Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/export.h>
  3#include <linux/kref.h>
  4#include <linux/list.h>
  5#include <linux/mutex.h>
  6#include <linux/phylink.h>
  7#include <linux/property.h>
  8#include <linux/rtnetlink.h>
  9#include <linux/slab.h>
 10
 11#include "sfp.h"
 12
 
 
 
 
 
 
 13/**
 14 * struct sfp_bus - internal representation of a sfp bus
 15 */
 16struct sfp_bus {
 17	/* private: */
 18	struct kref kref;
 19	struct list_head node;
 20	const struct fwnode_handle *fwnode;
 21
 22	const struct sfp_socket_ops *socket_ops;
 23	struct device *sfp_dev;
 24	struct sfp *sfp;
 25	const struct sfp_quirk *sfp_quirk;
 26
 27	const struct sfp_upstream_ops *upstream_ops;
 28	void *upstream;
 29	struct phy_device *phydev;
 30
 31	bool registered;
 32	bool started;
 33};
 34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35/**
 36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
 37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 38 * @id: a pointer to the module's &struct sfp_eeprom_id
 39 * @support: optional pointer to an array of unsigned long for the
 40 *   ethtool support mask
 41 *
 42 * Parse the EEPROM identification given in @id, and return one of
 43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
 44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
 45 * the connector type.
 46 *
 47 * If the port type is not known, returns %PORT_OTHER.
 48 */
 49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
 50		   unsigned long *support)
 51{
 52	int port;
 53
 54	/* port is the physical connector, set this from the connector field. */
 55	switch (id->base.connector) {
 56	case SFF8024_CONNECTOR_SC:
 57	case SFF8024_CONNECTOR_FIBERJACK:
 58	case SFF8024_CONNECTOR_LC:
 59	case SFF8024_CONNECTOR_MT_RJ:
 60	case SFF8024_CONNECTOR_MU:
 61	case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
 62	case SFF8024_CONNECTOR_MPO_1X12:
 63	case SFF8024_CONNECTOR_MPO_2X16:
 64		port = PORT_FIBRE;
 65		break;
 66
 67	case SFF8024_CONNECTOR_RJ45:
 68		port = PORT_TP;
 69		break;
 70
 71	case SFF8024_CONNECTOR_COPPER_PIGTAIL:
 72		port = PORT_DA;
 73		break;
 74
 75	case SFF8024_CONNECTOR_UNSPEC:
 76		if (id->base.e1000_base_t) {
 77			port = PORT_TP;
 78			break;
 79		}
 80		fallthrough;
 81	case SFF8024_CONNECTOR_SG: /* guess */
 82	case SFF8024_CONNECTOR_HSSDC_II:
 83	case SFF8024_CONNECTOR_NOSEPARATE:
 84	case SFF8024_CONNECTOR_MXC_2X16:
 85		port = PORT_OTHER;
 86		break;
 87	default:
 88		dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
 89			 id->base.connector);
 90		port = PORT_OTHER;
 91		break;
 92	}
 93
 94	if (support) {
 95		switch (port) {
 96		case PORT_FIBRE:
 97			phylink_set(support, FIBRE);
 98			break;
 99
100		case PORT_TP:
101			phylink_set(support, TP);
102			break;
103		}
104	}
105
106	return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120	if (id->base.e1000_base_t)
121		return true;
122
123	if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124		switch (id->base.extended_cc) {
125		case SFF8024_ECC_10GBASE_T_SFI:
126		case SFF8024_ECC_10GBASE_T_SR:
127		case SFF8024_ECC_5GBASE_T:
128		case SFF8024_ECC_2_5GBASE_T:
129			return true;
130		}
131	}
132
133	return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 *		mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149		       unsigned long *support, unsigned long *interfaces)
150{
151	unsigned int br_min, br_nom, br_max;
152	__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154	/* Decode the bitrate information to MBd */
155	br_min = br_nom = br_max = 0;
156	if (id->base.br_nominal) {
157		if (id->base.br_nominal != 255) {
158			br_nom = id->base.br_nominal * 100;
159			br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160			br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161		} else if (id->ext.br_max) {
162			br_nom = 250 * id->ext.br_max;
163			br_max = br_nom + br_nom * id->ext.br_min / 100;
164			br_min = br_nom - br_nom * id->ext.br_min / 100;
165		}
166
167		/* When using passive cables, in case neither BR,min nor BR,max
168		 * are specified, set br_min to 0 as the nominal value is then
169		 * used as the maximum.
170		 */
171		if (br_min == br_max && id->base.sfp_ct_passive)
172			br_min = 0;
173	}
174
175	/* Set ethtool support from the compliance fields. */
176	if (id->base.e10g_base_sr) {
177		phylink_set(modes, 10000baseSR_Full);
178		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179	}
180	if (id->base.e10g_base_lr) {
181		phylink_set(modes, 10000baseLR_Full);
182		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183	}
184	if (id->base.e10g_base_lrm) {
185		phylink_set(modes, 10000baseLRM_Full);
186		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187	}
188	if (id->base.e10g_base_er) {
189		phylink_set(modes, 10000baseER_Full);
190		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191	}
192	if (id->base.e1000_base_sx ||
193	    id->base.e1000_base_lx ||
194	    id->base.e1000_base_cx) {
195		phylink_set(modes, 1000baseX_Full);
196		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197	}
198	if (id->base.e1000_base_t) {
199		phylink_set(modes, 1000baseT_Half);
200		phylink_set(modes, 1000baseT_Full);
201		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202		__set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203	}
204
205	/* 1000Base-PX or 1000Base-BX10 */
206	if ((id->base.e_base_px || id->base.e_base_bx10) &&
207	    br_min <= 1300 && br_max >= 1200) {
208		phylink_set(modes, 1000baseX_Full);
209		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210	}
211
212	/* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213	if (id->base.e100_base_fx || id->base.e100_base_lx) {
214		phylink_set(modes, 100baseFX_Full);
215		__set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216	}
217	if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218		phylink_set(modes, 100baseFX_Full);
219		__set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220	}
221
222	/* For active or passive cables, select the link modes
223	 * based on the bit rates and the cable compliance bytes.
224	 */
225	if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226		/* This may look odd, but some manufacturers use 12000MBd */
227		if (br_min <= 12000 && br_max >= 10300) {
228			phylink_set(modes, 10000baseCR_Full);
229			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230		}
231		if (br_min <= 3200 && br_max >= 3100) {
232			phylink_set(modes, 2500baseX_Full);
233			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234		}
235		if (br_min <= 1300 && br_max >= 1200) {
236			phylink_set(modes, 1000baseX_Full);
237			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238		}
239	}
240	if (id->base.sfp_ct_passive) {
241		if (id->base.passive.sff8431_app_e) {
242			phylink_set(modes, 10000baseCR_Full);
243			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244		}
245	}
246	if (id->base.sfp_ct_active) {
247		if (id->base.active.sff8431_app_e ||
248		    id->base.active.sff8431_lim) {
249			phylink_set(modes, 10000baseCR_Full);
250			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251		}
252	}
253
254	switch (id->base.extended_cc) {
255	case SFF8024_ECC_UNSPEC:
256		break;
257	case SFF8024_ECC_100G_25GAUI_C2M_AOC:
258		if (br_min <= 28000 && br_max >= 25000) {
259			/* 25GBASE-R, possibly with FEC */
260			__set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261			/* There is currently no link mode for 25000base
262			 * with unspecified range, reuse SR.
263			 */
264			phylink_set(modes, 25000baseSR_Full);
265		}
266		break;
267	case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
268		phylink_set(modes, 100000baseSR4_Full);
269		phylink_set(modes, 25000baseSR_Full);
270		__set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
271		break;
272	case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
273	case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
274		phylink_set(modes, 100000baseLR4_ER4_Full);
275		break;
276	case SFF8024_ECC_100GBASE_CR4:
277		phylink_set(modes, 100000baseCR4_Full);
278		fallthrough;
279	case SFF8024_ECC_25GBASE_CR_S:
280	case SFF8024_ECC_25GBASE_CR_N:
281		phylink_set(modes, 25000baseCR_Full);
282		__set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
283		break;
284	case SFF8024_ECC_10GBASE_T_SFI:
285	case SFF8024_ECC_10GBASE_T_SR:
286		phylink_set(modes, 10000baseT_Full);
287		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
288		break;
289	case SFF8024_ECC_5GBASE_T:
290		phylink_set(modes, 5000baseT_Full);
291		__set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
292		break;
293	case SFF8024_ECC_2_5GBASE_T:
294		phylink_set(modes, 2500baseT_Full);
295		__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
296		break;
297	default:
298		dev_warn(bus->sfp_dev,
299			 "Unknown/unsupported extended compliance code: 0x%02x\n",
300			 id->base.extended_cc);
301		break;
302	}
303
304	/* For fibre channel SFP, derive possible BaseX modes */
305	if (id->base.fc_speed_100 ||
306	    id->base.fc_speed_200 ||
307	    id->base.fc_speed_400) {
308		if (id->base.br_nominal >= 31) {
309			phylink_set(modes, 2500baseX_Full);
310			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
311		}
312		if (id->base.br_nominal >= 12) {
313			phylink_set(modes, 1000baseX_Full);
314			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
315		}
316	}
317
318	/* If we haven't discovered any modes that this module supports, try
319	 * the bitrate to determine supported modes. Some BiDi modules (eg,
320	 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
321	 * wavelengths, so do not set any transceiver bits.
322	 *
323	 * Do the same for modules supporting 2500BASE-X. Note that some
324	 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
325	 * 2500BASE-X, so we allow some slack here.
326	 */
327	if (linkmode_empty(modes) && br_nom) {
328		if (br_min <= 1300 && br_max >= 1200) {
 
