Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <linux/dma-fence-array.h>
  29#include <linux/kthread.h>
  30#include <linux/dma-resv.h>
  31#include <linux/shmem_fs.h>
  32#include <linux/slab.h>
  33#include <linux/stop_machine.h>
  34#include <linux/swap.h>
  35#include <linux/pci.h>
  36#include <linux/dma-buf.h>
  37#include <linux/mman.h>
  38
  39#include <drm/drm_cache.h>
  40#include <drm/drm_vma_manager.h>
  41
 
 
 
  42#include "gem/i915_gem_clflush.h"
  43#include "gem/i915_gem_context.h"
  44#include "gem/i915_gem_ioctls.h"
  45#include "gem/i915_gem_mman.h"
  46#include "gem/i915_gem_object_frontbuffer.h"
  47#include "gem/i915_gem_pm.h"
  48#include "gem/i915_gem_region.h"
 
  49#include "gt/intel_engine_user.h"
  50#include "gt/intel_gt.h"
  51#include "gt/intel_gt_pm.h"
  52#include "gt/intel_workarounds.h"
  53
  54#include "i915_drv.h"
  55#include "i915_file_private.h"
  56#include "i915_trace.h"
  57#include "i915_vgpu.h"
  58#include "intel_clock_gating.h"
  59
  60static int
  61insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  62{
  63	int err;
  64
  65	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  66	if (err)
  67		return err;
  68
  69	memset(node, 0, sizeof(*node));
  70	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  71					  size, 0, I915_COLOR_UNEVICTABLE,
  72					  0, ggtt->mappable_end,
  73					  DRM_MM_INSERT_LOW);
  74
  75	mutex_unlock(&ggtt->vm.mutex);
  76
  77	return err;
  78}
  79
  80static void
  81remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  82{
  83	mutex_lock(&ggtt->vm.mutex);
  84	drm_mm_remove_node(node);
  85	mutex_unlock(&ggtt->vm.mutex);
  86}
  87
  88int
  89i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  90			    struct drm_file *file)
  91{
  92	struct drm_i915_private *i915 = to_i915(dev);
  93	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
  94	struct drm_i915_gem_get_aperture *args = data;
  95	struct i915_vma *vma;
  96	u64 pinned;
  97
  98	if (mutex_lock_interruptible(&ggtt->vm.mutex))
  99		return -EINTR;
 100
 101	pinned = ggtt->vm.reserved;
 102	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 103		if (i915_vma_is_pinned(vma))
 104			pinned += vma->node.size;
 105
 106	mutex_unlock(&ggtt->vm.mutex);
 107
 108	args->aper_size = ggtt->vm.total;
 109	args->aper_available_size = args->aper_size - pinned;
 110
 111	return 0;
 112}
 113
 114int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 115			   unsigned long flags)
 116{
 117	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 118	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
 119	LIST_HEAD(still_in_list);
 120	intel_wakeref_t wakeref;
 121	struct i915_vma *vma;
 122	int ret;
 123
 124	assert_object_held(obj);
 125
 126	if (list_empty(&obj->vma.list))
 127		return 0;
 128
 129	/*
 130	 * As some machines use ACPI to handle runtime-resume callbacks, and
 131	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 132	 * as they are required by the shrinker. Ergo, we wake the device up
 133	 * first just in case.
 134	 */
 135	wakeref = intel_runtime_pm_get(rpm);
 136
 137try_again:
 138	ret = 0;
 139	spin_lock(&obj->vma.lock);
 140	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 141						       struct i915_vma,
 142						       obj_link))) {
 143		list_move_tail(&vma->obj_link, &still_in_list);
 144		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 145			continue;
 146
 147		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 148			ret = -EBUSY;
 149			break;
 150		}
 151
 152		/*
 153		 * Requiring the vm destructor to take the object lock
 154		 * before destroying a vma would help us eliminate the
 155		 * i915_vm_tryget() here, AND thus also the barrier stuff
 156		 * at the end. That's an easy fix, but sleeping locks in
 157		 * a kthread should generally be avoided.
 158		 */
 159		ret = -EAGAIN;
 160		if (!i915_vm_tryget(vma->vm))
 161			break;
 162
 163		spin_unlock(&obj->vma.lock);
 164
 165		/*
 166		 * Since i915_vma_parked() takes the object lock
 167		 * before vma destruction, it won't race us here,
 168		 * and destroy the vma from under us.
 169		 */
 170
 171		ret = -EBUSY;
 172		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
 173			assert_object_held(vma->obj);
 174			ret = i915_vma_unbind_async(vma, vm_trylock);
 175		}
 176
 177		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 178				      !i915_vma_is_active(vma))) {
 179			if (vm_trylock) {
 180				if (mutex_trylock(&vma->vm->mutex)) {
 181					ret = __i915_vma_unbind(vma);
 182					mutex_unlock(&vma->vm->mutex);
 183				}
 184			} else {
 185				ret = i915_vma_unbind(vma);
 186			}
 187		}
 188
 189		i915_vm_put(vma->vm);
 190		spin_lock(&obj->vma.lock);
 191	}
 192	list_splice_init(&still_in_list, &obj->vma.list);
 193	spin_unlock(&obj->vma.lock);
 194
 195	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 196		rcu_barrier(); /* flush the i915_vm_release() */
 197		goto try_again;
 198	}
 199
 200	intel_runtime_pm_put(rpm, wakeref);
 201
 202	return ret;
 203}
 204
 205static int
 206shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 207	    bool needs_clflush)
 208{
 209	char *vaddr;
 210	int ret;
 211
 212	vaddr = kmap(page);
 213
 214	if (needs_clflush)
 215		drm_clflush_virt_range(vaddr + offset, len);
 216
 217	ret = __copy_to_user(user_data, vaddr + offset, len);
 218
 219	kunmap(page);
 220
 221	return ret ? -EFAULT : 0;
 222}
 223
 224static int
 225i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 226		     struct drm_i915_gem_pread *args)
 227{
 228	unsigned int needs_clflush;
 
 229	char __user *user_data;
 230	unsigned long offset;
 231	pgoff_t idx;
 232	u64 remain;
 233	int ret;
 234
 235	ret = i915_gem_object_lock_interruptible(obj, NULL);
 236	if (ret)
 237		return ret;
 238
 239	ret = i915_gem_object_pin_pages(obj);
 240	if (ret)
 241		goto err_unlock;
 242
 243	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 244	if (ret)
 245		goto err_unpin;
 246
 247	i915_gem_object_finish_access(obj);
 248	i915_gem_object_unlock(obj);
 249
 250	remain = args->size;
 251	user_data = u64_to_user_ptr(args->data_ptr);
 252	offset = offset_in_page(args->offset);
 253	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 254		struct page *page = i915_gem_object_get_page(obj, idx);
 255		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 256
 257		ret = shmem_pread(page, offset, length, user_data,
 258				  needs_clflush);
 259		if (ret)
 260			break;
 261
 262		remain -= length;
 263		user_data += length;
 264		offset = 0;
 265	}
 266
 267	i915_gem_object_unpin_pages(obj);
 268	return ret;
 269
 270err_unpin:
 271	i915_gem_object_unpin_pages(obj);
 272err_unlock:
 273	i915_gem_object_unlock(obj);
 274	return ret;
 275}
 276
 277static inline bool
 278gtt_user_read(struct io_mapping *mapping,
 279	      loff_t base, int offset,
 280	      char __user *user_data, int length)
 281{
 282	void __iomem *vaddr;
 283	unsigned long unwritten;
 284
 285	/* We can use the cpu mem copy function because this is X86. */
 286	vaddr = io_mapping_map_atomic_wc(mapping, base);
 287	unwritten = __copy_to_user_inatomic(user_data,
 288					    (void __force *)vaddr + offset,
 289					    length);
 290	io_mapping_unmap_atomic(vaddr);
 291	if (unwritten) {
 292		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 293		unwritten = copy_to_user(user_data,
 294					 (void __force *)vaddr + offset,
 295					 length);
 296		io_mapping_unmap(vaddr);
 297	}
 298	return unwritten;
 299}
 300
 301static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
 302					     struct drm_mm_node *node,
 303					     bool write)
 304{
 305	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 306	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 307	struct i915_vma *vma;
 308	struct i915_gem_ww_ctx ww;
 309	int ret;
 310
 311	i915_gem_ww_ctx_init(&ww, true);
 312retry:
 313	vma = ERR_PTR(-ENODEV);
 314	ret = i915_gem_object_lock(obj, &ww);
 315	if (ret)
 316		goto err_ww;
 317
 318	ret = i915_gem_object_set_to_gtt_domain(obj, write);
 319	if (ret)
 320		goto err_ww;
 321
 322	if (!i915_gem_object_is_tiled(obj))
 323		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
 324						  PIN_MAPPABLE |
 325						  PIN_NONBLOCK /* NOWARN */ |
 326						  PIN_NOEVICT);
 327	if (vma == ERR_PTR(-EDEADLK)) {
 328		ret = -EDEADLK;
 329		goto err_ww;
 330	} else if (!IS_ERR(vma)) {
 331		node->start = i915_ggtt_offset(vma);
 332		node->flags = 0;
 333	} else {
 334		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
 335		if (ret)
 336			goto err_ww;
 337		GEM_BUG_ON(!drm_mm_node_allocated(node));
 338		vma = NULL;
 339	}
 340
 341	ret = i915_gem_object_pin_pages(obj);
 342	if (ret) {
 343		if (drm_mm_node_allocated(node)) {
 344			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 345			remove_mappable_node(ggtt, node);
 346		} else {
 347			i915_vma_unpin(vma);
 348		}
 349	}
 350
 351err_ww:
 352	if (ret == -EDEADLK) {
 353		ret = i915_gem_ww_ctx_backoff(&ww);
 354		if (!ret)
 355			goto retry;
 356	}
 357	i915_gem_ww_ctx_fini(&ww);
 358
 359	return ret ? ERR_PTR(ret) : vma;
 360}
 361
 362static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
 363				 struct drm_mm_node *node,
 364				 struct i915_vma *vma)
 365{
 366	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 367	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 368
 369	i915_gem_object_unpin_pages(obj);
 370	if (drm_mm_node_allocated(node)) {
 371		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 372		remove_mappable_node(ggtt, node);
 373	} else {
 374		i915_vma_unpin(vma);
 375	}
 376}
 377
 378static int
 379i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 380		   const struct drm_i915_gem_pread *args)
 381{
 382	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 383	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 384	unsigned long remain, offset;
 385	intel_wakeref_t wakeref;
 386	struct drm_mm_node node;
 387	void __user *user_data;
 388	struct i915_vma *vma;
 
