Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37#include "xfs_rtbitmap.h"
38#include "xfs_metafile.h"
39#include "xfs_rtgroup.h"
40#include "scrub/stats.h"
41
42static DEFINE_MUTEX(xfs_uuid_table_mutex);
43static int xfs_uuid_table_size;
44static uuid_t *xfs_uuid_table;
45
46void
47xfs_uuid_table_free(void)
48{
49 if (xfs_uuid_table_size == 0)
50 return;
51 kfree(xfs_uuid_table);
52 xfs_uuid_table = NULL;
53 xfs_uuid_table_size = 0;
54}
55
56/*
57 * See if the UUID is unique among mounted XFS filesystems.
58 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
59 */
60STATIC int
61xfs_uuid_mount(
62 struct xfs_mount *mp)
63{
64 uuid_t *uuid = &mp->m_sb.sb_uuid;
65 int hole, i;
66
67 /* Publish UUID in struct super_block */
68 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
69
70 if (xfs_has_nouuid(mp))
71 return 0;
72
73 if (uuid_is_null(uuid)) {
74 xfs_warn(mp, "Filesystem has null UUID - can't mount");
75 return -EINVAL;
76 }
77
78 mutex_lock(&xfs_uuid_table_mutex);
79 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
80 if (uuid_is_null(&xfs_uuid_table[i])) {
81 hole = i;
82 continue;
83 }
84 if (uuid_equal(uuid, &xfs_uuid_table[i]))
85 goto out_duplicate;
86 }
87
88 if (hole < 0) {
89 xfs_uuid_table = krealloc(xfs_uuid_table,
90 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
91 GFP_KERNEL | __GFP_NOFAIL);
92 hole = xfs_uuid_table_size++;
93 }
94 xfs_uuid_table[hole] = *uuid;
95 mutex_unlock(&xfs_uuid_table_mutex);
96
97 return 0;
98
99 out_duplicate:
100 mutex_unlock(&xfs_uuid_table_mutex);
101 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
102 return -EINVAL;
103}
104
105STATIC void
106xfs_uuid_unmount(
107 struct xfs_mount *mp)
108{
109 uuid_t *uuid = &mp->m_sb.sb_uuid;
110 int i;
111
112 if (xfs_has_nouuid(mp))
113 return;
114
115 mutex_lock(&xfs_uuid_table_mutex);
116 for (i = 0; i < xfs_uuid_table_size; i++) {
117 if (uuid_is_null(&xfs_uuid_table[i]))
118 continue;
119 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
120 continue;
121 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
122 break;
123 }
124 ASSERT(i < xfs_uuid_table_size);
125 mutex_unlock(&xfs_uuid_table_mutex);
126}
127
128/*
129 * Check size of device based on the (data/realtime) block count.
130 * Note: this check is used by the growfs code as well as mount.
131 */
132int
133xfs_sb_validate_fsb_count(
134 xfs_sb_t *sbp,
135 uint64_t nblocks)
136{
137 uint64_t max_bytes;
138
139 ASSERT(sbp->sb_blocklog >= BBSHIFT);
140
141 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
142 return -EFBIG;
143
144 /* Limited by ULONG_MAX of page cache index */
145 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
146 return -EFBIG;
147 return 0;
148}
149
150/*
151 * xfs_readsb
152 *
153 * Does the initial read of the superblock.
154 */
155int
156xfs_readsb(
157 struct xfs_mount *mp,
158 int flags)
159{
160 unsigned int sector_size;
161 struct xfs_buf *bp;
162 struct xfs_sb *sbp = &mp->m_sb;
163 int error;
164 int loud = !(flags & XFS_MFSI_QUIET);
165 const struct xfs_buf_ops *buf_ops;
166
167 ASSERT(mp->m_sb_bp == NULL);
168 ASSERT(mp->m_ddev_targp != NULL);
169
170 /*
171 * For the initial read, we must guess at the sector
172 * size based on the block device. It's enough to
173 * get the sb_sectsize out of the superblock and
174 * then reread with the proper length.
175 * We don't verify it yet, because it may not be complete.
176 */
177 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
178 buf_ops = NULL;
179
180 /*
181 * Allocate a (locked) buffer to hold the superblock. This will be kept
182 * around at all times to optimize access to the superblock. Therefore,
183 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
184 * elevated.
185 */
186reread:
187 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
188 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
189 buf_ops);
190 if (error) {
191 if (loud)
192 xfs_warn(mp, "SB validate failed with error %d.", error);
193 /* bad CRC means corrupted metadata */
194 if (error == -EFSBADCRC)
195 error = -EFSCORRUPTED;
196 return error;
197 }
198
199 /*
200 * Initialize the mount structure from the superblock.
201 */
202 xfs_sb_from_disk(sbp, bp->b_addr);
203
204 /*
205 * If we haven't validated the superblock, do so now before we try
206 * to check the sector size and reread the superblock appropriately.
207 */
208 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 if (loud)
210 xfs_warn(mp, "Invalid superblock magic number");
211 error = -EINVAL;
212 goto release_buf;
213 }
214
215 /*
216 * We must be able to do sector-sized and sector-aligned IO.
217 */
218 if (sector_size > sbp->sb_sectsize) {
219 if (loud)
220 xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 sector_size, sbp->sb_sectsize);
222 error = -ENOSYS;
223 goto release_buf;
224 }
225
226 if (buf_ops == NULL) {
227 /*
228 * Re-read the superblock so the buffer is correctly sized,
229 * and properly verified.
230 */
231 xfs_buf_relse(bp);
232 sector_size = sbp->sb_sectsize;
233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 goto reread;
235 }
236
237 mp->m_features |= xfs_sb_version_to_features(sbp);
238 xfs_reinit_percpu_counters(mp);
239
240 /*
241 * If logged xattrs are enabled after log recovery finishes, then set
242 * the opstate so that log recovery will work properly.
243 */
244 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 xfs_set_using_logged_xattrs(mp);
246
247 /* no need to be quiet anymore, so reset the buf ops */
248 bp->b_ops = &xfs_sb_buf_ops;
249
250 mp->m_sb_bp = bp;
251 xfs_buf_unlock(bp);
252 return 0;
253
254release_buf:
255 xfs_buf_relse(bp);
256 return error;
257}
258
259/*
260 * If the sunit/swidth change would move the precomputed root inode value, we
261 * must reject the ondisk change because repair will stumble over that.
262 * However, we allow the mount to proceed because we never rejected this
263 * combination before. Returns true to update the sb, false otherwise.
264 */
265static inline int
266xfs_check_new_dalign(
267 struct xfs_mount *mp,
268 int new_dalign,
269 bool *update_sb)
270{
271 struct xfs_sb *sbp = &mp->m_sb;
272 xfs_ino_t calc_ino;
273
274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
276
277 if (sbp->sb_rootino == calc_ino) {
278 *update_sb = true;
279 return 0;
280 }
281
282 xfs_warn(mp,
283"Cannot change stripe alignment; would require moving root inode.");
284
285 /*
286 * XXX: Next time we add a new incompat feature, this should start
287 * returning -EINVAL to fail the mount. Until then, spit out a warning
288 * that we're ignoring the administrator's instructions.
289 */
290 xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 *update_sb = false;
292 return 0;
293}
294
295/*
296 * If we were provided with new sunit/swidth values as mount options, make sure
297 * that they pass basic alignment and superblock feature checks, and convert
298 * them into the same units (FSB) that everything else expects. This step
299 * /must/ be done before computing the inode geometry.
300 */
301STATIC int
302xfs_validate_new_dalign(
303 struct xfs_mount *mp)
304{
305 if (mp->m_dalign == 0)
306 return 0;
307
308 /*
309 * If stripe unit and stripe width are not multiples
310 * of the fs blocksize turn off alignment.
311 */
312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 xfs_warn(mp,
315 "alignment check failed: sunit/swidth vs. blocksize(%d)",
316 mp->m_sb.sb_blocksize);
317 return -EINVAL;
318 }
319
320 /*
321 * Convert the stripe unit and width to FSBs.
322 */
323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 xfs_warn(mp,
326 "alignment check failed: sunit/swidth vs. agsize(%d)",
327 mp->m_sb.sb_agblocks);
328 return -EINVAL;
329 }
330
331 if (!mp->m_dalign) {
332 xfs_warn(mp,
333 "alignment check failed: sunit(%d) less than bsize(%d)",
334 mp->m_dalign, mp->m_sb.sb_blocksize);
335 return -EINVAL;
336 }
337
338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339
340 if (!xfs_has_dalign(mp)) {
341 xfs_warn(mp,
342"cannot change alignment: superblock does not support data alignment");
343 return -EINVAL;
344 }
345
346 return 0;
347}
348
349/* Update alignment values based on mount options and sb values. */
350STATIC int
351xfs_update_alignment(
352 struct xfs_mount *mp)
353{
354 struct xfs_sb *sbp = &mp->m_sb;
355
356 if (mp->m_dalign) {
357 bool update_sb;
358 int error;
359
360 if (sbp->sb_unit == mp->m_dalign &&
361 sbp->sb_width == mp->m_swidth)
362 return 0;
363
364 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
365 if (error || !update_sb)
366 return error;
367
368 sbp->sb_unit = mp->m_dalign;
369 sbp->sb_width = mp->m_swidth;
370 mp->m_update_sb = true;
371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 mp->m_dalign = sbp->sb_unit;
373 mp->m_swidth = sbp->sb_width;
374 }
375
376 return 0;
377}
378
379/*
380 * precalculate the low space thresholds for dynamic speculative preallocation.
381 */
382void
383xfs_set_low_space_thresholds(
384 struct xfs_mount *mp)
385{
386 uint64_t dblocks = mp->m_sb.sb_dblocks;
387 uint64_t rtexts = mp->m_sb.sb_rextents;
388 int i;
389
390 do_div(dblocks, 100);
391 do_div(rtexts, 100);
392
393 for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 mp->m_low_space[i] = dblocks * (i + 1);
395 mp->m_low_rtexts[i] = rtexts * (i + 1);
396 }
397}
398
399/*
400 * Check that the data (and log if separate) is an ok size.
