Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * IOMMU API for Rockchip
   4 *
   5 * Module Authors:	Simon Xue <xxm@rock-chips.com>
   6 *			Daniel Kurtz <djkurtz@chromium.org>
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
 
  13#include <linux/dma-mapping.h>
  14#include <linux/errno.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/iommu.h>
  18#include <linux/iopoll.h>
  19#include <linux/list.h>
  20#include <linux/mm.h>
  21#include <linux/init.h>
  22#include <linux/of.h>
 
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29#include "iommu-pages.h"
  30
  31/** MMU register offsets */
  32#define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
  33#define RK_MMU_STATUS		0x04
  34#define RK_MMU_COMMAND		0x08
  35#define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
  36#define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
  37#define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
  38#define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
  39#define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
  40#define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
  41#define RK_MMU_AUTO_GATING	0x24
  42
  43#define DTE_ADDR_DUMMY		0xCAFEBABE
  44
  45#define RK_MMU_POLL_PERIOD_US		100
  46#define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
  47#define RK_MMU_POLL_TIMEOUT_US		1000
  48
  49/* RK_MMU_STATUS fields */
  50#define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
  51#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
  52#define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
  53#define RK_MMU_STATUS_IDLE                 BIT(3)
  54#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
  55#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
  56#define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
  57
  58/* RK_MMU_COMMAND command values */
  59#define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
  60#define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
  61#define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
  62#define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
  63#define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
  64#define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
  65#define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
  66
  67/* RK_MMU_INT_* register fields */
  68#define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
  69#define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
  70#define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
  71
  72#define NUM_DT_ENTRIES 1024
  73#define NUM_PT_ENTRIES 1024
  74
  75#define SPAGE_ORDER 12
  76#define SPAGE_SIZE (1 << SPAGE_ORDER)
  77
  78 /*
  79  * Support mapping any size that fits in one page table:
  80  *   4 KiB to 4 MiB
  81  */
  82#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
  83
  84struct rk_iommu_domain {
  85	struct list_head iommus;
  86	u32 *dt; /* page directory table */
  87	dma_addr_t dt_dma;
  88	spinlock_t iommus_lock; /* lock for iommus list */
  89	spinlock_t dt_lock; /* lock for modifying page directory table */
  90
  91	struct iommu_domain domain;
  92};
  93
  94/* list of clocks required by IOMMU */
  95static const char * const rk_iommu_clocks[] = {
  96	"aclk", "iface",
  97};
  98
  99struct rk_iommu_ops {
 100	phys_addr_t (*pt_address)(u32 dte);
 101	u32 (*mk_dtentries)(dma_addr_t pt_dma);
 102	u32 (*mk_ptentries)(phys_addr_t page, int prot);
 103	u64 dma_bit_mask;
 104	gfp_t gfp_flags;
 105};
 106
 107struct rk_iommu {
 108	struct device *dev;
 109	void __iomem **bases;
 110	int num_mmu;
 111	int num_irq;
 112	struct clk_bulk_data *clocks;
 113	int num_clocks;
 114	bool reset_disabled;
 115	struct iommu_device iommu;
 116	struct list_head node; /* entry in rk_iommu_domain.iommus */
 117	struct iommu_domain *domain; /* domain to which iommu is attached */
 
 118};
 119
 120struct rk_iommudata {
 121	struct device_link *link; /* runtime PM link from IOMMU to master */
 122	struct rk_iommu *iommu;
 123};
 124
 125static struct device *dma_dev;
 126static const struct rk_iommu_ops *rk_ops;
 127static struct iommu_domain rk_identity_domain;
 128
 129static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
 130				  unsigned int count)
 131{
 132	size_t size = count * sizeof(u32); /* count of u32 entry */
 133
 134	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
 135}
 136
 137static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
 138{
 139	return container_of(dom, struct rk_iommu_domain, domain);
 140}
 141
 142/*
 143 * The Rockchip rk3288 iommu uses a 2-level page table.
 144 * The first level is the "Directory Table" (DT).
 145 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
 146 * to a "Page Table".
 147 * The second level is the 1024 Page Tables (PT).
 148 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
 149 * a 4 KB page of physical memory.
 150 *
 151 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
 152 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
 153 * address of the start of the DT page.
 154 *
 155 * The structure of the page table is as follows:
 156 *
 157 *                   DT
 158 * MMU_DTE_ADDR -> +-----+
 159 *                 |     |
 160 *                 +-----+     PT
 161 *                 | DTE | -> +-----+
 162 *                 +-----+    |     |     Memory
 163 *                 |     |    +-----+     Page
 164 *                 |     |    | PTE | -> +-----+
 165 *                 +-----+    +-----+    |     |
 166 *                            |     |    |     |
 167 *                            |     |    |     |
 168 *                            +-----+    |     |
 169 *                                       |     |
 170 *                                       |     |
 171 *                                       +-----+
 172 */
 173
 174/*
 175 * Each DTE has a PT address and a valid bit:
 176 * +---------------------+-----------+-+
 177 * | PT address          | Reserved  |V|
 178 * +---------------------+-----------+-+
 179 *  31:12 - PT address (PTs always starts on a 4 KB boundary)
 180 *  11: 1 - Reserved
 181 *      0 - 1 if PT @ PT address is valid
 182 */
 183#define RK_DTE_PT_ADDRESS_MASK    0xfffff000
 184#define RK_DTE_PT_VALID           BIT(0)
 185
 186static inline phys_addr_t rk_dte_pt_address(u32 dte)
 187{
 188	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
 189}
 190
 191/*
 192 * In v2:
 193 * 31:12 - PT address bit 31:0
 194 * 11: 8 - PT address bit 35:32
 195 *  7: 4 - PT address bit 39:36
 196 *  3: 1 - Reserved
 197 *     0 - 1 if PT @ PT address is valid
 198 */
 199#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
 200#define DTE_HI_MASK1	GENMASK(11, 8)
 201#define DTE_HI_MASK2	GENMASK(7, 4)
 202#define DTE_HI_SHIFT1	24 /* shift bit 8 to bit 32 */
 203#define DTE_HI_SHIFT2	32 /* shift bit 4 to bit 36 */
 204#define PAGE_DESC_HI_MASK1	GENMASK_ULL(35, 32)
 205#define PAGE_DESC_HI_MASK2	GENMASK_ULL(39, 36)
 206
 207static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
 208{
 209	u64 dte_v2 = dte;
 210
 211	dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
 212		 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
 213		 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
 214
 215	return (phys_addr_t)dte_v2;
 216}
 217
 218static inline bool rk_dte_is_pt_valid(u32 dte)
 219{
 220	return dte & RK_DTE_PT_VALID;
 221}
 222
 223static inline u32 rk_mk_dte(dma_addr_t pt_dma)
 224{
 225	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
 226}
 227
 228static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
 229{
 230	pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
 231		 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
 232		 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
 233
 234	return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
 235}
 236
 237/*
 238 * Each PTE has a Page address, some flags and a valid bit:
 239 * +---------------------+---+-------+-+
 240 * | Page address        |Rsv| Flags |V|
 241 * +---------------------+---+-------+-+
 242 *  31:12 - Page address (Pages always start on a 4 KB boundary)
 243 *  11: 9 - Reserved
 244 *   8: 1 - Flags
 245 *      8 - Read allocate - allocate cache space on read misses
 246 *      7 - Read cache - enable cache & prefetch of data
 247 *      6 - Write buffer - enable delaying writes on their way to memory
 248 *      5 - Write allocate - allocate cache space on write misses
 249 *      4 - Write cache - different writes can be merged together
 250 *      3 - Override cache attributes
 251 *          if 1, bits 4-8 control cache attributes
 252 *          if 0, the system bus defaults are used
 253 *      2 - Writable
 254 *      1 - Readable
 255 *      0 - 1 if Page @ Page address is valid
 256 */
 257#define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
 258#define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
 259#define RK_PTE_PAGE_WRITABLE      BIT(2)
 260#define RK_PTE_PAGE_READABLE      BIT(1)
 261#define RK_PTE_PAGE_VALID         BIT(0)
 262
 
 
 
 
 
