Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * IOMMU API for Rockchip
4 *
5 * Module Authors: Simon Xue <xxm@rock-chips.com>
6 * Daniel Kurtz <djkurtz@chromium.org>
7 */
8
9#include <linux/clk.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/errno.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iommu.h>
18#include <linux/iopoll.h>
19#include <linux/list.h>
20#include <linux/mm.h>
21#include <linux/init.h>
22#include <linux/of.h>
23#include <linux/of_platform.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29#include "iommu-pages.h"
30
31/** MMU register offsets */
32#define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
33#define RK_MMU_STATUS 0x04
34#define RK_MMU_COMMAND 0x08
35#define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
36#define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
37#define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
38#define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
39#define RK_MMU_INT_MASK 0x1C /* IRQ enable */
40#define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
41#define RK_MMU_AUTO_GATING 0x24
42
43#define DTE_ADDR_DUMMY 0xCAFEBABE
44
45#define RK_MMU_POLL_PERIOD_US 100
46#define RK_MMU_FORCE_RESET_TIMEOUT_US 100000
47#define RK_MMU_POLL_TIMEOUT_US 1000
48
49/* RK_MMU_STATUS fields */
50#define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
51#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
52#define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
53#define RK_MMU_STATUS_IDLE BIT(3)
54#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
55#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
56#define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
57
58/* RK_MMU_COMMAND command values */
59#define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
60#define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
61#define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
62#define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
63#define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
64#define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
65#define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
66
67/* RK_MMU_INT_* register fields */
68#define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
69#define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
70#define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
71
72#define NUM_DT_ENTRIES 1024
73#define NUM_PT_ENTRIES 1024
74
75#define SPAGE_ORDER 12
76#define SPAGE_SIZE (1 << SPAGE_ORDER)
77
78 /*
79 * Support mapping any size that fits in one page table:
80 * 4 KiB to 4 MiB
81 */
82#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
83
84struct rk_iommu_domain {
85 struct list_head iommus;
86 u32 *dt; /* page directory table */
87 dma_addr_t dt_dma;
88 spinlock_t iommus_lock; /* lock for iommus list */
89 spinlock_t dt_lock; /* lock for modifying page directory table */
90
91 struct iommu_domain domain;
92};
93
94/* list of clocks required by IOMMU */
95static const char * const rk_iommu_clocks[] = {
96 "aclk", "iface",
97};
98
99struct rk_iommu_ops {
100 phys_addr_t (*pt_address)(u32 dte);
101 u32 (*mk_dtentries)(dma_addr_t pt_dma);
102 u32 (*mk_ptentries)(phys_addr_t page, int prot);
103 u64 dma_bit_mask;
104 gfp_t gfp_flags;
105};
106
107struct rk_iommu {
108 struct device *dev;
109 void __iomem **bases;
110 int num_mmu;
111 int num_irq;
112 struct clk_bulk_data *clocks;
113 int num_clocks;
114 bool reset_disabled;
115 struct iommu_device iommu;
116 struct list_head node; /* entry in rk_iommu_domain.iommus */
117 struct iommu_domain *domain; /* domain to which iommu is attached */
118};
119
120struct rk_iommudata {
121 struct device_link *link; /* runtime PM link from IOMMU to master */
122 struct rk_iommu *iommu;
123};
124
125static struct device *dma_dev;
126static const struct rk_iommu_ops *rk_ops;
127static struct iommu_domain rk_identity_domain;
128
129static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
130 unsigned int count)
131{
132 size_t size = count * sizeof(u32); /* count of u32 entry */
133
134 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
135}
136
137static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
138{
139 return container_of(dom, struct rk_iommu_domain, domain);
140}
141
142/*
143 * The Rockchip rk3288 iommu uses a 2-level page table.
144 * The first level is the "Directory Table" (DT).
145 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
146 * to a "Page Table".
147 * The second level is the 1024 Page Tables (PT).
148 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
149 * a 4 KB page of physical memory.
150 *
151 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
152 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
153 * address of the start of the DT page.
154 *
155 * The structure of the page table is as follows:
156 *
157 * DT
158 * MMU_DTE_ADDR -> +-----+
159 * | |
160 * +-----+ PT
161 * | DTE | -> +-----+
162 * +-----+ | | Memory
163 * | | +-----+ Page
164 * | | | PTE | -> +-----+
165 * +-----+ +-----+ | |
166 * | | | |
167 * | | | |
168 * +-----+ | |
169 * | |
170 * | |
171 * +-----+
172 */
173
174/*
175 * Each DTE has a PT address and a valid bit:
176 * +---------------------+-----------+-+
177 * | PT address | Reserved |V|
178 * +---------------------+-----------+-+
179 * 31:12 - PT address (PTs always starts on a 4 KB boundary)
180 * 11: 1 - Reserved
181 * 0 - 1 if PT @ PT address is valid
182 */
183#define RK_DTE_PT_ADDRESS_MASK 0xfffff000
184#define RK_DTE_PT_VALID BIT(0)
185
186static inline phys_addr_t rk_dte_pt_address(u32 dte)
187{
188 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
189}
190
191/*
192 * In v2:
193 * 31:12 - PT address bit 31:0
194 * 11: 8 - PT address bit 35:32
195 * 7: 4 - PT address bit 39:36
196 * 3: 1 - Reserved
197 * 0 - 1 if PT @ PT address is valid
198 */
199#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
200#define DTE_HI_MASK1 GENMASK(11, 8)
201#define DTE_HI_MASK2 GENMASK(7, 4)
202#define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */
203#define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */
204#define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32)
205#define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36)
206
207static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
208{
209 u64 dte_v2 = dte;
210
211 dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
212 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
213 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
214
215 return (phys_addr_t)dte_v2;
216}
217
218static inline bool rk_dte_is_pt_valid(u32 dte)
219{
220 return dte & RK_DTE_PT_VALID;
221}
222
223static inline u32 rk_mk_dte(dma_addr_t pt_dma)
224{
225 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
226}
227
228static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
229{
230 pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
231 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
232 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
233
234 return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
235}
236
237/*
238 * Each PTE has a Page address, some flags and a valid bit:
239 * +---------------------+---+-------+-+
240 * | Page address |Rsv| Flags |V|
241 * +---------------------+---+-------+-+
242 * 31:12 - Page address (Pages always start on a 4 KB boundary)
243 * 11: 9 - Reserved
244 * 8: 1 - Flags
245 * 8 - Read allocate - allocate cache space on read misses
246 * 7 - Read cache - enable cache & prefetch of data
247 * 6 - Write buffer - enable delaying writes on their way to memory
248 * 5 - Write allocate - allocate cache space on write misses
249 * 4 - Write cache - different writes can be merged together
250 * 3 - Override cache attributes
251 * if 1, bits 4-8 control cache attributes
252 * if 0, the system bus defaults are used
253 * 2 - Writable
254 * 1 - Readable
255 * 0 - 1 if Page @ Page address is valid
256 */
257#define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
258#define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
259#define RK_PTE_PAGE_WRITABLE BIT(2)
260#define RK_PTE_PAGE_READABLE BIT(1)
261#define RK_PTE_PAGE_VALID BIT(0)
262
263static inline bool rk_pte_is_page_valid(u32 pte)
264{
265 return pte & RK_PTE_PAGE_VALID;
266}
267
268/* TODO: set cache flags per prot IOMMU_CACHE */
269static u32 rk_mk_pte(phys_addr_t page, int prot)
270{
271 u32 flags = 0;
272 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
273 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
274 page &= RK_PTE_PAGE_ADDRESS_MASK;
275 return page | flags | RK_PTE_PAGE_VALID;
276}
277
278/*
279 * In v2:
280 * 31:12 - Page address bit 31:0
281 * 11: 8 - Page address bit 35:32
282 * 7: 4 - Page address bit 39:36
283 * 3 - Security
284 * 2 - Writable
285 * 1 - Readable
286 * 0 - 1 if Page @ Page address is valid
287 */
288
289static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
290{
291 u32 flags = 0;
292
293 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
294 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
295
296 return rk_mk_dte_v2(page) | flags;
297}
298
299static u32 rk_mk_pte_invalid(u32 pte)
300{
301 return pte & ~RK_PTE_PAGE_VALID;
302}
303
304/*
305 * rk3288 iova (IOMMU Virtual Address) format
306 * 31 22.21 12.11 0
307 * +-----------+-----------+-------------+
308 * | DTE index | PTE index | Page offset |
309 * +-----------+-----------+-------------+
310 * 31:22 - DTE index - index of DTE in DT
311 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
312 * 11: 0 - Page offset - offset into page @ PTE.page_address
313 */
314#define RK_IOVA_DTE_MASK 0xffc00000
315#define RK_IOVA_DTE_SHIFT 22
316#define RK_IOVA_PTE_MASK 0x003ff000
317#define RK_IOVA_PTE_SHIFT 12
318#define RK_IOVA_PAGE_MASK 0x00000fff
319#define RK_IOVA_PAGE_SHIFT 0
320
321static u32 rk_iova_dte_index(dma_addr_t iova)
322{
323 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
324}
325
326static u32 rk_iova_pte_index(dma_addr_t iova)
327{
328 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
329}
330
331static u32 rk_iova_page_offset(dma_addr_t iova)
332{
333 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
334}
335
336static u32 rk_iommu_read(void __iomem *base, u32 offset)
337{
338 return readl(base + offset);
339}
340
341static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
342{
343 writel(value, base + offset);
344}
345
346static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
347{
348 int i;
349
350 for (i = 0; i < iommu->num_mmu; i++)
351 writel(command, iommu->bases[i] + RK_MMU_COMMAND);
352}
353
354static void rk_iommu_base_command(void __iomem *base, u32 command)
355{
356 writel(command, base + RK_MMU_COMMAND);
357}
358static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
359 size_t size)
360{
361 int i;
362 dma_addr_t iova_end = iova_start + size;
363 /*
364 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
365 * entire iotlb rather than iterate over individual iovas.
