Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
646 /*
647 * set all-1 result as if reading from non-existing
648 * I/O port
649 */
650 *value = GENMASK(width, 0);
651 return AE_NOT_IMPLEMENTED;
652 }
653
654 if (value)
655 *value = 0;
656 else
657 value = &dummy;
658
659 if (width <= 8) {
660 *value = inb(port);
661 } else if (width <= 16) {
662 *value = inw(port);
663 } else if (width <= 32) {
664 *value = inl(port);
665 } else {
666 pr_debug("%s: Access width %d not supported\n", __func__, width);
667 return AE_BAD_PARAMETER;
668 }
669
670 return AE_OK;
671}
672
673EXPORT_SYMBOL(acpi_os_read_port);
674
675acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
676{
677 if (!IS_ENABLED(CONFIG_HAS_IOPORT))
678 return AE_NOT_IMPLEMENTED;
679
680 if (width <= 8) {
681 outb(value, port);
682 } else if (width <= 16) {
683 outw(value, port);
684 } else if (width <= 32) {
685 outl(value, port);
686 } else {
687 pr_debug("%s: Access width %d not supported\n", __func__, width);
688 return AE_BAD_PARAMETER;
689 }
690
691 return AE_OK;
692}
693
694EXPORT_SYMBOL(acpi_os_write_port);
695
696int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
697{
698
699 switch (width) {
700 case 8:
701 *(u8 *) value = readb(virt_addr);
702 break;
703 case 16:
704 *(u16 *) value = readw(virt_addr);
705 break;
706 case 32:
707 *(u32 *) value = readl(virt_addr);
708 break;
709 case 64:
710 *(u64 *) value = readq(virt_addr);
711 break;
712 default:
713 return -EINVAL;
714 }
715
716 return 0;
717}
718
719acpi_status
720acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
721{
722 void __iomem *virt_addr;
723 unsigned int size = width / 8;
724 bool unmap = false;
725 u64 dummy;
726 int error;
727
728 rcu_read_lock();
729 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
730 if (!virt_addr) {
731 rcu_read_unlock();
732 virt_addr = acpi_os_ioremap(phys_addr, size);
733 if (!virt_addr)
734 return AE_BAD_ADDRESS;
735 unmap = true;
736 }
737
738 if (!value)
739 value = &dummy;
740
741 error = acpi_os_read_iomem(virt_addr, value, width);
742 BUG_ON(error);
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
754{
755 void __iomem *virt_addr;
756 unsigned int size = width / 8;
757 bool unmap = false;
758
759 rcu_read_lock();
760 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
761 if (!virt_addr) {
762 rcu_read_unlock();
763 virt_addr = acpi_os_ioremap(phys_addr, size);
764 if (!virt_addr)
765 return AE_BAD_ADDRESS;
766 unmap = true;
767 }
768
769 switch (width) {
770 case 8:
771 writeb(value, virt_addr);
772 break;
773 case 16:
774 writew(value, virt_addr);
775 break;
776 case 32:
777 writel(value, virt_addr);
778 break;
779 case 64:
780 writeq(value, virt_addr);
781 break;
782 default:
783 BUG();
784 }
785
786 if (unmap)
787 iounmap(virt_addr);
788 else
789 rcu_read_unlock();
790
791 return AE_OK;
792}
793
794#ifdef CONFIG_PCI
795acpi_status
796acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
797 u64 *value, u32 width)
798{
799 int result, size;
800 u32 value32;
801
802 if (!value)
803 return AE_BAD_PARAMETER;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_read(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, &value32);
822 *value = value32;
823
824 return (result ? AE_ERROR : AE_OK);
825}
826
827acpi_status
828acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
829 u64 value, u32 width)
830{
831 int result, size;
832
833 switch (width) {
834 case 8:
835 size = 1;
836 break;
837 case 16:
838 size = 2;
839 break;
840 case 32:
841 size = 4;
842 break;
843 default:
844 return AE_ERROR;
845 }
846
847 result = raw_pci_write(pci_id->segment, pci_id->bus,
848 PCI_DEVFN(pci_id->device, pci_id->function),
849 reg, size, value);
850
851 return (result ? AE_ERROR : AE_OK);
852}
853#endif
854
855static void acpi_os_execute_deferred(struct work_struct *work)
856{
857 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
858
859 dpc->function(dpc->context);
860 kfree(dpc);
861}
862
863#ifdef CONFIG_ACPI_DEBUGGER
864static struct acpi_debugger acpi_debugger;
865static bool acpi_debugger_initialized;
866
867int acpi_register_debugger(struct module *owner,
868 const struct acpi_debugger_ops *ops)
869{
870 int ret = 0;
871
872 mutex_lock(&acpi_debugger.lock);
873 if (acpi_debugger.ops) {
874 ret = -EBUSY;
875 goto err_lock;
876 }
877
878 acpi_debugger.owner = owner;
879 acpi_debugger.ops = ops;
880
881err_lock:
882 mutex_unlock(&acpi_debugger.lock);
883 return ret;
884}
885EXPORT_SYMBOL(acpi_register_debugger);
886
887void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
888{
889 mutex_lock(&acpi_debugger.lock);
890 if (ops == acpi_debugger.ops) {
891 acpi_debugger.ops = NULL;
892 acpi_debugger.owner = NULL;
893 }
894 mutex_unlock(&acpi_debugger.lock);
895}
896EXPORT_SYMBOL(acpi_unregister_debugger);
897
898int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
899{
900 int ret;
901 int (*func)(acpi_osd_exec_callback, void *);
902 struct module *owner;
903
904 if (!acpi_debugger_initialized)
905 return -ENODEV;
906 mutex_lock(&acpi_debugger.lock);
907 if (!acpi_debugger.ops) {
908 ret = -ENODEV;
909 goto err_lock;
910 }
911 if (!try_module_get(acpi_debugger.owner)) {
912 ret = -ENODEV;
913 goto err_lock;
914 }
915 func = acpi_debugger.ops->create_thread;
916 owner = acpi_debugger.owner;
917 mutex_unlock(&acpi_debugger.lock);
918
919 ret = func(function, context);
920
921 mutex_lock(&acpi_debugger.lock);
922 module_put(owner);
923err_lock:
924 mutex_unlock(&acpi_debugger.lock);
925 return ret;
926}
927
928ssize_t acpi_debugger_write_log(const char *msg)
929{
930 ssize_t ret;
931 ssize_t (*func)(const char *);
932 struct module *owner;
933
934 if (!acpi_debugger_initialized)
935 return -ENODEV;
936 mutex_lock(&acpi_debugger.lock);
937 if (!acpi_debugger.ops) {
938 ret = -ENODEV;
939 goto err_lock;
940 }
941 if (!try_module_get(acpi_debugger.owner)) {
942 ret = -ENODEV;
943 goto err_lock;
944 }
945 func = acpi_debugger.ops->write_log;
946 owner = acpi_debugger.owner;
947 mutex_unlock(&acpi_debugger.lock);
948
949 ret = func(msg);
950
951 mutex_lock(&acpi_debugger.lock);
952 module_put(owner);
953err_lock:
954 mutex_unlock(&acpi_debugger.lock);
955 return ret;
956}
957
958ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
959{
960 ssize_t ret;
961 ssize_t (*func)(char *, size_t);
962 struct module *owner;
963
964 if (!acpi_debugger_initialized)
965 return -ENODEV;
966 mutex_lock(&acpi_debugger.lock);
967 if (!acpi_debugger.ops) {
968 ret = -ENODEV;
969 goto err_lock;
970 }
971 if (!try_module_get(acpi_debugger.owner)) {
972 ret = -ENODEV;
973 goto err_lock;
974 }
975 func = acpi_debugger.ops->read_cmd;
976 owner = acpi_debugger.owner;
977 mutex_unlock(&acpi_debugger.lock);
978
979 ret = func(buffer, buffer_length);
980
981 mutex_lock(&acpi_debugger.lock);
982 module_put(owner);
983err_lock:
984 mutex_unlock(&acpi_debugger.lock);
985 return ret;
986}
987
988int acpi_debugger_wait_command_ready(void)
989{
990 int ret;
991 int (*func)(bool, char *, size_t);
992 struct module *owner;