 
329			phylink_set(modes, 1000baseX_Full);
330			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
331		}
332		if (br_min <= 3200 && br_max >= 2500) {
333			phylink_set(modes, 2500baseX_Full);
334			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
335		}
336	}
337
338	phylink_set(modes, Autoneg);
339	phylink_set(modes, Pause);
340	phylink_set(modes, Asym_Pause);
341
342	if (bus->sfp_quirk && bus->sfp_quirk->modes)
343		bus->sfp_quirk->modes(id, modes, interfaces);
344
345	linkmode_or(support, support, modes);
 
 
346}
347EXPORT_SYMBOL_GPL(sfp_parse_support);
348
349/**
350 * sfp_select_interface() - Select appropriate phy_interface_t mode
351 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
352 * @link_modes: ethtool link modes mask
353 *
354 * Derive the phy_interface_t mode for the SFP module from the link
355 * modes mask.
356 */
357phy_interface_t sfp_select_interface(struct sfp_bus *bus,
358				     const unsigned long *link_modes)
359{
360	if (phylink_test(link_modes, 25000baseCR_Full) ||
361	    phylink_test(link_modes, 25000baseKR_Full) ||
362	    phylink_test(link_modes, 25000baseSR_Full))
363		return PHY_INTERFACE_MODE_25GBASER;
364
365	if (phylink_test(link_modes, 10000baseCR_Full) ||
366	    phylink_test(link_modes, 10000baseSR_Full) ||
367	    phylink_test(link_modes, 10000baseLR_Full) ||
368	    phylink_test(link_modes, 10000baseLRM_Full) ||
369	    phylink_test(link_modes, 10000baseER_Full) ||
370	    phylink_test(link_modes, 10000baseT_Full))
371		return PHY_INTERFACE_MODE_10GBASER;
372
373	if (phylink_test(link_modes, 5000baseT_Full))
374		return PHY_INTERFACE_MODE_5GBASER;
375
376	if (phylink_test(link_modes, 2500baseX_Full) ||
377	    phylink_test(link_modes, 2500baseT_Full))
378		return PHY_INTERFACE_MODE_2500BASEX;
379
380	if (phylink_test(link_modes, 1000baseT_Half) ||
381	    phylink_test(link_modes, 1000baseT_Full))
382		return PHY_INTERFACE_MODE_SGMII;
383
384	if (phylink_test(link_modes, 1000baseX_Full))
385		return PHY_INTERFACE_MODE_1000BASEX;
386
387	if (phylink_test(link_modes, 100baseFX_Full))
388		return PHY_INTERFACE_MODE_100BASEX;
389
390	dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
391
392	return PHY_INTERFACE_MODE_NA;
393}
394EXPORT_SYMBOL_GPL(sfp_select_interface);
395
396static LIST_HEAD(sfp_buses);
397static DEFINE_MUTEX(sfp_mutex);
398
399static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
400{
401	return bus->registered ? bus->upstream_ops : NULL;
402}
403
404static struct sfp_bus *sfp_bus_get(const struct fwnode_handle *fwnode)
405{
406	struct sfp_bus *sfp, *new, *found = NULL;
407
408	new = kzalloc(sizeof(*new), GFP_KERNEL);
409
410	mutex_lock(&sfp_mutex);
411
412	list_for_each_entry(sfp, &sfp_buses, node) {
413		if (sfp->fwnode == fwnode) {
414			kref_get(&sfp->kref);
415			found = sfp;
416			break;
417		}
418	}
419
420	if (!found && new) {
421		kref_init(&new->kref);
422		new->fwnode = fwnode;
423		list_add(&new->node, &sfp_buses);
424		found = new;
425		new = NULL;
426	}
427
428	mutex_unlock(&sfp_mutex);
429
430	kfree(new);
431
432	return found;
433}
434
435static void sfp_bus_release(struct kref *kref)
436{
437	struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
438
439	list_del(&bus->node);
440	mutex_unlock(&sfp_mutex);
441	kfree(bus);
442}
443
444/**
445 * sfp_bus_put() - put a reference on the &struct sfp_bus
446 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
447 *
448 * Put a reference on the &struct sfp_bus and free the underlying structure
449 * if this was the last reference.
450 */
451void sfp_bus_put(struct sfp_bus *bus)
452{
453	if (bus)
454		kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
455}
456EXPORT_SYMBOL_GPL(sfp_bus_put);
457
458static int sfp_register_bus(struct sfp_bus *bus)
459{
460	const struct sfp_upstream_ops *ops = bus->upstream_ops;
461	int ret;
462
463	if (ops) {
464		if (ops->link_down)
465			ops->link_down(bus->upstream);
466		if (ops->connect_phy && bus->phydev) {
467			ret = ops->connect_phy(bus->upstream, bus->phydev);
468			if (ret)
469				return ret;
470		}
471	}
472	bus->registered = true;
473	bus->socket_ops->attach(bus->sfp);
474	if (bus->started)
475		bus->socket_ops->start(bus->sfp);
476	bus->upstream_ops->attach(bus->upstream, bus);
477	return 0;
478}
479
480static void sfp_unregister_bus(struct sfp_bus *bus)
481{
482	const struct sfp_upstream_ops *ops = bus->upstream_ops;
483
484	if (bus->registered) {
485		bus->upstream_ops->detach(bus->upstream, bus);
486		if (bus->started)
487			bus->socket_ops->stop(bus->sfp);
488		bus->socket_ops->detach(bus->sfp);
489		if (bus->phydev && ops && ops->disconnect_phy)
490			ops->disconnect_phy(bus->upstream, bus->phydev);
491	}
492	bus->registered = false;
493}
494
495/**
496 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
497 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
498 * @modinfo: a &struct ethtool_modinfo
499 *
500 * Fill in the type and eeprom_len parameters in @modinfo for a module on
501 * the sfp bus specified by @bus.
502 *
503 * Returns 0 on success or a negative errno number.
504 */
505int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
506{
507	return bus->socket_ops->module_info(bus->sfp, modinfo);
508}
509EXPORT_SYMBOL_GPL(sfp_get_module_info);
510
511/**
512 * sfp_get_module_eeprom() - Read the SFP module EEPROM
513 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
514 * @ee: a &struct ethtool_eeprom
515 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
516 *
517 * Read the EEPROM as specified by the supplied @ee. See the documentation
518 * for &struct ethtool_eeprom for the region to be read.
519 *
520 * Returns 0 on success or a negative errno number.
521 */
522int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
523			  u8 *data)
524{
525	return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
526}
527EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
528
529/**
530 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
531 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
532 * @page: a &struct ethtool_module_eeprom
533 * @extack: extack for reporting problems
534 *
535 * Read an EEPROM page as specified by the supplied @page. See the
536 * documentation for &struct ethtool_module_eeprom for the page to be read.
537 *
538 * Returns 0 on success or a negative errno number. More error
539 * information might be provided via extack
540 */
541int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
542				  const struct ethtool_module_eeprom *page,
543				  struct netlink_ext_ack *extack)
544{
545	return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
546}
547EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
548
549/**
550 * sfp_upstream_start() - Inform the SFP that the network device is up
551 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
552 *
553 * Inform the SFP socket that the network device is now up, so that the
554 * module can be enabled by allowing TX_DISABLE to be deasserted. This
555 * should be called from the network device driver's &struct net_device_ops
556 * ndo_open() method.
557 */
558void sfp_upstream_start(struct sfp_bus *bus)
559{
560	if (bus->registered)
561		bus->socket_ops->start(bus->sfp);
