info as good */
1016				buffer_info->skb = skb;
1017				skb = new_skb;
1018			}
1019			/* else just continue with the old one */
1020		}
1021		/* end copybreak code */
1022		skb_put(skb, length);
1023
1024		/* Receive Checksum Offload */
1025		e1000_rx_checksum(adapter, staterr, skb);
1026
1027		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1028
1029		e1000_receive_skb(adapter, netdev, skb, staterr,
1030				  rx_desc->wb.upper.vlan);
1031
1032next_desc:
1033		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1034
1035		/* return some buffers to hardware, one at a time is too slow */
1036		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1037			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1038					      GFP_ATOMIC);
1039			cleaned_count = 0;
1040		}
1041
1042		/* use prefetched values */
1043		rx_desc = next_rxd;
1044		buffer_info = next_buffer;
1045
1046		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1047	}
1048	rx_ring->next_to_clean = i;
1049
1050	cleaned_count = e1000_desc_unused(rx_ring);
1051	if (cleaned_count)
1052		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1053
1054	adapter->total_rx_bytes += total_rx_bytes;
1055	adapter->total_rx_packets += total_rx_packets;
1056	return cleaned;
1057}
1058
1059static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1060			    struct e1000_buffer *buffer_info,
1061			    bool drop)
1062{
1063	struct e1000_adapter *adapter = tx_ring->adapter;
1064
1065	if (buffer_info->dma) {
1066		if (buffer_info->mapped_as_page)
1067			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1068				       buffer_info->length, DMA_TO_DEVICE);
1069		else
1070			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1071					 buffer_info->length, DMA_TO_DEVICE);
1072		buffer_info->dma = 0;
1073	}
1074	if (buffer_info->skb) {
1075		if (drop)
1076			dev_kfree_skb_any(buffer_info->skb);
1077		else
1078			dev_consume_skb_any(buffer_info->skb);
1079		buffer_info->skb = NULL;
1080	}
1081	buffer_info->time_stamp = 0;
1082}
1083
1084static void e1000_print_hw_hang(struct work_struct *work)
1085{
1086	struct e1000_adapter *adapter = container_of(work,
1087						     struct e1000_adapter,
1088						     print_hang_task);
1089	struct net_device *netdev = adapter->netdev;
1090	struct e1000_ring *tx_ring = adapter->tx_ring;
1091	unsigned int i = tx_ring->next_to_clean;
1092	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1093	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1094	struct e1000_hw *hw = &adapter->hw;
1095	u16 phy_status, phy_1000t_status, phy_ext_status;
1096	u16 pci_status;
1097
1098	if (test_bit(__E1000_DOWN, &adapter->state))
1099		return;
1100
1101	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1102		/* May be block on write-back, flush and detect again
1103		 * flush pending descriptor writebacks to memory
1104		 */
1105		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1106		/* execute the writes immediately */
1107		e1e_flush();
1108		/* Due to rare timing issues, write to TIDV again to ensure
1109		 * the write is successful
1110		 */
1111		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1112		/* execute the writes immediately */
1113		e1e_flush();
1114		adapter->tx_hang_recheck = true;
1115		return;
1116	}
1117	adapter->tx_hang_recheck = false;
1118
1119	if (er32(TDH(0)) == er32(TDT(0))) {
1120		e_dbg("false hang detected, ignoring\n");
1121		return;
1122	}
1123
1124	/* Real hang detected */
1125	netif_stop_queue(netdev);
1126
1127	e1e_rphy(hw, MII_BMSR, &phy_status);
1128	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1129	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1130
1131	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1132
1133	/* detected Hardware unit hang */
1134	e_err("Detected Hardware Unit Hang:\n"
1135	      "  TDH                  <%x>\n"
1136	      "  TDT                  <%x>\n"
1137	      "  next_to_use          <%x>\n"
1138	      "  next_to_clean        <%x>\n"
1139	      "buffer_info[next_to_clean]:\n"
1140	      "  time_stamp           <%lx>\n"
1141	      "  next_to_watch        <%x>\n"
1142	      "  jiffies              <%lx>\n"
1143	      "  next_to_watch.status <%x>\n"
1144	      "MAC Status             <%x>\n"
1145	      "PHY Status             <%x>\n"
1146	      "PHY 1000BASE-T Status  <%x>\n"
1147	      "PHY Extended Status    <%x>\n"
1148	      "PCI Status             <%x>\n",
1149	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1150	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1151	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1152	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1153
1154	e1000e_dump(adapter);
1155
1156	/* Suggest workaround for known h/w issue */
1157	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1158		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1159}
1160
1161/**
1162 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1163 * @work: pointer to work struct
1164 *
1165 * This work function polls the TSYNCTXCTL valid bit to determine when a
1166 * timestamp has been taken for the current stored skb.  The timestamp must
1167 * be for this skb because only one such packet is allowed in the queue.
1168 */
1169static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1170{
1171	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1172						     tx_hwtstamp_work);
1173	struct e1000_hw *hw = &adapter->hw;
1174
1175	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1176		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1177		struct skb_shared_hwtstamps shhwtstamps;
1178		u64 txstmp;
1179
1180		txstmp = er32(TXSTMPL);
1181		txstmp |= (u64)er32(TXSTMPH) << 32;
1182
1183		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1184
1185		/* Clear the global tx_hwtstamp_skb pointer and force writes
1186		 * prior to notifying the stack of a Tx timestamp.
1187		 */
1188		adapter->tx_hwtstamp_skb = NULL;
1189		wmb(); /* force write prior to skb_tstamp_tx */
1190
1191		skb_tstamp_tx(skb, &shhwtstamps);
1192		dev_consume_skb_any(skb);
1193	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1194			      + adapter->tx_timeout_factor * HZ)) {
1195		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1196		adapter->tx_hwtstamp_skb = NULL;
1197		adapter->tx_hwtstamp_timeouts++;
1198		e_warn("clearing Tx timestamp hang\n");
1199	} else {
1200		/* reschedule to check later */
1201		schedule_work(&adapter->tx_hwtstamp_work);
1202	}
1203}
1204
1205/**
1206 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1207 * @tx_ring: Tx descriptor ring
1208 *
1209 * the return value indicates whether actual cleaning was done, there
1210 * is no guarantee that everything was cleaned
1211 **/
1212static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1213{
1214	struct e1000_adapter *adapter = tx_ring->adapter;
1215	struct net_device *netdev = adapter->netdev;
1216	struct e1000_hw *hw = &adapter->hw;
1217	struct e1000_tx_desc *tx_desc, *eop_desc;
1218	struct e1000_buffer *buffer_info;
1219	unsigned int i, eop;
1220	unsigned int count = 0;
1221	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1222	unsigned int bytes_compl = 0, pkts_compl = 0;
1223
1224	i = tx_ring->next_to_clean;
1225	eop = tx_ring->buffer_info[i].next_to_watch;
1226	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1227
1228	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1229	       (count < tx_ring->count)) {
1230		bool cleaned = false;
1231
1232		dma_rmb();		/* read buffer_info after eop_desc */
1233		for (; !cleaned; count++) {
1234			tx_desc = E1000_TX_DESC(*tx_ring, i);
1235			buffer_info = &tx_ring->buffer_info[i];
1236			cleaned = (i == eop);
1237
1238			if (cleaned) {
1239				total_tx_packets += buffer_info->segs;
1240				total_tx_bytes += buffer_info->bytecount;
1241				if (buffer_info->skb) {
1242					bytes_compl += buffer_info->skb->len;
1243					pkts_compl++;
1244				}
1245			}
1246
1247			e1000_put_txbuf(tx_ring, buffer_info, false);
1248			tx_desc->upper.data = 0;
1249
1250			i++;
1251			if (i == tx_ring->count)
1252				i = 0;
1253		}
1254
1255		if (i == tx_ring->next_to_use)
1256			break;
1257		eop = tx_ring->buffer_info[i].next_to_watch;
1258		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1259	}
1260
1261	tx_ring->next_to_clean = i;
1262
1263	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1264
1265#define TX_WAKE_THRESHOLD 32
1266	if (count && netif_carrier_ok(netdev) &&
1267	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1268		/* Make sure that anybody stopping the queue after this
1269		 * sees the new next_to_clean.
1270		 */
1271		smp_mb();
1272
1273		if (netif_queue_stopped(netdev) &&
1274		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1275			netif_wake_queue(netdev);
1276			++adapter->restart_queue;
1277		}
1278	}
1279
1280	if (adapter->detect_tx_hung) {
1281		/* Detect a transmit hang in hardware, this serializes the
1282		 * check with the clearing of time_stamp and movement of i
1283		 */
1284		adapter->detect_tx_hung = false;
1285		if (tx_ring->buffer_info[i].time_stamp &&
1286		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1287			       + (adapter->tx_timeout_factor * HZ)) &&
1288		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1289			schedule_work(&adapter->print_hang_task);
1290		else
1291			adapter->tx_hang_recheck = false;
1292	}
1293	adapter->total_tx_bytes += total_tx_bytes;
1294	adapter->total_tx_packets += total_tx_packets;
1295	return count < tx_ring->count;
1296}
1297
1298/**
1299 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1300 * @rx_ring: Rx descriptor ring
1301 * @work_done: output parameter for indicating completed work
1302 * @work_to_do: how many packets we can clean
1303 *
1304 * the return value indicates whether actual cleaning was done, there
1305 * is no guarantee that everything was cleaned
1306 **/
1307static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1308				  int work_to_do)
1309{
1310	struct e1000_adapter *adapter = rx_ring->adapter;
1311	struct e1000_hw *hw = &adapter->hw;
1312	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1313	struct net_device *netdev = adapter->netdev;
1314	struct pci_dev *pdev = adapter->pdev;
1315	struct e1000_buffer *buffer_info, *next_buffer;
1316	struct e1000_ps_page *ps_page;
1317	struct sk_buff *skb;
1318	unsigned int i, j;
1319	u32 length, staterr;
1320	int cleaned_count = 0;
1321	bool cleaned = false;
1322	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1323
1324	i = rx_ring->next_to_clean;
1325	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1326	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1327	buffer_info = &rx_ring->buffer_info[i];
1328
1329	while (staterr & E1000_RXD_STAT_DD) {
1330		if (*work_done >= work_to_do)
1331			break;
1332		(*work_done)++;
1333		skb = buffer_info->skb;
1334		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1335
1336		/* in the packet split case this is header only */
1337		prefetch(skb->data - NET_IP_ALIGN);
1338
1339		i++;
1340		if (i == rx_ring->count)
1341			i = 0;
1342		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1343		prefetch(next_rxd);
1344
1345		next_buffer = &rx_ring->buffer_info[i];
1346
1347		cleaned = true;
1348		cleaned_count++;
1349		dma_unmap_single(&pdev->dev, buffer_info->dma,
1350				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1351		buffer_info->dma = 0;
1352
1353		/* see !EOP comment in other Rx routine */
1354		if (!(staterr & E1000_RXD_STAT_EOP))
1355			adapter->flags2 |= FLAG2_IS_DISCARDING;
1356
1357		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1358			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1359			dev_kfree_skb_irq(skb);
1360			if (staterr & E1000_RXD_STAT_EOP)
1361				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1362			goto next_desc;
1363		}
1364
1365		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1366			     !(netdev->features & NETIF_F_RXALL))) {
1367			dev_kfree_skb_irq(skb);
1368			goto next_desc;
1369		}
1370
1371		length = le16_to_cpu(rx_desc->wb.middle.length0);
1372
1373		if (!length) {
1374			e_dbg("Last part of the packet spanning multiple descriptors\n");
1375			dev_kfree_skb_irq(skb);
1376			goto next_desc;
1377		}
1378
1379		/* Good Receive */
1380		skb_put(skb, length);
1381
1382		{
1383			/* this looks ugly, but it seems compiler issues make
1384			 * it more efficient than reusing j
1385			 */
1386			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1387
1388			/* page alloc/put takes too long and effects small
1389			 * packet throughput, so unsplit small packets and
1390			 * save the alloc/put only valid in softirq (napi)
1391			 * context to call kmap_*
1392			 */
1393			if (l1 && (l1 <= copybreak) &&
1394			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1395				u8 *vaddr;
1396
1397				ps_page = &buffer_info->ps_pages[0];
1398
1399				/* there is no documentation about how to call
1400				 * kmap_atomic, so we can't hold the mapping
1401				 * very long
1402				 */
1403				dma_sync_single_for_cpu(&pdev->dev,
1404							ps_page->dma,
1405							PAGE_SIZE,
1406							DMA_FROM_DEVICE);
1407				vaddr = kmap_atomic(ps_page->page);
1408				memcpy(skb_tail_pointer(skb), vaddr, l1);
1409				kunmap_atomic(vaddr);
1410				dma_sync_single_for_device(&pdev->dev,
1411							   ps_page->dma,
1412							   PAGE_SIZE,
1413							   DMA_FROM_DEVICE);
1414
1415				/* remove the CRC */
1416				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1417					if (!(netdev->features & NETIF_F_RXFCS))
1418						l1 -= 4;
1419				}
1420
1421				skb_put(skb, l1);
1422				goto copydone;
1423			}	/* if */
1424		}
1425
1426		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1427			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1428			if (!length)
1429				break;
1430
1431			ps_page = &buffer_info->ps_pages[j];
1432			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1433				       DMA_FROM_DEVICE);
1434			ps_page->dma = 0;
1435			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1436			ps_page->page = NULL;
1437			skb->len += length;
1438			skb->data_len += length;
1439			skb->truesize += PAGE_SIZE;
1440		}
1441
1442		/* strip the ethernet crc, problem is we're using pages now so
1443		 * this whole operation can get a little cpu intensive
1444		 */
1445		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1446			if (!(netdev->features & NETIF_F_RXFCS))
1447				pskb_trim(skb, skb->len - 4);
1448		}
1449
1450copydone:
1451		total_rx_bytes += skb->len;
1452		total_rx_packets++;
1453
1454		e1000_rx_checksum(adapter, staterr, skb);
1455
1456		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1457
1458		if (rx_desc->wb.upper.header_status &
1459		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1460			adapter->rx_hdr_split++;
1461
1462		e1000_receive_skb(adapter, netdev, skb, staterr,
1463				  rx_desc->wb.middle.vlan);
1464
1465next_desc:
1466		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1467		buffer_info->skb = NULL;
1468
1469		/* return some buffers to hardware, one at a time is too slow */
1470		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1471			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1472					      GFP_ATOMIC);
1473			cleaned_count = 0;
1474		}
1475
1476		/* use prefetched values */
1477		rx_desc = next_rxd;
1478		buffer_info = next_buffer;
1479
1480		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1481	}
1482	rx_ring->next_to_clean = i;
1483
1484	cleaned_count = e1000_desc_unused(rx_ring);
1485	if (cleaned_count)
1486		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1487
1488	adapter->total_rx_bytes += total_rx_bytes;
1489	adapter->total_rx_packets += total_rx_packets;
1490	return cleaned;
1491}
1492
1493static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1494			       u16 length)
1495{
1496	bi->page = NULL;
1497	skb->len += length;
1498	skb->data_len += length;
1499	skb->truesize += PAGE_SIZE;
1500}
1501
1502/**
1503 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1504 * @rx_ring: Rx descriptor ring
1505 * @work_done: output parameter for indicating completed work
1506 * @work_to_do: how many packets we can clean
1507 *
1508 * the return value indicates whether actual cleaning was done, there
1509 * is no guarantee that everything was cleaned
1510 **/
1511static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1512				     int work_to_do)
1513{
1514	struct e1000_adapter *adapter = rx_ring->adapter;
1515	struct net_device *netdev = adapter->netdev;
1516	struct pci_dev *pdev = adapter->pdev;
1517	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1518	struct e1000_buffer *buffer_info, *next_buffer;
1519	u32 length, staterr;
1520	unsigned int i;
1521	int cleaned_count = 0;
1522	bool cleaned = false;
1523	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1524	struct skb_shared_info *shinfo;
1525
1526	i = rx_ring->next_to_clean;
1527	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1528	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1529	buffer_info = &rx_ring->buffer_info[i];
1530
1531	while (staterr & E1000_RXD_STAT_DD) {
1532		struct sk_buff *skb;
1533
1534		if (*work_done >= work_to_do)
1535			break;
1536		(*work_done)++;
1537		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1538
1539		skb = buffer_info->skb;
1540		buffer_info->skb = NULL;
1541
1542		++i;
1543		if (i == rx_ring->count)
1544			i = 0;
1545		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1546		prefetch(next_rxd);
1547
1548		next_buffer = &rx_ring->buffer_info[i];
1549
1550		cleaned = true;
1551		cleaned_count++;
1552		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1553			       DMA_FROM_DEVICE);
1554		buffer_info->dma = 0;
1555
1556		length = le16_to_cpu(rx_desc->wb.upper.length);
1557
1558		/* errors is only valid for DD + EOP descriptors */
1559		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1560			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1561			      !(netdev->features & NETIF_F_RXALL)))) {
1562			/* recycle both page and skb */
1563			buffer_info->skb = skb;
1564			/* an error means any chain goes out the window too */
1565			if (rx_ring->rx_skb_top)
1566				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1567			rx_ring->rx_skb_top = NULL;
1568			goto next_desc;
1569		}
1570#define rxtop (rx_ring->rx_skb_top)
1571		if (!(staterr & E1000_RXD_STAT_EOP)) {
1572			/* this descriptor is only the beginning (or middle) */
1573			if (!rxtop) {
1574				/* this is the beginning of a chain */
1575				rxtop = skb;
1576				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1577						   0, length);
1578			} else {
1579				/* this is the middle of a chain */
1580				shinfo = skb_shinfo(rxtop);
1581				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1582						   buffer_info->page, 0,
1583						   length);
1584				/* re-use the skb, only consumed the page */
1585				buffer_info->skb = skb;
1586			}
1587			e1000_consume_page(buffer_info, rxtop, length);
1588			goto next_desc;
1589		} else {
1590			if (rxtop) {
1591				/* end of the chain */
1592				shinfo = skb_shinfo(rxtop);
1593				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1594						   buffer_info->page, 0,
1595						   length);
1596				/* re-use the current skb, we only consumed the
1597				 * page
1598				 */
1599				buffer_info->skb = skb;
1600				skb = rxtop;
1601				rxtop = NULL;
1602				e1000_consume_page(buffer_info, skb, length);
1603			} else {
1604				/* no chain, got EOP, this buf is the packet
1605				 * copybreak to save the put_page/alloc_page
1606				 */
1607				if (length <= copybreak &&
1608				    skb_tailroom(skb) >= length) {
1609					u8 *vaddr;
1610					vaddr = kmap_atomic(buffer_info->page);
1611					memcpy(skb_tail_pointer(skb), vaddr,
1612					       length);
1613					kunmap_atomic(vaddr);
1614					/* re-use the page, so don't erase
1615					 * buffer_info->page
1616					 */
1617					skb_put(skb, length);
1618				} else {
1619					skb_fill_page_desc(skb, 0,
1620							   buffer_info->page, 0,
1621							   length);
1622					e1000_consume_page(buffer_info, skb,
1623							   length);
1624				}
1625			}
1626		}
1627
1628		/* Receive Checksum Offload */
1629		e1000_rx_checksum(adapter, staterr, skb);
1630
1631		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1632
1633		/* probably a little skewed due to removing CRC */
1634		total_rx_bytes += skb->len;
1635		total_rx_packets++;
1636
1637		/* eth type trans needs skb->data to point to something */
1638		if (!pskb_may_pull(skb, ETH_HLEN)) {
1639			e_err("pskb_may_pull failed.\n");
1640			dev_kfree_skb_irq(skb);
1641			goto next_desc;
1642		}
1643
1644		e1000_receive_skb(adapter, netdev, skb, staterr,
1645				  rx_desc->wb.upper.vlan);
1646
1647next_desc:
1648		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1649
1650		/* return some buffers to hardware, one at a time is too slow */
1651		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1652			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1653					      GFP_ATOMIC);
1654			cleaned_count = 0;
1655		}
1656
1657		/* use prefetched values */
1658		rx_desc = next_rxd;
1659		buffer_info = next_buffer;
1660
1661		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1662	}
1663	rx_ring->next_to_clean = i;
1664
1665	cleaned_count = e1000_desc_unused(rx_ring);
1666	if (cleaned_count)
1667		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1668
1669	adapter->total_rx_bytes += total_rx_bytes;
1670	adapter->total_rx_packets += total_rx_packets;
1671	return cleaned;
1672}
1673
1674/**
1675 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1676 * @rx_ring: Rx descriptor ring
1677 **/
1678static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1679{
1680	struct e1000_adapter *adapter = rx_ring->adapter;
1681	struct e1000_buffer *buffer_info;
1682	struct e1000_ps_page *ps_page;
1683	struct pci_dev *pdev = adapter->pdev;
1684	unsigned int i, j;
1685
1686	/* Free all the Rx ring sk_buffs */
1687	for (i = 0; i < rx_ring->count; i++) {
1688		buffer_info = &rx_ring->buffer_info[i];
1689		if (buffer_info->dma) {
1690			if (adapter->clean_rx == e1000_clean_rx_irq)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_buffer_len,
1693						 DMA_FROM_DEVICE);
1694			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1695				dma_unmap_page(&pdev->dev, buffer_info->dma,
1696					       PAGE_SIZE, DMA_FROM_DEVICE);
1697			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1698				dma_unmap_single(&pdev->dev, buffer_info->dma,
1699						 adapter->rx_ps_bsize0,
1700						 DMA_FROM_DEVICE);
1701			buffer_info->dma = 0;
1702		}
1703
1704		if (buffer_info->page) {
1705			put_page(buffer_info->page);
1706			buffer_info->page = NULL;
1707		}
1708
1709		if (buffer_info->skb) {
1710			dev_kfree_skb(buffer_info->skb);
1711			buffer_info->skb = NULL;
1712		}
1713
1714		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1715			ps_page = &buffer_info->ps_pages[j];
1716			if (!ps_page->page)
1717				break;
1718			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1719				       DMA_FROM_DEVICE);
1720			ps_page->dma = 0;
1721			put_page(ps_page->page);
1722			ps_page->page = NULL;
1723		}
1724	}
1725
1726	/* there also may be some cached data from a chained receive */
1727	if (rx_ring->rx_skb_top) {
1728		dev_kfree_skb(rx_ring->rx_skb_top);
1729		rx_ring->rx_skb_top = NULL;
1730	}
1731
1732	/* Zero out the descriptor ring */
1733	memset(rx_ring->desc, 0, rx_ring->size);
1734
1735	rx_ring->next_to_clean = 0;
1736	rx_ring->next_to_use = 0;
1737	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1738}
1739
1740static void e1000e_downshift_workaround(struct work_struct *work)
1741{
1742	struct e1000_adapter *adapter = container_of(work,
1743						     struct e1000_adapter,
1744						     downshift_task);
1745
1746	if (test_bit(__E1000_DOWN, &adapter->state))
1747		return;
1748
1749	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1750}
1751
1752/**
1753 * e1000_intr_msi - Interrupt Handler
1754 * @irq: interrupt number
1755 * @data: pointer to a network interface device structure
1756 **/
1757static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1758{
1759	struct net_device *netdev = data;
1760	struct e1000_adapter *adapter = netdev_priv(netdev);
1761	struct e1000_hw *hw = &adapter->hw;
1762	u32 icr = er32(ICR);
1763
1764	/* read ICR disables interrupts using IAM */
1765	if (icr & E1000_ICR_LSC) {
1766		hw->mac.get_link_status = true;
1767		/* ICH8 workaround-- Call gig speed drop workaround on cable
1768		 * disconnect (LSC) before accessing any PHY registers
1769		 */
1770		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1771		    (!(er32(STATUS) & E1000_STATUS_LU)))
1772			schedule_work(&adapter->downshift_task);
1773
1774		/* 80003ES2LAN workaround-- For packet buffer work-around on
1775		 * link down event; disable receives here in the ISR and reset
1776		 * adapter in watchdog
1777		 */
1778		if (netif_carrier_ok(netdev) &&
1779		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1780			/* disable receives */
1781			u32 rctl = er32(RCTL);
1782
1783			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1784			adapter->flags |= FLAG_RESTART_NOW;
1785		}
1786		/* guard against interrupt when we're going down */
1787		if (!test_bit(__E1000_DOWN, &adapter->state))
1788			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1789	}
1790
1791	/* Reset on uncorrectable ECC error */
1792	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1793		u32 pbeccsts = er32(PBECCSTS);
1794
1795		adapter->corr_errors +=
1796		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1797		adapter->uncorr_errors +=
1798		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1799		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1800
1801		/* Do the reset outside of interrupt context */
1802		schedule_work(&adapter->reset_task);
1803
1804		/* return immediately since reset is imminent */
1805		return IRQ_HANDLED;
1806	}
1807
1808	if (napi_schedule_prep(&adapter->napi)) {
1809		adapter->total_tx_bytes = 0;
1810		adapter->total_tx_packets = 0;
1811		adapter->total_rx_bytes = 0;
1812		adapter->total_rx_packets = 0;
1813		__napi_schedule(&adapter->napi);
1814	}
1815
1816	return IRQ_HANDLED;
1817}
1818
1819/**
1820 * e1000_intr - Interrupt Handler
1821 * @irq: interrupt number
1822 * @data: pointer to a network interface device structure
1823 **/
1824static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1825{
1826	struct net_device *netdev = data;
1827	struct e1000_adapter *adapter = netdev_priv(netdev);
1828	struct e1000_hw *hw = &adapter->hw;
1829	u32 rctl, icr = er32(ICR);
1830
1831	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1832		return IRQ_NONE;	/* Not our interrupt */
1833
1834	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1835	 * not set, then the adapter didn't send an interrupt
1836	 */
1837	if (!(icr & E1000_ICR_INT_ASSERTED))
1838		return IRQ_NONE;
1839
1840	/* Interrupt Auto-Mask...upon reading ICR,
1841	 * interrupts are masked.  No need for the
1842	 * IMC write
1843	 */
1844
1845	if (icr & E1000_ICR_LSC) {
1846		hw->mac.get_link_status = true;
1847		/* ICH8 workaround-- Call gig speed drop workaround on cable
1848		 * disconnect (LSC) before accessing any PHY registers
1849		 */
1850		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1851		    (!(er32(STATUS) & E1000_STATUS_LU)))
1852			schedule_work(&adapter->downshift_task);
1853
1854		/* 80003ES2LAN workaround--
1855		 * For packet buffer work-around on link down event;
1856		 * disable receives here in the ISR and
1857		 * reset adapter in watchdog
1858		 */
1859		if (netif_carrier_ok(netdev) &&
1860		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1861			/* disable receives */
1862			rctl = er32(RCTL);
1863			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1864			adapter->flags |= FLAG_RESTART_NOW;
1865		}
1866		/* guard against interrupt when we're going down */
1867		if (!test_bit(__E1000_DOWN, &adapter->state))
1868			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1869	}
1870
1871	/* Reset on uncorrectable ECC error */
1872	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1873		u32 pbeccsts = er32(PBECCSTS);
1874
1875		adapter->corr_errors +=
1876		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1877		adapter->uncorr_errors +=
1878		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1879		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1880
1881		/* Do the reset outside of interrupt context */
1882		schedule_work(&adapter->reset_task);
1883
1884		/* return immediately since reset is imminent */
1885		return IRQ_HANDLED;
1886	}
1887
1888	if (napi_schedule_prep(&adapter->napi)) {
1889		adapter->total_tx_bytes = 0;
1890		adapter->total_tx_packets = 0;
1891		adapter->total_rx_bytes = 0;
1892		adapter->total_rx_packets = 0;
1893		__napi_schedule(&adapter->napi);
1894	}
1895
1896	return IRQ_HANDLED;
1897}
1898
1899static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1900{
1901	struct net_device *netdev = data;
1902	struct e1000_adapter *adapter = netdev_priv(netdev);
1903	struct e1000_hw *hw = &adapter->hw;
1904	u32 icr = er32(ICR);
1905
1906	if (icr & adapter->eiac_mask)
1907		ew32(ICS, (icr & adapter->eiac_mask));
1908
1909	if (icr & E1000_ICR_LSC) {
1910		hw->mac.get_link_status = true;
1911		/* guard against interrupt when we're going down */
1912		if (!test_bit(__E1000_DOWN, &adapter->state))
1913			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1914	}
1915
1916	if (!test_bit(__E1000_DOWN, &adapter->state))
1917		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1918
1919	return IRQ_HANDLED;
1920}
1921
1922static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1923{
1924	struct net_device *netdev = data;
1925	struct e1000_adapter *adapter = netdev_priv(netdev);
1926	struct e1000_hw *hw = &adapter->hw;
1927	struct e1000_ring *tx_ring = adapter->tx_ring;
1928
1929	adapter->total_tx_bytes = 0;
1930	adapter->total_tx_packets = 0;
1931
1932	if (!e1000_clean_tx_irq(tx_ring))
1933		/* Ring was not completely cleaned, so fire another interrupt */
1934		ew32(ICS, tx_ring->ims_val);
1935
1936	if (!test_bit(__E1000_DOWN, &adapter->state))
1937		ew32(IMS, adapter->tx_ring->ims_val);
1938
1939	return IRQ_HANDLED;
1940}
1941
1942static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1943{
1944	struct net_device *netdev = data;
1945	struct e1000_adapter *adapter = netdev_priv(netdev);
1946	struct e1000_ring *rx_ring = adapter->rx_ring;
1947
1948	/* Write the ITR value calculated at the end of the
1949	 * previous interrupt.
1950	 */
1951	if (rx_ring->set_itr) {
1952		u32 itr = rx_ring->itr_val ?
1953			  1000000000 / (rx_ring->itr_val * 256) : 0;
1954
1955		writel(itr, rx_ring->itr_register);
1956		rx_ring->set_itr = 0;
1957	}
1958
1959	if (napi_schedule_prep(&adapter->napi)) {
1960		adapter->total_rx_bytes = 0;
1961		adapter->total_rx_packets = 0;
1962		__napi_schedule(&adapter->napi);
1963	}
1964	return IRQ_HANDLED;
1965}
1966
1967/**
1968 * e1000_configure_msix - Configure MSI-X hardware
1969 * @adapter: board private structure
1970 *
1971 * e1000_configure_msix sets up the hardware to properly
1972 * generate MSI-X interrupts.
1973 **/
1974static void e1000_configure_msix(struct e1000_adapter *adapter)
1975{
1976	struct e1000_hw *hw = &adapter->hw;
1977	struct e1000_ring *rx_ring = adapter->rx_ring;
1978	struct e1000_ring *tx_ring = adapter->tx_ring;
1979	int vector = 0;
1980	u32 ctrl_ext, ivar = 0;
1981
1982	adapter->eiac_mask = 0;
1983
1984	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1985	if (hw->mac.type == e1000_82574) {
1986		u32 rfctl = er32(RFCTL);
1987
1988		rfctl |= E1000_RFCTL_ACK_DIS;
1989		ew32(RFCTL, rfctl);
1990	}
1991
1992	/* Configure Rx vector */
1993	rx_ring->ims_val = E1000_IMS_RXQ0;
1994	adapter->eiac_mask |= rx_ring->ims_val;
1995	if (rx_ring->itr_val)
1996		writel(1000000000 / (rx_ring->itr_val * 256),
1997		       rx_ring->itr_register);
1998	else
1999		writel(1, rx_ring->itr_register);
2000	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2001
2002	/* Configure Tx vector */
2003	tx_ring->ims_val = E1000_IMS_TXQ0;
2004	vector++;
2005	if (tx_ring->itr_val)
2006		writel(1000000000 / (tx_ring->itr_val * 256),
2007		       tx_ring->itr_register);
2008	else
2009		writel(1, tx_ring->itr_register);
2010	adapter->eiac_mask |= tx_ring->ims_val;
2011	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2012
2013	/* set vector for Other Causes, e.g. link changes */
2014	vector++;
2015	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2016	if (rx_ring->itr_val)
2017		writel(1000000000 / (rx_ring->itr_val * 256),
2018		       hw->hw_addr + E1000_EITR_82574(vector));
2019	else
2020		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2021
2022	/* Cause Tx interrupts on every write back */
2023	ivar |= BIT(31);
2024
2025	ew32(IVAR, ivar);
2026
2027	/* enable MSI-X PBA support */
2028	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2029	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2030	ew32(CTRL_EXT, ctrl_ext);
2031	e1e_flush();
2032}
2033
2034void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2035{
2036	if (adapter->msix_entries) {
2037		pci_disable_msix(adapter->pdev);
2038		kfree(adapter->msix_entries);
2039		adapter->msix_entries = NULL;
2040	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2041		pci_disable_msi(adapter->pdev);
2042		adapter->flags &= ~FLAG_MSI_ENABLED;
2043	}
2044}
2045
2046/**
2047 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2048 * @adapter: board private structure
2049 *
2050 * Attempt to configure interrupts using the best available
2051 * capabilities of the hardware and kernel.
2052 **/
2053void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2054{
2055	int err;
2056	int i;
2057
2058	switch (adapter->int_mode) {
2059	case E1000E_INT_MODE_MSIX:
2060		if (adapter->flags & FLAG_HAS_MSIX) {
2061			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2062			adapter->msix_entries = kcalloc(adapter->num_vectors,
2063							sizeof(struct
2064							       msix_entry),
2065							GFP_KERNEL);
2066			if (adapter->msix_entries) {
2067				struct e1000_adapter *a = adapter;
2068
2069				for (i = 0; i < adapter->num_vectors; i++)
2070					adapter->msix_entries[i].entry = i;
2071
2072				err = pci_enable_msix_range(a->pdev,
2073							    a->msix_entries,
2074							    a->num_vectors,
2075							    a->num_vectors);
2076				if (err > 0)
2077					return;
2078			}
2079			/* MSI-X failed, so fall through and try MSI */
2080			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2081			e1000e_reset_interrupt_capability(adapter);
2082		}
2083		adapter->int_mode = E1000E_INT_MODE_MSI;
2084		fallthrough;
2085	case E1000E_INT_MODE_MSI:
2086		if (!pci_enable_msi(adapter->pdev)) {
2087			adapter->flags |= FLAG_MSI_ENABLED;
2088		} else {
2089			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2090			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2091		}
2092		fallthrough;
2093	case E1000E_INT_MODE_LEGACY:
2094		/* Don't do anything; this is the system default */
2095		break;
2096	}
2097
2098	/* store the number of vectors being used */
2099	adapter->num_vectors = 1;
2100}
2101
2102/**
2103 * e1000_request_msix - Initialize MSI-X interrupts
2104 * @adapter: board private structure
2105 *
2106 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2107 * kernel.
2108 **/
2109static int e1000_request_msix(struct e1000_adapter *adapter)
2110{
2111	struct net_device *netdev = adapter->netdev;
2112	int err = 0, vector = 0;
2113
2114	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2115		snprintf(adapter->rx_ring->name,
2116			 sizeof(adapter->rx_ring->name) - 1,
2117			 "%.14s-rx-0", netdev->name);
2118	else
2119		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2120	err = request_irq(adapter->msix_entries[vector].vector,
2121			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2122			  netdev);
2123	if (err)
2124		return err;
2125	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2126	    E1000_EITR_82574(vector);
2127	adapter->rx_ring->itr_val = adapter->itr;
2128	vector++;
2129
2130	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2131		snprintf(adapter->tx_ring->name,
2132			 sizeof(adapter->tx_ring->name) - 1,
2133			 "%.14s-tx-0", netdev->name);
2134	else
2135		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2136	err = request_irq(adapter->msix_entries[vector].vector,
2137			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2138			  netdev);
2139	if (err)
2140		return err;
2141	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2142	    E1000_EITR_82574(vector);
2143	adapter->tx_ring->itr_val = adapter->itr;
2144	vector++;
2145
2146	err = request_irq(adapter->msix_entries[vector].vector,
2147			  e1000_msix_other, 0, netdev->name, netdev);
2148	if (err)
2149		return err;
2150
2151	e1000_configure_msix(adapter);
2152
2153	return 0;
2154}
2155
2156/**
2157 * e1000_request_irq - initialize interrupts
2158 * @adapter: board private structure
2159 *
2160 * Attempts to configure interrupts using the best available
2161 * capabilities of the hardware and kernel.
2162 **/
2163static int e1000_request_irq(struct e1000_adapter *adapter)
2164{
2165	struct net_device *netdev = adapter->netdev;
2166	int err;
2167
2168	if (adapter->msix_entries) {
2169		err = e1000_request_msix(adapter);
2170		if (!err)
2171			return err;
2172		/* fall back to MSI */
2173		e1000e_reset_interrupt_capability(adapter);
2174		adapter->int_mode = E1000E_INT_MODE_MSI;
2175		e1000e_set_interrupt_capability(adapter);
2176	}
2177	if (adapter->flags & FLAG_MSI_ENABLED) {
2178		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2179				  netdev->name, netdev);
2180		if (!err)
2181			return err;
2182
2183		/* fall back to legacy interrupt */
2184		e1000e_reset_interrupt_capability(adapter);
2185		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2186	}
2187
2188	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2189			  netdev->name, netdev);
2190	if (err)
2191		e_err("Unable to allocate interrupt, Error: %d\n", err);
2192
2193	return err;
2194}
2195
2196static void e1000_free_irq(struct e1000_adapter *adapter)
2197{
2198	struct net_device *netdev = adapter->netdev;
2199
2200	if (adapter->msix_entries) {
2201		int vector = 0;
2202
2203		free_irq(adapter->msix_entries[vector].vector, netdev);
2204		vector++;
2205
2206		free_irq(adapter->msix_entries[vector].vector, netdev);
2207		vector++;
2208
2209		/* Other Causes interrupt vector */
2210		free_irq(adapter->msix_entries[vector].vector, netdev);
2211		return;
2212	}
2213
2214	free_irq(adapter->pdev->irq, netdev);
2215}
2216
2217/**
2218 * e1000_irq_disable - Mask off interrupt generation on the NIC
2219 * @adapter: board private structure
2220 **/
2221static void e1000_irq_disable(struct e1000_adapter *adapter)
2222{
2223	struct e1000_hw *hw = &adapter->hw;
2224
2225	ew32(IMC, ~0);
2226	if (adapter->msix_entries)
2227		ew32(EIAC_82574, 0);
2228	e1e_flush();
2229
2230	if (adapter->msix_entries) {
2231		int i;
2232
2233		for (i = 0; i < adapter->num_vectors; i++)
2234			synchronize_irq(adapter->msix_entries[i].vector);
2235	} else {
2236		synchronize_irq(adapter->pdev->irq);
2237	}
2238}
2239
2240/**
2241 * e1000_irq_enable - Enable default interrupt generation settings
2242 * @adapter: board private structure
2243 **/
2244static void e1000_irq_enable(struct e1000_adapter *adapter)
2245{
2246	struct e1000_hw *hw = &adapter->hw;
2247
2248	if (adapter->msix_entries) {
2249		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2250		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2251		     IMS_OTHER_MASK);
2252	} else if (hw->mac.type >= e1000_pch_lpt) {
2253		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2254	} else {
2255		ew32(IMS, IMS_ENABLE_MASK);
2256	}
2257	e1e_flush();
2258}
2259
2260/**
2261 * e1000e_get_hw_control - get control of the h/w from f/w
2262 * @adapter: address of board private structure
2263 *
2264 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2265 * For ASF and Pass Through versions of f/w this means that
2266 * the driver is loaded. For AMT version (only with 82573)