366 */
367 for (i = 0; i < iommu->num_mmu; i++) {
368 dma_addr_t iova;
369
370 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
371 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
372 }
373}
374
375static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
376{
377 bool active = true;
378 int i;
379
380 for (i = 0; i < iommu->num_mmu; i++)
381 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
382 RK_MMU_STATUS_STALL_ACTIVE);
383
384 return active;
385}
386
387static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
388{
389 bool enable = true;
390 int i;
391
392 for (i = 0; i < iommu->num_mmu; i++)
393 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
394 RK_MMU_STATUS_PAGING_ENABLED);
395
396 return enable;
397}
398
399static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
400{
401 bool done = true;
402 int i;
403
404 for (i = 0; i < iommu->num_mmu; i++)
405 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
406
407 return done;
408}
409
410static int rk_iommu_enable_stall(struct rk_iommu *iommu)
411{
412 int ret, i;
413 bool val;
414
415 if (rk_iommu_is_stall_active(iommu))
416 return 0;
417
418 /* Stall can only be enabled if paging is enabled */
419 if (!rk_iommu_is_paging_enabled(iommu))
420 return 0;
421
422 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
423
424 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
425 val, RK_MMU_POLL_PERIOD_US,
426 RK_MMU_POLL_TIMEOUT_US);
427 if (ret)
428 for (i = 0; i < iommu->num_mmu; i++)
429 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
430 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
431
432 return ret;
433}
434
435static int rk_iommu_disable_stall(struct rk_iommu *iommu)
436{
437 int ret, i;
438 bool val;
439
440 if (!rk_iommu_is_stall_active(iommu))
441 return 0;
442
443 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
444
445 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
446 !val, RK_MMU_POLL_PERIOD_US,
447 RK_MMU_POLL_TIMEOUT_US);
448 if (ret)
449 for (i = 0; i < iommu->num_mmu; i++)
450 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
451 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
452
453 return ret;
454}
455
456static int rk_iommu_enable_paging(struct rk_iommu *iommu)
457{
458 int ret, i;
459 bool val;
460
461 if (rk_iommu_is_paging_enabled(iommu))
462 return 0;
463
464 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
465
466 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
467 val, RK_MMU_POLL_PERIOD_US,
468 RK_MMU_POLL_TIMEOUT_US);
469 if (ret)
470 for (i = 0; i < iommu->num_mmu; i++)
471 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
472 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
473
474 return ret;
475}
476
477static int rk_iommu_disable_paging(struct rk_iommu *iommu)
478{
479 int ret, i;
480 bool val;
481
482 if (!rk_iommu_is_paging_enabled(iommu))
483 return 0;
484
485 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
486
487 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
488 !val, RK_MMU_POLL_PERIOD_US,
489 RK_MMU_POLL_TIMEOUT_US);
490 if (ret)
491 for (i = 0; i < iommu->num_mmu; i++)
492 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
493 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
494
495 return ret;
496}
497
498static int rk_iommu_force_reset(struct rk_iommu *iommu)
499{
500 int ret, i;
501 u32 dte_addr;
502 bool val;
503
504 if (iommu->reset_disabled)
505 return 0;
506
507 /*
508 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
509 * and verifying that upper 5 (v1) or 7 (v2) nybbles are read back.
510 */
511 for (i = 0; i < iommu->num_mmu; i++) {
512 dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
513 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
514
515 if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
516 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
517 return -EFAULT;
518 }
519 }
520
521 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
522
523 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
524 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
525 RK_MMU_POLL_TIMEOUT_US);
526 if (ret) {
527 dev_err(iommu->dev, "FORCE_RESET command timed out\n");
528 return ret;
529 }
530
531 return 0;
532}
533
534static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
535{
536 void __iomem *base = iommu->bases[index];
537 u32 dte_index, pte_index, page_offset;
538 u32 mmu_dte_addr;
539 phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
540 u32 *dte_addr;
541 u32 dte;
542 phys_addr_t pte_addr_phys = 0;
543 u32 *pte_addr = NULL;
544 u32 pte = 0;
545 phys_addr_t page_addr_phys = 0;
546 u32 page_flags = 0;
547
548 dte_index = rk_iova_dte_index(iova);
549 pte_index = rk_iova_pte_index(iova);
550 page_offset = rk_iova_page_offset(iova);
551
552 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
553 mmu_dte_addr_phys = rk_ops->pt_address(mmu_dte_addr);
554
555 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
556 dte_addr = phys_to_virt(dte_addr_phys);
557 dte = *dte_addr;
558
559 if (!rk_dte_is_pt_valid(dte))
560 goto print_it;
561
562 pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
563 pte_addr = phys_to_virt(pte_addr_phys);
564 pte = *pte_addr;
565
566 if (!rk_pte_is_page_valid(pte))
567 goto print_it;
568
569 page_addr_phys = rk_ops->pt_address(pte) + page_offset;
570 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
571
572print_it:
573 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
574 &iova, dte_index, pte_index, page_offset);
575 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
576 &mmu_dte_addr_phys, &dte_addr_phys, dte,
577 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
578 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
579}
580
581static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
582{
583 struct rk_iommu *iommu = dev_id;
584 u32 status;
585 u32 int_status;
586 dma_addr_t iova;
587 irqreturn_t ret = IRQ_NONE;
588 int i, err;
589
590 err = pm_runtime_get_if_in_use(iommu->dev);
591 if (!err || WARN_ON_ONCE(err < 0))
592 return ret;
593
594 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
595 goto out;
596
597 for (i = 0; i < iommu->num_mmu; i++) {
598 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
599 if (int_status == 0)
600 continue;
601
602 ret = IRQ_HANDLED;
603 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
604
605 if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
606 int flags;
607
608 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
609 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
610 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
611
612 dev_err(iommu->dev, "Page fault at %pad of type %s\n",
613 &iova,
614 (flags == IOMMU_FAULT_WRITE) ? "write" : "read");
615
616 log_iova(iommu, i, iova);
617
618 /*
619 * Report page fault to any installed handlers.
620 * Ignore the return code, though, since we always zap cache
621 * and clear the page fault anyway.
622 */
623 if (iommu->domain != &rk_identity_domain)
624 report_iommu_fault(iommu->domain, iommu->dev, iova,
625 flags);
626 else
627 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
628
629 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
630 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
631 }
632
633 if (int_status & RK_MMU_IRQ_BUS_ERROR)
634 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
635
636 if (int_status & ~RK_MMU_IRQ_MASK)
637 dev_err(iommu->dev, "unexpected int_status: %#08x\n",
638 int_status);
639
640 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
641 }
642
643 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
644
645out:
646 pm_runtime_put(iommu->dev);
647 return ret;
648}
649
650static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
651 dma_addr_t iova)
652{
653 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
654 unsigned long flags;
655 phys_addr_t pt_phys, phys = 0;
656 u32 dte, pte;
657 u32 *page_table;
658
659 spin_lock_irqsave(&rk_domain->dt_lock, flags);
660
661 dte = rk_domain->dt[rk_iova_dte_index(iova)];
662 if (!rk_dte_is_pt_valid(dte))
663 goto out;
664
665 pt_phys = rk_ops->pt_address(dte);
666 page_table = (u32 *)phys_to_virt(pt_phys);
667 pte = page_table[rk_iova_pte_index(iova)];
668 if (!rk_pte_is_page_valid(pte))
669 goto out;
670
671 phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
672out:
673 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
674
675 return phys;
676}
677
678static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
679 dma_addr_t iova, size_t size)
680{
681 struct list_head *pos;
682 unsigned long flags;
683
684 /* shootdown these iova from all iommus using this domain */
685 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
686 list_for_each(pos, &rk_domain->iommus) {
687 struct rk_iommu *iommu;
688 int ret;
689
690 iommu = list_entry(pos, struct rk_iommu, node);
691
692 /* Only zap TLBs of IOMMUs that are powered on. */
693 ret = pm_runtime_get_if_in_use(iommu->dev);
694 if (WARN_ON_ONCE(ret < 0))
695 continue;
696 if (ret) {
697 WARN_ON(clk_bulk_enable(iommu->num_clocks,
698 iommu->clocks));
699 rk_iommu_zap_lines(iommu, iova, size);
700 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
701 pm_runtime_put(iommu->dev);
702 }
703 }
704 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
705}
706
707static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
708 dma_addr_t iova, size_t size)
709{
710 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
711 if (size > SPAGE_SIZE)
712 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
713 SPAGE_SIZE);
714}
715
716static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
717 dma_addr_t iova)
718{
719 u32 *page_table, *dte_addr;
720 u32 dte_index, dte;
721 phys_addr_t pt_phys;
722 dma_addr_t pt_dma;
723
724 assert_spin_locked(&rk_domain->dt_lock);
725
726 dte_index = rk_iova_dte_index(iova);
727 dte_addr = &rk_domain->dt[dte_index];
728 dte = *dte_addr;
729 if (rk_dte_is_pt_valid(dte))
730 goto done;
731
732 page_table = iommu_alloc_page(GFP_ATOMIC | rk_ops->gfp_flags);
733 if (!page_table)
734 return ERR_PTR(-ENOMEM);
735
736 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
737 if (dma_mapping_error(dma_dev, pt_dma)) {
738 dev_err(dma_dev, "DMA mapping error while allocating page table\n");
739 iommu_free_page(page_table);
740 return ERR_PTR(-ENOMEM);
741 }
742
743 dte = rk_ops->mk_dtentries(pt_dma);
744 *dte_addr = dte;
745
746 rk_table_flush(rk_domain,
747 rk_domain->dt_dma + dte_index * sizeof(u32), 1);
748done:
749 pt_phys = rk_ops->pt_address(dte);
750 return (u32 *)phys_to_virt(pt_phys);
751}
752
753static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
754 u32 *pte_addr, dma_addr_t pte_dma,
755 size_t size)
756{
757 unsigned int pte_count;
758 unsigned int pte_total = size / SPAGE_SIZE;
759
760 assert_spin_locked(&rk_domain->dt_lock);
761
762 for (pte_count = 0; pte_count < pte_total; pte_count++) {
763 u32 pte = pte_addr[pte_count];
764 if (!rk_pte_is_page_valid(pte))
765 break;
766
767 pte_addr[pte_count] = rk_mk_pte_invalid(pte);
768 }
769
770 rk_table_flush(rk_domain, pte_dma, pte_count);
771
772 return pte_count * SPAGE_SIZE;
773}
774
775static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
776 dma_addr_t pte_dma, dma_addr_t iova,
777 phys_addr_t paddr, size_t size, int prot)
778{
779 unsigned int pte_count;
780 unsigned int pte_total = size / SPAGE_SIZE;
781 phys_addr_t page_phys;
782
783 assert_spin_locked(&rk_domain->dt_lock);
784
785 for (pte_count = 0; pte_count < pte_total; pte_count++) {
786 u32 pte = pte_addr[pte_count];
787
788 if (rk_pte_is_page_valid(pte))
789 goto unwind;
790
791 pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
792
793 paddr += SPAGE_SIZE;
794 }
795
796 rk_table_flush(rk_domain, pte_dma, pte_total);
797
798 /*
799 * Zap the first and last iova to evict from iotlb any previously
800 * mapped cachelines holding stale values for its dte and pte.
