Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/property.h>
8#include <linux/rtnetlink.h>
9#include <linux/slab.h>
10
11#include "sfp.h"
12
13/**
14 * struct sfp_bus - internal representation of a sfp bus
15 */
16struct sfp_bus {
17 /* private: */
18 struct kref kref;
19 struct list_head node;
20 const struct fwnode_handle *fwnode;
21
22 const struct sfp_socket_ops *socket_ops;
23 struct device *sfp_dev;
24 struct sfp *sfp;
25 const struct sfp_quirk *sfp_quirk;
26
27 const struct sfp_upstream_ops *upstream_ops;
28 void *upstream;
29 struct phy_device *phydev;
30
31 bool registered;
32 bool started;
33};
34
35/**
36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
38 * @id: a pointer to the module's &struct sfp_eeprom_id
39 * @support: optional pointer to an array of unsigned long for the
40 * ethtool support mask
41 *
42 * Parse the EEPROM identification given in @id, and return one of
43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
45 * the connector type.
46 *
47 * If the port type is not known, returns %PORT_OTHER.
48 */
49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
50 unsigned long *support)
51{
52 int port;
53
54 /* port is the physical connector, set this from the connector field. */
55 switch (id->base.connector) {
56 case SFF8024_CONNECTOR_SC:
57 case SFF8024_CONNECTOR_FIBERJACK:
58 case SFF8024_CONNECTOR_LC:
59 case SFF8024_CONNECTOR_MT_RJ:
60 case SFF8024_CONNECTOR_MU:
61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
62 case SFF8024_CONNECTOR_MPO_1X12:
63 case SFF8024_CONNECTOR_MPO_2X16:
64 port = PORT_FIBRE;
65 break;
66
67 case SFF8024_CONNECTOR_RJ45:
68 port = PORT_TP;
69 break;
70
71 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
72 port = PORT_DA;
73 break;
74
75 case SFF8024_CONNECTOR_UNSPEC:
76 if (id->base.e1000_base_t) {
77 port = PORT_TP;
78 break;
79 }
80 fallthrough;
81 case SFF8024_CONNECTOR_SG: /* guess */
82 case SFF8024_CONNECTOR_HSSDC_II:
83 case SFF8024_CONNECTOR_NOSEPARATE:
84 case SFF8024_CONNECTOR_MXC_2X16:
85 port = PORT_OTHER;
86 break;
87 default:
88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
89 id->base.connector);
90 port = PORT_OTHER;
91 break;
92 }
93
94 if (support) {
95 switch (port) {
96 case PORT_FIBRE:
97 phylink_set(support, FIBRE);
98 break;
99
100 case PORT_TP:
101 phylink_set(support, TP);
102 break;
103 }
104 }
105
106 return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120 if (id->base.e1000_base_t)
121 return true;
122
123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124 switch (id->base.extended_cc) {
125 case SFF8024_ECC_10GBASE_T_SFI:
126 case SFF8024_ECC_10GBASE_T_SR:
127 case SFF8024_ECC_5GBASE_T:
128 case SFF8024_ECC_2_5GBASE_T:
129 return true;
130 }
131 }
132
133 return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 * mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149 unsigned long *support, unsigned long *interfaces)
150{
151 unsigned int br_min, br_nom, br_max;
152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154 /* Decode the bitrate information to MBd */
155 br_min = br_nom = br_max = 0;
156 if (id->base.br_nominal) {
157 if (id->base.br_nominal != 255) {
158 br_nom = id->base.br_nominal * 100;
159 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161 } else if (id->ext.br_max) {
162 br_nom = 250 * id->ext.br_max;
163 br_max = br_nom + br_nom * id->ext.br_min / 100;
164 br_min = br_nom - br_nom * id->ext.br_min / 100;
165 }
166
167 /* When using passive cables, in case neither BR,min nor BR,max
168 * are specified, set br_min to 0 as the nominal value is then
169 * used as the maximum.
170 */
171 if (br_min == br_max && id->base.sfp_ct_passive)
172 br_min = 0;
173 }
174
175 /* Set ethtool support from the compliance fields. */
176 if (id->base.e10g_base_sr) {
177 phylink_set(modes, 10000baseSR_Full);
178 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179 }
180 if (id->base.e10g_base_lr) {
181 phylink_set(modes, 10000baseLR_Full);
182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183 }
184 if (id->base.e10g_base_lrm) {
185 phylink_set(modes, 10000baseLRM_Full);
186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187 }
188 if (id->base.e10g_base_er) {
189 phylink_set(modes, 10000baseER_Full);
190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191 }
192 if (id->base.e1000_base_sx ||
193 id->base.e1000_base_lx ||
194 id->base.e1000_base_cx) {
195 phylink_set(modes, 1000baseX_Full);
196 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197 }
198 if (id->base.e1000_base_t) {
199 phylink_set(modes, 1000baseT_Half);
200 phylink_set(modes, 1000baseT_Full);
201 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203 }
204
205 /* 1000Base-PX or 1000Base-BX10 */
206 if ((id->base.e_base_px || id->base.e_base_bx10) &&
207 br_min <= 1300 && br_max >= 1200) {
208 phylink_set(modes, 1000baseX_Full);
209 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210 }
211
212 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213 if (id->base.e100_base_fx || id->base.e100_base_lx) {
214 phylink_set(modes, 100baseFX_Full);
215 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216 }
217 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218 phylink_set(modes, 100baseFX_Full);
219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220 }
221
222 /* For active or passive cables, select the link modes
223 * based on the bit rates and the cable compliance bytes.
