Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/property.h>
8#include <linux/rtnetlink.h>
9#include <linux/slab.h>
10
11#include "sfp.h"
12
13/**
14 * struct sfp_bus - internal representation of a sfp bus
15 */
16struct sfp_bus {
17 /* private: */
18 struct kref kref;
19 struct list_head node;
20 const struct fwnode_handle *fwnode;
21
22 const struct sfp_socket_ops *socket_ops;
23 struct device *sfp_dev;
24 struct sfp *sfp;
25 const struct sfp_quirk *sfp_quirk;
26
27 const struct sfp_upstream_ops *upstream_ops;
28 void *upstream;
29 struct phy_device *phydev;
30
31 bool registered;
32 bool started;
33};
34
35/**
36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
38 * @id: a pointer to the module's &struct sfp_eeprom_id
39 * @support: optional pointer to an array of unsigned long for the
40 * ethtool support mask
41 *
42 * Parse the EEPROM identification given in @id, and return one of
43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
45 * the connector type.
46 *
47 * If the port type is not known, returns %PORT_OTHER.
48 */
49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
50 unsigned long *support)
51{
52 int port;
53
54 /* port is the physical connector, set this from the connector field. */
55 switch (id->base.connector) {
56 case SFF8024_CONNECTOR_SC:
57 case SFF8024_CONNECTOR_FIBERJACK:
58 case SFF8024_CONNECTOR_LC:
59 case SFF8024_CONNECTOR_MT_RJ:
60 case SFF8024_CONNECTOR_MU:
61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
62 case SFF8024_CONNECTOR_MPO_1X12:
63 case SFF8024_CONNECTOR_MPO_2X16:
64 port = PORT_FIBRE;
65 break;
66
67 case SFF8024_CONNECTOR_RJ45:
68 port = PORT_TP;
69 break;
70
71 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
72 port = PORT_DA;
73 break;
74
75 case SFF8024_CONNECTOR_UNSPEC:
76 if (id->base.e1000_base_t) {
77 port = PORT_TP;
78 break;
79 }
80 fallthrough;
81 case SFF8024_CONNECTOR_SG: /* guess */
82 case SFF8024_CONNECTOR_HSSDC_II:
83 case SFF8024_CONNECTOR_NOSEPARATE:
84 case SFF8024_CONNECTOR_MXC_2X16:
85 port = PORT_OTHER;
86 break;
87 default:
88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
89 id->base.connector);
90 port = PORT_OTHER;
91 break;
92 }
93
94 if (support) {
95 switch (port) {
96 case PORT_FIBRE:
97 phylink_set(support, FIBRE);
98 break;
99
100 case PORT_TP:
101 phylink_set(support, TP);
102 break;
103 }
104 }
105
106 return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120 if (id->base.e1000_base_t)
121 return true;
122
123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124 switch (id->base.extended_cc) {
125 case SFF8024_ECC_10GBASE_T_SFI:
126 case SFF8024_ECC_10GBASE_T_SR:
127 case SFF8024_ECC_5GBASE_T:
128 case SFF8024_ECC_2_5GBASE_T:
129 return true;
130 }
131 }
132
133 return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 * mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149 unsigned long *support, unsigned long *interfaces)
150{
151 unsigned int br_min, br_nom, br_max;
152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154 /* Decode the bitrate information to MBd */
155 br_min = br_nom = br_max = 0;
156 if (id->base.br_nominal) {
157 if (id->base.br_nominal != 255) {
158 br_nom = id->base.br_nominal * 100;
159 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161 } else if (id->ext.br_max) {
162 br_nom = 250 * id->ext.br_max;
163 br_max = br_nom + br_nom * id->ext.br_min / 100;
164 br_min = br_nom - br_nom * id->ext.br_min / 100;
165 }
166
167 /* When using passive cables, in case neither BR,min nor BR,max
168 * are specified, set br_min to 0 as the nominal value is then
169 * used as the maximum.
170 */
171 if (br_min == br_max && id->base.sfp_ct_passive)
172 br_min = 0;
173 }
174
175 /* Set ethtool support from the compliance fields. */
176 if (id->base.e10g_base_sr) {
177 phylink_set(modes, 10000baseSR_Full);
178 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179 }
180 if (id->base.e10g_base_lr) {
181 phylink_set(modes, 10000baseLR_Full);
182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183 }
184 if (id->base.e10g_base_lrm) {
185 phylink_set(modes, 10000baseLRM_Full);
186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187 }
188 if (id->base.e10g_base_er) {
189 phylink_set(modes, 10000baseER_Full);
190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191 }
192 if (id->base.e1000_base_sx ||
193 id->base.e1000_base_lx ||
194 id->base.e1000_base_cx) {
195 phylink_set(modes, 1000baseX_Full);
196 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197 }
198 if (id->base.e1000_base_t) {
199 phylink_set(modes, 1000baseT_Half);
200 phylink_set(modes, 1000baseT_Full);
201 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203 }
204
205 /* 1000Base-PX or 1000Base-BX10 */
206 if ((id->base.e_base_px || id->base.e_base_bx10) &&
207 br_min <= 1300 && br_max >= 1200) {
208 phylink_set(modes, 1000baseX_Full);
209 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210 }
211
212 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213 if (id->base.e100_base_fx || id->base.e100_base_lx) {
214 phylink_set(modes, 100baseFX_Full);
215 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216 }
217 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218 phylink_set(modes, 100baseFX_Full);
219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220 }
221
222 /* For active or passive cables, select the link modes
223 * based on the bit rates and the cable compliance bytes.
224 */
225 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226 /* This may look odd, but some manufacturers use 12000MBd */
227 if (br_min <= 12000 && br_max >= 10300) {
228 phylink_set(modes, 10000baseCR_Full);
229 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230 }
231 if (br_min <= 3200 && br_max >= 3100) {
232 phylink_set(modes, 2500baseX_Full);
233 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234 }
235 if (br_min <= 1300 && br_max >= 1200) {
236 phylink_set(modes, 1000baseX_Full);
237 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238 }
239 }
240 if (id->base.sfp_ct_passive) {
241 if (id->base.passive.sff8431_app_e) {
242 phylink_set(modes, 10000baseCR_Full);
243 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244 }
245 }
246 if (id->base.sfp_ct_active) {
247 if (id->base.active.sff8431_app_e ||
248 id->base.active.sff8431_lim) {
249 phylink_set(modes, 10000baseCR_Full);
250 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251 }
252 }
253
254 switch (id->base.extended_cc) {
255 case SFF8024_ECC_UNSPEC:
256 break;
257 case SFF8024_ECC_100G_25GAUI_C2M_AOC:
258 if (br_min <= 28000 && br_max >= 25000) {
259 /* 25GBASE-R, possibly with FEC */
260 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261 /* There is currently no link mode for 25000base
262 * with unspecified range, reuse SR.