801 * We only zap the first and last iova, since only they could have
802 * dte or pte shared with an existing mapping.
803 */
804 rk_iommu_zap_iova_first_last(rk_domain, iova, size);
805
806 return 0;
807unwind:
808 /* Unmap the range of iovas that we just mapped */
809 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
810 pte_count * SPAGE_SIZE);
811
812 iova += pte_count * SPAGE_SIZE;
813 page_phys = rk_ops->pt_address(pte_addr[pte_count]);
814 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
815 &iova, &page_phys, &paddr, prot);
816
817 return -EADDRINUSE;
818}
819
820static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
821 phys_addr_t paddr, size_t size, size_t count,
822 int prot, gfp_t gfp, size_t *mapped)
823{
824 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
825 unsigned long flags;
826 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
827 u32 *page_table, *pte_addr;
828 u32 dte_index, pte_index;
829 int ret;
830
831 spin_lock_irqsave(&rk_domain->dt_lock, flags);
832
833 /*
834 * pgsize_bitmap specifies iova sizes that fit in one page table
835 * (1024 4-KiB pages = 4 MiB).
836 * So, size will always be 4096 <= size <= 4194304.
837 * Since iommu_map() guarantees that both iova and size will be
838 * aligned, we will always only be mapping from a single dte here.
839 */
840 page_table = rk_dte_get_page_table(rk_domain, iova);
841 if (IS_ERR(page_table)) {
842 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
843 return PTR_ERR(page_table);
844 }
845
846 dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
847 pte_index = rk_iova_pte_index(iova);
848 pte_addr = &page_table[pte_index];
849
850 pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
851 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
852 paddr, size, prot);
853
854 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
855 if (!ret)
856 *mapped = size;
857
858 return ret;
859}
860
861static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
862 size_t size, size_t count, struct iommu_iotlb_gather *gather)
863{
864 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
865 unsigned long flags;
866 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
867 phys_addr_t pt_phys;
868 u32 dte;
869 u32 *pte_addr;
870 size_t unmap_size;
871
872 spin_lock_irqsave(&rk_domain->dt_lock, flags);
873
874 /*
875 * pgsize_bitmap specifies iova sizes that fit in one page table
876 * (1024 4-KiB pages = 4 MiB).
877 * So, size will always be 4096 <= size <= 4194304.
878 * Since iommu_unmap() guarantees that both iova and size will be
879 * aligned, we will always only be unmapping from a single dte here.
880 */
881 dte = rk_domain->dt[rk_iova_dte_index(iova)];
882 /* Just return 0 if iova is unmapped */
883 if (!rk_dte_is_pt_valid(dte)) {
884 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
885 return 0;
886 }
887
888 pt_phys = rk_ops->pt_address(dte);
889 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
890 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
891 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
892
893 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
894
895 /* Shootdown iotlb entries for iova range that was just unmapped */
896 rk_iommu_zap_iova(rk_domain, iova, unmap_size);
897
898 return unmap_size;
899}
900
901static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
902{
903 struct rk_iommudata *data = dev_iommu_priv_get(dev);
904
905 return data ? data->iommu : NULL;
906}
907
908/* Must be called with iommu powered on and attached */
909static void rk_iommu_disable(struct rk_iommu *iommu)
910{
911 int i;
912
913 /* Ignore error while disabling, just keep going */
914 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
915 rk_iommu_enable_stall(iommu);
916 rk_iommu_disable_paging(iommu);
917 for (i = 0; i < iommu->num_mmu; i++) {
918 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
919 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
920 }
921 rk_iommu_disable_stall(iommu);
922 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
923}
924
925/* Must be called with iommu powered on and attached */
926static int rk_iommu_enable(struct rk_iommu *iommu)
927{
928 struct iommu_domain *domain = iommu->domain;
929 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
930 int ret, i;
931
932 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
933 if (ret)
934 return ret;
935
936 ret = rk_iommu_enable_stall(iommu);
937 if (ret)
938 goto out_disable_clocks;
939
940 ret = rk_iommu_force_reset(iommu);
941 if (ret)
942 goto out_disable_stall;
943
944 for (i = 0; i < iommu->num_mmu; i++) {
945 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
946 rk_ops->mk_dtentries(rk_domain->dt_dma));
947 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
948 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
949 }
950
951 ret = rk_iommu_enable_paging(iommu);
952
953out_disable_stall:
954 rk_iommu_disable_stall(iommu);
955out_disable_clocks:
956 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
957 return ret;
958}
959
960static int rk_iommu_identity_attach(struct iommu_domain *identity_domain,
961 struct device *dev)
962{
963 struct rk_iommu *iommu;
964 struct rk_iommu_domain *rk_domain;
965 unsigned long flags;
966 int ret;
967
968 /* Allow 'virtual devices' (eg drm) to detach from domain */
969 iommu = rk_iommu_from_dev(dev);
970 if (!iommu)
971 return -ENODEV;
972
973 rk_domain = to_rk_domain(iommu->domain);
974
975 dev_dbg(dev, "Detaching from iommu domain\n");
976
977 if (iommu->domain == identity_domain)
978 return 0;
979
980 iommu->domain = identity_domain;
981
982 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
983 list_del_init(&iommu->node);
984 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
985
986 ret = pm_runtime_get_if_in_use(iommu->dev);
987 WARN_ON_ONCE(ret < 0);
988 if (ret > 0) {
989 rk_iommu_disable(iommu);
990 pm_runtime_put(iommu->dev);
991 }
992
993 return 0;
994}
995
996static struct iommu_domain_ops rk_identity_ops = {
997 .attach_dev = rk_iommu_identity_attach,
998};
999
1000static struct iommu_domain rk_identity_domain = {
1001 .type = IOMMU_DOMAIN_IDENTITY,
1002 .ops = &rk_identity_ops,
1003};
1004
1005static int rk_iommu_attach_device(struct iommu_domain *domain,
1006 struct device *dev)
1007{
1008 struct rk_iommu *iommu;
1009 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1010 unsigned long flags;
1011 int ret;
1012
1013 /*
1014 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1015 * Such a device does not belong to an iommu group.
1016 */
1017 iommu = rk_iommu_from_dev(dev);
1018 if (!iommu)
1019 return 0;
1020
1021 dev_dbg(dev, "Attaching to iommu domain\n");
1022
1023 /* iommu already attached */
1024 if (iommu->domain == domain)
1025 return 0;
1026
1027 ret = rk_iommu_identity_attach(&rk_identity_domain, dev);
1028 if (ret)
1029 return ret;
1030
1031 iommu->domain = domain;
1032
1033 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1034 list_add_tail(&iommu->node, &rk_domain->iommus);
1035 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1036
1037 ret = pm_runtime_get_if_in_use(iommu->dev);
1038 if (!ret || WARN_ON_ONCE(ret < 0))
1039 return 0;
1040
1041 ret = rk_iommu_enable(iommu);
1042 if (ret)
1043 WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev));
1044
1045 pm_runtime_put(iommu->dev);
1046
1047 return ret;
1048}
1049
1050static struct iommu_domain *rk_iommu_domain_alloc_paging(struct device *dev)
1051{
1052 struct rk_iommu_domain *rk_domain;
1053
1054 if (!dma_dev)
1055 return NULL;
1056
1057 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1058 if (!rk_domain)
1059 return NULL;
1060
1061 /*
1062 * rk32xx iommus use a 2 level pagetable.
1063 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1064 * Allocate one 4 KiB page for each table.