224 */
225 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226 /* This may look odd, but some manufacturers use 12000MBd */
227 if (br_min <= 12000 && br_max >= 10300) {
228 phylink_set(modes, 10000baseCR_Full);
229 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230 }
231 if (br_min <= 3200 && br_max >= 3100) {
232 phylink_set(modes, 2500baseX_Full);
233 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234 }
235 if (br_min <= 1300 && br_max >= 1200) {
236 phylink_set(modes, 1000baseX_Full);
237 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238 }
239 }
240 if (id->base.sfp_ct_passive) {
241 if (id->base.passive.sff8431_app_e) {
242 phylink_set(modes, 10000baseCR_Full);
243 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244 }
245 }
246 if (id->base.sfp_ct_active) {
247 if (id->base.active.sff8431_app_e ||
248 id->base.active.sff8431_lim) {
249 phylink_set(modes, 10000baseCR_Full);
250 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251 }
252 }
253
254 switch (id->base.extended_cc) {
255 case SFF8024_ECC_UNSPEC:
256 break;
257 case SFF8024_ECC_100G_25GAUI_C2M_AOC:
258 if (br_min <= 28000 && br_max >= 25000) {
259 /* 25GBASE-R, possibly with FEC */
260 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261 /* There is currently no link mode for 25000base
262 * with unspecified range, reuse SR.
263 */
264 phylink_set(modes, 25000baseSR_Full);
265 }
266 break;
267 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
268 phylink_set(modes, 100000baseSR4_Full);
269 phylink_set(modes, 25000baseSR_Full);
270 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
271 break;
272 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
273 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
274 phylink_set(modes, 100000baseLR4_ER4_Full);
275 break;
276 case SFF8024_ECC_100GBASE_CR4:
277 phylink_set(modes, 100000baseCR4_Full);
278 fallthrough;
279 case SFF8024_ECC_25GBASE_CR_S:
280 case SFF8024_ECC_25GBASE_CR_N:
281 phylink_set(modes, 25000baseCR_Full);
282 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
283 break;
284 case SFF8024_ECC_10GBASE_T_SFI:
285 case SFF8024_ECC_10GBASE_T_SR:
286 phylink_set(modes, 10000baseT_Full);
287 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
288 break;
289 case SFF8024_ECC_5GBASE_T:
290 phylink_set(modes, 5000baseT_Full);
291 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
292 break;
293 case SFF8024_ECC_2_5GBASE_T:
294 phylink_set(modes, 2500baseT_Full);
295 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
296 break;
297 default:
298 dev_warn(bus->sfp_dev,
299 "Unknown/unsupported extended compliance code: 0x%02x\n",
300 id->base.extended_cc);
301 break;
302 }
303
304 /* For fibre channel SFP, derive possible BaseX modes */
305 if (id->base.fc_speed_100 ||
306 id->base.fc_speed_200 ||
307 id->base.fc_speed_400) {
308 if (id->base.br_nominal >= 31) {
309 phylink_set(modes, 2500baseX_Full);
310 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
311 }
312 if (id->base.br_nominal >= 12) {
313 phylink_set(modes, 1000baseX_Full);
314 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
315 }
316 }
317
318 /* If we haven't discovered any modes that this module supports, try
319 * the bitrate to determine supported modes. Some BiDi modules (eg,
320 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
321 * wavelengths, so do not set any transceiver bits.
322 *
323 * Do the same for modules supporting 2500BASE-X. Note that some
324 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
325 * 2500BASE-X, so we allow some slack here.
326 */
327 if (linkmode_empty(modes) && br_nom) {
328 if (br_min <= 1300 && br_max >= 1200) {
329 phylink_set(modes, 1000baseX_Full);
330 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
331 }
332 if (br_min <= 3200 && br_max >= 2500) {
333 phylink_set(modes, 2500baseX_Full);
334 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
335 }
336 }
337
338 phylink_set(modes, Autoneg);
339 phylink_set(modes, Pause);
340 phylink_set(modes, Asym_Pause);
341
342 if (bus->sfp_quirk && bus->sfp_quirk->modes)
343 bus->sfp_quirk->modes(id, modes, interfaces);
344
345 linkmode_or(support, support, modes);
346}
347EXPORT_SYMBOL_GPL(sfp_parse_support);
348
349/**
350 * sfp_select_interface() - Select appropriate phy_interface_t mode
351 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
352 * @link_modes: ethtool link modes mask
353 *
354 * Derive the phy_interface_t mode for the SFP module from the link
355 * modes mask.