 389	int ret = 0;
 390
 391	if (overflows_type(args->size, remain) ||
 392	    overflows_type(args->offset, offset))
 393		return -EINVAL;
 394
 395	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 396
 397	vma = i915_gem_gtt_prepare(obj, &node, false);
 398	if (IS_ERR(vma)) {
 399		ret = PTR_ERR(vma);
 400		goto out_rpm;
 401	}
 402
 403	user_data = u64_to_user_ptr(args->data_ptr);
 404	remain = args->size;
 405	offset = args->offset;
 406
 407	while (remain > 0) {
 408		/* Operation in this page
 409		 *
 410		 * page_base = page offset within aperture
 411		 * page_offset = offset within page
 412		 * page_length = bytes to copy for this page
 413		 */
 414		u32 page_base = node.start;
 415		unsigned page_offset = offset_in_page(offset);
 416		unsigned page_length = PAGE_SIZE - page_offset;
 417		page_length = remain < page_length ? remain : page_length;
 418		if (drm_mm_node_allocated(&node)) {
 419			ggtt->vm.insert_page(&ggtt->vm,
 420					     i915_gem_object_get_dma_address(obj,
 421									     offset >> PAGE_SHIFT),
 422					     node.start,
 423					     i915_gem_get_pat_index(i915,
 424								    I915_CACHE_NONE), 0);
 425		} else {
 426			page_base += offset & PAGE_MASK;
 427		}
 428
 429		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 430				  user_data, page_length)) {
 431			ret = -EFAULT;
 432			break;
 433		}
 434
 435		remain -= page_length;
 436		user_data += page_length;
 437		offset += page_length;
 438	}
 439
 440	i915_gem_gtt_cleanup(obj, &node, vma);
 441out_rpm:
 442	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 443	return ret;
 444}
 445
 446/**
 447 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
 448 * @dev: drm device pointer
 449 * @data: ioctl data blob
 450 * @file: drm file pointer
 451 *
 452 * On error, the contents of *data are undefined.
 453 */
 454int
 455i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 456		     struct drm_file *file)
 457{
 458	struct drm_i915_private *i915 = to_i915(dev);
 459	struct drm_i915_gem_pread *args = data;
 460	struct drm_i915_gem_object *obj;
 461	int ret;
 462
 463	/* PREAD is disallowed for all platforms after TGL-LP.  This also
 464	 * covers all platforms with local memory.
 465	 */
 466	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 467		return -EOPNOTSUPP;
 468
 469	if (args->size == 0)
 470		return 0;
 471
 472	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 473		       args->size))
 474		return -EFAULT;
 475
 476	obj = i915_gem_object_lookup(file, args->handle);
 477	if (!obj)
 478		return -ENOENT;
 479
 480	/* Bounds check source.  */
 481	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 482		ret = -EINVAL;
 483		goto out;
 484	}
 485
 486	trace_i915_gem_object_pread(obj, args->offset, args->size);
 487	ret = -ENODEV;
 488	if (obj->ops->pread)
 489		ret = obj->ops->pread(obj, args);
 490	if (ret != -ENODEV)
 491		goto out;
 492
 493	ret = i915_gem_object_wait(obj,
 494				   I915_WAIT_INTERRUPTIBLE,
 495				   MAX_SCHEDULE_TIMEOUT);
 496	if (ret)
 497		goto out;
 498
 499	ret = i915_gem_shmem_pread(obj, args);
 500	if (ret == -EFAULT || ret == -ENODEV)
 501		ret = i915_gem_gtt_pread(obj, args);
 502
 503out:
 504	i915_gem_object_put(obj);
 505	return ret;
 506}
 507
 508/* This is the fast write path which cannot handle
 509 * page faults in the source data
 510 */
 511
 512static inline bool
 513ggtt_write(struct io_mapping *mapping,
 514	   loff_t base, int offset,
 515	   char __user *user_data, int length)
 516{
 517	void __iomem *vaddr;
 518	unsigned long unwritten;
 519
 520	/* We can use the cpu mem copy function because this is X86. */
 521	vaddr = io_mapping_map_atomic_wc(mapping, base);
 522	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 523						      user_data, length);
 524	io_mapping_unmap_atomic(vaddr);
 525	if (unwritten) {
 526		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 527		unwritten = copy_from_user((void __force *)vaddr + offset,
 528					   user_data, length);
 529		io_mapping_unmap(vaddr);
 530	}
 531
 532	return unwritten;
 533}
 534
 535/**
 536 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
 537 * user into the GTT, uncached.
 538 * @obj: i915 GEM object
 539 * @args: pwrite arguments structure
 540 */
 541static int
 542i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 543			 const struct drm_i915_gem_pwrite *args)
 544{
 545	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 546	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 547	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 548	unsigned long remain, offset;
 549	intel_wakeref_t wakeref;
 550	struct drm_mm_node node;
 551	struct i915_vma *vma;
 
 552	void __user *user_data;
 553	int ret = 0;
 554
 555	if (overflows_type(args->size, remain) ||
 556	    overflows_type(args->offset, offset))
 557		return -EINVAL;
 558
 559	if (i915_gem_object_has_struct_page(obj)) {
 560		/*
 561		 * Avoid waking the device up if we can fallback, as
 562		 * waking/resuming is very slow (worst-case 10-100 ms
 563		 * depending on PCI sleeps and our own resume time).
 564		 * This easily dwarfs any performance advantage from
 565		 * using the cache bypass of indirect GGTT access.
 566		 */
 567		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 568		if (!wakeref)
 569			return -EFAULT;
 570	} else {
 571		/* No backing pages, no fallback, we must force GGTT access */
 572		wakeref = intel_runtime_pm_get(rpm);
 573	}
 574
 575	vma = i915_gem_gtt_prepare(obj, &node, true);
 576	if (IS_ERR(vma)) {
 577		ret = PTR_ERR(vma);
 578		goto out_rpm;
 579	}
 580
 581	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 582
 583	user_data = u64_to_user_ptr(args->data_ptr);
 584	offset = args->offset;
 585	remain = args->size;
 586	while (remain) {
 587		/* Operation in this page
 588		 *
 589		 * page_base = page offset within aperture
 590		 * page_offset = offset within page
 591		 * page_length = bytes to copy for this page
 592		 */
 593		u32 page_base = node.start;
 594		unsigned int page_offset = offset_in_page(offset);
 595		unsigned int page_length = PAGE_SIZE - page_offset;
 596		page_length = remain < page_length ? remain : page_length;
 597		if (drm_mm_node_allocated(&node)) {
 598			/* flush the write before we modify the GGTT */
 599			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 600			ggtt->vm.insert_page(&ggtt->vm,
 601					     i915_gem_object_get_dma_address(obj,
 602									     offset >> PAGE_SHIFT),
 603					     node.start,
 604					     i915_gem_get_pat_index(i915,
 605								    I915_CACHE_NONE), 0);
 606			wmb(); /* flush modifications to the GGTT (insert_page) */
 607		} else {
 608			page_base += offset & PAGE_MASK;
 609		}
 610		/* If we get a fault while copying data, then (presumably) our
 611		 * source page isn't available.  Return the error and we'll
 612		 * retry in the slow path.
 613		 * If the object is non-shmem backed, we retry again with the
 614		 * path that handles page fault.
 615		 */
 616		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 617			       user_data, page_length)) {
 618			ret = -EFAULT;
 619			break;
 620		}
 621
 622		remain -= page_length;
 623		user_data += page_length;
 624		offset += page_length;
 625	}
 626
 627	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 628	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 629
 630	i915_gem_gtt_cleanup(obj, &node, vma);
 631out_rpm:
 632	intel_runtime_pm_put(rpm, wakeref);
 633	return ret;
 634}
 635
 636/* Per-page copy function for the shmem pwrite fastpath.
 637 * Flushes invalid cachelines before writing to the target if
 638 * needs_clflush_before is set and flushes out any written cachelines after
 639 * writing if needs_clflush is set.
 640 */
 641static int
 642shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 643	     bool needs_clflush_before,
 644	     bool needs_clflush_after)
 645{
 646	char *vaddr;
 647	int ret;
 648
 649	vaddr = kmap(page);
 650
 651	if (needs_clflush_before)
 652		drm_clflush_virt_range(vaddr + offset, len);
 653
 654	ret = __copy_from_user(vaddr + offset, user_data, len);
 655	if (!ret && needs_clflush_after)
 656		drm_clflush_virt_range(vaddr + offset, len);
 657
 658	kunmap(page);
 659
 660	return ret ? -EFAULT : 0;
 661}
 662
 663static int
 664i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 665		      const struct drm_i915_gem_pwrite *args)
 666{
 667	unsigned int partial_cacheline_write;
 668	unsigned int needs_clflush;
 