2267 * of the f/w this means that the network i/f is open.
2268 **/
2269void e1000e_get_hw_control(struct e1000_adapter *adapter)
2270{
2271	struct e1000_hw *hw = &adapter->hw;
2272	u32 ctrl_ext;
2273	u32 swsm;
2274
2275	/* Let firmware know the driver has taken over */
2276	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2277		swsm = er32(SWSM);
2278		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2279	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2280		ctrl_ext = er32(CTRL_EXT);
2281		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2282	}
2283}
2284
2285/**
2286 * e1000e_release_hw_control - release control of the h/w to f/w
2287 * @adapter: address of board private structure
2288 *
2289 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2290 * For ASF and Pass Through versions of f/w this means that the
2291 * driver is no longer loaded. For AMT version (only with 82573) i
2292 * of the f/w this means that the network i/f is closed.
2293 *
2294 **/
2295void e1000e_release_hw_control(struct e1000_adapter *adapter)
2296{
2297	struct e1000_hw *hw = &adapter->hw;
2298	u32 ctrl_ext;
2299	u32 swsm;
2300
2301	/* Let firmware taken over control of h/w */
2302	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2303		swsm = er32(SWSM);
2304		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2305	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2306		ctrl_ext = er32(CTRL_EXT);
2307		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2308	}
2309}
2310
2311/**
2312 * e1000_alloc_ring_dma - allocate memory for a ring structure
2313 * @adapter: board private structure
2314 * @ring: ring struct for which to allocate dma
2315 **/
2316static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2317				struct e1000_ring *ring)
2318{
2319	struct pci_dev *pdev = adapter->pdev;
2320
2321	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2322					GFP_KERNEL);
2323	if (!ring->desc)
2324		return -ENOMEM;
2325
2326	return 0;
2327}
2328
2329/**
2330 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2331 * @tx_ring: Tx descriptor ring
2332 *
2333 * Return 0 on success, negative on failure
2334 **/
2335int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2336{
2337	struct e1000_adapter *adapter = tx_ring->adapter;
2338	int err = -ENOMEM, size;
2339
2340	size = sizeof(struct e1000_buffer) * tx_ring->count;
2341	tx_ring->buffer_info = vzalloc(size);
2342	if (!tx_ring->buffer_info)
2343		goto err;
2344
2345	/* round up to nearest 4K */
2346	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2347	tx_ring->size = ALIGN(tx_ring->size, 4096);
2348
2349	err = e1000_alloc_ring_dma(adapter, tx_ring);
2350	if (err)
2351		goto err;
2352
2353	tx_ring->next_to_use = 0;
2354	tx_ring->next_to_clean = 0;
2355
2356	return 0;
2357err:
2358	vfree(tx_ring->buffer_info);
2359	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2360	return err;
2361}
2362
2363/**
2364 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2365 * @rx_ring: Rx descriptor ring
2366 *
2367 * Returns 0 on success, negative on failure
2368 **/
2369int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2370{
2371	struct e1000_adapter *adapter = rx_ring->adapter;
2372	struct e1000_buffer *buffer_info;
2373	int i, size, desc_len, err = -ENOMEM;
2374
2375	size = sizeof(struct e1000_buffer) * rx_ring->count;
2376	rx_ring->buffer_info = vzalloc(size);
2377	if (!rx_ring->buffer_info)
2378		goto err;
2379
2380	for (i = 0; i < rx_ring->count; i++) {
2381		buffer_info = &rx_ring->buffer_info[i];
2382		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2383						sizeof(struct e1000_ps_page),
2384						GFP_KERNEL);
2385		if (!buffer_info->ps_pages)
2386			goto err_pages;
2387	}
2388
2389	desc_len = sizeof(union e1000_rx_desc_packet_split);
2390
2391	/* Round up to nearest 4K */
2392	rx_ring->size = rx_ring->count * desc_len;
2393	rx_ring->size = ALIGN(rx_ring->size, 4096);
2394
2395	err = e1000_alloc_ring_dma(adapter, rx_ring);
2396	if (err)
2397		goto err_pages;
2398
2399	rx_ring->next_to_clean = 0;
2400	rx_ring->next_to_use = 0;
2401	rx_ring->rx_skb_top = NULL;
2402
2403	return 0;
2404
2405err_pages:
2406	for (i = 0; i < rx_ring->count; i++) {
2407		buffer_info = &rx_ring->buffer_info[i];
2408		kfree(buffer_info->ps_pages);
2409	}
2410err:
2411	vfree(rx_ring->buffer_info);
2412	e_err("Unable to allocate memory for the receive descriptor ring\n");
2413	return err;
2414}
2415
2416/**
2417 * e1000_clean_tx_ring - Free Tx Buffers
2418 * @tx_ring: Tx descriptor ring
2419 **/
2420static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2421{
2422	struct e1000_adapter *adapter = tx_ring->adapter;
2423	struct e1000_buffer *buffer_info;
2424	unsigned long size;
2425	unsigned int i;
2426
2427	for (i = 0; i < tx_ring->count; i++) {
2428		buffer_info = &tx_ring->buffer_info[i];
2429		e1000_put_txbuf(tx_ring, buffer_info, false);
2430	}
2431
2432	netdev_reset_queue(adapter->netdev);
2433	size = sizeof(struct e1000_buffer) * tx_ring->count;
2434	memset(tx_ring->buffer_info, 0, size);
2435
2436	memset(tx_ring->desc, 0, tx_ring->size);
2437
2438	tx_ring->next_to_use = 0;
2439	tx_ring->next_to_clean = 0;
2440}
2441
2442/**
2443 * e1000e_free_tx_resources - Free Tx Resources per Queue
2444 * @tx_ring: Tx descriptor ring
2445 *
2446 * Free all transmit software resources
2447 **/
2448void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2449{
2450	struct e1000_adapter *adapter = tx_ring->adapter;
2451	struct pci_dev *pdev = adapter->pdev;
2452
2453	e1000_clean_tx_ring(tx_ring);
2454
2455	vfree(tx_ring->buffer_info);
2456	tx_ring->buffer_info = NULL;
2457
2458	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2459			  tx_ring->dma);
2460	tx_ring->desc = NULL;
2461}
2462
2463/**
2464 * e1000e_free_rx_resources - Free Rx Resources
2465 * @rx_ring: Rx descriptor ring
2466 *
2467 * Free all receive software resources
2468 **/
2469void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2470{
2471	struct e1000_adapter *adapter = rx_ring->adapter;
2472	struct pci_dev *pdev = adapter->pdev;
2473	int i;
2474
2475	e1000_clean_rx_ring(rx_ring);
2476
2477	for (i = 0; i < rx_ring->count; i++)
2478		kfree(rx_ring->buffer_info[i].ps_pages);
2479
2480	vfree(rx_ring->buffer_info);
2481	rx_ring->buffer_info = NULL;
2482
2483	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2484			  rx_ring->dma);
2485	rx_ring->desc = NULL;
2486}
2487
2488/**
2489 * e1000_update_itr - update the dynamic ITR value based on statistics
2490 * @itr_setting: current adapter->itr
2491 * @packets: the number of packets during this measurement interval
2492 * @bytes: the number of bytes during this measurement interval
2493 *
2494 *      Stores a new ITR value based on packets and byte
2495 *      counts during the last interrupt.  The advantage of per interrupt
2496 *      computation is faster updates and more accurate ITR for the current
2497 *      traffic pattern.  Constants in this function were computed
2498 *      based on theoretical maximum wire speed and thresholds were set based
2499 *      on testing data as well as attempting to minimize response time
2500 *      while increasing bulk throughput.  This functionality is controlled
2501 *      by the InterruptThrottleRate module parameter.
2502 **/
2503static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2504{
2505	unsigned int retval = itr_setting;
2506
2507	if (packets == 0)
2508		return itr_setting;
2509
2510	switch (itr_setting) {
2511	case lowest_latency:
2512		/* handle TSO and jumbo frames */
2513		if (bytes / packets > 8000)
2514			retval = bulk_latency;
2515		else if ((packets < 5) && (bytes > 512))
2516			retval = low_latency;
2517		break;
2518	case low_latency:	/* 50 usec aka 20000 ints/s */
2519		if (bytes > 10000) {
2520			/* this if handles the TSO accounting */
2521			if (bytes / packets > 8000)
2522				retval = bulk_latency;
2523			else if ((packets < 10) || ((bytes / packets) > 1200))
2524				retval = bulk_latency;
2525			else if ((packets > 35))
2526				retval = lowest_latency;
2527		} else if (bytes / packets > 2000) {
2528			retval = bulk_latency;
2529		} else if (packets <= 2 && bytes < 512) {
2530			retval = lowest_latency;
2531		}
2532		break;
2533	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2534		if (bytes > 25000) {
2535			if (packets > 35)
2536				retval = low_latency;
2537		} else if (bytes < 6000) {
2538			retval = low_latency;
2539		}
2540		break;
2541	}
2542
2543	return retval;
2544}
2545
2546static void e1000_set_itr(struct e1000_adapter *adapter)
2547{
2548	u16 current_itr;
2549	u32 new_itr = adapter->itr;
2550
2551	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2552	if (adapter->link_speed != SPEED_1000) {
2553		current_itr = 0;
2554		new_itr = 4000;
2555		goto set_itr_now;
2556	}
2557
2558	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2559		new_itr = 0;
2560		goto set_itr_now;
2561	}
2562
2563	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2564					   adapter->total_tx_packets,
2565					   adapter->total_tx_bytes);
2566	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2567	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2568		adapter->tx_itr = low_latency;
2569
2570	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2571					   adapter->total_rx_packets,
2572					   adapter->total_rx_bytes);
2573	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2574	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2575		adapter->rx_itr = low_latency;
2576
2577	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578
2579	/* counts and packets in update_itr are dependent on these numbers */
2580	switch (current_itr) {
2581	case lowest_latency:
2582		new_itr = 70000;
2583		break;
2584	case low_latency:
2585		new_itr = 20000;	/* aka hwitr = ~200 */
2586		break;
2587	case bulk_latency:
2588		new_itr = 4000;
2589		break;
2590	default:
2591		break;
2592	}
2593
2594set_itr_now:
2595	if (new_itr != adapter->itr) {
2596		/* this attempts to bias the interrupt rate towards Bulk
2597		 * by adding intermediate steps when interrupt rate is
2598		 * increasing
2599		 */
2600		new_itr = new_itr > adapter->itr ?
2601		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2602		adapter->itr = new_itr;
2603		adapter->rx_ring->itr_val = new_itr;
2604		if (adapter->msix_entries)
2605			adapter->rx_ring->set_itr = 1;
2606		else
2607			e1000e_write_itr(adapter, new_itr);
2608	}
2609}
2610
2611/**
2612 * e1000e_write_itr - write the ITR value to the appropriate registers
2613 * @adapter: address of board private structure
2614 * @itr: new ITR value to program
2615 *
2616 * e1000e_write_itr determines if the adapter is in MSI-X mode
2617 * and, if so, writes the EITR registers with the ITR value.
2618 * Otherwise, it writes the ITR value into the ITR register.
2619 **/
2620void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2621{
2622	struct e1000_hw *hw = &adapter->hw;
2623	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2624
2625	if (adapter->msix_entries) {
2626		int vector;
2627
2628		for (vector = 0; vector < adapter->num_vectors; vector++)
2629			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2630	} else {
2631		ew32(ITR, new_itr);
2632	}
2633}
2634
2635/**
2636 * e1000_alloc_queues - Allocate memory for all rings
2637 * @adapter: board private structure to initialize
2638 **/
2639static int e1000_alloc_queues(struct e1000_adapter *adapter)
2640{
2641	int size = sizeof(struct e1000_ring);
2642
2643	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2644	if (!adapter->tx_ring)
2645		goto err;
2646	adapter->tx_ring->count = adapter->tx_ring_count;
2647	adapter->tx_ring->adapter = adapter;
2648
2649	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2650	if (!adapter->rx_ring)
2651		goto err;
2652	adapter->rx_ring->count = adapter->rx_ring_count;
2653	adapter->rx_ring->adapter = adapter;
2654
2655	return 0;
2656err:
2657	e_err("Unable to allocate memory for queues\n");
2658	kfree(adapter->rx_ring);
2659	kfree(adapter->tx_ring);
2660	return -ENOMEM;
2661}
2662
2663/**
2664 * e1000e_poll - NAPI Rx polling callback
2665 * @napi: struct associated with this polling callback
2666 * @budget: number of packets driver is allowed to process this poll
2667 **/
2668static int e1000e_poll(struct napi_struct *napi, int budget)
2669{
2670	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2671						     napi);
2672	struct e1000_hw *hw = &adapter->hw;
2673	struct net_device *poll_dev = adapter->netdev;
2674	int tx_cleaned = 1, work_done = 0;
2675
2676	adapter = netdev_priv(poll_dev);
2677
2678	if (!adapter->msix_entries ||
2679	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2680		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2681
2682	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2683
2684	if (!tx_cleaned || work_done == budget)
2685		return budget;
2686
2687	/* Exit the polling mode, but don't re-enable interrupts if stack might
2688	 * poll us due to busy-polling
2689	 */
2690	if (likely(napi_complete_done(napi, work_done))) {
2691		if (adapter->itr_setting & 3)
2692			e1000_set_itr(adapter);
2693		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2694			if (adapter->msix_entries)
2695				ew32(IMS, adapter->rx_ring->ims_val);
2696			else
2697				e1000_irq_enable(adapter);
2698		}
2699	}
2700
2701	return work_done;
2702}
2703
2704static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2705				 __always_unused __be16 proto, u16 vid)
2706{
2707	struct e1000_adapter *adapter = netdev_priv(netdev);
2708	struct e1000_hw *hw = &adapter->hw;
2709	u32 vfta, index;
2710
2711	/* don't update vlan cookie if already programmed */
2712	if ((adapter->hw.mng_cookie.status &
2713	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2714	    (vid == adapter->mng_vlan_id))
2715		return 0;
2716
2717	/* add VID to filter table */
2718	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2719		index = (vid >> 5) & 0x7F;
2720		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2721		vfta |= BIT((vid & 0x1F));
2722		hw->mac.ops.write_vfta(hw, index, vfta);
2723	}
2724
2725	set_bit(vid, adapter->active_vlans);
2726
2727	return 0;
2728}
2729
2730static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2731				  __always_unused __be16 proto, u16 vid)
2732{
2733	struct e1000_adapter *adapter = netdev_priv(netdev);
2734	struct e1000_hw *hw = &adapter->hw;
2735	u32 vfta, index;
2736
2737	if ((adapter->hw.mng_cookie.status &
2738	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2739	    (vid == adapter->mng_vlan_id)) {
2740		/* release control to f/w */
2741		e1000e_release_hw_control(adapter);
2742		return 0;
2743	}
2744
2745	/* remove VID from filter table */
2746	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747		index = (vid >> 5) & 0x7F;
2748		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2749		vfta &= ~BIT((vid & 0x1F));
2750		hw->mac.ops.write_vfta(hw, index, vfta);
2751	}
2752
2753	clear_bit(vid, adapter->active_vlans);
2754
2755	return 0;
2756}
2757
2758/**
2759 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2760 * @adapter: board private structure to initialize
2761 **/
2762static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2763{
2764	struct net_device *netdev = adapter->netdev;
2765	struct e1000_hw *hw = &adapter->hw;
2766	u32 rctl;
2767
2768	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769		/* disable VLAN receive filtering */
2770		rctl = er32(RCTL);
2771		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2772		ew32(RCTL, rctl);
2773
2774		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2775			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2776					       adapter->mng_vlan_id);
2777			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2778		}
2779	}
2780}
2781
2782/**
2783 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2784 * @adapter: board private structure to initialize
2785 **/
2786static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2787{
2788	struct e1000_hw *hw = &adapter->hw;
2789	u32 rctl;
2790
2791	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2792		/* enable VLAN receive filtering */
2793		rctl = er32(RCTL);
2794		rctl |= E1000_RCTL_VFE;
2795		rctl &= ~E1000_RCTL_CFIEN;
2796		ew32(RCTL, rctl);
2797	}
2798}
2799
2800/**
2801 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2802 * @adapter: board private structure to initialize
2803 **/
2804static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2805{
2806	struct e1000_hw *hw = &adapter->hw;
2807	u32 ctrl;
2808
2809	/* disable VLAN tag insert/strip */
2810	ctrl = er32(CTRL);
2811	ctrl &= ~E1000_CTRL_VME;
2812	ew32(CTRL, ctrl);
2813}
2814
2815/**
2816 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2817 * @adapter: board private structure to initialize
2818 **/
2819static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2820{
2821	struct e1000_hw *hw = &adapter->hw;
2822	u32 ctrl;
2823
2824	/* enable VLAN tag insert/strip */
2825	ctrl = er32(CTRL);
2826	ctrl |= E1000_CTRL_VME;
2827	ew32(CTRL, ctrl);
2828}
2829
2830static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2831{
2832	struct net_device *netdev = adapter->netdev;
2833	u16 vid = adapter->hw.mng_cookie.vlan_id;
2834	u16 old_vid = adapter->mng_vlan_id;
2835
2836	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2837		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2838		adapter->mng_vlan_id = vid;
2839	}
2840
2841	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2842		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2843}
2844
2845static void e1000_restore_vlan(struct e1000_adapter *adapter)
2846{
2847	u16 vid;
2848
2849	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2850
2851	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2852	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2853}
2854
2855static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2856{
2857	struct e1000_hw *hw = &adapter->hw;
2858	u32 manc, manc2h, mdef, i, j;
2859
2860	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2861		return;
2862
2863	manc = er32(MANC);
2864
2865	/* enable receiving management packets to the host. this will probably
2866	 * generate destination unreachable messages from the host OS, but
2867	 * the packets will be handled on SMBUS
2868	 */
2869	manc |= E1000_MANC_EN_MNG2HOST;
2870	manc2h = er32(MANC2H);
2871
2872	switch (hw->mac.type) {
2873	default:
2874		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2875		break;
2876	case e1000_82574:
2877	case e1000_82583:
2878		/* Check if IPMI pass-through decision filter already exists;
2879		 * if so, enable it.
2880		 */
2881		for (i = 0, j = 0; i < 8; i++) {
2882			mdef = er32(MDEF(i));
2883
2884			/* Ignore filters with anything other than IPMI ports */
2885			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886				continue;
2887
2888			/* Enable this decision filter in MANC2H */
2889			if (mdef)
2890				manc2h |= BIT(i);
2891
2892			j |= mdef;
2893		}
2894
2895		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2896			break;
2897
2898		/* Create new decision filter in an empty filter */
2899		for (i = 0, j = 0; i < 8; i++)
2900			if (er32(MDEF(i)) == 0) {
2901				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2902					       E1000_MDEF_PORT_664));
2903				manc2h |= BIT(1);
2904				j++;
2905				break;
2906			}
2907
2908		if (!j)
2909			e_warn("Unable to create IPMI pass-through filter\n");
2910		break;
2911	}
2912
2913	ew32(MANC2H, manc2h);
2914	ew32(MANC, manc);
2915}
2916
2917/**
2918 * e1000_configure_tx - Configure Transmit Unit after Reset
2919 * @adapter: board private structure
2920 *
2921 * Configure the Tx unit of the MAC after a reset.
2922 **/
2923static void e1000_configure_tx(struct e1000_adapter *adapter)
2924{
2925	struct e1000_hw *hw = &adapter->hw;
2926	struct e1000_ring *tx_ring = adapter->tx_ring;
2927	u64 tdba;
2928	u32 tdlen, tctl, tarc;
2929
2930	/* Setup the HW Tx Head and Tail descriptor pointers */
2931	tdba = tx_ring->dma;
2932	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2933	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2934	ew32(TDBAH(0), (tdba >> 32));
2935	ew32(TDLEN(0), tdlen);
2936	ew32(TDH(0), 0);
2937	ew32(TDT(0), 0);
2938	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2939	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2940
2941	writel(0, tx_ring->head);
2942	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2943		e1000e_update_tdt_wa(tx_ring, 0);
2944	else
2945		writel(0, tx_ring->tail);
2946
2947	/* Set the Tx Interrupt Delay register */
2948	ew32(TIDV, adapter->tx_int_delay);
2949	/* Tx irq moderation */
2950	ew32(TADV, adapter->tx_abs_int_delay);
2951
2952	if (adapter->flags2 & FLAG2_DMA_BURST) {
2953		u32 txdctl = er32(TXDCTL(0));
2954
2955		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2956			    E1000_TXDCTL_WTHRESH);
2957		/* set up some performance related parameters to encourage the
2958		 * hardware to use the bus more efficiently in bursts, depends
2959		 * on the tx_int_delay to be enabled,
2960		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2961		 * hthresh = 1 ==> prefetch when one or more available
2962		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2963		 * BEWARE: this seems to work but should be considered first if
2964		 * there are Tx hangs or other Tx related bugs
2965		 */
2966		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2967		ew32(TXDCTL(0), txdctl);
2968	}
2969	/* erratum work around: set txdctl the same for both queues */
2970	ew32(TXDCTL(1), er32(TXDCTL(0)));
2971
2972	/* Program the Transmit Control Register */
2973	tctl = er32(TCTL);
2974	tctl &= ~E1000_TCTL_CT;
2975	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2976		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2977
2978	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2979		tarc = er32(TARC(0));
2980		/* set the speed mode bit, we'll clear it if we're not at
2981		 * gigabit link later
2982		 */
2983#define SPEED_MODE_BIT BIT(21)
2984		tarc |= SPEED_MODE_BIT;
2985		ew32(TARC(0), tarc);
2986	}
2987
2988	/* errata: program both queues to unweighted RR */
2989	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2990		tarc = er32(TARC(0));
2991		tarc |= 1;
2992		ew32(TARC(0), tarc);
2993		tarc = er32(TARC(1));
2994		tarc |= 1;
2995		ew32(TARC(1), tarc);
2996	}
2997
2998	/* Setup Transmit Descriptor Settings for eop descriptor */
2999	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3000
3001	/* only set IDE if we are delaying interrupts using the timers */
3002	if (adapter->tx_int_delay)
3003		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3004
3005	/* enable Report Status bit */
3006	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3007
3008	ew32(TCTL, tctl);
3009
3010	hw->mac.ops.config_collision_dist(hw);
3011
3012	/* SPT and KBL Si errata workaround to avoid data corruption */
3013	if (hw->mac.type == e1000_pch_spt) {
3014		u32 reg_val;
3015
3016		reg_val = er32(IOSFPC);
3017		reg_val |= E1000_RCTL_RDMTS_HEX;
3018		ew32(IOSFPC, reg_val);
3019
3020		reg_val = er32(TARC(0));
3021		/* SPT and KBL Si errata workaround to avoid Tx hang.
3022		 * Dropping the number of outstanding requests from
3023		 * 3 to 2 in order to avoid a buffer overrun.
3024		 */
3025		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3026		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3027		ew32(TARC(0), reg_val);
3028	}
3029}
3030
3031#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033
3034/**
3035 * e1000_setup_rctl - configure the receive control registers
3036 * @adapter: Board private structure
3037 **/
3038static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039{
3040	struct e1000_hw *hw = &adapter->hw;
3041	u32 rctl, rfctl;
3042	u32 pages = 0;
3043
3044	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3045	 * If jumbo frames not set, program related MAC/PHY registers
3046	 * to h/w defaults
3047	 */
3048	if (hw->mac.type >= e1000_pch2lan) {
3049		s32 ret_val;
3050
3051		if (adapter->netdev->mtu > ETH_DATA_LEN)
3052			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053		else
3054			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055
3056		if (ret_val)
3057			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058	}
3059
3060	/* Program MC offset vector base */
3061	rctl = er32(RCTL);
3062	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3063	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3064	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3065	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066
3067	/* Do not Store bad packets */
3068	rctl &= ~E1000_RCTL_SBP;
3069
3070	/* Enable Long Packet receive */
3071	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3072		rctl &= ~E1000_RCTL_LPE;
3073	else
3074		rctl |= E1000_RCTL_LPE;
3075
3076	/* Some systems expect that the CRC is included in SMBUS traffic. The
3077	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3078	 * host memory when this is enabled
3079	 */
3080	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3081		rctl |= E1000_RCTL_SECRC;
3082
3083	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3084	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085		u16 phy_data;
3086
3087		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3088		phy_data &= 0xfff8;
3089		phy_data |= BIT(2);
3090		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091
3092		e1e_rphy(hw, 22, &phy_data);
3093		phy_data &= 0x0fff;
3094		phy_data |= BIT(14);
3095		e1e_wphy(hw, 0x10, 0x2823);
3096		e1e_wphy(hw, 0x11, 0x0003);
3097		e1e_wphy(hw, 22, phy_data);
3098	}
3099
3100	/* Setup buffer sizes */
3101	rctl &= ~E1000_RCTL_SZ_4096;
3102	rctl |= E1000_RCTL_BSEX;
3103	switch (adapter->rx_buffer_len) {
3104	case 2048:
3105	default:
3106		rctl |= E1000_RCTL_SZ_2048;
3107		rctl &= ~E1000_RCTL_BSEX;
3108		break;
3109	case 4096:
3110		rctl |= E1000_RCTL_SZ_4096;
3111		break;
3112	case 8192:
3113		rctl |= E1000_RCTL_SZ_8192;
3114		break;
3115	case 16384:
3116		rctl |= E1000_RCTL_SZ_16384;
3117		break;
3118	}
3119
3120	/* Enable Extended Status in all Receive Descriptors */
3121	rfctl = er32(RFCTL);
3122	rfctl |= E1000_RFCTL_EXTEN;
3123	ew32(RFCTL, rfctl);
3124
3125	/* 82571 and greater support packet-split where the protocol
3126	 * header is placed in skb->data and the packet data is
3127	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3128	 * In the case of a non-split, skb->data is linearly filled,
3129	 * followed by the page buffers.  Therefore, skb->data is
3130	 * sized to hold the largest protocol header.
3131	 *
3132	 * allocations using alloc_page take too long for regular MTU
3133	 * so only enable packet split for jumbo frames
3134	 *
3135	 * Using pages when the page size is greater than 16k wastes
3136	 * a lot of memory, since we allocate 3 pages at all times
3137	 * per packet.
3138	 */
3139	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3140	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3141		adapter->rx_ps_pages = pages;
3142	else
3143		adapter->rx_ps_pages = 0;
3144
3145	if (adapter->rx_ps_pages) {
3146		u32 psrctl = 0;
3147
3148		/* Enable Packet split descriptors */
3149		rctl |= E1000_RCTL_DTYP_PS;
3150
3151		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3152
3153		switch (adapter->rx_ps_pages) {
3154		case 3:
3155			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156			fallthrough;
3157		case 2:
3158			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159			fallthrough;
3160		case 1:
3161			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3162			break;
3163		}
3164
3165		ew32(PSRCTL, psrctl);
3166	}
3167
3168	/* This is useful for sniffing bad packets. */
3169	if (adapter->netdev->features & NETIF_F_RXALL) {
3170		/* UPE and MPE will be handled by normal PROMISC logic
3171		 * in e1000e_set_rx_mode
3172		 */
3173		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3174			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3175			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3176
3177		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3178			  E1000_RCTL_DPF |	/* Allow filtered pause */
3179			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3180		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3181		 * and that breaks VLANs.
3182		 */
3183	}
3184
3185	ew32(RCTL, rctl);
3186	/* just started the receive unit, no need to restart */
3187	adapter->flags &= ~FLAG_RESTART_NOW;
3188}
3189
3190/**
3191 * e1000_configure_rx - Configure Receive Unit after Reset
3192 * @adapter: board private structure
3193 *
3194 * Configure the Rx unit of the MAC after a reset.
3195 **/
3196static void e1000_configure_rx(struct e1000_adapter *adapter)
3197{
3198	struct e1000_hw *hw = &adapter->hw;
3199	struct e1000_ring *rx_ring = adapter->rx_ring;
3200	u64 rdba;
3201	u32 rdlen, rctl, rxcsum, ctrl_ext;
3202
3203	if (adapter->rx_ps_pages) {
3204		/* this is a 32 byte descriptor */
3205		rdlen = rx_ring->count *
3206		    sizeof(union e1000_rx_desc_packet_split);
3207		adapter->clean_rx = e1000_clean_rx_irq_ps;
3208		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3209	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3210		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3211		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3212		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213	} else {
3214		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215		adapter->clean_rx = e1000_clean_rx_irq;
3216		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217	}
3218
3219	/* disable receives while setting up the descriptors */
3220	rctl = er32(RCTL);
3221	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3222		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223	e1e_flush();
3224	usleep_range(10000, 11000);
3225
3226	if (adapter->flags2 & FLAG2_DMA_BURST) {
3227		/* set the writeback threshold (only takes effect if the RDTR
3228		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3229		 * enable prefetching of 0x20 Rx descriptors
3230		 * granularity = 01
3231		 * wthresh = 04,
3232		 * hthresh = 04,
3233		 * pthresh = 0x20
3234		 */
3235		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3236		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3237	}
3238
3239	/* set the Receive Delay Timer Register */
3240	ew32(RDTR, adapter->rx_int_delay);
3241
3242	/* irq moderation */
3243	ew32(RADV, adapter->rx_abs_int_delay);
3244	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3245		e1000e_write_itr(adapter, adapter->itr);
3246
3247	ctrl_ext = er32(CTRL_EXT);
3248	/* Auto-Mask interrupts upon ICR access */
3249	ctrl_ext |= E1000_CTRL_EXT_IAME;
3250	ew32(IAM, 0xffffffff);
3251	ew32(CTRL_EXT, ctrl_ext);
3252	e1e_flush();
3253
3254	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3255	 * the Base and Length of the Rx Descriptor Ring
3256	 */
3257	rdba = rx_ring->dma;
3258	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3259	ew32(RDBAH(0), (rdba >> 32));
3260	ew32(RDLEN(0), rdlen);
3261	ew32(RDH(0), 0);
3262	ew32(RDT(0), 0);
3263	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3264	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3265
3266	writel(0, rx_ring->head);
3267	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3268		e1000e_update_rdt_wa(rx_ring, 0);
3269	else
3270		writel(0, rx_ring->tail);
3271
3272	/* Enable Receive Checksum Offload for TCP and UDP */
3273	rxcsum = er32(RXCSUM);
3274	if (adapter->netdev->features & NETIF_F_RXCSUM)
3275		rxcsum |= E1000_RXCSUM_TUOFL;
3276	else
3277		rxcsum &= ~E1000_RXCSUM_TUOFL;
3278	ew32(RXCSUM, rxcsum);
3279
3280	/* With jumbo frames, excessive C-state transition latencies result
3281	 * in dropped transactions.
3282	 */
3283	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284		u32 lat =
3285		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3286		     adapter->max_frame_size) * 8 / 1000;
3287
3288		if (adapter->flags & FLAG_IS_ICH) {
3289			u32 rxdctl = er32(RXDCTL(0));
3290
3291			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3292		}
3293
3294		dev_info(&adapter->pdev->dev,
3295			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3296		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3297	} else {
3298		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3299					       PM_QOS_DEFAULT_VALUE);
3300	}
3301
3302	/* Enable Receives */
3303	ew32(RCTL, rctl);
3304}
3305
3306/**
3307 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3308 * @netdev: network interface device structure
3309 *
3310 * Writes multicast address list to the MTA hash table.
3311 * Returns: -ENOMEM on failure
3312 *                0 on no addresses written
3313 *                X on writing X addresses to MTA
3314 */
3315static int e1000e_write_mc_addr_list(struct net_device *netdev)
3316{
3317	struct e1000_adapter *adapter = netdev_priv(netdev);
3318	struct e1000_hw *hw = &adapter->hw;
3319	struct netdev_hw_addr *ha;
3320	u8 *mta_list;
3321	int i;
3322
3323	if (netdev_mc_empty(netdev)) {
3324		/* nothing to program, so clear mc list */
3325		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3326		return 0;
3327	}
3328
3329	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3330	if (!mta_list)
3331		return -ENOMEM;
3332
3333	/* update_mc_addr_list expects a packed array of only addresses. */
3334	i = 0;
3335	netdev_for_each_mc_addr(ha, netdev)
3336	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3337
3338	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3339	kfree(mta_list);
3340
3341	return netdev_mc_count(netdev);
3342}
3343
3344/**
3345 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3346 * @netdev: network interface device structure
3347 *
3348 * Writes unicast address list to the RAR table.
3349 * Returns: -ENOMEM on failure/insufficient address space
3350 *                0 on no addresses written
3351 *                X on writing X addresses to the RAR table
3352 **/
3353static int e1000e_write_uc_addr_list(struct net_device *netdev)
3354{
3355	struct e1000_adapter *adapter = netdev_priv(netdev);
3356	struct e1000_hw *hw = &adapter->hw;
3357	unsigned int rar_entries;
3358	int count = 0;
3359
3360	rar_entries = hw->mac.ops.rar_get_count(hw);
3361
3362	/* save a rar entry for our hardware address */
3363	rar_entries--;
3364
3365	/* save a rar entry for the LAA workaround */
3366	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3367		rar_entries--;
3368
3369	/* return ENOMEM indicating insufficient memory for addresses */
3370	if (netdev_uc_count(netdev) > rar_entries)
3371		return -ENOMEM;
3372
3373	if (!netdev_uc_empty(netdev) && rar_entries) {
3374		struct netdev_hw_addr *ha;
3375
3376		/* write the addresses in reverse order to avoid write
3377		 * combining
3378		 */
3379		netdev_for_each_uc_addr(ha, netdev) {
3380			int ret_val;
3381
3382			if (!rar_entries)
3383				break;
3384			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3385			if (ret_val < 0)
3386				return -ENOMEM;
3387			count++;
3388		}
3389	}
3390
3391	/* zero out the remaining RAR entries not used above */
3392	for (; rar_entries > 0; rar_entries--) {
3393		ew32(RAH(rar_entries), 0);
3394		ew32(RAL(rar_entries), 0);
3395	}
3396	e1e_flush();
3397
3398	return count;
3399}
3400
3401/**
3402 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3403 * @netdev: network interface device structure
3404 *
3405 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3406 * address list or the network interface flags are updated.  This routine is
3407 * responsible for configuring the hardware for proper unicast, multicast,
3408 * promiscuous mode, and all-multi behavior.
3409 **/
3410static void e1000e_set_rx_mode(struct net_device *netdev)
3411{
3412	struct e1000_adapter *adapter = netdev_priv(netdev);
3413	struct e1000_hw *hw = &adapter->hw;
3414	u32 rctl;
3415
3416	if (pm_runtime_suspended(netdev->dev.parent))
3417		return;
3418
3419	/* Check for Promiscuous and All Multicast modes */
3420	rctl = er32(RCTL);
3421
3422	/* clear the affected bits */
3423	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3424
3425	if (netdev->flags & IFF_PROMISC) {
3426		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3427		/* Do not hardware filter VLANs in promisc mode */
3428		e1000e_vlan_filter_disable(adapter);
3429	} else {
3430		int count;
3431
3432		if (netdev->flags & IFF_ALLMULTI) {
3433			rctl |= E1000_RCTL_MPE;
3434		} else {
3435			/* Write addresses to the MTA, if the attempt fails
3436			 * then we should just turn on promiscuous mode so
3437			 * that we can at least receive multicast traffic
3438			 */
3439			count = e1000e_write_mc_addr_list(netdev);
3440			if (count < 0)
3441				rctl |= E1000_RCTL_MPE;
3442		}
3443		e1000e_vlan_filter_enable(adapter);
3444		/* Write addresses to available RAR registers, if there is not
3445		 * sufficient space to store all the addresses then enable
3446		 * unicast promiscuous mode
3447		 */
3448		count = e1000e_write_uc_addr_list(netdev);
3449		if (count < 0)
3450			rctl |= E1000_RCTL_UPE;
3451	}
3452
3453	ew32(RCTL, rctl);
3454
3455	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3456		e1000e_vlan_strip_enable(adapter);
3457	else
3458		e1000e_vlan_strip_disable(adapter);
3459}
3460
3461static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3462{
3463	struct e1000_hw *hw = &adapter->hw;
3464	u32 mrqc, rxcsum;
3465	u32 rss_key[10];
3466	int i;
3467
3468	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3469	for (i = 0; i < 10; i++)
3470		ew32(RSSRK(i), rss_key[i]);
3471
3472	/* Direct all traffic to queue 0 */
3473	for (i = 0; i < 32; i++)
3474		ew32(RETA(i), 0);
3475
3476	/* Disable raw packet checksumming so that RSS hash is placed in
3477	 * descriptor on writeback.
3478	 */
3479	rxcsum = er32(RXCSUM);
3480	rxcsum |= E1000_RXCSUM_PCSD;
3481
3482	ew32(RXCSUM, rxcsum);
3483
3484	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3485		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3486		E1000_MRQC_RSS_FIELD_IPV6 |
3487		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3488		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3489
3490	ew32(MRQC, mrqc);
3491}
3492
3493/**
3494 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3495 * @adapter: board private structure
3496 * @timinca: pointer to returned time increment attributes
3497 *
3498 * Get attributes for incrementing the System Time Register SYSTIML/H at
3499 * the default base frequency, and set the cyclecounter shift value.
3500 **/
3501s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3502{
3503	struct e1000_hw *hw = &adapter->hw;
3504	u32 incvalue, incperiod, shift;
3505
3506	/* Make sure clock is enabled on I217/I218/I219  before checking
3507	 * the frequency
3508	 */
3509	if ((hw->mac.type >= e1000_pch_lpt) &&
3510	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3511	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3512		u32 fextnvm7 = er32(FEXTNVM7);
3513
3514		if (!(fextnvm7 & BIT(0))) {
3515			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3516			e1e_flush();
3517		}
3518	}
3519
3520	switch (hw->mac.type) {
3521	case e1000_pch2lan:
3522		/* Stable 96MHz frequency */
3523		incperiod = INCPERIOD_96MHZ;
3524		incvalue = INCVALUE_96MHZ;
3525		shift = INCVALUE_SHIFT_96MHZ;
3526		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3527		break;
3528	case e1000_pch_lpt:
3529		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3530			/* Stable 96MHz frequency */
3531			incperiod = INCPERIOD_96MHZ;
3532			incvalue = INCVALUE_96MHZ;
3533			shift = INCVALUE_SHIFT_96MHZ;
3534			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3535		} else {
3536			/* Stable 25MHz frequency */
3537			incperiod = INCPERIOD_25MHZ;
3538			incvalue = INCVALUE_25MHZ;
3539			shift = INCVALUE_SHIFT_25MHZ;
3540			adapter->cc.shift = shift;
3541		}
3542		break;
3543	case e1000_pch_spt:
3544		/* Stable 24MHz frequency */
3545		incperiod = INCPERIOD_24MHZ;
3546		incvalue = INCVALUE_24MHZ;
3547		shift = INCVALUE_SHIFT_24MHZ;
3548		adapter->cc.shift = shift;
3549		break;
3550	case e1000_pch_cnp:
3551	case e1000_pch_tgp:
3552	case e1000_pch_adp:
3553	case e1000_pch_mtp:
 
