Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
646 /*
647 * set all-1 result as if reading from non-existing
648 * I/O port
649 */
650 *value = GENMASK(width, 0);
651 return AE_NOT_IMPLEMENTED;
652 }
653
654 if (value)
655 *value = 0;
656 else
657 value = &dummy;
658
659 if (width <= 8) {
660 *value = inb(port);
661 } else if (width <= 16) {
662 *value = inw(port);
663 } else if (width <= 32) {
664 *value = inl(port);
665 } else {
666 pr_debug("%s: Access width %d not supported\n", __func__, width);
667 return AE_BAD_PARAMETER;
668 }
669
670 return AE_OK;
671}
672
673EXPORT_SYMBOL(acpi_os_read_port);
674
675acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
676{
677 if (!IS_ENABLED(CONFIG_HAS_IOPORT))
678 return AE_NOT_IMPLEMENTED;
679
680 if (width <= 8) {
681 outb(value, port);
682 } else if (width <= 16) {
683 outw(value, port);
684 } else if (width <= 32) {
685 outl(value, port);
686 } else {
687 pr_debug("%s: Access width %d not supported\n", __func__, width);
688 return AE_BAD_PARAMETER;
689 }
690
691 return AE_OK;
692}
693
694EXPORT_SYMBOL(acpi_os_write_port);
695
696int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
697{
698
699 switch (width) {
700 case 8:
701 *(u8 *) value = readb(virt_addr);
702 break;
703 case 16:
704 *(u16 *) value = readw(virt_addr);
705 break;
706 case 32:
707 *(u32 *) value = readl(virt_addr);
708 break;
709 case 64:
710 *(u64 *) value = readq(virt_addr);
711 break;
712 default:
713 return -EINVAL;
714 }
715
716 return 0;
717}
718
719acpi_status
720acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
721{
722 void __iomem *virt_addr;
723 unsigned int size = width / 8;
724 bool unmap = false;
725 u64 dummy;
726 int error;
727
728 rcu_read_lock();
729 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
730 if (!virt_addr) {
731 rcu_read_unlock();
732 virt_addr = acpi_os_ioremap(phys_addr, size);
733 if (!virt_addr)
734 return AE_BAD_ADDRESS;
735 unmap = true;
736 }
737
738 if (!value)
739 value = &dummy;
740
741 error = acpi_os_read_iomem(virt_addr, value, width);
742 BUG_ON(error);
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
754{
755 void __iomem *virt_addr;
756 unsigned int size = width / 8;
757 bool unmap = false;
758
759 rcu_read_lock();
760 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
761 if (!virt_addr) {
762 rcu_read_unlock();
763 virt_addr = acpi_os_ioremap(phys_addr, size);
764 if (!virt_addr)
765 return AE_BAD_ADDRESS;
766 unmap = true;
767 }
768
769 switch (width) {
770 case 8:
771 writeb(value, virt_addr);
772 break;
773 case 16:
774 writew(value, virt_addr);
775 break;
776 case 32:
777 writel(value, virt_addr);
778 break;
779 case 64:
780 writeq(value, virt_addr);
781 break;
782 default:
783 BUG();
784 }
785
786 if (unmap)
787 iounmap(virt_addr);
788 else
789 rcu_read_unlock();
790
791 return AE_OK;
792}
793
794#ifdef CONFIG_PCI
795acpi_status
796acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
797 u64 *value, u32 width)
798{
799 int result, size;
800 u32 value32;
801
802 if (!value)
803 return AE_BAD_PARAMETER;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_read(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, &value32);
822 *value = value32;
823
824 return (result ? AE_ERROR : AE_OK);
825}
826
827acpi_status
828acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
829 u64 value, u32 width)
830{
831 int result, size;
832
833 switch (width) {
834 case 8:
835 size = 1;
836 break;
837 case 16:
838 size = 2;
839 break;
840 case 32:
841 size = 4;
842 break;
843 default:
844 return AE_ERROR;
845 }
846
847 result = raw_pci_write(pci_id->segment, pci_id->bus,
848 PCI_DEVFN(pci_id->device, pci_id->function),
849 reg, size, value);
850
851 return (result ? AE_ERROR : AE_OK);
852}
853#endif
854
855static void acpi_os_execute_deferred(struct work_struct *work)
856{
857 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
858
859 dpc->function(dpc->context);
860 kfree(dpc);
861}
862
863#ifdef CONFIG_ACPI_DEBUGGER
864static struct acpi_debugger acpi_debugger;
865static bool acpi_debugger_initialized;
866
867int acpi_register_debugger(struct module *owner,
868 const struct acpi_debugger_ops *ops)
869{
870 int ret = 0;
871
872 mutex_lock(&acpi_debugger.lock);
873 if (acpi_debugger.ops) {
874 ret = -EBUSY;
875 goto err_lock;
876 }
877
878 acpi_debugger.owner = owner;
879 acpi_debugger.ops = ops;
880
881err_lock:
882 mutex_unlock(&acpi_debugger.lock);
883 return ret;
884}
885EXPORT_SYMBOL(acpi_register_debugger);
886
887void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
888{
889 mutex_lock(&acpi_debugger.lock);
890 if (ops == acpi_debugger.ops) {
891 acpi_debugger.ops = NULL;
892 acpi_debugger.owner = NULL;
893 }
894 mutex_unlock(&acpi_debugger.lock);
895}
896EXPORT_SYMBOL(acpi_unregister_debugger);
897
898int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
899{
900 int ret;
901 int (*func)(acpi_osd_exec_callback, void *);
902 struct module *owner;
903
904 if (!acpi_debugger_initialized)
905 return -ENODEV;
906 mutex_lock(&acpi_debugger.lock);
907 if (!acpi_debugger.ops) {
908 ret = -ENODEV;
909 goto err_lock;
910 }
911 if (!try_module_get(acpi_debugger.owner)) {
912 ret = -ENODEV;
913 goto err_lock;
914 }
915 func = acpi_debugger.ops->create_thread;
916 owner = acpi_debugger.owner;
917 mutex_unlock(&acpi_debugger.lock);
918
919 ret = func(function, context);
920
921 mutex_lock(&acpi_debugger.lock);
922 module_put(owner);
923err_lock:
924 mutex_unlock(&acpi_debugger.lock);
925 return ret;
926}
927
928ssize_t acpi_debugger_write_log(const char *msg)
929{
930 ssize_t ret;
931 ssize_t (*func)(const char *);
932 struct module *owner;
933
934 if (!acpi_debugger_initialized)
935 return -ENODEV;
936 mutex_lock(&acpi_debugger.lock);
937 if (!acpi_debugger.ops) {
938 ret = -ENODEV;
939 goto err_lock;
940 }
941 if (!try_module_get(acpi_debugger.owner)) {
942 ret = -ENODEV;
943 goto err_lock;
944 }
945 func = acpi_debugger.ops->write_log;
946 owner = acpi_debugger.owner;
947 mutex_unlock(&acpi_debugger.lock);
948
949 ret = func(msg);
950
951 mutex_lock(&acpi_debugger.lock);
952 module_put(owner);
953err_lock:
954 mutex_unlock(&acpi_debugger.lock);
955 return ret;
956}
957
958ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
959{
960 ssize_t ret;
961 ssize_t (*func)(char *, size_t);
962 struct module *owner;
963
964 if (!acpi_debugger_initialized)
965 return -ENODEV;
966 mutex_lock(&acpi_debugger.lock);
967 if (!acpi_debugger.ops) {
968 ret = -ENODEV;
969 goto err_lock;
970 }
971 if (!try_module_get(acpi_debugger.owner)) {
972 ret = -ENODEV;
973 goto err_lock;
974 }
975 func = acpi_debugger.ops->read_cmd;
976 owner = acpi_debugger.owner;
977 mutex_unlock(&acpi_debugger.lock);
978
979 ret = func(buffer, buffer_length);
980
981 mutex_lock(&acpi_debugger.lock);
982 module_put(owner);
983err_lock:
984 mutex_unlock(&acpi_debugger.lock);
985 return ret;
986}
987
988int acpi_debugger_wait_command_ready(void)
989{
990 int ret;
991 int (*func)(bool, char *, size_t);
992 struct module *owner;
