Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37#include "xfs_rtbitmap.h"
38#include "xfs_metafile.h"
39#include "xfs_rtgroup.h"
40#include "scrub/stats.h"
41
42static DEFINE_MUTEX(xfs_uuid_table_mutex);
43static int xfs_uuid_table_size;
44static uuid_t *xfs_uuid_table;
45
46void
47xfs_uuid_table_free(void)
48{
49 if (xfs_uuid_table_size == 0)
50 return;
51 kfree(xfs_uuid_table);
52 xfs_uuid_table = NULL;
53 xfs_uuid_table_size = 0;
54}
55
56/*
57 * See if the UUID is unique among mounted XFS filesystems.
58 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
59 */
60STATIC int
61xfs_uuid_mount(
62 struct xfs_mount *mp)
63{
64 uuid_t *uuid = &mp->m_sb.sb_uuid;
65 int hole, i;
66
67 /* Publish UUID in struct super_block */
68 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
69
70 if (xfs_has_nouuid(mp))
71 return 0;
72
73 if (uuid_is_null(uuid)) {
74 xfs_warn(mp, "Filesystem has null UUID - can't mount");
75 return -EINVAL;
76 }
77
78 mutex_lock(&xfs_uuid_table_mutex);
79 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
80 if (uuid_is_null(&xfs_uuid_table[i])) {
81 hole = i;
82 continue;
83 }
84 if (uuid_equal(uuid, &xfs_uuid_table[i]))
85 goto out_duplicate;
86 }
87
88 if (hole < 0) {
89 xfs_uuid_table = krealloc(xfs_uuid_table,
90 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
91 GFP_KERNEL | __GFP_NOFAIL);
92 hole = xfs_uuid_table_size++;
93 }
94 xfs_uuid_table[hole] = *uuid;
95 mutex_unlock(&xfs_uuid_table_mutex);
96
97 return 0;
98
99 out_duplicate:
100 mutex_unlock(&xfs_uuid_table_mutex);
101 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
102 return -EINVAL;
103}
104
105STATIC void
106xfs_uuid_unmount(
107 struct xfs_mount *mp)
108{
109 uuid_t *uuid = &mp->m_sb.sb_uuid;
110 int i;
111
112 if (xfs_has_nouuid(mp))
113 return;
114
115 mutex_lock(&xfs_uuid_table_mutex);
116 for (i = 0; i < xfs_uuid_table_size; i++) {
117 if (uuid_is_null(&xfs_uuid_table[i]))
118 continue;
119 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
120 continue;
121 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
122 break;
123 }
124 ASSERT(i < xfs_uuid_table_size);
125 mutex_unlock(&xfs_uuid_table_mutex);
126}
127
128/*
129 * Check size of device based on the (data/realtime) block count.
130 * Note: this check is used by the growfs code as well as mount.
131 */
132int
133xfs_sb_validate_fsb_count(
134 xfs_sb_t *sbp,
135 uint64_t nblocks)
136{
137 uint64_t max_bytes;
138
139 ASSERT(sbp->sb_blocklog >= BBSHIFT);
140
141 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
142 return -EFBIG;
143
144 /* Limited by ULONG_MAX of page cache index */
145 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
146 return -EFBIG;
147 return 0;
148}
149
150/*
151 * xfs_readsb
152 *
153 * Does the initial read of the superblock.
154 */
155int
156xfs_readsb(
157 struct xfs_mount *mp,
158 int flags)
159{
160 unsigned int sector_size;
161 struct xfs_buf *bp;
162 struct xfs_sb *sbp = &mp->m_sb;
163 int error;
164 int loud = !(flags & XFS_MFSI_QUIET);
165 const struct xfs_buf_ops *buf_ops;
166
167 ASSERT(mp->m_sb_bp == NULL);
168 ASSERT(mp->m_ddev_targp != NULL);
169
170 /*
171 * For the initial read, we must guess at the sector
172 * size based on the block device. It's enough to
173 * get the sb_sectsize out of the superblock and
174 * then reread with the proper length.
175 * We don't verify it yet, because it may not be complete.
176 */
177 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
178 buf_ops = NULL;
179
180 /*
181 * Allocate a (locked) buffer to hold the superblock. This will be kept
182 * around at all times to optimize access to the superblock. Therefore,
183 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
184 * elevated.
185 */
186reread:
187 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
188 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
189 buf_ops);
190 if (error) {
191 if (loud)
192 xfs_warn(mp, "SB validate failed with error %d.", error);
193 /* bad CRC means corrupted metadata */
194 if (error == -EFSBADCRC)
195 error = -EFSCORRUPTED;
196 return error;
197 }
198
199 /*
200 * Initialize the mount structure from the superblock.
201 */
202 xfs_sb_from_disk(sbp, bp->b_addr);
203
204 /*
205 * If we haven't validated the superblock, do so now before we try
206 * to check the sector size and reread the superblock appropriately.
207 */
208 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 if (loud)
210 xfs_warn(mp, "Invalid superblock magic number");
211 error = -EINVAL;
212 goto release_buf;
213 }
214
215 /*
216 * We must be able to do sector-sized and sector-aligned IO.
217 */
218 if (sector_size > sbp->sb_sectsize) {
219 if (loud)
220 xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 sector_size, sbp->sb_sectsize);
222 error = -ENOSYS;
223 goto release_buf;
224 }
225
226 if (buf_ops == NULL) {
227 /*
228 * Re-read the superblock so the buffer is correctly sized,
229 * and properly verified.
230 */
231 xfs_buf_relse(bp);
232 sector_size = sbp->sb_sectsize;
233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 goto reread;
235 }
236
237 mp->m_features |= xfs_sb_version_to_features(sbp);
238 xfs_reinit_percpu_counters(mp);
239
240 /*
241 * If logged xattrs are enabled after log recovery finishes, then set
242 * the opstate so that log recovery will work properly.
243 */
244 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 xfs_set_using_logged_xattrs(mp);
246
247 /* no need to be quiet anymore, so reset the buf ops */
248 bp->b_ops = &xfs_sb_buf_ops;
249
250 mp->m_sb_bp = bp;
251 xfs_buf_unlock(bp);
252 return 0;
253
254release_buf:
255 xfs_buf_relse(bp);
256 return error;
257}
258
259/*
260 * If the sunit/swidth change would move the precomputed root inode value, we
261 * must reject the ondisk change because repair will stumble over that.
262 * However, we allow the mount to proceed because we never rejected this
263 * combination before. Returns true to update the sb, false otherwise.
264 */
265static inline int
266xfs_check_new_dalign(
267 struct xfs_mount *mp,
268 int new_dalign,
269 bool *update_sb)
270{
271 struct xfs_sb *sbp = &mp->m_sb;
272 xfs_ino_t calc_ino;
273
274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
276
277 if (sbp->sb_rootino == calc_ino) {
278 *update_sb = true;
279 return 0;
280 }
281
282 xfs_warn(mp,
283"Cannot change stripe alignment; would require moving root inode.");
284
285 /*
286 * XXX: Next time we add a new incompat feature, this should start
287 * returning -EINVAL to fail the mount. Until then, spit out a warning
288 * that we're ignoring the administrator's instructions.
289 */
290 xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 *update_sb = false;
292 return 0;
293}
294
295/*
296 * If we were provided with new sunit/swidth values as mount options, make sure
297 * that they pass basic alignment and superblock feature checks, and convert
298 * them into the same units (FSB) that everything else expects. This step
299 * /must/ be done before computing the inode geometry.
300 */
301STATIC int
302xfs_validate_new_dalign(
303 struct xfs_mount *mp)
304{
305 if (mp->m_dalign == 0)
306 return 0;
307
308 /*
309 * If stripe unit and stripe width are not multiples
310 * of the fs blocksize turn off alignment.
311 */
312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 xfs_warn(mp,
315 "alignment check failed: sunit/swidth vs. blocksize(%d)",
316 mp->m_sb.sb_blocksize);
317 return -EINVAL;
318 }
319
320 /*
321 * Convert the stripe unit and width to FSBs.
322 */
323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 xfs_warn(mp,
326 "alignment check failed: sunit/swidth vs. agsize(%d)",
327 mp->m_sb.sb_agblocks);
328 return -EINVAL;
329 }
330
331 if (!mp->m_dalign) {
332 xfs_warn(mp,
333 "alignment check failed: sunit(%d) less than bsize(%d)",
334 mp->m_dalign, mp->m_sb.sb_blocksize);
335 return -EINVAL;
336 }
337
338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339
340 if (!xfs_has_dalign(mp)) {
341 xfs_warn(mp,
342"cannot change alignment: superblock does not support data alignment");
343 return -EINVAL;
344 }
345
346 return 0;
347}
348
349/* Update alignment values based on mount options and sb values. */
350STATIC int
351xfs_update_alignment(
352 struct xfs_mount *mp)
353{
354 struct xfs_sb *sbp = &mp->m_sb;
355
356 if (mp->m_dalign) {
357 bool update_sb;
358 int error;
359
360 if (sbp->sb_unit == mp->m_dalign &&
361 sbp->sb_width == mp->m_swidth)
362 return 0;
363
364 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
365 if (error || !update_sb)
366 return error;
367
368 sbp->sb_unit = mp->m_dalign;
369 sbp->sb_width = mp->m_swidth;
370 mp->m_update_sb = true;
371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 mp->m_dalign = sbp->sb_unit;
373 mp->m_swidth = sbp->sb_width;
374 }
375
376 return 0;
377}
378
379/*
380 * precalculate the low space thresholds for dynamic speculative preallocation.
381 */
382void
383xfs_set_low_space_thresholds(
384 struct xfs_mount *mp)
385{
386 uint64_t dblocks = mp->m_sb.sb_dblocks;
387 uint64_t rtexts = mp->m_sb.sb_rextents;
388 int i;
389
390 do_div(dblocks, 100);
391 do_div(rtexts, 100);
392
393 for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 mp->m_low_space[i] = dblocks * (i + 1);
395 mp->m_low_rtexts[i] = rtexts * (i + 1);
396 }
397}
398
399/*
400 * Check that the data (and log if separate) is an ok size.