 263static inline bool rk_pte_is_page_valid(u32 pte)
 264{
 265	return pte & RK_PTE_PAGE_VALID;
 266}
 267
 268/* TODO: set cache flags per prot IOMMU_CACHE */
 269static u32 rk_mk_pte(phys_addr_t page, int prot)
 270{
 271	u32 flags = 0;
 272	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 273	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 274	page &= RK_PTE_PAGE_ADDRESS_MASK;
 275	return page | flags | RK_PTE_PAGE_VALID;
 276}
 277
 278/*
 279 * In v2:
 280 * 31:12 - Page address bit 31:0
 281 * 11: 8 - Page address bit 35:32
 282 *  7: 4 - Page address bit 39:36
 283 *     3 - Security
 284 *     2 - Writable
 285 *     1 - Readable
 286 *     0 - 1 if Page @ Page address is valid
 287 */
 288
 289static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
 290{
 291	u32 flags = 0;
 292
 293	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 294	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 295
 296	return rk_mk_dte_v2(page) | flags;
 297}
 298
 299static u32 rk_mk_pte_invalid(u32 pte)
 300{
 301	return pte & ~RK_PTE_PAGE_VALID;
 302}
 303
 304/*
 305 * rk3288 iova (IOMMU Virtual Address) format
 306 *  31       22.21       12.11          0
 307 * +-----------+-----------+-------------+
 308 * | DTE index | PTE index | Page offset |
 309 * +-----------+-----------+-------------+
 310 *  31:22 - DTE index   - index of DTE in DT
 311 *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
 312 *  11: 0 - Page offset - offset into page @ PTE.page_address
 313 */
 314#define RK_IOVA_DTE_MASK    0xffc00000
 315#define RK_IOVA_DTE_SHIFT   22
 316#define RK_IOVA_PTE_MASK    0x003ff000
 317#define RK_IOVA_PTE_SHIFT   12
 318#define RK_IOVA_PAGE_MASK   0x00000fff
 319#define RK_IOVA_PAGE_SHIFT  0
 320
 321static u32 rk_iova_dte_index(dma_addr_t iova)
 322{
 323	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
 324}
 325
 326static u32 rk_iova_pte_index(dma_addr_t iova)
 327{
 328	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
 329}
 330
 331static u32 rk_iova_page_offset(dma_addr_t iova)
 332{
 333	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
 334}
 335
 336static u32 rk_iommu_read(void __iomem *base, u32 offset)
 337{
 338	return readl(base + offset);
 339}
 340
 341static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
 342{
 343	writel(value, base + offset);
 344}
 345
 346static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
 347{
 348	int i;
 349
 350	for (i = 0; i < iommu->num_mmu; i++)
 351		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
 352}
 353
 354static void rk_iommu_base_command(void __iomem *base, u32 command)
 355{
 356	writel(command, base + RK_MMU_COMMAND);
 357}
 358static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
 359			       size_t size)
 360{
 361	int i;
 362	dma_addr_t iova_end = iova_start + size;
 363	/*
 364	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
 365	 * entire iotlb rather than iterate over individual iovas.
 366	 */
 367	for (i = 0; i < iommu->num_mmu; i++) {
 368		dma_addr_t iova;
 369
 370		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
 371			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
 372	}
 373}
 374
 375static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
 376{
 377	bool active = true;
 378	int i;
 379
 380	for (i = 0; i < iommu->num_mmu; i++)
 381		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 382					   RK_MMU_STATUS_STALL_ACTIVE);
 383
 384	return active;
 385}
 386
 387static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
 388{
 389	bool enable = true;
 390	int i;
 391
 392	for (i = 0; i < iommu->num_mmu; i++)
 393		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 394					   RK_MMU_STATUS_PAGING_ENABLED);
 395
 396	return enable;
 397}
 398
 399static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
 400{
 401	bool done = true;
 402	int i;
 403
 404	for (i = 0; i < iommu->num_mmu; i++)
 405		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
 406
 407	return done;
 408}
 409
 410static int rk_iommu_enable_stall(struct rk_iommu *iommu)
 411{
 412	int ret, i;
 413	bool val;
 414
 415	if (rk_iommu_is_stall_active(iommu))
 416		return 0;
 417
 418	/* Stall can only be enabled if paging is enabled */
 419	if (!rk_iommu_is_paging_enabled(iommu))
 420		return 0;
 421
 422	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
 423
 424	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 425				 val, RK_MMU_POLL_PERIOD_US,
 426				 RK_MMU_POLL_TIMEOUT_US);
 427	if (ret)
 428		for (i = 0; i < iommu->num_mmu; i++)
 429			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
 430				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 431
 432	return ret;
 433}
 434
 435static int rk_iommu_disable_stall(struct rk_iommu *iommu)
 436{
 437	int ret, i;
 438	bool val;
 439
 440	if (!rk_iommu_is_stall_active(iommu))
 441		return 0;
 442
 443	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
 444
 445	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 446				 !val, RK_MMU_POLL_PERIOD_US,
 447				 RK_MMU_POLL_TIMEOUT_US);
 448	if (ret)
 449		for (i = 0; i < iommu->num_mmu; i++)
 450			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
 451				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 452
 453	return ret;
 454}
 455
 456static int rk_iommu_enable_paging(struct rk_iommu *iommu)
 457{
 458	int ret, i;
 459	bool val;
 460
 461	if (rk_iommu_is_paging_enabled(iommu))
 462		return 0;
 463
 464	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
 465
 466	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 467				 val, RK_MMU_POLL_PERIOD_US,
 468				 RK_MMU_POLL_TIMEOUT_US);
 469	if (ret)
 470		for (i = 0; i < iommu->num_mmu; i++)
 471			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
 472				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 473
 474	return ret;
 475}
 476
 477static int rk_iommu_disable_paging(struct rk_iommu *iommu)
 478{
 479	int ret, i;
 480	bool val;
 481
 482	if (!rk_iommu_is_paging_enabled(iommu))
 483		return 0;
 484
 485	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
 486
 487	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 488				 !val, RK_MMU_POLL_PERIOD_US,
 489				 RK_MMU_POLL_TIMEOUT_US);
 490	if (ret)
 491		for (i = 0; i < iommu->num_mmu; i++)
 492			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
 493				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 494
 495	return ret;
 496}
 497
 498static int rk_iommu_force_reset(struct rk_iommu *iommu)
 499{
 500	int ret, i;
 501	u32 dte_addr;
 502	bool val;
 503
 504	if (iommu->reset_disabled)
 505		return 0;
 506
 507	/*
 508	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
 509	 * and verifying that upper 5 (v1) or 7 (v2) nybbles are read back.
 510	 */
 511	for (i = 0; i < iommu->num_mmu; i++) {
 512		dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
 513		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
 514
 515		if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
 
 516			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
 517			return -EFAULT;
 518		}
 519	}
 520
 521	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
 522
 523	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
 524				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
 525				 RK_MMU_POLL_TIMEOUT_US);
 526	if (ret) {
 527		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
 528		return ret;
 529	}
 530
 531	return 0;
 532}
 533
 534static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
 535{
 536	void __iomem *base = iommu->bases[index];
 537	u32 dte_index, pte_index, page_offset;
 538	u32 mmu_dte_addr;
 539	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
 540	u32 *dte_addr;
 541	u32 dte;
 542	phys_addr_t pte_addr_phys = 0;
 543	u32 *pte_addr = NULL;
 544	u32 pte = 0;
 545	phys_addr_t page_addr_phys = 0;
 546	u32 page_flags = 0;
 547
 548	dte_index = rk_iova_dte_index(iova);
 549	pte_index = rk_iova_pte_index(iova);
 550	page_offset = rk_iova_page_offset(iova);
 551
 552	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
 553	mmu_dte_addr_phys = rk_ops->pt_address(mmu_dte_addr);
 554
 555	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
 556	dte_addr = phys_to_virt(dte_addr_phys);
 557	dte = *dte_addr;
 558
 559	if (!rk_dte_is_pt_valid(dte))
 560		goto print_it;
 561
 562	pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
 563	pte_addr = phys_to_virt(pte_addr_phys);
 564	pte = *pte_addr;
 565
 566	if (!rk_pte_is_page_valid(pte))
 567		goto print_it;
 568
 569	page_addr_phys = rk_ops->pt_address(pte) + page_offset;
 570	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
 571
 572print_it:
 573	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
 574		&iova, dte_index, pte_index, page_offset);
 575	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
 576		&mmu_dte_addr_phys, &dte_addr_phys, dte,
 577		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
 578		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
 579}
 580
 581static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
 582{
 583	struct rk_iommu *iommu = dev_id;
 584	u32 status;
 585	u32 int_status;
 586	dma_addr_t iova;
 587	irqreturn_t ret = IRQ_NONE;
 588	int i, err;
 589
 590	err = pm_runtime_get_if_in_use(iommu->dev);
 591	if (!err || WARN_ON_ONCE(err < 0))
 592		return ret;
 593
 594	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
 595		goto out;
 596
 597	for (i = 0; i < iommu->num_mmu; i++) {
 598		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
 599		if (int_status == 0)
 600			continue;
 601
 602		ret = IRQ_HANDLED;
 603		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
 604
 605		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
 606			int flags;
 607
 608			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
 609			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
 610					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 611
 612			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
 613				&iova,
 614				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
 615
 616			log_iova(iommu, i, iova);
 617
 618			/*
 619			 * Report page fault to any installed handlers.
 620			 * Ignore the return code, though, since we always zap cache
 621			 * and clear the page fault anyway.
 622			 */
 623			if (iommu->domain != &rk_identity_domain)
 624				report_iommu_fault(iommu->domain, iommu->dev, iova,
 625						   flags);
 626			else
 627				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
 628
 629			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 630			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
 631		}
 632
 633		if (int_status & RK_MMU_IRQ_BUS_ERROR)
 634			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
 635
 636		if (int_status & ~RK_MMU_IRQ_MASK)
 637			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
 638				int_status);
 639
 640		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
 641	}
 642
 643	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 644
 645out:
 646	pm_runtime_put(iommu->dev);
 647	return ret;
 648}
 649
 650static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
 651					 dma_addr_t iova)
 652{
 653	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 654	unsigned long flags;
 655	phys_addr_t pt_phys, phys = 0;
 656	u32 dte, pte;
 657	u32 *page_table;
 658
 659	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 660
 661	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 662	if (!rk_dte_is_pt_valid(dte))
 663		goto out;
 664
 665	pt_phys = rk_ops->pt_address(dte);
 666	page_table = (u32 *)phys_to_virt(pt_phys);
 667	pte = page_table[rk_iova_pte_index(iova)];
 668	if (!rk_pte_is_page_valid(pte))
 669		goto out;
 670
 671	phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
 672out:
 673	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 674
 675	return phys;
 676}
 677
 678static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
 679			      dma_addr_t iova, size_t size)
 680{
 681	struct list_head *pos;
 682	unsigned long flags;
 683
 684	/* shootdown these iova from all iommus using this domain */
 685	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 686	list_for_each(pos, &rk_domain->iommus) {
 687		struct rk_iommu *iommu;
 688		int ret;
 689
 690		iommu = list_entry(pos, struct rk_iommu, node);
 691
 692		/* Only zap TLBs of IOMMUs that are powered on. */
 693		ret = pm_runtime_get_if_in_use(iommu->dev);
 694		if (WARN_ON_ONCE(ret < 0))
 695			continue;
 696		if (ret) {
 697			WARN_ON(clk_bulk_enable(iommu->num_clocks,
 698						iommu->clocks));
 699			rk_iommu_zap_lines(iommu, iova, size);
 700			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 701			pm_runtime_put(iommu->dev);
 702		}
 703	}
 704	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 705}
 706
 707static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
 708					 dma_addr_t iova, size_t size)
 709{
 710	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
 711	if (size > SPAGE_SIZE)
 712		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
 713					SPAGE_SIZE);
 714}
 715
 716static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
 717				  dma_addr_t iova)
 718{
 719	u32 *page_table, *dte_addr;
 720	u32 dte_index, dte;
 721	phys_addr_t pt_phys;
 722	dma_addr_t pt_dma;
 723
 724	assert_spin_locked(&rk_domain->dt_lock);
 725
 726	dte_index = rk_iova_dte_index(iova);
 727	dte_addr = &rk_domain->dt[dte_index];
 728	dte = *dte_addr;
 729	if (rk_dte_is_pt_valid(dte))
 730		goto done;
 731
 732	page_table = iommu_alloc_page(GFP_ATOMIC | rk_ops->gfp_flags);
 733	if (!page_table)
 734		return ERR_PTR(-ENOMEM);
 735
 736	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
 737	if (dma_mapping_error(dma_dev, pt_dma)) {
 738		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
 739		iommu_free_page(page_table);
 740		return ERR_PTR(-ENOMEM);
 741	}
 742
 743	dte = rk_ops->mk_dtentries(pt_dma);
 744	*dte_addr = dte;
 745
 
