Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * IOMMU API for Rockchip
4 *
5 * Module Authors: Simon Xue <xxm@rock-chips.com>
6 * Daniel Kurtz <djkurtz@chromium.org>
7 */
8
9#include <linux/clk.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/errno.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iommu.h>
18#include <linux/iopoll.h>
19#include <linux/list.h>
20#include <linux/mm.h>
21#include <linux/init.h>
22#include <linux/of.h>
23#include <linux/of_platform.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29#include "iommu-pages.h"
30
31/** MMU register offsets */
32#define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
33#define RK_MMU_STATUS 0x04
34#define RK_MMU_COMMAND 0x08
35#define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
36#define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
37#define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
38#define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
39#define RK_MMU_INT_MASK 0x1C /* IRQ enable */
40#define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
41#define RK_MMU_AUTO_GATING 0x24
42
43#define DTE_ADDR_DUMMY 0xCAFEBABE
44
45#define RK_MMU_POLL_PERIOD_US 100
46#define RK_MMU_FORCE_RESET_TIMEOUT_US 100000
47#define RK_MMU_POLL_TIMEOUT_US 1000
48
49/* RK_MMU_STATUS fields */
50#define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
51#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
52#define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
53#define RK_MMU_STATUS_IDLE BIT(3)
54#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
55#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
56#define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
57
58/* RK_MMU_COMMAND command values */
59#define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
60#define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
61#define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
62#define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
63#define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
64#define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
65#define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
66
67/* RK_MMU_INT_* register fields */
68#define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
69#define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
70#define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
71
72#define NUM_DT_ENTRIES 1024
73#define NUM_PT_ENTRIES 1024
74
75#define SPAGE_ORDER 12
76#define SPAGE_SIZE (1 << SPAGE_ORDER)
77
78 /*
79 * Support mapping any size that fits in one page table:
80 * 4 KiB to 4 MiB
81 */
82#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
83
84struct rk_iommu_domain {
85 struct list_head iommus;
86 u32 *dt; /* page directory table */
87 dma_addr_t dt_dma;
88 spinlock_t iommus_lock; /* lock for iommus list */
89 spinlock_t dt_lock; /* lock for modifying page directory table */
90
91 struct iommu_domain domain;
92};
93
94/* list of clocks required by IOMMU */
95static const char * const rk_iommu_clocks[] = {
96 "aclk", "iface",
97};
98
99struct rk_iommu_ops {
100 phys_addr_t (*pt_address)(u32 dte);
101 u32 (*mk_dtentries)(dma_addr_t pt_dma);
102 u32 (*mk_ptentries)(phys_addr_t page, int prot);
103 u64 dma_bit_mask;
104 gfp_t gfp_flags;
105};
106
107struct rk_iommu {
108 struct device *dev;
109 void __iomem **bases;
110 int num_mmu;
111 int num_irq;
112 struct clk_bulk_data *clocks;
113 int num_clocks;
114 bool reset_disabled;
115 struct iommu_device iommu;
116 struct list_head node; /* entry in rk_iommu_domain.iommus */
117 struct iommu_domain *domain; /* domain to which iommu is attached */
118};
119
120struct rk_iommudata {
121 struct device_link *link; /* runtime PM link from IOMMU to master */
122 struct rk_iommu *iommu;
123};
124
125static struct device *dma_dev;
126static const struct rk_iommu_ops *rk_ops;
127static struct iommu_domain rk_identity_domain;
128
129static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
130 unsigned int count)
131{
132 size_t size = count * sizeof(u32); /* count of u32 entry */
133
134 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
135}
136
137static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
138{
139 return container_of(dom, struct rk_iommu_domain, domain);
140}
141
142/*
143 * The Rockchip rk3288 iommu uses a 2-level page table.
144 * The first level is the "Directory Table" (DT).
145 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
146 * to a "Page Table".
147 * The second level is the 1024 Page Tables (PT).
148 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
149 * a 4 KB page of physical memory.
150 *
151 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
152 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
153 * address of the start of the DT page.
154 *
155 * The structure of the page table is as follows:
156 *
157 * DT
158 * MMU_DTE_ADDR -> +-----+
159 * | |
160 * +-----+ PT
161 * | DTE | -> +-----+
162 * +-----+ | | Memory
163 * | | +-----+ Page
164 * | | | PTE | -> +-----+
165 * +-----+ +-----+ | |
166 * | | | |
167 * | | | |
168 * +-----+ | |
169 * | |
170 * | |
171 * +-----+
172 */
173
174/*
175 * Each DTE has a PT address and a valid bit:
176 * +---------------------+-----------+-+
177 * | PT address | Reserved |V|
178 * +---------------------+-----------+-+
179 * 31:12 - PT address (PTs always starts on a 4 KB boundary)
180 * 11: 1 - Reserved
181 * 0 - 1 if PT @ PT address is valid
182 */
183#define RK_DTE_PT_ADDRESS_MASK 0xfffff000
184#define RK_DTE_PT_VALID BIT(0)
185
186static inline phys_addr_t rk_dte_pt_address(u32 dte)
187{
188 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
189}
190
191/*
192 * In v2:
193 * 31:12 - PT address bit 31:0
194 * 11: 8 - PT address bit 35:32
195 * 7: 4 - PT address bit 39:36
196 * 3: 1 - Reserved
197 * 0 - 1 if PT @ PT address is valid
198 */
199#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
200#define DTE_HI_MASK1 GENMASK(11, 8)
201#define DTE_HI_MASK2 GENMASK(7, 4)
202#define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */
203#define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */
204#define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32)
205#define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36)
206
207static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
208{
209 u64 dte_v2 = dte;
210
211 dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
212 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
213 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
214
215 return (phys_addr_t)dte_v2;
216}
217
218static inline bool rk_dte_is_pt_valid(u32 dte)
219{
220 return dte & RK_DTE_PT_VALID;
221}
222
223static inline u32 rk_mk_dte(dma_addr_t pt_dma)
224{
225 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
226}
227
228static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
229{
230 pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
231 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
232 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
233
234 return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
235}
236
237/*
238 * Each PTE has a Page address, some flags and a valid bit:
239 * +---------------------+---+-------+-+
240 * | Page address |Rsv| Flags |V|
241 * +---------------------+---+-------+-+
242 * 31:12 - Page address (Pages always start on a 4 KB boundary)
243 * 11: 9 - Reserved
244 * 8: 1 - Flags
245 * 8 - Read allocate - allocate cache space on read misses
246 * 7 - Read cache - enable cache & prefetch of data
247 * 6 - Write buffer - enable delaying writes on their way to memory
248 * 5 - Write allocate - allocate cache space on write misses
249 * 4 - Write cache - different writes can be merged together
250 * 3 - Override cache attributes
251 * if 1, bits 4-8 control cache attributes
252 * if 0, the system bus defaults are used
253 * 2 - Writable
254 * 1 - Readable
255 * 0 - 1 if Page @ Page address is valid
256 */
257#define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
258#define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
259#define RK_PTE_PAGE_WRITABLE BIT(2)
260#define RK_PTE_PAGE_READABLE BIT(1)
261#define RK_PTE_PAGE_VALID BIT(0)
262
263static inline bool rk_pte_is_page_valid(u32 pte)
264{
265 return pte & RK_PTE_PAGE_VALID;
266}
267
268/* TODO: set cache flags per prot IOMMU_CACHE */
269static u32 rk_mk_pte(phys_addr_t page, int prot)
270{
271 u32 flags = 0;
272 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
273 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
274 page &= RK_PTE_PAGE_ADDRESS_MASK;
275 return page | flags | RK_PTE_PAGE_VALID;
276}
277
278/*
279 * In v2:
280 * 31:12 - Page address bit 31:0
281 * 11: 8 - Page address bit 35:32
282 * 7: 4 - Page address bit 39:36
283 * 3 - Security
284 * 2 - Writable
285 * 1 - Readable
286 * 0 - 1 if Page @ Page address is valid
287 */
288
289static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
290{
291 u32 flags = 0;
292
293 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
294 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
295
296 return rk_mk_dte_v2(page) | flags;
297}
298
299static u32 rk_mk_pte_invalid(u32 pte)
300{
301 return pte & ~RK_PTE_PAGE_VALID;
302}
303
304/*
305 * rk3288 iova (IOMMU Virtual Address) format
306 * 31 22.21 12.11 0
307 * +-----------+-----------+-------------+
308 * | DTE index | PTE index | Page offset |
309 * +-----------+-----------+-------------+
310 * 31:22 - DTE index - index of DTE in DT
311 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
312 * 11: 0 - Page offset - offset into page @ PTE.page_address
313 */
314#define RK_IOVA_DTE_MASK 0xffc00000
315#define RK_IOVA_DTE_SHIFT 22
316#define RK_IOVA_PTE_MASK 0x003ff000
317#define RK_IOVA_PTE_SHIFT 12
318#define RK_IOVA_PAGE_MASK 0x00000fff
319#define RK_IOVA_PAGE_SHIFT 0
320
321static u32 rk_iova_dte_index(dma_addr_t iova)
322{
323 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
324}
325
326static u32 rk_iova_pte_index(dma_addr_t iova)
327{
328 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
329}
330
331static u32 rk_iova_page_offset(dma_addr_t iova)
332{
333 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
334}
335
336static u32 rk_iommu_read(void __iomem *base, u32 offset)
337{
338 return readl(base + offset);
339}
340
341static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
342{
343 writel(value, base + offset);
344}
345
346static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
347{
348 int i;
349
350 for (i = 0; i < iommu->num_mmu; i++)
351 writel(command, iommu->bases[i] + RK_MMU_COMMAND);
352}
353
354static void rk_iommu_base_command(void __iomem *base, u32 command)
355{
356 writel(command, base + RK_MMU_COMMAND);
357}
358static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
359 size_t size)
360{
361 int i;
362 dma_addr_t iova_end = iova_start + size;
363 /*
364 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
365 * entire iotlb rather than iterate over individual iovas.
