Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
  10 */
  11
  12#define pr_fmt(fmt) "ACPI: OSL: " fmt
  13
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/highmem.h>
  19#include <linux/lockdep.h>
  20#include <linux/pci.h>
  21#include <linux/interrupt.h>
  22#include <linux/kmod.h>
  23#include <linux/delay.h>
  24#include <linux/workqueue.h>
  25#include <linux/nmi.h>
  26#include <linux/acpi.h>
  27#include <linux/efi.h>
  28#include <linux/ioport.h>
  29#include <linux/list.h>
  30#include <linux/jiffies.h>
  31#include <linux/semaphore.h>
  32#include <linux/security.h>
  33
  34#include <asm/io.h>
  35#include <linux/uaccess.h>
  36#include <linux/io-64-nonatomic-lo-hi.h>
  37
  38#include "acpica/accommon.h"
 
  39#include "internal.h"
  40
  41/* Definitions for ACPI_DEBUG_PRINT() */
  42#define _COMPONENT		ACPI_OS_SERVICES
  43ACPI_MODULE_NAME("osl");
  44
  45struct acpi_os_dpc {
  46	acpi_osd_exec_callback function;
  47	void *context;
  48	struct work_struct work;
  49};
  50
  51#ifdef ENABLE_DEBUGGER
  52#include <linux/kdb.h>
  53
  54/* stuff for debugger support */
  55int acpi_in_debugger;
  56EXPORT_SYMBOL(acpi_in_debugger);
  57#endif				/*ENABLE_DEBUGGER */
  58
  59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  60				      u32 pm1b_ctrl);
  61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  62				      u32 val_b);
  63
  64static acpi_osd_handler acpi_irq_handler;
  65static void *acpi_irq_context;
  66static struct workqueue_struct *kacpid_wq;
  67static struct workqueue_struct *kacpi_notify_wq;
  68static struct workqueue_struct *kacpi_hotplug_wq;
  69static bool acpi_os_initialized;
  70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  71bool acpi_permanent_mmap = false;
  72
  73/*
  74 * This list of permanent mappings is for memory that may be accessed from
  75 * interrupt context, where we can't do the ioremap().
  76 */
  77struct acpi_ioremap {
  78	struct list_head list;
  79	void __iomem *virt;
  80	acpi_physical_address phys;
  81	acpi_size size;
  82	union {
  83		unsigned long refcount;
  84		struct rcu_work rwork;
  85	} track;
  86};
  87
  88static LIST_HEAD(acpi_ioremaps);
  89static DEFINE_MUTEX(acpi_ioremap_lock);
  90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  91
  92static void __init acpi_request_region (struct acpi_generic_address *gas,
  93	unsigned int length, char *desc)
  94{
  95	u64 addr;
  96
  97	/* Handle possible alignment issues */
  98	memcpy(&addr, &gas->address, sizeof(addr));
  99	if (!addr || !length)
 100		return;
 101
 102	/* Resources are never freed */
 103	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 104		request_region(addr, length, desc);
 105	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 106		request_mem_region(addr, length, desc);
 107}
 108
 109static int __init acpi_reserve_resources(void)
 110{
 111	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 112		"ACPI PM1a_EVT_BLK");
 113
 114	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 115		"ACPI PM1b_EVT_BLK");
 116
 117	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 118		"ACPI PM1a_CNT_BLK");
 119
 120	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 121		"ACPI PM1b_CNT_BLK");
 122
 123	if (acpi_gbl_FADT.pm_timer_length == 4)
 124		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 125
 126	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 127		"ACPI PM2_CNT_BLK");
 128
 129	/* Length of GPE blocks must be a non-negative multiple of 2 */
 130
 131	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 132		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 133			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 134
 135	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 136		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 137			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 138
 139	return 0;
 140}
 141fs_initcall_sync(acpi_reserve_resources);
 142
 143void acpi_os_printf(const char *fmt, ...)
 144{
 145	va_list args;
 146	va_start(args, fmt);
 147	acpi_os_vprintf(fmt, args);
 148	va_end(args);
 149}
 150EXPORT_SYMBOL(acpi_os_printf);
 151
 152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
 153{
 154	static char buffer[512];
 155
 156	vsprintf(buffer, fmt, args);
 157
 158#ifdef ENABLE_DEBUGGER
 159	if (acpi_in_debugger) {
 160		kdb_printf("%s", buffer);
 161	} else {
 162		if (printk_get_level(buffer))
 163			printk("%s", buffer);
 164		else
 165			printk(KERN_CONT "%s", buffer);
 166	}
 167#else
 168	if (acpi_debugger_write_log(buffer) < 0) {
 169		if (printk_get_level(buffer))
 170			printk("%s", buffer);
 171		else
 172			printk(KERN_CONT "%s", buffer);
 173	}
 174#endif
 175}
 176
 177#ifdef CONFIG_KEXEC
 178static unsigned long acpi_rsdp;
 179static int __init setup_acpi_rsdp(char *arg)
 180{
 181	return kstrtoul(arg, 16, &acpi_rsdp);
 182}
 183early_param("acpi_rsdp", setup_acpi_rsdp);
 184#endif
 185
 186acpi_physical_address __init acpi_os_get_root_pointer(void)
 187{
 188	acpi_physical_address pa;
 189
 190#ifdef CONFIG_KEXEC
 191	/*
 192	 * We may have been provided with an RSDP on the command line,
 193	 * but if a malicious user has done so they may be pointing us
 194	 * at modified ACPI tables that could alter kernel behaviour -
 195	 * so, we check the lockdown status before making use of
 196	 * it. If we trust it then also stash it in an architecture
 197	 * specific location (if appropriate) so it can be carried
 198	 * over further kexec()s.
 199	 */
 200	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 201		acpi_arch_set_root_pointer(acpi_rsdp);
 202		return acpi_rsdp;
 203	}
 204#endif
 205	pa = acpi_arch_get_root_pointer();
 206	if (pa)
 207		return pa;
 208
 209	if (efi_enabled(EFI_CONFIG_TABLES)) {
 210		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 211			return efi.acpi20;
 212		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 213			return efi.acpi;
 214		pr_err("System description tables not found\n");
 215	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 216		acpi_find_root_pointer(&pa);
 217	}
 218
 219	return pa;
 220}
 221
 222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 223static struct acpi_ioremap *
 224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 225{
 226	struct acpi_ioremap *map;
 227
 228	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 229		if (map->phys <= phys &&
 230		    phys + size <= map->phys + map->size)
 231			return map;
 232
 233	return NULL;
 234}
 235
 236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 237static void __iomem *
 238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 239{
 240	struct acpi_ioremap *map;
 241
 242	map = acpi_map_lookup(phys, size);
 243	if (map)
 244		return map->virt + (phys - map->phys);
 245
 246	return NULL;
 247}
 248
 249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 250{
 251	struct acpi_ioremap *map;
 252	void __iomem *virt = NULL;
 253
 254	mutex_lock(&acpi_ioremap_lock);
 255	map = acpi_map_lookup(phys, size);
 256	if (map) {
 257		virt = map->virt + (phys - map->phys);
 258		map->track.refcount++;
 259	}
 260	mutex_unlock(&acpi_ioremap_lock);
 261	return virt;
 262}
 263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 264
 265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 266static struct acpi_ioremap *
 267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 268{
 269	struct acpi_ioremap *map;
 270
 271	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 272		if (map->virt <= virt &&
 273		    virt + size <= map->virt + map->size)
 274			return map;
 275
 276	return NULL;
 277}
 278
 279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
 280/* ioremap will take care of cache attributes */
 281#define should_use_kmap(pfn)   0
 282#else
 283#define should_use_kmap(pfn)   page_is_ram(pfn)
 284#endif
 285
 286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 287{
 288	unsigned long pfn;
 289
 290	pfn = pg_off >> PAGE_SHIFT;
 291	if (should_use_kmap(pfn)) {
 292		if (pg_sz > PAGE_SIZE)
 293			return NULL;
 294		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 295	} else
 296		return acpi_os_ioremap(pg_off, pg_sz);
 297}
 298
 299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 300{
 301	unsigned long pfn;
 302
 303	pfn = pg_off >> PAGE_SHIFT;
 304	if (should_use_kmap(pfn))
 305		kunmap(pfn_to_page(pfn));
 306	else
 307		iounmap(vaddr);
 308}
 309
 310/**
 311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 312 * @phys: Start of the physical address range to map.
 313 * @size: Size of the physical address range to map.
 314 *
 315 * Look up the given physical address range in the list of existing ACPI memory
 316 * mappings.  If found, get a reference to it and return a pointer to it (its
 317 * virtual address).  If not found, map it, add it to that list and return a
 318 * pointer to it.
 319 *
 320 * During early init (when acpi_permanent_mmap has not been set yet) this
 321 * routine simply calls __acpi_map_table() to get the job done.
 322 */
 323void __iomem __ref
 324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 325{
 326	struct acpi_ioremap *map;
 327	void __iomem *virt;
 328	acpi_physical_address pg_off;
 329	acpi_size pg_sz;
 330
 331	if (phys > ULONG_MAX) {
 332		pr_err("Cannot map memory that high: 0x%llx\n", phys);
 333		return NULL;
 334	}
 335
 336	if (!acpi_permanent_mmap)
 337		return __acpi_map_table((unsigned long)phys, size);
 338
 339	mutex_lock(&acpi_ioremap_lock);
 340	/* Check if there's a suitable mapping already. */
 341	map = acpi_map_lookup(phys, size);
 342	if (map) {
 343		map->track.refcount++;
 344		goto out;
 345	}
 346
 347	map = kzalloc(sizeof(*map), GFP_KERNEL);
 348	if (!map) {
 349		mutex_unlock(&acpi_ioremap_lock);
 350		return NULL;
 351	}
 352
 353	pg_off = round_down(phys, PAGE_SIZE);
 354	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 355	virt = acpi_map(phys, size);
 356	if (!virt) {
 357		mutex_unlock(&acpi_ioremap_lock);
 358		kfree(map);
 359		return NULL;
 360	}
 361
 362	INIT_LIST_HEAD(&map->list);
 363	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
 364	map->phys = pg_off;
 365	map->size = pg_sz;
 366	map->track.refcount = 1;
 367
 368	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 369
 370out:
 371	mutex_unlock(&acpi_ioremap_lock);
 372	return map->virt + (phys - map->phys);
 373}
 374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 375
 376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 377{
 378	return (void *)acpi_os_map_iomem(phys, size);
 379}
 380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 381
 382static void acpi_os_map_remove(struct work_struct *work)
 383{
 384	struct acpi_ioremap *map = container_of(to_rcu_work(work),
 385						struct acpi_ioremap,
 386						track.rwork);
 387
 388	acpi_unmap(map->phys, map->virt);
 389	kfree(map);
 390}
 391
 392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
 393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 394{
 395	if (--map->track.refcount)
 396		return;
 397
 398	list_del_rcu(&map->list);
 399
 400	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
 401	queue_rcu_work(system_wq, &map->track.rwork);
 402}
 403
 404/**
 405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 406 * @virt: Start of the address range to drop a reference to.
 407 * @size: Size of the address range to drop a reference to.
 408 *
 409 * Look up the given virtual address range in the list of existing ACPI memory
 410 * mappings, drop a reference to it and if there are no more active references
 411 * to it, queue it up for later removal.
 412 *
 413 * During early init (when acpi_permanent_mmap has not been set yet) this
 414 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 416 * here.
 417 */
 418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 419{
 420	struct acpi_ioremap *map;
 421
 422	if (!acpi_permanent_mmap) {
 423		__acpi_unmap_table(virt, size);
 424		return;
 425	}
 426
 427	mutex_lock(&acpi_ioremap_lock);
 428
 429	map = acpi_map_lookup_virt(virt, size);
 430	if (!map) {
 431		mutex_unlock(&acpi_ioremap_lock);
 432		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
 433		return;
 434	}
 435	acpi_os_drop_map_ref(map);
 436
 437	mutex_unlock(&acpi_ioremap_lock);
 