993
994 if (!acpi_debugger_initialized)
995 return -ENODEV;
996 mutex_lock(&acpi_debugger.lock);
997 if (!acpi_debugger.ops) {
998 ret = -ENODEV;
999 goto err_lock;
1000 }
1001 if (!try_module_get(acpi_debugger.owner)) {
1002 ret = -ENODEV;
1003 goto err_lock;
1004 }
1005 func = acpi_debugger.ops->wait_command_ready;
1006 owner = acpi_debugger.owner;
1007 mutex_unlock(&acpi_debugger.lock);
1008
1009 ret = func(acpi_gbl_method_executing,
1010 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1011
1012 mutex_lock(&acpi_debugger.lock);
1013 module_put(owner);
1014err_lock:
1015 mutex_unlock(&acpi_debugger.lock);
1016 return ret;
1017}
1018
1019int acpi_debugger_notify_command_complete(void)
1020{
1021 int ret;
1022 int (*func)(void);
1023 struct module *owner;
1024
1025 if (!acpi_debugger_initialized)
1026 return -ENODEV;
1027 mutex_lock(&acpi_debugger.lock);
1028 if (!acpi_debugger.ops) {
1029 ret = -ENODEV;
1030 goto err_lock;
1031 }
1032 if (!try_module_get(acpi_debugger.owner)) {
1033 ret = -ENODEV;
1034 goto err_lock;
1035 }
1036 func = acpi_debugger.ops->notify_command_complete;
1037 owner = acpi_debugger.owner;
1038 mutex_unlock(&acpi_debugger.lock);
1039
1040 ret = func();
1041
1042 mutex_lock(&acpi_debugger.lock);
1043 module_put(owner);
1044err_lock:
1045 mutex_unlock(&acpi_debugger.lock);
1046 return ret;
1047}
1048
1049int __init acpi_debugger_init(void)
1050{
1051 mutex_init(&acpi_debugger.lock);
1052 acpi_debugger_initialized = true;
1053 return 0;
1054}
1055#endif
1056
1057/*******************************************************************************
1058 *
1059 * FUNCTION: acpi_os_execute
1060 *
1061 * PARAMETERS: Type - Type of the callback
1062 * Function - Function to be executed
1063 * Context - Function parameters
1064 *
1065 * RETURN: Status
1066 *
1067 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1068 * immediately executes function on a separate thread.
1069 *
1070 ******************************************************************************/
1071
1072acpi_status acpi_os_execute(acpi_execute_type type,
1073 acpi_osd_exec_callback function, void *context)
1074{
1075 struct acpi_os_dpc *dpc;
1076 int ret;
1077
1078 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1079 "Scheduling function [%p(%p)] for deferred execution.\n",
1080 function, context));
1081
1082 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1083 ret = acpi_debugger_create_thread(function, context);
1084 if (ret) {
1085 pr_err("Kernel thread creation failed\n");
1086 return AE_ERROR;
1087 }
1088 return AE_OK;
1089 }
1090
1091 /*
1092 * Allocate/initialize DPC structure. Note that this memory will be
1093 * freed by the callee. The kernel handles the work_struct list in a
1094 * way that allows us to also free its memory inside the callee.
1095 * Because we may want to schedule several tasks with different
1096 * parameters we can't use the approach some kernel code uses of
1097 * having a static work_struct.
1098 */
1099
1100 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1101 if (!dpc)
1102 return AE_NO_MEMORY;
1103
1104 dpc->function = function;
1105 dpc->context = context;
1106 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107
1108 /*
1109 * To prevent lockdep from complaining unnecessarily, make sure that
1110 * there is a different static lockdep key for each workqueue by using
1111 * INIT_WORK() for each of them separately.
1112 */
1113 switch (type) {
1114 case OSL_NOTIFY_HANDLER:
1115 ret = queue_work(kacpi_notify_wq, &dpc->work);
1116 break;
1117 case OSL_GPE_HANDLER:
1118 /*
1119 * On some machines, a software-initiated SMI causes corruption
1120 * unless the SMI runs on CPU 0. An SMI can be initiated by
1121 * any AML, but typically it's done in GPE-related methods that
1122 * are run via workqueues, so we can avoid the known corruption
1123 * cases by always queueing on CPU 0.
1124 */
1125 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1126 break;
1127 default:
1128 pr_err("Unsupported os_execute type %d.\n", type);
1129 goto err;
1130 }
1131 if (!ret) {
1132 pr_err("Unable to queue work\n");
1133 goto err;
1134 }
1135
1136 return AE_OK;
1137
1138err:
1139 kfree(dpc);
1140 return AE_ERROR;
1141}
1142EXPORT_SYMBOL(acpi_os_execute);
1143
1144void acpi_os_wait_events_complete(void)
1145{
1146 /*
1147 * Make sure the GPE handler or the fixed event handler is not used
1148 * on another CPU after removal.
1149 */
1150 if (acpi_sci_irq_valid())
1151 synchronize_hardirq(acpi_sci_irq);
1152 flush_workqueue(kacpid_wq);
1153 flush_workqueue(kacpi_notify_wq);
1154}
1155EXPORT_SYMBOL(acpi_os_wait_events_complete);
1156
1157struct acpi_hp_work {
1158 struct work_struct work;
1159 struct acpi_device *adev;
1160 u32 src;
1161};
1162
1163static void acpi_hotplug_work_fn(struct work_struct *work)
1164{
1165 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1166
1167 acpi_os_wait_events_complete();
1168 acpi_device_hotplug(hpw->adev, hpw->src);
1169 kfree(hpw);
1170}
1171
1172acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1173{
1174 struct acpi_hp_work *hpw;
1175
1176 acpi_handle_debug(adev->handle,
1177 "Scheduling hotplug event %u for deferred handling\n",
1178 src);
1179
1180 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1181 if (!hpw)
1182 return AE_NO_MEMORY;
1183
1184 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1185 hpw->adev = adev;
1186 hpw->src = src;
1187 /*
1188 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1189 * the hotplug code may call driver .remove() functions, which may
1190 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1191 * these workqueues.
1192 */
1193 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1194 kfree(hpw);
1195 return AE_ERROR;
1196 }
1197 return AE_OK;
1198}
1199
1200bool acpi_queue_hotplug_work(struct work_struct *work)
1201{
1202 return queue_work(kacpi_hotplug_wq, work);
1203}
1204
1205acpi_status
1206acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1207{
1208 struct semaphore *sem = NULL;
1209
1210 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1211 if (!sem)
1212 return AE_NO_MEMORY;
1213
1214 sema_init(sem, initial_units);
1215
1216 *handle = (acpi_handle *) sem;
1217
1218 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1219 *handle, initial_units));
1220
1221 return AE_OK;
1222}
1223
1224/*
1225 * TODO: A better way to delete semaphores? Linux doesn't have a
1226 * 'delete_semaphore()' function -- may result in an invalid
1227 * pointer dereference for non-synchronized consumers. Should
1228 * we at least check for blocked threads and signal/cancel them?
1229 */
1230
1231acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1232{
1233 struct semaphore *sem = (struct semaphore *)handle;
1234
1235 if (!sem)
1236 return AE_BAD_PARAMETER;
1237
1238 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1239
1240 BUG_ON(!list_empty(&sem->wait_list));
1241 kfree(sem);
1242 sem = NULL;
1243
1244 return AE_OK;
1245}
1246
1247/*
1248 * TODO: Support for units > 1?
