Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37#include "xfs_rtbitmap.h"
38#include "xfs_metafile.h"
39#include "xfs_rtgroup.h"
40#include "scrub/stats.h"
41
42static DEFINE_MUTEX(xfs_uuid_table_mutex);
43static int xfs_uuid_table_size;
44static uuid_t *xfs_uuid_table;
45
46void
47xfs_uuid_table_free(void)
48{
49 if (xfs_uuid_table_size == 0)
50 return;
51 kfree(xfs_uuid_table);
52 xfs_uuid_table = NULL;
53 xfs_uuid_table_size = 0;
54}
55
56/*
57 * See if the UUID is unique among mounted XFS filesystems.
58 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
59 */
60STATIC int
61xfs_uuid_mount(
62 struct xfs_mount *mp)
63{
64 uuid_t *uuid = &mp->m_sb.sb_uuid;
65 int hole, i;
66
67 /* Publish UUID in struct super_block */
68 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
69
70 if (xfs_has_nouuid(mp))
71 return 0;
72
73 if (uuid_is_null(uuid)) {
74 xfs_warn(mp, "Filesystem has null UUID - can't mount");
75 return -EINVAL;
76 }
77
78 mutex_lock(&xfs_uuid_table_mutex);
79 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
80 if (uuid_is_null(&xfs_uuid_table[i])) {
81 hole = i;
82 continue;
83 }
84 if (uuid_equal(uuid, &xfs_uuid_table[i]))
85 goto out_duplicate;
86 }
87
88 if (hole < 0) {
89 xfs_uuid_table = krealloc(xfs_uuid_table,
90 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
91 GFP_KERNEL | __GFP_NOFAIL);
92 hole = xfs_uuid_table_size++;
93 }
94 xfs_uuid_table[hole] = *uuid;
95 mutex_unlock(&xfs_uuid_table_mutex);
96
97 return 0;
98
99 out_duplicate:
100 mutex_unlock(&xfs_uuid_table_mutex);
101 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
102 return -EINVAL;
103}
104
105STATIC void
106xfs_uuid_unmount(
107 struct xfs_mount *mp)
108{
109 uuid_t *uuid = &mp->m_sb.sb_uuid;
110 int i;
111
112 if (xfs_has_nouuid(mp))
113 return;
114
115 mutex_lock(&xfs_uuid_table_mutex);
116 for (i = 0; i < xfs_uuid_table_size; i++) {
117 if (uuid_is_null(&xfs_uuid_table[i]))
118 continue;
119 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
120 continue;
121 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
122 break;
123 }
124 ASSERT(i < xfs_uuid_table_size);
125 mutex_unlock(&xfs_uuid_table_mutex);
126}
127
128/*
129 * Check size of device based on the (data/realtime) block count.
130 * Note: this check is used by the growfs code as well as mount.
131 */
132int
133xfs_sb_validate_fsb_count(
134 xfs_sb_t *sbp,
135 uint64_t nblocks)
136{
137 uint64_t max_bytes;
138
139 ASSERT(sbp->sb_blocklog >= BBSHIFT);
140
141 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
142 return -EFBIG;
143
144 /* Limited by ULONG_MAX of page cache index */
145 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
146 return -EFBIG;
147 return 0;
148}
149
150/*
151 * xfs_readsb
152 *
153 * Does the initial read of the superblock.
154 */
155int
156xfs_readsb(
157 struct xfs_mount *mp,
158 int flags)
159{
160 unsigned int sector_size;
161 struct xfs_buf *bp;
162 struct xfs_sb *sbp = &mp->m_sb;
163 int error;
164 int loud = !(flags & XFS_MFSI_QUIET);
165 const struct xfs_buf_ops *buf_ops;
166
167 ASSERT(mp->m_sb_bp == NULL);
168 ASSERT(mp->m_ddev_targp != NULL);
169
170 /*
171 * For the initial read, we must guess at the sector
172 * size based on the block device. It's enough to
173 * get the sb_sectsize out of the superblock and
174 * then reread with the proper length.
175 * We don't verify it yet, because it may not be complete.
176 */
177 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
178 buf_ops = NULL;
179
180 /*
181 * Allocate a (locked) buffer to hold the superblock. This will be kept
182 * around at all times to optimize access to the superblock. Therefore,
183 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
184 * elevated.
185 */
186reread:
187 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
188 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
189 buf_ops);
190 if (error) {
191 if (loud)
192 xfs_warn(mp, "SB validate failed with error %d.", error);
193 /* bad CRC means corrupted metadata */
194 if (error == -EFSBADCRC)
195 error = -EFSCORRUPTED;
196 return error;
197 }
198
199 /*
200 * Initialize the mount structure from the superblock.
201 */
202 xfs_sb_from_disk(sbp, bp->b_addr);
203
204 /*
205 * If we haven't validated the superblock, do so now before we try
206 * to check the sector size and reread the superblock appropriately.
207 */
208 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 if (loud)
210 xfs_warn(mp, "Invalid superblock magic number");
211 error = -EINVAL;
212 goto release_buf;
213 }
214
215 /*
216 * We must be able to do sector-sized and sector-aligned IO.
217 */
218 if (sector_size > sbp->sb_sectsize) {
219 if (loud)
220 xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 sector_size, sbp->sb_sectsize);
222 error = -ENOSYS;
223 goto release_buf;
224 }
225
226 if (buf_ops == NULL) {
227 /*
228 * Re-read the superblock so the buffer is correctly sized,
229 * and properly verified.
230 */
231 xfs_buf_relse(bp);
232 sector_size = sbp->sb_sectsize;
233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 goto reread;
235 }
236
237 mp->m_features |= xfs_sb_version_to_features(sbp);
238 xfs_reinit_percpu_counters(mp);
239
240 /*
241 * If logged xattrs are enabled after log recovery finishes, then set
242 * the opstate so that log recovery will work properly.
243 */
244 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 xfs_set_using_logged_xattrs(mp);
246
247 /* no need to be quiet anymore, so reset the buf ops */
248 bp->b_ops = &xfs_sb_buf_ops;
249
250 mp->m_sb_bp = bp;
251 xfs_buf_unlock(bp);
252 return 0;
253
254release_buf:
255 xfs_buf_relse(bp);
256 return error;
257}
258
259/*
260 * If the sunit/swidth change would move the precomputed root inode value, we
261 * must reject the ondisk change because repair will stumble over that.
262 * However, we allow the mount to proceed because we never rejected this
263 * combination before. Returns true to update the sb, false otherwise.
264 */
265static inline int
266xfs_check_new_dalign(
267 struct xfs_mount *mp,
268 int new_dalign,
269 bool *update_sb)
270{
271 struct xfs_sb *sbp = &mp->m_sb;
272 xfs_ino_t calc_ino;
273
274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
276
277 if (sbp->sb_rootino == calc_ino) {
278 *update_sb = true;
279 return 0;
280 }
281
282 xfs_warn(mp,
283"Cannot change stripe alignment; would require moving root inode.");
284
285 /*
286 * XXX: Next time we add a new incompat feature, this should start
287 * returning -EINVAL to fail the mount. Until then, spit out a warning
288 * that we're ignoring the administrator's instructions.
289 */
290 xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 *update_sb = false;
292 return 0;
293}
294
295/*
296 * If we were provided with new sunit/swidth values as mount options, make sure
297 * that they pass basic alignment and superblock feature checks, and convert
298 * them into the same units (FSB) that everything else expects. This step
299 * /must/ be done before computing the inode geometry.
300 */
301STATIC int
302xfs_validate_new_dalign(
303 struct xfs_mount *mp)
304{
305 if (mp->m_dalign == 0)
306 return 0;
307
308 /*
309 * If stripe unit and stripe width are not multiples
310 * of the fs blocksize turn off alignment.
311 */
312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 xfs_warn(mp,
315 "alignment check failed: sunit/swidth vs. blocksize(%d)",
316 mp->m_sb.sb_blocksize);
317 return -EINVAL;
318 }
319
320 /*
321 * Convert the stripe unit and width to FSBs.
322 */
323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 xfs_warn(mp,
326 "alignment check failed: sunit/swidth vs. agsize(%d)",
327 mp->m_sb.sb_agblocks);
328 return -EINVAL;
329 }
330
331 if (!mp->m_dalign) {
332 xfs_warn(mp,
333 "alignment check failed: sunit(%d) less than bsize(%d)",
334 mp->m_dalign, mp->m_sb.sb_blocksize);
335 return -EINVAL;
336 }
337
338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339
340 if (!xfs_has_dalign(mp)) {
341 xfs_warn(mp,
342"cannot change alignment: superblock does not support data alignment");
343 return -EINVAL;
344 }
345
346 return 0;
347}
348
349/* Update alignment values based on mount options and sb values. */
350STATIC int
351xfs_update_alignment(
352 struct xfs_mount *mp)
353{
354 struct xfs_sb *sbp = &mp->m_sb;
355
356 if (mp->m_dalign) {
357 bool update_sb;
358 int error;
359
360 if (sbp->sb_unit == mp->m_dalign &&
361 sbp->sb_width == mp->m_swidth)
362 return 0;
363
364 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
365 if (error || !update_sb)
366 return error;
367
368 sbp->sb_unit = mp->m_dalign;
369 sbp->sb_width = mp->m_swidth;
370 mp->m_update_sb = true;
371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 mp->m_dalign = sbp->sb_unit;
373 mp->m_swidth = sbp->sb_width;
374 }
375
376 return 0;
377}
378
379/*
380 * precalculate the low space thresholds for dynamic speculative preallocation.
381 */
382void
383xfs_set_low_space_thresholds(
384 struct xfs_mount *mp)
385{
386 uint64_t dblocks = mp->m_sb.sb_dblocks;
387 uint64_t rtexts = mp->m_sb.sb_rextents;
388 int i;
389
390 do_div(dblocks, 100);
391 do_div(rtexts, 100);
392
393 for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 mp->m_low_space[i] = dblocks * (i + 1);
395 mp->m_low_rtexts[i] = rtexts * (i + 1);
396 }
397}
398
399/*
400 * Check that the data (and log if separate) is an ok size.
