Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <linux/dma-fence-array.h>
  29#include <linux/kthread.h>
  30#include <linux/dma-resv.h>
 
 
 
  31#include <linux/shmem_fs.h>
  32#include <linux/slab.h>
  33#include <linux/stop_machine.h>
  34#include <linux/swap.h>
  35#include <linux/pci.h>
  36#include <linux/dma-buf.h>
  37#include <linux/mman.h>
  38
  39#include <drm/drm_cache.h>
  40#include <drm/drm_vma_manager.h>
  41
  42#include "gem/i915_gem_clflush.h"
  43#include "gem/i915_gem_context.h"
  44#include "gem/i915_gem_ioctls.h"
  45#include "gem/i915_gem_mman.h"
  46#include "gem/i915_gem_object_frontbuffer.h"
  47#include "gem/i915_gem_pm.h"
  48#include "gem/i915_gem_region.h"
  49#include "gt/intel_engine_user.h"
  50#include "gt/intel_gt.h"
  51#include "gt/intel_gt_pm.h"
  52#include "gt/intel_workarounds.h"
  53
  54#include "i915_drv.h"
  55#include "i915_file_private.h"
  56#include "i915_trace.h"
  57#include "i915_vgpu.h"
  58#include "intel_clock_gating.h"
 
 
 
  59
  60static int
  61insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  62{
  63	int err;
  64
  65	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  66	if (err)
  67		return err;
  68
  69	memset(node, 0, sizeof(*node));
  70	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  71					  size, 0, I915_COLOR_UNEVICTABLE,
  72					  0, ggtt->mappable_end,
  73					  DRM_MM_INSERT_LOW);
  74
  75	mutex_unlock(&ggtt->vm.mutex);
  76
  77	return err;
 
 
  78}
  79
  80static void
  81remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
 
  82{
  83	mutex_lock(&ggtt->vm.mutex);
  84	drm_mm_remove_node(node);
  85	mutex_unlock(&ggtt->vm.mutex);
  86}
  87
  88int
  89i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  90			    struct drm_file *file)
  91{
  92	struct drm_i915_private *i915 = to_i915(dev);
  93	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
  94	struct drm_i915_gem_get_aperture *args = data;
  95	struct i915_vma *vma;
  96	u64 pinned;
  97
  98	if (mutex_lock_interruptible(&ggtt->vm.mutex))
  99		return -EINTR;
 100
 101	pinned = ggtt->vm.reserved;
 102	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 103		if (i915_vma_is_pinned(vma))
 104			pinned += vma->node.size;
 
 
 
 105
 106	mutex_unlock(&ggtt->vm.mutex);
 
 107
 108	args->aper_size = ggtt->vm.total;
 109	args->aper_available_size = args->aper_size - pinned;
 
 110
 
 
 
 
 
 
 
 
 
 
 111	return 0;
 112}
 113
 114int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 115			   unsigned long flags)
 116{
 117	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 118	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
 119	LIST_HEAD(still_in_list);
 120	intel_wakeref_t wakeref;
 121	struct i915_vma *vma;
 122	int ret;
 123
 124	assert_object_held(obj);
 
 
 125
 126	if (list_empty(&obj->vma.list))
 127		return 0;
 
 128
 129	/*
 130	 * As some machines use ACPI to handle runtime-resume callbacks, and
 131	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 132	 * as they are required by the shrinker. Ergo, we wake the device up
 133	 * first just in case.
 134	 */
 135	wakeref = intel_runtime_pm_get(rpm);
 136
 137try_again:
 138	ret = 0;
 139	spin_lock(&obj->vma.lock);
 140	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 141						       struct i915_vma,
 142						       obj_link))) {
 143		list_move_tail(&vma->obj_link, &still_in_list);
 144		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 145			continue;
 146
 147		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 148			ret = -EBUSY;
 149			break;
 150		}
 
 151
 152		/*
 153		 * Requiring the vm destructor to take the object lock
 154		 * before destroying a vma would help us eliminate the
 155		 * i915_vm_tryget() here, AND thus also the barrier stuff
 156		 * at the end. That's an easy fix, but sleeping locks in
 157		 * a kthread should generally be avoided.
 158		 */
 159		ret = -EAGAIN;
 160		if (!i915_vm_tryget(vma->vm))
 161			break;
 162
 163		spin_unlock(&obj->vma.lock);
 
 164
 165		/*
 166		 * Since i915_vma_parked() takes the object lock
 167		 * before vma destruction, it won't race us here,
 168		 * and destroy the vma from under us.
 169		 */
 170
 171		ret = -EBUSY;
 172		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
 173			assert_object_held(vma->obj);
 174			ret = i915_vma_unbind_async(vma, vm_trylock);
 175		}
 
 
 
 176
 177		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 178				      !i915_vma_is_active(vma))) {
 179			if (vm_trylock) {
 180				if (mutex_trylock(&vma->vm->mutex)) {
 181					ret = __i915_vma_unbind(vma);
 182					mutex_unlock(&vma->vm->mutex);
 183				}
 184			} else {
 185				ret = i915_vma_unbind(vma);
 186			}
 187		}
 188
 189		i915_vm_put(vma->vm);
 190		spin_lock(&obj->vma.lock);
 191	}
 192	list_splice_init(&still_in_list, &obj->vma.list);
 193	spin_unlock(&obj->vma.lock);
 
 
 
 194
 195	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 196		rcu_barrier(); /* flush the i915_vm_release() */
 197		goto try_again;
 198	}
 
 
 199
 200	intel_runtime_pm_put(rpm, wakeref);
 
 201
 202	return ret;
 203}
 204
 205static int
 206shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 207	    bool needs_clflush)
 
 
 208{
 209	char *vaddr;
 210	int ret;
 
 211
 212	vaddr = kmap(page);
 
 
 213
 214	if (needs_clflush)
 215		drm_clflush_virt_range(vaddr + offset, len);
 
 
 216
 217	ret = __copy_to_user(user_data, vaddr + offset, len);
 
 
 
 
 
 
 218
 219	kunmap(page);
 
 
 220
 221	return ret ? -EFAULT : 0;
 
 222}
 223
 224static int
 225i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 226		     struct drm_i915_gem_pread *args)
 
 
 
 
 
 
 
 
 
 
 
 
 227{
 228	unsigned int needs_clflush;
 229	char __user *user_data;
 230	unsigned long offset;
 231	pgoff_t idx;
 232	u64 remain;
 233	int ret;
 234
 235	ret = i915_gem_object_lock_interruptible(obj, NULL);
 236	if (ret)
 237		return ret;
 
 
 
 
 
 238
 239	ret = i915_gem_object_pin_pages(obj);
 240	if (ret)
 241		goto err_unlock;
 242
 243	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 244	if (ret)
 245		goto err_unpin;
 246
 247	i915_gem_object_finish_access(obj);
 248	i915_gem_object_unlock(obj);
 
 249
 250	remain = args->size;
 251	user_data = u64_to_user_ptr(args->data_ptr);
 252	offset = offset_in_page(args->offset);
 253	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 254		struct page *page = i915_gem_object_get_page(obj, idx);
 255		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 
 
 
 
 
 256
 257		ret = shmem_pread(page, offset, length, user_data,
 258				  needs_clflush);
 
 259		if (ret)
 260			break;
 261
 262		remain -= length;
 263		user_data += length;
 264		offset = 0;
 265	}
 266
 267	i915_gem_object_unpin_pages(obj);
 268	return ret;
 269
 270err_unpin:
 271	i915_gem_object_unpin_pages(obj);
 272err_unlock:
 273	i915_gem_object_unlock(obj);
 274	return ret;
 275}
 276
 277static inline bool
 278gtt_user_read(struct io_mapping *mapping,
 279	      loff_t base, int offset,
 280	      char __user *user_data, int length)
 281{
 282	void __iomem *vaddr;
 283	unsigned long unwritten;
 
 
 
 
 
 
 
 
 
 
 284
 285	/* We can use the cpu mem copy function because this is X86. */
 286	vaddr = io_mapping_map_atomic_wc(mapping, base);
 287	unwritten = __copy_to_user_inatomic(user_data,
 288					    (void __force *)vaddr + offset,
 289					    length);
 290	io_mapping_unmap_atomic(vaddr);
 291	if (unwritten) {
 292		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 293		unwritten = copy_to_user(user_data,
 294					 (void __force *)vaddr + offset,
 295					 length);
 296		io_mapping_unmap(vaddr);
 297	}
 298	return unwritten;
 
 299}
 300
 301static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
 302					     struct drm_mm_node *node,
 303					     bool write)
 304{
 305	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 306	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 307	struct i915_vma *vma;
 308	struct i915_gem_ww_ctx ww;
 309	int ret;
 310
 311	i915_gem_ww_ctx_init(&ww, true);
 312retry:
 313	vma = ERR_PTR(-ENODEV);
 314	ret = i915_gem_object_lock(obj, &ww);
 315	if (ret)
 316		goto err_ww;
 317
 318	ret = i915_gem_object_set_to_gtt_domain(obj, write);
 319	if (ret)
 320		goto err_ww;
 321
 322	if (!i915_gem_object_is_tiled(obj))
 323		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
 324						  PIN_MAPPABLE |
 325						  PIN_NONBLOCK /* NOWARN */ |
 326						  PIN_NOEVICT);
 327	if (vma == ERR_PTR(-EDEADLK)) {
 328		ret = -EDEADLK;
 329		goto err_ww;
 330	} else if (!IS_ERR(vma)) {
 331		node->start = i915_ggtt_offset(vma);
 332		node->flags = 0;
 333	} else {
 334		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
 335		if (ret)
 336			goto err_ww;
 337		GEM_BUG_ON(!drm_mm_node_allocated(node));
 338		vma = NULL;
 339	}
 340
 341	ret = i915_gem_object_pin_pages(obj);
 342	if (ret) {
 343		if (drm_mm_node_allocated(node)) {
 344			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 345			remove_mappable_node(ggtt, node);
 346		} else {
 347			i915_vma_unpin(vma);
 348		}
 349	}
 350
 351err_ww:
 352	if (ret == -EDEADLK) {
 353		ret = i915_gem_ww_ctx_backoff(&ww);
 354		if (!ret)
 355			goto retry;
 356	}
 357	i915_gem_ww_ctx_fini(&ww);
 
 358
 359	return ret ? ERR_PTR(ret) : vma;
 360}
 361
 362static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
 363				 struct drm_mm_node *node,
 364				 struct i915_vma *vma)
 365{
 366	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 367	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 
 
 
 
 
 
 
 
 368
 369	i915_gem_object_unpin_pages(obj);
 370	if (drm_mm_node_allocated(node)) {
 371		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 372		remove_mappable_node(ggtt, node);
 373	} else {
 374		i915_vma_unpin(vma);
 375	}
 
 376}
 377
 
 
 378static int
 379i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 380		   const struct drm_i915_gem_pread *args)
 
 381{
 382	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 383	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 384	unsigned long remain, offset;
 385	intel_wakeref_t wakeref;
 386	struct drm_mm_node node;
 387	void __user *user_data;
 388	struct i915_vma *vma;
 389	int ret = 0;
 390
 391	if (overflows_type(args->size, remain) ||
 392	    overflows_type(args->offset, offset))
 393		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 
 396
 397	vma = i915_gem_gtt_prepare(obj, &node, false);
 398	if (IS_ERR(vma)) {
 399		ret = PTR_ERR(vma);
 400		goto out_rpm;
 401	}
 
 
 
 
 
 
 
 
 
 
 
 402
 403	user_data = u64_to_user_ptr(args->data_ptr);
 404	remain = args->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405	offset = args->offset;
 406
 407	while (remain > 0) {
 
 
 408		/* Operation in this page
 409		 *
 410		 * page_base = page offset within aperture
 411		 * page_offset = offset within page
 412		 * page_length = bytes to copy for this page
 413		 */
 414		u32 page_base = node.start;
 415		unsigned page_offset = offset_in_page(offset);
 416		unsigned page_length = PAGE_SIZE - page_offset;
 417		page_length = remain < page_length ? remain : page_length;
 418		if (drm_mm_node_allocated(&node)) {
 419			ggtt->vm.insert_page(&ggtt->vm,
 420					     i915_gem_object_get_dma_address(obj,
 421									     offset >> PAGE_SHIFT),
 422					     node.start,
 423					     i915_gem_get_pat_index(i915,
 424								    I915_CACHE_NONE), 0);
 425		} else {
 426			page_base += offset & PAGE_MASK;
 
 
 
 
 
 427		}
 428
 429		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 430				  user_data, page_length)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431			ret = -EFAULT;
 432			break;
 433		}
 434
 435		remain -= page_length;
 436		user_data += page_length;
 437		offset += page_length;
 438	}
 439
 440	i915_gem_gtt_cleanup(obj, &node, vma);
 441out_rpm:
 442	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 
 
 
 
 443	return ret;
 444}
 445
 446/**
 447 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
 448 * @dev: drm device pointer
 449 * @data: ioctl data blob
 450 * @file: drm file pointer
 451 *
 452 * On error, the contents of *data are undefined.
 453 */
 454int
 455i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 456		     struct drm_file *file)
 457{
 458	struct drm_i915_private *i915 = to_i915(dev);
 459	struct drm_i915_gem_pread *args = data;
 460	struct drm_i915_gem_object *obj;
 461	int ret;
 462
 463	/* PREAD is disallowed for all platforms after TGL-LP.  This also
 464	 * covers all platforms with local memory.
 465	 */
 466	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 467		return -EOPNOTSUPP;
 468
 469	if (args->size == 0)
 470		return 0;
 471
 472	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 
 473		       args->size))
 474		return -EFAULT;
 475
 476	obj = i915_gem_object_lookup(file, args->handle);
 477	if (!obj)
 478		return -ENOENT;
 
 
 
 
 
 
 479
 480	/* Bounds check source.  */
 481	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 
 482		ret = -EINVAL;
 483		goto out;
 484	}
 485
 486	trace_i915_gem_object_pread(obj, args->offset, args->size);
 487	ret = -ENODEV;
 488	if (obj->ops->pread)
 489		ret = obj->ops->pread(obj, args);
 490	if (ret != -ENODEV)
 491		goto out;
 
 492
 493	ret = i915_gem_object_wait(obj,
 494				   I915_WAIT_INTERRUPTIBLE,
 495				   MAX_SCHEDULE_TIMEOUT);
 496	if (ret)
 497		goto out;
 498
 499	ret = i915_gem_shmem_pread(obj, args);
 500	if (ret == -EFAULT || ret == -ENODEV)
 501		ret = i915_gem_gtt_pread(obj, args);
 502
 503out:
 504	i915_gem_object_put(obj);
 
 
 505	return ret;
 506}
 507
 508/* This is the fast write path which cannot handle
 509 * page faults in the source data
 510 */
 511
 512static inline bool
 513ggtt_write(struct io_mapping *mapping,
 514	   loff_t base, int offset,
 515	   char __user *user_data, int length)
 
 516{
 517	void __iomem *vaddr;
 
 518	unsigned long unwritten;
 519
 
 520	/* We can use the cpu mem copy function because this is X86. */
 521	vaddr = io_mapping_map_atomic_wc(mapping, base);
 522	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 523						      user_data, length);
 524	io_mapping_unmap_atomic(vaddr);
 525	if (unwritten) {
 526		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 527		unwritten = copy_from_user((void __force *)vaddr + offset,
 528					   user_data, length);
 529		io_mapping_unmap(vaddr);
 530	}
 531
 532	return unwritten;
 533}
 534
 535/**
 536 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
 537 * user into the GTT, uncached.
 538 * @obj: i915 GEM object
 539 * @args: pwrite arguments structure
 540 */
 541static int
 542i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 543			 const struct drm_i915_gem_pwrite *args)
 
 
 544{
 545	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 546	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 547	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 548	unsigned long remain, offset;
 549	intel_wakeref_t wakeref;
 550	struct drm_mm_node node;
 551	struct i915_vma *vma;
 552	void __user *user_data;
 553	int ret = 0;
 554
 555	if (overflows_type(args->size, remain) ||
 556	    overflows_type(args->offset, offset))
 557		return -EINVAL;
 558
 559	if (i915_gem_object_has_struct_page(obj)) {
 560		/*
 561		 * Avoid waking the device up if we can fallback, as
 562		 * waking/resuming is very slow (worst-case 10-100 ms
 563		 * depending on PCI sleeps and our own resume time).
 564		 * This easily dwarfs any performance advantage from
 565		 * using the cache bypass of indirect GGTT access.
 566		 */
 567		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 568		if (!wakeref)
 569			return -EFAULT;
 570	} else {
 571		/* No backing pages, no fallback, we must force GGTT access */
 572		wakeref = intel_runtime_pm_get(rpm);
 573	}
 574
 575	vma = i915_gem_gtt_prepare(obj, &node, true);
 576	if (IS_ERR(vma)) {
 577		ret = PTR_ERR(vma);
 578		goto out_rpm;
 579	}
 580
 581	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 
 
 582
 583	user_data = u64_to_user_ptr(args->data_ptr);
 584	offset = args->offset;
 585	remain = args->size;
 586	while (remain) {
 
 
 
 587		/* Operation in this page
 588		 *
 589		 * page_base = page offset within aperture
 590		 * page_offset = offset within page
 591		 * page_length = bytes to copy for this page
 592		 */
 593		u32 page_base = node.start;
 594		unsigned int page_offset = offset_in_page(offset);
 595		unsigned int page_length = PAGE_SIZE - page_offset;
 596		page_length = remain < page_length ? remain : page_length;
 597		if (drm_mm_node_allocated(&node)) {
 598			/* flush the write before we modify the GGTT */
 599			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 600			ggtt->vm.insert_page(&ggtt->vm,
 601					     i915_gem_object_get_dma_address(obj,
 602									     offset >> PAGE_SHIFT),
 603					     node.start,
 604					     i915_gem_get_pat_index(i915,
 605								    I915_CACHE_NONE), 0);
 606			wmb(); /* flush modifications to the GGTT (insert_page) */
 607		} else {
 608			page_base += offset & PAGE_MASK;
 609		}
 610		/* If we get a fault while copying data, then (presumably) our
 611		 * source page isn't available.  Return the error and we'll
 612		 * retry in the slow path.
 613		 * If the object is non-shmem backed, we retry again with the
 614		 * path that handles page fault.
 615		 */
 616		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 617			       user_data, page_length)) {
 618			ret = -EFAULT;
 619			break;
 620		}
 621
 622		remain -= page_length;
 623		user_data += page_length;
 624		offset += page_length;
 625	}
 626
 627	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 628	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 629
 630	i915_gem_gtt_cleanup(obj, &node, vma);
 631out_rpm:
 632	intel_runtime_pm_put(rpm, wakeref);
 633	return ret;
 634}
 635
 636/* Per-page copy function for the shmem pwrite fastpath.
 637 * Flushes invalid cachelines before writing to the target if
 638 * needs_clflush_before is set and flushes out any written cachelines after
 639 * writing if needs_clflush is set.
 640 */
 641static int
 642shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 643	     bool needs_clflush_before,
 644	     bool needs_clflush_after)
 
 
 645{
 646	char *vaddr;
 647	int ret;
 648
 649	vaddr = kmap(page);
 
 650
 
 651	if (needs_clflush_before)
 652		drm_clflush_virt_range(vaddr + offset, len);
 
 
 
 
 
 
 
 
 653
 654	ret = __copy_from_user(vaddr + offset, user_data, len);
 655	if (!ret && needs_clflush_after)
 656		drm_clflush_virt_range(vaddr + offset, len);
 
 
 
 
 
 
 
 
 
 
 
 657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658	kunmap(page);
 659
 660	return ret ? -EFAULT : 0;
 661}
 662
 663static int
 664i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 665		      const struct drm_i915_gem_pwrite *args)
 
