Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <linux/dma-fence-array.h>
  29#include <linux/kthread.h>
  30#include <linux/dma-resv.h>
  31#include <linux/shmem_fs.h>
  32#include <linux/slab.h>
  33#include <linux/stop_machine.h>
  34#include <linux/swap.h>
  35#include <linux/pci.h>
  36#include <linux/dma-buf.h>
  37#include <linux/mman.h>
  38
  39#include <drm/drm_cache.h>
  40#include <drm/drm_vma_manager.h>
  41
 
 
  42#include "gem/i915_gem_clflush.h"
  43#include "gem/i915_gem_context.h"
  44#include "gem/i915_gem_ioctls.h"
  45#include "gem/i915_gem_mman.h"
  46#include "gem/i915_gem_object_frontbuffer.h"
  47#include "gem/i915_gem_pm.h"
  48#include "gem/i915_gem_region.h"
 
  49#include "gt/intel_engine_user.h"
  50#include "gt/intel_gt.h"
  51#include "gt/intel_gt_pm.h"
  52#include "gt/intel_workarounds.h"
  53
  54#include "i915_drv.h"
  55#include "i915_file_private.h"
  56#include "i915_trace.h"
  57#include "i915_vgpu.h"
  58#include "intel_clock_gating.h"
  59
  60static int
  61insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  62{
  63	int err;
  64
  65	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  66	if (err)
  67		return err;
  68
  69	memset(node, 0, sizeof(*node));
  70	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  71					  size, 0, I915_COLOR_UNEVICTABLE,
  72					  0, ggtt->mappable_end,
  73					  DRM_MM_INSERT_LOW);
  74
  75	mutex_unlock(&ggtt->vm.mutex);
  76
  77	return err;
  78}
  79
  80static void
  81remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  82{
  83	mutex_lock(&ggtt->vm.mutex);
  84	drm_mm_remove_node(node);
  85	mutex_unlock(&ggtt->vm.mutex);
  86}
  87
  88int
  89i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  90			    struct drm_file *file)
  91{
  92	struct drm_i915_private *i915 = to_i915(dev);
  93	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
  94	struct drm_i915_gem_get_aperture *args = data;
  95	struct i915_vma *vma;
  96	u64 pinned;
  97
  98	if (mutex_lock_interruptible(&ggtt->vm.mutex))
  99		return -EINTR;
 100
 101	pinned = ggtt->vm.reserved;
 102	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 103		if (i915_vma_is_pinned(vma))
 104			pinned += vma->node.size;
 105
 106	mutex_unlock(&ggtt->vm.mutex);
 107
 108	args->aper_size = ggtt->vm.total;
 109	args->aper_available_size = args->aper_size - pinned;
 110
 111	return 0;
 112}
 113
 114int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 115			   unsigned long flags)
 116{
 117	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 118	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
 119	LIST_HEAD(still_in_list);
 120	intel_wakeref_t wakeref;
 121	struct i915_vma *vma;
 122	int ret;
 123
 124	assert_object_held(obj);
 125
 126	if (list_empty(&obj->vma.list))
 127		return 0;
 128
 129	/*
 130	 * As some machines use ACPI to handle runtime-resume callbacks, and
 131	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 132	 * as they are required by the shrinker. Ergo, we wake the device up
 133	 * first just in case.
 134	 */
 135	wakeref = intel_runtime_pm_get(rpm);
 136
 137try_again:
 138	ret = 0;
 139	spin_lock(&obj->vma.lock);
 140	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 141						       struct i915_vma,
 142						       obj_link))) {
 143		list_move_tail(&vma->obj_link, &still_in_list);
 144		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 145			continue;
 146
 147		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 148			ret = -EBUSY;
 149			break;
 150		}
 151
 152		/*
 153		 * Requiring the vm destructor to take the object lock
 154		 * before destroying a vma would help us eliminate the
 155		 * i915_vm_tryget() here, AND thus also the barrier stuff
 156		 * at the end. That's an easy fix, but sleeping locks in
 157		 * a kthread should generally be avoided.
 158		 */
 159		ret = -EAGAIN;
 160		if (!i915_vm_tryget(vma->vm))
 161			break;
 162
 163		spin_unlock(&obj->vma.lock);
 164
 165		/*
 166		 * Since i915_vma_parked() takes the object lock
 167		 * before vma destruction, it won't race us here,
 168		 * and destroy the vma from under us.
 169		 */
 170
 171		ret = -EBUSY;
 172		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
 173			assert_object_held(vma->obj);
 174			ret = i915_vma_unbind_async(vma, vm_trylock);
 175		}
 176
 177		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 178				      !i915_vma_is_active(vma))) {
 179			if (vm_trylock) {
 180				if (mutex_trylock(&vma->vm->mutex)) {
 181					ret = __i915_vma_unbind(vma);
 182					mutex_unlock(&vma->vm->mutex);
 183				}
 184			} else {
 185				ret = i915_vma_unbind(vma);
 186			}
 187		}
 188
 189		i915_vm_put(vma->vm);
 190		spin_lock(&obj->vma.lock);
 191	}
 192	list_splice_init(&still_in_list, &obj->vma.list);
 193	spin_unlock(&obj->vma.lock);
 194
 195	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 196		rcu_barrier(); /* flush the i915_vm_release() */
 197		goto try_again;
 198	}
 199
 200	intel_runtime_pm_put(rpm, wakeref);
 201
 202	return ret;
 203}
 204
 205static int
 206shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 207	    bool needs_clflush)
 208{
 209	char *vaddr;
 210	int ret;
 211
 212	vaddr = kmap(page);
 213
 214	if (needs_clflush)
 215		drm_clflush_virt_range(vaddr + offset, len);
 216
 217	ret = __copy_to_user(user_data, vaddr + offset, len);
 218
 219	kunmap(page);
 220
 221	return ret ? -EFAULT : 0;
 222}
 223
 224static int
 225i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 226		     struct drm_i915_gem_pread *args)
 227{
 228	unsigned int needs_clflush;
 229	char __user *user_data;
 230	unsigned long offset;
 231	pgoff_t idx;
 232	u64 remain;
 233	int ret;
 234
 235	ret = i915_gem_object_lock_interruptible(obj, NULL);
 236	if (ret)
 237		return ret;
 238
 239	ret = i915_gem_object_pin_pages(obj);
 240	if (ret)
 241		goto err_unlock;
 242
 243	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 244	if (ret)
 245		goto err_unpin;
 246
 247	i915_gem_object_finish_access(obj);
 248	i915_gem_object_unlock(obj);
 249
 250	remain = args->size;
 251	user_data = u64_to_user_ptr(args->data_ptr);
 252	offset = offset_in_page(args->offset);
 253	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 254		struct page *page = i915_gem_object_get_page(obj, idx);
 255		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 256
 257		ret = shmem_pread(page, offset, length, user_data,
 258				  needs_clflush);
 259		if (ret)
 260			break;
 261
 262		remain -= length;
 263		user_data += length;
 264		offset = 0;
 265	}
 266
 267	i915_gem_object_unpin_pages(obj);
 268	return ret;
 269
 270err_unpin:
 271	i915_gem_object_unpin_pages(obj);
 272err_unlock:
 273	i915_gem_object_unlock(obj);
 274	return ret;
 275}
 276
 277static inline bool
 278gtt_user_read(struct io_mapping *mapping,
 279	      loff_t base, int offset,
 280	      char __user *user_data, int length)
 281{
 282	void __iomem *vaddr;
 283	unsigned long unwritten;
 284
 285	/* We can use the cpu mem copy function because this is X86. */
 286	vaddr = io_mapping_map_atomic_wc(mapping, base);
 287	unwritten = __copy_to_user_inatomic(user_data,
 288					    (void __force *)vaddr + offset,
 289					    length);
 290	io_mapping_unmap_atomic(vaddr);
 291	if (unwritten) {
 292		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 293		unwritten = copy_to_user(user_data,
 294					 (void __force *)vaddr + offset,
 295					 length);
 296		io_mapping_unmap(vaddr);
 297	}
 298	return unwritten;
 299}
 300
 301static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
 302					     struct drm_mm_node *node,
 303					     bool write)
 304{
 305	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 306	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 307	struct i915_vma *vma;
 308	struct i915_gem_ww_ctx ww;
 309	int ret;
 310
 311	i915_gem_ww_ctx_init(&ww, true);
 312retry:
 313	vma = ERR_PTR(-ENODEV);
 314	ret = i915_gem_object_lock(obj, &ww);
 315	if (ret)
 316		goto err_ww;
 317
 318	ret = i915_gem_object_set_to_gtt_domain(obj, write);
 319	if (ret)
 320		goto err_ww;
 321
 322	if (!i915_gem_object_is_tiled(obj))
 323		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
 324						  PIN_MAPPABLE |
 325						  PIN_NONBLOCK /* NOWARN */ |
 326						  PIN_NOEVICT);
 327	if (vma == ERR_PTR(-EDEADLK)) {
 328		ret = -EDEADLK;
 329		goto err_ww;
 330	} else if (!IS_ERR(vma)) {
 331		node->start = i915_ggtt_offset(vma);
 332		node->flags = 0;
 333	} else {
 334		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
 335		if (ret)
 336			goto err_ww;
 337		GEM_BUG_ON(!drm_mm_node_allocated(node));
 338		vma = NULL;
 339	}
 340
 341	ret = i915_gem_object_pin_pages(obj);
 342	if (ret) {
 343		if (drm_mm_node_allocated(node)) {
 344			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 345			remove_mappable_node(ggtt, node);
 346		} else {
 347			i915_vma_unpin(vma);
 348		}
 349	}
 350
 351err_ww:
 352	if (ret == -EDEADLK) {
 353		ret = i915_gem_ww_ctx_backoff(&ww);
 354		if (!ret)
 355			goto retry;
 356	}
 357	i915_gem_ww_ctx_fini(&ww);
 358
 359	return ret ? ERR_PTR(ret) : vma;
 360}
 361
 362static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
 363				 struct drm_mm_node *node,
 364				 struct i915_vma *vma)
 365{
 366	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 367	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 368
 369	i915_gem_object_unpin_pages(obj);
 370	if (drm_mm_node_allocated(node)) {
 371		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 372		remove_mappable_node(ggtt, node);
 373	} else {
 374		i915_vma_unpin(vma);
 375	}
 376}
 377
 378static int
 379i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 380		   const struct drm_i915_gem_pread *args)
 381{
 382	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 383	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 384	unsigned long remain, offset;
 385	intel_wakeref_t wakeref;
 386	struct drm_mm_node node;
 387	void __user *user_data;
 388	struct i915_vma *vma;
 389	int ret = 0;
 390
 391	if (overflows_type(args->size, remain) ||
 392	    overflows_type(args->offset, offset))
 393		return -EINVAL;
 394
 395	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 396
 397	vma = i915_gem_gtt_prepare(obj, &node, false);
 398	if (IS_ERR(vma)) {
 399		ret = PTR_ERR(vma);
 400		goto out_rpm;
 401	}
 402
 403	user_data = u64_to_user_ptr(args->data_ptr);
 404	remain = args->size;
 405	offset = args->offset;
 406
 407	while (remain > 0) {
 408		/* Operation in this page
 409		 *
 410		 * page_base = page offset within aperture
 411		 * page_offset = offset within page
 412		 * page_length = bytes to copy for this page
 413		 */
 414		u32 page_base = node.start;
 415		unsigned page_offset = offset_in_page(offset);
 416		unsigned page_length = PAGE_SIZE - page_offset;
 417		page_length = remain < page_length ? remain : page_length;
 418		if (drm_mm_node_allocated(&node)) {
 419			ggtt->vm.insert_page(&ggtt->vm,
 420					     i915_gem_object_get_dma_address(obj,
 421									     offset >> PAGE_SHIFT),
 422					     node.start,
 423					     i915_gem_get_pat_index(i915,
 424								    I915_CACHE_NONE), 0);
 425		} else {
 426			page_base += offset & PAGE_MASK;
 427		}
 428
 429		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 430				  user_data, page_length)) {
 431			ret = -EFAULT;
 432			break;
 433		}
 434
 435		remain -= page_length;
 436		user_data += page_length;
 437		offset += page_length;
 438	}
 439
 440	i915_gem_gtt_cleanup(obj, &node, vma);
 441out_rpm:
 442	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 443	return ret;
 444}
 445
 446/**
 447 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
 448 * @dev: drm device pointer
 449 * @data: ioctl data blob
 450 * @file: drm file pointer
 451 *
 452 * On error, the contents of *data are undefined.