366 */
367 for (i = 0; i < iommu->num_mmu; i++) {
368 dma_addr_t iova;
369
370 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
371 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
372 }
373}
374
375static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
376{
377 bool active = true;
378 int i;
379
380 for (i = 0; i < iommu->num_mmu; i++)
381 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
382 RK_MMU_STATUS_STALL_ACTIVE);
383
384 return active;
385}
386
387static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
388{
389 bool enable = true;
390 int i;
391
392 for (i = 0; i < iommu->num_mmu; i++)
393 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
394 RK_MMU_STATUS_PAGING_ENABLED);
395
396 return enable;
397}
398
399static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
400{
401 bool done = true;
402 int i;
403
404 for (i = 0; i < iommu->num_mmu; i++)
405 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
406
407 return done;
408}
409
410static int rk_iommu_enable_stall(struct rk_iommu *iommu)
411{
412 int ret, i;
413 bool val;
414
415 if (rk_iommu_is_stall_active(iommu))
416 return 0;
417
418 /* Stall can only be enabled if paging is enabled */
419 if (!rk_iommu_is_paging_enabled(iommu))
420 return 0;
421
422 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
423
424 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
425 val, RK_MMU_POLL_PERIOD_US,
426 RK_MMU_POLL_TIMEOUT_US);
427 if (ret)
428 for (i = 0; i < iommu->num_mmu; i++)
429 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
430 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
431
432 return ret;
433}
434
435static int rk_iommu_disable_stall(struct rk_iommu *iommu)
436{
437 int ret, i;
438 bool val;
439
440 if (!rk_iommu_is_stall_active(iommu))
441 return 0;
442
443 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
444
445 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
446 !val, RK_MMU_POLL_PERIOD_US,
447 RK_MMU_POLL_TIMEOUT_US);
448 if (ret)
449 for (i = 0; i < iommu->num_mmu; i++)
450 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
451 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
452
453 return ret;
454}
455
456static int rk_iommu_enable_paging(struct rk_iommu *iommu)
457{
458 int ret, i;
459 bool val;
460
461 if (rk_iommu_is_paging_enabled(iommu))
462 return 0;
463
464 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
465
466 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
467 val, RK_MMU_POLL_PERIOD_US,
468 RK_MMU_POLL_TIMEOUT_US);
469 if (ret)
470 for (i = 0; i < iommu->num_mmu; i++)
471 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
472 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
473
474 return ret;
475}
476
477static int rk_iommu_disable_paging(struct rk_iommu *iommu)
478{
479 int ret, i;
480 bool val;
481
482 if (!rk_iommu_is_paging_enabled(iommu))
483 return 0;
484
485 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
486
487 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
488 !val, RK_MMU_POLL_PERIOD_US,
489 RK_MMU_POLL_TIMEOUT_US);
490 if (ret)
491 for (i = 0; i < iommu->num_mmu; i++)
492 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
493 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
494
495 return ret;
496}
497
498static int rk_iommu_force_reset(struct rk_iommu *iommu)
499{
500 int ret, i;
501 u32 dte_addr;
502 bool val;
503
504 if (iommu->reset_disabled)
505 return 0;
506
507 /*
508 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
509 * and verifying that upper 5 (v1) or 7 (v2) nybbles are read back.
510 */
511 for (i = 0; i < iommu->num_mmu; i++) {
512 dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
513 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
514
515 if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
516 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
517 return -EFAULT;
518 }
519 }
520
521 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
522
523 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
524 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
525 RK_MMU_POLL_TIMEOUT_US);
526 if (ret) {
527 dev_err(iommu->dev, "FORCE_RESET command timed out\n");
528 return ret;
529 }
530
531 return 0;
532}
533
534static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
535{
536 void __iomem *base = iommu->bases[index];
537 u32 dte_index, pte_index, page_offset;
538 u32 mmu_dte_addr;
539 phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
540 u32 *dte_addr;
541 u32 dte;
542 phys_addr_t pte_addr_phys = 0;
543 u32 *pte_addr = NULL;
544 u32 pte = 0;
545 phys_addr_t page_addr_phys = 0;
546 u32 page_flags = 0;
547
548 dte_index = rk_iova_dte_index(iova);
549 pte_index = rk_iova_pte_index(iova);
550 page_offset = rk_iova_page_offset(iova);
551
552 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
553 mmu_dte_addr_phys = rk_ops->pt_address(mmu_dte_addr);
554
555 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
556 dte_addr = phys_to_virt(dte_addr_phys);
557 dte = *dte_addr;
558
559 if (!rk_dte_is_pt_valid(dte))
560 goto print_it;
561
562 pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
563 pte_addr = phys_to_virt(pte_addr_phys);
564 pte = *pte_addr;
565
566 if (!rk_pte_is_page_valid(pte))
567 goto print_it;
568
569 page_addr_phys = rk_ops->pt_address(pte) + page_offset;
570 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
571
572print_it:
573 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
574 &iova, dte_index, pte_index, page_offset);
575 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
576 &mmu_dte_addr_phys, &dte_addr_phys, dte,
577 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
578 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
579}
580
581static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
582{
583 struct rk_iommu *iommu = dev_id;
584 u32 status;
585 u32 int_status;
586 dma_addr_t iova;
587 irqreturn_t ret = IRQ_NONE;
588 int i, err;
589
590 err = pm_runtime_get_if_in_use(iommu->dev);
591 if (!err || WARN_ON_ONCE(err < 0))
592 return ret;
593
594 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
595 goto out;
596
597 for (i = 0; i < iommu->num_mmu; i++) {
598 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
599 if (int_status == 0)
600 continue;
601
602 ret = IRQ_HANDLED;
603 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
604
605 if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
606 int flags;
607
608 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
609 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
610 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
611
612 dev_err(iommu->dev, "Page fault at %pad of type %s\n",
613 &iova,
614 (flags == IOMMU_FAULT_WRITE) ? "write" : "read");
615
616 log_iova(iommu, i, iova);
617
618 /*
619 * Report page fault to any installed handlers.
620 * Ignore the return code, though, since we always zap cache
621 * and clear the page fault anyway.
622 */
623 if (iommu->domain != &rk_identity_domain)
624 report_iommu_fault(iommu->domain, iommu->dev, iova,
625 flags);
626 else
627 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
628
629 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
630 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
631 }
632
633 if (int_status & RK_MMU_IRQ_BUS_ERROR)
634 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
635
636 if (int_status & ~RK_MMU_IRQ_MASK)
637 dev_err(iommu->dev, "unexpected int_status: %#08x\n",
638 int_status);
639
640 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
641 }
642
643 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
644
645out:
646 pm_runtime_put(iommu->dev);
647 return ret;
648}
649
650static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
651 dma_addr_t iova)
652{
653 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
654 unsigned long flags;
655 phys_addr_t pt_phys, phys = 0;
656 u32 dte, pte;
657 u32 *page_table;
658
659 spin_lock_irqsave(&rk_domain->dt_lock, flags);
660
661 dte = rk_domain->dt[rk_iova_dte_index(iova)];
662 if (!rk_dte_is_pt_valid(dte))
663 goto out;
664
665 pt_phys = rk_ops->pt_address(dte);
666 page_table = (u32 *)phys_to_virt(pt_phys);
667 pte = page_table[rk_iova_pte_index(iova)];
668 if (!rk_pte_is_page_valid(pte))
669 goto out;
670
671 phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
672out:
673 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
674
675 return phys;
676}
677
678static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
679 dma_addr_t iova, size_t size)
680{
681 struct list_head *pos;
682 unsigned long flags;
683
684 /* shootdown these iova from all iommus using this domain */
685 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
686 list_for_each(pos, &rk_domain->iommus) {
687 struct rk_iommu *iommu;
688 int ret;
689
690 iommu = list_entry(pos, struct rk_iommu, node);
691
692 /* Only zap TLBs of IOMMUs that are powered on. */
693 ret = pm_runtime_get_if_in_use(iommu->dev);
694 if (WARN_ON_ONCE(ret < 0))
695 continue;
696 if (ret) {
697 WARN_ON(clk_bulk_enable(iommu->num_clocks,
698 iommu->clocks));
699 rk_iommu_zap_lines(iommu, iova, size);
700 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
701 pm_runtime_put(iommu->dev);
702 }
703 }
704 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
705}
706
707static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
708 dma_addr_t iova, size_t size)
709{
710 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
711 if (size > SPAGE_SIZE)
712 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
713 SPAGE_SIZE);
714}
715
716static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
717 dma_addr_t iova)
718{
719 u32 *page_table, *dte_addr;
720 u32 dte_index, dte;
721 phys_addr_t pt_phys;
722 dma_addr_t pt_dma;
723
724 assert_spin_locked(&rk_domain->dt_lock);
725
726 dte_index = rk_iova_dte_index(iova);
727 dte_addr = &rk_domain->dt[dte_index];
728 dte = *dte_addr;
729 if (rk_dte_is_pt_valid(dte))
730 goto done;
731
732 page_table = iommu_alloc_page(GFP_ATOMIC | rk_ops->gfp_flags);
733 if (!page_table)
734 return ERR_PTR(-ENOMEM);
735
736 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
737 if (dma_mapping_error(dma_dev, pt_dma)) {
738 dev_err(dma_dev, "DMA mapping error while allocating page table\n");
739 iommu_free_page(page_table);
740 return ERR_PTR(-ENOMEM);
741 }
742
743 dte = rk_ops->mk_dtentries(pt_dma);
744 *dte_addr = dte;
745
746 rk_table_flush(rk_domain,
747 rk_domain->dt_dma + dte_index * sizeof(u32), 1);
748done:
749 pt_phys = rk_ops->pt_address(dte);
750 return (u32 *)phys_to_virt(pt_phys);
751}
752
753static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
754 u32 *pte_addr, dma_addr_t pte_dma,
755 size_t size)
756{
757 unsigned int pte_count;
758 unsigned int pte_total = size / SPAGE_SIZE;
759
760 assert_spin_locked(&rk_domain->dt_lock);
761
762 for (pte_count = 0; pte_count < pte_total; pte_count++) {
763 u32 pte = pte_addr[pte_count];
764 if (!rk_pte_is_page_valid(pte))
765 break;
766
767 pte_addr[pte_count] = rk_mk_pte_invalid(pte);
768 }
769
770 rk_table_flush(rk_domain, pte_dma, pte_count);
771
772 return pte_count * SPAGE_SIZE;
773}
774
775static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
776 dma_addr_t pte_dma, dma_addr_t iova,
777 phys_addr_t paddr, size_t size, int prot)
778{
779 unsigned int pte_count;
780 unsigned int pte_total = size / SPAGE_SIZE;
781 phys_addr_t page_phys;
782
783 assert_spin_locked(&rk_domain->dt_lock);
784
785 for (pte_count = 0; pte_count < pte_total; pte_count++) {
786 u32 pte = pte_addr[pte_count];
787
788 if (rk_pte_is_page_valid(pte))
789 goto unwind;
790
791 pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
792
793 paddr += SPAGE_SIZE;
794 }
795
796 rk_table_flush(rk_domain, pte_dma, pte_total);
797
798 /*
799 * Zap the first and last iova to evict from iotlb any previously
800 * mapped cachelines holding stale values for its dte and pte.