 
 438}
 439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 440
 441/**
 442 * acpi_os_unmap_memory - Drop a memory mapping reference.
 443 * @virt: Start of the address range to drop a reference to.
 444 * @size: Size of the address range to drop a reference to.
 445 */
 446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 447{
 448	acpi_os_unmap_iomem((void __iomem *)virt, size);
 449}
 450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 451
 452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
 453{
 454	u64 addr;
 
 455
 456	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 457		return NULL;
 458
 459	/* Handle possible alignment issues */
 460	memcpy(&addr, &gas->address, sizeof(addr));
 461	if (!addr || !gas->bit_width)
 462		return NULL;
 
 
 
 
 463
 464	return acpi_os_map_iomem(addr, gas->bit_width / 8);
 465}
 466EXPORT_SYMBOL(acpi_os_map_generic_address);
 467
 468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 469{
 470	u64 addr;
 471	struct acpi_ioremap *map;
 472
 473	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 474		return;
 475
 476	/* Handle possible alignment issues */
 477	memcpy(&addr, &gas->address, sizeof(addr));
 478	if (!addr || !gas->bit_width)
 479		return;
 480
 481	mutex_lock(&acpi_ioremap_lock);
 482
 483	map = acpi_map_lookup(addr, gas->bit_width / 8);
 484	if (!map) {
 485		mutex_unlock(&acpi_ioremap_lock);
 486		return;
 487	}
 488	acpi_os_drop_map_ref(map);
 489
 490	mutex_unlock(&acpi_ioremap_lock);
 
 
 491}
 492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 493
 494#ifdef ACPI_FUTURE_USAGE
 495acpi_status
 496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
 497{
 498	if (!phys || !virt)
 499		return AE_BAD_PARAMETER;
 500
 501	*phys = virt_to_phys(virt);
 502
 503	return AE_OK;
 504}
 505#endif
 506
 507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 508static bool acpi_rev_override;
 509
 510int __init acpi_rev_override_setup(char *str)
 511{
 512	acpi_rev_override = true;
 513	return 1;
 514}
 515__setup("acpi_rev_override", acpi_rev_override_setup);
 516#else
 517#define acpi_rev_override	false
 518#endif
 519
 520#define ACPI_MAX_OVERRIDE_LEN 100
 521
 522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 523
 524acpi_status
 525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 526			    acpi_string *new_val)
 527{
 528	if (!init_val || !new_val)
 529		return AE_BAD_PARAMETER;
 530
 531	*new_val = NULL;
 532	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 533		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
 
 534		*new_val = acpi_os_name;
 535	}
 536
 537	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 538		pr_info("Overriding _REV return value to 5\n");
 539		*new_val = (char *)5;
 540	}
 541
 542	return AE_OK;
 543}
 544
 545static irqreturn_t acpi_irq(int irq, void *dev_id)
 546{
 547	if ((*acpi_irq_handler)(acpi_irq_context)) {
 
 
 
 
 548		acpi_irq_handled++;
 549		return IRQ_HANDLED;
 550	} else {
 551		acpi_irq_not_handled++;
 552		return IRQ_NONE;
 553	}
 554}
 555
 556acpi_status
 557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 558				  void *context)
 559{
 560	unsigned int irq;
 561
 562	acpi_irq_stats_init();
 563
 564	/*
 565	 * ACPI interrupts different from the SCI in our copy of the FADT are
 566	 * not supported.
 567	 */
 568	if (gsi != acpi_gbl_FADT.sci_interrupt)
 569		return AE_BAD_PARAMETER;
 570
 571	if (acpi_irq_handler)
 572		return AE_ALREADY_ACQUIRED;
 573
 574	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 575		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
 
 576		return AE_OK;
 577	}
 578
 579	acpi_irq_handler = handler;
 580	acpi_irq_context = context;
 581	if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
 582			         "acpi", acpi_irq)) {
 583		pr_err("SCI (IRQ%d) allocation failed\n", irq);
 584		acpi_irq_handler = NULL;
 585		return AE_NOT_ACQUIRED;
 586	}
 587	acpi_sci_irq = irq;
 588
 589	return AE_OK;
 590}
 591
 592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 593{
 594	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 595		return AE_BAD_PARAMETER;
 596
 597	free_irq(acpi_sci_irq, acpi_irq);
 598	acpi_irq_handler = NULL;
 599	acpi_sci_irq = INVALID_ACPI_IRQ;
 600
 601	return AE_OK;
 602}
 603
 604/*
 605 * Running in interpreter thread context, safe to sleep
 606 */
 607
 608void acpi_os_sleep(u64 ms)
 609{
 610	msleep(ms);
 611}
 612
 613void acpi_os_stall(u32 us)
 614{
 615	while (us) {
 616		u32 delay = 1000;
 617
 618		if (delay > us)
 619			delay = us;
 620		udelay(delay);
 621		touch_nmi_watchdog();
 622		us -= delay;
 623	}
 624}
 625
 626/*
 627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 628 * monotonically increasing timer with 100ns granularity. Do not use
 629 * ktime_get() to implement this function because this function may get
 630 * called after timekeeping has been suspended. Note: calling this function
 631 * after timekeeping has been suspended may lead to unexpected results
 632 * because when timekeeping is suspended the jiffies counter is not
 633 * incremented. See also timekeeping_suspend().
 634 */
 635u64 acpi_os_get_timer(void)
 636{
 637	return (get_jiffies_64() - INITIAL_JIFFIES) *
 638		(ACPI_100NSEC_PER_SEC / HZ);
 639}
 640
 641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
 642{
 643	u32 dummy;
 644
 645	if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
 646		/*
 647		 * set all-1 result as if reading from non-existing
 648		 * I/O port
 649		 */
 650		*value = GENMASK(width, 0);
 651		return AE_NOT_IMPLEMENTED;
 652	}
 653
 654	if (value)
 655		*value = 0;
 656	else
 657		value = &dummy;
 658
 