 453 */
 454int
 455i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 456		     struct drm_file *file)
 457{
 458	struct drm_i915_private *i915 = to_i915(dev);
 459	struct drm_i915_gem_pread *args = data;
 460	struct drm_i915_gem_object *obj;
 461	int ret;
 462
 463	/* PREAD is disallowed for all platforms after TGL-LP.  This also
 464	 * covers all platforms with local memory.
 465	 */
 466	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 467		return -EOPNOTSUPP;
 468
 469	if (args->size == 0)
 470		return 0;
 471
 472	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 473		       args->size))
 474		return -EFAULT;
 475
 476	obj = i915_gem_object_lookup(file, args->handle);
 477	if (!obj)
 478		return -ENOENT;
 479
 480	/* Bounds check source.  */
 481	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 482		ret = -EINVAL;
 483		goto out;
 484	}
 485
 486	trace_i915_gem_object_pread(obj, args->offset, args->size);
 487	ret = -ENODEV;
 488	if (obj->ops->pread)
 489		ret = obj->ops->pread(obj, args);
 490	if (ret != -ENODEV)
 491		goto out;
 492
 493	ret = i915_gem_object_wait(obj,
 494				   I915_WAIT_INTERRUPTIBLE,
 495				   MAX_SCHEDULE_TIMEOUT);
 496	if (ret)
 497		goto out;
 498
 499	ret = i915_gem_shmem_pread(obj, args);
 500	if (ret == -EFAULT || ret == -ENODEV)
 501		ret = i915_gem_gtt_pread(obj, args);
 502
 503out:
 504	i915_gem_object_put(obj);
 505	return ret;
 506}
 507
 508/* This is the fast write path which cannot handle
 509 * page faults in the source data
 510 */
 511
 512static inline bool
 513ggtt_write(struct io_mapping *mapping,
 514	   loff_t base, int offset,
 515	   char __user *user_data, int length)
 516{
 517	void __iomem *vaddr;
 518	unsigned long unwritten;
 519
 520	/* We can use the cpu mem copy function because this is X86. */
 521	vaddr = io_mapping_map_atomic_wc(mapping, base);
 522	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 523						      user_data, length);
 524	io_mapping_unmap_atomic(vaddr);
 525	if (unwritten) {
 526		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 527		unwritten = copy_from_user((void __force *)vaddr + offset,
 528					   user_data, length);
 529		io_mapping_unmap(vaddr);
 530	}
 531
 532	return unwritten;
 533}
 534
 535/**
 536 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
 537 * user into the GTT, uncached.
 538 * @obj: i915 GEM object
 539 * @args: pwrite arguments structure
 540 */
 541static int
 542i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 543			 const struct drm_i915_gem_pwrite *args)
 544{
 545	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 546	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 547	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 548	unsigned long remain, offset;
 549	intel_wakeref_t wakeref;
 550	struct drm_mm_node node;
 551	struct i915_vma *vma;
 552	void __user *user_data;
 553	int ret = 0;
 554
 555	if (overflows_type(args->size, remain) ||
 556	    overflows_type(args->offset, offset))
 557		return -EINVAL;
 558
 559	if (i915_gem_object_has_struct_page(obj)) {
 560		/*
 561		 * Avoid waking the device up if we can fallback, as
 562		 * waking/resuming is very slow (worst-case 10-100 ms
 563		 * depending on PCI sleeps and our own resume time).
 564		 * This easily dwarfs any performance advantage from
 565		 * using the cache bypass of indirect GGTT access.
 566		 */
 567		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 568		if (!wakeref)
 569			return -EFAULT;
 570	} else {
 571		/* No backing pages, no fallback, we must force GGTT access */
 572		wakeref = intel_runtime_pm_get(rpm);
 573	}
 574
 575	vma = i915_gem_gtt_prepare(obj, &node, true);
 576	if (IS_ERR(vma)) {
 577		ret = PTR_ERR(vma);
 578		goto out_rpm;
 579	}
 580
 581	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 582
 583	user_data = u64_to_user_ptr(args->data_ptr);
 584	offset = args->offset;
 585	remain = args->size;
 586	while (remain) {
 587		/* Operation in this page
 588		 *
 589		 * page_base = page offset within aperture
 590		 * page_offset = offset within page
 591		 * page_length = bytes to copy for this page
 592		 */
 593		u32 page_base = node.start;
 594		unsigned int page_offset = offset_in_page(offset);
 595		unsigned int page_length = PAGE_SIZE - page_offset;
 596		page_length = remain < page_length ? remain : page_length;
 597		if (drm_mm_node_allocated(&node)) {
 598			/* flush the write before we modify the GGTT */
 599			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 600			ggtt->vm.insert_page(&ggtt->vm,
 601					     i915_gem_object_get_dma_address(obj,
 602									     offset >> PAGE_SHIFT),
 603					     node.start,
 604					     i915_gem_get_pat_index(i915,
 605								    I915_CACHE_NONE), 0);
 606			wmb(); /* flush modifications to the GGTT (insert_page) */
 607		} else {
 608			page_base += offset & PAGE_MASK;
 609		}
 610		/* If we get a fault while copying data, then (presumably) our
 611		 * source page isn't available.  Return the error and we'll
 612		 * retry in the slow path.
 613		 * If the object is non-shmem backed, we retry again with the
 614		 * path that handles page fault.
 615		 */
 616		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 617			       user_data, page_length)) {
 618			ret = -EFAULT;
 619			break;
 620		}
 621
 622		remain -= page_length;
 623		user_data += page_length;
 624		offset += page_length;
 625	}
 626
 627	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 628	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 629
 630	i915_gem_gtt_cleanup(obj, &node, vma);
 631out_rpm:
 632	intel_runtime_pm_put(rpm, wakeref);
 633	return ret;
 634}
 635
 636/* Per-page copy function for the shmem pwrite fastpath.
 637 * Flushes invalid cachelines before writing to the target if
 638 * needs_clflush_before is set and flushes out any written cachelines after
 639 * writing if needs_clflush is set.
 640 */
 641static int
 642shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 643	     bool needs_clflush_before,
 644	     bool needs_clflush_after)
 645{
 646	char *vaddr;
 647	int ret;
 648
 649	vaddr = kmap(page);
 650
 651	if (needs_clflush_before)
 652		drm_clflush_virt_range(vaddr + offset, len);
 653
 654	ret = __copy_from_user(vaddr + offset, user_data, len);
 655	if (!ret && needs_clflush_after)
 656		drm_clflush_virt_range(vaddr + offset, len);
 657
 658	kunmap(page);
 659
 660	return ret ? -EFAULT : 0;
 661}
 662
 663static int
 664i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 665		      const struct drm_i915_gem_pwrite *args)
 666{
 667	unsigned int partial_cacheline_write;
 668	unsigned int needs_clflush;
 669	void __user *user_data;
 670	unsigned long offset;
 671	pgoff_t idx;
 672	u64 remain;
 673	int ret;
 674
 675	ret = i915_gem_object_lock_interruptible(obj, NULL);
 676	if (ret)
 677		return ret;
 678
 679	ret = i915_gem_object_pin_pages(obj);
 680	if (ret)
 681		goto err_unlock;
 682
 683	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 684	if (ret)
 685		goto err_unpin;
 686
 687	i915_gem_object_finish_access(obj);
 688	i915_gem_object_unlock(obj);
 689
 690	/* If we don't overwrite a cacheline completely we need to be
 691	 * careful to have up-to-date data by first clflushing. Don't
 692	 * overcomplicate things and flush the entire patch.