1065 */
1066 rk_domain->dt = iommu_alloc_page(GFP_KERNEL | rk_ops->gfp_flags);
1067 if (!rk_domain->dt)
1068 goto err_free_domain;
1069
1070 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1071 SPAGE_SIZE, DMA_TO_DEVICE);
1072 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1073 dev_err(dma_dev, "DMA map error for DT\n");
1074 goto err_free_dt;
1075 }
1076
1077 spin_lock_init(&rk_domain->iommus_lock);
1078 spin_lock_init(&rk_domain->dt_lock);
1079 INIT_LIST_HEAD(&rk_domain->iommus);
1080
1081 rk_domain->domain.geometry.aperture_start = 0;
1082 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
1083 rk_domain->domain.geometry.force_aperture = true;
1084
1085 return &rk_domain->domain;
1086
1087err_free_dt:
1088 iommu_free_page(rk_domain->dt);
1089err_free_domain:
1090 kfree(rk_domain);
1091
1092 return NULL;
1093}
1094
1095static void rk_iommu_domain_free(struct iommu_domain *domain)
1096{
1097 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1098 int i;
1099
1100 WARN_ON(!list_empty(&rk_domain->iommus));
1101
1102 for (i = 0; i < NUM_DT_ENTRIES; i++) {
1103 u32 dte = rk_domain->dt[i];
1104 if (rk_dte_is_pt_valid(dte)) {
1105 phys_addr_t pt_phys = rk_ops->pt_address(dte);
1106 u32 *page_table = phys_to_virt(pt_phys);
1107 dma_unmap_single(dma_dev, pt_phys,
1108 SPAGE_SIZE, DMA_TO_DEVICE);
1109 iommu_free_page(page_table);
1110 }
1111 }
1112
1113 dma_unmap_single(dma_dev, rk_domain->dt_dma,
1114 SPAGE_SIZE, DMA_TO_DEVICE);
1115 iommu_free_page(rk_domain->dt);
1116
1117 kfree(rk_domain);
1118}
1119
1120static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1121{
1122 struct rk_iommudata *data;
1123 struct rk_iommu *iommu;
1124
1125 data = dev_iommu_priv_get(dev);
1126 if (!data)
1127 return ERR_PTR(-ENODEV);
1128
1129 iommu = rk_iommu_from_dev(dev);
1130
1131 data->link = device_link_add(dev, iommu->dev,
1132 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1133
1134 return &iommu->iommu;
1135}
1136
1137static void rk_iommu_release_device(struct device *dev)
1138{
1139 struct rk_iommudata *data = dev_iommu_priv_get(dev);
1140
1141 device_link_del(data->link);
1142}
1143
1144static int rk_iommu_of_xlate(struct device *dev,
1145 const struct of_phandle_args *args)
1146{
1147 struct platform_device *iommu_dev;
1148 struct rk_iommudata *data;
1149
1150 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1151 if (!data)
1152 return -ENOMEM;
1153
1154 iommu_dev = of_find_device_by_node(args->np);
1155
1156 data->iommu = platform_get_drvdata(iommu_dev);
1157 data->iommu->domain = &rk_identity_domain;
1158 dev_iommu_priv_set(dev, data);
1159
1160 platform_device_put(iommu_dev);
1161
1162 return 0;
1163}
1164
1165static const struct iommu_ops rk_iommu_ops = {
1166 .identity_domain = &rk_identity_domain,
1167 .domain_alloc_paging = rk_iommu_domain_alloc_paging,
1168 .probe_device = rk_iommu_probe_device,
1169 .release_device = rk_iommu_release_device,
1170 .device_group = generic_single_device_group,
1171 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1172 .of_xlate = rk_iommu_of_xlate,
1173 .default_domain_ops = &(const struct iommu_domain_ops) {
1174 .attach_dev = rk_iommu_attach_device,
1175 .map_pages = rk_iommu_map,
1176 .unmap_pages = rk_iommu_unmap,
1177 .iova_to_phys = rk_iommu_iova_to_phys,
1178 .free = rk_iommu_domain_free,
1179 }
1180};
1181
1182static int rk_iommu_probe(struct platform_device *pdev)
1183{
1184 struct device *dev = &pdev->dev;
1185 struct rk_iommu *iommu;
1186 struct resource *res;
1187 const struct rk_iommu_ops *ops;
1188 int num_res = pdev->num_resources;
1189 int err, i;
1190
1191 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1192 if (!iommu)
1193 return -ENOMEM;
1194
1195 platform_set_drvdata(pdev, iommu);
1196 iommu->dev = dev;
1197 iommu->num_mmu = 0;
1198
1199 ops = of_device_get_match_data(dev);
1200 if (!rk_ops)
1201 rk_ops = ops;
1202
1203 /*
1204 * That should not happen unless different versions of the
1205 * hardware block are embedded the same SoC
1206 */
1207 if (WARN_ON(rk_ops != ops))
1208 return -EINVAL;
1209
1210 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1211 GFP_KERNEL);
1212 if (!iommu->bases)
1213 return -ENOMEM;
1214
1215 for (i = 0; i < num_res; i++) {
1216 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1217 if (!res)
1218 continue;
1219 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1220 if (IS_ERR(iommu->bases[i]))
1221 continue;
1222 iommu->num_mmu++;
1223 }
1224 if (iommu->num_mmu == 0)
1225 return PTR_ERR(iommu->bases[0]);
1226
1227 iommu->num_irq = platform_irq_count(pdev);
1228 if (iommu->num_irq < 0)
1229 return iommu->num_irq;
1230
1231 iommu->reset_disabled = device_property_read_bool(dev,
1232 "rockchip,disable-mmu-reset");
1233
1234 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1235 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1236 sizeof(*iommu->clocks), GFP_KERNEL);
1237 if (!iommu->clocks)
1238 return -ENOMEM;
1239
1240 for (i = 0; i < iommu->num_clocks; ++i)
1241 iommu->clocks[i].id = rk_iommu_clocks[i];
1242
1243 /*
1244 * iommu clocks should be present for all new devices and devicetrees
1245 * but there are older devicetrees without clocks out in the wild.
1246 * So clocks as optional for the time being.
1247 */
1248 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1249 if (err == -ENOENT)
1250 iommu->num_clocks = 0;
1251 else if (err)
1252 return err;
1253
1254 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1255 if (err)
1256 return err;
1257
1258 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1259 if (err)
1260 goto err_unprepare_clocks;
1261
1262 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1263 if (err)
1264 goto err_remove_sysfs;
1265
1266 /*
1267 * Use the first registered IOMMU device for domain to use with DMA
1268 * API, since a domain might not physically correspond to a single
1269 * IOMMU device..
1270 */
1271 if (!dma_dev)
1272 dma_dev = &pdev->dev;
1273
1274 pm_runtime_enable(dev);
1275
1276 for (i = 0; i < iommu->num_irq; i++) {
1277 int irq = platform_get_irq(pdev, i);
1278
1279 if (irq < 0) {
1280 err = irq;
1281 goto err_pm_disable;
1282 }
1283
1284 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1285 IRQF_SHARED, dev_name(dev), iommu);
1286 if (err)
1287 goto err_pm_disable;
1288 }
1289
1290 dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1291
1292 return 0;
1293err_pm_disable:
1294 pm_runtime_disable(dev);
1295err_remove_sysfs:
1296 iommu_device_sysfs_remove(&iommu->iommu);
1297err_unprepare_clocks:
1298 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1299 return err;
1300}
1301
1302static void rk_iommu_shutdown(struct platform_device *pdev)
1303{
1304 struct rk_iommu *iommu = platform_get_drvdata(pdev);
1305 int i;
1306
1307 for (i = 0; i < iommu->num_irq; i++) {
1308 int irq = platform_get_irq(pdev, i);
1309
1310 devm_free_irq(iommu->dev, irq, iommu);
1311 }
1312
1313 pm_runtime_force_suspend(&pdev->dev);
1314}
1315
1316static int __maybe_unused rk_iommu_suspend(struct device *dev)
1317{
1318 struct rk_iommu *iommu = dev_get_drvdata(dev);
1319
1320 if (iommu->domain == &rk_identity_domain)
1321 return 0;
1322
1323 rk_iommu_disable(iommu);
1324 return 0;
1325}
1326
1327static int __maybe_unused rk_iommu_resume(struct device *dev)
1328{
1329 struct rk_iommu *iommu = dev_get_drvdata(dev);
1330
1331 if (iommu->domain == &rk_identity_domain)
1332 return 0;
1333
1334 return rk_iommu_enable(iommu);
1335}
1336
1337static const struct dev_pm_ops rk_iommu_pm_ops = {
1338 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1339 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1340 pm_runtime_force_resume)
1341};
1342
1343static struct rk_iommu_ops iommu_data_ops_v1 = {
1344 .pt_address = &rk_dte_pt_address,
1345 .mk_dtentries = &rk_mk_dte,
1346 .mk_ptentries = &rk_mk_pte,
1347 .dma_bit_mask = DMA_BIT_MASK(32),
1348 .gfp_flags = GFP_DMA32,
1349};
1350
1351static struct rk_iommu_ops iommu_data_ops_v2 = {
1352 .pt_address = &rk_dte_pt_address_v2,
1353 .mk_dtentries = &rk_mk_dte_v2,
1354 .mk_ptentries = &rk_mk_pte_v2,
1355 .dma_bit_mask = DMA_BIT_MASK(40),
1356 .gfp_flags = 0,
1357};
1358
1359static const struct of_device_id rk_iommu_dt_ids[] = {
1360 { .compatible = "rockchip,iommu",
1361 .data = &iommu_data_ops_v1,
1362 },
1363 { .compatible = "rockchip,rk3568-iommu",
1364 .data = &iommu_data_ops_v2,
1365 },
1366 { /* sentinel */ }
1367};
1368
1369static struct platform_driver rk_iommu_driver = {
1370 .probe = rk_iommu_probe,
1371 .shutdown = rk_iommu_shutdown,
1372 .driver = {
1373 .name = "rk_iommu",
1374 .of_match_table = rk_iommu_dt_ids,
1375 .pm = &rk_iommu_pm_ops,
1376 .suppress_bind_attrs = true,
1377 },
1378};
1379builtin_platform_driver(rk_iommu_driver);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * IOMMU API for Rockchip
4 *
5 * Module Authors: Simon Xue <xxm@rock-chips.com>
6 * Daniel Kurtz <djkurtz@chromium.org>
7 */
8
9#include <linux/clk.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-iommu.h>
14#include <linux/dma-mapping.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/iommu.h>
19#include <linux/iopoll.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/init.h>
23#include <linux/of.h>
24#include <linux/of_platform.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/slab.h>
28#include <linux/spinlock.h>
29
30/** MMU register offsets */
31#define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
32#define RK_MMU_STATUS 0x04
33#define RK_MMU_COMMAND 0x08
34#define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
35#define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
36#define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
37#define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
38#define RK_MMU_INT_MASK 0x1C /* IRQ enable */
39#define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
40#define RK_MMU_AUTO_GATING 0x24
41
42#define DTE_ADDR_DUMMY 0xCAFEBABE
43
44#define RK_MMU_POLL_PERIOD_US 100