401 */
402STATIC int
403xfs_check_sizes(
404 struct xfs_mount *mp)
405{
406 struct xfs_buf *bp;
407 xfs_daddr_t d;
408 int error;
409
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 xfs_warn(mp, "filesystem size mismatch detected");
413 return -EFBIG;
414 }
415 error = xfs_buf_read_uncached(mp->m_ddev_targp,
416 d - XFS_FSS_TO_BB(mp, 1),
417 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
418 if (error) {
419 xfs_warn(mp, "last sector read failed");
420 return error;
421 }
422 xfs_buf_relse(bp);
423
424 if (mp->m_logdev_targp == mp->m_ddev_targp)
425 return 0;
426
427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 xfs_warn(mp, "log size mismatch detected");
430 return -EFBIG;
431 }
432 error = xfs_buf_read_uncached(mp->m_logdev_targp,
433 d - XFS_FSB_TO_BB(mp, 1),
434 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
435 if (error) {
436 xfs_warn(mp, "log device read failed");
437 return error;
438 }
439 xfs_buf_relse(bp);
440 return 0;
441}
442
443/*
444 * Clear the quotaflags in memory and in the superblock.
445 */
446int
447xfs_mount_reset_sbqflags(
448 struct xfs_mount *mp)
449{
450 mp->m_qflags = 0;
451
452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 if (mp->m_sb.sb_qflags == 0)
454 return 0;
455 spin_lock(&mp->m_sb_lock);
456 mp->m_sb.sb_qflags = 0;
457 spin_unlock(&mp->m_sb_lock);
458
459 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
460 return 0;
461
462 return xfs_sync_sb(mp, false);
463}
464
465uint64_t
466xfs_default_resblks(xfs_mount_t *mp)
467{
468 uint64_t resblks;
469
470 /*
471 * We default to 5% or 8192 fsbs of space reserved, whichever is
472 * smaller. This is intended to cover concurrent allocation
473 * transactions when we initially hit enospc. These each require a 4
474 * block reservation. Hence by default we cover roughly 2000 concurrent
475 * allocation reservations.
476 */
477 resblks = mp->m_sb.sb_dblocks;
478 do_div(resblks, 20);
479 resblks = min_t(uint64_t, resblks, 8192);
480 return resblks;
481}
482
483/* Ensure the summary counts are correct. */
484STATIC int
485xfs_check_summary_counts(
486 struct xfs_mount *mp)
487{
488 int error = 0;
489
490 /*
491 * The AG0 superblock verifier rejects in-progress filesystems,
492 * so we should never see the flag set this far into mounting.
493 */
494 if (mp->m_sb.sb_inprogress) {
495 xfs_err(mp, "sb_inprogress set after log recovery??");
496 WARN_ON(1);
497 return -EFSCORRUPTED;
498 }
499
500 /*
501 * Now the log is mounted, we know if it was an unclean shutdown or
502 * not. If it was, with the first phase of recovery has completed, we
503 * have consistent AG blocks on disk. We have not recovered EFIs yet,
504 * but they are recovered transactionally in the second recovery phase
505 * later.
506 *
507 * If the log was clean when we mounted, we can check the summary
508 * counters. If any of them are obviously incorrect, we can recompute
509 * them from the AGF headers in the next step.
510 */
511 if (xfs_is_clean(mp) &&
512 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
513 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
514 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
515 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
516
517 /*
518 * We can safely re-initialise incore superblock counters from the
519 * per-ag data. These may not be correct if the filesystem was not
520 * cleanly unmounted, so we waited for recovery to finish before doing
521 * this.
522 *
523 * If the filesystem was cleanly unmounted or the previous check did
524 * not flag anything weird, then we can trust the values in the
525 * superblock to be correct and we don't need to do anything here.
526 * Otherwise, recalculate the summary counters.
527 */
528 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
529 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
530 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
531 if (error)
532 return error;
533 }
534
535 /*
536 * Older kernels misused sb_frextents to reflect both incore
537 * reservations made by running transactions and the actual count of
538 * free rt extents in the ondisk metadata. Transactions committed
539 * during runtime can therefore contain a superblock update that
540 * undercounts the number of free rt extents tracked in the rt bitmap.
541 * A clean unmount record will have the correct frextents value since
542 * there can be no other transactions running at that point.
543 *
544 * If we're mounting the rt volume after recovering the log, recompute
545 * frextents from the rtbitmap file to fix the inconsistency.
546 */
547 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
548 error = xfs_rtalloc_reinit_frextents(mp);
549 if (error)
550 return error;
551 }
552
553 return 0;
554}
555
556static void
557xfs_unmount_check(
558 struct xfs_mount *mp)
559{
560 if (xfs_is_shutdown(mp))
561 return;
562
563 if (percpu_counter_sum(&mp->m_ifree) >
564 percpu_counter_sum(&mp->m_icount)) {
565 xfs_alert(mp, "ifree/icount mismatch at unmount");
566 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
567 }
568}
569
570/*
571 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
572 * internal inode structures can be sitting in the CIL and AIL at this point,
573 * so we need to unpin them, write them back and/or reclaim them before unmount
574 * can proceed. In other words, callers are required to have inactivated all
575 * inodes.
576 *
577 * An inode cluster that has been freed can have its buffer still pinned in
578 * memory because the transaction is still sitting in a iclog. The stale inodes
579 * on that buffer will be pinned to the buffer until the transaction hits the
580 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
581 * may never see the pinned buffer, so nothing will push out the iclog and
582 * unpin the buffer.
583 *
584 * Hence we need to force the log to unpin everything first. However, log
585 * forces don't wait for the discards they issue to complete, so we have to
586 * explicitly wait for them to complete here as well.
587 *
588 * Then we can tell the world we are unmounting so that error handling knows
589 * that the filesystem is going away and we should error out anything that we
590 * have been retrying in the background. This will prevent never-ending
591 * retries in AIL pushing from hanging the unmount.
592 *
593 * Finally, we can push the AIL to clean all the remaining dirty objects, then
594 * reclaim the remaining inodes that are still in memory at this point in time.
595 */
596static void
597xfs_unmount_flush_inodes(
598 struct xfs_mount *mp)
599{
600 xfs_log_force(mp, XFS_LOG_SYNC);
601 xfs_extent_busy_wait_all(mp);
602 flush_workqueue(xfs_discard_wq);
603
604 xfs_set_unmounting(mp);
605
606 xfs_ail_push_all_sync(mp->m_ail);
607 xfs_inodegc_stop(mp);
608 cancel_delayed_work_sync(&mp->m_reclaim_work);
609 xfs_reclaim_inodes(mp);
610 xfs_health_unmount(mp);
611}
612
613static void
614xfs_mount_setup_inode_geom(
615 struct xfs_mount *mp)
616{
617 struct xfs_ino_geometry *igeo = M_IGEO(mp);
618
619 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
620 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
621
622 xfs_ialloc_setup_geometry(mp);
623}
624
625/* Mount the metadata directory tree root. */
626STATIC int
627xfs_mount_setup_metadir(
628 struct xfs_mount *mp)
629{
630 int error;
631
632 /* Load the metadata directory root inode into memory. */
633 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
634 &mp->m_metadirip);
635 if (error)
636 xfs_warn(mp, "Failed to load metadir root directory, error %d",
637 error);
638 return error;
639}
640
641/* Compute maximum possible height for per-AG btree types for this fs. */
642static inline void
643xfs_agbtree_compute_maxlevels(
644 struct xfs_mount *mp)
645{
646 unsigned int levels;
647
648 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
649 levels = max(levels, mp->m_rmap_maxlevels);
650 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
651}
652
653/*
654 * This function does the following on an initial mount of a file system:
655 * - reads the superblock from disk and init the mount struct
656 * - if we're a 32-bit kernel, do a size check on the superblock
657 * so we don't mount terabyte filesystems
658 * - init mount struct realtime fields
659 * - allocate inode hash table for fs
660 * - init directory manager
661 * - perform recovery and init the log manager
662 */
663int
664xfs_mountfs(
665 struct xfs_mount *mp)
666{
667 struct xfs_sb *sbp = &(mp->m_sb);
668 struct xfs_inode *rip;
669 struct xfs_ino_geometry *igeo = M_IGEO(mp);
670 uint quotamount = 0;
671 uint quotaflags = 0;
672 int error = 0;
673
674 xfs_sb_mount_common(mp, sbp);
675
676 /*
677 * Check for a mismatched features2 values. Older kernels read & wrote
678 * into the wrong sb offset for sb_features2 on some platforms due to
679 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
680 * which made older superblock reading/writing routines swap it as a
681 * 64-bit value.
682 *
683 * For backwards compatibility, we make both slots equal.
684 *
685 * If we detect a mismatched field, we OR the set bits into the existing
686 * features2 field in case it has already been modified; we don't want
687 * to lose any features. We then update the bad location with the ORed
688 * value so that older kernels will see any features2 flags. The
689 * superblock writeback code ensures the new sb_features2 is copied to
690 * sb_bad_features2 before it is logged or written to disk.
691 */
692 if (xfs_sb_has_mismatched_features2(sbp)) {
693 xfs_warn(mp, "correcting sb_features alignment problem");
694 sbp->sb_features2 |= sbp->sb_bad_features2;
695 mp->m_update_sb = true;
696 }
697
698
699 /* always use v2 inodes by default now */
700 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
701 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
702 mp->m_features |= XFS_FEAT_NLINK;
703 mp->m_update_sb = true;
704 }
705
706 /*
707 * If we were given new sunit/swidth options, do some basic validation
708 * checks and convert the incore dalign and swidth values to the
709 * same units (FSB) that everything else uses. This /must/ happen
710 * before computing the inode geometry.
711 */
712 error = xfs_validate_new_dalign(mp);
713 if (error)
714 goto out;
715
716 xfs_alloc_compute_maxlevels(mp);
717 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
718 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
719 xfs_mount_setup_inode_geom(mp);
720 xfs_rmapbt_compute_maxlevels(mp);
721 xfs_refcountbt_compute_maxlevels(mp);
722
723 xfs_agbtree_compute_maxlevels(mp);
724
725 /*
726 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
727 * is NOT aligned turn off m_dalign since allocator alignment is within
728 * an ag, therefore ag has to be aligned at stripe boundary. Note that
729 * we must compute the free space and rmap btree geometry before doing
730 * this.