401 */
402STATIC int
403xfs_check_sizes(
404 struct xfs_mount *mp)
405{
406 struct xfs_buf *bp;
407 xfs_daddr_t d;
408 int error;
409
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 xfs_warn(mp, "filesystem size mismatch detected");
413 return -EFBIG;
414 }
415 error = xfs_buf_read_uncached(mp->m_ddev_targp,
416 d - XFS_FSS_TO_BB(mp, 1),
417 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
418 if (error) {
419 xfs_warn(mp, "last sector read failed");
420 return error;
421 }
422 xfs_buf_relse(bp);
423
424 if (mp->m_logdev_targp == mp->m_ddev_targp)
425 return 0;
426
427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 xfs_warn(mp, "log size mismatch detected");
430 return -EFBIG;
431 }
432 error = xfs_buf_read_uncached(mp->m_logdev_targp,
433 d - XFS_FSB_TO_BB(mp, 1),
434 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
435 if (error) {
436 xfs_warn(mp, "log device read failed");
437 return error;
438 }
439 xfs_buf_relse(bp);
440 return 0;
441}
442
443/*
444 * Clear the quotaflags in memory and in the superblock.
445 */
446int
447xfs_mount_reset_sbqflags(
448 struct xfs_mount *mp)
449{
450 mp->m_qflags = 0;
451
452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 if (mp->m_sb.sb_qflags == 0)
454 return 0;
455 spin_lock(&mp->m_sb_lock);
456 mp->m_sb.sb_qflags = 0;
457 spin_unlock(&mp->m_sb_lock);
458
459 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
460 return 0;
461
462 return xfs_sync_sb(mp, false);
463}
464
465uint64_t
466xfs_default_resblks(xfs_mount_t *mp)
467{
468 uint64_t resblks;
469
470 /*
471 * We default to 5% or 8192 fsbs of space reserved, whichever is
472 * smaller. This is intended to cover concurrent allocation
473 * transactions when we initially hit enospc. These each require a 4
474 * block reservation. Hence by default we cover roughly 2000 concurrent
475 * allocation reservations.
476 */
477 resblks = mp->m_sb.sb_dblocks;
478 do_div(resblks, 20);
479 resblks = min_t(uint64_t, resblks, 8192);
480 return resblks;
481}
482
483/* Ensure the summary counts are correct. */
484STATIC int
485xfs_check_summary_counts(
486 struct xfs_mount *mp)
487{
488 int error = 0;
489
490 /*
491 * The AG0 superblock verifier rejects in-progress filesystems,
492 * so we should never see the flag set this far into mounting.
493 */
494 if (mp->m_sb.sb_inprogress) {
495 xfs_err(mp, "sb_inprogress set after log recovery??");
496 WARN_ON(1);
497 return -EFSCORRUPTED;
498 }
499
500 /*
501 * Now the log is mounted, we know if it was an unclean shutdown or
502 * not. If it was, with the first phase of recovery has completed, we
503 * have consistent AG blocks on disk. We have not recovered EFIs yet,
504 * but they are recovered transactionally in the second recovery phase
505 * later.
506 *
507 * If the log was clean when we mounted, we can check the summary
508 * counters. If any of them are obviously incorrect, we can recompute
509 * them from the AGF headers in the next step.
510 */
511 if (xfs_is_clean(mp) &&
512 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
513 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
514 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
515 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
516
517 /*
518 * We can safely re-initialise incore superblock counters from the
519 * per-ag data. These may not be correct if the filesystem was not
520 * cleanly unmounted, so we waited for recovery to finish before doing
521 * this.
522 *
523 * If the filesystem was cleanly unmounted or the previous check did
524 * not flag anything weird, then we can trust the values in the
525 * superblock to be correct and we don't need to do anything here.
526 * Otherwise, recalculate the summary counters.
527 */
528 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
529 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
530 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
531 if (error)
532 return error;
533 }
534
535 /*
536 * Older kernels misused sb_frextents to reflect both incore
537 * reservations made by running transactions and the actual count of
538 * free rt extents in the ondisk metadata. Transactions committed
539 * during runtime can therefore contain a superblock update that
540 * undercounts the number of free rt extents tracked in the rt bitmap.
541 * A clean unmount record will have the correct frextents value since
542 * there can be no other transactions running at that point.
543 *
544 * If we're mounting the rt volume after recovering the log, recompute
545 * frextents from the rtbitmap file to fix the inconsistency.
546 */
547 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
548 error = xfs_rtalloc_reinit_frextents(mp);
549 if (error)
550 return error;
551 }
552
553 return 0;
554}
555
556static void
557xfs_unmount_check(
558 struct xfs_mount *mp)
559{
560 if (xfs_is_shutdown(mp))
561 return;
562
563 if (percpu_counter_sum(&mp->m_ifree) >
564 percpu_counter_sum(&mp->m_icount)) {
565 xfs_alert(mp, "ifree/icount mismatch at unmount");
566 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
567 }
568}
569
570/*
571 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
572 * internal inode structures can be sitting in the CIL and AIL at this point,
573 * so we need to unpin them, write them back and/or reclaim them before unmount
574 * can proceed. In other words, callers are required to have inactivated all
575 * inodes.
576 *
577 * An inode cluster that has been freed can have its buffer still pinned in
578 * memory because the transaction is still sitting in a iclog. The stale inodes
579 * on that buffer will be pinned to the buffer until the transaction hits the
580 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
581 * may never see the pinned buffer, so nothing will push out the iclog and
582 * unpin the buffer.
583 *
584 * Hence we need to force the log to unpin everything first. However, log
585 * forces don't wait for the discards they issue to complete, so we have to
586 * explicitly wait for them to complete here as well.
587 *
588 * Then we can tell the world we are unmounting so that error handling knows
589 * that the filesystem is going away and we should error out anything that we
590 * have been retrying in the background. This will prevent never-ending
591 * retries in AIL pushing from hanging the unmount.
592 *
593 * Finally, we can push the AIL to clean all the remaining dirty objects, then
594 * reclaim the remaining inodes that are still in memory at this point in time.
595 */
596static void
597xfs_unmount_flush_inodes(
598 struct xfs_mount *mp)
599{
600 xfs_log_force(mp, XFS_LOG_SYNC);
601 xfs_extent_busy_wait_all(mp);
602 flush_workqueue(xfs_discard_wq);
603
604 xfs_set_unmounting(mp);
605
606 xfs_ail_push_all_sync(mp->m_ail);
607 xfs_inodegc_stop(mp);
608 cancel_delayed_work_sync(&mp->m_reclaim_work);
609 xfs_reclaim_inodes(mp);
610 xfs_health_unmount(mp);
611}
612
613static void
614xfs_mount_setup_inode_geom(
615 struct xfs_mount *mp)
616{
617 struct xfs_ino_geometry *igeo = M_IGEO(mp);
618
619 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
620 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
621
622 xfs_ialloc_setup_geometry(mp);
623}
624
625/* Mount the metadata directory tree root. */
626STATIC int
627xfs_mount_setup_metadir(
628 struct xfs_mount *mp)
629{
630 int error;
631
632 /* Load the metadata directory root inode into memory. */
633 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
634 &mp->m_metadirip);
635 if (error)
636 xfs_warn(mp, "Failed to load metadir root directory, error %d",
637 error);
638 return error;
639}
640
641/* Compute maximum possible height for per-AG btree types for this fs. */
642static inline void
643xfs_agbtree_compute_maxlevels(
644 struct xfs_mount *mp)
645{
646 unsigned int levels;
647
648 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
649 levels = max(levels, mp->m_rmap_maxlevels);
650 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
651}
652
653/*
654 * This function does the following on an initial mount of a file system:
655 * - reads the superblock from disk and init the mount struct
656 * - if we're a 32-bit kernel, do a size check on the superblock
657 * so we don't mount terabyte filesystems
658 * - init mount struct realtime fields
659 * - allocate inode hash table for fs
660 * - init directory manager
661 * - perform recovery and init the log manager
662 */
663int
664xfs_mountfs(
665 struct xfs_mount *mp)
666{
667 struct xfs_sb *sbp = &(mp->m_sb);
668 struct xfs_inode *rip;
669 struct xfs_ino_geometry *igeo = M_IGEO(mp);
670 uint quotamount = 0;
671 uint quotaflags = 0;
672 int error = 0;
673
674 xfs_sb_mount_common(mp, sbp);
675
676 /*
677 * Check for a mismatched features2 values. Older kernels read & wrote
678 * into the wrong sb offset for sb_features2 on some platforms due to
679 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
680 * which made older superblock reading/writing routines swap it as a
681 * 64-bit value.
682 *
683 * For backwards compatibility, we make both slots equal.
684 *
685 * If we detect a mismatched field, we OR the set bits into the existing
686 * features2 field in case it has already been modified; we don't want
687 * to lose any features. We then update the bad location with the ORed
688 * value so that older kernels will see any features2 flags. The
689 * superblock writeback code ensures the new sb_features2 is copied to
690 * sb_bad_features2 before it is logged or written to disk.
691 */
692 if (xfs_sb_has_mismatched_features2(sbp)) {
693 xfs_warn(mp, "correcting sb_features alignment problem");
694 sbp->sb_features2 |= sbp->sb_bad_features2;
695 mp->m_update_sb = true;
696 }
697
698
699 /* always use v2 inodes by default now */
700 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
701 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
702 mp->m_features |= XFS_FEAT_NLINK;
703 mp->m_update_sb = true;
704 }
705
706 /*
707 * If we were given new sunit/swidth options, do some basic validation
708 * checks and convert the incore dalign and swidth values to the
709 * same units (FSB) that everything else uses. This /must/ happen
710 * before computing the inode geometry.
711 */
712 error = xfs_validate_new_dalign(mp);
713 if (error)
714 goto out;
715
716 xfs_alloc_compute_maxlevels(mp);
717 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
718 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
719 xfs_mount_setup_inode_geom(mp);
720 xfs_rmapbt_compute_maxlevels(mp);
721 xfs_refcountbt_compute_maxlevels(mp);
722
723 xfs_agbtree_compute_maxlevels(mp);
724
725 /*
726 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
727 * is NOT aligned turn off m_dalign since allocator alignment is within
728 * an ag, therefore ag has to be aligned at stripe boundary. Note that
729 * we must compute the free space and rmap btree geometry before doing
730 * this.
731 */
732 error = xfs_update_alignment(mp);
733 if (error)
734 goto out;
735
736 /* enable fail_at_unmount as default */
737 mp->m_fail_unmount = true;
738
739 super_set_sysfs_name_id(mp->m_super);
740
741 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
742 NULL, mp->m_super->s_id);
743 if (error)
744 goto out;
745
746 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
747 &mp->m_kobj, "stats");
748 if (error)
749 goto out_remove_sysfs;
750
751 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
752
753 error = xfs_error_sysfs_init(mp);
754 if (error)
755 goto out_remove_scrub_stats;
756
757 error = xfs_errortag_init(mp);
758 if (error)
759 goto out_remove_error_sysfs;
760
761 error = xfs_uuid_mount(mp);
762 if (error)
763 goto out_remove_errortag;
764
765 /*
766 * Update the preferred write size based on the information from the
767 * on-disk superblock.