562	bus->started = true;
563}
564EXPORT_SYMBOL_GPL(sfp_upstream_start);
565
566/**
567 * sfp_upstream_stop() - Inform the SFP that the network device is down
568 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
569 *
570 * Inform the SFP socket that the network device is now up, so that the
571 * module can be disabled by asserting TX_DISABLE, disabling the laser
572 * in optical modules. This should be called from the network device
573 * driver's &struct net_device_ops ndo_stop() method.
574 */
575void sfp_upstream_stop(struct sfp_bus *bus)
576{
577	if (bus->registered)
578		bus->socket_ops->stop(bus->sfp);
579	bus->started = false;
580}
581EXPORT_SYMBOL_GPL(sfp_upstream_stop);
582
583static void sfp_upstream_clear(struct sfp_bus *bus)
584{
585	bus->upstream_ops = NULL;
586	bus->upstream = NULL;
587}
588
589/**
590 * sfp_upstream_set_signal_rate() - set data signalling rate
591 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
592 * @rate_kbd: signalling rate in units of 1000 baud
593 *
594 * Configure the rate select settings on the SFP module for the signalling
595 * rate (not the same as the data rate).
596 *
597 * Locks that may be held:
598 *  Phylink's state_mutex
599 *  rtnl lock
600 *  SFP's sm_mutex
601 */
602void sfp_upstream_set_signal_rate(struct sfp_bus *bus, unsigned int rate_kbd)
603{
604	if (bus->registered)
605		bus->socket_ops->set_signal_rate(bus->sfp, rate_kbd);
606}
607EXPORT_SYMBOL_GPL(sfp_upstream_set_signal_rate);
608
609/**
610 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
611 * @fwnode: firmware node for the parent device (MAC or PHY)
612 *
613 * Parse the parent device's firmware node for a SFP bus, and locate
614 * the sfp_bus structure, incrementing its reference count.  This must
615 * be put via sfp_bus_put() when done.
616 *
617 * Returns:
618 *	- on success, a pointer to the sfp_bus structure,
619 *	- %NULL if no SFP is specified,
620 *	- on failure, an error pointer value:
621 *
622 *	- corresponding to the errors detailed for
623 *	  fwnode_property_get_reference_args().
624 *	- %-ENOMEM if we failed to allocate the bus.
625 *	- an error from the upstream's connect_phy() method.
626 */
627struct sfp_bus *sfp_bus_find_fwnode(const struct fwnode_handle *fwnode)
628{
629	struct fwnode_reference_args ref;
630	struct sfp_bus *bus;
631	int ret;
632
633	ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
634						 0, 0, &ref);
635	if (ret == -ENOENT)
636		return NULL;
637	else if (ret < 0)
638		return ERR_PTR(ret);
639
640	if (!fwnode_device_is_available(ref.fwnode)) {
641		fwnode_handle_put(ref.fwnode);
642		return NULL;
643	}
644
645	bus = sfp_bus_get(ref.fwnode);
646	fwnode_handle_put(ref.fwnode);
647	if (!bus)
648		return ERR_PTR(-ENOMEM);
649
650	return bus;
651}
652EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
653
654/**
655 * sfp_bus_add_upstream() - parse and register the neighbouring device
656 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
657 * @upstream: the upstream private data
658 * @ops: the upstream's &struct sfp_upstream_ops
659 *
660 * Add upstream driver for the SFP bus, and if the bus is complete, register
661 * the SFP bus using sfp_register_upstream().  This takes a reference on the
662 * bus, so it is safe to put the bus after this call.
663 *
664 * Returns:
665 *	- on success, a pointer to the sfp_bus structure,
666 *	- %NULL if no SFP is specified,
667 *	- on failure, an error pointer value:
668 *
669 *	- corresponding to the errors detailed for
670 *	  fwnode_property_get_reference_args().
671 *	- %-ENOMEM if we failed to allocate the bus.
672 *	- an error from the upstream's connect_phy() method.
673 */
674int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
675			 const struct sfp_upstream_ops *ops)
676{
677	int ret;
678
679	/* If no bus, return success */
680	if (!bus)
681		return 0;
682
683	rtnl_lock();
684	kref_get(&bus->kref);
685	bus->upstream_ops = ops;
686	bus->upstream = upstream;
687
688	if (bus->sfp) {
689		ret = sfp_register_bus(bus);
690		if (ret)
691			sfp_upstream_clear(bus);
692	} else {
693		ret = 0;
694	}
695	rtnl_unlock();
696
697	if (ret)
698		sfp_bus_put(bus);
699
700	return ret;
701}
702EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
703
704/**
705 * sfp_bus_del_upstream() - Delete a sfp bus
706 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
707 *
708 * Delete a previously registered upstream connection for the SFP
709 * module. @bus should have been added by sfp_bus_add_upstream().
710 */
711void sfp_bus_del_upstream(struct sfp_bus *bus)
712{
713	if (bus) {
714		rtnl_lock();
715		if (bus->sfp)
716			sfp_unregister_bus(bus);
717		sfp_upstream_clear(bus);
718		rtnl_unlock();
719
720		sfp_bus_put(bus);
721	}
722}
723EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
724
725/**
726 * sfp_get_name() - Get the SFP device name
727 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
728 *
729 * Gets the SFP device's name, if @bus has a registered socket. Callers must
730 * hold RTNL, and the returned name is only valid until RTNL is released.
731 *
732 * Returns:
733 *	- The name of the SFP device registered with sfp_register_socket()
734 *	- %NULL if no device was registered on @bus
735 */
736const char *sfp_get_name(struct sfp_bus *bus)
737{
738	ASSERT_RTNL();
739
740	if (bus->sfp_dev)
741		return dev_name(bus->sfp_dev);
742
743	return NULL;
744}
745EXPORT_SYMBOL_GPL(sfp_get_name);
746
747/* Socket driver entry points */
748int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
749{
750	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
751	int ret = 0;
752
753	if (ops && ops->connect_phy)
754		ret = ops->connect_phy(bus->upstream, phydev);
755
756	if (ret == 0)
757		bus->phydev = phydev;
758
759	return ret;
760}
761EXPORT_SYMBOL_GPL(sfp_add_phy);
762
763void sfp_remove_phy(struct sfp_bus *bus)
764{
765	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
766
767	if (ops && ops->disconnect_phy)
768		ops->disconnect_phy(bus->upstream, bus->phydev);
769	bus->phydev = NULL;
770}
771EXPORT_SYMBOL_GPL(sfp_remove_phy);
772
773void sfp_link_up(struct sfp_bus *bus)
774{
775	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
776
777	if (ops && ops->link_up)
778		ops->link_up(bus->upstream);
779}
780EXPORT_SYMBOL_GPL(sfp_link_up);
781
782void sfp_link_down(struct sfp_bus *bus)
783{
784	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
785
786	if (ops && ops->link_down)
787		ops->link_down(bus->upstream);
788}
789EXPORT_SYMBOL_GPL(sfp_link_down);
790
791int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
792		      const struct sfp_quirk *quirk)
793{
794	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
795	int ret = 0;
796
797	bus->sfp_quirk = quirk;
798
799	if (ops && ops->module_insert)
800		ret = ops->module_insert(bus->upstream, id);
801
802	return ret;
803}
804EXPORT_SYMBOL_GPL(sfp_module_insert);
805
806void sfp_module_remove(struct sfp_bus *bus)
807{
808	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
809
810	if (ops && ops->module_remove)
811		ops->module_remove(bus->upstream);
812
813	bus->sfp_quirk = NULL;
814}
815EXPORT_SYMBOL_GPL(sfp_module_remove);
816
817int sfp_module_start(struct sfp_bus *bus)