993
994 if (!acpi_debugger_initialized)
995 return -ENODEV;
996 mutex_lock(&acpi_debugger.lock);
997 if (!acpi_debugger.ops) {
998 ret = -ENODEV;
999 goto err_lock;
1000 }
1001 if (!try_module_get(acpi_debugger.owner)) {
1002 ret = -ENODEV;
1003 goto err_lock;
1004 }
1005 func = acpi_debugger.ops->wait_command_ready;
1006 owner = acpi_debugger.owner;
1007 mutex_unlock(&acpi_debugger.lock);
1008
1009 ret = func(acpi_gbl_method_executing,
1010 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1011
1012 mutex_lock(&acpi_debugger.lock);
1013 module_put(owner);
1014err_lock:
1015 mutex_unlock(&acpi_debugger.lock);
1016 return ret;
1017}
1018
1019int acpi_debugger_notify_command_complete(void)
1020{
1021 int ret;
1022 int (*func)(void);
1023 struct module *owner;
1024
1025 if (!acpi_debugger_initialized)
1026 return -ENODEV;
1027 mutex_lock(&acpi_debugger.lock);
1028 if (!acpi_debugger.ops) {
1029 ret = -ENODEV;
1030 goto err_lock;
1031 }
1032 if (!try_module_get(acpi_debugger.owner)) {
1033 ret = -ENODEV;
1034 goto err_lock;
1035 }
1036 func = acpi_debugger.ops->notify_command_complete;
1037 owner = acpi_debugger.owner;
1038 mutex_unlock(&acpi_debugger.lock);
1039
1040 ret = func();
1041
1042 mutex_lock(&acpi_debugger.lock);
1043 module_put(owner);
1044err_lock:
1045 mutex_unlock(&acpi_debugger.lock);
1046 return ret;
1047}
1048
1049int __init acpi_debugger_init(void)
1050{
1051 mutex_init(&acpi_debugger.lock);
1052 acpi_debugger_initialized = true;
1053 return 0;
1054}
1055#endif
1056
1057/*******************************************************************************
1058 *
1059 * FUNCTION: acpi_os_execute
1060 *
1061 * PARAMETERS: Type - Type of the callback
1062 * Function - Function to be executed
1063 * Context - Function parameters
1064 *
1065 * RETURN: Status
1066 *
1067 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1068 * immediately executes function on a separate thread.
1069 *
1070 ******************************************************************************/
1071
1072acpi_status acpi_os_execute(acpi_execute_type type,
1073 acpi_osd_exec_callback function, void *context)
1074{
1075 struct acpi_os_dpc *dpc;
1076 int ret;
1077
1078 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1079 "Scheduling function [%p(%p)] for deferred execution.\n",
1080 function, context));
1081
1082 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1083 ret = acpi_debugger_create_thread(function, context);
1084 if (ret) {
1085 pr_err("Kernel thread creation failed\n");
1086 return AE_ERROR;
1087 }
1088 return AE_OK;
1089 }
1090
1091 /*
1092 * Allocate/initialize DPC structure. Note that this memory will be
1093 * freed by the callee. The kernel handles the work_struct list in a
1094 * way that allows us to also free its memory inside the callee.
1095 * Because we may want to schedule several tasks with different
1096 * parameters we can't use the approach some kernel code uses of
1097 * having a static work_struct.
1098 */
1099
1100 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1101 if (!dpc)
1102 return AE_NO_MEMORY;
1103
1104 dpc->function = function;
1105 dpc->context = context;
1106 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107
1108 /*
1109 * To prevent lockdep from complaining unnecessarily, make sure that
1110 * there is a different static lockdep key for each workqueue by using
1111 * INIT_WORK() for each of them separately.
1112 */
1113 switch (type) {
1114 case OSL_NOTIFY_HANDLER:
1115 ret = queue_work(kacpi_notify_wq, &dpc->work);
1116 break;
1117 case OSL_GPE_HANDLER:
1118 /*
1119 * On some machines, a software-initiated SMI causes corruption
1120 * unless the SMI runs on CPU 0. An SMI can be initiated by
1121 * any AML, but typically it's done in GPE-related methods that
1122 * are run via workqueues, so we can avoid the known corruption
1123 * cases by always queueing on CPU 0.
1124 */
1125 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1126 break;
1127 default:
1128 pr_err("Unsupported os_execute type %d.\n", type);
1129 goto err;
1130 }
1131 if (!ret) {
1132 pr_err("Unable to queue work\n");
1133 goto err;
1134 }
1135
1136 return AE_OK;
1137
1138err:
1139 kfree(dpc);
1140 return AE_ERROR;
1141}
1142EXPORT_SYMBOL(acpi_os_execute);
1143
1144void acpi_os_wait_events_complete(void)
1145{
1146 /*
1147 * Make sure the GPE handler or the fixed event handler is not used
1148 * on another CPU after removal.
1149 */
1150 if (acpi_sci_irq_valid())
1151 synchronize_hardirq(acpi_sci_irq);
1152 flush_workqueue(kacpid_wq);
1153 flush_workqueue(kacpi_notify_wq);
1154}
1155EXPORT_SYMBOL(acpi_os_wait_events_complete);
1156
1157struct acpi_hp_work {
1158 struct work_struct work;
1159 struct acpi_device *adev;
1160 u32 src;
1161};
1162
1163static void acpi_hotplug_work_fn(struct work_struct *work)
1164{
1165 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1166
1167 acpi_os_wait_events_complete();
1168 acpi_device_hotplug(hpw->adev, hpw->src);
1169 kfree(hpw);
1170}
1171
1172acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1173{
1174 struct acpi_hp_work *hpw;
1175
1176 acpi_handle_debug(adev->handle,
1177 "Scheduling hotplug event %u for deferred handling\n",
1178 src);
1179
1180 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1181 if (!hpw)
1182 return AE_NO_MEMORY;
1183
1184 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1185 hpw->adev = adev;
1186 hpw->src = src;
1187 /*
1188 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1189 * the hotplug code may call driver .remove() functions, which may
1190 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1191 * these workqueues.
1192 */
1193 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1194 kfree(hpw);
1195 return AE_ERROR;
1196 }
1197 return AE_OK;
1198}
1199
1200bool acpi_queue_hotplug_work(struct work_struct *work)
1201{
1202 return queue_work(kacpi_hotplug_wq, work);
1203}
1204
1205acpi_status
1206acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1207{
1208 struct semaphore *sem = NULL;
1209
1210 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1211 if (!sem)
1212 return AE_NO_MEMORY;
1213
1214 sema_init(sem, initial_units);
1215
1216 *handle = (acpi_handle *) sem;
1217
1218 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1219 *handle, initial_units));
1220
1221 return AE_OK;
1222}
1223
1224/*
1225 * TODO: A better way to delete semaphores? Linux doesn't have a
1226 * 'delete_semaphore()' function -- may result in an invalid
1227 * pointer dereference for non-synchronized consumers. Should
1228 * we at least check for blocked threads and signal/cancel them?
1229 */
1230
1231acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1232{
1233 struct semaphore *sem = (struct semaphore *)handle;
1234
1235 if (!sem)
1236 return AE_BAD_PARAMETER;
1237
1238 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1239
1240 BUG_ON(!list_empty(&sem->wait_list));
1241 kfree(sem);
1242 sem = NULL;
1243
1244 return AE_OK;
1245}
1246
1247/*
1248 * TODO: Support for units > 1?