356 */
357phy_interface_t sfp_select_interface(struct sfp_bus *bus,
358 const unsigned long *link_modes)
359{
360 if (phylink_test(link_modes, 25000baseCR_Full) ||
361 phylink_test(link_modes, 25000baseKR_Full) ||
362 phylink_test(link_modes, 25000baseSR_Full))
363 return PHY_INTERFACE_MODE_25GBASER;
364
365 if (phylink_test(link_modes, 10000baseCR_Full) ||
366 phylink_test(link_modes, 10000baseSR_Full) ||
367 phylink_test(link_modes, 10000baseLR_Full) ||
368 phylink_test(link_modes, 10000baseLRM_Full) ||
369 phylink_test(link_modes, 10000baseER_Full) ||
370 phylink_test(link_modes, 10000baseT_Full))
371 return PHY_INTERFACE_MODE_10GBASER;
372
373 if (phylink_test(link_modes, 5000baseT_Full))
374 return PHY_INTERFACE_MODE_5GBASER;
375
376 if (phylink_test(link_modes, 2500baseX_Full) ||
377 phylink_test(link_modes, 2500baseT_Full))
378 return PHY_INTERFACE_MODE_2500BASEX;
379
380 if (phylink_test(link_modes, 1000baseT_Half) ||
381 phylink_test(link_modes, 1000baseT_Full))
382 return PHY_INTERFACE_MODE_SGMII;
383
384 if (phylink_test(link_modes, 1000baseX_Full))
385 return PHY_INTERFACE_MODE_1000BASEX;
386
387 if (phylink_test(link_modes, 100baseFX_Full))
388 return PHY_INTERFACE_MODE_100BASEX;
389
390 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
391
392 return PHY_INTERFACE_MODE_NA;
393}
394EXPORT_SYMBOL_GPL(sfp_select_interface);
395
396static LIST_HEAD(sfp_buses);
397static DEFINE_MUTEX(sfp_mutex);
398
399static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
400{
401 return bus->registered ? bus->upstream_ops : NULL;
402}
403
404static struct sfp_bus *sfp_bus_get(const struct fwnode_handle *fwnode)
405{
406 struct sfp_bus *sfp, *new, *found = NULL;
407
408 new = kzalloc(sizeof(*new), GFP_KERNEL);
409
410 mutex_lock(&sfp_mutex);
411
412 list_for_each_entry(sfp, &sfp_buses, node) {
413 if (sfp->fwnode == fwnode) {
414 kref_get(&sfp->kref);
415 found = sfp;
416 break;
417 }
418 }
419
420 if (!found && new) {
421 kref_init(&new->kref);
422 new->fwnode = fwnode;
423 list_add(&new->node, &sfp_buses);
424 found = new;
425 new = NULL;
426 }
427
428 mutex_unlock(&sfp_mutex);
429
430 kfree(new);
431
432 return found;
433}
434
435static void sfp_bus_release(struct kref *kref)
436{
437 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
438
439 list_del(&bus->node);
440 mutex_unlock(&sfp_mutex);
441 kfree(bus);
442}
443
444/**
445 * sfp_bus_put() - put a reference on the &struct sfp_bus
446 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
447 *
448 * Put a reference on the &struct sfp_bus and free the underlying structure
449 * if this was the last reference.
450 */
451void sfp_bus_put(struct sfp_bus *bus)
452{
453 if (bus)
454 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
455}
456EXPORT_SYMBOL_GPL(sfp_bus_put);
457
458static int sfp_register_bus(struct sfp_bus *bus)
459{
460 const struct sfp_upstream_ops *ops = bus->upstream_ops;
461 int ret;
462
463 if (ops) {
464 if (ops->link_down)
465 ops->link_down(bus->upstream);
466 if (ops->connect_phy && bus->phydev) {
467 ret = ops->connect_phy(bus->upstream, bus->phydev);
468 if (ret)
469 return ret;
470 }
471 }
472 bus->registered = true;
473 bus->socket_ops->attach(bus->sfp);
474 if (bus->started)
475 bus->socket_ops->start(bus->sfp);
476 bus->upstream_ops->attach(bus->upstream, bus);
477 return 0;
478}
479
480static void sfp_unregister_bus(struct sfp_bus *bus)
481{
482 const struct sfp_upstream_ops *ops = bus->upstream_ops;
483
484 if (bus->registered) {
485 bus->upstream_ops->detach(bus->upstream, bus);
486 if (bus->started)
487 bus->socket_ops->stop(bus->sfp);
488 bus->socket_ops->detach(bus->sfp);
489 if (bus->phydev && ops && ops->disconnect_phy)
490 ops->disconnect_phy(bus->upstream, bus->phydev);
491 }
492 bus->registered = false;
493}
494
495/**
496 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
497 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
498 * @modinfo: a &struct ethtool_modinfo
499 *
500 * Fill in the type and eeprom_len parameters in @modinfo for a module on
501 * the sfp bus specified by @bus.
502 *
503 * Returns 0 on success or a negative errno number.
504 */
505int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
506{
507 return bus->socket_ops->module_info(bus->sfp, modinfo);
508}
509EXPORT_SYMBOL_GPL(sfp_get_module_info);
510
511/**
512 * sfp_get_module_eeprom() - Read the SFP module EEPROM
513 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
514 * @ee: a &struct ethtool_eeprom
515 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
516 *
517 * Read the EEPROM as specified by the supplied @ee. See the documentation
518 * for &struct ethtool_eeprom for the region to be read.
519 *
520 * Returns 0 on success or a negative errno number.
521 */
522int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
523 u8 *data)
524{
525 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
526}
527EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
528
529/**
530 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
531 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
532 * @page: a &struct ethtool_module_eeprom
533 * @extack: extack for reporting problems
534 *
535 * Read an EEPROM page as specified by the supplied @page. See the
536 * documentation for &struct ethtool_module_eeprom for the page to be read.
537 *
538 * Returns 0 on success or a negative errno number. More error
539 * information might be provided via extack
540 */
541int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
542 const struct ethtool_module_eeprom *page,
543 struct netlink_ext_ack *extack)
544{
545 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
546}
547EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
548
549/**
550 * sfp_upstream_start() - Inform the SFP that the network device is up
551 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
552 *
553 * Inform the SFP socket that the network device is now up, so that the
554 * module can be enabled by allowing TX_DISABLE to be deasserted. This
555 * should be called from the network device driver's &struct net_device_ops
556 * ndo_open() method.
557 */
558void sfp_upstream_start(struct sfp_bus *bus)
559{
560 if (bus->registered)
561 bus->socket_ops->start(bus->sfp);
562 bus->started = true;
563}
564EXPORT_SYMBOL_GPL(sfp_upstream_start);
565
566/**
567 * sfp_upstream_stop() - Inform the SFP that the network device is down
568 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
569 *
570 * Inform the SFP socket that the network device is now up, so that the
571 * module can be disabled by asserting TX_DISABLE, disabling the laser
572 * in optical modules. This should be called from the network device
573 * driver's &struct net_device_ops ndo_stop() method.