 693	 */
 694	partial_cacheline_write = 0;
 695	if (needs_clflush & CLFLUSH_BEFORE)
 696		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 697
 698	user_data = u64_to_user_ptr(args->data_ptr);
 699	remain = args->size;
 700	offset = offset_in_page(args->offset);
 701	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 702		struct page *page = i915_gem_object_get_page(obj, idx);
 703		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 704
 705		ret = shmem_pwrite(page, offset, length, user_data,
 706				   (offset | length) & partial_cacheline_write,
 707				   needs_clflush & CLFLUSH_AFTER);
 708		if (ret)
 709			break;
 710
 711		remain -= length;
 712		user_data += length;
 713		offset = 0;
 714	}
 715
 716	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 717
 718	i915_gem_object_unpin_pages(obj);
 719	return ret;
 720
 721err_unpin:
 722	i915_gem_object_unpin_pages(obj);
 723err_unlock:
 724	i915_gem_object_unlock(obj);
 725	return ret;
 726}
 727
 728/**
 729 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
 730 * @dev: drm device
 731 * @data: ioctl data blob
 732 * @file: drm file
 733 *
 734 * On error, the contents of the buffer that were to be modified are undefined.
 735 */
 736int
 737i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 738		      struct drm_file *file)
 739{
 740	struct drm_i915_private *i915 = to_i915(dev);
 741	struct drm_i915_gem_pwrite *args = data;
 742	struct drm_i915_gem_object *obj;
 743	int ret;
 744
 745	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
 746	 * covers all platforms with local memory.
 747	 */
 748	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 749		return -EOPNOTSUPP;
 750
 751	if (args->size == 0)
 752		return 0;
 753
 754	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 755		return -EFAULT;
 756
 757	obj = i915_gem_object_lookup(file, args->handle);
 758	if (!obj)
 759		return -ENOENT;
 760
 761	/* Bounds check destination. */
 762	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 763		ret = -EINVAL;
 764		goto err;
 765	}
 766
 767	/* Writes not allowed into this read-only object */
 768	if (i915_gem_object_is_readonly(obj)) {
 769		ret = -EINVAL;
 770		goto err;
 771	}
 772
 773	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 774
 775	ret = -ENODEV;
 776	if (obj->ops->pwrite)
 777		ret = obj->ops->pwrite(obj, args);
 778	if (ret != -ENODEV)
 779		goto err;
 780
 781	ret = i915_gem_object_wait(obj,
 782				   I915_WAIT_INTERRUPTIBLE |
 783				   I915_WAIT_ALL,
 784				   MAX_SCHEDULE_TIMEOUT);
 785	if (ret)
 786		goto err;
 787
 788	ret = -EFAULT;
 789	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 790	 * it would end up going through the fenced access, and we'll get
 791	 * different detiling behavior between reading and writing.
 792	 * pread/pwrite currently are reading and writing from the CPU
 793	 * perspective, requiring manual detiling by the client.
 794	 */
 795	if (!i915_gem_object_has_struct_page(obj) ||
 796	    i915_gem_cpu_write_needs_clflush(obj))
 797		/* Note that the gtt paths might fail with non-page-backed user
 798		 * pointers (e.g. gtt mappings when moving data between
 799		 * textures). Fallback to the shmem path in that case.
 800		 */
 801		ret = i915_gem_gtt_pwrite_fast(obj, args);
 802
 803	if (ret == -EFAULT || ret == -ENOSPC) {
 804		if (i915_gem_object_has_struct_page(obj))
 805			ret = i915_gem_shmem_pwrite(obj, args);
 806	}
 807
 808err:
 809	i915_gem_object_put(obj);
 810	return ret;
 811}
 812
 813/**
 814 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
 815 * @dev: drm device
 816 * @data: ioctl data blob
 817 * @file: drm file
 818 */
 819int
 820i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 821			 struct drm_file *file)
 822{
 823	struct drm_i915_gem_sw_finish *args = data;
 824	struct drm_i915_gem_object *obj;
 825
 826	obj = i915_gem_object_lookup(file, args->handle);
 827	if (!obj)
 828		return -ENOENT;
 829
 830	/*
 831	 * Proxy objects are barred from CPU access, so there is no
 832	 * need to ban sw_finish as it is a nop.
 833	 */
 834
 835	/* Pinned buffers may be scanout, so flush the cache */
 836	i915_gem_object_flush_if_display(obj);
 837	i915_gem_object_put(obj);
 838
 839	return 0;
 840}
 841
 842void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 843{
 844	struct drm_i915_gem_object *obj, *on;
 845	int i;
 846
 847	/*
 848	 * Only called during RPM suspend. All users of the userfault_list
 849	 * must be holding an RPM wakeref to ensure that this can not
 850	 * run concurrently with themselves (and use the struct_mutex for
 851	 * protection between themselves).
 852	 */
 853
 854	list_for_each_entry_safe(obj, on,
 855				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
 856		__i915_gem_object_release_mmap_gtt(obj);
 857
 858	list_for_each_entry_safe(obj, on,
 859				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
 860		i915_gem_object_runtime_pm_release_mmap_offset(obj);
 861
 862	/*
 863	 * The fence will be lost when the device powers down. If any were
 864	 * in use by hardware (i.e. they are pinned), we should not be powering
 865	 * down! All other fences will be reacquired by the user upon waking.
 866	 */
 867	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
 868		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
 869
 870		/*
 871		 * Ideally we want to assert that the fence register is not
 872		 * live at this point (i.e. that no piece of code will be
 873		 * trying to write through fence + GTT, as that both violates
 874		 * our tracking of activity and associated locking/barriers,
 875		 * but also is illegal given that the hw is powered down).
 876		 *
 877		 * Previously we used reg->pin_count as a "liveness" indicator.
 878		 * That is not sufficient, and we need a more fine-grained
 879		 * tool if we want to have a sanity check here.
 880		 */
 881
 882		if (!reg->vma)
 883			continue;
 884
 885		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 886		reg->dirty = true;
 887	}
 888}
 889
 890static void discard_ggtt_vma(struct i915_vma *vma)
 891{
 892	struct drm_i915_gem_object *obj = vma->obj;
 893
 894	spin_lock(&obj->vma.lock);
 895	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 896		rb_erase(&vma->obj_node, &obj->vma.tree);
 897		RB_CLEAR_NODE(&vma->obj_node);
 898	}
 899	spin_unlock(&obj->vma.lock);
 900}
 901
 902struct i915_vma *
 903i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 904			    struct i915_gem_ww_ctx *ww,
 905			    const struct i915_gtt_view *view,
 906			    u64 size, u64 alignment, u64 flags)
 907{
 908	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 909	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 910	struct i915_vma *vma;
 911	int ret;
 912
 913	GEM_WARN_ON(!ww);
 914
 915	if (flags & PIN_MAPPABLE &&
 916	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
 917		/*
 918		 * If the required space is larger than the available
 919		 * aperture, we will not able to find a slot for the
 920		 * object and unbinding the object now will be in
 921		 * vain. Worse, doing so may cause us to ping-pong
 922		 * the object in and out of the Global GTT and
 923		 * waste a lot of cycles under the mutex.
 924		 */
 925		if (obj->base.size > ggtt->mappable_end)
 926			return ERR_PTR(-E2BIG);
 927
 928		/*
 929		 * If NONBLOCK is set the caller is optimistically
 930		 * trying to cache the full object within the mappable
 931		 * aperture, and *must* have a fallback in place for
 932		 * situations where we cannot bind the object. We
 933		 * can be a little more lax here and use the fallback
 934		 * more often to avoid costly migrations of ourselves
 935		 * and other objects within the aperture.
 936		 *
 937		 * Half-the-aperture is used as a simple heuristic.
 938		 * More interesting would to do search for a free
 939		 * block prior to making the commitment to unbind.
 940		 * That caters for the self-harm case, and with a
 941		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 942		 * we could try to minimise harm to others.
 943		 */
 944		if (flags & PIN_NONBLOCK &&
 945		    obj->base.size > ggtt->mappable_end / 2)
 946			return ERR_PTR(-ENOSPC);
 947	}
 948
 949new_vma:
 950	vma = i915_vma_instance(obj, &ggtt->vm, view);
 951	if (IS_ERR(vma))
 952		return vma;
 953
 954	if (i915_vma_misplaced(vma, size, alignment, flags)) {
 955		if (flags & PIN_NONBLOCK) {
 956			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 957				return ERR_PTR(-ENOSPC);
 958
 959			/*
 960			 * If this misplaced vma is too big (i.e, at-least
 961			 * half the size of aperture) or hasn't been pinned
 962			 * mappable before, we ignore the misplacement when
 963			 * PIN_NONBLOCK is set in order to avoid the ping-pong
 964			 * issue described above. In other words, we try to
 965			 * avoid the costly operation of unbinding this vma
 966			 * from the GGTT and rebinding it back because there
 967			 * may not be enough space for this vma in the aperture.