768 */
769 mp->m_allocsize_log =
770 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
771 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
772
773 /* set the low space thresholds for dynamic preallocation */
774 xfs_set_low_space_thresholds(mp);
775
776 /*
777 * If enabled, sparse inode chunk alignment is expected to match the
778 * cluster size. Full inode chunk alignment must match the chunk size,
779 * but that is checked on sb read verification...
780 */
781 if (xfs_has_sparseinodes(mp) &&
782 mp->m_sb.sb_spino_align !=
783 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
784 xfs_warn(mp,
785 "Sparse inode block alignment (%u) must match cluster size (%llu).",
786 mp->m_sb.sb_spino_align,
787 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
788 error = -EINVAL;
789 goto out_remove_uuid;
790 }
791
792 /*
793 * Check that the data (and log if separate) is an ok size.
794 */
795 error = xfs_check_sizes(mp);
796 if (error)
797 goto out_remove_uuid;
798
799 /*
800 * Initialize realtime fields in the mount structure
801 */
802 error = xfs_rtmount_init(mp);
803 if (error) {
804 xfs_warn(mp, "RT mount failed");
805 goto out_remove_uuid;
806 }
807
808 /*
809 * Copies the low order bits of the timestamp and the randomly
810 * set "sequence" number out of a UUID.
811 */
812 mp->m_fixedfsid[0] =
813 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
814 get_unaligned_be16(&sbp->sb_uuid.b[4]);
815 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
816
817 error = xfs_da_mount(mp);
818 if (error) {
819 xfs_warn(mp, "Failed dir/attr init: %d", error);
820 goto out_remove_uuid;
821 }
822
823 /*
824 * Initialize the precomputed transaction reservations values.
825 */
826 xfs_trans_init(mp);
827
828 /*
829 * Allocate and initialize the per-ag data.
830 */
831 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
832 mp->m_sb.sb_dblocks, &mp->m_maxagi);
833 if (error) {
834 xfs_warn(mp, "Failed per-ag init: %d", error);
835 goto out_free_dir;
836 }
837
838 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
839 mp->m_sb.sb_rextents);
840 if (error) {
841 xfs_warn(mp, "Failed rtgroup init: %d", error);
842 goto out_free_perag;
843 }
844
845 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
846 xfs_warn(mp, "no log defined");
847 error = -EFSCORRUPTED;
848 goto out_free_rtgroup;
849 }
850
851 error = xfs_inodegc_register_shrinker(mp);
852 if (error)
853 goto out_fail_wait;
854
855 /*
856 * If we're resuming quota status, pick up the preliminary qflags from
857 * the ondisk superblock so that we know if we should recover dquots.
858 */
859 if (xfs_is_resuming_quotaon(mp))
860 xfs_qm_resume_quotaon(mp);
861
862 /*
863 * Log's mount-time initialization. The first part of recovery can place
864 * some items on the AIL, to be handled when recovery is finished or
865 * cancelled.
866 */
867 error = xfs_log_mount(mp, mp->m_logdev_targp,
868 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
869 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
870 if (error) {
871 xfs_warn(mp, "log mount failed");
872 goto out_inodegc_shrinker;
873 }
874
875 /*
876 * If we're resuming quota status and recovered the log, re-sample the
877 * qflags from the ondisk superblock now that we've recovered it, just
878 * in case someone shut down enforcement just before a crash.
879 */
880 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
881 xfs_qm_resume_quotaon(mp);
882
883 /*
884 * If logged xattrs are still enabled after log recovery finishes, then
885 * they'll be available until unmount. Otherwise, turn them off.
886 */
887 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
888 xfs_set_using_logged_xattrs(mp);
889 else
890 xfs_clear_using_logged_xattrs(mp);
891
892 /* Enable background inode inactivation workers. */
893 xfs_inodegc_start(mp);
894 xfs_blockgc_start(mp);
895
896 /*
897 * Now that we've recovered any pending superblock feature bit
898 * additions, we can finish setting up the attr2 behaviour for the
899 * mount. The noattr2 option overrides the superblock flag, so only
900 * check the superblock feature flag if the mount option is not set.
901 */
902 if (xfs_has_noattr2(mp)) {
903 mp->m_features &= ~XFS_FEAT_ATTR2;
904 } else if (!xfs_has_attr2(mp) &&
905 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
906 mp->m_features |= XFS_FEAT_ATTR2;
907 }
908
909 if (xfs_has_metadir(mp)) {
910 error = xfs_mount_setup_metadir(mp);
911 if (error)
912 goto out_free_metadir;
913 }
914
915 /*
916 * Get and sanity-check the root inode.
917 * Save the pointer to it in the mount structure.
918 */
919 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
920 XFS_ILOCK_EXCL, &rip);
921 if (error) {
922 xfs_warn(mp,
923 "Failed to read root inode 0x%llx, error %d",
924 sbp->sb_rootino, -error);
925 goto out_free_metadir;
926 }
927
928 ASSERT(rip != NULL);
929
930 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
931 xfs_warn(mp, "corrupted root inode %llu: not a directory",
932 (unsigned long long)rip->i_ino);
933 xfs_iunlock(rip, XFS_ILOCK_EXCL);
934 error = -EFSCORRUPTED;
935 goto out_rele_rip;
936 }
937 mp->m_rootip = rip; /* save it */
938
939 xfs_iunlock(rip, XFS_ILOCK_EXCL);
940
941 /*
942 * Initialize realtime inode pointers in the mount structure
943 */
944 error = xfs_rtmount_inodes(mp);
945 if (error) {
946 /*
947 * Free up the root inode.
948 */
949 xfs_warn(mp, "failed to read RT inodes");
950 goto out_rele_rip;
951 }
952
953 /* Make sure the summary counts are ok. */
954 error = xfs_check_summary_counts(mp);
955 if (error)
956 goto out_rtunmount;
957
958 /*
959 * If this is a read-only mount defer the superblock updates until
960 * the next remount into writeable mode. Otherwise we would never
961 * perform the update e.g. for the root filesystem.
962 */
963 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
964 error = xfs_sync_sb(mp, false);
965 if (error) {
966 xfs_warn(mp, "failed to write sb changes");
967 goto out_rtunmount;
968 }
969 }
970
971 /*
972 * Initialise the XFS quota management subsystem for this mount
973 */
974 if (XFS_IS_QUOTA_ON(mp)) {
975 error = xfs_qm_newmount(mp, "amount, "aflags);
976 if (error)
977 goto out_rtunmount;
978 } else {
979 /*
980 * If a file system had quotas running earlier, but decided to
981 * mount without -o uquota/pquota/gquota options, revoke the
982 * quotachecked license.
983 */
984 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
985 xfs_notice(mp, "resetting quota flags");
986 error = xfs_mount_reset_sbqflags(mp);
987 if (error)
988 goto out_rtunmount;
989 }
990 }
991
992 /*
993 * Finish recovering the file system. This part needed to be delayed
994 * until after the root and real-time bitmap inodes were consistently
995 * read in. Temporarily create per-AG space reservations for metadata
996 * btree shape changes because space freeing transactions (for inode
997 * inactivation) require the per-AG reservation in lieu of reserving
998 * blocks.
999 */
1000 error = xfs_fs_reserve_ag_blocks(mp);
1001 if (error && error == -ENOSPC)
1002 xfs_warn(mp,
1003 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1004 error = xfs_log_mount_finish(mp);
1005 xfs_fs_unreserve_ag_blocks(mp);
1006 if (error) {
1007 xfs_warn(mp, "log mount finish failed");
1008 goto out_rtunmount;
1009 }
1010
1011 /*
1012 * Now the log is fully replayed, we can transition to full read-only
1013 * mode for read-only mounts. This will sync all the metadata and clean
1014 * the log so that the recovery we just performed does not have to be
1015 * replayed again on the next mount.
1016 *
1017 * We use the same quiesce mechanism as the rw->ro remount, as they are
1018 * semantically identical operations.
1019 */
1020 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1021 xfs_log_clean(mp);
1022
1023 /*
1024 * Complete the quota initialisation, post-log-replay component.
1025 */
1026 if (quotamount) {
1027 ASSERT(mp->m_qflags == 0);
1028 mp->m_qflags = quotaflags;
1029
1030 xfs_qm_mount_quotas(mp);
1031 }
1032
1033 /*
1034 * Now we are mounted, reserve a small amount of unused space for
1035 * privileged transactions. This is needed so that transaction
1036 * space required for critical operations can dip into this pool
1037 * when at ENOSPC. This is needed for operations like create with
1038 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1039 * are not allowed to use this reserved space.
1040 *
1041 * This may drive us straight to ENOSPC on mount, but that implies
1042 * we were already there on the last unmount. Warn if this occurs.
1043 */
1044 if (!xfs_is_readonly(mp)) {
1045 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1046 if (error)
1047 xfs_warn(mp,
1048 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1049
1050 /* Reserve AG blocks for future btree expansion. */
1051 error = xfs_fs_reserve_ag_blocks(mp);
1052 if (error && error != -ENOSPC)
1053 goto out_agresv;
1054 }
1055
1056 return 0;
1057
1058 out_agresv:
1059 xfs_fs_unreserve_ag_blocks(mp);
1060 xfs_qm_unmount_quotas(mp);
1061 out_rtunmount:
1062 xfs_rtunmount_inodes(mp);
1063 out_rele_rip:
1064 xfs_irele(rip);
1065 /* Clean out dquots that might be in memory after quotacheck. */
1066 xfs_qm_unmount(mp);
1067 out_free_metadir:
1068 if (mp->m_metadirip)
1069 xfs_irele(mp->m_metadirip);
1070
1071 /*
1072 * Inactivate all inodes that might still be in memory after a log
1073 * intent recovery failure so that reclaim can free them. Metadata
1074 * inodes and the root directory shouldn't need inactivation, but the
1075 * mount failed for some reason, so pull down all the state and flee.
1076 */
1077 xfs_inodegc_flush(mp);
1078
1079 /*
1080 * Flush all inode reclamation work and flush the log.
1081 * We have to do this /after/ rtunmount and qm_unmount because those
1082 * two will have scheduled delayed reclaim for the rt/quota inodes.
1083 *
1084 * This is slightly different from the unmountfs call sequence
1085 * because we could be tearing down a partially set up mount. In
1086 * particular, if log_mount_finish fails we bail out without calling
1087 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1088 * quota inodes.