1249 */
1250acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1251{
1252 acpi_status status = AE_OK;
1253 struct semaphore *sem = (struct semaphore *)handle;
1254 long jiffies;
1255 int ret = 0;
1256
1257 if (!acpi_os_initialized)
1258 return AE_OK;
1259
1260 if (!sem || (units < 1))
1261 return AE_BAD_PARAMETER;
1262
1263 if (units > 1)
1264 return AE_SUPPORT;
1265
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1267 handle, units, timeout));
1268
1269 if (timeout == ACPI_WAIT_FOREVER)
1270 jiffies = MAX_SCHEDULE_TIMEOUT;
1271 else
1272 jiffies = msecs_to_jiffies(timeout);
1273
1274 ret = down_timeout(sem, jiffies);
1275 if (ret)
1276 status = AE_TIME;
1277
1278 if (ACPI_FAILURE(status)) {
1279 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280 "Failed to acquire semaphore[%p|%d|%d], %s",
1281 handle, units, timeout,
1282 acpi_format_exception(status)));
1283 } else {
1284 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1285 "Acquired semaphore[%p|%d|%d]", handle,
1286 units, timeout));
1287 }
1288
1289 return status;
1290}
1291
1292/*
1293 * TODO: Support for units > 1?
1294 */
1295acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1296{
1297 struct semaphore *sem = (struct semaphore *)handle;
1298
1299 if (!acpi_os_initialized)
1300 return AE_OK;
1301
1302 if (!sem || (units < 1))
1303 return AE_BAD_PARAMETER;
1304
1305 if (units > 1)
1306 return AE_SUPPORT;
1307
1308 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1309 units));
1310
1311 up(sem);
1312
1313 return AE_OK;
1314}
1315
1316acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1317{
1318#ifdef ENABLE_DEBUGGER
1319 if (acpi_in_debugger) {
1320 u32 chars;
1321
1322 kdb_read(buffer, buffer_length);
1323
1324 /* remove the CR kdb includes */
1325 chars = strlen(buffer) - 1;
1326 buffer[chars] = '\0';
1327 }
1328#else
1329 int ret;
1330
1331 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332 if (ret < 0)
1333 return AE_ERROR;
1334 if (bytes_read)
1335 *bytes_read = ret;
1336#endif
1337
1338 return AE_OK;
1339}
1340EXPORT_SYMBOL(acpi_os_get_line);
1341
1342acpi_status acpi_os_wait_command_ready(void)
1343{
1344 int ret;
1345
1346 ret = acpi_debugger_wait_command_ready();
1347 if (ret < 0)
1348 return AE_ERROR;
1349 return AE_OK;
1350}
1351
1352acpi_status acpi_os_notify_command_complete(void)
1353{
1354 int ret;
1355
1356 ret = acpi_debugger_notify_command_complete();
1357 if (ret < 0)
1358 return AE_ERROR;
1359 return AE_OK;
1360}
1361
1362acpi_status acpi_os_signal(u32 function, void *info)
1363{
1364 switch (function) {
1365 case ACPI_SIGNAL_FATAL:
1366 pr_err("Fatal opcode executed\n");
1367 break;
1368 case ACPI_SIGNAL_BREAKPOINT:
1369 /*
1370 * AML Breakpoint
1371 * ACPI spec. says to treat it as a NOP unless
1372 * you are debugging. So if/when we integrate
1373 * AML debugger into the kernel debugger its
1374 * hook will go here. But until then it is
1375 * not useful to print anything on breakpoints.
1376 */
1377 break;
1378 default:
1379 break;
1380 }
1381
1382 return AE_OK;
1383}
1384
1385static int __init acpi_os_name_setup(char *str)
1386{
1387 char *p = acpi_os_name;
1388 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1389
1390 if (!str || !*str)
1391 return 0;
1392
1393 for (; count-- && *str; str++) {
1394 if (isalnum(*str) || *str == ' ' || *str == ':')
1395 *p++ = *str;
1396 else if (*str == '\'' || *str == '"')
1397 continue;
1398 else
1399 break;
1400 }
1401 *p = 0;
1402
1403 return 1;
1404
1405}
1406
1407__setup("acpi_os_name=", acpi_os_name_setup);
1408
1409/*
1410 * Disable the auto-serialization of named objects creation methods.
1411 *
1412 * This feature is enabled by default. It marks the AML control methods
1413 * that contain the opcodes to create named objects as "Serialized".
1414 */
1415static int __init acpi_no_auto_serialize_setup(char *str)
1416{
1417 acpi_gbl_auto_serialize_methods = FALSE;
1418 pr_info("Auto-serialization disabled\n");
1419
1420 return 1;
1421}
1422
1423__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1424
1425/* Check of resource interference between native drivers and ACPI
1426 * OperationRegions (SystemIO and System Memory only).
1427 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1428 * in arbitrary AML code and can interfere with legacy drivers.
1429 * acpi_enforce_resources= can be set to:
1430 *
1431 * - strict (default) (2)
1432 * -> further driver trying to access the resources will not load
1433 * - lax (1)
1434 * -> further driver trying to access the resources will load, but you
1435 * get a system message that something might go wrong...
1436 *
1437 * - no (0)
1438 * -> ACPI Operation Region resources will not be registered
1439 *
1440 */
1441#define ENFORCE_RESOURCES_STRICT 2
1442#define ENFORCE_RESOURCES_LAX 1
1443#define ENFORCE_RESOURCES_NO 0
1444
1445static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446
1447static int __init acpi_enforce_resources_setup(char *str)
1448{
1449 if (str == NULL || *str == '\0')
1450 return 0;
1451
1452 if (!strcmp("strict", str))
1453 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1454 else if (!strcmp("lax", str))
1455 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1456 else if (!strcmp("no", str))
1457 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1458
1459 return 1;
1460}
1461
1462__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1463
1464/* Check for resource conflicts between ACPI OperationRegions and native
1465 * drivers */
1466int acpi_check_resource_conflict(const struct resource *res)
1467{
1468 acpi_adr_space_type space_id;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472
1473 if (res->flags & IORESOURCE_IO)
1474 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1475 else if (res->flags & IORESOURCE_MEM)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1477 else
1478 return 0;
1479
1480 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1481 return 0;
1482
1483 pr_info("Resource conflict; ACPI support missing from driver?\n");
1484
1485 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1486 return -EBUSY;
1487
1488 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1489 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1490
1491 return 0;
1492}
1493EXPORT_SYMBOL(acpi_check_resource_conflict);
1494
1495int acpi_check_region(resource_size_t start, resource_size_t n,
1496 const char *name)
1497{
1498 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1499
1500 return acpi_check_resource_conflict(&res);
1501}
1502EXPORT_SYMBOL(acpi_check_region);
1503
1504/*
1505 * Let drivers know whether the resource checks are effective
1506 */
1507int acpi_resources_are_enforced(void)
1508{
1509 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1510}
1511EXPORT_SYMBOL(acpi_resources_are_enforced);
1512
1513/*
1514 * Deallocate the memory for a spinlock.
1515 */
1516void acpi_os_delete_lock(acpi_spinlock handle)
1517{
1518 ACPI_FREE(handle);
1519}
1520
1521/*
1522 * Acquire a spinlock.
1523 *
1524 * handle is a pointer to the spinlock_t.
1525 */
1526
1527acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1528 __acquires(lockp)
1529{
1530 spin_lock(lockp);
1531 return 0;
1532}
1533
1534/*
1535 * Release a spinlock. See above.