263 */
264 phylink_set(modes, 25000baseSR_Full);
265 }
266 break;
267 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
268 phylink_set(modes, 100000baseSR4_Full);
269 phylink_set(modes, 25000baseSR_Full);
270 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
271 break;
272 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
273 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
274 phylink_set(modes, 100000baseLR4_ER4_Full);
275 break;
276 case SFF8024_ECC_100GBASE_CR4:
277 phylink_set(modes, 100000baseCR4_Full);
278 fallthrough;
279 case SFF8024_ECC_25GBASE_CR_S:
280 case SFF8024_ECC_25GBASE_CR_N:
281 phylink_set(modes, 25000baseCR_Full);
282 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
283 break;
284 case SFF8024_ECC_10GBASE_T_SFI:
285 case SFF8024_ECC_10GBASE_T_SR:
286 phylink_set(modes, 10000baseT_Full);
287 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
288 break;
289 case SFF8024_ECC_5GBASE_T:
290 phylink_set(modes, 5000baseT_Full);
291 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
292 break;
293 case SFF8024_ECC_2_5GBASE_T:
294 phylink_set(modes, 2500baseT_Full);
295 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
296 break;
297 default:
298 dev_warn(bus->sfp_dev,
299 "Unknown/unsupported extended compliance code: 0x%02x\n",
300 id->base.extended_cc);
301 break;
302 }
303
304 /* For fibre channel SFP, derive possible BaseX modes */
305 if (id->base.fc_speed_100 ||
306 id->base.fc_speed_200 ||
307 id->base.fc_speed_400) {
308 if (id->base.br_nominal >= 31) {
309 phylink_set(modes, 2500baseX_Full);
310 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
311 }
312 if (id->base.br_nominal >= 12) {
313 phylink_set(modes, 1000baseX_Full);
314 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
315 }
316 }
317
318 /* If we haven't discovered any modes that this module supports, try
319 * the bitrate to determine supported modes. Some BiDi modules (eg,
320 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
321 * wavelengths, so do not set any transceiver bits.
322 *
323 * Do the same for modules supporting 2500BASE-X. Note that some
324 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
325 * 2500BASE-X, so we allow some slack here.
326 */
327 if (linkmode_empty(modes) && br_nom) {
328 if (br_min <= 1300 && br_max >= 1200) {
329 phylink_set(modes, 1000baseX_Full);
330 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
331 }
332 if (br_min <= 3200 && br_max >= 2500) {
333 phylink_set(modes, 2500baseX_Full);
334 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
335 }
336 }
337
338 phylink_set(modes, Autoneg);
339 phylink_set(modes, Pause);
340 phylink_set(modes, Asym_Pause);
341
342 if (bus->sfp_quirk && bus->sfp_quirk->modes)
343 bus->sfp_quirk->modes(id, modes, interfaces);
344
345 linkmode_or(support, support, modes);
346}
347EXPORT_SYMBOL_GPL(sfp_parse_support);
348
349/**
350 * sfp_select_interface() - Select appropriate phy_interface_t mode
351 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
352 * @link_modes: ethtool link modes mask
353 *
354 * Derive the phy_interface_t mode for the SFP module from the link
355 * modes mask.
356 */
357phy_interface_t sfp_select_interface(struct sfp_bus *bus,
358 const unsigned long *link_modes)
359{
360 if (phylink_test(link_modes, 25000baseCR_Full) ||
361 phylink_test(link_modes, 25000baseKR_Full) ||
362 phylink_test(link_modes, 25000baseSR_Full))
363 return PHY_INTERFACE_MODE_25GBASER;
364
365 if (phylink_test(link_modes, 10000baseCR_Full) ||
366 phylink_test(link_modes, 10000baseSR_Full) ||
367 phylink_test(link_modes, 10000baseLR_Full) ||
368 phylink_test(link_modes, 10000baseLRM_Full) ||
369 phylink_test(link_modes, 10000baseER_Full) ||
370 phylink_test(link_modes, 10000baseT_Full))
371 return PHY_INTERFACE_MODE_10GBASER;
372
373 if (phylink_test(link_modes, 5000baseT_Full))
374 return PHY_INTERFACE_MODE_5GBASER;
375
376 if (phylink_test(link_modes, 2500baseX_Full) ||
377 phylink_test(link_modes, 2500baseT_Full))
378 return PHY_INTERFACE_MODE_2500BASEX;
379
380 if (phylink_test(link_modes, 1000baseT_Half) ||
381 phylink_test(link_modes, 1000baseT_Full))
382 return PHY_INTERFACE_MODE_SGMII;
383
384 if (phylink_test(link_modes, 1000baseX_Full))
385 return PHY_INTERFACE_MODE_1000BASEX;
386
387 if (phylink_test(link_modes, 100baseFX_Full))
388 return PHY_INTERFACE_MODE_100BASEX;
389
390 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
391
392 return PHY_INTERFACE_MODE_NA;
393}
394EXPORT_SYMBOL_GPL(sfp_select_interface);
395
396static LIST_HEAD(sfp_buses);
397static DEFINE_MUTEX(sfp_mutex);
398
399static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
400{
401 return bus->registered ? bus->upstream_ops : NULL;
402}
403
404static struct sfp_bus *sfp_bus_get(const struct fwnode_handle *fwnode)
405{
406 struct sfp_bus *sfp, *new, *found = NULL;
407
408 new = kzalloc(sizeof(*new), GFP_KERNEL);
409
410 mutex_lock(&sfp_mutex);
411
412 list_for_each_entry(sfp, &sfp_buses, node) {
413 if (sfp->fwnode == fwnode) {
414 kref_get(&sfp->kref);
415 found = sfp;
416 break;
417 }
418 }
419
420 if (!found && new) {
421 kref_init(&new->kref);
422 new->fwnode = fwnode;
423 list_add(&new->node, &sfp_buses);
424 found = new;
425 new = NULL;
426 }
427
428 mutex_unlock(&sfp_mutex);
429
430 kfree(new);
431
432 return found;
433}
434
435static void sfp_bus_release(struct kref *kref)
436{
437 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
438
439 list_del(&bus->node);
440 mutex_unlock(&sfp_mutex);
441 kfree(bus);
442}
443
444/**
445 * sfp_bus_put() - put a reference on the &struct sfp_bus
446 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
447 *
448 * Put a reference on the &struct sfp_bus and free the underlying structure
449 * if this was the last reference.