801 * We only zap the first and last iova, since only they could have
802 * dte or pte shared with an existing mapping.
803 */
804 rk_iommu_zap_iova_first_last(rk_domain, iova, size);
805
806 return 0;
807unwind:
808 /* Unmap the range of iovas that we just mapped */
809 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
810 pte_count * SPAGE_SIZE);
811
812 iova += pte_count * SPAGE_SIZE;
813 page_phys = rk_ops->pt_address(pte_addr[pte_count]);
814 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
815 &iova, &page_phys, &paddr, prot);
816
817 return -EADDRINUSE;
818}
819
820static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
821 phys_addr_t paddr, size_t size, size_t count,
822 int prot, gfp_t gfp, size_t *mapped)
823{
824 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
825 unsigned long flags;
826 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
827 u32 *page_table, *pte_addr;
828 u32 dte_index, pte_index;
829 int ret;
830
831 spin_lock_irqsave(&rk_domain->dt_lock, flags);
832
833 /*
834 * pgsize_bitmap specifies iova sizes that fit in one page table
835 * (1024 4-KiB pages = 4 MiB).
836 * So, size will always be 4096 <= size <= 4194304.
837 * Since iommu_map() guarantees that both iova and size will be
838 * aligned, we will always only be mapping from a single dte here.
839 */
840 page_table = rk_dte_get_page_table(rk_domain, iova);
841 if (IS_ERR(page_table)) {
842 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
843 return PTR_ERR(page_table);
844 }
845
846 dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
847 pte_index = rk_iova_pte_index(iova);
848 pte_addr = &page_table[pte_index];
849
850 pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
851 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
852 paddr, size, prot);
853
854 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
855 if (!ret)
856 *mapped = size;
857
858 return ret;
859}
860
861static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
862 size_t size, size_t count, struct iommu_iotlb_gather *gather)
863{
864 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
865 unsigned long flags;
866 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
867 phys_addr_t pt_phys;
868 u32 dte;
869 u32 *pte_addr;
870 size_t unmap_size;
871
872 spin_lock_irqsave(&rk_domain->dt_lock, flags);
873
874 /*
875 * pgsize_bitmap specifies iova sizes that fit in one page table
876 * (1024 4-KiB pages = 4 MiB).
877 * So, size will always be 4096 <= size <= 4194304.
878 * Since iommu_unmap() guarantees that both iova and size will be
879 * aligned, we will always only be unmapping from a single dte here.
880 */
881 dte = rk_domain->dt[rk_iova_dte_index(iova)];
882 /* Just return 0 if iova is unmapped */
883 if (!rk_dte_is_pt_valid(dte)) {
884 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
885 return 0;
886 }
887
888 pt_phys = rk_ops->pt_address(dte);
889 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
890 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
891 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
892
893 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
894
895 /* Shootdown iotlb entries for iova range that was just unmapped */
896 rk_iommu_zap_iova(rk_domain, iova, unmap_size);
897
898 return unmap_size;
899}
900
901static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
902{
903 struct rk_iommudata *data = dev_iommu_priv_get(dev);
904
905 return data ? data->iommu : NULL;
906}
907
908/* Must be called with iommu powered on and attached */
909static void rk_iommu_disable(struct rk_iommu *iommu)
910{
911 int i;
912
913 /* Ignore error while disabling, just keep going */
914 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
915 rk_iommu_enable_stall(iommu);
916 rk_iommu_disable_paging(iommu);
917 for (i = 0; i < iommu->num_mmu; i++) {
918 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
919 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
920 }
921 rk_iommu_disable_stall(iommu);
922 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
923}
924
925/* Must be called with iommu powered on and attached */
926static int rk_iommu_enable(struct rk_iommu *iommu)
927{
928 struct iommu_domain *domain = iommu->domain;
929 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
930 int ret, i;
931
932 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
933 if (ret)
934 return ret;
935
936 ret = rk_iommu_enable_stall(iommu);
937 if (ret)
938 goto out_disable_clocks;
939
940 ret = rk_iommu_force_reset(iommu);
941 if (ret)
942 goto out_disable_stall;
943
944 for (i = 0; i < iommu->num_mmu; i++) {
945 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
946 rk_ops->mk_dtentries(rk_domain->dt_dma));
947 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
948 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
949 }
950
951 ret = rk_iommu_enable_paging(iommu);
952
953out_disable_stall:
954 rk_iommu_disable_stall(iommu);
955out_disable_clocks:
956 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
957 return ret;
958}
959
960static int rk_iommu_identity_attach(struct iommu_domain *identity_domain,
961 struct device *dev)
962{
963 struct rk_iommu *iommu;
964 struct rk_iommu_domain *rk_domain;
965 unsigned long flags;
966 int ret;
967
968 /* Allow 'virtual devices' (eg drm) to detach from domain */
969 iommu = rk_iommu_from_dev(dev);
970 if (!iommu)
971 return -ENODEV;
972
973 rk_domain = to_rk_domain(iommu->domain);
974
975 dev_dbg(dev, "Detaching from iommu domain\n");
976
977 if (iommu->domain == identity_domain)
978 return 0;
979
980 iommu->domain = identity_domain;
981
982 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
983 list_del_init(&iommu->node);
984 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
985
986 ret = pm_runtime_get_if_in_use(iommu->dev);
987 WARN_ON_ONCE(ret < 0);
988 if (ret > 0) {
989 rk_iommu_disable(iommu);
990 pm_runtime_put(iommu->dev);
991 }
992
993 return 0;
994}
995
996static struct iommu_domain_ops rk_identity_ops = {
997 .attach_dev = rk_iommu_identity_attach,
998};
999
1000static struct iommu_domain rk_identity_domain = {
1001 .type = IOMMU_DOMAIN_IDENTITY,
1002 .ops = &rk_identity_ops,
1003};
1004
1005static int rk_iommu_attach_device(struct iommu_domain *domain,
1006 struct device *dev)
1007{
1008 struct rk_iommu *iommu;
1009 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1010 unsigned long flags;
1011 int ret;
1012
1013 /*
1014 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1015 * Such a device does not belong to an iommu group.
1016 */
1017 iommu = rk_iommu_from_dev(dev);
1018 if (!iommu)
1019 return 0;
1020
1021 dev_dbg(dev, "Attaching to iommu domain\n");
1022
1023 /* iommu already attached */
1024 if (iommu->domain == domain)
1025 return 0;
1026
1027 ret = rk_iommu_identity_attach(&rk_identity_domain, dev);
1028 if (ret)
1029 return ret;
1030
1031 iommu->domain = domain;
1032
1033 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1034 list_add_tail(&iommu->node, &rk_domain->iommus);
1035 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1036
1037 ret = pm_runtime_get_if_in_use(iommu->dev);
1038 if (!ret || WARN_ON_ONCE(ret < 0))
1039 return 0;
1040
1041 ret = rk_iommu_enable(iommu);
1042 if (ret)
1043 WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev));
1044
1045 pm_runtime_put(iommu->dev);
1046
1047 return ret;
1048}
1049
1050static struct iommu_domain *rk_iommu_domain_alloc_paging(struct device *dev)
1051{
1052 struct rk_iommu_domain *rk_domain;
1053
1054 if (!dma_dev)
1055 return NULL;
1056
1057 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1058 if (!rk_domain)
1059 return NULL;
1060
1061 /*
1062 * rk32xx iommus use a 2 level pagetable.
1063 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1064 * Allocate one 4 KiB page for each table.