731 */
732 error = xfs_update_alignment(mp);
733 if (error)
734 goto out;
735
736 /* enable fail_at_unmount as default */
737 mp->m_fail_unmount = true;
738
739 super_set_sysfs_name_id(mp->m_super);
740
741 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
742 NULL, mp->m_super->s_id);
743 if (error)
744 goto out;
745
746 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
747 &mp->m_kobj, "stats");
748 if (error)
749 goto out_remove_sysfs;
750
751 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
752
753 error = xfs_error_sysfs_init(mp);
754 if (error)
755 goto out_remove_scrub_stats;
756
757 error = xfs_errortag_init(mp);
758 if (error)
759 goto out_remove_error_sysfs;
760
761 error = xfs_uuid_mount(mp);
762 if (error)
763 goto out_remove_errortag;
764
765 /*
766 * Update the preferred write size based on the information from the
767 * on-disk superblock.
768 */
769 mp->m_allocsize_log =
770 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
771 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
772
773 /* set the low space thresholds for dynamic preallocation */
774 xfs_set_low_space_thresholds(mp);
775
776 /*
777 * If enabled, sparse inode chunk alignment is expected to match the
778 * cluster size. Full inode chunk alignment must match the chunk size,
779 * but that is checked on sb read verification...
780 */
781 if (xfs_has_sparseinodes(mp) &&
782 mp->m_sb.sb_spino_align !=
783 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
784 xfs_warn(mp,
785 "Sparse inode block alignment (%u) must match cluster size (%llu).",
786 mp->m_sb.sb_spino_align,
787 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
788 error = -EINVAL;
789 goto out_remove_uuid;
790 }
791
792 /*
793 * Check that the data (and log if separate) is an ok size.
794 */
795 error = xfs_check_sizes(mp);
796 if (error)
797 goto out_remove_uuid;
798
799 /*
800 * Initialize realtime fields in the mount structure
801 */
802 error = xfs_rtmount_init(mp);
803 if (error) {
804 xfs_warn(mp, "RT mount failed");
805 goto out_remove_uuid;
806 }
807
808 /*
809 * Copies the low order bits of the timestamp and the randomly
810 * set "sequence" number out of a UUID.
811 */
812 mp->m_fixedfsid[0] =
813 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
814 get_unaligned_be16(&sbp->sb_uuid.b[4]);
815 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
816
817 error = xfs_da_mount(mp);
818 if (error) {
819 xfs_warn(mp, "Failed dir/attr init: %d", error);
820 goto out_remove_uuid;
821 }
822
823 /*
824 * Initialize the precomputed transaction reservations values.
825 */
826 xfs_trans_init(mp);
827
828 /*
829 * Allocate and initialize the per-ag data.
830 */
831 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
832 mp->m_sb.sb_dblocks, &mp->m_maxagi);
833 if (error) {
834 xfs_warn(mp, "Failed per-ag init: %d", error);
835 goto out_free_dir;
836 }
837
838 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
839 mp->m_sb.sb_rextents);
840 if (error) {
841 xfs_warn(mp, "Failed rtgroup init: %d", error);
842 goto out_free_perag;
843 }
844
845 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
846 xfs_warn(mp, "no log defined");
847 error = -EFSCORRUPTED;
848 goto out_free_rtgroup;
849 }
850
851 error = xfs_inodegc_register_shrinker(mp);
852 if (error)
853 goto out_fail_wait;
854
855 /*
856 * If we're resuming quota status, pick up the preliminary qflags from
857 * the ondisk superblock so that we know if we should recover dquots.
858 */
859 if (xfs_is_resuming_quotaon(mp))
860 xfs_qm_resume_quotaon(mp);
861
862 /*
863 * Log's mount-time initialization. The first part of recovery can place
864 * some items on the AIL, to be handled when recovery is finished or
865 * cancelled.
866 */
867 error = xfs_log_mount(mp, mp->m_logdev_targp,
868 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
869 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
870 if (error) {
871 xfs_warn(mp, "log mount failed");
872 goto out_inodegc_shrinker;
873 }
874
875 /*
876 * If we're resuming quota status and recovered the log, re-sample the
877 * qflags from the ondisk superblock now that we've recovered it, just
878 * in case someone shut down enforcement just before a crash.
879 */
880 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
881 xfs_qm_resume_quotaon(mp);
882
883 /*
884 * If logged xattrs are still enabled after log recovery finishes, then
885 * they'll be available until unmount. Otherwise, turn them off.
886 */
887 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
888 xfs_set_using_logged_xattrs(mp);
889 else
890 xfs_clear_using_logged_xattrs(mp);
891
892 /* Enable background inode inactivation workers. */
893 xfs_inodegc_start(mp);
894 xfs_blockgc_start(mp);
895
896 /*
897 * Now that we've recovered any pending superblock feature bit
898 * additions, we can finish setting up the attr2 behaviour for the
899 * mount. The noattr2 option overrides the superblock flag, so only
900 * check the superblock feature flag if the mount option is not set.
901 */
902 if (xfs_has_noattr2(mp)) {
903 mp->m_features &= ~XFS_FEAT_ATTR2;
904 } else if (!xfs_has_attr2(mp) &&
905 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
906 mp->m_features |= XFS_FEAT_ATTR2;
907 }
908
909 if (xfs_has_metadir(mp)) {
910 error = xfs_mount_setup_metadir(mp);
911 if (error)
912 goto out_free_metadir;
913 }
914
915 /*
916 * Get and sanity-check the root inode.
917 * Save the pointer to it in the mount structure.
918 */
919 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
920 XFS_ILOCK_EXCL, &rip);
921 if (error) {
922 xfs_warn(mp,
923 "Failed to read root inode 0x%llx, error %d",
924 sbp->sb_rootino, -error);
925 goto out_free_metadir;
926 }
927
928 ASSERT(rip != NULL);
929
930 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
931 xfs_warn(mp, "corrupted root inode %llu: not a directory",
932 (unsigned long long)rip->i_ino);
933 xfs_iunlock(rip, XFS_ILOCK_EXCL);
934 error = -EFSCORRUPTED;
935 goto out_rele_rip;
936 }
937 mp->m_rootip = rip; /* save it */
938
939 xfs_iunlock(rip, XFS_ILOCK_EXCL);
940
941 /*
942 * Initialize realtime inode pointers in the mount structure
943 */
944 error = xfs_rtmount_inodes(mp);
945 if (error) {
946 /*
947 * Free up the root inode.
948 */
949 xfs_warn(mp, "failed to read RT inodes");
950 goto out_rele_rip;
951 }
952
953 /* Make sure the summary counts are ok. */
954 error = xfs_check_summary_counts(mp);
955 if (error)
956 goto out_rtunmount;
957
958 /*
959 * If this is a read-only mount defer the superblock updates until
960 * the next remount into writeable mode. Otherwise we would never
961 * perform the update e.g. for the root filesystem.
962 */
963 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
964 error = xfs_sync_sb(mp, false);
965 if (error) {
966 xfs_warn(mp, "failed to write sb changes");
967 goto out_rtunmount;
968 }
969 }
970
971 /*
972 * Initialise the XFS quota management subsystem for this mount
973 */
974 if (XFS_IS_QUOTA_ON(mp)) {
975 error = xfs_qm_newmount(mp, "amount, "aflags);
976 if (error)
977 goto out_rtunmount;
978 } else {
979 /*
980 * If a file system had quotas running earlier, but decided to
981 * mount without -o uquota/pquota/gquota options, revoke the
982 * quotachecked license.
983 */
984 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
985 xfs_notice(mp, "resetting quota flags");
986 error = xfs_mount_reset_sbqflags(mp);
987 if (error)
988 goto out_rtunmount;
989 }
990 }
991
992 /*
993 * Finish recovering the file system. This part needed to be delayed
994 * until after the root and real-time bitmap inodes were consistently
995 * read in. Temporarily create per-AG space reservations for metadata
996 * btree shape changes because space freeing transactions (for inode
997 * inactivation) require the per-AG reservation in lieu of reserving
998 * blocks.
999 */
1000 error = xfs_fs_reserve_ag_blocks(mp);
1001 if (error && error == -ENOSPC)
1002 xfs_warn(mp,
1003 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1004 error = xfs_log_mount_finish(mp);
1005 xfs_fs_unreserve_ag_blocks(mp);
1006 if (error) {
1007 xfs_warn(mp, "log mount finish failed");
1008 goto out_rtunmount;
1009 }
1010
1011 /*
1012 * Now the log is fully replayed, we can transition to full read-only
1013 * mode for read-only mounts. This will sync all the metadata and clean
1014 * the log so that the recovery we just performed does not have to be
1015 * replayed again on the next mount.
1016 *
1017 * We use the same quiesce mechanism as the rw->ro remount, as they are
1018 * semantically identical operations.
1019 */
1020 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1021 xfs_log_clean(mp);
1022
1023 /*
1024 * Complete the quota initialisation, post-log-replay component.
1025 */
1026 if (quotamount) {
1027 ASSERT(mp->m_qflags == 0);
1028 mp->m_qflags = quotaflags;
1029
1030 xfs_qm_mount_quotas(mp);
1031 }
1032
1033 /*
1034 * Now we are mounted, reserve a small amount of unused space for
1035 * privileged transactions. This is needed so that transaction
1036 * space required for critical operations can dip into this pool
1037 * when at ENOSPC. This is needed for operations like create with
1038 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1039 * are not allowed to use this reserved space.
1040 *
1041 * This may drive us straight to ENOSPC on mount, but that implies
1042 * we were already there on the last unmount. Warn if this occurs.
1043 */
1044 if (!xfs_is_readonly(mp)) {
1045 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1046 if (error)
1047 xfs_warn(mp,
1048 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1049
1050 /* Reserve AG blocks for future btree expansion. */
1051 error = xfs_fs_reserve_ag_blocks(mp);
1052 if (error && error != -ENOSPC)
1053 goto out_agresv;
1054 }
1055
1056 return 0;
1057
1058 out_agresv:
1059 xfs_fs_unreserve_ag_blocks(mp);
1060 xfs_qm_unmount_quotas(mp);
1061 out_rtunmount:
1062 xfs_rtunmount_inodes(mp);
1063 out_rele_rip:
1064 xfs_irele(rip);
1065 /* Clean out dquots that might be in memory after quotacheck. */
1066 xfs_qm_unmount(mp);
1067 out_free_metadir:
1068 if (mp->m_metadirip)
1069 xfs_irele(mp->m_metadirip);
1070
1071 /*
1072 * Inactivate all inodes that might still be in memory after a log
1073 * intent recovery failure so that reclaim can free them. Metadata
1074 * inodes and the root directory shouldn't need inactivation, but the
1075 * mount failed for some reason, so pull down all the state and flee.