1536 */
1537
1538void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1539 __releases(lockp)
1540{
1541 spin_unlock(lockp);
1542}
1543
1544#ifndef ACPI_USE_LOCAL_CACHE
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION: acpi_os_create_cache
1549 *
1550 * PARAMETERS: name - Ascii name for the cache
1551 * size - Size of each cached object
1552 * depth - Maximum depth of the cache (in objects) <ignored>
1553 * cache - Where the new cache object is returned
1554 *
1555 * RETURN: status
1556 *
1557 * DESCRIPTION: Create a cache object
1558 *
1559 ******************************************************************************/
1560
1561acpi_status
1562acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1563{
1564 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1565 if (*cache == NULL)
1566 return AE_ERROR;
1567 else
1568 return AE_OK;
1569}
1570
1571/*******************************************************************************
1572 *
1573 * FUNCTION: acpi_os_purge_cache
1574 *
1575 * PARAMETERS: Cache - Handle to cache object
1576 *
1577 * RETURN: Status
1578 *
1579 * DESCRIPTION: Free all objects within the requested cache.
1580 *
1581 ******************************************************************************/
1582
1583acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1584{
1585 kmem_cache_shrink(cache);
1586 return AE_OK;
1587}
1588
1589/*******************************************************************************
1590 *
1591 * FUNCTION: acpi_os_delete_cache
1592 *
1593 * PARAMETERS: Cache - Handle to cache object
1594 *
1595 * RETURN: Status
1596 *
1597 * DESCRIPTION: Free all objects within the requested cache and delete the
1598 * cache object.
1599 *
1600 ******************************************************************************/
1601
1602acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1603{
1604 kmem_cache_destroy(cache);
1605 return AE_OK;
1606}
1607
1608/*******************************************************************************
1609 *
1610 * FUNCTION: acpi_os_release_object
1611 *
1612 * PARAMETERS: Cache - Handle to cache object
1613 * Object - The object to be released
1614 *
1615 * RETURN: None
1616 *
1617 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1618 * the object is deleted.
1619 *
1620 ******************************************************************************/
1621
1622acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1623{
1624 kmem_cache_free(cache, object);
1625 return AE_OK;
1626}
1627#endif
1628
1629static int __init acpi_no_static_ssdt_setup(char *s)
1630{
1631 acpi_gbl_disable_ssdt_table_install = TRUE;
1632 pr_info("Static SSDT installation disabled\n");
1633
1634 return 0;
1635}
1636
1637early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1638
1639static int __init acpi_disable_return_repair(char *s)
1640{
1641 pr_notice("Predefined validation mechanism disabled\n");
1642 acpi_gbl_disable_auto_repair = TRUE;
1643
1644 return 1;
1645}
1646
1647__setup("acpica_no_return_repair", acpi_disable_return_repair);
1648
1649acpi_status __init acpi_os_initialize(void)
1650{
1651 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1652 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653
1654 acpi_gbl_xgpe0_block_logical_address =
1655 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1656 acpi_gbl_xgpe1_block_logical_address =
1657 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1658
1659 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1660 /*
1661 * Use acpi_os_map_generic_address to pre-map the reset
1662 * register if it's in system memory.
1663 */
1664 void *rv;
1665
1666 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1667 pr_debug("%s: Reset register mapping %s\n", __func__,
1668 rv ? "successful" : "failed");
1669 }
1670 acpi_os_initialized = true;
1671
1672 return AE_OK;
1673}
1674
1675acpi_status __init acpi_os_initialize1(void)
1676{
1677 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1678 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1679 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1680 BUG_ON(!kacpid_wq);
1681 BUG_ON(!kacpi_notify_wq);
1682 BUG_ON(!kacpi_hotplug_wq);
1683 acpi_osi_init();
1684 return AE_OK;
1685}
1686
1687acpi_status acpi_os_terminate(void)
1688{
1689 if (acpi_irq_handler) {
1690 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1691 acpi_irq_handler);
1692 }
1693
1694 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1695 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1696 acpi_gbl_xgpe0_block_logical_address = 0UL;
1697 acpi_gbl_xgpe1_block_logical_address = 0UL;
1698
1699 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1700 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1701
1702 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1703 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1704
1705 destroy_workqueue(kacpid_wq);
1706 destroy_workqueue(kacpi_notify_wq);
1707 destroy_workqueue(kacpi_hotplug_wq);
1708
1709 return AE_OK;
1710}
1711
1712acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1713 u32 pm1b_control)
1714{
1715 int rc = 0;
1716
1717 if (__acpi_os_prepare_sleep)
1718 rc = __acpi_os_prepare_sleep(sleep_state,
1719 pm1a_control, pm1b_control);
1720 if (rc < 0)
1721 return AE_ERROR;
1722 else if (rc > 0)
1723 return AE_CTRL_TERMINATE;
1724
1725 return AE_OK;
1726}
1727
1728void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1729 u32 pm1a_ctrl, u32 pm1b_ctrl))
1730{
1731 __acpi_os_prepare_sleep = func;
1732}
1733
1734#if (ACPI_REDUCED_HARDWARE)
1735acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1736 u32 val_b)
1737{
1738 int rc = 0;
1739
1740 if (__acpi_os_prepare_extended_sleep)
1741 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1742 val_a, val_b);
1743 if (rc < 0)
1744 return AE_ERROR;
1745 else if (rc > 0)
1746 return AE_CTRL_TERMINATE;
1747
1748 return AE_OK;
1749}
1750#else
1751acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1752 u32 val_b)
1753{
1754 return AE_OK;
1755}
1756#endif
1757
1758void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1759 u32 val_a, u32 val_b))
1760{
1761 __acpi_os_prepare_extended_sleep = func;
1762}
1763
1764acpi_status acpi_os_enter_sleep(u8 sleep_state,
1765 u32 reg_a_value, u32 reg_b_value)
1766{
1767 acpi_status status;
1768
1769 if (acpi_gbl_reduced_hardware)
1770 status = acpi_os_prepare_extended_sleep(sleep_state,
1771 reg_a_value,
1772 reg_b_value);
1773 else
1774 status = acpi_os_prepare_sleep(sleep_state,
1775 reg_a_value, reg_b_value);
1776 return status;
1777}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 u32 handled;
548
549 handled = (*acpi_irq_handler) (acpi_irq_context);
550
551 if (handled) {
552 acpi_irq_handled++;
553 return IRQ_HANDLED;
554 } else {
555 acpi_irq_not_handled++;
556 return IRQ_NONE;
557 }
558}
559
560acpi_status
561acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
562 void *context)
563{
564 unsigned int irq;
565
566 acpi_irq_stats_init();
567
568 /*
569 * ACPI interrupts different from the SCI in our copy of the FADT are
570 * not supported.
571 */
572 if (gsi != acpi_gbl_FADT.sci_interrupt)
573 return AE_BAD_PARAMETER;
574
575 if (acpi_irq_handler)
576 return AE_ALREADY_ACQUIRED;
577
578 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
579 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
580 return AE_OK;
581 }
582
583 acpi_irq_handler = handler;
584 acpi_irq_context = context;
585 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
586 pr_err("SCI (IRQ%d) allocation failed\n", irq);
587 acpi_irq_handler = NULL;
588 return AE_NOT_ACQUIRED;
589 }
590 acpi_sci_irq = irq;
591
592 return AE_OK;
593}
594
595acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
596{
597 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
598 return AE_BAD_PARAMETER;
599
600 free_irq(acpi_sci_irq, acpi_irq);
601 acpi_irq_handler = NULL;
602 acpi_sci_irq = INVALID_ACPI_IRQ;
603
604 return AE_OK;
605}
606
607/*
608 * Running in interpreter thread context, safe to sleep
609 */
610
611void acpi_os_sleep(u64 ms)
612{
613 msleep(ms);
614}
615
616void acpi_os_stall(u32 us)
617{
618 while (us) {
619 u32 delay = 1000;
620
621 if (delay > us)
622 delay = us;
623 udelay(delay);
624 touch_nmi_watchdog();
625 us -= delay;
626 }
627}
628
629/*
630 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
631 * monotonically increasing timer with 100ns granularity. Do not use
632 * ktime_get() to implement this function because this function may get
633 * called after timekeeping has been suspended. Note: calling this function
634 * after timekeeping has been suspended may lead to unexpected results
635 * because when timekeeping is suspended the jiffies counter is not
636 * incremented. See also timekeeping_suspend().