 
 666{
 667	unsigned int partial_cacheline_write;
 668	unsigned int needs_clflush;
 669	void __user *user_data;
 670	unsigned long offset;
 671	pgoff_t idx;
 672	u64 remain;
 673	int ret;
 
 
 
 674
 675	ret = i915_gem_object_lock_interruptible(obj, NULL);
 676	if (ret)
 677		return ret;
 678
 679	ret = i915_gem_object_pin_pages(obj);
 680	if (ret)
 681		goto err_unlock;
 682
 683	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 684	if (ret)
 685		goto err_unpin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 686
 687	i915_gem_object_finish_access(obj);
 688	i915_gem_object_unlock(obj);
 689
 690	/* If we don't overwrite a cacheline completely we need to be
 691	 * careful to have up-to-date data by first clflushing. Don't
 692	 * overcomplicate things and flush the entire patch.
 693	 */
 694	partial_cacheline_write = 0;
 695	if (needs_clflush & CLFLUSH_BEFORE)
 696		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 697
 698	user_data = u64_to_user_ptr(args->data_ptr);
 699	remain = args->size;
 700	offset = offset_in_page(args->offset);
 701	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 702		struct page *page = i915_gem_object_get_page(obj, idx);
 703		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 704
 705		ret = shmem_pwrite(page, offset, length, user_data,
 706				   (offset | length) & partial_cacheline_write,
 707				   needs_clflush & CLFLUSH_AFTER);
 708		if (ret)
 709			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710
 711		remain -= length;
 712		user_data += length;
 713		offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714	}
 715
 716	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 
 
 
 
 
 
 
 
 
 
 
 717
 718	i915_gem_object_unpin_pages(obj);
 719	return ret;
 720
 721err_unpin:
 722	i915_gem_object_unpin_pages(obj);
 723err_unlock:
 724	i915_gem_object_unlock(obj);
 725	return ret;
 726}
 727
 728/**
 729 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
 730 * @dev: drm device
 731 * @data: ioctl data blob
 732 * @file: drm file
 733 *
 734 * On error, the contents of the buffer that were to be modified are undefined.
 735 */
 736int
 737i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 738		      struct drm_file *file)
 739{
 740	struct drm_i915_private *i915 = to_i915(dev);
 741	struct drm_i915_gem_pwrite *args = data;
 742	struct drm_i915_gem_object *obj;
 743	int ret;
 744
 745	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
 746	 * covers all platforms with local memory.
 747	 */
 748	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 749		return -EOPNOTSUPP;
 750
 751	if (args->size == 0)
 752		return 0;
 753
 754	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 
 
 755		return -EFAULT;
 756
 757	obj = i915_gem_object_lookup(file, args->handle);
 758	if (!obj)
 759		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 760
 761	/* Bounds check destination. */
 762	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 
 763		ret = -EINVAL;
 764		goto err;
 765	}
 766
 767	/* Writes not allowed into this read-only object */
 768	if (i915_gem_object_is_readonly(obj)) {
 
 
 769		ret = -EINVAL;
 770		goto err;
 771	}
 772
 773	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 774
 775	ret = -ENODEV;
 776	if (obj->ops->pwrite)
 777		ret = obj->ops->pwrite(obj, args);
 778	if (ret != -ENODEV)
 779		goto err;
 780
 781	ret = i915_gem_object_wait(obj,
 782				   I915_WAIT_INTERRUPTIBLE |
 783				   I915_WAIT_ALL,
 784				   MAX_SCHEDULE_TIMEOUT);
 785	if (ret)
 786		goto err;
 787
 788	ret = -EFAULT;
 789	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 790	 * it would end up going through the fenced access, and we'll get
 791	 * different detiling behavior between reading and writing.
 792	 * pread/pwrite currently are reading and writing from the CPU
 793	 * perspective, requiring manual detiling by the client.
 794	 */
 795	if (!i915_gem_object_has_struct_page(obj) ||
 796	    i915_gem_cpu_write_needs_clflush(obj))
 
 
 
 
 
 
 
 
 
 797		/* Note that the gtt paths might fail with non-page-backed user
 798		 * pointers (e.g. gtt mappings when moving data between
 799		 * textures). Fallback to the shmem path in that case.
 800		 */
 801		ret = i915_gem_gtt_pwrite_fast(obj, args);
 
 
 802
 803	if (ret == -EFAULT || ret == -ENOSPC) {
 804		if (i915_gem_object_has_struct_page(obj))
 805			ret = i915_gem_shmem_pwrite(obj, args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	}
 807
 808err:
 809	i915_gem_object_put(obj);
 
 810	return ret;
 811}
 812
 813/**
 814 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
 815 * @dev: drm device
 816 * @data: ioctl data blob
 817 * @file: drm file
 818 */
 819int
 820i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 821			 struct drm_file *file)
 822{
 823	struct drm_i915_gem_sw_finish *args = data;
 824	struct drm_i915_gem_object *obj;
 
 825
 826	obj = i915_gem_object_lookup(file, args->handle);
 827	if (!obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828		return -ENOENT;
 829
 830	/*
 831	 * Proxy objects are barred from CPU access, so there is no
 832	 * need to ban sw_finish as it is a nop.
 833	 */
 
 
 
 
 834
 835	/* Pinned buffers may be scanout, so flush the cache */
 836	i915_gem_object_flush_if_display(obj);
 837	i915_gem_object_put(obj);
 
 
 
 
 
 838
 839	return 0;
 840}
 841
 842void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843{
 844	struct drm_i915_gem_object *obj, *on;
 845	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847	/*
 848	 * Only called during RPM suspend. All users of the userfault_list
 849	 * must be holding an RPM wakeref to ensure that this can not
 850	 * run concurrently with themselves (and use the struct_mutex for
 851	 * protection between themselves).
 852	 */
 
 
 
 853
 854	list_for_each_entry_safe(obj, on,
 855				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
 856		__i915_gem_object_release_mmap_gtt(obj);
 857
 858	list_for_each_entry_safe(obj, on,
 859				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
 860		i915_gem_object_runtime_pm_release_mmap_offset(obj);
 861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	/*
 863	 * The fence will be lost when the device powers down. If any were
 864	 * in use by hardware (i.e. they are pinned), we should not be powering
 865	 * down! All other fences will be reacquired by the user upon waking.
 
 
 
 
 
 
 866	 */
 867	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
 868		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
 869
 870		/*
 871		 * Ideally we want to assert that the fence register is not
 872		 * live at this point (i.e. that no piece of code will be
 873		 * trying to write through fence + GTT, as that both violates
 874		 * our tracking of activity and associated locking/barriers,
 875		 * but also is illegal given that the hw is powered down).
 876		 *
 877		 * Previously we used reg->pin_count as a "liveness" indicator.
 878		 * That is not sufficient, and we need a more fine-grained
 879		 * tool if we want to have a sanity check here.
 880		 */
 881
 882		if (!reg->vma)
 883			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 886		reg->dirty = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887	}
 
 
 
 
 888}
 889
 890static void discard_ggtt_vma(struct i915_vma *vma)
 
 
 
 891{
 892	struct drm_i915_gem_object *obj = vma->obj;
 
 
 
 
 893
 894	spin_lock(&obj->vma.lock);
 895	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 896		rb_erase(&vma->obj_node, &obj->vma.tree);
 897		RB_CLEAR_NODE(&vma->obj_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898	}
 899	spin_unlock(&obj->vma.lock);
 900}
 901
 902struct i915_vma *
 903i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 904			    struct i915_gem_ww_ctx *ww,
 905			    const struct i915_gtt_view *view,
 906			    u64 size, u64 alignment, u64 flags)
 907{
 908	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 909	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 910	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911	int ret;
 912
 913	GEM_WARN_ON(!ww);
 
 914
 915	if (flags & PIN_MAPPABLE &&
 916	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
 917		/*
 918		 * If the required space is larger than the available
 919		 * aperture, we will not able to find a slot for the
 920		 * object and unbinding the object now will be in
 921		 * vain. Worse, doing so may cause us to ping-pong
 922		 * the object in and out of the Global GTT and
 923		 * waste a lot of cycles under the mutex.
 924		 */
 925		if (obj->base.size > ggtt->mappable_end)
 926			return ERR_PTR(-E2BIG);
 927
 928		/*
 929		 * If NONBLOCK is set the caller is optimistically
 930		 * trying to cache the full object within the mappable
 931		 * aperture, and *must* have a fallback in place for
 932		 * situations where we cannot bind the object. We
 933		 * can be a little more lax here and use the fallback
 934		 * more often to avoid costly migrations of ourselves
 935		 * and other objects within the aperture.
 936		 *
 937		 * Half-the-aperture is used as a simple heuristic.
 938		 * More interesting would to do search for a free
 939		 * block prior to making the commitment to unbind.
 940		 * That caters for the self-harm case, and with a
 941		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 942		 * we could try to minimise harm to others.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943		 */
 944		if (flags & PIN_NONBLOCK &&
 945		    obj->base.size > ggtt->mappable_end / 2)
 946			return ERR_PTR(-ENOSPC);
 
 
 947	}
 948
 949new_vma:
 950	vma = i915_vma_instance(obj, &ggtt->vm, view);
 951	if (IS_ERR(vma))
 952		return vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953
 954	if (i915_vma_misplaced(vma, size, alignment, flags)) {
 955		if (flags & PIN_NONBLOCK) {
 956			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 957				return ERR_PTR(-ENOSPC);
 
 958
 959			/*
 960			 * If this misplaced vma is too big (i.e, at-least
 961			 * half the size of aperture) or hasn't been pinned
 962			 * mappable before, we ignore the misplacement when
 963			 * PIN_NONBLOCK is set in order to avoid the ping-pong
 964			 * issue described above. In other words, we try to
 965			 * avoid the costly operation of unbinding this vma
 966			 * from the GGTT and rebinding it back because there
 967			 * may not be enough space for this vma in the aperture.
 968			 */
 969			if (flags & PIN_MAPPABLE &&
 970			    (vma->fence_size > ggtt->mappable_end / 2 ||
 971			    !i915_vma_is_map_and_fenceable(vma)))
 972				return ERR_PTR(-ENOSPC);
 
 
 
 973		}
 974
 975		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
 976			discard_ggtt_vma(vma);
 977			goto new_vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978		}
 979
 980		ret = i915_vma_unbind(vma);
 981		if (ret)
 982			return ERR_PTR(ret);
 983	}
 984
 985	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
 
 
 
 
 
 
 
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987	if (ret)
 988		return ERR_PTR(ret);
 989
 990	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
 991		mutex_lock(&ggtt->vm.mutex);
 992		i915_vma_revoke_fence(vma);
 993		mutex_unlock(&ggtt->vm.mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	}
 995
 996	ret = i915_vma_wait_for_bind(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997	if (ret) {
 998		i915_vma_unpin(vma);
 999		return ERR_PTR(ret);
 
 
 
1000	}
1001
1002	return vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005struct i915_vma * __must_check
1006i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1007			 const struct i915_gtt_view *view,
1008			 u64 size, u64 alignment, u64 flags)
1009{
1010	struct i915_gem_ww_ctx ww;
1011	struct i915_vma *ret;
1012	int err;
1013
1014	for_i915_gem_ww(&ww, err, true) {
1015		err = i915_gem_object_lock(obj, &ww);
1016		if (err)
1017			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018
1019		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1020						  alignment, flags);
1021		if (IS_ERR(ret))
1022			err = PTR_ERR(ret);
 
1023	}
1024
1025	return err ? ERR_PTR(err) : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026}
1027
1028int
1029i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1030		       struct drm_file *file_priv)
1031{
1032	struct drm_i915_private *i915 = to_i915(dev);
1033	struct drm_i915_gem_madvise *args = data;
1034	struct drm_i915_gem_object *obj;
1035	int err;
1036
1037	switch (args->madv) {
1038	case I915_MADV_DONTNEED:
1039	case I915_MADV_WILLNEED:
1040	    break;
1041	default:
1042	    return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043	}
1044
1045	obj = i915_gem_object_lookup(file_priv, args->handle);
1046	if (!obj)
1047		return -ENOENT;
1048
1049	err = i915_gem_object_lock_interruptible(obj, NULL);
1050	if (err)
1051		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053	if (i915_gem_object_has_pages(obj) &&
1054	    i915_gem_object_is_tiled(obj) &&
1055	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1056		if (obj->mm.madv == I915_MADV_WILLNEED) {
1057			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1058			i915_gem_object_clear_tiling_quirk(obj);
1059			i915_gem_object_make_shrinkable(obj);
1060		}
1061		if (args->madv == I915_MADV_WILLNEED) {
1062			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1063			i915_gem_object_make_unshrinkable(obj);
1064			i915_gem_object_set_tiling_quirk(obj);
 
 
 
 
 
 
 
 
 
1065		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	}
1067
1068	if (obj->mm.madv != __I915_MADV_PURGED) {
1069		obj->mm.madv = args->madv;
1070		if (obj->ops->adjust_lru)
1071			obj->ops->adjust_lru(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
1072	}
1073
1074	if (i915_gem_object_has_pages(obj) ||
1075	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1076		unsigned long flags;
1077
1078		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1079		if (!list_empty(&obj->mm.link)) {
1080			struct list_head *list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081
1082			if (obj->mm.madv != I915_MADV_WILLNEED)
1083				list = &i915->mm.purge_list;
1084			else
1085				list = &i915->mm.shrink_list;
1086			list_move_tail(&obj->mm.link, list);
1087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088		}
1089		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
 
1090	}
1091
1092	/* if the object is no longer attached, discard its backing storage */
1093	if (obj->mm.madv == I915_MADV_DONTNEED &&
1094	    !i915_gem_object_has_pages(obj))
1095		i915_gem_object_truncate(obj);
 
1096
1097	args->retained = obj->mm.madv != __I915_MADV_PURGED;
 
1098
1099	i915_gem_object_unlock(obj);
1100out:
1101	i915_gem_object_put(obj);
1102	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103}
1104
1105/*
1106 * A single pass should suffice to release all the freed objects (along most
1107 * call paths), but be a little more paranoid in that freeing the objects does
1108 * take a little amount of time, during which the rcu callbacks could have added
1109 * new objects into the freed list, and armed the work again.
1110 */
1111void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1112{
1113	while (atomic_read(&i915->mm.free_count)) {
1114		flush_work(&i915->mm.free_work);
1115		drain_workqueue(i915->bdev.wq);
1116		rcu_barrier();
1117	}
 
 
 
 
 
 
 
 
 
 
 
1118}
1119
1120/*
1121 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1122 * have workers that are armed by RCU and then rearm themselves in their
1123 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1124 * waiting for the RCU grace period so that we catch work queued via RCU from
1125 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1126 * result, we make an assumption that we only don't require more than 3 passes
1127 * to catch all _recursive_ RCU delayed work.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128 */
1129void i915_gem_drain_workqueue(struct drm_i915_private *i915)
 
1130{
1131	int i;
 
 
 
 
 
 
1132
1133	for (i = 0; i < 3; i++) {
1134		flush_workqueue(i915->wq);
1135		rcu_barrier();
1136		i915_gem_drain_freed_objects(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137	}
1138
1139	drain_workqueue(i915->wq);
 
 
 
 
 
 
 
 
1140}
1141
1142int i915_gem_init(struct drm_i915_private *dev_priv)
 
1143{
1144	struct intel_gt *gt;
1145	unsigned int i;
1146	int ret;
1147
1148	/*
1149	 * In the proccess of replacing cache_level with pat_index a tricky
1150	 * dependency is created on the definition of the enum i915_cache_level.
1151	 * in case this enum is changed, PTE encode would be broken.
1152	 * Add a WARNING here. And remove when we completely quit using this
1153	 * enum
1154	 */
1155	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1156		     I915_CACHE_LLC != 1 ||
1157		     I915_CACHE_L3_LLC != 2 ||
1158		     I915_CACHE_WT != 3 ||
1159		     I915_MAX_CACHE_LEVEL != 4);
1160
1161	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1162	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1163		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1164
1165	for_each_gt(gt, dev_priv, i) {
1166		intel_uc_fetch_firmwares(&gt->uc);
1167		intel_wopcm_init(&gt->wopcm);
1168		if (GRAPHICS_VER(dev_priv) >= 8)
1169			setup_private_pat(gt);
1170	}
1171
1172	ret = i915_init_ggtt(dev_priv);
1173	if (ret) {
1174		GEM_BUG_ON(ret == -EIO);
1175		goto err_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176	}
1177
1178	/*
1179	 * Despite its name intel_clock_gating_init applies both display
1180	 * clock gating workarounds; GT mmio workarounds and the occasional
1181	 * GT power context workaround. Worse, sometimes it includes a context
1182	 * register workaround which we need to apply before we record the
1183	 * default HW state for all contexts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184	 *
1185	 * FIXME: break up the workarounds and apply them at the right time!
 
 
1186	 */
1187	intel_clock_gating_init(dev_priv);
 
 
1188
1189	for_each_gt(gt, dev_priv, i) {
1190		ret = intel_gt_init(gt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191		if (ret)
1192			goto err_unlock;
1193	}
1194
1195	/*
1196	 * Register engines early to ensure the engine list is in its final
1197	 * rb-tree form, lowering the amount of code that has to deal with
1198	 * the intermediate llist state.
1199	 */
1200	intel_engines_driver_register(dev_priv);
1201
 
 
1202	return 0;
 
1203
1204	/*
1205	 * Unwinding is complicated by that we want to handle -EIO to mean
1206	 * disable GPU submission but keep KMS alive. We want to mark the
1207	 * HW as irrevisibly wedged, but keep enough state around that the
1208	 * driver doesn't explode during runtime.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209	 */
1210err_unlock:
1211	i915_gem_drain_workqueue(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213	if (ret != -EIO) {
1214		for_each_gt(gt, dev_priv, i) {
1215			intel_gt_driver_remove(gt);
1216			intel_gt_driver_release(gt);
1217			intel_uc_cleanup_firmwares(&gt->uc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218		}
1219	}
1220
1221	if (ret == -EIO) {
1222		/*
1223		 * Allow engines or uC initialisation to fail by marking the GPU
1224		 * as wedged. But we only want to do this when the GPU is angry,
1225		 * for all other failure, such as an allocation failure, bail.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226		 */
1227		for_each_gt(gt, dev_priv, i) {
1228			if (!intel_gt_is_wedged(gt)) {
1229				i915_probe_error(dev_priv,
1230						 "Failed to initialize GPU, declaring it wedged!\n");
1231				intel_gt_set_wedged(gt);
1232			}
1233		}
1234
1235		/* Minimal basic recovery for KMS */
1236		ret = i915_ggtt_enable_hw(dev_priv);
1237		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1238		intel_clock_gating_init(dev_priv);
 
 
 
 
1239	}
1240
1241	i915_gem_drain_freed_objects(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	return ret;
1244}
1245
1246void i915_gem_driver_register(struct drm_i915_private *i915)
 
1247{
1248	i915_gem_driver_register__shrinker(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249}
1250
1251void i915_gem_driver_unregister(struct drm_i915_private *i915)
 
1252{
1253	i915_gem_driver_unregister__shrinker(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254}
1255
1256void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1257{
1258	struct intel_gt *gt;
1259	unsigned int i;
 
 
 
 
 
 
1260
1261	i915_gem_suspend_late(dev_priv);
1262	for_each_gt(gt, dev_priv, i)
1263		intel_gt_driver_remove(gt);
1264	dev_priv->uabi_engines = RB_ROOT;
1265
1266	/* Flush any outstanding unpin_work. */
1267	i915_gem_drain_workqueue(dev_priv);
 
 
 
1268}
1269
1270void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1271{
1272	struct intel_gt *gt;
1273	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274
1275	for_each_gt(gt, dev_priv, i) {
1276		intel_gt_driver_release(gt);
1277		intel_uc_cleanup_firmwares(&gt->uc);
 
 
 
 
 
 
 
1278	}
1279
1280	/* Flush any outstanding work, including i915_gem_context.release_work. */
1281	i915_gem_drain_workqueue(dev_priv);
 