1089 */
1090 xfs_unmount_flush_inodes(mp);
1091 xfs_log_mount_cancel(mp);
1092 out_inodegc_shrinker:
1093 shrinker_free(mp->m_inodegc_shrinker);
1094 out_fail_wait:
1095 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1096 xfs_buftarg_drain(mp->m_logdev_targp);
1097 xfs_buftarg_drain(mp->m_ddev_targp);
1098 out_free_rtgroup:
1099 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1100 out_free_perag:
1101 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1102 out_free_dir:
1103 xfs_da_unmount(mp);
1104 out_remove_uuid:
1105 xfs_uuid_unmount(mp);
1106 out_remove_errortag:
1107 xfs_errortag_del(mp);
1108 out_remove_error_sysfs:
1109 xfs_error_sysfs_del(mp);
1110 out_remove_scrub_stats:
1111 xchk_stats_unregister(mp->m_scrub_stats);
1112 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1113 out_remove_sysfs:
1114 xfs_sysfs_del(&mp->m_kobj);
1115 out:
1116 return error;
1117}
1118
1119/*
1120 * This flushes out the inodes,dquots and the superblock, unmounts the
1121 * log and makes sure that incore structures are freed.
1122 */
1123void
1124xfs_unmountfs(
1125 struct xfs_mount *mp)
1126{
1127 int error;
1128
1129 /*
1130 * Perform all on-disk metadata updates required to inactivate inodes
1131 * that the VFS evicted earlier in the unmount process. Freeing inodes
1132 * and discarding CoW fork preallocations can cause shape changes to
1133 * the free inode and refcount btrees, respectively, so we must finish
1134 * this before we discard the metadata space reservations. Metadata
1135 * inodes and the root directory do not require inactivation.
1136 */
1137 xfs_inodegc_flush(mp);
1138
1139 xfs_blockgc_stop(mp);
1140 xfs_fs_unreserve_ag_blocks(mp);
1141 xfs_qm_unmount_quotas(mp);
1142 xfs_rtunmount_inodes(mp);
1143 xfs_irele(mp->m_rootip);
1144 if (mp->m_metadirip)
1145 xfs_irele(mp->m_metadirip);
1146
1147 xfs_unmount_flush_inodes(mp);
1148
1149 xfs_qm_unmount(mp);
1150
1151 /*
1152 * Unreserve any blocks we have so that when we unmount we don't account
1153 * the reserved free space as used. This is really only necessary for
1154 * lazy superblock counting because it trusts the incore superblock
1155 * counters to be absolutely correct on clean unmount.
1156 *
1157 * We don't bother correcting this elsewhere for lazy superblock
1158 * counting because on mount of an unclean filesystem we reconstruct the
1159 * correct counter value and this is irrelevant.
1160 *
1161 * For non-lazy counter filesystems, this doesn't matter at all because
1162 * we only every apply deltas to the superblock and hence the incore
1163 * value does not matter....
1164 */
1165 error = xfs_reserve_blocks(mp, 0);
1166 if (error)
1167 xfs_warn(mp, "Unable to free reserved block pool. "
1168 "Freespace may not be correct on next mount.");
1169 xfs_unmount_check(mp);
1170
1171 /*
1172 * Indicate that it's ok to clear log incompat bits before cleaning
1173 * the log and writing the unmount record.
1174 */
1175 xfs_set_done_with_log_incompat(mp);
1176 xfs_log_unmount(mp);
1177 xfs_da_unmount(mp);
1178 xfs_uuid_unmount(mp);
1179
1180#if defined(DEBUG)
1181 xfs_errortag_clearall(mp);
1182#endif
1183 shrinker_free(mp->m_inodegc_shrinker);
1184 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1185 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1186 xfs_errortag_del(mp);
1187 xfs_error_sysfs_del(mp);
1188 xchk_stats_unregister(mp->m_scrub_stats);
1189 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1190 xfs_sysfs_del(&mp->m_kobj);
1191}
1192
1193/*
1194 * Determine whether modifications can proceed. The caller specifies the minimum
1195 * freeze level for which modifications should not be allowed. This allows
1196 * certain operations to proceed while the freeze sequence is in progress, if
1197 * necessary.
1198 */
1199bool
1200xfs_fs_writable(
1201 struct xfs_mount *mp,
1202 int level)
1203{
1204 ASSERT(level > SB_UNFROZEN);
1205 if ((mp->m_super->s_writers.frozen >= level) ||
1206 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1207 return false;
1208
1209 return true;
1210}
1211
1212void
1213xfs_add_freecounter(
1214 struct xfs_mount *mp,
1215 struct percpu_counter *counter,
1216 uint64_t delta)
1217{
1218 bool has_resv_pool = (counter == &mp->m_fdblocks);
1219 uint64_t res_used;
1220
1221 /*
1222 * If the reserve pool is depleted, put blocks back into it first.
1223 * Most of the time the pool is full.
1224 */
1225 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1226 percpu_counter_add(counter, delta);
1227 return;
1228 }
1229
1230 spin_lock(&mp->m_sb_lock);
1231 res_used = mp->m_resblks - mp->m_resblks_avail;
1232 if (res_used > delta) {
1233 mp->m_resblks_avail += delta;
1234 } else {
1235 delta -= res_used;
1236 mp->m_resblks_avail = mp->m_resblks;
1237 percpu_counter_add(counter, delta);
1238 }
1239 spin_unlock(&mp->m_sb_lock);
1240}
1241
1242int
1243xfs_dec_freecounter(
1244 struct xfs_mount *mp,
1245 struct percpu_counter *counter,
1246 uint64_t delta,
1247 bool rsvd)
1248{
1249 int64_t lcounter;
1250 uint64_t set_aside = 0;
1251 s32 batch;
1252 bool has_resv_pool;
1253
1254 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1255 has_resv_pool = (counter == &mp->m_fdblocks);
1256 if (rsvd)
1257 ASSERT(has_resv_pool);
1258
1259 /*
1260 * Taking blocks away, need to be more accurate the closer we
1261 * are to zero.
1262 *
1263 * If the counter has a value of less than 2 * max batch size,
1264 * then make everything serialise as we are real close to
1265 * ENOSPC.
1266 */
1267 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1268 XFS_FDBLOCKS_BATCH) < 0)
1269 batch = 1;
1270 else
1271 batch = XFS_FDBLOCKS_BATCH;
1272
1273 /*
1274 * Set aside allocbt blocks because these blocks are tracked as free
1275 * space but not available for allocation. Technically this means that a
1276 * single reservation cannot consume all remaining free space, but the
1277 * ratio of allocbt blocks to usable free blocks should be rather small.
1278 * The tradeoff without this is that filesystems that maintain high
1279 * perag block reservations can over reserve physical block availability
1280 * and fail physical allocation, which leads to much more serious
1281 * problems (i.e. transaction abort, pagecache discards, etc.) than
1282 * slightly premature -ENOSPC.
1283 */
1284 if (has_resv_pool)
1285 set_aside = xfs_fdblocks_unavailable(mp);
1286 percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1287 if (__percpu_counter_compare(counter, set_aside,
1288 XFS_FDBLOCKS_BATCH) >= 0) {
1289 /* we had space! */
1290 return 0;
1291 }
1292
1293 /*
1294 * lock up the sb for dipping into reserves before releasing the space
1295 * that took us to ENOSPC.
1296 */
1297 spin_lock(&mp->m_sb_lock);
1298 percpu_counter_add(counter, delta);
1299 if (!has_resv_pool || !rsvd)
1300 goto fdblocks_enospc;
1301
1302 lcounter = (long long)mp->m_resblks_avail - delta;
1303 if (lcounter >= 0) {
1304 mp->m_resblks_avail = lcounter;
1305 spin_unlock(&mp->m_sb_lock);
1306 return 0;
1307 }
1308 xfs_warn_once(mp,
1309"Reserve blocks depleted! Consider increasing reserve pool size.");
1310
1311fdblocks_enospc:
1312 spin_unlock(&mp->m_sb_lock);
1313 return -ENOSPC;
1314}
1315
1316/*
1317 * Used to free the superblock along various error paths.
1318 */
1319void
1320xfs_freesb(
1321 struct xfs_mount *mp)
1322{
1323 struct xfs_buf *bp = mp->m_sb_bp;
1324
1325 xfs_buf_lock(bp);
1326 mp->m_sb_bp = NULL;
1327 xfs_buf_relse(bp);
1328}
1329
1330/*
1331 * If the underlying (data/log/rt) device is readonly, there are some
1332 * operations that cannot proceed.
1333 */
1334int
1335xfs_dev_is_read_only(
1336 struct xfs_mount *mp,
1337 char *message)
1338{
1339 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1340 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1341 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1342 xfs_notice(mp, "%s required on read-only device.", message);
1343 xfs_notice(mp, "write access unavailable, cannot proceed.");
1344 return -EROFS;
1345 }
1346 return 0;
1347}
1348
1349/* Force the summary counters to be recalculated at next mount. */
1350void
1351xfs_force_summary_recalc(
1352 struct xfs_mount *mp)
1353{
1354 if (!xfs_has_lazysbcount(mp))
1355 return;
1356
1357 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1358}
1359
1360/*
1361 * Enable a log incompat feature flag in the primary superblock. The caller
1362 * cannot have any other transactions in progress.
1363 */
1364int
1365xfs_add_incompat_log_feature(
1366 struct xfs_mount *mp,
1367 uint32_t feature)
1368{
1369 struct xfs_dsb *dsb;
1370 int error;
1371
1372 ASSERT(hweight32(feature) == 1);
1373 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1374
1375 /*
1376 * Force the log to disk and kick the background AIL thread to reduce
1377 * the chances that the bwrite will stall waiting for the AIL to unpin
1378 * the primary superblock buffer. This isn't a data integrity
1379 * operation, so we don't need a synchronous push.
1380 */
1381 error = xfs_log_force(mp, XFS_LOG_SYNC);
1382 if (error)
1383 return error;
1384 xfs_ail_push_all(mp->m_ail);
1385
1386 /*
1387 * Lock the primary superblock buffer to serialize all callers that
1388 * are trying to set feature bits.
1389 */
1390 xfs_buf_lock(mp->m_sb_bp);
1391 xfs_buf_hold(mp->m_sb_bp);
1392
1393 if (xfs_is_shutdown(mp)) {
1394 error = -EIO;
1395 goto rele;
1396 }
1397
1398 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1399 goto rele;
1400
1401 /*
1402 * Write the primary superblock to disk immediately, because we need
1403 * the log_incompat bit to be set in the primary super now to protect
1404 * the log items that we're going to commit later.