1249 */
1250acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1251{
1252 acpi_status status = AE_OK;
1253 struct semaphore *sem = (struct semaphore *)handle;
1254 long jiffies;
1255 int ret = 0;
1256
1257 if (!acpi_os_initialized)
1258 return AE_OK;
1259
1260 if (!sem || (units < 1))
1261 return AE_BAD_PARAMETER;
1262
1263 if (units > 1)
1264 return AE_SUPPORT;
1265
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1267 handle, units, timeout));
1268
1269 if (timeout == ACPI_WAIT_FOREVER)
1270 jiffies = MAX_SCHEDULE_TIMEOUT;
1271 else
1272 jiffies = msecs_to_jiffies(timeout);
1273
1274 ret = down_timeout(sem, jiffies);
1275 if (ret)
1276 status = AE_TIME;
1277
1278 if (ACPI_FAILURE(status)) {
1279 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280 "Failed to acquire semaphore[%p|%d|%d], %s",
1281 handle, units, timeout,
1282 acpi_format_exception(status)));
1283 } else {
1284 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1285 "Acquired semaphore[%p|%d|%d]", handle,
1286 units, timeout));
1287 }
1288
1289 return status;
1290}
1291
1292/*
1293 * TODO: Support for units > 1?
1294 */
1295acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1296{
1297 struct semaphore *sem = (struct semaphore *)handle;
1298
1299 if (!acpi_os_initialized)
1300 return AE_OK;
1301
1302 if (!sem || (units < 1))
1303 return AE_BAD_PARAMETER;
1304
1305 if (units > 1)
1306 return AE_SUPPORT;
1307
1308 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1309 units));
1310
1311 up(sem);
1312
1313 return AE_OK;
1314}
1315
1316acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1317{
1318#ifdef ENABLE_DEBUGGER
1319 if (acpi_in_debugger) {
1320 u32 chars;
1321
1322 kdb_read(buffer, buffer_length);
1323
1324 /* remove the CR kdb includes */
1325 chars = strlen(buffer) - 1;
1326 buffer[chars] = '\0';
1327 }
1328#else
1329 int ret;
1330
1331 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332 if (ret < 0)
1333 return AE_ERROR;
1334 if (bytes_read)
1335 *bytes_read = ret;
1336#endif
1337
1338 return AE_OK;
1339}
1340EXPORT_SYMBOL(acpi_os_get_line);
1341
1342acpi_status acpi_os_wait_command_ready(void)
1343{
1344 int ret;
1345
1346 ret = acpi_debugger_wait_command_ready();
1347 if (ret < 0)
1348 return AE_ERROR;
1349 return AE_OK;
1350}
1351
1352acpi_status acpi_os_notify_command_complete(void)
1353{
1354 int ret;
1355
1356 ret = acpi_debugger_notify_command_complete();
1357 if (ret < 0)
1358 return AE_ERROR;
1359 return AE_OK;
1360}
1361
1362acpi_status acpi_os_signal(u32 function, void *info)
1363{
1364 switch (function) {
1365 case ACPI_SIGNAL_FATAL:
1366 pr_err("Fatal opcode executed\n");
1367 break;
1368 case ACPI_SIGNAL_BREAKPOINT:
1369 /*
1370 * AML Breakpoint
1371 * ACPI spec. says to treat it as a NOP unless
1372 * you are debugging. So if/when we integrate
1373 * AML debugger into the kernel debugger its
1374 * hook will go here. But until then it is
1375 * not useful to print anything on breakpoints.
1376 */
1377 break;
1378 default:
1379 break;
1380 }
1381
1382 return AE_OK;
1383}
1384
1385static int __init acpi_os_name_setup(char *str)
1386{
1387 char *p = acpi_os_name;
1388 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1389
1390 if (!str || !*str)
1391 return 0;
1392
1393 for (; count-- && *str; str++) {
1394 if (isalnum(*str) || *str == ' ' || *str == ':')
1395 *p++ = *str;
1396 else if (*str == '\'' || *str == '"')
1397 continue;
1398 else
1399 break;
1400 }
1401 *p = 0;
1402
1403 return 1;
1404
1405}
1406
1407__setup("acpi_os_name=", acpi_os_name_setup);
1408
1409/*
1410 * Disable the auto-serialization of named objects creation methods.
1411 *
1412 * This feature is enabled by default. It marks the AML control methods
1413 * that contain the opcodes to create named objects as "Serialized".
1414 */
1415static int __init acpi_no_auto_serialize_setup(char *str)
1416{
1417 acpi_gbl_auto_serialize_methods = FALSE;
1418 pr_info("Auto-serialization disabled\n");
1419
1420 return 1;
1421}
1422
1423__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1424
1425/* Check of resource interference between native drivers and ACPI
1426 * OperationRegions (SystemIO and System Memory only).
1427 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1428 * in arbitrary AML code and can interfere with legacy drivers.
1429 * acpi_enforce_resources= can be set to:
1430 *
1431 * - strict (default) (2)
1432 * -> further driver trying to access the resources will not load
1433 * - lax (1)
1434 * -> further driver trying to access the resources will load, but you
1435 * get a system message that something might go wrong...
1436 *
1437 * - no (0)
1438 * -> ACPI Operation Region resources will not be registered
1439 *
1440 */
1441#define ENFORCE_RESOURCES_STRICT 2
1442#define ENFORCE_RESOURCES_LAX 1
1443#define ENFORCE_RESOURCES_NO 0
1444
1445static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446
1447static int __init acpi_enforce_resources_setup(char *str)
1448{
1449 if (str == NULL || *str == '\0')
1450 return 0;
1451
1452 if (!strcmp("strict", str))
1453 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1454 else if (!strcmp("lax", str))
1455 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1456 else if (!strcmp("no", str))
1457 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1458
1459 return 1;
1460}
1461
1462__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1463
1464/* Check for resource conflicts between ACPI OperationRegions and native
1465 * drivers */
1466int acpi_check_resource_conflict(const struct resource *res)
1467{
1468 acpi_adr_space_type space_id;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472
1473 if (res->flags & IORESOURCE_IO)
1474 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1475 else if (res->flags & IORESOURCE_MEM)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1477 else
1478 return 0;
1479
1480 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1481 return 0;
1482
1483 pr_info("Resource conflict; ACPI support missing from driver?\n");
1484
1485 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1486 return -EBUSY;
1487
1488 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1489 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1490
1491 return 0;
1492}
1493EXPORT_SYMBOL(acpi_check_resource_conflict);
1494
1495int acpi_check_region(resource_size_t start, resource_size_t n,
1496 const char *name)
1497{
1498 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1499
1500 return acpi_check_resource_conflict(&res);
1501}
1502EXPORT_SYMBOL(acpi_check_region);
1503
1504/*
1505 * Let drivers know whether the resource checks are effective
1506 */
1507int acpi_resources_are_enforced(void)
1508{
1509 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1510}
1511EXPORT_SYMBOL(acpi_resources_are_enforced);
1512
1513/*
1514 * Deallocate the memory for a spinlock.
1515 */
1516void acpi_os_delete_lock(acpi_spinlock handle)
1517{
1518 ACPI_FREE(handle);
1519}
1520
1521/*
1522 * Acquire a spinlock.
1523 *
1524 * handle is a pointer to the spinlock_t.
1525 */
1526
1527acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1528 __acquires(lockp)
1529{
1530 spin_lock(lockp);
1531 return 0;
1532}
1533
1534/*
1535 * Release a spinlock. See above.