450 */
451void sfp_bus_put(struct sfp_bus *bus)
452{
453 if (bus)
454 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
455}
456EXPORT_SYMBOL_GPL(sfp_bus_put);
457
458static int sfp_register_bus(struct sfp_bus *bus)
459{
460 const struct sfp_upstream_ops *ops = bus->upstream_ops;
461 int ret;
462
463 if (ops) {
464 if (ops->link_down)
465 ops->link_down(bus->upstream);
466 if (ops->connect_phy && bus->phydev) {
467 ret = ops->connect_phy(bus->upstream, bus->phydev);
468 if (ret)
469 return ret;
470 }
471 }
472 bus->registered = true;
473 bus->socket_ops->attach(bus->sfp);
474 if (bus->started)
475 bus->socket_ops->start(bus->sfp);
476 bus->upstream_ops->attach(bus->upstream, bus);
477 return 0;
478}
479
480static void sfp_unregister_bus(struct sfp_bus *bus)
481{
482 const struct sfp_upstream_ops *ops = bus->upstream_ops;
483
484 if (bus->registered) {
485 bus->upstream_ops->detach(bus->upstream, bus);
486 if (bus->started)
487 bus->socket_ops->stop(bus->sfp);
488 bus->socket_ops->detach(bus->sfp);
489 if (bus->phydev && ops && ops->disconnect_phy)
490 ops->disconnect_phy(bus->upstream, bus->phydev);
491 }
492 bus->registered = false;
493}
494
495/**
496 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
497 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
498 * @modinfo: a &struct ethtool_modinfo
499 *
500 * Fill in the type and eeprom_len parameters in @modinfo for a module on
501 * the sfp bus specified by @bus.
502 *
503 * Returns 0 on success or a negative errno number.
504 */
505int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
506{
507 return bus->socket_ops->module_info(bus->sfp, modinfo);
508}
509EXPORT_SYMBOL_GPL(sfp_get_module_info);
510
511/**
512 * sfp_get_module_eeprom() - Read the SFP module EEPROM
513 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
514 * @ee: a &struct ethtool_eeprom
515 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
516 *
517 * Read the EEPROM as specified by the supplied @ee. See the documentation
518 * for &struct ethtool_eeprom for the region to be read.
519 *
520 * Returns 0 on success or a negative errno number.
521 */
522int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
523 u8 *data)
524{
525 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
526}
527EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
528
529/**
530 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
531 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
532 * @page: a &struct ethtool_module_eeprom
533 * @extack: extack for reporting problems
534 *
535 * Read an EEPROM page as specified by the supplied @page. See the
536 * documentation for &struct ethtool_module_eeprom for the page to be read.
537 *
538 * Returns 0 on success or a negative errno number. More error
539 * information might be provided via extack
540 */
541int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
542 const struct ethtool_module_eeprom *page,
543 struct netlink_ext_ack *extack)
544{
545 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
546}
547EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
548
549/**
550 * sfp_upstream_start() - Inform the SFP that the network device is up
551 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
552 *
553 * Inform the SFP socket that the network device is now up, so that the
554 * module can be enabled by allowing TX_DISABLE to be deasserted. This
555 * should be called from the network device driver's &struct net_device_ops
556 * ndo_open() method.
557 */
558void sfp_upstream_start(struct sfp_bus *bus)
559{
560 if (bus->registered)
561 bus->socket_ops->start(bus->sfp);
562 bus->started = true;
563}
564EXPORT_SYMBOL_GPL(sfp_upstream_start);
565
566/**
567 * sfp_upstream_stop() - Inform the SFP that the network device is down
568 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
569 *
570 * Inform the SFP socket that the network device is now up, so that the
571 * module can be disabled by asserting TX_DISABLE, disabling the laser
572 * in optical modules. This should be called from the network device
573 * driver's &struct net_device_ops ndo_stop() method.
574 */
575void sfp_upstream_stop(struct sfp_bus *bus)
576{
577 if (bus->registered)
578 bus->socket_ops->stop(bus->sfp);
579 bus->started = false;
580}
581EXPORT_SYMBOL_GPL(sfp_upstream_stop);
582
583static void sfp_upstream_clear(struct sfp_bus *bus)
584{
585 bus->upstream_ops = NULL;
586 bus->upstream = NULL;
587}
588
589/**
590 * sfp_upstream_set_signal_rate() - set data signalling rate
591 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
592 * @rate_kbd: signalling rate in units of 1000 baud
593 *
594 * Configure the rate select settings on the SFP module for the signalling
595 * rate (not the same as the data rate).
596 *
597 * Locks that may be held:
598 * Phylink's state_mutex
599 * rtnl lock
600 * SFP's sm_mutex
601 */
602void sfp_upstream_set_signal_rate(struct sfp_bus *bus, unsigned int rate_kbd)
603{
604 if (bus->registered)
605 bus->socket_ops->set_signal_rate(bus->sfp, rate_kbd);
606}
607EXPORT_SYMBOL_GPL(sfp_upstream_set_signal_rate);
608
609/**
610 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
611 * @fwnode: firmware node for the parent device (MAC or PHY)
612 *
613 * Parse the parent device's firmware node for a SFP bus, and locate
614 * the sfp_bus structure, incrementing its reference count. This must
615 * be put via sfp_bus_put() when done.
616 *
617 * Returns:
618 * - on success, a pointer to the sfp_bus structure,
619 * - %NULL if no SFP is specified,
620 * - on failure, an error pointer value:
621 *
622 * - corresponding to the errors detailed for
623 * fwnode_property_get_reference_args().