1405 */
1406 dsb = mp->m_sb_bp->b_addr;
1407 xfs_sb_to_disk(dsb, &mp->m_sb);
1408 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1409 error = xfs_bwrite(mp->m_sb_bp);
1410 if (error)
1411 goto shutdown;
1412
1413 /*
1414 * Add the feature bits to the incore superblock before we unlock the
1415 * buffer.
1416 */
1417 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1418 xfs_buf_relse(mp->m_sb_bp);
1419
1420 /* Log the superblock to disk. */
1421 return xfs_sync_sb(mp, false);
1422shutdown:
1423 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1424rele:
1425 xfs_buf_relse(mp->m_sb_bp);
1426 return error;
1427}
1428
1429/*
1430 * Clear all the log incompat flags from the superblock.
1431 *
1432 * The caller cannot be in a transaction, must ensure that the log does not
1433 * contain any log items protected by any log incompat bit, and must ensure
1434 * that there are no other threads that depend on the state of the log incompat
1435 * feature flags in the primary super.
1436 *
1437 * Returns true if the superblock is dirty.
1438 */
1439bool
1440xfs_clear_incompat_log_features(
1441 struct xfs_mount *mp)
1442{
1443 bool ret = false;
1444
1445 if (!xfs_has_crc(mp) ||
1446 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1447 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1448 xfs_is_shutdown(mp) ||
1449 !xfs_is_done_with_log_incompat(mp))
1450 return false;
1451
1452 /*
1453 * Update the incore superblock. We synchronize on the primary super
1454 * buffer lock to be consistent with the add function, though at least
1455 * in theory this shouldn't be necessary.
1456 */
1457 xfs_buf_lock(mp->m_sb_bp);
1458 xfs_buf_hold(mp->m_sb_bp);
1459
1460 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1461 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1462 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1463 ret = true;
1464 }
1465
1466 xfs_buf_relse(mp->m_sb_bp);
1467 return ret;
1468}
1469
1470/*
1471 * Update the in-core delayed block counter.
1472 *
1473 * We prefer to update the counter without having to take a spinlock for every
1474 * counter update (i.e. batching). Each change to delayed allocation
1475 * reservations can change can easily exceed the default percpu counter
1476 * batching, so we use a larger batch factor here.
1477 *
1478 * Note that we don't currently have any callers requiring fast summation
1479 * (e.g. percpu_counter_read) so we can use a big batch value here.
1480 */
1481#define XFS_DELALLOC_BATCH (4096)
1482void
1483xfs_mod_delalloc(
1484 struct xfs_inode *ip,
1485 int64_t data_delta,
1486 int64_t ind_delta)
1487{
1488 struct xfs_mount *mp = ip->i_mount;
1489
1490 if (XFS_IS_REALTIME_INODE(ip)) {
1491 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1492 xfs_blen_to_rtbxlen(mp, data_delta),
1493 XFS_DELALLOC_BATCH);
1494 if (!ind_delta)
1495 return;
1496 data_delta = 0;
1497 }
1498 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1499 XFS_DELALLOC_BATCH);
1500}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37
38static DEFINE_MUTEX(xfs_uuid_table_mutex);
39static int xfs_uuid_table_size;
40static uuid_t *xfs_uuid_table;
41
42void
43xfs_uuid_table_free(void)
44{
45 if (xfs_uuid_table_size == 0)
46 return;
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
50}
51
52/*
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55 */
56STATIC int
57xfs_uuid_mount(
58 struct xfs_mount *mp)
59{
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
61 int hole, i;
62
63 /* Publish UUID in struct super_block */
64 uuid_copy(&mp->m_super->s_uuid, uuid);
65
66 if (xfs_has_nouuid(mp))
67 return 0;
68
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 return -EINVAL;
72 }
73
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 if (uuid_is_null(&xfs_uuid_table[i])) {
77 hole = i;
78 continue;
79 }
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 goto out_duplicate;
82 }
83
84 if (hole < 0) {
85 xfs_uuid_table = krealloc(xfs_uuid_table,
86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 GFP_KERNEL | __GFP_NOFAIL);
88 hole = xfs_uuid_table_size++;
89 }
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
92
93 return 0;
94
95 out_duplicate:
96 mutex_unlock(&xfs_uuid_table_mutex);
97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 return -EINVAL;
99}
100
101STATIC void
102xfs_uuid_unmount(
103 struct xfs_mount *mp)
104{
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
106 int i;
107
108 if (xfs_has_nouuid(mp))
109 return;
110
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
113 if (uuid_is_null(&xfs_uuid_table[i]))
114 continue;
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 continue;
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 break;
119 }
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
122}
123
124/*
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
127 */
128int
129xfs_sb_validate_fsb_count(
130 xfs_sb_t *sbp,
131 uint64_t nblocks)
132{
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135
136 /* Limited by ULONG_MAX of page cache index */
137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 return -EFBIG;
139 return 0;
140}
141
142/*
143 * xfs_readsb
144 *
145 * Does the initial read of the superblock.
146 */
147int
148xfs_readsb(
149 struct xfs_mount *mp,
150 int flags)
151{
152 unsigned int sector_size;
153 struct xfs_buf *bp;
154 struct xfs_sb *sbp = &mp->m_sb;
155 int error;
156 int loud = !(flags & XFS_MFSI_QUIET);
157 const struct xfs_buf_ops *buf_ops;
158
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
161
162 /*
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
168 */
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 buf_ops = NULL;
171
172 /*
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 * elevated.
177 */
178reread:
179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 buf_ops);
182 if (error) {
183 if (loud)
184 xfs_warn(mp, "SB validate failed with error %d.", error);
185 /* bad CRC means corrupted metadata */
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
188 return error;
189 }
190
191 /*
192 * Initialize the mount structure from the superblock.
193 */
194 xfs_sb_from_disk(sbp, bp->b_addr);
195
196 /*
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
199 */
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 if (loud)
202 xfs_warn(mp, "Invalid superblock magic number");
203 error = -EINVAL;
204 goto release_buf;
205 }
206
207 /*
208 * We must be able to do sector-sized and sector-aligned IO.
209 */
210 if (sector_size > sbp->sb_sectsize) {
211 if (loud)
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 sector_size, sbp->sb_sectsize);
214 error = -ENOSYS;
215 goto release_buf;
216 }
217
218 if (buf_ops == NULL) {
219 /*
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
222 */
223 xfs_buf_relse(bp);
224 sector_size = sbp->sb_sectsize;
225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 goto reread;
227 }
228
229 mp->m_features |= xfs_sb_version_to_features(sbp);
230 xfs_reinit_percpu_counters(mp);
231
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
234
235 mp->m_sb_bp = bp;
236 xfs_buf_unlock(bp);
237 return 0;
238
239release_buf:
240 xfs_buf_relse(bp);
241 return error;
242}
243
244/*
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
249 */
250static inline int
251xfs_check_new_dalign(
252 struct xfs_mount *mp,
253 int new_dalign,
254 bool *update_sb)
255{
256 struct xfs_sb *sbp = &mp->m_sb;
257 xfs_ino_t calc_ino;
258
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261
262 if (sbp->sb_rootino == calc_ino) {
263 *update_sb = true;
264 return 0;
265 }
266
267 xfs_warn(mp,
268"Cannot change stripe alignment; would require moving root inode.");
269
270 /*
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
274 */
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 *update_sb = false;
277 return 0;
278}
279
280/*
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
285 */
286STATIC int
287xfs_validate_new_dalign(
288 struct xfs_mount *mp)
289{
290 if (mp->m_dalign == 0)
291 return 0;
292
293 /*
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
296 */
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 xfs_warn(mp,
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
302 return -EINVAL;
303 }
304
305 /*
306 * Convert the stripe unit and width to FSBs.
307 */
308 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
309 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 xfs_warn(mp,
311 "alignment check failed: sunit/swidth vs. agsize(%d)",
312 mp->m_sb.sb_agblocks);
313 return -EINVAL;
314 }
315
316 if (!mp->m_dalign) {
317 xfs_warn(mp,
318 "alignment check failed: sunit(%d) less than bsize(%d)",
319 mp->m_dalign, mp->m_sb.sb_blocksize);
320 return -EINVAL;
321 }
322
323 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
324
325 if (!xfs_has_dalign(mp)) {
326 xfs_warn(mp,
327"cannot change alignment: superblock does not support data alignment");
328 return -EINVAL;
329 }
330
331 return 0;
332}
333
334/* Update alignment values based on mount options and sb values. */
335STATIC int
336xfs_update_alignment(
337 struct xfs_mount *mp)
338{
339 struct xfs_sb *sbp = &mp->m_sb;
340
341 if (mp->m_dalign) {
342 bool update_sb;
343 int error;
344
345 if (sbp->sb_unit == mp->m_dalign &&
346 sbp->sb_width == mp->m_swidth)
347 return 0;
348
349 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
350 if (error || !update_sb)
351 return error;
352
353 sbp->sb_unit = mp->m_dalign;
354 sbp->sb_width = mp->m_swidth;
355 mp->m_update_sb = true;
356 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
357 mp->m_dalign = sbp->sb_unit;
358 mp->m_swidth = sbp->sb_width;
359 }
360
361 return 0;
362}
363
364/*
365 * precalculate the low space thresholds for dynamic speculative preallocation.
366 */
367void
368xfs_set_low_space_thresholds(
369 struct xfs_mount *mp)
370{
371 uint64_t dblocks = mp->m_sb.sb_dblocks;
372 uint64_t rtexts = mp->m_sb.sb_rextents;
373 int i;
374
375 do_div(dblocks, 100);
376 do_div(rtexts, 100);
377
378 for (i = 0; i < XFS_LOWSP_MAX; i++) {
379 mp->m_low_space[i] = dblocks * (i + 1);
380 mp->m_low_rtexts[i] = rtexts * (i + 1);
381 }
382}
383
384/*
385 * Check that the data (and log if separate) is an ok size.
386 */
387STATIC int
388xfs_check_sizes(
389 struct xfs_mount *mp)
390{
391 struct xfs_buf *bp;
392 xfs_daddr_t d;
393 int error;
394
395 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
396 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
397 xfs_warn(mp, "filesystem size mismatch detected");
398 return -EFBIG;
399 }
400 error = xfs_buf_read_uncached(mp->m_ddev_targp,
401 d - XFS_FSS_TO_BB(mp, 1),
402 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
403 if (error) {
404 xfs_warn(mp, "last sector read failed");
405 return error;
406 }
407 xfs_buf_relse(bp);
408
409 if (mp->m_logdev_targp == mp->m_ddev_targp)
410 return 0;
411
412 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
413 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
414 xfs_warn(mp, "log size mismatch detected");
415 return -EFBIG;
416 }
417 error = xfs_buf_read_uncached(mp->m_logdev_targp,
418 d - XFS_FSB_TO_BB(mp, 1),
419 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
420 if (error) {
421 xfs_warn(mp, "log device read failed");
422 return error;
423 }
424 xfs_buf_relse(bp);
425 return 0;
426}
427
428/*
429 * Clear the quotaflags in memory and in the superblock.