1536 */
1537
1538void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1539 __releases(lockp)
1540{
1541 spin_unlock(lockp);
1542}
1543
1544#ifndef ACPI_USE_LOCAL_CACHE
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION: acpi_os_create_cache
1549 *
1550 * PARAMETERS: name - Ascii name for the cache
1551 * size - Size of each cached object
1552 * depth - Maximum depth of the cache (in objects) <ignored>
1553 * cache - Where the new cache object is returned
1554 *
1555 * RETURN: status
1556 *
1557 * DESCRIPTION: Create a cache object
1558 *
1559 ******************************************************************************/
1560
1561acpi_status
1562acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1563{
1564 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1565 if (*cache == NULL)
1566 return AE_ERROR;
1567 else
1568 return AE_OK;
1569}
1570
1571/*******************************************************************************
1572 *
1573 * FUNCTION: acpi_os_purge_cache
1574 *
1575 * PARAMETERS: Cache - Handle to cache object
1576 *
1577 * RETURN: Status
1578 *
1579 * DESCRIPTION: Free all objects within the requested cache.
1580 *
1581 ******************************************************************************/
1582
1583acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1584{
1585 kmem_cache_shrink(cache);
1586 return AE_OK;
1587}
1588
1589/*******************************************************************************
1590 *
1591 * FUNCTION: acpi_os_delete_cache
1592 *
1593 * PARAMETERS: Cache - Handle to cache object
1594 *
1595 * RETURN: Status
1596 *
1597 * DESCRIPTION: Free all objects within the requested cache and delete the
1598 * cache object.
1599 *
1600 ******************************************************************************/
1601
1602acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1603{
1604 kmem_cache_destroy(cache);
1605 return AE_OK;
1606}
1607
1608/*******************************************************************************
1609 *
1610 * FUNCTION: acpi_os_release_object
1611 *
1612 * PARAMETERS: Cache - Handle to cache object
1613 * Object - The object to be released
1614 *
1615 * RETURN: None
1616 *
1617 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1618 * the object is deleted.
1619 *
1620 ******************************************************************************/
1621
1622acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1623{
1624 kmem_cache_free(cache, object);
1625 return AE_OK;
1626}
1627#endif
1628
1629static int __init acpi_no_static_ssdt_setup(char *s)
1630{
1631 acpi_gbl_disable_ssdt_table_install = TRUE;
1632 pr_info("Static SSDT installation disabled\n");
1633
1634 return 0;
1635}
1636
1637early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1638
1639static int __init acpi_disable_return_repair(char *s)
1640{
1641 pr_notice("Predefined validation mechanism disabled\n");
1642 acpi_gbl_disable_auto_repair = TRUE;
1643
1644 return 1;
1645}
1646
1647__setup("acpica_no_return_repair", acpi_disable_return_repair);
1648
1649acpi_status __init acpi_os_initialize(void)
1650{
1651 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1652 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653
1654 acpi_gbl_xgpe0_block_logical_address =
1655 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1656 acpi_gbl_xgpe1_block_logical_address =
1657 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1658
1659 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1660 /*
1661 * Use acpi_os_map_generic_address to pre-map the reset
1662 * register if it's in system memory.
1663 */
1664 void *rv;
1665
1666 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1667 pr_debug("%s: Reset register mapping %s\n", __func__,
1668 rv ? "successful" : "failed");
1669 }
1670 acpi_os_initialized = true;
1671
1672 return AE_OK;
1673}
1674
1675acpi_status __init acpi_os_initialize1(void)
1676{
1677 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1678 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1679 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1680 BUG_ON(!kacpid_wq);
1681 BUG_ON(!kacpi_notify_wq);
1682 BUG_ON(!kacpi_hotplug_wq);
1683 acpi_osi_init();
1684 return AE_OK;
1685}
1686
1687acpi_status acpi_os_terminate(void)
1688{
1689 if (acpi_irq_handler) {
1690 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1691 acpi_irq_handler);
1692 }
1693
1694 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1695 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1696 acpi_gbl_xgpe0_block_logical_address = 0UL;
1697 acpi_gbl_xgpe1_block_logical_address = 0UL;
1698
1699 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1700 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1701
1702 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1703 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1704
1705 destroy_workqueue(kacpid_wq);
1706 destroy_workqueue(kacpi_notify_wq);
1707 destroy_workqueue(kacpi_hotplug_wq);
1708
1709 return AE_OK;
1710}
1711
1712acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1713 u32 pm1b_control)
1714{
1715 int rc = 0;
1716
1717 if (__acpi_os_prepare_sleep)
1718 rc = __acpi_os_prepare_sleep(sleep_state,
1719 pm1a_control, pm1b_control);
1720 if (rc < 0)
1721 return AE_ERROR;
1722 else if (rc > 0)
1723 return AE_CTRL_TERMINATE;
1724
1725 return AE_OK;
1726}
1727
1728void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1729 u32 pm1a_ctrl, u32 pm1b_ctrl))
1730{
1731 __acpi_os_prepare_sleep = func;
1732}
1733
1734#if (ACPI_REDUCED_HARDWARE)
1735acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1736 u32 val_b)
1737{
1738 int rc = 0;
1739
1740 if (__acpi_os_prepare_extended_sleep)
1741 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1742 val_a, val_b);
1743 if (rc < 0)
1744 return AE_ERROR;
1745 else if (rc > 0)
1746 return AE_CTRL_TERMINATE;
1747
1748 return AE_OK;
1749}
1750#else
1751acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1752 u32 val_b)
1753{
1754 return AE_OK;
1755}
1756#endif
1757
1758void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1759 u32 val_a, u32 val_b))
1760{
1761 __acpi_os_prepare_extended_sleep = func;
1762}
1763
1764acpi_status acpi_os_enter_sleep(u8 sleep_state,
1765 u32 reg_a_value, u32 reg_b_value)
1766{
1767 acpi_status status;
1768
1769 if (acpi_gbl_reduced_hardware)
1770 status = acpi_os_prepare_extended_sleep(sleep_state,
1771 reg_a_value,
1772 reg_b_value);
1773 else
1774 status = acpi_os_prepare_sleep(sleep_state,
1775 reg_a_value, reg_b_value);
1776 return status;
1777}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 unsigned long refcount;
81};
82
83static LIST_HEAD(acpi_ioremaps);
84static DEFINE_MUTEX(acpi_ioremap_lock);
85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
86
87static void __init acpi_request_region (struct acpi_generic_address *gas,
88 unsigned int length, char *desc)
89{
90 u64 addr;
91
92 /* Handle possible alignment issues */
93 memcpy(&addr, &gas->address, sizeof(addr));
94 if (!addr || !length)
95 return;
96
97 /* Resources are never freed */
98 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99 request_region(addr, length, desc);
100 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101 request_mem_region(addr, length, desc);
102}
103
104static int __init acpi_reserve_resources(void)
105{
106 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107 "ACPI PM1a_EVT_BLK");
108
109 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1b_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113 "ACPI PM1a_CNT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1b_CNT_BLK");
117
118 if (acpi_gbl_FADT.pm_timer_length == 4)
119 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122 "ACPI PM2_CNT_BLK");
123
124 /* Length of GPE blocks must be a non-negative multiple of 2 */
125
126 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
129
130 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
133
134 return 0;
135}
136fs_initcall_sync(acpi_reserve_resources);
137
138void acpi_os_printf(const char *fmt, ...)