624 * - %-ENOMEM if we failed to allocate the bus.
625 * - an error from the upstream's connect_phy() method.
626 */
627struct sfp_bus *sfp_bus_find_fwnode(const struct fwnode_handle *fwnode)
628{
629 struct fwnode_reference_args ref;
630 struct sfp_bus *bus;
631 int ret;
632
633 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
634 0, 0, &ref);
635 if (ret == -ENOENT)
636 return NULL;
637 else if (ret < 0)
638 return ERR_PTR(ret);
639
640 if (!fwnode_device_is_available(ref.fwnode)) {
641 fwnode_handle_put(ref.fwnode);
642 return NULL;
643 }
644
645 bus = sfp_bus_get(ref.fwnode);
646 fwnode_handle_put(ref.fwnode);
647 if (!bus)
648 return ERR_PTR(-ENOMEM);
649
650 return bus;
651}
652EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
653
654/**
655 * sfp_bus_add_upstream() - parse and register the neighbouring device
656 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
657 * @upstream: the upstream private data
658 * @ops: the upstream's &struct sfp_upstream_ops
659 *
660 * Add upstream driver for the SFP bus, and if the bus is complete, register
661 * the SFP bus using sfp_register_upstream(). This takes a reference on the
662 * bus, so it is safe to put the bus after this call.
663 *
664 * Returns:
665 * - on success, a pointer to the sfp_bus structure,
666 * - %NULL if no SFP is specified,
667 * - on failure, an error pointer value:
668 *
669 * - corresponding to the errors detailed for
670 * fwnode_property_get_reference_args().
671 * - %-ENOMEM if we failed to allocate the bus.
672 * - an error from the upstream's connect_phy() method.
673 */
674int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
675 const struct sfp_upstream_ops *ops)
676{
677 int ret;
678
679 /* If no bus, return success */
680 if (!bus)
681 return 0;
682
683 rtnl_lock();
684 kref_get(&bus->kref);
685 bus->upstream_ops = ops;
686 bus->upstream = upstream;
687
688 if (bus->sfp) {
689 ret = sfp_register_bus(bus);
690 if (ret)
691 sfp_upstream_clear(bus);
692 } else {
693 ret = 0;
694 }
695 rtnl_unlock();
696
697 if (ret)
698 sfp_bus_put(bus);
699
700 return ret;
701}
702EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
703
704/**
705 * sfp_bus_del_upstream() - Delete a sfp bus
706 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
707 *
708 * Delete a previously registered upstream connection for the SFP
709 * module. @bus should have been added by sfp_bus_add_upstream().
710 */
711void sfp_bus_del_upstream(struct sfp_bus *bus)
712{
713 if (bus) {
714 rtnl_lock();
715 if (bus->sfp)
716 sfp_unregister_bus(bus);
717 sfp_upstream_clear(bus);
718 rtnl_unlock();
719
720 sfp_bus_put(bus);
721 }
722}
723EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
724
725/**
726 * sfp_get_name() - Get the SFP device name
727 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
728 *
729 * Gets the SFP device's name, if @bus has a registered socket. Callers must
730 * hold RTNL, and the returned name is only valid until RTNL is released.
731 *
732 * Returns:
733 * - The name of the SFP device registered with sfp_register_socket()
734 * - %NULL if no device was registered on @bus
735 */
736const char *sfp_get_name(struct sfp_bus *bus)
737{
738 ASSERT_RTNL();
739
740 if (bus->sfp_dev)
741 return dev_name(bus->sfp_dev);
742
743 return NULL;
744}
745EXPORT_SYMBOL_GPL(sfp_get_name);
746
747/* Socket driver entry points */
748int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
749{
750 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
751 int ret = 0;
752
753 if (ops && ops->connect_phy)
754 ret = ops->connect_phy(bus->upstream, phydev);
755
756 if (ret == 0)
757 bus->phydev = phydev;
758
759 return ret;
760}
761EXPORT_SYMBOL_GPL(sfp_add_phy);
762
763void sfp_remove_phy(struct sfp_bus *bus)
764{
765 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
766
767 if (ops && ops->disconnect_phy)
768 ops->disconnect_phy(bus->upstream, bus->phydev);
769 bus->phydev = NULL;
770}
771EXPORT_SYMBOL_GPL(sfp_remove_phy);
772
773void sfp_link_up(struct sfp_bus *bus)
774{
775 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
776
777 if (ops && ops->link_up)
778 ops->link_up(bus->upstream);
779}
780EXPORT_SYMBOL_GPL(sfp_link_up);
781
782void sfp_link_down(struct sfp_bus *bus)
783{
784 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
785
786 if (ops && ops->link_down)
787 ops->link_down(bus->upstream);
788}
789EXPORT_SYMBOL_GPL(sfp_link_down);
790
791int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
792 const struct sfp_quirk *quirk)
793{
794 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
795 int ret = 0;
796
797 bus->sfp_quirk = quirk;
798
799 if (ops && ops->module_insert)
800 ret = ops->module_insert(bus->upstream, id);
801
802 return ret;
803}
804EXPORT_SYMBOL_GPL(sfp_module_insert);
805
806void sfp_module_remove(struct sfp_bus *bus)
807{
808 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
809
810 if (ops && ops->module_remove)
811 ops->module_remove(bus->upstream);
812
813 bus->sfp_quirk = NULL;
814}
815EXPORT_SYMBOL_GPL(sfp_module_remove);
816
817int sfp_module_start(struct sfp_bus *bus)
818{
819 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
820 int ret = 0;
821
822 if (ops && ops->module_start)
823 ret = ops->module_start(bus->upstream);
824
825 return ret;
826}
827EXPORT_SYMBOL_GPL(sfp_module_start);
828
829void sfp_module_stop(struct sfp_bus *bus)
830{
831 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
832
833 if (ops && ops->module_stop)
834 ops->module_stop(bus->upstream);
835}
836EXPORT_SYMBOL_GPL(sfp_module_stop);
837
838static void sfp_socket_clear(struct sfp_bus *bus)
839{
840 bus->sfp_dev = NULL;
841 bus->sfp = NULL;
842 bus->socket_ops = NULL;
843}
844
845struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
846 const struct sfp_socket_ops *ops)
847{
848 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
849 int ret = 0;
850
851 if (bus) {
852 rtnl_lock();
853 bus->sfp_dev = dev;
854 bus->sfp = sfp;