574 */
575void sfp_upstream_stop(struct sfp_bus *bus)
576{
577 if (bus->registered)
578 bus->socket_ops->stop(bus->sfp);
579 bus->started = false;
580}
581EXPORT_SYMBOL_GPL(sfp_upstream_stop);
582
583static void sfp_upstream_clear(struct sfp_bus *bus)
584{
585 bus->upstream_ops = NULL;
586 bus->upstream = NULL;
587}
588
589/**
590 * sfp_upstream_set_signal_rate() - set data signalling rate
591 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
592 * @rate_kbd: signalling rate in units of 1000 baud
593 *
594 * Configure the rate select settings on the SFP module for the signalling
595 * rate (not the same as the data rate).
596 *
597 * Locks that may be held:
598 * Phylink's state_mutex
599 * rtnl lock
600 * SFP's sm_mutex
601 */
602void sfp_upstream_set_signal_rate(struct sfp_bus *bus, unsigned int rate_kbd)
603{
604 if (bus->registered)
605 bus->socket_ops->set_signal_rate(bus->sfp, rate_kbd);
606}
607EXPORT_SYMBOL_GPL(sfp_upstream_set_signal_rate);
608
609/**
610 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
611 * @fwnode: firmware node for the parent device (MAC or PHY)
612 *
613 * Parse the parent device's firmware node for a SFP bus, and locate
614 * the sfp_bus structure, incrementing its reference count. This must
615 * be put via sfp_bus_put() when done.
616 *
617 * Returns:
618 * - on success, a pointer to the sfp_bus structure,
619 * - %NULL if no SFP is specified,
620 * - on failure, an error pointer value:
621 *
622 * - corresponding to the errors detailed for
623 * fwnode_property_get_reference_args().
624 * - %-ENOMEM if we failed to allocate the bus.
625 * - an error from the upstream's connect_phy() method.
626 */
627struct sfp_bus *sfp_bus_find_fwnode(const struct fwnode_handle *fwnode)
628{
629 struct fwnode_reference_args ref;
630 struct sfp_bus *bus;
631 int ret;
632
633 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
634 0, 0, &ref);
635 if (ret == -ENOENT)
636 return NULL;
637 else if (ret < 0)
638 return ERR_PTR(ret);
639
640 if (!fwnode_device_is_available(ref.fwnode)) {
641 fwnode_handle_put(ref.fwnode);
642 return NULL;
643 }
644
645 bus = sfp_bus_get(ref.fwnode);
646 fwnode_handle_put(ref.fwnode);
647 if (!bus)
648 return ERR_PTR(-ENOMEM);
649
650 return bus;
651}
652EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
653
654/**
655 * sfp_bus_add_upstream() - parse and register the neighbouring device
656 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
657 * @upstream: the upstream private data
658 * @ops: the upstream's &struct sfp_upstream_ops
659 *
660 * Add upstream driver for the SFP bus, and if the bus is complete, register
661 * the SFP bus using sfp_register_upstream(). This takes a reference on the
662 * bus, so it is safe to put the bus after this call.
663 *
664 * Returns:
665 * - on success, a pointer to the sfp_bus structure,
666 * - %NULL if no SFP is specified,
667 * - on failure, an error pointer value:
668 *
669 * - corresponding to the errors detailed for
670 * fwnode_property_get_reference_args().
671 * - %-ENOMEM if we failed to allocate the bus.
672 * - an error from the upstream's connect_phy() method.
673 */
674int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
675 const struct sfp_upstream_ops *ops)
676{
677 int ret;
678
679 /* If no bus, return success */
680 if (!bus)
681 return 0;
682
683 rtnl_lock();
684 kref_get(&bus->kref);
685 bus->upstream_ops = ops;
686 bus->upstream = upstream;
687
688 if (bus->sfp) {
689 ret = sfp_register_bus(bus);
690 if (ret)
691 sfp_upstream_clear(bus);
692 } else {
693 ret = 0;
694 }
695 rtnl_unlock();
696
697 if (ret)
698 sfp_bus_put(bus);
699
700 return ret;
701}
702EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
703
704/**
705 * sfp_bus_del_upstream() - Delete a sfp bus
706 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
707 *
708 * Delete a previously registered upstream connection for the SFP
709 * module. @bus should have been added by sfp_bus_add_upstream().
710 */
711void sfp_bus_del_upstream(struct sfp_bus *bus)
712{
713 if (bus) {
714 rtnl_lock();
715 if (bus->sfp)
716 sfp_unregister_bus(bus);
717 sfp_upstream_clear(bus);
718 rtnl_unlock();
719
720 sfp_bus_put(bus);
721 }
722}
723EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
724
725/**
726 * sfp_get_name() - Get the SFP device name
727 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
728 *
729 * Gets the SFP device's name, if @bus has a registered socket. Callers must
730 * hold RTNL, and the returned name is only valid until RTNL is released.