 
1282
1283	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
 
 
1284}
1285
1286static void i915_gem_init__mm(struct drm_i915_private *i915)
 
1287{
1288	spin_lock_init(&i915->mm.obj_lock);
 
1289
1290	init_llist_head(&i915->mm.free_list);
1291
1292	INIT_LIST_HEAD(&i915->mm.purge_list);
1293	INIT_LIST_HEAD(&i915->mm.shrink_list);
 
1294
1295	i915_gem_init__objects(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296}
1297
1298void i915_gem_init_early(struct drm_i915_private *dev_priv)
 
1299{
1300	i915_gem_init__mm(dev_priv);
1301	i915_gem_init__contexts(dev_priv);
 
 
 
 
 
 
 
 
1302}
1303
1304void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1305{
1306	i915_gem_drain_workqueue(dev_priv);
1307	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1308	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1309	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310}
1311
1312int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
 
1313{
1314	struct drm_i915_file_private *file_priv;
1315	struct i915_drm_client *client;
1316	int ret = -ENOMEM;
1317
1318	drm_dbg(&i915->drm, "\n");
 
 
1319
1320	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1321	if (!file_priv)
1322		goto err_alloc;
 
 
 
1323
1324	client = i915_drm_client_alloc();
1325	if (!client)
1326		goto err_client;
1327
1328	file->driver_priv = file_priv;
1329	file_priv->i915 = i915;
1330	file_priv->file = file;
1331	file_priv->client = client;
1332
1333	file_priv->bsd_engine = -1;
1334	file_priv->hang_timestamp = jiffies;
1335
1336	ret = i915_gem_context_open(i915, file);
 
 
 
 
 
 
 
 
 
 
 
1337	if (ret)
1338		goto err_context;
1339
1340	return 0;
1341
1342err_context:
1343	i915_drm_client_put(client);
1344err_client:
1345	kfree(file_priv);
1346err_alloc:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347	return ret;
1348}
1349
1350#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1351#include "selftests/mock_gem_device.c"
1352#include "selftests/i915_gem.c"
 
 
 
 
 
 
 
 
 
 
 
 
1353#endif
v3.5.6
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "drmP.h"
  29#include "drm.h"
  30#include "i915_drm.h"
  31#include "i915_drv.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
 
  36#include <linux/swap.h>
  37#include <linux/pci.h>
  38#include <linux/dma-buf.h>
 
 
 
 
  39
  40static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  43static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  44						    unsigned alignment,
  45						    bool map_and_fenceable);
  46static int i915_gem_phys_pwrite(struct drm_device *dev,
  47				struct drm_i915_gem_object *obj,
  48				struct drm_i915_gem_pwrite *args,
  49				struct drm_file *file);
  50
  51static void i915_gem_write_fence(struct drm_device *dev, int reg,
  52				 struct drm_i915_gem_object *obj);
  53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  54					 struct drm_i915_fence_reg *fence,
  55					 bool enable);
  56
  57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  58				    struct shrink_control *sc);
  59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  60
  61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
 
  62{
  63	if (obj->tiling_mode)
  64		i915_gem_release_mmap(obj);
 
 
 
 
 
 
 
 
 
  65
  66	/* As we do not have an associated fence register, we will force
  67	 * a tiling change if we ever need to acquire one.
  68	 */
  69	obj->fence_dirty = false;
  70	obj->fence_reg = I915_FENCE_REG_NONE;
  71}
  72
  73/* some bookkeeping */
  74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  75				  size_t size)
  76{
  77	dev_priv->mm.object_count++;
  78	dev_priv->mm.object_memory += size;
 
  79}
  80
  81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  82				     size_t size)
 
  83{
  84	dev_priv->mm.object_count--;
  85	dev_priv->mm.object_memory -= size;
  86}
 
 
 
 
 
  87
  88static int
  89i915_gem_wait_for_error(struct drm_device *dev)
  90{
  91	struct drm_i915_private *dev_priv = dev->dev_private;
  92	struct completion *x = &dev_priv->error_completion;
  93	unsigned long flags;
  94	int ret;
  95
  96	if (!atomic_read(&dev_priv->mm.wedged))
  97		return 0;
  98
  99	ret = wait_for_completion_interruptible(x);
 100	if (ret)
 101		return ret;
 102
 103	if (atomic_read(&dev_priv->mm.wedged)) {
 104		/* GPU is hung, bump the completion count to account for
 105		 * the token we just consumed so that we never hit zero and
 106		 * end up waiting upon a subsequent completion event that
 107		 * will never happen.
 108		 */
 109		spin_lock_irqsave(&x->wait.lock, flags);
 110		x->done++;
 111		spin_unlock_irqrestore(&x->wait.lock, flags);
 112	}
 113	return 0;
 114}
 115
 116int i915_mutex_lock_interruptible(struct drm_device *dev)
 
 117{
 
 
 
 
 
 118	int ret;
 119
 120	ret = i915_gem_wait_for_error(dev);
 121	if (ret)
 122		return ret;
 123
 124	ret = mutex_lock_interruptible(&dev->struct_mutex);
 125	if (ret)
 126		return ret;
 127
 128	WARN_ON(i915_verify_lists(dev));
 129	return 0;
 130}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131
 132static inline bool
 133i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 134{
 135	return !obj->active;
 136}
 137
 138int
 139i915_gem_init_ioctl(struct drm_device *dev, void *data,
 140		    struct drm_file *file)
 141{
 142	struct drm_i915_gem_init *args = data;
 
 
 
 
 
 143
 144	if (drm_core_check_feature(dev, DRIVER_MODESET))
 145		return -ENODEV;
 146
 147	if (args->gtt_start >= args->gtt_end ||
 148	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 149		return -EINVAL;
 
 
 150
 151	/* GEM with user mode setting was never supported on ilk and later. */
 152	if (INTEL_INFO(dev)->gen >= 5)
 153		return -ENODEV;
 154
 155	mutex_lock(&dev->struct_mutex);
 156	i915_gem_init_global_gtt(dev, args->gtt_start,
 157				 args->gtt_end, args->gtt_end);
 158	mutex_unlock(&dev->struct_mutex);
 159
 160	return 0;
 161}
 
 
 
 
 
 
 
 
 
 162
 163int
 164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 165			    struct drm_file *file)
 166{
 167	struct drm_i915_private *dev_priv = dev->dev_private;
 168	struct drm_i915_gem_get_aperture *args = data;
 169	struct drm_i915_gem_object *obj;
 170	size_t pinned;
 171
 172	pinned = 0;
 173	mutex_lock(&dev->struct_mutex);
 174	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
 175		if (obj->pin_count)
 176			pinned += obj->gtt_space->size;
 177	mutex_unlock(&dev->struct_mutex);
 178
 179	args->aper_size = dev_priv->mm.gtt_total;
 180	args->aper_available_size = args->aper_size - pinned;
 181
 182	return 0;
 183}
 184
 185static int
 186i915_gem_create(struct drm_file *file,
 187		struct drm_device *dev,
 188		uint64_t size,
 189		uint32_t *handle_p)
 190{
 191	struct drm_i915_gem_object *obj;
 192	int ret;
 193	u32 handle;
 194
 195	size = roundup(size, PAGE_SIZE);
 196	if (size == 0)
 197		return -EINVAL;
 198
 199	/* Allocate the new object */
 200	obj = i915_gem_alloc_object(dev, size);
 201	if (obj == NULL)
 202		return -ENOMEM;
 203
 204	ret = drm_gem_handle_create(file, &obj->base, &handle);
 205	if (ret) {
 206		drm_gem_object_release(&obj->base);
 207		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
 208		kfree(obj);
 209		return ret;
 210	}
 211
 212	/* drop reference from allocate - handle holds it now */
 213	drm_gem_object_unreference(&obj->base);
 214	trace_i915_gem_object_create(obj);
 215
 216	*handle_p = handle;
 217	return 0;
 218}
 219
 220int
 221i915_gem_dumb_create(struct drm_file *file,
 222		     struct drm_device *dev,
 223		     struct drm_mode_create_dumb *args)
 224{
 225	/* have to work out size/pitch and return them */
 226	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
 227	args->size = args->pitch * args->height;
 228	return i915_gem_create(file, dev,
 229			       args->size, &args->handle);
 230}
 231
 232int i915_gem_dumb_destroy(struct drm_file *file,
 233			  struct drm_device *dev,
 234			  uint32_t handle)
 235{
 236	return drm_gem_handle_delete(file, handle);
 237}
 
 
 
 
 238
 239/**
 240 * Creates a new mm object and returns a handle to it.
 241 */
 242int
 243i915_gem_create_ioctl(struct drm_device *dev, void *data,
 244		      struct drm_file *file)
 245{
 246	struct drm_i915_gem_create *args = data;
 247
 248	return i915_gem_create(file, dev,
 249			       args->size, &args->handle);
 250}
 251
 252static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
 253{
 254	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
 255
 256	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
 257		obj->tiling_mode != I915_TILING_NONE;
 258}
 259
 260static inline int
 261__copy_to_user_swizzled(char __user *cpu_vaddr,
 262			const char *gpu_vaddr, int gpu_offset,
 263			int length)
 264{
 265	int ret, cpu_offset = 0;
 266
 267	while (length > 0) {
 268		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 269		int this_length = min(cacheline_end - gpu_offset, length);
 270		int swizzled_gpu_offset = gpu_offset ^ 64;
 271
 272		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 273				     gpu_vaddr + swizzled_gpu_offset,
 274				     this_length);
 275		if (ret)
 276			return ret + length;
 277
 278		cpu_offset += this_length;
 279		gpu_offset += this_length;
 280		length -= this_length;
 281	}
 282
 283	return 0;
 
 
 
 
 
 
 
 284}
 285
 286static inline int
 287__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 288			  const char __user *cpu_vaddr,
 289			  int length)
 290{
 291	int ret, cpu_offset = 0;
 292
 293	while (length > 0) {
 294		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 295		int this_length = min(cacheline_end - gpu_offset, length);
 296		int swizzled_gpu_offset = gpu_offset ^ 64;
 297
 298		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 299				       cpu_vaddr + cpu_offset,
 300				       this_length);
 301		if (ret)
 302			return ret + length;
 303
 304		cpu_offset += this_length;
 305		gpu_offset += this_length;
 306		length -= this_length;
 
 
 
 
 
 
 
 
 
 307	}
 308
 309	return 0;
 310}
 311
 312/* Per-page copy function for the shmem pread fastpath.
 313 * Flushes invalid cachelines before reading the target if
 314 * needs_clflush is set. */
 315static int
 316shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 317		 char __user *user_data,
 318		 bool page_do_bit17_swizzling, bool needs_clflush)
 319{
 320	char *vaddr;
 321	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322
 323	if (unlikely(page_do_bit17_swizzling))
 324		return -EINVAL;
 
 
 
 
 
 
 
 325
 326	vaddr = kmap_atomic(page);
 327	if (needs_clflush)
 328		drm_clflush_virt_range(vaddr + shmem_page_offset,
 329				       page_length);
 330	ret = __copy_to_user_inatomic(user_data,
 331				      vaddr + shmem_page_offset,
 332				      page_length);
 333	kunmap_atomic(vaddr);
 334
 335	return ret;
 336}
 337
 338static void
 339shmem_clflush_swizzled_range(char *addr, unsigned long length,
 340			     bool swizzled)
 341{
 342	if (unlikely(swizzled)) {
 343		unsigned long start = (unsigned long) addr;
 344		unsigned long end = (unsigned long) addr + length;
 345
 346		/* For swizzling simply ensure that we always flush both
 347		 * channels. Lame, but simple and it works. Swizzled
 348		 * pwrite/pread is far from a hotpath - current userspace
 349		 * doesn't use it at all. */
 350		start = round_down(start, 128);
 351		end = round_up(end, 128);
 352
 353		drm_clflush_virt_range((void *)start, end - start);
 
 
 
 354	} else {
 355		drm_clflush_virt_range(addr, length);
 356	}
 357
 358}
 359
 360/* Only difference to the fast-path function is that this can handle bit17
 361 * and uses non-atomic copy and kmap functions. */
 362static int
 363shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 364		 char __user *user_data,
 365		 bool page_do_bit17_swizzling, bool needs_clflush)
 366{
 367	char *vaddr;
 368	int ret;
 
 
 
 
 
 
 369
 370	vaddr = kmap(page);
 371	if (needs_clflush)
 372		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 373					     page_length,
 374					     page_do_bit17_swizzling);
 375
 376	if (page_do_bit17_swizzling)
 377		ret = __copy_to_user_swizzled(user_data,
 378					      vaddr, shmem_page_offset,
 379					      page_length);
 380	else
 381		ret = __copy_to_user(user_data,
 382				     vaddr + shmem_page_offset,
 383				     page_length);
 384	kunmap(page);
 385
 386	return ret;
 387}
 388
 389static int
 390i915_gem_shmem_pread(struct drm_device *dev,
 391		     struct drm_i915_gem_object *obj,
 392		     struct drm_i915_gem_pread *args,
 393		     struct drm_file *file)
 394{
 395	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 396	char __user *user_data;
 397	ssize_t remain;
 398	loff_t offset;
 399	int shmem_page_offset, page_length, ret = 0;
 400	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 401	int hit_slowpath = 0;
 402	int prefaulted = 0;
 403	int needs_clflush = 0;
 404	int release_page;
 405
 406	user_data = (char __user *) (uintptr_t) args->data_ptr;
 407	remain = args->size;
 408
 409	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 410
 411	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 412		/* If we're not in the cpu read domain, set ourself into the gtt
 413		 * read domain and manually flush cachelines (if required). This
 414		 * optimizes for the case when the gpu will dirty the data
 415		 * anyway again before the next pread happens. */
 416		if (obj->cache_level == I915_CACHE_NONE)
 417			needs_clflush = 1;
 418		ret = i915_gem_object_set_to_gtt_domain(obj, false);
 419		if (ret)
 420			return ret;
 421	}
 422
 423	offset = args->offset;
 424
 425	while (remain > 0) {
 426		struct page *page;
 427
 428		/* Operation in this page
 429		 *
 430		 * shmem_page_offset = offset within page in shmem file
 
 431		 * page_length = bytes to copy for this page
 432		 */
 433		shmem_page_offset = offset_in_page(offset);
 434		page_length = remain;
 435		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 436			page_length = PAGE_SIZE - shmem_page_offset;
 437
 438		if (obj->pages) {
 439			page = obj->pages[offset >> PAGE_SHIFT];
 440			release_page = 0;
 
 
 
 441		} else {
 442			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 443			if (IS_ERR(page)) {
 444				ret = PTR_ERR(page);
 445				goto out;
 446			}
 447			release_page = 1;
 448		}
 449
 450		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 451			(page_to_phys(page) & (1 << 17)) != 0;
 452
 453		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 454				       user_data, page_do_bit17_swizzling,
 455				       needs_clflush);
 456		if (ret == 0)
 457			goto next_page;
 458
 459		hit_slowpath = 1;
 460		page_cache_get(page);
 461		mutex_unlock(&dev->struct_mutex);
 462
 463		if (!prefaulted) {
 464			ret = fault_in_multipages_writeable(user_data, remain);
 465			/* Userspace is tricking us, but we've already clobbered
 466			 * its pages with the prefault and promised to write the
 467			 * data up to the first fault. Hence ignore any errors
 468			 * and just continue. */
 469			(void)ret;
 470			prefaulted = 1;
 471		}
 472
 473		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 474				       user_data, page_do_bit17_swizzling,
 475				       needs_clflush);
 476
 477		mutex_lock(&dev->struct_mutex);
 478		page_cache_release(page);
 479next_page:
 480		mark_page_accessed(page);
 481		if (release_page)
 482			page_cache_release(page);
 483
 484		if (ret) {
 485			ret = -EFAULT;
 486			goto out;
 487		}
 488
 489		remain -= page_length;
 490		user_data += page_length;
 491		offset += page_length;
 492	}
 493
 494out:
 495	if (hit_slowpath) {
 496		/* Fixup: Kill any reinstated backing storage pages */
 497		if (obj->madv == __I915_MADV_PURGED)
 498			i915_gem_object_truncate(obj);
 499	}
 500
 501	return ret;
 502}
 503
 504/**
 505 * Reads data from the object referenced by handle.
 
 
 
 506 *
 507 * On error, the contents of *data are undefined.
 508 */
 509int
 510i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 511		     struct drm_file *file)
 512{
 
 513	struct drm_i915_gem_pread *args = data;
 514	struct drm_i915_gem_object *obj;
 515	int ret = 0;
 
 
 
 
 
 
 516
 517	if (args->size == 0)
 518		return 0;
 519
 520	if (!access_ok(VERIFY_WRITE,
 521		       (char __user *)(uintptr_t)args->data_ptr,
 522		       args->size))
 523		return -EFAULT;
 524
 525	ret = i915_mutex_lock_interruptible(dev);
 526	if (ret)
 527		return ret;
 528
 529	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 530	if (&obj->base == NULL) {
 531		ret = -ENOENT;
 532		goto unlock;
 533	}
 534
 535	/* Bounds check source.  */
 536	if (args->offset > obj->base.size ||
 537	    args->size > obj->base.size - args->offset) {
 538		ret = -EINVAL;
 539		goto out;
 540	}
 541
 542	/* prime objects have no backing filp to GEM pread/pwrite
 543	 * pages from.
 544	 */
 545	if (!obj->base.filp) {
 546		ret = -EINVAL;
 547		goto out;
 548	}
 549
 550	trace_i915_gem_object_pread(obj, args->offset, args->size);
 
 
 
 
 551
 552	ret = i915_gem_shmem_pread(dev, obj, args, file);
 
 
 553
 554out:
 555	drm_gem_object_unreference(&obj->base);
 556unlock:
 557	mutex_unlock(&dev->struct_mutex);
 558	return ret;
 559}
 560
 561/* This is the fast write path which cannot handle
 562 * page faults in the source data
 563 */
 564
 565static inline int
 566fast_user_write(struct io_mapping *mapping,
 567		loff_t page_base, int page_offset,
 568		char __user *user_data,
 569		int length)
 570{
 571	void __iomem *vaddr_atomic;
 572	void *vaddr;
 573	unsigned long unwritten;
 574
 575	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 576	/* We can use the cpu mem copy function because this is X86. */
 577	vaddr = (void __force*)vaddr_atomic + page_offset;
 578	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 579						      user_data, length);
 580	io_mapping_unmap_atomic(vaddr_atomic);
 
 
 
 
 
 
 
 581	return unwritten;
 582}
 583
 584/**
 585 * This is the fast pwrite path, where we copy the data directly from the
 586 * user into the GTT, uncached.
 
 
 587 */
 588static int
 589i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 590			 struct drm_i915_gem_object *obj,
 591			 struct drm_i915_gem_pwrite *args,
 592			 struct drm_file *file)
 593{
 594	drm_i915_private_t *dev_priv = dev->dev_private;
 595	ssize_t remain;
 596	loff_t offset, page_base;
 597	char __user *user_data;
 598	int page_offset, page_length, ret;
 
 
 
 
 
 
 
 
 599
 600	ret = i915_gem_object_pin(obj, 0, true);
 601	if (ret)
 602		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 603
 604	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 605	if (ret)
 606		goto out_unpin;
 
 
 607
 608	ret = i915_gem_object_put_fence(obj);
 609	if (ret)
 610		goto out_unpin;
 611
 612	user_data = (char __user *) (uintptr_t) args->data_ptr;
 
 613	remain = args->size;
 614
 615	offset = obj->gtt_offset + args->offset;
 616
 617	while (remain > 0) {
 618		/* Operation in this page
 619		 *
 620		 * page_base = page offset within aperture
 621		 * page_offset = offset within page
 622		 * page_length = bytes to copy for this page
 623		 */
 624		page_base = offset & PAGE_MASK;
 625		page_offset = offset_in_page(offset);
 626		page_length = remain;
 627		if ((page_offset + remain) > PAGE_SIZE)
 628			page_length = PAGE_SIZE - page_offset;
 629
 
 
 
 
 
 
 
 
 
 
 
 630		/* If we get a fault while copying data, then (presumably) our
 631		 * source page isn't available.  Return the error and we'll
 632		 * retry in the slow path.
 