 968			 */
 969			if (flags & PIN_MAPPABLE &&
 970			    (vma->fence_size > ggtt->mappable_end / 2 ||
 971			    !i915_vma_is_map_and_fenceable(vma)))
 972				return ERR_PTR(-ENOSPC);
 973		}
 974
 975		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
 976			discard_ggtt_vma(vma);
 977			goto new_vma;
 978		}
 979
 980		ret = i915_vma_unbind(vma);
 981		if (ret)
 982			return ERR_PTR(ret);
 983	}
 984
 985	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
 986
 987	if (ret)
 988		return ERR_PTR(ret);
 989
 990	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
 991		mutex_lock(&ggtt->vm.mutex);
 992		i915_vma_revoke_fence(vma);
 993		mutex_unlock(&ggtt->vm.mutex);
 994	}
 995
 996	ret = i915_vma_wait_for_bind(vma);
 997	if (ret) {
 998		i915_vma_unpin(vma);
 999		return ERR_PTR(ret);
1000	}
1001
1002	return vma;
1003}
1004
1005struct i915_vma * __must_check
1006i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1007			 const struct i915_gtt_view *view,
1008			 u64 size, u64 alignment, u64 flags)
1009{
1010	struct i915_gem_ww_ctx ww;
1011	struct i915_vma *ret;
1012	int err;
1013
1014	for_i915_gem_ww(&ww, err, true) {
1015		err = i915_gem_object_lock(obj, &ww);
1016		if (err)
1017			continue;
1018
1019		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1020						  alignment, flags);
1021		if (IS_ERR(ret))
1022			err = PTR_ERR(ret);
1023	}
1024
1025	return err ? ERR_PTR(err) : ret;
1026}
1027
1028int
1029i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1030		       struct drm_file *file_priv)
1031{
1032	struct drm_i915_private *i915 = to_i915(dev);
1033	struct drm_i915_gem_madvise *args = data;
1034	struct drm_i915_gem_object *obj;
1035	int err;
1036
1037	switch (args->madv) {
1038	case I915_MADV_DONTNEED:
1039	case I915_MADV_WILLNEED:
1040	    break;
1041	default:
1042	    return -EINVAL;
1043	}
1044
1045	obj = i915_gem_object_lookup(file_priv, args->handle);
1046	if (!obj)
1047		return -ENOENT;
1048
1049	err = i915_gem_object_lock_interruptible(obj, NULL);
1050	if (err)
1051		goto out;
1052
1053	if (i915_gem_object_has_pages(obj) &&
1054	    i915_gem_object_is_tiled(obj) &&
1055	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1056		if (obj->mm.madv == I915_MADV_WILLNEED) {
1057			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1058			i915_gem_object_clear_tiling_quirk(obj);
1059			i915_gem_object_make_shrinkable(obj);
1060		}
1061		if (args->madv == I915_MADV_WILLNEED) {
1062			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1063			i915_gem_object_make_unshrinkable(obj);
1064			i915_gem_object_set_tiling_quirk(obj);
1065		}
1066	}
1067
1068	if (obj->mm.madv != __I915_MADV_PURGED) {
1069		obj->mm.madv = args->madv;
1070		if (obj->ops->adjust_lru)
1071			obj->ops->adjust_lru(obj);
1072	}
1073
1074	if (i915_gem_object_has_pages(obj) ||
1075	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1076		unsigned long flags;
1077
1078		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1079		if (!list_empty(&obj->mm.link)) {
1080			struct list_head *list;
1081
1082			if (obj->mm.madv != I915_MADV_WILLNEED)
1083				list = &i915->mm.purge_list;
1084			else
1085				list = &i915->mm.shrink_list;
1086			list_move_tail(&obj->mm.link, list);
1087
1088		}
1089		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1090	}
1091
1092	/* if the object is no longer attached, discard its backing storage */
1093	if (obj->mm.madv == I915_MADV_DONTNEED &&
1094	    !i915_gem_object_has_pages(obj))
1095		i915_gem_object_truncate(obj);
1096
1097	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1098
1099	i915_gem_object_unlock(obj);
1100out:
1101	i915_gem_object_put(obj);
1102	return err;
1103}
1104
1105/*
1106 * A single pass should suffice to release all the freed objects (along most
1107 * call paths), but be a little more paranoid in that freeing the objects does
1108 * take a little amount of time, during which the rcu callbacks could have added
1109 * new objects into the freed list, and armed the work again.
1110 */
1111void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1112{
1113	while (atomic_read(&i915->mm.free_count)) {
1114		flush_work(&i915->mm.free_work);
1115		drain_workqueue(i915->bdev.wq);
1116		rcu_barrier();
1117	}
1118}
1119
1120/*
1121 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1122 * have workers that are armed by RCU and then rearm themselves in their
1123 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1124 * waiting for the RCU grace period so that we catch work queued via RCU from
1125 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1126 * result, we make an assumption that we only don't require more than 3 passes
1127 * to catch all _recursive_ RCU delayed work.
1128 */
1129void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1130{
1131	int i;
1132
1133	for (i = 0; i < 3; i++) {
1134		flush_workqueue(i915->wq);
1135		rcu_barrier();
1136		i915_gem_drain_freed_objects(i915);
1137	}
1138
1139	drain_workqueue(i915->wq);
1140}
1141
1142int i915_gem_init(struct drm_i915_private *dev_priv)
1143{
1144	struct intel_gt *gt;
1145	unsigned int i;
1146	int ret;
1147
1148	/*
1149	 * In the proccess of replacing cache_level with pat_index a tricky
1150	 * dependency is created on the definition of the enum i915_cache_level.
1151	 * in case this enum is changed, PTE encode would be broken.
1152	 * Add a WARNING here. And remove when we completely quit using this
1153	 * enum
1154	 */
1155	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1156		     I915_CACHE_LLC != 1 ||
1157		     I915_CACHE_L3_LLC != 2 ||
1158		     I915_CACHE_WT != 3 ||
1159		     I915_MAX_CACHE_LEVEL != 4);
1160
1161	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1162	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1163		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
 
 
 
 
1164
1165	for_each_gt(gt, dev_priv, i) {
1166		intel_uc_fetch_firmwares(&gt->uc);
1167		intel_wopcm_init(&gt->wopcm);
1168		if (GRAPHICS_VER(dev_priv) >= 8)
1169			setup_private_pat(gt);
1170	}
1171
1172	ret = i915_init_ggtt(dev_priv);
1173	if (ret) {
1174		GEM_BUG_ON(ret == -EIO);
1175		goto err_unlock;
1176	}
1177
1178	/*
1179	 * Despite its name intel_clock_gating_init applies both display
1180	 * clock gating workarounds; GT mmio workarounds and the occasional
1181	 * GT power context workaround. Worse, sometimes it includes a context
1182	 * register workaround which we need to apply before we record the
1183	 * default HW state for all contexts.
1184	 *
1185	 * FIXME: break up the workarounds and apply them at the right time!
1186	 */
1187	intel_clock_gating_init(dev_priv);
1188
1189	for_each_gt(gt, dev_priv, i) {
1190		ret = intel_gt_init(gt);
1191		if (ret)
1192			goto err_unlock;
1193	}
1194
1195	/*
1196	 * Register engines early to ensure the engine list is in its final
1197	 * rb-tree form, lowering the amount of code that has to deal with
1198	 * the intermediate llist state.
1199	 */
1200	intel_engines_driver_register(dev_priv);
1201
1202	return 0;
1203
1204	/*
1205	 * Unwinding is complicated by that we want to handle -EIO to mean
1206	 * disable GPU submission but keep KMS alive. We want to mark the
1207	 * HW as irrevisibly wedged, but keep enough state around that the
1208	 * driver doesn't explode during runtime.
1209	 */
1210err_unlock:
1211	i915_gem_drain_workqueue(dev_priv);
1212
1213	if (ret != -EIO) {
1214		for_each_gt(gt, dev_priv, i) {
1215			intel_gt_driver_remove(gt);
1216			intel_gt_driver_release(gt);
1217			intel_uc_cleanup_firmwares(&gt->uc);
1218		}
1219	}
1220
1221	if (ret == -EIO) {
1222		/*
1223		 * Allow engines or uC initialisation to fail by marking the GPU
1224		 * as wedged. But we only want to do this when the GPU is angry,
1225		 * for all other failure, such as an allocation failure, bail.
1226		 */
1227		for_each_gt(gt, dev_priv, i) {
1228			if (!intel_gt_is_wedged(gt)) {
1229				i915_probe_error(dev_priv,
1230						 "Failed to initialize GPU, declaring it wedged!\n");
1231				intel_gt_set_wedged(gt);
1232			}
1233		}
1234
1235		/* Minimal basic recovery for KMS */
1236		ret = i915_ggtt_enable_hw(dev_priv);
1237		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1238		intel_clock_gating_init(dev_priv);
1239	}
1240
1241	i915_gem_drain_freed_objects(dev_priv);
1242
1243	return ret;
1244}
1245
1246void i915_gem_driver_register(struct drm_i915_private *i915)
1247{
1248	i915_gem_driver_register__shrinker(i915);
1249}
1250
1251void i915_gem_driver_unregister(struct drm_i915_private *i915)
1252{
1253	i915_gem_driver_unregister__shrinker(i915);
1254}
1255
1256void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1257{
1258	struct intel_gt *gt;
1259	unsigned int i;
1260
1261	i915_gem_suspend_late(dev_priv);
1262	for_each_gt(gt, dev_priv, i)
1263		intel_gt_driver_remove(gt);
1264	dev_priv->uabi_engines = RB_ROOT;
1265
1266	/* Flush any outstanding unpin_work. */
1267	i915_gem_drain_workqueue(dev_priv);
1268}
1269
1270void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1271{
1272	struct intel_gt *gt;
1273	unsigned int i;
1274
1275	for_each_gt(gt, dev_priv, i) {
1276		intel_gt_driver_release(gt);
1277		intel_uc_cleanup_firmwares(&gt->uc);
1278	}
1279
1280	/* Flush any outstanding work, including i915_gem_context.release_work. */
1281	i915_gem_drain_workqueue(dev_priv);
1282
1283	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1284}
1285
1286static void i915_gem_init__mm(struct drm_i915_private *i915)
1287{
1288	spin_lock_init(&i915->mm.obj_lock);
1289
1290	init_llist_head(&i915->mm.free_list);
1291
1292	INIT_LIST_HEAD(&i915->mm.purge_list);
1293	INIT_LIST_HEAD(&i915->mm.shrink_list);
1294
1295	i915_gem_init__objects(i915);
1296}
1297
1298void i915_gem_init_early(struct drm_i915_private *dev_priv)
1299{
1300	i915_gem_init__mm(dev_priv);
1301	i915_gem_init__contexts(dev_priv);
1302}
1303
1304void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1305{
1306	i915_gem_drain_workqueue(dev_priv);
1307	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1308	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1309	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1310}
1311
1312int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1313{
1314	struct drm_i915_file_private *file_priv;
1315	struct i915_drm_client *client;
1316	int ret = -ENOMEM;
1317
1318	drm_dbg(&i915->drm, "\n");
1319
1320	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1321	if (!file_priv)
1322		goto err_alloc;
1323
1324	client = i915_drm_client_alloc();
1325	if (!client)
1326		goto err_client;
1327
1328	file->driver_priv = file_priv;
1329	file_priv->i915 = i915;
1330	file_priv->file = file;
1331	file_priv->client = client;
1332
1333	file_priv->bsd_engine = -1;
1334	file_priv->hang_timestamp = jiffies;
1335
1336	ret = i915_gem_context_open(i915, file);
1337	if (ret)
1338		goto err_context;
1339
1340	return 0;
1341
1342err_context:
1343	i915_drm_client_put(client);
1344err_client:
1345	kfree(file_priv);
1346err_alloc:
1347	return ret;
1348}
1349
1350#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1351#include "selftests/mock_gem_device.c"
1352#include "selftests/i915_gem.c"
1353#endif
v6.8
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <linux/dma-fence-array.h>
  29#include <linux/kthread.h>
  30#include <linux/dma-resv.h>
  31#include <linux/shmem_fs.h>
  32#include <linux/slab.h>
  33#include <linux/stop_machine.h>
  34#include <linux/swap.h>
  35#include <linux/pci.h>
  36#include <linux/dma-buf.h>
  37#include <linux/mman.h>
  38
  39#include <drm/drm_cache.h>