 746	rk_table_flush(rk_domain,
 747		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
 748done:
 749	pt_phys = rk_ops->pt_address(dte);
 750	return (u32 *)phys_to_virt(pt_phys);
 751}
 752
 753static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
 754				  u32 *pte_addr, dma_addr_t pte_dma,
 755				  size_t size)
 756{
 757	unsigned int pte_count;
 758	unsigned int pte_total = size / SPAGE_SIZE;
 759
 760	assert_spin_locked(&rk_domain->dt_lock);
 761
 762	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 763		u32 pte = pte_addr[pte_count];
 764		if (!rk_pte_is_page_valid(pte))
 765			break;
 766
 767		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
 768	}
 769
 770	rk_table_flush(rk_domain, pte_dma, pte_count);
 771
 772	return pte_count * SPAGE_SIZE;
 773}
 774
 775static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
 776			     dma_addr_t pte_dma, dma_addr_t iova,
 777			     phys_addr_t paddr, size_t size, int prot)
 778{
 779	unsigned int pte_count;
 780	unsigned int pte_total = size / SPAGE_SIZE;
 781	phys_addr_t page_phys;
 782
 783	assert_spin_locked(&rk_domain->dt_lock);
 784
 785	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 786		u32 pte = pte_addr[pte_count];
 787
 788		if (rk_pte_is_page_valid(pte))
 789			goto unwind;
 790
 791		pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
 792
 793		paddr += SPAGE_SIZE;
 794	}
 795
 796	rk_table_flush(rk_domain, pte_dma, pte_total);
 797
 798	/*
 799	 * Zap the first and last iova to evict from iotlb any previously
 800	 * mapped cachelines holding stale values for its dte and pte.
 801	 * We only zap the first and last iova, since only they could have
 802	 * dte or pte shared with an existing mapping.
 803	 */
 804	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
 805
 806	return 0;
 807unwind:
 808	/* Unmap the range of iovas that we just mapped */
 809	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
 810			    pte_count * SPAGE_SIZE);
 811
 812	iova += pte_count * SPAGE_SIZE;
 813	page_phys = rk_ops->pt_address(pte_addr[pte_count]);
 814	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
 815	       &iova, &page_phys, &paddr, prot);
 816
 817	return -EADDRINUSE;
 818}
 819
 820static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
 821			phys_addr_t paddr, size_t size, size_t count,
 822			int prot, gfp_t gfp, size_t *mapped)
 823{
 824	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 825	unsigned long flags;
 826	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 827	u32 *page_table, *pte_addr;
 828	u32 dte_index, pte_index;
 829	int ret;
 830
 831	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 832
 833	/*
 834	 * pgsize_bitmap specifies iova sizes that fit in one page table
 835	 * (1024 4-KiB pages = 4 MiB).
 836	 * So, size will always be 4096 <= size <= 4194304.
 837	 * Since iommu_map() guarantees that both iova and size will be
 838	 * aligned, we will always only be mapping from a single dte here.
 839	 */
 840	page_table = rk_dte_get_page_table(rk_domain, iova);
 841	if (IS_ERR(page_table)) {
 842		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 843		return PTR_ERR(page_table);
 844	}
 845
 846	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
 847	pte_index = rk_iova_pte_index(iova);
 848	pte_addr = &page_table[pte_index];
 849
 850	pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
 851	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
 852				paddr, size, prot);
 853
 854	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 855	if (!ret)
 856		*mapped = size;
 857
 858	return ret;
 859}
 860
 861static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
 862			     size_t size, size_t count, struct iommu_iotlb_gather *gather)
 863{
 864	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 865	unsigned long flags;
 866	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 867	phys_addr_t pt_phys;
 868	u32 dte;
 869	u32 *pte_addr;
 870	size_t unmap_size;
 871
 872	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 873
 874	/*
 875	 * pgsize_bitmap specifies iova sizes that fit in one page table
 876	 * (1024 4-KiB pages = 4 MiB).
 877	 * So, size will always be 4096 <= size <= 4194304.
 878	 * Since iommu_unmap() guarantees that both iova and size will be
 879	 * aligned, we will always only be unmapping from a single dte here.
 880	 */
 881	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 882	/* Just return 0 if iova is unmapped */
 883	if (!rk_dte_is_pt_valid(dte)) {
 884		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 885		return 0;
 886	}
 887
 888	pt_phys = rk_ops->pt_address(dte);
 889	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
 890	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
 891	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
 892
 893	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 894
 895	/* Shootdown iotlb entries for iova range that was just unmapped */
 896	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
 897
 898	return unmap_size;
 899}
 900
 901static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
 902{
 903	struct rk_iommudata *data = dev_iommu_priv_get(dev);
 904
 905	return data ? data->iommu : NULL;
 906}
 907
 908/* Must be called with iommu powered on and attached */
 909static void rk_iommu_disable(struct rk_iommu *iommu)
 910{
 911	int i;
 912
 913	/* Ignore error while disabling, just keep going */
 914	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
 915	rk_iommu_enable_stall(iommu);
 916	rk_iommu_disable_paging(iommu);
 917	for (i = 0; i < iommu->num_mmu; i++) {
 918		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
 919		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
 920	}
 921	rk_iommu_disable_stall(iommu);
 922	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 923}
 924
 925/* Must be called with iommu powered on and attached */
 926static int rk_iommu_enable(struct rk_iommu *iommu)
 927{
 928	struct iommu_domain *domain = iommu->domain;
 929	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 930	int ret, i;
 931
 932	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
 933	if (ret)
 934		return ret;
 935
 936	ret = rk_iommu_enable_stall(iommu);
 937	if (ret)
 938		goto out_disable_clocks;
 939
 940	ret = rk_iommu_force_reset(iommu);
 941	if (ret)
 942		goto out_disable_stall;
 943
 944	for (i = 0; i < iommu->num_mmu; i++) {
 945		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
 946			       rk_ops->mk_dtentries(rk_domain->dt_dma));
 947		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 948		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
 949	}
 950
 951	ret = rk_iommu_enable_paging(iommu);
 952
 953out_disable_stall:
 954	rk_iommu_disable_stall(iommu);
 955out_disable_clocks:
 956	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 957	return ret;
 958}
 959
 960static int rk_iommu_identity_attach(struct iommu_domain *identity_domain,
 961				    struct device *dev)
 962{
 963	struct rk_iommu *iommu;
 964	struct rk_iommu_domain *rk_domain;
 965	unsigned long flags;
 966	int ret;
 967
 968	/* Allow 'virtual devices' (eg drm) to detach from domain */
 969	iommu = rk_iommu_from_dev(dev);
 970	if (!iommu)
 971		return -ENODEV;
 972
 973	rk_domain = to_rk_domain(iommu->domain);
 974
 975	dev_dbg(dev, "Detaching from iommu domain\n");
 976
 977	if (iommu->domain == identity_domain)
 978		return 0;
 
 979
 980	iommu->domain = identity_domain;
 981
 982	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 983	list_del_init(&iommu->node);
 984	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 985
 986	ret = pm_runtime_get_if_in_use(iommu->dev);
 987	WARN_ON_ONCE(ret < 0);
 988	if (ret > 0) {
 989		rk_iommu_disable(iommu);
 990		pm_runtime_put(iommu->dev);
 991	}
 992
 993	return 0;
 994}
 995
 996static struct iommu_domain_ops rk_identity_ops = {
 997	.attach_dev = rk_iommu_identity_attach,
 998};
 999
1000static struct iommu_domain rk_identity_domain = {
1001	.type = IOMMU_DOMAIN_IDENTITY,
1002	.ops = &rk_identity_ops,
1003};
1004
1005static int rk_iommu_attach_device(struct iommu_domain *domain,
1006		struct device *dev)
1007{
1008	struct rk_iommu *iommu;
1009	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1010	unsigned long flags;
1011	int ret;
1012
1013	/*
1014	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1015	 * Such a device does not belong to an iommu group.
1016	 */
1017	iommu = rk_iommu_from_dev(dev);
1018	if (!iommu)
1019		return 0;
1020
1021	dev_dbg(dev, "Attaching to iommu domain\n");
1022
1023	/* iommu already attached */
1024	if (iommu->domain == domain)
1025		return 0;
1026
1027	ret = rk_iommu_identity_attach(&rk_identity_domain, dev);
1028	if (ret)
1029		return ret;
1030
1031	iommu->domain = domain;
1032
1033	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1034	list_add_tail(&iommu->node, &rk_domain->iommus);
1035	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1036
1037	ret = pm_runtime_get_if_in_use(iommu->dev);
1038	if (!ret || WARN_ON_ONCE(ret < 0))
1039		return 0;
1040
1041	ret = rk_iommu_enable(iommu);
1042	if (ret)
1043		WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev));
1044
1045	pm_runtime_put(iommu->dev);
1046
1047	return ret;
1048}
1049
1050static struct iommu_domain *rk_iommu_domain_alloc_paging(struct device *dev)
1051{
1052	struct rk_iommu_domain *rk_domain;
1053
 