 659	if (width <= 8) {
 660		*value = inb(port);
 661	} else if (width <= 16) {
 662		*value = inw(port);
 663	} else if (width <= 32) {
 664		*value = inl(port);
 665	} else {
 666		pr_debug("%s: Access width %d not supported\n", __func__, width);
 667		return AE_BAD_PARAMETER;
 668	}
 669
 670	return AE_OK;
 671}
 672
 673EXPORT_SYMBOL(acpi_os_read_port);
 674
 675acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 676{
 677	if (!IS_ENABLED(CONFIG_HAS_IOPORT))
 678		return AE_NOT_IMPLEMENTED;
 679
 680	if (width <= 8) {
 681		outb(value, port);
 682	} else if (width <= 16) {
 683		outw(value, port);
 684	} else if (width <= 32) {
 685		outl(value, port);
 686	} else {
 687		pr_debug("%s: Access width %d not supported\n", __func__, width);
 688		return AE_BAD_PARAMETER;
 689	}
 690
 691	return AE_OK;
 692}
 693
 694EXPORT_SYMBOL(acpi_os_write_port);
 695
 696int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 697{
 698
 699	switch (width) {
 700	case 8:
 701		*(u8 *) value = readb(virt_addr);
 702		break;
 703	case 16:
 704		*(u16 *) value = readw(virt_addr);
 705		break;
 706	case 32:
 707		*(u32 *) value = readl(virt_addr);
 708		break;
 709	case 64:
 710		*(u64 *) value = readq(virt_addr);
 711		break;
 712	default:
 713		return -EINVAL;
 714	}
 715
 716	return 0;
 717}
 718
 719acpi_status
 720acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 721{
 722	void __iomem *virt_addr;
 723	unsigned int size = width / 8;
 724	bool unmap = false;
 725	u64 dummy;
 726	int error;
 727
 728	rcu_read_lock();
 729	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 730	if (!virt_addr) {
 731		rcu_read_unlock();
 732		virt_addr = acpi_os_ioremap(phys_addr, size);
 733		if (!virt_addr)
 734			return AE_BAD_ADDRESS;
 735		unmap = true;
 736	}
 737
 738	if (!value)
 739		value = &dummy;
 740
 741	error = acpi_os_read_iomem(virt_addr, value, width);
 742	BUG_ON(error);
 743
 744	if (unmap)
 745		iounmap(virt_addr);
 746	else
 747		rcu_read_unlock();
 748
 749	return AE_OK;
 750}
 751
 752acpi_status
 753acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 754{
 755	void __iomem *virt_addr;
 756	unsigned int size = width / 8;
 757	bool unmap = false;
 758
 759	rcu_read_lock();
 760	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 761	if (!virt_addr) {
 762		rcu_read_unlock();
 763		virt_addr = acpi_os_ioremap(phys_addr, size);
 764		if (!virt_addr)
 765			return AE_BAD_ADDRESS;
 766		unmap = true;
 767	}
 768
 769	switch (width) {
 770	case 8:
 771		writeb(value, virt_addr);
 772		break;
 773	case 16:
 774		writew(value, virt_addr);
 775		break;
 776	case 32:
 777		writel(value, virt_addr);
 778		break;
 779	case 64:
 780		writeq(value, virt_addr);
 781		break;
 782	default:
 783		BUG();
 784	}
 785
 786	if (unmap)
 787		iounmap(virt_addr);
 788	else
 789		rcu_read_unlock();
 790
 791	return AE_OK;
 792}
 793
 794#ifdef CONFIG_PCI
 795acpi_status
 796acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
 797			       u64 *value, u32 width)
 798{
 799	int result, size;
 800	u32 value32;
 801
 802	if (!value)
 803		return AE_BAD_PARAMETER;
 804
 805	switch (width) {
 806	case 8:
 807		size = 1;
 808		break;
 809	case 16:
 810		size = 2;
 811		break;
 812	case 32:
 813		size = 4;
 814		break;
 815	default:
 816		return AE_ERROR;
 817	}
 818
 819	result = raw_pci_read(pci_id->segment, pci_id->bus,
 820				PCI_DEVFN(pci_id->device, pci_id->function),
 821				reg, size, &value32);
 822	*value = value32;
 823
 824	return (result ? AE_ERROR : AE_OK);
 825}
 826
 827acpi_status
 828acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
 829				u64 value, u32 width)
 830{
 831	int result, size;
 832
 833	switch (width) {
 834	case 8:
 835		size = 1;
 836		break;
 837	case 16:
 838		size = 2;
 839		break;
 840	case 32:
 841		size = 4;
 842		break;
 843	default:
 844		return AE_ERROR;
 845	}
 846
 847	result = raw_pci_write(pci_id->segment, pci_id->bus,
 848				PCI_DEVFN(pci_id->device, pci_id->function),
 849				reg, size, value);
 850
 851	return (result ? AE_ERROR : AE_OK);
 852}
 853#endif
 854
 855static void acpi_os_execute_deferred(struct work_struct *work)
 856{
 857	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 858
 859	dpc->function(dpc->context);
 860	kfree(dpc);
 861}
 862
 863#ifdef CONFIG_ACPI_DEBUGGER
 864static struct acpi_debugger acpi_debugger;
 865static bool acpi_debugger_initialized;
 866
 867int acpi_register_debugger(struct module *owner,
 868			   const struct acpi_debugger_ops *ops)
 869{
 870	int ret = 0;
 871
 872	mutex_lock(&acpi_debugger.lock);
 873	if (acpi_debugger.ops) {
 874		ret = -EBUSY;
 875		goto err_lock;
 876	}
 877
 878	acpi_debugger.owner = owner;
 879	acpi_debugger.ops = ops;
 880
 881err_lock:
 882	mutex_unlock(&acpi_debugger.lock);
 883	return ret;
 884}
 885EXPORT_SYMBOL(acpi_register_debugger);
 886
 887void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 888{
 889	mutex_lock(&acpi_debugger.lock);
 890	if (ops == acpi_debugger.ops) {
 891		acpi_debugger.ops = NULL;
 892		acpi_debugger.owner = NULL;
 893	}
 894	mutex_unlock(&acpi_debugger.lock);
 895}
 896EXPORT_SYMBOL(acpi_unregister_debugger);
 897
 898int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 899{
 900	int ret;
 901	int (*func)(acpi_osd_exec_callback, void *);
 902	struct module *owner;
 903
 904	if (!acpi_debugger_initialized)
 905		return -ENODEV;
 906	mutex_lock(&acpi_debugger.lock);
 907	if (!acpi_debugger.ops) {
 908		ret = -ENODEV;
 909		goto err_lock;
 910	}
 911	if (!try_module_get(acpi_debugger.owner)) {
 912		ret = -ENODEV;
 913		goto err_lock;
 914	}
 915	func = acpi_debugger.ops->create_thread;
 916	owner = acpi_debugger.owner;
 917	mutex_unlock(&acpi_debugger.lock);
 918
 919	ret = func(function, context);
 920
 921	mutex_lock(&acpi_debugger.lock);
 922	module_put(owner);
 923err_lock:
 924	mutex_unlock(&acpi_debugger.lock);
 925	return ret;
 926}
 927
 928ssize_t acpi_debugger_write_log(const char *msg)
 929{
 930	ssize_t ret;
 931	ssize_t (*func)(const char *);
 932	struct module *owner;
 933
 934	if (!acpi_debugger_initialized)
 935		return -ENODEV;
 936	mutex_lock(&acpi_debugger.lock);
 937	if (!acpi_debugger.ops) {
 938		ret = -ENODEV;
 939		goto err_lock;
 940	}
 941	if (!try_module_get(acpi_debugger.owner)) {
 942		ret = -ENODEV;
 943		goto err_lock;
 944	}
 945	func = acpi_debugger.ops->write_log;
 946	owner = acpi_debugger.owner;
 947	mutex_unlock(&acpi_debugger.lock);
 948
 949	ret = func(msg);
 950
 951	mutex_lock(&acpi_debugger.lock);
 952	module_put(owner);
 953err_lock:
 954	mutex_unlock(&acpi_debugger.lock);
 955	return ret;
 956}
 957
 958ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 959{
 960	ssize_t ret;
 961	ssize_t (*func)(char *, size_t);
 962	struct module *owner;
 963
 964	if (!acpi_debugger_initialized)
 965		return -ENODEV;
 966	mutex_lock(&acpi_debugger.lock);
 967	if (!acpi_debugger.ops) {
 968		ret = -ENODEV;
 969		goto err_lock;
 970	}
 971	if (!try_module_get(acpi_debugger.owner)) {
 972		ret = -ENODEV;
 973		goto err_lock;
 974	}
 975	func = acpi_debugger.ops->read_cmd;
 976	owner = acpi_debugger.owner;
 977	mutex_unlock(&acpi_debugger.lock);
 978
 979	ret = func(buffer, buffer_length);
 980
 981	mutex_lock(&acpi_debugger.lock);
 982	module_put(owner);
 983err_lock:
 984	mutex_unlock(&acpi_debugger.lock);
 985	return ret;
 986}
 987
 988int acpi_debugger_wait_command_ready(void)
 989{
 990	int ret;
 991	int (*func)(bool, char *, size_t);
 992	struct module *owner;
 993
 994	if (!acpi_debugger_initialized)
 995		return -ENODEV;
 996	mutex_lock(&acpi_debugger.lock);
 997	if (!acpi_debugger.ops) {
 998		ret = -ENODEV;
 999		goto err_lock;
1000	}
1001	if (!try_module_get(acpi_debugger.owner)) {
1002		ret = -ENODEV;
1003		goto err_lock;
1004	}
1005	func = acpi_debugger.ops->wait_command_ready;
1006	owner = acpi_debugger.owner;
1007	mutex_unlock(&acpi_debugger.lock);
1008
1009	ret = func(acpi_gbl_method_executing,
1010		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1011
1012	mutex_lock(&acpi_debugger.lock);
1013	module_put(owner);
1014err_lock:
1015	mutex_unlock(&acpi_debugger.lock);
1016	return ret;
1017}
1018
1019int acpi_debugger_notify_command_complete(void)
1020{
1021	int ret;
1022	int (*func)(void);
1023	struct module *owner;
1024
1025	if (!acpi_debugger_initialized)
1026		return -ENODEV;
1027	mutex_lock(&acpi_debugger.lock);
1028	if (!acpi_debugger.ops) {
1029		ret = -ENODEV;
1030		goto err_lock;
1031	}
1032	if (!try_module_get(acpi_debugger.owner)) {
1033		ret = -ENODEV;
1034		goto err_lock;
1035	}
1036	func = acpi_debugger.ops->notify_command_complete;
1037	owner = acpi_debugger.owner;
1038	mutex_unlock(&acpi_debugger.lock);
1039
1040	ret = func();
1041
1042	mutex_lock(&acpi_debugger.lock);
1043	module_put(owner);
1044err_lock:
1045	mutex_unlock(&acpi_debugger.lock);
1046	return ret;
1047}
1048
1049int __init acpi_debugger_init(void)
1050{
1051	mutex_init(&acpi_debugger.lock);
1052	acpi_debugger_initialized = true;
1053	return 0;
1054}
1055#endif
1056
1057/*******************************************************************************
1058 *
1059 * FUNCTION:    acpi_os_execute
1060 *
1061 * PARAMETERS:  Type               - Type of the callback
1062 *              Function           - Function to be executed
1063 *              Context            - Function parameters
1064 *
1065 * RETURN:      Status
1066 *
1067 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1068 *              immediately executes function on a separate thread.
1069 *
1070 ******************************************************************************/
1071
1072acpi_status acpi_os_execute(acpi_execute_type type,
1073			    acpi_osd_exec_callback function, void *context)
1074{
 