731 *
732 * Returns:
733 * - The name of the SFP device registered with sfp_register_socket()
734 * - %NULL if no device was registered on @bus
735 */
736const char *sfp_get_name(struct sfp_bus *bus)
737{
738 ASSERT_RTNL();
739
740 if (bus->sfp_dev)
741 return dev_name(bus->sfp_dev);
742
743 return NULL;
744}
745EXPORT_SYMBOL_GPL(sfp_get_name);
746
747/* Socket driver entry points */
748int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
749{
750 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
751 int ret = 0;
752
753 if (ops && ops->connect_phy)
754 ret = ops->connect_phy(bus->upstream, phydev);
755
756 if (ret == 0)
757 bus->phydev = phydev;
758
759 return ret;
760}
761EXPORT_SYMBOL_GPL(sfp_add_phy);
762
763void sfp_remove_phy(struct sfp_bus *bus)
764{
765 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
766
767 if (ops && ops->disconnect_phy)
768 ops->disconnect_phy(bus->upstream, bus->phydev);
769 bus->phydev = NULL;
770}
771EXPORT_SYMBOL_GPL(sfp_remove_phy);
772
773void sfp_link_up(struct sfp_bus *bus)
774{
775 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
776
777 if (ops && ops->link_up)
778 ops->link_up(bus->upstream);
779}
780EXPORT_SYMBOL_GPL(sfp_link_up);
781
782void sfp_link_down(struct sfp_bus *bus)
783{
784 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
785
786 if (ops && ops->link_down)
787 ops->link_down(bus->upstream);
788}
789EXPORT_SYMBOL_GPL(sfp_link_down);
790
791int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
792 const struct sfp_quirk *quirk)
793{
794 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
795 int ret = 0;
796
797 bus->sfp_quirk = quirk;
798
799 if (ops && ops->module_insert)
800 ret = ops->module_insert(bus->upstream, id);
801
802 return ret;
803}
804EXPORT_SYMBOL_GPL(sfp_module_insert);
805
806void sfp_module_remove(struct sfp_bus *bus)
807{
808 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
809
810 if (ops && ops->module_remove)
811 ops->module_remove(bus->upstream);
812
813 bus->sfp_quirk = NULL;
814}
815EXPORT_SYMBOL_GPL(sfp_module_remove);
816
817int sfp_module_start(struct sfp_bus *bus)
818{
819 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
820 int ret = 0;
821
822 if (ops && ops->module_start)
823 ret = ops->module_start(bus->upstream);
824
825 return ret;
826}
827EXPORT_SYMBOL_GPL(sfp_module_start);
828
829void sfp_module_stop(struct sfp_bus *bus)
830{
831 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
832
833 if (ops && ops->module_stop)
834 ops->module_stop(bus->upstream);
835}
836EXPORT_SYMBOL_GPL(sfp_module_stop);
837
838static void sfp_socket_clear(struct sfp_bus *bus)
839{
840 bus->sfp_dev = NULL;
841 bus->sfp = NULL;
842 bus->socket_ops = NULL;
843}
844
845struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
846 const struct sfp_socket_ops *ops)
847{
848 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
849 int ret = 0;
850
851 if (bus) {
852 rtnl_lock();
853 bus->sfp_dev = dev;
854 bus->sfp = sfp;
855 bus->socket_ops = ops;
856
857 if (bus->upstream_ops) {
858 ret = sfp_register_bus(bus);
859 if (ret)
860 sfp_socket_clear(bus);
861 }
862 rtnl_unlock();
863 }
864
865 if (ret) {
866 sfp_bus_put(bus);
867 bus = NULL;
868 }
869
870 return bus;
871}
872EXPORT_SYMBOL_GPL(sfp_register_socket);
873
874void sfp_unregister_socket(struct sfp_bus *bus)
875{
876 rtnl_lock();
877 if (bus->upstream_ops)
878 sfp_unregister_bus(bus);
879 sfp_socket_clear(bus);
880 rtnl_unlock();
881
882 sfp_bus_put(bus);
883}
884EXPORT_SYMBOL_GPL(sfp_unregister_socket);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/rtnetlink.h>
8#include <linux/slab.h>
9
10#include "sfp.h"
11
12/**
13 * struct sfp_bus - internal representation of a sfp bus
14 */
15struct sfp_bus {
16 /* private: */
17 struct kref kref;
18 struct list_head node;
19 struct fwnode_handle *fwnode;
20
21 const struct sfp_socket_ops *socket_ops;
22 struct device *sfp_dev;
23 struct sfp *sfp;
24
25 const struct sfp_upstream_ops *upstream_ops;
26 void *upstream;
27 struct phy_device *phydev;
28
29 bool registered;
30 bool started;
31};
32
33/**
34 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
35 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
36 * @id: a pointer to the module's &struct sfp_eeprom_id
37 * @support: optional pointer to an array of unsigned long for the
38 * ethtool support mask
39 *
40 * Parse the EEPROM identification given in @id, and return one of
41 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
42 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
43 * the connector type.
44 *
45 * If the port type is not known, returns %PORT_OTHER.
46 */
47int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
48 unsigned long *support)
49{
50 int port;
51
52 /* port is the physical connector, set this from the connector field. */
53 switch (id->base.connector) {
54 case SFP_CONNECTOR_SC:
55 case SFP_CONNECTOR_FIBERJACK:
56 case SFP_CONNECTOR_LC:
57 case SFP_CONNECTOR_MT_RJ:
58 case SFP_CONNECTOR_MU:
59 case SFP_CONNECTOR_OPTICAL_PIGTAIL:
60 port = PORT_FIBRE;
61 break;
62
63 case SFP_CONNECTOR_RJ45:
64 port = PORT_TP;
65 break;
66
67 case SFP_CONNECTOR_COPPER_PIGTAIL:
68 port = PORT_DA;
69 break;
70
71 case SFP_CONNECTOR_UNSPEC:
72 if (id->base.e1000_base_t) {
73 port = PORT_TP;
74 break;
75 }
76 /* fallthrough */
77 case SFP_CONNECTOR_SG: /* guess */
78 case SFP_CONNECTOR_MPO_1X12:
79 case SFP_CONNECTOR_MPO_2X16:
80 case SFP_CONNECTOR_HSSDC_II:
81 case SFP_CONNECTOR_NOSEPARATE:
82 case SFP_CONNECTOR_MXC_2X16:
83 port = PORT_OTHER;
84 break;
85 default:
86 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
87 id->base.connector);
88 port = PORT_OTHER;
89 break;
90 }
91
92 if (support) {
93 switch (port) {
94 case PORT_FIBRE:
95 phylink_set(support, FIBRE);
96 break;
97
98 case PORT_TP:
99 phylink_set(support, TP);
100 break;
101 }
102 }
103
104 return port;
105}
106EXPORT_SYMBOL_GPL(sfp_parse_port);
107
108/**
109 * sfp_parse_support() - Parse the eeprom id for supported link modes
110 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
111 * @id: a pointer to the module's &struct sfp_eeprom_id
112 * @support: pointer to an array of unsigned long for the ethtool support mask
113 *
114 * Parse the EEPROM identification information and derive the supported
115 * ethtool link modes for the module.