637 */
638u64 acpi_os_get_timer(void)
639{
640 return (get_jiffies_64() - INITIAL_JIFFIES) *
641 (ACPI_100NSEC_PER_SEC / HZ);
642}
643
644acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
645{
646 u32 dummy;
647
648 if (value)
649 *value = 0;
650 else
651 value = &dummy;
652
653 if (width <= 8) {
654 *value = inb(port);
655 } else if (width <= 16) {
656 *value = inw(port);
657 } else if (width <= 32) {
658 *value = inl(port);
659 } else {
660 pr_debug("%s: Access width %d not supported\n", __func__, width);
661 return AE_BAD_PARAMETER;
662 }
663
664 return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_read_port);
668
669acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
670{
671 if (width <= 8) {
672 outb(value, port);
673 } else if (width <= 16) {
674 outw(value, port);
675 } else if (width <= 32) {
676 outl(value, port);
677 } else {
678 pr_debug("%s: Access width %d not supported\n", __func__, width);
679 return AE_BAD_PARAMETER;
680 }
681
682 return AE_OK;
683}
684
685EXPORT_SYMBOL(acpi_os_write_port);
686
687int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
688{
689
690 switch (width) {
691 case 8:
692 *(u8 *) value = readb(virt_addr);
693 break;
694 case 16:
695 *(u16 *) value = readw(virt_addr);
696 break;
697 case 32:
698 *(u32 *) value = readl(virt_addr);
699 break;
700 case 64:
701 *(u64 *) value = readq(virt_addr);
702 break;
703 default:
704 return -EINVAL;
705 }
706
707 return 0;
708}
709
710acpi_status
711acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
712{
713 void __iomem *virt_addr;
714 unsigned int size = width / 8;
715 bool unmap = false;
716 u64 dummy;
717 int error;
718
719 rcu_read_lock();
720 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721 if (!virt_addr) {
722 rcu_read_unlock();
723 virt_addr = acpi_os_ioremap(phys_addr, size);
724 if (!virt_addr)
725 return AE_BAD_ADDRESS;
726 unmap = true;
727 }
728
729 if (!value)
730 value = &dummy;
731
732 error = acpi_os_read_iomem(virt_addr, value, width);
733 BUG_ON(error);
734
735 if (unmap)
736 iounmap(virt_addr);
737 else
738 rcu_read_unlock();
739
740 return AE_OK;
741}
742
743acpi_status
744acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
745{
746 void __iomem *virt_addr;
747 unsigned int size = width / 8;
748 bool unmap = false;
749
750 rcu_read_lock();
751 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
752 if (!virt_addr) {
753 rcu_read_unlock();
754 virt_addr = acpi_os_ioremap(phys_addr, size);
755 if (!virt_addr)
756 return AE_BAD_ADDRESS;
757 unmap = true;
758 }
759
760 switch (width) {
761 case 8:
762 writeb(value, virt_addr);
763 break;
764 case 16:
765 writew(value, virt_addr);
766 break;
767 case 32:
768 writel(value, virt_addr);
769 break;
770 case 64:
771 writeq(value, virt_addr);
772 break;
773 default:
774 BUG();
775 }
776
777 if (unmap)
778 iounmap(virt_addr);
779 else
780 rcu_read_unlock();
781
782 return AE_OK;
783}
784
785#ifdef CONFIG_PCI
786acpi_status
787acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
788 u64 *value, u32 width)
789{
790 int result, size;
791 u32 value32;
792
793 if (!value)
794 return AE_BAD_PARAMETER;
795
796 switch (width) {
797 case 8:
798 size = 1;
799 break;
800 case 16:
801 size = 2;
802 break;
803 case 32:
804 size = 4;
805 break;
806 default:
807 return AE_ERROR;
808 }
809
810 result = raw_pci_read(pci_id->segment, pci_id->bus,
811 PCI_DEVFN(pci_id->device, pci_id->function),
812 reg, size, &value32);
813 *value = value32;
814
815 return (result ? AE_ERROR : AE_OK);
816}
817
818acpi_status
819acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
820 u64 value, u32 width)
821{
822 int result, size;
823
824 switch (width) {
825 case 8:
826 size = 1;
827 break;
828 case 16:
829 size = 2;
830 break;
831 case 32:
832 size = 4;
833 break;
834 default:
835 return AE_ERROR;
836 }
837
838 result = raw_pci_write(pci_id->segment, pci_id->bus,
839 PCI_DEVFN(pci_id->device, pci_id->function),
840 reg, size, value);
841
842 return (result ? AE_ERROR : AE_OK);
843}
844#endif
845
846static void acpi_os_execute_deferred(struct work_struct *work)
847{
848 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
849
850 dpc->function(dpc->context);
851 kfree(dpc);
852}
853
854#ifdef CONFIG_ACPI_DEBUGGER
855static struct acpi_debugger acpi_debugger;
856static bool acpi_debugger_initialized;
857
858int acpi_register_debugger(struct module *owner,
859 const struct acpi_debugger_ops *ops)
860{
861 int ret = 0;
862
863 mutex_lock(&acpi_debugger.lock);
864 if (acpi_debugger.ops) {
865 ret = -EBUSY;
866 goto err_lock;
867 }
868
869 acpi_debugger.owner = owner;
870 acpi_debugger.ops = ops;
871
872err_lock:
873 mutex_unlock(&acpi_debugger.lock);
874 return ret;
875}
876EXPORT_SYMBOL(acpi_register_debugger);
877
878void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
879{
880 mutex_lock(&acpi_debugger.lock);
881 if (ops == acpi_debugger.ops) {
882 acpi_debugger.ops = NULL;
883 acpi_debugger.owner = NULL;
884 }
885 mutex_unlock(&acpi_debugger.lock);
886}
887EXPORT_SYMBOL(acpi_unregister_debugger);
888
889int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
890{
891 int ret;
892 int (*func)(acpi_osd_exec_callback, void *);
893 struct module *owner;
894
895 if (!acpi_debugger_initialized)
896 return -ENODEV;
897 mutex_lock(&acpi_debugger.lock);
898 if (!acpi_debugger.ops) {
899 ret = -ENODEV;
900 goto err_lock;
901 }
902 if (!try_module_get(acpi_debugger.owner)) {
903 ret = -ENODEV;
904 goto err_lock;
905 }
906 func = acpi_debugger.ops->create_thread;
907 owner = acpi_debugger.owner;
908 mutex_unlock(&acpi_debugger.lock);
909
910 ret = func(function, context);
911
912 mutex_lock(&acpi_debugger.lock);
913 module_put(owner);
914err_lock:
915 mutex_unlock(&acpi_debugger.lock);
916 return ret;
917}
918
919ssize_t acpi_debugger_write_log(const char *msg)
920{
921 ssize_t ret;
922 ssize_t (*func)(const char *);
923 struct module *owner;
924
925 if (!acpi_debugger_initialized)
926 return -ENODEV;
927 mutex_lock(&acpi_debugger.lock);
928 if (!acpi_debugger.ops) {
929 ret = -ENODEV;
930 goto err_lock;
931 }
932 if (!try_module_get(acpi_debugger.owner)) {
933 ret = -ENODEV;
934 goto err_lock;
935 }
936 func = acpi_debugger.ops->write_log;
937 owner = acpi_debugger.owner;
938 mutex_unlock(&acpi_debugger.lock);
939
940 ret = func(msg);
941
942 mutex_lock(&acpi_debugger.lock);
943 module_put(owner);
944err_lock:
945 mutex_unlock(&acpi_debugger.lock);
946 return ret;
947}
948
949ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
950{
951 ssize_t ret;
952 ssize_t (*func)(char *, size_t);