139{
140 va_list args;
141 va_start(args, fmt);
142 acpi_os_vprintf(fmt, args);
143 va_end(args);
144}
145EXPORT_SYMBOL(acpi_os_printf);
146
147void acpi_os_vprintf(const char *fmt, va_list args)
148{
149 static char buffer[512];
150
151 vsprintf(buffer, fmt, args);
152
153#ifdef ENABLE_DEBUGGER
154 if (acpi_in_debugger) {
155 kdb_printf("%s", buffer);
156 } else {
157 if (printk_get_level(buffer))
158 printk("%s", buffer);
159 else
160 printk(KERN_CONT "%s", buffer);
161 }
162#else
163 if (acpi_debugger_write_log(buffer) < 0) {
164 if (printk_get_level(buffer))
165 printk("%s", buffer);
166 else
167 printk(KERN_CONT "%s", buffer);
168 }
169#endif
170}
171
172#ifdef CONFIG_KEXEC
173static unsigned long acpi_rsdp;
174static int __init setup_acpi_rsdp(char *arg)
175{
176 return kstrtoul(arg, 16, &acpi_rsdp);
177}
178early_param("acpi_rsdp", setup_acpi_rsdp);
179#endif
180
181acpi_physical_address __init acpi_os_get_root_pointer(void)
182{
183 acpi_physical_address pa;
184
185#ifdef CONFIG_KEXEC
186 /*
187 * We may have been provided with an RSDP on the command line,
188 * but if a malicious user has done so they may be pointing us
189 * at modified ACPI tables that could alter kernel behaviour -
190 * so, we check the lockdown status before making use of
191 * it. If we trust it then also stash it in an architecture
192 * specific location (if appropriate) so it can be carried
193 * over further kexec()s.
194 */
195 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196 acpi_arch_set_root_pointer(acpi_rsdp);
197 return acpi_rsdp;
198 }
199#endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
203
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
212 }
213
214 return pa;
215}
216
217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218static struct acpi_ioremap *
219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220{
221 struct acpi_ioremap *map;
222
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
227
228 return NULL;
229}
230
231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232static void __iomem *
233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234{
235 struct acpi_ioremap *map;
236
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
240
241 return NULL;
242}
243
244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245{
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
248
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
254 }
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
257}
258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261static struct acpi_ioremap *
262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263{
264 struct acpi_ioremap *map;
265
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
270
271 return NULL;
272}
273
274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275/* ioremap will take care of cache attributes */
276#define should_use_kmap(pfn) 0
277#else
278#define should_use_kmap(pfn) page_is_ram(pfn)
279#endif
280
281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282{
283 unsigned long pfn;
284
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
292}
293
294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295{
296 unsigned long pfn;
297
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
303}
304
305/**
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
309 *
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
314 *
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
317 */
318void __iomem __ref
319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320{
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
325
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
329 }
330
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
333
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
340 }
341
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
346 }
347
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
355 }
356
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
362
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
368}
369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372{
373 return (void *)acpi_os_map_iomem(phys, size);
374}
375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378{
379 if (!--map->refcount)
380 list_del_rcu(&map->list);
381}
382
383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384{
385 if (!map->refcount) {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390}
391
392/**
393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
394 * @virt: Start of the address range to drop a reference to.
395 * @size: Size of the address range to drop a reference to.
396 *
397 * Look up the given virtual address range in the list of existing ACPI memory
398 * mappings, drop a reference to it and unmap it if there are no more active
399 * references to it.
400 *
401 * During early init (when acpi_permanent_mmap has not been set yet) this
402 * routine simply calls __acpi_unmap_table() to get the job done. Since
403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404 * here.
405 */
406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407{
408 struct acpi_ioremap *map;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 acpi_os_map_cleanup(map);
426}
427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430{
431 return acpi_os_unmap_iomem((void __iomem *)virt, size);
432}
433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436{
437 u64 addr;
438 void __iomem *virt;
439
440 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 return 0;
442
443 /* Handle possible alignment issues */
444 memcpy(&addr, &gas->address, sizeof(addr));
445 if (!addr || !gas->bit_width)
446 return -EINVAL;
447
448 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 if (!virt)
450 return -EIO;
451
452 return 0;
453}
454EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457{
458 u64 addr;
459 struct acpi_ioremap *map;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return;
468
469 mutex_lock(&acpi_ioremap_lock);
470 map = acpi_map_lookup(addr, gas->bit_width / 8);
471 if (!map) {
472 mutex_unlock(&acpi_ioremap_lock);
473 return;
474 }
475 acpi_os_drop_map_ref(map);
476 mutex_unlock(&acpi_ioremap_lock);
477
478 acpi_os_map_cleanup(map);
479}
480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482#ifdef ACPI_FUTURE_USAGE
483acpi_status
484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485{
486 if (!phys || !virt)
487 return AE_BAD_PARAMETER;
488
489 *phys = virt_to_phys(virt);
490
491 return AE_OK;
492}
493#endif
494
495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496static bool acpi_rev_override;
497
498int __init acpi_rev_override_setup(char *str)
499{
500 acpi_rev_override = true;
501 return 1;
502}
503__setup("acpi_rev_override", acpi_rev_override_setup);
504#else
505#define acpi_rev_override false
506#endif
507
508#define ACPI_MAX_OVERRIDE_LEN 100
509
510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512acpi_status
513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 acpi_string *new_val)
515{
516 if (!init_val || !new_val)
517 return AE_BAD_PARAMETER;
518
519 *new_val = NULL;
520 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 acpi_os_name);
523 *new_val = acpi_os_name;
524 }
525
526 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 *new_val = (char *)5;
529 }
530
531 return AE_OK;
532}
533
534static irqreturn_t acpi_irq(int irq, void *dev_id)
535{
536 u32 handled;
537
538 handled = (*acpi_irq_handler) (acpi_irq_context);
539
540 if (handled) {
541 acpi_irq_handled++;
542 return IRQ_HANDLED;
543 } else {
544 acpi_irq_not_handled++;
545 return IRQ_NONE;
546 }
547}
548
549acpi_status
550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 void *context)
552{
553 unsigned int irq;
554
555 acpi_irq_stats_init();
556
557 /*
558 * ACPI interrupts different from the SCI in our copy of the FADT are
559 * not supported.
560 */
561 if (gsi != acpi_gbl_FADT.sci_interrupt)
562 return AE_BAD_PARAMETER;
563
564 if (acpi_irq_handler)
565 return AE_ALREADY_ACQUIRED;
566
567 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 gsi);
570 return AE_OK;
571 }
572
573 acpi_irq_handler = handler;
574 acpi_irq_context = context;
575 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 acpi_irq_handler = NULL;
578 return AE_NOT_ACQUIRED;
579 }
580 acpi_sci_irq = irq;
581
582 return AE_OK;
583}
584
585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586{
587 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 return AE_BAD_PARAMETER;
589
590 free_irq(acpi_sci_irq, acpi_irq);
591 acpi_irq_handler = NULL;
592 acpi_sci_irq = INVALID_ACPI_IRQ;
593
594 return AE_OK;
595}
596
597/*
598 * Running in interpreter thread context, safe to sleep
599 */
600
601void acpi_os_sleep(u64 ms)
602{
603 msleep(ms);
604}
605
606void acpi_os_stall(u32 us)
607{
608 while (us) {
609 u32 delay = 1000;
610
611 if (delay > us)
612 delay = us;
613 udelay(delay);
614 touch_nmi_watchdog();
615 us -= delay;
616 }
617}
618
619/*
620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621 * monotonically increasing timer with 100ns granularity. Do not use
622 * ktime_get() to implement this function because this function may get
623 * called after timekeeping has been suspended. Note: calling this function
624 * after timekeeping has been suspended may lead to unexpected results
625 * because when timekeeping is suspended the jiffies counter is not
626 * incremented. See also timekeeping_suspend().