1065 */
1066 rk_domain->dt = iommu_alloc_page(GFP_KERNEL | rk_ops->gfp_flags);
1067 if (!rk_domain->dt)
1068 goto err_free_domain;
1069
1070 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1071 SPAGE_SIZE, DMA_TO_DEVICE);
1072 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1073 dev_err(dma_dev, "DMA map error for DT\n");
1074 goto err_free_dt;
1075 }
1076
1077 spin_lock_init(&rk_domain->iommus_lock);
1078 spin_lock_init(&rk_domain->dt_lock);
1079 INIT_LIST_HEAD(&rk_domain->iommus);
1080
1081 rk_domain->domain.geometry.aperture_start = 0;
1082 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
1083 rk_domain->domain.geometry.force_aperture = true;
1084
1085 return &rk_domain->domain;
1086
1087err_free_dt:
1088 iommu_free_page(rk_domain->dt);
1089err_free_domain:
1090 kfree(rk_domain);
1091
1092 return NULL;
1093}
1094
1095static void rk_iommu_domain_free(struct iommu_domain *domain)
1096{
1097 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1098 int i;
1099
1100 WARN_ON(!list_empty(&rk_domain->iommus));
1101
1102 for (i = 0; i < NUM_DT_ENTRIES; i++) {
1103 u32 dte = rk_domain->dt[i];
1104 if (rk_dte_is_pt_valid(dte)) {
1105 phys_addr_t pt_phys = rk_ops->pt_address(dte);
1106 u32 *page_table = phys_to_virt(pt_phys);
1107 dma_unmap_single(dma_dev, pt_phys,
1108 SPAGE_SIZE, DMA_TO_DEVICE);
1109 iommu_free_page(page_table);
1110 }
1111 }
1112
1113 dma_unmap_single(dma_dev, rk_domain->dt_dma,
1114 SPAGE_SIZE, DMA_TO_DEVICE);
1115 iommu_free_page(rk_domain->dt);
1116
1117 kfree(rk_domain);
1118}
1119
1120static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1121{
1122 struct rk_iommudata *data;
1123 struct rk_iommu *iommu;
1124
1125 data = dev_iommu_priv_get(dev);
1126 if (!data)
1127 return ERR_PTR(-ENODEV);
1128
1129 iommu = rk_iommu_from_dev(dev);
1130
1131 data->link = device_link_add(dev, iommu->dev,
1132 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1133
1134 return &iommu->iommu;
1135}
1136
1137static void rk_iommu_release_device(struct device *dev)
1138{
1139 struct rk_iommudata *data = dev_iommu_priv_get(dev);
1140
1141 device_link_del(data->link);
1142}
1143
1144static int rk_iommu_of_xlate(struct device *dev,
1145 const struct of_phandle_args *args)
1146{
1147 struct platform_device *iommu_dev;
1148 struct rk_iommudata *data;
1149
1150 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1151 if (!data)
1152 return -ENOMEM;
1153
1154 iommu_dev = of_find_device_by_node(args->np);
1155
1156 data->iommu = platform_get_drvdata(iommu_dev);
1157 data->iommu->domain = &rk_identity_domain;
1158 dev_iommu_priv_set(dev, data);
1159
1160 platform_device_put(iommu_dev);
1161
1162 return 0;
1163}
1164
1165static const struct iommu_ops rk_iommu_ops = {
1166 .identity_domain = &rk_identity_domain,
1167 .domain_alloc_paging = rk_iommu_domain_alloc_paging,
1168 .probe_device = rk_iommu_probe_device,
1169 .release_device = rk_iommu_release_device,
1170 .device_group = generic_single_device_group,
1171 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1172 .of_xlate = rk_iommu_of_xlate,
1173 .default_domain_ops = &(const struct iommu_domain_ops) {
1174 .attach_dev = rk_iommu_attach_device,
1175 .map_pages = rk_iommu_map,
1176 .unmap_pages = rk_iommu_unmap,
1177 .iova_to_phys = rk_iommu_iova_to_phys,
1178 .free = rk_iommu_domain_free,
1179 }
1180};
1181
1182static int rk_iommu_probe(struct platform_device *pdev)
1183{
1184 struct device *dev = &pdev->dev;
1185 struct rk_iommu *iommu;
1186 struct resource *res;
1187 const struct rk_iommu_ops *ops;
1188 int num_res = pdev->num_resources;
1189 int err, i;
1190
1191 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1192 if (!iommu)
1193 return -ENOMEM;
1194
1195 platform_set_drvdata(pdev, iommu);
1196 iommu->dev = dev;
1197 iommu->num_mmu = 0;
1198
1199 ops = of_device_get_match_data(dev);
1200 if (!rk_ops)
1201 rk_ops = ops;
1202
1203 /*
1204 * That should not happen unless different versions of the
1205 * hardware block are embedded the same SoC
1206 */
1207 if (WARN_ON(rk_ops != ops))
1208 return -EINVAL;
1209
1210 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1211 GFP_KERNEL);
1212 if (!iommu->bases)
1213 return -ENOMEM;
1214
1215 for (i = 0; i < num_res; i++) {
1216 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1217 if (!res)
1218 continue;
1219 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1220 if (IS_ERR(iommu->bases[i]))
1221 continue;
1222 iommu->num_mmu++;
1223 }
1224 if (iommu->num_mmu == 0)
1225 return PTR_ERR(iommu->bases[0]);
1226
1227 iommu->num_irq = platform_irq_count(pdev);
1228 if (iommu->num_irq < 0)
1229 return iommu->num_irq;
1230
1231 iommu->reset_disabled = device_property_read_bool(dev,
1232 "rockchip,disable-mmu-reset");
1233
1234 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1235 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1236 sizeof(*iommu->clocks), GFP_KERNEL);
1237 if (!iommu->clocks)
1238 return -ENOMEM;
1239
1240 for (i = 0; i < iommu->num_clocks; ++i)
1241 iommu->clocks[i].id = rk_iommu_clocks[i];
1242
1243 /*
1244 * iommu clocks should be present for all new devices and devicetrees
1245 * but there are older devicetrees without clocks out in the wild.
1246 * So clocks as optional for the time being.
1247 */
1248 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1249 if (err == -ENOENT)
1250 iommu->num_clocks = 0;
1251 else if (err)
1252 return err;
1253
1254 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1255 if (err)
1256 return err;
1257
1258 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1259 if (err)
1260 goto err_unprepare_clocks;
1261
1262 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1263 if (err)
1264 goto err_remove_sysfs;
1265
1266 /*
1267 * Use the first registered IOMMU device for domain to use with DMA
1268 * API, since a domain might not physically correspond to a single
1269 * IOMMU device..
1270 */
1271 if (!dma_dev)
1272 dma_dev = &pdev->dev;
1273
1274 pm_runtime_enable(dev);
1275
1276 for (i = 0; i < iommu->num_irq; i++) {
1277 int irq = platform_get_irq(pdev, i);
1278
1279 if (irq < 0) {
1280 err = irq;
1281 goto err_pm_disable;
1282 }
1283
1284 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1285 IRQF_SHARED, dev_name(dev), iommu);
1286 if (err)
1287 goto err_pm_disable;
1288 }
1289
1290 dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1291
1292 return 0;
1293err_pm_disable:
1294 pm_runtime_disable(dev);
1295err_remove_sysfs:
1296 iommu_device_sysfs_remove(&iommu->iommu);
1297err_unprepare_clocks:
1298 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1299 return err;
1300}
1301
1302static void rk_iommu_shutdown(struct platform_device *pdev)
1303{
1304 struct rk_iommu *iommu = platform_get_drvdata(pdev);
1305 int i;
1306
1307 for (i = 0; i < iommu->num_irq; i++) {
1308 int irq = platform_get_irq(pdev, i);
1309
1310 devm_free_irq(iommu->dev, irq, iommu);
1311 }
1312
1313 pm_runtime_force_suspend(&pdev->dev);
1314}
1315
1316static int __maybe_unused rk_iommu_suspend(struct device *dev)
1317{
1318 struct rk_iommu *iommu = dev_get_drvdata(dev);
1319
1320 if (iommu->domain == &rk_identity_domain)
1321 return 0;
1322
1323 rk_iommu_disable(iommu);
1324 return 0;
1325}
1326
1327static int __maybe_unused rk_iommu_resume(struct device *dev)
1328{
1329 struct rk_iommu *iommu = dev_get_drvdata(dev);
1330
1331 if (iommu->domain == &rk_identity_domain)
1332 return 0;
1333
1334 return rk_iommu_enable(iommu);
1335}
1336
1337static const struct dev_pm_ops rk_iommu_pm_ops = {
1338 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1339 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1340 pm_runtime_force_resume)
1341};
1342
1343static struct rk_iommu_ops iommu_data_ops_v1 = {
1344 .pt_address = &rk_dte_pt_address,
1345 .mk_dtentries = &rk_mk_dte,
1346 .mk_ptentries = &rk_mk_pte,
1347 .dma_bit_mask = DMA_BIT_MASK(32),
1348 .gfp_flags = GFP_DMA32,
1349};
1350
1351static struct rk_iommu_ops iommu_data_ops_v2 = {
1352 .pt_address = &rk_dte_pt_address_v2,
1353 .mk_dtentries = &rk_mk_dte_v2,
1354 .mk_ptentries = &rk_mk_pte_v2,
1355 .dma_bit_mask = DMA_BIT_MASK(40),
1356 .gfp_flags = 0,
1357};
1358
1359static const struct of_device_id rk_iommu_dt_ids[] = {
1360 { .compatible = "rockchip,iommu",
1361 .data = &iommu_data_ops_v1,
1362 },
1363 { .compatible = "rockchip,rk3568-iommu",
1364 .data = &iommu_data_ops_v2,
1365 },
1366 { /* sentinel */ }
1367};
1368
1369static struct platform_driver rk_iommu_driver = {
1370 .probe = rk_iommu_probe,
1371 .shutdown = rk_iommu_shutdown,
1372 .driver = {
1373 .name = "rk_iommu",
1374 .of_match_table = rk_iommu_dt_ids,
1375 .pm = &rk_iommu_pm_ops,
1376 .suppress_bind_attrs = true,
1377 },
1378};
1379builtin_platform_driver(rk_iommu_driver);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * IOMMU API for Rockchip
4 *
5 * Module Authors: Simon Xue <xxm@rock-chips.com>
6 * Daniel Kurtz <djkurtz@chromium.org>
7 */
8
9#include <linux/clk.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/errno.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iommu.h>
18#include <linux/iopoll.h>
19#include <linux/list.h>
20#include <linux/mm.h>
21#include <linux/init.h>
22#include <linux/of.h>
23#include <linux/of_platform.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29/** MMU register offsets */
30#define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
31#define RK_MMU_STATUS 0x04
32#define RK_MMU_COMMAND 0x08
33#define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
34#define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
35#define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
36#define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
37#define RK_MMU_INT_MASK 0x1C /* IRQ enable */
38#define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
39#define RK_MMU_AUTO_GATING 0x24
40
41#define DTE_ADDR_DUMMY 0xCAFEBABE
42
43#define RK_MMU_POLL_PERIOD_US 100