953 struct module *owner;
954
955 if (!acpi_debugger_initialized)
956 return -ENODEV;
957 mutex_lock(&acpi_debugger.lock);
958 if (!acpi_debugger.ops) {
959 ret = -ENODEV;
960 goto err_lock;
961 }
962 if (!try_module_get(acpi_debugger.owner)) {
963 ret = -ENODEV;
964 goto err_lock;
965 }
966 func = acpi_debugger.ops->read_cmd;
967 owner = acpi_debugger.owner;
968 mutex_unlock(&acpi_debugger.lock);
969
970 ret = func(buffer, buffer_length);
971
972 mutex_lock(&acpi_debugger.lock);
973 module_put(owner);
974err_lock:
975 mutex_unlock(&acpi_debugger.lock);
976 return ret;
977}
978
979int acpi_debugger_wait_command_ready(void)
980{
981 int ret;
982 int (*func)(bool, char *, size_t);
983 struct module *owner;
984
985 if (!acpi_debugger_initialized)
986 return -ENODEV;
987 mutex_lock(&acpi_debugger.lock);
988 if (!acpi_debugger.ops) {
989 ret = -ENODEV;
990 goto err_lock;
991 }
992 if (!try_module_get(acpi_debugger.owner)) {
993 ret = -ENODEV;
994 goto err_lock;
995 }
996 func = acpi_debugger.ops->wait_command_ready;
997 owner = acpi_debugger.owner;
998 mutex_unlock(&acpi_debugger.lock);
999
1000 ret = func(acpi_gbl_method_executing,
1001 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1002
1003 mutex_lock(&acpi_debugger.lock);
1004 module_put(owner);
1005err_lock:
1006 mutex_unlock(&acpi_debugger.lock);
1007 return ret;
1008}
1009
1010int acpi_debugger_notify_command_complete(void)
1011{
1012 int ret;
1013 int (*func)(void);
1014 struct module *owner;
1015
1016 if (!acpi_debugger_initialized)
1017 return -ENODEV;
1018 mutex_lock(&acpi_debugger.lock);
1019 if (!acpi_debugger.ops) {
1020 ret = -ENODEV;
1021 goto err_lock;
1022 }
1023 if (!try_module_get(acpi_debugger.owner)) {
1024 ret = -ENODEV;
1025 goto err_lock;
1026 }
1027 func = acpi_debugger.ops->notify_command_complete;
1028 owner = acpi_debugger.owner;
1029 mutex_unlock(&acpi_debugger.lock);
1030
1031 ret = func();
1032
1033 mutex_lock(&acpi_debugger.lock);
1034 module_put(owner);
1035err_lock:
1036 mutex_unlock(&acpi_debugger.lock);
1037 return ret;
1038}
1039
1040int __init acpi_debugger_init(void)
1041{
1042 mutex_init(&acpi_debugger.lock);
1043 acpi_debugger_initialized = true;
1044 return 0;
1045}
1046#endif
1047
1048/*******************************************************************************
1049 *
1050 * FUNCTION: acpi_os_execute
1051 *
1052 * PARAMETERS: Type - Type of the callback
1053 * Function - Function to be executed
1054 * Context - Function parameters
1055 *
1056 * RETURN: Status
1057 *
1058 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1059 * immediately executes function on a separate thread.
1060 *
1061 ******************************************************************************/
1062
1063acpi_status acpi_os_execute(acpi_execute_type type,
1064 acpi_osd_exec_callback function, void *context)
1065{
1066 acpi_status status = AE_OK;
1067 struct acpi_os_dpc *dpc;
1068 struct workqueue_struct *queue;
1069 int ret;
1070 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1071 "Scheduling function [%p(%p)] for deferred execution.\n",
1072 function, context));
1073
1074 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1075 ret = acpi_debugger_create_thread(function, context);
1076 if (ret) {
1077 pr_err("Kernel thread creation failed\n");
1078 status = AE_ERROR;
1079 }
1080 goto out_thread;
1081 }
1082
1083 /*
1084 * Allocate/initialize DPC structure. Note that this memory will be
1085 * freed by the callee. The kernel handles the work_struct list in a
1086 * way that allows us to also free its memory inside the callee.
1087 * Because we may want to schedule several tasks with different
1088 * parameters we can't use the approach some kernel code uses of
1089 * having a static work_struct.
1090 */
1091
1092 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1093 if (!dpc)
1094 return AE_NO_MEMORY;
1095
1096 dpc->function = function;
1097 dpc->context = context;
1098
1099 /*
1100 * To prevent lockdep from complaining unnecessarily, make sure that
1101 * there is a different static lockdep key for each workqueue by using
1102 * INIT_WORK() for each of them separately.
1103 */
1104 if (type == OSL_NOTIFY_HANDLER) {
1105 queue = kacpi_notify_wq;
1106 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107 } else if (type == OSL_GPE_HANDLER) {
1108 queue = kacpid_wq;
1109 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1110 } else {
1111 pr_err("Unsupported os_execute type %d.\n", type);
1112 status = AE_ERROR;
1113 }
1114
1115 if (ACPI_FAILURE(status))
1116 goto err_workqueue;
1117
1118 /*
1119 * On some machines, a software-initiated SMI causes corruption unless
1120 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1121 * typically it's done in GPE-related methods that are run via
1122 * workqueues, so we can avoid the known corruption cases by always
1123 * queueing on CPU 0.
1124 */
1125 ret = queue_work_on(0, queue, &dpc->work);
1126 if (!ret) {
1127 pr_err("Unable to queue work\n");
1128 status = AE_ERROR;
1129 }
1130err_workqueue:
1131 if (ACPI_FAILURE(status))
1132 kfree(dpc);
1133out_thread:
1134 return status;
1135}
1136EXPORT_SYMBOL(acpi_os_execute);
1137
1138void acpi_os_wait_events_complete(void)
1139{
1140 /*
1141 * Make sure the GPE handler or the fixed event handler is not used
1142 * on another CPU after removal.
1143 */
1144 if (acpi_sci_irq_valid())
1145 synchronize_hardirq(acpi_sci_irq);
1146 flush_workqueue(kacpid_wq);
1147 flush_workqueue(kacpi_notify_wq);
1148}
1149EXPORT_SYMBOL(acpi_os_wait_events_complete);
1150
1151struct acpi_hp_work {
1152 struct work_struct work;
1153 struct acpi_device *adev;
1154 u32 src;
1155};
1156
1157static void acpi_hotplug_work_fn(struct work_struct *work)
1158{
1159 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1160
1161 acpi_os_wait_events_complete();
1162 acpi_device_hotplug(hpw->adev, hpw->src);
1163 kfree(hpw);
1164}
1165
1166acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1167{
1168 struct acpi_hp_work *hpw;
1169
1170 acpi_handle_debug(adev->handle,
1171 "Scheduling hotplug event %u for deferred handling\n",
1172 src);
1173
1174 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1175 if (!hpw)
1176 return AE_NO_MEMORY;
1177
1178 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1179 hpw->adev = adev;
1180 hpw->src = src;
1181 /*
1182 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1183 * the hotplug code may call driver .remove() functions, which may
1184 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1185 * these workqueues.