116 */
117void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
118 unsigned long *support)
119{
120 unsigned int br_min, br_nom, br_max;
121 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
122
123 /* Decode the bitrate information to MBd */
124 br_min = br_nom = br_max = 0;
125 if (id->base.br_nominal) {
126 if (id->base.br_nominal != 255) {
127 br_nom = id->base.br_nominal * 100;
128 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
129 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
130 } else if (id->ext.br_max) {
131 br_nom = 250 * id->ext.br_max;
132 br_max = br_nom + br_nom * id->ext.br_min / 100;
133 br_min = br_nom - br_nom * id->ext.br_min / 100;
134 }
135
136 /* When using passive cables, in case neither BR,min nor BR,max
137 * are specified, set br_min to 0 as the nominal value is then
138 * used as the maximum.
139 */
140 if (br_min == br_max && id->base.sfp_ct_passive)
141 br_min = 0;
142 }
143
144 /* Set ethtool support from the compliance fields. */
145 if (id->base.e10g_base_sr)
146 phylink_set(modes, 10000baseSR_Full);
147 if (id->base.e10g_base_lr)
148 phylink_set(modes, 10000baseLR_Full);
149 if (id->base.e10g_base_lrm)
150 phylink_set(modes, 10000baseLRM_Full);
151 if (id->base.e10g_base_er)
152 phylink_set(modes, 10000baseER_Full);
153 if (id->base.e1000_base_sx ||
154 id->base.e1000_base_lx ||
155 id->base.e1000_base_cx)
156 phylink_set(modes, 1000baseX_Full);
157 if (id->base.e1000_base_t) {
158 phylink_set(modes, 1000baseT_Half);
159 phylink_set(modes, 1000baseT_Full);
160 }
161
162 /* 1000Base-PX or 1000Base-BX10 */
163 if ((id->base.e_base_px || id->base.e_base_bx10) &&
164 br_min <= 1300 && br_max >= 1200)
165 phylink_set(modes, 1000baseX_Full);
166
167 /* For active or passive cables, select the link modes
168 * based on the bit rates and the cable compliance bytes.
169 */
170 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
171 /* This may look odd, but some manufacturers use 12000MBd */
172 if (br_min <= 12000 && br_max >= 10300)
173 phylink_set(modes, 10000baseCR_Full);
174 if (br_min <= 3200 && br_max >= 3100)
175 phylink_set(modes, 2500baseX_Full);
176 if (br_min <= 1300 && br_max >= 1200)
177 phylink_set(modes, 1000baseX_Full);
178 }
179 if (id->base.sfp_ct_passive) {
180 if (id->base.passive.sff8431_app_e)
181 phylink_set(modes, 10000baseCR_Full);
182 }
183 if (id->base.sfp_ct_active) {
184 if (id->base.active.sff8431_app_e ||
185 id->base.active.sff8431_lim) {
186 phylink_set(modes, 10000baseCR_Full);
187 }
188 }
189
190 switch (id->base.extended_cc) {
191 case 0x00: /* Unspecified */
192 break;
193 case 0x02: /* 100Gbase-SR4 or 25Gbase-SR */
194 phylink_set(modes, 100000baseSR4_Full);
195 phylink_set(modes, 25000baseSR_Full);
196 break;
197 case 0x03: /* 100Gbase-LR4 or 25Gbase-LR */
198 case 0x04: /* 100Gbase-ER4 or 25Gbase-ER */
199 phylink_set(modes, 100000baseLR4_ER4_Full);
200 break;
201 case 0x0b: /* 100Gbase-CR4 or 25Gbase-CR CA-L */
202 case 0x0c: /* 25Gbase-CR CA-S */
203 case 0x0d: /* 25Gbase-CR CA-N */
204 phylink_set(modes, 100000baseCR4_Full);
205 phylink_set(modes, 25000baseCR_Full);
206 break;
207 default:
208 dev_warn(bus->sfp_dev,
209 "Unknown/unsupported extended compliance code: 0x%02x\n",
210 id->base.extended_cc);
211 break;
212 }
213
214 /* For fibre channel SFP, derive possible BaseX modes */
215 if (id->base.fc_speed_100 ||
216 id->base.fc_speed_200 ||
217 id->base.fc_speed_400) {
218 if (id->base.br_nominal >= 31)
219 phylink_set(modes, 2500baseX_Full);
220 if (id->base.br_nominal >= 12)
221 phylink_set(modes, 1000baseX_Full);
222 }
223
224 /* If we haven't discovered any modes that this module supports, try
225 * the encoding and bitrate to determine supported modes. Some BiDi
226 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
227 * the differing wavelengths, so do not set any transceiver bits.