627 */
628u64 acpi_os_get_timer(void)
629{
630 return (get_jiffies_64() - INITIAL_JIFFIES) *
631 (ACPI_100NSEC_PER_SEC / HZ);
632}
633
634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635{
636 u32 dummy;
637
638 if (!value)
639 value = &dummy;
640
641 *value = 0;
642 if (width <= 8) {
643 *(u8 *) value = inb(port);
644 } else if (width <= 16) {
645 *(u16 *) value = inw(port);
646 } else if (width <= 32) {
647 *(u32 *) value = inl(port);
648 } else {
649 BUG();
650 }
651
652 return AE_OK;
653}
654
655EXPORT_SYMBOL(acpi_os_read_port);
656
657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658{
659 if (width <= 8) {
660 outb(value, port);
661 } else if (width <= 16) {
662 outw(value, port);
663 } else if (width <= 32) {
664 outl(value, port);
665 } else {
666 BUG();
667 }
668
669 return AE_OK;
670}
671
672EXPORT_SYMBOL(acpi_os_write_port);
673
674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675{
676
677 switch (width) {
678 case 8:
679 *(u8 *) value = readb(virt_addr);
680 break;
681 case 16:
682 *(u16 *) value = readw(virt_addr);
683 break;
684 case 32:
685 *(u32 *) value = readl(virt_addr);
686 break;
687 case 64:
688 *(u64 *) value = readq(virt_addr);
689 break;
690 default:
691 return -EINVAL;
692 }
693
694 return 0;
695}
696
697acpi_status
698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699{
700 void __iomem *virt_addr;
701 unsigned int size = width / 8;
702 bool unmap = false;
703 u64 dummy;
704 int error;
705
706 rcu_read_lock();
707 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 if (!virt_addr) {
709 rcu_read_unlock();
710 virt_addr = acpi_os_ioremap(phys_addr, size);
711 if (!virt_addr)
712 return AE_BAD_ADDRESS;
713 unmap = true;
714 }
715
716 if (!value)
717 value = &dummy;
718
719 error = acpi_os_read_iomem(virt_addr, value, width);
720 BUG_ON(error);
721
722 if (unmap)
723 iounmap(virt_addr);
724 else
725 rcu_read_unlock();
726
727 return AE_OK;
728}
729
730acpi_status
731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732{
733 void __iomem *virt_addr;
734 unsigned int size = width / 8;
735 bool unmap = false;
736
737 rcu_read_lock();
738 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 if (!virt_addr) {
740 rcu_read_unlock();
741 virt_addr = acpi_os_ioremap(phys_addr, size);
742 if (!virt_addr)
743 return AE_BAD_ADDRESS;
744 unmap = true;
745 }
746
747 switch (width) {
748 case 8:
749 writeb(value, virt_addr);
750 break;
751 case 16:
752 writew(value, virt_addr);
753 break;
754 case 32:
755 writel(value, virt_addr);
756 break;
757 case 64:
758 writeq(value, virt_addr);
759 break;
760 default:
761 BUG();
762 }
763
764 if (unmap)
765 iounmap(virt_addr);
766 else
767 rcu_read_unlock();
768
769 return AE_OK;
770}
771
772#ifdef CONFIG_PCI
773acpi_status
774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
775 u64 *value, u32 width)
776{
777 int result, size;
778 u32 value32;
779
780 if (!value)
781 return AE_BAD_PARAMETER;
782
783 switch (width) {
784 case 8:
785 size = 1;
786 break;
787 case 16:
788 size = 2;
789 break;
790 case 32:
791 size = 4;
792 break;
793 default:
794 return AE_ERROR;
795 }
796
797 result = raw_pci_read(pci_id->segment, pci_id->bus,
798 PCI_DEVFN(pci_id->device, pci_id->function),
799 reg, size, &value32);
800 *value = value32;
801
802 return (result ? AE_ERROR : AE_OK);
803}
804
805acpi_status
806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
807 u64 value, u32 width)
808{
809 int result, size;
810
811 switch (width) {
812 case 8:
813 size = 1;
814 break;
815 case 16:
816 size = 2;
817 break;
818 case 32:
819 size = 4;
820 break;
821 default:
822 return AE_ERROR;
823 }
824
825 result = raw_pci_write(pci_id->segment, pci_id->bus,
826 PCI_DEVFN(pci_id->device, pci_id->function),
827 reg, size, value);
828
829 return (result ? AE_ERROR : AE_OK);
830}
831#endif
832
833static void acpi_os_execute_deferred(struct work_struct *work)
834{
835 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
836
837 dpc->function(dpc->context);
838 kfree(dpc);
839}
840
841#ifdef CONFIG_ACPI_DEBUGGER
842static struct acpi_debugger acpi_debugger;
843static bool acpi_debugger_initialized;
844
845int acpi_register_debugger(struct module *owner,
846 const struct acpi_debugger_ops *ops)
847{
848 int ret = 0;
849
850 mutex_lock(&acpi_debugger.lock);
851 if (acpi_debugger.ops) {
852 ret = -EBUSY;
853 goto err_lock;
854 }
855
856 acpi_debugger.owner = owner;
857 acpi_debugger.ops = ops;
858
859err_lock:
860 mutex_unlock(&acpi_debugger.lock);
861 return ret;
862}
863EXPORT_SYMBOL(acpi_register_debugger);
864
865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
866{
867 mutex_lock(&acpi_debugger.lock);
868 if (ops == acpi_debugger.ops) {
869 acpi_debugger.ops = NULL;
870 acpi_debugger.owner = NULL;
871 }
872 mutex_unlock(&acpi_debugger.lock);
873}
874EXPORT_SYMBOL(acpi_unregister_debugger);
875
876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
877{
878 int ret;
879 int (*func)(acpi_osd_exec_callback, void *);
880 struct module *owner;
881
882 if (!acpi_debugger_initialized)
883 return -ENODEV;
884 mutex_lock(&acpi_debugger.lock);
885 if (!acpi_debugger.ops) {
886 ret = -ENODEV;
887 goto err_lock;
888 }
889 if (!try_module_get(acpi_debugger.owner)) {
890 ret = -ENODEV;
891 goto err_lock;
892 }
893 func = acpi_debugger.ops->create_thread;
894 owner = acpi_debugger.owner;
895 mutex_unlock(&acpi_debugger.lock);
896
897 ret = func(function, context);
898
899 mutex_lock(&acpi_debugger.lock);
900 module_put(owner);
901err_lock:
902 mutex_unlock(&acpi_debugger.lock);
903 return ret;
904}
905
906ssize_t acpi_debugger_write_log(const char *msg)
907{
908 ssize_t ret;
909 ssize_t (*func)(const char *);
910 struct module *owner;
911
912 if (!acpi_debugger_initialized)
913 return -ENODEV;
914 mutex_lock(&acpi_debugger.lock);
915 if (!acpi_debugger.ops) {
916 ret = -ENODEV;
917 goto err_lock;
918 }
919 if (!try_module_get(acpi_debugger.owner)) {
920 ret = -ENODEV;
921 goto err_lock;
922 }
923 func = acpi_debugger.ops->write_log;
924 owner = acpi_debugger.owner;
925 mutex_unlock(&acpi_debugger.lock);
926
927 ret = func(msg);
928
929 mutex_lock(&acpi_debugger.lock);
930 module_put(owner);
931err_lock:
932 mutex_unlock(&acpi_debugger.lock);
933 return ret;
934}
935
936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
937{
938 ssize_t ret;
939 ssize_t (*func)(char *, size_t);
940 struct module *owner;
941
942 if (!acpi_debugger_initialized)
943 return -ENODEV;
944 mutex_lock(&acpi_debugger.lock);
945 if (!acpi_debugger.ops) {
946 ret = -ENODEV;
947 goto err_lock;
948 }
949 if (!try_module_get(acpi_debugger.owner)) {
950 ret = -ENODEV;
951 goto err_lock;
952 }
953 func = acpi_debugger.ops->read_cmd;
954 owner = acpi_debugger.owner;
955 mutex_unlock(&acpi_debugger.lock);
956
957 ret = func(buffer, buffer_length);
958
959 mutex_lock(&acpi_debugger.lock);
960 module_put(owner);
961err_lock:
962 mutex_unlock(&acpi_debugger.lock);
963 return ret;
964}
965
966int acpi_debugger_wait_command_ready(void)
967{
968 int ret;
969 int (*func)(bool, char *, size_t);
970 struct module *owner;
971
972 if (!acpi_debugger_initialized)
973 return -ENODEV;
974 mutex_lock(&acpi_debugger.lock);
975 if (!acpi_debugger.ops) {
976 ret = -ENODEV;
977 goto err_lock;
978 }
979 if (!try_module_get(acpi_debugger.owner)) {
980 ret = -ENODEV;
981 goto err_lock;
982 }
983 func = acpi_debugger.ops->wait_command_ready;
984 owner = acpi_debugger.owner;
985 mutex_unlock(&acpi_debugger.lock);
986
987 ret = func(acpi_gbl_method_executing,
988 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
989
990 mutex_lock(&acpi_debugger.lock);
991 module_put(owner);
992err_lock:
993 mutex_unlock(&acpi_debugger.lock);
994 return ret;
995}
996
997int acpi_debugger_notify_command_complete(void)
998{
999 int ret;
1000 int (*func)(void);
1001 struct module *owner;
1002
1003 if (!acpi_debugger_initialized)
1004 return -ENODEV;
1005 mutex_lock(&acpi_debugger.lock);
1006 if (!acpi_debugger.ops) {
1007 ret = -ENODEV;
1008 goto err_lock;
1009 }
1010 if (!try_module_get(acpi_debugger.owner)) {
1011 ret = -ENODEV;
1012 goto err_lock;