 669	void __user *user_data;
 670	unsigned long offset;
 671	pgoff_t idx;
 672	u64 remain;
 673	int ret;
 674
 675	ret = i915_gem_object_lock_interruptible(obj, NULL);
 676	if (ret)
 677		return ret;
 678
 679	ret = i915_gem_object_pin_pages(obj);
 680	if (ret)
 681		goto err_unlock;
 682
 683	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 684	if (ret)
 685		goto err_unpin;
 686
 687	i915_gem_object_finish_access(obj);
 688	i915_gem_object_unlock(obj);
 689
 690	/* If we don't overwrite a cacheline completely we need to be
 691	 * careful to have up-to-date data by first clflushing. Don't
 692	 * overcomplicate things and flush the entire patch.
 693	 */
 694	partial_cacheline_write = 0;
 695	if (needs_clflush & CLFLUSH_BEFORE)
 696		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 697
 698	user_data = u64_to_user_ptr(args->data_ptr);
 699	remain = args->size;
 700	offset = offset_in_page(args->offset);
 701	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 702		struct page *page = i915_gem_object_get_page(obj, idx);
 703		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 704
 705		ret = shmem_pwrite(page, offset, length, user_data,
 706				   (offset | length) & partial_cacheline_write,
 707				   needs_clflush & CLFLUSH_AFTER);
 708		if (ret)
 709			break;
 710
 711		remain -= length;
 712		user_data += length;
 713		offset = 0;
 714	}
 715
 716	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 717
 718	i915_gem_object_unpin_pages(obj);
 719	return ret;
 720
 721err_unpin:
 722	i915_gem_object_unpin_pages(obj);
 723err_unlock:
 724	i915_gem_object_unlock(obj);
 725	return ret;
 726}
 727
 728/**
 729 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
 730 * @dev: drm device
 731 * @data: ioctl data blob
 732 * @file: drm file
 733 *
 734 * On error, the contents of the buffer that were to be modified are undefined.
 735 */
 736int
 737i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 738		      struct drm_file *file)
 739{
 740	struct drm_i915_private *i915 = to_i915(dev);
 741	struct drm_i915_gem_pwrite *args = data;
 742	struct drm_i915_gem_object *obj;
 743	int ret;
 744
 745	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
 746	 * covers all platforms with local memory.
 747	 */
 748	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 749		return -EOPNOTSUPP;
 750
 751	if (args->size == 0)
 752		return 0;
 753
 754	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 755		return -EFAULT;
 756
 757	obj = i915_gem_object_lookup(file, args->handle);
 758	if (!obj)
 759		return -ENOENT;
 760
 761	/* Bounds check destination. */
 762	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 763		ret = -EINVAL;
 764		goto err;
 765	}
 766
 767	/* Writes not allowed into this read-only object */
 768	if (i915_gem_object_is_readonly(obj)) {
 769		ret = -EINVAL;
 770		goto err;
 771	}
 772
 773	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 774
 775	ret = -ENODEV;
 776	if (obj->ops->pwrite)
 777		ret = obj->ops->pwrite(obj, args);
 778	if (ret != -ENODEV)
 779		goto err;
 780
 781	ret = i915_gem_object_wait(obj,
 782				   I915_WAIT_INTERRUPTIBLE |
 783				   I915_WAIT_ALL,
 784				   MAX_SCHEDULE_TIMEOUT);
 785	if (ret)
 786		goto err;
 787
 788	ret = -EFAULT;
 789	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 790	 * it would end up going through the fenced access, and we'll get
 791	 * different detiling behavior between reading and writing.
 792	 * pread/pwrite currently are reading and writing from the CPU
 793	 * perspective, requiring manual detiling by the client.
 794	 */
 795	if (!i915_gem_object_has_struct_page(obj) ||
 796	    i915_gem_cpu_write_needs_clflush(obj))
 797		/* Note that the gtt paths might fail with non-page-backed user
 798		 * pointers (e.g. gtt mappings when moving data between
 799		 * textures). Fallback to the shmem path in that case.
 800		 */
 801		ret = i915_gem_gtt_pwrite_fast(obj, args);
 802
 803	if (ret == -EFAULT || ret == -ENOSPC) {
 804		if (i915_gem_object_has_struct_page(obj))
 805			ret = i915_gem_shmem_pwrite(obj, args);
 806	}
 807
 808err:
 809	i915_gem_object_put(obj);
 810	return ret;
 811}
 812
 813/**
 814 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
 815 * @dev: drm device
 816 * @data: ioctl data blob
 817 * @file: drm file
 818 */
 819int
 820i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 821			 struct drm_file *file)
 822{
 823	struct drm_i915_gem_sw_finish *args = data;
 824	struct drm_i915_gem_object *obj;
 825
 826	obj = i915_gem_object_lookup(file, args->handle);
 827	if (!obj)
 828		return -ENOENT;
 829
 830	/*
 831	 * Proxy objects are barred from CPU access, so there is no
 832	 * need to ban sw_finish as it is a nop.
 833	 */
 834
 835	/* Pinned buffers may be scanout, so flush the cache */
 836	i915_gem_object_flush_if_display(obj);
 837	i915_gem_object_put(obj);
 838
 839	return 0;
 840}
 841
 842void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 843{
 844	struct drm_i915_gem_object *obj, *on;
 845	int i;
 846
 847	/*
 848	 * Only called during RPM suspend. All users of the userfault_list
 849	 * must be holding an RPM wakeref to ensure that this can not
 850	 * run concurrently with themselves (and use the struct_mutex for
 851	 * protection between themselves).
 852	 */
 853
 854	list_for_each_entry_safe(obj, on,
 855				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
 856		__i915_gem_object_release_mmap_gtt(obj);
 857
 858	list_for_each_entry_safe(obj, on,
 859				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
 860		i915_gem_object_runtime_pm_release_mmap_offset(obj);
 861
 862	/*
 863	 * The fence will be lost when the device powers down. If any were
 864	 * in use by hardware (i.e. they are pinned), we should not be powering
 865	 * down! All other fences will be reacquired by the user upon waking.
 866	 */
 867	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
 868		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
 869
 870		/*
 871		 * Ideally we want to assert that the fence register is not
 872		 * live at this point (i.e. that no piece of code will be
 873		 * trying to write through fence + GTT, as that both violates
 874		 * our tracking of activity and associated locking/barriers,
 875		 * but also is illegal given that the hw is powered down).
 876		 *
 877		 * Previously we used reg->pin_count as a "liveness" indicator.
 878		 * That is not sufficient, and we need a more fine-grained
 879		 * tool if we want to have a sanity check here.
 880		 */
 881
 882		if (!reg->vma)
 883			continue;
 884
 885		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 886		reg->dirty = true;
 887	}
 888}
 889
 890static void discard_ggtt_vma(struct i915_vma *vma)
 891{
 892	struct drm_i915_gem_object *obj = vma->obj;
 893
 894	spin_lock(&obj->vma.lock);
 895	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 896		rb_erase(&vma->obj_node, &obj->vma.tree);
 897		RB_CLEAR_NODE(&vma->obj_node);
 898	}
 899	spin_unlock(&obj->vma.lock);
 900}
 901
 902struct i915_vma *
 903i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 904			    struct i915_gem_ww_ctx *ww,
 905			    const struct i915_gtt_view *view,
 906			    u64 size, u64 alignment, u64 flags)
 907{
 908	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 909	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 910	struct i915_vma *vma;
 911	int ret;
 912
 913	GEM_WARN_ON(!ww);
 914
 915	if (flags & PIN_MAPPABLE &&
 916	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
 917		/*
 918		 * If the required space is larger than the available
 919		 * aperture, we will not able to find a slot for the
 920		 * object and unbinding the object now will be in
 921		 * vain. Worse, doing so may cause us to ping-pong
 922		 * the object in and out of the Global GTT and
 923		 * waste a lot of cycles under the mutex.
 924		 */
 925		if (obj->base.size > ggtt->mappable_end)
 926			return ERR_PTR(-E2BIG);
 927
 928		/*
 929		 * If NONBLOCK is set the caller is optimistically
 930		 * trying to cache the full object within the mappable
 931		 * aperture, and *must* have a fallback in place for
 932		 * situations where we cannot bind the object. We
 933		 * can be a little more lax here and use the fallback
 934		 * more often to avoid costly migrations of ourselves
 935		 * and other objects within the aperture.
 936		 *
 937		 * Half-the-aperture is used as a simple heuristic.
 938		 * More interesting would to do search for a free
 939		 * block prior to making the commitment to unbind.
 940		 * That caters for the self-harm case, and with a
 941		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 942		 * we could try to minimise harm to others.
 943		 */
 944		if (flags & PIN_NONBLOCK &&
 945		    obj->base.size > ggtt->mappable_end / 2)
 946			return ERR_PTR(-ENOSPC);
 947	}
 948
 949new_vma:
 950	vma = i915_vma_instance(obj, &ggtt->vm, view);
 951	if (IS_ERR(vma))
 952		return vma;
 953
 954	if (i915_vma_misplaced(vma, size, alignment, flags)) {
 955		if (flags & PIN_NONBLOCK) {
 956			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 957				return ERR_PTR(-ENOSPC);
 958
 959			/*
 960			 * If this misplaced vma is too big (i.e, at-least
 961			 * half the size of aperture) or hasn't been pinned
 962			 * mappable before, we ignore the misplacement when
 963			 * PIN_NONBLOCK is set in order to avoid the ping-pong
 964			 * issue described above. In other words, we try to
 965			 * avoid the costly operation of unbinding this vma
 966			 * from the GGTT and rebinding it back because there
 967			 * may not be enough space for this vma in the aperture.
 968			 */
 969			if (flags & PIN_MAPPABLE &&
 970			    (vma->fence_size > ggtt->mappable_end / 2 ||
 971			    !i915_vma_is_map_and_fenceable(vma)))
 972				return ERR_PTR(-ENOSPC);
 973		}
 974
 975		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
 976			discard_ggtt_vma(vma);
 977			goto new_vma;
 978		}
 979
 980		ret = i915_vma_unbind(vma);
 981		if (ret)
 982			return ERR_PTR(ret);
 983	}
 984
 985	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
 986
 987	if (ret)
 988		return ERR_PTR(ret);
 989
 990	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
 991		mutex_lock(&ggtt->vm.mutex);
 992		i915_vma_revoke_fence(vma);
 993		mutex_unlock(&ggtt->vm.mutex);
 994	}
 995
 996	ret = i915_vma_wait_for_bind(vma);
 997	if (ret) {
 998		i915_vma_unpin(vma);
 999		return ERR_PTR(ret);
1000	}
1001
1002	return vma;
1003}
1004
1005struct i915_vma * __must_check
1006i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1007			 const struct i915_gtt_view *view,
1008			 u64 size, u64 alignment, u64 flags)
1009{
1010	struct i915_gem_ww_ctx ww;
1011	struct i915_vma *ret;
1012	int err;
1013
1014	for_i915_gem_ww(&ww, err, true) {
1015		err = i915_gem_object_lock(obj, &ww);
1016		if (err)
1017			continue;
1018
1019		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1020						  alignment, flags);
1021		if (IS_ERR(ret))
1022			err = PTR_ERR(ret);
1023	}
1024
1025	return err ? ERR_PTR(err) : ret;
1026}
1027
1028int
1029i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1030		       struct drm_file *file_priv)
1031{
1032	struct drm_i915_private *i915 = to_i915(dev);
1033	struct drm_i915_gem_madvise *args = data;
1034	struct drm_i915_gem_object *obj;
1035	int err;
1036
1037	switch (args->madv) {
1038	case I915_MADV_DONTNEED:
1039	case I915_MADV_WILLNEED:
1040	    break;
1041	default:
1042	    return -EINVAL;
1043	}
1044
1045	obj = i915_gem_object_lookup(file_priv, args->handle);
1046	if (!obj)
1047		return -ENOENT;
1048
1049	err = i915_gem_object_lock_interruptible(obj, NULL);
1050	if (err)
1051		goto out;
1052
1053	if (i915_gem_object_has_pages(obj) &&
1054	    i915_gem_object_is_tiled(obj) &&
1055	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1056		if (obj->mm.madv == I915_MADV_WILLNEED) {
1057			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1058			i915_gem_object_clear_tiling_quirk(obj);
1059			i915_gem_object_make_shrinkable(obj);
1060		}
1061		if (args->madv == I915_MADV_WILLNEED) {
1062			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1063			i915_gem_object_make_unshrinkable(obj);
1064			i915_gem_object_set_tiling_quirk(obj);
1065		}
1066	}
1067
1068	if (obj->mm.madv != __I915_MADV_PURGED) {
1069		obj->mm.madv = args->madv;
1070		if (obj->ops->adjust_lru)
1071			obj->ops->adjust_lru(obj);
1072	}
1073
1074	if (i915_gem_object_has_pages(obj) ||
1075	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1076		unsigned long flags;
1077
1078		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1079		if (!list_empty(&obj->mm.link)) {
1080			struct list_head *list;
1081
1082			if (obj->mm.madv != I915_MADV_WILLNEED)
1083				list = &i915->mm.purge_list;
1084			else
1085				list = &i915->mm.shrink_list;
1086			list_move_tail(&obj->mm.link, list);
1087
1088		}
1089		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1090	}
1091
1092	/* if the object is no longer attached, discard its backing storage */
1093	if (obj->mm.madv == I915_MADV_DONTNEED &&
1094	    !i915_gem_object_has_pages(obj))
1095		i915_gem_object_truncate(obj);
1096
1097	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1098
1099	i915_gem_object_unlock(obj);
1100out:
1101	i915_gem_object_put(obj);
1102	return err;
1103}
1104
1105/*
1106 * A single pass should suffice to release all the freed objects (along most
1107 * call paths), but be a little more paranoid in that freeing the objects does
1108 * take a little amount of time, during which the rcu callbacks could have added
1109 * new objects into the freed list, and armed the work again.
1110 */
1111void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1112{
1113	while (atomic_read(&i915->mm.free_count)) {
1114		flush_work(&i915->mm.free_work);
1115		drain_workqueue(i915->bdev.wq);
1116		rcu_barrier();
1117	}
1118}
1119
1120/*
1121 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1122 * have workers that are armed by RCU and then rearm themselves in their
1123 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1124 * waiting for the RCU grace period so that we catch work queued via RCU from
1125 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1126 * result, we make an assumption that we only don't require more than 3 passes
1127 * to catch all _recursive_ RCU delayed work.
1128 */
1129void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1130{
1131	int i;
1132
1133	for (i = 0; i < 3; i++) {
1134		flush_workqueue(i915->wq);
1135		rcu_barrier();
1136		i915_gem_drain_freed_objects(i915);
1137	}
1138
1139	drain_workqueue(i915->wq);
1140}
1141
1142int i915_gem_init(struct drm_i915_private *dev_priv)
1143{
1144	struct intel_gt *gt;
1145	unsigned int i;
1146	int ret;
1147
1148	/*
1149	 * In the proccess of replacing cache_level with pat_index a tricky
1150	 * dependency is created on the definition of the enum i915_cache_level.
1151	 * in case this enum is changed, PTE encode would be broken.
1152	 * Add a WARNING here. And remove when we completely quit using this
1153	 * enum
1154	 */
1155	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1156		     I915_CACHE_LLC != 1 ||
1157		     I915_CACHE_L3_LLC != 2 ||
1158		     I915_CACHE_WT != 3 ||
1159		     I915_MAX_CACHE_LEVEL != 4);
1160
1161	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1162	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1163		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1164
 