 
 
3554		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3555			/* Stable 24MHz frequency */
3556			incperiod = INCPERIOD_24MHZ;
3557			incvalue = INCVALUE_24MHZ;
3558			shift = INCVALUE_SHIFT_24MHZ;
3559			adapter->cc.shift = shift;
3560		} else {
3561			/* Stable 38400KHz frequency */
3562			incperiod = INCPERIOD_38400KHZ;
3563			incvalue = INCVALUE_38400KHZ;
3564			shift = INCVALUE_SHIFT_38400KHZ;
3565			adapter->cc.shift = shift;
3566		}
3567		break;
3568	case e1000_82574:
3569	case e1000_82583:
3570		/* Stable 25MHz frequency */
3571		incperiod = INCPERIOD_25MHZ;
3572		incvalue = INCVALUE_25MHZ;
3573		shift = INCVALUE_SHIFT_25MHZ;
3574		adapter->cc.shift = shift;
3575		break;
3576	default:
3577		return -EINVAL;
3578	}
3579
3580	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3581		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3582
3583	return 0;
3584}
3585
3586/**
3587 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3588 * @adapter: board private structure
3589 * @config: timestamp configuration
3590 *
3591 * Outgoing time stamping can be enabled and disabled. Play nice and
3592 * disable it when requested, although it shouldn't cause any overhead
3593 * when no packet needs it. At most one packet in the queue may be
3594 * marked for time stamping, otherwise it would be impossible to tell
3595 * for sure to which packet the hardware time stamp belongs.
3596 *
3597 * Incoming time stamping has to be configured via the hardware filters.
3598 * Not all combinations are supported, in particular event type has to be
3599 * specified. Matching the kind of event packet is not supported, with the
3600 * exception of "all V2 events regardless of level 2 or 4".
3601 **/
3602static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3603				  struct hwtstamp_config *config)
3604{
3605	struct e1000_hw *hw = &adapter->hw;
3606	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3607	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3608	u32 rxmtrl = 0;
3609	u16 rxudp = 0;
3610	bool is_l4 = false;
3611	bool is_l2 = false;
3612	u32 regval;
3613
3614	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3615		return -EINVAL;
3616
3617	/* flags reserved for future extensions - must be zero */
3618	if (config->flags)
3619		return -EINVAL;
3620
3621	switch (config->tx_type) {
3622	case HWTSTAMP_TX_OFF:
3623		tsync_tx_ctl = 0;
3624		break;
3625	case HWTSTAMP_TX_ON:
3626		break;
3627	default:
3628		return -ERANGE;
3629	}
3630
3631	switch (config->rx_filter) {
3632	case HWTSTAMP_FILTER_NONE:
3633		tsync_rx_ctl = 0;
3634		break;
3635	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3637		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3638		is_l4 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3641		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3642		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3643		is_l4 = true;
3644		break;
3645	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3646		/* Also time stamps V2 L2 Path Delay Request/Response */
3647		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3648		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3649		is_l2 = true;
3650		break;
3651	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3652		/* Also time stamps V2 L2 Path Delay Request/Response. */
3653		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3654		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3655		is_l2 = true;
3656		break;
3657	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3658		/* Hardware cannot filter just V2 L4 Sync messages */
3659		fallthrough;
3660	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3661		/* Also time stamps V2 Path Delay Request/Response. */
3662		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3663		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3664		is_l2 = true;
3665		is_l4 = true;
3666		break;
3667	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3668		/* Hardware cannot filter just V2 L4 Delay Request messages */
3669		fallthrough;
3670	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3671		/* Also time stamps V2 Path Delay Request/Response. */
3672		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3673		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3674		is_l2 = true;
3675		is_l4 = true;
3676		break;
3677	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3678	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3679		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3680		fallthrough;
3681	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3682		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3683		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3684		is_l2 = true;
3685		is_l4 = true;
3686		break;
3687	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3688		/* For V1, the hardware can only filter Sync messages or
3689		 * Delay Request messages but not both so fall-through to
3690		 * time stamp all packets.
3691		 */
3692		fallthrough;
3693	case HWTSTAMP_FILTER_NTP_ALL:
3694	case HWTSTAMP_FILTER_ALL:
3695		is_l2 = true;
3696		is_l4 = true;
3697		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3698		config->rx_filter = HWTSTAMP_FILTER_ALL;
3699		break;
3700	default:
3701		return -ERANGE;
3702	}
3703
3704	adapter->hwtstamp_config = *config;
3705
3706	/* enable/disable Tx h/w time stamping */
3707	regval = er32(TSYNCTXCTL);
3708	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3709	regval |= tsync_tx_ctl;
3710	ew32(TSYNCTXCTL, regval);
3711	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3712	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3713		e_err("Timesync Tx Control register not set as expected\n");
3714		return -EAGAIN;
3715	}
3716
3717	/* enable/disable Rx h/w time stamping */
3718	regval = er32(TSYNCRXCTL);
3719	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3720	regval |= tsync_rx_ctl;
3721	ew32(TSYNCRXCTL, regval);
3722	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3723				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3724	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3725		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3726		e_err("Timesync Rx Control register not set as expected\n");
3727		return -EAGAIN;
3728	}
3729
3730	/* L2: define ethertype filter for time stamped packets */
3731	if (is_l2)
3732		rxmtrl |= ETH_P_1588;
3733
3734	/* define which PTP packets get time stamped */
3735	ew32(RXMTRL, rxmtrl);
3736
3737	/* Filter by destination port */
3738	if (is_l4) {
3739		rxudp = PTP_EV_PORT;
3740		cpu_to_be16s(&rxudp);
3741	}
3742	ew32(RXUDP, rxudp);
3743
3744	e1e_flush();
3745
3746	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3747	er32(RXSTMPH);
3748	er32(TXSTMPH);
3749
3750	return 0;
3751}
3752
3753/**
3754 * e1000_configure - configure the hardware for Rx and Tx
3755 * @adapter: private board structure
3756 **/
3757static void e1000_configure(struct e1000_adapter *adapter)
3758{
3759	struct e1000_ring *rx_ring = adapter->rx_ring;
3760
3761	e1000e_set_rx_mode(adapter->netdev);
3762
3763	e1000_restore_vlan(adapter);
3764	e1000_init_manageability_pt(adapter);
3765
3766	e1000_configure_tx(adapter);
3767
3768	if (adapter->netdev->features & NETIF_F_RXHASH)
3769		e1000e_setup_rss_hash(adapter);
3770	e1000_setup_rctl(adapter);
3771	e1000_configure_rx(adapter);
3772	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3773}
3774
3775/**
3776 * e1000e_power_up_phy - restore link in case the phy was powered down
3777 * @adapter: address of board private structure
3778 *
3779 * The phy may be powered down to save power and turn off link when the
3780 * driver is unloaded and wake on lan is not enabled (among others)
3781 * *** this routine MUST be followed by a call to e1000e_reset ***
3782 **/
3783void e1000e_power_up_phy(struct e1000_adapter *adapter)
3784{
3785	if (adapter->hw.phy.ops.power_up)
3786		adapter->hw.phy.ops.power_up(&adapter->hw);
3787
3788	adapter->hw.mac.ops.setup_link(&adapter->hw);
3789}
3790
3791/**
3792 * e1000_power_down_phy - Power down the PHY
3793 * @adapter: board private structure
3794 *
3795 * Power down the PHY so no link is implied when interface is down.
3796 * The PHY cannot be powered down if management or WoL is active.
3797 */
3798static void e1000_power_down_phy(struct e1000_adapter *adapter)
3799{
3800	if (adapter->hw.phy.ops.power_down)
3801		adapter->hw.phy.ops.power_down(&adapter->hw);
3802}
3803
3804/**
3805 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3806 * @adapter: board private structure
3807 *
3808 * We want to clear all pending descriptors from the TX ring.
3809 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3810 * the data of the next descriptor. We don't care about the data we are about
3811 * to reset the HW.
3812 */
3813static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3814{
3815	struct e1000_hw *hw = &adapter->hw;
3816	struct e1000_ring *tx_ring = adapter->tx_ring;
3817	struct e1000_tx_desc *tx_desc = NULL;
3818	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3819	u16 size = 512;
3820
3821	tctl = er32(TCTL);
3822	ew32(TCTL, tctl | E1000_TCTL_EN);
3823	tdt = er32(TDT(0));
3824	BUG_ON(tdt != tx_ring->next_to_use);
3825	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3826	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3827
3828	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3829	tx_desc->upper.data = 0;
3830	/* flush descriptors to memory before notifying the HW */
3831	wmb();
3832	tx_ring->next_to_use++;
3833	if (tx_ring->next_to_use == tx_ring->count)
3834		tx_ring->next_to_use = 0;
3835	ew32(TDT(0), tx_ring->next_to_use);
3836	usleep_range(200, 250);
3837}
3838
3839/**
3840 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3841 * @adapter: board private structure
3842 *
3843 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3844 */
3845static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3846{
3847	u32 rctl, rxdctl;
3848	struct e1000_hw *hw = &adapter->hw;
3849
3850	rctl = er32(RCTL);
3851	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3852	e1e_flush();
3853	usleep_range(100, 150);
3854
3855	rxdctl = er32(RXDCTL(0));
3856	/* zero the lower 14 bits (prefetch and host thresholds) */
3857	rxdctl &= 0xffffc000;
3858
3859	/* update thresholds: prefetch threshold to 31, host threshold to 1
3860	 * and make sure the granularity is "descriptors" and not "cache lines"
3861	 */
3862	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3863
3864	ew32(RXDCTL(0), rxdctl);
3865	/* momentarily enable the RX ring for the changes to take effect */
3866	ew32(RCTL, rctl | E1000_RCTL_EN);
3867	e1e_flush();
3868	usleep_range(100, 150);
3869	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3870}
3871
3872/**
3873 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3874 * @adapter: board private structure
3875 *
3876 * In i219, the descriptor rings must be emptied before resetting the HW
3877 * or before changing the device state to D3 during runtime (runtime PM).
3878 *
3879 * Failure to do this will cause the HW to enter a unit hang state which can
3880 * only be released by PCI reset on the device
3881 *
3882 */
3883
3884static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3885{
3886	u16 hang_state;
3887	u32 fext_nvm11, tdlen;
3888	struct e1000_hw *hw = &adapter->hw;
3889
3890	/* First, disable MULR fix in FEXTNVM11 */
3891	fext_nvm11 = er32(FEXTNVM11);
3892	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3893	ew32(FEXTNVM11, fext_nvm11);
3894	/* do nothing if we're not in faulty state, or if the queue is empty */
3895	tdlen = er32(TDLEN(0));
3896	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3897			     &hang_state);
3898	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3899		return;
3900	e1000_flush_tx_ring(adapter);
3901	/* recheck, maybe the fault is caused by the rx ring */
3902	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3903			     &hang_state);
3904	if (hang_state & FLUSH_DESC_REQUIRED)
3905		e1000_flush_rx_ring(adapter);
3906}
3907
3908/**
3909 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3910 * @adapter: board private structure
3911 *
3912 * When the MAC is reset, all hardware bits for timesync will be reset to the
3913 * default values. This function will restore the settings last in place.
3914 * Since the clock SYSTIME registers are reset, we will simply restore the
3915 * cyclecounter to the kernel real clock time.
3916 **/
3917static void e1000e_systim_reset(struct e1000_adapter *adapter)
3918{
3919	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3920	struct e1000_hw *hw = &adapter->hw;
3921	unsigned long flags;
3922	u32 timinca;
3923	s32 ret_val;
3924
3925	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3926		return;
3927
3928	if (info->adjfreq) {
3929		/* restore the previous ptp frequency delta */
3930		ret_val = info->adjfreq(info, adapter->ptp_delta);
3931	} else {
3932		/* set the default base frequency if no adjustment possible */
3933		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3934		if (!ret_val)
3935			ew32(TIMINCA, timinca);
3936	}
3937
3938	if (ret_val) {
3939		dev_warn(&adapter->pdev->dev,
3940			 "Failed to restore TIMINCA clock rate delta: %d\n",
3941			 ret_val);
3942		return;
3943	}
3944
3945	/* reset the systim ns time counter */
3946	spin_lock_irqsave(&adapter->systim_lock, flags);
3947	timecounter_init(&adapter->tc, &adapter->cc,
3948			 ktime_to_ns(ktime_get_real()));
3949	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3950
3951	/* restore the previous hwtstamp configuration settings */
3952	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3953}
3954
3955/**
3956 * e1000e_reset - bring the hardware into a known good state
3957 * @adapter: board private structure
3958 *
3959 * This function boots the hardware and enables some settings that
3960 * require a configuration cycle of the hardware - those cannot be
3961 * set/changed during runtime. After reset the device needs to be
3962 * properly configured for Rx, Tx etc.
3963 */
3964void e1000e_reset(struct e1000_adapter *adapter)
3965{
3966	struct e1000_mac_info *mac = &adapter->hw.mac;
3967	struct e1000_fc_info *fc = &adapter->hw.fc;
3968	struct e1000_hw *hw = &adapter->hw;
3969	u32 tx_space, min_tx_space, min_rx_space;
3970	u32 pba = adapter->pba;
3971	u16 hwm;
3972
3973	/* reset Packet Buffer Allocation to default */
3974	ew32(PBA, pba);
3975
3976	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3977		/* To maintain wire speed transmits, the Tx FIFO should be
3978		 * large enough to accommodate two full transmit packets,
3979		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3980		 * the Rx FIFO should be large enough to accommodate at least
3981		 * one full receive packet and is similarly rounded up and
3982		 * expressed in KB.
3983		 */
3984		pba = er32(PBA);
3985		/* upper 16 bits has Tx packet buffer allocation size in KB */
3986		tx_space = pba >> 16;
3987		/* lower 16 bits has Rx packet buffer allocation size in KB */
3988		pba &= 0xffff;
3989		/* the Tx fifo also stores 16 bytes of information about the Tx
3990		 * but don't include ethernet FCS because hardware appends it
3991		 */
3992		min_tx_space = (adapter->max_frame_size +
3993				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3994		min_tx_space = ALIGN(min_tx_space, 1024);
3995		min_tx_space >>= 10;
3996		/* software strips receive CRC, so leave room for it */
3997		min_rx_space = adapter->max_frame_size;
3998		min_rx_space = ALIGN(min_rx_space, 1024);
3999		min_rx_space >>= 10;
4000
4001		/* If current Tx allocation is less than the min Tx FIFO size,
4002		 * and the min Tx FIFO size is less than the current Rx FIFO
4003		 * allocation, take space away from current Rx allocation
4004		 */
4005		if ((tx_space < min_tx_space) &&
4006		    ((min_tx_space - tx_space) < pba)) {
4007			pba -= min_tx_space - tx_space;
4008
4009			/* if short on Rx space, Rx wins and must trump Tx
4010			 * adjustment
4011			 */
4012			if (pba < min_rx_space)
4013				pba = min_rx_space;
4014		}
4015
4016		ew32(PBA, pba);
4017	}
4018
4019	/* flow control settings
4020	 *
4021	 * The high water mark must be low enough to fit one full frame
4022	 * (or the size used for early receive) above it in the Rx FIFO.
4023	 * Set it to the lower of:
4024	 * - 90% of the Rx FIFO size, and
4025	 * - the full Rx FIFO size minus one full frame
4026	 */
4027	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4028		fc->pause_time = 0xFFFF;
4029	else
4030		fc->pause_time = E1000_FC_PAUSE_TIME;
4031	fc->send_xon = true;
4032	fc->current_mode = fc->requested_mode;
4033
4034	switch (hw->mac.type) {
4035	case e1000_ich9lan:
4036	case e1000_ich10lan:
4037		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4038			pba = 14;
4039			ew32(PBA, pba);
4040			fc->high_water = 0x2800;
4041			fc->low_water = fc->high_water - 8;
4042			break;
4043		}
4044		fallthrough;
4045	default:
4046		hwm = min(((pba << 10) * 9 / 10),
4047			  ((pba << 10) - adapter->max_frame_size));
4048
4049		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4050		fc->low_water = fc->high_water - 8;
4051		break;
4052	case e1000_pchlan:
4053		/* Workaround PCH LOM adapter hangs with certain network
4054		 * loads.  If hangs persist, try disabling Tx flow control.
4055		 */
4056		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4057			fc->high_water = 0x3500;
4058			fc->low_water = 0x1500;
4059		} else {
4060			fc->high_water = 0x5000;
4061			fc->low_water = 0x3000;
4062		}
4063		fc->refresh_time = 0x1000;
4064		break;
4065	case e1000_pch2lan:
4066	case e1000_pch_lpt:
4067	case e1000_pch_spt:
4068	case e1000_pch_cnp:
4069	case e1000_pch_tgp:
4070	case e1000_pch_adp:
4071	case e1000_pch_mtp:
 