1075	struct acpi_os_dpc *dpc;
 
1076	int ret;
1077
1078	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1079			  "Scheduling function [%p(%p)] for deferred execution.\n",
1080			  function, context));
1081
1082	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1083		ret = acpi_debugger_create_thread(function, context);
1084		if (ret) {
1085			pr_err("Kernel thread creation failed\n");
1086			return AE_ERROR;
1087		}
1088		return AE_OK;
1089	}
1090
1091	/*
1092	 * Allocate/initialize DPC structure.  Note that this memory will be
1093	 * freed by the callee.  The kernel handles the work_struct list  in a
1094	 * way that allows us to also free its memory inside the callee.
1095	 * Because we may want to schedule several tasks with different
1096	 * parameters we can't use the approach some kernel code uses of
1097	 * having a static work_struct.
1098	 */
1099
1100	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1101	if (!dpc)
1102		return AE_NO_MEMORY;
1103
1104	dpc->function = function;
1105	dpc->context = context;
1106	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107
1108	/*
1109	 * To prevent lockdep from complaining unnecessarily, make sure that
1110	 * there is a different static lockdep key for each workqueue by using
1111	 * INIT_WORK() for each of them separately.
1112	 */
1113	switch (type) {
1114	case OSL_NOTIFY_HANDLER:
1115		ret = queue_work(kacpi_notify_wq, &dpc->work);
1116		break;
1117	case OSL_GPE_HANDLER:
1118		/*
1119		 * On some machines, a software-initiated SMI causes corruption
1120		 * unless the SMI runs on CPU 0.  An SMI can be initiated by
1121		 * any AML, but typically it's done in GPE-related methods that
1122		 * are run via workqueues, so we can avoid the known corruption
1123		 * cases by always queueing on CPU 0.
1124		 */
1125		ret = queue_work_on(0, kacpid_wq, &dpc->work);
1126		break;
1127	default:
1128		pr_err("Unsupported os_execute type %d.\n", type);
1129		goto err;
1130	}
1131	if (!ret) {
1132		pr_err("Unable to queue work\n");
1133		goto err;
1134	}
1135
1136	return AE_OK;
 