855 bus->socket_ops = ops;
856
857 if (bus->upstream_ops) {
858 ret = sfp_register_bus(bus);
859 if (ret)
860 sfp_socket_clear(bus);
861 }
862 rtnl_unlock();
863 }
864
865 if (ret) {
866 sfp_bus_put(bus);
867 bus = NULL;
868 }
869
870 return bus;
871}
872EXPORT_SYMBOL_GPL(sfp_register_socket);
873
874void sfp_unregister_socket(struct sfp_bus *bus)
875{
876 rtnl_lock();
877 if (bus->upstream_ops)
878 sfp_unregister_bus(bus);
879 sfp_socket_clear(bus);
880 rtnl_unlock();
881
882 sfp_bus_put(bus);
883}
884EXPORT_SYMBOL_GPL(sfp_unregister_socket);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/property.h>
8#include <linux/rtnetlink.h>
9#include <linux/slab.h>
10
11#include "sfp.h"
12
13/**
14 * struct sfp_bus - internal representation of a sfp bus
15 */
16struct sfp_bus {
17 /* private: */
18 struct kref kref;
19 struct list_head node;
20 struct fwnode_handle *fwnode;
21
22 const struct sfp_socket_ops *socket_ops;
23 struct device *sfp_dev;
24 struct sfp *sfp;
25 const struct sfp_quirk *sfp_quirk;
26
27 const struct sfp_upstream_ops *upstream_ops;
28 void *upstream;
29 struct phy_device *phydev;
30
31 bool registered;
32 bool started;
33};
34
35/**
36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
38 * @id: a pointer to the module's &struct sfp_eeprom_id
39 * @support: optional pointer to an array of unsigned long for the
40 * ethtool support mask
41 *
42 * Parse the EEPROM identification given in @id, and return one of
43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
45 * the connector type.
46 *
47 * If the port type is not known, returns %PORT_OTHER.
48 */
49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
50 unsigned long *support)
51{
52 int port;
53
54 /* port is the physical connector, set this from the connector field. */
55 switch (id->base.connector) {
56 case SFF8024_CONNECTOR_SC:
57 case SFF8024_CONNECTOR_FIBERJACK:
58 case SFF8024_CONNECTOR_LC:
59 case SFF8024_CONNECTOR_MT_RJ:
60 case SFF8024_CONNECTOR_MU:
61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
62 case SFF8024_CONNECTOR_MPO_1X12:
63 case SFF8024_CONNECTOR_MPO_2X16:
64 port = PORT_FIBRE;
65 break;
66
67 case SFF8024_CONNECTOR_RJ45:
68 port = PORT_TP;
69 break;
70
71 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
72 port = PORT_DA;
73 break;
74
75 case SFF8024_CONNECTOR_UNSPEC:
76 if (id->base.e1000_base_t) {
77 port = PORT_TP;
78 break;
79 }
80 fallthrough;
81 case SFF8024_CONNECTOR_SG: /* guess */
82 case SFF8024_CONNECTOR_HSSDC_II:
83 case SFF8024_CONNECTOR_NOSEPARATE:
84 case SFF8024_CONNECTOR_MXC_2X16:
85 port = PORT_OTHER;
86 break;
87 default:
88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
89 id->base.connector);
90 port = PORT_OTHER;
91 break;
92 }
93
94 if (support) {
95 switch (port) {
96 case PORT_FIBRE:
97 phylink_set(support, FIBRE);
98 break;
99
100 case PORT_TP:
101 phylink_set(support, TP);
102 break;
103 }
104 }
105
106 return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120 if (id->base.e1000_base_t)
121 return true;
122
123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124 switch (id->base.extended_cc) {
125 case SFF8024_ECC_10GBASE_T_SFI:
126 case SFF8024_ECC_10GBASE_T_SR:
127 case SFF8024_ECC_5GBASE_T:
128 case SFF8024_ECC_2_5GBASE_T:
129 return true;
130 }
131 }
132
133 return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 * mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149 unsigned long *support, unsigned long *interfaces)
150{
151 unsigned int br_min, br_nom, br_max;
152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154 /* Decode the bitrate information to MBd */
155 br_min = br_nom = br_max = 0;
156 if (id->base.br_nominal) {
157 if (id->base.br_nominal != 255) {
158 br_nom = id->base.br_nominal * 100;
159 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161 } else if (id->ext.br_max) {
162 br_nom = 250 * id->ext.br_max;
163 br_max = br_nom + br_nom * id->ext.br_min / 100;
164 br_min = br_nom - br_nom * id->ext.br_min / 100;
165 }
166
167 /* When using passive cables, in case neither BR,min nor BR,max
168 * are specified, set br_min to 0 as the nominal value is then
169 * used as the maximum.
170 */
171 if (br_min == br_max && id->base.sfp_ct_passive)
172 br_min = 0;
173 }
174
175 /* Set ethtool support from the compliance fields. */
176 if (id->base.e10g_base_sr) {
177 phylink_set(modes, 10000baseSR_Full);
178 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179 }
180 if (id->base.e10g_base_lr) {
181 phylink_set(modes, 10000baseLR_Full);
182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183 }
184 if (id->base.e10g_base_lrm) {
185 phylink_set(modes, 10000baseLRM_Full);
186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187 }
188 if (id->base.e10g_base_er) {
189 phylink_set(modes, 10000baseER_Full);
190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191 }
192 if (id->base.e1000_base_sx ||
193 id->base.e1000_base_lx ||
194 id->base.e1000_base_cx) {
195 phylink_set(modes, 1000baseX_Full);
196 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197 }
198 if (id->base.e1000_base_t) {
199 phylink_set(modes, 1000baseT_Half);
200 phylink_set(modes, 1000baseT_Full);
201 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203 }
204
205 /* 1000Base-PX or 1000Base-BX10 */
206 if ((id->base.e_base_px || id->base.e_base_bx10) &&
207 br_min <= 1300 && br_max >= 1200) {
208 phylink_set(modes, 1000baseX_Full);
209 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210 }
211
212 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213 if (id->base.e100_base_fx || id->base.e100_base_lx) {
214 phylink_set(modes, 100baseFX_Full);
215 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216 }
217 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218 phylink_set(modes, 100baseFX_Full);
219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220 }
221
222 /* For active or passive cables, select the link modes
223 * based on the bit rates and the cable compliance bytes.