1013 }
1014 func = acpi_debugger.ops->notify_command_complete;
1015 owner = acpi_debugger.owner;
1016 mutex_unlock(&acpi_debugger.lock);
1017
1018 ret = func();
1019
1020 mutex_lock(&acpi_debugger.lock);
1021 module_put(owner);
1022err_lock:
1023 mutex_unlock(&acpi_debugger.lock);
1024 return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029 mutex_init(&acpi_debugger.lock);
1030 acpi_debugger_initialized = true;
1031 return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION: acpi_os_execute
1038 *
1039 * PARAMETERS: Type - Type of the callback
1040 * Function - Function to be executed
1041 * Context - Function parameters
1042 *
1043 * RETURN: Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 * immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051 acpi_osd_exec_callback function, void *context)
1052{
1053 acpi_status status = AE_OK;
1054 struct acpi_os_dpc *dpc;
1055 struct workqueue_struct *queue;
1056 int ret;
1057 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058 "Scheduling function [%p(%p)] for deferred execution.\n",
1059 function, context));
1060
1061 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062 ret = acpi_debugger_create_thread(function, context);
1063 if (ret) {
1064 pr_err("Call to kthread_create() failed.\n");
1065 status = AE_ERROR;
1066 }
1067 goto out_thread;
1068 }
1069
1070 /*
1071 * Allocate/initialize DPC structure. Note that this memory will be
1072 * freed by the callee. The kernel handles the work_struct list in a
1073 * way that allows us to also free its memory inside the callee.
1074 * Because we may want to schedule several tasks with different
1075 * parameters we can't use the approach some kernel code uses of
1076 * having a static work_struct.
1077 */
1078
1079 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080 if (!dpc)
1081 return AE_NO_MEMORY;
1082
1083 dpc->function = function;
1084 dpc->context = context;
1085
1086 /*
1087 * To prevent lockdep from complaining unnecessarily, make sure that
1088 * there is a different static lockdep key for each workqueue by using
1089 * INIT_WORK() for each of them separately.
1090 */
1091 if (type == OSL_NOTIFY_HANDLER) {
1092 queue = kacpi_notify_wq;
1093 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094 } else if (type == OSL_GPE_HANDLER) {
1095 queue = kacpid_wq;
1096 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097 } else {
1098 pr_err("Unsupported os_execute type %d.\n", type);
1099 status = AE_ERROR;
1100 }
1101
1102 if (ACPI_FAILURE(status))
1103 goto err_workqueue;
1104
1105 /*
1106 * On some machines, a software-initiated SMI causes corruption unless
1107 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1108 * typically it's done in GPE-related methods that are run via
1109 * workqueues, so we can avoid the known corruption cases by always
1110 * queueing on CPU 0.
1111 */
1112 ret = queue_work_on(0, queue, &dpc->work);
1113 if (!ret) {
1114 printk(KERN_ERR PREFIX
1115 "Call to queue_work() failed.\n");
1116 status = AE_ERROR;
1117 }
1118err_workqueue:
1119 if (ACPI_FAILURE(status))
1120 kfree(dpc);
1121out_thread:
1122 return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
1127{
1128 /*
1129 * Make sure the GPE handler or the fixed event handler is not used
1130 * on another CPU after removal.
1131 */
1132 if (acpi_sci_irq_valid())
1133 synchronize_hardirq(acpi_sci_irq);
1134 flush_workqueue(kacpid_wq);
1135 flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140 struct work_struct work;
1141 struct acpi_device *adev;
1142 u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
1146{
1147 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149 acpi_os_wait_events_complete();
1150 acpi_device_hotplug(hpw->adev, hpw->src);
1151 kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156 struct acpi_hp_work *hpw;
1157
1158 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160 adev, src));
1161
1162 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163 if (!hpw)
1164 return AE_NO_MEMORY;
1165
1166 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167 hpw->adev = adev;
1168 hpw->src = src;
1169 /*
1170 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171 * the hotplug code may call driver .remove() functions, which may
1172 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173 * these workqueues.
1174 */
1175 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176 kfree(hpw);
1177 return AE_ERROR;
1178 }
1179 return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184 return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190 struct semaphore *sem = NULL;
1191
1192 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193 if (!sem)
1194 return AE_NO_MEMORY;
1195
1196 sema_init(sem, initial_units);
1197
1198 *handle = (acpi_handle *) sem;
1199
1200 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201 *handle, initial_units));
1202
1203 return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores? Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers. Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215 struct semaphore *sem = (struct semaphore *)handle;
1216
1217 if (!sem)
1218 return AE_BAD_PARAMETER;
1219
1220 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222 BUG_ON(!list_empty(&sem->wait_list));
1223 kfree(sem);
1224 sem = NULL;
1225
1226 return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234 acpi_status status = AE_OK;
1235 struct semaphore *sem = (struct semaphore *)handle;
1236 long jiffies;
1237 int ret = 0;
1238
1239 if (!acpi_os_initialized)
1240 return AE_OK;
1241
1242 if (!sem || (units < 1))
1243 return AE_BAD_PARAMETER;
1244
1245 if (units > 1)
1246 return AE_SUPPORT;
1247
1248 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249 handle, units, timeout));
1250
1251 if (timeout == ACPI_WAIT_FOREVER)
1252 jiffies = MAX_SCHEDULE_TIMEOUT;
1253 else
1254 jiffies = msecs_to_jiffies(timeout);
1255
1256 ret = down_timeout(sem, jiffies);
1257 if (ret)
1258 status = AE_TIME;
1259
1260 if (ACPI_FAILURE(status)) {
1261 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262 "Failed to acquire semaphore[%p|%d|%d], %s",
1263 handle, units, timeout,
1264 acpi_format_exception(status)));
1265 } else {
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267 "Acquired semaphore[%p|%d|%d]", handle,
1268 units, timeout));
1269 }
1270
1271 return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279 struct semaphore *sem = (struct semaphore *)handle;
1280
1281 if (!acpi_os_initialized)
1282 return AE_OK;
1283
1284 if (!sem || (units < 1))
1285 return AE_BAD_PARAMETER;
1286
1287 if (units > 1)
1288 return AE_SUPPORT;
1289
1290 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291 units));
1292
1293 up(sem);
1294
1295 return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299{
1300#ifdef ENABLE_DEBUGGER
1301 if (acpi_in_debugger) {
1302 u32 chars;
1303
1304 kdb_read(buffer, buffer_length);
1305
1306 /* remove the CR kdb includes */
1307 chars = strlen(buffer) - 1;
1308 buffer[chars] = '\0';
1309 }
1310#else
1311 int ret;
1312
1313 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314 if (ret < 0)
1315 return AE_ERROR;
1316 if (bytes_read)
1317 *bytes_read = ret;
1318#endif
1319
1320 return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326 int ret;
1327
1328 ret = acpi_debugger_wait_command_ready();
1329 if (ret < 0)
1330 return AE_ERROR;
1331 return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336 int ret;
1337
1338 ret = acpi_debugger_notify_command_complete();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342}
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346 switch (function) {
1347 case ACPI_SIGNAL_FATAL:
1348 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349 break;
1350 case ACPI_SIGNAL_BREAKPOINT:
1351 /*
1352 * AML Breakpoint
1353 * ACPI spec. says to treat it as a NOP unless
1354 * you are debugging. So if/when we integrate
1355 * AML debugger into the kernel debugger its
1356 * hook will go here. But until then it is
1357 * not useful to print anything on breakpoints.