1137
1138err:
1139	kfree(dpc);
1140	return AE_ERROR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141}
1142EXPORT_SYMBOL(acpi_os_execute);
1143
1144void acpi_os_wait_events_complete(void)
1145{
1146	/*
1147	 * Make sure the GPE handler or the fixed event handler is not used
1148	 * on another CPU after removal.
1149	 */
1150	if (acpi_sci_irq_valid())
1151		synchronize_hardirq(acpi_sci_irq);
1152	flush_workqueue(kacpid_wq);
1153	flush_workqueue(kacpi_notify_wq);
1154}
1155EXPORT_SYMBOL(acpi_os_wait_events_complete);
1156
1157struct acpi_hp_work {
1158	struct work_struct work;
1159	struct acpi_device *adev;
1160	u32 src;
1161};
1162
1163static void acpi_hotplug_work_fn(struct work_struct *work)
1164{
1165	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1166
1167	acpi_os_wait_events_complete();
1168	acpi_device_hotplug(hpw->adev, hpw->src);
1169	kfree(hpw);
1170}
1171
1172acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1173{
1174	struct acpi_hp_work *hpw;
1175
1176	acpi_handle_debug(adev->handle,
1177			  "Scheduling hotplug event %u for deferred handling\n",
1178			   src);
1179
1180	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1181	if (!hpw)
1182		return AE_NO_MEMORY;
1183
1184	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1185	hpw->adev = adev;
1186	hpw->src = src;
1187	/*
1188	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1189	 * the hotplug code may call driver .remove() functions, which may
1190	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1191	 * these workqueues.
1192	 */
1193	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1194		kfree(hpw);
1195		return AE_ERROR;
1196	}
1197	return AE_OK;
1198}
1199
1200bool acpi_queue_hotplug_work(struct work_struct *work)
1201{
1202	return queue_work(kacpi_hotplug_wq, work);
1203}
1204
1205acpi_status
1206acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1207{
1208	struct semaphore *sem = NULL;
1209
1210	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1211	if (!sem)
1212		return AE_NO_MEMORY;
1213
1214	sema_init(sem, initial_units);
1215
1216	*handle = (acpi_handle *) sem;
1217
1218	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1219			  *handle, initial_units));
1220
1221	return AE_OK;
1222}
1223
1224/*
1225 * TODO: A better way to delete semaphores?  Linux doesn't have a
1226 * 'delete_semaphore()' function -- may result in an invalid
1227 * pointer dereference for non-synchronized consumers.	Should
1228 * we at least check for blocked threads and signal/cancel them?
1229 */
1230
1231acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1232{
1233	struct semaphore *sem = (struct semaphore *)handle;
1234
1235	if (!sem)
1236		return AE_BAD_PARAMETER;
1237
1238	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1239
1240	BUG_ON(!list_empty(&sem->wait_list));
1241	kfree(sem);
1242	sem = NULL;
1243
1244	return AE_OK;
1245}
1246
1247/*
1248 * TODO: Support for units > 1?
1249 */
1250acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1251{
1252	acpi_status status = AE_OK;
1253	struct semaphore *sem = (struct semaphore *)handle;
1254	long jiffies;
1255	int ret = 0;
1256
1257	if (!acpi_os_initialized)
1258		return AE_OK;
1259
1260	if (!sem || (units < 1))
1261		return AE_BAD_PARAMETER;
1262
1263	if (units > 1)
1264		return AE_SUPPORT;
1265
1266	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1267			  handle, units, timeout));
1268
1269	if (timeout == ACPI_WAIT_FOREVER)
1270		jiffies = MAX_SCHEDULE_TIMEOUT;
1271	else
1272		jiffies = msecs_to_jiffies(timeout);
1273
1274	ret = down_timeout(sem, jiffies);
1275	if (ret)
1276		status = AE_TIME;
1277
1278	if (ACPI_FAILURE(status)) {
1279		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280				  "Failed to acquire semaphore[%p|%d|%d], %s",
1281				  handle, units, timeout,
1282				  acpi_format_exception(status)));
1283	} else {
1284		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1285				  "Acquired semaphore[%p|%d|%d]", handle,
1286				  units, timeout));
1287	}
1288
1289	return status;
1290}
1291
1292/*
1293 * TODO: Support for units > 1?
1294 */
1295acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1296{
1297	struct semaphore *sem = (struct semaphore *)handle;
1298
1299	if (!acpi_os_initialized)
1300		return AE_OK;
1301
1302	if (!sem || (units < 1))
1303		return AE_BAD_PARAMETER;
1304
1305	if (units > 1)
1306		return AE_SUPPORT;
1307
1308	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1309			  units));
1310
1311	up(sem);
1312
1313	return AE_OK;
1314}
1315
1316acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1317{
1318#ifdef ENABLE_DEBUGGER
1319	if (acpi_in_debugger) {
1320		u32 chars;
1321
1322		kdb_read(buffer, buffer_length);
1323
1324		/* remove the CR kdb includes */
1325		chars = strlen(buffer) - 1;
1326		buffer[chars] = '\0';
1327	}
1328#else
1329	int ret;
1330
1331	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332	if (ret < 0)
1333		return AE_ERROR;
1334	if (bytes_read)
1335		*bytes_read = ret;
1336#endif
1337
1338	return AE_OK;
1339}
1340EXPORT_SYMBOL(acpi_os_get_line);
1341
1342acpi_status acpi_os_wait_command_ready(void)
1343{
1344	int ret;
1345
1346	ret = acpi_debugger_wait_command_ready();
1347	if (ret < 0)
1348		return AE_ERROR;
1349	return AE_OK;
1350}
1351
1352acpi_status acpi_os_notify_command_complete(void)
1353{
1354	int ret;
1355
1356	ret = acpi_debugger_notify_command_complete();
1357	if (ret < 0)
1358		return AE_ERROR;
1359	return AE_OK;
1360}
1361
1362acpi_status acpi_os_signal(u32 function, void *info)
1363{
1364	switch (function) {
1365	case ACPI_SIGNAL_FATAL:
1366		pr_err("Fatal opcode executed\n");
1367		break;
1368	case ACPI_SIGNAL_BREAKPOINT:
1369		/*
1370		 * AML Breakpoint
1371		 * ACPI spec. says to treat it as a NOP unless
1372		 * you are debugging.  So if/when we integrate
1373		 * AML debugger into the kernel debugger its
1374		 * hook will go here.  But until then it is
1375		 * not useful to print anything on breakpoints.
1376		 */
1377		break;
1378	default:
1379		break;
1380	}
1381
1382	return AE_OK;
1383}
1384
1385static int __init acpi_os_name_setup(char *str)
1386{
1387	char *p = acpi_os_name;
1388	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1389
1390	if (!str || !*str)
1391		return 0;
1392
1393	for (; count-- && *str; str++) {
1394		if (isalnum(*str) || *str == ' ' || *str == ':')
1395			*p++ = *str;
1396		else if (*str == '\'' || *str == '"')
1397			continue;
1398		else
1399			break;
1400	}
1401	*p = 0;
1402
1403	return 1;
1404
1405}
1406
1407__setup("acpi_os_name=", acpi_os_name_setup);
1408
1409/*
1410 * Disable the auto-serialization of named objects creation methods.
1411 *
1412 * This feature is enabled by default.  It marks the AML control methods
1413 * that contain the opcodes to create named objects as "Serialized".
1414 */
1415static int __init acpi_no_auto_serialize_setup(char *str)
1416{
1417	acpi_gbl_auto_serialize_methods = FALSE;
1418	pr_info("Auto-serialization disabled\n");
1419
1420	return 1;
1421}
1422
1423__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1424
1425/* Check of resource interference between native drivers and ACPI
1426 * OperationRegions (SystemIO and System Memory only).
1427 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1428 * in arbitrary AML code and can interfere with legacy drivers.
1429 * acpi_enforce_resources= can be set to:
1430 *
1431 *   - strict (default) (2)
1432 *     -> further driver trying to access the resources will not load
1433 *   - lax              (1)
1434 *     -> further driver trying to access the resources will load, but you
1435 *     get a system message that something might go wrong...
1436 *
1437 *   - no               (0)
1438 *     -> ACPI Operation Region resources will not be registered
1439 *
1440 */
1441#define ENFORCE_RESOURCES_STRICT 2
1442#define ENFORCE_RESOURCES_LAX    1
1443#define ENFORCE_RESOURCES_NO     0
1444
1445static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446
1447static int __init acpi_enforce_resources_setup(char *str)
1448{
1449	if (str == NULL || *str == '\0')
1450		return 0;
1451
1452	if (!strcmp("strict", str))
1453		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1454	else if (!strcmp("lax", str))
1455		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1456	else if (!strcmp("no", str))
1457		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1458
1459	return 1;
1460}
1461
1462__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1463
1464/* Check for resource conflicts between ACPI OperationRegions and native
1465 * drivers */
1466int acpi_check_resource_conflict(const struct resource *res)
1467{
1468	acpi_adr_space_type space_id;
 
 
 
1469
1470	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471		return 0;
 
 
1472
1473	if (res->flags & IORESOURCE_IO)
1474		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1475	else if (res->flags & IORESOURCE_MEM)
1476		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1477	else
1478		return 0;
1479
1480	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1481		return 0;
1482
1483	pr_info("Resource conflict; ACPI support missing from driver?\n");
1484
1485	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1486		return -EBUSY;
1487
1488	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1489		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491	return 0;
1492}
1493EXPORT_SYMBOL(acpi_check_resource_conflict);
1494
1495int acpi_check_region(resource_size_t start, resource_size_t n,
1496		      const char *name)
1497{
1498	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
 
 
 
 
 
1499
1500	return acpi_check_resource_conflict(&res);
1501}
1502EXPORT_SYMBOL(acpi_check_region);
1503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504/*
1505 * Let drivers know whether the resource checks are effective
1506 */
1507int acpi_resources_are_enforced(void)
1508{
1509	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1510}
1511EXPORT_SYMBOL(acpi_resources_are_enforced);
1512
1513/*
1514 * Deallocate the memory for a spinlock.
1515 */
1516void acpi_os_delete_lock(acpi_spinlock handle)
1517{
1518	ACPI_FREE(handle);
1519}
1520
1521/*
1522 * Acquire a spinlock.
1523 *
1524 * handle is a pointer to the spinlock_t.
1525 */
1526
1527acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1528	__acquires(lockp)
1529{
1530	spin_lock(lockp);
1531	return 0;
 
1532}
1533
1534/*
1535 * Release a spinlock. See above.
1536 */
1537
1538void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1539	__releases(lockp)
1540{
1541	spin_unlock(lockp);
1542}
1543
1544#ifndef ACPI_USE_LOCAL_CACHE
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION:    acpi_os_create_cache
1549 *
1550 * PARAMETERS:  name      - Ascii name for the cache
1551 *              size      - Size of each cached object
1552 *              depth     - Maximum depth of the cache (in objects) <ignored>
1553 *              cache     - Where the new cache object is returned
1554 *
1555 * RETURN:      status
1556 *
1557 * DESCRIPTION: Create a cache object
1558 *
1559 ******************************************************************************/
1560
1561acpi_status
1562acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1563{
1564	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1565	if (*cache == NULL)
1566		return AE_ERROR;
1567	else
1568		return AE_OK;
1569}
1570
1571/*******************************************************************************
1572 *
1573 * FUNCTION:    acpi_os_purge_cache
1574 *
1575 * PARAMETERS:  Cache           - Handle to cache object
1576 *
1577 * RETURN:      Status
1578 *
1579 * DESCRIPTION: Free all objects within the requested cache.
1580 *
1581 ******************************************************************************/
1582
1583acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1584{
1585	kmem_cache_shrink(cache);
1586	return AE_OK;
1587}
1588
1589/*******************************************************************************
1590 *
1591 * FUNCTION:    acpi_os_delete_cache
1592 *
1593 * PARAMETERS:  Cache           - Handle to cache object
1594 *
1595 * RETURN:      Status
1596 *
1597 * DESCRIPTION: Free all objects within the requested cache and delete the
1598 *              cache object.
1599 *
1600 ******************************************************************************/
1601
1602acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1603{
1604	kmem_cache_destroy(cache);
1605	return AE_OK;
1606}
1607
1608/*******************************************************************************
1609 *
1610 * FUNCTION:    acpi_os_release_object
1611 *
1612 * PARAMETERS:  Cache       - Handle to cache object
1613 *              Object      - The object to be released
1614 *
1615 * RETURN:      None
1616 *
1617 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1618 *              the object is deleted.
1619 *
1620 ******************************************************************************/
1621
1622acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1623{
1624	kmem_cache_free(cache, object);
1625	return AE_OK;
1626}
1627#endif
1628
1629static int __init acpi_no_static_ssdt_setup(char *s)
1630{
1631	acpi_gbl_disable_ssdt_table_install = TRUE;
1632	pr_info("Static SSDT installation disabled\n");
1633
1634	return 0;
1635}
1636
1637early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1638
1639static int __init acpi_disable_return_repair(char *s)
1640{
1641	pr_notice("Predefined validation mechanism disabled\n");
 