1076 */
1077 xfs_inodegc_flush(mp);
1078
1079 /*
1080 * Flush all inode reclamation work and flush the log.
1081 * We have to do this /after/ rtunmount and qm_unmount because those
1082 * two will have scheduled delayed reclaim for the rt/quota inodes.
1083 *
1084 * This is slightly different from the unmountfs call sequence
1085 * because we could be tearing down a partially set up mount. In
1086 * particular, if log_mount_finish fails we bail out without calling
1087 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1088 * quota inodes.
1089 */
1090 xfs_unmount_flush_inodes(mp);
1091 xfs_log_mount_cancel(mp);
1092 out_inodegc_shrinker:
1093 shrinker_free(mp->m_inodegc_shrinker);
1094 out_fail_wait:
1095 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1096 xfs_buftarg_drain(mp->m_logdev_targp);
1097 xfs_buftarg_drain(mp->m_ddev_targp);
1098 out_free_rtgroup:
1099 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1100 out_free_perag:
1101 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1102 out_free_dir:
1103 xfs_da_unmount(mp);
1104 out_remove_uuid:
1105 xfs_uuid_unmount(mp);
1106 out_remove_errortag:
1107 xfs_errortag_del(mp);
1108 out_remove_error_sysfs:
1109 xfs_error_sysfs_del(mp);
1110 out_remove_scrub_stats:
1111 xchk_stats_unregister(mp->m_scrub_stats);
1112 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1113 out_remove_sysfs:
1114 xfs_sysfs_del(&mp->m_kobj);
1115 out:
1116 return error;
1117}
1118
1119/*
1120 * This flushes out the inodes,dquots and the superblock, unmounts the
1121 * log and makes sure that incore structures are freed.
1122 */
1123void
1124xfs_unmountfs(
1125 struct xfs_mount *mp)
1126{
1127 int error;
1128
1129 /*
1130 * Perform all on-disk metadata updates required to inactivate inodes
1131 * that the VFS evicted earlier in the unmount process. Freeing inodes
1132 * and discarding CoW fork preallocations can cause shape changes to
1133 * the free inode and refcount btrees, respectively, so we must finish
1134 * this before we discard the metadata space reservations. Metadata
1135 * inodes and the root directory do not require inactivation.
1136 */
1137 xfs_inodegc_flush(mp);
1138
1139 xfs_blockgc_stop(mp);
1140 xfs_fs_unreserve_ag_blocks(mp);
1141 xfs_qm_unmount_quotas(mp);
1142 xfs_rtunmount_inodes(mp);
1143 xfs_irele(mp->m_rootip);
1144 if (mp->m_metadirip)
1145 xfs_irele(mp->m_metadirip);
1146
1147 xfs_unmount_flush_inodes(mp);
1148
1149 xfs_qm_unmount(mp);
1150
1151 /*
1152 * Unreserve any blocks we have so that when we unmount we don't account
1153 * the reserved free space as used. This is really only necessary for
1154 * lazy superblock counting because it trusts the incore superblock
1155 * counters to be absolutely correct on clean unmount.
1156 *
1157 * We don't bother correcting this elsewhere for lazy superblock
1158 * counting because on mount of an unclean filesystem we reconstruct the
1159 * correct counter value and this is irrelevant.
1160 *
1161 * For non-lazy counter filesystems, this doesn't matter at all because
1162 * we only every apply deltas to the superblock and hence the incore
1163 * value does not matter....
1164 */
1165 error = xfs_reserve_blocks(mp, 0);
1166 if (error)
1167 xfs_warn(mp, "Unable to free reserved block pool. "
1168 "Freespace may not be correct on next mount.");
1169 xfs_unmount_check(mp);
1170
1171 /*
1172 * Indicate that it's ok to clear log incompat bits before cleaning
1173 * the log and writing the unmount record.
1174 */
1175 xfs_set_done_with_log_incompat(mp);
1176 xfs_log_unmount(mp);
1177 xfs_da_unmount(mp);
1178 xfs_uuid_unmount(mp);
1179
1180#if defined(DEBUG)
1181 xfs_errortag_clearall(mp);
1182#endif
1183 shrinker_free(mp->m_inodegc_shrinker);
1184 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1185 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1186 xfs_errortag_del(mp);
1187 xfs_error_sysfs_del(mp);
1188 xchk_stats_unregister(mp->m_scrub_stats);
1189 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1190 xfs_sysfs_del(&mp->m_kobj);
1191}
1192
1193/*
1194 * Determine whether modifications can proceed. The caller specifies the minimum
1195 * freeze level for which modifications should not be allowed. This allows
1196 * certain operations to proceed while the freeze sequence is in progress, if
1197 * necessary.
1198 */
1199bool
1200xfs_fs_writable(
1201 struct xfs_mount *mp,
1202 int level)
1203{
1204 ASSERT(level > SB_UNFROZEN);
1205 if ((mp->m_super->s_writers.frozen >= level) ||
1206 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1207 return false;
1208
1209 return true;
1210}
1211
1212void
1213xfs_add_freecounter(
1214 struct xfs_mount *mp,
1215 struct percpu_counter *counter,
1216 uint64_t delta)
1217{
1218 bool has_resv_pool = (counter == &mp->m_fdblocks);
1219 uint64_t res_used;
1220
1221 /*
1222 * If the reserve pool is depleted, put blocks back into it first.
1223 * Most of the time the pool is full.
1224 */
1225 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1226 percpu_counter_add(counter, delta);
1227 return;
1228 }
1229
1230 spin_lock(&mp->m_sb_lock);
1231 res_used = mp->m_resblks - mp->m_resblks_avail;
1232 if (res_used > delta) {
1233 mp->m_resblks_avail += delta;
1234 } else {
1235 delta -= res_used;
1236 mp->m_resblks_avail = mp->m_resblks;
1237 percpu_counter_add(counter, delta);
1238 }
1239 spin_unlock(&mp->m_sb_lock);
1240}
1241
1242int
1243xfs_dec_freecounter(
1244 struct xfs_mount *mp,
1245 struct percpu_counter *counter,
1246 uint64_t delta,
1247 bool rsvd)
1248{
1249 int64_t lcounter;
1250 uint64_t set_aside = 0;
1251 s32 batch;
1252 bool has_resv_pool;
1253
1254 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1255 has_resv_pool = (counter == &mp->m_fdblocks);
1256 if (rsvd)
1257 ASSERT(has_resv_pool);
1258
1259 /*
1260 * Taking blocks away, need to be more accurate the closer we
1261 * are to zero.
1262 *
1263 * If the counter has a value of less than 2 * max batch size,
1264 * then make everything serialise as we are real close to
1265 * ENOSPC.
1266 */
1267 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1268 XFS_FDBLOCKS_BATCH) < 0)
1269 batch = 1;
1270 else
1271 batch = XFS_FDBLOCKS_BATCH;
1272
1273 /*
1274 * Set aside allocbt blocks because these blocks are tracked as free
1275 * space but not available for allocation. Technically this means that a
1276 * single reservation cannot consume all remaining free space, but the
1277 * ratio of allocbt blocks to usable free blocks should be rather small.
1278 * The tradeoff without this is that filesystems that maintain high
1279 * perag block reservations can over reserve physical block availability
1280 * and fail physical allocation, which leads to much more serious
1281 * problems (i.e. transaction abort, pagecache discards, etc.) than
1282 * slightly premature -ENOSPC.
1283 */
1284 if (has_resv_pool)
1285 set_aside = xfs_fdblocks_unavailable(mp);
1286 percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1287 if (__percpu_counter_compare(counter, set_aside,
1288 XFS_FDBLOCKS_BATCH) >= 0) {
1289 /* we had space! */
1290 return 0;
1291 }
1292
1293 /*
1294 * lock up the sb for dipping into reserves before releasing the space
1295 * that took us to ENOSPC.
1296 */
1297 spin_lock(&mp->m_sb_lock);
1298 percpu_counter_add(counter, delta);
1299 if (!has_resv_pool || !rsvd)
1300 goto fdblocks_enospc;
1301
1302 lcounter = (long long)mp->m_resblks_avail - delta;
1303 if (lcounter >= 0) {
1304 mp->m_resblks_avail = lcounter;
1305 spin_unlock(&mp->m_sb_lock);
1306 return 0;
1307 }
1308 xfs_warn_once(mp,
1309"Reserve blocks depleted! Consider increasing reserve pool size.");
1310
1311fdblocks_enospc:
1312 spin_unlock(&mp->m_sb_lock);
1313 return -ENOSPC;
1314}
1315
1316/*
1317 * Used to free the superblock along various error paths.
1318 */
1319void
1320xfs_freesb(
1321 struct xfs_mount *mp)
1322{
1323 struct xfs_buf *bp = mp->m_sb_bp;
1324
1325 xfs_buf_lock(bp);
1326 mp->m_sb_bp = NULL;
1327 xfs_buf_relse(bp);
1328}
1329
1330/*
1331 * If the underlying (data/log/rt) device is readonly, there are some
1332 * operations that cannot proceed.
1333 */
1334int
1335xfs_dev_is_read_only(
1336 struct xfs_mount *mp,
1337 char *message)
1338{
1339 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1340 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1341 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1342 xfs_notice(mp, "%s required on read-only device.", message);
1343 xfs_notice(mp, "write access unavailable, cannot proceed.");
1344 return -EROFS;
1345 }
1346 return 0;
1347}
1348
1349/* Force the summary counters to be recalculated at next mount. */
1350void
1351xfs_force_summary_recalc(
1352 struct xfs_mount *mp)
1353{
1354 if (!xfs_has_lazysbcount(mp))
1355 return;
1356
1357 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1358}
1359
1360/*
1361 * Enable a log incompat feature flag in the primary superblock. The caller
1362 * cannot have any other transactions in progress.