 
 
4072		fc->refresh_time = 0xFFFF;
4073		fc->pause_time = 0xFFFF;
4074
4075		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4076			fc->high_water = 0x05C20;
4077			fc->low_water = 0x05048;
4078			break;
4079		}
4080
4081		pba = 14;
4082		ew32(PBA, pba);
4083		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4084		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4085		break;
4086	}
4087
4088	/* Alignment of Tx data is on an arbitrary byte boundary with the
4089	 * maximum size per Tx descriptor limited only to the transmit
4090	 * allocation of the packet buffer minus 96 bytes with an upper
4091	 * limit of 24KB due to receive synchronization limitations.
4092	 */
4093	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4094				       24 << 10);
4095
4096	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4097	 * fit in receive buffer.
4098	 */
4099	if (adapter->itr_setting & 0x3) {
4100		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4101			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4102				dev_info(&adapter->pdev->dev,
4103					 "Interrupt Throttle Rate off\n");
4104				adapter->flags2 |= FLAG2_DISABLE_AIM;
4105				e1000e_write_itr(adapter, 0);
4106			}
4107		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4108			dev_info(&adapter->pdev->dev,
4109				 "Interrupt Throttle Rate on\n");
4110			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4111			adapter->itr = 20000;
4112			e1000e_write_itr(adapter, adapter->itr);
4113		}
4114	}
4115
4116	if (hw->mac.type >= e1000_pch_spt)
4117		e1000_flush_desc_rings(adapter);
4118	/* Allow time for pending master requests to run */
4119	mac->ops.reset_hw(hw);
4120
4121	/* For parts with AMT enabled, let the firmware know
4122	 * that the network interface is in control
4123	 */
4124	if (adapter->flags & FLAG_HAS_AMT)
4125		e1000e_get_hw_control(adapter);
4126
4127	ew32(WUC, 0);
4128
4129	if (mac->ops.init_hw(hw))
4130		e_err("Hardware Error\n");
4131
4132	e1000_update_mng_vlan(adapter);
4133
4134	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4135	ew32(VET, ETH_P_8021Q);
4136
4137	e1000e_reset_adaptive(hw);
4138
4139	/* restore systim and hwtstamp settings */
4140	e1000e_systim_reset(adapter);
4141
4142	/* Set EEE advertisement as appropriate */
4143	if (adapter->flags2 & FLAG2_HAS_EEE) {
4144		s32 ret_val;
4145		u16 adv_addr;
4146
4147		switch (hw->phy.type) {
4148		case e1000_phy_82579:
4149			adv_addr = I82579_EEE_ADVERTISEMENT;
4150			break;
4151		case e1000_phy_i217:
4152			adv_addr = I217_EEE_ADVERTISEMENT;
4153			break;
4154		default:
4155			dev_err(&adapter->pdev->dev,
4156				"Invalid PHY type setting EEE advertisement\n");
4157			return;
4158		}
4159
4160		ret_val = hw->phy.ops.acquire(hw);
4161		if (ret_val) {
4162			dev_err(&adapter->pdev->dev,
4163				"EEE advertisement - unable to acquire PHY\n");
4164			return;
4165		}
4166
4167		e1000_write_emi_reg_locked(hw, adv_addr,
4168					   hw->dev_spec.ich8lan.eee_disable ?
4169					   0 : adapter->eee_advert);
4170
4171		hw->phy.ops.release(hw);
4172	}
4173
4174	if (!netif_running(adapter->netdev) &&
4175	    !test_bit(__E1000_TESTING, &adapter->state))
4176		e1000_power_down_phy(adapter);
4177
4178	e1000_get_phy_info(hw);
4179
4180	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4181	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4182		u16 phy_data = 0;
4183		/* speed up time to link by disabling smart power down, ignore
4184		 * the return value of this function because there is nothing
4185		 * different we would do if it failed
4186		 */
4187		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4188		phy_data &= ~IGP02E1000_PM_SPD;
4189		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4190	}
4191	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4192		u32 reg;
4193
4194		/* Fextnvm7 @ 0xe4[2] = 1 */
4195		reg = er32(FEXTNVM7);
4196		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4197		ew32(FEXTNVM7, reg);
4198		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4199		reg = er32(FEXTNVM9);
4200		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4201		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4202		ew32(FEXTNVM9, reg);
4203	}
4204
4205}
4206
4207/**
4208 * e1000e_trigger_lsc - trigger an LSC interrupt
4209 * @adapter: 
4210 *
4211 * Fire a link status change interrupt to start the watchdog.
4212 **/
4213static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4214{
4215	struct e1000_hw *hw = &adapter->hw;
4216
4217	if (adapter->msix_entries)
4218		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4219	else
4220		ew32(ICS, E1000_ICS_LSC);
4221}
4222
4223void e1000e_up(struct e1000_adapter *adapter)
4224{
4225	/* hardware has been reset, we need to reload some things */
4226	e1000_configure(adapter);
4227
4228	clear_bit(__E1000_DOWN, &adapter->state);
4229
4230	if (adapter->msix_entries)
4231		e1000_configure_msix(adapter);
4232	e1000_irq_enable(adapter);
4233
4234	/* Tx queue started by watchdog timer when link is up */
4235
4236	e1000e_trigger_lsc(adapter);
4237}
4238
4239static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4240{
4241	struct e1000_hw *hw = &adapter->hw;
4242
4243	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4244		return;
4245
4246	/* flush pending descriptor writebacks to memory */
4247	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4248	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4249
4250	/* execute the writes immediately */
4251	e1e_flush();
4252
4253	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4254	 * write is successful
4255	 */
4256	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4257	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4258
4259	/* execute the writes immediately */
4260	e1e_flush();
4261}
4262
4263static void e1000e_update_stats(struct e1000_adapter *adapter);
4264
4265/**
4266 * e1000e_down - quiesce the device and optionally reset the hardware
4267 * @adapter: board private structure
4268 * @reset: boolean flag to reset the hardware or not
4269 */
4270void e1000e_down(struct e1000_adapter *adapter, bool reset)
4271{
4272	struct net_device *netdev = adapter->netdev;
4273	struct e1000_hw *hw = &adapter->hw;
4274	u32 tctl, rctl;
4275
4276	/* signal that we're down so the interrupt handler does not
4277	 * reschedule our watchdog timer
4278	 */
4279	set_bit(__E1000_DOWN, &adapter->state);
4280
4281	netif_carrier_off(netdev);
4282
4283	/* disable receives in the hardware */
4284	rctl = er32(RCTL);
4285	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4286		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4287	/* flush and sleep below */
4288
4289	netif_stop_queue(netdev);
4290
4291	/* disable transmits in the hardware */
4292	tctl = er32(TCTL);
4293	tctl &= ~E1000_TCTL_EN;
4294	ew32(TCTL, tctl);
4295
4296	/* flush both disables and wait for them to finish */
4297	e1e_flush();
4298	usleep_range(10000, 11000);
4299
4300	e1000_irq_disable(adapter);
4301
4302	napi_synchronize(&adapter->napi);
4303
4304	del_timer_sync(&adapter->watchdog_timer);
4305	del_timer_sync(&adapter->phy_info_timer);
4306
4307	spin_lock(&adapter->stats64_lock);
4308	e1000e_update_stats(adapter);
4309	spin_unlock(&adapter->stats64_lock);
4310
4311	e1000e_flush_descriptors(adapter);
4312
4313	adapter->link_speed = 0;
4314	adapter->link_duplex = 0;
4315
4316	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4317	if ((hw->mac.type >= e1000_pch2lan) &&
4318	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4319	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4320		e_dbg("failed to disable jumbo frame workaround mode\n");
4321
4322	if (!pci_channel_offline(adapter->pdev)) {
4323		if (reset)
4324			e1000e_reset(adapter);
4325		else if (hw->mac.type >= e1000_pch_spt)
4326			e1000_flush_desc_rings(adapter);
4327	}
4328	e1000_clean_tx_ring(adapter->tx_ring);
4329	e1000_clean_rx_ring(adapter->rx_ring);
4330}
4331
4332void e1000e_reinit_locked(struct e1000_adapter *adapter)
4333{
4334	might_sleep();
4335	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4336		usleep_range(1000, 1100);
4337	e1000e_down(adapter, true);
4338	e1000e_up(adapter);
4339	clear_bit(__E1000_RESETTING, &adapter->state);
4340}
4341
4342/**
4343 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4344 * @hw: pointer to the HW structure
4345 * @systim: PHC time value read, sanitized and returned
4346 * @sts: structure to hold system time before and after reading SYSTIML,
4347 * may be NULL
4348 *
4349 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4350 * check to see that the time is incrementing at a reasonable
4351 * rate and is a multiple of incvalue.
4352 **/
4353static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4354				  struct ptp_system_timestamp *sts)
4355{
4356	u64 time_delta, rem, temp;
4357	u64 systim_next;
4358	u32 incvalue;
4359	int i;
4360
4361	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4362	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4363		/* latch SYSTIMH on read of SYSTIML */
4364		ptp_read_system_prets(sts);
4365		systim_next = (u64)er32(SYSTIML);
4366		ptp_read_system_postts(sts);
4367		systim_next |= (u64)er32(SYSTIMH) << 32;
4368
4369		time_delta = systim_next - systim;
4370		temp = time_delta;
4371		/* VMWare users have seen incvalue of zero, don't div / 0 */
4372		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4373
4374		systim = systim_next;
4375
4376		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4377			break;
4378	}
4379
4380	return systim;
4381}
4382
4383/**
4384 * e1000e_read_systim - read SYSTIM register
4385 * @adapter: board private structure
4386 * @sts: structure which will contain system time before and after reading
4387 * SYSTIML, may be NULL
4388 **/
4389u64 e1000e_read_systim(struct e1000_adapter *adapter,
4390		       struct ptp_system_timestamp *sts)
4391{
4392	struct e1000_hw *hw = &adapter->hw;
4393	u32 systimel, systimel_2, systimeh;
4394	u64 systim;
4395	/* SYSTIMH latching upon SYSTIML read does not work well.
4396	 * This means that if SYSTIML overflows after we read it but before
4397	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4398	 * will experience a huge non linear increment in the systime value
4399	 * to fix that we test for overflow and if true, we re-read systime.
4400	 */
4401	ptp_read_system_prets(sts);
4402	systimel = er32(SYSTIML);
4403	ptp_read_system_postts(sts);
4404	systimeh = er32(SYSTIMH);
4405	/* Is systimel is so large that overflow is possible? */
4406	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4407		ptp_read_system_prets(sts);
4408		systimel_2 = er32(SYSTIML);
4409		ptp_read_system_postts(sts);
4410		if (systimel > systimel_2) {
4411			/* There was an overflow, read again SYSTIMH, and use
4412			 * systimel_2
4413			 */
4414			systimeh = er32(SYSTIMH);
4415			systimel = systimel_2;
4416		}
4417	}
4418	systim = (u64)systimel;
4419	systim |= (u64)systimeh << 32;
4420
4421	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4422		systim = e1000e_sanitize_systim(hw, systim, sts);
4423
4424	return systim;
4425}
4426
4427/**
4428 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4429 * @cc: cyclecounter structure
4430 **/
4431static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4432{
4433	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4434						     cc);
4435
4436	return e1000e_read_systim(adapter, NULL);
4437}
4438
4439/**
4440 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4441 * @adapter: board private structure to initialize
4442 *
4443 * e1000_sw_init initializes the Adapter private data structure.
4444 * Fields are initialized based on PCI device information and
4445 * OS network device settings (MTU size).
4446 **/
4447static int e1000_sw_init(struct e1000_adapter *adapter)
4448{
4449	struct net_device *netdev = adapter->netdev;
4450
4451	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4452	adapter->rx_ps_bsize0 = 128;
4453	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4454	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4455	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4456	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4457
4458	spin_lock_init(&adapter->stats64_lock);
4459
4460	e1000e_set_interrupt_capability(adapter);
4461
4462	if (e1000_alloc_queues(adapter))
4463		return -ENOMEM;
4464
4465	/* Setup hardware time stamping cyclecounter */
4466	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4467		adapter->cc.read = e1000e_cyclecounter_read;
4468		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4469		adapter->cc.mult = 1;
4470		/* cc.shift set in e1000e_get_base_tininca() */
4471
4472		spin_lock_init(&adapter->systim_lock);
4473		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4474	}
4475
4476	/* Explicitly disable IRQ since the NIC can be in any state. */
4477	e1000_irq_disable(adapter);
4478
4479	set_bit(__E1000_DOWN, &adapter->state);
4480	return 0;
4481}
4482
4483/**
4484 * e1000_intr_msi_test - Interrupt Handler
4485 * @irq: interrupt number
4486 * @data: pointer to a network interface device structure
4487 **/
4488static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4489{
4490	struct net_device *netdev = data;
4491	struct e1000_adapter *adapter = netdev_priv(netdev);
4492	struct e1000_hw *hw = &adapter->hw;
4493	u32 icr = er32(ICR);
4494
4495	e_dbg("icr is %08X\n", icr);
4496	if (icr & E1000_ICR_RXSEQ) {
4497		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4498		/* Force memory writes to complete before acknowledging the
4499		 * interrupt is handled.
4500		 */
4501		wmb();
4502	}
4503
4504	return IRQ_HANDLED;
4505}
4506
4507/**
4508 * e1000_test_msi_interrupt - Returns 0 for successful test
4509 * @adapter: board private struct
4510 *
4511 * code flow taken from tg3.c
4512 **/
4513static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4514{
4515	struct net_device *netdev = adapter->netdev;
4516	struct e1000_hw *hw = &adapter->hw;
4517	int err;
4518
4519	/* poll_enable hasn't been called yet, so don't need disable */
4520	/* clear any pending events */
4521	er32(ICR);
4522
4523	/* free the real vector and request a test handler */
4524	e1000_free_irq(adapter);
4525	e1000e_reset_interrupt_capability(adapter);
4526
4527	/* Assume that the test fails, if it succeeds then the test
4528	 * MSI irq handler will unset this flag
4529	 */
4530	adapter->flags |= FLAG_MSI_TEST_FAILED;
4531
4532	err = pci_enable_msi(adapter->pdev);
4533	if (err)
4534		goto msi_test_failed;
4535
4536	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4537			  netdev->name, netdev);
4538	if (err) {
4539		pci_disable_msi(adapter->pdev);
4540		goto msi_test_failed;
4541	}
4542
4543	/* Force memory writes to complete before enabling and firing an
4544	 * interrupt.
4545	 */
4546	wmb();
4547
4548	e1000_irq_enable(adapter);
4549
4550	/* fire an unusual interrupt on the test handler */
4551	ew32(ICS, E1000_ICS_RXSEQ);
4552	e1e_flush();
4553	msleep(100);
4554
4555	e1000_irq_disable(adapter);
4556
4557	rmb();			/* read flags after interrupt has been fired */
4558
4559	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4560		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4561		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4562	} else {
4563		e_dbg("MSI interrupt test succeeded!\n");
4564	}
4565
4566	free_irq(adapter->pdev->irq, netdev);
4567	pci_disable_msi(adapter->pdev);
4568
4569msi_test_failed:
4570	e1000e_set_interrupt_capability(adapter);
4571	return e1000_request_irq(adapter);
4572}
4573
4574/**
4575 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4576 * @adapter: board private struct
4577 *
4578 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4579 **/
4580static int e1000_test_msi(struct e1000_adapter *adapter)
4581{
4582	int err;
4583	u16 pci_cmd;
4584
4585	if (!(adapter->flags & FLAG_MSI_ENABLED))
4586		return 0;
4587
4588	/* disable SERR in case the MSI write causes a master abort */
4589	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4590	if (pci_cmd & PCI_COMMAND_SERR)
4591		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4592				      pci_cmd & ~PCI_COMMAND_SERR);
4593
4594	err = e1000_test_msi_interrupt(adapter);
4595
4596	/* re-enable SERR */
4597	if (pci_cmd & PCI_COMMAND_SERR) {
4598		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4599		pci_cmd |= PCI_COMMAND_SERR;
4600		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4601	}
4602
4603	return err;
4604}
4605
4606/**
4607 * e1000e_open - Called when a network interface is made active
4608 * @netdev: network interface device structure
4609 *
4610 * Returns 0 on success, negative value on failure
4611 *
4612 * The open entry point is called when a network interface is made
4613 * active by the system (IFF_UP).  At this point all resources needed
4614 * for transmit and receive operations are allocated, the interrupt
4615 * handler is registered with the OS, the watchdog timer is started,
4616 * and the stack is notified that the interface is ready.
4617 **/
4618int e1000e_open(struct net_device *netdev)
4619{
4620	struct e1000_adapter *adapter = netdev_priv(netdev);
4621	struct e1000_hw *hw = &adapter->hw;
4622	struct pci_dev *pdev = adapter->pdev;
4623	int err;
 