 
 633		 */
 634		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
 635				    page_offset, user_data, page_length)) {
 636			ret = -EFAULT;
 637			goto out_unpin;
 638		}
 639
 640		remain -= page_length;
 641		user_data += page_length;
 642		offset += page_length;
 643	}
 644
 645out_unpin:
 646	i915_gem_object_unpin(obj);
 647out:
 
 
 
 648	return ret;
 649}
 650
 651/* Per-page copy function for the shmem pwrite fastpath.
 652 * Flushes invalid cachelines before writing to the target if
 653 * needs_clflush_before is set and flushes out any written cachelines after
 654 * writing if needs_clflush is set. */
 
 655static int
 656shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 657		  char __user *user_data,
 658		  bool page_do_bit17_swizzling,
 659		  bool needs_clflush_before,
 660		  bool needs_clflush_after)
 661{
 662	char *vaddr;
 663	int ret;
 664
 665	if (unlikely(page_do_bit17_swizzling))
 666		return -EINVAL;
 667
 668	vaddr = kmap_atomic(page);
 669	if (needs_clflush_before)
 670		drm_clflush_virt_range(vaddr + shmem_page_offset,
 671				       page_length);
 672	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
 673						user_data,
 674						page_length);
 675	if (needs_clflush_after)
 676		drm_clflush_virt_range(vaddr + shmem_page_offset,
 677				       page_length);
 678	kunmap_atomic(vaddr);
 679
 680	return ret;
 681}
 682
 683/* Only difference to the fast-path function is that this can handle bit17
 684 * and uses non-atomic copy and kmap functions. */
 685static int
 686shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 687		  char __user *user_data,
 688		  bool page_do_bit17_swizzling,
 689		  bool needs_clflush_before,
 690		  bool needs_clflush_after)
 691{
 692	char *vaddr;
 693	int ret;
 694
 695	vaddr = kmap(page);
 696	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 697		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 698					     page_length,
 699					     page_do_bit17_swizzling);
 700	if (page_do_bit17_swizzling)
 701		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 702						user_data,
 703						page_length);
 704	else
 705		ret = __copy_from_user(vaddr + shmem_page_offset,
 706				       user_data,
 707				       page_length);
 708	if (needs_clflush_after)
 709		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 710					     page_length,
 711					     page_do_bit17_swizzling);
 712	kunmap(page);
 713
 714	return ret;
 715}
 716
 717static int
 718i915_gem_shmem_pwrite(struct drm_device *dev,
 719		      struct drm_i915_gem_object *obj,
 720		      struct drm_i915_gem_pwrite *args,
 721		      struct drm_file *file)
 722{
 723	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 724	ssize_t remain;
 725	loff_t offset;
 726	char __user *user_data;
 727	int shmem_page_offset, page_length, ret = 0;
 728	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 729	int hit_slowpath = 0;
 730	int needs_clflush_after = 0;
 731	int needs_clflush_before = 0;
 732	int release_page;
 733
 734	user_data = (char __user *) (uintptr_t) args->data_ptr;
 735	remain = args->size;
 
 736
 737	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 738
 739	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 740		/* If we're not in the cpu write domain, set ourself into the gtt
 741		 * write domain and manually flush cachelines (if required). This
 742		 * optimizes for the case when the gpu will use the data
 743		 * right away and we therefore have to clflush anyway. */
 744		if (obj->cache_level == I915_CACHE_NONE)
 745			needs_clflush_after = 1;
 746		ret = i915_gem_object_set_to_gtt_domain(obj, true);
 747		if (ret)
 748			return ret;
 749	}
 750	/* Same trick applies for invalidate partially written cachelines before
 751	 * writing.  */
 752	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
 753	    && obj->cache_level == I915_CACHE_NONE)
 754		needs_clflush_before = 1;
 755
 756	offset = args->offset;
 757	obj->dirty = 1;
 758
 759	while (remain > 0) {
 760		struct page *page;
 761		int partial_cacheline_write;
 
 
 
 
 762
 763		/* Operation in this page
 764		 *
 765		 * shmem_page_offset = offset within page in shmem file
 766		 * page_length = bytes to copy for this page
 767		 */
 768		shmem_page_offset = offset_in_page(offset);
 769
 770		page_length = remain;
 771		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 772			page_length = PAGE_SIZE - shmem_page_offset;
 773
 774		/* If we don't overwrite a cacheline completely we need to be
 775		 * careful to have up-to-date data by first clflushing. Don't
 776		 * overcomplicate things and flush the entire patch. */
 777		partial_cacheline_write = needs_clflush_before &&
 778			((shmem_page_offset | page_length)
 779				& (boot_cpu_data.x86_clflush_size - 1));
 780
 781		if (obj->pages) {
 782			page = obj->pages[offset >> PAGE_SHIFT];
 783			release_page = 0;
 784		} else {
 785			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 786			if (IS_ERR(page)) {
 787				ret = PTR_ERR(page);
 788				goto out;
 789			}
 790			release_page = 1;
 791		}
 792
 793		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 794			(page_to_phys(page) & (1 << 17)) != 0;
 795
 796		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 797					user_data, page_do_bit17_swizzling,
 798					partial_cacheline_write,
 799					needs_clflush_after);
 800		if (ret == 0)
 801			goto next_page;
 802
 803		hit_slowpath = 1;
 804		page_cache_get(page);
 805		mutex_unlock(&dev->struct_mutex);
 806
 807		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 808					user_data, page_do_bit17_swizzling,
 809					partial_cacheline_write,
 810					needs_clflush_after);
 811
 812		mutex_lock(&dev->struct_mutex);
 813		page_cache_release(page);
 814next_page:
 815		set_page_dirty(page);
 816		mark_page_accessed(page);
 817		if (release_page)
 818			page_cache_release(page);
 819
 820		if (ret) {
 821			ret = -EFAULT;
 822			goto out;
 823		}
 824
 825		remain -= page_length;
 826		user_data += page_length;
 827		offset += page_length;
 828	}
 829
 830out:
 831	if (hit_slowpath) {
 832		/* Fixup: Kill any reinstated backing storage pages */
 833		if (obj->madv == __I915_MADV_PURGED)
 834			i915_gem_object_truncate(obj);
 835		/* and flush dirty cachelines in case the object isn't in the cpu write
 836		 * domain anymore. */
 837		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 838			i915_gem_clflush_object(obj);
 839			intel_gtt_chipset_flush();
 840		}
 841	}
 842
 843	if (needs_clflush_after)
 844		intel_gtt_chipset_flush();
 845
 
 
 
 
 846	return ret;
 847}
 848
 849/**
 850 * Writes data to the object referenced by handle.
 
 
 
 851 *
 852 * On error, the contents of the buffer that were to be modified are undefined.
 853 */
 854int
 855i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 856		      struct drm_file *file)
 857{
 
 858	struct drm_i915_gem_pwrite *args = data;
 859	struct drm_i915_gem_object *obj;
 860	int ret;
 861
 
 
 
 
 
 
 862	if (args->size == 0)
 863		return 0;
 864
 865	if (!access_ok(VERIFY_READ,
 866		       (char __user *)(uintptr_t)args->data_ptr,
 867		       args->size))
 868		return -EFAULT;
 869
 870	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
 871					   args->size);
 872	if (ret)
 873		return -EFAULT;
 874
 875	ret = i915_mutex_lock_interruptible(dev);
 876	if (ret)
 877		return ret;
 878
 879	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 880	if (&obj->base == NULL) {
 881		ret = -ENOENT;
 882		goto unlock;
 883	}
 884
 885	/* Bounds check destination. */
 886	if (args->offset > obj->base.size ||
 887	    args->size > obj->base.size - args->offset) {
 888		ret = -EINVAL;
 889		goto out;
 890	}
 891
 892	/* prime objects have no backing filp to GEM pread/pwrite
 893	 * pages from.
 894	 */
 895	if (!obj->base.filp) {
 896		ret = -EINVAL;
 897		goto out;
 898	}
 899
 900	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 901
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	ret = -EFAULT;
 903	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 904	 * it would end up going through the fenced access, and we'll get
 905	 * different detiling behavior between reading and writing.
 906	 * pread/pwrite currently are reading and writing from the CPU
 907	 * perspective, requiring manual detiling by the client.
 908	 */
 909	if (obj->phys_obj) {
 910		ret = i915_gem_phys_pwrite(dev, obj, args, file);
 911		goto out;
 912	}
 913
 914	if (obj->gtt_space &&
 915	    obj->cache_level == I915_CACHE_NONE &&
 916	    obj->tiling_mode == I915_TILING_NONE &&
 917	    obj->map_and_fenceable &&
 918	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 919		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
 920		/* Note that the gtt paths might fail with non-page-backed user
 921		 * pointers (e.g. gtt mappings when moving data between
 922		 * textures). Fallback to the shmem path in that case. */
 923	}
 924
 925	if (ret == -EFAULT)
 926		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
 927
 928out:
 929	drm_gem_object_unreference(&obj->base);
 930unlock:
 931	mutex_unlock(&dev->struct_mutex);
 932	return ret;
 933}
 934
 935/**
 936 * Called when user space prepares to use an object with the CPU, either
 937 * through the mmap ioctl's mapping or a GTT mapping.
 938 */
 939int
 940i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
 941			  struct drm_file *file)
 942{
 943	struct drm_i915_gem_set_domain *args = data;
 944	struct drm_i915_gem_object *obj;
 945	uint32_t read_domains = args->read_domains;
 946	uint32_t write_domain = args->write_domain;
 947	int ret;
 948
 949	/* Only handle setting domains to types used by the CPU. */
 950	if (write_domain & I915_GEM_GPU_DOMAINS)
 951		return -EINVAL;
 952
 953	if (read_domains & I915_GEM_GPU_DOMAINS)
 954		return -EINVAL;
 955
 956	/* Having something in the write domain implies it's in the read
 957	 * domain, and only that read domain.  Enforce that in the request.
 958	 */
 959	if (write_domain != 0 && read_domains != write_domain)
 960		return -EINVAL;
 961
 962	ret = i915_mutex_lock_interruptible(dev);
 963	if (ret)
 964		return ret;
 965
 966	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 967	if (&obj->base == NULL) {
 968		ret = -ENOENT;
 969		goto unlock;
 970	}
 971
 972	if (read_domains & I915_GEM_DOMAIN_GTT) {
 973		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
 974
 975		/* Silently promote "you're not bound, there was nothing to do"
 976		 * to success, since the client was just asking us to
 977		 * make sure everything was done.
 978		 */
 979		if (ret == -EINVAL)
 980			ret = 0;
 981	} else {
 982		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
 983	}
 984
 985	drm_gem_object_unreference(&obj->base);
 986unlock:
 987	mutex_unlock(&dev->struct_mutex);
 988	return ret;
 989}
 990
 991/**
 992 * Called when user space has done writes to this buffer
 
 
 
 993 */
 994int
 995i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 996			 struct drm_file *file)
 997{
 998	struct drm_i915_gem_sw_finish *args = data;
 999	struct drm_i915_gem_object *obj;
1000	int ret = 0;
1001
1002	ret = i915_mutex_lock_interruptible(dev);
1003	if (ret)
1004		return ret;
1005
1006	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007	if (&obj->base == NULL) {
1008		ret = -ENOENT;
1009		goto unlock;
1010	}
1011
1012	/* Pinned buffers may be scanout, so flush the cache */
1013	if (obj->pin_count)
1014		i915_gem_object_flush_cpu_write_domain(obj);
1015
1016	drm_gem_object_unreference(&obj->base);
1017unlock:
1018	mutex_unlock(&dev->struct_mutex);
1019	return ret;
1020}
1021
1022/**
1023 * Maps the contents of an object, returning the address it is mapped
1024 * into.
1025 *
1026 * While the mapping holds a reference on the contents of the object, it doesn't
1027 * imply a ref on the object itself.
1028 */
1029int
1030i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031		    struct drm_file *file)
1032{
1033	struct drm_i915_gem_mmap *args = data;
1034	struct drm_gem_object *obj;
1035	unsigned long addr;
1036
1037	obj = drm_gem_object_lookup(dev, file, args->handle);
1038	if (obj == NULL)
1039		return -ENOENT;
1040
1041	/* prime objects have no backing filp to GEM mmap
1042	 * pages from.
 
1043	 */
1044	if (!obj->filp) {
1045		drm_gem_object_unreference_unlocked(obj);
1046		return -EINVAL;
1047	}
1048
1049	addr = vm_mmap(obj->filp, 0, args->size,
1050		       PROT_READ | PROT_WRITE, MAP_SHARED,
1051		       args->offset);
1052	drm_gem_object_unreference_unlocked(obj);
1053	if (IS_ERR((void *)addr))
1054		return addr;
1055
1056	args->addr_ptr = (uint64_t) addr;
1057
1058	return 0;
1059}
1060
1061/**
1062 * i915_gem_fault - fault a page into the GTT
1063 * vma: VMA in question
1064 * vmf: fault info
1065 *
1066 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067 * from userspace.  The fault handler takes care of binding the object to
1068 * the GTT (if needed), allocating and programming a fence register (again,
1069 * only if needed based on whether the old reg is still valid or the object
1070 * is tiled) and inserting a new PTE into the faulting process.
1071 *
1072 * Note that the faulting process may involve evicting existing objects
1073 * from the GTT and/or fence registers to make room.  So performance may
1074 * suffer if the GTT working set is large or there are few fence registers
1075 * left.
1076 */
1077int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1078{
1079	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1080	struct drm_device *dev = obj->base.dev;
1081	drm_i915_private_t *dev_priv = dev->dev_private;
1082	pgoff_t page_offset;
1083	unsigned long pfn;
1084	int ret = 0;
1085	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086
1087	/* We don't use vmf->pgoff since that has the fake offset */
1088	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1089		PAGE_SHIFT;
1090
1091	ret = i915_mutex_lock_interruptible(dev);
1092	if (ret)
1093		goto out;
1094
1095	trace_i915_gem_object_fault(obj, page_offset, true, write);
1096
1097	/* Now bind it into the GTT if needed */
1098	if (!obj->map_and_fenceable) {
1099		ret = i915_gem_object_unbind(obj);
1100		if (ret)
1101			goto unlock;
1102	}
1103	if (!obj->gtt_space) {
1104		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105		if (ret)
1106			goto unlock;
1107
1108		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1109		if (ret)
1110			goto unlock;
1111	}
1112
1113	if (!obj->has_global_gtt_mapping)
1114		i915_gem_gtt_bind_object(obj, obj->cache_level);
1115
1116	ret = i915_gem_object_get_fence(obj);
1117	if (ret)
1118		goto unlock;
1119
1120	if (i915_gem_object_is_inactive(obj))
1121		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122
1123	obj->fault_mappable = true;
1124
1125	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1126		page_offset;
1127
1128	/* Finally, remap it using the new GTT offset */
1129	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130unlock:
1131	mutex_unlock(&dev->struct_mutex);
1132out:
1133	switch (ret) {
1134	case -EIO:
1135	case -EAGAIN:
1136		/* Give the error handler a chance to run and move the
1137		 * objects off the GPU active list. Next time we service the
1138		 * fault, we should be able to transition the page into the
1139		 * GTT without touching the GPU (and so avoid further
1140		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1141		 * with coherency, just lost writes.
1142		 */
1143		set_need_resched();
1144	case 0:
1145	case -ERESTARTSYS:
1146	case -EINTR:
1147		return VM_FAULT_NOPAGE;
1148	case -ENOMEM:
1149		return VM_FAULT_OOM;
1150	default:
1151		return VM_FAULT_SIGBUS;
1152	}
1153}
1154
1155/**
1156 * i915_gem_release_mmap - remove physical page mappings
1157 * @obj: obj in question
1158 *
1159 * Preserve the reservation of the mmapping with the DRM core code, but
1160 * relinquish ownership of the pages back to the system.
1161 *
1162 * It is vital that we remove the page mapping if we have mapped a tiled
1163 * object through the GTT and then lose the fence register due to
1164 * resource pressure. Similarly if the object has been moved out of the
1165 * aperture, than pages mapped into userspace must be revoked. Removing the
1166 * mapping will then trigger a page fault on the next user access, allowing
1167 * fixup by i915_gem_fault().
1168 */
1169void
1170i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171{
1172	if (!obj->fault_mappable)
1173		return;
1174
1175	if (obj->base.dev->dev_mapping)
1176		unmap_mapping_range(obj->base.dev->dev_mapping,
1177				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1178				    obj->base.size, 1);
1179
1180	obj->fault_mappable = false;
1181}
1182
1183static uint32_t
1184i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185{
1186	uint32_t gtt_size;
1187
1188	if (INTEL_INFO(dev)->gen >= 4 ||
1189	    tiling_mode == I915_TILING_NONE)
1190		return size;
1191
1192	/* Previous chips need a power-of-two fence region when tiling */
1193	if (INTEL_INFO(dev)->gen == 3)
1194		gtt_size = 1024*1024;
1195	else
1196		gtt_size = 512*1024;
1197
1198	while (gtt_size < size)
1199		gtt_size <<= 1;
1200
1201	return gtt_size;
1202}
1203
1204/**
1205 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1206 * @obj: object to check
1207 *
1208 * Return the required GTT alignment for an object, taking into account
1209 * potential fence register mapping.
1210 */
1211static uint32_t
1212i915_gem_get_gtt_alignment(struct drm_device *dev,
1213			   uint32_t size,
1214			   int tiling_mode)
1215{
1216	/*
1217	 * Minimum alignment is 4k (GTT page size), but might be greater
1218	 * if a fence register is needed for the object.
 