1363 */
1364int
1365xfs_add_incompat_log_feature(
1366 struct xfs_mount *mp,
1367 uint32_t feature)
1368{
1369 struct xfs_dsb *dsb;
1370 int error;
1371
1372 ASSERT(hweight32(feature) == 1);
1373 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1374
1375 /*
1376 * Force the log to disk and kick the background AIL thread to reduce
1377 * the chances that the bwrite will stall waiting for the AIL to unpin
1378 * the primary superblock buffer. This isn't a data integrity
1379 * operation, so we don't need a synchronous push.
1380 */
1381 error = xfs_log_force(mp, XFS_LOG_SYNC);
1382 if (error)
1383 return error;
1384 xfs_ail_push_all(mp->m_ail);
1385
1386 /*
1387 * Lock the primary superblock buffer to serialize all callers that
1388 * are trying to set feature bits.
1389 */
1390 xfs_buf_lock(mp->m_sb_bp);
1391 xfs_buf_hold(mp->m_sb_bp);
1392
1393 if (xfs_is_shutdown(mp)) {
1394 error = -EIO;
1395 goto rele;
1396 }
1397
1398 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1399 goto rele;
1400
1401 /*
1402 * Write the primary superblock to disk immediately, because we need
1403 * the log_incompat bit to be set in the primary super now to protect
1404 * the log items that we're going to commit later.
1405 */
1406 dsb = mp->m_sb_bp->b_addr;
1407 xfs_sb_to_disk(dsb, &mp->m_sb);
1408 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1409 error = xfs_bwrite(mp->m_sb_bp);
1410 if (error)
1411 goto shutdown;
1412
1413 /*
1414 * Add the feature bits to the incore superblock before we unlock the
1415 * buffer.
1416 */
1417 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1418 xfs_buf_relse(mp->m_sb_bp);
1419
1420 /* Log the superblock to disk. */
1421 return xfs_sync_sb(mp, false);
1422shutdown:
1423 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1424rele:
1425 xfs_buf_relse(mp->m_sb_bp);
1426 return error;
1427}
1428
1429/*
1430 * Clear all the log incompat flags from the superblock.
1431 *
1432 * The caller cannot be in a transaction, must ensure that the log does not
1433 * contain any log items protected by any log incompat bit, and must ensure
1434 * that there are no other threads that depend on the state of the log incompat
1435 * feature flags in the primary super.
1436 *
1437 * Returns true if the superblock is dirty.
1438 */
1439bool
1440xfs_clear_incompat_log_features(
1441 struct xfs_mount *mp)
1442{
1443 bool ret = false;
1444
1445 if (!xfs_has_crc(mp) ||
1446 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1447 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1448 xfs_is_shutdown(mp) ||
1449 !xfs_is_done_with_log_incompat(mp))
1450 return false;
1451
1452 /*
1453 * Update the incore superblock. We synchronize on the primary super
1454 * buffer lock to be consistent with the add function, though at least
1455 * in theory this shouldn't be necessary.
1456 */
1457 xfs_buf_lock(mp->m_sb_bp);
1458 xfs_buf_hold(mp->m_sb_bp);
1459
1460 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1461 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1462 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1463 ret = true;
1464 }
1465
1466 xfs_buf_relse(mp->m_sb_bp);
1467 return ret;
1468}
1469
1470/*
1471 * Update the in-core delayed block counter.
1472 *
1473 * We prefer to update the counter without having to take a spinlock for every
1474 * counter update (i.e. batching). Each change to delayed allocation
1475 * reservations can change can easily exceed the default percpu counter
1476 * batching, so we use a larger batch factor here.
1477 *
1478 * Note that we don't currently have any callers requiring fast summation
1479 * (e.g. percpu_counter_read) so we can use a big batch value here.
1480 */
1481#define XFS_DELALLOC_BATCH (4096)
1482void
1483xfs_mod_delalloc(
1484 struct xfs_inode *ip,
1485 int64_t data_delta,
1486 int64_t ind_delta)
1487{
1488 struct xfs_mount *mp = ip->i_mount;
1489
1490 if (XFS_IS_REALTIME_INODE(ip)) {
1491 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1492 xfs_blen_to_rtbxlen(mp, data_delta),
1493 XFS_DELALLOC_BATCH);
1494 if (!ind_delta)
1495 return;
1496 data_delta = 0;
1497 }
1498 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1499 XFS_DELALLOC_BATCH);
1500}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_error.h"
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
27#include "xfs_icache.h"
28#include "xfs_sysfs.h"
29#include "xfs_rmap_btree.h"
30#include "xfs_refcount_btree.h"
31#include "xfs_reflink.h"
32#include "xfs_extent_busy.h"
33#include "xfs_health.h"
34#include "xfs_trace.h"
35#include "xfs_ag.h"
36
37static DEFINE_MUTEX(xfs_uuid_table_mutex);
38static int xfs_uuid_table_size;
39static uuid_t *xfs_uuid_table;
40
41void
42xfs_uuid_table_free(void)
43{
44 if (xfs_uuid_table_size == 0)
45 return;
46 kmem_free(xfs_uuid_table);
47 xfs_uuid_table = NULL;
48 xfs_uuid_table_size = 0;
49}
50
51/*
52 * See if the UUID is unique among mounted XFS filesystems.
53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54 */
55STATIC int
56xfs_uuid_mount(
57 struct xfs_mount *mp)
58{
59 uuid_t *uuid = &mp->m_sb.sb_uuid;
60 int hole, i;
61
62 /* Publish UUID in struct super_block */
63 uuid_copy(&mp->m_super->s_uuid, uuid);
64
65 if (mp->m_flags & XFS_MOUNT_NOUUID)
66 return 0;
67
68 if (uuid_is_null(uuid)) {
69 xfs_warn(mp, "Filesystem has null UUID - can't mount");
70 return -EINVAL;
71 }
72
73 mutex_lock(&xfs_uuid_table_mutex);
74 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
75 if (uuid_is_null(&xfs_uuid_table[i])) {
76 hole = i;
77 continue;
78 }
79 if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 goto out_duplicate;
81 }
82
83 if (hole < 0) {
84 xfs_uuid_table = krealloc(xfs_uuid_table,
85 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
86 GFP_KERNEL | __GFP_NOFAIL);
87 hole = xfs_uuid_table_size++;
88 }
89 xfs_uuid_table[hole] = *uuid;
90 mutex_unlock(&xfs_uuid_table_mutex);
91
92 return 0;
93
94 out_duplicate:
95 mutex_unlock(&xfs_uuid_table_mutex);
96 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
97 return -EINVAL;
98}
99
100STATIC void
101xfs_uuid_unmount(
102 struct xfs_mount *mp)
103{
104 uuid_t *uuid = &mp->m_sb.sb_uuid;
105 int i;
106
107 if (mp->m_flags & XFS_MOUNT_NOUUID)
108 return;
109
110 mutex_lock(&xfs_uuid_table_mutex);
111 for (i = 0; i < xfs_uuid_table_size; i++) {
112 if (uuid_is_null(&xfs_uuid_table[i]))
113 continue;
114 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 continue;
116 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 break;
118 }
119 ASSERT(i < xfs_uuid_table_size);
120 mutex_unlock(&xfs_uuid_table_mutex);
121}
122
123/*
124 * Check size of device based on the (data/realtime) block count.
125 * Note: this check is used by the growfs code as well as mount.
126 */
127int
128xfs_sb_validate_fsb_count(
129 xfs_sb_t *sbp,
130 uint64_t nblocks)
131{
132 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 ASSERT(sbp->sb_blocklog >= BBSHIFT);
134
135 /* Limited by ULONG_MAX of page cache index */
136 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
137 return -EFBIG;
138 return 0;
139}
140
141/*
142 * xfs_readsb
143 *
144 * Does the initial read of the superblock.
145 */
146int
147xfs_readsb(
148 struct xfs_mount *mp,
149 int flags)
150{
151 unsigned int sector_size;
152 struct xfs_buf *bp;
153 struct xfs_sb *sbp = &mp->m_sb;
154 int error;
155 int loud = !(flags & XFS_MFSI_QUIET);
156 const struct xfs_buf_ops *buf_ops;
157
158 ASSERT(mp->m_sb_bp == NULL);
159 ASSERT(mp->m_ddev_targp != NULL);
160
161 /*
162 * For the initial read, we must guess at the sector
163 * size based on the block device. It's enough to
164 * get the sb_sectsize out of the superblock and
165 * then reread with the proper length.
166 * We don't verify it yet, because it may not be complete.
167 */
168 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
169 buf_ops = NULL;
170
171 /*
172 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 * around at all times to optimize access to the superblock. Therefore,
174 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
175 * elevated.
176 */
177reread:
178 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
179 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
180 buf_ops);
181 if (error) {
182 if (loud)
183 xfs_warn(mp, "SB validate failed with error %d.", error);
184 /* bad CRC means corrupted metadata */
185 if (error == -EFSBADCRC)
186 error = -EFSCORRUPTED;
187 return error;
188 }
189
190 /*
191 * Initialize the mount structure from the superblock.
192 */
193 xfs_sb_from_disk(sbp, bp->b_addr);
194
195 /*
196 * If we haven't validated the superblock, do so now before we try
197 * to check the sector size and reread the superblock appropriately.
198 */
199 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
200 if (loud)
201 xfs_warn(mp, "Invalid superblock magic number");
202 error = -EINVAL;
203 goto release_buf;
204 }
205
206 /*
207 * We must be able to do sector-sized and sector-aligned IO.
208 */
209 if (sector_size > sbp->sb_sectsize) {
210 if (loud)
211 xfs_warn(mp, "device supports %u byte sectors (not %u)",
212 sector_size, sbp->sb_sectsize);
213 error = -ENOSYS;
214 goto release_buf;
215 }
216
217 if (buf_ops == NULL) {
218 /*
219 * Re-read the superblock so the buffer is correctly sized,
220 * and properly verified.
221 */
222 xfs_buf_relse(bp);
223 sector_size = sbp->sb_sectsize;
224 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
225 goto reread;
226 }
227
228 xfs_reinit_percpu_counters(mp);
229
230 /* no need to be quiet anymore, so reset the buf ops */
231 bp->b_ops = &xfs_sb_buf_ops;
232
233 mp->m_sb_bp = bp;
234 xfs_buf_unlock(bp);
235 return 0;
236
237release_buf:
238 xfs_buf_relse(bp);
239 return error;
240}
241
242/*
243 * If the sunit/swidth change would move the precomputed root inode value, we
244 * must reject the ondisk change because repair will stumble over that.