 
 
 
1165	for_each_gt(gt, dev_priv, i) {
1166		intel_uc_fetch_firmwares(&gt->uc);
1167		intel_wopcm_init(&gt->wopcm);
1168		if (GRAPHICS_VER(dev_priv) >= 8)
1169			setup_private_pat(gt);
1170	}
1171
1172	ret = i915_init_ggtt(dev_priv);
1173	if (ret) {
1174		GEM_BUG_ON(ret == -EIO);
1175		goto err_unlock;
1176	}
1177
1178	/*
1179	 * Despite its name intel_clock_gating_init applies both display
1180	 * clock gating workarounds; GT mmio workarounds and the occasional
1181	 * GT power context workaround. Worse, sometimes it includes a context
1182	 * register workaround which we need to apply before we record the
1183	 * default HW state for all contexts.
1184	 *
1185	 * FIXME: break up the workarounds and apply them at the right time!
1186	 */
1187	intel_clock_gating_init(dev_priv);
1188
1189	for_each_gt(gt, dev_priv, i) {
1190		ret = intel_gt_init(gt);
1191		if (ret)
1192			goto err_unlock;
1193	}
1194
1195	/*
1196	 * Register engines early to ensure the engine list is in its final
1197	 * rb-tree form, lowering the amount of code that has to deal with
1198	 * the intermediate llist state.
1199	 */
1200	intel_engines_driver_register(dev_priv);
1201
1202	return 0;
1203
1204	/*
1205	 * Unwinding is complicated by that we want to handle -EIO to mean
1206	 * disable GPU submission but keep KMS alive. We want to mark the
1207	 * HW as irrevisibly wedged, but keep enough state around that the
1208	 * driver doesn't explode during runtime.
1209	 */
1210err_unlock:
1211	i915_gem_drain_workqueue(dev_priv);
1212
1213	if (ret != -EIO) {
1214		for_each_gt(gt, dev_priv, i) {
1215			intel_gt_driver_remove(gt);
1216			intel_gt_driver_release(gt);
1217			intel_uc_cleanup_firmwares(&gt->uc);
1218		}
1219	}
1220
1221	if (ret == -EIO) {
1222		/*
1223		 * Allow engines or uC initialisation to fail by marking the GPU
1224		 * as wedged. But we only want to do this when the GPU is angry,
1225		 * for all other failure, such as an allocation failure, bail.
1226		 */
1227		for_each_gt(gt, dev_priv, i) {
1228			if (!intel_gt_is_wedged(gt)) {
1229				i915_probe_error(dev_priv,
1230						 "Failed to initialize GPU, declaring it wedged!\n");
1231				intel_gt_set_wedged(gt);
1232			}
1233		}
1234
1235		/* Minimal basic recovery for KMS */
1236		ret = i915_ggtt_enable_hw(dev_priv);
1237		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1238		intel_clock_gating_init(dev_priv);
1239	}
1240
1241	i915_gem_drain_freed_objects(dev_priv);
1242
1243	return ret;
1244}
1245
1246void i915_gem_driver_register(struct drm_i915_private *i915)
1247{
1248	i915_gem_driver_register__shrinker(i915);
 
 
1249}
1250
1251void i915_gem_driver_unregister(struct drm_i915_private *i915)
1252{
1253	i915_gem_driver_unregister__shrinker(i915);
1254}
1255
1256void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1257{
1258	struct intel_gt *gt;
1259	unsigned int i;
1260
1261	i915_gem_suspend_late(dev_priv);
1262	for_each_gt(gt, dev_priv, i)
1263		intel_gt_driver_remove(gt);
1264	dev_priv->uabi_engines = RB_ROOT;
1265
1266	/* Flush any outstanding unpin_work. */
1267	i915_gem_drain_workqueue(dev_priv);
1268}
1269
1270void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1271{
1272	struct intel_gt *gt;
1273	unsigned int i;
1274
1275	for_each_gt(gt, dev_priv, i) {
1276		intel_gt_driver_release(gt);
1277		intel_uc_cleanup_firmwares(&gt->uc);
1278	}
1279
1280	/* Flush any outstanding work, including i915_gem_context.release_work. */
1281	i915_gem_drain_workqueue(dev_priv);
1282
1283	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1284}
1285
1286static void i915_gem_init__mm(struct drm_i915_private *i915)
1287{
1288	spin_lock_init(&i915->mm.obj_lock);
1289
1290	init_llist_head(&i915->mm.free_list);
1291
1292	INIT_LIST_HEAD(&i915->mm.purge_list);
1293	INIT_LIST_HEAD(&i915->mm.shrink_list);
1294
1295	i915_gem_init__objects(i915);
1296}
1297
1298void i915_gem_init_early(struct drm_i915_private *dev_priv)
1299{
1300	i915_gem_init__mm(dev_priv);
1301	i915_gem_init__contexts(dev_priv);
 
 
1302}
1303
1304void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1305{
1306	i915_gem_drain_workqueue(dev_priv);
1307	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1308	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1309	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1310}
1311
1312int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1313{
1314	struct drm_i915_file_private *file_priv;
1315	struct i915_drm_client *client;
1316	int ret = -ENOMEM;
1317
1318	drm_dbg(&i915->drm, "\n");
1319
1320	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1321	if (!file_priv)
1322		goto err_alloc;
1323
1324	client = i915_drm_client_alloc();
1325	if (!client)
 
1326		goto err_client;
 