228 */
229 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
230 /* If the encoding and bit rate allows 1000baseX */
231 if (id->base.encoding == SFP_ENCODING_8B10B && br_nom &&
232 br_min <= 1300 && br_max >= 1200)
233 phylink_set(modes, 1000baseX_Full);
234 }
235
236 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
237
238 phylink_set(support, Autoneg);
239 phylink_set(support, Pause);
240 phylink_set(support, Asym_Pause);
241}
242EXPORT_SYMBOL_GPL(sfp_parse_support);
243
244/**
245 * sfp_select_interface() - Select appropriate phy_interface_t mode
246 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
247 * @id: a pointer to the module's &struct sfp_eeprom_id
248 * @link_modes: ethtool link modes mask
249 *
250 * Derive the phy_interface_t mode for the information found in the
251 * module's identifying EEPROM and the link modes mask. There is no
252 * standard or defined way to derive this information, so we decide
253 * based upon the link mode mask.
254 */
255phy_interface_t sfp_select_interface(struct sfp_bus *bus,
256 const struct sfp_eeprom_id *id,
257 unsigned long *link_modes)
258{
259 if (phylink_test(link_modes, 10000baseCR_Full) ||
260 phylink_test(link_modes, 10000baseSR_Full) ||
261 phylink_test(link_modes, 10000baseLR_Full) ||
262 phylink_test(link_modes, 10000baseLRM_Full) ||
263 phylink_test(link_modes, 10000baseER_Full))
264 return PHY_INTERFACE_MODE_10GKR;
265
266 if (phylink_test(link_modes, 2500baseX_Full))
267 return PHY_INTERFACE_MODE_2500BASEX;
268
269 if (id->base.e1000_base_t ||
270 id->base.e100_base_lx ||
271 id->base.e100_base_fx)
272 return PHY_INTERFACE_MODE_SGMII;
273
274 if (phylink_test(link_modes, 1000baseX_Full))
275 return PHY_INTERFACE_MODE_1000BASEX;
276
277 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
278
279 return PHY_INTERFACE_MODE_NA;
280}
281EXPORT_SYMBOL_GPL(sfp_select_interface);
282
283static LIST_HEAD(sfp_buses);
284static DEFINE_MUTEX(sfp_mutex);
285
286static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
287{
288 return bus->registered ? bus->upstream_ops : NULL;
289}
290
291static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
292{
293 struct sfp_bus *sfp, *new, *found = NULL;
294
295 new = kzalloc(sizeof(*new), GFP_KERNEL);
296
297 mutex_lock(&sfp_mutex);
298
299 list_for_each_entry(sfp, &sfp_buses, node) {
300 if (sfp->fwnode == fwnode) {
301 kref_get(&sfp->kref);
302 found = sfp;
303 break;
304 }
305 }
306
307 if (!found && new) {
308 kref_init(&new->kref);
309 new->fwnode = fwnode;
310 list_add(&new->node, &sfp_buses);
311 found = new;
312 new = NULL;
313 }
314
315 mutex_unlock(&sfp_mutex);
316
317 kfree(new);
318
319 return found;
320}
321
322static void sfp_bus_release(struct kref *kref)
323{
324 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
325
326 list_del(&bus->node);
327 mutex_unlock(&sfp_mutex);
328 kfree(bus);
329}
330
331static void sfp_bus_put(struct sfp_bus *bus)
332{
333 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
334}
335
336static int sfp_register_bus(struct sfp_bus *bus)
337{
338 const struct sfp_upstream_ops *ops = bus->upstream_ops;
339 int ret;
340
341 if (ops) {
342 if (ops->link_down)
343 ops->link_down(bus->upstream);
344 if (ops->connect_phy && bus->phydev) {
345 ret = ops->connect_phy(bus->upstream, bus->phydev);
346 if (ret)
347 return ret;
348 }
349 }
350 bus->socket_ops->attach(bus->sfp);
351 if (bus->started)
352 bus->socket_ops->start(bus->sfp);
353 bus->upstream_ops->attach(bus->upstream, bus);
354 bus->registered = true;
355 return 0;
356}
357
358static void sfp_unregister_bus(struct sfp_bus *bus)
359{
360 const struct sfp_upstream_ops *ops = bus->upstream_ops;
361
362 if (bus->registered) {
363 bus->upstream_ops->detach(bus->upstream, bus);
364 if (bus->started)
365 bus->socket_ops->stop(bus->sfp);
366 bus->socket_ops->detach(bus->sfp);
367 if (bus->phydev && ops && ops->disconnect_phy)
368 ops->disconnect_phy(bus->upstream);
369 }
370 bus->registered = false;
371}
372
373/**
374 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
375 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
376 * @modinfo: a &struct ethtool_modinfo
377 *
378 * Fill in the type and eeprom_len parameters in @modinfo for a module on
379 * the sfp bus specified by @bus.
380 *
381 * Returns 0 on success or a negative errno number.
382 */
383int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
384{
385 return bus->socket_ops->module_info(bus->sfp, modinfo);
386}
387EXPORT_SYMBOL_GPL(sfp_get_module_info);
388
389/**
390 * sfp_get_module_eeprom() - Read the SFP module EEPROM
391 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
392 * @ee: a &struct ethtool_eeprom
393 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
394 *
395 * Read the EEPROM as specified by the supplied @ee. See the documentation
396 * for &struct ethtool_eeprom for the region to be read.
397 *
398 * Returns 0 on success or a negative errno number.
399 */
400int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
401 u8 *data)
402{
403 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
404}
405EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
406
407/**
408 * sfp_upstream_start() - Inform the SFP that the network device is up
409 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
410 *
411 * Inform the SFP socket that the network device is now up, so that the
412 * module can be enabled by allowing TX_DISABLE to be deasserted. This
413 * should be called from the network device driver's &struct net_device_ops
414 * ndo_open() method.