818{
819	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
820	int ret = 0;
821
822	if (ops && ops->module_start)
823		ret = ops->module_start(bus->upstream);
824
825	return ret;
826}
827EXPORT_SYMBOL_GPL(sfp_module_start);
828
829void sfp_module_stop(struct sfp_bus *bus)
830{
831	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
832
833	if (ops && ops->module_stop)
834		ops->module_stop(bus->upstream);
835}
836EXPORT_SYMBOL_GPL(sfp_module_stop);
837
838static void sfp_socket_clear(struct sfp_bus *bus)
839{
840	bus->sfp_dev = NULL;
841	bus->sfp = NULL;
842	bus->socket_ops = NULL;
843}
844
845struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
846				    const struct sfp_socket_ops *ops)
847{
848	struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
849	int ret = 0;
850
851	if (bus) {
852		rtnl_lock();
853		bus->sfp_dev = dev;
854		bus->sfp = sfp;
855		bus->socket_ops = ops;
856
857		if (bus->upstream_ops) {
858			ret = sfp_register_bus(bus);
859			if (ret)
860				sfp_socket_clear(bus);
861		}
862		rtnl_unlock();
863	}
864
865	if (ret) {
866		sfp_bus_put(bus);
867		bus = NULL;
868	}
869
870	return bus;
871}
872EXPORT_SYMBOL_GPL(sfp_register_socket);
873
874void sfp_unregister_socket(struct sfp_bus *bus)
875{
876	rtnl_lock();
877	if (bus->upstream_ops)
878		sfp_unregister_bus(bus);
879	sfp_socket_clear(bus);
880	rtnl_unlock();
881
882	sfp_bus_put(bus);
883}
884EXPORT_SYMBOL_GPL(sfp_unregister_socket);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/export.h>
  3#include <linux/kref.h>
  4#include <linux/list.h>
  5#include <linux/mutex.h>
  6#include <linux/phylink.h>
  7#include <linux/property.h>
  8#include <linux/rtnetlink.h>
  9#include <linux/slab.h>
 10
 11#include "sfp.h"
 12
 13struct sfp_quirk {
 14	const char *vendor;
 15	const char *part;
 16	void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
 17};
 18
 19/**
 20 * struct sfp_bus - internal representation of a sfp bus
 21 */
 22struct sfp_bus {
 23	/* private: */
 24	struct kref kref;
 25	struct list_head node;
 26	struct fwnode_handle *fwnode;
 27
 28	const struct sfp_socket_ops *socket_ops;
 29	struct device *sfp_dev;
 30	struct sfp *sfp;
 31	const struct sfp_quirk *sfp_quirk;
 32
 33	const struct sfp_upstream_ops *upstream_ops;
 34	void *upstream;
 35	struct phy_device *phydev;
 36
 37	bool registered;
 38	bool started;
 39};
 40
 41static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
 42				unsigned long *modes)
 43{
 44	phylink_set(modes, 2500baseX_Full);
 45}
 46
 47static const struct sfp_quirk sfp_quirks[] = {
 48	{
 49		// Alcatel Lucent G-010S-P can operate at 2500base-X, but
 50		// incorrectly report 2500MBd NRZ in their EEPROM
 51		.vendor = "ALCATELLUCENT",
 52		.part = "G010SP",
 53		.modes = sfp_quirk_2500basex,
 54	}, {
 55		// Alcatel Lucent G-010S-A can operate at 2500base-X, but
 56		// report 3.2GBd NRZ in their EEPROM
 57		.vendor = "ALCATELLUCENT",
 58		.part = "3FE46541AA",
 59		.modes = sfp_quirk_2500basex,
 60	}, {
 61		// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
 62		// NRZ in their EEPROM
 63		.vendor = "HUAWEI",
 64		.part = "MA5671A",
 65		.modes = sfp_quirk_2500basex,
 66	},
 67};
 68
 69static size_t sfp_strlen(const char *str, size_t maxlen)
 70{
 71	size_t size, i;
 72
 73	/* Trailing characters should be filled with space chars */
 74	for (i = 0, size = 0; i < maxlen; i++)
 75		if (str[i] != ' ')
 76			size = i + 1;
 77
 78	return size;
 79}
 80
 81static bool sfp_match(const char *qs, const char *str, size_t len)
 82{
 83	if (!qs)
 84		return true;
 85	if (strlen(qs) != len)
 86		return false;
 87	return !strncmp(qs, str, len);
 88}
 89
 90static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
 91{
 92	const struct sfp_quirk *q;
 93	unsigned int i;
 94	size_t vs, ps;
 95
 96	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
 97	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
 98
 99	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
100		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
101		    sfp_match(q->part, id->base.vendor_pn, ps))
102			return q;
103
104	return NULL;
105}
106
107/**
108 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
109 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
110 * @id: a pointer to the module's &struct sfp_eeprom_id
111 * @support: optional pointer to an array of unsigned long for the
112 *   ethtool support mask
113 *
114 * Parse the EEPROM identification given in @id, and return one of
115 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
116 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
117 * the connector type.
118 *
119 * If the port type is not known, returns %PORT_OTHER.
120 */
121int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
122		   unsigned long *support)
123{
124	int port;
125
126	/* port is the physical connector, set this from the connector field. */
127	switch (id->base.connector) {
128	case SFF8024_CONNECTOR_SC:
129	case SFF8024_CONNECTOR_FIBERJACK:
130	case SFF8024_CONNECTOR_LC:
131	case SFF8024_CONNECTOR_MT_RJ:
132	case SFF8024_CONNECTOR_MU:
133	case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
134	case SFF8024_CONNECTOR_MPO_1X12:
135	case SFF8024_CONNECTOR_MPO_2X16:
136		port = PORT_FIBRE;
137		break;
138
139	case SFF8024_CONNECTOR_RJ45:
140		port = PORT_TP;
141		break;
142
143	case SFF8024_CONNECTOR_COPPER_PIGTAIL:
144		port = PORT_DA;
145		break;
146
147	case SFF8024_CONNECTOR_UNSPEC:
148		if (id->base.e1000_base_t) {
149			port = PORT_TP;
150			break;
151		}
152		fallthrough;
153	case SFF8024_CONNECTOR_SG: /* guess */
154	case SFF8024_CONNECTOR_HSSDC_II:
155	case SFF8024_CONNECTOR_NOSEPARATE:
156	case SFF8024_CONNECTOR_MXC_2X16:
157		port = PORT_OTHER;
158		break;
159	default:
160		dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
161			 id->base.connector);
162		port = PORT_OTHER;
163		break;
164	}
165
166	if (support) {
167		switch (port) {
168		case PORT_FIBRE:
169			phylink_set(support, FIBRE);
170			break;
171
172		case PORT_TP:
173			phylink_set(support, TP);
174			break;
175		}
176	}
177
178	return port;
179}
180EXPORT_SYMBOL_GPL(sfp_parse_port);
181
182/**
183 * sfp_may_have_phy() - indicate whether the module may have a PHY
184 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
185 * @id: a pointer to the module's &struct sfp_eeprom_id
186 *
187 * Parse the EEPROM identification given in @id, and return whether
188 * this module may have a PHY.
189 */
190bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
191{
192	if (id->base.e1000_base_t)
193		return true;
194
195	if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
196		switch (id->base.extended_cc) {
197		case SFF8024_ECC_10GBASE_T_SFI:
198		case SFF8024_ECC_10GBASE_T_SR:
199		case SFF8024_ECC_5GBASE_T:
200		case SFF8024_ECC_2_5GBASE_T:
201			return true;
202		}
203	}
204
205	return false;
206}
207EXPORT_SYMBOL_GPL(sfp_may_have_phy);
208
209/**
210 * sfp_parse_support() - Parse the eeprom id for supported link modes
211 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
212 * @id: a pointer to the module's &struct sfp_eeprom_id
213 * @support: pointer to an array of unsigned long for the ethtool support mask
 