 
 
1054	if (!dma_dev)
1055		return NULL;
1056
1057	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1058	if (!rk_domain)
1059		return NULL;
1060
 
 
 
 
1061	/*
1062	 * rk32xx iommus use a 2 level pagetable.
1063	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1064	 * Allocate one 4 KiB page for each table.
1065	 */
1066	rk_domain->dt = iommu_alloc_page(GFP_KERNEL | rk_ops->gfp_flags);
1067	if (!rk_domain->dt)
1068		goto err_free_domain;
1069
1070	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1071					   SPAGE_SIZE, DMA_TO_DEVICE);
1072	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1073		dev_err(dma_dev, "DMA map error for DT\n");
1074		goto err_free_dt;
1075	}
1076
 
 
1077	spin_lock_init(&rk_domain->iommus_lock);
1078	spin_lock_init(&rk_domain->dt_lock);
1079	INIT_LIST_HEAD(&rk_domain->iommus);
1080
1081	rk_domain->domain.geometry.aperture_start = 0;
1082	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1083	rk_domain->domain.geometry.force_aperture = true;
1084
1085	return &rk_domain->domain;
1086
1087err_free_dt:
1088	iommu_free_page(rk_domain->dt);
1089err_free_domain:
1090	kfree(rk_domain);
 
1091
1092	return NULL;
1093}
1094
1095static void rk_iommu_domain_free(struct iommu_domain *domain)
1096{
1097	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1098	int i;
1099
1100	WARN_ON(!list_empty(&rk_domain->iommus));
1101
1102	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1103		u32 dte = rk_domain->dt[i];
1104		if (rk_dte_is_pt_valid(dte)) {
1105			phys_addr_t pt_phys = rk_ops->pt_address(dte);
1106			u32 *page_table = phys_to_virt(pt_phys);
1107			dma_unmap_single(dma_dev, pt_phys,
1108					 SPAGE_SIZE, DMA_TO_DEVICE);
1109			iommu_free_page(page_table);
1110		}
1111	}
1112
1113	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1114			 SPAGE_SIZE, DMA_TO_DEVICE);
1115	iommu_free_page(rk_domain->dt);
1116
1117	kfree(rk_domain);
 
1118}
1119
1120static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1121{
1122	struct rk_iommudata *data;
1123	struct rk_iommu *iommu;
 
1124
1125	data = dev_iommu_priv_get(dev);
1126	if (!data)
1127		return ERR_PTR(-ENODEV);
1128
1129	iommu = rk_iommu_from_dev(dev);
1130
1131	data->link = device_link_add(dev, iommu->dev,
1132				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
 
 
1133
1134	return &iommu->iommu;
 
 
 
1135}
1136
1137static void rk_iommu_release_device(struct device *dev)
1138{
1139	struct rk_iommudata *data = dev_iommu_priv_get(dev);
 
 
 
1140
1141	device_link_del(data->link);
 
 
 
 
 
 
 
 
 
 
 
1142}
1143
1144static int rk_iommu_of_xlate(struct device *dev,
1145			     const struct of_phandle_args *args)
1146{
1147	struct platform_device *iommu_dev;
1148	struct rk_iommudata *data;
1149
1150	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1151	if (!data)
1152		return -ENOMEM;
1153
1154	iommu_dev = of_find_device_by_node(args->np);
1155
1156	data->iommu = platform_get_drvdata(iommu_dev);
1157	data->iommu->domain = &rk_identity_domain;
1158	dev_iommu_priv_set(dev, data);
1159
1160	platform_device_put(iommu_dev);
1161
1162	return 0;
1163}
1164
1165static const struct iommu_ops rk_iommu_ops = {
1166	.identity_domain = &rk_identity_domain,
1167	.domain_alloc_paging = rk_iommu_domain_alloc_paging,
1168	.probe_device = rk_iommu_probe_device,
1169	.release_device = rk_iommu_release_device,
1170	.device_group = generic_single_device_group,
 
 
 
 
 
 
1171	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1172	.of_xlate = rk_iommu_of_xlate,
1173	.default_domain_ops = &(const struct iommu_domain_ops) {
1174		.attach_dev	= rk_iommu_attach_device,
1175		.map_pages	= rk_iommu_map,
1176		.unmap_pages	= rk_iommu_unmap,
1177		.iova_to_phys	= rk_iommu_iova_to_phys,
1178		.free		= rk_iommu_domain_free,
1179	}
1180};
1181
1182static int rk_iommu_probe(struct platform_device *pdev)
1183{
1184	struct device *dev = &pdev->dev;
1185	struct rk_iommu *iommu;
1186	struct resource *res;
1187	const struct rk_iommu_ops *ops;
1188	int num_res = pdev->num_resources;
1189	int err, i;
1190
1191	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1192	if (!iommu)
1193		return -ENOMEM;
1194
1195	platform_set_drvdata(pdev, iommu);
1196	iommu->dev = dev;
1197	iommu->num_mmu = 0;
1198
1199	ops = of_device_get_match_data(dev);
1200	if (!rk_ops)
1201		rk_ops = ops;
1202
1203	/*
1204	 * That should not happen unless different versions of the
1205	 * hardware block are embedded the same SoC
1206	 */
1207	if (WARN_ON(rk_ops != ops))
1208		return -EINVAL;
1209
1210	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1211				    GFP_KERNEL);
1212	if (!iommu->bases)
1213		return -ENOMEM;
1214
1215	for (i = 0; i < num_res; i++) {
1216		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1217		if (!res)
1218			continue;
1219		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1220		if (IS_ERR(iommu->bases[i]))
1221			continue;
1222		iommu->num_mmu++;
1223	}
1224	if (iommu->num_mmu == 0)
1225		return PTR_ERR(iommu->bases[0]);
1226
1227	iommu->num_irq = platform_irq_count(pdev);
1228	if (iommu->num_irq < 0)
1229		return iommu->num_irq;
 
 
 
 
 
 
 
1230
1231	iommu->reset_disabled = device_property_read_bool(dev,
1232					"rockchip,disable-mmu-reset");
1233
1234	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1235	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1236				     sizeof(*iommu->clocks), GFP_KERNEL);
1237	if (!iommu->clocks)
1238		return -ENOMEM;
1239
1240	for (i = 0; i < iommu->num_clocks; ++i)
1241		iommu->clocks[i].id = rk_iommu_clocks[i];
1242
1243	/*
1244	 * iommu clocks should be present for all new devices and devicetrees
1245	 * but there are older devicetrees without clocks out in the wild.
1246	 * So clocks as optional for the time being.
1247	 */
1248	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1249	if (err == -ENOENT)
1250		iommu->num_clocks = 0;
1251	else if (err)
1252		return err;
1253
1254	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1255	if (err)
1256		return err;
1257
 
 
 
 
 
 
1258	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1259	if (err)
1260		goto err_unprepare_clocks;
 
 
 
1261
1262	err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1263	if (err)
1264		goto err_remove_sysfs;
1265
1266	/*
1267	 * Use the first registered IOMMU device for domain to use with DMA
1268	 * API, since a domain might not physically correspond to a single
1269	 * IOMMU device..
1270	 */
1271	if (!dma_dev)
1272		dma_dev = &pdev->dev;
1273
1274	pm_runtime_enable(dev);
1275
1276	for (i = 0; i < iommu->num_irq; i++) {
1277		int irq = platform_get_irq(pdev, i);
1278
1279		if (irq < 0) {
1280			err = irq;
1281			goto err_pm_disable;
1282		}
1283
1284		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1285				       IRQF_SHARED, dev_name(dev), iommu);
1286		if (err)
1287			goto err_pm_disable;
1288	}
1289
1290	dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1291
1292	return 0;
1293err_pm_disable:
1294	pm_runtime_disable(dev);
1295err_remove_sysfs:
1296	iommu_device_sysfs_remove(&iommu->iommu);
 
 
1297err_unprepare_clocks:
1298	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1299	return err;
1300}
1301
1302static void rk_iommu_shutdown(struct platform_device *pdev)
1303{
1304	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1305	int i;
1306
1307	for (i = 0; i < iommu->num_irq; i++) {
1308		int irq = platform_get_irq(pdev, i);
1309
1310		devm_free_irq(iommu->dev, irq, iommu);
1311	}
1312
1313	pm_runtime_force_suspend(&pdev->dev);
1314}
1315
1316static int __maybe_unused rk_iommu_suspend(struct device *dev)
1317{
1318	struct rk_iommu *iommu = dev_get_drvdata(dev);
1319
1320	if (iommu->domain == &rk_identity_domain)
1321		return 0;
1322
1323	rk_iommu_disable(iommu);
1324	return 0;
1325}
1326
1327static int __maybe_unused rk_iommu_resume(struct device *dev)
1328{
1329	struct rk_iommu *iommu = dev_get_drvdata(dev);
1330
1331	if (iommu->domain == &rk_identity_domain)
1332		return 0;
1333
1334	return rk_iommu_enable(iommu);
1335}
1336
1337static const struct dev_pm_ops rk_iommu_pm_ops = {
1338	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1339	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1340				pm_runtime_force_resume)
1341};
1342
1343static struct rk_iommu_ops iommu_data_ops_v1 = {
1344	.pt_address = &rk_dte_pt_address,
1345	.mk_dtentries = &rk_mk_dte,
1346	.mk_ptentries = &rk_mk_pte,
1347	.dma_bit_mask = DMA_BIT_MASK(32),
1348	.gfp_flags = GFP_DMA32,
1349};
1350
1351static struct rk_iommu_ops iommu_data_ops_v2 = {
1352	.pt_address = &rk_dte_pt_address_v2,
1353	.mk_dtentries = &rk_mk_dte_v2,
1354	.mk_ptentries = &rk_mk_pte_v2,
1355	.dma_bit_mask = DMA_BIT_MASK(40),
1356	.gfp_flags = 0,
1357};
1358
1359static const struct of_device_id rk_iommu_dt_ids[] = {
1360	{	.compatible = "rockchip,iommu",
1361		.data = &iommu_data_ops_v1,
1362	},
1363	{	.compatible = "rockchip,rk3568-iommu",
1364		.data = &iommu_data_ops_v2,
1365	},
1366	{ /* sentinel */ }
1367};
 