  40#include <drm/drm_vma_manager.h>
  41
  42#include "display/intel_display.h"
  43
  44#include "gem/i915_gem_clflush.h"
  45#include "gem/i915_gem_context.h"
  46#include "gem/i915_gem_ioctls.h"
  47#include "gem/i915_gem_mman.h"
  48#include "gem/i915_gem_object_frontbuffer.h"
  49#include "gem/i915_gem_pm.h"
  50#include "gem/i915_gem_region.h"
  51#include "gem/i915_gem_userptr.h"
  52#include "gt/intel_engine_user.h"
  53#include "gt/intel_gt.h"
  54#include "gt/intel_gt_pm.h"
  55#include "gt/intel_workarounds.h"
  56
  57#include "i915_drv.h"
  58#include "i915_file_private.h"
  59#include "i915_trace.h"
  60#include "i915_vgpu.h"
  61#include "intel_clock_gating.h"
  62
  63static int
  64insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  65{
  66	int err;
  67
  68	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  69	if (err)
  70		return err;
  71
  72	memset(node, 0, sizeof(*node));
  73	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  74					  size, 0, I915_COLOR_UNEVICTABLE,
  75					  0, ggtt->mappable_end,
  76					  DRM_MM_INSERT_LOW);
  77
  78	mutex_unlock(&ggtt->vm.mutex);
  79
  80	return err;
  81}
  82
  83static void
  84remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  85{
  86	mutex_lock(&ggtt->vm.mutex);
  87	drm_mm_remove_node(node);
  88	mutex_unlock(&ggtt->vm.mutex);
  89}
  90
  91int
  92i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  93			    struct drm_file *file)
  94{
  95	struct drm_i915_private *i915 = to_i915(dev);
  96	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
  97	struct drm_i915_gem_get_aperture *args = data;
  98	struct i915_vma *vma;
  99	u64 pinned;
 100
 101	if (mutex_lock_interruptible(&ggtt->vm.mutex))
 102		return -EINTR;
 103
 104	pinned = ggtt->vm.reserved;
 105	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 106		if (i915_vma_is_pinned(vma))
 107			pinned += vma->node.size;
 108
 109	mutex_unlock(&ggtt->vm.mutex);
 110
 111	args->aper_size = ggtt->vm.total;
 112	args->aper_available_size = args->aper_size - pinned;
 113
 114	return 0;
 115}
 116
 117int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 118			   unsigned long flags)
 119{
 120	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 121	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
 122	LIST_HEAD(still_in_list);
 123	intel_wakeref_t wakeref;
 124	struct i915_vma *vma;
 125	int ret;
 126
 127	assert_object_held(obj);
 128
 129	if (list_empty(&obj->vma.list))
 130		return 0;
 131
 132	/*
 133	 * As some machines use ACPI to handle runtime-resume callbacks, and
 134	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 135	 * as they are required by the shrinker. Ergo, we wake the device up
 136	 * first just in case.
 137	 */
 138	wakeref = intel_runtime_pm_get(rpm);
 139
 140try_again:
 141	ret = 0;
 142	spin_lock(&obj->vma.lock);
 143	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 144						       struct i915_vma,
 145						       obj_link))) {
 146		list_move_tail(&vma->obj_link, &still_in_list);
 147		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 148			continue;
 149
 150		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 151			ret = -EBUSY;
 152			break;
 153		}
 154
 155		/*
 156		 * Requiring the vm destructor to take the object lock
 157		 * before destroying a vma would help us eliminate the
 158		 * i915_vm_tryget() here, AND thus also the barrier stuff
 159		 * at the end. That's an easy fix, but sleeping locks in
 160		 * a kthread should generally be avoided.
 161		 */
 162		ret = -EAGAIN;
 163		if (!i915_vm_tryget(vma->vm))
 164			break;
 165
 166		spin_unlock(&obj->vma.lock);
 167
 168		/*
 169		 * Since i915_vma_parked() takes the object lock
 170		 * before vma destruction, it won't race us here,
 171		 * and destroy the vma from under us.
 172		 */
 173
 174		ret = -EBUSY;
 175		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
 176			assert_object_held(vma->obj);
 177			ret = i915_vma_unbind_async(vma, vm_trylock);
 178		}
 179
 180		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 181				      !i915_vma_is_active(vma))) {
 182			if (vm_trylock) {
 183				if (mutex_trylock(&vma->vm->mutex)) {
 184					ret = __i915_vma_unbind(vma);
 185					mutex_unlock(&vma->vm->mutex);
 186				}
 187			} else {
 188				ret = i915_vma_unbind(vma);
 189			}
 190		}
 191
 192		i915_vm_put(vma->vm);
 193		spin_lock(&obj->vma.lock);
 194	}
 195	list_splice_init(&still_in_list, &obj->vma.list);
 196	spin_unlock(&obj->vma.lock);
 197
 198	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 199		rcu_barrier(); /* flush the i915_vm_release() */
 200		goto try_again;
 201	}
 202
 203	intel_runtime_pm_put(rpm, wakeref);
 204
 205	return ret;
 206}
 207
 208static int
 209shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 210	    bool needs_clflush)
 211{
 212	char *vaddr;
 213	int ret;
 214
 215	vaddr = kmap(page);
 216
 217	if (needs_clflush)
 218		drm_clflush_virt_range(vaddr + offset, len);
 219
 220	ret = __copy_to_user(user_data, vaddr + offset, len);
 221
 222	kunmap(page);
 223
 224	return ret ? -EFAULT : 0;
 225}
 226
 227static int
 228i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 229		     struct drm_i915_gem_pread *args)
 230{
 231	unsigned int needs_clflush;
 232	char __user *user_data;
 233	unsigned long offset;
 234	pgoff_t idx;
 235	u64 remain;
 236	int ret;
 237
 238	ret = i915_gem_object_lock_interruptible(obj, NULL);
 239	if (ret)
 240		return ret;
 241
 242	ret = i915_gem_object_pin_pages(obj);
 243	if (ret)
 244		goto err_unlock;
 245
 246	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 247	if (ret)
 248		goto err_unpin;
 249
 250	i915_gem_object_finish_access(obj);
 251	i915_gem_object_unlock(obj);
 252
 253	remain = args->size;
 254	user_data = u64_to_user_ptr(args->data_ptr);
 255	offset = offset_in_page(args->offset);
 256	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 257		struct page *page = i915_gem_object_get_page(obj, idx);
 258		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 259
 260		ret = shmem_pread(page, offset, length, user_data,
 261				  needs_clflush);
 262		if (ret)
 263			break;
 264
 265		remain -= length;
 266		user_data += length;
 267		offset = 0;
 268	}
 269
 270	i915_gem_object_unpin_pages(obj);
 271	return ret;
 272
 273err_unpin:
 274	i915_gem_object_unpin_pages(obj);
 275err_unlock:
 276	i915_gem_object_unlock(obj);
 277	return ret;
 278}
 279
 280static inline bool
 281gtt_user_read(struct io_mapping *mapping,
 282	      loff_t base, int offset,
 283	      char __user *user_data, int length)
 284{
 285	void __iomem *vaddr;
 286	unsigned long unwritten;
 287
 288	/* We can use the cpu mem copy function because this is X86. */
 289	vaddr = io_mapping_map_atomic_wc(mapping, base);
 290	unwritten = __copy_to_user_inatomic(user_data,
 291					    (void __force *)vaddr + offset,
 292					    length);
 293	io_mapping_unmap_atomic(vaddr);
 294	if (unwritten) {
 295		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 296		unwritten = copy_to_user(user_data,
 297					 (void __force *)vaddr + offset,
 298					 length);
 299		io_mapping_unmap(vaddr);
 300	}
 301	return unwritten;
 302}
 303
 304static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
 305					     struct drm_mm_node *node,
 306					     bool write)
 307{
 308	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 309	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 310	struct i915_vma *vma;
 311	struct i915_gem_ww_ctx ww;
 312	int ret;
 313
 314	i915_gem_ww_ctx_init(&ww, true);
 315retry:
 316	vma = ERR_PTR(-ENODEV);
 317	ret = i915_gem_object_lock(obj, &ww);
 318	if (ret)
 319		goto err_ww;
 320
 321	ret = i915_gem_object_set_to_gtt_domain(obj, write);
 322	if (ret)
 323		goto err_ww;
 324
 325	if (!i915_gem_object_is_tiled(obj))
 326		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
 327						  PIN_MAPPABLE |
 328						  PIN_NONBLOCK /* NOWARN */ |
 329						  PIN_NOEVICT);
 330	if (vma == ERR_PTR(-EDEADLK)) {
 331		ret = -EDEADLK;
 332		goto err_ww;
 333	} else if (!IS_ERR(vma)) {
 334		node->start = i915_ggtt_offset(vma);
 335		node->flags = 0;
 336	} else {
 337		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
 338		if (ret)
 339			goto err_ww;
 340		GEM_BUG_ON(!drm_mm_node_allocated(node));
 341		vma = NULL;
 342	}
 343
 344	ret = i915_gem_object_pin_pages(obj);
 345	if (ret) {
 346		if (drm_mm_node_allocated(node)) {
 347			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 348			remove_mappable_node(ggtt, node);
 349		} else {
 350			i915_vma_unpin(vma);
 351		}
 352	}
 353
 354err_ww:
 355	if (ret == -EDEADLK) {
 356		ret = i915_gem_ww_ctx_backoff(&ww);
 357		if (!ret)
 358			goto retry;
 359	}
 360	i915_gem_ww_ctx_fini(&ww);
 361
 362	return ret ? ERR_PTR(ret) : vma;
 363}
 364
 365static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
 366				 struct drm_mm_node *node,
 367				 struct i915_vma *vma)
 368{
 369	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 370	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 371
 372	i915_gem_object_unpin_pages(obj);
 373	if (drm_mm_node_allocated(node)) {
 374		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 375		remove_mappable_node(ggtt, node);
 376	} else {
 377		i915_vma_unpin(vma);
 378	}
 379}
 380
 381static int
 382i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 383		   const struct drm_i915_gem_pread *args)
 384{
 385	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 386	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 387	unsigned long remain, offset;
 388	intel_wakeref_t wakeref;
 389	struct drm_mm_node node;
 390	void __user *user_data;
 391	struct i915_vma *vma;
 392	int ret = 0;
 393
 394	if (overflows_type(args->size, remain) ||
 395	    overflows_type(args->offset, offset))
 396		return -EINVAL;
 397
 398	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 399
 400	vma = i915_gem_gtt_prepare(obj, &node, false);
 401	if (IS_ERR(vma)) {
 402		ret = PTR_ERR(vma);
 403		goto out_rpm;
 404	}
 405
 406	user_data = u64_to_user_ptr(args->data_ptr);
 407	remain = args->size;
 408	offset = args->offset;
 409
 410	while (remain > 0) {
 411		/* Operation in this page
 412		 *
 413		 * page_base = page offset within aperture
 414		 * page_offset = offset within page
 415		 * page_length = bytes to copy for this page
 416		 */
 417		u32 page_base = node.start;
 418		unsigned page_offset = offset_in_page(offset);
 419		unsigned page_length = PAGE_SIZE - page_offset;
 420		page_length = remain < page_length ? remain : page_length;
 421		if (drm_mm_node_allocated(&node)) {
 422			ggtt->vm.insert_page(&ggtt->vm,
 423					     i915_gem_object_get_dma_address(obj,
 424									     offset >> PAGE_SHIFT),
 425					     node.start,
 426					     i915_gem_get_pat_index(i915,
 427								    I915_CACHE_NONE), 0);
 428		} else {
 429			page_base += offset & PAGE_MASK;
 430		}
 431
 432		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 433				  user_data, page_length)) {
 434			ret = -EFAULT;
 435			break;
 436		}
 437
 438		remain -= page_length;
 439		user_data += page_length;
 440		offset += page_length;
 441	}
 442
 443	i915_gem_gtt_cleanup(obj, &node, vma);
 444out_rpm:
 445	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 446	return ret;
 447}
 448
 449/**
 450 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
 451 * @dev: drm device pointer
 452 * @data: ioctl data blob
 453 * @file: drm file pointer
 454 *
 455 * On error, the contents of *data are undefined.