401 */
402STATIC int
403xfs_check_sizes(
404 struct xfs_mount *mp)
405{
406 struct xfs_buf *bp;
407 xfs_daddr_t d;
408 int error;
409
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 xfs_warn(mp, "filesystem size mismatch detected");
413 return -EFBIG;
414 }
415 error = xfs_buf_read_uncached(mp->m_ddev_targp,
416 d - XFS_FSS_TO_BB(mp, 1),
417 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
418 if (error) {
419 xfs_warn(mp, "last sector read failed");
420 return error;
421 }
422 xfs_buf_relse(bp);
423
424 if (mp->m_logdev_targp == mp->m_ddev_targp)
425 return 0;
426
427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 xfs_warn(mp, "log size mismatch detected");
430 return -EFBIG;
431 }
432 error = xfs_buf_read_uncached(mp->m_logdev_targp,
433 d - XFS_FSB_TO_BB(mp, 1),
434 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
435 if (error) {
436 xfs_warn(mp, "log device read failed");
437 return error;
438 }
439 xfs_buf_relse(bp);
440 return 0;
441}
442
443/*
444 * Clear the quotaflags in memory and in the superblock.
445 */
446int
447xfs_mount_reset_sbqflags(
448 struct xfs_mount *mp)
449{
450 mp->m_qflags = 0;
451
452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 if (mp->m_sb.sb_qflags == 0)
454 return 0;
455 spin_lock(&mp->m_sb_lock);
456 mp->m_sb.sb_qflags = 0;
457 spin_unlock(&mp->m_sb_lock);
458
459 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
460 return 0;
461
462 return xfs_sync_sb(mp, false);
463}
464
465uint64_t
466xfs_default_resblks(xfs_mount_t *mp)
467{
468 uint64_t resblks;
469
470 /*
471 * We default to 5% or 8192 fsbs of space reserved, whichever is
472 * smaller. This is intended to cover concurrent allocation
473 * transactions when we initially hit enospc. These each require a 4
474 * block reservation. Hence by default we cover roughly 2000 concurrent
475 * allocation reservations.
476 */
477 resblks = mp->m_sb.sb_dblocks;
478 do_div(resblks, 20);
479 resblks = min_t(uint64_t, resblks, 8192);
480 return resblks;
481}
482
483/* Ensure the summary counts are correct. */
484STATIC int
485xfs_check_summary_counts(
486 struct xfs_mount *mp)
487{
488 int error = 0;
489
490 /*
491 * The AG0 superblock verifier rejects in-progress filesystems,
492 * so we should never see the flag set this far into mounting.
493 */
494 if (mp->m_sb.sb_inprogress) {
495 xfs_err(mp, "sb_inprogress set after log recovery??");
496 WARN_ON(1);
497 return -EFSCORRUPTED;
498 }
499
500 /*
501 * Now the log is mounted, we know if it was an unclean shutdown or
502 * not. If it was, with the first phase of recovery has completed, we
503 * have consistent AG blocks on disk. We have not recovered EFIs yet,
504 * but they are recovered transactionally in the second recovery phase
505 * later.
506 *
507 * If the log was clean when we mounted, we can check the summary
508 * counters. If any of them are obviously incorrect, we can recompute
509 * them from the AGF headers in the next step.
510 */
511 if (xfs_is_clean(mp) &&
512 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
513 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
514 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
515 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
516
517 /*
518 * We can safely re-initialise incore superblock counters from the
519 * per-ag data. These may not be correct if the filesystem was not
520 * cleanly unmounted, so we waited for recovery to finish before doing
521 * this.
522 *
523 * If the filesystem was cleanly unmounted or the previous check did
524 * not flag anything weird, then we can trust the values in the
525 * superblock to be correct and we don't need to do anything here.
526 * Otherwise, recalculate the summary counters.
527 */
528 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
529 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
530 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
531 if (error)
532 return error;
533 }
534
535 /*
536 * Older kernels misused sb_frextents to reflect both incore
537 * reservations made by running transactions and the actual count of
538 * free rt extents in the ondisk metadata. Transactions committed
539 * during runtime can therefore contain a superblock update that
540 * undercounts the number of free rt extents tracked in the rt bitmap.
541 * A clean unmount record will have the correct frextents value since
542 * there can be no other transactions running at that point.
543 *
544 * If we're mounting the rt volume after recovering the log, recompute
545 * frextents from the rtbitmap file to fix the inconsistency.
546 */
547 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
548 error = xfs_rtalloc_reinit_frextents(mp);
549 if (error)
550 return error;
551 }
552
553 return 0;
554}
555
556static void
557xfs_unmount_check(
558 struct xfs_mount *mp)
559{
560 if (xfs_is_shutdown(mp))
561 return;
562
563 if (percpu_counter_sum(&mp->m_ifree) >
564 percpu_counter_sum(&mp->m_icount)) {
565 xfs_alert(mp, "ifree/icount mismatch at unmount");
566 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
567 }
568}
569
570/*
571 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
572 * internal inode structures can be sitting in the CIL and AIL at this point,
573 * so we need to unpin them, write them back and/or reclaim them before unmount
574 * can proceed. In other words, callers are required to have inactivated all
575 * inodes.
576 *
577 * An inode cluster that has been freed can have its buffer still pinned in
578 * memory because the transaction is still sitting in a iclog. The stale inodes
579 * on that buffer will be pinned to the buffer until the transaction hits the
580 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
581 * may never see the pinned buffer, so nothing will push out the iclog and
582 * unpin the buffer.
583 *
584 * Hence we need to force the log to unpin everything first. However, log
585 * forces don't wait for the discards they issue to complete, so we have to
586 * explicitly wait for them to complete here as well.
587 *
588 * Then we can tell the world we are unmounting so that error handling knows
589 * that the filesystem is going away and we should error out anything that we
590 * have been retrying in the background. This will prevent never-ending
591 * retries in AIL pushing from hanging the unmount.
592 *
593 * Finally, we can push the AIL to clean all the remaining dirty objects, then
594 * reclaim the remaining inodes that are still in memory at this point in time.
595 */
596static void
597xfs_unmount_flush_inodes(
598 struct xfs_mount *mp)
599{
600 xfs_log_force(mp, XFS_LOG_SYNC);
601 xfs_extent_busy_wait_all(mp);
602 flush_workqueue(xfs_discard_wq);
603
604 xfs_set_unmounting(mp);
605
606 xfs_ail_push_all_sync(mp->m_ail);
607 xfs_inodegc_stop(mp);
608 cancel_delayed_work_sync(&mp->m_reclaim_work);
609 xfs_reclaim_inodes(mp);
610 xfs_health_unmount(mp);
611}
612
613static void
614xfs_mount_setup_inode_geom(
615 struct xfs_mount *mp)
616{
617 struct xfs_ino_geometry *igeo = M_IGEO(mp);
618
619 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
620 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
621
622 xfs_ialloc_setup_geometry(mp);
623}
624
625/* Mount the metadata directory tree root. */
626STATIC int
627xfs_mount_setup_metadir(
628 struct xfs_mount *mp)
629{
630 int error;
631
632 /* Load the metadata directory root inode into memory. */
633 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
634 &mp->m_metadirip);
635 if (error)
636 xfs_warn(mp, "Failed to load metadir root directory, error %d",
637 error);
638 return error;
639}
640
641/* Compute maximum possible height for per-AG btree types for this fs. */
642static inline void
643xfs_agbtree_compute_maxlevels(
644 struct xfs_mount *mp)
645{
646 unsigned int levels;
647
648 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
649 levels = max(levels, mp->m_rmap_maxlevels);
650 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
651}
652
653/*
654 * This function does the following on an initial mount of a file system:
655 * - reads the superblock from disk and init the mount struct
656 * - if we're a 32-bit kernel, do a size check on the superblock
657 * so we don't mount terabyte filesystems
658 * - init mount struct realtime fields
659 * - allocate inode hash table for fs
660 * - init directory manager
661 * - perform recovery and init the log manager
662 */
663int
664xfs_mountfs(
665 struct xfs_mount *mp)
666{
667 struct xfs_sb *sbp = &(mp->m_sb);
668 struct xfs_inode *rip;
669 struct xfs_ino_geometry *igeo = M_IGEO(mp);
670 uint quotamount = 0;
671 uint quotaflags = 0;
672 int error = 0;
673
674 xfs_sb_mount_common(mp, sbp);
675
676 /*
677 * Check for a mismatched features2 values. Older kernels read & wrote
678 * into the wrong sb offset for sb_features2 on some platforms due to
679 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
680 * which made older superblock reading/writing routines swap it as a
681 * 64-bit value.
682 *
683 * For backwards compatibility, we make both slots equal.
684 *
685 * If we detect a mismatched field, we OR the set bits into the existing
686 * features2 field in case it has already been modified; we don't want
687 * to lose any features. We then update the bad location with the ORed
688 * value so that older kernels will see any features2 flags. The
689 * superblock writeback code ensures the new sb_features2 is copied to
690 * sb_bad_features2 before it is logged or written to disk.
691 */
692 if (xfs_sb_has_mismatched_features2(sbp)) {
693 xfs_warn(mp, "correcting sb_features alignment problem");
694 sbp->sb_features2 |= sbp->sb_bad_features2;
695 mp->m_update_sb = true;
696 }
697
698
699 /* always use v2 inodes by default now */
700 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
701 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
702 mp->m_features |= XFS_FEAT_NLINK;
703 mp->m_update_sb = true;
704 }
705
706 /*
707 * If we were given new sunit/swidth options, do some basic validation
708 * checks and convert the incore dalign and swidth values to the
709 * same units (FSB) that everything else uses. This /must/ happen
710 * before computing the inode geometry.
711 */
712 error = xfs_validate_new_dalign(mp);
713 if (error)
714 goto out;
715
716 xfs_alloc_compute_maxlevels(mp);
717 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
718 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
719 xfs_mount_setup_inode_geom(mp);
720 xfs_rmapbt_compute_maxlevels(mp);
721 xfs_refcountbt_compute_maxlevels(mp);
722
723 xfs_agbtree_compute_maxlevels(mp);
724
725 /*
726 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
727 * is NOT aligned turn off m_dalign since allocator alignment is within
728 * an ag, therefore ag has to be aligned at stripe boundary. Note that
729 * we must compute the free space and rmap btree geometry before doing
730 * this.