44#define RK_MMU_FORCE_RESET_TIMEOUT_US 100000
45#define RK_MMU_POLL_TIMEOUT_US 1000
46
47/* RK_MMU_STATUS fields */
48#define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
49#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
50#define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
51#define RK_MMU_STATUS_IDLE BIT(3)
52#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
53#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
54#define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
55
56/* RK_MMU_COMMAND command values */
57#define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
58#define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
59#define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
60#define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
61#define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
62#define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
63#define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
64
65/* RK_MMU_INT_* register fields */
66#define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
67#define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
68#define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
69
70#define NUM_DT_ENTRIES 1024
71#define NUM_PT_ENTRIES 1024
72
73#define SPAGE_ORDER 12
74#define SPAGE_SIZE (1 << SPAGE_ORDER)
75
76 /*
77 * Support mapping any size that fits in one page table:
78 * 4 KiB to 4 MiB
79 */
80#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
81
82struct rk_iommu_domain {
83 struct list_head iommus;
84 u32 *dt; /* page directory table */
85 dma_addr_t dt_dma;
86 spinlock_t iommus_lock; /* lock for iommus list */
87 spinlock_t dt_lock; /* lock for modifying page directory table */
88
89 struct iommu_domain domain;
90};
91
92/* list of clocks required by IOMMU */
93static const char * const rk_iommu_clocks[] = {
94 "aclk", "iface",
95};
96
97struct rk_iommu_ops {
98 phys_addr_t (*pt_address)(u32 dte);
99 u32 (*mk_dtentries)(dma_addr_t pt_dma);
100 u32 (*mk_ptentries)(phys_addr_t page, int prot);
101 phys_addr_t (*dte_addr_phys)(u32 addr);
102 u32 (*dma_addr_dte)(dma_addr_t dt_dma);
103 u64 dma_bit_mask;
104};
105
106struct rk_iommu {
107 struct device *dev;
108 void __iomem **bases;
109 int num_mmu;
110 int num_irq;
111 struct clk_bulk_data *clocks;
112 int num_clocks;
113 bool reset_disabled;
114 struct iommu_device iommu;
115 struct list_head node; /* entry in rk_iommu_domain.iommus */
116 struct iommu_domain *domain; /* domain to which iommu is attached */
117 struct iommu_group *group;
118};
119
120struct rk_iommudata {
121 struct device_link *link; /* runtime PM link from IOMMU to master */
122 struct rk_iommu *iommu;
123};
124
125static struct device *dma_dev;
126static const struct rk_iommu_ops *rk_ops;
127
128static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
129 unsigned int count)
130{
131 size_t size = count * sizeof(u32); /* count of u32 entry */
132
133 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
134}
135
136static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
137{
138 return container_of(dom, struct rk_iommu_domain, domain);
139}
140
141/*
142 * The Rockchip rk3288 iommu uses a 2-level page table.
143 * The first level is the "Directory Table" (DT).
144 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
145 * to a "Page Table".
146 * The second level is the 1024 Page Tables (PT).
147 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
148 * a 4 KB page of physical memory.
149 *
150 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
151 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
152 * address of the start of the DT page.
153 *
154 * The structure of the page table is as follows:
155 *
156 * DT
157 * MMU_DTE_ADDR -> +-----+
158 * | |
159 * +-----+ PT
160 * | DTE | -> +-----+
161 * +-----+ | | Memory
162 * | | +-----+ Page
163 * | | | PTE | -> +-----+
164 * +-----+ +-----+ | |
165 * | | | |
166 * | | | |
167 * +-----+ | |
168 * | |
169 * | |
170 * +-----+
171 */
172
173/*
174 * Each DTE has a PT address and a valid bit:
175 * +---------------------+-----------+-+
176 * | PT address | Reserved |V|
177 * +---------------------+-----------+-+
178 * 31:12 - PT address (PTs always starts on a 4 KB boundary)
179 * 11: 1 - Reserved
180 * 0 - 1 if PT @ PT address is valid
181 */
182#define RK_DTE_PT_ADDRESS_MASK 0xfffff000
183#define RK_DTE_PT_VALID BIT(0)
184
185static inline phys_addr_t rk_dte_pt_address(u32 dte)
186{
187 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
188}
189
190/*
191 * In v2:
192 * 31:12 - PT address bit 31:0
193 * 11: 8 - PT address bit 35:32
194 * 7: 4 - PT address bit 39:36
195 * 3: 1 - Reserved
196 * 0 - 1 if PT @ PT address is valid
197 */
198#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
199#define DTE_HI_MASK1 GENMASK(11, 8)
200#define DTE_HI_MASK2 GENMASK(7, 4)
201#define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */
202#define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */
203#define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32)
204#define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36)
205
206static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
207{
208 u64 dte_v2 = dte;
209
210 dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
211 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
212 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
213
214 return (phys_addr_t)dte_v2;
215}
216
217static inline bool rk_dte_is_pt_valid(u32 dte)
218{
219 return dte & RK_DTE_PT_VALID;
220}
221
222static inline u32 rk_mk_dte(dma_addr_t pt_dma)
223{
224 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
225}
226
227static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
228{
229 pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
230 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
231 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
232
233 return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
234}
235
236/*
237 * Each PTE has a Page address, some flags and a valid bit:
238 * +---------------------+---+-------+-+
239 * | Page address |Rsv| Flags |V|
240 * +---------------------+---+-------+-+
241 * 31:12 - Page address (Pages always start on a 4 KB boundary)
242 * 11: 9 - Reserved
243 * 8: 1 - Flags
244 * 8 - Read allocate - allocate cache space on read misses
245 * 7 - Read cache - enable cache & prefetch of data
246 * 6 - Write buffer - enable delaying writes on their way to memory
247 * 5 - Write allocate - allocate cache space on write misses
248 * 4 - Write cache - different writes can be merged together
249 * 3 - Override cache attributes
250 * if 1, bits 4-8 control cache attributes
251 * if 0, the system bus defaults are used
252 * 2 - Writable
253 * 1 - Readable
254 * 0 - 1 if Page @ Page address is valid
255 */
256#define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
257#define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
258#define RK_PTE_PAGE_WRITABLE BIT(2)
259#define RK_PTE_PAGE_READABLE BIT(1)
260#define RK_PTE_PAGE_VALID BIT(0)
261
262static inline bool rk_pte_is_page_valid(u32 pte)
263{
264 return pte & RK_PTE_PAGE_VALID;
265}
266
267/* TODO: set cache flags per prot IOMMU_CACHE */
268static u32 rk_mk_pte(phys_addr_t page, int prot)
269{
270 u32 flags = 0;
271 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
272 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
273 page &= RK_PTE_PAGE_ADDRESS_MASK;
274 return page | flags | RK_PTE_PAGE_VALID;
275}
276
277/*
278 * In v2:
279 * 31:12 - Page address bit 31:0
280 * 11:9 - Page address bit 34:32
281 * 8:4 - Page address bit 39:35
282 * 3 - Security
283 * 2 - Writable
284 * 1 - Readable
285 * 0 - 1 if Page @ Page address is valid
286 */
287
288static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
289{
290 u32 flags = 0;
291
292 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
293 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
294
295 return rk_mk_dte_v2(page) | flags;
296}
297
298static u32 rk_mk_pte_invalid(u32 pte)
299{
300 return pte & ~RK_PTE_PAGE_VALID;
301}
302
303/*
304 * rk3288 iova (IOMMU Virtual Address) format
305 * 31 22.21 12.11 0
306 * +-----------+-----------+-------------+
307 * | DTE index | PTE index | Page offset |
308 * +-----------+-----------+-------------+
309 * 31:22 - DTE index - index of DTE in DT
310 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
311 * 11: 0 - Page offset - offset into page @ PTE.page_address
312 */
313#define RK_IOVA_DTE_MASK 0xffc00000
314#define RK_IOVA_DTE_SHIFT 22
315#define RK_IOVA_PTE_MASK 0x003ff000
316#define RK_IOVA_PTE_SHIFT 12
317#define RK_IOVA_PAGE_MASK 0x00000fff
318#define RK_IOVA_PAGE_SHIFT 0
319
320static u32 rk_iova_dte_index(dma_addr_t iova)
321{
322 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
323}
324
325static u32 rk_iova_pte_index(dma_addr_t iova)
326{
327 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
328}
329
330static u32 rk_iova_page_offset(dma_addr_t iova)
331{
332 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
333}
334
335static u32 rk_iommu_read(void __iomem *base, u32 offset)
336{
337 return readl(base + offset);
338}
339
340static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
341{
342 writel(value, base + offset);
343}
344
345static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
346{
347 int i;
348
349 for (i = 0; i < iommu->num_mmu; i++)
350 writel(command, iommu->bases[i] + RK_MMU_COMMAND);
351}
352
353static void rk_iommu_base_command(void __iomem *base, u32 command)
354{
355 writel(command, base + RK_MMU_COMMAND);
356}
357static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
358 size_t size)
359{
360 int i;
361 dma_addr_t iova_end = iova_start + size;
362 /*
363 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
364 * entire iotlb rather than iterate over individual iovas.