 
214 *
215 * Parse the EEPROM identification information and derive the supported
216 * ethtool link modes for the module.
217 */
218void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
219		       unsigned long *support)
220{
221	unsigned int br_min, br_nom, br_max;
222	__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
223
224	/* Decode the bitrate information to MBd */
225	br_min = br_nom = br_max = 0;
226	if (id->base.br_nominal) {
227		if (id->base.br_nominal != 255) {
228			br_nom = id->base.br_nominal * 100;
229			br_min = br_nom - id->base.br_nominal * id->ext.br_min;
230			br_max = br_nom + id->base.br_nominal * id->ext.br_max;
231		} else if (id->ext.br_max) {
232			br_nom = 250 * id->ext.br_max;
233			br_max = br_nom + br_nom * id->ext.br_min / 100;
234			br_min = br_nom - br_nom * id->ext.br_min / 100;
235		}
236
237		/* When using passive cables, in case neither BR,min nor BR,max
238		 * are specified, set br_min to 0 as the nominal value is then
239		 * used as the maximum.
240		 */
241		if (br_min == br_max && id->base.sfp_ct_passive)
242			br_min = 0;
243	}
244
245	/* Set ethtool support from the compliance fields. */
246	if (id->base.e10g_base_sr)
247		phylink_set(modes, 10000baseSR_Full);
248	if (id->base.e10g_base_lr)
 