1186 */
1187 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1188 kfree(hpw);
1189 return AE_ERROR;
1190 }
1191 return AE_OK;
1192}
1193
1194bool acpi_queue_hotplug_work(struct work_struct *work)
1195{
1196 return queue_work(kacpi_hotplug_wq, work);
1197}
1198
1199acpi_status
1200acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1201{
1202 struct semaphore *sem = NULL;
1203
1204 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1205 if (!sem)
1206 return AE_NO_MEMORY;
1207
1208 sema_init(sem, initial_units);
1209
1210 *handle = (acpi_handle *) sem;
1211
1212 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1213 *handle, initial_units));
1214
1215 return AE_OK;
1216}
1217
1218/*
1219 * TODO: A better way to delete semaphores? Linux doesn't have a
1220 * 'delete_semaphore()' function -- may result in an invalid
1221 * pointer dereference for non-synchronized consumers. Should
1222 * we at least check for blocked threads and signal/cancel them?
1223 */
1224
1225acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1226{
1227 struct semaphore *sem = (struct semaphore *)handle;
1228
1229 if (!sem)
1230 return AE_BAD_PARAMETER;
1231
1232 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1233
1234 BUG_ON(!list_empty(&sem->wait_list));
1235 kfree(sem);
1236 sem = NULL;
1237
1238 return AE_OK;
1239}
1240
1241/*
1242 * TODO: Support for units > 1?
1243 */
1244acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1245{
1246 acpi_status status = AE_OK;
1247 struct semaphore *sem = (struct semaphore *)handle;
1248 long jiffies;
1249 int ret = 0;
1250
1251 if (!acpi_os_initialized)
1252 return AE_OK;
1253
1254 if (!sem || (units < 1))
1255 return AE_BAD_PARAMETER;
1256
1257 if (units > 1)
1258 return AE_SUPPORT;
1259
1260 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1261 handle, units, timeout));
1262
1263 if (timeout == ACPI_WAIT_FOREVER)
1264 jiffies = MAX_SCHEDULE_TIMEOUT;
1265 else
1266 jiffies = msecs_to_jiffies(timeout);
1267
1268 ret = down_timeout(sem, jiffies);
1269 if (ret)
1270 status = AE_TIME;
1271
1272 if (ACPI_FAILURE(status)) {
1273 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1274 "Failed to acquire semaphore[%p|%d|%d], %s",
1275 handle, units, timeout,
1276 acpi_format_exception(status)));
1277 } else {
1278 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1279 "Acquired semaphore[%p|%d|%d]", handle,
1280 units, timeout));
1281 }
1282
1283 return status;
1284}
1285
1286/*
1287 * TODO: Support for units > 1?
1288 */
1289acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1290{
1291 struct semaphore *sem = (struct semaphore *)handle;
1292
1293 if (!acpi_os_initialized)
1294 return AE_OK;
1295
1296 if (!sem || (units < 1))
1297 return AE_BAD_PARAMETER;
1298
1299 if (units > 1)
1300 return AE_SUPPORT;
1301
1302 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1303 units));
1304
1305 up(sem);
1306
1307 return AE_OK;
1308}
1309
1310acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1311{
1312#ifdef ENABLE_DEBUGGER
1313 if (acpi_in_debugger) {
1314 u32 chars;
1315
1316 kdb_read(buffer, buffer_length);
1317
1318 /* remove the CR kdb includes */
1319 chars = strlen(buffer) - 1;
1320 buffer[chars] = '\0';
1321 }
1322#else
1323 int ret;
1324
1325 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1326 if (ret < 0)
1327 return AE_ERROR;
1328 if (bytes_read)
1329 *bytes_read = ret;
1330#endif
1331
1332 return AE_OK;
1333}
1334EXPORT_SYMBOL(acpi_os_get_line);
1335
1336acpi_status acpi_os_wait_command_ready(void)
1337{
1338 int ret;
1339
1340 ret = acpi_debugger_wait_command_ready();
1341 if (ret < 0)
1342 return AE_ERROR;
1343 return AE_OK;
1344}
1345
1346acpi_status acpi_os_notify_command_complete(void)
1347{
1348 int ret;
1349
1350 ret = acpi_debugger_notify_command_complete();
1351 if (ret < 0)
1352 return AE_ERROR;
1353 return AE_OK;
1354}
1355
1356acpi_status acpi_os_signal(u32 function, void *info)
1357{
1358 switch (function) {
1359 case ACPI_SIGNAL_FATAL:
1360 pr_err("Fatal opcode executed\n");
1361 break;
1362 case ACPI_SIGNAL_BREAKPOINT:
1363 /*
1364 * AML Breakpoint
1365 * ACPI spec. says to treat it as a NOP unless
1366 * you are debugging. So if/when we integrate
1367 * AML debugger into the kernel debugger its
1368 * hook will go here. But until then it is
1369 * not useful to print anything on breakpoints.
1370 */
1371 break;
1372 default:
1373 break;
1374 }
1375
1376 return AE_OK;
1377}
1378
1379static int __init acpi_os_name_setup(char *str)
1380{
1381 char *p = acpi_os_name;
1382 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1383
1384 if (!str || !*str)
1385 return 0;
1386
1387 for (; count-- && *str; str++) {
1388 if (isalnum(*str) || *str == ' ' || *str == ':')
1389 *p++ = *str;
1390 else if (*str == '\'' || *str == '"')
1391 continue;
1392 else
1393 break;
1394 }
1395 *p = 0;
1396
1397 return 1;
1398
1399}
1400
1401__setup("acpi_os_name=", acpi_os_name_setup);
1402
1403/*
1404 * Disable the auto-serialization of named objects creation methods.
1405 *
1406 * This feature is enabled by default. It marks the AML control methods
1407 * that contain the opcodes to create named objects as "Serialized".
1408 */
1409static int __init acpi_no_auto_serialize_setup(char *str)
1410{
1411 acpi_gbl_auto_serialize_methods = FALSE;
1412 pr_info("Auto-serialization disabled\n");
1413
1414 return 1;
1415}
1416
1417__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1418
1419/* Check of resource interference between native drivers and ACPI
1420 * OperationRegions (SystemIO and System Memory only).
1421 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1422 * in arbitrary AML code and can interfere with legacy drivers.
1423 * acpi_enforce_resources= can be set to:
1424 *
1425 * - strict (default) (2)
1426 * -> further driver trying to access the resources will not load
1427 * - lax (1)
1428 * -> further driver trying to access the resources will load, but you
1429 * get a system message that something might go wrong...
1430 *
1431 * - no (0)
1432 * -> ACPI Operation Region resources will not be registered
1433 *
1434 */
1435#define ENFORCE_RESOURCES_STRICT 2
1436#define ENFORCE_RESOURCES_LAX 1
1437#define ENFORCE_RESOURCES_NO 0
1438
1439static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1440
1441static int __init acpi_enforce_resources_setup(char *str)
1442{
1443 if (str == NULL || *str == '\0')
1444 return 0;
1445
1446 if (!strcmp("strict", str))
1447 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1448 else if (!strcmp("lax", str))
1449 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1450 else if (!strcmp("no", str))
1451 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1452
1453 return 1;
1454}
1455
1456__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1457
1458/* Check for resource conflicts between ACPI OperationRegions and native
1459 * drivers */
1460int acpi_check_resource_conflict(const struct resource *res)
1461{
1462 acpi_adr_space_type space_id;
1463
1464 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1465 return 0;
1466
1467 if (res->flags & IORESOURCE_IO)
1468 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1469 else if (res->flags & IORESOURCE_MEM)
1470 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1471 else
1472 return 0;
1473
1474 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1475 return 0;
1476
1477 pr_info("Resource conflict; ACPI support missing from driver?\n");
1478
1479 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1480 return -EBUSY;
1481
1482 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1483 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1484
1485 return 0;
1486}
1487EXPORT_SYMBOL(acpi_check_resource_conflict);
1488
1489int acpi_check_region(resource_size_t start, resource_size_t n,
1490 const char *name)
1491{
1492 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1493
1494 return acpi_check_resource_conflict(&res);
1495}
1496EXPORT_SYMBOL(acpi_check_region);
1497
1498/*
1499 * Let drivers know whether the resource checks are effective
1500 */
1501int acpi_resources_are_enforced(void)
1502{
1503 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1504}
1505EXPORT_SYMBOL(acpi_resources_are_enforced);
1506
1507/*
1508 * Deallocate the memory for a spinlock.