1368
1369static struct platform_driver rk_iommu_driver = {
1370	.probe = rk_iommu_probe,
1371	.shutdown = rk_iommu_shutdown,
1372	.driver = {
1373		   .name = "rk_iommu",
1374		   .of_match_table = rk_iommu_dt_ids,
1375		   .pm = &rk_iommu_pm_ops,
1376		   .suppress_bind_attrs = true,
1377	},
1378};
1379builtin_platform_driver(rk_iommu_driver);
 
 
 
 
 
 
 
 
 
 
 
 
v4.17
 
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License version 2 as
   4 * published by the Free Software Foundation.
 
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/compiler.h>
   9#include <linux/delay.h>
  10#include <linux/device.h>
  11#include <linux/dma-iommu.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/errno.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iommu.h>
  17#include <linux/iopoll.h>
  18#include <linux/list.h>
  19#include <linux/mm.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/of_iommu.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
 
 
  29/** MMU register offsets */
  30#define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
  31#define RK_MMU_STATUS		0x04
  32#define RK_MMU_COMMAND		0x08
  33#define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
  34#define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
  35#define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
  36#define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
  37#define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
  38#define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
  39#define RK_MMU_AUTO_GATING	0x24
  40
  41#define DTE_ADDR_DUMMY		0xCAFEBABE
  42
  43#define RK_MMU_POLL_PERIOD_US		100
  44#define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
  45#define RK_MMU_POLL_TIMEOUT_US		1000
  46
  47/* RK_MMU_STATUS fields */
  48#define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
  49#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
  50#define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
  51#define RK_MMU_STATUS_IDLE                 BIT(3)
  52#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
  53#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
  54#define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
  55
  56/* RK_MMU_COMMAND command values */
  57#define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
  58#define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
  59#define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
  60#define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
  61#define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
  62#define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
  63#define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
  64
  65/* RK_MMU_INT_* register fields */
  66#define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
  67#define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
  68#define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
  69
  70#define NUM_DT_ENTRIES 1024
  71#define NUM_PT_ENTRIES 1024
  72
  73#define SPAGE_ORDER 12
  74#define SPAGE_SIZE (1 << SPAGE_ORDER)
  75
  76 /*
  77  * Support mapping any size that fits in one page table:
  78  *   4 KiB to 4 MiB
  79  */
  80#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
  81
  82struct rk_iommu_domain {
  83	struct list_head iommus;
  84	u32 *dt; /* page directory table */
  85	dma_addr_t dt_dma;
  86	spinlock_t iommus_lock; /* lock for iommus list */
  87	spinlock_t dt_lock; /* lock for modifying page directory table */
  88
  89	struct iommu_domain domain;
  90};
  91
  92/* list of clocks required by IOMMU */
  93static const char * const rk_iommu_clocks[] = {
  94	"aclk", "iface",
  95};
  96
 
 
 
 
 
 
 
 
  97struct rk_iommu {
  98	struct device *dev;
  99	void __iomem **bases;
 100	int num_mmu;
 
 101	struct clk_bulk_data *clocks;
 102	int num_clocks;
 103	bool reset_disabled;
 104	struct iommu_device iommu;
 105	struct list_head node; /* entry in rk_iommu_domain.iommus */
 106	struct iommu_domain *domain; /* domain to which iommu is attached */
 107	struct iommu_group *group;
 108};
 109
 110struct rk_iommudata {
 111	struct device_link *link; /* runtime PM link from IOMMU to master */
 112	struct rk_iommu *iommu;
 113};
 114
 115static struct device *dma_dev;
 
 
 116
 117static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
 118				  unsigned int count)
 119{
 120	size_t size = count * sizeof(u32); /* count of u32 entry */
 121
 122	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
 123}
 124
 125static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
 126{
 127	return container_of(dom, struct rk_iommu_domain, domain);
 128}
 129
 130/*
 131 * The Rockchip rk3288 iommu uses a 2-level page table.
 132 * The first level is the "Directory Table" (DT).
 133 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
 134 * to a "Page Table".
 135 * The second level is the 1024 Page Tables (PT).
 136 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
 137 * a 4 KB page of physical memory.
 138 *
 139 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
 140 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
 141 * address of the start of the DT page.
 142 *
 143 * The structure of the page table is as follows:
 144 *
 145 *                   DT
 146 * MMU_DTE_ADDR -> +-----+
 147 *                 |     |
 148 *                 +-----+     PT
 149 *                 | DTE | -> +-----+
 150 *                 +-----+    |     |     Memory
 151 *                 |     |    +-----+     Page
 152 *                 |     |    | PTE | -> +-----+
 153 *                 +-----+    +-----+    |     |
 154 *                            |     |    |     |
 155 *                            |     |    |     |
 156 *                            +-----+    |     |
 157 *                                       |     |
 158 *                                       |     |
 159 *                                       +-----+
 160 */
 161
 162/*
 163 * Each DTE has a PT address and a valid bit:
 164 * +---------------------+-----------+-+
 165 * | PT address          | Reserved  |V|
 166 * +---------------------+-----------+-+
 167 *  31:12 - PT address (PTs always starts on a 4 KB boundary)
 168 *  11: 1 - Reserved
 169 *      0 - 1 if PT @ PT address is valid
 170 */
 171#define RK_DTE_PT_ADDRESS_MASK    0xfffff000
 172#define RK_DTE_PT_VALID           BIT(0)
 173
 174static inline phys_addr_t rk_dte_pt_address(u32 dte)
 175{
 176	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
 177}
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179static inline bool rk_dte_is_pt_valid(u32 dte)
 180{
 181	return dte & RK_DTE_PT_VALID;
 182}
 183
 184static inline u32 rk_mk_dte(dma_addr_t pt_dma)
 185{
 186	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
 187}
 188
 
 
 
 
 
 
 
 
 