 456 */
 457int
 458i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 459		     struct drm_file *file)
 460{
 461	struct drm_i915_private *i915 = to_i915(dev);
 462	struct drm_i915_gem_pread *args = data;
 463	struct drm_i915_gem_object *obj;
 464	int ret;
 465
 466	/* PREAD is disallowed for all platforms after TGL-LP.  This also
 467	 * covers all platforms with local memory.
 468	 */
 469	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 470		return -EOPNOTSUPP;
 471
 472	if (args->size == 0)
 473		return 0;
 474
 475	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 476		       args->size))
 477		return -EFAULT;
 478
 479	obj = i915_gem_object_lookup(file, args->handle);
 480	if (!obj)
 481		return -ENOENT;
 482
 483	/* Bounds check source.  */
 484	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 485		ret = -EINVAL;
 486		goto out;
 487	}
 488
 489	trace_i915_gem_object_pread(obj, args->offset, args->size);
 490	ret = -ENODEV;
 491	if (obj->ops->pread)
 492		ret = obj->ops->pread(obj, args);
 493	if (ret != -ENODEV)
 494		goto out;
 495
 496	ret = i915_gem_object_wait(obj,
 497				   I915_WAIT_INTERRUPTIBLE,
 498				   MAX_SCHEDULE_TIMEOUT);
 499	if (ret)
 500		goto out;
 501
 502	ret = i915_gem_shmem_pread(obj, args);
 503	if (ret == -EFAULT || ret == -ENODEV)
 504		ret = i915_gem_gtt_pread(obj, args);
 505
 506out:
 507	i915_gem_object_put(obj);
 508	return ret;
 509}
 510
 511/* This is the fast write path which cannot handle
 512 * page faults in the source data
 513 */
 514
 515static inline bool
 516ggtt_write(struct io_mapping *mapping,
 517	   loff_t base, int offset,
 518	   char __user *user_data, int length)
 519{
 520	void __iomem *vaddr;
 521	unsigned long unwritten;
 522
 523	/* We can use the cpu mem copy function because this is X86. */
 524	vaddr = io_mapping_map_atomic_wc(mapping, base);
 525	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 526						      user_data, length);
 527	io_mapping_unmap_atomic(vaddr);
 528	if (unwritten) {
 529		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 530		unwritten = copy_from_user((void __force *)vaddr + offset,
 531					   user_data, length);
 532		io_mapping_unmap(vaddr);
 533	}
 534
 535	return unwritten;
 536}
 537
 538/**
 539 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
 540 * user into the GTT, uncached.
 541 * @obj: i915 GEM object
 542 * @args: pwrite arguments structure
 543 */
 544static int
 545i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 546			 const struct drm_i915_gem_pwrite *args)
 547{
 548	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 549	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 550	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 551	unsigned long remain, offset;
 552	intel_wakeref_t wakeref;
 553	struct drm_mm_node node;
 554	struct i915_vma *vma;
 555	void __user *user_data;
 556	int ret = 0;
 557
 558	if (overflows_type(args->size, remain) ||
 559	    overflows_type(args->offset, offset))
 560		return -EINVAL;
 561
 562	if (i915_gem_object_has_struct_page(obj)) {
 563		/*
 564		 * Avoid waking the device up if we can fallback, as
 565		 * waking/resuming is very slow (worst-case 10-100 ms
 566		 * depending on PCI sleeps and our own resume time).
 567		 * This easily dwarfs any performance advantage from
 568		 * using the cache bypass of indirect GGTT access.
 569		 */
 570		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 571		if (!wakeref)
 572			return -EFAULT;
 573	} else {
 574		/* No backing pages, no fallback, we must force GGTT access */
 575		wakeref = intel_runtime_pm_get(rpm);
 576	}
 577
 578	vma = i915_gem_gtt_prepare(obj, &node, true);
 579	if (IS_ERR(vma)) {
 580		ret = PTR_ERR(vma);
 581		goto out_rpm;
 582	}
 583
 584	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 585
 586	user_data = u64_to_user_ptr(args->data_ptr);
 587	offset = args->offset;
 588	remain = args->size;
 589	while (remain) {
 590		/* Operation in this page
 591		 *
 592		 * page_base = page offset within aperture
 593		 * page_offset = offset within page
 594		 * page_length = bytes to copy for this page
 595		 */
 596		u32 page_base = node.start;
 597		unsigned int page_offset = offset_in_page(offset);
 598		unsigned int page_length = PAGE_SIZE - page_offset;
 599		page_length = remain < page_length ? remain : page_length;
 600		if (drm_mm_node_allocated(&node)) {
 601			/* flush the write before we modify the GGTT */
 602			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 603			ggtt->vm.insert_page(&ggtt->vm,
 604					     i915_gem_object_get_dma_address(obj,
 605									     offset >> PAGE_SHIFT),
 606					     node.start,
 607					     i915_gem_get_pat_index(i915,
 608								    I915_CACHE_NONE), 0);
 609			wmb(); /* flush modifications to the GGTT (insert_page) */
 610		} else {
 611			page_base += offset & PAGE_MASK;
 612		}
 613		/* If we get a fault while copying data, then (presumably) our
 614		 * source page isn't available.  Return the error and we'll
 615		 * retry in the slow path.
 616		 * If the object is non-shmem backed, we retry again with the
 617		 * path that handles page fault.
 618		 */
 619		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 620			       user_data, page_length)) {
 621			ret = -EFAULT;
 622			break;
 623		}
 624
 625		remain -= page_length;
 626		user_data += page_length;
 627		offset += page_length;
 628	}
 629
 630	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 631	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 632
 633	i915_gem_gtt_cleanup(obj, &node, vma);
 634out_rpm:
 635	intel_runtime_pm_put(rpm, wakeref);
 636	return ret;
 637}
 638
 639/* Per-page copy function for the shmem pwrite fastpath.
 640 * Flushes invalid cachelines before writing to the target if
 641 * needs_clflush_before is set and flushes out any written cachelines after
 642 * writing if needs_clflush is set.
 643 */
 644static int
 645shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 646	     bool needs_clflush_before,
 647	     bool needs_clflush_after)
 648{
 649	char *vaddr;
 650	int ret;
 651
 652	vaddr = kmap(page);
 653
 654	if (needs_clflush_before)
 655		drm_clflush_virt_range(vaddr + offset, len);
 656
 657	ret = __copy_from_user(vaddr + offset, user_data, len);
 658	if (!ret && needs_clflush_after)
 659		drm_clflush_virt_range(vaddr + offset, len);
 660
 661	kunmap(page);
 662
 663	return ret ? -EFAULT : 0;
 664}
 665
 666static int
 667i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 668		      const struct drm_i915_gem_pwrite *args)
 669{
 670	unsigned int partial_cacheline_write;
 671	unsigned int needs_clflush;
 672	void __user *user_data;
 673	unsigned long offset;
 674	pgoff_t idx;
 675	u64 remain;
 676	int ret;
 677
 678	ret = i915_gem_object_lock_interruptible(obj, NULL);
 679	if (ret)
 680		return ret;
 681
 682	ret = i915_gem_object_pin_pages(obj);
 683	if (ret)
 684		goto err_unlock;
 685
 686	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 687	if (ret)
 688		goto err_unpin;
 689
 690	i915_gem_object_finish_access(obj);
 691	i915_gem_object_unlock(obj);
 692
 693	/* If we don't overwrite a cacheline completely we need to be
 694	 * careful to have up-to-date data by first clflushing. Don't
 695	 * overcomplicate things and flush the entire patch.