1327
1328	file->driver_priv = file_priv;
1329	file_priv->i915 = i915;
1330	file_priv->file = file;
1331	file_priv->client = client;
1332
1333	file_priv->bsd_engine = -1;
1334	file_priv->hang_timestamp = jiffies;
1335
1336	ret = i915_gem_context_open(i915, file);
1337	if (ret)
1338		goto err_context;
1339
1340	return 0;
1341
1342err_context:
1343	i915_drm_client_put(client);
1344err_client:
1345	kfree(file_priv);
1346err_alloc:
1347	return ret;
1348}
1349
1350#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1351#include "selftests/mock_gem_device.c"
1352#include "selftests/i915_gem.c"
1353#endif
v6.2
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <linux/dma-fence-array.h>
  29#include <linux/kthread.h>
  30#include <linux/dma-resv.h>
  31#include <linux/shmem_fs.h>
  32#include <linux/slab.h>
  33#include <linux/stop_machine.h>
  34#include <linux/swap.h>
  35#include <linux/pci.h>
  36#include <linux/dma-buf.h>
  37#include <linux/mman.h>
  38
  39#include <drm/drm_cache.h>
  40#include <drm/drm_vma_manager.h>
  41
  42#include "display/intel_display.h"
  43#include "display/intel_frontbuffer.h"
  44
  45#include "gem/i915_gem_clflush.h"
  46#include "gem/i915_gem_context.h"
  47#include "gem/i915_gem_ioctls.h"
  48#include "gem/i915_gem_mman.h"
 
  49#include "gem/i915_gem_pm.h"
  50#include "gem/i915_gem_region.h"
  51#include "gem/i915_gem_userptr.h"
  52#include "gt/intel_engine_user.h"
  53#include "gt/intel_gt.h"
  54#include "gt/intel_gt_pm.h"
  55#include "gt/intel_workarounds.h"
  56
  57#include "i915_drv.h"
  58#include "i915_file_private.h"
  59#include "i915_trace.h"
  60#include "i915_vgpu.h"
  61#include "intel_pm.h"
  62
  63static int
  64insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  65{
  66	int err;
  67
  68	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  69	if (err)
  70		return err;
  71
  72	memset(node, 0, sizeof(*node));
  73	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  74					  size, 0, I915_COLOR_UNEVICTABLE,
  75					  0, ggtt->mappable_end,
  76					  DRM_MM_INSERT_LOW);
  77
  78	mutex_unlock(&ggtt->vm.mutex);
  79
  80	return err;
  81}
  82
  83static void
  84remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  85{
  86	mutex_lock(&ggtt->vm.mutex);
  87	drm_mm_remove_node(node);
  88	mutex_unlock(&ggtt->vm.mutex);
  89}
  90
  91int
  92i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  93			    struct drm_file *file)
  94{
  95	struct drm_i915_private *i915 = to_i915(dev);
  96	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
  97	struct drm_i915_gem_get_aperture *args = data;
  98	struct i915_vma *vma;
  99	u64 pinned;
 100
 101	if (mutex_lock_interruptible(&ggtt->vm.mutex))
 102		return -EINTR;
 103
 104	pinned = ggtt->vm.reserved;
 105	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 106		if (i915_vma_is_pinned(vma))
 107			pinned += vma->node.size;
 108
 109	mutex_unlock(&ggtt->vm.mutex);
 110
 111	args->aper_size = ggtt->vm.total;
 112	args->aper_available_size = args->aper_size - pinned;
 113
 114	return 0;
 115}
 116
 117int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 118			   unsigned long flags)
 119{
 120	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 121	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
 122	LIST_HEAD(still_in_list);
 123	intel_wakeref_t wakeref;
 124	struct i915_vma *vma;
 125	int ret;
 126
 127	assert_object_held(obj);
 128
 129	if (list_empty(&obj->vma.list))
 130		return 0;
 131
 132	/*
 133	 * As some machines use ACPI to handle runtime-resume callbacks, and
 134	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 135	 * as they are required by the shrinker. Ergo, we wake the device up
 136	 * first just in case.
 137	 */
 138	wakeref = intel_runtime_pm_get(rpm);
 139
 140try_again:
 141	ret = 0;
 142	spin_lock(&obj->vma.lock);
 143	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 144						       struct i915_vma,
 145						       obj_link))) {
 146		list_move_tail(&vma->obj_link, &still_in_list);
 147		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 148			continue;
 149
 150		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 151			ret = -EBUSY;
 152			break;
 153		}
 154
 155		/*
 156		 * Requiring the vm destructor to take the object lock
 157		 * before destroying a vma would help us eliminate the
 158		 * i915_vm_tryget() here, AND thus also the barrier stuff
 159		 * at the end. That's an easy fix, but sleeping locks in
 160		 * a kthread should generally be avoided.
 161		 */
 162		ret = -EAGAIN;
 163		if (!i915_vm_tryget(vma->vm))
 164			break;
 165
 166		spin_unlock(&obj->vma.lock);
 167
 168		/*
 169		 * Since i915_vma_parked() takes the object lock
 170		 * before vma destruction, it won't race us here,
 171		 * and destroy the vma from under us.
 172		 */
 173
 174		ret = -EBUSY;
 175		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
 176			assert_object_held(vma->obj);
 177			ret = i915_vma_unbind_async(vma, vm_trylock);
 178		}
 179
 180		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 181				      !i915_vma_is_active(vma))) {
 182			if (vm_trylock) {
 183				if (mutex_trylock(&vma->vm->mutex)) {
 184					ret = __i915_vma_unbind(vma);
 185					mutex_unlock(&vma->vm->mutex);
 186				}
 187			} else {
 188				ret = i915_vma_unbind(vma);
 189			}
 190		}
 191
 192		i915_vm_put(vma->vm);
 193		spin_lock(&obj->vma.lock);
 194	}
 195	list_splice_init(&still_in_list, &obj->vma.list);
 196	spin_unlock(&obj->vma.lock);
 197
 198	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 199		rcu_barrier(); /* flush the i915_vm_release() */
 200		goto try_again;
 201	}
 202
 203	intel_runtime_pm_put(rpm, wakeref);
 204
 205	return ret;
 206}
 207
 208static int
 209shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 210	    bool needs_clflush)
 211{
 212	char *vaddr;
 213	int ret;
 214
 215	vaddr = kmap(page);
 216
 217	if (needs_clflush)
 218		drm_clflush_virt_range(vaddr + offset, len);
 219
 220	ret = __copy_to_user(user_data, vaddr + offset, len);
 221
 222	kunmap(page);
 223
 224	return ret ? -EFAULT : 0;
 225}
 226
 227static int
 228i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 229		     struct drm_i915_gem_pread *args)
 230{
 231	unsigned int needs_clflush;
 232	unsigned int idx, offset;
 233	char __user *user_data;
 
 
 234	u64 remain;
 235	int ret;
 236
 237	ret = i915_gem_object_lock_interruptible(obj, NULL);
 238	if (ret)
 239		return ret;
 240
 241	ret = i915_gem_object_pin_pages(obj);
 242	if (ret)
 243		goto err_unlock;
 244
 245	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 246	if (ret)
 247		goto err_unpin;
 248
 249	i915_gem_object_finish_access(obj);
 250	i915_gem_object_unlock(obj);
 251
 252	remain = args->size;
 253	user_data = u64_to_user_ptr(args->data_ptr);
 254	offset = offset_in_page(args->offset);
 255	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 256		struct page *page = i915_gem_object_get_page(obj, idx);
 257		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 258
 259		ret = shmem_pread(page, offset, length, user_data,
 260				  needs_clflush);
 261		if (ret)
 262			break;
 263
 264		remain -= length;
 265		user_data += length;
 266		offset = 0;
 267	}
 268
 269	i915_gem_object_unpin_pages(obj);
 270	return ret;
 271
 272err_unpin:
 273	i915_gem_object_unpin_pages(obj);
 274err_unlock:
 275	i915_gem_object_unlock(obj);
 276	return ret;
 277}
 278
 279static inline bool
 280gtt_user_read(struct io_mapping *mapping,
 281	      loff_t base, int offset,
 282	      char __user *user_data, int length)
 283{
 284	void __iomem *vaddr;
 285	unsigned long unwritten;
 286
 287	/* We can use the cpu mem copy function because this is X86. */
 288	vaddr = io_mapping_map_atomic_wc(mapping, base);
 289	unwritten = __copy_to_user_inatomic(user_data,
 290					    (void __force *)vaddr + offset,
 291					    length);
 292	io_mapping_unmap_atomic(vaddr);
 293	if (unwritten) {
 294		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 295		unwritten = copy_to_user(user_data,
 296					 (void __force *)vaddr + offset,
 297					 length);
 298		io_mapping_unmap(vaddr);
 299	}
 300	return unwritten;
 301}
 302
 303static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
 304					     struct drm_mm_node *node,
 305					     bool write)
 306{
 307	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 308	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 309	struct i915_vma *vma;
 310	struct i915_gem_ww_ctx ww;
 311	int ret;
 312
 313	i915_gem_ww_ctx_init(&ww, true);
 314retry:
 315	vma = ERR_PTR(-ENODEV);
 316	ret = i915_gem_object_lock(obj, &ww);
 317	if (ret)
 318		goto err_ww;
 319
 320	ret = i915_gem_object_set_to_gtt_domain(obj, write);
 321	if (ret)
 322		goto err_ww;
 323
 324	if (!i915_gem_object_is_tiled(obj))
 325		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
 326						  PIN_MAPPABLE |
 327						  PIN_NONBLOCK /* NOWARN */ |
 328						  PIN_NOEVICT);
 329	if (vma == ERR_PTR(-EDEADLK)) {
 330		ret = -EDEADLK;
 331		goto err_ww;
 332	} else if (!IS_ERR(vma)) {
 333		node->start = i915_ggtt_offset(vma);
 334		node->flags = 0;
 335	} else {
 336		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
 337		if (ret)
 338			goto err_ww;
 339		GEM_BUG_ON(!drm_mm_node_allocated(node));
 340		vma = NULL;
 341	}
 342
 343	ret = i915_gem_object_pin_pages(obj);
 344	if (ret) {
 345		if (drm_mm_node_allocated(node)) {
 346			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 347			remove_mappable_node(ggtt, node);
 348		} else {
 349			i915_vma_unpin(vma);
 350		}
 351	}
 352
 353err_ww:
 354	if (ret == -EDEADLK) {
 355		ret = i915_gem_ww_ctx_backoff(&ww);
 356		if (!ret)
 357			goto retry;
 358	}
 359	i915_gem_ww_ctx_fini(&ww);
 360
 361	return ret ? ERR_PTR(ret) : vma;
 362}
 363
 364static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
 365				 struct drm_mm_node *node,
 366				 struct i915_vma *vma)
 367{
 368	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 369	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 370
 371	i915_gem_object_unpin_pages(obj);
 372	if (drm_mm_node_allocated(node)) {
 373		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 374		remove_mappable_node(ggtt, node);
 375	} else {
 376		i915_vma_unpin(vma);
 377	}
 378}
 379
 380static int
 381i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 382		   const struct drm_i915_gem_pread *args)
 383{
 384	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 385	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 
 386	intel_wakeref_t wakeref;
 387	struct drm_mm_node node;
 388	void __user *user_data;
 389	struct i915_vma *vma;
 390	u64 remain, offset;
 391	int ret = 0;
 392
 