1509 */
1510void acpi_os_delete_lock(acpi_spinlock handle)
1511{
1512 ACPI_FREE(handle);
1513}
1514
1515/*
1516 * Acquire a spinlock.
1517 *
1518 * handle is a pointer to the spinlock_t.
1519 */
1520
1521acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1522 __acquires(lockp)
1523{
1524 acpi_cpu_flags flags;
1525 spin_lock_irqsave(lockp, flags);
1526 return flags;
1527}
1528
1529/*
1530 * Release a spinlock. See above.
1531 */
1532
1533void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1534 __releases(lockp)
1535{
1536 spin_unlock_irqrestore(lockp, flags);
1537}
1538
1539#ifndef ACPI_USE_LOCAL_CACHE
1540
1541/*******************************************************************************
1542 *
1543 * FUNCTION: acpi_os_create_cache
1544 *
1545 * PARAMETERS: name - Ascii name for the cache
1546 * size - Size of each cached object
1547 * depth - Maximum depth of the cache (in objects) <ignored>
1548 * cache - Where the new cache object is returned
1549 *
1550 * RETURN: status
1551 *
1552 * DESCRIPTION: Create a cache object
1553 *
1554 ******************************************************************************/
1555
1556acpi_status
1557acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1558{
1559 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1560 if (*cache == NULL)
1561 return AE_ERROR;
1562 else
1563 return AE_OK;
1564}
1565
1566/*******************************************************************************
1567 *
1568 * FUNCTION: acpi_os_purge_cache
1569 *
1570 * PARAMETERS: Cache - Handle to cache object
1571 *
1572 * RETURN: Status
1573 *
1574 * DESCRIPTION: Free all objects within the requested cache.
1575 *
1576 ******************************************************************************/
1577
1578acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1579{
1580 kmem_cache_shrink(cache);
1581 return (AE_OK);
1582}
1583
1584/*******************************************************************************
1585 *
1586 * FUNCTION: acpi_os_delete_cache
1587 *
1588 * PARAMETERS: Cache - Handle to cache object
1589 *
1590 * RETURN: Status
1591 *
1592 * DESCRIPTION: Free all objects within the requested cache and delete the
1593 * cache object.
1594 *
1595 ******************************************************************************/
1596
1597acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1598{
1599 kmem_cache_destroy(cache);
1600 return (AE_OK);
1601}
1602
1603/*******************************************************************************
1604 *
1605 * FUNCTION: acpi_os_release_object
1606 *
1607 * PARAMETERS: Cache - Handle to cache object
1608 * Object - The object to be released
1609 *
1610 * RETURN: None
1611 *
1612 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1613 * the object is deleted.
1614 *
1615 ******************************************************************************/
1616
1617acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1618{
1619 kmem_cache_free(cache, object);
1620 return (AE_OK);
1621}
1622#endif
1623
1624static int __init acpi_no_static_ssdt_setup(char *s)
1625{
1626 acpi_gbl_disable_ssdt_table_install = TRUE;
1627 pr_info("Static SSDT installation disabled\n");
1628
1629 return 0;
1630}
1631
1632early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1633
1634static int __init acpi_disable_return_repair(char *s)
1635{
1636 pr_notice("Predefined validation mechanism disabled\n");
1637 acpi_gbl_disable_auto_repair = TRUE;
1638
1639 return 1;
1640}
1641
1642__setup("acpica_no_return_repair", acpi_disable_return_repair);
1643
1644acpi_status __init acpi_os_initialize(void)
1645{
1646 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1647 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1648
1649 acpi_gbl_xgpe0_block_logical_address =
1650 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1651 acpi_gbl_xgpe1_block_logical_address =
1652 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1653
1654 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1655 /*
1656 * Use acpi_os_map_generic_address to pre-map the reset
1657 * register if it's in system memory.
1658 */
1659 void *rv;
1660
1661 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1662 pr_debug("%s: Reset register mapping %s\n", __func__,
1663 rv ? "successful" : "failed");
1664 }
1665 acpi_os_initialized = true;
1666
1667 return AE_OK;
1668}
1669
1670acpi_status __init acpi_os_initialize1(void)
1671{
1672 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1673 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1674 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1675 BUG_ON(!kacpid_wq);
1676 BUG_ON(!kacpi_notify_wq);
1677 BUG_ON(!kacpi_hotplug_wq);
1678 acpi_osi_init();
1679 return AE_OK;
1680}
1681
1682acpi_status acpi_os_terminate(void)
1683{
1684 if (acpi_irq_handler) {
1685 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1686 acpi_irq_handler);
1687 }
1688
1689 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1690 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1691 acpi_gbl_xgpe0_block_logical_address = 0UL;
1692 acpi_gbl_xgpe1_block_logical_address = 0UL;
1693
1694 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1695 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1696
1697 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1698 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1699
1700 destroy_workqueue(kacpid_wq);
1701 destroy_workqueue(kacpi_notify_wq);
1702 destroy_workqueue(kacpi_hotplug_wq);
1703
1704 return AE_OK;
1705}
1706
1707acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1708 u32 pm1b_control)
1709{
1710 int rc = 0;
1711 if (__acpi_os_prepare_sleep)
1712 rc = __acpi_os_prepare_sleep(sleep_state,
1713 pm1a_control, pm1b_control);
1714 if (rc < 0)
1715 return AE_ERROR;
1716 else if (rc > 0)
1717 return AE_CTRL_TERMINATE;
1718
1719 return AE_OK;
1720}
1721
1722void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1723 u32 pm1a_ctrl, u32 pm1b_ctrl))
1724{
1725 __acpi_os_prepare_sleep = func;
1726}
1727
1728#if (ACPI_REDUCED_HARDWARE)
1729acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730 u32 val_b)
1731{
1732 int rc = 0;
1733 if (__acpi_os_prepare_extended_sleep)
1734 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1735 val_a, val_b);
1736 if (rc < 0)
1737 return AE_ERROR;
1738 else if (rc > 0)
1739 return AE_CTRL_TERMINATE;
1740
1741 return AE_OK;
1742}
1743#else
1744acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1745 u32 val_b)
1746{
1747 return AE_OK;
1748}
1749#endif
1750
1751void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1752 u32 val_a, u32 val_b))
1753{
1754 __acpi_os_prepare_extended_sleep = func;
1755}
1756
1757acpi_status acpi_os_enter_sleep(u8 sleep_state,
1758 u32 reg_a_value, u32 reg_b_value)
1759{
1760 acpi_status status;
1761
1762 if (acpi_gbl_reduced_hardware)
1763 status = acpi_os_prepare_extended_sleep(sleep_state,
1764 reg_a_value,
1765 reg_b_value);
1766 else
1767 status = acpi_os_prepare_sleep(sleep_state,
1768 reg_a_value, reg_b_value);
1769 return status;
1770}