245 * However, we allow the mount to proceed because we never rejected this
246 * combination before. Returns true to update the sb, false otherwise.
247 */
248static inline int
249xfs_check_new_dalign(
250 struct xfs_mount *mp,
251 int new_dalign,
252 bool *update_sb)
253{
254 struct xfs_sb *sbp = &mp->m_sb;
255 xfs_ino_t calc_ino;
256
257 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
258 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
259
260 if (sbp->sb_rootino == calc_ino) {
261 *update_sb = true;
262 return 0;
263 }
264
265 xfs_warn(mp,
266"Cannot change stripe alignment; would require moving root inode.");
267
268 /*
269 * XXX: Next time we add a new incompat feature, this should start
270 * returning -EINVAL to fail the mount. Until then, spit out a warning
271 * that we're ignoring the administrator's instructions.
272 */
273 xfs_warn(mp, "Skipping superblock stripe alignment update.");
274 *update_sb = false;
275 return 0;
276}
277
278/*
279 * If we were provided with new sunit/swidth values as mount options, make sure
280 * that they pass basic alignment and superblock feature checks, and convert
281 * them into the same units (FSB) that everything else expects. This step
282 * /must/ be done before computing the inode geometry.
283 */
284STATIC int
285xfs_validate_new_dalign(
286 struct xfs_mount *mp)
287{
288 if (mp->m_dalign == 0)
289 return 0;
290
291 /*
292 * If stripe unit and stripe width are not multiples
293 * of the fs blocksize turn off alignment.
294 */
295 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
296 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
297 xfs_warn(mp,
298 "alignment check failed: sunit/swidth vs. blocksize(%d)",
299 mp->m_sb.sb_blocksize);
300 return -EINVAL;
301 } else {
302 /*
303 * Convert the stripe unit and width to FSBs.
304 */
305 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
306 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
307 xfs_warn(mp,
308 "alignment check failed: sunit/swidth vs. agsize(%d)",
309 mp->m_sb.sb_agblocks);
310 return -EINVAL;
311 } else if (mp->m_dalign) {
312 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
313 } else {
314 xfs_warn(mp,
315 "alignment check failed: sunit(%d) less than bsize(%d)",
316 mp->m_dalign, mp->m_sb.sb_blocksize);
317 return -EINVAL;
318 }
319 }
320
321 if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
322 xfs_warn(mp,
323"cannot change alignment: superblock does not support data alignment");
324 return -EINVAL;
325 }
326
327 return 0;
328}
329
330/* Update alignment values based on mount options and sb values. */
331STATIC int
332xfs_update_alignment(
333 struct xfs_mount *mp)
334{
335 struct xfs_sb *sbp = &mp->m_sb;
336
337 if (mp->m_dalign) {
338 bool update_sb;
339 int error;
340
341 if (sbp->sb_unit == mp->m_dalign &&
342 sbp->sb_width == mp->m_swidth)
343 return 0;
344
345 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
346 if (error || !update_sb)
347 return error;
348
349 sbp->sb_unit = mp->m_dalign;
350 sbp->sb_width = mp->m_swidth;
351 mp->m_update_sb = true;
352 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
353 xfs_sb_version_hasdalign(&mp->m_sb)) {
354 mp->m_dalign = sbp->sb_unit;
355 mp->m_swidth = sbp->sb_width;
356 }
357
358 return 0;
359}
360
361/*
362 * precalculate the low space thresholds for dynamic speculative preallocation.
363 */
364void
365xfs_set_low_space_thresholds(
366 struct xfs_mount *mp)
367{
368 int i;
369
370 for (i = 0; i < XFS_LOWSP_MAX; i++) {
371 uint64_t space = mp->m_sb.sb_dblocks;
372
373 do_div(space, 100);
374 mp->m_low_space[i] = space * (i + 1);
375 }
376}
377
378/*
379 * Check that the data (and log if separate) is an ok size.
380 */
381STATIC int
382xfs_check_sizes(
383 struct xfs_mount *mp)
384{
385 struct xfs_buf *bp;
386 xfs_daddr_t d;
387 int error;
388
389 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
390 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
391 xfs_warn(mp, "filesystem size mismatch detected");
392 return -EFBIG;
393 }
394 error = xfs_buf_read_uncached(mp->m_ddev_targp,
395 d - XFS_FSS_TO_BB(mp, 1),
396 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
397 if (error) {
398 xfs_warn(mp, "last sector read failed");
399 return error;
400 }
401 xfs_buf_relse(bp);
402
403 if (mp->m_logdev_targp == mp->m_ddev_targp)
404 return 0;
405
406 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
407 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
408 xfs_warn(mp, "log size mismatch detected");
409 return -EFBIG;
410 }
411 error = xfs_buf_read_uncached(mp->m_logdev_targp,
412 d - XFS_FSB_TO_BB(mp, 1),
413 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
414 if (error) {
415 xfs_warn(mp, "log device read failed");
416 return error;
417 }
418 xfs_buf_relse(bp);
419 return 0;
420}
421
422/*
423 * Clear the quotaflags in memory and in the superblock.
424 */
425int
426xfs_mount_reset_sbqflags(
427 struct xfs_mount *mp)
428{
429 mp->m_qflags = 0;
430
431 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
432 if (mp->m_sb.sb_qflags == 0)
433 return 0;
434 spin_lock(&mp->m_sb_lock);
435 mp->m_sb.sb_qflags = 0;
436 spin_unlock(&mp->m_sb_lock);
437
438 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
439 return 0;
440
441 return xfs_sync_sb(mp, false);
442}
443
444uint64_t
445xfs_default_resblks(xfs_mount_t *mp)
446{
447 uint64_t resblks;
448
449 /*
450 * We default to 5% or 8192 fsbs of space reserved, whichever is
451 * smaller. This is intended to cover concurrent allocation
452 * transactions when we initially hit enospc. These each require a 4
453 * block reservation. Hence by default we cover roughly 2000 concurrent
454 * allocation reservations.
455 */
456 resblks = mp->m_sb.sb_dblocks;
457 do_div(resblks, 20);
458 resblks = min_t(uint64_t, resblks, 8192);
459 return resblks;
460}
461
462/* Ensure the summary counts are correct. */
463STATIC int
464xfs_check_summary_counts(
465 struct xfs_mount *mp)
466{
467 /*
468 * The AG0 superblock verifier rejects in-progress filesystems,
469 * so we should never see the flag set this far into mounting.
470 */
471 if (mp->m_sb.sb_inprogress) {
472 xfs_err(mp, "sb_inprogress set after log recovery??");
473 WARN_ON(1);
474 return -EFSCORRUPTED;
475 }
476
477 /*
478 * Now the log is mounted, we know if it was an unclean shutdown or
479 * not. If it was, with the first phase of recovery has completed, we
480 * have consistent AG blocks on disk. We have not recovered EFIs yet,
481 * but they are recovered transactionally in the second recovery phase
482 * later.
483 *
484 * If the log was clean when we mounted, we can check the summary
485 * counters. If any of them are obviously incorrect, we can recompute
486 * them from the AGF headers in the next step.
487 */
488 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
489 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
490 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
491 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
492 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
493
494 /*
495 * We can safely re-initialise incore superblock counters from the
496 * per-ag data. These may not be correct if the filesystem was not
497 * cleanly unmounted, so we waited for recovery to finish before doing
498 * this.
499 *
500 * If the filesystem was cleanly unmounted or the previous check did
501 * not flag anything weird, then we can trust the values in the
502 * superblock to be correct and we don't need to do anything here.
503 * Otherwise, recalculate the summary counters.
504 */
505 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
506 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
507 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
508 return 0;
509
510 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
511}
512
513/*
514 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
515 * internal inode structures can be sitting in the CIL and AIL at this point,
516 * so we need to unpin them, write them back and/or reclaim them before unmount
517 * can proceed.
518 *
519 * An inode cluster that has been freed can have its buffer still pinned in
520 * memory because the transaction is still sitting in a iclog. The stale inodes
521 * on that buffer will be pinned to the buffer until the transaction hits the
522 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
523 * may never see the pinned buffer, so nothing will push out the iclog and
524 * unpin the buffer.
525 *
526 * Hence we need to force the log to unpin everything first. However, log
527 * forces don't wait for the discards they issue to complete, so we have to
528 * explicitly wait for them to complete here as well.
529 *
530 * Then we can tell the world we are unmounting so that error handling knows
531 * that the filesystem is going away and we should error out anything that we
532 * have been retrying in the background. This will prevent never-ending
533 * retries in AIL pushing from hanging the unmount.
534 *
535 * Finally, we can push the AIL to clean all the remaining dirty objects, then
536 * reclaim the remaining inodes that are still in memory at this point in time.
537 */
538static void
539xfs_unmount_flush_inodes(
540 struct xfs_mount *mp)
541{
542 xfs_log_force(mp, XFS_LOG_SYNC);
543 xfs_extent_busy_wait_all(mp);
544 flush_workqueue(xfs_discard_wq);
545
546 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
547
548 xfs_ail_push_all_sync(mp->m_ail);
549 cancel_delayed_work_sync(&mp->m_reclaim_work);
550 xfs_reclaim_inodes(mp);
551 xfs_health_unmount(mp);
552}
553
554static void
555xfs_mount_setup_inode_geom(
556 struct xfs_mount *mp)
557{
558 struct xfs_ino_geometry *igeo = M_IGEO(mp);
559
560 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
561 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
562
563 xfs_ialloc_setup_geometry(mp);
564}
565
566/*
567 * This function does the following on an initial mount of a file system:
568 * - reads the superblock from disk and init the mount struct
569 * - if we're a 32-bit kernel, do a size check on the superblock
570 * so we don't mount terabyte filesystems
571 * - init mount struct realtime fields
572 * - allocate inode hash table for fs
573 * - init directory manager
574 * - perform recovery and init the log manager
575 */
576int
577xfs_mountfs(
578 struct xfs_mount *mp)
579{
580 struct xfs_sb *sbp = &(mp->m_sb);
581 struct xfs_inode *rip;
582 struct xfs_ino_geometry *igeo = M_IGEO(mp);
583 uint64_t resblks;
584 uint quotamount = 0;
585 uint quotaflags = 0;
586 int error = 0;
587
588 xfs_sb_mount_common(mp, sbp);
589
590 /*
591 * Check for a mismatched features2 values. Older kernels read & wrote
592 * into the wrong sb offset for sb_features2 on some platforms due to
593 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
594 * which made older superblock reading/writing routines swap it as a
595 * 64-bit value.