1358 */
1359 break;
1360 default:
1361 break;
1362 }
1363
1364 return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369 char *p = acpi_os_name;
1370 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372 if (!str || !*str)
1373 return 0;
1374
1375 for (; count-- && *str; str++) {
1376 if (isalnum(*str) || *str == ' ' || *str == ':')
1377 *p++ = *str;
1378 else if (*str == '\'' || *str == '"')
1379 continue;
1380 else
1381 break;
1382 }
1383 *p = 0;
1384
1385 return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default. It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
1398{
1399 acpi_gbl_auto_serialize_methods = FALSE;
1400 pr_info("ACPI: auto-serialization disabled\n");
1401
1402 return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 * - strict (default) (2)
1414 * -> further driver trying to access the resources will not load
1415 * - lax (1)
1416 * -> further driver trying to access the resources will load, but you
1417 * get a system message that something might go wrong...
1418 *
1419 * - no (0)
1420 * -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX 1
1425#define ENFORCE_RESOURCES_NO 0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431 if (str == NULL || *str == '\0')
1432 return 0;
1433
1434 if (!strcmp("strict", str))
1435 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436 else if (!strcmp("lax", str))
1437 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438 else if (!strcmp("no", str))
1439 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441 return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450 acpi_adr_space_type space_id;
1451 acpi_size length;
1452 u8 warn = 0;
1453 int clash = 0;
1454
1455 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456 return 0;
1457 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458 return 0;
1459
1460 if (res->flags & IORESOURCE_IO)
1461 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462 else
1463 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465 length = resource_size(res);
1466 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467 warn = 1;
1468 clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470 if (clash) {
1471 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473 printk(KERN_NOTICE "ACPI: This conflict may"
1474 " cause random problems and system"
1475 " instability\n");
1476 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477 " for this device, you should use it instead of"
1478 " the native driver\n");
1479 }
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 return -EBUSY;
1482 }
1483 return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489{
1490 struct resource res = {
1491 .start = start,
1492 .end = start + n - 1,
1493 .name = name,
1494 .flags = IORESOURCE_IO,
1495 };
1496
1497 return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502 void *_res, void **return_value)
1503{
1504 struct acpi_mem_space_context **mem_ctx;
1505 union acpi_operand_object *handler_obj;
1506 union acpi_operand_object *region_obj2;
1507 union acpi_operand_object *region_obj;
1508 struct resource *res = _res;
1509 acpi_status status;
1510
1511 region_obj = acpi_ns_get_attached_object(handle);
1512 if (!region_obj)
1513 return AE_OK;
1514
1515 handler_obj = region_obj->region.handler;
1516 if (!handler_obj)
1517 return AE_OK;
1518
1519 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520 return AE_OK;
1521
1522 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523 return AE_OK;
1524
1525 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526 if (!region_obj2)
1527 return AE_OK;
1528
1529 mem_ctx = (void *)®ion_obj2->extra.region_context;
1530
1531 if (!(mem_ctx[0]->address >= res->start &&
1532 mem_ctx[0]->address < res->end))
1533 return AE_OK;
1534
1535 status = handler_obj->address_space.setup(region_obj,
1536 ACPI_REGION_DEACTIVATE,
1537 NULL, (void **)mem_ctx);
1538 if (ACPI_SUCCESS(status))
1539 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541 return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561 u32 level)
1562{
1563 if (!(res->flags & IORESOURCE_MEM))
1564 return AE_TYPE;
1565
1566 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567 acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585 ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595{
1596 acpi_cpu_flags flags;
1597 spin_lock_irqsave(lockp, flags);
1598 return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606{
1607 spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION: acpi_os_create_cache
1615 *
1616 * PARAMETERS: name - Ascii name for the cache
1617 * size - Size of each cached object
1618 * depth - Maximum depth of the cache (in objects) <ignored>
1619 * cache - Where the new cache object is returned
1620 *
1621 * RETURN: status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1631 if (*cache == NULL)
1632 return AE_ERROR;
1633 else
1634 return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION: acpi_os_purge_cache
1640 *
1641 * PARAMETERS: Cache - Handle to cache object
1642 *
1643 * RETURN: Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651 kmem_cache_shrink(cache);
1652 return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION: acpi_os_delete_cache
1658 *
1659 * PARAMETERS: Cache - Handle to cache object
1660 *
1661 * RETURN: Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 * cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670 kmem_cache_destroy(cache);
1671 return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION: acpi_os_release_object
1677 *
1678 * PARAMETERS: Cache - Handle to cache object
1679 * Object - The object to be released
1680 *
1681 * RETURN: None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1684 * the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690 kmem_cache_free(cache, object);
1691 return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697 acpi_gbl_disable_ssdt_table_install = TRUE;
1698 pr_info("ACPI: static SSDT installation disabled\n");
1699
1700 return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707 printk(KERN_NOTICE PREFIX
1708 "ACPI: Predefined validation mechanism disabled\n");
1709 acpi_gbl_disable_auto_repair = TRUE;
1710
1711 return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723 /*
1724 * Use acpi_os_map_generic_address to pre-map the reset
1725 * register if it's in system memory.
1726 */
1727 int rv;
1728
1729 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731 }
1732 acpi_os_initialized = true;
1733
1734 return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742 BUG_ON(!kacpid_wq);
1743 BUG_ON(!kacpi_notify_wq);
1744 BUG_ON(!kacpi_hotplug_wq);
1745 acpi_osi_init();
1746 return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751 if (acpi_irq_handler) {
1752 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753 acpi_irq_handler);
1754 }
1755
1756 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763 destroy_workqueue(kacpid_wq);
1764 destroy_workqueue(kacpi_notify_wq);
1765 destroy_workqueue(kacpi_hotplug_wq);
1766
1767 return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771 u32 pm1b_control)
1772{
1773 int rc = 0;
1774 if (__acpi_os_prepare_sleep)
1775 rc = __acpi_os_prepare_sleep(sleep_state,
1776 pm1a_control, pm1b_control);
1777 if (rc < 0)
1778 return AE_ERROR;
1779 else if (rc > 0)
1780 return AE_CTRL_TERMINATE;
1781
1782 return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786 u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788 __acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793 u32 val_b)
1794{
1795 int rc = 0;
1796 if (__acpi_os_prepare_extended_sleep)
1797 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798 val_a, val_b);
1799 if (rc < 0)
1800 return AE_ERROR;
1801 else if (rc > 0)
1802 return AE_CTRL_TERMINATE;
1803
1804 return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808 u32 val_b)
1809{
1810 return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815 u32 val_a, u32 val_b))
1816{
1817 __acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821 u32 reg_a_value, u32 reg_b_value)
1822{
1823 acpi_status status;
1824
1825 if (acpi_gbl_reduced_hardware)
1826 status = acpi_os_prepare_extended_sleep(sleep_state,
1827 reg_a_value,
1828 reg_b_value);
1829 else
1830 status = acpi_os_prepare_sleep(sleep_state,
1831 reg_a_value, reg_b_value);
1832 return status;
1833}