224 */
225 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226 /* This may look odd, but some manufacturers use 12000MBd */
227 if (br_min <= 12000 && br_max >= 10300) {
228 phylink_set(modes, 10000baseCR_Full);
229 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230 }
231 if (br_min <= 3200 && br_max >= 3100) {
232 phylink_set(modes, 2500baseX_Full);
233 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234 }
235 if (br_min <= 1300 && br_max >= 1200) {
236 phylink_set(modes, 1000baseX_Full);
237 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238 }
239 }
240 if (id->base.sfp_ct_passive) {
241 if (id->base.passive.sff8431_app_e) {
242 phylink_set(modes, 10000baseCR_Full);
243 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244 }
245 }
246 if (id->base.sfp_ct_active) {
247 if (id->base.active.sff8431_app_e ||
248 id->base.active.sff8431_lim) {
249 phylink_set(modes, 10000baseCR_Full);
250 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251 }
252 }
253
254 switch (id->base.extended_cc) {
255 case SFF8024_ECC_UNSPEC:
256 break;
257 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
258 phylink_set(modes, 100000baseSR4_Full);
259 phylink_set(modes, 25000baseSR_Full);
260 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261 break;
262 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
263 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
264 phylink_set(modes, 100000baseLR4_ER4_Full);
265 break;
266 case SFF8024_ECC_100GBASE_CR4:
267 phylink_set(modes, 100000baseCR4_Full);
268 fallthrough;
269 case SFF8024_ECC_25GBASE_CR_S:
270 case SFF8024_ECC_25GBASE_CR_N:
271 phylink_set(modes, 25000baseCR_Full);
272 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
273 break;
274 case SFF8024_ECC_10GBASE_T_SFI:
275 case SFF8024_ECC_10GBASE_T_SR:
276 phylink_set(modes, 10000baseT_Full);
277 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
278 break;
279 case SFF8024_ECC_5GBASE_T:
280 phylink_set(modes, 5000baseT_Full);
281 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
282 break;
283 case SFF8024_ECC_2_5GBASE_T:
284 phylink_set(modes, 2500baseT_Full);
285 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
286 break;
287 default:
288 dev_warn(bus->sfp_dev,
289 "Unknown/unsupported extended compliance code: 0x%02x\n",
290 id->base.extended_cc);
291 break;
292 }
293
294 /* For fibre channel SFP, derive possible BaseX modes */
295 if (id->base.fc_speed_100 ||
296 id->base.fc_speed_200 ||
297 id->base.fc_speed_400) {
298 if (id->base.br_nominal >= 31) {
299 phylink_set(modes, 2500baseX_Full);
300 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
301 }
302 if (id->base.br_nominal >= 12) {
303 phylink_set(modes, 1000baseX_Full);
304 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
305 }
306 }
307
308 /* If we haven't discovered any modes that this module supports, try
309 * the bitrate to determine supported modes. Some BiDi modules (eg,
310 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
311 * wavelengths, so do not set any transceiver bits.
312 *
313 * Do the same for modules supporting 2500BASE-X. Note that some
314 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
315 * 2500BASE-X, so we allow some slack here.
316 */
317 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
318 if (br_min <= 1300 && br_max >= 1200) {
319 phylink_set(modes, 1000baseX_Full);
320 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
321 }
322 if (br_min <= 3200 && br_max >= 2500) {
323 phylink_set(modes, 2500baseX_Full);
324 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
325 }
326 }
327
328 if (bus->sfp_quirk && bus->sfp_quirk->modes)
329 bus->sfp_quirk->modes(id, modes, interfaces);
330
331 linkmode_or(support, support, modes);
332
333 phylink_set(support, Autoneg);
334 phylink_set(support, Pause);
335 phylink_set(support, Asym_Pause);
336}
337EXPORT_SYMBOL_GPL(sfp_parse_support);
338
339/**
340 * sfp_select_interface() - Select appropriate phy_interface_t mode
341 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
342 * @link_modes: ethtool link modes mask
343 *
344 * Derive the phy_interface_t mode for the SFP module from the link
345 * modes mask.
346 */
347phy_interface_t sfp_select_interface(struct sfp_bus *bus,
348 unsigned long *link_modes)
349{
350 if (phylink_test(link_modes, 25000baseCR_Full) ||
351 phylink_test(link_modes, 25000baseKR_Full) ||
352 phylink_test(link_modes, 25000baseSR_Full))
353 return PHY_INTERFACE_MODE_25GBASER;
354
355 if (phylink_test(link_modes, 10000baseCR_Full) ||
356 phylink_test(link_modes, 10000baseSR_Full) ||
357 phylink_test(link_modes, 10000baseLR_Full) ||
358 phylink_test(link_modes, 10000baseLRM_Full) ||
359 phylink_test(link_modes, 10000baseER_Full) ||
360 phylink_test(link_modes, 10000baseT_Full))
361 return PHY_INTERFACE_MODE_10GBASER;
362
363 if (phylink_test(link_modes, 5000baseT_Full))
364 return PHY_INTERFACE_MODE_5GBASER;
365
366 if (phylink_test(link_modes, 2500baseX_Full))
367 return PHY_INTERFACE_MODE_2500BASEX;
368
369 if (phylink_test(link_modes, 1000baseT_Half) ||
370 phylink_test(link_modes, 1000baseT_Full))
371 return PHY_INTERFACE_MODE_SGMII;
372
373 if (phylink_test(link_modes, 1000baseX_Full))
374 return PHY_INTERFACE_MODE_1000BASEX;
375
376 if (phylink_test(link_modes, 100baseFX_Full))
377 return PHY_INTERFACE_MODE_100BASEX;
378
379 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
380
381 return PHY_INTERFACE_MODE_NA;
382}
383EXPORT_SYMBOL_GPL(sfp_select_interface);
384
385static LIST_HEAD(sfp_buses);
386static DEFINE_MUTEX(sfp_mutex);
387
388static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
389{
390 return bus->registered ? bus->upstream_ops : NULL;
391}
392
393static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
394{
395 struct sfp_bus *sfp, *new, *found = NULL;
396
397 new = kzalloc(sizeof(*new), GFP_KERNEL);
398
399 mutex_lock(&sfp_mutex);
400
401 list_for_each_entry(sfp, &sfp_buses, node) {
402 if (sfp->fwnode == fwnode) {
403 kref_get(&sfp->kref);
404 found = sfp;
405 break;
406 }
407 }
408
409 if (!found && new) {
410 kref_init(&new->kref);
411 new->fwnode = fwnode;
412 list_add(&new->node, &sfp_buses);
413 found = new;
414 new = NULL;
415 }
416
417 mutex_unlock(&sfp_mutex);
418
419 kfree(new);
420
421 return found;
422}
423
424static void sfp_bus_release(struct kref *kref)
425{
426 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
427
428 list_del(&bus->node);
429 mutex_unlock(&sfp_mutex);
430 kfree(bus);
431}
432
433/**
434 * sfp_bus_put() - put a reference on the &struct sfp_bus
435 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
436 *
437 * Put a reference on the &struct sfp_bus and free the underlying structure
438 * if this was the last reference.