596 *
597 * For backwards compatibility, we make both slots equal.
598 *
599 * If we detect a mismatched field, we OR the set bits into the existing
600 * features2 field in case it has already been modified; we don't want
601 * to lose any features. We then update the bad location with the ORed
602 * value so that older kernels will see any features2 flags. The
603 * superblock writeback code ensures the new sb_features2 is copied to
604 * sb_bad_features2 before it is logged or written to disk.
605 */
606 if (xfs_sb_has_mismatched_features2(sbp)) {
607 xfs_warn(mp, "correcting sb_features alignment problem");
608 sbp->sb_features2 |= sbp->sb_bad_features2;
609 mp->m_update_sb = true;
610
611 /*
612 * Re-check for ATTR2 in case it was found in bad_features2
613 * slot.
614 */
615 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
616 !(mp->m_flags & XFS_MOUNT_NOATTR2))
617 mp->m_flags |= XFS_MOUNT_ATTR2;
618 }
619
620 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
621 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
622 xfs_sb_version_removeattr2(&mp->m_sb);
623 mp->m_update_sb = true;
624
625 /* update sb_versionnum for the clearing of the morebits */
626 if (!sbp->sb_features2)
627 mp->m_update_sb = true;
628 }
629
630 /* always use v2 inodes by default now */
631 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
632 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
633 mp->m_update_sb = true;
634 }
635
636 /*
637 * If we were given new sunit/swidth options, do some basic validation
638 * checks and convert the incore dalign and swidth values to the
639 * same units (FSB) that everything else uses. This /must/ happen
640 * before computing the inode geometry.
641 */
642 error = xfs_validate_new_dalign(mp);
643 if (error)
644 goto out;
645
646 xfs_alloc_compute_maxlevels(mp);
647 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
648 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
649 xfs_mount_setup_inode_geom(mp);
650 xfs_rmapbt_compute_maxlevels(mp);
651 xfs_refcountbt_compute_maxlevels(mp);
652
653 /*
654 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
655 * is NOT aligned turn off m_dalign since allocator alignment is within
656 * an ag, therefore ag has to be aligned at stripe boundary. Note that
657 * we must compute the free space and rmap btree geometry before doing
658 * this.
659 */
660 error = xfs_update_alignment(mp);
661 if (error)
662 goto out;
663
664 /* enable fail_at_unmount as default */
665 mp->m_fail_unmount = true;
666
667 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
668 NULL, mp->m_super->s_id);
669 if (error)
670 goto out;
671
672 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
673 &mp->m_kobj, "stats");
674 if (error)
675 goto out_remove_sysfs;
676
677 error = xfs_error_sysfs_init(mp);
678 if (error)
679 goto out_del_stats;
680
681 error = xfs_errortag_init(mp);
682 if (error)
683 goto out_remove_error_sysfs;
684
685 error = xfs_uuid_mount(mp);
686 if (error)
687 goto out_remove_errortag;
688
689 /*
690 * Update the preferred write size based on the information from the
691 * on-disk superblock.
692 */
693 mp->m_allocsize_log =
694 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
695 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
696
697 /* set the low space thresholds for dynamic preallocation */
698 xfs_set_low_space_thresholds(mp);
699
700 /*
701 * If enabled, sparse inode chunk alignment is expected to match the
702 * cluster size. Full inode chunk alignment must match the chunk size,
703 * but that is checked on sb read verification...
704 */
705 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
706 mp->m_sb.sb_spino_align !=
707 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
708 xfs_warn(mp,
709 "Sparse inode block alignment (%u) must match cluster size (%llu).",
710 mp->m_sb.sb_spino_align,
711 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
712 error = -EINVAL;
713 goto out_remove_uuid;
714 }
715
716 /*
717 * Check that the data (and log if separate) is an ok size.
718 */
719 error = xfs_check_sizes(mp);
720 if (error)
721 goto out_remove_uuid;
722
723 /*
724 * Initialize realtime fields in the mount structure
725 */
726 error = xfs_rtmount_init(mp);
727 if (error) {
728 xfs_warn(mp, "RT mount failed");
729 goto out_remove_uuid;
730 }
731
732 /*
733 * Copies the low order bits of the timestamp and the randomly
734 * set "sequence" number out of a UUID.
735 */
736 mp->m_fixedfsid[0] =
737 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
738 get_unaligned_be16(&sbp->sb_uuid.b[4]);
739 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
740
741 error = xfs_da_mount(mp);
742 if (error) {
743 xfs_warn(mp, "Failed dir/attr init: %d", error);
744 goto out_remove_uuid;
745 }
746
747 /*
748 * Initialize the precomputed transaction reservations values.
749 */
750 xfs_trans_init(mp);
751
752 /*
753 * Allocate and initialize the per-ag data.
754 */
755 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
756 if (error) {
757 xfs_warn(mp, "Failed per-ag init: %d", error);
758 goto out_free_dir;
759 }
760
761 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
762 xfs_warn(mp, "no log defined");
763 error = -EFSCORRUPTED;
764 goto out_free_perag;
765 }
766
767 /*
768 * Log's mount-time initialization. The first part of recovery can place
769 * some items on the AIL, to be handled when recovery is finished or
770 * cancelled.
771 */
772 error = xfs_log_mount(mp, mp->m_logdev_targp,
773 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
774 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
775 if (error) {
776 xfs_warn(mp, "log mount failed");
777 goto out_fail_wait;
778 }
779
780 /* Make sure the summary counts are ok. */
781 error = xfs_check_summary_counts(mp);
782 if (error)
783 goto out_log_dealloc;
784
785 /*
786 * Get and sanity-check the root inode.
787 * Save the pointer to it in the mount structure.
788 */
789 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
790 XFS_ILOCK_EXCL, &rip);
791 if (error) {
792 xfs_warn(mp,
793 "Failed to read root inode 0x%llx, error %d",
794 sbp->sb_rootino, -error);
795 goto out_log_dealloc;
796 }
797
798 ASSERT(rip != NULL);
799
800 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
801 xfs_warn(mp, "corrupted root inode %llu: not a directory",
802 (unsigned long long)rip->i_ino);
803 xfs_iunlock(rip, XFS_ILOCK_EXCL);
804 error = -EFSCORRUPTED;
805 goto out_rele_rip;
806 }
807 mp->m_rootip = rip; /* save it */
808
809 xfs_iunlock(rip, XFS_ILOCK_EXCL);
810
811 /*
812 * Initialize realtime inode pointers in the mount structure
813 */
814 error = xfs_rtmount_inodes(mp);
815 if (error) {
816 /*
817 * Free up the root inode.
818 */
819 xfs_warn(mp, "failed to read RT inodes");
820 goto out_rele_rip;
821 }
822
823 /*
824 * If this is a read-only mount defer the superblock updates until
825 * the next remount into writeable mode. Otherwise we would never
826 * perform the update e.g. for the root filesystem.
827 */
828 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
829 error = xfs_sync_sb(mp, false);
830 if (error) {
831 xfs_warn(mp, "failed to write sb changes");
832 goto out_rtunmount;
833 }
834 }
835
836 /*
837 * Initialise the XFS quota management subsystem for this mount
838 */
839 if (XFS_IS_QUOTA_RUNNING(mp)) {
840 error = xfs_qm_newmount(mp, "amount, "aflags);
841 if (error)
842 goto out_rtunmount;
843 } else {
844 ASSERT(!XFS_IS_QUOTA_ON(mp));
845
846 /*
847 * If a file system had quotas running earlier, but decided to
848 * mount without -o uquota/pquota/gquota options, revoke the
849 * quotachecked license.
850 */
851 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
852 xfs_notice(mp, "resetting quota flags");
853 error = xfs_mount_reset_sbqflags(mp);
854 if (error)
855 goto out_rtunmount;
856 }
857 }
858
859 /*
860 * Finish recovering the file system. This part needed to be delayed
861 * until after the root and real-time bitmap inodes were consistently
862 * read in. Temporarily create per-AG space reservations for metadata
863 * btree shape changes because space freeing transactions (for inode
864 * inactivation) require the per-AG reservation in lieu of reserving
865 * blocks.
866 */
867 error = xfs_fs_reserve_ag_blocks(mp);
868 if (error && error == -ENOSPC)
869 xfs_warn(mp,
870 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
871 error = xfs_log_mount_finish(mp);
872 xfs_fs_unreserve_ag_blocks(mp);
873 if (error) {
874 xfs_warn(mp, "log mount finish failed");
875 goto out_rtunmount;
876 }
877
878 /*
879 * Now the log is fully replayed, we can transition to full read-only
880 * mode for read-only mounts. This will sync all the metadata and clean
881 * the log so that the recovery we just performed does not have to be
882 * replayed again on the next mount.
883 *
884 * We use the same quiesce mechanism as the rw->ro remount, as they are
885 * semantically identical operations.
886 */
887 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
888 XFS_MOUNT_RDONLY) {
889 xfs_log_clean(mp);
890 }
891
892 /*
893 * Complete the quota initialisation, post-log-replay component.
894 */
895 if (quotamount) {
896 ASSERT(mp->m_qflags == 0);
897 mp->m_qflags = quotaflags;
898
899 xfs_qm_mount_quotas(mp);
900 }
901
902 /*
903 * Now we are mounted, reserve a small amount of unused space for
904 * privileged transactions. This is needed so that transaction
905 * space required for critical operations can dip into this pool
906 * when at ENOSPC. This is needed for operations like create with
907 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
908 * are not allowed to use this reserved space.
909 *
910 * This may drive us straight to ENOSPC on mount, but that implies
911 * we were already there on the last unmount. Warn if this occurs.