365 */
366 for (i = 0; i < iommu->num_mmu; i++) {
367 dma_addr_t iova;
368
369 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
370 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
371 }
372}
373
374static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
375{
376 bool active = true;
377 int i;
378
379 for (i = 0; i < iommu->num_mmu; i++)
380 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
381 RK_MMU_STATUS_STALL_ACTIVE);
382
383 return active;
384}
385
386static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
387{
388 bool enable = true;
389 int i;
390
391 for (i = 0; i < iommu->num_mmu; i++)
392 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
393 RK_MMU_STATUS_PAGING_ENABLED);
394
395 return enable;
396}
397
398static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
399{
400 bool done = true;
401 int i;
402
403 for (i = 0; i < iommu->num_mmu; i++)
404 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
405
406 return done;
407}
408
409static int rk_iommu_enable_stall(struct rk_iommu *iommu)
410{
411 int ret, i;
412 bool val;
413
414 if (rk_iommu_is_stall_active(iommu))
415 return 0;
416
417 /* Stall can only be enabled if paging is enabled */
418 if (!rk_iommu_is_paging_enabled(iommu))
419 return 0;
420
421 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
422
423 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
424 val, RK_MMU_POLL_PERIOD_US,
425 RK_MMU_POLL_TIMEOUT_US);
426 if (ret)
427 for (i = 0; i < iommu->num_mmu; i++)
428 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
429 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
430
431 return ret;
432}
433
434static int rk_iommu_disable_stall(struct rk_iommu *iommu)
435{
436 int ret, i;
437 bool val;
438
439 if (!rk_iommu_is_stall_active(iommu))
440 return 0;
441
442 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
443
444 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
445 !val, RK_MMU_POLL_PERIOD_US,
446 RK_MMU_POLL_TIMEOUT_US);
447 if (ret)
448 for (i = 0; i < iommu->num_mmu; i++)
449 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
450 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
451
452 return ret;
453}
454
455static int rk_iommu_enable_paging(struct rk_iommu *iommu)
456{
457 int ret, i;
458 bool val;
459
460 if (rk_iommu_is_paging_enabled(iommu))
461 return 0;
462
463 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
464
465 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
466 val, RK_MMU_POLL_PERIOD_US,
467 RK_MMU_POLL_TIMEOUT_US);
468 if (ret)
469 for (i = 0; i < iommu->num_mmu; i++)
470 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
471 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
472
473 return ret;
474}
475
476static int rk_iommu_disable_paging(struct rk_iommu *iommu)
477{
478 int ret, i;
479 bool val;
480
481 if (!rk_iommu_is_paging_enabled(iommu))
482 return 0;
483
484 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
485
486 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
487 !val, RK_MMU_POLL_PERIOD_US,
488 RK_MMU_POLL_TIMEOUT_US);
489 if (ret)
490 for (i = 0; i < iommu->num_mmu; i++)
491 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
492 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
493
494 return ret;
495}
496
497static int rk_iommu_force_reset(struct rk_iommu *iommu)
498{
499 int ret, i;
500 u32 dte_addr;
501 bool val;
502
503 if (iommu->reset_disabled)
504 return 0;
505
506 /*
507 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
508 * and verifying that upper 5 nybbles are read back.
509 */
510 for (i = 0; i < iommu->num_mmu; i++) {
511 dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
512 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
513
514 if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
515 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
516 return -EFAULT;
517 }
518 }
519
520 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
521
522 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
523 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
524 RK_MMU_POLL_TIMEOUT_US);
525 if (ret) {
526 dev_err(iommu->dev, "FORCE_RESET command timed out\n");
527 return ret;
528 }
529
530 return 0;
531}
532
533static inline phys_addr_t rk_dte_addr_phys(u32 addr)
534{
535 return (phys_addr_t)addr;
536}
537
538static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma)
539{
540 return dt_dma;
541}
542
543#define DT_HI_MASK GENMASK_ULL(39, 32)
544#define DTE_BASE_HI_MASK GENMASK(11, 4)
545#define DT_SHIFT 28
546
547static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr)
548{
549 u64 addr64 = addr;
550 return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) |
551 ((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT);
552}
553
554static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma)
555{
556 return (dt_dma & RK_DTE_PT_ADDRESS_MASK) |
557 ((dt_dma & DT_HI_MASK) >> DT_SHIFT);
558}
559
560static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
561{
562 void __iomem *base = iommu->bases[index];
563 u32 dte_index, pte_index, page_offset;
564 u32 mmu_dte_addr;
565 phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
566 u32 *dte_addr;
567 u32 dte;
568 phys_addr_t pte_addr_phys = 0;
569 u32 *pte_addr = NULL;
570 u32 pte = 0;
571 phys_addr_t page_addr_phys = 0;
572 u32 page_flags = 0;
573
574 dte_index = rk_iova_dte_index(iova);
575 pte_index = rk_iova_pte_index(iova);
576 page_offset = rk_iova_page_offset(iova);
577
578 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
579 mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr);
580
581 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
582 dte_addr = phys_to_virt(dte_addr_phys);
583 dte = *dte_addr;
584
585 if (!rk_dte_is_pt_valid(dte))
586 goto print_it;
587
588 pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
589 pte_addr = phys_to_virt(pte_addr_phys);
590 pte = *pte_addr;
591
592 if (!rk_pte_is_page_valid(pte))
593 goto print_it;
594
595 page_addr_phys = rk_ops->pt_address(pte) + page_offset;
596 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
597
598print_it:
599 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
600 &iova, dte_index, pte_index, page_offset);
601 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
602 &mmu_dte_addr_phys, &dte_addr_phys, dte,
603 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
604 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
605}
606
607static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
608{
609 struct rk_iommu *iommu = dev_id;
610 u32 status;
611 u32 int_status;
612 dma_addr_t iova;
613 irqreturn_t ret = IRQ_NONE;
614 int i, err;
615
616 err = pm_runtime_get_if_in_use(iommu->dev);
617 if (!err || WARN_ON_ONCE(err < 0))
618 return ret;
619
620 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
621 goto out;
622
623 for (i = 0; i < iommu->num_mmu; i++) {
624 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
625 if (int_status == 0)
626 continue;
627
628 ret = IRQ_HANDLED;
629 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
630
631 if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
632 int flags;
633
634 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
635 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
636 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
637
638 dev_err(iommu->dev, "Page fault at %pad of type %s\n",
639 &iova,
640 (flags == IOMMU_FAULT_WRITE) ? "write" : "read");
641
642 log_iova(iommu, i, iova);
643
644 /*
645 * Report page fault to any installed handlers.
646 * Ignore the return code, though, since we always zap cache
647 * and clear the page fault anyway.
648 */
649 if (iommu->domain)
650 report_iommu_fault(iommu->domain, iommu->dev, iova,
651 flags);
652 else
653 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
654
655 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
656 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
657 }
658
659 if (int_status & RK_MMU_IRQ_BUS_ERROR)
660 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
661
662 if (int_status & ~RK_MMU_IRQ_MASK)
663 dev_err(iommu->dev, "unexpected int_status: %#08x\n",
664 int_status);
665
666 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
667 }
668
669 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
670
671out:
672 pm_runtime_put(iommu->dev);
673 return ret;
674}
675
676static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
677 dma_addr_t iova)
678{
679 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
680 unsigned long flags;
681 phys_addr_t pt_phys, phys = 0;
682 u32 dte, pte;
683 u32 *page_table;
684
685 spin_lock_irqsave(&rk_domain->dt_lock, flags);
686
687 dte = rk_domain->dt[rk_iova_dte_index(iova)];
688 if (!rk_dte_is_pt_valid(dte))
689 goto out;
690
691 pt_phys = rk_ops->pt_address(dte);
692 page_table = (u32 *)phys_to_virt(pt_phys);
693 pte = page_table[rk_iova_pte_index(iova)];
694 if (!rk_pte_is_page_valid(pte))
695 goto out;
696
697 phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
698out:
699 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
700
701 return phys;
702}
703
704static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
705 dma_addr_t iova, size_t size)
706{
707 struct list_head *pos;
708 unsigned long flags;
709
710 /* shootdown these iova from all iommus using this domain */
711 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
712 list_for_each(pos, &rk_domain->iommus) {
713 struct rk_iommu *iommu;
714 int ret;
715
716 iommu = list_entry(pos, struct rk_iommu, node);
717
718 /* Only zap TLBs of IOMMUs that are powered on. */
719 ret = pm_runtime_get_if_in_use(iommu->dev);
720 if (WARN_ON_ONCE(ret < 0))
721 continue;
722 if (ret) {
723 WARN_ON(clk_bulk_enable(iommu->num_clocks,
724 iommu->clocks));
725 rk_iommu_zap_lines(iommu, iova, size);
726 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
727 pm_runtime_put(iommu->dev);
728 }
729 }
730 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
731}
732
733static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
734 dma_addr_t iova, size_t size)
735{
736 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
737 if (size > SPAGE_SIZE)
738 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
739 SPAGE_SIZE);
740}
741
742static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
743 dma_addr_t iova)
744{
745 u32 *page_table, *dte_addr;
746 u32 dte_index, dte;
747 phys_addr_t pt_phys;
748 dma_addr_t pt_dma;
749
750 assert_spin_locked(&rk_domain->dt_lock);
751
752 dte_index = rk_iova_dte_index(iova);
753 dte_addr = &rk_domain->dt[dte_index];
754 dte = *dte_addr;
755 if (rk_dte_is_pt_valid(dte))
756 goto done;
757
758 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
759 if (!page_table)
760 return ERR_PTR(-ENOMEM);
761
762 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
763 if (dma_mapping_error(dma_dev, pt_dma)) {
764 dev_err(dma_dev, "DMA mapping error while allocating page table\n");
765 free_page((unsigned long)page_table);
766 return ERR_PTR(-ENOMEM);
767 }
768
769 dte = rk_ops->mk_dtentries(pt_dma);
770 *dte_addr = dte;
771
772 rk_table_flush(rk_domain,
773 rk_domain->dt_dma + dte_index * sizeof(u32), 1);
774done:
775 pt_phys = rk_ops->pt_address(dte);
776 return (u32 *)phys_to_virt(pt_phys);
777}
778
779static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
780 u32 *pte_addr, dma_addr_t pte_dma,
781 size_t size)
782{
783 unsigned int pte_count;
784 unsigned int pte_total = size / SPAGE_SIZE;
785
786 assert_spin_locked(&rk_domain->dt_lock);
787
788 for (pte_count = 0; pte_count < pte_total; pte_count++) {
789 u32 pte = pte_addr[pte_count];
790 if (!rk_pte_is_page_valid(pte))
791 break;
792
793 pte_addr[pte_count] = rk_mk_pte_invalid(pte);
794 }
795
796 rk_table_flush(rk_domain, pte_dma, pte_count);
797
798 return pte_count * SPAGE_SIZE;
799}
800
801static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
802 dma_addr_t pte_dma, dma_addr_t iova,
803 phys_addr_t paddr, size_t size, int prot)
804{
805 unsigned int pte_count;
806 unsigned int pte_total = size / SPAGE_SIZE;
807 phys_addr_t page_phys;
808
809 assert_spin_locked(&rk_domain->dt_lock);
810
811 for (pte_count = 0; pte_count < pte_total; pte_count++) {
812 u32 pte = pte_addr[pte_count];
813
814 if (rk_pte_is_page_valid(pte))
815 goto unwind;
816
817 pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
818
819 paddr += SPAGE_SIZE;
820 }
821
822 rk_table_flush(rk_domain, pte_dma, pte_total);
823
824 /*
825 * Zap the first and last iova to evict from iotlb any previously
826 * mapped cachelines holding stale values for its dte and pte.