415 */
416void sfp_upstream_start(struct sfp_bus *bus)
417{
418 if (bus->registered)
419 bus->socket_ops->start(bus->sfp);
420 bus->started = true;
421}
422EXPORT_SYMBOL_GPL(sfp_upstream_start);
423
424/**
425 * sfp_upstream_stop() - Inform the SFP that the network device is down
426 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
427 *
428 * Inform the SFP socket that the network device is now up, so that the
429 * module can be disabled by asserting TX_DISABLE, disabling the laser
430 * in optical modules. This should be called from the network device
431 * driver's &struct net_device_ops ndo_stop() method.
432 */
433void sfp_upstream_stop(struct sfp_bus *bus)
434{
435 if (bus->registered)
436 bus->socket_ops->stop(bus->sfp);
437 bus->started = false;
438}
439EXPORT_SYMBOL_GPL(sfp_upstream_stop);
440
441static void sfp_upstream_clear(struct sfp_bus *bus)
442{
443 bus->upstream_ops = NULL;
444 bus->upstream = NULL;
445}
446
447/**
448 * sfp_register_upstream() - Register the neighbouring device
449 * @fwnode: firmware node for the SFP bus
450 * @upstream: the upstream private data
451 * @ops: the upstream's &struct sfp_upstream_ops
452 *
453 * Register the upstream device (eg, PHY) with the SFP bus. MAC drivers
454 * should use phylink, which will call this function for them. Returns
455 * a pointer to the allocated &struct sfp_bus.
456 *
457 * On error, returns %NULL.
458 */
459struct sfp_bus *sfp_register_upstream(struct fwnode_handle *fwnode,
460 void *upstream,
461 const struct sfp_upstream_ops *ops)
462{
463 struct sfp_bus *bus = sfp_bus_get(fwnode);
464 int ret = 0;
465
466 if (bus) {
467 rtnl_lock();
468 bus->upstream_ops = ops;
469 bus->upstream = upstream;
470
471 if (bus->sfp) {
472 ret = sfp_register_bus(bus);
473 if (ret)
474 sfp_upstream_clear(bus);
475 }
476 rtnl_unlock();
477 }
478
479 if (ret) {
480 sfp_bus_put(bus);
481 bus = NULL;
482 }
483
484 return bus;
485}
486EXPORT_SYMBOL_GPL(sfp_register_upstream);
487
488/**
489 * sfp_unregister_upstream() - Unregister sfp bus
490 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
491 *
492 * Unregister a previously registered upstream connection for the SFP
493 * module. @bus is returned from sfp_register_upstream().
494 */
495void sfp_unregister_upstream(struct sfp_bus *bus)
496{
497 rtnl_lock();
498 if (bus->sfp)
499 sfp_unregister_bus(bus);
500 sfp_upstream_clear(bus);
501 rtnl_unlock();
502
503 sfp_bus_put(bus);
504}
505EXPORT_SYMBOL_GPL(sfp_unregister_upstream);
506
507/* Socket driver entry points */
508int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
509{
510 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
511 int ret = 0;
512
513 if (ops && ops->connect_phy)
514 ret = ops->connect_phy(bus->upstream, phydev);
515
516 if (ret == 0)
517 bus->phydev = phydev;
518
519 return ret;
520}
521EXPORT_SYMBOL_GPL(sfp_add_phy);
522
523void sfp_remove_phy(struct sfp_bus *bus)
524{
525 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
526
527 if (ops && ops->disconnect_phy)
528 ops->disconnect_phy(bus->upstream);
529 bus->phydev = NULL;
530}
531EXPORT_SYMBOL_GPL(sfp_remove_phy);
532
533void sfp_link_up(struct sfp_bus *bus)
534{
535 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
536
537 if (ops && ops->link_up)
538 ops->link_up(bus->upstream);
539}
540EXPORT_SYMBOL_GPL(sfp_link_up);
541
542void sfp_link_down(struct sfp_bus *bus)
543{
544 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
545
546 if (ops && ops->link_down)
547 ops->link_down(bus->upstream);
548}
549EXPORT_SYMBOL_GPL(sfp_link_down);
550
551int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
552{
553 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
554 int ret = 0;
555
556 if (ops && ops->module_insert)
557 ret = ops->module_insert(bus->upstream, id);
558
559 return ret;
560}
561EXPORT_SYMBOL_GPL(sfp_module_insert);
562
563void sfp_module_remove(struct sfp_bus *bus)
564{
565 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
566
567 if (ops && ops->module_remove)
568 ops->module_remove(bus->upstream);
569}
570EXPORT_SYMBOL_GPL(sfp_module_remove);
571
572static void sfp_socket_clear(struct sfp_bus *bus)
573{
574 bus->sfp_dev = NULL;
575 bus->sfp = NULL;
576 bus->socket_ops = NULL;
577}
578
579struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
580 const struct sfp_socket_ops *ops)
581{
582 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
583 int ret = 0;
584
585 if (bus) {
586 rtnl_lock();
587 bus->sfp_dev = dev;
588 bus->sfp = sfp;
589 bus->socket_ops = ops;
590
591 if (bus->upstream_ops) {
592 ret = sfp_register_bus(bus);
593 if (ret)
594 sfp_socket_clear(bus);
595 }
596 rtnl_unlock();
597 }
598
599 if (ret) {
600 sfp_bus_put(bus);
601 bus = NULL;
602 }
603
604 return bus;
605}
606EXPORT_SYMBOL_GPL(sfp_register_socket);
607
608void sfp_unregister_socket(struct sfp_bus *bus)
609{
610 rtnl_lock();
611 if (bus->upstream_ops)
612 sfp_unregister_bus(bus);
613 sfp_socket_clear(bus);
614 rtnl_unlock();
615
616 sfp_bus_put(bus);
617}
618EXPORT_SYMBOL_GPL(sfp_unregister_socket);