 
1219	 */
1220	if (INTEL_INFO(dev)->gen >= 4 ||
1221	    tiling_mode == I915_TILING_NONE)
1222		return 4096;
1223
1224	/*
1225	 * Previous chips need to be aligned to the size of the smallest
1226	 * fence register that can contain the object.
1227	 */
1228	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229}
 
1230
1231/**
1232 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1233 *					 unfenced object
1234 * @dev: the device
1235 * @size: size of the object
1236 * @tiling_mode: tiling mode of the object
1237 *
1238 * Return the required GTT alignment for an object, only taking into account
1239 * unfenced tiled surface requirements.
1240 */
1241uint32_t
1242i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1243				    uint32_t size,
1244				    int tiling_mode)
1245{
1246	/*
1247	 * Minimum alignment is 4k (GTT page size) for sane hw.
1248	 */
1249	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250	    tiling_mode == I915_TILING_NONE)
1251		return 4096;
1252
1253	/* Previous hardware however needs to be aligned to a power-of-two
1254	 * tile height. The simplest method for determining this is to reuse
1255	 * the power-of-tile object size.
1256	 */
1257	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258}
1259
1260int
1261i915_gem_mmap_gtt(struct drm_file *file,
1262		  struct drm_device *dev,
1263		  uint32_t handle,
1264		  uint64_t *offset)
1265{
1266	struct drm_i915_private *dev_priv = dev->dev_private;
1267	struct drm_i915_gem_object *obj;
1268	int ret;
 
 
1269
1270	ret = i915_mutex_lock_interruptible(dev);
1271	if (ret)
1272		return ret;
1273
1274	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275	if (&obj->base == NULL) {
1276		ret = -ENOENT;
1277		goto unlock;
1278	}
1279
1280	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281		ret = -E2BIG;
1282		goto out;
1283	}
1284
1285	if (obj->madv != I915_MADV_WILLNEED) {
1286		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287		ret = -EINVAL;
1288		goto out;
1289	}
1290
1291	if (!obj->base.map_list.map) {
1292		ret = drm_gem_create_mmap_offset(&obj->base);
1293		if (ret)
1294			goto out;
1295	}
1296
1297	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298
1299out:
1300	drm_gem_object_unreference(&obj->base);
1301unlock:
1302	mutex_unlock(&dev->struct_mutex);
1303	return ret;
1304}
1305
1306/**
1307 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1308 * @dev: DRM device
1309 * @data: GTT mapping ioctl data
1310 * @file: GEM object info
1311 *
1312 * Simply returns the fake offset to userspace so it can mmap it.
1313 * The mmap call will end up in drm_gem_mmap(), which will set things
1314 * up so we can get faults in the handler above.
1315 *
1316 * The fault handler will take care of binding the object into the GTT
1317 * (since it may have been evicted to make room for something), allocating
1318 * a fence register, and mapping the appropriate aperture address into
1319 * userspace.
1320 */
1321int
1322i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1323			struct drm_file *file)
1324{
1325	struct drm_i915_gem_mmap_gtt *args = data;
1326
1327	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1328}
1329
1330int
1331i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332			      gfp_t gfpmask)
1333{
1334	int page_count, i;
1335	struct address_space *mapping;
1336	struct inode *inode;
1337	struct page *page;
1338
1339	if (obj->pages || obj->sg_table)
1340		return 0;
1341
1342	/* Get the list of pages out of our struct file.  They'll be pinned
1343	 * at this point until we release them.
1344	 */
1345	page_count = obj->base.size / PAGE_SIZE;
1346	BUG_ON(obj->pages != NULL);
1347	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1348	if (obj->pages == NULL)
1349		return -ENOMEM;
1350
1351	inode = obj->base.filp->f_path.dentry->d_inode;
1352	mapping = inode->i_mapping;
1353	gfpmask |= mapping_gfp_mask(mapping);
1354
1355	for (i = 0; i < page_count; i++) {
1356		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357		if (IS_ERR(page))
1358			goto err_pages;
1359
1360		obj->pages[i] = page;
1361	}
1362
1363	if (i915_gem_object_needs_bit17_swizzle(obj))
1364		i915_gem_object_do_bit_17_swizzle(obj);
1365
1366	return 0;
1367
1368err_pages:
1369	while (i--)
1370		page_cache_release(obj->pages[i]);
1371
1372	drm_free_large(obj->pages);
1373	obj->pages = NULL;
1374	return PTR_ERR(page);
1375}
1376
1377static void
1378i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379{
1380	int page_count = obj->base.size / PAGE_SIZE;
1381	int i;
1382
1383	if (!obj->pages)
1384		return;
1385
1386	BUG_ON(obj->madv == __I915_MADV_PURGED);
1387
1388	if (i915_gem_object_needs_bit17_swizzle(obj))
1389		i915_gem_object_save_bit_17_swizzle(obj);
1390
1391	if (obj->madv == I915_MADV_DONTNEED)
1392		obj->dirty = 0;
1393
1394	for (i = 0; i < page_count; i++) {
1395		if (obj->dirty)
1396			set_page_dirty(obj->pages[i]);
1397
1398		if (obj->madv == I915_MADV_WILLNEED)
1399			mark_page_accessed(obj->pages[i]);
1400
1401		page_cache_release(obj->pages[i]);
1402	}
1403	obj->dirty = 0;
1404
1405	drm_free_large(obj->pages);
1406	obj->pages = NULL;
1407}
1408
1409void
1410i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411			       struct intel_ring_buffer *ring,
1412			       u32 seqno)
1413{
1414	struct drm_device *dev = obj->base.dev;
1415	struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417	BUG_ON(ring == NULL);
1418	obj->ring = ring;
1419
1420	/* Add a reference if we're newly entering the active list. */
1421	if (!obj->active) {
1422		drm_gem_object_reference(&obj->base);
1423		obj->active = 1;
1424	}
1425
1426	/* Move from whatever list we were on to the tail of execution. */
1427	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1428	list_move_tail(&obj->ring_list, &ring->active_list);
1429
1430	obj->last_rendering_seqno = seqno;
1431
1432	if (obj->fenced_gpu_access) {
1433		obj->last_fenced_seqno = seqno;
1434
1435		/* Bump MRU to take account of the delayed flush */
1436		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1437			struct drm_i915_fence_reg *reg;
1438
1439			reg = &dev_priv->fence_regs[obj->fence_reg];
1440			list_move_tail(&reg->lru_list,
1441				       &dev_priv->mm.fence_list);
1442		}
1443	}
 
1444}
1445
1446static void
1447i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
 
 
 
1448{
1449	list_del_init(&obj->ring_list);
1450	obj->last_rendering_seqno = 0;
1451	obj->last_fenced_seqno = 0;
1452}
1453
1454static void
1455i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456{
1457	struct drm_device *dev = obj->base.dev;
1458	drm_i915_private_t *dev_priv = dev->dev_private;
1459
1460	BUG_ON(!obj->active);
1461	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462
1463	i915_gem_object_move_off_active(obj);
1464}
1465
1466static void
1467i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1468{
1469	struct drm_device *dev = obj->base.dev;
1470	struct drm_i915_private *dev_priv = dev->dev_private;
1471
1472	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473
1474	BUG_ON(!list_empty(&obj->gpu_write_list));
1475	BUG_ON(!obj->active);
1476	obj->ring = NULL;
1477
1478	i915_gem_object_move_off_active(obj);
1479	obj->fenced_gpu_access = false;
1480
1481	obj->active = 0;
1482	obj->pending_gpu_write = false;
1483	drm_gem_object_unreference(&obj->base);
1484
1485	WARN_ON(i915_verify_lists(dev));
1486}
1487
1488/* Immediately discard the backing storage */
1489static void
1490i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491{
1492	struct inode *inode;
1493
1494	/* Our goal here is to return as much of the memory as
1495	 * is possible back to the system as we are called from OOM.
1496	 * To do this we must instruct the shmfs to drop all of its
1497	 * backing pages, *now*.
1498	 */
1499	inode = obj->base.filp->f_path.dentry->d_inode;
1500	shmem_truncate_range(inode, 0, (loff_t)-1);
1501
1502	if (obj->base.map_list.map)
1503		drm_gem_free_mmap_offset(&obj->base);
1504
1505	obj->madv = __I915_MADV_PURGED;
1506}
1507
1508static inline int
1509i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510{
1511	return obj->madv == I915_MADV_DONTNEED;
1512}
1513
1514static void
1515i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1516			       uint32_t flush_domains)
1517{
1518	struct drm_i915_gem_object *obj, *next;
1519
1520	list_for_each_entry_safe(obj, next,
1521				 &ring->gpu_write_list,
1522				 gpu_write_list) {
1523		if (obj->base.write_domain & flush_domains) {
1524			uint32_t old_write_domain = obj->base.write_domain;
1525
1526			obj->base.write_domain = 0;
1527			list_del_init(&obj->gpu_write_list);
1528			i915_gem_object_move_to_active(obj, ring,
1529						       i915_gem_next_request_seqno(ring));
1530
1531			trace_i915_gem_object_change_domain(obj,
1532							    obj->base.read_domains,
1533							    old_write_domain);
1534		}
1535	}
1536}
1537
1538static u32
1539i915_gem_get_seqno(struct drm_device *dev)
1540{
1541	drm_i915_private_t *dev_priv = dev->dev_private;
1542	u32 seqno = dev_priv->next_seqno;
1543
1544	/* reserve 0 for non-seqno */
1545	if (++dev_priv->next_seqno == 0)
1546		dev_priv->next_seqno = 1;
1547
1548	return seqno;
1549}
1550
1551u32
1552i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1553{
1554	if (ring->outstanding_lazy_request == 0)
1555		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1556
1557	return ring->outstanding_lazy_request;
1558}
1559
1560int
1561i915_add_request(struct intel_ring_buffer *ring,
1562		 struct drm_file *file,
1563		 struct drm_i915_gem_request *request)
1564{
1565	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566	uint32_t seqno;
1567	u32 request_ring_position;
1568	int was_empty;
1569	int ret;
1570
1571	BUG_ON(request == NULL);
1572	seqno = i915_gem_next_request_seqno(ring);
1573
1574	/* Record the position of the start of the request so that
1575	 * should we detect the updated seqno part-way through the
1576	 * GPU processing the request, we never over-estimate the
1577	 * position of the head.
1578	 */
1579	request_ring_position = intel_ring_get_tail(ring);
 
 
 
 
 
 
1580
1581	ret = ring->add_request(ring, &seqno);
1582	if (ret)
1583	    return ret;
1584
1585	trace_i915_gem_request_add(ring, seqno);
1586
1587	request->seqno = seqno;
1588	request->ring = ring;
1589	request->tail = request_ring_position;
1590	request->emitted_jiffies = jiffies;
1591	was_empty = list_empty(&ring->request_list);
1592	list_add_tail(&request->list, &ring->request_list);
1593
1594	if (file) {
1595		struct drm_i915_file_private *file_priv = file->driver_priv;
1596
1597		spin_lock(&file_priv->mm.lock);
1598		request->file_priv = file_priv;
1599		list_add_tail(&request->client_list,
1600			      &file_priv->mm.request_list);
1601		spin_unlock(&file_priv->mm.lock);
1602	}
1603
1604	ring->outstanding_lazy_request = 0;
1605
1606	if (!dev_priv->mm.suspended) {
1607		if (i915_enable_hangcheck) {
1608			mod_timer(&dev_priv->hangcheck_timer,
1609				  jiffies +
1610				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1611		}
1612		if (was_empty)
1613			queue_delayed_work(dev_priv->wq,
1614					   &dev_priv->mm.retire_work, HZ);
1615	}
1616	return 0;
1617}
1618
1619static inline void
1620i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1621{
1622	struct drm_i915_file_private *file_priv = request->file_priv;
1623
1624	if (!file_priv)
1625		return;
1626
1627	spin_lock(&file_priv->mm.lock);
1628	if (request->file_priv) {
1629		list_del(&request->client_list);
1630		request->file_priv = NULL;
1631	}
1632	spin_unlock(&file_priv->mm.lock);
1633}
1634
1635static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1636				      struct intel_ring_buffer *ring)
1637{
1638	while (!list_empty(&ring->request_list)) {
1639		struct drm_i915_gem_request *request;
1640
1641		request = list_first_entry(&ring->request_list,
1642					   struct drm_i915_gem_request,
1643					   list);
1644
1645		list_del(&request->list);
1646		i915_gem_request_remove_from_client(request);
1647		kfree(request);
1648	}
1649
1650	while (!list_empty(&ring->active_list)) {
1651		struct drm_i915_gem_object *obj;
1652
1653		obj = list_first_entry(&ring->active_list,
1654				       struct drm_i915_gem_object,
1655				       ring_list);
1656
1657		obj->base.write_domain = 0;
1658		list_del_init(&obj->gpu_write_list);
1659		i915_gem_object_move_to_inactive(obj);
1660	}
1661}
1662
1663static void i915_gem_reset_fences(struct drm_device *dev)
1664{
1665	struct drm_i915_private *dev_priv = dev->dev_private;
1666	int i;
1667
1668	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1669		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1670
1671		i915_gem_write_fence(dev, i, NULL);
1672
1673		if (reg->obj)
1674			i915_gem_object_fence_lost(reg->obj);
1675
1676		reg->pin_count = 0;
1677		reg->obj = NULL;
1678		INIT_LIST_HEAD(&reg->lru_list);
1679	}
1680
1681	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1682}
1683
1684void i915_gem_reset(struct drm_device *dev)
1685{
1686	struct drm_i915_private *dev_priv = dev->dev_private;
1687	struct drm_i915_gem_object *obj;
1688	struct intel_ring_buffer *ring;
1689	int i;
1690
1691	for_each_ring(ring, dev_priv, i)
1692		i915_gem_reset_ring_lists(dev_priv, ring);
1693
1694	/* Remove anything from the flushing lists. The GPU cache is likely
1695	 * to be lost on reset along with the data, so simply move the
1696	 * lost bo to the inactive list.
1697	 */
1698	while (!list_empty(&dev_priv->mm.flushing_list)) {
1699		obj = list_first_entry(&dev_priv->mm.flushing_list,
1700				      struct drm_i915_gem_object,
1701				      mm_list);
1702
1703		obj->base.write_domain = 0;
1704		list_del_init(&obj->gpu_write_list);
1705		i915_gem_object_move_to_inactive(obj);
1706	}
1707
1708	/* Move everything out of the GPU domains to ensure we do any
1709	 * necessary invalidation upon reuse.
1710	 */
1711	list_for_each_entry(obj,
1712			    &dev_priv->mm.inactive_list,
1713			    mm_list)
1714	{
1715		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1716	}
1717
1718	/* The fence registers are invalidated so clear them out */
1719	i915_gem_reset_fences(dev);
1720}
1721
1722/**
1723 * This function clears the request list as sequence numbers are passed.
1724 */
1725void
1726i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1727{
1728	uint32_t seqno;
1729	int i;
1730
1731	if (list_empty(&ring->request_list))
1732		return;
1733
1734	WARN_ON(i915_verify_lists(ring->dev));
1735
1736	seqno = ring->get_seqno(ring);
1737
1738	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1739		if (seqno >= ring->sync_seqno[i])
1740			ring->sync_seqno[i] = 0;
1741
1742	while (!list_empty(&ring->request_list)) {
1743		struct drm_i915_gem_request *request;
1744
1745		request = list_first_entry(&ring->request_list,
1746					   struct drm_i915_gem_request,
1747					   list);
1748
1749		if (!i915_seqno_passed(seqno, request->seqno))
1750			break;
1751
1752		trace_i915_gem_request_retire(ring, request->seqno);
1753		/* We know the GPU must have read the request to have
1754		 * sent us the seqno + interrupt, so use the position
1755		 * of tail of the request to update the last known position
1756		 * of the GPU head.
1757		 */
1758		ring->last_retired_head = request->tail;
1759
1760		list_del(&request->list);
1761		i915_gem_request_remove_from_client(request);
1762		kfree(request);
1763	}
1764
1765	/* Move any buffers on the active list that are no longer referenced
1766	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1767	 */
1768	while (!list_empty(&ring->active_list)) {
1769		struct drm_i915_gem_object *obj;
1770
1771		obj = list_first_entry(&ring->active_list,
1772				      struct drm_i915_gem_object,
1773				      ring_list);
1774
1775		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1776			break;
1777
1778		if (obj->base.write_domain != 0)
1779			i915_gem_object_move_to_flushing(obj);
1780		else
1781			i915_gem_object_move_to_inactive(obj);
1782	}
1783
1784	if (unlikely(ring->trace_irq_seqno &&
1785		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1786		ring->irq_put(ring);
1787		ring->trace_irq_seqno = 0;
1788	}
1789
1790	WARN_ON(i915_verify_lists(ring->dev));
1791}
1792
1793void
1794i915_gem_retire_requests(struct drm_device *dev)
1795{
1796	drm_i915_private_t *dev_priv = dev->dev_private;
1797	struct intel_ring_buffer *ring;
1798	int i;
1799
1800	for_each_ring(ring, dev_priv, i)
1801		i915_gem_retire_requests_ring(ring);
1802}
1803
1804static void
1805i915_gem_retire_work_handler(struct work_struct *work)
1806{
1807	drm_i915_private_t *dev_priv;
1808	struct drm_device *dev;
1809	struct intel_ring_buffer *ring;
1810	bool idle;
1811	int i;
1812
1813	dev_priv = container_of(work, drm_i915_private_t,
1814				mm.retire_work.work);
1815	dev = dev_priv->dev;
1816
1817	/* Come back later if the device is busy... */
1818	if (!mutex_trylock(&dev->struct_mutex)) {
1819		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820		return;
1821	}
1822
1823	i915_gem_retire_requests(dev);
1824
1825	/* Send a periodic flush down the ring so we don't hold onto GEM
1826	 * objects indefinitely.
1827	 */
1828	idle = true;
1829	for_each_ring(ring, dev_priv, i) {
1830		if (!list_empty(&ring->gpu_write_list)) {
1831			struct drm_i915_gem_request *request;
1832			int ret;
1833
1834			ret = i915_gem_flush_ring(ring,
1835						  0, I915_GEM_GPU_DOMAINS);
1836			request = kzalloc(sizeof(*request), GFP_KERNEL);
1837			if (ret || request == NULL ||
1838			    i915_add_request(ring, NULL, request))
1839			    kfree(request);
1840		}
1841
1842		idle &= list_empty(&ring->request_list);
1843	}
1844
1845	if (!dev_priv->mm.suspended && !idle)
1846		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847
1848	mutex_unlock(&dev->struct_mutex);
1849}
1850
1851static int
1852i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1853{
1854	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1855
1856	if (atomic_read(&dev_priv->mm.wedged)) {
1857		struct completion *x = &dev_priv->error_completion;
1858		bool recovery_complete;
1859		unsigned long flags;
1860
1861		/* Give the error handler a chance to run. */
1862		spin_lock_irqsave(&x->wait.lock, flags);
1863		recovery_complete = x->done > 0;
1864		spin_unlock_irqrestore(&x->wait.lock, flags);
1865
1866		return recovery_complete ? -EIO : -EAGAIN;
1867	}
1868
1869	return 0;
1870}
1871
1872/*
1873 * Compare seqno against outstanding lazy request. Emit a request if they are
1874 * equal.
1875 */
1876static int
1877i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1878{
1879	int ret = 0;
1880
1881	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1882
1883	if (seqno == ring->outstanding_lazy_request) {
1884		struct drm_i915_gem_request *request;
1885
1886		request = kzalloc(sizeof(*request), GFP_KERNEL);
1887		if (request == NULL)
1888			return -ENOMEM;
1889
1890		ret = i915_add_request(ring, NULL, request);
1891		if (ret) {
1892			kfree(request);
1893			return ret;
1894		}
1895
1896		BUG_ON(seqno != request->seqno);
 