45#define RK_MMU_FORCE_RESET_TIMEOUT_US 100000
46#define RK_MMU_POLL_TIMEOUT_US 1000
47
48/* RK_MMU_STATUS fields */
49#define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
50#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
51#define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
52#define RK_MMU_STATUS_IDLE BIT(3)
53#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
54#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
55#define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
56
57/* RK_MMU_COMMAND command values */
58#define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
59#define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
60#define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
61#define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
62#define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
63#define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
64#define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
65
66/* RK_MMU_INT_* register fields */
67#define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
68#define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
69#define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
70
71#define NUM_DT_ENTRIES 1024
72#define NUM_PT_ENTRIES 1024
73
74#define SPAGE_ORDER 12
75#define SPAGE_SIZE (1 << SPAGE_ORDER)
76
77 /*
78 * Support mapping any size that fits in one page table:
79 * 4 KiB to 4 MiB
80 */
81#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
82
83struct rk_iommu_domain {
84 struct list_head iommus;
85 u32 *dt; /* page directory table */
86 dma_addr_t dt_dma;
87 spinlock_t iommus_lock; /* lock for iommus list */
88 spinlock_t dt_lock; /* lock for modifying page directory table */
89
90 struct iommu_domain domain;
91};
92
93/* list of clocks required by IOMMU */
94static const char * const rk_iommu_clocks[] = {
95 "aclk", "iface",
96};
97
98struct rk_iommu_ops {
99 phys_addr_t (*pt_address)(u32 dte);
100 u32 (*mk_dtentries)(dma_addr_t pt_dma);
101 u32 (*mk_ptentries)(phys_addr_t page, int prot);
102 phys_addr_t (*dte_addr_phys)(u32 addr);
103 u32 (*dma_addr_dte)(dma_addr_t dt_dma);
104 u64 dma_bit_mask;
105};
106
107struct rk_iommu {
108 struct device *dev;
109 void __iomem **bases;
110 int num_mmu;
111 int num_irq;
112 struct clk_bulk_data *clocks;
113 int num_clocks;
114 bool reset_disabled;
115 struct iommu_device iommu;
116 struct list_head node; /* entry in rk_iommu_domain.iommus */
117 struct iommu_domain *domain; /* domain to which iommu is attached */
118 struct iommu_group *group;
119};
120
121struct rk_iommudata {
122 struct device_link *link; /* runtime PM link from IOMMU to master */
123 struct rk_iommu *iommu;
124};
125
126static struct device *dma_dev;
127static const struct rk_iommu_ops *rk_ops;
128
129static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
130 unsigned int count)
131{
132 size_t size = count * sizeof(u32); /* count of u32 entry */
133
134 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
135}
136
137static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
138{
139 return container_of(dom, struct rk_iommu_domain, domain);
140}
141
142/*
143 * The Rockchip rk3288 iommu uses a 2-level page table.
144 * The first level is the "Directory Table" (DT).
145 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
146 * to a "Page Table".
147 * The second level is the 1024 Page Tables (PT).
148 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
149 * a 4 KB page of physical memory.
150 *
151 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
152 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
153 * address of the start of the DT page.
154 *
155 * The structure of the page table is as follows:
156 *
157 * DT
158 * MMU_DTE_ADDR -> +-----+
159 * | |
160 * +-----+ PT
161 * | DTE | -> +-----+
162 * +-----+ | | Memory
163 * | | +-----+ Page
164 * | | | PTE | -> +-----+
165 * +-----+ +-----+ | |
166 * | | | |
167 * | | | |
168 * +-----+ | |
169 * | |
170 * | |
171 * +-----+
172 */
173
174/*
175 * Each DTE has a PT address and a valid bit:
176 * +---------------------+-----------+-+
177 * | PT address | Reserved |V|
178 * +---------------------+-----------+-+
179 * 31:12 - PT address (PTs always starts on a 4 KB boundary)
180 * 11: 1 - Reserved
181 * 0 - 1 if PT @ PT address is valid
182 */
183#define RK_DTE_PT_ADDRESS_MASK 0xfffff000
184#define RK_DTE_PT_VALID BIT(0)
185
186static inline phys_addr_t rk_dte_pt_address(u32 dte)
187{
188 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
189}
190
191/*
192 * In v2:
193 * 31:12 - PT address bit 31:0
194 * 11: 8 - PT address bit 35:32
195 * 7: 4 - PT address bit 39:36
196 * 3: 1 - Reserved
197 * 0 - 1 if PT @ PT address is valid
198 */
199#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
200#define DTE_HI_MASK1 GENMASK(11, 8)
201#define DTE_HI_MASK2 GENMASK(7, 4)
202#define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */
203#define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */
204#define PAGE_DESC_HI_MASK1 GENMASK_ULL(39, 36)
205#define PAGE_DESC_HI_MASK2 GENMASK_ULL(35, 32)
206
207static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
208{
209 u64 dte_v2 = dte;
210
211 dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
212 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
213 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
214
215 return (phys_addr_t)dte_v2;
216}
217
218static inline bool rk_dte_is_pt_valid(u32 dte)
219{
220 return dte & RK_DTE_PT_VALID;
221}
222
223static inline u32 rk_mk_dte(dma_addr_t pt_dma)
224{
225 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
226}
227
228static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
229{
230 pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
231 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
232 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
233
234 return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
235}
236
237/*
238 * Each PTE has a Page address, some flags and a valid bit:
239 * +---------------------+---+-------+-+
240 * | Page address |Rsv| Flags |V|
241 * +---------------------+---+-------+-+
242 * 31:12 - Page address (Pages always start on a 4 KB boundary)
243 * 11: 9 - Reserved
244 * 8: 1 - Flags
245 * 8 - Read allocate - allocate cache space on read misses
246 * 7 - Read cache - enable cache & prefetch of data
247 * 6 - Write buffer - enable delaying writes on their way to memory
248 * 5 - Write allocate - allocate cache space on write misses
249 * 4 - Write cache - different writes can be merged together
250 * 3 - Override cache attributes
251 * if 1, bits 4-8 control cache attributes
252 * if 0, the system bus defaults are used
253 * 2 - Writable
254 * 1 - Readable
255 * 0 - 1 if Page @ Page address is valid
256 */
257#define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
258#define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
259#define RK_PTE_PAGE_WRITABLE BIT(2)
260#define RK_PTE_PAGE_READABLE BIT(1)
261#define RK_PTE_PAGE_VALID BIT(0)
262
263static inline bool rk_pte_is_page_valid(u32 pte)
264{
265 return pte & RK_PTE_PAGE_VALID;
266}
267
268/* TODO: set cache flags per prot IOMMU_CACHE */
269static u32 rk_mk_pte(phys_addr_t page, int prot)
270{
271 u32 flags = 0;
272 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
273 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
274 page &= RK_PTE_PAGE_ADDRESS_MASK;
275 return page | flags | RK_PTE_PAGE_VALID;
276}
277
278/*
279 * In v2:
280 * 31:12 - Page address bit 31:0
281 * 11:9 - Page address bit 34:32
282 * 8:4 - Page address bit 39:35
283 * 3 - Security
284 * 2 - Readable
285 * 1 - Writable
286 * 0 - 1 if Page @ Page address is valid
287 */
288#define RK_PTE_PAGE_READABLE_V2 BIT(2)
289#define RK_PTE_PAGE_WRITABLE_V2 BIT(1)
290
291static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
292{
293 u32 flags = 0;
294
295 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE_V2 : 0;
296 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE_V2 : 0;
297
298 return rk_mk_dte_v2(page) | flags;
299}
300
301static u32 rk_mk_pte_invalid(u32 pte)
302{
303 return pte & ~RK_PTE_PAGE_VALID;
304}
305
306/*
307 * rk3288 iova (IOMMU Virtual Address) format
308 * 31 22.21 12.11 0
309 * +-----------+-----------+-------------+
310 * | DTE index | PTE index | Page offset |
311 * +-----------+-----------+-------------+
312 * 31:22 - DTE index - index of DTE in DT
313 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
314 * 11: 0 - Page offset - offset into page @ PTE.page_address
315 */
316#define RK_IOVA_DTE_MASK 0xffc00000
317#define RK_IOVA_DTE_SHIFT 22
318#define RK_IOVA_PTE_MASK 0x003ff000
319#define RK_IOVA_PTE_SHIFT 12
320#define RK_IOVA_PAGE_MASK 0x00000fff
321#define RK_IOVA_PAGE_SHIFT 0
322
323static u32 rk_iova_dte_index(dma_addr_t iova)
324{
325 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
326}
327
328static u32 rk_iova_pte_index(dma_addr_t iova)
329{
330 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
331}
332
333static u32 rk_iova_page_offset(dma_addr_t iova)
334{
335 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
336}
337
338static u32 rk_iommu_read(void __iomem *base, u32 offset)
339{
340 return readl(base + offset);
341}
342
343static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
344{
345 writel(value, base + offset);
346}
347
348static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
349{
350 int i;
351
352 for (i = 0; i < iommu->num_mmu; i++)
353 writel(command, iommu->bases[i] + RK_MMU_COMMAND);
354}
355
356static void rk_iommu_base_command(void __iomem *base, u32 command)
357{
358 writel(command, base + RK_MMU_COMMAND);
359}
360static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
361 size_t size)
362{
363 int i;
364 dma_addr_t iova_end = iova_start + size;
365 /*
366 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
367 * entire iotlb rather than iterate over individual iovas.