731 */
732 error = xfs_update_alignment(mp);
733 if (error)
734 goto out;
735
736 /* enable fail_at_unmount as default */
737 mp->m_fail_unmount = true;
738
739 super_set_sysfs_name_id(mp->m_super);
740
741 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
742 NULL, mp->m_super->s_id);
743 if (error)
744 goto out;
745
746 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
747 &mp->m_kobj, "stats");
748 if (error)
749 goto out_remove_sysfs;
750
751 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
752
753 error = xfs_error_sysfs_init(mp);
754 if (error)
755 goto out_remove_scrub_stats;
756
757 error = xfs_errortag_init(mp);
758 if (error)
759 goto out_remove_error_sysfs;
760
761 error = xfs_uuid_mount(mp);
762 if (error)
763 goto out_remove_errortag;
764
765 /*
766 * Update the preferred write size based on the information from the
767 * on-disk superblock.
768 */
769 mp->m_allocsize_log =
770 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
771 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
772
773 /* set the low space thresholds for dynamic preallocation */
774 xfs_set_low_space_thresholds(mp);
775
776 /*
777 * If enabled, sparse inode chunk alignment is expected to match the
778 * cluster size. Full inode chunk alignment must match the chunk size,
779 * but that is checked on sb read verification...
780 */
781 if (xfs_has_sparseinodes(mp) &&
782 mp->m_sb.sb_spino_align !=
783 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
784 xfs_warn(mp,
785 "Sparse inode block alignment (%u) must match cluster size (%llu).",
786 mp->m_sb.sb_spino_align,
787 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
788 error = -EINVAL;
789 goto out_remove_uuid;
790 }
791
792 /*
793 * Check that the data (and log if separate) is an ok size.
794 */
795 error = xfs_check_sizes(mp);
796 if (error)
797 goto out_remove_uuid;
798
799 /*
800 * Initialize realtime fields in the mount structure
801 */
802 error = xfs_rtmount_init(mp);
803 if (error) {
804 xfs_warn(mp, "RT mount failed");
805 goto out_remove_uuid;
806 }
807
808 /*
809 * Copies the low order bits of the timestamp and the randomly
810 * set "sequence" number out of a UUID.
811 */
812 mp->m_fixedfsid[0] =
813 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
814 get_unaligned_be16(&sbp->sb_uuid.b[4]);
815 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
816
817 error = xfs_da_mount(mp);
818 if (error) {
819 xfs_warn(mp, "Failed dir/attr init: %d", error);
820 goto out_remove_uuid;
821 }
822
823 /*
824 * Initialize the precomputed transaction reservations values.
825 */
826 xfs_trans_init(mp);
827
828 /*
829 * Allocate and initialize the per-ag data.
830 */
831 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
832 mp->m_sb.sb_dblocks, &mp->m_maxagi);
833 if (error) {
834 xfs_warn(mp, "Failed per-ag init: %d", error);
835 goto out_free_dir;
836 }
837
838 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
839 mp->m_sb.sb_rextents);
840 if (error) {
841 xfs_warn(mp, "Failed rtgroup init: %d", error);
842 goto out_free_perag;
843 }
844
845 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
846 xfs_warn(mp, "no log defined");
847 error = -EFSCORRUPTED;
848 goto out_free_rtgroup;
849 }
850
851 error = xfs_inodegc_register_shrinker(mp);
852 if (error)
853 goto out_fail_wait;
854
855 /*
856 * If we're resuming quota status, pick up the preliminary qflags from
857 * the ondisk superblock so that we know if we should recover dquots.
858 */
859 if (xfs_is_resuming_quotaon(mp))
860 xfs_qm_resume_quotaon(mp);
861
862 /*
863 * Log's mount-time initialization. The first part of recovery can place
864 * some items on the AIL, to be handled when recovery is finished or
865 * cancelled.
866 */
867 error = xfs_log_mount(mp, mp->m_logdev_targp,
868 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
869 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
870 if (error) {
871 xfs_warn(mp, "log mount failed");
872 goto out_inodegc_shrinker;
873 }
874
875 /*
876 * If we're resuming quota status and recovered the log, re-sample the
877 * qflags from the ondisk superblock now that we've recovered it, just
878 * in case someone shut down enforcement just before a crash.
879 */
880 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
881 xfs_qm_resume_quotaon(mp);
882
883 /*
884 * If logged xattrs are still enabled after log recovery finishes, then
885 * they'll be available until unmount. Otherwise, turn them off.
886 */
887 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
888 xfs_set_using_logged_xattrs(mp);
889 else
890 xfs_clear_using_logged_xattrs(mp);
891
892 /* Enable background inode inactivation workers. */
893 xfs_inodegc_start(mp);
894 xfs_blockgc_start(mp);
895
896 /*
897 * Now that we've recovered any pending superblock feature bit
898 * additions, we can finish setting up the attr2 behaviour for the
899 * mount. The noattr2 option overrides the superblock flag, so only
900 * check the superblock feature flag if the mount option is not set.
901 */
902 if (xfs_has_noattr2(mp)) {
903 mp->m_features &= ~XFS_FEAT_ATTR2;
904 } else if (!xfs_has_attr2(mp) &&
905 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
906 mp->m_features |= XFS_FEAT_ATTR2;
907 }
908
909 if (xfs_has_metadir(mp)) {
910 error = xfs_mount_setup_metadir(mp);
911 if (error)
912 goto out_free_metadir;
913 }
914
915 /*
916 * Get and sanity-check the root inode.
917 * Save the pointer to it in the mount structure.
918 */
919 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
920 XFS_ILOCK_EXCL, &rip);
921 if (error) {
922 xfs_warn(mp,
923 "Failed to read root inode 0x%llx, error %d",
924 sbp->sb_rootino, -error);
925 goto out_free_metadir;
926 }
927
928 ASSERT(rip != NULL);
929
930 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
931 xfs_warn(mp, "corrupted root inode %llu: not a directory",
932 (unsigned long long)rip->i_ino);
933 xfs_iunlock(rip, XFS_ILOCK_EXCL);
934 error = -EFSCORRUPTED;
935 goto out_rele_rip;
936 }
937 mp->m_rootip = rip; /* save it */
938
939 xfs_iunlock(rip, XFS_ILOCK_EXCL);
940
941 /*
942 * Initialize realtime inode pointers in the mount structure
943 */
944 error = xfs_rtmount_inodes(mp);
945 if (error) {
946 /*
947 * Free up the root inode.
948 */
949 xfs_warn(mp, "failed to read RT inodes");
950 goto out_rele_rip;
951 }
952
953 /* Make sure the summary counts are ok. */
954 error = xfs_check_summary_counts(mp);
955 if (error)
956 goto out_rtunmount;
957
958 /*
959 * If this is a read-only mount defer the superblock updates until
960 * the next remount into writeable mode. Otherwise we would never
961 * perform the update e.g. for the root filesystem.
962 */
963 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
964 error = xfs_sync_sb(mp, false);
965 if (error) {
966 xfs_warn(mp, "failed to write sb changes");
967 goto out_rtunmount;
968 }
969 }
970
971 /*
972 * Initialise the XFS quota management subsystem for this mount
973 */
974 if (XFS_IS_QUOTA_ON(mp)) {
975 error = xfs_qm_newmount(mp, "amount, "aflags);
976 if (error)
977 goto out_rtunmount;
978 } else {
979 /*
980 * If a file system had quotas running earlier, but decided to
981 * mount without -o uquota/pquota/gquota options, revoke the
982 * quotachecked license.
983 */
984 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
985 xfs_notice(mp, "resetting quota flags");
986 error = xfs_mount_reset_sbqflags(mp);
987 if (error)
988 goto out_rtunmount;
989 }
990 }
991
992 /*
993 * Finish recovering the file system. This part needed to be delayed
994 * until after the root and real-time bitmap inodes were consistently
995 * read in. Temporarily create per-AG space reservations for metadata
996 * btree shape changes because space freeing transactions (for inode
997 * inactivation) require the per-AG reservation in lieu of reserving
998 * blocks.
999 */
1000 error = xfs_fs_reserve_ag_blocks(mp);
1001 if (error && error == -ENOSPC)
1002 xfs_warn(mp,
1003 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1004 error = xfs_log_mount_finish(mp);
1005 xfs_fs_unreserve_ag_blocks(mp);
1006 if (error) {
1007 xfs_warn(mp, "log mount finish failed");
1008 goto out_rtunmount;
1009 }
1010
1011 /*
1012 * Now the log is fully replayed, we can transition to full read-only
1013 * mode for read-only mounts. This will sync all the metadata and clean
1014 * the log so that the recovery we just performed does not have to be
1015 * replayed again on the next mount.
1016 *
1017 * We use the same quiesce mechanism as the rw->ro remount, as they are
1018 * semantically identical operations.
1019 */
1020 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1021 xfs_log_clean(mp);
1022
1023 /*
1024 * Complete the quota initialisation, post-log-replay component.
1025 */
1026 if (quotamount) {
1027 ASSERT(mp->m_qflags == 0);
1028 mp->m_qflags = quotaflags;
1029
1030 xfs_qm_mount_quotas(mp);
1031 }
1032
1033 /*
1034 * Now we are mounted, reserve a small amount of unused space for
1035 * privileged transactions. This is needed so that transaction
1036 * space required for critical operations can dip into this pool
1037 * when at ENOSPC. This is needed for operations like create with
1038 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1039 * are not allowed to use this reserved space.
1040 *
1041 * This may drive us straight to ENOSPC on mount, but that implies
1042 * we were already there on the last unmount. Warn if this occurs.
1043 */
1044 if (!xfs_is_readonly(mp)) {
1045 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1046 if (error)
1047 xfs_warn(mp,
1048 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1049
1050 /* Reserve AG blocks for future btree expansion. */
1051 error = xfs_fs_reserve_ag_blocks(mp);
1052 if (error && error != -ENOSPC)
1053 goto out_agresv;
1054 }
1055
1056 return 0;
1057
1058 out_agresv:
1059 xfs_fs_unreserve_ag_blocks(mp);
1060 xfs_qm_unmount_quotas(mp);
1061 out_rtunmount:
1062 xfs_rtunmount_inodes(mp);
1063 out_rele_rip:
1064 xfs_irele(rip);
1065 /* Clean out dquots that might be in memory after quotacheck. */
1066 xfs_qm_unmount(mp);
1067 out_free_metadir:
1068 if (mp->m_metadirip)
1069 xfs_irele(mp->m_metadirip);
1070
1071 /*
1072 * Inactivate all inodes that might still be in memory after a log
1073 * intent recovery failure so that reclaim can free them. Metadata
1074 * inodes and the root directory shouldn't need inactivation, but the
1075 * mount failed for some reason, so pull down all the state and flee.