430 */
431int
432xfs_mount_reset_sbqflags(
433 struct xfs_mount *mp)
434{
435 mp->m_qflags = 0;
436
437 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
438 if (mp->m_sb.sb_qflags == 0)
439 return 0;
440 spin_lock(&mp->m_sb_lock);
441 mp->m_sb.sb_qflags = 0;
442 spin_unlock(&mp->m_sb_lock);
443
444 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
445 return 0;
446
447 return xfs_sync_sb(mp, false);
448}
449
450uint64_t
451xfs_default_resblks(xfs_mount_t *mp)
452{
453 uint64_t resblks;
454
455 /*
456 * We default to 5% or 8192 fsbs of space reserved, whichever is
457 * smaller. This is intended to cover concurrent allocation
458 * transactions when we initially hit enospc. These each require a 4
459 * block reservation. Hence by default we cover roughly 2000 concurrent
460 * allocation reservations.
461 */
462 resblks = mp->m_sb.sb_dblocks;
463 do_div(resblks, 20);
464 resblks = min_t(uint64_t, resblks, 8192);
465 return resblks;
466}
467
468/* Ensure the summary counts are correct. */
469STATIC int
470xfs_check_summary_counts(
471 struct xfs_mount *mp)
472{
473 int error = 0;
474
475 /*
476 * The AG0 superblock verifier rejects in-progress filesystems,
477 * so we should never see the flag set this far into mounting.
478 */
479 if (mp->m_sb.sb_inprogress) {
480 xfs_err(mp, "sb_inprogress set after log recovery??");
481 WARN_ON(1);
482 return -EFSCORRUPTED;
483 }
484
485 /*
486 * Now the log is mounted, we know if it was an unclean shutdown or
487 * not. If it was, with the first phase of recovery has completed, we
488 * have consistent AG blocks on disk. We have not recovered EFIs yet,
489 * but they are recovered transactionally in the second recovery phase
490 * later.
491 *
492 * If the log was clean when we mounted, we can check the summary
493 * counters. If any of them are obviously incorrect, we can recompute
494 * them from the AGF headers in the next step.
495 */
496 if (xfs_is_clean(mp) &&
497 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
498 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
499 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
500 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
501
502 /*
503 * We can safely re-initialise incore superblock counters from the
504 * per-ag data. These may not be correct if the filesystem was not
505 * cleanly unmounted, so we waited for recovery to finish before doing
506 * this.
507 *
508 * If the filesystem was cleanly unmounted or the previous check did
509 * not flag anything weird, then we can trust the values in the
510 * superblock to be correct and we don't need to do anything here.
511 * Otherwise, recalculate the summary counters.
512 */
513 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
514 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
515 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 if (error)
517 return error;
518 }
519
520 /*
521 * Older kernels misused sb_frextents to reflect both incore
522 * reservations made by running transactions and the actual count of
523 * free rt extents in the ondisk metadata. Transactions committed
524 * during runtime can therefore contain a superblock update that
525 * undercounts the number of free rt extents tracked in the rt bitmap.
526 * A clean unmount record will have the correct frextents value since
527 * there can be no other transactions running at that point.
528 *
529 * If we're mounting the rt volume after recovering the log, recompute
530 * frextents from the rtbitmap file to fix the inconsistency.
531 */
532 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
533 error = xfs_rtalloc_reinit_frextents(mp);
534 if (error)
535 return error;
536 }
537
538 return 0;
539}
540
541static void
542xfs_unmount_check(
543 struct xfs_mount *mp)
544{
545 if (xfs_is_shutdown(mp))
546 return;
547
548 if (percpu_counter_sum(&mp->m_ifree) >
549 percpu_counter_sum(&mp->m_icount)) {
550 xfs_alert(mp, "ifree/icount mismatch at unmount");
551 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
552 }
553}
554
555/*
556 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
557 * internal inode structures can be sitting in the CIL and AIL at this point,
558 * so we need to unpin them, write them back and/or reclaim them before unmount
559 * can proceed. In other words, callers are required to have inactivated all
560 * inodes.
561 *
562 * An inode cluster that has been freed can have its buffer still pinned in
563 * memory because the transaction is still sitting in a iclog. The stale inodes
564 * on that buffer will be pinned to the buffer until the transaction hits the
565 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
566 * may never see the pinned buffer, so nothing will push out the iclog and
567 * unpin the buffer.
568 *
569 * Hence we need to force the log to unpin everything first. However, log
570 * forces don't wait for the discards they issue to complete, so we have to
571 * explicitly wait for them to complete here as well.
572 *
573 * Then we can tell the world we are unmounting so that error handling knows
574 * that the filesystem is going away and we should error out anything that we
575 * have been retrying in the background. This will prevent never-ending
576 * retries in AIL pushing from hanging the unmount.
577 *
578 * Finally, we can push the AIL to clean all the remaining dirty objects, then
579 * reclaim the remaining inodes that are still in memory at this point in time.
580 */
581static void
582xfs_unmount_flush_inodes(
583 struct xfs_mount *mp)
584{
585 xfs_log_force(mp, XFS_LOG_SYNC);
586 xfs_extent_busy_wait_all(mp);
587 flush_workqueue(xfs_discard_wq);
588
589 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
590
591 xfs_ail_push_all_sync(mp->m_ail);
592 xfs_inodegc_stop(mp);
593 cancel_delayed_work_sync(&mp->m_reclaim_work);
594 xfs_reclaim_inodes(mp);
595 xfs_health_unmount(mp);
596}
597
598static void
599xfs_mount_setup_inode_geom(
600 struct xfs_mount *mp)
601{
602 struct xfs_ino_geometry *igeo = M_IGEO(mp);
603
604 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
605 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
606
607 xfs_ialloc_setup_geometry(mp);
608}
609
610/* Compute maximum possible height for per-AG btree types for this fs. */
611static inline void
612xfs_agbtree_compute_maxlevels(
613 struct xfs_mount *mp)
614{
615 unsigned int levels;
616
617 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
618 levels = max(levels, mp->m_rmap_maxlevels);
619 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
620}
621
622/*
623 * This function does the following on an initial mount of a file system:
624 * - reads the superblock from disk and init the mount struct
625 * - if we're a 32-bit kernel, do a size check on the superblock
626 * so we don't mount terabyte filesystems
627 * - init mount struct realtime fields
628 * - allocate inode hash table for fs
629 * - init directory manager
630 * - perform recovery and init the log manager
631 */
632int
633xfs_mountfs(
634 struct xfs_mount *mp)
635{
636 struct xfs_sb *sbp = &(mp->m_sb);
637 struct xfs_inode *rip;
638 struct xfs_ino_geometry *igeo = M_IGEO(mp);
639 uint64_t resblks;
640 uint quotamount = 0;
641 uint quotaflags = 0;
642 int error = 0;
643
644 xfs_sb_mount_common(mp, sbp);
645
646 /*
647 * Check for a mismatched features2 values. Older kernels read & wrote
648 * into the wrong sb offset for sb_features2 on some platforms due to
649 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
650 * which made older superblock reading/writing routines swap it as a
651 * 64-bit value.
652 *
653 * For backwards compatibility, we make both slots equal.
654 *
655 * If we detect a mismatched field, we OR the set bits into the existing
656 * features2 field in case it has already been modified; we don't want
657 * to lose any features. We then update the bad location with the ORed
658 * value so that older kernels will see any features2 flags. The
659 * superblock writeback code ensures the new sb_features2 is copied to
660 * sb_bad_features2 before it is logged or written to disk.
661 */
662 if (xfs_sb_has_mismatched_features2(sbp)) {
663 xfs_warn(mp, "correcting sb_features alignment problem");
664 sbp->sb_features2 |= sbp->sb_bad_features2;
665 mp->m_update_sb = true;
666 }
667
668
669 /* always use v2 inodes by default now */
670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672 mp->m_features |= XFS_FEAT_NLINK;
673 mp->m_update_sb = true;
674 }
675
676 /*
677 * If we were given new sunit/swidth options, do some basic validation
678 * checks and convert the incore dalign and swidth values to the
679 * same units (FSB) that everything else uses. This /must/ happen
680 * before computing the inode geometry.
681 */
682 error = xfs_validate_new_dalign(mp);
683 if (error)
684 goto out;
685
686 xfs_alloc_compute_maxlevels(mp);
687 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
688 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
689 xfs_mount_setup_inode_geom(mp);
690 xfs_rmapbt_compute_maxlevels(mp);
691 xfs_refcountbt_compute_maxlevels(mp);
692
693 xfs_agbtree_compute_maxlevels(mp);
694
695 /*
696 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
697 * is NOT aligned turn off m_dalign since allocator alignment is within
698 * an ag, therefore ag has to be aligned at stripe boundary. Note that
699 * we must compute the free space and rmap btree geometry before doing
700 * this.
701 */
702 error = xfs_update_alignment(mp);
703 if (error)
704 goto out;
705
706 /* enable fail_at_unmount as default */
707 mp->m_fail_unmount = true;
708
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
710 NULL, mp->m_super->s_id);
711 if (error)
712 goto out;
713
714 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
715 &mp->m_kobj, "stats");
716 if (error)
717 goto out_remove_sysfs;
718
719 error = xfs_error_sysfs_init(mp);
720 if (error)
721 goto out_del_stats;
722
723 error = xfs_errortag_init(mp);
724 if (error)
725 goto out_remove_error_sysfs;
726
727 error = xfs_uuid_mount(mp);
728 if (error)
729 goto out_remove_errortag;
730
731 /*
732 * Update the preferred write size based on the information from the
733 * on-disk superblock.
734 */
735 mp->m_allocsize_log =
736 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
737 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
738
739 /* set the low space thresholds for dynamic preallocation */
740 xfs_set_low_space_thresholds(mp);
741
742 /*
743 * If enabled, sparse inode chunk alignment is expected to match the
744 * cluster size. Full inode chunk alignment must match the chunk size,
745 * but that is checked on sb read verification...
746 */
747 if (xfs_has_sparseinodes(mp) &&
748 mp->m_sb.sb_spino_align !=
749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
750 xfs_warn(mp,
751 "Sparse inode block alignment (%u) must match cluster size (%llu).",
752 mp->m_sb.sb_spino_align,
753 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
754 error = -EINVAL;
755 goto out_remove_uuid;
756 }
757
758 /*
759 * Check that the data (and log if separate) is an ok size.