912 */
913 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
914 resblks = xfs_default_resblks(mp);
915 error = xfs_reserve_blocks(mp, &resblks, NULL);
916 if (error)
917 xfs_warn(mp,
918 "Unable to allocate reserve blocks. Continuing without reserve pool.");
919
920 /* Recover any CoW blocks that never got remapped. */
921 error = xfs_reflink_recover_cow(mp);
922 if (error) {
923 xfs_err(mp,
924 "Error %d recovering leftover CoW allocations.", error);
925 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
926 goto out_quota;
927 }
928
929 /* Reserve AG blocks for future btree expansion. */
930 error = xfs_fs_reserve_ag_blocks(mp);
931 if (error && error != -ENOSPC)
932 goto out_agresv;
933 }
934
935 return 0;
936
937 out_agresv:
938 xfs_fs_unreserve_ag_blocks(mp);
939 out_quota:
940 xfs_qm_unmount_quotas(mp);
941 out_rtunmount:
942 xfs_rtunmount_inodes(mp);
943 out_rele_rip:
944 xfs_irele(rip);
945 /* Clean out dquots that might be in memory after quotacheck. */
946 xfs_qm_unmount(mp);
947 /*
948 * Flush all inode reclamation work and flush the log.
949 * We have to do this /after/ rtunmount and qm_unmount because those
950 * two will have scheduled delayed reclaim for the rt/quota inodes.
951 *
952 * This is slightly different from the unmountfs call sequence
953 * because we could be tearing down a partially set up mount. In
954 * particular, if log_mount_finish fails we bail out without calling
955 * qm_unmount_quotas and therefore rely on qm_unmount to release the
956 * quota inodes.
957 */
958 xfs_unmount_flush_inodes(mp);
959 out_log_dealloc:
960 xfs_log_mount_cancel(mp);
961 out_fail_wait:
962 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
963 xfs_buftarg_drain(mp->m_logdev_targp);
964 xfs_buftarg_drain(mp->m_ddev_targp);
965 out_free_perag:
966 xfs_free_perag(mp);
967 out_free_dir:
968 xfs_da_unmount(mp);
969 out_remove_uuid:
970 xfs_uuid_unmount(mp);
971 out_remove_errortag:
972 xfs_errortag_del(mp);
973 out_remove_error_sysfs:
974 xfs_error_sysfs_del(mp);
975 out_del_stats:
976 xfs_sysfs_del(&mp->m_stats.xs_kobj);
977 out_remove_sysfs:
978 xfs_sysfs_del(&mp->m_kobj);
979 out:
980 return error;
981}
982
983/*
984 * This flushes out the inodes,dquots and the superblock, unmounts the
985 * log and makes sure that incore structures are freed.
986 */
987void
988xfs_unmountfs(
989 struct xfs_mount *mp)
990{
991 uint64_t resblks;
992 int error;
993
994 xfs_blockgc_stop(mp);
995 xfs_fs_unreserve_ag_blocks(mp);
996 xfs_qm_unmount_quotas(mp);
997 xfs_rtunmount_inodes(mp);
998 xfs_irele(mp->m_rootip);
999
1000 xfs_unmount_flush_inodes(mp);
1001
1002 xfs_qm_unmount(mp);
1003
1004 /*
1005 * Unreserve any blocks we have so that when we unmount we don't account
1006 * the reserved free space as used. This is really only necessary for
1007 * lazy superblock counting because it trusts the incore superblock
1008 * counters to be absolutely correct on clean unmount.
1009 *
1010 * We don't bother correcting this elsewhere for lazy superblock
1011 * counting because on mount of an unclean filesystem we reconstruct the
1012 * correct counter value and this is irrelevant.
1013 *
1014 * For non-lazy counter filesystems, this doesn't matter at all because
1015 * we only every apply deltas to the superblock and hence the incore
1016 * value does not matter....
1017 */
1018 resblks = 0;
1019 error = xfs_reserve_blocks(mp, &resblks, NULL);
1020 if (error)
1021 xfs_warn(mp, "Unable to free reserved block pool. "
1022 "Freespace may not be correct on next mount.");
1023
1024 xfs_log_unmount(mp);
1025 xfs_da_unmount(mp);
1026 xfs_uuid_unmount(mp);
1027
1028#if defined(DEBUG)
1029 xfs_errortag_clearall(mp);
1030#endif
1031 xfs_free_perag(mp);
1032
1033 xfs_errortag_del(mp);
1034 xfs_error_sysfs_del(mp);
1035 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1036 xfs_sysfs_del(&mp->m_kobj);
1037}
1038
1039/*
1040 * Determine whether modifications can proceed. The caller specifies the minimum
1041 * freeze level for which modifications should not be allowed. This allows
1042 * certain operations to proceed while the freeze sequence is in progress, if
1043 * necessary.
1044 */
1045bool
1046xfs_fs_writable(
1047 struct xfs_mount *mp,
1048 int level)
1049{
1050 ASSERT(level > SB_UNFROZEN);
1051 if ((mp->m_super->s_writers.frozen >= level) ||
1052 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1053 return false;
1054
1055 return true;
1056}
1057
1058/*
1059 * Deltas for the block count can vary from 1 to very large, but lock contention
1060 * only occurs on frequent small block count updates such as in the delayed
1061 * allocation path for buffered writes (page a time updates). Hence we set
1062 * a large batch count (1024) to minimise global counter updates except when
1063 * we get near to ENOSPC and we have to be very accurate with our updates.
1064 */
1065#define XFS_FDBLOCKS_BATCH 1024
1066int
1067xfs_mod_fdblocks(
1068 struct xfs_mount *mp,
1069 int64_t delta,
1070 bool rsvd)
1071{
1072 int64_t lcounter;
1073 long long res_used;
1074 s32 batch;
1075 uint64_t set_aside;
1076
1077 if (delta > 0) {
1078 /*
1079 * If the reserve pool is depleted, put blocks back into it
1080 * first. Most of the time the pool is full.
1081 */
1082 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1083 percpu_counter_add(&mp->m_fdblocks, delta);
1084 return 0;
1085 }
1086
1087 spin_lock(&mp->m_sb_lock);
1088 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1089
1090 if (res_used > delta) {
1091 mp->m_resblks_avail += delta;
1092 } else {
1093 delta -= res_used;
1094 mp->m_resblks_avail = mp->m_resblks;
1095 percpu_counter_add(&mp->m_fdblocks, delta);
1096 }
1097 spin_unlock(&mp->m_sb_lock);
1098 return 0;
1099 }
1100
1101 /*
1102 * Taking blocks away, need to be more accurate the closer we
1103 * are to zero.
1104 *
1105 * If the counter has a value of less than 2 * max batch size,
1106 * then make everything serialise as we are real close to
1107 * ENOSPC.
1108 */
1109 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1110 XFS_FDBLOCKS_BATCH) < 0)
1111 batch = 1;
1112 else
1113 batch = XFS_FDBLOCKS_BATCH;
1114
1115 /*
1116 * Set aside allocbt blocks because these blocks are tracked as free
1117 * space but not available for allocation. Technically this means that a
1118 * single reservation cannot consume all remaining free space, but the
1119 * ratio of allocbt blocks to usable free blocks should be rather small.
1120 * The tradeoff without this is that filesystems that maintain high
1121 * perag block reservations can over reserve physical block availability
1122 * and fail physical allocation, which leads to much more serious
1123 * problems (i.e. transaction abort, pagecache discards, etc.) than
1124 * slightly premature -ENOSPC.
1125 */
1126 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1127 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1128 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1129 XFS_FDBLOCKS_BATCH) >= 0) {
1130 /* we had space! */
1131 return 0;
1132 }
1133
1134 /*
1135 * lock up the sb for dipping into reserves before releasing the space
1136 * that took us to ENOSPC.
1137 */
1138 spin_lock(&mp->m_sb_lock);
1139 percpu_counter_add(&mp->m_fdblocks, -delta);
1140 if (!rsvd)
1141 goto fdblocks_enospc;
1142
1143 lcounter = (long long)mp->m_resblks_avail + delta;
1144 if (lcounter >= 0) {
1145 mp->m_resblks_avail = lcounter;
1146 spin_unlock(&mp->m_sb_lock);
1147 return 0;
1148 }
1149 xfs_warn_once(mp,
1150"Reserve blocks depleted! Consider increasing reserve pool size.");
1151
1152fdblocks_enospc:
1153 spin_unlock(&mp->m_sb_lock);
1154 return -ENOSPC;
1155}
1156
1157int
1158xfs_mod_frextents(
1159 struct xfs_mount *mp,
1160 int64_t delta)
1161{
1162 int64_t lcounter;
1163 int ret = 0;
1164
1165 spin_lock(&mp->m_sb_lock);
1166 lcounter = mp->m_sb.sb_frextents + delta;
1167 if (lcounter < 0)
1168 ret = -ENOSPC;
1169 else
1170 mp->m_sb.sb_frextents = lcounter;
1171 spin_unlock(&mp->m_sb_lock);
1172 return ret;
1173}
1174
1175/*
1176 * Used to free the superblock along various error paths.
1177 */
1178void
1179xfs_freesb(
1180 struct xfs_mount *mp)
1181{
1182 struct xfs_buf *bp = mp->m_sb_bp;
1183
1184 xfs_buf_lock(bp);
1185 mp->m_sb_bp = NULL;
1186 xfs_buf_relse(bp);
1187}
1188
1189/*
1190 * If the underlying (data/log/rt) device is readonly, there are some
1191 * operations that cannot proceed.
1192 */
1193int
1194xfs_dev_is_read_only(
1195 struct xfs_mount *mp,
1196 char *message)
1197{
1198 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1199 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1200 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1201 xfs_notice(mp, "%s required on read-only device.", message);
1202 xfs_notice(mp, "write access unavailable, cannot proceed.");
1203 return -EROFS;
1204 }
1205 return 0;
1206}
1207
1208/* Force the summary counters to be recalculated at next mount. */
1209void
1210xfs_force_summary_recalc(
1211 struct xfs_mount *mp)
1212{
1213 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1214 return;
1215
1216 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1217}
1218
1219/*
1220 * Update the in-core delayed block counter.
1221 *
1222 * We prefer to update the counter without having to take a spinlock for every
1223 * counter update (i.e. batching). Each change to delayed allocation
1224 * reservations can change can easily exceed the default percpu counter
1225 * batching, so we use a larger batch factor here.
1226 *
1227 * Note that we don't currently have any callers requiring fast summation
1228 * (e.g. percpu_counter_read) so we can use a big batch value here.
1229 */
1230#define XFS_DELALLOC_BATCH (4096)
1231void
1232xfs_mod_delalloc(
1233 struct xfs_mount *mp,
1234 int64_t delta)
1235{
1236 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1237 XFS_DELALLOC_BATCH);
1238}