 
 
 
 393	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 394
 395	vma = i915_gem_gtt_prepare(obj, &node, false);
 396	if (IS_ERR(vma)) {
 397		ret = PTR_ERR(vma);
 398		goto out_rpm;
 399	}
 400
 401	user_data = u64_to_user_ptr(args->data_ptr);
 402	remain = args->size;
 403	offset = args->offset;
 404
 405	while (remain > 0) {
 406		/* Operation in this page
 407		 *
 408		 * page_base = page offset within aperture
 409		 * page_offset = offset within page
 410		 * page_length = bytes to copy for this page
 411		 */
 412		u32 page_base = node.start;
 413		unsigned page_offset = offset_in_page(offset);
 414		unsigned page_length = PAGE_SIZE - page_offset;
 415		page_length = remain < page_length ? remain : page_length;
 416		if (drm_mm_node_allocated(&node)) {
 417			ggtt->vm.insert_page(&ggtt->vm,
 418					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 419					     node.start, I915_CACHE_NONE, 0);
 
 
 
 420		} else {
 421			page_base += offset & PAGE_MASK;
 422		}
 423
 424		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 425				  user_data, page_length)) {
 426			ret = -EFAULT;
 427			break;
 428		}
 429
 430		remain -= page_length;
 431		user_data += page_length;
 432		offset += page_length;
 433	}
 434
 435	i915_gem_gtt_cleanup(obj, &node, vma);
 436out_rpm:
 437	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 438	return ret;
 439}
 440
 441/**
 442 * Reads data from the object referenced by handle.
 443 * @dev: drm device pointer
 444 * @data: ioctl data blob
 445 * @file: drm file pointer
 446 *
 447 * On error, the contents of *data are undefined.
 448 */
 449int
 450i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 451		     struct drm_file *file)
 452{
 453	struct drm_i915_private *i915 = to_i915(dev);
 454	struct drm_i915_gem_pread *args = data;
 455	struct drm_i915_gem_object *obj;
 456	int ret;
 457
 458	/* PREAD is disallowed for all platforms after TGL-LP.  This also
 459	 * covers all platforms with local memory.
 460	 */
 461	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 462		return -EOPNOTSUPP;
 463
 464	if (args->size == 0)
 465		return 0;
 466
 467	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 468		       args->size))
 469		return -EFAULT;
 470
 471	obj = i915_gem_object_lookup(file, args->handle);
 472	if (!obj)
 473		return -ENOENT;
 474
 475	/* Bounds check source.  */
 476	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 477		ret = -EINVAL;
 478		goto out;
 479	}
 480
 481	trace_i915_gem_object_pread(obj, args->offset, args->size);
 482	ret = -ENODEV;
 483	if (obj->ops->pread)
 484		ret = obj->ops->pread(obj, args);
 485	if (ret != -ENODEV)
 486		goto out;
 487
 488	ret = i915_gem_object_wait(obj,
 489				   I915_WAIT_INTERRUPTIBLE,
 490				   MAX_SCHEDULE_TIMEOUT);
 491	if (ret)
 492		goto out;
 493
 494	ret = i915_gem_shmem_pread(obj, args);
 495	if (ret == -EFAULT || ret == -ENODEV)
 496		ret = i915_gem_gtt_pread(obj, args);
 497
 498out:
 499	i915_gem_object_put(obj);
 500	return ret;
 501}
 502
 503/* This is the fast write path which cannot handle
 504 * page faults in the source data
 505 */
 506
 507static inline bool
 508ggtt_write(struct io_mapping *mapping,
 509	   loff_t base, int offset,
 510	   char __user *user_data, int length)
 511{
 512	void __iomem *vaddr;
 513	unsigned long unwritten;
 514
 515	/* We can use the cpu mem copy function because this is X86. */
 516	vaddr = io_mapping_map_atomic_wc(mapping, base);
 517	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 518						      user_data, length);
 519	io_mapping_unmap_atomic(vaddr);
 520	if (unwritten) {
 521		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 522		unwritten = copy_from_user((void __force *)vaddr + offset,
 523					   user_data, length);
 524		io_mapping_unmap(vaddr);
 525	}
 526
 527	return unwritten;
 528}
 529
 530/**
 531 * This is the fast pwrite path, where we copy the data directly from the
 532 * user into the GTT, uncached.
 533 * @obj: i915 GEM object
 534 * @args: pwrite arguments structure
 535 */
 536static int
 537i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 538			 const struct drm_i915_gem_pwrite *args)
 539{
 540	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 541	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 542	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 
 543	intel_wakeref_t wakeref;
 544	struct drm_mm_node node;
 545	struct i915_vma *vma;
 546	u64 remain, offset;
 547	void __user *user_data;
 548	int ret = 0;
 549
 
 
 
 
 550	if (i915_gem_object_has_struct_page(obj)) {
 551		/*
 552		 * Avoid waking the device up if we can fallback, as
 553		 * waking/resuming is very slow (worst-case 10-100 ms
 554		 * depending on PCI sleeps and our own resume time).
 555		 * This easily dwarfs any performance advantage from
 556		 * using the cache bypass of indirect GGTT access.
 557		 */
 558		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 559		if (!wakeref)
 560			return -EFAULT;
 561	} else {
 562		/* No backing pages, no fallback, we must force GGTT access */
 563		wakeref = intel_runtime_pm_get(rpm);
 564	}
 565
 566	vma = i915_gem_gtt_prepare(obj, &node, true);
 567	if (IS_ERR(vma)) {
 568		ret = PTR_ERR(vma);
 569		goto out_rpm;
 570	}
 571
 572	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 573
 574	user_data = u64_to_user_ptr(args->data_ptr);
 575	offset = args->offset;
 576	remain = args->size;
 577	while (remain) {
 578		/* Operation in this page
 579		 *
 580		 * page_base = page offset within aperture
 581		 * page_offset = offset within page
 582		 * page_length = bytes to copy for this page
 583		 */
 584		u32 page_base = node.start;
 585		unsigned int page_offset = offset_in_page(offset);
 586		unsigned int page_length = PAGE_SIZE - page_offset;
 587		page_length = remain < page_length ? remain : page_length;
 588		if (drm_mm_node_allocated(&node)) {
 589			/* flush the write before we modify the GGTT */
 590			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 591			ggtt->vm.insert_page(&ggtt->vm,
 592					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 593					     node.start, I915_CACHE_NONE, 0);
 
 
 
 594			wmb(); /* flush modifications to the GGTT (insert_page) */
 595		} else {
 596			page_base += offset & PAGE_MASK;
 597		}
 598		/* If we get a fault while copying data, then (presumably) our
 599		 * source page isn't available.  Return the error and we'll
 600		 * retry in the slow path.
 601		 * If the object is non-shmem backed, we retry again with the
 602		 * path that handles page fault.
 603		 */
 604		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 605			       user_data, page_length)) {
 606			ret = -EFAULT;
 607			break;
 608		}
 609
 610		remain -= page_length;
 611		user_data += page_length;
 612		offset += page_length;
 613	}
 614
 615	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 616	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 617
 618	i915_gem_gtt_cleanup(obj, &node, vma);
 619out_rpm:
 620	intel_runtime_pm_put(rpm, wakeref);
 621	return ret;
 622}
 623
 624/* Per-page copy function for the shmem pwrite fastpath.
 625 * Flushes invalid cachelines before writing to the target if
 626 * needs_clflush_before is set and flushes out any written cachelines after
 627 * writing if needs_clflush is set.
 628 */
 629static int
 630shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 631	     bool needs_clflush_before,
 632	     bool needs_clflush_after)
 633{
 634	char *vaddr;
 635	int ret;
 636
 637	vaddr = kmap(page);
 638
 639	if (needs_clflush_before)
 640		drm_clflush_virt_range(vaddr + offset, len);
 641
 642	ret = __copy_from_user(vaddr + offset, user_data, len);
 643	if (!ret && needs_clflush_after)
 644		drm_clflush_virt_range(vaddr + offset, len);
 645
 646	kunmap(page);
 647
 648	return ret ? -EFAULT : 0;
 649}
 650
 651static int
 652i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 653		      const struct drm_i915_gem_pwrite *args)
 654{
 655	unsigned int partial_cacheline_write;
 656	unsigned int needs_clflush;
 657	unsigned int offset, idx;
 658	void __user *user_data;
 