4624
4625	/* disallow open during test */
4626	if (test_bit(__E1000_TESTING, &adapter->state))
4627		return -EBUSY;
4628
4629	pm_runtime_get_sync(&pdev->dev);
4630
4631	netif_carrier_off(netdev);
4632	netif_stop_queue(netdev);
4633
4634	/* allocate transmit descriptors */
4635	err = e1000e_setup_tx_resources(adapter->tx_ring);
4636	if (err)
4637		goto err_setup_tx;
4638
4639	/* allocate receive descriptors */
4640	err = e1000e_setup_rx_resources(adapter->rx_ring);
4641	if (err)
4642		goto err_setup_rx;
4643
4644	/* If AMT is enabled, let the firmware know that the network
4645	 * interface is now open and reset the part to a known state.
4646	 */
4647	if (adapter->flags & FLAG_HAS_AMT) {
4648		e1000e_get_hw_control(adapter);
4649		e1000e_reset(adapter);
4650	}
4651
4652	e1000e_power_up_phy(adapter);
4653
4654	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4655	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4656		e1000_update_mng_vlan(adapter);
4657
4658	/* DMA latency requirement to workaround jumbo issue */
4659	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4660
4661	/* before we allocate an interrupt, we must be ready to handle it.
4662	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4663	 * as soon as we call pci_request_irq, so we have to setup our
4664	 * clean_rx handler before we do so.
4665	 */
4666	e1000_configure(adapter);
4667
4668	err = e1000_request_irq(adapter);
4669	if (err)
4670		goto err_req_irq;
4671
4672	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4673	 * ignore e1000e MSI messages, which means we need to test our MSI
4674	 * interrupt now
4675	 */
4676	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4677		err = e1000_test_msi(adapter);
4678		if (err) {
4679			e_err("Interrupt allocation failed\n");
4680			goto err_req_irq;
4681		}
4682	}
4683
4684	/* From here on the code is the same as e1000e_up() */
4685	clear_bit(__E1000_DOWN, &adapter->state);
4686
 
 
 
 
 
 
4687	napi_enable(&adapter->napi);
 
 
4688
4689	e1000_irq_enable(adapter);
4690
4691	adapter->tx_hang_recheck = false;
4692
4693	hw->mac.get_link_status = true;
4694	pm_runtime_put(&pdev->dev);
4695
4696	e1000e_trigger_lsc(adapter);
4697
4698	return 0;
4699
4700err_req_irq:
4701	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4702	e1000e_release_hw_control(adapter);
4703	e1000_power_down_phy(adapter);
4704	e1000e_free_rx_resources(adapter->rx_ring);
4705err_setup_rx:
4706	e1000e_free_tx_resources(adapter->tx_ring);
4707err_setup_tx:
4708	e1000e_reset(adapter);
4709	pm_runtime_put_sync(&pdev->dev);
4710
4711	return err;
4712}
4713
4714/**
4715 * e1000e_close - Disables a network interface
4716 * @netdev: network interface device structure
4717 *
4718 * Returns 0, this is not allowed to fail
4719 *
4720 * The close entry point is called when an interface is de-activated
4721 * by the OS.  The hardware is still under the drivers control, but
4722 * needs to be disabled.  A global MAC reset is issued to stop the
4723 * hardware, and all transmit and receive resources are freed.
4724 **/
4725int e1000e_close(struct net_device *netdev)
4726{
4727	struct e1000_adapter *adapter = netdev_priv(netdev);
4728	struct pci_dev *pdev = adapter->pdev;
4729	int count = E1000_CHECK_RESET_COUNT;
4730
4731	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4732		usleep_range(10000, 11000);
4733
4734	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4735
4736	pm_runtime_get_sync(&pdev->dev);
4737
4738	if (netif_device_present(netdev)) {
4739		e1000e_down(adapter, true);
4740		e1000_free_irq(adapter);
4741
4742		/* Link status message must follow this format */
4743		netdev_info(netdev, "NIC Link is Down\n");
4744	}
4745
 