1642	acpi_gbl_disable_auto_repair = TRUE;
1643
1644	return 1;
1645}
1646
1647__setup("acpica_no_return_repair", acpi_disable_return_repair);
1648
1649acpi_status __init acpi_os_initialize(void)
1650{
1651	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1652	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653
1654	acpi_gbl_xgpe0_block_logical_address =
1655		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1656	acpi_gbl_xgpe1_block_logical_address =
1657		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1658
1659	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1660		/*
1661		 * Use acpi_os_map_generic_address to pre-map the reset
1662		 * register if it's in system memory.
1663		 */
1664		void *rv;
1665
1666		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1667		pr_debug("%s: Reset register mapping %s\n", __func__,
1668			 rv ? "successful" : "failed");
1669	}
1670	acpi_os_initialized = true;
1671
1672	return AE_OK;
1673}
1674
1675acpi_status __init acpi_os_initialize1(void)
1676{
1677	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1678	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1679	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1680	BUG_ON(!kacpid_wq);
1681	BUG_ON(!kacpi_notify_wq);
1682	BUG_ON(!kacpi_hotplug_wq);
1683	acpi_osi_init();
1684	return AE_OK;
1685}
1686
1687acpi_status acpi_os_terminate(void)
1688{
1689	if (acpi_irq_handler) {
1690		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1691						 acpi_irq_handler);
1692	}
1693
1694	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1695	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1696	acpi_gbl_xgpe0_block_logical_address = 0UL;
1697	acpi_gbl_xgpe1_block_logical_address = 0UL;
1698
1699	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1700	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1701
1702	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1703		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1704
1705	destroy_workqueue(kacpid_wq);
1706	destroy_workqueue(kacpi_notify_wq);
1707	destroy_workqueue(kacpi_hotplug_wq);
1708
1709	return AE_OK;
1710}
1711
1712acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1713				  u32 pm1b_control)
1714{
1715	int rc = 0;
1716
1717	if (__acpi_os_prepare_sleep)
1718		rc = __acpi_os_prepare_sleep(sleep_state,
1719					     pm1a_control, pm1b_control);
1720	if (rc < 0)
1721		return AE_ERROR;
1722	else if (rc > 0)
1723		return AE_CTRL_TERMINATE;
1724
1725	return AE_OK;
1726}
1727
1728void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1729			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1730{
1731	__acpi_os_prepare_sleep = func;
1732}
1733
1734#if (ACPI_REDUCED_HARDWARE)
1735acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1736				  u32 val_b)
1737{
1738	int rc = 0;
1739
1740	if (__acpi_os_prepare_extended_sleep)
1741		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1742					     val_a, val_b);
1743	if (rc < 0)
1744		return AE_ERROR;
1745	else if (rc > 0)
1746		return AE_CTRL_TERMINATE;
1747
1748	return AE_OK;
1749}
1750#else
1751acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1752				  u32 val_b)
1753{
1754	return AE_OK;
1755}
1756#endif
1757
1758void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1759			       u32 val_a, u32 val_b))
1760{
1761	__acpi_os_prepare_extended_sleep = func;
1762}
1763
1764acpi_status acpi_os_enter_sleep(u8 sleep_state,
1765				u32 reg_a_value, u32 reg_b_value)
1766{
1767	acpi_status status;
1768
1769	if (acpi_gbl_reduced_hardware)
1770		status = acpi_os_prepare_extended_sleep(sleep_state,
1771							reg_a_value,
1772							reg_b_value);
1773	else
1774		status = acpi_os_prepare_sleep(sleep_state,
1775					       reg_a_value, reg_b_value);
1776	return status;
1777}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
  10 */
  11
 
 
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/mm.h>
  16#include <linux/highmem.h>
  17#include <linux/lockdep.h>
  18#include <linux/pci.h>
  19#include <linux/interrupt.h>
  20#include <linux/kmod.h>
  21#include <linux/delay.h>
  22#include <linux/workqueue.h>
  23#include <linux/nmi.h>
  24#include <linux/acpi.h>
  25#include <linux/efi.h>
  26#include <linux/ioport.h>
  27#include <linux/list.h>
  28#include <linux/jiffies.h>
  29#include <linux/semaphore.h>
  30#include <linux/security.h>
  31
  32#include <asm/io.h>
  33#include <linux/uaccess.h>
  34#include <linux/io-64-nonatomic-lo-hi.h>
  35
  36#include "acpica/accommon.h"
  37#include "acpica/acnamesp.h"
  38#include "internal.h"
  39
 
  40#define _COMPONENT		ACPI_OS_SERVICES
  41ACPI_MODULE_NAME("osl");
  42
  43struct acpi_os_dpc {
  44	acpi_osd_exec_callback function;
  45	void *context;
  46	struct work_struct work;
  47};
  48
  49#ifdef ENABLE_DEBUGGER
  50#include <linux/kdb.h>
  51
  52/* stuff for debugger support */
  53int acpi_in_debugger;
  54EXPORT_SYMBOL(acpi_in_debugger);
  55#endif				/*ENABLE_DEBUGGER */
  56
  57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  58				      u32 pm1b_ctrl);
  59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  60				      u32 val_b);
  61
  62static acpi_osd_handler acpi_irq_handler;
  63static void *acpi_irq_context;
  64static struct workqueue_struct *kacpid_wq;
  65static struct workqueue_struct *kacpi_notify_wq;
  66static struct workqueue_struct *kacpi_hotplug_wq;
  67static bool acpi_os_initialized;
  68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  69bool acpi_permanent_mmap = false;
  70
  71/*
  72 * This list of permanent mappings is for memory that may be accessed from
  73 * interrupt context, where we can't do the ioremap().
  74 */
  75struct acpi_ioremap {
  76	struct list_head list;
  77	void __iomem *virt;
  78	acpi_physical_address phys;
  79	acpi_size size;
  80	unsigned long refcount;
 
 
 