 
 659	u64 remain;
 660	int ret;
 661
 662	ret = i915_gem_object_lock_interruptible(obj, NULL);
 663	if (ret)
 664		return ret;
 665
 666	ret = i915_gem_object_pin_pages(obj);
 667	if (ret)
 668		goto err_unlock;
 669
 670	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 671	if (ret)
 672		goto err_unpin;
 673
 674	i915_gem_object_finish_access(obj);
 675	i915_gem_object_unlock(obj);
 676
 677	/* If we don't overwrite a cacheline completely we need to be
 678	 * careful to have up-to-date data by first clflushing. Don't
 679	 * overcomplicate things and flush the entire patch.
 680	 */
 681	partial_cacheline_write = 0;
 682	if (needs_clflush & CLFLUSH_BEFORE)
 683		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 684
 685	user_data = u64_to_user_ptr(args->data_ptr);
 686	remain = args->size;
 687	offset = offset_in_page(args->offset);
 688	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 689		struct page *page = i915_gem_object_get_page(obj, idx);
 690		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 691
 692		ret = shmem_pwrite(page, offset, length, user_data,
 693				   (offset | length) & partial_cacheline_write,
 694				   needs_clflush & CLFLUSH_AFTER);
 695		if (ret)
 696			break;
 697
 698		remain -= length;
 699		user_data += length;
 700		offset = 0;
 701	}
 702
 703	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 704
 705	i915_gem_object_unpin_pages(obj);
 706	return ret;
 707
 708err_unpin:
 709	i915_gem_object_unpin_pages(obj);
 710err_unlock:
 711	i915_gem_object_unlock(obj);
 712	return ret;
 713}
 714
 715/**
 716 * Writes data to the object referenced by handle.
 717 * @dev: drm device
 718 * @data: ioctl data blob
 719 * @file: drm file
 720 *
 721 * On error, the contents of the buffer that were to be modified are undefined.
 722 */
 723int
 724i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 725		      struct drm_file *file)
 726{
 727	struct drm_i915_private *i915 = to_i915(dev);
 728	struct drm_i915_gem_pwrite *args = data;
 729	struct drm_i915_gem_object *obj;
 730	int ret;
 731
 732	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
 733	 * covers all platforms with local memory.
 734	 */
 735	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 736		return -EOPNOTSUPP;
 737
 738	if (args->size == 0)
 739		return 0;
 740
 741	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 742		return -EFAULT;
 743
 744	obj = i915_gem_object_lookup(file, args->handle);
 745	if (!obj)
 746		return -ENOENT;
 747
 748	/* Bounds check destination. */
 749	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 750		ret = -EINVAL;
 751		goto err;
 752	}
 753
 754	/* Writes not allowed into this read-only object */
 755	if (i915_gem_object_is_readonly(obj)) {
 756		ret = -EINVAL;
 757		goto err;
 758	}
 759
 760	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 761
 762	ret = -ENODEV;
 763	if (obj->ops->pwrite)
 764		ret = obj->ops->pwrite(obj, args);
 765	if (ret != -ENODEV)
 766		goto err;
 767
 768	ret = i915_gem_object_wait(obj,
 769				   I915_WAIT_INTERRUPTIBLE |
 770				   I915_WAIT_ALL,
 771				   MAX_SCHEDULE_TIMEOUT);
 772	if (ret)
 773		goto err;
 774
 775	ret = -EFAULT;
 776	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 777	 * it would end up going through the fenced access, and we'll get
 778	 * different detiling behavior between reading and writing.
 779	 * pread/pwrite currently are reading and writing from the CPU
 780	 * perspective, requiring manual detiling by the client.
 781	 */
 782	if (!i915_gem_object_has_struct_page(obj) ||
 783	    i915_gem_cpu_write_needs_clflush(obj))
 784		/* Note that the gtt paths might fail with non-page-backed user
 785		 * pointers (e.g. gtt mappings when moving data between
 786		 * textures). Fallback to the shmem path in that case.
 787		 */
 788		ret = i915_gem_gtt_pwrite_fast(obj, args);
 789
 790	if (ret == -EFAULT || ret == -ENOSPC) {
 791		if (i915_gem_object_has_struct_page(obj))
 792			ret = i915_gem_shmem_pwrite(obj, args);
 793	}
 794
 795err:
 796	i915_gem_object_put(obj);
 797	return ret;
 798}
 799
 800/**
 801 * Called when user space has done writes to this buffer
 802 * @dev: drm device
 803 * @data: ioctl data blob
 804 * @file: drm file
 805 */
 806int
 807i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 808			 struct drm_file *file)
 809{
 810	struct drm_i915_gem_sw_finish *args = data;
 811	struct drm_i915_gem_object *obj;
 812
 813	obj = i915_gem_object_lookup(file, args->handle);
 814	if (!obj)
 815		return -ENOENT;
 816
 817	/*
 818	 * Proxy objects are barred from CPU access, so there is no
 819	 * need to ban sw_finish as it is a nop.
 820	 */
 821
 822	/* Pinned buffers may be scanout, so flush the cache */
 823	i915_gem_object_flush_if_display(obj);
 824	i915_gem_object_put(obj);
 825
 826	return 0;
 827}
 828
 829void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 830{
 831	struct drm_i915_gem_object *obj, *on;
 832	int i;
 833
 834	/*
 835	 * Only called during RPM suspend. All users of the userfault_list
 836	 * must be holding an RPM wakeref to ensure that this can not
 837	 * run concurrently with themselves (and use the struct_mutex for
 838	 * protection between themselves).
 839	 */
 840
 841	list_for_each_entry_safe(obj, on,
 842				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
 843		__i915_gem_object_release_mmap_gtt(obj);
 844
 845	list_for_each_entry_safe(obj, on,
 846				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
 847		i915_gem_object_runtime_pm_release_mmap_offset(obj);
 848
 849	/*
 850	 * The fence will be lost when the device powers down. If any were
 851	 * in use by hardware (i.e. they are pinned), we should not be powering
 852	 * down! All other fences will be reacquired by the user upon waking.
 853	 */
 854	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
 855		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
 856
 857		/*
 858		 * Ideally we want to assert that the fence register is not
 859		 * live at this point (i.e. that no piece of code will be
 860		 * trying to write through fence + GTT, as that both violates
 861		 * our tracking of activity and associated locking/barriers,
 862		 * but also is illegal given that the hw is powered down).
 863		 *
 864		 * Previously we used reg->pin_count as a "liveness" indicator.
 865		 * That is not sufficient, and we need a more fine-grained
 866		 * tool if we want to have a sanity check here.
 867		 */
 868
 869		if (!reg->vma)
 870			continue;
 871
 872		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 873		reg->dirty = true;
 874	}
 875}
 876
 877static void discard_ggtt_vma(struct i915_vma *vma)
 878{
 879	struct drm_i915_gem_object *obj = vma->obj;
 880
 881	spin_lock(&obj->vma.lock);
 882	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 883		rb_erase(&vma->obj_node, &obj->vma.tree);
 884		RB_CLEAR_NODE(&vma->obj_node);
 885	}
 886	spin_unlock(&obj->vma.lock);
 887}
 888
 889struct i915_vma *
 890i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 891			    struct i915_gem_ww_ctx *ww,
 892			    const struct i915_gtt_view *view,
 893			    u64 size, u64 alignment, u64 flags)
 894{
 895	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 896	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 897	struct i915_vma *vma;
 898	int ret;
 899
 900	GEM_WARN_ON(!ww);
 901
 902	if (flags & PIN_MAPPABLE &&
 903	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
 904		/*
 905		 * If the required space is larger than the available
 906		 * aperture, we will not able to find a slot for the
 907		 * object and unbinding the object now will be in
 908		 * vain. Worse, doing so may cause us to ping-pong
 909		 * the object in and out of the Global GTT and
 910		 * waste a lot of cycles under the mutex.
 911		 */
 912		if (obj->base.size > ggtt->mappable_end)
 913			return ERR_PTR(-E2BIG);
 914
 915		/*
 916		 * If NONBLOCK is set the caller is optimistically
 917		 * trying to cache the full object within the mappable
 918		 * aperture, and *must* have a fallback in place for
 919		 * situations where we cannot bind the object. We
 920		 * can be a little more lax here and use the fallback
 921		 * more often to avoid costly migrations of ourselves
 922		 * and other objects within the aperture.
 923		 *
 924		 * Half-the-aperture is used as a simple heuristic.
 925		 * More interesting would to do search for a free
 926		 * block prior to making the commitment to unbind.
 927		 * That caters for the self-harm case, and with a
 928		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 929		 * we could try to minimise harm to others.
 930		 */
 931		if (flags & PIN_NONBLOCK &&
 932		    obj->base.size > ggtt->mappable_end / 2)
 933			return ERR_PTR(-ENOSPC);
 934	}
 935
 936new_vma:
 937	vma = i915_vma_instance(obj, &ggtt->vm, view);
 938	if (IS_ERR(vma))
 939		return vma;
 940
 941	if (i915_vma_misplaced(vma, size, alignment, flags)) {
 942		if (flags & PIN_NONBLOCK) {
 943			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 944				return ERR_PTR(-ENOSPC);
 945
 946			/*
 947			 * If this misplaced vma is too big (i.e, at-least
 948			 * half the size of aperture) or hasn't been pinned
 949			 * mappable before, we ignore the misplacement when
 950			 * PIN_NONBLOCK is set in order to avoid the ping-pong
 951			 * issue described above. In other words, we try to
 952			 * avoid the costly operation of unbinding this vma
 953			 * from the GGTT and rebinding it back because there
 954			 * may not be enough space for this vma in the aperture.
 955			 */
 956			if (flags & PIN_MAPPABLE &&
 957			    (vma->fence_size > ggtt->mappable_end / 2 ||
 958			    !i915_vma_is_map_and_fenceable(vma)))
 959				return ERR_PTR(-ENOSPC);
 960		}
 961
 962		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
 963			discard_ggtt_vma(vma);
 964			goto new_vma;
 965		}
 966
 967		ret = i915_vma_unbind(vma);
 968		if (ret)
 969			return ERR_PTR(ret);
 970	}
 971
 972	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
 973
 974	if (ret)
 975		return ERR_PTR(ret);
 976
 977	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
 978		mutex_lock(&ggtt->vm.mutex);
 979		i915_vma_revoke_fence(vma);
 980		mutex_unlock(&ggtt->vm.mutex);
 981	}
 982
 983	ret = i915_vma_wait_for_bind(vma);
 984	if (ret) {
 985		i915_vma_unpin(vma);
 986		return ERR_PTR(ret);
 987	}
 988
 989	return vma;
 990}
 991
 992struct i915_vma * __must_check
 993i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
 994			 const struct i915_gtt_view *view,
 995			 u64 size, u64 alignment, u64 flags)
 996{
 997	struct i915_gem_ww_ctx ww;
 998	struct i915_vma *ret;
 999	int err;
1000
1001	for_i915_gem_ww(&ww, err, true) {
1002		err = i915_gem_object_lock(obj, &ww);
1003		if (err)
1004			continue;
1005
1006		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1007						  alignment, flags);
1008		if (IS_ERR(ret))
1009			err = PTR_ERR(ret);
1010	}
1011
1012	return err ? ERR_PTR(err) : ret;
1013}
1014
1015int
1016i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1017		       struct drm_file *file_priv)
1018{
1019	struct drm_i915_private *i915 = to_i915(dev);
1020	struct drm_i915_gem_madvise *args = data;
1021	struct drm_i915_gem_object *obj;
1022	int err;
1023
1024	switch (args->madv) {
1025	case I915_MADV_DONTNEED:
1026	case I915_MADV_WILLNEED:
1027	    break;
1028	default:
1029	    return -EINVAL;
1030	}
1031
1032	obj = i915_gem_object_lookup(file_priv, args->handle);
1033	if (!obj)
1034		return -ENOENT;
1035
1036	err = i915_gem_object_lock_interruptible(obj, NULL);
1037	if (err)
1038		goto out;
1039
1040	if (i915_gem_object_has_pages(obj) &&
1041	    i915_gem_object_is_tiled(obj) &&
1042	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1043		if (obj->mm.madv == I915_MADV_WILLNEED) {
1044			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1045			i915_gem_object_clear_tiling_quirk(obj);
1046			i915_gem_object_make_shrinkable(obj);
1047		}
1048		if (args->madv == I915_MADV_WILLNEED) {
1049			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1050			i915_gem_object_make_unshrinkable(obj);
1051			i915_gem_object_set_tiling_quirk(obj);
1052		}
1053	}
1054
1055	if (obj->mm.madv != __I915_MADV_PURGED) {
1056		obj->mm.madv = args->madv;
1057		if (obj->ops->adjust_lru)
1058			obj->ops->adjust_lru(obj);
1059	}
1060
1061	if (i915_gem_object_has_pages(obj) ||
1062	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1063		unsigned long flags;
1064
1065		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1066		if (!list_empty(&obj->mm.link)) {
1067			struct list_head *list;
1068
1069			if (obj->mm.madv != I915_MADV_WILLNEED)
1070				list = &i915->mm.purge_list;
1071			else
1072				list = &i915->mm.shrink_list;
1073			list_move_tail(&obj->mm.link, list);
1074
1075		}
1076		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1077	}
1078
1079	/* if the object is no longer attached, discard its backing storage */
1080	if (obj->mm.madv == I915_MADV_DONTNEED &&
1081	    !i915_gem_object_has_pages(obj))
1082		i915_gem_object_truncate(obj);
1083
1084	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1085
1086	i915_gem_object_unlock(obj);
1087out:
1088	i915_gem_object_put(obj);
1089	return err;
1090}
1091
1092/*
1093 * A single pass should suffice to release all the freed objects (along most
1094 * call paths), but be a little more paranoid in that freeing the objects does
1095 * take a little amount of time, during which the rcu callbacks could have added
1096 * new objects into the freed list, and armed the work again.
1097 */
1098void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1099{
1100	while (atomic_read(&i915->mm.free_count)) {
1101		flush_work(&i915->mm.free_work);
1102		flush_delayed_work(&i915->bdev.wq);
1103		rcu_barrier();
1104	}
1105}
1106
1107/*
1108 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1109 * have workers that are armed by RCU and then rearm themselves in their
1110 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1111 * waiting for the RCU grace period so that we catch work queued via RCU from
1112 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1113 * result, we make an assumption that we only don't require more than 3 passes
1114 * to catch all _recursive_ RCU delayed work.
1115 */
1116void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1117{
1118	int i;
1119
1120	for (i = 0; i < 3; i++) {
1121		flush_workqueue(i915->wq);
1122		rcu_barrier();
1123		i915_gem_drain_freed_objects(i915);
1124	}
1125
1126	drain_workqueue(i915->wq);
1127}
1128
1129int i915_gem_init(struct drm_i915_private *dev_priv)
1130{
1131	struct intel_gt *gt;
1132	unsigned int i;
1133	int ret;
1134
 