1076 */
1077 xfs_inodegc_flush(mp);
1078
1079 /*
1080 * Flush all inode reclamation work and flush the log.
1081 * We have to do this /after/ rtunmount and qm_unmount because those
1082 * two will have scheduled delayed reclaim for the rt/quota inodes.
1083 *
1084 * This is slightly different from the unmountfs call sequence
1085 * because we could be tearing down a partially set up mount. In
1086 * particular, if log_mount_finish fails we bail out without calling
1087 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1088 * quota inodes.
1089 */
1090 xfs_unmount_flush_inodes(mp);
1091 xfs_log_mount_cancel(mp);
1092 out_inodegc_shrinker:
1093 shrinker_free(mp->m_inodegc_shrinker);
1094 out_fail_wait:
1095 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1096 xfs_buftarg_drain(mp->m_logdev_targp);
1097 xfs_buftarg_drain(mp->m_ddev_targp);
1098 out_free_rtgroup:
1099 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1100 out_free_perag:
1101 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1102 out_free_dir:
1103 xfs_da_unmount(mp);
1104 out_remove_uuid:
1105 xfs_uuid_unmount(mp);
1106 out_remove_errortag:
1107 xfs_errortag_del(mp);
1108 out_remove_error_sysfs:
1109 xfs_error_sysfs_del(mp);
1110 out_remove_scrub_stats:
1111 xchk_stats_unregister(mp->m_scrub_stats);
1112 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1113 out_remove_sysfs:
1114 xfs_sysfs_del(&mp->m_kobj);
1115 out:
1116 return error;
1117}
1118
1119/*
1120 * This flushes out the inodes,dquots and the superblock, unmounts the
1121 * log and makes sure that incore structures are freed.
1122 */
1123void
1124xfs_unmountfs(
1125 struct xfs_mount *mp)
1126{
1127 int error;
1128
1129 /*
1130 * Perform all on-disk metadata updates required to inactivate inodes
1131 * that the VFS evicted earlier in the unmount process. Freeing inodes
1132 * and discarding CoW fork preallocations can cause shape changes to
1133 * the free inode and refcount btrees, respectively, so we must finish
1134 * this before we discard the metadata space reservations. Metadata
1135 * inodes and the root directory do not require inactivation.
1136 */
1137 xfs_inodegc_flush(mp);
1138
1139 xfs_blockgc_stop(mp);
1140 xfs_fs_unreserve_ag_blocks(mp);
1141 xfs_qm_unmount_quotas(mp);
1142 xfs_rtunmount_inodes(mp);
1143 xfs_irele(mp->m_rootip);
1144 if (mp->m_metadirip)
1145 xfs_irele(mp->m_metadirip);
1146
1147 xfs_unmount_flush_inodes(mp);
1148
1149 xfs_qm_unmount(mp);
1150
1151 /*
1152 * Unreserve any blocks we have so that when we unmount we don't account
1153 * the reserved free space as used. This is really only necessary for
1154 * lazy superblock counting because it trusts the incore superblock
1155 * counters to be absolutely correct on clean unmount.
1156 *
1157 * We don't bother correcting this elsewhere for lazy superblock
1158 * counting because on mount of an unclean filesystem we reconstruct the
1159 * correct counter value and this is irrelevant.
1160 *
1161 * For non-lazy counter filesystems, this doesn't matter at all because
1162 * we only every apply deltas to the superblock and hence the incore
1163 * value does not matter....
1164 */
1165 error = xfs_reserve_blocks(mp, 0);
1166 if (error)
1167 xfs_warn(mp, "Unable to free reserved block pool. "
1168 "Freespace may not be correct on next mount.");
1169 xfs_unmount_check(mp);
1170
1171 /*
1172 * Indicate that it's ok to clear log incompat bits before cleaning
1173 * the log and writing the unmount record.
1174 */
1175 xfs_set_done_with_log_incompat(mp);
1176 xfs_log_unmount(mp);
1177 xfs_da_unmount(mp);
1178 xfs_uuid_unmount(mp);
1179
1180#if defined(DEBUG)
1181 xfs_errortag_clearall(mp);
1182#endif
1183 shrinker_free(mp->m_inodegc_shrinker);
1184 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1185 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1186 xfs_errortag_del(mp);
1187 xfs_error_sysfs_del(mp);
1188 xchk_stats_unregister(mp->m_scrub_stats);
1189 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1190 xfs_sysfs_del(&mp->m_kobj);
1191}
1192
1193/*
1194 * Determine whether modifications can proceed. The caller specifies the minimum
1195 * freeze level for which modifications should not be allowed. This allows
1196 * certain operations to proceed while the freeze sequence is in progress, if
1197 * necessary.
1198 */
1199bool
1200xfs_fs_writable(
1201 struct xfs_mount *mp,
1202 int level)
1203{
1204 ASSERT(level > SB_UNFROZEN);
1205 if ((mp->m_super->s_writers.frozen >= level) ||
1206 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1207 return false;
1208
1209 return true;
1210}
1211
1212void
1213xfs_add_freecounter(
1214 struct xfs_mount *mp,
1215 struct percpu_counter *counter,
1216 uint64_t delta)
1217{
1218 bool has_resv_pool = (counter == &mp->m_fdblocks);
1219 uint64_t res_used;
1220
1221 /*
1222 * If the reserve pool is depleted, put blocks back into it first.
1223 * Most of the time the pool is full.
1224 */
1225 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1226 percpu_counter_add(counter, delta);
1227 return;
1228 }
1229
1230 spin_lock(&mp->m_sb_lock);
1231 res_used = mp->m_resblks - mp->m_resblks_avail;
1232 if (res_used > delta) {
1233 mp->m_resblks_avail += delta;
1234 } else {
1235 delta -= res_used;
1236 mp->m_resblks_avail = mp->m_resblks;
1237 percpu_counter_add(counter, delta);
1238 }
1239 spin_unlock(&mp->m_sb_lock);
1240}
1241
1242int
1243xfs_dec_freecounter(
1244 struct xfs_mount *mp,
1245 struct percpu_counter *counter,
1246 uint64_t delta,
1247 bool rsvd)
1248{
1249 int64_t lcounter;
1250 uint64_t set_aside = 0;
1251 s32 batch;
1252 bool has_resv_pool;
1253
1254 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1255 has_resv_pool = (counter == &mp->m_fdblocks);
1256 if (rsvd)
1257 ASSERT(has_resv_pool);
1258
1259 /*
1260 * Taking blocks away, need to be more accurate the closer we
1261 * are to zero.
1262 *
1263 * If the counter has a value of less than 2 * max batch size,
1264 * then make everything serialise as we are real close to
1265 * ENOSPC.
1266 */
1267 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1268 XFS_FDBLOCKS_BATCH) < 0)
1269 batch = 1;
1270 else
1271 batch = XFS_FDBLOCKS_BATCH;
1272
1273 /*
1274 * Set aside allocbt blocks because these blocks are tracked as free
1275 * space but not available for allocation. Technically this means that a
1276 * single reservation cannot consume all remaining free space, but the
1277 * ratio of allocbt blocks to usable free blocks should be rather small.
1278 * The tradeoff without this is that filesystems that maintain high
1279 * perag block reservations can over reserve physical block availability
1280 * and fail physical allocation, which leads to much more serious
1281 * problems (i.e. transaction abort, pagecache discards, etc.) than
1282 * slightly premature -ENOSPC.
1283 */
1284 if (has_resv_pool)
1285 set_aside = xfs_fdblocks_unavailable(mp);
1286 percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1287 if (__percpu_counter_compare(counter, set_aside,
1288 XFS_FDBLOCKS_BATCH) >= 0) {
1289 /* we had space! */
1290 return 0;
1291 }
1292
1293 /*
1294 * lock up the sb for dipping into reserves before releasing the space
1295 * that took us to ENOSPC.
1296 */
1297 spin_lock(&mp->m_sb_lock);
1298 percpu_counter_add(counter, delta);
1299 if (!has_resv_pool || !rsvd)
1300 goto fdblocks_enospc;
1301
1302 lcounter = (long long)mp->m_resblks_avail - delta;
1303 if (lcounter >= 0) {
1304 mp->m_resblks_avail = lcounter;
1305 spin_unlock(&mp->m_sb_lock);
1306 return 0;
1307 }
1308 xfs_warn_once(mp,
1309"Reserve blocks depleted! Consider increasing reserve pool size.");
1310
1311fdblocks_enospc:
1312 spin_unlock(&mp->m_sb_lock);
1313 return -ENOSPC;
1314}
1315
1316/*
1317 * Used to free the superblock along various error paths.
1318 */
1319void
1320xfs_freesb(
1321 struct xfs_mount *mp)
1322{
1323 struct xfs_buf *bp = mp->m_sb_bp;
1324
1325 xfs_buf_lock(bp);
1326 mp->m_sb_bp = NULL;
1327 xfs_buf_relse(bp);
1328}
1329
1330/*
1331 * If the underlying (data/log/rt) device is readonly, there are some
1332 * operations that cannot proceed.
1333 */
1334int
1335xfs_dev_is_read_only(
1336 struct xfs_mount *mp,
1337 char *message)
1338{
1339 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1340 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1341 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1342 xfs_notice(mp, "%s required on read-only device.", message);
1343 xfs_notice(mp, "write access unavailable, cannot proceed.");
1344 return -EROFS;
1345 }
1346 return 0;
1347}
1348
1349/* Force the summary counters to be recalculated at next mount. */
1350void
1351xfs_force_summary_recalc(
1352 struct xfs_mount *mp)
1353{
1354 if (!xfs_has_lazysbcount(mp))
1355 return;
1356
1357 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1358}
1359
1360/*
1361 * Enable a log incompat feature flag in the primary superblock. The caller
1362 * cannot have any other transactions in progress.