368 */
369 for (i = 0; i < iommu->num_mmu; i++) {
370 dma_addr_t iova;
371
372 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
373 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
374 }
375}
376
377static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
378{
379 bool active = true;
380 int i;
381
382 for (i = 0; i < iommu->num_mmu; i++)
383 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
384 RK_MMU_STATUS_STALL_ACTIVE);
385
386 return active;
387}
388
389static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
390{
391 bool enable = true;
392 int i;
393
394 for (i = 0; i < iommu->num_mmu; i++)
395 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
396 RK_MMU_STATUS_PAGING_ENABLED);
397
398 return enable;
399}
400
401static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
402{
403 bool done = true;
404 int i;
405
406 for (i = 0; i < iommu->num_mmu; i++)
407 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
408
409 return done;
410}
411
412static int rk_iommu_enable_stall(struct rk_iommu *iommu)
413{
414 int ret, i;
415 bool val;
416
417 if (rk_iommu_is_stall_active(iommu))
418 return 0;
419
420 /* Stall can only be enabled if paging is enabled */
421 if (!rk_iommu_is_paging_enabled(iommu))
422 return 0;
423
424 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
425
426 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
427 val, RK_MMU_POLL_PERIOD_US,
428 RK_MMU_POLL_TIMEOUT_US);
429 if (ret)
430 for (i = 0; i < iommu->num_mmu; i++)
431 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
432 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
433
434 return ret;
435}
436
437static int rk_iommu_disable_stall(struct rk_iommu *iommu)
438{
439 int ret, i;
440 bool val;
441
442 if (!rk_iommu_is_stall_active(iommu))
443 return 0;
444
445 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
446
447 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
448 !val, RK_MMU_POLL_PERIOD_US,
449 RK_MMU_POLL_TIMEOUT_US);
450 if (ret)
451 for (i = 0; i < iommu->num_mmu; i++)
452 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
453 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
454
455 return ret;
456}
457
458static int rk_iommu_enable_paging(struct rk_iommu *iommu)
459{
460 int ret, i;
461 bool val;
462
463 if (rk_iommu_is_paging_enabled(iommu))
464 return 0;
465
466 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
467
468 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
469 val, RK_MMU_POLL_PERIOD_US,
470 RK_MMU_POLL_TIMEOUT_US);
471 if (ret)
472 for (i = 0; i < iommu->num_mmu; i++)
473 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
474 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
475
476 return ret;
477}
478
479static int rk_iommu_disable_paging(struct rk_iommu *iommu)
480{
481 int ret, i;
482 bool val;
483
484 if (!rk_iommu_is_paging_enabled(iommu))
485 return 0;
486
487 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
488
489 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
490 !val, RK_MMU_POLL_PERIOD_US,
491 RK_MMU_POLL_TIMEOUT_US);
492 if (ret)
493 for (i = 0; i < iommu->num_mmu; i++)
494 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
495 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
496
497 return ret;
498}
499
500static int rk_iommu_force_reset(struct rk_iommu *iommu)
501{
502 int ret, i;
503 u32 dte_addr;
504 bool val;
505
506 if (iommu->reset_disabled)
507 return 0;
508
509 /*
510 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
511 * and verifying that upper 5 nybbles are read back.
512 */
513 for (i = 0; i < iommu->num_mmu; i++) {
514 dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
515 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
516
517 if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
518 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
519 return -EFAULT;
520 }
521 }
522
523 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
524
525 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
526 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
527 RK_MMU_POLL_TIMEOUT_US);
528 if (ret) {
529 dev_err(iommu->dev, "FORCE_RESET command timed out\n");
530 return ret;
531 }
532
533 return 0;
534}
535
536static inline phys_addr_t rk_dte_addr_phys(u32 addr)
537{
538 return (phys_addr_t)addr;
539}
540
541static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma)
542{
543 return dt_dma;
544}
545
546#define DT_HI_MASK GENMASK_ULL(39, 32)
547#define DTE_BASE_HI_MASK GENMASK(11, 4)
548#define DT_SHIFT 28
549
550static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr)
551{
552 u64 addr64 = addr;
553 return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) |
554 ((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT);
555}
556
557static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma)
558{
559 return (dt_dma & RK_DTE_PT_ADDRESS_MASK) |
560 ((dt_dma & DT_HI_MASK) >> DT_SHIFT);
561}
562
563static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
564{
565 void __iomem *base = iommu->bases[index];
566 u32 dte_index, pte_index, page_offset;
567 u32 mmu_dte_addr;
568 phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
569 u32 *dte_addr;
570 u32 dte;
571 phys_addr_t pte_addr_phys = 0;
572 u32 *pte_addr = NULL;
573 u32 pte = 0;
574 phys_addr_t page_addr_phys = 0;
575 u32 page_flags = 0;
576
577 dte_index = rk_iova_dte_index(iova);
578 pte_index = rk_iova_pte_index(iova);
579 page_offset = rk_iova_page_offset(iova);
580
581 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
582 mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr);
583
584 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
585 dte_addr = phys_to_virt(dte_addr_phys);
586 dte = *dte_addr;
587
588 if (!rk_dte_is_pt_valid(dte))
589 goto print_it;
590
591 pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
592 pte_addr = phys_to_virt(pte_addr_phys);
593 pte = *pte_addr;
594
595 if (!rk_pte_is_page_valid(pte))
596 goto print_it;
597
598 page_addr_phys = rk_ops->pt_address(pte) + page_offset;
599 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
600
601print_it:
602 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
603 &iova, dte_index, pte_index, page_offset);
604 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
605 &mmu_dte_addr_phys, &dte_addr_phys, dte,
606 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
607 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
608}
609
610static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
611{
612 struct rk_iommu *iommu = dev_id;
613 u32 status;
614 u32 int_status;
615 dma_addr_t iova;
616 irqreturn_t ret = IRQ_NONE;
617 int i, err;
618
619 err = pm_runtime_get_if_in_use(iommu->dev);
620 if (!err || WARN_ON_ONCE(err < 0))
621 return ret;
622
623 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
624 goto out;
625
626 for (i = 0; i < iommu->num_mmu; i++) {
627 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
628 if (int_status == 0)
629 continue;
630
631 ret = IRQ_HANDLED;
632 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
633
634 if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
635 int flags;
636
637 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
638 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
639 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
640
641 dev_err(iommu->dev, "Page fault at %pad of type %s\n",
642 &iova,
643 (flags == IOMMU_FAULT_WRITE) ? "write" : "read");
644
645 log_iova(iommu, i, iova);
646
647 /*
648 * Report page fault to any installed handlers.
649 * Ignore the return code, though, since we always zap cache
650 * and clear the page fault anyway.
651 */
652 if (iommu->domain)
653 report_iommu_fault(iommu->domain, iommu->dev, iova,
654 flags);
655 else
656 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
657
658 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
659 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
660 }
661
662 if (int_status & RK_MMU_IRQ_BUS_ERROR)
663 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
664
665 if (int_status & ~RK_MMU_IRQ_MASK)
666 dev_err(iommu->dev, "unexpected int_status: %#08x\n",
667 int_status);
668
669 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
670 }
671
672 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
673
674out:
675 pm_runtime_put(iommu->dev);
676 return ret;
677}
678
679static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
680 dma_addr_t iova)
681{
682 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
683 unsigned long flags;
684 phys_addr_t pt_phys, phys = 0;
685 u32 dte, pte;
686 u32 *page_table;
687
688 spin_lock_irqsave(&rk_domain->dt_lock, flags);
689
690 dte = rk_domain->dt[rk_iova_dte_index(iova)];
691 if (!rk_dte_is_pt_valid(dte))
692 goto out;
693
694 pt_phys = rk_ops->pt_address(dte);
695 page_table = (u32 *)phys_to_virt(pt_phys);
696 pte = page_table[rk_iova_pte_index(iova)];
697 if (!rk_pte_is_page_valid(pte))
698 goto out;
699
700 phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
701out:
702 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
703
704 return phys;
705}
706
707static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
708 dma_addr_t iova, size_t size)
709{
710 struct list_head *pos;
711 unsigned long flags;
712
713 /* shootdown these iova from all iommus using this domain */
714 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
715 list_for_each(pos, &rk_domain->iommus) {
716 struct rk_iommu *iommu;
717 int ret;
718
719 iommu = list_entry(pos, struct rk_iommu, node);
720
721 /* Only zap TLBs of IOMMUs that are powered on. */
722 ret = pm_runtime_get_if_in_use(iommu->dev);
723 if (WARN_ON_ONCE(ret < 0))
724 continue;
725 if (ret) {
726 WARN_ON(clk_bulk_enable(iommu->num_clocks,
727 iommu->clocks));
728 rk_iommu_zap_lines(iommu, iova, size);
729 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
730 pm_runtime_put(iommu->dev);
731 }
732 }
733 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
734}
735
736static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
737 dma_addr_t iova, size_t size)
738{
739 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
740 if (size > SPAGE_SIZE)
741 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
742 SPAGE_SIZE);
743}
744
745static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
746 dma_addr_t iova)
747{
748 u32 *page_table, *dte_addr;
749 u32 dte_index, dte;
750 phys_addr_t pt_phys;
751 dma_addr_t pt_dma;
752
753 assert_spin_locked(&rk_domain->dt_lock);
754
755 dte_index = rk_iova_dte_index(iova);
756 dte_addr = &rk_domain->dt[dte_index];
757 dte = *dte_addr;
758 if (rk_dte_is_pt_valid(dte))
759 goto done;
760
761 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
762 if (!page_table)
763 return ERR_PTR(-ENOMEM);
764
765 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
766 if (dma_mapping_error(dma_dev, pt_dma)) {
767 dev_err(dma_dev, "DMA mapping error while allocating page table\n");
768 free_page((unsigned long)page_table);
769 return ERR_PTR(-ENOMEM);
770 }
771
772 dte = rk_ops->mk_dtentries(pt_dma);
773 *dte_addr = dte;
774
775 rk_table_flush(rk_domain,
776 rk_domain->dt_dma + dte_index * sizeof(u32), 1);
777done:
778 pt_phys = rk_ops->pt_address(dte);
779 return (u32 *)phys_to_virt(pt_phys);
780}
781
782static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
783 u32 *pte_addr, dma_addr_t pte_dma,
784 size_t size)
785{
786 unsigned int pte_count;
787 unsigned int pte_total = size / SPAGE_SIZE;
788
789 assert_spin_locked(&rk_domain->dt_lock);
790
791 for (pte_count = 0; pte_count < pte_total; pte_count++) {
792 u32 pte = pte_addr[pte_count];
793 if (!rk_pte_is_page_valid(pte))
794 break;
795
796 pte_addr[pte_count] = rk_mk_pte_invalid(pte);
797 }
798
799 rk_table_flush(rk_domain, pte_dma, pte_count);
800
801 return pte_count * SPAGE_SIZE;
802}
803
804static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
805 dma_addr_t pte_dma, dma_addr_t iova,
806 phys_addr_t paddr, size_t size, int prot)
807{
808 unsigned int pte_count;
809 unsigned int pte_total = size / SPAGE_SIZE;
810 phys_addr_t page_phys;
811
812 assert_spin_locked(&rk_domain->dt_lock);
813
814 for (pte_count = 0; pte_count < pte_total; pte_count++) {
815 u32 pte = pte_addr[pte_count];
816
817 if (rk_pte_is_page_valid(pte))
818 goto unwind;
819
820 pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
821
822 paddr += SPAGE_SIZE;
823 }
824
825 rk_table_flush(rk_domain, pte_dma, pte_total);
826
827 /*
828 * Zap the first and last iova to evict from iotlb any previously
829 * mapped cachelines holding stale values for its dte and pte.