827 * We only zap the first and last iova, since only they could have
828 * dte or pte shared with an existing mapping.
829 */
830 rk_iommu_zap_iova_first_last(rk_domain, iova, size);
831
832 return 0;
833unwind:
834 /* Unmap the range of iovas that we just mapped */
835 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
836 pte_count * SPAGE_SIZE);
837
838 iova += pte_count * SPAGE_SIZE;
839 page_phys = rk_ops->pt_address(pte_addr[pte_count]);
840 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
841 &iova, &page_phys, &paddr, prot);
842
843 return -EADDRINUSE;
844}
845
846static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
847 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
848{
849 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
850 unsigned long flags;
851 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
852 u32 *page_table, *pte_addr;
853 u32 dte_index, pte_index;
854 int ret;
855
856 spin_lock_irqsave(&rk_domain->dt_lock, flags);
857
858 /*
859 * pgsize_bitmap specifies iova sizes that fit in one page table
860 * (1024 4-KiB pages = 4 MiB).
861 * So, size will always be 4096 <= size <= 4194304.
862 * Since iommu_map() guarantees that both iova and size will be
863 * aligned, we will always only be mapping from a single dte here.
864 */
865 page_table = rk_dte_get_page_table(rk_domain, iova);
866 if (IS_ERR(page_table)) {
867 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
868 return PTR_ERR(page_table);
869 }
870
871 dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
872 pte_index = rk_iova_pte_index(iova);
873 pte_addr = &page_table[pte_index];
874
875 pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
876 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
877 paddr, size, prot);
878
879 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
880
881 return ret;
882}
883
884static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
885 size_t size, struct iommu_iotlb_gather *gather)
886{
887 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
888 unsigned long flags;
889 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
890 phys_addr_t pt_phys;
891 u32 dte;
892 u32 *pte_addr;
893 size_t unmap_size;
894
895 spin_lock_irqsave(&rk_domain->dt_lock, flags);
896
897 /*
898 * pgsize_bitmap specifies iova sizes that fit in one page table
899 * (1024 4-KiB pages = 4 MiB).
900 * So, size will always be 4096 <= size <= 4194304.
901 * Since iommu_unmap() guarantees that both iova and size will be
902 * aligned, we will always only be unmapping from a single dte here.
903 */
904 dte = rk_domain->dt[rk_iova_dte_index(iova)];
905 /* Just return 0 if iova is unmapped */
906 if (!rk_dte_is_pt_valid(dte)) {
907 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
908 return 0;
909 }
910
911 pt_phys = rk_ops->pt_address(dte);
912 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
913 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
914 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
915
916 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
917
918 /* Shootdown iotlb entries for iova range that was just unmapped */
919 rk_iommu_zap_iova(rk_domain, iova, unmap_size);
920
921 return unmap_size;
922}
923
924static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
925{
926 struct rk_iommudata *data = dev_iommu_priv_get(dev);
927
928 return data ? data->iommu : NULL;
929}
930
931/* Must be called with iommu powered on and attached */
932static void rk_iommu_disable(struct rk_iommu *iommu)
933{
934 int i;
935
936 /* Ignore error while disabling, just keep going */
937 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
938 rk_iommu_enable_stall(iommu);
939 rk_iommu_disable_paging(iommu);
940 for (i = 0; i < iommu->num_mmu; i++) {
941 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
942 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
943 }
944 rk_iommu_disable_stall(iommu);
945 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
946}
947
948/* Must be called with iommu powered on and attached */
949static int rk_iommu_enable(struct rk_iommu *iommu)
950{
951 struct iommu_domain *domain = iommu->domain;
952 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
953 int ret, i;
954
955 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
956 if (ret)
957 return ret;
958
959 ret = rk_iommu_enable_stall(iommu);
960 if (ret)
961 goto out_disable_clocks;
962
963 ret = rk_iommu_force_reset(iommu);
964 if (ret)
965 goto out_disable_stall;
966
967 for (i = 0; i < iommu->num_mmu; i++) {
968 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
969 rk_ops->dma_addr_dte(rk_domain->dt_dma));
970 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
971 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
972 }
973
974 ret = rk_iommu_enable_paging(iommu);
975
976out_disable_stall:
977 rk_iommu_disable_stall(iommu);
978out_disable_clocks:
979 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
980 return ret;
981}
982
983static void rk_iommu_detach_device(struct iommu_domain *domain,
984 struct device *dev)
985{
986 struct rk_iommu *iommu;
987 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
988 unsigned long flags;
989 int ret;
990
991 /* Allow 'virtual devices' (eg drm) to detach from domain */
992 iommu = rk_iommu_from_dev(dev);
993 if (!iommu)
994 return;
995
996 dev_dbg(dev, "Detaching from iommu domain\n");
997
998 /* iommu already detached */
999 if (iommu->domain != domain)
1000 return;
1001
1002 iommu->domain = NULL;
1003
1004 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1005 list_del_init(&iommu->node);
1006 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1007
1008 ret = pm_runtime_get_if_in_use(iommu->dev);
1009 WARN_ON_ONCE(ret < 0);
1010 if (ret > 0) {
1011 rk_iommu_disable(iommu);
1012 pm_runtime_put(iommu->dev);
1013 }
1014}
1015
1016static int rk_iommu_attach_device(struct iommu_domain *domain,
1017 struct device *dev)
1018{
1019 struct rk_iommu *iommu;
1020 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1021 unsigned long flags;
1022 int ret;
1023
1024 /*
1025 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1026 * Such a device does not belong to an iommu group.
1027 */
1028 iommu = rk_iommu_from_dev(dev);
1029 if (!iommu)
1030 return 0;
1031
1032 dev_dbg(dev, "Attaching to iommu domain\n");
1033
1034 /* iommu already attached */
1035 if (iommu->domain == domain)
1036 return 0;
1037
1038 if (iommu->domain)
1039 rk_iommu_detach_device(iommu->domain, dev);
1040
1041 iommu->domain = domain;
1042
1043 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1044 list_add_tail(&iommu->node, &rk_domain->iommus);
1045 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1046
1047 ret = pm_runtime_get_if_in_use(iommu->dev);
1048 if (!ret || WARN_ON_ONCE(ret < 0))
1049 return 0;
1050
1051 ret = rk_iommu_enable(iommu);
1052 if (ret)
1053 rk_iommu_detach_device(iommu->domain, dev);
1054
1055 pm_runtime_put(iommu->dev);
1056
1057 return ret;
1058}
1059
1060static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
1061{
1062 struct rk_iommu_domain *rk_domain;
1063
1064 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1065 return NULL;
1066
1067 if (!dma_dev)
1068 return NULL;
1069
1070 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1071 if (!rk_domain)
1072 return NULL;
1073
1074 /*
1075 * rk32xx iommus use a 2 level pagetable.
1076 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1077 * Allocate one 4 KiB page for each table.