 
249		phylink_set(modes, 10000baseLR_Full);
250	if (id->base.e10g_base_lrm)
 
 
251		phylink_set(modes, 10000baseLRM_Full);
252	if (id->base.e10g_base_er)
 
 
253		phylink_set(modes, 10000baseER_Full);
 
 
254	if (id->base.e1000_base_sx ||
255	    id->base.e1000_base_lx ||
256	    id->base.e1000_base_cx)
257		phylink_set(modes, 1000baseX_Full);
 
 
258	if (id->base.e1000_base_t) {
259		phylink_set(modes, 1000baseT_Half);
260		phylink_set(modes, 1000baseT_Full);
 
 
261	}
262
263	/* 1000Base-PX or 1000Base-BX10 */
264	if ((id->base.e_base_px || id->base.e_base_bx10) &&
265	    br_min <= 1300 && br_max >= 1200)
266		phylink_set(modes, 1000baseX_Full);
 
 
 
 
 
 
 
 
 
 
 
 
267
268	/* For active or passive cables, select the link modes
269	 * based on the bit rates and the cable compliance bytes.
270	 */
271	if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
272		/* This may look odd, but some manufacturers use 12000MBd */
273		if (br_min <= 12000 && br_max >= 10300)
274			phylink_set(modes, 10000baseCR_Full);
275		if (br_min <= 3200 && br_max >= 3100)
 
 
276			phylink_set(modes, 2500baseX_Full);
277		if (br_min <= 1300 && br_max >= 1200)
 
 
278			phylink_set(modes, 1000baseX_Full);
 
 
279	}
280	if (id->base.sfp_ct_passive) {
281		if (id->base.passive.sff8431_app_e)
282			phylink_set(modes, 10000baseCR_Full);
 
 
283	}
284	if (id->base.sfp_ct_active) {
285		if (id->base.active.sff8431_app_e ||
286		    id->base.active.sff8431_lim) {
287			phylink_set(modes, 10000baseCR_Full);
 
288		}
289	}
290
291	switch (id->base.extended_cc) {
292	case SFF8024_ECC_UNSPEC:
293		break;
 
 
 
 
 
 
 
 
 
 
294	case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
295		phylink_set(modes, 100000baseSR4_Full);
296		phylink_set(modes, 25000baseSR_Full);
 
297		break;
298	case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
299	case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
300		phylink_set(modes, 100000baseLR4_ER4_Full);
301		break;
302	case SFF8024_ECC_100GBASE_CR4:
303		phylink_set(modes, 100000baseCR4_Full);
304		fallthrough;
305	case SFF8024_ECC_25GBASE_CR_S:
306	case SFF8024_ECC_25GBASE_CR_N:
307		phylink_set(modes, 25000baseCR_Full);
 
308		break;
309	case SFF8024_ECC_10GBASE_T_SFI:
310	case SFF8024_ECC_10GBASE_T_SR:
311		phylink_set(modes, 10000baseT_Full);
 
312		break;
313	case SFF8024_ECC_5GBASE_T:
314		phylink_set(modes, 5000baseT_Full);
 
315		break;
316	case SFF8024_ECC_2_5GBASE_T:
317		phylink_set(modes, 2500baseT_Full);
 
318		break;
319	default:
320		dev_warn(bus->sfp_dev,
321			 "Unknown/unsupported extended compliance code: 0x%02x\n",
322			 id->base.extended_cc);
323		break;
324	}
325
326	/* For fibre channel SFP, derive possible BaseX modes */
327	if (id->base.fc_speed_100 ||
328	    id->base.fc_speed_200 ||
329	    id->base.fc_speed_400) {
330		if (id->base.br_nominal >= 31)
331			phylink_set(modes, 2500baseX_Full);
332		if (id->base.br_nominal >= 12)
 
 
333			phylink_set(modes, 1000baseX_Full);
 
 
334	}
335
336	/* If we haven't discovered any modes that this module supports, try
337	 * the encoding and bitrate to determine supported modes. Some BiDi
338	 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
339	 * the differing wavelengths, so do not set any transceiver bits.
 
 
 
 
340	 */
341	if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
342		/* If the encoding and bit rate allows 1000baseX */
343		if (id->base.encoding == SFF8024_ENCODING_8B10B && br_nom &&
344		    br_min <= 1300 && br_max >= 1200)
345			phylink_set(modes, 1000baseX_Full);
 
 
 
 
 
 
346	}
347
348	if (bus->sfp_quirk)
349		bus->sfp_quirk->modes(id, modes);
 
350
351	bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
 
352
353	phylink_set(support, Autoneg);
354	phylink_set(support, Pause);
355	phylink_set(support, Asym_Pause);
356}
357EXPORT_SYMBOL_GPL(sfp_parse_support);
358
359/**
360 * sfp_select_interface() - Select appropriate phy_interface_t mode
361 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
362 * @link_modes: ethtool link modes mask
363 *
364 * Derive the phy_interface_t mode for the SFP module from the link
365 * modes mask.
366 */
367phy_interface_t sfp_select_interface(struct sfp_bus *bus,
368				     unsigned long *link_modes)
369{
 