830 * We only zap the first and last iova, since only they could have
831 * dte or pte shared with an existing mapping.
832 */
833 rk_iommu_zap_iova_first_last(rk_domain, iova, size);
834
835 return 0;
836unwind:
837 /* Unmap the range of iovas that we just mapped */
838 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
839 pte_count * SPAGE_SIZE);
840
841 iova += pte_count * SPAGE_SIZE;
842 page_phys = rk_ops->pt_address(pte_addr[pte_count]);
843 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
844 &iova, &page_phys, &paddr, prot);
845
846 return -EADDRINUSE;
847}
848
849static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
850 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
851{
852 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
853 unsigned long flags;
854 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
855 u32 *page_table, *pte_addr;
856 u32 dte_index, pte_index;
857 int ret;
858
859 spin_lock_irqsave(&rk_domain->dt_lock, flags);
860
861 /*
862 * pgsize_bitmap specifies iova sizes that fit in one page table
863 * (1024 4-KiB pages = 4 MiB).
864 * So, size will always be 4096 <= size <= 4194304.
865 * Since iommu_map() guarantees that both iova and size will be
866 * aligned, we will always only be mapping from a single dte here.
867 */
868 page_table = rk_dte_get_page_table(rk_domain, iova);
869 if (IS_ERR(page_table)) {
870 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
871 return PTR_ERR(page_table);
872 }
873
874 dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
875 pte_index = rk_iova_pte_index(iova);
876 pte_addr = &page_table[pte_index];
877
878 pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
879 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
880 paddr, size, prot);
881
882 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
883
884 return ret;
885}
886
887static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
888 size_t size, struct iommu_iotlb_gather *gather)
889{
890 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
891 unsigned long flags;
892 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
893 phys_addr_t pt_phys;
894 u32 dte;
895 u32 *pte_addr;
896 size_t unmap_size;
897
898 spin_lock_irqsave(&rk_domain->dt_lock, flags);
899
900 /*
901 * pgsize_bitmap specifies iova sizes that fit in one page table
902 * (1024 4-KiB pages = 4 MiB).
903 * So, size will always be 4096 <= size <= 4194304.
904 * Since iommu_unmap() guarantees that both iova and size will be
905 * aligned, we will always only be unmapping from a single dte here.
906 */
907 dte = rk_domain->dt[rk_iova_dte_index(iova)];
908 /* Just return 0 if iova is unmapped */
909 if (!rk_dte_is_pt_valid(dte)) {
910 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
911 return 0;
912 }
913
914 pt_phys = rk_ops->pt_address(dte);
915 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
916 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
917 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
918
919 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
920
921 /* Shootdown iotlb entries for iova range that was just unmapped */
922 rk_iommu_zap_iova(rk_domain, iova, unmap_size);
923
924 return unmap_size;
925}
926
927static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
928{
929 struct rk_iommudata *data = dev_iommu_priv_get(dev);
930
931 return data ? data->iommu : NULL;
932}
933
934/* Must be called with iommu powered on and attached */
935static void rk_iommu_disable(struct rk_iommu *iommu)
936{
937 int i;
938
939 /* Ignore error while disabling, just keep going */
940 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
941 rk_iommu_enable_stall(iommu);
942 rk_iommu_disable_paging(iommu);
943 for (i = 0; i < iommu->num_mmu; i++) {
944 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
945 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
946 }
947 rk_iommu_disable_stall(iommu);
948 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
949}
950
951/* Must be called with iommu powered on and attached */
952static int rk_iommu_enable(struct rk_iommu *iommu)
953{
954 struct iommu_domain *domain = iommu->domain;
955 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
956 int ret, i;
957
958 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
959 if (ret)
960 return ret;
961
962 ret = rk_iommu_enable_stall(iommu);
963 if (ret)
964 goto out_disable_clocks;
965
966 ret = rk_iommu_force_reset(iommu);
967 if (ret)
968 goto out_disable_stall;
969
970 for (i = 0; i < iommu->num_mmu; i++) {
971 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
972 rk_ops->dma_addr_dte(rk_domain->dt_dma));
973 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
974 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
975 }
976
977 ret = rk_iommu_enable_paging(iommu);
978
979out_disable_stall:
980 rk_iommu_disable_stall(iommu);
981out_disable_clocks:
982 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
983 return ret;
984}
985
986static void rk_iommu_detach_device(struct iommu_domain *domain,
987 struct device *dev)
988{
989 struct rk_iommu *iommu;
990 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
991 unsigned long flags;
992 int ret;
993
994 /* Allow 'virtual devices' (eg drm) to detach from domain */
995 iommu = rk_iommu_from_dev(dev);
996 if (!iommu)
997 return;
998
999 dev_dbg(dev, "Detaching from iommu domain\n");
1000
1001 /* iommu already detached */
1002 if (iommu->domain != domain)
1003 return;
1004
1005 iommu->domain = NULL;
1006
1007 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1008 list_del_init(&iommu->node);
1009 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1010
1011 ret = pm_runtime_get_if_in_use(iommu->dev);
1012 WARN_ON_ONCE(ret < 0);
1013 if (ret > 0) {
1014 rk_iommu_disable(iommu);
1015 pm_runtime_put(iommu->dev);
1016 }
1017}
1018
1019static int rk_iommu_attach_device(struct iommu_domain *domain,
1020 struct device *dev)
1021{
1022 struct rk_iommu *iommu;
1023 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1024 unsigned long flags;
1025 int ret;
1026
1027 /*
1028 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1029 * Such a device does not belong to an iommu group.
1030 */
1031 iommu = rk_iommu_from_dev(dev);
1032 if (!iommu)
1033 return 0;
1034
1035 dev_dbg(dev, "Attaching to iommu domain\n");
1036
1037 /* iommu already attached */
1038 if (iommu->domain == domain)
1039 return 0;
1040
1041 if (iommu->domain)
1042 rk_iommu_detach_device(iommu->domain, dev);
1043
1044 iommu->domain = domain;
1045
1046 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1047 list_add_tail(&iommu->node, &rk_domain->iommus);
1048 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1049
1050 ret = pm_runtime_get_if_in_use(iommu->dev);
1051 if (!ret || WARN_ON_ONCE(ret < 0))
1052 return 0;
1053
1054 ret = rk_iommu_enable(iommu);
1055 if (ret)
1056 rk_iommu_detach_device(iommu->domain, dev);
1057
1058 pm_runtime_put(iommu->dev);
1059
1060 return ret;
1061}
1062
1063static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
1064{
1065 struct rk_iommu_domain *rk_domain;
1066
1067 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1068 return NULL;
1069
1070 if (!dma_dev)
1071 return NULL;
1072
1073 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1074 if (!rk_domain)
1075 return NULL;
1076
1077 if (type == IOMMU_DOMAIN_DMA &&
1078 iommu_get_dma_cookie(&rk_domain->domain))
1079 goto err_free_domain;
1080
1081 /*
1082 * rk32xx iommus use a 2 level pagetable.
1083 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1084 * Allocate one 4 KiB page for each table.