1363 */
1364int
1365xfs_add_incompat_log_feature(
1366 struct xfs_mount *mp,
1367 uint32_t feature)
1368{
1369 struct xfs_dsb *dsb;
1370 int error;
1371
1372 ASSERT(hweight32(feature) == 1);
1373 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1374
1375 /*
1376 * Force the log to disk and kick the background AIL thread to reduce
1377 * the chances that the bwrite will stall waiting for the AIL to unpin
1378 * the primary superblock buffer. This isn't a data integrity
1379 * operation, so we don't need a synchronous push.
1380 */
1381 error = xfs_log_force(mp, XFS_LOG_SYNC);
1382 if (error)
1383 return error;
1384 xfs_ail_push_all(mp->m_ail);
1385
1386 /*
1387 * Lock the primary superblock buffer to serialize all callers that
1388 * are trying to set feature bits.
1389 */
1390 xfs_buf_lock(mp->m_sb_bp);
1391 xfs_buf_hold(mp->m_sb_bp);
1392
1393 if (xfs_is_shutdown(mp)) {
1394 error = -EIO;
1395 goto rele;
1396 }
1397
1398 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1399 goto rele;
1400
1401 /*
1402 * Write the primary superblock to disk immediately, because we need
1403 * the log_incompat bit to be set in the primary super now to protect
1404 * the log items that we're going to commit later.
1405 */
1406 dsb = mp->m_sb_bp->b_addr;
1407 xfs_sb_to_disk(dsb, &mp->m_sb);
1408 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1409 error = xfs_bwrite(mp->m_sb_bp);
1410 if (error)
1411 goto shutdown;
1412
1413 /*
1414 * Add the feature bits to the incore superblock before we unlock the
1415 * buffer.
1416 */
1417 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1418 xfs_buf_relse(mp->m_sb_bp);
1419
1420 /* Log the superblock to disk. */
1421 return xfs_sync_sb(mp, false);
1422shutdown:
1423 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1424rele:
1425 xfs_buf_relse(mp->m_sb_bp);
1426 return error;
1427}
1428
1429/*
1430 * Clear all the log incompat flags from the superblock.
1431 *
1432 * The caller cannot be in a transaction, must ensure that the log does not
1433 * contain any log items protected by any log incompat bit, and must ensure
1434 * that there are no other threads that depend on the state of the log incompat
1435 * feature flags in the primary super.
1436 *
1437 * Returns true if the superblock is dirty.
1438 */
1439bool
1440xfs_clear_incompat_log_features(
1441 struct xfs_mount *mp)
1442{
1443 bool ret = false;
1444
1445 if (!xfs_has_crc(mp) ||
1446 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1447 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1448 xfs_is_shutdown(mp) ||
1449 !xfs_is_done_with_log_incompat(mp))
1450 return false;
1451
1452 /*
1453 * Update the incore superblock. We synchronize on the primary super
1454 * buffer lock to be consistent with the add function, though at least
1455 * in theory this shouldn't be necessary.
1456 */
1457 xfs_buf_lock(mp->m_sb_bp);
1458 xfs_buf_hold(mp->m_sb_bp);
1459
1460 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1461 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1462 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1463 ret = true;
1464 }
1465
1466 xfs_buf_relse(mp->m_sb_bp);
1467 return ret;
1468}
1469
1470/*
1471 * Update the in-core delayed block counter.
1472 *
1473 * We prefer to update the counter without having to take a spinlock for every
1474 * counter update (i.e. batching). Each change to delayed allocation
1475 * reservations can change can easily exceed the default percpu counter
1476 * batching, so we use a larger batch factor here.
1477 *
1478 * Note that we don't currently have any callers requiring fast summation
1479 * (e.g. percpu_counter_read) so we can use a big batch value here.
1480 */
1481#define XFS_DELALLOC_BATCH (4096)
1482void
1483xfs_mod_delalloc(
1484 struct xfs_inode *ip,
1485 int64_t data_delta,
1486 int64_t ind_delta)
1487{
1488 struct xfs_mount *mp = ip->i_mount;
1489
1490 if (XFS_IS_REALTIME_INODE(ip)) {
1491 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1492 xfs_blen_to_rtbxlen(mp, data_delta),
1493 XFS_DELALLOC_BATCH);
1494 if (!ind_delta)
1495 return;
1496 data_delta = 0;
1497 }
1498 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1499 XFS_DELALLOC_BATCH);
1500}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_error.h"
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
27#include "xfs_icache.h"
28#include "xfs_sysfs.h"
29#include "xfs_rmap_btree.h"
30#include "xfs_refcount_btree.h"
31#include "xfs_reflink.h"
32#include "xfs_extent_busy.h"
33#include "xfs_health.h"
34
35
36static DEFINE_MUTEX(xfs_uuid_table_mutex);
37static int xfs_uuid_table_size;
38static uuid_t *xfs_uuid_table;
39
40void
41xfs_uuid_table_free(void)
42{
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48}
49
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56 struct xfs_mount *mp)
57{
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
63
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 0);
86 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
97}
98
99STATIC void
100xfs_uuid_unmount(
101 struct xfs_mount *mp)
102{
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120}
121
122
123STATIC void
124__xfs_free_perag(
125 struct rcu_head *head)
126{
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
131}
132
133/*
134 * Free up the per-ag resources associated with the mount structure.
135 */
136STATIC void
137xfs_free_perag(
138 xfs_mount_t *mp)
139{
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
142
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
149 xfs_iunlink_destroy(pag);
150 xfs_buf_hash_destroy(pag);
151 mutex_destroy(&pag->pag_ici_reclaim_lock);
152 call_rcu(&pag->rcu_head, __xfs_free_perag);
153 }
154}
155
156/*
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
159 */
160int
161xfs_sb_validate_fsb_count(
162 xfs_sb_t *sbp,
163 uint64_t nblocks)
164{
165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 ASSERT(sbp->sb_blocklog >= BBSHIFT);
167
168 /* Limited by ULONG_MAX of page cache index */
169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 return -EFBIG;
171 return 0;
172}
173
174int
175xfs_initialize_perag(
176 xfs_mount_t *mp,
177 xfs_agnumber_t agcount,
178 xfs_agnumber_t *maxagi)
179{
180 xfs_agnumber_t index;
181 xfs_agnumber_t first_initialised = NULLAGNUMBER;
182 xfs_perag_t *pag;
183 int error = -ENOMEM;
184
185 /*
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
189 */
190 for (index = 0; index < agcount; index++) {
191 pag = xfs_perag_get(mp, index);
192 if (pag) {
193 xfs_perag_put(pag);
194 continue;
195 }
196
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag)
199 goto out_unwind_new_pags;
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
202 spin_lock_init(&pag->pag_ici_lock);
203 mutex_init(&pag->pag_ici_reclaim_lock);
204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 if (xfs_buf_hash_init(pag))
206 goto out_free_pag;
207 init_waitqueue_head(&pag->pagb_wait);
208 spin_lock_init(&pag->pagb_lock);
209 pag->pagb_count = 0;
210 pag->pagb_tree = RB_ROOT;
211
212 if (radix_tree_preload(GFP_NOFS))
213 goto out_hash_destroy;
214
215 spin_lock(&mp->m_perag_lock);
216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
217 WARN_ON_ONCE(1);
218 spin_unlock(&mp->m_perag_lock);
219 radix_tree_preload_end();
220 error = -EEXIST;
221 goto out_hash_destroy;
222 }
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 /* first new pag is fully initialized */
226 if (first_initialised == NULLAGNUMBER)
227 first_initialised = index;
228 error = xfs_iunlink_init(pag);
229 if (error)
230 goto out_hash_destroy;
231 spin_lock_init(&pag->pag_state_lock);
232 }
233
234 index = xfs_set_inode_alloc(mp, agcount);
235
236 if (maxagi)
237 *maxagi = index;
238
239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
240 return 0;
241
242out_hash_destroy:
243 xfs_buf_hash_destroy(pag);
244out_free_pag:
245 mutex_destroy(&pag->pag_ici_reclaim_lock);
246 kmem_free(pag);
247out_unwind_new_pags:
248 /* unwind any prior newly initialized pags */
249 for (index = first_initialised; index < agcount; index++) {
250 pag = radix_tree_delete(&mp->m_perag_tree, index);
251 if (!pag)
252 break;
253 xfs_buf_hash_destroy(pag);
254 xfs_iunlink_destroy(pag);
255 mutex_destroy(&pag->pag_ici_reclaim_lock);
256 kmem_free(pag);
257 }
258 return error;
259}
260
261/*
262 * xfs_readsb
263 *
264 * Does the initial read of the superblock.
265 */
266int
267xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
270{
271 unsigned int sector_size;
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
274 int error;
275 int loud = !(flags & XFS_MFSI_QUIET);
276 const struct xfs_buf_ops *buf_ops;
277
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
280
281 /*
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
287 */
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
290
291 /*
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
296 */
297reread:
298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
301 if (error) {
302 if (loud)
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
307 return error;
308 }
309
310 /*
311 * Initialize the mount structure from the superblock.
312 */
313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314
315 /*
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
318 */
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
322 error = -EINVAL;
323 goto release_buf;
324 }
325
326 /*
327 * We must be able to do sector-sized and sector-aligned IO.
328 */
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = -ENOSYS;
334 goto release_buf;
335 }
336
337 if (buf_ops == NULL) {
338 /*
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
341 */
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
346 }
347
348 xfs_reinit_percpu_counters(mp);
349
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
352
353 mp->m_sb_bp = bp;
354 xfs_buf_unlock(bp);
355 return 0;
356
357release_buf:
358 xfs_buf_relse(bp);
359 return error;
360}
361
362/*
363 * Update alignment values based on mount options and sb values
364 */
365STATIC int
366xfs_update_alignment(xfs_mount_t *mp)
367{
368 xfs_sb_t *sbp = &(mp->m_sb);
369
370 if (mp->m_dalign) {
371 /*
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
374 */
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
379 sbp->sb_blocksize);
380 return -EINVAL;
381 } else {
382 /*
383 * Convert the stripe unit and width to FSBs.