 
4746	napi_disable(&adapter->napi);
4747
4748	e1000e_free_tx_resources(adapter->tx_ring);
4749	e1000e_free_rx_resources(adapter->rx_ring);
4750
4751	/* kill manageability vlan ID if supported, but not if a vlan with
4752	 * the same ID is registered on the host OS (let 8021q kill it)
4753	 */
4754	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4755		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4756				       adapter->mng_vlan_id);
4757
4758	/* If AMT is enabled, let the firmware know that the network
4759	 * interface is now closed
4760	 */
4761	if ((adapter->flags & FLAG_HAS_AMT) &&
4762	    !test_bit(__E1000_TESTING, &adapter->state))
4763		e1000e_release_hw_control(adapter);
4764
4765	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4766
4767	pm_runtime_put_sync(&pdev->dev);
4768
4769	return 0;
4770}
4771
4772/**
4773 * e1000_set_mac - Change the Ethernet Address of the NIC
4774 * @netdev: network interface device structure
4775 * @p: pointer to an address structure
4776 *
4777 * Returns 0 on success, negative on failure
4778 **/
4779static int e1000_set_mac(struct net_device *netdev, void *p)
4780{
4781	struct e1000_adapter *adapter = netdev_priv(netdev);
4782	struct e1000_hw *hw = &adapter->hw;
4783	struct sockaddr *addr = p;
4784
4785	if (!is_valid_ether_addr(addr->sa_data))
4786		return -EADDRNOTAVAIL;
4787
4788	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4789	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4790
4791	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4792
4793	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4794		/* activate the work around */
4795		e1000e_set_laa_state_82571(&adapter->hw, 1);
4796
4797		/* Hold a copy of the LAA in RAR[14] This is done so that
4798		 * between the time RAR[0] gets clobbered  and the time it
4799		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4800		 * of the RARs and no incoming packets directed to this port
4801		 * are dropped. Eventually the LAA will be in RAR[0] and
4802		 * RAR[14]
4803		 */
4804		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4805				    adapter->hw.mac.rar_entry_count - 1);
4806	}
4807
4808	return 0;
4809}
4810
4811/**
4812 * e1000e_update_phy_task - work thread to update phy
4813 * @work: pointer to our work struct
4814 *
4815 * this worker thread exists because we must acquire a
4816 * semaphore to read the phy, which we could msleep while
4817 * waiting for it, and we can't msleep in a timer.
4818 **/
4819static void e1000e_update_phy_task(struct work_struct *work)
4820{
4821	struct e1000_adapter *adapter = container_of(work,
4822						     struct e1000_adapter,
4823						     update_phy_task);
4824	struct e1000_hw *hw = &adapter->hw;
4825
4826	if (test_bit(__E1000_DOWN, &adapter->state))
4827		return;
4828
4829	e1000_get_phy_info(hw);
4830
4831	/* Enable EEE on 82579 after link up */
4832	if (hw->phy.type >= e1000_phy_82579)
4833		e1000_set_eee_pchlan(hw);
4834}
4835
4836/**
4837 * e1000_update_phy_info - timre call-back to update PHY info
4838 * @t: pointer to timer_list containing private info adapter
4839 *
4840 * Need to wait a few seconds after link up to get diagnostic information from
4841 * the phy
4842 **/
4843static void e1000_update_phy_info(struct timer_list *t)
4844{
4845	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4846
4847	if (test_bit(__E1000_DOWN, &adapter->state))
4848		return;
4849
4850	schedule_work(&adapter->update_phy_task);
4851}
4852
4853/**
4854 * e1000e_update_phy_stats - Update the PHY statistics counters
4855 * @adapter: board private structure
4856 *
4857 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4858 **/
4859static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4860{
4861	struct e1000_hw *hw = &adapter->hw;
4862	s32 ret_val;
4863	u16 phy_data;
4864
4865	ret_val = hw->phy.ops.acquire(hw);
4866	if (ret_val)
4867		return;
4868
4869	/* A page set is expensive so check if already on desired page.
4870	 * If not, set to the page with the PHY status registers.
4871	 */
4872	hw->phy.addr = 1;
4873	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4874					   &phy_data);
4875	if (ret_val)
4876		goto release;
4877	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4878		ret_val = hw->phy.ops.set_page(hw,
4879					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4880		if (ret_val)
4881			goto release;
4882	}
4883
4884	/* Single Collision Count */
4885	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4886	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4887	if (!ret_val)
4888		adapter->stats.scc += phy_data;
4889
4890	/* Excessive Collision Count */
4891	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4892	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4893	if (!ret_val)
4894		adapter->stats.ecol += phy_data;
4895
4896	/* Multiple Collision Count */
4897	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4898	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4899	if (!ret_val)
4900		adapter->stats.mcc += phy_data;
4901
4902	/* Late Collision Count */
4903	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4904	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4905	if (!ret_val)
4906		adapter->stats.latecol += phy_data;
4907
4908	/* Collision Count - also used for adaptive IFS */
4909	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4910	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4911	if (!ret_val)
4912		hw->mac.collision_delta = phy_data;
4913
4914	/* Defer Count */
4915	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4916	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4917	if (!ret_val)
4918		adapter->stats.dc += phy_data;
4919
4920	/* Transmit with no CRS */
4921	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4922	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4923	if (!ret_val)
4924		adapter->stats.tncrs += phy_data;
4925
4926release:
4927	hw->phy.ops.release(hw);
4928}
4929
4930/**
4931 * e1000e_update_stats - Update the board statistics counters
4932 * @adapter: board private structure
4933 **/
4934static void e1000e_update_stats(struct e1000_adapter *adapter)
4935{
4936	struct net_device *netdev = adapter->netdev;
4937	struct e1000_hw *hw = &adapter->hw;
4938	struct pci_dev *pdev = adapter->pdev;
4939
4940	/* Prevent stats update while adapter is being reset, or if the pci
4941	 * connection is down.
4942	 */
4943	if (adapter->link_speed == 0)
4944		return;
4945	if (pci_channel_offline(pdev))
4946		return;
4947
4948	adapter->stats.crcerrs += er32(CRCERRS);
4949	adapter->stats.gprc += er32(GPRC);
4950	adapter->stats.gorc += er32(GORCL);
4951	er32(GORCH);		/* Clear gorc */
4952	adapter->stats.bprc += er32(BPRC);
4953	adapter->stats.mprc += er32(MPRC);
4954	adapter->stats.roc += er32(ROC);
4955
4956	adapter->stats.mpc += er32(MPC);
4957
4958	/* Half-duplex statistics */
4959	if (adapter->link_duplex == HALF_DUPLEX) {
4960		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4961			e1000e_update_phy_stats(adapter);
4962		} else {
4963			adapter->stats.scc += er32(SCC);
4964			adapter->stats.ecol += er32(ECOL);
4965			adapter->stats.mcc += er32(MCC);
4966			adapter->stats.latecol += er32(LATECOL);
4967			adapter->stats.dc += er32(DC);
4968
4969			hw->mac.collision_delta = er32(COLC);
4970
4971			if ((hw->mac.type != e1000_82574) &&
4972			    (hw->mac.type != e1000_82583))
4973				adapter->stats.tncrs += er32(TNCRS);
4974		}
4975		adapter->stats.colc += hw->mac.collision_delta;
4976	}
4977
4978	adapter->stats.xonrxc += er32(XONRXC);
4979	adapter->stats.xontxc += er32(XONTXC);
4980	adapter->stats.xoffrxc += er32(XOFFRXC);
4981	adapter->stats.xofftxc += er32(XOFFTXC);
4982	adapter->stats.gptc += er32(GPTC);
4983	adapter->stats.gotc += er32(GOTCL);
4984	er32(GOTCH);		/* Clear gotc */
4985	adapter->stats.rnbc += er32(RNBC);
4986	adapter->stats.ruc += er32(RUC);
4987
4988	adapter->stats.mptc += er32(MPTC);
4989	adapter->stats.bptc += er32(BPTC);
4990
4991	/* used for adaptive IFS */
4992
4993	hw->mac.tx_packet_delta = er32(TPT);
4994	adapter->stats.tpt += hw->mac.tx_packet_delta;
4995
4996	adapter->stats.algnerrc += er32(ALGNERRC);
4997	adapter->stats.rxerrc += er32(RXERRC);
4998	adapter->stats.cexterr += er32(CEXTERR);
4999	adapter->stats.tsctc += er32(TSCTC);
5000	adapter->stats.tsctfc += er32(TSCTFC);
5001
5002	/* Fill out the OS statistics structure */
5003	netdev->stats.multicast = adapter->stats.mprc;
5004	netdev->stats.collisions = adapter->stats.colc;
5005
5006	/* Rx Errors */
5007
5008	/* RLEC on some newer hardware can be incorrect so build
5009	 * our own version based on RUC and ROC
5010	 */
5011	netdev->stats.rx_errors = adapter->stats.rxerrc +
5012	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5013	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5014	netdev->stats.rx_length_errors = adapter->stats.ruc +
5015	    adapter->stats.roc;
5016	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5017	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5018	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5019
5020	/* Tx Errors */
5021	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5022	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5023	netdev->stats.tx_window_errors = adapter->stats.latecol;
5024	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5025
5026	/* Tx Dropped needs to be maintained elsewhere */
5027
5028	/* Management Stats */
5029	adapter->stats.mgptc += er32(MGTPTC);
5030	adapter->stats.mgprc += er32(MGTPRC);
5031	adapter->stats.mgpdc += er32(MGTPDC);
5032
5033	/* Correctable ECC Errors */
5034	if (hw->mac.type >= e1000_pch_lpt) {
5035		u32 pbeccsts = er32(PBECCSTS);
5036
5037		adapter->corr_errors +=
5038		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5039		adapter->uncorr_errors +=
5040		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5041		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5042	}
5043}
5044
5045/**
5046 * e1000_phy_read_status - Update the PHY register status snapshot
5047 * @adapter: board private structure
5048 **/
5049static void e1000_phy_read_status(struct e1000_adapter *adapter)
5050{
5051	struct e1000_hw *hw = &adapter->hw;
5052	struct e1000_phy_regs *phy = &adapter->phy_regs;
5053
5054	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5055	    (er32(STATUS) & E1000_STATUS_LU) &&
5056	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5057		int ret_val;
5058
5059		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5060		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5061		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5062		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5063		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5064		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5065		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5066		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5067		if (ret_val)
5068			e_warn("Error reading PHY register\n");
5069	} else {
5070		/* Do not read PHY registers if link is not up
5071		 * Set values to typical power-on defaults
5072		 */
5073		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5074		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5075			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5076			     BMSR_ERCAP);
5077		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5078				  ADVERTISE_ALL | ADVERTISE_CSMA);
5079		phy->lpa = 0;
5080		phy->expansion = EXPANSION_ENABLENPAGE;
5081		phy->ctrl1000 = ADVERTISE_1000FULL;
5082		phy->stat1000 = 0;
5083		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5084	}
5085}
5086
5087static void e1000_print_link_info(struct e1000_adapter *adapter)
5088{
5089	struct e1000_hw *hw = &adapter->hw;
5090	u32 ctrl = er32(CTRL);
5091
5092	/* Link status message must follow this format for user tools */
5093	netdev_info(adapter->netdev,
5094		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5095		    adapter->link_speed,
5096		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5097		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5098		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5099		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5100}
5101
5102static bool e1000e_has_link(struct e1000_adapter *adapter)
5103{
5104	struct e1000_hw *hw = &adapter->hw;
5105	bool link_active = false;
5106	s32 ret_val = 0;
5107
5108	/* get_link_status is set on LSC (link status) interrupt or
5109	 * Rx sequence error interrupt.  get_link_status will stay
5110	 * true until the check_for_link establishes link
5111	 * for copper adapters ONLY
5112	 */
5113	switch (hw->phy.media_type) {
5114	case e1000_media_type_copper:
5115		if (hw->mac.get_link_status) {
5116			ret_val = hw->mac.ops.check_for_link(hw);
5117			link_active = !hw->mac.get_link_status;
5118		} else {
5119			link_active = true;
5120		}
5121		break;
5122	case e1000_media_type_fiber:
5123		ret_val = hw->mac.ops.check_for_link(hw);
5124		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5125		break;
5126	case e1000_media_type_internal_serdes:
5127		ret_val = hw->mac.ops.check_for_link(hw);
5128		link_active = hw->mac.serdes_has_link;
5129		break;
5130	default:
5131	case e1000_media_type_unknown:
5132		break;
5133	}
5134
5135	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5136	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5137		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5138		e_info("Gigabit has been disabled, downgrading speed\n");
5139	}
5140
5141	return link_active;
5142}
5143
5144static void e1000e_enable_receives(struct e1000_adapter *adapter)
5145{
5146	/* make sure the receive unit is started */
5147	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5148	    (adapter->flags & FLAG_RESTART_NOW)) {
5149		struct e1000_hw *hw = &adapter->hw;
5150		u32 rctl = er32(RCTL);
5151
5152		ew32(RCTL, rctl | E1000_RCTL_EN);
5153		adapter->flags &= ~FLAG_RESTART_NOW;
5154	}
5155}
5156
5157static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5158{
5159	struct e1000_hw *hw = &adapter->hw;
5160
5161	/* With 82574 controllers, PHY needs to be checked periodically
5162	 * for hung state and reset, if two calls return true
5163	 */
5164	if (e1000_check_phy_82574(hw))
5165		adapter->phy_hang_count++;
5166	else
5167		adapter->phy_hang_count = 0;
5168
5169	if (adapter->phy_hang_count > 1) {
5170		adapter->phy_hang_count = 0;
5171		e_dbg("PHY appears hung - resetting\n");
5172		schedule_work(&adapter->reset_task);
5173	}
5174}
5175
5176/**
5177 * e1000_watchdog - Timer Call-back
5178 * @t: pointer to timer_list containing private info adapter
5179 **/
5180static void e1000_watchdog(struct timer_list *t)
5181{
5182	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5183
5184	/* Do the rest outside of interrupt context */
5185	schedule_work(&adapter->watchdog_task);
5186
5187	/* TODO: make this use queue_delayed_work() */
5188}
5189
5190static void e1000_watchdog_task(struct work_struct *work)
5191{
5192	struct e1000_adapter *adapter = container_of(work,
5193						     struct e1000_adapter,
5194						     watchdog_task);
5195	struct net_device *netdev = adapter->netdev;
5196	struct e1000_mac_info *mac = &adapter->hw.mac;
5197	struct e1000_phy_info *phy = &adapter->hw.phy;
5198	struct e1000_ring *tx_ring = adapter->tx_ring;
5199	u32 dmoff_exit_timeout = 100, tries = 0;
5200	struct e1000_hw *hw = &adapter->hw;
5201	u32 link, tctl, pcim_state;
5202
5203	if (test_bit(__E1000_DOWN, &adapter->state))
5204		return;
5205
5206	link = e1000e_has_link(adapter);
5207	if ((netif_carrier_ok(netdev)) && link) {
5208		/* Cancel scheduled suspend requests. */
5209		pm_runtime_resume(netdev->dev.parent);
5210
5211		e1000e_enable_receives(adapter);
5212		goto link_up;
5213	}
5214
5215	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5216	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5217		e1000_update_mng_vlan(adapter);
5218
5219	if (link) {
5220		if (!netif_carrier_ok(netdev)) {
5221			bool txb2b = true;
5222
5223			/* Cancel scheduled suspend requests. */
5224			pm_runtime_resume(netdev->dev.parent);
5225
5226			/* Checking if MAC is in DMoff state*/
5227			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5228				pcim_state = er32(STATUS);
5229				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5230					if (tries++ == dmoff_exit_timeout) {
5231						e_dbg("Error in exiting dmoff\n");
5232						break;
5233					}
5234					usleep_range(10000, 20000);
5235					pcim_state = er32(STATUS);
5236
5237					/* Checking if MAC exited DMoff state */
5238					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5239						e1000_phy_hw_reset(&adapter->hw);
5240				}
5241			}
5242
5243			/* update snapshot of PHY registers on LSC */
5244			e1000_phy_read_status(adapter);
5245			mac->ops.get_link_up_info(&adapter->hw,
5246						  &adapter->link_speed,
5247						  &adapter->link_duplex);
5248			e1000_print_link_info(adapter);
5249
5250			/* check if SmartSpeed worked */
5251			e1000e_check_downshift(hw);
5252			if (phy->speed_downgraded)
5253				netdev_warn(netdev,
5254					    "Link Speed was downgraded by SmartSpeed\n");
5255
5256			/* On supported PHYs, check for duplex mismatch only
5257			 * if link has autonegotiated at 10/100 half
5258			 */
5259			if ((hw->phy.type == e1000_phy_igp_3 ||
5260			     hw->phy.type == e1000_phy_bm) &&
5261			    hw->mac.autoneg &&
5262			    (adapter->link_speed == SPEED_10 ||
5263			     adapter->link_speed == SPEED_100) &&
5264			    (adapter->link_duplex == HALF_DUPLEX)) {
5265				u16 autoneg_exp;
5266
5267				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5268
5269				if (!(autoneg_exp & EXPANSION_NWAY))
5270					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5271			}
5272
5273			/* adjust timeout factor according to speed/duplex */
5274			adapter->tx_timeout_factor = 1;
5275			switch (adapter->link_speed) {
5276			case SPEED_10:
5277				txb2b = false;
5278				adapter->tx_timeout_factor = 16;
5279				break;
5280			case SPEED_100:
5281				txb2b = false;
5282				adapter->tx_timeout_factor = 10;
5283				break;
5284			}
5285
5286			/* workaround: re-program speed mode bit after
5287			 * link-up event
5288			 */
5289			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5290			    !txb2b) {
5291				u32 tarc0;
5292
5293				tarc0 = er32(TARC(0));
5294				tarc0 &= ~SPEED_MODE_BIT;
5295				ew32(TARC(0), tarc0);
5296			}
5297
5298			/* disable TSO for pcie and 10/100 speeds, to avoid
5299			 * some hardware issues
5300			 */
5301			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5302				switch (adapter->link_speed) {
5303				case SPEED_10:
5304				case SPEED_100:
5305					e_info("10/100 speed: disabling TSO\n");
5306					netdev->features &= ~NETIF_F_TSO;
5307					netdev->features &= ~NETIF_F_TSO6;
5308					break;
5309				case SPEED_1000:
5310					netdev->features |= NETIF_F_TSO;
5311					netdev->features |= NETIF_F_TSO6;
5312					break;
5313				default:
5314					/* oops */
5315					break;
5316				}
5317				if (hw->mac.type == e1000_pch_spt) {
5318					netdev->features &= ~NETIF_F_TSO;
5319					netdev->features &= ~NETIF_F_TSO6;
5320				}
5321			}
5322
5323			/* enable transmits in the hardware, need to do this
5324			 * after setting TARC(0)
5325			 */
5326			tctl = er32(TCTL);
5327			tctl |= E1000_TCTL_EN;
5328			ew32(TCTL, tctl);
5329
5330			/* Perform any post-link-up configuration before
5331			 * reporting link up.
5332			 */
5333			if (phy->ops.cfg_on_link_up)
5334				phy->ops.cfg_on_link_up(hw);
5335
5336			netif_wake_queue(netdev);
5337			netif_carrier_on(netdev);
5338
5339			if (!test_bit(__E1000_DOWN, &adapter->state))
5340				mod_timer(&adapter->phy_info_timer,
5341					  round_jiffies(jiffies + 2 * HZ));
5342		}
5343	} else {
5344		if (netif_carrier_ok(netdev)) {
5345			adapter->link_speed = 0;
5346			adapter->link_duplex = 0;
5347			/* Link status message must follow this format */
5348			netdev_info(netdev, "NIC Link is Down\n");
5349			netif_carrier_off(netdev);
5350			netif_stop_queue(netdev);
5351			if (!test_bit(__E1000_DOWN, &adapter->state))
5352				mod_timer(&adapter->phy_info_timer,
5353					  round_jiffies(jiffies + 2 * HZ));
5354
5355			/* 8000ES2LAN requires a Rx packet buffer work-around
5356			 * on link down event; reset the controller to flush
5357			 * the Rx packet buffer.
5358			 */
5359			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5360				adapter->flags |= FLAG_RESTART_NOW;
5361			else
5362				pm_schedule_suspend(netdev->dev.parent,
5363						    LINK_TIMEOUT);
5364		}
5365	}
5366
5367link_up:
5368	spin_lock(&adapter->stats64_lock);
5369	e1000e_update_stats(adapter);
5370
5371	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5372	adapter->tpt_old = adapter->stats.tpt;
5373	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5374	adapter->colc_old = adapter->stats.colc;
5375
5376	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5377	adapter->gorc_old = adapter->stats.gorc;
5378	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5379	adapter->gotc_old = adapter->stats.gotc;
5380	spin_unlock(&adapter->stats64_lock);
5381
5382	/* If the link is lost the controller stops DMA, but
5383	 * if there is queued Tx work it cannot be done.  So
5384	 * reset the controller to flush the Tx packet buffers.
5385	 */
5386	if (!netif_carrier_ok(netdev) &&
5387	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5388		adapter->flags |= FLAG_RESTART_NOW;
5389
5390	/* If reset is necessary, do it outside of interrupt context. */
5391	if (adapter->flags & FLAG_RESTART_NOW) {
5392		schedule_work(&adapter->reset_task);
5393		/* return immediately since reset is imminent */
5394		return;
5395	}
5396
5397	e1000e_update_adaptive(&adapter->hw);
5398
5399	/* Simple mode for Interrupt Throttle Rate (ITR) */
5400	if (adapter->itr_setting == 4) {
5401		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5402		 * Total asymmetrical Tx or Rx gets ITR=8000;
5403		 * everyone else is between 2000-8000.
5404		 */
5405		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5406		u32 dif = (adapter->gotc > adapter->gorc ?
5407			   adapter->gotc - adapter->gorc :
5408			   adapter->gorc - adapter->gotc) / 10000;
5409		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5410
5411		e1000e_write_itr(adapter, itr);
5412	}
5413
5414	/* Cause software interrupt to ensure Rx ring is cleaned */
5415	if (adapter->msix_entries)
5416		ew32(ICS, adapter->rx_ring->ims_val);
5417	else
5418		ew32(ICS, E1000_ICS_RXDMT0);
5419
5420	/* flush pending descriptors to memory before detecting Tx hang */
5421	e1000e_flush_descriptors(adapter);
5422
5423	/* Force detection of hung controller every watchdog period */
5424	adapter->detect_tx_hung = true;
5425
5426	/* With 82571 controllers, LAA may be overwritten due to controller
5427	 * reset from the other port. Set the appropriate LAA in RAR[0]
5428	 */
5429	if (e1000e_get_laa_state_82571(hw))
5430		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5431
5432	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5433		e1000e_check_82574_phy_workaround(adapter);
5434
5435	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5436	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5437		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5438		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5439			er32(RXSTMPH);
5440			adapter->rx_hwtstamp_cleared++;
5441		} else {
5442			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5443		}
5444	}
5445
5446	/* Reset the timer */
5447	if (!test_bit(__E1000_DOWN, &adapter->state))
5448		mod_timer(&adapter->watchdog_timer,
5449			  round_jiffies(jiffies + 2 * HZ));
5450}
5451
5452#define E1000_TX_FLAGS_CSUM		0x00000001
5453#define E1000_TX_FLAGS_VLAN		0x00000002
5454#define E1000_TX_FLAGS_TSO		0x00000004
5455#define E1000_TX_FLAGS_IPV4		0x00000008
5456#define E1000_TX_FLAGS_NO_FCS		0x00000010
5457#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5458#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5459#define E1000_TX_FLAGS_VLAN_SHIFT	16
5460
5461static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5462		     __be16 protocol)
5463{
5464	struct e1000_context_desc *context_desc;
5465	struct e1000_buffer *buffer_info;
5466	unsigned int i;
5467	u32 cmd_length = 0;
5468	u16 ipcse = 0, mss;
5469	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5470	int err;
5471
5472	if (!skb_is_gso(skb))
5473		return 0;
5474
5475	err = skb_cow_head(skb, 0);
5476	if (err < 0)
5477		return err;
5478
5479	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5480	mss = skb_shinfo(skb)->gso_size;
5481	if (protocol == htons(ETH_P_IP)) {
5482		struct iphdr *iph = ip_hdr(skb);
5483		iph->tot_len = 0;
5484		iph->check = 0;
5485		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5486							 0, IPPROTO_TCP, 0);
5487		cmd_length = E1000_TXD_CMD_IP;
5488		ipcse = skb_transport_offset(skb) - 1;
5489	} else if (skb_is_gso_v6(skb)) {
5490		tcp_v6_gso_csum_prep(skb);
5491		ipcse = 0;
5492	}
5493	ipcss = skb_network_offset(skb);
5494	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5495	tucss = skb_transport_offset(skb);
5496	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5497
5498	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5499		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5500
5501	i = tx_ring->next_to_use;
5502	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5503	buffer_info = &tx_ring->buffer_info[i];
5504
5505	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5506	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5507	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5508	context_desc->upper_setup.tcp_fields.tucss = tucss;
5509	context_desc->upper_setup.tcp_fields.tucso = tucso;
5510	context_desc->upper_setup.tcp_fields.tucse = 0;
5511	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5512	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5513	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5514
5515	buffer_info->time_stamp = jiffies;
5516	buffer_info->next_to_watch = i;
5517
5518	i++;
5519	if (i == tx_ring->count)
5520		i = 0;
5521	tx_ring->next_to_use = i;
5522
5523	return 1;
5524}
5525
5526static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5527			  __be16 protocol)
5528{
5529	struct e1000_adapter *adapter = tx_ring->adapter;
5530	struct e1000_context_desc *context_desc;
5531	struct e1000_buffer *buffer_info;
5532	unsigned int i;
5533	u8 css;
5534	u32 cmd_len = E1000_TXD_CMD_DEXT;
5535
5536	if (skb->ip_summed != CHECKSUM_PARTIAL)
5537		return false;
5538
5539	switch (protocol) {
5540	case cpu_to_be16(ETH_P_IP):
5541		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5542			cmd_len |= E1000_TXD_CMD_TCP;
5543		break;
5544	case cpu_to_be16(ETH_P_IPV6):
5545		/* XXX not handling all IPV6 headers */
5546		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5547			cmd_len |= E1000_TXD_CMD_TCP;
5548		break;
5549	default:
5550		if (unlikely(net_ratelimit()))
5551			e_warn("checksum_partial proto=%x!\n",
5552			       be16_to_cpu(protocol));
5553		break;
5554	}
5555
5556	css = skb_checksum_start_offset(skb);
5557
5558	i = tx_ring->next_to_use;
5559	buffer_info = &tx_ring->buffer_info[i];
5560	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5561
5562	context_desc->lower_setup.ip_config = 0;
5563	context_desc->upper_setup.tcp_fields.tucss = css;
5564	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5565	context_desc->upper_setup.tcp_fields.tucse = 0;
5566	context_desc->tcp_seg_setup.data = 0;
5567	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5568
5569	buffer_info->time_stamp = jiffies;
5570	buffer_info->next_to_watch = i;
5571
5572	i++;
5573	if (i == tx_ring->count)
5574		i = 0;
5575	tx_ring->next_to_use = i;
5576
5577	return true;
5578}
5579
5580static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5581			unsigned int first, unsigned int max_per_txd,
5582			unsigned int nr_frags)
5583{
5584	struct e1000_adapter *adapter = tx_ring->adapter;
5585	struct pci_dev *pdev = adapter->pdev;
5586	struct e1000_buffer *buffer_info;
5587	unsigned int len = skb_headlen(skb);
5588	unsigned int offset = 0, size, count = 0, i;
5589	unsigned int f, bytecount, segs;
5590
5591	i = tx_ring->next_to_use;
5592
5593	while (len) {
5594		buffer_info = &tx_ring->buffer_info[i];
5595		size = min(len, max_per_txd);
5596
5597		buffer_info->length = size;
5598		buffer_info->time_stamp = jiffies;
5599		buffer_info->next_to_watch = i;
5600		buffer_info->dma = dma_map_single(&pdev->dev,
5601						  skb->data + offset,
5602						  size, DMA_TO_DEVICE);
5603		buffer_info->mapped_as_page = false;
5604		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5605			goto dma_error;
5606
5607		len -= size;
5608		offset += size;
5609		count++;
5610
5611		if (len) {
5612			i++;
5613			if (i == tx_ring->count)
5614				i = 0;
5615		}
5616	}
5617
5618	for (f = 0; f < nr_frags; f++) {
5619		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5620
5621		len = skb_frag_size(frag);
5622		offset = 0;
5623
5624		while (len) {
5625			i++;
5626			if (i == tx_ring->count)
5627				i = 0;
5628
5629			buffer_info = &tx_ring->buffer_info[i];
5630			size = min(len, max_per_txd);
5631
5632			buffer_info->length = size;
5633			buffer_info->time_stamp = jiffies;
5634			buffer_info->next_to_watch = i;
5635			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5636							    offset, size,
5637							    DMA_TO_DEVICE);
5638			buffer_info->mapped_as_page = true;
5639			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5640				goto dma_error;
5641
5642			len -= size;
5643			offset += size;
5644			count++;
5645		}
5646	}
5647
5648	segs = skb_shinfo(skb)->gso_segs ? : 1;
5649	/* multiply data chunks by size of headers */
5650	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5651
5652	tx_ring->buffer_info[i].skb = skb;
5653	tx_ring->buffer_info[i].segs = segs;
5654	tx_ring->buffer_info[i].bytecount = bytecount;
5655	tx_ring->buffer_info[first].next_to_watch = i;
5656
5657	return count;
5658
5659dma_error:
5660	dev_err(&pdev->dev, "Tx DMA map failed\n");
5661	buffer_info->dma = 0;
5662	if (count)
5663		count--;
5664
5665	while (count--) {
5666		if (i == 0)
5667			i += tx_ring->count;
5668		i--;
5669		buffer_info = &tx_ring->buffer_info[i];
5670		e1000_put_txbuf(tx_ring, buffer_info, true);
5671	}
5672
5673	return 0;
5674}
5675
5676static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5677{
5678	struct e1000_adapter *adapter = tx_ring->adapter;
5679	struct e1000_tx_desc *tx_desc = NULL;
5680	struct e1000_buffer *buffer_info;
5681	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5682	unsigned int i;
5683
5684	if (tx_flags & E1000_TX_FLAGS_TSO) {
5685		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5686		    E1000_TXD_CMD_TSE;
5687		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5688
5689		if (tx_flags & E1000_TX_FLAGS_IPV4)
5690			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5691	}
5692
5693	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5694		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5695		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5696	}
5697
5698	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5699		txd_lower |= E1000_TXD_CMD_VLE;
5700		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5701	}
5702
5703	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5704		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5705
5706	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5707		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5708		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5709	}
5710
5711	i = tx_ring->next_to_use;
5712
5713	do {
5714		buffer_info = &tx_ring->buffer_info[i];
5715		tx_desc = E1000_TX_DESC(*tx_ring, i);
5716		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5717		tx_desc->lower.data = cpu_to_le32(txd_lower |
5718						  buffer_info->length);
5719		tx_desc->upper.data = cpu_to_le32(txd_upper);
5720
5721		i++;
5722		if (i == tx_ring->count)
5723			i = 0;
5724	} while (--count > 0);
5725
5726	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5727
5728	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5729	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5730		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5731
5732	/* Force memory writes to complete before letting h/w
5733	 * know there are new descriptors to fetch.  (Only
5734	 * applicable for weak-ordered memory model archs,
5735	 * such as IA-64).
5736	 */
5737	wmb();
5738
5739	tx_ring->next_to_use = i;
5740}
5741
5742#define MINIMUM_DHCP_PACKET_SIZE 282
5743static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5744				    struct sk_buff *skb)
5745{
5746	struct e1000_hw *hw = &adapter->hw;
5747	u16 length, offset;
5748
5749	if (skb_vlan_tag_present(skb) &&
5750	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5751	      (adapter->hw.mng_cookie.status &
5752	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5753		return 0;
5754
5755	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5756		return 0;
5757
5758	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5759		return 0;
5760
5761	{
5762		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5763		struct udphdr *udp;
5764
5765		if (ip->protocol != IPPROTO_UDP)
5766			return 0;
5767
5768		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5769		if (ntohs(udp->dest) != 67)
5770			return 0;
5771
5772		offset = (u8 *)udp + 8 - skb->data;
5773		length = skb->len - offset;
5774		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5775	}
5776
5777	return 0;
5778}
5779
5780static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5781{
5782	struct e1000_adapter *adapter = tx_ring->adapter;
5783
5784	netif_stop_queue(adapter->netdev);
5785	/* Herbert's original patch had:
5786	 *  smp_mb__after_netif_stop_queue();
5787	 * but since that doesn't exist yet, just open code it.
5788	 */
5789	smp_mb();
5790
5791	/* We need to check again in a case another CPU has just
5792	 * made room available.
5793	 */
5794	if (e1000_desc_unused(tx_ring) < size)
5795		return -EBUSY;
5796
5797	/* A reprieve! */
5798	netif_start_queue(adapter->netdev);
5799	++adapter->restart_queue;
5800	return 0;
5801}
5802
5803static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5804{
5805	BUG_ON(size > tx_ring->count);
5806
5807	if (e1000_desc_unused(tx_ring) >= size)
5808		return 0;
5809	return __e1000_maybe_stop_tx(tx_ring, size);
5810}
5811
5812static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5813				    struct net_device *netdev)
5814{
5815	struct e1000_adapter *adapter = netdev_priv(netdev);
5816	struct e1000_ring *tx_ring = adapter->tx_ring;
5817	unsigned int first;
5818	unsigned int tx_flags = 0;
5819	unsigned int len = skb_headlen(skb);
5820	unsigned int nr_frags;
5821	unsigned int mss;
5822	int count = 0;
5823	int tso;
5824	unsigned int f;
5825	__be16 protocol = vlan_get_protocol(skb);
5826
5827	if (test_bit(__E1000_DOWN, &adapter->state)) {
5828		dev_kfree_skb_any(skb);
5829		return NETDEV_TX_OK;
5830	}
5831
5832	if (skb->len <= 0) {
5833		dev_kfree_skb_any(skb);
5834		return NETDEV_TX_OK;
5835	}
5836
5837	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5838	 * pad skb in order to meet this minimum size requirement
5839	 */
5840	if (skb_put_padto(skb, 17))
5841		return NETDEV_TX_OK;
5842
5843	mss = skb_shinfo(skb)->gso_size;
5844	if (mss) {
5845		u8 hdr_len;
5846
5847		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5848		 * points to just header, pull a few bytes of payload from
5849		 * frags into skb->data
5850		 */
5851		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5852		/* we do this workaround for ES2LAN, but it is un-necessary,
5853		 * avoiding it could save a lot of cycles
5854		 */
5855		if (skb->data_len && (hdr_len == len)) {
5856			unsigned int pull_size;
5857
5858			pull_size = min_t(unsigned int, 4, skb->data_len);
5859			if (!__pskb_pull_tail(skb, pull_size)) {
5860				e_err("__pskb_pull_tail failed.\n");
5861				dev_kfree_skb_any(skb);
5862				return NETDEV_TX_OK;
5863			}
5864			len = skb_headlen(skb);
5865		}
5866	}
5867
5868	/* reserve a descriptor for the offload context */
5869	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5870		count++;
5871	count++;
5872
5873	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5874
5875	nr_frags = skb_shinfo(skb)->nr_frags;
5876	for (f = 0; f < nr_frags; f++)
5877		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5878				      adapter->tx_fifo_limit);
5879
5880	if (adapter->hw.mac.tx_pkt_filtering)
5881		e1000_transfer_dhcp_info(adapter, skb);
5882
5883	/* need: count + 2 desc gap to keep tail from touching
5884	 * head, otherwise try next time
5885	 */
5886	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5887		return NETDEV_TX_BUSY;
5888
5889	if (skb_vlan_tag_present(skb)) {
5890		tx_flags |= E1000_TX_FLAGS_VLAN;
5891		tx_flags |= (skb_vlan_tag_get(skb) <<
5892			     E1000_TX_FLAGS_VLAN_SHIFT);
5893	}
5894
5895	first = tx_ring->next_to_use;
5896
5897	tso = e1000_tso(tx_ring, skb, protocol);
5898	if (tso < 0) {
5899		dev_kfree_skb_any(skb);
5900		return NETDEV_TX_OK;
5901	}
5902
5903	if (tso)
5904		tx_flags |= E1000_TX_FLAGS_TSO;
5905	else if (e1000_tx_csum(tx_ring, skb, protocol))
5906		tx_flags |= E1000_TX_FLAGS_CSUM;
5907
5908	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5909	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5910	 * no longer assume, we must.
5911	 */
5912	if (protocol == htons(ETH_P_IP))
5913		tx_flags |= E1000_TX_FLAGS_IPV4;
5914
5915	if (unlikely(skb->no_fcs))
5916		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5917
5918	/* if count is 0 then mapping error has occurred */
5919	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5920			     nr_frags);
5921	if (count) {
5922		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5923		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5924			if (!adapter->tx_hwtstamp_skb) {
5925				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5926				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5927				adapter->tx_hwtstamp_skb = skb_get(skb);
5928				adapter->tx_hwtstamp_start = jiffies;
5929				schedule_work(&adapter->tx_hwtstamp_work);
5930			} else {
5931				adapter->tx_hwtstamp_skipped++;
5932			}
5933		}
5934
5935		skb_tx_timestamp(skb);
5936
5937		netdev_sent_queue(netdev, skb->len);
5938		e1000_tx_queue(tx_ring, tx_flags, count);
5939		/* Make sure there is space in the ring for the next send. */
5940		e1000_maybe_stop_tx(tx_ring,
5941				    (MAX_SKB_FRAGS *
5942				     DIV_ROUND_UP(PAGE_SIZE,
5943						  adapter->tx_fifo_limit) + 2));
5944
5945		if (!netdev_xmit_more() ||
5946		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5947			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5948				e1000e_update_tdt_wa(tx_ring,
5949						     tx_ring->next_to_use);
5950			else
5951				writel(tx_ring->next_to_use, tx_ring->tail);
5952		}
5953	} else {
5954		dev_kfree_skb_any(skb);
5955		tx_ring->buffer_info[first].time_stamp = 0;
5956		tx_ring->next_to_use = first;
5957	}
5958
5959	return NETDEV_TX_OK;
5960}
5961
5962/**
5963 * e1000_tx_timeout - Respond to a Tx Hang
5964 * @netdev: network interface device structure
5965 * @txqueue: index of the hung queue (unused)
5966 **/
5967static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5968{
5969	struct e1000_adapter *adapter = netdev_priv(netdev);
5970
5971	/* Do the reset outside of interrupt context */
5972	adapter->tx_timeout_count++;
5973	schedule_work(&adapter->reset_task);
5974}
5975
5976static void e1000_reset_task(struct work_struct *work)
5977{
5978	struct e1000_adapter *adapter;
5979	adapter = container_of(work, struct e1000_adapter, reset_task);
5980
5981	rtnl_lock();
5982	/* don't run the task if already down */
5983	if (test_bit(__E1000_DOWN, &adapter->state)) {
5984		rtnl_unlock();
5985		return;
5986	}
5987
5988	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5989		e1000e_dump(adapter);
5990		e_err("Reset adapter unexpectedly\n");
5991	}
5992	e1000e_reinit_locked(adapter);
5993	rtnl_unlock();
5994}
5995
5996/**
5997 * e1000e_get_stats64 - Get System Network Statistics
5998 * @netdev: network interface device structure
5999 * @stats: rtnl_link_stats64 pointer
6000 *
6001 * Returns the address of the device statistics structure.
6002 **/
6003void e1000e_get_stats64(struct net_device *netdev,
6004			struct rtnl_link_stats64 *stats)
6005{
6006	struct e1000_adapter *adapter = netdev_priv(netdev);
6007
6008	spin_lock(&adapter->stats64_lock);
6009	e1000e_update_stats(adapter);
6010	/* Fill out the OS statistics structure */
6011	stats->rx_bytes = adapter->stats.gorc;
6012	stats->rx_packets = adapter->stats.gprc;
6013	stats->tx_bytes = adapter->stats.gotc;
6014	stats->tx_packets = adapter->stats.gptc;
6015	stats->multicast = adapter->stats.mprc;
6016	stats->collisions = adapter->stats.colc;
6017
6018	/* Rx Errors */
6019
6020	/* RLEC on some newer hardware can be incorrect so build
6021	 * our own version based on RUC and ROC
6022	 */
6023	stats->rx_errors = adapter->stats.rxerrc +
6024	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6025	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6026	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6027	stats->rx_crc_errors = adapter->stats.crcerrs;
6028	stats->rx_frame_errors = adapter->stats.algnerrc;
6029	stats->rx_missed_errors = adapter->stats.mpc;
6030
6031	/* Tx Errors */
6032	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6033	stats->tx_aborted_errors = adapter->stats.ecol;
6034	stats->tx_window_errors = adapter->stats.latecol;
6035	stats->tx_carrier_errors = adapter->stats.tncrs;
6036
6037	/* Tx Dropped needs to be maintained elsewhere */
6038
6039	spin_unlock(&adapter->stats64_lock);
6040}
6041
6042/**
6043 * e1000_change_mtu - Change the Maximum Transfer Unit
6044 * @netdev: network interface device structure
6045 * @new_mtu: new value for maximum frame size
6046 *
6047 * Returns 0 on success, negative on failure
6048 **/
6049static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6050{
6051	struct e1000_adapter *adapter = netdev_priv(netdev);
6052	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6053
6054	/* Jumbo frame support */
6055	if ((new_mtu > ETH_DATA_LEN) &&
6056	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6057		e_err("Jumbo Frames not supported.\n");
6058		return -EINVAL;
6059	}
6060
6061	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6062	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6063	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6064	    (new_mtu > ETH_DATA_LEN)) {
6065		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6066		return -EINVAL;
6067	}
6068
6069	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6070		usleep_range(1000, 1100);
6071	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6072	adapter->max_frame_size = max_frame;
6073	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6074		   netdev->mtu, new_mtu);
6075	netdev->mtu = new_mtu;
6076
6077	pm_runtime_get_sync(netdev->dev.parent);
6078
6079	if (netif_running(netdev))
6080		e1000e_down(adapter, true);
6081
6082	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6083	 * means we reserve 2 more, this pushes us to allocate from the next
6084	 * larger slab size.
6085	 * i.e. RXBUFFER_2048 --> size-4096 slab
6086	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6087	 * fragmented skbs
6088	 */
6089
6090	if (max_frame <= 2048)
6091		adapter->rx_buffer_len = 2048;
6092	else
6093		adapter->rx_buffer_len = 4096;
6094
6095	/* adjust allocation if LPE protects us, and we aren't using SBP */
6096	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6097		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6098
6099	if (netif_running(netdev))
6100		e1000e_up(adapter);
6101	else
6102		e1000e_reset(adapter);
6103
6104	pm_runtime_put_sync(netdev->dev.parent);
6105
6106	clear_bit(__E1000_RESETTING, &adapter->state);
6107
6108	return 0;
6109}
6110
6111static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6112			   int cmd)
6113{
6114	struct e1000_adapter *adapter = netdev_priv(netdev);
6115	struct mii_ioctl_data *data = if_mii(ifr);
6116
6117	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6118		return -EOPNOTSUPP;
6119
6120	switch (cmd) {
6121	case SIOCGMIIPHY:
6122		data->phy_id = adapter->hw.phy.addr;
6123		break;
6124	case SIOCGMIIREG:
6125		e1000_phy_read_status(adapter);
6126
6127		switch (data->reg_num & 0x1F) {
6128		case MII_BMCR:
6129			data->val_out = adapter->phy_regs.bmcr;
6130			break;
6131		case MII_BMSR:
6132			data->val_out = adapter->phy_regs.bmsr;
6133			break;
6134		case MII_PHYSID1:
6135			data->val_out = (adapter->hw.phy.id >> 16);
6136			break;
6137		case MII_PHYSID2:
6138			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6139			break;
6140		case MII_ADVERTISE:
6141			data->val_out = adapter->phy_regs.advertise;
6142			break;
6143		case MII_LPA:
6144			data->val_out = adapter->phy_regs.lpa;
6145			break;
6146		case MII_EXPANSION:
6147			data->val_out = adapter->phy_regs.expansion;
6148			break;
6149		case MII_CTRL1000:
6150			data->val_out = adapter->phy_regs.ctrl1000;
6151			break;
6152		case MII_STAT1000:
6153			data->val_out = adapter->phy_regs.stat1000;
6154			break;
6155		case MII_ESTATUS:
6156			data->val_out = adapter->phy_regs.estatus;
6157			break;
6158		default:
6159			return -EIO;
6160		}
6161		break;
6162	case SIOCSMIIREG:
6163	default:
6164		return -EOPNOTSUPP;
6165	}
6166	return 0;
6167}
6168
6169/**
6170 * e1000e_hwtstamp_set - control hardware time stamping
6171 * @netdev: network interface device structure
6172 * @ifr: interface request
6173 *
6174 * Outgoing time stamping can be enabled and disabled. Play nice and
6175 * disable it when requested, although it shouldn't cause any overhead
6176 * when no packet needs it. At most one packet in the queue may be
6177 * marked for time stamping, otherwise it would be impossible to tell
6178 * for sure to which packet the hardware time stamp belongs.
6179 *
6180 * Incoming time stamping has to be configured via the hardware filters.
6181 * Not all combinations are supported, in particular event type has to be
6182 * specified. Matching the kind of event packet is not supported, with the
6183 * exception of "all V2 events regardless of level 2 or 4".
6184 **/
6185static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6186{
6187	struct e1000_adapter *adapter = netdev_priv(netdev);
6188	struct hwtstamp_config config;
6189	int ret_val;
6190
6191	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6192		return -EFAULT;
6193
6194	ret_val = e1000e_config_hwtstamp(adapter, &config);
6195	if (ret_val)
6196		return ret_val;
6197
6198	switch (config.rx_filter) {
6199	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6200	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6201	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6202	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6203	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6204	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6205		/* With V2 type filters which specify a Sync or Delay Request,
6206		 * Path Delay Request/Response messages are also time stamped
6207		 * by hardware so notify the caller the requested packets plus
6208		 * some others are time stamped.
6209		 */
6210		config.rx_filter = HWTSTAMP_FILTER_SOME;
6211		break;
6212	default:
6213		break;
6214	}
6215
6216	return copy_to_user(ifr->ifr_data, &config,
6217			    sizeof(config)) ? -EFAULT : 0;
6218}
6219
6220static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6221{
6222	struct e1000_adapter *adapter = netdev_priv(netdev);
6223
6224	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6225			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6226}
6227
6228static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6229{
6230	switch (cmd) {
6231	case SIOCGMIIPHY:
6232	case SIOCGMIIREG:
6233	case SIOCSMIIREG:
6234		return e1000_mii_ioctl(netdev, ifr, cmd);
6235	case SIOCSHWTSTAMP:
6236		return e1000e_hwtstamp_set(netdev, ifr);
6237	case SIOCGHWTSTAMP:
6238		return e1000e_hwtstamp_get(netdev, ifr);
6239	default:
6240		return -EOPNOTSUPP;
6241	}
6242}
6243
6244static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6245{
6246	struct e1000_hw *hw = &adapter->hw;
6247	u32 i, mac_reg, wuc;
6248	u16 phy_reg, wuc_enable;
6249	int retval;
6250
6251	/* copy MAC RARs to PHY RARs */
6252	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6253
6254	retval = hw->phy.ops.acquire(hw);
6255	if (retval) {
6256		e_err("Could not acquire PHY\n");
6257		return retval;
6258	}
6259
6260	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6261	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6262	if (retval)
6263		goto release;
6264
6265	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6266	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6267		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6268		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6269					   (u16)(mac_reg & 0xFFFF));
6270		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6271					   (u16)((mac_reg >> 16) & 0xFFFF));
6272	}
6273
6274	/* configure PHY Rx Control register */
6275	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6276	mac_reg = er32(RCTL);
6277	if (mac_reg & E1000_RCTL_UPE)
6278		phy_reg |= BM_RCTL_UPE;
6279	if (mac_reg & E1000_RCTL_MPE)
6280		phy_reg |= BM_RCTL_MPE;
6281	phy_reg &= ~(BM_RCTL_MO_MASK);
6282	if (mac_reg & E1000_RCTL_MO_3)
6283		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6284			    << BM_RCTL_MO_SHIFT);
6285	if (mac_reg & E1000_RCTL_BAM)
6286		phy_reg |= BM_RCTL_BAM;
6287	if (mac_reg & E1000_RCTL_PMCF)
6288		phy_reg |= BM_RCTL_PMCF;
6289	mac_reg = er32(CTRL);
6290	if (mac_reg & E1000_CTRL_RFCE)
6291		phy_reg |= BM_RCTL_RFCE;
6292	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6293
6294	wuc = E1000_WUC_PME_EN;
6295	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6296		wuc |= E1000_WUC_APME;
6297
6298	/* enable PHY wakeup in MAC register */
6299	ew32(WUFC, wufc);
6300	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6301		   E1000_WUC_PME_STATUS | wuc));
6302
6303	/* configure and enable PHY wakeup in PHY registers */
6304	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6305	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6306
6307	/* activate PHY wakeup */
6308	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6309	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6310	if (retval)
6311		e_err("Could not set PHY Host Wakeup bit\n");
6312release:
6313	hw->phy.ops.release(hw);
6314
6315	return retval;
6316}
6317
6318static void e1000e_flush_lpic(struct pci_dev *pdev)
6319{
6320	struct net_device *netdev = pci_get_drvdata(pdev);
6321	struct e1000_adapter *adapter = netdev_priv(netdev);
6322	struct e1000_hw *hw = &adapter->hw;
6323	u32 ret_val;
6324
6325	pm_runtime_get_sync(netdev->dev.parent);
6326
6327	ret_val = hw->phy.ops.acquire(hw);
6328	if (ret_val)
6329		goto fl_out;
6330
6331	pr_info("EEE TX LPI TIMER: %08X\n",
6332		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6333
6334	hw->phy.ops.release(hw);
6335
6336fl_out:
6337	pm_runtime_put_sync(netdev->dev.parent);
6338}
6339
6340/* S0ix implementation */
6341static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6342{
6343	struct e1000_hw *hw = &adapter->hw;
6344	u32 mac_data;
6345	u16 phy_data;
6346
6347	/* Disable the periodic inband message,
6348	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6349	 */
6350	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6351	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6352	phy_data |= BIT(10);
6353	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6354
6355	/* Make sure we don't exit K1 every time a new packet arrives
6356	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6357	 */
6358	e1e_rphy(hw, I217_CGFREG, &phy_data);
6359	phy_data |= BIT(5);
6360	e1e_wphy(hw, I217_CGFREG, phy_data);
6361
6362	/* Change the MAC/PHY interface to SMBus
6363	 * Force the SMBus in PHY page769_23[0] = 1
6364	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6365	 */
6366	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6367	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6368	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6369	mac_data = er32(CTRL_EXT);
6370	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6371	ew32(CTRL_EXT, mac_data);
6372
6373	/* DFT control: PHY bit: page769_20[0] = 1
6374	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6375	 */
6376	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6377	phy_data |= BIT(0);
6378	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6379
6380	mac_data = er32(EXTCNF_CTRL);
6381	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6382	ew32(EXTCNF_CTRL, mac_data);
6383
6384	/* Check MAC Tx/Rx packet buffer pointers.
6385	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6386	 * pending traffic indication that would prevent power gating.
6387	 */
6388	mac_data = er32(TDFH);
6389	if (mac_data)
6390		ew32(TDFH, 0);
6391	mac_data = er32(TDFT);
6392	if (mac_data)
6393		ew32(TDFT, 0);
6394	mac_data = er32(TDFHS);
6395	if (mac_data)
6396		ew32(TDFHS, 0);
6397	mac_data = er32(TDFTS);
6398	if (mac_data)
6399		ew32(TDFTS, 0);
6400	mac_data = er32(TDFPC);
6401	if (mac_data)
6402		ew32(TDFPC, 0);
6403	mac_data = er32(RDFH);
6404	if (mac_data)
6405		ew32(RDFH, 0);
6406	mac_data = er32(RDFT);
6407	if (mac_data)
6408		ew32(RDFT, 0);
6409	mac_data = er32(RDFHS);
6410	if (mac_data)
6411		ew32(RDFHS, 0);
6412	mac_data = er32(RDFTS);
6413	if (mac_data)
6414		ew32(RDFTS, 0);
6415	mac_data = er32(RDFPC);
6416	if (mac_data)
6417		ew32(RDFPC, 0);
 