 189/*
 190 * Each PTE has a Page address, some flags and a valid bit:
 191 * +---------------------+---+-------+-+
 192 * | Page address        |Rsv| Flags |V|
 193 * +---------------------+---+-------+-+
 194 *  31:12 - Page address (Pages always start on a 4 KB boundary)
 195 *  11: 9 - Reserved
 196 *   8: 1 - Flags
 197 *      8 - Read allocate - allocate cache space on read misses
 198 *      7 - Read cache - enable cache & prefetch of data
 199 *      6 - Write buffer - enable delaying writes on their way to memory
 200 *      5 - Write allocate - allocate cache space on write misses
 201 *      4 - Write cache - different writes can be merged together
 202 *      3 - Override cache attributes
 203 *          if 1, bits 4-8 control cache attributes
 204 *          if 0, the system bus defaults are used
 205 *      2 - Writable
 206 *      1 - Readable
 207 *      0 - 1 if Page @ Page address is valid
 208 */
 209#define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
 210#define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
 211#define RK_PTE_PAGE_WRITABLE      BIT(2)
 212#define RK_PTE_PAGE_READABLE      BIT(1)
 213#define RK_PTE_PAGE_VALID         BIT(0)
 214
 215static inline phys_addr_t rk_pte_page_address(u32 pte)
 216{
 217	return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
 218}
 219
 220static inline bool rk_pte_is_page_valid(u32 pte)
 221{
 222	return pte & RK_PTE_PAGE_VALID;
 223}
 224
 225/* TODO: set cache flags per prot IOMMU_CACHE */
 226static u32 rk_mk_pte(phys_addr_t page, int prot)
 227{
 228	u32 flags = 0;
 229	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 230	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 231	page &= RK_PTE_PAGE_ADDRESS_MASK;
 232	return page | flags | RK_PTE_PAGE_VALID;
 233}
 234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235static u32 rk_mk_pte_invalid(u32 pte)
 236{
 237	return pte & ~RK_PTE_PAGE_VALID;
 238}
 239
 240/*
 241 * rk3288 iova (IOMMU Virtual Address) format
 242 *  31       22.21       12.11          0
 243 * +-----------+-----------+-------------+
 244 * | DTE index | PTE index | Page offset |
 245 * +-----------+-----------+-------------+
 246 *  31:22 - DTE index   - index of DTE in DT
 247 *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
 248 *  11: 0 - Page offset - offset into page @ PTE.page_address
 249 */
 250#define RK_IOVA_DTE_MASK    0xffc00000
 251#define RK_IOVA_DTE_SHIFT   22
 252#define RK_IOVA_PTE_MASK    0x003ff000
 253#define RK_IOVA_PTE_SHIFT   12
 254#define RK_IOVA_PAGE_MASK   0x00000fff
 255#define RK_IOVA_PAGE_SHIFT  0
 256
 257static u32 rk_iova_dte_index(dma_addr_t iova)
 258{
 259	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
 260}
 261
 262static u32 rk_iova_pte_index(dma_addr_t iova)
 263{
 264	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
 265}
 266
 267static u32 rk_iova_page_offset(dma_addr_t iova)
 268{
 269	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
 270}
 271
 272static u32 rk_iommu_read(void __iomem *base, u32 offset)
 273{
 274	return readl(base + offset);
 275}
 276
 277static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
 278{
 279	writel(value, base + offset);
 280}
 281
 282static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
 283{
 284	int i;
 285
 286	for (i = 0; i < iommu->num_mmu; i++)
 287		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
 288}
 289
 290static void rk_iommu_base_command(void __iomem *base, u32 command)
 291{
 292	writel(command, base + RK_MMU_COMMAND);
 293}
 294static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
 295			       size_t size)
 296{
 297	int i;
 298	dma_addr_t iova_end = iova_start + size;
 299	/*
 300	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
 301	 * entire iotlb rather than iterate over individual iovas.
 302	 */
 303	for (i = 0; i < iommu->num_mmu; i++) {
 304		dma_addr_t iova;
 305
 306		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
 307			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
 308	}
 309}
 310
 311static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
 312{
 313	bool active = true;
 314	int i;
 315
 316	for (i = 0; i < iommu->num_mmu; i++)
 317		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 318					   RK_MMU_STATUS_STALL_ACTIVE);
 319
 320	return active;
 321}
 322
 323static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
 324{
 325	bool enable = true;
 326	int i;
 327
 328	for (i = 0; i < iommu->num_mmu; i++)
 329		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 330					   RK_MMU_STATUS_PAGING_ENABLED);
 331
 332	return enable;
 333}
 334
 335static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
 336{
 337	bool done = true;
 338	int i;
 339
 340	for (i = 0; i < iommu->num_mmu; i++)
 341		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
 342
 343	return done;
 344}
 345
 346static int rk_iommu_enable_stall(struct rk_iommu *iommu)
 347{
 348	int ret, i;
 349	bool val;
 350
 351	if (rk_iommu_is_stall_active(iommu))
 352		return 0;
 353
 354	/* Stall can only be enabled if paging is enabled */
 355	if (!rk_iommu_is_paging_enabled(iommu))
 356		return 0;
 357
 358	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
 359
 360	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 361				 val, RK_MMU_POLL_PERIOD_US,
 362				 RK_MMU_POLL_TIMEOUT_US);
 363	if (ret)
 364		for (i = 0; i < iommu->num_mmu; i++)
 365			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
 366				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 367
 368	return ret;
 369}
 370
 371static int rk_iommu_disable_stall(struct rk_iommu *iommu)
 372{
 373	int ret, i;
 374	bool val;
 375
 376	if (!rk_iommu_is_stall_active(iommu))
 377		return 0;
 378
 379	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
 380
 381	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 382				 !val, RK_MMU_POLL_PERIOD_US,
 383				 RK_MMU_POLL_TIMEOUT_US);
 384	if (ret)
 385		for (i = 0; i < iommu->num_mmu; i++)
 386			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
 387				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 388
 389	return ret;
 390}
 391
 392static int rk_iommu_enable_paging(struct rk_iommu *iommu)
 393{
 394	int ret, i;
 395	bool val;
 396
 397	if (rk_iommu_is_paging_enabled(iommu))
 398		return 0;
 399
 400	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
 401
 402	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 403				 val, RK_MMU_POLL_PERIOD_US,
 404				 RK_MMU_POLL_TIMEOUT_US);
 405	if (ret)
 406		for (i = 0; i < iommu->num_mmu; i++)
 407			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
 408				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 409
 410	return ret;
 411}
 412
 413static int rk_iommu_disable_paging(struct rk_iommu *iommu)
 414{
 415	int ret, i;
 416	bool val;
 417
 418	if (!rk_iommu_is_paging_enabled(iommu))
 419		return 0;
 420
 421	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
 422
 423	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 424				 !val, RK_MMU_POLL_PERIOD_US,
 425				 RK_MMU_POLL_TIMEOUT_US);
 426	if (ret)
 427		for (i = 0; i < iommu->num_mmu; i++)
 428			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
 429				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 430
 431	return ret;
 432}
 433
 434static int rk_iommu_force_reset(struct rk_iommu *iommu)
 435{
 436	int ret, i;
 437	u32 dte_addr;
 438	bool val;
 439
 440	if (iommu->reset_disabled)
 441		return 0;
 442
 443	/*
 444	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
 445	 * and verifying that upper 5 nybbles are read back.
 446	 */
 447	for (i = 0; i < iommu->num_mmu; i++) {
 448		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
 
 449
 450		dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
 451		if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
 452			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
 453			return -EFAULT;
 454		}
 455	}
 456
 457	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
 458
 459	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
 460				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
 461				 RK_MMU_POLL_TIMEOUT_US);
 462	if (ret) {
 463		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
 464		return ret;
 465	}
 466
 467	return 0;
 468}
 469
 470static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
 471{
 472	void __iomem *base = iommu->bases[index];
 473	u32 dte_index, pte_index, page_offset;
 474	u32 mmu_dte_addr;
 475	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
 476	u32 *dte_addr;
 477	u32 dte;
 478	phys_addr_t pte_addr_phys = 0;
 479	u32 *pte_addr = NULL;
 480	u32 pte = 0;
 481	phys_addr_t page_addr_phys = 0;
 482	u32 page_flags = 0;
 483
 484	dte_index = rk_iova_dte_index(iova);
 485	pte_index = rk_iova_pte_index(iova);
 486	page_offset = rk_iova_page_offset(iova);
 487
 488	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
 489	mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
 490
 491	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
 492	dte_addr = phys_to_virt(dte_addr_phys);
 493	dte = *dte_addr;
 494
 495	if (!rk_dte_is_pt_valid(dte))
 496		goto print_it;
 497
 498	pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
 499	pte_addr = phys_to_virt(pte_addr_phys);
 500	pte = *pte_addr;
 501
 502	if (!rk_pte_is_page_valid(pte))
 503		goto print_it;
 504
 505	page_addr_phys = rk_pte_page_address(pte) + page_offset;
 506	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
 507
 508print_it:
 509	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
 510		&iova, dte_index, pte_index, page_offset);
 511	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
 512		&mmu_dte_addr_phys, &dte_addr_phys, dte,
 513		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
 514		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
 515}
 516
 517static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
 518{
 519	struct rk_iommu *iommu = dev_id;
 520	u32 status;
 521	u32 int_status;
 522	dma_addr_t iova;
 523	irqreturn_t ret = IRQ_NONE;
 524	int i;
 525
 526	if (WARN_ON(!pm_runtime_get_if_in_use(iommu->dev)))
 527		return 0;
 
 528
 529	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
 530		goto out;
 531
 532	for (i = 0; i < iommu->num_mmu; i++) {
 533		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
 534		if (int_status == 0)
 535			continue;
 536
 537		ret = IRQ_HANDLED;
 538		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
 539
 540		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
 541			int flags;
 542
 543			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
 544			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
 545					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 546
 547			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
 548				&iova,
 549				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
 550
 551			log_iova(iommu, i, iova);
 552
 553			/*
 554			 * Report page fault to any installed handlers.
 555			 * Ignore the return code, though, since we always zap cache
 556			 * and clear the page fault anyway.
 557			 */
 558			if (iommu->domain)
 559				report_iommu_fault(iommu->domain, iommu->dev, iova,
 560						   flags);
 561			else
 562				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
 563
 564			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 565			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
 566		}
 567
 568		if (int_status & RK_MMU_IRQ_BUS_ERROR)
 569			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
 570
 571		if (int_status & ~RK_MMU_IRQ_MASK)
 572			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
 573				int_status);
 574
 575		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
 576	}
 577
 578	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 579
 580out:
 581	pm_runtime_put(iommu->dev);
 582	return ret;
 583}
 584
 585static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
 586					 dma_addr_t iova)
 587{
 588	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 589	unsigned long flags;
 590	phys_addr_t pt_phys, phys = 0;
 591	u32 dte, pte;
 592	u32 *page_table;
 593
 594	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 595
 596	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 597	if (!rk_dte_is_pt_valid(dte))
 598		goto out;
 599
 600	pt_phys = rk_dte_pt_address(dte);
 601	page_table = (u32 *)phys_to_virt(pt_phys);
 602	pte = page_table[rk_iova_pte_index(iova)];
 603	if (!rk_pte_is_page_valid(pte))
 604		goto out;
 605
 606	phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
 607out:
 608	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 609
 610	return phys;
 611}
 612
 613static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
 614			      dma_addr_t iova, size_t size)
 615{
 616	struct list_head *pos;
 617	unsigned long flags;
 618
 619	/* shootdown these iova from all iommus using this domain */
 620	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 621	list_for_each(pos, &rk_domain->iommus) {
 622		struct rk_iommu *iommu;
 
 623
 624		iommu = list_entry(pos, struct rk_iommu, node);
 625
 626		/* Only zap TLBs of IOMMUs that are powered on. */
 627		if (pm_runtime_get_if_in_use(iommu->dev)) {
 
 
 