 696	 */
 697	partial_cacheline_write = 0;
 698	if (needs_clflush & CLFLUSH_BEFORE)
 699		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 700
 701	user_data = u64_to_user_ptr(args->data_ptr);
 702	remain = args->size;
 703	offset = offset_in_page(args->offset);
 704	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 705		struct page *page = i915_gem_object_get_page(obj, idx);
 706		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 707
 708		ret = shmem_pwrite(page, offset, length, user_data,
 709				   (offset | length) & partial_cacheline_write,
 710				   needs_clflush & CLFLUSH_AFTER);
 711		if (ret)
 712			break;
 713
 714		remain -= length;
 715		user_data += length;
 716		offset = 0;
 717	}
 718
 719	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 720
 721	i915_gem_object_unpin_pages(obj);
 722	return ret;
 723
 724err_unpin:
 725	i915_gem_object_unpin_pages(obj);
 726err_unlock:
 727	i915_gem_object_unlock(obj);
 728	return ret;
 729}
 730
 731/**
 732 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
 733 * @dev: drm device
 734 * @data: ioctl data blob
 735 * @file: drm file
 736 *
 737 * On error, the contents of the buffer that were to be modified are undefined.
 738 */
 739int
 740i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 741		      struct drm_file *file)
 742{
 743	struct drm_i915_private *i915 = to_i915(dev);
 744	struct drm_i915_gem_pwrite *args = data;
 745	struct drm_i915_gem_object *obj;
 746	int ret;
 747
 748	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
 749	 * covers all platforms with local memory.
 750	 */
 751	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 752		return -EOPNOTSUPP;
 753
 754	if (args->size == 0)
 755		return 0;
 756
 757	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 758		return -EFAULT;
 759
 760	obj = i915_gem_object_lookup(file, args->handle);
 761	if (!obj)
 762		return -ENOENT;
 763
 764	/* Bounds check destination. */
 765	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 766		ret = -EINVAL;
 767		goto err;
 768	}
 769
 770	/* Writes not allowed into this read-only object */
 771	if (i915_gem_object_is_readonly(obj)) {
 772		ret = -EINVAL;
 773		goto err;
 774	}
 775
 776	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 777
 778	ret = -ENODEV;
 779	if (obj->ops->pwrite)
 780		ret = obj->ops->pwrite(obj, args);
 781	if (ret != -ENODEV)
 782		goto err;
 783
 784	ret = i915_gem_object_wait(obj,
 785				   I915_WAIT_INTERRUPTIBLE |
 786				   I915_WAIT_ALL,
 787				   MAX_SCHEDULE_TIMEOUT);
 788	if (ret)
 789		goto err;
 790
 791	ret = -EFAULT;
 792	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 793	 * it would end up going through the fenced access, and we'll get
 794	 * different detiling behavior between reading and writing.
 795	 * pread/pwrite currently are reading and writing from the CPU
 796	 * perspective, requiring manual detiling by the client.
 797	 */
 798	if (!i915_gem_object_has_struct_page(obj) ||
 799	    i915_gem_cpu_write_needs_clflush(obj))
 800		/* Note that the gtt paths might fail with non-page-backed user
 801		 * pointers (e.g. gtt mappings when moving data between
 802		 * textures). Fallback to the shmem path in that case.
 803		 */
 804		ret = i915_gem_gtt_pwrite_fast(obj, args);
 805
 806	if (ret == -EFAULT || ret == -ENOSPC) {
 807		if (i915_gem_object_has_struct_page(obj))
 808			ret = i915_gem_shmem_pwrite(obj, args);
 809	}
 810
 811err:
 812	i915_gem_object_put(obj);
 813	return ret;
 814}
 815
 816/**
 817 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
 818 * @dev: drm device
 819 * @data: ioctl data blob
 820 * @file: drm file
 821 */
 822int
 823i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 824			 struct drm_file *file)
 825{
 826	struct drm_i915_gem_sw_finish *args = data;
 827	struct drm_i915_gem_object *obj;
 828
 829	obj = i915_gem_object_lookup(file, args->handle);
 830	if (!obj)
 831		return -ENOENT;
 832
 833	/*
 834	 * Proxy objects are barred from CPU access, so there is no
 835	 * need to ban sw_finish as it is a nop.
 836	 */
 837
 838	/* Pinned buffers may be scanout, so flush the cache */
 839	i915_gem_object_flush_if_display(obj);
 840	i915_gem_object_put(obj);
 841
 842	return 0;
 843}
 844
 845void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 846{
 847	struct drm_i915_gem_object *obj, *on;
 848	int i;
 849
 850	/*
 851	 * Only called during RPM suspend. All users of the userfault_list
 852	 * must be holding an RPM wakeref to ensure that this can not
 853	 * run concurrently with themselves (and use the struct_mutex for
 854	 * protection between themselves).
 855	 */
 856
 857	list_for_each_entry_safe(obj, on,
 858				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
 859		__i915_gem_object_release_mmap_gtt(obj);
 860
 861	list_for_each_entry_safe(obj, on,
 862				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
 863		i915_gem_object_runtime_pm_release_mmap_offset(obj);
 864
 865	/*
 866	 * The fence will be lost when the device powers down. If any were
 867	 * in use by hardware (i.e. they are pinned), we should not be powering
 868	 * down! All other fences will be reacquired by the user upon waking.
 869	 */
 870	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
 871		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
 872
 873		/*
 874		 * Ideally we want to assert that the fence register is not
 875		 * live at this point (i.e. that no piece of code will be
 876		 * trying to write through fence + GTT, as that both violates
 877		 * our tracking of activity and associated locking/barriers,
 878		 * but also is illegal given that the hw is powered down).
 879		 *
 880		 * Previously we used reg->pin_count as a "liveness" indicator.
 881		 * That is not sufficient, and we need a more fine-grained
 882		 * tool if we want to have a sanity check here.
 883		 */
 884
 885		if (!reg->vma)
 886			continue;
 887
 888		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 889		reg->dirty = true;
 890	}
 891}
 892
 893static void discard_ggtt_vma(struct i915_vma *vma)
 894{
 895	struct drm_i915_gem_object *obj = vma->obj;
 896
 897	spin_lock(&obj->vma.lock);
 898	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 899		rb_erase(&vma->obj_node, &obj->vma.tree);
 900		RB_CLEAR_NODE(&vma->obj_node);
 901	}
 902	spin_unlock(&obj->vma.lock);
 903}
 904
 905struct i915_vma *
 906i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 907			    struct i915_gem_ww_ctx *ww,
 908			    const struct i915_gtt_view *view,
 909			    u64 size, u64 alignment, u64 flags)
 910{
 911	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 912	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 913	struct i915_vma *vma;
 914	int ret;
 915
 916	GEM_WARN_ON(!ww);
 917
 918	if (flags & PIN_MAPPABLE &&
 919	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
 920		/*
 921		 * If the required space is larger than the available
 922		 * aperture, we will not able to find a slot for the
 923		 * object and unbinding the object now will be in
 924		 * vain. Worse, doing so may cause us to ping-pong
 925		 * the object in and out of the Global GTT and
 926		 * waste a lot of cycles under the mutex.
 927		 */
 928		if (obj->base.size > ggtt->mappable_end)
 929			return ERR_PTR(-E2BIG);
 930
 931		/*
 932		 * If NONBLOCK is set the caller is optimistically
 933		 * trying to cache the full object within the mappable
 934		 * aperture, and *must* have a fallback in place for
 935		 * situations where we cannot bind the object. We
 936		 * can be a little more lax here and use the fallback
 937		 * more often to avoid costly migrations of ourselves
 938		 * and other objects within the aperture.
 939		 *
 940		 * Half-the-aperture is used as a simple heuristic.
 941		 * More interesting would to do search for a free
 942		 * block prior to making the commitment to unbind.
 943		 * That caters for the self-harm case, and with a
 944		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 945		 * we could try to minimise harm to others.
 946		 */
 947		if (flags & PIN_NONBLOCK &&
 948		    obj->base.size > ggtt->mappable_end / 2)
 949			return ERR_PTR(-ENOSPC);
 950	}
 951
 952new_vma:
 953	vma = i915_vma_instance(obj, &ggtt->vm, view);
 954	if (IS_ERR(vma))
 955		return vma;
 956
 957	if (i915_vma_misplaced(vma, size, alignment, flags)) {
 958		if (flags & PIN_NONBLOCK) {
 959			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 960				return ERR_PTR(-ENOSPC);
 961
 962			/*
 963			 * If this misplaced vma is too big (i.e, at-least
 964			 * half the size of aperture) or hasn't been pinned
 965			 * mappable before, we ignore the misplacement when
 966			 * PIN_NONBLOCK is set in order to avoid the ping-pong
 967			 * issue described above. In other words, we try to
 968			 * avoid the costly operation of unbinding this vma
 969			 * from the GGTT and rebinding it back because there
 970			 * may not be enough space for this vma in the aperture.