384 */
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 xfs_warn(mp,
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
389 sbp->sb_agblocks);
390 return -EINVAL;
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 } else {
394 xfs_warn(mp,
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
397 return -EINVAL;
398 }
399 }
400
401 /*
402 * Update superblock with new values
403 * and log changes
404 */
405 if (xfs_sb_version_hasdalign(sbp)) {
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
408 mp->m_update_sb = true;
409 }
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
412 mp->m_update_sb = true;
413 }
414 } else {
415 xfs_warn(mp,
416 "cannot change alignment: superblock does not support data alignment");
417 return -EINVAL;
418 }
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 xfs_sb_version_hasdalign(&mp->m_sb)) {
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
423 }
424
425 return 0;
426}
427
428/*
429 * Set the default minimum read and write sizes unless
430 * already specified in a mount option.
431 * We use smaller I/O sizes when the file system
432 * is being used for NFS service (wsync mount option).
433 */
434STATIC void
435xfs_set_rw_sizes(xfs_mount_t *mp)
436{
437 xfs_sb_t *sbp = &(mp->m_sb);
438 int readio_log, writeio_log;
439
440 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
441 if (mp->m_flags & XFS_MOUNT_WSYNC) {
442 readio_log = XFS_WSYNC_READIO_LOG;
443 writeio_log = XFS_WSYNC_WRITEIO_LOG;
444 } else {
445 readio_log = XFS_READIO_LOG_LARGE;
446 writeio_log = XFS_WRITEIO_LOG_LARGE;
447 }
448 } else {
449 readio_log = mp->m_readio_log;
450 writeio_log = mp->m_writeio_log;
451 }
452
453 if (sbp->sb_blocklog > readio_log) {
454 mp->m_readio_log = sbp->sb_blocklog;
455 } else {
456 mp->m_readio_log = readio_log;
457 }
458 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
459 if (sbp->sb_blocklog > writeio_log) {
460 mp->m_writeio_log = sbp->sb_blocklog;
461 } else {
462 mp->m_writeio_log = writeio_log;
463 }
464 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
465}
466
467/*
468 * precalculate the low space thresholds for dynamic speculative preallocation.
469 */
470void
471xfs_set_low_space_thresholds(
472 struct xfs_mount *mp)
473{
474 int i;
475
476 for (i = 0; i < XFS_LOWSP_MAX; i++) {
477 uint64_t space = mp->m_sb.sb_dblocks;
478
479 do_div(space, 100);
480 mp->m_low_space[i] = space * (i + 1);
481 }
482}
483
484/*
485 * Check that the data (and log if separate) is an ok size.
486 */
487STATIC int
488xfs_check_sizes(
489 struct xfs_mount *mp)
490{
491 struct xfs_buf *bp;
492 xfs_daddr_t d;
493 int error;
494
495 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
496 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
497 xfs_warn(mp, "filesystem size mismatch detected");
498 return -EFBIG;
499 }
500 error = xfs_buf_read_uncached(mp->m_ddev_targp,
501 d - XFS_FSS_TO_BB(mp, 1),
502 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
503 if (error) {
504 xfs_warn(mp, "last sector read failed");
505 return error;
506 }
507 xfs_buf_relse(bp);
508
509 if (mp->m_logdev_targp == mp->m_ddev_targp)
510 return 0;
511
512 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
513 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
514 xfs_warn(mp, "log size mismatch detected");
515 return -EFBIG;
516 }
517 error = xfs_buf_read_uncached(mp->m_logdev_targp,
518 d - XFS_FSB_TO_BB(mp, 1),
519 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
520 if (error) {
521 xfs_warn(mp, "log device read failed");
522 return error;
523 }
524 xfs_buf_relse(bp);
525 return 0;
526}
527
528/*
529 * Clear the quotaflags in memory and in the superblock.
530 */
531int
532xfs_mount_reset_sbqflags(
533 struct xfs_mount *mp)
534{
535 mp->m_qflags = 0;
536
537 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
538 if (mp->m_sb.sb_qflags == 0)
539 return 0;
540 spin_lock(&mp->m_sb_lock);
541 mp->m_sb.sb_qflags = 0;
542 spin_unlock(&mp->m_sb_lock);
543
544 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
545 return 0;
546
547 return xfs_sync_sb(mp, false);
548}
549
550uint64_t
551xfs_default_resblks(xfs_mount_t *mp)
552{
553 uint64_t resblks;
554
555 /*
556 * We default to 5% or 8192 fsbs of space reserved, whichever is
557 * smaller. This is intended to cover concurrent allocation
558 * transactions when we initially hit enospc. These each require a 4
559 * block reservation. Hence by default we cover roughly 2000 concurrent
560 * allocation reservations.
561 */
562 resblks = mp->m_sb.sb_dblocks;
563 do_div(resblks, 20);
564 resblks = min_t(uint64_t, resblks, 8192);
565 return resblks;
566}
567
568/* Ensure the summary counts are correct. */
569STATIC int
570xfs_check_summary_counts(
571 struct xfs_mount *mp)
572{
573 /*
574 * The AG0 superblock verifier rejects in-progress filesystems,
575 * so we should never see the flag set this far into mounting.
576 */
577 if (mp->m_sb.sb_inprogress) {
578 xfs_err(mp, "sb_inprogress set after log recovery??");
579 WARN_ON(1);
580 return -EFSCORRUPTED;
581 }
582
583 /*
584 * Now the log is mounted, we know if it was an unclean shutdown or
585 * not. If it was, with the first phase of recovery has completed, we
586 * have consistent AG blocks on disk. We have not recovered EFIs yet,
587 * but they are recovered transactionally in the second recovery phase
588 * later.
589 *
590 * If the log was clean when we mounted, we can check the summary
591 * counters. If any of them are obviously incorrect, we can recompute
592 * them from the AGF headers in the next step.
593 */
594 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
595 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
596 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
597 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
598 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
599
600 /*
601 * We can safely re-initialise incore superblock counters from the
602 * per-ag data. These may not be correct if the filesystem was not
603 * cleanly unmounted, so we waited for recovery to finish before doing
604 * this.
605 *
606 * If the filesystem was cleanly unmounted or the previous check did
607 * not flag anything weird, then we can trust the values in the
608 * superblock to be correct and we don't need to do anything here.
609 * Otherwise, recalculate the summary counters.
610 */
611 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
612 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
613 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
614 return 0;
615
616 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
617}
618
619/*
620 * This function does the following on an initial mount of a file system:
621 * - reads the superblock from disk and init the mount struct
622 * - if we're a 32-bit kernel, do a size check on the superblock
623 * so we don't mount terabyte filesystems
624 * - init mount struct realtime fields
625 * - allocate inode hash table for fs
626 * - init directory manager
627 * - perform recovery and init the log manager
628 */
629int
630xfs_mountfs(
631 struct xfs_mount *mp)
632{
633 struct xfs_sb *sbp = &(mp->m_sb);
634 struct xfs_inode *rip;
635 struct xfs_ino_geometry *igeo = M_IGEO(mp);
636 uint64_t resblks;
637 uint quotamount = 0;
638 uint quotaflags = 0;
639 int error = 0;
640
641 xfs_sb_mount_common(mp, sbp);
642
643 /*
644 * Check for a mismatched features2 values. Older kernels read & wrote
645 * into the wrong sb offset for sb_features2 on some platforms due to
646 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
647 * which made older superblock reading/writing routines swap it as a
648 * 64-bit value.
649 *
650 * For backwards compatibility, we make both slots equal.
651 *
652 * If we detect a mismatched field, we OR the set bits into the existing
653 * features2 field in case it has already been modified; we don't want
654 * to lose any features. We then update the bad location with the ORed
655 * value so that older kernels will see any features2 flags. The
656 * superblock writeback code ensures the new sb_features2 is copied to
657 * sb_bad_features2 before it is logged or written to disk.
658 */
659 if (xfs_sb_has_mismatched_features2(sbp)) {
660 xfs_warn(mp, "correcting sb_features alignment problem");
661 sbp->sb_features2 |= sbp->sb_bad_features2;
662 mp->m_update_sb = true;
663
664 /*
665 * Re-check for ATTR2 in case it was found in bad_features2
666 * slot.
667 */
668 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 !(mp->m_flags & XFS_MOUNT_NOATTR2))
670 mp->m_flags |= XFS_MOUNT_ATTR2;
671 }
672
673 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
675 xfs_sb_version_removeattr2(&mp->m_sb);
676 mp->m_update_sb = true;
677
678 /* update sb_versionnum for the clearing of the morebits */
679 if (!sbp->sb_features2)
680 mp->m_update_sb = true;
681 }
682
683 /* always use v2 inodes by default now */
684 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
685 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
686 mp->m_update_sb = true;
687 }
688
689 /*
690 * Check if sb_agblocks is aligned at stripe boundary
691 * If sb_agblocks is NOT aligned turn off m_dalign since
692 * allocator alignment is within an ag, therefore ag has
693 * to be aligned at stripe boundary.
694 */
695 error = xfs_update_alignment(mp);
696 if (error)
697 goto out;
698
699 xfs_alloc_compute_maxlevels(mp);
700 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
701 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
702 xfs_ialloc_setup_geometry(mp);
703 xfs_rmapbt_compute_maxlevels(mp);
704 xfs_refcountbt_compute_maxlevels(mp);
705
706 /* enable fail_at_unmount as default */
707 mp->m_fail_unmount = true;
708
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
710 if (error)
711 goto out;
712
713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
714 &mp->m_kobj, "stats");
715 if (error)
716 goto out_remove_sysfs;
717
718 error = xfs_error_sysfs_init(mp);
719 if (error)
720 goto out_del_stats;
721
722 error = xfs_errortag_init(mp);
723 if (error)
724 goto out_remove_error_sysfs;
725
726 error = xfs_uuid_mount(mp);
727 if (error)
728 goto out_remove_errortag;
729
730 /*
731 * Set the minimum read and write sizes
732 */
733 xfs_set_rw_sizes(mp);
734
735 /* set the low space thresholds for dynamic preallocation */
736 xfs_set_low_space_thresholds(mp);
737
738 /*
739 * If enabled, sparse inode chunk alignment is expected to match the
740 * cluster size. Full inode chunk alignment must match the chunk size,
741 * but that is checked on sb read verification...