 628			WARN_ON(clk_bulk_enable(iommu->num_clocks,
 629						iommu->clocks));
 630			rk_iommu_zap_lines(iommu, iova, size);
 631			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 632			pm_runtime_put(iommu->dev);
 633		}
 634	}
 635	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 636}
 637
 638static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
 639					 dma_addr_t iova, size_t size)
 640{
 641	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
 642	if (size > SPAGE_SIZE)
 643		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
 644					SPAGE_SIZE);
 645}
 646
 647static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
 648				  dma_addr_t iova)
 649{
 650	u32 *page_table, *dte_addr;
 651	u32 dte_index, dte;
 652	phys_addr_t pt_phys;
 653	dma_addr_t pt_dma;
 654
 655	assert_spin_locked(&rk_domain->dt_lock);
 656
 657	dte_index = rk_iova_dte_index(iova);
 658	dte_addr = &rk_domain->dt[dte_index];
 659	dte = *dte_addr;
 660	if (rk_dte_is_pt_valid(dte))
 661		goto done;
 662
 663	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
 664	if (!page_table)
 665		return ERR_PTR(-ENOMEM);
 666
 667	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
 668	if (dma_mapping_error(dma_dev, pt_dma)) {
 669		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
 670		free_page((unsigned long)page_table);
 671		return ERR_PTR(-ENOMEM);
 672	}
 673
 674	dte = rk_mk_dte(pt_dma);
 675	*dte_addr = dte;
 676
 677	rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
 678	rk_table_flush(rk_domain,
 679		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
 680done:
 681	pt_phys = rk_dte_pt_address(dte);
 682	return (u32 *)phys_to_virt(pt_phys);
 683}
 684
 685static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
 686				  u32 *pte_addr, dma_addr_t pte_dma,
 687				  size_t size)
 688{
 689	unsigned int pte_count;
 690	unsigned int pte_total = size / SPAGE_SIZE;
 691
 692	assert_spin_locked(&rk_domain->dt_lock);
 693
 694	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 695		u32 pte = pte_addr[pte_count];
 696		if (!rk_pte_is_page_valid(pte))
 697			break;
 698
 699		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
 700	}
 701
 702	rk_table_flush(rk_domain, pte_dma, pte_count);
 703
 704	return pte_count * SPAGE_SIZE;
 705}
 706
 707static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
 708			     dma_addr_t pte_dma, dma_addr_t iova,
 709			     phys_addr_t paddr, size_t size, int prot)
 710{
 711	unsigned int pte_count;
 712	unsigned int pte_total = size / SPAGE_SIZE;
 713	phys_addr_t page_phys;
 714
 715	assert_spin_locked(&rk_domain->dt_lock);
 716
 717	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 718		u32 pte = pte_addr[pte_count];
 719
 720		if (rk_pte_is_page_valid(pte))
 721			goto unwind;
 722
 723		pte_addr[pte_count] = rk_mk_pte(paddr, prot);
 724
 725		paddr += SPAGE_SIZE;
 726	}
 727
 728	rk_table_flush(rk_domain, pte_dma, pte_total);
 729
 730	/*
 731	 * Zap the first and last iova to evict from iotlb any previously
 732	 * mapped cachelines holding stale values for its dte and pte.
 733	 * We only zap the first and last iova, since only they could have
 734	 * dte or pte shared with an existing mapping.
 735	 */
 736	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
 737
 738	return 0;
 739unwind:
 740	/* Unmap the range of iovas that we just mapped */
 741	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
 742			    pte_count * SPAGE_SIZE);
 743
 744	iova += pte_count * SPAGE_SIZE;
 745	page_phys = rk_pte_page_address(pte_addr[pte_count]);
 746	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
 747	       &iova, &page_phys, &paddr, prot);
 748
 749	return -EADDRINUSE;
 750}
 751
 752static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
 753			phys_addr_t paddr, size_t size, int prot)
 
 754{
 755	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 756	unsigned long flags;
 757	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 758	u32 *page_table, *pte_addr;
 759	u32 dte_index, pte_index;
 760	int ret;
 761
 762	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 763
 764	/*
 765	 * pgsize_bitmap specifies iova sizes that fit in one page table
 766	 * (1024 4-KiB pages = 4 MiB).
 767	 * So, size will always be 4096 <= size <= 4194304.
 768	 * Since iommu_map() guarantees that both iova and size will be
 769	 * aligned, we will always only be mapping from a single dte here.
 770	 */
 771	page_table = rk_dte_get_page_table(rk_domain, iova);
 772	if (IS_ERR(page_table)) {
 773		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 774		return PTR_ERR(page_table);
 775	}
 776
 777	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
 778	pte_index = rk_iova_pte_index(iova);
 779	pte_addr = &page_table[pte_index];
 780	pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
 
 781	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
 782				paddr, size, prot);
 783
 784	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 
 
 785
 786	return ret;
 787}
 788
 789static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
 790			     size_t size)
 791{
 792	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 793	unsigned long flags;
 794	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 795	phys_addr_t pt_phys;
 796	u32 dte;
 797	u32 *pte_addr;
 798	size_t unmap_size;
 799
 800	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 801
 802	/*
 803	 * pgsize_bitmap specifies iova sizes that fit in one page table
 804	 * (1024 4-KiB pages = 4 MiB).
 805	 * So, size will always be 4096 <= size <= 4194304.
 806	 * Since iommu_unmap() guarantees that both iova and size will be
 807	 * aligned, we will always only be unmapping from a single dte here.
 808	 */
 809	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 810	/* Just return 0 if iova is unmapped */
 811	if (!rk_dte_is_pt_valid(dte)) {
 812		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 813		return 0;
 814	}
 815
 816	pt_phys = rk_dte_pt_address(dte);
 817	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
 818	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
 819	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
 820
 821	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 822
 823	/* Shootdown iotlb entries for iova range that was just unmapped */
 824	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
 825
 826	return unmap_size;
 827}
 828
 829static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
 830{
 831	struct rk_iommudata *data = dev->archdata.iommu;
 832
 833	return data ? data->iommu : NULL;
 834}
 835
 836/* Must be called with iommu powered on and attached */
 837static void rk_iommu_disable(struct rk_iommu *iommu)
 838{
 839	int i;
 840
 841	/* Ignore error while disabling, just keep going */
 842	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
 843	rk_iommu_enable_stall(iommu);
 844	rk_iommu_disable_paging(iommu);
 845	for (i = 0; i < iommu->num_mmu; i++) {
 846		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
 847		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
 848	}
 849	rk_iommu_disable_stall(iommu);
 850	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 851}
 852
 853/* Must be called with iommu powered on and attached */
 854static int rk_iommu_enable(struct rk_iommu *iommu)
 855{
 856	struct iommu_domain *domain = iommu->domain;
 857	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 858	int ret, i;
 859
 860	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
 861	if (ret)
 862		return ret;
 863
 864	ret = rk_iommu_enable_stall(iommu);
 865	if (ret)
 866		goto out_disable_clocks;
 867
 868	ret = rk_iommu_force_reset(iommu);
 869	if (ret)
 870		goto out_disable_stall;
 871
 872	for (i = 0; i < iommu->num_mmu; i++) {
 873		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
 874			       rk_domain->dt_dma);
 875		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 876		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
 877	}
 878
 879	ret = rk_iommu_enable_paging(iommu);
 880
 881out_disable_stall:
 882	rk_iommu_disable_stall(iommu);
 883out_disable_clocks:
 884	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 885	return ret;
 886}
 887
 888static void rk_iommu_detach_device(struct iommu_domain *domain,
 889				   struct device *dev)
 890{
 891	struct rk_iommu *iommu;
 892	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 893	unsigned long flags;
 
 894
 895	/* Allow 'virtual devices' (eg drm) to detach from domain */
 896	iommu = rk_iommu_from_dev(dev);
 897	if (!iommu)
 898		return;
 
 
 899
 900	dev_dbg(dev, "Detaching from iommu domain\n");
 901
 902	/* iommu already detached */
 903	if (iommu->domain != domain)
 904		return;
 905
 906	iommu->domain = NULL;
 907
 908	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 909	list_del_init(&iommu->node);
 910	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 911
 912	if (pm_runtime_get_if_in_use(iommu->dev)) {
 
 
 913		rk_iommu_disable(iommu);
 914		pm_runtime_put(iommu->dev);
 915	}
 
 
 916}
 917
 
 
 
 
 
 
 
 
 
 918static int rk_iommu_attach_device(struct iommu_domain *domain,
 919		struct device *dev)
 920{
 921	struct rk_iommu *iommu;
 922	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 923	unsigned long flags;
 924	int ret;
 925
 926	/*
 927	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
 928	 * Such a device does not belong to an iommu group.
 929	 */
 930	iommu = rk_iommu_from_dev(dev);
 931	if (!iommu)
 932		return 0;
 933
 934	dev_dbg(dev, "Attaching to iommu domain\n");
 935
 936	/* iommu already attached */
 937	if (iommu->domain == domain)
 938		return 0;
 939
 940	if (iommu->domain)
 941		rk_iommu_detach_device(iommu->domain, dev);
 
 942
 943	iommu->domain = domain;
 944
 945	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 946	list_add_tail(&iommu->node, &rk_domain->iommus);
 947	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 948
 949	if (!pm_runtime_get_if_in_use(iommu->dev))
 