1078 */
1079 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
1080 if (!rk_domain->dt)
1081 goto err_free_domain;
1082
1083 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1084 SPAGE_SIZE, DMA_TO_DEVICE);
1085 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1086 dev_err(dma_dev, "DMA map error for DT\n");
1087 goto err_free_dt;
1088 }
1089
1090 spin_lock_init(&rk_domain->iommus_lock);
1091 spin_lock_init(&rk_domain->dt_lock);
1092 INIT_LIST_HEAD(&rk_domain->iommus);
1093
1094 rk_domain->domain.geometry.aperture_start = 0;
1095 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
1096 rk_domain->domain.geometry.force_aperture = true;
1097
1098 return &rk_domain->domain;
1099
1100err_free_dt:
1101 free_page((unsigned long)rk_domain->dt);
1102err_free_domain:
1103 kfree(rk_domain);
1104
1105 return NULL;
1106}
1107
1108static void rk_iommu_domain_free(struct iommu_domain *domain)
1109{
1110 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1111 int i;
1112
1113 WARN_ON(!list_empty(&rk_domain->iommus));
1114
1115 for (i = 0; i < NUM_DT_ENTRIES; i++) {
1116 u32 dte = rk_domain->dt[i];
1117 if (rk_dte_is_pt_valid(dte)) {
1118 phys_addr_t pt_phys = rk_ops->pt_address(dte);
1119 u32 *page_table = phys_to_virt(pt_phys);
1120 dma_unmap_single(dma_dev, pt_phys,
1121 SPAGE_SIZE, DMA_TO_DEVICE);
1122 free_page((unsigned long)page_table);
1123 }
1124 }
1125
1126 dma_unmap_single(dma_dev, rk_domain->dt_dma,
1127 SPAGE_SIZE, DMA_TO_DEVICE);
1128 free_page((unsigned long)rk_domain->dt);
1129
1130 kfree(rk_domain);
1131}
1132
1133static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1134{
1135 struct rk_iommudata *data;
1136 struct rk_iommu *iommu;
1137
1138 data = dev_iommu_priv_get(dev);
1139 if (!data)
1140 return ERR_PTR(-ENODEV);
1141
1142 iommu = rk_iommu_from_dev(dev);
1143
1144 data->link = device_link_add(dev, iommu->dev,
1145 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1146
1147 return &iommu->iommu;
1148}
1149
1150static void rk_iommu_release_device(struct device *dev)
1151{
1152 struct rk_iommudata *data = dev_iommu_priv_get(dev);
1153
1154 device_link_del(data->link);
1155}
1156
1157static struct iommu_group *rk_iommu_device_group(struct device *dev)
1158{
1159 struct rk_iommu *iommu;
1160
1161 iommu = rk_iommu_from_dev(dev);
1162
1163 return iommu_group_ref_get(iommu->group);
1164}
1165
1166static int rk_iommu_of_xlate(struct device *dev,
1167 struct of_phandle_args *args)
1168{
1169 struct platform_device *iommu_dev;
1170 struct rk_iommudata *data;
1171
1172 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1173 if (!data)
1174 return -ENOMEM;
1175
1176 iommu_dev = of_find_device_by_node(args->np);
1177
1178 data->iommu = platform_get_drvdata(iommu_dev);
1179 dev_iommu_priv_set(dev, data);
1180
1181 platform_device_put(iommu_dev);
1182
1183 return 0;
1184}
1185
1186static const struct iommu_ops rk_iommu_ops = {
1187 .domain_alloc = rk_iommu_domain_alloc,
1188 .probe_device = rk_iommu_probe_device,
1189 .release_device = rk_iommu_release_device,
1190 .device_group = rk_iommu_device_group,
1191 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1192 .of_xlate = rk_iommu_of_xlate,
1193 .default_domain_ops = &(const struct iommu_domain_ops) {
1194 .attach_dev = rk_iommu_attach_device,
1195 .detach_dev = rk_iommu_detach_device,
1196 .map = rk_iommu_map,
1197 .unmap = rk_iommu_unmap,
1198 .iova_to_phys = rk_iommu_iova_to_phys,
1199 .free = rk_iommu_domain_free,
1200 }
1201};
1202
1203static int rk_iommu_probe(struct platform_device *pdev)
1204{
1205 struct device *dev = &pdev->dev;
1206 struct rk_iommu *iommu;
1207 struct resource *res;
1208 const struct rk_iommu_ops *ops;
1209 int num_res = pdev->num_resources;
1210 int err, i;
1211
1212 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1213 if (!iommu)
1214 return -ENOMEM;
1215
1216 platform_set_drvdata(pdev, iommu);
1217 iommu->dev = dev;
1218 iommu->num_mmu = 0;
1219
1220 ops = of_device_get_match_data(dev);
1221 if (!rk_ops)
1222 rk_ops = ops;
1223
1224 /*
1225 * That should not happen unless different versions of the
1226 * hardware block are embedded the same SoC
1227 */
1228 if (WARN_ON(rk_ops != ops))
1229 return -EINVAL;
1230
1231 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1232 GFP_KERNEL);
1233 if (!iommu->bases)
1234 return -ENOMEM;
1235
1236 for (i = 0; i < num_res; i++) {
1237 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1238 if (!res)
1239 continue;
1240 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1241 if (IS_ERR(iommu->bases[i]))
1242 continue;
1243 iommu->num_mmu++;
1244 }
1245 if (iommu->num_mmu == 0)
1246 return PTR_ERR(iommu->bases[0]);
1247
1248 iommu->num_irq = platform_irq_count(pdev);
1249 if (iommu->num_irq < 0)
1250 return iommu->num_irq;
1251
1252 iommu->reset_disabled = device_property_read_bool(dev,
1253 "rockchip,disable-mmu-reset");
1254
1255 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1256 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1257 sizeof(*iommu->clocks), GFP_KERNEL);
1258 if (!iommu->clocks)
1259 return -ENOMEM;
1260
1261 for (i = 0; i < iommu->num_clocks; ++i)
1262 iommu->clocks[i].id = rk_iommu_clocks[i];
1263
1264 /*
1265 * iommu clocks should be present for all new devices and devicetrees
1266 * but there are older devicetrees without clocks out in the wild.
1267 * So clocks as optional for the time being.
1268 */
1269 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1270 if (err == -ENOENT)
1271 iommu->num_clocks = 0;
1272 else if (err)
1273 return err;
1274
1275 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1276 if (err)
1277 return err;
1278
1279 iommu->group = iommu_group_alloc();
1280 if (IS_ERR(iommu->group)) {
1281 err = PTR_ERR(iommu->group);
1282 goto err_unprepare_clocks;
1283 }
1284
1285 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1286 if (err)
1287 goto err_put_group;
1288
1289 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1290 if (err)
1291 goto err_remove_sysfs;
1292
1293 /*
1294 * Use the first registered IOMMU device for domain to use with DMA
1295 * API, since a domain might not physically correspond to a single
1296 * IOMMU device..
1297 */
1298 if (!dma_dev)
1299 dma_dev = &pdev->dev;
1300
1301 pm_runtime_enable(dev);
1302
1303 for (i = 0; i < iommu->num_irq; i++) {
1304 int irq = platform_get_irq(pdev, i);
1305
1306 if (irq < 0)
1307 return irq;
1308
1309 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1310 IRQF_SHARED, dev_name(dev), iommu);
1311 if (err) {
1312 pm_runtime_disable(dev);
1313 goto err_remove_sysfs;
1314 }
1315 }
1316
1317 dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1318
1319 return 0;
1320err_remove_sysfs:
1321 iommu_device_sysfs_remove(&iommu->iommu);
1322err_put_group:
1323 iommu_group_put(iommu->group);
1324err_unprepare_clocks:
1325 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1326 return err;
1327}
1328
1329static void rk_iommu_shutdown(struct platform_device *pdev)
1330{
1331 struct rk_iommu *iommu = platform_get_drvdata(pdev);
1332 int i;
1333
1334 for (i = 0; i < iommu->num_irq; i++) {
1335 int irq = platform_get_irq(pdev, i);
1336
1337 devm_free_irq(iommu->dev, irq, iommu);
1338 }
1339
1340 pm_runtime_force_suspend(&pdev->dev);
1341}
1342
1343static int __maybe_unused rk_iommu_suspend(struct device *dev)
1344{
1345 struct rk_iommu *iommu = dev_get_drvdata(dev);
1346
1347 if (!iommu->domain)
1348 return 0;
1349
1350 rk_iommu_disable(iommu);
1351 return 0;
1352}
1353
1354static int __maybe_unused rk_iommu_resume(struct device *dev)
1355{
1356 struct rk_iommu *iommu = dev_get_drvdata(dev);
1357
1358 if (!iommu->domain)
1359 return 0;
1360
1361 return rk_iommu_enable(iommu);
1362}
1363
1364static const struct dev_pm_ops rk_iommu_pm_ops = {
1365 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1366 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1367 pm_runtime_force_resume)
1368};
1369
1370static struct rk_iommu_ops iommu_data_ops_v1 = {
1371 .pt_address = &rk_dte_pt_address,
1372 .mk_dtentries = &rk_mk_dte,
1373 .mk_ptentries = &rk_mk_pte,
1374 .dte_addr_phys = &rk_dte_addr_phys,
1375 .dma_addr_dte = &rk_dma_addr_dte,
1376 .dma_bit_mask = DMA_BIT_MASK(32),
1377};
1378
1379static struct rk_iommu_ops iommu_data_ops_v2 = {
1380 .pt_address = &rk_dte_pt_address_v2,
1381 .mk_dtentries = &rk_mk_dte_v2,
1382 .mk_ptentries = &rk_mk_pte_v2,
1383 .dte_addr_phys = &rk_dte_addr_phys_v2,
1384 .dma_addr_dte = &rk_dma_addr_dte_v2,
1385 .dma_bit_mask = DMA_BIT_MASK(40),
1386};
1387
1388static const struct of_device_id rk_iommu_dt_ids[] = {
1389 { .compatible = "rockchip,iommu",
1390 .data = &iommu_data_ops_v1,
1391 },
1392 { .compatible = "rockchip,rk3568-iommu",
1393 .data = &iommu_data_ops_v2,
1394 },
1395 { /* sentinel */ }
1396};
1397
1398static struct platform_driver rk_iommu_driver = {
1399 .probe = rk_iommu_probe,
1400 .shutdown = rk_iommu_shutdown,
1401 .driver = {
1402 .name = "rk_iommu",
1403 .of_match_table = rk_iommu_dt_ids,
1404 .pm = &rk_iommu_pm_ops,
1405 .suppress_bind_attrs = true,
1406 },
1407};
1408builtin_platform_driver(rk_iommu_driver);