 
 
 
 
 
 
 
 
 
 
 
 
1135	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1136	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1137		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1138
1139	ret = i915_gem_init_userptr(dev_priv);
1140	if (ret)
1141		return ret;
1142
1143	for_each_gt(gt, dev_priv, i) {
1144		intel_uc_fetch_firmwares(&gt->uc);
1145		intel_wopcm_init(&gt->wopcm);
 
 
1146	}
1147
1148	ret = i915_init_ggtt(dev_priv);
1149	if (ret) {
1150		GEM_BUG_ON(ret == -EIO);
1151		goto err_unlock;
1152	}
1153
1154	/*
1155	 * Despite its name intel_init_clock_gating applies both display
1156	 * clock gating workarounds; GT mmio workarounds and the occasional
1157	 * GT power context workaround. Worse, sometimes it includes a context
1158	 * register workaround which we need to apply before we record the
1159	 * default HW state for all contexts.
1160	 *
1161	 * FIXME: break up the workarounds and apply them at the right time!
1162	 */
1163	intel_init_clock_gating(dev_priv);
1164
1165	for_each_gt(gt, dev_priv, i) {
1166		ret = intel_gt_init(gt);
1167		if (ret)
1168			goto err_unlock;
1169	}
1170
 
 
 
 
 
 
 
1171	return 0;
1172
1173	/*
1174	 * Unwinding is complicated by that we want to handle -EIO to mean
1175	 * disable GPU submission but keep KMS alive. We want to mark the
1176	 * HW as irrevisibly wedged, but keep enough state around that the
1177	 * driver doesn't explode during runtime.
1178	 */
1179err_unlock:
1180	i915_gem_drain_workqueue(dev_priv);
1181
1182	if (ret != -EIO) {
1183		for_each_gt(gt, dev_priv, i) {
1184			intel_gt_driver_remove(gt);
1185			intel_gt_driver_release(gt);
1186			intel_uc_cleanup_firmwares(&gt->uc);
1187		}
1188	}
1189
1190	if (ret == -EIO) {
1191		/*
1192		 * Allow engines or uC initialisation to fail by marking the GPU
1193		 * as wedged. But we only want to do this when the GPU is angry,
1194		 * for all other failure, such as an allocation failure, bail.
1195		 */
1196		for_each_gt(gt, dev_priv, i) {
1197			if (!intel_gt_is_wedged(gt)) {
1198				i915_probe_error(dev_priv,
1199						 "Failed to initialize GPU, declaring it wedged!\n");
1200				intel_gt_set_wedged(gt);
1201			}
1202		}
1203
1204		/* Minimal basic recovery for KMS */
1205		ret = i915_ggtt_enable_hw(dev_priv);
1206		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1207		intel_init_clock_gating(dev_priv);
1208	}
1209
1210	i915_gem_drain_freed_objects(dev_priv);
1211
1212	return ret;
1213}
1214
1215void i915_gem_driver_register(struct drm_i915_private *i915)
1216{
1217	i915_gem_driver_register__shrinker(i915);
1218
1219	intel_engines_driver_register(i915);
1220}
1221
1222void i915_gem_driver_unregister(struct drm_i915_private *i915)
1223{
1224	i915_gem_driver_unregister__shrinker(i915);
1225}
1226
1227void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1228{
1229	struct intel_gt *gt;
1230	unsigned int i;
1231
1232	i915_gem_suspend_late(dev_priv);
1233	for_each_gt(gt, dev_priv, i)
1234		intel_gt_driver_remove(gt);
1235	dev_priv->uabi_engines = RB_ROOT;
1236
1237	/* Flush any outstanding unpin_work. */
1238	i915_gem_drain_workqueue(dev_priv);
1239}
1240
1241void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1242{
1243	struct intel_gt *gt;
1244	unsigned int i;
1245
1246	for_each_gt(gt, dev_priv, i) {
1247		intel_gt_driver_release(gt);
1248		intel_uc_cleanup_firmwares(&gt->uc);
1249	}
1250
1251	/* Flush any outstanding work, including i915_gem_context.release_work. */
1252	i915_gem_drain_workqueue(dev_priv);
1253
1254	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1255}
1256
1257static void i915_gem_init__mm(struct drm_i915_private *i915)
1258{
1259	spin_lock_init(&i915->mm.obj_lock);
1260
1261	init_llist_head(&i915->mm.free_list);
1262
1263	INIT_LIST_HEAD(&i915->mm.purge_list);
1264	INIT_LIST_HEAD(&i915->mm.shrink_list);
1265
1266	i915_gem_init__objects(i915);
1267}
1268
1269void i915_gem_init_early(struct drm_i915_private *dev_priv)
1270{
1271	i915_gem_init__mm(dev_priv);
1272	i915_gem_init__contexts(dev_priv);
1273
1274	spin_lock_init(&dev_priv->display.fb_tracking.lock);
1275}
1276
1277void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1278{
1279	i915_gem_drain_workqueue(dev_priv);
1280	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1281	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1282	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1283}
1284
1285int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1286{
1287	struct drm_i915_file_private *file_priv;
1288	struct i915_drm_client *client;
1289	int ret = -ENOMEM;
1290
1291	drm_dbg(&i915->drm, "\n");
1292
1293	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1294	if (!file_priv)
1295		goto err_alloc;
1296
1297	client = i915_drm_client_add(&i915->clients);
1298	if (IS_ERR(client)) {
1299		ret = PTR_ERR(client);
1300		goto err_client;
1301	}
1302
1303	file->driver_priv = file_priv;
1304	file_priv->dev_priv = i915;
1305	file_priv->file = file;
1306	file_priv->client = client;
1307
1308	file_priv->bsd_engine = -1;
1309	file_priv->hang_timestamp = jiffies;
1310
1311	ret = i915_gem_context_open(i915, file);
1312	if (ret)
1313		goto err_context;
1314
1315	return 0;
1316
1317err_context:
1318	i915_drm_client_put(client);
1319err_client:
1320	kfree(file_priv);
1321err_alloc:
1322	return ret;
1323}
1324
1325#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1326#include "selftests/mock_gem_device.c"
1327#include "selftests/i915_gem.c"
1328#endif