 971			 */
 972			if (flags & PIN_MAPPABLE &&
 973			    (vma->fence_size > ggtt->mappable_end / 2 ||
 974			    !i915_vma_is_map_and_fenceable(vma)))
 975				return ERR_PTR(-ENOSPC);
 976		}
 977
 978		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
 979			discard_ggtt_vma(vma);
 980			goto new_vma;
 981		}
 982
 983		ret = i915_vma_unbind(vma);
 984		if (ret)
 985			return ERR_PTR(ret);
 986	}
 987
 988	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
 989
 990	if (ret)
 991		return ERR_PTR(ret);
 992
 993	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
 994		mutex_lock(&ggtt->vm.mutex);
 995		i915_vma_revoke_fence(vma);
 996		mutex_unlock(&ggtt->vm.mutex);
 997	}
 998
 999	ret = i915_vma_wait_for_bind(vma);
1000	if (ret) {
1001		i915_vma_unpin(vma);
1002		return ERR_PTR(ret);
1003	}
1004
1005	return vma;
1006}
1007
1008struct i915_vma * __must_check
1009i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1010			 const struct i915_gtt_view *view,
1011			 u64 size, u64 alignment, u64 flags)
1012{
1013	struct i915_gem_ww_ctx ww;
1014	struct i915_vma *ret;
1015	int err;
1016
1017	for_i915_gem_ww(&ww, err, true) {
1018		err = i915_gem_object_lock(obj, &ww);
1019		if (err)
1020			continue;
1021
1022		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1023						  alignment, flags);
1024		if (IS_ERR(ret))
1025			err = PTR_ERR(ret);
1026	}
1027
1028	return err ? ERR_PTR(err) : ret;
1029}
1030
1031int
1032i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1033		       struct drm_file *file_priv)
1034{
1035	struct drm_i915_private *i915 = to_i915(dev);
1036	struct drm_i915_gem_madvise *args = data;
1037	struct drm_i915_gem_object *obj;
1038	int err;
1039
1040	switch (args->madv) {
1041	case I915_MADV_DONTNEED:
1042	case I915_MADV_WILLNEED:
1043	    break;
1044	default:
1045	    return -EINVAL;
1046	}
1047
1048	obj = i915_gem_object_lookup(file_priv, args->handle);
1049	if (!obj)
1050		return -ENOENT;
1051
1052	err = i915_gem_object_lock_interruptible(obj, NULL);
1053	if (err)
1054		goto out;
1055
1056	if (i915_gem_object_has_pages(obj) &&
1057	    i915_gem_object_is_tiled(obj) &&
1058	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1059		if (obj->mm.madv == I915_MADV_WILLNEED) {
1060			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1061			i915_gem_object_clear_tiling_quirk(obj);
1062			i915_gem_object_make_shrinkable(obj);
1063		}
1064		if (args->madv == I915_MADV_WILLNEED) {
1065			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1066			i915_gem_object_make_unshrinkable(obj);
1067			i915_gem_object_set_tiling_quirk(obj);
1068		}
1069	}
1070
1071	if (obj->mm.madv != __I915_MADV_PURGED) {
1072		obj->mm.madv = args->madv;
1073		if (obj->ops->adjust_lru)
1074			obj->ops->adjust_lru(obj);
1075	}
1076
1077	if (i915_gem_object_has_pages(obj) ||
1078	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1079		unsigned long flags;
1080
1081		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1082		if (!list_empty(&obj->mm.link)) {
1083			struct list_head *list;
1084
1085			if (obj->mm.madv != I915_MADV_WILLNEED)
1086				list = &i915->mm.purge_list;
1087			else
1088				list = &i915->mm.shrink_list;
1089			list_move_tail(&obj->mm.link, list);
1090
1091		}
1092		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1093	}
1094
1095	/* if the object is no longer attached, discard its backing storage */
1096	if (obj->mm.madv == I915_MADV_DONTNEED &&
1097	    !i915_gem_object_has_pages(obj))
1098		i915_gem_object_truncate(obj);
1099
1100	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1101
1102	i915_gem_object_unlock(obj);
1103out:
1104	i915_gem_object_put(obj);
1105	return err;
1106}
1107
1108/*
1109 * A single pass should suffice to release all the freed objects (along most
1110 * call paths), but be a little more paranoid in that freeing the objects does
1111 * take a little amount of time, during which the rcu callbacks could have added
1112 * new objects into the freed list, and armed the work again.
1113 */
1114void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1115{
1116	while (atomic_read(&i915->mm.free_count)) {
1117		flush_work(&i915->mm.free_work);
1118		drain_workqueue(i915->bdev.wq);
1119		rcu_barrier();
1120	}
1121}
1122
1123/*
1124 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1125 * have workers that are armed by RCU and then rearm themselves in their
1126 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1127 * waiting for the RCU grace period so that we catch work queued via RCU from
1128 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1129 * result, we make an assumption that we only don't require more than 3 passes
1130 * to catch all _recursive_ RCU delayed work.
1131 */
1132void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1133{
1134	int i;
1135
1136	for (i = 0; i < 3; i++) {
1137		flush_workqueue(i915->wq);
1138		rcu_barrier();
1139		i915_gem_drain_freed_objects(i915);
1140	}
1141
1142	drain_workqueue(i915->wq);
1143}
1144
1145int i915_gem_init(struct drm_i915_private *dev_priv)
1146{
1147	struct intel_gt *gt;
1148	unsigned int i;
1149	int ret;
1150
1151	/*
1152	 * In the proccess of replacing cache_level with pat_index a tricky
1153	 * dependency is created on the definition of the enum i915_cache_level.
1154	 * in case this enum is changed, PTE encode would be broken.
1155	 * Add a WARNING here. And remove when we completely quit using this
1156	 * enum
1157	 */
1158	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1159		     I915_CACHE_LLC != 1 ||
1160		     I915_CACHE_L3_LLC != 2 ||
1161		     I915_CACHE_WT != 3 ||
1162		     I915_MAX_CACHE_LEVEL != 4);
1163
1164	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1165	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1166		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1167
1168	ret = i915_gem_init_userptr(dev_priv);
1169	if (ret)
1170		return ret;
1171
1172	for_each_gt(gt, dev_priv, i) {
1173		intel_uc_fetch_firmwares(&gt->uc);
1174		intel_wopcm_init(&gt->wopcm);
1175		if (GRAPHICS_VER(dev_priv) >= 8)
1176			setup_private_pat(gt);
1177	}
1178
1179	ret = i915_init_ggtt(dev_priv);
1180	if (ret) {
1181		GEM_BUG_ON(ret == -EIO);
1182		goto err_unlock;
1183	}
1184
1185	/*
1186	 * Despite its name intel_clock_gating_init applies both display
1187	 * clock gating workarounds; GT mmio workarounds and the occasional
1188	 * GT power context workaround. Worse, sometimes it includes a context
1189	 * register workaround which we need to apply before we record the
1190	 * default HW state for all contexts.
1191	 *
1192	 * FIXME: break up the workarounds and apply them at the right time!
1193	 */
1194	intel_clock_gating_init(dev_priv);
1195
1196	for_each_gt(gt, dev_priv, i) {
1197		ret = intel_gt_init(gt);
1198		if (ret)
1199			goto err_unlock;
1200	}
1201
1202	/*
1203	 * Register engines early to ensure the engine list is in its final
1204	 * rb-tree form, lowering the amount of code that has to deal with
1205	 * the intermediate llist state.
1206	 */
1207	intel_engines_driver_register(dev_priv);
1208
1209	return 0;
1210
1211	/*
1212	 * Unwinding is complicated by that we want to handle -EIO to mean
1213	 * disable GPU submission but keep KMS alive. We want to mark the
1214	 * HW as irrevisibly wedged, but keep enough state around that the
1215	 * driver doesn't explode during runtime.
1216	 */
1217err_unlock:
1218	i915_gem_drain_workqueue(dev_priv);
1219
1220	if (ret != -EIO) {
1221		for_each_gt(gt, dev_priv, i) {
1222			intel_gt_driver_remove(gt);
1223			intel_gt_driver_release(gt);
1224			intel_uc_cleanup_firmwares(&gt->uc);
1225		}
1226	}
1227
1228	if (ret == -EIO) {
1229		/*
1230		 * Allow engines or uC initialisation to fail by marking the GPU
1231		 * as wedged. But we only want to do this when the GPU is angry,
1232		 * for all other failure, such as an allocation failure, bail.
1233		 */
1234		for_each_gt(gt, dev_priv, i) {
1235			if (!intel_gt_is_wedged(gt)) {
1236				i915_probe_error(dev_priv,
1237						 "Failed to initialize GPU, declaring it wedged!\n");
1238				intel_gt_set_wedged(gt);
1239			}
1240		}
1241
1242		/* Minimal basic recovery for KMS */
1243		ret = i915_ggtt_enable_hw(dev_priv);
1244		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1245		intel_clock_gating_init(dev_priv);
1246	}
1247
1248	i915_gem_drain_freed_objects(dev_priv);
1249
1250	return ret;
1251}
1252
1253void i915_gem_driver_register(struct drm_i915_private *i915)
1254{
1255	i915_gem_driver_register__shrinker(i915);
1256}
1257
1258void i915_gem_driver_unregister(struct drm_i915_private *i915)
1259{
1260	i915_gem_driver_unregister__shrinker(i915);
1261}
1262
1263void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1264{
1265	struct intel_gt *gt;
1266	unsigned int i;
1267
1268	i915_gem_suspend_late(dev_priv);
1269	for_each_gt(gt, dev_priv, i)
1270		intel_gt_driver_remove(gt);
1271	dev_priv->uabi_engines = RB_ROOT;
1272
1273	/* Flush any outstanding unpin_work. */
1274	i915_gem_drain_workqueue(dev_priv);
1275}
1276
1277void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1278{
1279	struct intel_gt *gt;
1280	unsigned int i;
1281
1282	for_each_gt(gt, dev_priv, i) {
1283		intel_gt_driver_release(gt);
1284		intel_uc_cleanup_firmwares(&gt->uc);
1285	}
1286
1287	/* Flush any outstanding work, including i915_gem_context.release_work. */
1288	i915_gem_drain_workqueue(dev_priv);
1289
1290	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1291}
1292
1293static void i915_gem_init__mm(struct drm_i915_private *i915)
1294{
1295	spin_lock_init(&i915->mm.obj_lock);
1296
1297	init_llist_head(&i915->mm.free_list);
1298
1299	INIT_LIST_HEAD(&i915->mm.purge_list);
1300	INIT_LIST_HEAD(&i915->mm.shrink_list);
1301
1302	i915_gem_init__objects(i915);
1303}
1304
1305void i915_gem_init_early(struct drm_i915_private *dev_priv)
1306{
1307	i915_gem_init__mm(dev_priv);
1308	i915_gem_init__contexts(dev_priv);
1309}
1310
1311void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1312{
1313	i915_gem_drain_workqueue(dev_priv);
1314	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1315	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1316	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1317}
1318
1319int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1320{
1321	struct drm_i915_file_private *file_priv;
1322	struct i915_drm_client *client;
1323	int ret = -ENOMEM;
1324
1325	drm_dbg(&i915->drm, "\n");
1326
1327	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1328	if (!file_priv)
1329		goto err_alloc;
1330
1331	client = i915_drm_client_alloc();
1332	if (!client)
1333		goto err_client;
1334
1335	file->driver_priv = file_priv;
1336	file_priv->i915 = i915;
1337	file_priv->file = file;
1338	file_priv->client = client;
1339
1340	file_priv->bsd_engine = -1;
1341	file_priv->hang_timestamp = jiffies;
1342
1343	ret = i915_gem_context_open(i915, file);
1344	if (ret)
1345		goto err_context;
1346
1347	return 0;
1348
1349err_context:
1350	i915_drm_client_put(client);
1351err_client:
1352	kfree(file_priv);
1353err_alloc:
1354	return ret;
1355}
1356
1357#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1358#include "selftests/mock_gem_device.c"
1359#include "selftests/i915_gem.c"
1360#endif