742 */
743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 mp->m_sb.sb_spino_align !=
745 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
746 xfs_warn(mp,
747 "Sparse inode block alignment (%u) must match cluster size (%llu).",
748 mp->m_sb.sb_spino_align,
749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
750 error = -EINVAL;
751 goto out_remove_uuid;
752 }
753
754 /*
755 * Check that the data (and log if separate) is an ok size.
756 */
757 error = xfs_check_sizes(mp);
758 if (error)
759 goto out_remove_uuid;
760
761 /*
762 * Initialize realtime fields in the mount structure
763 */
764 error = xfs_rtmount_init(mp);
765 if (error) {
766 xfs_warn(mp, "RT mount failed");
767 goto out_remove_uuid;
768 }
769
770 /*
771 * Copies the low order bits of the timestamp and the randomly
772 * set "sequence" number out of a UUID.
773 */
774 mp->m_fixedfsid[0] =
775 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
776 get_unaligned_be16(&sbp->sb_uuid.b[4]);
777 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
778
779 error = xfs_da_mount(mp);
780 if (error) {
781 xfs_warn(mp, "Failed dir/attr init: %d", error);
782 goto out_remove_uuid;
783 }
784
785 /*
786 * Initialize the precomputed transaction reservations values.
787 */
788 xfs_trans_init(mp);
789
790 /*
791 * Allocate and initialize the per-ag data.
792 */
793 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
794 if (error) {
795 xfs_warn(mp, "Failed per-ag init: %d", error);
796 goto out_free_dir;
797 }
798
799 if (!sbp->sb_logblocks) {
800 xfs_warn(mp, "no log defined");
801 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
802 error = -EFSCORRUPTED;
803 goto out_free_perag;
804 }
805
806 /*
807 * Log's mount-time initialization. The first part of recovery can place
808 * some items on the AIL, to be handled when recovery is finished or
809 * cancelled.
810 */
811 error = xfs_log_mount(mp, mp->m_logdev_targp,
812 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
813 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
814 if (error) {
815 xfs_warn(mp, "log mount failed");
816 goto out_fail_wait;
817 }
818
819 /* Make sure the summary counts are ok. */
820 error = xfs_check_summary_counts(mp);
821 if (error)
822 goto out_log_dealloc;
823
824 /*
825 * Get and sanity-check the root inode.
826 * Save the pointer to it in the mount structure.
827 */
828 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
829 XFS_ILOCK_EXCL, &rip);
830 if (error) {
831 xfs_warn(mp,
832 "Failed to read root inode 0x%llx, error %d",
833 sbp->sb_rootino, -error);
834 goto out_log_dealloc;
835 }
836
837 ASSERT(rip != NULL);
838
839 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
840 xfs_warn(mp, "corrupted root inode %llu: not a directory",
841 (unsigned long long)rip->i_ino);
842 xfs_iunlock(rip, XFS_ILOCK_EXCL);
843 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
844 mp);
845 error = -EFSCORRUPTED;
846 goto out_rele_rip;
847 }
848 mp->m_rootip = rip; /* save it */
849
850 xfs_iunlock(rip, XFS_ILOCK_EXCL);
851
852 /*
853 * Initialize realtime inode pointers in the mount structure
854 */
855 error = xfs_rtmount_inodes(mp);
856 if (error) {
857 /*
858 * Free up the root inode.
859 */
860 xfs_warn(mp, "failed to read RT inodes");
861 goto out_rele_rip;
862 }
863
864 /*
865 * If this is a read-only mount defer the superblock updates until
866 * the next remount into writeable mode. Otherwise we would never
867 * perform the update e.g. for the root filesystem.
868 */
869 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
870 error = xfs_sync_sb(mp, false);
871 if (error) {
872 xfs_warn(mp, "failed to write sb changes");
873 goto out_rtunmount;
874 }
875 }
876
877 /*
878 * Initialise the XFS quota management subsystem for this mount
879 */
880 if (XFS_IS_QUOTA_RUNNING(mp)) {
881 error = xfs_qm_newmount(mp, "amount, "aflags);
882 if (error)
883 goto out_rtunmount;
884 } else {
885 ASSERT(!XFS_IS_QUOTA_ON(mp));
886
887 /*
888 * If a file system had quotas running earlier, but decided to
889 * mount without -o uquota/pquota/gquota options, revoke the
890 * quotachecked license.
891 */
892 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
893 xfs_notice(mp, "resetting quota flags");
894 error = xfs_mount_reset_sbqflags(mp);
895 if (error)
896 goto out_rtunmount;
897 }
898 }
899
900 /*
901 * Finish recovering the file system. This part needed to be delayed
902 * until after the root and real-time bitmap inodes were consistently
903 * read in.
904 */
905 error = xfs_log_mount_finish(mp);
906 if (error) {
907 xfs_warn(mp, "log mount finish failed");
908 goto out_rtunmount;
909 }
910
911 /*
912 * Now the log is fully replayed, we can transition to full read-only
913 * mode for read-only mounts. This will sync all the metadata and clean
914 * the log so that the recovery we just performed does not have to be
915 * replayed again on the next mount.
916 *
917 * We use the same quiesce mechanism as the rw->ro remount, as they are
918 * semantically identical operations.
919 */
920 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
921 XFS_MOUNT_RDONLY) {
922 xfs_quiesce_attr(mp);
923 }
924
925 /*
926 * Complete the quota initialisation, post-log-replay component.
927 */
928 if (quotamount) {
929 ASSERT(mp->m_qflags == 0);
930 mp->m_qflags = quotaflags;
931
932 xfs_qm_mount_quotas(mp);
933 }
934
935 /*
936 * Now we are mounted, reserve a small amount of unused space for
937 * privileged transactions. This is needed so that transaction
938 * space required for critical operations can dip into this pool
939 * when at ENOSPC. This is needed for operations like create with
940 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
941 * are not allowed to use this reserved space.
942 *
943 * This may drive us straight to ENOSPC on mount, but that implies
944 * we were already there on the last unmount. Warn if this occurs.
945 */
946 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
947 resblks = xfs_default_resblks(mp);
948 error = xfs_reserve_blocks(mp, &resblks, NULL);
949 if (error)
950 xfs_warn(mp,
951 "Unable to allocate reserve blocks. Continuing without reserve pool.");
952
953 /* Recover any CoW blocks that never got remapped. */
954 error = xfs_reflink_recover_cow(mp);
955 if (error) {
956 xfs_err(mp,
957 "Error %d recovering leftover CoW allocations.", error);
958 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
959 goto out_quota;
960 }
961
962 /* Reserve AG blocks for future btree expansion. */
963 error = xfs_fs_reserve_ag_blocks(mp);
964 if (error && error != -ENOSPC)
965 goto out_agresv;
966 }
967
968 return 0;
969
970 out_agresv:
971 xfs_fs_unreserve_ag_blocks(mp);
972 out_quota:
973 xfs_qm_unmount_quotas(mp);
974 out_rtunmount:
975 xfs_rtunmount_inodes(mp);
976 out_rele_rip:
977 xfs_irele(rip);
978 /* Clean out dquots that might be in memory after quotacheck. */
979 xfs_qm_unmount(mp);
980 /*
981 * Cancel all delayed reclaim work and reclaim the inodes directly.
982 * We have to do this /after/ rtunmount and qm_unmount because those
983 * two will have scheduled delayed reclaim for the rt/quota inodes.
984 *
985 * This is slightly different from the unmountfs call sequence
986 * because we could be tearing down a partially set up mount. In
987 * particular, if log_mount_finish fails we bail out without calling
988 * qm_unmount_quotas and therefore rely on qm_unmount to release the
989 * quota inodes.
990 */
991 cancel_delayed_work_sync(&mp->m_reclaim_work);
992 xfs_reclaim_inodes(mp, SYNC_WAIT);
993 xfs_health_unmount(mp);
994 out_log_dealloc:
995 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
996 xfs_log_mount_cancel(mp);
997 out_fail_wait:
998 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
999 xfs_wait_buftarg(mp->m_logdev_targp);
1000 xfs_wait_buftarg(mp->m_ddev_targp);
1001 out_free_perag:
1002 xfs_free_perag(mp);
1003 out_free_dir:
1004 xfs_da_unmount(mp);
1005 out_remove_uuid:
1006 xfs_uuid_unmount(mp);
1007 out_remove_errortag:
1008 xfs_errortag_del(mp);
1009 out_remove_error_sysfs:
1010 xfs_error_sysfs_del(mp);
1011 out_del_stats:
1012 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1013 out_remove_sysfs:
1014 xfs_sysfs_del(&mp->m_kobj);
1015 out:
1016 return error;
1017}
1018
1019/*
1020 * This flushes out the inodes,dquots and the superblock, unmounts the
1021 * log and makes sure that incore structures are freed.
1022 */
1023void
1024xfs_unmountfs(
1025 struct xfs_mount *mp)
1026{
1027 uint64_t resblks;
1028 int error;
1029
1030 xfs_stop_block_reaping(mp);
1031 xfs_fs_unreserve_ag_blocks(mp);
1032 xfs_qm_unmount_quotas(mp);
1033 xfs_rtunmount_inodes(mp);
1034 xfs_irele(mp->m_rootip);
1035
1036 /*
1037 * We can potentially deadlock here if we have an inode cluster
1038 * that has been freed has its buffer still pinned in memory because
1039 * the transaction is still sitting in a iclog. The stale inodes
1040 * on that buffer will have their flush locks held until the
1041 * transaction hits the disk and the callbacks run. the inode
1042 * flush takes the flush lock unconditionally and with nothing to
1043 * push out the iclog we will never get that unlocked. hence we
1044 * need to force the log first.
1045 */
1046 xfs_log_force(mp, XFS_LOG_SYNC);
1047
1048 /*
1049 * Wait for all busy extents to be freed, including completion of
1050 * any discard operation.
1051 */
1052 xfs_extent_busy_wait_all(mp);
1053 flush_workqueue(xfs_discard_wq);
1054
1055 /*
1056 * We now need to tell the world we are unmounting. This will allow
1057 * us to detect that the filesystem is going away and we should error
1058 * out anything that we have been retrying in the background. This will
1059 * prevent neverending retries in AIL pushing from hanging the unmount.