 
 
 
 
370	if (phylink_test(link_modes, 10000baseCR_Full) ||
371	    phylink_test(link_modes, 10000baseSR_Full) ||
372	    phylink_test(link_modes, 10000baseLR_Full) ||
373	    phylink_test(link_modes, 10000baseLRM_Full) ||
374	    phylink_test(link_modes, 10000baseER_Full) ||
375	    phylink_test(link_modes, 10000baseT_Full))
376		return PHY_INTERFACE_MODE_10GBASER;
377
378	if (phylink_test(link_modes, 2500baseX_Full))
 
 
 
 
379		return PHY_INTERFACE_MODE_2500BASEX;
380
381	if (phylink_test(link_modes, 1000baseT_Half) ||
382	    phylink_test(link_modes, 1000baseT_Full))
383		return PHY_INTERFACE_MODE_SGMII;
384
385	if (phylink_test(link_modes, 1000baseX_Full))
386		return PHY_INTERFACE_MODE_1000BASEX;
387
 
 
 
388	dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
389
390	return PHY_INTERFACE_MODE_NA;
391}
392EXPORT_SYMBOL_GPL(sfp_select_interface);
393
394static LIST_HEAD(sfp_buses);
395static DEFINE_MUTEX(sfp_mutex);
396
397static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
398{
399	return bus->registered ? bus->upstream_ops : NULL;
400}
401
402static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
403{
404	struct sfp_bus *sfp, *new, *found = NULL;
405
406	new = kzalloc(sizeof(*new), GFP_KERNEL);
407
408	mutex_lock(&sfp_mutex);
409
410	list_for_each_entry(sfp, &sfp_buses, node) {
411		if (sfp->fwnode == fwnode) {
412			kref_get(&sfp->kref);
413			found = sfp;
414			break;
415		}
416	}
417
418	if (!found && new) {
419		kref_init(&new->kref);
420		new->fwnode = fwnode;
421		list_add(&new->node, &sfp_buses);
422		found = new;
423		new = NULL;
424	}
425
426	mutex_unlock(&sfp_mutex);
427
428	kfree(new);
429
430	return found;
431}
432
433static void sfp_bus_release(struct kref *kref)
434{
435	struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
436
437	list_del(&bus->node);
438	mutex_unlock(&sfp_mutex);
439	kfree(bus);
440}
441
442/**
443 * sfp_bus_put() - put a reference on the &struct sfp_bus
444 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
445 *
446 * Put a reference on the &struct sfp_bus and free the underlying structure
447 * if this was the last reference.
448 */
449void sfp_bus_put(struct sfp_bus *bus)
450{
451	if (bus)
452		kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
453}
454EXPORT_SYMBOL_GPL(sfp_bus_put);
455
456static int sfp_register_bus(struct sfp_bus *bus)
457{
458	const struct sfp_upstream_ops *ops = bus->upstream_ops;
459	int ret;
460
461	if (ops) {
462		if (ops->link_down)
463			ops->link_down(bus->upstream);
464		if (ops->connect_phy && bus->phydev) {
465			ret = ops->connect_phy(bus->upstream, bus->phydev);
466			if (ret)
467				return ret;
468		}
469	}
470	bus->registered = true;
471	bus->socket_ops->attach(bus->sfp);
472	if (bus->started)
473		bus->socket_ops->start(bus->sfp);
474	bus->upstream_ops->attach(bus->upstream, bus);
475	return 0;
476}
477
478static void sfp_unregister_bus(struct sfp_bus *bus)
479{
480	const struct sfp_upstream_ops *ops = bus->upstream_ops;
481
482	if (bus->registered) {
483		bus->upstream_ops->detach(bus->upstream, bus);
484		if (bus->started)
485			bus->socket_ops->stop(bus->sfp);
486		bus->socket_ops->detach(bus->sfp);
487		if (bus->phydev && ops && ops->disconnect_phy)
488			ops->disconnect_phy(bus->upstream);
489	}
490	bus->registered = false;
491}
492
493/**
494 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
495 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
496 * @modinfo: a &struct ethtool_modinfo
497 *
498 * Fill in the type and eeprom_len parameters in @modinfo for a module on
499 * the sfp bus specified by @bus.
500 *
501 * Returns 0 on success or a negative errno number.
502 */
503int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
504{
505	return bus->socket_ops->module_info(bus->sfp, modinfo);
506}
507EXPORT_SYMBOL_GPL(sfp_get_module_info);
508
509/**
510 * sfp_get_module_eeprom() - Read the SFP module EEPROM
511 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
512 * @ee: a &struct ethtool_eeprom
513 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
514 *
515 * Read the EEPROM as specified by the supplied @ee. See the documentation
516 * for &struct ethtool_eeprom for the region to be read.
517 *
518 * Returns 0 on success or a negative errno number.
519 */
520int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
521			  u8 *data)
522{
523	return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
524}
525EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
526
527/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528 * sfp_upstream_start() - Inform the SFP that the network device is up
529 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
530 *
531 * Inform the SFP socket that the network device is now up, so that the
532 * module can be enabled by allowing TX_DISABLE to be deasserted. This
533 * should be called from the network device driver's &struct net_device_ops
534 * ndo_open() method.
535 */
536void sfp_upstream_start(struct sfp_bus *bus)
537{
538	if (bus->registered)
539		bus->socket_ops->start(bus->sfp);
540	bus->started = true;
541}
542EXPORT_SYMBOL_GPL(sfp_upstream_start);
543
544/**
545 * sfp_upstream_stop() - Inform the SFP that the network device is down
546 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
547 *
548 * Inform the SFP socket that the network device is now up, so that the
549 * module can be disabled by asserting TX_DISABLE, disabling the laser
550 * in optical modules. This should be called from the network device
551 * driver's &struct net_device_ops ndo_stop() method.
552 */
553void sfp_upstream_stop(struct sfp_bus *bus)
554{
555	if (bus->registered)
556		bus->socket_ops->stop(bus->sfp);
557	bus->started = false;
558}
559EXPORT_SYMBOL_GPL(sfp_upstream_stop);
560
561static void sfp_upstream_clear(struct sfp_bus *bus)
562{
563	bus->upstream_ops = NULL;
564	bus->upstream = NULL;
565}
566
567/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
569 * @fwnode: firmware node for the parent device (MAC or PHY)
570 *
571 * Parse the parent device's firmware node for a SFP bus, and locate
572 * the sfp_bus structure, incrementing its reference count.  This must
573 * be put via sfp_bus_put() when done.
574 *
575 * Returns:
576 * 	    - on success, a pointer to the sfp_bus structure,
577 *	    - %NULL if no SFP is specified,
578 * 	    - on failure, an error pointer value:
579 *
580 * 	      - corresponding to the errors detailed for
581 * 	        fwnode_property_get_reference_args().
582 * 	      - %-ENOMEM if we failed to allocate the bus.
583 *	      - an error from the upstream's connect_phy() method.
584 */
585struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
586{
587	struct fwnode_reference_args ref;
588	struct sfp_bus *bus;
589	int ret;
590
591	ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
592						 0, 0, &ref);
593	if (ret == -ENOENT)
594		return NULL;
595	else if (ret < 0)
596		return ERR_PTR(ret);
597
 