 
1897	}
1898
1899	return ret;
1900}
1901
1902static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1903			bool interruptible)
1904{
1905	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1906	int ret = 0;
1907
1908	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1909		return 0;
1910
1911	trace_i915_gem_request_wait_begin(ring, seqno);
1912	if (WARN_ON(!ring->irq_get(ring)))
1913		return -ENODEV;
1914
1915#define EXIT_COND \
1916	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1917	atomic_read(&dev_priv->mm.wedged))
1918
1919	if (interruptible)
1920		ret = wait_event_interruptible(ring->irq_queue,
1921					       EXIT_COND);
1922	else
1923		wait_event(ring->irq_queue, EXIT_COND);
1924
1925	ring->irq_put(ring);
1926	trace_i915_gem_request_wait_end(ring, seqno);
1927#undef EXIT_COND
1928
1929	return ret;
1930}
1931
1932/**
1933 * Waits for a sequence number to be signaled, and cleans up the
1934 * request and object lists appropriately for that event.
1935 */
1936int
1937i915_wait_request(struct intel_ring_buffer *ring,
1938		  uint32_t seqno)
1939{
1940	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1941	int ret = 0;
1942
1943	BUG_ON(seqno == 0);
1944
1945	ret = i915_gem_check_wedge(dev_priv);
1946	if (ret)
1947		return ret;
1948
1949	ret = i915_gem_check_olr(ring, seqno);
1950	if (ret)
1951		return ret;
1952
1953	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
1954	if (atomic_read(&dev_priv->mm.wedged))
1955		ret = -EAGAIN;
1956
1957	return ret;
1958}
1959
1960/**
1961 * Ensures that all rendering to the object has completed and the object is
1962 * safe to unbind from the GTT or access from the CPU.
1963 */
1964int
1965i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1966{
1967	int ret;
1968
1969	/* This function only exists to support waiting for existing rendering,
1970	 * not for emitting required flushes.
1971	 */
1972	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1973
1974	/* If there is rendering queued on the buffer being evicted, wait for
1975	 * it.
1976	 */
1977	if (obj->active) {
1978		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1979		if (ret)
1980			return ret;
1981		i915_gem_retire_requests_ring(obj->ring);
1982	}
1983
1984	return 0;
1985}
1986
1987/**
1988 * i915_gem_object_sync - sync an object to a ring.
1989 *
1990 * @obj: object which may be in use on another ring.
1991 * @to: ring we wish to use the object on. May be NULL.
1992 *
1993 * This code is meant to abstract object synchronization with the GPU.
1994 * Calling with NULL implies synchronizing the object with the CPU
1995 * rather than a particular GPU ring.
1996 *
1997 * Returns 0 if successful, else propagates up the lower layer error.
1998 */
1999int
2000i915_gem_object_sync(struct drm_i915_gem_object *obj,
2001		     struct intel_ring_buffer *to)
2002{
2003	struct intel_ring_buffer *from = obj->ring;
2004	u32 seqno;
2005	int ret, idx;
2006
2007	if (from == NULL || to == from)
2008		return 0;
2009
2010	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2011		return i915_gem_object_wait_rendering(obj);
2012
2013	idx = intel_ring_sync_index(from, to);
2014
2015	seqno = obj->last_rendering_seqno;
2016	if (seqno <= from->sync_seqno[idx])
2017		return 0;
2018
2019	ret = i915_gem_check_olr(obj->ring, seqno);
2020	if (ret)
2021		return ret;
2022
2023	ret = to->sync_to(to, from, seqno);
2024	if (!ret)
2025		from->sync_seqno[idx] = seqno;
2026
2027	return ret;
2028}
2029
2030static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2031{
2032	u32 old_write_domain, old_read_domains;
2033
2034	/* Act a barrier for all accesses through the GTT */
2035	mb();
2036
2037	/* Force a pagefault for domain tracking on next user access */
2038	i915_gem_release_mmap(obj);
2039
2040	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2041		return;
2042
2043	old_read_domains = obj->base.read_domains;
2044	old_write_domain = obj->base.write_domain;
2045
2046	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2047	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2048
2049	trace_i915_gem_object_change_domain(obj,
2050					    old_read_domains,
2051					    old_write_domain);
2052}
2053
2054/**
2055 * Unbinds an object from the GTT aperture.
2056 */
2057int
2058i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059{
2060	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061	int ret = 0;
2062
2063	if (obj->gtt_space == NULL)
2064		return 0;
2065
2066	if (obj->pin_count)
2067		return -EBUSY;
2068
2069	ret = i915_gem_object_finish_gpu(obj);
2070	if (ret)
2071		return ret;
2072	/* Continue on if we fail due to EIO, the GPU is hung so we
2073	 * should be safe and we need to cleanup or else we might
2074	 * cause memory corruption through use-after-free.
2075	 */
2076
2077	i915_gem_object_finish_gtt(obj);
2078
2079	/* Move the object to the CPU domain to ensure that
2080	 * any possible CPU writes while it's not in the GTT
2081	 * are flushed when we go to remap it.
2082	 */
2083	if (ret == 0)
2084		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2085	if (ret == -ERESTARTSYS)
2086		return ret;
2087	if (ret) {
2088		/* In the event of a disaster, abandon all caches and
2089		 * hope for the best.
2090		 */
2091		i915_gem_clflush_object(obj);
2092		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2093	}
2094
2095	/* release the fence reg _after_ flushing */
2096	ret = i915_gem_object_put_fence(obj);
2097	if (ret)
2098		return ret;
2099
2100	trace_i915_gem_object_unbind(obj);
2101
2102	if (obj->has_global_gtt_mapping)
2103		i915_gem_gtt_unbind_object(obj);
2104	if (obj->has_aliasing_ppgtt_mapping) {
2105		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2106		obj->has_aliasing_ppgtt_mapping = 0;
2107	}
2108	i915_gem_gtt_finish_object(obj);
2109
2110	i915_gem_object_put_pages_gtt(obj);
2111
2112	list_del_init(&obj->gtt_list);
2113	list_del_init(&obj->mm_list);
2114	/* Avoid an unnecessary call to unbind on rebind. */
2115	obj->map_and_fenceable = true;
2116
2117	drm_mm_put_block(obj->gtt_space);
2118	obj->gtt_space = NULL;
2119	obj->gtt_offset = 0;
2120
2121	if (i915_gem_object_is_purgeable(obj))
2122		i915_gem_object_truncate(obj);
2123
2124	return ret;
2125}
2126
2127int
2128i915_gem_flush_ring(struct intel_ring_buffer *ring,
2129		    uint32_t invalidate_domains,
2130		    uint32_t flush_domains)
2131{
2132	int ret;
 
 
2133
2134	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2135		return 0;
2136
2137	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2138
2139	ret = ring->flush(ring, invalidate_domains, flush_domains);
2140	if (ret)
2141		return ret;
2142
2143	if (flush_domains & I915_GEM_GPU_DOMAINS)
2144		i915_gem_process_flushing_list(ring, flush_domains);
2145
2146	return 0;
2147}
2148
2149static int i915_ring_idle(struct intel_ring_buffer *ring)
2150{
2151	int ret;
2152
2153	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2154		return 0;
2155
2156	if (!list_empty(&ring->gpu_write_list)) {
2157		ret = i915_gem_flush_ring(ring,
2158				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2159		if (ret)
2160			return ret;
2161	}
2162
2163	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2164}
2165
2166int i915_gpu_idle(struct drm_device *dev)
2167{
2168	drm_i915_private_t *dev_priv = dev->dev_private;
2169	struct intel_ring_buffer *ring;
2170	int ret, i;
2171
2172	/* Flush everything onto the inactive list. */
2173	for_each_ring(ring, dev_priv, i) {
2174		ret = i915_ring_idle(ring);
2175		if (ret)
2176			return ret;
2177
2178		/* Is the device fubar? */
2179		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2180			return -EBUSY;
2181	}
2182
2183	return 0;
2184}
2185
2186static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2187					struct drm_i915_gem_object *obj)
2188{
2189	drm_i915_private_t *dev_priv = dev->dev_private;
2190	uint64_t val;
2191
2192	if (obj) {
2193		u32 size = obj->gtt_space->size;
2194
2195		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2196				 0xfffff000) << 32;
2197		val |= obj->gtt_offset & 0xfffff000;
2198		val |= (uint64_t)((obj->stride / 128) - 1) <<
2199			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2200
2201		if (obj->tiling_mode == I915_TILING_Y)
2202			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2203		val |= I965_FENCE_REG_VALID;
2204	} else
2205		val = 0;
2206
2207	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2208	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2209}
2210
2211static void i965_write_fence_reg(struct drm_device *dev, int reg,
2212				 struct drm_i915_gem_object *obj)
2213{
2214	drm_i915_private_t *dev_priv = dev->dev_private;
2215	uint64_t val;
2216
2217	if (obj) {
2218		u32 size = obj->gtt_space->size;
2219
2220		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2221				 0xfffff000) << 32;
2222		val |= obj->gtt_offset & 0xfffff000;
2223		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2224		if (obj->tiling_mode == I915_TILING_Y)
2225			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2226		val |= I965_FENCE_REG_VALID;
2227	} else
2228		val = 0;
2229
2230	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2231	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2232}
2233
2234static void i915_write_fence_reg(struct drm_device *dev, int reg,
2235				 struct drm_i915_gem_object *obj)
2236{
2237	drm_i915_private_t *dev_priv = dev->dev_private;
2238	u32 val;
2239
2240	if (obj) {
2241		u32 size = obj->gtt_space->size;
2242		int pitch_val;
2243		int tile_width;
2244
2245		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2246		     (size & -size) != size ||
2247		     (obj->gtt_offset & (size - 1)),
2248		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2249		     obj->gtt_offset, obj->map_and_fenceable, size);
2250
2251		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2252			tile_width = 128;
2253		else
2254			tile_width = 512;
2255
2256		/* Note: pitch better be a power of two tile widths */
2257		pitch_val = obj->stride / tile_width;
2258		pitch_val = ffs(pitch_val) - 1;
2259
2260		val = obj->gtt_offset;
2261		if (obj->tiling_mode == I915_TILING_Y)
2262			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2263		val |= I915_FENCE_SIZE_BITS(size);
2264		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2265		val |= I830_FENCE_REG_VALID;
2266	} else
2267		val = 0;
2268
2269	if (reg < 8)
2270		reg = FENCE_REG_830_0 + reg * 4;
2271	else
2272		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2273
2274	I915_WRITE(reg, val);
2275	POSTING_READ(reg);
2276}
2277
2278static void i830_write_fence_reg(struct drm_device *dev, int reg,
2279				struct drm_i915_gem_object *obj)
2280{
2281	drm_i915_private_t *dev_priv = dev->dev_private;
2282	uint32_t val;
2283
2284	if (obj) {
2285		u32 size = obj->gtt_space->size;
2286		uint32_t pitch_val;
2287
2288		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2289		     (size & -size) != size ||
2290		     (obj->gtt_offset & (size - 1)),
2291		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2292		     obj->gtt_offset, size);
2293
2294		pitch_val = obj->stride / 128;
2295		pitch_val = ffs(pitch_val) - 1;
2296
2297		val = obj->gtt_offset;
2298		if (obj->tiling_mode == I915_TILING_Y)
2299			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2300		val |= I830_FENCE_SIZE_BITS(size);
2301		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2302		val |= I830_FENCE_REG_VALID;
2303	} else
2304		val = 0;
2305
2306	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2307	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2308}
2309
2310static void i915_gem_write_fence(struct drm_device *dev, int reg,
2311				 struct drm_i915_gem_object *obj)
2312{
2313	switch (INTEL_INFO(dev)->gen) {
2314	case 7:
2315	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2316	case 5:
2317	case 4: i965_write_fence_reg(dev, reg, obj); break;
2318	case 3: i915_write_fence_reg(dev, reg, obj); break;
2319	case 2: i830_write_fence_reg(dev, reg, obj); break;
2320	default: break;
2321	}
2322}
2323
2324static inline int fence_number(struct drm_i915_private *dev_priv,
2325			       struct drm_i915_fence_reg *fence)
2326{
2327	return fence - dev_priv->fence_regs;
2328}
2329
2330static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2331					 struct drm_i915_fence_reg *fence,
2332					 bool enable)
2333{
2334	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2335	int reg = fence_number(dev_priv, fence);
2336
2337	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2338
2339	if (enable) {
2340		obj->fence_reg = reg;
2341		fence->obj = obj;
2342		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2343	} else {
2344		obj->fence_reg = I915_FENCE_REG_NONE;
2345		fence->obj = NULL;
2346		list_del_init(&fence->lru_list);
2347	}
2348}
2349
2350static int
2351i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2352{
2353	int ret;
2354
2355	if (obj->fenced_gpu_access) {
2356		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2357			ret = i915_gem_flush_ring(obj->ring,
2358						  0, obj->base.write_domain);
2359			if (ret)
2360				return ret;
2361		}
2362
2363		obj->fenced_gpu_access = false;
2364	}
2365
2366	if (obj->last_fenced_seqno) {
2367		ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2368		if (ret)
2369			return ret;
2370
2371		obj->last_fenced_seqno = 0;
2372	}
2373
2374	/* Ensure that all CPU reads are completed before installing a fence
2375	 * and all writes before removing the fence.
2376	 */
2377	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378		mb();
2379
2380	return 0;
2381}
2382
2383int
2384i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
 
2385{
2386	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387	int ret;
 
 
2388
2389	ret = i915_gem_object_flush_fence(obj);
2390	if (ret)
2391		return ret;
2392
2393	if (obj->fence_reg == I915_FENCE_REG_NONE)
2394		return 0;
2395
2396	i915_gem_object_update_fence(obj,
2397				     &dev_priv->fence_regs[obj->fence_reg],
2398				     false);
2399	i915_gem_object_fence_lost(obj);
2400
2401	return 0;
2402}
2403
2404static struct drm_i915_fence_reg *
2405i915_find_fence_reg(struct drm_device *dev)
2406{
2407	struct drm_i915_private *dev_priv = dev->dev_private;
2408	struct drm_i915_fence_reg *reg, *avail;
2409	int i;
2410
2411	/* First try to find a free reg */
2412	avail = NULL;
2413	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2414		reg = &dev_priv->fence_regs[i];
2415		if (!reg->obj)
2416			return reg;
2417
2418		if (!reg->pin_count)
2419			avail = reg;
2420	}
2421
2422	if (avail == NULL)
2423		return NULL;
2424
2425	/* None available, try to steal one or wait for a user to finish */
2426	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427		if (reg->pin_count)
2428			continue;
2429
2430		return reg;
2431	}
2432
2433	return NULL;
2434}
 
2435
2436/**
2437 * i915_gem_object_get_fence - set up fencing for an object
2438 * @obj: object to map through a fence reg
2439 *
2440 * When mapping objects through the GTT, userspace wants to be able to write
2441 * to them without having to worry about swizzling if the object is tiled.
2442 * This function walks the fence regs looking for a free one for @obj,
2443 * stealing one if it can't find any.
2444 *
2445 * It then sets up the reg based on the object's properties: address, pitch
2446 * and tiling format.
2447 *
2448 * For an untiled surface, this removes any existing fence.
2449 */
2450int
2451i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2452{
2453	struct drm_device *dev = obj->base.dev;
2454	struct drm_i915_private *dev_priv = dev->dev_private;
2455	bool enable = obj->tiling_mode != I915_TILING_NONE;
2456	struct drm_i915_fence_reg *reg;
2457	int ret;
2458
2459	/* Have we updated the tiling parameters upon the object and so
2460	 * will need to serialise the write to the associated fence register?
2461	 */
2462	if (obj->fence_dirty) {
2463		ret = i915_gem_object_flush_fence(obj);
2464		if (ret)
2465			return ret;
2466	}
2467
2468	/* Just update our place in the LRU if our fence is getting reused. */
2469	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2470		reg = &dev_priv->fence_regs[obj->fence_reg];
2471		if (!obj->fence_dirty) {
2472			list_move_tail(&reg->lru_list,
2473				       &dev_priv->mm.fence_list);
2474			return 0;
2475		}
2476	} else if (enable) {
2477		reg = i915_find_fence_reg(dev);
2478		if (reg == NULL)
2479			return -EDEADLK;
2480
2481		if (reg->obj) {
2482			struct drm_i915_gem_object *old = reg->obj;
2483
2484			ret = i915_gem_object_flush_fence(old);
2485			if (ret)
2486				return ret;
2487
2488			i915_gem_object_fence_lost(old);
2489		}
2490	} else
2491		return 0;
2492
2493	i915_gem_object_update_fence(obj, reg, enable);
2494	obj->fence_dirty = false;
2495
2496	return 0;
2497}
2498
2499/**
2500 * Finds free space in the GTT aperture and binds the object there.
2501 */
2502static int
2503i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2504			    unsigned alignment,
2505			    bool map_and_fenceable)
2506{
2507	struct drm_device *dev = obj->base.dev;
2508	drm_i915_private_t *dev_priv = dev->dev_private;
2509	struct drm_mm_node *free_space;
2510	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2511	u32 size, fence_size, fence_alignment, unfenced_alignment;
2512	bool mappable, fenceable;
2513	int ret;
2514
2515	if (obj->madv != I915_MADV_WILLNEED) {
2516		DRM_ERROR("Attempting to bind a purgeable object\n");
2517		return -EINVAL;
2518	}
2519
2520	fence_size = i915_gem_get_gtt_size(dev,
2521					   obj->base.size,
2522					   obj->tiling_mode);
2523	fence_alignment = i915_gem_get_gtt_alignment(dev,
2524						     obj->base.size,
2525						     obj->tiling_mode);
2526	unfenced_alignment =
2527		i915_gem_get_unfenced_gtt_alignment(dev,
2528						    obj->base.size,
2529						    obj->tiling_mode);
2530
2531	if (alignment == 0)
2532		alignment = map_and_fenceable ? fence_alignment :
2533						unfenced_alignment;
2534	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2535		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2536		return -EINVAL;
2537	}
2538
2539	size = map_and_fenceable ? fence_size : obj->base.size;
 
 
2540
2541	/* If the object is bigger than the entire aperture, reject it early
2542	 * before evicting everything in a vain attempt to find space.
2543	 */
2544	if (obj->base.size >
2545	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2546		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2547		return -E2BIG;
2548	}
2549
2550 search_free:
2551	if (map_and_fenceable)
2552		free_space =
2553			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2554						    size, alignment, 0,
2555						    dev_priv->mm.gtt_mappable_end,
2556						    0);
2557	else
2558		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2559						size, alignment, 0);
2560
2561	if (free_space != NULL) {
2562		if (map_and_fenceable)
2563			obj->gtt_space =
2564				drm_mm_get_block_range_generic(free_space,
2565							       size, alignment, 0,
2566							       dev_priv->mm.gtt_mappable_end,
2567							       0);
2568		else
2569			obj->gtt_space =
2570				drm_mm_get_block(free_space, size, alignment);
2571	}
2572	if (obj->gtt_space == NULL) {
2573		/* If the gtt is empty and we're still having trouble
2574		 * fitting our object in, we're out of memory.
2575		 */
2576		ret = i915_gem_evict_something(dev, size, alignment,
2577					       map_and_fenceable);
2578		if (ret)
2579			return ret;
2580
2581		goto search_free;
2582	}
2583
2584	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2585	if (ret) {
2586		drm_mm_put_block(obj->gtt_space);
2587		obj->gtt_space = NULL;
 