439 */
440void sfp_bus_put(struct sfp_bus *bus)
441{
442 if (bus)
443 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
444}
445EXPORT_SYMBOL_GPL(sfp_bus_put);
446
447static int sfp_register_bus(struct sfp_bus *bus)
448{
449 const struct sfp_upstream_ops *ops = bus->upstream_ops;
450 int ret;
451
452 if (ops) {
453 if (ops->link_down)
454 ops->link_down(bus->upstream);
455 if (ops->connect_phy && bus->phydev) {
456 ret = ops->connect_phy(bus->upstream, bus->phydev);
457 if (ret)
458 return ret;
459 }
460 }
461 bus->registered = true;
462 bus->socket_ops->attach(bus->sfp);
463 if (bus->started)
464 bus->socket_ops->start(bus->sfp);
465 bus->upstream_ops->attach(bus->upstream, bus);
466 return 0;
467}
468
469static void sfp_unregister_bus(struct sfp_bus *bus)
470{
471 const struct sfp_upstream_ops *ops = bus->upstream_ops;
472
473 if (bus->registered) {
474 bus->upstream_ops->detach(bus->upstream, bus);
475 if (bus->started)
476 bus->socket_ops->stop(bus->sfp);
477 bus->socket_ops->detach(bus->sfp);
478 if (bus->phydev && ops && ops->disconnect_phy)
479 ops->disconnect_phy(bus->upstream);
480 }
481 bus->registered = false;
482}
483
484/**
485 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
486 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
487 * @modinfo: a &struct ethtool_modinfo
488 *
489 * Fill in the type and eeprom_len parameters in @modinfo for a module on
490 * the sfp bus specified by @bus.
491 *
492 * Returns 0 on success or a negative errno number.
493 */
494int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
495{
496 return bus->socket_ops->module_info(bus->sfp, modinfo);
497}
498EXPORT_SYMBOL_GPL(sfp_get_module_info);
499
500/**
501 * sfp_get_module_eeprom() - Read the SFP module EEPROM
502 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
503 * @ee: a &struct ethtool_eeprom
504 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
505 *
506 * Read the EEPROM as specified by the supplied @ee. See the documentation
507 * for &struct ethtool_eeprom for the region to be read.
508 *
509 * Returns 0 on success or a negative errno number.
510 */
511int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
512 u8 *data)
513{
514 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
515}
516EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
517
518/**
519 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
520 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
521 * @page: a &struct ethtool_module_eeprom
522 * @extack: extack for reporting problems
523 *
524 * Read an EEPROM page as specified by the supplied @page. See the
525 * documentation for &struct ethtool_module_eeprom for the page to be read.
526 *
527 * Returns 0 on success or a negative errno number. More error
528 * information might be provided via extack
529 */
530int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
531 const struct ethtool_module_eeprom *page,
532 struct netlink_ext_ack *extack)
533{
534 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
535}
536EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
537
538/**
539 * sfp_upstream_start() - Inform the SFP that the network device is up
540 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
541 *
542 * Inform the SFP socket that the network device is now up, so that the
543 * module can be enabled by allowing TX_DISABLE to be deasserted. This
544 * should be called from the network device driver's &struct net_device_ops
545 * ndo_open() method.
546 */
547void sfp_upstream_start(struct sfp_bus *bus)
548{
549 if (bus->registered)
550 bus->socket_ops->start(bus->sfp);
551 bus->started = true;
552}
553EXPORT_SYMBOL_GPL(sfp_upstream_start);
554
555/**
556 * sfp_upstream_stop() - Inform the SFP that the network device is down
557 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
558 *
559 * Inform the SFP socket that the network device is now up, so that the
560 * module can be disabled by asserting TX_DISABLE, disabling the laser
561 * in optical modules. This should be called from the network device
562 * driver's &struct net_device_ops ndo_stop() method.
563 */
564void sfp_upstream_stop(struct sfp_bus *bus)
565{
566 if (bus->registered)
567 bus->socket_ops->stop(bus->sfp);
568 bus->started = false;
569}
570EXPORT_SYMBOL_GPL(sfp_upstream_stop);
571
572static void sfp_upstream_clear(struct sfp_bus *bus)
573{
574 bus->upstream_ops = NULL;
575 bus->upstream = NULL;
576}
577
578/**
579 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
580 * @fwnode: firmware node for the parent device (MAC or PHY)
581 *
582 * Parse the parent device's firmware node for a SFP bus, and locate
583 * the sfp_bus structure, incrementing its reference count. This must
584 * be put via sfp_bus_put() when done.
585 *
586 * Returns:
587 * - on success, a pointer to the sfp_bus structure,
588 * - %NULL if no SFP is specified,
589 * - on failure, an error pointer value:
590 *
591 * - corresponding to the errors detailed for
592 * fwnode_property_get_reference_args().
593 * - %-ENOMEM if we failed to allocate the bus.
594 * - an error from the upstream's connect_phy() method.