760 */
761 error = xfs_check_sizes(mp);
762 if (error)
763 goto out_remove_uuid;
764
765 /*
766 * Initialize realtime fields in the mount structure
767 */
768 error = xfs_rtmount_init(mp);
769 if (error) {
770 xfs_warn(mp, "RT mount failed");
771 goto out_remove_uuid;
772 }
773
774 /*
775 * Copies the low order bits of the timestamp and the randomly
776 * set "sequence" number out of a UUID.
777 */
778 mp->m_fixedfsid[0] =
779 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
780 get_unaligned_be16(&sbp->sb_uuid.b[4]);
781 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
782
783 error = xfs_da_mount(mp);
784 if (error) {
785 xfs_warn(mp, "Failed dir/attr init: %d", error);
786 goto out_remove_uuid;
787 }
788
789 /*
790 * Initialize the precomputed transaction reservations values.
791 */
792 xfs_trans_init(mp);
793
794 /*
795 * Allocate and initialize the per-ag data.
796 */
797 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
798 &mp->m_maxagi);
799 if (error) {
800 xfs_warn(mp, "Failed per-ag init: %d", error);
801 goto out_free_dir;
802 }
803
804 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
805 xfs_warn(mp, "no log defined");
806 error = -EFSCORRUPTED;
807 goto out_free_perag;
808 }
809
810 error = xfs_inodegc_register_shrinker(mp);
811 if (error)
812 goto out_fail_wait;
813
814 /*
815 * Log's mount-time initialization. The first part of recovery can place
816 * some items on the AIL, to be handled when recovery is finished or
817 * cancelled.
818 */
819 error = xfs_log_mount(mp, mp->m_logdev_targp,
820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 if (error) {
823 xfs_warn(mp, "log mount failed");
824 goto out_inodegc_shrinker;
825 }
826
827 /* Enable background inode inactivation workers. */
828 xfs_inodegc_start(mp);
829 xfs_blockgc_start(mp);
830
831 /*
832 * Now that we've recovered any pending superblock feature bit
833 * additions, we can finish setting up the attr2 behaviour for the
834 * mount. The noattr2 option overrides the superblock flag, so only
835 * check the superblock feature flag if the mount option is not set.
836 */
837 if (xfs_has_noattr2(mp)) {
838 mp->m_features &= ~XFS_FEAT_ATTR2;
839 } else if (!xfs_has_attr2(mp) &&
840 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
841 mp->m_features |= XFS_FEAT_ATTR2;
842 }
843
844 /*
845 * Get and sanity-check the root inode.
846 * Save the pointer to it in the mount structure.
847 */
848 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
849 XFS_ILOCK_EXCL, &rip);
850 if (error) {
851 xfs_warn(mp,
852 "Failed to read root inode 0x%llx, error %d",
853 sbp->sb_rootino, -error);
854 goto out_log_dealloc;
855 }
856
857 ASSERT(rip != NULL);
858
859 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
860 xfs_warn(mp, "corrupted root inode %llu: not a directory",
861 (unsigned long long)rip->i_ino);
862 xfs_iunlock(rip, XFS_ILOCK_EXCL);
863 error = -EFSCORRUPTED;
864 goto out_rele_rip;
865 }
866 mp->m_rootip = rip; /* save it */
867
868 xfs_iunlock(rip, XFS_ILOCK_EXCL);
869
870 /*
871 * Initialize realtime inode pointers in the mount structure
872 */
873 error = xfs_rtmount_inodes(mp);
874 if (error) {
875 /*
876 * Free up the root inode.
877 */
878 xfs_warn(mp, "failed to read RT inodes");
879 goto out_rele_rip;
880 }
881
882 /* Make sure the summary counts are ok. */
883 error = xfs_check_summary_counts(mp);
884 if (error)
885 goto out_rtunmount;
886
887 /*
888 * If this is a read-only mount defer the superblock updates until
889 * the next remount into writeable mode. Otherwise we would never
890 * perform the update e.g. for the root filesystem.
891 */
892 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
893 error = xfs_sync_sb(mp, false);
894 if (error) {
895 xfs_warn(mp, "failed to write sb changes");
896 goto out_rtunmount;
897 }
898 }
899
900 /*
901 * Initialise the XFS quota management subsystem for this mount
902 */
903 if (XFS_IS_QUOTA_ON(mp)) {
904 error = xfs_qm_newmount(mp, "amount, "aflags);
905 if (error)
906 goto out_rtunmount;
907 } else {
908 /*
909 * If a file system had quotas running earlier, but decided to
910 * mount without -o uquota/pquota/gquota options, revoke the
911 * quotachecked license.
912 */
913 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
914 xfs_notice(mp, "resetting quota flags");
915 error = xfs_mount_reset_sbqflags(mp);
916 if (error)
917 goto out_rtunmount;
918 }
919 }
920
921 /*
922 * Finish recovering the file system. This part needed to be delayed
923 * until after the root and real-time bitmap inodes were consistently
924 * read in. Temporarily create per-AG space reservations for metadata
925 * btree shape changes because space freeing transactions (for inode
926 * inactivation) require the per-AG reservation in lieu of reserving
927 * blocks.
928 */
929 error = xfs_fs_reserve_ag_blocks(mp);
930 if (error && error == -ENOSPC)
931 xfs_warn(mp,
932 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
933 error = xfs_log_mount_finish(mp);
934 xfs_fs_unreserve_ag_blocks(mp);
935 if (error) {
936 xfs_warn(mp, "log mount finish failed");
937 goto out_rtunmount;
938 }
939
940 /*
941 * Now the log is fully replayed, we can transition to full read-only
942 * mode for read-only mounts. This will sync all the metadata and clean
943 * the log so that the recovery we just performed does not have to be
944 * replayed again on the next mount.
945 *
946 * We use the same quiesce mechanism as the rw->ro remount, as they are
947 * semantically identical operations.
948 */
949 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
950 xfs_log_clean(mp);
951
952 /*
953 * Complete the quota initialisation, post-log-replay component.
954 */
955 if (quotamount) {
956 ASSERT(mp->m_qflags == 0);
957 mp->m_qflags = quotaflags;
958
959 xfs_qm_mount_quotas(mp);
960 }
961
962 /*
963 * Now we are mounted, reserve a small amount of unused space for
964 * privileged transactions. This is needed so that transaction
965 * space required for critical operations can dip into this pool
966 * when at ENOSPC. This is needed for operations like create with
967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 * are not allowed to use this reserved space.
969 *
970 * This may drive us straight to ENOSPC on mount, but that implies
971 * we were already there on the last unmount. Warn if this occurs.
972 */
973 if (!xfs_is_readonly(mp)) {
974 resblks = xfs_default_resblks(mp);
975 error = xfs_reserve_blocks(mp, &resblks, NULL);
976 if (error)
977 xfs_warn(mp,
978 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979
980 /* Reserve AG blocks for future btree expansion. */
981 error = xfs_fs_reserve_ag_blocks(mp);
982 if (error && error != -ENOSPC)
983 goto out_agresv;
984 }
985
986 return 0;
987
988 out_agresv:
989 xfs_fs_unreserve_ag_blocks(mp);
990 xfs_qm_unmount_quotas(mp);
991 out_rtunmount:
992 xfs_rtunmount_inodes(mp);
993 out_rele_rip:
994 xfs_irele(rip);
995 /* Clean out dquots that might be in memory after quotacheck. */
996 xfs_qm_unmount(mp);
997
998 /*
999 * Inactivate all inodes that might still be in memory after a log
1000 * intent recovery failure so that reclaim can free them. Metadata
1001 * inodes and the root directory shouldn't need inactivation, but the
1002 * mount failed for some reason, so pull down all the state and flee.
1003 */
1004 xfs_inodegc_flush(mp);
1005
1006 /*
1007 * Flush all inode reclamation work and flush the log.
1008 * We have to do this /after/ rtunmount and qm_unmount because those
1009 * two will have scheduled delayed reclaim for the rt/quota inodes.
1010 *
1011 * This is slightly different from the unmountfs call sequence
1012 * because we could be tearing down a partially set up mount. In
1013 * particular, if log_mount_finish fails we bail out without calling
1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1015 * quota inodes.
1016 */
1017 xfs_unmount_flush_inodes(mp);
1018 out_log_dealloc:
1019 xfs_log_mount_cancel(mp);
1020 out_inodegc_shrinker:
1021 unregister_shrinker(&mp->m_inodegc_shrinker);
1022 out_fail_wait:
1023 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1024 xfs_buftarg_drain(mp->m_logdev_targp);
1025 xfs_buftarg_drain(mp->m_ddev_targp);
1026 out_free_perag:
1027 xfs_free_perag(mp);
1028 out_free_dir:
1029 xfs_da_unmount(mp);
1030 out_remove_uuid:
1031 xfs_uuid_unmount(mp);
1032 out_remove_errortag:
1033 xfs_errortag_del(mp);
1034 out_remove_error_sysfs:
1035 xfs_error_sysfs_del(mp);
1036 out_del_stats:
1037 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1038 out_remove_sysfs:
1039 xfs_sysfs_del(&mp->m_kobj);
1040 out:
1041 return error;
1042}
1043
1044/*
1045 * This flushes out the inodes,dquots and the superblock, unmounts the
1046 * log and makes sure that incore structures are freed.
1047 */
1048void
1049xfs_unmountfs(
1050 struct xfs_mount *mp)
1051{
1052 uint64_t resblks;
1053 int error;
1054
1055 /*
1056 * Perform all on-disk metadata updates required to inactivate inodes
1057 * that the VFS evicted earlier in the unmount process. Freeing inodes
1058 * and discarding CoW fork preallocations can cause shape changes to
1059 * the free inode and refcount btrees, respectively, so we must finish
1060 * this before we discard the metadata space reservations. Metadata
1061 * inodes and the root directory do not require inactivation.
1062 */
1063 xfs_inodegc_flush(mp);
1064
1065 xfs_blockgc_stop(mp);
1066 xfs_fs_unreserve_ag_blocks(mp);
1067 xfs_qm_unmount_quotas(mp);
1068 xfs_rtunmount_inodes(mp);
1069 xfs_irele(mp->m_rootip);
1070
1071 xfs_unmount_flush_inodes(mp);
1072
1073 xfs_qm_unmount(mp);
1074
1075 /*
1076 * Unreserve any blocks we have so that when we unmount we don't account
1077 * the reserved free space as used. This is really only necessary for
1078 * lazy superblock counting because it trusts the incore superblock
1079 * counters to be absolutely correct on clean unmount.