 950		return 0;
 951
 952	ret = rk_iommu_enable(iommu);
 953	if (ret)
 954		rk_iommu_detach_device(iommu->domain, dev);
 955
 956	pm_runtime_put(iommu->dev);
 957
 958	return ret;
 959}
 960
 961static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
 962{
 963	struct rk_iommu_domain *rk_domain;
 964
 965	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
 966		return NULL;
 967
 968	if (!dma_dev)
 969		return NULL;
 970
 971	rk_domain = devm_kzalloc(dma_dev, sizeof(*rk_domain), GFP_KERNEL);
 972	if (!rk_domain)
 973		return NULL;
 974
 975	if (type == IOMMU_DOMAIN_DMA &&
 976	    iommu_get_dma_cookie(&rk_domain->domain))
 977		return NULL;
 978
 979	/*
 980	 * rk32xx iommus use a 2 level pagetable.
 981	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
 982	 * Allocate one 4 KiB page for each table.
 983	 */
 984	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
 985	if (!rk_domain->dt)
 986		goto err_put_cookie;
 987
 988	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
 989					   SPAGE_SIZE, DMA_TO_DEVICE);
 990	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
 991		dev_err(dma_dev, "DMA map error for DT\n");
 992		goto err_free_dt;
 993	}
 994
 995	rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
 996
 997	spin_lock_init(&rk_domain->iommus_lock);
 998	spin_lock_init(&rk_domain->dt_lock);
 999	INIT_LIST_HEAD(&rk_domain->iommus);
1000
1001	rk_domain->domain.geometry.aperture_start = 0;
1002	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1003	rk_domain->domain.geometry.force_aperture = true;
1004
1005	return &rk_domain->domain;
1006
1007err_free_dt:
1008	free_page((unsigned long)rk_domain->dt);
1009err_put_cookie:
1010	if (type == IOMMU_DOMAIN_DMA)
1011		iommu_put_dma_cookie(&rk_domain->domain);
1012
1013	return NULL;
1014}
1015
1016static void rk_iommu_domain_free(struct iommu_domain *domain)
1017{
1018	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1019	int i;
1020
1021	WARN_ON(!list_empty(&rk_domain->iommus));
1022
1023	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1024		u32 dte = rk_domain->dt[i];
1025		if (rk_dte_is_pt_valid(dte)) {
1026			phys_addr_t pt_phys = rk_dte_pt_address(dte);
1027			u32 *page_table = phys_to_virt(pt_phys);
1028			dma_unmap_single(dma_dev, pt_phys,
1029					 SPAGE_SIZE, DMA_TO_DEVICE);
1030			free_page((unsigned long)page_table);
1031		}
1032	}
1033
1034	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1035			 SPAGE_SIZE, DMA_TO_DEVICE);
1036	free_page((unsigned long)rk_domain->dt);
1037
1038	if (domain->type == IOMMU_DOMAIN_DMA)
1039		iommu_put_dma_cookie(&rk_domain->domain);
1040}
1041
1042static int rk_iommu_add_device(struct device *dev)
1043{
1044	struct iommu_group *group;
1045	struct rk_iommu *iommu;
1046	struct rk_iommudata *data;
1047
1048	data = dev->archdata.iommu;
1049	if (!data)
1050		return -ENODEV;
1051
1052	iommu = rk_iommu_from_dev(dev);
1053
1054	group = iommu_group_get_for_dev(dev);
1055	if (IS_ERR(group))
1056		return PTR_ERR(group);
1057	iommu_group_put(group);
1058
1059	iommu_device_link(&iommu->iommu, dev);
1060	data->link = device_link_add(dev, iommu->dev, DL_FLAG_PM_RUNTIME);
1061
1062	return 0;
1063}
1064
1065static void rk_iommu_remove_device(struct device *dev)
1066{
1067	struct rk_iommu *iommu;
1068	struct rk_iommudata *data = dev->archdata.iommu;
1069
1070	iommu = rk_iommu_from_dev(dev);
1071
1072	device_link_del(data->link);
1073	iommu_device_unlink(&iommu->iommu, dev);
1074	iommu_group_remove_device(dev);
1075}
1076
1077static struct iommu_group *rk_iommu_device_group(struct device *dev)
1078{
1079	struct rk_iommu *iommu;
1080
1081	iommu = rk_iommu_from_dev(dev);
1082
1083	return iommu_group_ref_get(iommu->group);
1084}
1085
1086static int rk_iommu_of_xlate(struct device *dev,
1087			     struct of_phandle_args *args)
1088{
1089	struct platform_device *iommu_dev;
1090	struct rk_iommudata *data;
1091
1092	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1093	if (!data)
1094		return -ENOMEM;
1095
1096	iommu_dev = of_find_device_by_node(args->np);
1097
1098	data->iommu = platform_get_drvdata(iommu_dev);
1099	dev->archdata.iommu = data;
 
1100
1101	platform_device_put(iommu_dev);
1102
1103	return 0;
1104}
1105
1106static const struct iommu_ops rk_iommu_ops = {
1107	.domain_alloc = rk_iommu_domain_alloc,
1108	.domain_free = rk_iommu_domain_free,
1109	.attach_dev = rk_iommu_attach_device,
1110	.detach_dev = rk_iommu_detach_device,
1111	.map = rk_iommu_map,
1112	.unmap = rk_iommu_unmap,
1113	.map_sg = default_iommu_map_sg,
1114	.add_device = rk_iommu_add_device,
1115	.remove_device = rk_iommu_remove_device,
1116	.iova_to_phys = rk_iommu_iova_to_phys,
1117	.device_group = rk_iommu_device_group,
1118	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1119	.of_xlate = rk_iommu_of_xlate,
 
 
 
 
 
 
 
1120};
1121
1122static int rk_iommu_probe(struct platform_device *pdev)
1123{
1124	struct device *dev = &pdev->dev;
1125	struct rk_iommu *iommu;
1126	struct resource *res;
 
1127	int num_res = pdev->num_resources;
1128	int err, i, irq;
1129
1130	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1131	if (!iommu)
1132		return -ENOMEM;
1133
1134	platform_set_drvdata(pdev, iommu);
1135	iommu->dev = dev;
1136	iommu->num_mmu = 0;
1137
1138	iommu->bases = devm_kzalloc(dev, sizeof(*iommu->bases) * num_res,
 
 
 
 
 
 
 
 
 
 
 
1139				    GFP_KERNEL);
1140	if (!iommu->bases)
1141		return -ENOMEM;
1142
1143	for (i = 0; i < num_res; i++) {
1144		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1145		if (!res)
1146			continue;
1147		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1148		if (IS_ERR(iommu->bases[i]))
1149			continue;
1150		iommu->num_mmu++;
1151	}
1152	if (iommu->num_mmu == 0)
1153		return PTR_ERR(iommu->bases[0]);
1154
1155	i = 0;
1156	while ((irq = platform_get_irq(pdev, i++)) != -ENXIO) {
1157		if (irq < 0)
1158			return irq;
1159
1160		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1161				       IRQF_SHARED, dev_name(dev), iommu);
1162		if (err)
1163			return err;
1164	}
1165
1166	iommu->reset_disabled = device_property_read_bool(dev,
1167					"rockchip,disable-mmu-reset");
1168
1169	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1170	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1171				     sizeof(*iommu->clocks), GFP_KERNEL);
1172	if (!iommu->clocks)
1173		return -ENOMEM;
1174
1175	for (i = 0; i < iommu->num_clocks; ++i)
1176		iommu->clocks[i].id = rk_iommu_clocks[i];
1177
1178	/*
1179	 * iommu clocks should be present for all new devices and devicetrees
1180	 * but there are older devicetrees without clocks out in the wild.
1181	 * So clocks as optional for the time being.
1182	 */
1183	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1184	if (err == -ENOENT)
1185		iommu->num_clocks = 0;
1186	else if (err)
1187		return err;
1188
1189	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1190	if (err)
1191		return err;
1192
1193	iommu->group = iommu_group_alloc();
1194	if (IS_ERR(iommu->group)) {
1195		err = PTR_ERR(iommu->group);
1196		goto err_unprepare_clocks;
1197	}
1198
1199	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1200	if (err)
1201		goto err_put_group;
1202
1203	iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops);
1204	iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode);
1205
1206	err = iommu_device_register(&iommu->iommu);
1207	if (err)
1208		goto err_remove_sysfs;
1209
1210	/*
1211	 * Use the first registered IOMMU device for domain to use with DMA
1212	 * API, since a domain might not physically correspond to a single
1213	 * IOMMU device..
1214	 */
1215	if (!dma_dev)
1216		dma_dev = &pdev->dev;
1217
1218	bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
 
 
 
 
 
 
 
 
1219
1220	pm_runtime_enable(dev);
 
 
 
 
 
 
1221
1222	return 0;
 
 
1223err_remove_sysfs:
1224	iommu_device_sysfs_remove(&iommu->iommu);
1225err_put_group:
1226	iommu_group_put(iommu->group);
1227err_unprepare_clocks:
1228	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1229	return err;
1230}
1231
1232static void rk_iommu_shutdown(struct platform_device *pdev)
1233{
 
 
 
 
 
 
 
 
 
1234	pm_runtime_force_suspend(&pdev->dev);
1235}
1236
1237static int __maybe_unused rk_iommu_suspend(struct device *dev)
1238{
1239	struct rk_iommu *iommu = dev_get_drvdata(dev);
1240
1241	if (!iommu->domain)
1242		return 0;
1243
1244	rk_iommu_disable(iommu);
1245	return 0;
1246}
1247
1248static int __maybe_unused rk_iommu_resume(struct device *dev)
1249{
1250	struct rk_iommu *iommu = dev_get_drvdata(dev);
1251
1252	if (!iommu->domain)
1253		return 0;
1254
1255	return rk_iommu_enable(iommu);
1256}
1257
1258static const struct dev_pm_ops rk_iommu_pm_ops = {
1259	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1260	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1261				pm_runtime_force_resume)
1262};
1263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264static const struct of_device_id rk_iommu_dt_ids[] = {
1265	{ .compatible = "rockchip,iommu" },
 
 
 
 
 
1266	{ /* sentinel */ }
1267};
1268MODULE_DEVICE_TABLE(of, rk_iommu_dt_ids);
1269
1270static struct platform_driver rk_iommu_driver = {
1271	.probe = rk_iommu_probe,
1272	.shutdown = rk_iommu_shutdown,
1273	.driver = {
1274		   .name = "rk_iommu",
1275		   .of_match_table = rk_iommu_dt_ids,
1276		   .pm = &rk_iommu_pm_ops,
1277		   .suppress_bind_attrs = true,
1278	},
1279};
1280
1281static int __init rk_iommu_init(void)
1282{
1283	return platform_driver_register(&rk_iommu_driver);
1284}
1285subsys_initcall(rk_iommu_init);
1286
1287IOMMU_OF_DECLARE(rk_iommu_of, "rockchip,iommu");
1288
1289MODULE_DESCRIPTION("IOMMU API for Rockchip");
1290MODULE_AUTHOR("Simon Xue <xxm@rock-chips.com> and Daniel Kurtz <djkurtz@chromium.org>");
1291MODULE_ALIAS("platform:rockchip-iommu");
1292MODULE_LICENSE("GPL v2");