2588
2589		if (ret == -ENOMEM) {
2590			/* first try to reclaim some memory by clearing the GTT */
2591			ret = i915_gem_evict_everything(dev, false);
2592			if (ret) {
2593				/* now try to shrink everyone else */
2594				if (gfpmask) {
2595					gfpmask = 0;
2596					goto search_free;
2597				}
2598
2599				return -ENOMEM;
2600			}
2601
2602			goto search_free;
2603		}
2604
2605		return ret;
2606	}
2607
2608	ret = i915_gem_gtt_prepare_object(obj);
2609	if (ret) {
2610		i915_gem_object_put_pages_gtt(obj);
2611		drm_mm_put_block(obj->gtt_space);
2612		obj->gtt_space = NULL;
2613
2614		if (i915_gem_evict_everything(dev, false))
2615			return ret;
2616
2617		goto search_free;
2618	}
2619
2620	if (!dev_priv->mm.aliasing_ppgtt)
2621		i915_gem_gtt_bind_object(obj, obj->cache_level);
2622
2623	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2624	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2625
2626	/* Assert that the object is not currently in any GPU domain. As it
2627	 * wasn't in the GTT, there shouldn't be any way it could have been in
2628	 * a GPU cache
2629	 */
2630	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2631	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2632
2633	obj->gtt_offset = obj->gtt_space->start;
2634
2635	fenceable =
2636		obj->gtt_space->size == fence_size &&
2637		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2638
2639	mappable =
2640		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2641
2642	obj->map_and_fenceable = mappable && fenceable;
2643
2644	trace_i915_gem_object_bind(obj, map_and_fenceable);
2645	return 0;
2646}
2647
2648void
2649i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2650{
2651	/* If we don't have a page list set up, then we're not pinned
2652	 * to GPU, and we can ignore the cache flush because it'll happen
2653	 * again at bind time.
2654	 */
2655	if (obj->pages == NULL)
2656		return;
2657
2658	/* If the GPU is snooping the contents of the CPU cache,
2659	 * we do not need to manually clear the CPU cache lines.  However,
2660	 * the caches are only snooped when the render cache is
2661	 * flushed/invalidated.  As we always have to emit invalidations
2662	 * and flushes when moving into and out of the RENDER domain, correct
2663	 * snooping behaviour occurs naturally as the result of our domain
2664	 * tracking.
2665	 */
2666	if (obj->cache_level != I915_CACHE_NONE)
2667		return;
2668
2669	trace_i915_gem_object_clflush(obj);
2670
2671	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2672}
2673
2674/** Flushes any GPU write domain for the object if it's dirty. */
2675static int
2676i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2677{
2678	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2679		return 0;
2680
2681	/* Queue the GPU write cache flushing we need. */
2682	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2683}
2684
2685/** Flushes the GTT write domain for the object if it's dirty. */
2686static void
2687i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2688{
2689	uint32_t old_write_domain;
2690
2691	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2692		return;
2693
2694	/* No actual flushing is required for the GTT write domain.  Writes
2695	 * to it immediately go to main memory as far as we know, so there's
2696	 * no chipset flush.  It also doesn't land in render cache.
2697	 *
2698	 * However, we do have to enforce the order so that all writes through
2699	 * the GTT land before any writes to the device, such as updates to
2700	 * the GATT itself.
2701	 */
2702	wmb();
2703
2704	old_write_domain = obj->base.write_domain;
2705	obj->base.write_domain = 0;
2706
2707	trace_i915_gem_object_change_domain(obj,
2708					    obj->base.read_domains,
2709					    old_write_domain);
2710}
2711
2712/** Flushes the CPU write domain for the object if it's dirty. */
2713static void
2714i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2715{
2716	uint32_t old_write_domain;
2717
2718	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2719		return;
2720
2721	i915_gem_clflush_object(obj);
2722	intel_gtt_chipset_flush();
2723	old_write_domain = obj->base.write_domain;
2724	obj->base.write_domain = 0;
2725
2726	trace_i915_gem_object_change_domain(obj,
2727					    obj->base.read_domains,
2728					    old_write_domain);
2729}
2730
2731/**
2732 * Moves a single object to the GTT read, and possibly write domain.
2733 *
2734 * This function returns when the move is complete, including waiting on
2735 * flushes to occur.
2736 */
2737int
2738i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2739{
2740	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2741	uint32_t old_write_domain, old_read_domains;
2742	int ret;
2743
2744	/* Not valid to be called on unbound objects. */
2745	if (obj->gtt_space == NULL)
2746		return -EINVAL;
2747
2748	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2749		return 0;
2750
2751	ret = i915_gem_object_flush_gpu_write_domain(obj);
2752	if (ret)
2753		return ret;
2754
2755	if (obj->pending_gpu_write || write) {
2756		ret = i915_gem_object_wait_rendering(obj);
2757		if (ret)
2758			return ret;
2759	}
2760
2761	i915_gem_object_flush_cpu_write_domain(obj);
2762
2763	old_write_domain = obj->base.write_domain;
2764	old_read_domains = obj->base.read_domains;
2765
2766	/* It should now be out of any other write domains, and we can update
2767	 * the domain values for our changes.
2768	 */
2769	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2770	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2771	if (write) {
2772		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2773		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2774		obj->dirty = 1;
2775	}
2776
2777	trace_i915_gem_object_change_domain(obj,
2778					    old_read_domains,
2779					    old_write_domain);
2780
2781	/* And bump the LRU for this access */
2782	if (i915_gem_object_is_inactive(obj))
2783		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2784
2785	return 0;
2786}
2787
2788int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2789				    enum i915_cache_level cache_level)
2790{
2791	struct drm_device *dev = obj->base.dev;
2792	drm_i915_private_t *dev_priv = dev->dev_private;
2793	int ret;
2794
2795	if (obj->cache_level == cache_level)
2796		return 0;
2797
2798	if (obj->pin_count) {
2799		DRM_DEBUG("can not change the cache level of pinned objects\n");
2800		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801	}
2802
2803	if (obj->gtt_space) {
2804		ret = i915_gem_object_finish_gpu(obj);
2805		if (ret)
2806			return ret;
2807
2808		i915_gem_object_finish_gtt(obj);
2809
2810		/* Before SandyBridge, you could not use tiling or fence
2811		 * registers with snooped memory, so relinquish any fences
2812		 * currently pointing to our region in the aperture.
2813		 */
2814		if (INTEL_INFO(obj->base.dev)->gen < 6) {
2815			ret = i915_gem_object_put_fence(obj);
2816			if (ret)
2817				return ret;
2818		}
2819
2820		if (obj->has_global_gtt_mapping)
2821			i915_gem_gtt_bind_object(obj, cache_level);
2822		if (obj->has_aliasing_ppgtt_mapping)
2823			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2824					       obj, cache_level);
2825	}
2826
2827	if (cache_level == I915_CACHE_NONE) {
2828		u32 old_read_domains, old_write_domain;
2829
2830		/* If we're coming from LLC cached, then we haven't
2831		 * actually been tracking whether the data is in the
2832		 * CPU cache or not, since we only allow one bit set
2833		 * in obj->write_domain and have been skipping the clflushes.
2834		 * Just set it to the CPU cache for now.
2835		 */
2836		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2837		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2838
2839		old_read_domains = obj->base.read_domains;
2840		old_write_domain = obj->base.write_domain;
2841
2842		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2843		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2844
2845		trace_i915_gem_object_change_domain(obj,
2846						    old_read_domains,
2847						    old_write_domain);
2848	}
2849
2850	obj->cache_level = cache_level;
2851	return 0;
2852}
2853
2854/*
2855 * Prepare buffer for display plane (scanout, cursors, etc).
2856 * Can be called from an uninterruptible phase (modesetting) and allows
2857 * any flushes to be pipelined (for pageflips).
2858 */
2859int
2860i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2861				     u32 alignment,
2862				     struct intel_ring_buffer *pipelined)
2863{
2864	u32 old_read_domains, old_write_domain;
2865	int ret;
2866
2867	ret = i915_gem_object_flush_gpu_write_domain(obj);
2868	if (ret)
2869		return ret;
2870
2871	if (pipelined != obj->ring) {
2872		ret = i915_gem_object_sync(obj, pipelined);
2873		if (ret)
2874			return ret;
2875	}
2876
2877	/* The display engine is not coherent with the LLC cache on gen6.  As
2878	 * a result, we make sure that the pinning that is about to occur is
2879	 * done with uncached PTEs. This is lowest common denominator for all
2880	 * chipsets.
2881	 *
2882	 * However for gen6+, we could do better by using the GFDT bit instead
2883	 * of uncaching, which would allow us to flush all the LLC-cached data
2884	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2885	 */
2886	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2887	if (ret)
2888		return ret;
2889
2890	/* As the user may map the buffer once pinned in the display plane
2891	 * (e.g. libkms for the bootup splash), we have to ensure that we
2892	 * always use map_and_fenceable for all scanout buffers.
2893	 */
2894	ret = i915_gem_object_pin(obj, alignment, true);
2895	if (ret)
2896		return ret;
2897
2898	i915_gem_object_flush_cpu_write_domain(obj);
2899
2900	old_write_domain = obj->base.write_domain;
2901	old_read_domains = obj->base.read_domains;
2902
2903	/* It should now be out of any other write domains, and we can update
2904	 * the domain values for our changes.
2905	 */
2906	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2907	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2908
2909	trace_i915_gem_object_change_domain(obj,
2910					    old_read_domains,
2911					    old_write_domain);
2912
2913	return 0;
2914}
2915
2916int
2917i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2918{
2919	int ret;
2920
2921	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2922		return 0;
2923
2924	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2925		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2926		if (ret)
2927			return ret;
2928	}
2929
2930	ret = i915_gem_object_wait_rendering(obj);
2931	if (ret)
2932		return ret;
 
 
 
2933
2934	/* Ensure that we invalidate the GPU's caches and TLBs. */
2935	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2936	return 0;
2937}
2938
2939/**
2940 * Moves a single object to the CPU read, and possibly write domain.
2941 *
2942 * This function returns when the move is complete, including waiting on
2943 * flushes to occur.
2944 */
2945int
2946i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2947{
2948	uint32_t old_write_domain, old_read_domains;
2949	int ret;
2950
2951	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2952		return 0;
2953
2954	ret = i915_gem_object_flush_gpu_write_domain(obj);
2955	if (ret)
2956		return ret;
2957
2958	if (write || obj->pending_gpu_write) {
2959		ret = i915_gem_object_wait_rendering(obj);
2960		if (ret)
2961			return ret;
2962	}
2963
2964	i915_gem_object_flush_gtt_write_domain(obj);
2965
2966	old_write_domain = obj->base.write_domain;
2967	old_read_domains = obj->base.read_domains;
2968
2969	/* Flush the CPU cache if it's still invalid. */
2970	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2971		i915_gem_clflush_object(obj);
2972
2973		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2974	}
2975
2976	/* It should now be out of any other write domains, and we can update
2977	 * the domain values for our changes.
2978	 */
2979	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2980
2981	/* If we're writing through the CPU, then the GPU read domains will
2982	 * need to be invalidated at next use.
2983	 */
2984	if (write) {
2985		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2986		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2987	}
2988
2989	trace_i915_gem_object_change_domain(obj,
2990					    old_read_domains,
2991					    old_write_domain);
2992
2993	return 0;
2994}
2995
2996/* Throttle our rendering by waiting until the ring has completed our requests
2997 * emitted over 20 msec ago.
2998 *
2999 * Note that if we were to use the current jiffies each time around the loop,
3000 * we wouldn't escape the function with any frames outstanding if the time to
3001 * render a frame was over 20ms.
3002 *
3003 * This should get us reasonable parallelism between CPU and GPU but also
3004 * relatively low latency when blocking on a particular request to finish.
3005 */
3006static int
3007i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3008{
3009	struct drm_i915_private *dev_priv = dev->dev_private;
3010	struct drm_i915_file_private *file_priv = file->driver_priv;
3011	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3012	struct drm_i915_gem_request *request;
3013	struct intel_ring_buffer *ring = NULL;
3014	u32 seqno = 0;
3015	int ret;
3016
3017	if (atomic_read(&dev_priv->mm.wedged))
3018		return -EIO;
3019
3020	spin_lock(&file_priv->mm.lock);
3021	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3022		if (time_after_eq(request->emitted_jiffies, recent_enough))
3023			break;
3024
3025		ring = request->ring;
3026		seqno = request->seqno;
3027	}
3028	spin_unlock(&file_priv->mm.lock);
3029
3030	if (seqno == 0)
3031		return 0;
3032
3033	ret = __wait_seqno(ring, seqno, true);
3034	if (ret == 0)
3035		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3036
3037	return ret;
3038}
3039
3040int
3041i915_gem_object_pin(struct drm_i915_gem_object *obj,
3042		    uint32_t alignment,
3043		    bool map_and_fenceable)
3044{
3045	int ret;
3046
3047	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3048		return -EBUSY;
3049
3050	if (obj->gtt_space != NULL) {
3051		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3052		    (map_and_fenceable && !obj->map_and_fenceable)) {
3053			WARN(obj->pin_count,
3054			     "bo is already pinned with incorrect alignment:"
3055			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3056			     " obj->map_and_fenceable=%d\n",
3057			     obj->gtt_offset, alignment,
3058			     map_and_fenceable,
3059			     obj->map_and_fenceable);
3060			ret = i915_gem_object_unbind(obj);
3061			if (ret)
3062				return ret;
3063		}
3064	}
3065
3066	if (obj->gtt_space == NULL) {
3067		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3068						  map_and_fenceable);
3069		if (ret)
3070			return ret;
3071	}
3072
3073	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3074		i915_gem_gtt_bind_object(obj, obj->cache_level);
3075
3076	obj->pin_count++;
3077	obj->pin_mappable |= map_and_fenceable;
3078
3079	return 0;
3080}
3081
3082void
3083i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3084{
3085	BUG_ON(obj->pin_count == 0);
3086	BUG_ON(obj->gtt_space == NULL);
3087
3088	if (--obj->pin_count == 0)
3089		obj->pin_mappable = false;
3090}
3091
3092int
3093i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3094		   struct drm_file *file)
3095{
3096	struct drm_i915_gem_pin *args = data;
3097	struct drm_i915_gem_object *obj;
3098	int ret;
3099
3100	ret = i915_mutex_lock_interruptible(dev);
3101	if (ret)
3102		return ret;
3103
3104	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3105	if (&obj->base == NULL) {
3106		ret = -ENOENT;
3107		goto unlock;
3108	}
3109
3110	if (obj->madv != I915_MADV_WILLNEED) {
3111		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3112		ret = -EINVAL;
3113		goto out;
3114	}
3115
3116	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3117		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3118			  args->handle);
3119		ret = -EINVAL;
3120		goto out;
3121	}
3122
3123	obj->user_pin_count++;
3124	obj->pin_filp = file;
3125	if (obj->user_pin_count == 1) {
3126		ret = i915_gem_object_pin(obj, args->alignment, true);
3127		if (ret)
3128			goto out;
3129	}
3130
3131	/* XXX - flush the CPU caches for pinned objects
3132	 * as the X server doesn't manage domains yet
3133	 */
3134	i915_gem_object_flush_cpu_write_domain(obj);
3135	args->offset = obj->gtt_offset;
3136out:
3137	drm_gem_object_unreference(&obj->base);
3138unlock:
3139	mutex_unlock(&dev->struct_mutex);
3140	return ret;
3141}
3142
3143int
3144i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3145		     struct drm_file *file)
3146{
3147	struct drm_i915_gem_pin *args = data;
3148	struct drm_i915_gem_object *obj;
3149	int ret;
3150
3151	ret = i915_mutex_lock_interruptible(dev);
3152	if (ret)
3153		return ret;
3154
3155	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3156	if (&obj->base == NULL) {
3157		ret = -ENOENT;
3158		goto unlock;
3159	}
3160
3161	if (obj->pin_filp != file) {
3162		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3163			  args->handle);
3164		ret = -EINVAL;
3165		goto out;
3166	}
3167	obj->user_pin_count--;
3168	if (obj->user_pin_count == 0) {
3169		obj->pin_filp = NULL;
3170		i915_gem_object_unpin(obj);
3171	}
3172
3173out:
3174	drm_gem_object_unreference(&obj->base);
3175unlock:
3176	mutex_unlock(&dev->struct_mutex);
3177	return ret;
3178}
3179
3180int
3181i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3182		    struct drm_file *file)
3183{
3184	struct drm_i915_gem_busy *args = data;
3185	struct drm_i915_gem_object *obj;
3186	int ret;
3187
3188	ret = i915_mutex_lock_interruptible(dev);
3189	if (ret)
3190		return ret;
3191
3192	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3193	if (&obj->base == NULL) {
3194		ret = -ENOENT;
3195		goto unlock;
3196	}
3197
3198	/* Count all active objects as busy, even if they are currently not used
3199	 * by the gpu. Users of this interface expect objects to eventually
3200	 * become non-busy without any further actions, therefore emit any
3201	 * necessary flushes here.
3202	 */
3203	args->busy = obj->active;
3204	if (args->busy) {
3205		/* Unconditionally flush objects, even when the gpu still uses this
3206		 * object. Userspace calling this function indicates that it wants to
3207		 * use this buffer rather sooner than later, so issuing the required
3208		 * flush earlier is beneficial.
3209		 */
3210		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3211			ret = i915_gem_flush_ring(obj->ring,
3212						  0, obj->base.write_domain);
3213		} else {
3214			ret = i915_gem_check_olr(obj->ring,
3215						 obj->last_rendering_seqno);
3216		}
3217
3218		/* Update the active list for the hardware's current position.
3219		 * Otherwise this only updates on a delayed timer or when irqs
3220		 * are actually unmasked, and our working set ends up being
3221		 * larger than required.
3222		 */
3223		i915_gem_retire_requests_ring(obj->ring);
3224
3225		args->busy = obj->active;
3226	}
3227
3228	drm_gem_object_unreference(&obj->base);
3229unlock:
3230	mutex_unlock(&dev->struct_mutex);
3231	return ret;
3232}
3233
3234int
3235i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3236			struct drm_file *file_priv)
3237{
3238	return i915_gem_ring_throttle(dev, file_priv);
3239}
3240
3241int
3242i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3243		       struct drm_file *file_priv)
3244{
3245	struct drm_i915_gem_madvise *args = data;
3246	struct drm_i915_gem_object *obj;
3247	int ret;
3248
3249	switch (args->madv) {
3250	case I915_MADV_DONTNEED:
3251	case I915_MADV_WILLNEED:
3252	    break;
3253	default:
3254	    return -EINVAL;
3255	}
3256
3257	ret = i915_mutex_lock_interruptible(dev);
3258	if (ret)
3259		return ret;
3260
3261	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3262	if (&obj->base == NULL) {
3263		ret = -ENOENT;
3264		goto unlock;
3265	}
3266
3267	if (obj->pin_count) {
3268		ret = -EINVAL;
3269		goto out;
3270	}
3271
3272	if (obj->madv != __I915_MADV_PURGED)
3273		obj->madv = args->madv;
3274
3275	/* if the object is no longer bound, discard its backing storage */
3276	if (i915_gem_object_is_purgeable(obj) &&
3277	    obj->gtt_space == NULL)
3278		i915_gem_object_truncate(obj);
3279
3280	args->retained = obj->madv != __I915_MADV_PURGED;
3281
3282out:
3283	drm_gem_object_unreference(&obj->base);
3284unlock:
3285	mutex_unlock(&dev->struct_mutex);
3286	return ret;
3287}
3288
3289struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3290						  size_t size)
3291{
3292	struct drm_i915_private *dev_priv = dev->dev_private;
3293	struct drm_i915_gem_object *obj;
3294	struct address_space *mapping;
3295	u32 mask;
3296
3297	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3298	if (obj == NULL)
3299		return NULL;
3300
3301	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3302		kfree(obj);
3303		return NULL;
3304	}
3305
3306	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3307	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3308		/* 965gm cannot relocate objects above 4GiB. */
3309		mask &= ~__GFP_HIGHMEM;
3310		mask |= __GFP_DMA32;
3311	}
3312
3313	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3314	mapping_set_gfp_mask(mapping, mask);
3315
3316	i915_gem_info_add_obj(dev_priv, size);
3317
3318	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3319	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3320
3321	if (HAS_LLC(dev)) {
3322		/* On some devices, we can have the GPU use the LLC (the CPU
3323		 * cache) for about a 10% performance improvement
3324		 * compared to uncached.  Graphics requests other than
3325		 * display scanout are coherent with the CPU in
3326		 * accessing this cache.  This means in this mode we
3327		 * don't need to clflush on the CPU side, and on the
3328		 * GPU side we only need to flush internal caches to
3329		 * get data visible to the CPU.
3330		 *
3331		 * However, we maintain the display planes as UC, and so
3332		 * need to rebind when first used as such.
3333		 */
3334		obj->cache_level = I915_CACHE_LLC;
3335	} else
3336		obj->cache_level = I915_CACHE_NONE;
3337
3338	obj->base.driver_private = NULL;
3339	obj->fence_reg = I915_FENCE_REG_NONE;
3340	INIT_LIST_HEAD(&obj->mm_list);
3341	INIT_LIST_HEAD(&obj->gtt_list);
3342	INIT_LIST_HEAD(&obj->ring_list);
3343	INIT_LIST_HEAD(&obj->exec_list);
3344	INIT_LIST_HEAD(&obj->gpu_write_list);
3345	obj->madv = I915_MADV_WILLNEED;
3346	/* Avoid an unnecessary call to unbind on the first bind. */
3347	obj->map_and_fenceable = true;
3348
3349	return obj;
3350}
3351
3352int i915_gem_init_object(struct drm_gem_object *obj)
3353{
3354	BUG();
3355
3356	return 0;
3357}
3358
3359void i915_gem_free_object(struct drm_gem_object *gem_obj)
3360{
3361	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3362	struct drm_device *dev = obj->base.dev;
3363	drm_i915_private_t *dev_priv = dev->dev_private;
3364
3365	trace_i915_gem_object_destroy(obj);
3366
3367	if (gem_obj->import_attach)
3368		drm_prime_gem_destroy(gem_obj, obj->sg_table);
3369
3370	if (obj->phys_obj)
3371		i915_gem_detach_phys_object(dev, obj);
3372
3373	obj->pin_count = 0;
3374	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3375		bool was_interruptible;
3376
3377		was_interruptible = dev_priv->mm.interruptible;
3378		dev_priv->mm.interruptible = false;
3379
3380		WARN_ON(i915_gem_object_unbind(obj));
3381
3382		dev_priv->mm.interruptible = was_interruptible;
3383	}
3384
3385	if (obj->base.map_list.map)
3386		drm_gem_free_mmap_offset(&obj->base);
3387
3388	drm_gem_object_release(&obj->base);
3389	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3390
3391	kfree(obj->bit_17);
3392	kfree(obj);
3393}
3394
3395int
3396i915_gem_idle(struct drm_device *dev)
3397{
3398	drm_i915_private_t *dev_priv = dev->dev_private;
3399	int ret;
3400
3401	mutex_lock(&dev->struct_mutex);
3402
3403	if (dev_priv->mm.suspended) {
3404		mutex_unlock(&dev->struct_mutex);
3405		return 0;
3406	}
3407
3408	ret = i915_gpu_idle(dev);
3409	if (ret) {
3410		mutex_unlock(&dev->struct_mutex);
3411		return ret;
3412	}
3413	i915_gem_retire_requests(dev);
3414
3415	/* Under UMS, be paranoid and evict. */
3416	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3417		i915_gem_evict_everything(dev, false);
3418
3419	i915_gem_reset_fences(dev);
3420
3421	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3422	 * We need to replace this with a semaphore, or something.
3423	 * And not confound mm.suspended!
3424	 */
3425	dev_priv->mm.suspended = 1;
3426	del_timer_sync(&dev_priv->hangcheck_timer);
3427
3428	i915_kernel_lost_context(dev);
3429	i915_gem_cleanup_ringbuffer(dev);
3430
3431	mutex_unlock(&dev->struct_mutex);
3432
3433	/* Cancel the retire work handler, which should be idle now. */
3434	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3435
3436	return 0;
3437}
3438
3439void i915_gem_init_swizzling(struct drm_device *dev)
3440{
3441	drm_i915_private_t *dev_priv = dev->dev_private;
3442
3443	if (INTEL_INFO(dev)->gen < 5 ||
3444	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3445		return;
3446
3447	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3448				 DISP_TILE_SURFACE_SWIZZLING);
3449
3450	if (IS_GEN5(dev))
3451		return;
 