1060 */
1061 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1062
1063 /*
1064 * Flush all pending changes from the AIL.
1065 */
1066 xfs_ail_push_all_sync(mp->m_ail);
1067
1068 /*
1069 * And reclaim all inodes. At this point there should be no dirty
1070 * inodes and none should be pinned or locked, but use synchronous
1071 * reclaim just to be sure. We can stop background inode reclaim
1072 * here as well if it is still running.
1073 */
1074 cancel_delayed_work_sync(&mp->m_reclaim_work);
1075 xfs_reclaim_inodes(mp, SYNC_WAIT);
1076 xfs_health_unmount(mp);
1077
1078 xfs_qm_unmount(mp);
1079
1080 /*
1081 * Unreserve any blocks we have so that when we unmount we don't account
1082 * the reserved free space as used. This is really only necessary for
1083 * lazy superblock counting because it trusts the incore superblock
1084 * counters to be absolutely correct on clean unmount.
1085 *
1086 * We don't bother correcting this elsewhere for lazy superblock
1087 * counting because on mount of an unclean filesystem we reconstruct the
1088 * correct counter value and this is irrelevant.
1089 *
1090 * For non-lazy counter filesystems, this doesn't matter at all because
1091 * we only every apply deltas to the superblock and hence the incore
1092 * value does not matter....
1093 */
1094 resblks = 0;
1095 error = xfs_reserve_blocks(mp, &resblks, NULL);
1096 if (error)
1097 xfs_warn(mp, "Unable to free reserved block pool. "
1098 "Freespace may not be correct on next mount.");
1099
1100 error = xfs_log_sbcount(mp);
1101 if (error)
1102 xfs_warn(mp, "Unable to update superblock counters. "
1103 "Freespace may not be correct on next mount.");
1104
1105
1106 xfs_log_unmount(mp);
1107 xfs_da_unmount(mp);
1108 xfs_uuid_unmount(mp);
1109
1110#if defined(DEBUG)
1111 xfs_errortag_clearall(mp);
1112#endif
1113 xfs_free_perag(mp);
1114
1115 xfs_errortag_del(mp);
1116 xfs_error_sysfs_del(mp);
1117 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1118 xfs_sysfs_del(&mp->m_kobj);
1119}
1120
1121/*
1122 * Determine whether modifications can proceed. The caller specifies the minimum
1123 * freeze level for which modifications should not be allowed. This allows
1124 * certain operations to proceed while the freeze sequence is in progress, if
1125 * necessary.
1126 */
1127bool
1128xfs_fs_writable(
1129 struct xfs_mount *mp,
1130 int level)
1131{
1132 ASSERT(level > SB_UNFROZEN);
1133 if ((mp->m_super->s_writers.frozen >= level) ||
1134 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1135 return false;
1136
1137 return true;
1138}
1139
1140/*
1141 * xfs_log_sbcount
1142 *
1143 * Sync the superblock counters to disk.
1144 *
1145 * Note this code can be called during the process of freezing, so we use the
1146 * transaction allocator that does not block when the transaction subsystem is
1147 * in its frozen state.
1148 */
1149int
1150xfs_log_sbcount(xfs_mount_t *mp)
1151{
1152 /* allow this to proceed during the freeze sequence... */
1153 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1154 return 0;
1155
1156 /*
1157 * we don't need to do this if we are updating the superblock
1158 * counters on every modification.
1159 */
1160 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1161 return 0;
1162
1163 return xfs_sync_sb(mp, true);
1164}
1165
1166/*
1167 * Deltas for the inode count are +/-64, hence we use a large batch size
1168 * of 128 so we don't need to take the counter lock on every update.
1169 */
1170#define XFS_ICOUNT_BATCH 128
1171int
1172xfs_mod_icount(
1173 struct xfs_mount *mp,
1174 int64_t delta)
1175{
1176 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1177 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1178 ASSERT(0);
1179 percpu_counter_add(&mp->m_icount, -delta);
1180 return -EINVAL;
1181 }
1182 return 0;
1183}
1184
1185int
1186xfs_mod_ifree(
1187 struct xfs_mount *mp,
1188 int64_t delta)
1189{
1190 percpu_counter_add(&mp->m_ifree, delta);
1191 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1192 ASSERT(0);
1193 percpu_counter_add(&mp->m_ifree, -delta);
1194 return -EINVAL;
1195 }
1196 return 0;
1197}
1198
1199/*
1200 * Deltas for the block count can vary from 1 to very large, but lock contention
1201 * only occurs on frequent small block count updates such as in the delayed
1202 * allocation path for buffered writes (page a time updates). Hence we set
1203 * a large batch count (1024) to minimise global counter updates except when
1204 * we get near to ENOSPC and we have to be very accurate with our updates.
1205 */
1206#define XFS_FDBLOCKS_BATCH 1024
1207int
1208xfs_mod_fdblocks(
1209 struct xfs_mount *mp,
1210 int64_t delta,
1211 bool rsvd)
1212{
1213 int64_t lcounter;
1214 long long res_used;
1215 s32 batch;
1216
1217 if (delta > 0) {
1218 /*
1219 * If the reserve pool is depleted, put blocks back into it
1220 * first. Most of the time the pool is full.
1221 */
1222 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1223 percpu_counter_add(&mp->m_fdblocks, delta);
1224 return 0;
1225 }
1226
1227 spin_lock(&mp->m_sb_lock);
1228 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1229
1230 if (res_used > delta) {
1231 mp->m_resblks_avail += delta;
1232 } else {
1233 delta -= res_used;
1234 mp->m_resblks_avail = mp->m_resblks;
1235 percpu_counter_add(&mp->m_fdblocks, delta);
1236 }
1237 spin_unlock(&mp->m_sb_lock);
1238 return 0;
1239 }
1240
1241 /*
1242 * Taking blocks away, need to be more accurate the closer we
1243 * are to zero.
1244 *
1245 * If the counter has a value of less than 2 * max batch size,
1246 * then make everything serialise as we are real close to
1247 * ENOSPC.
1248 */
1249 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1250 XFS_FDBLOCKS_BATCH) < 0)
1251 batch = 1;
1252 else
1253 batch = XFS_FDBLOCKS_BATCH;
1254
1255 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1256 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1257 XFS_FDBLOCKS_BATCH) >= 0) {
1258 /* we had space! */
1259 return 0;
1260 }
1261
1262 /*
1263 * lock up the sb for dipping into reserves before releasing the space
1264 * that took us to ENOSPC.
1265 */
1266 spin_lock(&mp->m_sb_lock);
1267 percpu_counter_add(&mp->m_fdblocks, -delta);
1268 if (!rsvd)
1269 goto fdblocks_enospc;
1270
1271 lcounter = (long long)mp->m_resblks_avail + delta;
1272 if (lcounter >= 0) {
1273 mp->m_resblks_avail = lcounter;
1274 spin_unlock(&mp->m_sb_lock);
1275 return 0;
1276 }
1277 printk_once(KERN_WARNING
1278 "Filesystem \"%s\": reserve blocks depleted! "
1279 "Consider increasing reserve pool size.",
1280 mp->m_fsname);
1281fdblocks_enospc:
1282 spin_unlock(&mp->m_sb_lock);
1283 return -ENOSPC;
1284}
1285
1286int
1287xfs_mod_frextents(
1288 struct xfs_mount *mp,
1289 int64_t delta)
1290{
1291 int64_t lcounter;
1292 int ret = 0;
1293
1294 spin_lock(&mp->m_sb_lock);
1295 lcounter = mp->m_sb.sb_frextents + delta;
1296 if (lcounter < 0)
1297 ret = -ENOSPC;
1298 else
1299 mp->m_sb.sb_frextents = lcounter;
1300 spin_unlock(&mp->m_sb_lock);
1301 return ret;
1302}
1303
1304/*
1305 * xfs_getsb() is called to obtain the buffer for the superblock.
1306 * The buffer is returned locked and read in from disk.
1307 * The buffer should be released with a call to xfs_brelse().
1308 */
1309struct xfs_buf *
1310xfs_getsb(
1311 struct xfs_mount *mp)
1312{
1313 struct xfs_buf *bp = mp->m_sb_bp;
1314
1315 xfs_buf_lock(bp);
1316 xfs_buf_hold(bp);
1317 ASSERT(bp->b_flags & XBF_DONE);
1318 return bp;
1319}
1320
1321/*
1322 * Used to free the superblock along various error paths.
1323 */
1324void
1325xfs_freesb(
1326 struct xfs_mount *mp)
1327{
1328 struct xfs_buf *bp = mp->m_sb_bp;
1329
1330 xfs_buf_lock(bp);
1331 mp->m_sb_bp = NULL;
1332 xfs_buf_relse(bp);
1333}
1334
1335/*
1336 * If the underlying (data/log/rt) device is readonly, there are some
1337 * operations that cannot proceed.
1338 */
1339int
1340xfs_dev_is_read_only(
1341 struct xfs_mount *mp,
1342 char *message)
1343{
1344 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1345 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1346 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1347 xfs_notice(mp, "%s required on read-only device.", message);
1348 xfs_notice(mp, "write access unavailable, cannot proceed.");
1349 return -EROFS;
1350 }
1351 return 0;
1352}
1353
1354/* Force the summary counters to be recalculated at next mount. */
1355void
1356xfs_force_summary_recalc(
1357 struct xfs_mount *mp)
1358{
1359 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1360 return;
1361
1362 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1363}
1364
1365/*
1366 * Update the in-core delayed block counter.
1367 *
1368 * We prefer to update the counter without having to take a spinlock for every
1369 * counter update (i.e. batching). Each change to delayed allocation
1370 * reservations can change can easily exceed the default percpu counter
1371 * batching, so we use a larger batch factor here.
1372 *
1373 * Note that we don't currently have any callers requiring fast summation
1374 * (e.g. percpu_counter_read) so we can use a big batch value here.
1375 */
1376#define XFS_DELALLOC_BATCH (4096)
1377void
1378xfs_mod_delalloc(
1379 struct xfs_mount *mp,
1380 int64_t delta)
1381{
1382 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1383 XFS_DELALLOC_BATCH);
1384}