595 */
596struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
597{
598 struct fwnode_reference_args ref;
599 struct sfp_bus *bus;
600 int ret;
601
602 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
603 0, 0, &ref);
604 if (ret == -ENOENT)
605 return NULL;
606 else if (ret < 0)
607 return ERR_PTR(ret);
608
609 if (!fwnode_device_is_available(ref.fwnode)) {
610 fwnode_handle_put(ref.fwnode);
611 return NULL;
612 }
613
614 bus = sfp_bus_get(ref.fwnode);
615 fwnode_handle_put(ref.fwnode);
616 if (!bus)
617 return ERR_PTR(-ENOMEM);
618
619 return bus;
620}
621EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
622
623/**
624 * sfp_bus_add_upstream() - parse and register the neighbouring device
625 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
626 * @upstream: the upstream private data
627 * @ops: the upstream's &struct sfp_upstream_ops
628 *
629 * Add upstream driver for the SFP bus, and if the bus is complete, register
630 * the SFP bus using sfp_register_upstream(). This takes a reference on the
631 * bus, so it is safe to put the bus after this call.
632 *
633 * Returns:
634 * - on success, a pointer to the sfp_bus structure,
635 * - %NULL if no SFP is specified,
636 * - on failure, an error pointer value:
637 *
638 * - corresponding to the errors detailed for
639 * fwnode_property_get_reference_args().
640 * - %-ENOMEM if we failed to allocate the bus.
641 * - an error from the upstream's connect_phy() method.
642 */
643int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
644 const struct sfp_upstream_ops *ops)
645{
646 int ret;
647
648 /* If no bus, return success */
649 if (!bus)
650 return 0;
651
652 rtnl_lock();
653 kref_get(&bus->kref);
654 bus->upstream_ops = ops;
655 bus->upstream = upstream;
656
657 if (bus->sfp) {
658 ret = sfp_register_bus(bus);
659 if (ret)
660 sfp_upstream_clear(bus);
661 } else {
662 ret = 0;
663 }
664 rtnl_unlock();
665
666 if (ret)
667 sfp_bus_put(bus);
668
669 return ret;
670}
671EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
672
673/**
674 * sfp_bus_del_upstream() - Delete a sfp bus
675 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
676 *
677 * Delete a previously registered upstream connection for the SFP
678 * module. @bus should have been added by sfp_bus_add_upstream().
679 */
680void sfp_bus_del_upstream(struct sfp_bus *bus)
681{
682 if (bus) {
683 rtnl_lock();
684 if (bus->sfp)
685 sfp_unregister_bus(bus);
686 sfp_upstream_clear(bus);
687 rtnl_unlock();
688
689 sfp_bus_put(bus);
690 }
691}
692EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
693
694/* Socket driver entry points */
695int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
696{
697 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
698 int ret = 0;
699
700 if (ops && ops->connect_phy)
701 ret = ops->connect_phy(bus->upstream, phydev);
702
703 if (ret == 0)
704 bus->phydev = phydev;
705
706 return ret;
707}
708EXPORT_SYMBOL_GPL(sfp_add_phy);
709
710void sfp_remove_phy(struct sfp_bus *bus)
711{
712 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
713
714 if (ops && ops->disconnect_phy)
715 ops->disconnect_phy(bus->upstream);
716 bus->phydev = NULL;
717}
718EXPORT_SYMBOL_GPL(sfp_remove_phy);
719
720void sfp_link_up(struct sfp_bus *bus)
721{
722 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
723
724 if (ops && ops->link_up)
725 ops->link_up(bus->upstream);
726}
727EXPORT_SYMBOL_GPL(sfp_link_up);
728
729void sfp_link_down(struct sfp_bus *bus)
730{
731 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
732
733 if (ops && ops->link_down)
734 ops->link_down(bus->upstream);
735}
736EXPORT_SYMBOL_GPL(sfp_link_down);
737
738int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
739 const struct sfp_quirk *quirk)
740{
741 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
742 int ret = 0;
743
744 bus->sfp_quirk = quirk;
745
746 if (ops && ops->module_insert)
747 ret = ops->module_insert(bus->upstream, id);
748
749 return ret;
750}
751EXPORT_SYMBOL_GPL(sfp_module_insert);
752
753void sfp_module_remove(struct sfp_bus *bus)
754{
755 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
756
757 if (ops && ops->module_remove)
758 ops->module_remove(bus->upstream);
759
760 bus->sfp_quirk = NULL;
761}
762EXPORT_SYMBOL_GPL(sfp_module_remove);
763
764int sfp_module_start(struct sfp_bus *bus)
765{
766 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
767 int ret = 0;
768
769 if (ops && ops->module_start)
770 ret = ops->module_start(bus->upstream);
771
772 return ret;
773}
774EXPORT_SYMBOL_GPL(sfp_module_start);
775
776void sfp_module_stop(struct sfp_bus *bus)
777{
778 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
779
780 if (ops && ops->module_stop)
781 ops->module_stop(bus->upstream);
782}
783EXPORT_SYMBOL_GPL(sfp_module_stop);
784
785static void sfp_socket_clear(struct sfp_bus *bus)
786{
787 bus->sfp_dev = NULL;
788 bus->sfp = NULL;
789 bus->socket_ops = NULL;
790}
791
792struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
793 const struct sfp_socket_ops *ops)
794{
795 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
796 int ret = 0;
797
798 if (bus) {
799 rtnl_lock();
800 bus->sfp_dev = dev;
801 bus->sfp = sfp;
802 bus->socket_ops = ops;
803
804 if (bus->upstream_ops) {
805 ret = sfp_register_bus(bus);
806 if (ret)
807 sfp_socket_clear(bus);
808 }
809 rtnl_unlock();
810 }
811
812 if (ret) {
813 sfp_bus_put(bus);
814 bus = NULL;
815 }
816
817 return bus;
818}
819EXPORT_SYMBOL_GPL(sfp_register_socket);
820
821void sfp_unregister_socket(struct sfp_bus *bus)
822{
823 rtnl_lock();
824 if (bus->upstream_ops)
825 sfp_unregister_bus(bus);
826 sfp_socket_clear(bus);
827 rtnl_unlock();
828
829 sfp_bus_put(bus);
830}
831EXPORT_SYMBOL_GPL(sfp_unregister_socket);