1080 *
1081 * We don't bother correcting this elsewhere for lazy superblock
1082 * counting because on mount of an unclean filesystem we reconstruct the
1083 * correct counter value and this is irrelevant.
1084 *
1085 * For non-lazy counter filesystems, this doesn't matter at all because
1086 * we only every apply deltas to the superblock and hence the incore
1087 * value does not matter....
1088 */
1089 resblks = 0;
1090 error = xfs_reserve_blocks(mp, &resblks, NULL);
1091 if (error)
1092 xfs_warn(mp, "Unable to free reserved block pool. "
1093 "Freespace may not be correct on next mount.");
1094 xfs_unmount_check(mp);
1095
1096 xfs_log_unmount(mp);
1097 xfs_da_unmount(mp);
1098 xfs_uuid_unmount(mp);
1099
1100#if defined(DEBUG)
1101 xfs_errortag_clearall(mp);
1102#endif
1103 unregister_shrinker(&mp->m_inodegc_shrinker);
1104 xfs_free_perag(mp);
1105
1106 xfs_errortag_del(mp);
1107 xfs_error_sysfs_del(mp);
1108 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1109 xfs_sysfs_del(&mp->m_kobj);
1110}
1111
1112/*
1113 * Determine whether modifications can proceed. The caller specifies the minimum
1114 * freeze level for which modifications should not be allowed. This allows
1115 * certain operations to proceed while the freeze sequence is in progress, if
1116 * necessary.
1117 */
1118bool
1119xfs_fs_writable(
1120 struct xfs_mount *mp,
1121 int level)
1122{
1123 ASSERT(level > SB_UNFROZEN);
1124 if ((mp->m_super->s_writers.frozen >= level) ||
1125 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1126 return false;
1127
1128 return true;
1129}
1130
1131/* Adjust m_fdblocks or m_frextents. */
1132int
1133xfs_mod_freecounter(
1134 struct xfs_mount *mp,
1135 struct percpu_counter *counter,
1136 int64_t delta,
1137 bool rsvd)
1138{
1139 int64_t lcounter;
1140 long long res_used;
1141 uint64_t set_aside = 0;
1142 s32 batch;
1143 bool has_resv_pool;
1144
1145 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1146 has_resv_pool = (counter == &mp->m_fdblocks);
1147 if (rsvd)
1148 ASSERT(has_resv_pool);
1149
1150 if (delta > 0) {
1151 /*
1152 * If the reserve pool is depleted, put blocks back into it
1153 * first. Most of the time the pool is full.
1154 */
1155 if (likely(!has_resv_pool ||
1156 mp->m_resblks == mp->m_resblks_avail)) {
1157 percpu_counter_add(counter, delta);
1158 return 0;
1159 }
1160
1161 spin_lock(&mp->m_sb_lock);
1162 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1163
1164 if (res_used > delta) {
1165 mp->m_resblks_avail += delta;
1166 } else {
1167 delta -= res_used;
1168 mp->m_resblks_avail = mp->m_resblks;
1169 percpu_counter_add(counter, delta);
1170 }
1171 spin_unlock(&mp->m_sb_lock);
1172 return 0;
1173 }
1174
1175 /*
1176 * Taking blocks away, need to be more accurate the closer we
1177 * are to zero.
1178 *
1179 * If the counter has a value of less than 2 * max batch size,
1180 * then make everything serialise as we are real close to
1181 * ENOSPC.
1182 */
1183 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1184 XFS_FDBLOCKS_BATCH) < 0)
1185 batch = 1;
1186 else
1187 batch = XFS_FDBLOCKS_BATCH;
1188
1189 /*
1190 * Set aside allocbt blocks because these blocks are tracked as free
1191 * space but not available for allocation. Technically this means that a
1192 * single reservation cannot consume all remaining free space, but the
1193 * ratio of allocbt blocks to usable free blocks should be rather small.
1194 * The tradeoff without this is that filesystems that maintain high
1195 * perag block reservations can over reserve physical block availability
1196 * and fail physical allocation, which leads to much more serious
1197 * problems (i.e. transaction abort, pagecache discards, etc.) than
1198 * slightly premature -ENOSPC.
1199 */
1200 if (has_resv_pool)
1201 set_aside = xfs_fdblocks_unavailable(mp);
1202 percpu_counter_add_batch(counter, delta, batch);
1203 if (__percpu_counter_compare(counter, set_aside,
1204 XFS_FDBLOCKS_BATCH) >= 0) {
1205 /* we had space! */
1206 return 0;
1207 }
1208
1209 /*
1210 * lock up the sb for dipping into reserves before releasing the space
1211 * that took us to ENOSPC.
1212 */
1213 spin_lock(&mp->m_sb_lock);
1214 percpu_counter_add(counter, -delta);
1215 if (!has_resv_pool || !rsvd)
1216 goto fdblocks_enospc;
1217
1218 lcounter = (long long)mp->m_resblks_avail + delta;
1219 if (lcounter >= 0) {
1220 mp->m_resblks_avail = lcounter;
1221 spin_unlock(&mp->m_sb_lock);
1222 return 0;
1223 }
1224 xfs_warn_once(mp,
1225"Reserve blocks depleted! Consider increasing reserve pool size.");
1226
1227fdblocks_enospc:
1228 spin_unlock(&mp->m_sb_lock);
1229 return -ENOSPC;
1230}
1231
1232/*
1233 * Used to free the superblock along various error paths.
1234 */
1235void
1236xfs_freesb(
1237 struct xfs_mount *mp)
1238{
1239 struct xfs_buf *bp = mp->m_sb_bp;
1240
1241 xfs_buf_lock(bp);
1242 mp->m_sb_bp = NULL;
1243 xfs_buf_relse(bp);
1244}
1245
1246/*
1247 * If the underlying (data/log/rt) device is readonly, there are some
1248 * operations that cannot proceed.
1249 */
1250int
1251xfs_dev_is_read_only(
1252 struct xfs_mount *mp,
1253 char *message)
1254{
1255 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1256 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1257 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1258 xfs_notice(mp, "%s required on read-only device.", message);
1259 xfs_notice(mp, "write access unavailable, cannot proceed.");
1260 return -EROFS;
1261 }
1262 return 0;
1263}
1264
1265/* Force the summary counters to be recalculated at next mount. */
1266void
1267xfs_force_summary_recalc(
1268 struct xfs_mount *mp)
1269{
1270 if (!xfs_has_lazysbcount(mp))
1271 return;
1272
1273 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1274}
1275
1276/*
1277 * Enable a log incompat feature flag in the primary superblock. The caller
1278 * cannot have any other transactions in progress.
1279 */
1280int
1281xfs_add_incompat_log_feature(
1282 struct xfs_mount *mp,
1283 uint32_t feature)
1284{
1285 struct xfs_dsb *dsb;
1286 int error;
1287
1288 ASSERT(hweight32(feature) == 1);
1289 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1290
1291 /*
1292 * Force the log to disk and kick the background AIL thread to reduce
1293 * the chances that the bwrite will stall waiting for the AIL to unpin
1294 * the primary superblock buffer. This isn't a data integrity
1295 * operation, so we don't need a synchronous push.
1296 */
1297 error = xfs_log_force(mp, XFS_LOG_SYNC);
1298 if (error)
1299 return error;
1300 xfs_ail_push_all(mp->m_ail);
1301
1302 /*
1303 * Lock the primary superblock buffer to serialize all callers that
1304 * are trying to set feature bits.
1305 */
1306 xfs_buf_lock(mp->m_sb_bp);
1307 xfs_buf_hold(mp->m_sb_bp);
1308
1309 if (xfs_is_shutdown(mp)) {
1310 error = -EIO;
1311 goto rele;
1312 }
1313
1314 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1315 goto rele;
1316
1317 /*
1318 * Write the primary superblock to disk immediately, because we need
1319 * the log_incompat bit to be set in the primary super now to protect
1320 * the log items that we're going to commit later.
1321 */
1322 dsb = mp->m_sb_bp->b_addr;
1323 xfs_sb_to_disk(dsb, &mp->m_sb);
1324 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1325 error = xfs_bwrite(mp->m_sb_bp);
1326 if (error)
1327 goto shutdown;
1328
1329 /*
1330 * Add the feature bits to the incore superblock before we unlock the
1331 * buffer.
1332 */
1333 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1334 xfs_buf_relse(mp->m_sb_bp);
1335
1336 /* Log the superblock to disk. */
1337 return xfs_sync_sb(mp, false);
1338shutdown:
1339 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1340rele:
1341 xfs_buf_relse(mp->m_sb_bp);
1342 return error;
1343}
1344
1345/*
1346 * Clear all the log incompat flags from the superblock.
1347 *
1348 * The caller cannot be in a transaction, must ensure that the log does not
1349 * contain any log items protected by any log incompat bit, and must ensure
1350 * that there are no other threads that depend on the state of the log incompat
1351 * feature flags in the primary super.
1352 *
1353 * Returns true if the superblock is dirty.
1354 */
1355bool
1356xfs_clear_incompat_log_features(
1357 struct xfs_mount *mp)
1358{
1359 bool ret = false;
1360
1361 if (!xfs_has_crc(mp) ||
1362 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1363 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1364 xfs_is_shutdown(mp))
1365 return false;
1366
1367 /*
1368 * Update the incore superblock. We synchronize on the primary super
1369 * buffer lock to be consistent with the add function, though at least
1370 * in theory this shouldn't be necessary.
1371 */
1372 xfs_buf_lock(mp->m_sb_bp);
1373 xfs_buf_hold(mp->m_sb_bp);
1374
1375 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1376 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1377 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1378 ret = true;
1379 }
1380
1381 xfs_buf_relse(mp->m_sb_bp);
1382 return ret;
1383}
1384
1385/*
1386 * Update the in-core delayed block counter.
1387 *
1388 * We prefer to update the counter without having to take a spinlock for every
1389 * counter update (i.e. batching). Each change to delayed allocation
1390 * reservations can change can easily exceed the default percpu counter
1391 * batching, so we use a larger batch factor here.
1392 *
1393 * Note that we don't currently have any callers requiring fast summation
1394 * (e.g. percpu_counter_read) so we can use a big batch value here.
1395 */
1396#define XFS_DELALLOC_BATCH (4096)
1397void
1398xfs_mod_delalloc(
1399 struct xfs_mount *mp,
1400 int64_t delta)
1401{
1402 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1403 XFS_DELALLOC_BATCH);
1404}