  81};
  82
  83static LIST_HEAD(acpi_ioremaps);
  84static DEFINE_MUTEX(acpi_ioremap_lock);
  85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  86
  87static void __init acpi_request_region (struct acpi_generic_address *gas,
  88	unsigned int length, char *desc)
  89{
  90	u64 addr;
  91
  92	/* Handle possible alignment issues */
  93	memcpy(&addr, &gas->address, sizeof(addr));
  94	if (!addr || !length)
  95		return;
  96
  97	/* Resources are never freed */
  98	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
  99		request_region(addr, length, desc);
 100	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 101		request_mem_region(addr, length, desc);
 102}
 103
 104static int __init acpi_reserve_resources(void)
 105{
 106	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 107		"ACPI PM1a_EVT_BLK");
 108
 109	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 110		"ACPI PM1b_EVT_BLK");
 111
 112	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 113		"ACPI PM1a_CNT_BLK");
 114
 115	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 116		"ACPI PM1b_CNT_BLK");
 117
 118	if (acpi_gbl_FADT.pm_timer_length == 4)
 119		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 120
 121	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 122		"ACPI PM2_CNT_BLK");
 123
 124	/* Length of GPE blocks must be a non-negative multiple of 2 */
 125
 126	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 127		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 128			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 129
 130	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 131		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 132			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 133
 134	return 0;
 135}
 136fs_initcall_sync(acpi_reserve_resources);
 137
 138void acpi_os_printf(const char *fmt, ...)
 139{
 140	va_list args;
 141	va_start(args, fmt);
 142	acpi_os_vprintf(fmt, args);
 143	va_end(args);
 144}
 145EXPORT_SYMBOL(acpi_os_printf);
 146
 147void acpi_os_vprintf(const char *fmt, va_list args)
 148{
 149	static char buffer[512];
 150
 151	vsprintf(buffer, fmt, args);
 152
 153#ifdef ENABLE_DEBUGGER
 154	if (acpi_in_debugger) {
 155		kdb_printf("%s", buffer);
 156	} else {
 157		if (printk_get_level(buffer))
 158			printk("%s", buffer);
 159		else
 160			printk(KERN_CONT "%s", buffer);
 161	}
 162#else
 163	if (acpi_debugger_write_log(buffer) < 0) {
 164		if (printk_get_level(buffer))
 165			printk("%s", buffer);
 166		else
 167			printk(KERN_CONT "%s", buffer);
 168	}
 169#endif
 170}
 171
 172#ifdef CONFIG_KEXEC
 173static unsigned long acpi_rsdp;
 174static int __init setup_acpi_rsdp(char *arg)
 175{
 176	return kstrtoul(arg, 16, &acpi_rsdp);
 177}
 178early_param("acpi_rsdp", setup_acpi_rsdp);
 179#endif
 180
 181acpi_physical_address __init acpi_os_get_root_pointer(void)
 182{
 183	acpi_physical_address pa;
 184
 185#ifdef CONFIG_KEXEC
 186	/*
 187	 * We may have been provided with an RSDP on the command line,
 188	 * but if a malicious user has done so they may be pointing us
 189	 * at modified ACPI tables that could alter kernel behaviour -
 190	 * so, we check the lockdown status before making use of
 191	 * it. If we trust it then also stash it in an architecture
 192	 * specific location (if appropriate) so it can be carried
 193	 * over further kexec()s.
 194	 */
 195	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 196		acpi_arch_set_root_pointer(acpi_rsdp);
 197		return acpi_rsdp;
 198	}
 199#endif
 200	pa = acpi_arch_get_root_pointer();
 201	if (pa)
 202		return pa;
 203
 204	if (efi_enabled(EFI_CONFIG_TABLES)) {
 205		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 206			return efi.acpi20;
 207		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 208			return efi.acpi;
 209		pr_err(PREFIX "System description tables not found\n");
 210	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 211		acpi_find_root_pointer(&pa);
 212	}
 213
 214	return pa;
 215}
 216
 217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 218static struct acpi_ioremap *
 219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 220{
 221	struct acpi_ioremap *map;
 222
 223	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 224		if (map->phys <= phys &&
 225		    phys + size <= map->phys + map->size)
 226			return map;
 227
 228	return NULL;
 229}
 230
 231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 232static void __iomem *
 233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 234{
 235	struct acpi_ioremap *map;
 236
 237	map = acpi_map_lookup(phys, size);
 238	if (map)
 239		return map->virt + (phys - map->phys);
 240
 241	return NULL;
 242}
 243
 244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 245{
 246	struct acpi_ioremap *map;
 247	void __iomem *virt = NULL;
 248
 249	mutex_lock(&acpi_ioremap_lock);
 250	map = acpi_map_lookup(phys, size);
 251	if (map) {
 252		virt = map->virt + (phys - map->phys);
 253		map->refcount++;
 254	}
 255	mutex_unlock(&acpi_ioremap_lock);
 256	return virt;
 257}
 258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 259
 260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 261static struct acpi_ioremap *
 262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 263{
 264	struct acpi_ioremap *map;
 265
 266	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 267		if (map->virt <= virt &&
 268		    virt + size <= map->virt + map->size)
 269			return map;
 270
 271	return NULL;
 272}
 273
 274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 275/* ioremap will take care of cache attributes */
 276#define should_use_kmap(pfn)   0
 277#else
 278#define should_use_kmap(pfn)   page_is_ram(pfn)
 279#endif
 280
 281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 282{
 283	unsigned long pfn;
 284
 285	pfn = pg_off >> PAGE_SHIFT;
 286	if (should_use_kmap(pfn)) {
 287		if (pg_sz > PAGE_SIZE)
 288			return NULL;
 289		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 290	} else
 291		return acpi_os_ioremap(pg_off, pg_sz);
 292}
 293
 294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 295{
 296	unsigned long pfn;
 297
 298	pfn = pg_off >> PAGE_SHIFT;
 299	if (should_use_kmap(pfn))
 300		kunmap(pfn_to_page(pfn));
 301	else
 302		iounmap(vaddr);
 303}
 304
 305/**
 306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 307 * @phys: Start of the physical address range to map.
 308 * @size: Size of the physical address range to map.
 309 *
 310 * Look up the given physical address range in the list of existing ACPI memory
 311 * mappings.  If found, get a reference to it and return a pointer to it (its
 312 * virtual address).  If not found, map it, add it to that list and return a
 313 * pointer to it.
 314 *
 315 * During early init (when acpi_permanent_mmap has not been set yet) this
 316 * routine simply calls __acpi_map_table() to get the job done.
 317 */
 318void __iomem __ref
 319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 320{
 321	struct acpi_ioremap *map;
 322	void __iomem *virt;
 323	acpi_physical_address pg_off;
 324	acpi_size pg_sz;
 325
 326	if (phys > ULONG_MAX) {
 327		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 328		return NULL;
 329	}
 330
 331	if (!acpi_permanent_mmap)
 332		return __acpi_map_table((unsigned long)phys, size);
 333
 334	mutex_lock(&acpi_ioremap_lock);
 335	/* Check if there's a suitable mapping already. */
 336	map = acpi_map_lookup(phys, size);
 337	if (map) {
 338		map->refcount++;
 339		goto out;
 340	}
 341
 342	map = kzalloc(sizeof(*map), GFP_KERNEL);
 343	if (!map) {
 344		mutex_unlock(&acpi_ioremap_lock);
 345		return NULL;
 346	}
 347
 348	pg_off = round_down(phys, PAGE_SIZE);
 349	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 350	virt = acpi_map(pg_off, pg_sz);
 351	if (!virt) {
 352		mutex_unlock(&acpi_ioremap_lock);
 353		kfree(map);
 354		return NULL;
 355	}
 356
 357	INIT_LIST_HEAD(&map->list);
 358	map->virt = virt;
 359	map->phys = pg_off;
 360	map->size = pg_sz;
 361	map->refcount = 1;
 362
 363	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 364
 365out:
 366	mutex_unlock(&acpi_ioremap_lock);
 367	return map->virt + (phys - map->phys);
 368}
 369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 370
 371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 372{
 373	return (void *)acpi_os_map_iomem(phys, size);
 374}
 375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 376
 377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 378{
 379	if (!--map->refcount)
 380		list_del_rcu(&map->list);
 
 
 
 
 381}
 382
 383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 
 384{
 385	if (!map->refcount) {
 386		synchronize_rcu_expedited();
 387		acpi_unmap(map->phys, map->virt);
 388		kfree(map);
 389	}
 
 
 390}
 391
 392/**
 393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 394 * @virt: Start of the address range to drop a reference to.
 395 * @size: Size of the address range to drop a reference to.
 396 *
 397 * Look up the given virtual address range in the list of existing ACPI memory
 398 * mappings, drop a reference to it and unmap it if there are no more active
 399 * references to it.
 400 *
 401 * During early init (when acpi_permanent_mmap has not been set yet) this
 402 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 404 * here.
 405 */
 406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 407{
 408	struct acpi_ioremap *map;
 409
 410	if (!acpi_permanent_mmap) {
 411		__acpi_unmap_table(virt, size);
 412		return;
 413	}
 414
 415	mutex_lock(&acpi_ioremap_lock);
 
 416	map = acpi_map_lookup_virt(virt, size);
 417	if (!map) {
 418		mutex_unlock(&acpi_ioremap_lock);
 419		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 420		return;
 421	}
 422	acpi_os_drop_map_ref(map);
 
 423	mutex_unlock(&acpi_ioremap_lock);
 424
 425	acpi_os_map_cleanup(map);
 426}
 427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 428
 
 
 
 
 
 429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 430{
 431	return acpi_os_unmap_iomem((void __iomem *)virt, size);
 432}
 433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 434
 435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 436{
 437	u64 addr;
 438	void __iomem *virt;
 439
 440	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 441		return 0;
 442
 443	/* Handle possible alignment issues */
 444	memcpy(&addr, &gas->address, sizeof(addr));
 445	if (!addr || !gas->bit_width)
 446		return -EINVAL;
 447
 448	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 449	if (!virt)
 450		return -EIO;
 451
 452	return 0;
 453}
 454EXPORT_SYMBOL(acpi_os_map_generic_address);
 455
 456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 457{
 458	u64 addr;
 459	struct acpi_ioremap *map;
 460
 461	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 462		return;
 463
 464	/* Handle possible alignment issues */
 465	memcpy(&addr, &gas->address, sizeof(addr));
 466	if (!addr || !gas->bit_width)
 467		return;
 468
 469	mutex_lock(&acpi_ioremap_lock);
 
 470	map = acpi_map_lookup(addr, gas->bit_width / 8);
 471	if (!map) {
 472		mutex_unlock(&acpi_ioremap_lock);
 473		return;
 474	}
 475	acpi_os_drop_map_ref(map);
 