6418
6419	/* Enable the Dynamic Power Gating in the MAC */
6420	mac_data = er32(FEXTNVM7);
6421	mac_data |= BIT(22);
6422	ew32(FEXTNVM7, mac_data);
 
 
 
6423
6424	/* Disable the time synchronization clock */
6425	mac_data = er32(FEXTNVM7);
6426	mac_data |= BIT(31);
6427	mac_data &= ~BIT(0);
6428	ew32(FEXTNVM7, mac_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6429
6430	/* Dynamic Power Gating Enable */
6431	mac_data = er32(CTRL_EXT);
6432	mac_data |= BIT(3);
6433	ew32(CTRL_EXT, mac_data);
 
 
 
 
 
6434
6435	/* Disable disconnected cable conditioning for Power Gating */
6436	mac_data = er32(DPGFR);
6437	mac_data |= BIT(2);
6438	ew32(DPGFR, mac_data);
 
 
 
 
 
 
 
6439
6440	/* Don't wake from dynamic Power Gating with clock request */
6441	mac_data = er32(FEXTNVM12);
6442	mac_data |= BIT(12);
6443	ew32(FEXTNVM12, mac_data);
 
 
 
6444
6445	/* Ungate PGCB clock */
6446	mac_data = er32(FEXTNVM9);
6447	mac_data &= ~BIT(28);
6448	ew32(FEXTNVM9, mac_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6449
6450	/* Enable K1 off to enable mPHY Power Gating */
6451	mac_data = er32(FEXTNVM6);
6452	mac_data |= BIT(31);
6453	ew32(FEXTNVM6, mac_data);
6454
6455	/* Enable mPHY power gating for any link and speed */
6456	mac_data = er32(FEXTNVM8);
6457	mac_data |= BIT(9);
6458	ew32(FEXTNVM8, mac_data);
6459
6460	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6461	mac_data = er32(CTRL_EXT);
6462	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6463	ew32(CTRL_EXT, mac_data);
6464
6465	/* No MAC DPG gating SLP_S0 in modern standby
6466	 * Switch the logic of the lanphypc to use PMC counter
6467	 */
6468	mac_data = er32(FEXTNVM5);
6469	mac_data |= BIT(7);
6470	ew32(FEXTNVM5, mac_data);
6471}
6472
6473static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6474{
6475	struct e1000_hw *hw = &adapter->hw;
6476	u32 mac_data;
6477	u16 phy_data;
6478
6479	/* Disable the Dynamic Power Gating in the MAC */
6480	mac_data = er32(FEXTNVM7);
6481	mac_data &= 0xFFBFFFFF;
6482	ew32(FEXTNVM7, mac_data);
6483
6484	/* Enable the time synchronization clock */
6485	mac_data = er32(FEXTNVM7);
6486	mac_data |= BIT(0);
6487	ew32(FEXTNVM7, mac_data);
6488
6489	/* Disable mPHY power gating for any link and speed */
6490	mac_data = er32(FEXTNVM8);
6491	mac_data &= ~BIT(9);
6492	ew32(FEXTNVM8, mac_data);
6493
6494	/* Disable K1 off */
6495	mac_data = er32(FEXTNVM6);
6496	mac_data &= ~BIT(31);
6497	ew32(FEXTNVM6, mac_data);
6498
6499	/* Disable Ungate PGCB clock */
6500	mac_data = er32(FEXTNVM9);
6501	mac_data |= BIT(28);
6502	ew32(FEXTNVM9, mac_data);
6503
6504	/* Cancel not waking from dynamic
6505	 * Power Gating with clock request
6506	 */
6507	mac_data = er32(FEXTNVM12);
6508	mac_data &= ~BIT(12);
6509	ew32(FEXTNVM12, mac_data);
6510
6511	/* Cancel disable disconnected cable conditioning
6512	 * for Power Gating
6513	 */
6514	mac_data = er32(DPGFR);
6515	mac_data &= ~BIT(2);
6516	ew32(DPGFR, mac_data);
6517
6518	/* Disable Dynamic Power Gating */
6519	mac_data = er32(CTRL_EXT);
6520	mac_data &= 0xFFFFFFF7;
6521	ew32(CTRL_EXT, mac_data);
6522
6523	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6524	mac_data = er32(CTRL_EXT);
6525	mac_data &= 0xFFF7FFFF;
6526	ew32(CTRL_EXT, mac_data);
6527
6528	/* Revert the lanphypc logic to use the internal Gbe counter
6529	 * and not the PMC counter
6530	 */
6531	mac_data = er32(FEXTNVM5);
6532	mac_data &= 0xFFFFFF7F;
6533	ew32(FEXTNVM5, mac_data);
6534
6535	/* Enable the periodic inband message,
6536	 * Request PCIe clock in K1 page770_17[10:9] =01b
6537	 */
6538	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6539	phy_data &= 0xFBFF;
6540	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6541	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6542
6543	/* Return back configuration
6544	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6545	 */
6546	e1e_rphy(hw, I217_CGFREG, &phy_data);
6547	phy_data &= 0xFFDF;
6548	e1e_wphy(hw, I217_CGFREG, phy_data);
6549
6550	/* Change the MAC/PHY interface to Kumeran
6551	 * Unforce the SMBus in PHY page769_23[0] = 0
6552	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6553	 */
6554	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6555	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6556	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6557	mac_data = er32(CTRL_EXT);
6558	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6559	ew32(CTRL_EXT, mac_data);
6560}
6561
6562static int e1000e_pm_freeze(struct device *dev)
6563{
6564	struct net_device *netdev = dev_get_drvdata(dev);
6565	struct e1000_adapter *adapter = netdev_priv(netdev);
6566	bool present;
6567
6568	rtnl_lock();
6569
6570	present = netif_device_present(netdev);
6571	netif_device_detach(netdev);
6572
6573	if (present && netif_running(netdev)) {
6574		int count = E1000_CHECK_RESET_COUNT;
6575
6576		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6577			usleep_range(10000, 11000);
6578
6579		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6580
6581		/* Quiesce the device without resetting the hardware */
6582		e1000e_down(adapter, false);
6583		e1000_free_irq(adapter);
6584	}
6585	rtnl_unlock();
6586
6587	e1000e_reset_interrupt_capability(adapter);
6588
6589	/* Allow time for pending master requests to run */
6590	e1000e_disable_pcie_master(&adapter->hw);
6591
6592	return 0;
6593}
6594
6595static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6596{
6597	struct net_device *netdev = pci_get_drvdata(pdev);
6598	struct e1000_adapter *adapter = netdev_priv(netdev);
6599	struct e1000_hw *hw = &adapter->hw;
6600	u32 ctrl, ctrl_ext, rctl, status, wufc;
6601	int retval = 0;
6602
6603	/* Runtime suspend should only enable wakeup for link changes */
6604	if (runtime)
6605		wufc = E1000_WUFC_LNKC;
6606	else if (device_may_wakeup(&pdev->dev))
6607		wufc = adapter->wol;
6608	else
6609		wufc = 0;
6610
6611	status = er32(STATUS);
6612	if (status & E1000_STATUS_LU)
6613		wufc &= ~E1000_WUFC_LNKC;
6614
6615	if (wufc) {
6616		e1000_setup_rctl(adapter);
6617		e1000e_set_rx_mode(netdev);
6618
6619		/* turn on all-multi mode if wake on multicast is enabled */
6620		if (wufc & E1000_WUFC_MC) {
6621			rctl = er32(RCTL);
6622			rctl |= E1000_RCTL_MPE;
6623			ew32(RCTL, rctl);
6624		}
6625
6626		ctrl = er32(CTRL);
6627		ctrl |= E1000_CTRL_ADVD3WUC;
6628		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6629			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6630		ew32(CTRL, ctrl);
6631
6632		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6633		    adapter->hw.phy.media_type ==
6634		    e1000_media_type_internal_serdes) {
6635			/* keep the laser running in D3 */
6636			ctrl_ext = er32(CTRL_EXT);
6637			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6638			ew32(CTRL_EXT, ctrl_ext);
6639		}
6640
6641		if (!runtime)
6642			e1000e_power_up_phy(adapter);
6643
6644		if (adapter->flags & FLAG_IS_ICH)
6645			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6646
6647		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6648			/* enable wakeup by the PHY */
6649			retval = e1000_init_phy_wakeup(adapter, wufc);
6650			if (retval)
6651				return retval;
 
 
6652		} else {
6653			/* enable wakeup by the MAC */
6654			ew32(WUFC, wufc);
6655			ew32(WUC, E1000_WUC_PME_EN);
6656		}
6657	} else {
6658		ew32(WUC, 0);
6659		ew32(WUFC, 0);
6660
6661		e1000_power_down_phy(adapter);
6662	}
6663
6664	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6665		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6666	} else if (hw->mac.type >= e1000_pch_lpt) {
6667		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6668			/* ULP does not support wake from unicast, multicast
6669			 * or broadcast.
6670			 */
6671			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6672
6673		if (retval)
6674			return retval;
 
 
6675	}
6676
6677	/* Ensure that the appropriate bits are set in LPI_CTRL
6678	 * for EEE in Sx
6679	 */
6680	if ((hw->phy.type >= e1000_phy_i217) &&
6681	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6682		u16 lpi_ctrl = 0;
6683
6684		retval = hw->phy.ops.acquire(hw);
6685		if (!retval) {
6686			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6687						 &lpi_ctrl);
6688			if (!retval) {
6689				if (adapter->eee_advert &
6690				    hw->dev_spec.ich8lan.eee_lp_ability &
6691				    I82579_EEE_100_SUPPORTED)
6692					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6693				if (adapter->eee_advert &
6694				    hw->dev_spec.ich8lan.eee_lp_ability &
6695				    I82579_EEE_1000_SUPPORTED)
6696					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6697
6698				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6699							 lpi_ctrl);
6700			}
6701		}
6702		hw->phy.ops.release(hw);
6703	}
6704
 
6705	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6706	 * would have already happened in close and is redundant.
6707	 */
6708	e1000e_release_hw_control(adapter);
6709
6710	pci_clear_master(pdev);
6711
6712	/* The pci-e switch on some quad port adapters will report a
6713	 * correctable error when the MAC transitions from D0 to D3.  To
6714	 * prevent this we need to mask off the correctable errors on the
6715	 * downstream port of the pci-e switch.
6716	 *
6717	 * We don't have the associated upstream bridge while assigning
6718	 * the PCI device into guest. For example, the KVM on power is
6719	 * one of the cases.
6720	 */
6721	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6722		struct pci_dev *us_dev = pdev->bus->self;
6723		u16 devctl;
6724
6725		if (!us_dev)
6726			return 0;
6727
6728		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6729		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6730					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6731
6732		pci_save_state(pdev);
6733		pci_prepare_to_sleep(pdev);
6734
6735		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6736	}
6737
6738	return 0;
6739}
6740
6741/**
6742 * __e1000e_disable_aspm - Disable ASPM states
6743 * @pdev: pointer to PCI device struct
6744 * @state: bit-mask of ASPM states to disable
6745 * @locked: indication if this context holds pci_bus_sem locked.
6746 *
6747 * Some devices *must* have certain ASPM states disabled per hardware errata.
6748 **/
6749static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6750{
6751	struct pci_dev *parent = pdev->bus->self;
6752	u16 aspm_dis_mask = 0;
6753	u16 pdev_aspmc, parent_aspmc;
6754
6755	switch (state) {
6756	case PCIE_LINK_STATE_L0S:
6757	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6758		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6759		fallthrough; /* can't have L1 without L0s */
6760	case PCIE_LINK_STATE_L1:
6761		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6762		break;
6763	default:
6764		return;
6765	}
6766
6767	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6768	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6769
6770	if (parent) {
6771		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6772					  &parent_aspmc);
6773		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6774	}
6775
6776	/* Nothing to do if the ASPM states to be disabled already are */
6777	if (!(pdev_aspmc & aspm_dis_mask) &&
6778	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6779		return;
6780
6781	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6782		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6783		 "L0s" : "",
6784		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6785		 "L1" : "");
6786
6787#ifdef CONFIG_PCIEASPM
6788	if (locked)
6789		pci_disable_link_state_locked(pdev, state);
6790	else
6791		pci_disable_link_state(pdev, state);
6792
6793	/* Double-check ASPM control.  If not disabled by the above, the
6794	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6795	 * not enabled); override by writing PCI config space directly.
6796	 */
6797	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6798	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6799
6800	if (!(aspm_dis_mask & pdev_aspmc))
6801		return;
6802#endif
6803
6804	/* Both device and parent should have the same ASPM setting.
6805	 * Disable ASPM in downstream component first and then upstream.
6806	 */
6807	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6808
6809	if (parent)
6810		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6811					   aspm_dis_mask);
6812}
6813
6814/**
6815 * e1000e_disable_aspm - Disable ASPM states.
6816 * @pdev: pointer to PCI device struct
6817 * @state: bit-mask of ASPM states to disable
6818 *
6819 * This function acquires the pci_bus_sem!
6820 * Some devices *must* have certain ASPM states disabled per hardware errata.
6821 **/
6822static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6823{
6824	__e1000e_disable_aspm(pdev, state, 0);
6825}
6826
6827/**
6828 * e1000e_disable_aspm_locked - Disable ASPM states.
6829 * @pdev: pointer to PCI device struct
6830 * @state: bit-mask of ASPM states to disable
6831 *
6832 * This function must be called with pci_bus_sem acquired!
6833 * Some devices *must* have certain ASPM states disabled per hardware errata.
6834 **/
6835static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6836{
6837	__e1000e_disable_aspm(pdev, state, 1);
6838}
6839
6840static int e1000e_pm_thaw(struct device *dev)
6841{
6842	struct net_device *netdev = dev_get_drvdata(dev);
6843	struct e1000_adapter *adapter = netdev_priv(netdev);
6844	int rc = 0;
6845
6846	e1000e_set_interrupt_capability(adapter);
6847
6848	rtnl_lock();
6849	if (netif_running(netdev)) {
6850		rc = e1000_request_irq(adapter);
6851		if (rc)
6852			goto err_irq;
6853
6854		e1000e_up(adapter);
6855	}
6856
6857	netif_device_attach(netdev);
6858err_irq:
6859	rtnl_unlock();
6860
6861	return rc;
6862}
6863
6864static int __e1000_resume(struct pci_dev *pdev)
6865{
6866	struct net_device *netdev = pci_get_drvdata(pdev);
6867	struct e1000_adapter *adapter = netdev_priv(netdev);
6868	struct e1000_hw *hw = &adapter->hw;
6869	u16 aspm_disable_flag = 0;
6870
6871	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6872		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6873	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6874		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6875	if (aspm_disable_flag)
6876		e1000e_disable_aspm(pdev, aspm_disable_flag);
6877
6878	pci_set_master(pdev);
6879
6880	if (hw->mac.type >= e1000_pch2lan)
6881		e1000_resume_workarounds_pchlan(&adapter->hw);
6882
6883	e1000e_power_up_phy(adapter);
6884
6885	/* report the system wakeup cause from S3/S4 */
6886	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6887		u16 phy_data;
6888
6889		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6890		if (phy_data) {
6891			e_info("PHY Wakeup cause - %s\n",
6892			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6893			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6894			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6895			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6896			       phy_data & E1000_WUS_LNKC ?
6897			       "Link Status Change" : "other");
6898		}
6899		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6900	} else {
6901		u32 wus = er32(WUS);
6902
6903		if (wus) {
6904			e_info("MAC Wakeup cause - %s\n",
6905			       wus & E1000_WUS_EX ? "Unicast Packet" :
6906			       wus & E1000_WUS_MC ? "Multicast Packet" :
6907			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6908			       wus & E1000_WUS_MAG ? "Magic Packet" :
6909			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6910			       "other");
6911		}
6912		ew32(WUS, ~0);
6913	}
6914
6915	e1000e_reset(adapter);
6916
6917	e1000_init_manageability_pt(adapter);
6918
6919	/* If the controller has AMT, do not set DRV_LOAD until the interface
6920	 * is up.  For all other cases, let the f/w know that the h/w is now
6921	 * under the control of the driver.
6922	 */
6923	if (!(adapter->flags & FLAG_HAS_AMT))
6924		e1000e_get_hw_control(adapter);
6925
6926	return 0;
6927}
6928
6929static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6930{
6931	return pm_runtime_suspended(dev) &&
6932		pm_suspend_via_firmware();
6933}
6934
6935static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6936{
6937	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6938	struct e1000_adapter *adapter = netdev_priv(netdev);
6939	struct pci_dev *pdev = to_pci_dev(dev);
6940	int rc;
6941
6942	e1000e_flush_lpic(pdev);
6943
6944	e1000e_pm_freeze(dev);
6945
6946	rc = __e1000_shutdown(pdev, false);
6947	if (rc) {
6948		e1000e_pm_thaw(dev);
6949	} else {
6950		/* Introduce S0ix implementation */
6951		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6952			e1000e_s0ix_entry_flow(adapter);
6953	}
6954
6955	return rc;
6956}
6957
6958static __maybe_unused int e1000e_pm_resume(struct device *dev)
6959{
6960	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6961	struct e1000_adapter *adapter = netdev_priv(netdev);
6962	struct pci_dev *pdev = to_pci_dev(dev);
6963	int rc;
6964
6965	/* Introduce S0ix implementation */
6966	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6967		e1000e_s0ix_exit_flow(adapter);
6968
6969	rc = __e1000_resume(pdev);
6970	if (rc)
6971		return rc;
6972
6973	return e1000e_pm_thaw(dev);
6974}
6975
6976static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6977{
6978	struct net_device *netdev = dev_get_drvdata(dev);
6979	struct e1000_adapter *adapter = netdev_priv(netdev);
6980	u16 eee_lp;
6981
6982	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6983
6984	if (!e1000e_has_link(adapter)) {
6985		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6986		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6987	}
6988
6989	return -EBUSY;
6990}
6991
6992static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6993{
6994	struct pci_dev *pdev = to_pci_dev(dev);
6995	struct net_device *netdev = pci_get_drvdata(pdev);
6996	struct e1000_adapter *adapter = netdev_priv(netdev);
6997	int rc;
6998
 