 
3452
3453	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3454	if (IS_GEN6(dev))
3455		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3456	else
3457		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3458}
3459
3460void i915_gem_init_ppgtt(struct drm_device *dev)
3461{
3462	drm_i915_private_t *dev_priv = dev->dev_private;
3463	uint32_t pd_offset;
3464	struct intel_ring_buffer *ring;
3465	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3466	uint32_t __iomem *pd_addr;
3467	uint32_t pd_entry;
3468	int i;
3469
3470	if (!dev_priv->mm.aliasing_ppgtt)
3471		return;
3472
3473
3474	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3475	for (i = 0; i < ppgtt->num_pd_entries; i++) {
3476		dma_addr_t pt_addr;
3477
3478		if (dev_priv->mm.gtt->needs_dmar)
3479			pt_addr = ppgtt->pt_dma_addr[i];
3480		else
3481			pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3482
3483		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3484		pd_entry |= GEN6_PDE_VALID;
3485
3486		writel(pd_entry, pd_addr + i);
3487	}
3488	readl(pd_addr);
3489
3490	pd_offset = ppgtt->pd_offset;
3491	pd_offset /= 64; /* in cachelines, */
3492	pd_offset <<= 16;
3493
3494	if (INTEL_INFO(dev)->gen == 6) {
3495		uint32_t ecochk, gab_ctl, ecobits;
3496
3497		ecobits = I915_READ(GAC_ECO_BITS); 
3498		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3499
3500		gab_ctl = I915_READ(GAB_CTL);
3501		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3502
3503		ecochk = I915_READ(GAM_ECOCHK);
3504		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3505				       ECOCHK_PPGTT_CACHE64B);
3506		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3507	} else if (INTEL_INFO(dev)->gen >= 7) {
3508		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3509		/* GFX_MODE is per-ring on gen7+ */
3510	}
3511
3512	for_each_ring(ring, dev_priv, i) {
3513		if (INTEL_INFO(dev)->gen >= 7)
3514			I915_WRITE(RING_MODE_GEN7(ring),
3515				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3516
3517		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3518		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3519	}
3520}
3521
3522int
3523i915_gem_init_hw(struct drm_device *dev)
3524{
3525	drm_i915_private_t *dev_priv = dev->dev_private;
3526	int ret;
3527
3528	i915_gem_init_swizzling(dev);
3529
3530	ret = intel_init_render_ring_buffer(dev);
3531	if (ret)
3532		return ret;
3533
3534	if (HAS_BSD(dev)) {
3535		ret = intel_init_bsd_ring_buffer(dev);
3536		if (ret)
3537			goto cleanup_render_ring;
3538	}
3539
3540	if (HAS_BLT(dev)) {
3541		ret = intel_init_blt_ring_buffer(dev);
3542		if (ret)
3543			goto cleanup_bsd_ring;
3544	}
3545
3546	dev_priv->next_seqno = 1;
3547
3548	i915_gem_init_ppgtt(dev);
3549
3550	return 0;
3551
3552cleanup_bsd_ring:
3553	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3554cleanup_render_ring:
3555	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3556	return ret;
3557}
3558
3559static bool
3560intel_enable_ppgtt(struct drm_device *dev)
3561{
3562	if (i915_enable_ppgtt >= 0)
3563		return i915_enable_ppgtt;
3564
3565#ifdef CONFIG_INTEL_IOMMU
3566	/* Disable ppgtt on SNB if VT-d is on. */
3567	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3568		return false;
3569#endif
3570
3571	return true;
3572}
3573
3574int i915_gem_init(struct drm_device *dev)
3575{
3576	struct drm_i915_private *dev_priv = dev->dev_private;
3577	unsigned long gtt_size, mappable_size;
3578	int ret;
3579
3580	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3581	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3582
3583	mutex_lock(&dev->struct_mutex);
3584	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3585		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
3586		 * aperture accordingly when using aliasing ppgtt. */
3587		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3588
3589		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3590
3591		ret = i915_gem_init_aliasing_ppgtt(dev);
3592		if (ret) {
3593			mutex_unlock(&dev->struct_mutex);
3594			return ret;
3595		}
3596	} else {
3597		/* Let GEM Manage all of the aperture.
3598		 *
3599		 * However, leave one page at the end still bound to the scratch
3600		 * page.  There are a number of places where the hardware
3601		 * apparently prefetches past the end of the object, and we've
3602		 * seen multiple hangs with the GPU head pointer stuck in a
3603		 * batchbuffer bound at the last page of the aperture.  One page
3604		 * should be enough to keep any prefetching inside of the
3605		 * aperture.
3606		 */
3607		i915_gem_init_global_gtt(dev, 0, mappable_size,
3608					 gtt_size);
3609	}
3610
3611	ret = i915_gem_init_hw(dev);
3612	mutex_unlock(&dev->struct_mutex);
3613	if (ret) {
3614		i915_gem_cleanup_aliasing_ppgtt(dev);
3615		return ret;
3616	}
3617
3618	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3619	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3620		dev_priv->dri1.allow_batchbuffer = 1;
3621	return 0;
3622}
3623
3624void
3625i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3626{
3627	drm_i915_private_t *dev_priv = dev->dev_private;
3628	struct intel_ring_buffer *ring;
3629	int i;
3630
3631	for_each_ring(ring, dev_priv, i)
3632		intel_cleanup_ring_buffer(ring);
3633}
3634
3635int
3636i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3637		       struct drm_file *file_priv)
3638{
3639	drm_i915_private_t *dev_priv = dev->dev_private;
3640	int ret;
3641
3642	if (drm_core_check_feature(dev, DRIVER_MODESET))
3643		return 0;
 
3644
3645	if (atomic_read(&dev_priv->mm.wedged)) {
3646		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3647		atomic_set(&dev_priv->mm.wedged, 0);
3648	}
3649
3650	mutex_lock(&dev->struct_mutex);
3651	dev_priv->mm.suspended = 0;
3652
3653	ret = i915_gem_init_hw(dev);
3654	if (ret != 0) {
3655		mutex_unlock(&dev->struct_mutex);
3656		return ret;
3657	}
3658
3659	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3660	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3661	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3662	mutex_unlock(&dev->struct_mutex);
3663
3664	ret = drm_irq_install(dev);
3665	if (ret)
3666		goto cleanup_ringbuffer;
3667
3668	return 0;
3669
3670cleanup_ringbuffer:
3671	mutex_lock(&dev->struct_mutex);
3672	i915_gem_cleanup_ringbuffer(dev);
3673	dev_priv->mm.suspended = 1;
3674	mutex_unlock(&dev->struct_mutex);
3675
3676	return ret;
3677}
3678
3679int
3680i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3681		       struct drm_file *file_priv)
3682{
3683	if (drm_core_check_feature(dev, DRIVER_MODESET))
3684		return 0;
3685
3686	drm_irq_uninstall(dev);
3687	return i915_gem_idle(dev);
3688}
3689
3690void
3691i915_gem_lastclose(struct drm_device *dev)
3692{
3693	int ret;
3694
3695	if (drm_core_check_feature(dev, DRIVER_MODESET))
3696		return;
3697
3698	ret = i915_gem_idle(dev);
3699	if (ret)
3700		DRM_ERROR("failed to idle hardware: %d\n", ret);
3701}
3702
3703static void
3704init_ring_lists(struct intel_ring_buffer *ring)
3705{
3706	INIT_LIST_HEAD(&ring->active_list);
3707	INIT_LIST_HEAD(&ring->request_list);
3708	INIT_LIST_HEAD(&ring->gpu_write_list);
3709}
3710
3711void
3712i915_gem_load(struct drm_device *dev)
3713{
3714	int i;
3715	drm_i915_private_t *dev_priv = dev->dev_private;
3716
3717	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3718	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3719	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3720	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3721	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3722	for (i = 0; i < I915_NUM_RINGS; i++)
3723		init_ring_lists(&dev_priv->ring[i]);
3724	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3725		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3726	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3727			  i915_gem_retire_work_handler);
3728	init_completion(&dev_priv->error_completion);
3729
3730	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3731	if (IS_GEN3(dev)) {
3732		I915_WRITE(MI_ARB_STATE,
3733			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3734	}
3735
3736	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3737
3738	/* Old X drivers will take 0-2 for front, back, depth buffers */
3739	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3740		dev_priv->fence_reg_start = 3;
3741
3742	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3743		dev_priv->num_fence_regs = 16;
3744	else
3745		dev_priv->num_fence_regs = 8;
3746
3747	/* Initialize fence registers to zero */
3748	i915_gem_reset_fences(dev);
3749
3750	i915_gem_detect_bit_6_swizzle(dev);
3751	init_waitqueue_head(&dev_priv->pending_flip_queue);
3752
3753	dev_priv->mm.interruptible = true;
3754
3755	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3756	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3757	register_shrinker(&dev_priv->mm.inactive_shrinker);
3758}
3759
3760/*
3761 * Create a physically contiguous memory object for this object
3762 * e.g. for cursor + overlay regs
3763 */
3764static int i915_gem_init_phys_object(struct drm_device *dev,
3765				     int id, int size, int align)
3766{
3767	drm_i915_private_t *dev_priv = dev->dev_private;
3768	struct drm_i915_gem_phys_object *phys_obj;
3769	int ret;
3770
3771	if (dev_priv->mm.phys_objs[id - 1] || !size)
3772		return 0;
3773
3774	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3775	if (!phys_obj)
3776		return -ENOMEM;
3777
3778	phys_obj->id = id;
3779
3780	phys_obj->handle = drm_pci_alloc(dev, size, align);
3781	if (!phys_obj->handle) {
3782		ret = -ENOMEM;
3783		goto kfree_obj;
3784	}
3785#ifdef CONFIG_X86
3786	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3787#endif
3788
3789	dev_priv->mm.phys_objs[id - 1] = phys_obj;
3790
3791	return 0;
3792kfree_obj:
3793	kfree(phys_obj);
3794	return ret;
3795}
3796
3797static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3798{
3799	drm_i915_private_t *dev_priv = dev->dev_private;
3800	struct drm_i915_gem_phys_object *phys_obj;
3801
3802	if (!dev_priv->mm.phys_objs[id - 1])
3803		return;
3804
3805	phys_obj = dev_priv->mm.phys_objs[id - 1];
3806	if (phys_obj->cur_obj) {
3807		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3808	}
3809
3810#ifdef CONFIG_X86
3811	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3812#endif
3813	drm_pci_free(dev, phys_obj->handle);
3814	kfree(phys_obj);
3815	dev_priv->mm.phys_objs[id - 1] = NULL;
3816}
3817
3818void i915_gem_free_all_phys_object(struct drm_device *dev)
3819{
3820	int i;
3821
3822	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3823		i915_gem_free_phys_object(dev, i);
3824}
3825
3826void i915_gem_detach_phys_object(struct drm_device *dev,
3827				 struct drm_i915_gem_object *obj)
3828{
3829	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3830	char *vaddr;
3831	int i;
3832	int page_count;
3833
3834	if (!obj->phys_obj)
3835		return;
3836	vaddr = obj->phys_obj->handle->vaddr;
3837
3838	page_count = obj->base.size / PAGE_SIZE;
3839	for (i = 0; i < page_count; i++) {
3840		struct page *page = shmem_read_mapping_page(mapping, i);
3841		if (!IS_ERR(page)) {
3842			char *dst = kmap_atomic(page);
3843			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3844			kunmap_atomic(dst);
3845
3846			drm_clflush_pages(&page, 1);
3847
3848			set_page_dirty(page);
3849			mark_page_accessed(page);
3850			page_cache_release(page);
3851		}
3852	}
3853	intel_gtt_chipset_flush();
3854
3855	obj->phys_obj->cur_obj = NULL;
3856	obj->phys_obj = NULL;
3857}
3858
3859int
3860i915_gem_attach_phys_object(struct drm_device *dev,
3861			    struct drm_i915_gem_object *obj,
3862			    int id,
3863			    int align)
3864{
3865	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3866	drm_i915_private_t *dev_priv = dev->dev_private;
3867	int ret = 0;
3868	int page_count;
3869	int i;
3870
3871	if (id > I915_MAX_PHYS_OBJECT)
3872		return -EINVAL;
3873
3874	if (obj->phys_obj) {
3875		if (obj->phys_obj->id == id)
3876			return 0;
3877		i915_gem_detach_phys_object(dev, obj);
3878	}
3879
3880	/* create a new object */
3881	if (!dev_priv->mm.phys_objs[id - 1]) {
3882		ret = i915_gem_init_phys_object(dev, id,
3883						obj->base.size, align);
3884		if (ret) {
3885			DRM_ERROR("failed to init phys object %d size: %zu\n",
3886				  id, obj->base.size);
3887			return ret;
3888		}
3889	}
3890
3891	/* bind to the object */
3892	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3893	obj->phys_obj->cur_obj = obj;
3894
3895	page_count = obj->base.size / PAGE_SIZE;
3896
3897	for (i = 0; i < page_count; i++) {
3898		struct page *page;
3899		char *dst, *src;
3900
3901		page = shmem_read_mapping_page(mapping, i);
3902		if (IS_ERR(page))
3903			return PTR_ERR(page);
3904
3905		src = kmap_atomic(page);
3906		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3907		memcpy(dst, src, PAGE_SIZE);
3908		kunmap_atomic(src);
3909
3910		mark_page_accessed(page);
3911		page_cache_release(page);
3912	}
3913
3914	return 0;
3915}
3916
3917static int
3918i915_gem_phys_pwrite(struct drm_device *dev,
3919		     struct drm_i915_gem_object *obj,
3920		     struct drm_i915_gem_pwrite *args,
3921		     struct drm_file *file_priv)
3922{
3923	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3924	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3925
3926	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3927		unsigned long unwritten;
3928
3929		/* The physical object once assigned is fixed for the lifetime
3930		 * of the obj, so we can safely drop the lock and continue
3931		 * to access vaddr.
3932		 */
3933		mutex_unlock(&dev->struct_mutex);
3934		unwritten = copy_from_user(vaddr, user_data, args->size);
3935		mutex_lock(&dev->struct_mutex);
3936		if (unwritten)
3937			return -EFAULT;
3938	}
3939
3940	intel_gtt_chipset_flush();
3941	return 0;
3942}
3943
3944void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3945{
3946	struct drm_i915_file_private *file_priv = file->driver_priv;
3947
3948	/* Clean up our request list when the client is going away, so that
3949	 * later retire_requests won't dereference our soon-to-be-gone
3950	 * file_priv.
3951	 */
3952	spin_lock(&file_priv->mm.lock);
3953	while (!list_empty(&file_priv->mm.request_list)) {
3954		struct drm_i915_gem_request *request;
3955
3956		request = list_first_entry(&file_priv->mm.request_list,
3957					   struct drm_i915_gem_request,
3958					   client_list);
3959		list_del(&request->client_list);
3960		request->file_priv = NULL;
3961	}
3962	spin_unlock(&file_priv->mm.lock);
3963}
3964
3965static int
3966i915_gpu_is_active(struct drm_device *dev)
3967{
3968	drm_i915_private_t *dev_priv = dev->dev_private;
3969	int lists_empty;
3970
3971	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3972		      list_empty(&dev_priv->mm.active_list);
3973
3974	return !lists_empty;
3975}
3976
3977static int
3978i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3979{
3980	struct drm_i915_private *dev_priv =
3981		container_of(shrinker,
3982			     struct drm_i915_private,
3983			     mm.inactive_shrinker);
3984	struct drm_device *dev = dev_priv->dev;
3985	struct drm_i915_gem_object *obj, *next;
3986	int nr_to_scan = sc->nr_to_scan;
3987	int cnt;
3988
3989	if (!mutex_trylock(&dev->struct_mutex))
3990		return 0;
3991
3992	/* "fast-path" to count number of available objects */
3993	if (nr_to_scan == 0) {
3994		cnt = 0;
3995		list_for_each_entry(obj,
3996				    &dev_priv->mm.inactive_list,
3997				    mm_list)
3998			cnt++;
3999		mutex_unlock(&dev->struct_mutex);
4000		return cnt / 100 * sysctl_vfs_cache_pressure;
4001	}
4002
4003rescan:
4004	/* first scan for clean buffers */
4005	i915_gem_retire_requests(dev);
4006
4007	list_for_each_entry_safe(obj, next,
4008				 &dev_priv->mm.inactive_list,
4009				 mm_list) {
4010		if (i915_gem_object_is_purgeable(obj)) {
4011			if (i915_gem_object_unbind(obj) == 0 &&
4012			    --nr_to_scan == 0)
4013				break;
4014		}
4015	}
4016
4017	/* second pass, evict/count anything still on the inactive list */
4018	cnt = 0;
4019	list_for_each_entry_safe(obj, next,
4020				 &dev_priv->mm.inactive_list,
4021				 mm_list) {
4022		if (nr_to_scan &&
4023		    i915_gem_object_unbind(obj) == 0)
4024			nr_to_scan--;
4025		else
4026			cnt++;
4027	}
4028
4029	if (nr_to_scan && i915_gpu_is_active(dev)) {
4030		/*
4031		 * We are desperate for pages, so as a last resort, wait
4032		 * for the GPU to finish and discard whatever we can.
4033		 * This has a dramatic impact to reduce the number of
4034		 * OOM-killer events whilst running the GPU aggressively.
4035		 */
4036		if (i915_gpu_idle(dev) == 0)
4037			goto rescan;
4038	}
4039	mutex_unlock(&dev->struct_mutex);
4040	return cnt / 100 * sysctl_vfs_cache_pressure;
4041}