1085 */
1086 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
1087 if (!rk_domain->dt)
1088 goto err_put_cookie;
1089
1090 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1091 SPAGE_SIZE, DMA_TO_DEVICE);
1092 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1093 dev_err(dma_dev, "DMA map error for DT\n");
1094 goto err_free_dt;
1095 }
1096
1097 spin_lock_init(&rk_domain->iommus_lock);
1098 spin_lock_init(&rk_domain->dt_lock);
1099 INIT_LIST_HEAD(&rk_domain->iommus);
1100
1101 rk_domain->domain.geometry.aperture_start = 0;
1102 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
1103 rk_domain->domain.geometry.force_aperture = true;
1104
1105 return &rk_domain->domain;
1106
1107err_free_dt:
1108 free_page((unsigned long)rk_domain->dt);
1109err_put_cookie:
1110 if (type == IOMMU_DOMAIN_DMA)
1111 iommu_put_dma_cookie(&rk_domain->domain);
1112err_free_domain:
1113 kfree(rk_domain);
1114
1115 return NULL;
1116}
1117
1118static void rk_iommu_domain_free(struct iommu_domain *domain)
1119{
1120 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1121 int i;
1122
1123 WARN_ON(!list_empty(&rk_domain->iommus));
1124
1125 for (i = 0; i < NUM_DT_ENTRIES; i++) {
1126 u32 dte = rk_domain->dt[i];
1127 if (rk_dte_is_pt_valid(dte)) {
1128 phys_addr_t pt_phys = rk_ops->pt_address(dte);
1129 u32 *page_table = phys_to_virt(pt_phys);
1130 dma_unmap_single(dma_dev, pt_phys,
1131 SPAGE_SIZE, DMA_TO_DEVICE);
1132 free_page((unsigned long)page_table);
1133 }
1134 }
1135
1136 dma_unmap_single(dma_dev, rk_domain->dt_dma,
1137 SPAGE_SIZE, DMA_TO_DEVICE);
1138 free_page((unsigned long)rk_domain->dt);
1139
1140 if (domain->type == IOMMU_DOMAIN_DMA)
1141 iommu_put_dma_cookie(&rk_domain->domain);
1142 kfree(rk_domain);
1143}
1144
1145static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1146{
1147 struct rk_iommudata *data;
1148 struct rk_iommu *iommu;
1149
1150 data = dev_iommu_priv_get(dev);
1151 if (!data)
1152 return ERR_PTR(-ENODEV);
1153
1154 iommu = rk_iommu_from_dev(dev);
1155
1156 data->link = device_link_add(dev, iommu->dev,
1157 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1158
1159 return &iommu->iommu;
1160}
1161
1162static void rk_iommu_release_device(struct device *dev)
1163{
1164 struct rk_iommudata *data = dev_iommu_priv_get(dev);
1165
1166 device_link_del(data->link);
1167}
1168
1169static struct iommu_group *rk_iommu_device_group(struct device *dev)
1170{
1171 struct rk_iommu *iommu;
1172
1173 iommu = rk_iommu_from_dev(dev);
1174
1175 return iommu_group_ref_get(iommu->group);
1176}
1177
1178static int rk_iommu_of_xlate(struct device *dev,
1179 struct of_phandle_args *args)
1180{
1181 struct platform_device *iommu_dev;
1182 struct rk_iommudata *data;
1183
1184 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1185 if (!data)
1186 return -ENOMEM;
1187
1188 iommu_dev = of_find_device_by_node(args->np);
1189
1190 data->iommu = platform_get_drvdata(iommu_dev);
1191 dev_iommu_priv_set(dev, data);
1192
1193 platform_device_put(iommu_dev);
1194
1195 return 0;
1196}
1197
1198static const struct iommu_ops rk_iommu_ops = {
1199 .domain_alloc = rk_iommu_domain_alloc,
1200 .domain_free = rk_iommu_domain_free,
1201 .attach_dev = rk_iommu_attach_device,
1202 .detach_dev = rk_iommu_detach_device,
1203 .map = rk_iommu_map,
1204 .unmap = rk_iommu_unmap,
1205 .probe_device = rk_iommu_probe_device,
1206 .release_device = rk_iommu_release_device,
1207 .iova_to_phys = rk_iommu_iova_to_phys,
1208 .device_group = rk_iommu_device_group,
1209 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1210 .of_xlate = rk_iommu_of_xlate,
1211};
1212
1213static int rk_iommu_probe(struct platform_device *pdev)
1214{
1215 struct device *dev = &pdev->dev;
1216 struct rk_iommu *iommu;
1217 struct resource *res;
1218 const struct rk_iommu_ops *ops;
1219 int num_res = pdev->num_resources;
1220 int err, i;
1221
1222 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1223 if (!iommu)
1224 return -ENOMEM;
1225
1226 platform_set_drvdata(pdev, iommu);
1227 iommu->dev = dev;
1228 iommu->num_mmu = 0;
1229
1230 ops = of_device_get_match_data(dev);
1231 if (!rk_ops)
1232 rk_ops = ops;
1233
1234 /*
1235 * That should not happen unless different versions of the
1236 * hardware block are embedded the same SoC
1237 */
1238 if (WARN_ON(rk_ops != ops))
1239 return -EINVAL;
1240
1241 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1242 GFP_KERNEL);
1243 if (!iommu->bases)
1244 return -ENOMEM;
1245
1246 for (i = 0; i < num_res; i++) {
1247 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1248 if (!res)
1249 continue;
1250 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1251 if (IS_ERR(iommu->bases[i]))
1252 continue;
1253 iommu->num_mmu++;
1254 }
1255 if (iommu->num_mmu == 0)
1256 return PTR_ERR(iommu->bases[0]);
1257
1258 iommu->num_irq = platform_irq_count(pdev);
1259 if (iommu->num_irq < 0)
1260 return iommu->num_irq;
1261
1262 iommu->reset_disabled = device_property_read_bool(dev,
1263 "rockchip,disable-mmu-reset");
1264
1265 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1266 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1267 sizeof(*iommu->clocks), GFP_KERNEL);
1268 if (!iommu->clocks)
1269 return -ENOMEM;
1270
1271 for (i = 0; i < iommu->num_clocks; ++i)
1272 iommu->clocks[i].id = rk_iommu_clocks[i];
1273
1274 /*
1275 * iommu clocks should be present for all new devices and devicetrees
1276 * but there are older devicetrees without clocks out in the wild.
1277 * So clocks as optional for the time being.
1278 */
1279 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1280 if (err == -ENOENT)
1281 iommu->num_clocks = 0;
1282 else if (err)
1283 return err;
1284
1285 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1286 if (err)
1287 return err;
1288
1289 iommu->group = iommu_group_alloc();
1290 if (IS_ERR(iommu->group)) {
1291 err = PTR_ERR(iommu->group);
1292 goto err_unprepare_clocks;
1293 }
1294
1295 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1296 if (err)
1297 goto err_put_group;
1298
1299 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1300 if (err)
1301 goto err_remove_sysfs;
1302
1303 /*
1304 * Use the first registered IOMMU device for domain to use with DMA
1305 * API, since a domain might not physically correspond to a single
1306 * IOMMU device..
1307 */
1308 if (!dma_dev)
1309 dma_dev = &pdev->dev;
1310
1311 bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1312
1313 pm_runtime_enable(dev);
1314
1315 for (i = 0; i < iommu->num_irq; i++) {
1316 int irq = platform_get_irq(pdev, i);
1317
1318 if (irq < 0)
1319 return irq;
1320
1321 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1322 IRQF_SHARED, dev_name(dev), iommu);
1323 if (err) {
1324 pm_runtime_disable(dev);
1325 goto err_remove_sysfs;
1326 }
1327 }
1328
1329 dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1330
1331 return 0;
1332err_remove_sysfs:
1333 iommu_device_sysfs_remove(&iommu->iommu);
1334err_put_group:
1335 iommu_group_put(iommu->group);
1336err_unprepare_clocks:
1337 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1338 return err;
1339}
1340
1341static void rk_iommu_shutdown(struct platform_device *pdev)
1342{
1343 struct rk_iommu *iommu = platform_get_drvdata(pdev);
1344 int i;
1345
1346 for (i = 0; i < iommu->num_irq; i++) {
1347 int irq = platform_get_irq(pdev, i);
1348
1349 devm_free_irq(iommu->dev, irq, iommu);
1350 }
1351
1352 pm_runtime_force_suspend(&pdev->dev);
1353}
1354
1355static int __maybe_unused rk_iommu_suspend(struct device *dev)
1356{
1357 struct rk_iommu *iommu = dev_get_drvdata(dev);
1358
1359 if (!iommu->domain)
1360 return 0;
1361
1362 rk_iommu_disable(iommu);
1363 return 0;
1364}
1365
1366static int __maybe_unused rk_iommu_resume(struct device *dev)
1367{
1368 struct rk_iommu *iommu = dev_get_drvdata(dev);
1369
1370 if (!iommu->domain)
1371 return 0;
1372
1373 return rk_iommu_enable(iommu);
1374}
1375
1376static const struct dev_pm_ops rk_iommu_pm_ops = {
1377 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1378 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1379 pm_runtime_force_resume)
1380};
1381
1382static struct rk_iommu_ops iommu_data_ops_v1 = {
1383 .pt_address = &rk_dte_pt_address,
1384 .mk_dtentries = &rk_mk_dte,
1385 .mk_ptentries = &rk_mk_pte,
1386 .dte_addr_phys = &rk_dte_addr_phys,
1387 .dma_addr_dte = &rk_dma_addr_dte,
1388 .dma_bit_mask = DMA_BIT_MASK(32),
1389};
1390
1391static struct rk_iommu_ops iommu_data_ops_v2 = {
1392 .pt_address = &rk_dte_pt_address_v2,
1393 .mk_dtentries = &rk_mk_dte_v2,
1394 .mk_ptentries = &rk_mk_pte_v2,
1395 .dte_addr_phys = &rk_dte_addr_phys_v2,
1396 .dma_addr_dte = &rk_dma_addr_dte_v2,
1397 .dma_bit_mask = DMA_BIT_MASK(40),
1398};
1399
1400static const struct of_device_id rk_iommu_dt_ids[] = {
1401 { .compatible = "rockchip,iommu",
1402 .data = &iommu_data_ops_v1,
1403 },
1404 { .compatible = "rockchip,rk3568-iommu",
1405 .data = &iommu_data_ops_v2,
1406 },
1407 { /* sentinel */ }
1408};
1409
1410static struct platform_driver rk_iommu_driver = {
1411 .probe = rk_iommu_probe,
1412 .shutdown = rk_iommu_shutdown,
1413 .driver = {
1414 .name = "rk_iommu",
1415 .of_match_table = rk_iommu_dt_ids,
1416 .pm = &rk_iommu_pm_ops,
1417 .suppress_bind_attrs = true,
1418 },
1419};
1420
1421static int __init rk_iommu_init(void)
1422{
1423 return platform_driver_register(&rk_iommu_driver);
1424}
1425subsys_initcall(rk_iommu_init);