 
6999	rc = __e1000_resume(pdev);
7000	if (rc)
7001		return rc;
7002
7003	if (netdev->flags & IFF_UP)
7004		e1000e_up(adapter);
7005
7006	return rc;
7007}
7008
7009static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7010{
7011	struct pci_dev *pdev = to_pci_dev(dev);
7012	struct net_device *netdev = pci_get_drvdata(pdev);
7013	struct e1000_adapter *adapter = netdev_priv(netdev);
7014
7015	if (netdev->flags & IFF_UP) {
7016		int count = E1000_CHECK_RESET_COUNT;
7017
7018		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7019			usleep_range(10000, 11000);
7020
7021		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7022
7023		/* Down the device without resetting the hardware */
7024		e1000e_down(adapter, false);
7025	}
7026
7027	if (__e1000_shutdown(pdev, true)) {
7028		e1000e_pm_runtime_resume(dev);
7029		return -EBUSY;
7030	}
7031
7032	return 0;
7033}
7034
7035static void e1000_shutdown(struct pci_dev *pdev)
7036{
7037	e1000e_flush_lpic(pdev);
7038
7039	e1000e_pm_freeze(&pdev->dev);
7040
7041	__e1000_shutdown(pdev, false);
7042}
7043
7044#ifdef CONFIG_NET_POLL_CONTROLLER
7045
7046static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7047{
7048	struct net_device *netdev = data;
7049	struct e1000_adapter *adapter = netdev_priv(netdev);
7050
7051	if (adapter->msix_entries) {
7052		int vector, msix_irq;
7053
7054		vector = 0;
7055		msix_irq = adapter->msix_entries[vector].vector;
7056		if (disable_hardirq(msix_irq))
7057			e1000_intr_msix_rx(msix_irq, netdev);
7058		enable_irq(msix_irq);
7059
7060		vector++;
7061		msix_irq = adapter->msix_entries[vector].vector;
7062		if (disable_hardirq(msix_irq))
7063			e1000_intr_msix_tx(msix_irq, netdev);
7064		enable_irq(msix_irq);
7065
7066		vector++;
7067		msix_irq = adapter->msix_entries[vector].vector;
7068		if (disable_hardirq(msix_irq))
7069			e1000_msix_other(msix_irq, netdev);
7070		enable_irq(msix_irq);
7071	}
7072
7073	return IRQ_HANDLED;
7074}
7075
7076/**
7077 * e1000_netpoll
7078 * @netdev: network interface device structure
7079 *
7080 * Polling 'interrupt' - used by things like netconsole to send skbs
7081 * without having to re-enable interrupts. It's not called while
7082 * the interrupt routine is executing.
7083 */
7084static void e1000_netpoll(struct net_device *netdev)
7085{
7086	struct e1000_adapter *adapter = netdev_priv(netdev);
7087
7088	switch (adapter->int_mode) {
7089	case E1000E_INT_MODE_MSIX:
7090		e1000_intr_msix(adapter->pdev->irq, netdev);
7091		break;
7092	case E1000E_INT_MODE_MSI:
7093		if (disable_hardirq(adapter->pdev->irq))
7094			e1000_intr_msi(adapter->pdev->irq, netdev);
7095		enable_irq(adapter->pdev->irq);
7096		break;
7097	default:		/* E1000E_INT_MODE_LEGACY */
7098		if (disable_hardirq(adapter->pdev->irq))
7099			e1000_intr(adapter->pdev->irq, netdev);
7100		enable_irq(adapter->pdev->irq);
7101		break;
7102	}
7103}
7104#endif
7105
7106/**
7107 * e1000_io_error_detected - called when PCI error is detected
7108 * @pdev: Pointer to PCI device
7109 * @state: The current pci connection state
7110 *
7111 * This function is called after a PCI bus error affecting
7112 * this device has been detected.
7113 */
7114static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7115						pci_channel_state_t state)
7116{
7117	e1000e_pm_freeze(&pdev->dev);
7118
7119	if (state == pci_channel_io_perm_failure)
7120		return PCI_ERS_RESULT_DISCONNECT;
7121
7122	pci_disable_device(pdev);
7123
7124	/* Request a slot reset. */
7125	return PCI_ERS_RESULT_NEED_RESET;
7126}
7127
7128/**
7129 * e1000_io_slot_reset - called after the pci bus has been reset.
7130 * @pdev: Pointer to PCI device
7131 *
7132 * Restart the card from scratch, as if from a cold-boot. Implementation
7133 * resembles the first-half of the e1000e_pm_resume routine.
7134 */
7135static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7136{
7137	struct net_device *netdev = pci_get_drvdata(pdev);
7138	struct e1000_adapter *adapter = netdev_priv(netdev);
7139	struct e1000_hw *hw = &adapter->hw;
7140	u16 aspm_disable_flag = 0;
7141	int err;
7142	pci_ers_result_t result;
7143
7144	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7145		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7146	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7147		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7148	if (aspm_disable_flag)
7149		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7150
7151	err = pci_enable_device_mem(pdev);
7152	if (err) {
7153		dev_err(&pdev->dev,
7154			"Cannot re-enable PCI device after reset.\n");
7155		result = PCI_ERS_RESULT_DISCONNECT;
7156	} else {
7157		pdev->state_saved = true;
7158		pci_restore_state(pdev);
7159		pci_set_master(pdev);
7160
7161		pci_enable_wake(pdev, PCI_D3hot, 0);
7162		pci_enable_wake(pdev, PCI_D3cold, 0);
7163
7164		e1000e_reset(adapter);
7165		ew32(WUS, ~0);
7166		result = PCI_ERS_RESULT_RECOVERED;
7167	}
7168
7169	return result;
7170}
7171
7172/**
7173 * e1000_io_resume - called when traffic can start flowing again.
7174 * @pdev: Pointer to PCI device
7175 *
7176 * This callback is called when the error recovery driver tells us that
7177 * its OK to resume normal operation. Implementation resembles the
7178 * second-half of the e1000e_pm_resume routine.
7179 */
7180static void e1000_io_resume(struct pci_dev *pdev)
7181{
7182	struct net_device *netdev = pci_get_drvdata(pdev);
7183	struct e1000_adapter *adapter = netdev_priv(netdev);
7184
7185	e1000_init_manageability_pt(adapter);
7186
7187	e1000e_pm_thaw(&pdev->dev);
7188
7189	/* If the controller has AMT, do not set DRV_LOAD until the interface
7190	 * is up.  For all other cases, let the f/w know that the h/w is now
7191	 * under the control of the driver.
7192	 */
7193	if (!(adapter->flags & FLAG_HAS_AMT))
7194		e1000e_get_hw_control(adapter);
7195}
7196
7197static void e1000_print_device_info(struct e1000_adapter *adapter)
7198{
7199	struct e1000_hw *hw = &adapter->hw;
7200	struct net_device *netdev = adapter->netdev;
7201	u32 ret_val;
7202	u8 pba_str[E1000_PBANUM_LENGTH];
7203
7204	/* print bus type/speed/width info */
7205	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7206	       /* bus width */
7207	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7208		"Width x1"),
7209	       /* MAC address */
7210	       netdev->dev_addr);
7211	e_info("Intel(R) PRO/%s Network Connection\n",
7212	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7213	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7214						E1000_PBANUM_LENGTH);
7215	if (ret_val)
7216		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7217	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7218	       hw->mac.type, hw->phy.type, pba_str);
7219}
7220
7221static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7222{
7223	struct e1000_hw *hw = &adapter->hw;
7224	int ret_val;
7225	u16 buf = 0;
7226
7227	if (hw->mac.type != e1000_82573)
7228		return;
7229
7230	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7231	le16_to_cpus(&buf);
7232	if (!ret_val && (!(buf & BIT(0)))) {
7233		/* Deep Smart Power Down (DSPD) */
7234		dev_warn(&adapter->pdev->dev,
7235			 "Warning: detected DSPD enabled in EEPROM\n");
7236	}
7237}
7238
7239static netdev_features_t e1000_fix_features(struct net_device *netdev,
7240					    netdev_features_t features)
7241{
7242	struct e1000_adapter *adapter = netdev_priv(netdev);
7243	struct e1000_hw *hw = &adapter->hw;
7244
7245	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7246	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7247		features &= ~NETIF_F_RXFCS;
7248
7249	/* Since there is no support for separate Rx/Tx vlan accel
7250	 * enable/disable make sure Tx flag is always in same state as Rx.
7251	 */
7252	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7253		features |= NETIF_F_HW_VLAN_CTAG_TX;
7254	else
7255		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7256
7257	return features;
7258}
7259
7260static int e1000_set_features(struct net_device *netdev,
7261			      netdev_features_t features)
7262{
7263	struct e1000_adapter *adapter = netdev_priv(netdev);
7264	netdev_features_t changed = features ^ netdev->features;
7265
7266	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7267		adapter->flags |= FLAG_TSO_FORCE;
7268
7269	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7270			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7271			 NETIF_F_RXALL)))
7272		return 0;
7273
7274	if (changed & NETIF_F_RXFCS) {
7275		if (features & NETIF_F_RXFCS) {
7276			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7277		} else {
7278			/* We need to take it back to defaults, which might mean
7279			 * stripping is still disabled at the adapter level.
7280			 */
7281			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7282				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7283			else
7284				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7285		}
7286	}
7287
7288	netdev->features = features;
7289
7290	if (netif_running(netdev))
7291		e1000e_reinit_locked(adapter);
7292	else
7293		e1000e_reset(adapter);
7294
7295	return 1;
7296}
7297
7298static const struct net_device_ops e1000e_netdev_ops = {
7299	.ndo_open		= e1000e_open,
7300	.ndo_stop		= e1000e_close,
7301	.ndo_start_xmit		= e1000_xmit_frame,
7302	.ndo_get_stats64	= e1000e_get_stats64,
7303	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7304	.ndo_set_mac_address	= e1000_set_mac,
7305	.ndo_change_mtu		= e1000_change_mtu,
7306	.ndo_do_ioctl		= e1000_ioctl,
7307	.ndo_tx_timeout		= e1000_tx_timeout,
7308	.ndo_validate_addr	= eth_validate_addr,
7309
7310	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7311	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7312#ifdef CONFIG_NET_POLL_CONTROLLER
7313	.ndo_poll_controller	= e1000_netpoll,
7314#endif
7315	.ndo_set_features = e1000_set_features,
7316	.ndo_fix_features = e1000_fix_features,
7317	.ndo_features_check	= passthru_features_check,
7318};
7319
7320/**
7321 * e1000_probe - Device Initialization Routine
7322 * @pdev: PCI device information struct
7323 * @ent: entry in e1000_pci_tbl
7324 *
7325 * Returns 0 on success, negative on failure
7326 *
7327 * e1000_probe initializes an adapter identified by a pci_dev structure.
7328 * The OS initialization, configuring of the adapter private structure,
7329 * and a hardware reset occur.
7330 **/
7331static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7332{
7333	struct net_device *netdev;
7334	struct e1000_adapter *adapter;
7335	struct e1000_hw *hw;
7336	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7337	resource_size_t mmio_start, mmio_len;
7338	resource_size_t flash_start, flash_len;
7339	static int cards_found;
7340	u16 aspm_disable_flag = 0;
7341	int bars, i, err, pci_using_dac;
7342	u16 eeprom_data = 0;
7343	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
7344	s32 ret_val = 0;
7345
7346	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7347		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7348	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7349		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7350	if (aspm_disable_flag)
7351		e1000e_disable_aspm(pdev, aspm_disable_flag);
7352
7353	err = pci_enable_device_mem(pdev);
7354	if (err)
7355		return err;
7356
7357	pci_using_dac = 0;
7358	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7359	if (!err) {
7360		pci_using_dac = 1;
7361	} else {
7362		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7363		if (err) {
7364			dev_err(&pdev->dev,
7365				"No usable DMA configuration, aborting\n");
7366			goto err_dma;
7367		}
7368	}
7369
7370	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7371	err = pci_request_selected_regions_exclusive(pdev, bars,
7372						     e1000e_driver_name);
7373	if (err)
7374		goto err_pci_reg;
7375
7376	/* AER (Advanced Error Reporting) hooks */
7377	pci_enable_pcie_error_reporting(pdev);
7378
7379	pci_set_master(pdev);
7380	/* PCI config space info */
7381	err = pci_save_state(pdev);
7382	if (err)
7383		goto err_alloc_etherdev;
7384
7385	err = -ENOMEM;
7386	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7387	if (!netdev)
7388		goto err_alloc_etherdev;
7389
7390	SET_NETDEV_DEV(netdev, &pdev->dev);
7391
7392	netdev->irq = pdev->irq;
7393
7394	pci_set_drvdata(pdev, netdev);
7395	adapter = netdev_priv(netdev);
7396	hw = &adapter->hw;
7397	adapter->netdev = netdev;
7398	adapter->pdev = pdev;
7399	adapter->ei = ei;
7400	adapter->pba = ei->pba;
7401	adapter->flags = ei->flags;
7402	adapter->flags2 = ei->flags2;
7403	adapter->hw.adapter = adapter;
7404	adapter->hw.mac.type = ei->mac;
7405	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7406	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7407
7408	mmio_start = pci_resource_start(pdev, 0);
7409	mmio_len = pci_resource_len(pdev, 0);
7410
7411	err = -EIO;
7412	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7413	if (!adapter->hw.hw_addr)
7414		goto err_ioremap;
7415
7416	if ((adapter->flags & FLAG_HAS_FLASH) &&
7417	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7418	    (hw->mac.type < e1000_pch_spt)) {
7419		flash_start = pci_resource_start(pdev, 1);
7420		flash_len = pci_resource_len(pdev, 1);
7421		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7422		if (!adapter->hw.flash_address)
7423			goto err_flashmap;
7424	}
7425
7426	/* Set default EEE advertisement */
7427	if (adapter->flags2 & FLAG2_HAS_EEE)
7428		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7429
7430	/* construct the net_device struct */
7431	netdev->netdev_ops = &e1000e_netdev_ops;
7432	e1000e_set_ethtool_ops(netdev);
7433	netdev->watchdog_timeo = 5 * HZ;
7434	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7435	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7436
7437	netdev->mem_start = mmio_start;
7438	netdev->mem_end = mmio_start + mmio_len;
7439
7440	adapter->bd_number = cards_found++;
7441
7442	e1000e_check_options(adapter);
7443
7444	/* setup adapter struct */
7445	err = e1000_sw_init(adapter);
7446	if (err)
7447		goto err_sw_init;
7448
7449	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7450	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7451	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7452
7453	err = ei->get_variants(adapter);
7454	if (err)
7455		goto err_hw_init;
7456
7457	if ((adapter->flags & FLAG_IS_ICH) &&
7458	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7459	    (hw->mac.type < e1000_pch_spt))
7460		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7461
7462	hw->mac.ops.get_bus_info(&adapter->hw);
7463
7464	adapter->hw.phy.autoneg_wait_to_complete = 0;
7465
7466	/* Copper options */
7467	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7468		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7469		adapter->hw.phy.disable_polarity_correction = 0;
7470		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7471	}
7472
7473	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7474		dev_info(&pdev->dev,
7475			 "PHY reset is blocked due to SOL/IDER session.\n");
7476
7477	/* Set initial default active device features */
7478	netdev->features = (NETIF_F_SG |
7479			    NETIF_F_HW_VLAN_CTAG_RX |
7480			    NETIF_F_HW_VLAN_CTAG_TX |
7481			    NETIF_F_TSO |
7482			    NETIF_F_TSO6 |
7483			    NETIF_F_RXHASH |
7484			    NETIF_F_RXCSUM |
7485			    NETIF_F_HW_CSUM);
7486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7487	/* Set user-changeable features (subset of all device features) */
7488	netdev->hw_features = netdev->features;
7489	netdev->hw_features |= NETIF_F_RXFCS;
7490	netdev->priv_flags |= IFF_SUPP_NOFCS;
7491	netdev->hw_features |= NETIF_F_RXALL;
7492
7493	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7494		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7495
7496	netdev->vlan_features |= (NETIF_F_SG |
7497				  NETIF_F_TSO |
7498				  NETIF_F_TSO6 |
7499				  NETIF_F_HW_CSUM);
7500
7501	netdev->priv_flags |= IFF_UNICAST_FLT;
7502
7503	if (pci_using_dac) {
7504		netdev->features |= NETIF_F_HIGHDMA;
7505		netdev->vlan_features |= NETIF_F_HIGHDMA;
7506	}
7507
7508	/* MTU range: 68 - max_hw_frame_size */
7509	netdev->min_mtu = ETH_MIN_MTU;
7510	netdev->max_mtu = adapter->max_hw_frame_size -
7511			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7512
7513	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7514		adapter->flags |= FLAG_MNG_PT_ENABLED;
7515
7516	/* before reading the NVM, reset the controller to
7517	 * put the device in a known good starting state
7518	 */
7519	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7520
7521	/* systems with ASPM and others may see the checksum fail on the first
7522	 * attempt. Let's give it a few tries
7523	 */
7524	for (i = 0;; i++) {
7525		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7526			break;
7527		if (i == 2) {
7528			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7529			err = -EIO;
7530			goto err_eeprom;
7531		}
7532	}
7533
7534	e1000_eeprom_checks(adapter);
7535
7536	/* copy the MAC address */
7537	if (e1000e_read_mac_addr(&adapter->hw))
7538		dev_err(&pdev->dev,
7539			"NVM Read Error while reading MAC address\n");
7540
7541	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7542
7543	if (!is_valid_ether_addr(netdev->dev_addr)) {
7544		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7545			netdev->dev_addr);
7546		err = -EIO;
7547		goto err_eeprom;
7548	}
7549
7550	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7551	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7552
7553	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7554	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7555	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7556	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7557	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7558
7559	/* Initialize link parameters. User can change them with ethtool */
7560	adapter->hw.mac.autoneg = 1;
7561	adapter->fc_autoneg = true;
7562	adapter->hw.fc.requested_mode = e1000_fc_default;
7563	adapter->hw.fc.current_mode = e1000_fc_default;
7564	adapter->hw.phy.autoneg_advertised = 0x2f;
7565
7566	/* Initial Wake on LAN setting - If APM wake is enabled in
7567	 * the EEPROM, enable the ACPI Magic Packet filter
7568	 */
7569	if (adapter->flags & FLAG_APME_IN_WUC) {
7570		/* APME bit in EEPROM is mapped to WUC.APME */
7571		eeprom_data = er32(WUC);
7572		eeprom_apme_mask = E1000_WUC_APME;
7573		if ((hw->mac.type > e1000_ich10lan) &&
7574		    (eeprom_data & E1000_WUC_PHY_WAKE))
7575			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7576	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7577		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7578		    (adapter->hw.bus.func == 1))
7579			ret_val = e1000_read_nvm(&adapter->hw,
7580					      NVM_INIT_CONTROL3_PORT_B,
7581					      1, &eeprom_data);
7582		else
7583			ret_val = e1000_read_nvm(&adapter->hw,
7584					      NVM_INIT_CONTROL3_PORT_A,
7585					      1, &eeprom_data);
7586	}
7587
7588	/* fetch WoL from EEPROM */
7589	if (ret_val)
7590		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7591	else if (eeprom_data & eeprom_apme_mask)
7592		adapter->eeprom_wol |= E1000_WUFC_MAG;
7593
7594	/* now that we have the eeprom settings, apply the special cases
7595	 * where the eeprom may be wrong or the board simply won't support
7596	 * wake on lan on a particular port
7597	 */
7598	if (!(adapter->flags & FLAG_HAS_WOL))
7599		adapter->eeprom_wol = 0;
7600
7601	/* initialize the wol settings based on the eeprom settings */
7602	adapter->wol = adapter->eeprom_wol;
7603
7604	/* make sure adapter isn't asleep if manageability is enabled */
7605	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7606	    (hw->mac.ops.check_mng_mode(hw)))
7607		device_wakeup_enable(&pdev->dev);
7608
7609	/* save off EEPROM version number */
7610	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7611
7612	if (ret_val) {
7613		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7614		adapter->eeprom_vers = 0;
7615	}
7616
7617	/* init PTP hardware clock */
7618	e1000e_ptp_init(adapter);
7619
7620	/* reset the hardware with the new settings */
7621	e1000e_reset(adapter);
7622
7623	/* If the controller has AMT, do not set DRV_LOAD until the interface
7624	 * is up.  For all other cases, let the f/w know that the h/w is now
7625	 * under the control of the driver.
7626	 */
7627	if (!(adapter->flags & FLAG_HAS_AMT))
7628		e1000e_get_hw_control(adapter);
7629
7630	if (hw->mac.type >= e1000_pch_cnp)
7631		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7632
7633	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7634	err = register_netdev(netdev);
7635	if (err)
7636		goto err_register;
7637
7638	/* carrier off reporting is important to ethtool even BEFORE open */
7639	netif_carrier_off(netdev);
7640
7641	e1000_print_device_info(adapter);
7642
7643	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7644
7645	if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7646		pm_runtime_put_noidle(&pdev->dev);
7647
7648	return 0;
7649
7650err_register:
7651	if (!(adapter->flags & FLAG_HAS_AMT))
7652		e1000e_release_hw_control(adapter);
7653err_eeprom:
7654	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7655		e1000_phy_hw_reset(&adapter->hw);
7656err_hw_init:
7657	kfree(adapter->tx_ring);
7658	kfree(adapter->rx_ring);
7659err_sw_init:
7660	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7661		iounmap(adapter->hw.flash_address);
7662	e1000e_reset_interrupt_capability(adapter);
7663err_flashmap:
7664	iounmap(adapter->hw.hw_addr);
7665err_ioremap:
7666	free_netdev(netdev);
7667err_alloc_etherdev:
7668	pci_disable_pcie_error_reporting(pdev);
7669	pci_release_mem_regions(pdev);
7670err_pci_reg:
7671err_dma:
7672	pci_disable_device(pdev);
7673	return err;
7674}
7675
7676/**
7677 * e1000_remove - Device Removal Routine
7678 * @pdev: PCI device information struct
7679 *
7680 * e1000_remove is called by the PCI subsystem to alert the driver
7681 * that it should release a PCI device.  The could be caused by a
7682 * Hot-Plug event, or because the driver is going to be removed from
7683 * memory.
7684 **/
7685static void e1000_remove(struct pci_dev *pdev)
7686{
7687	struct net_device *netdev = pci_get_drvdata(pdev);
7688	struct e1000_adapter *adapter = netdev_priv(netdev);
7689
7690	e1000e_ptp_remove(adapter);
7691
7692	/* The timers may be rescheduled, so explicitly disable them
7693	 * from being rescheduled.
7694	 */
7695	set_bit(__E1000_DOWN, &adapter->state);
7696	del_timer_sync(&adapter->watchdog_timer);
7697	del_timer_sync(&adapter->phy_info_timer);
7698
7699	cancel_work_sync(&adapter->reset_task);
7700	cancel_work_sync(&adapter->watchdog_task);
7701	cancel_work_sync(&adapter->downshift_task);
7702	cancel_work_sync(&adapter->update_phy_task);
7703	cancel_work_sync(&adapter->print_hang_task);
7704
7705	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7706		cancel_work_sync(&adapter->tx_hwtstamp_work);
7707		if (adapter->tx_hwtstamp_skb) {
7708			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7709			adapter->tx_hwtstamp_skb = NULL;
7710		}
7711	}
7712
7713	unregister_netdev(netdev);
7714
7715	if (pci_dev_run_wake(pdev))
7716		pm_runtime_get_noresume(&pdev->dev);
7717
7718	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7719	 * would have already happened in close and is redundant.
7720	 */
7721	e1000e_release_hw_control(adapter);
7722
7723	e1000e_reset_interrupt_capability(adapter);
7724	kfree(adapter->tx_ring);
7725	kfree(adapter->rx_ring);
7726
7727	iounmap(adapter->hw.hw_addr);
7728	if ((adapter->hw.flash_address) &&
7729	    (adapter->hw.mac.type < e1000_pch_spt))
7730		iounmap(adapter->hw.flash_address);
7731	pci_release_mem_regions(pdev);
7732
7733	free_netdev(netdev);
7734
7735	/* AER disable */
7736	pci_disable_pcie_error_reporting(pdev);
7737
7738	pci_disable_device(pdev);
7739}
7740
7741/* PCI Error Recovery (ERS) */
7742static const struct pci_error_handlers e1000_err_handler = {
7743	.error_detected = e1000_io_error_detected,
7744	.slot_reset = e1000_io_slot_reset,
7745	.resume = e1000_io_resume,
7746};
7747
7748static const struct pci_device_id e1000_pci_tbl[] = {
7749	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7750	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7751	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7752	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7753	  board_82571 },
7754	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7755	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7756	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7757	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7758	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7759
7760	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7761	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7762	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7763	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7764
7765	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7766	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7767	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7768
7769	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7770	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7771	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7772
7773	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7774	  board_80003es2lan },
7775	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7776	  board_80003es2lan },
7777	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7778	  board_80003es2lan },
7779	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7780	  board_80003es2lan },
7781
7782	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7783	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7784	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7785	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7786	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7787	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7788	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7789	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7790
7791	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7792	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7793	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7796	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7798	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7800
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7804
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7808
7809	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7811	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7813
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7815	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7816
7817	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7819	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7821	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7823	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7825	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7826	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7835	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7845	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7849	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7853	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_tgp },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_tgp },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_tgp },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_tgp },
7858	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_tgp },
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_tgp },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_tgp },
7861	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_tgp },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7862
7863	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7864};
7865MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7866
7867static const struct dev_pm_ops e1000_pm_ops = {
7868#ifdef CONFIG_PM_SLEEP
7869	.prepare	= e1000e_pm_prepare,
7870	.suspend	= e1000e_pm_suspend,
7871	.resume		= e1000e_pm_resume,
7872	.freeze		= e1000e_pm_freeze,
7873	.thaw		= e1000e_pm_thaw,
7874	.poweroff	= e1000e_pm_suspend,
7875	.restore	= e1000e_pm_resume,
7876#endif
7877	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7878			   e1000e_pm_runtime_idle)
7879};
7880
7881/* PCI Device API Driver */
7882static struct pci_driver e1000_driver = {
7883	.name     = e1000e_driver_name,
7884	.id_table = e1000_pci_tbl,
7885	.probe    = e1000_probe,
7886	.remove   = e1000_remove,
7887	.driver   = {
7888		.pm = &e1000_pm_ops,
7889	},
7890	.shutdown = e1000_shutdown,
7891	.err_handler = &e1000_err_handler
7892};
7893
7894/**
7895 * e1000_init_module - Driver Registration Routine
7896 *
7897 * e1000_init_module is the first routine called when the driver is
7898 * loaded. All it does is register with the PCI subsystem.
7899 **/
7900static int __init e1000_init_module(void)
7901{
7902	pr_info("Intel(R) PRO/1000 Network Driver\n");
7903	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7904
7905	return pci_register_driver(&e1000_driver);
7906}
7907module_init(e1000_init_module);
7908
7909/**
7910 * e1000_exit_module - Driver Exit Cleanup Routine
7911 *
7912 * e1000_exit_module is called just before the driver is removed
7913 * from memory.
7914 **/
7915static void __exit e1000_exit_module(void)
7916{
7917	pci_unregister_driver(&e1000_driver);
7918}
7919module_exit(e1000_exit_module);
7920
7921MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7922MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7923MODULE_LICENSE("GPL v2");
7924
7925/* netdev.c */