 
 
 
 
598	bus = sfp_bus_get(ref.fwnode);
599	fwnode_handle_put(ref.fwnode);
600	if (!bus)
601		return ERR_PTR(-ENOMEM);
602
603	return bus;
604}
605EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
606
607/**
608 * sfp_bus_add_upstream() - parse and register the neighbouring device
609 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
610 * @upstream: the upstream private data
611 * @ops: the upstream's &struct sfp_upstream_ops
612 *
613 * Add upstream driver for the SFP bus, and if the bus is complete, register
614 * the SFP bus using sfp_register_upstream().  This takes a reference on the
615 * bus, so it is safe to put the bus after this call.
616 *
617 * Returns:
618 * 	    - on success, a pointer to the sfp_bus structure,
619 *	    - %NULL if no SFP is specified,
620 * 	    - on failure, an error pointer value:
621 *
622 * 	      - corresponding to the errors detailed for
623 * 	        fwnode_property_get_reference_args().
624 * 	      - %-ENOMEM if we failed to allocate the bus.
625 *	      - an error from the upstream's connect_phy() method.
626 */
627int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
628			 const struct sfp_upstream_ops *ops)
629{
630	int ret;
631
632	/* If no bus, return success */
633	if (!bus)
634		return 0;
635
636	rtnl_lock();
637	kref_get(&bus->kref);
638	bus->upstream_ops = ops;
639	bus->upstream = upstream;
640
641	if (bus->sfp) {
642		ret = sfp_register_bus(bus);
643		if (ret)
644			sfp_upstream_clear(bus);
645	} else {
646		ret = 0;
647	}
648	rtnl_unlock();
649
650	if (ret)
651		sfp_bus_put(bus);
652
653	return ret;
654}
655EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
656
657/**
658 * sfp_bus_del_upstream() - Delete a sfp bus
659 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
660 *
661 * Delete a previously registered upstream connection for the SFP
662 * module. @bus should have been added by sfp_bus_add_upstream().
663 */
664void sfp_bus_del_upstream(struct sfp_bus *bus)
665{
666	if (bus) {
667		rtnl_lock();
668		if (bus->sfp)
669			sfp_unregister_bus(bus);
670		sfp_upstream_clear(bus);
671		rtnl_unlock();
672
673		sfp_bus_put(bus);
674	}
675}
676EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678/* Socket driver entry points */
679int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
680{
681	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
682	int ret = 0;
683
684	if (ops && ops->connect_phy)
685		ret = ops->connect_phy(bus->upstream, phydev);
686
687	if (ret == 0)
688		bus->phydev = phydev;
689
690	return ret;
691}
692EXPORT_SYMBOL_GPL(sfp_add_phy);
693
694void sfp_remove_phy(struct sfp_bus *bus)
695{
696	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
697
698	if (ops && ops->disconnect_phy)
699		ops->disconnect_phy(bus->upstream);
700	bus->phydev = NULL;
701}
702EXPORT_SYMBOL_GPL(sfp_remove_phy);
703
704void sfp_link_up(struct sfp_bus *bus)
705{
706	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
707
708	if (ops && ops->link_up)
709		ops->link_up(bus->upstream);
710}
711EXPORT_SYMBOL_GPL(sfp_link_up);
712
713void sfp_link_down(struct sfp_bus *bus)
714{
715	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
716
717	if (ops && ops->link_down)
718		ops->link_down(bus->upstream);
719}
720EXPORT_SYMBOL_GPL(sfp_link_down);
721
722int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
 
723{
724	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
725	int ret = 0;
726
727	bus->sfp_quirk = sfp_lookup_quirk(id);
728
729	if (ops && ops->module_insert)
730		ret = ops->module_insert(bus->upstream, id);
731
732	return ret;
733}
734EXPORT_SYMBOL_GPL(sfp_module_insert);
735
736void sfp_module_remove(struct sfp_bus *bus)
737{
738	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
739
740	if (ops && ops->module_remove)
741		ops->module_remove(bus->upstream);
742
743	bus->sfp_quirk = NULL;
744}
745EXPORT_SYMBOL_GPL(sfp_module_remove);
746
747int sfp_module_start(struct sfp_bus *bus)
748{
749	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
750	int ret = 0;
751
752	if (ops && ops->module_start)
753		ret = ops->module_start(bus->upstream);
754
755	return ret;
756}
757EXPORT_SYMBOL_GPL(sfp_module_start);
758
759void sfp_module_stop(struct sfp_bus *bus)
760{
761	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
762
763	if (ops && ops->module_stop)
764		ops->module_stop(bus->upstream);
765}
766EXPORT_SYMBOL_GPL(sfp_module_stop);
767
768static void sfp_socket_clear(struct sfp_bus *bus)
769{
770	bus->sfp_dev = NULL;
771	bus->sfp = NULL;
772	bus->socket_ops = NULL;
773}
774
775struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
776				    const struct sfp_socket_ops *ops)
777{
778	struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
779	int ret = 0;
780
781	if (bus) {
782		rtnl_lock();
783		bus->sfp_dev = dev;
784		bus->sfp = sfp;
785		bus->socket_ops = ops;
786
787		if (bus->upstream_ops) {
788			ret = sfp_register_bus(bus);
789			if (ret)
790				sfp_socket_clear(bus);
791		}
792		rtnl_unlock();
793	}
794
795	if (ret) {
796		sfp_bus_put(bus);
797		bus = NULL;
798	}
799
800	return bus;
801}
802EXPORT_SYMBOL_GPL(sfp_register_socket);
803
804void sfp_unregister_socket(struct sfp_bus *bus)
805{
806	rtnl_lock();
807	if (bus->upstream_ops)
808		sfp_unregister_bus(bus);
809	sfp_socket_clear(bus);
810	rtnl_unlock();
811
812	sfp_bus_put(bus);
813}
814EXPORT_SYMBOL_GPL(sfp_unregister_socket);