 476	mutex_unlock(&acpi_ioremap_lock);
 477
 478	acpi_os_map_cleanup(map);
 479}
 480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 481
 482#ifdef ACPI_FUTURE_USAGE
 483acpi_status
 484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 485{
 486	if (!phys || !virt)
 487		return AE_BAD_PARAMETER;
 488
 489	*phys = virt_to_phys(virt);
 490
 491	return AE_OK;
 492}
 493#endif
 494
 495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 496static bool acpi_rev_override;
 497
 498int __init acpi_rev_override_setup(char *str)
 499{
 500	acpi_rev_override = true;
 501	return 1;
 502}
 503__setup("acpi_rev_override", acpi_rev_override_setup);
 504#else
 505#define acpi_rev_override	false
 506#endif
 507
 508#define ACPI_MAX_OVERRIDE_LEN 100
 509
 510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 511
 512acpi_status
 513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 514			    acpi_string *new_val)
 515{
 516	if (!init_val || !new_val)
 517		return AE_BAD_PARAMETER;
 518
 519	*new_val = NULL;
 520	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 521		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 522		       acpi_os_name);
 523		*new_val = acpi_os_name;
 524	}
 525
 526	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 527		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 528		*new_val = (char *)5;
 529	}
 530
 531	return AE_OK;
 532}
 533
 534static irqreturn_t acpi_irq(int irq, void *dev_id)
 535{
 536	u32 handled;
 537
 538	handled = (*acpi_irq_handler) (acpi_irq_context);
 539
 540	if (handled) {
 541		acpi_irq_handled++;
 542		return IRQ_HANDLED;
 543	} else {
 544		acpi_irq_not_handled++;
 545		return IRQ_NONE;
 546	}
 547}
 548
 549acpi_status
 550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 551				  void *context)
 552{
 553	unsigned int irq;
 554
 555	acpi_irq_stats_init();
 556
 557	/*
 558	 * ACPI interrupts different from the SCI in our copy of the FADT are
 559	 * not supported.
 560	 */
 561	if (gsi != acpi_gbl_FADT.sci_interrupt)
 562		return AE_BAD_PARAMETER;
 563
 564	if (acpi_irq_handler)
 565		return AE_ALREADY_ACQUIRED;
 566
 567	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 568		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 569		       gsi);
 570		return AE_OK;
 571	}
 572
 573	acpi_irq_handler = handler;
 574	acpi_irq_context = context;
 575	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 576		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 
 577		acpi_irq_handler = NULL;
 578		return AE_NOT_ACQUIRED;
 579	}
 580	acpi_sci_irq = irq;
 581
 582	return AE_OK;
 583}
 584
 585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 586{
 587	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 588		return AE_BAD_PARAMETER;
 589
 590	free_irq(acpi_sci_irq, acpi_irq);
 591	acpi_irq_handler = NULL;
 592	acpi_sci_irq = INVALID_ACPI_IRQ;
 593
 594	return AE_OK;
 595}
 596
 597/*
 598 * Running in interpreter thread context, safe to sleep
 599 */
 600
 601void acpi_os_sleep(u64 ms)
 602{
 603	msleep(ms);
 604}
 605
 606void acpi_os_stall(u32 us)
 607{
 608	while (us) {
 609		u32 delay = 1000;
 610
 611		if (delay > us)
 612			delay = us;
 613		udelay(delay);
 614		touch_nmi_watchdog();
 615		us -= delay;
 616	}
 617}
 618
 619/*
 620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 621 * monotonically increasing timer with 100ns granularity. Do not use
 622 * ktime_get() to implement this function because this function may get
 623 * called after timekeeping has been suspended. Note: calling this function
 624 * after timekeeping has been suspended may lead to unexpected results
 625 * because when timekeeping is suspended the jiffies counter is not
 626 * incremented. See also timekeeping_suspend().
 627 */
 628u64 acpi_os_get_timer(void)
 629{
 630	return (get_jiffies_64() - INITIAL_JIFFIES) *
 631		(ACPI_100NSEC_PER_SEC / HZ);
 632}
 633
 634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 635{
 636	u32 dummy;
 637
 638	if (!value)
 
 
 
 
 
 
 
 
 
 
 
 639		value = &dummy;
 640
 641	*value = 0;
 642	if (width <= 8) {
 643		*(u8 *) value = inb(port);
 644	} else if (width <= 16) {
 645		*(u16 *) value = inw(port);
 646	} else if (width <= 32) {
 647		*(u32 *) value = inl(port);
 648	} else {
 649		BUG();
 
 650	}
 651
 652	return AE_OK;
 653}
 654
 655EXPORT_SYMBOL(acpi_os_read_port);
 656
 657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 658{
 
 
 
 659	if (width <= 8) {
 660		outb(value, port);
 661	} else if (width <= 16) {
 662		outw(value, port);
 663	} else if (width <= 32) {
 664		outl(value, port);
 665	} else {
 666		BUG();
 
 667	}
 668
 669	return AE_OK;
 670}
 671
 672EXPORT_SYMBOL(acpi_os_write_port);
 673
 674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 675{
 676
 677	switch (width) {
 678	case 8:
 679		*(u8 *) value = readb(virt_addr);
 680		break;
 681	case 16:
 682		*(u16 *) value = readw(virt_addr);
 683		break;
 684	case 32:
 685		*(u32 *) value = readl(virt_addr);
 686		break;
 687	case 64:
 688		*(u64 *) value = readq(virt_addr);
 689		break;
 690	default:
 691		return -EINVAL;
 692	}
 693
 694	return 0;
 695}
 696
 697acpi_status
 698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 699{
 700	void __iomem *virt_addr;
 701	unsigned int size = width / 8;
 702	bool unmap = false;
 703	u64 dummy;
 704	int error;
 705
 706	rcu_read_lock();
 707	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 708	if (!virt_addr) {
 709		rcu_read_unlock();
 710		virt_addr = acpi_os_ioremap(phys_addr, size);
 711		if (!virt_addr)
 712			return AE_BAD_ADDRESS;
 713		unmap = true;
 714	}
 715
 716	if (!value)
 717		value = &dummy;
 718
 719	error = acpi_os_read_iomem(virt_addr, value, width);
 720	BUG_ON(error);
 721
 722	if (unmap)
 723		iounmap(virt_addr);
 724	else
 725		rcu_read_unlock();
 726
 727	return AE_OK;
 728}
 729
 730acpi_status
 731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 732{
 733	void __iomem *virt_addr;
 734	unsigned int size = width / 8;
 735	bool unmap = false;
 736
 737	rcu_read_lock();
 738	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 739	if (!virt_addr) {
 740		rcu_read_unlock();
 741		virt_addr = acpi_os_ioremap(phys_addr, size);
 742		if (!virt_addr)
 743			return AE_BAD_ADDRESS;
 744		unmap = true;
 745	}
 746
 747	switch (width) {
 748	case 8:
 749		writeb(value, virt_addr);
 750		break;
 751	case 16:
 752		writew(value, virt_addr);
 753		break;
 754	case 32:
 755		writel(value, virt_addr);
 756		break;
 757	case 64:
 758		writeq(value, virt_addr);
 759		break;
 760	default:
 761		BUG();
 762	}
 763
 764	if (unmap)
 765		iounmap(virt_addr);
 766	else
 767		rcu_read_unlock();
 768
 769	return AE_OK;
 770}
 771
 772#ifdef CONFIG_PCI
 773acpi_status
 774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 775			       u64 *value, u32 width)
 776{
 777	int result, size;
 778	u32 value32;
 779
 780	if (!value)
 781		return AE_BAD_PARAMETER;
 782
 783	switch (width) {
 784	case 8:
 785		size = 1;
 786		break;
 787	case 16:
 788		size = 2;
 789		break;
 790	case 32:
 791		size = 4;
 792		break;
 793	default:
 794		return AE_ERROR;
 795	}
 796
 797	result = raw_pci_read(pci_id->segment, pci_id->bus,
 798				PCI_DEVFN(pci_id->device, pci_id->function),
 799				reg, size, &value32);
 800	*value = value32;
 801
 802	return (result ? AE_ERROR : AE_OK);
 803}
 804
 805acpi_status
 806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 807				u64 value, u32 width)
 808{
 809	int result, size;
 810
 811	switch (width) {
 812	case 8:
 813		size = 1;
 814		break;
 815	case 16:
 816		size = 2;
 817		break;
 818	case 32:
 819		size = 4;
 820		break;
 821	default:
 822		return AE_ERROR;
 823	}
 824
 825	result = raw_pci_write(pci_id->segment, pci_id->bus,
 826				PCI_DEVFN(pci_id->device, pci_id->function),
 827				reg, size, value);
 828
 829	return (result ? AE_ERROR : AE_OK);
 830}
 831#endif
 832
 833static void acpi_os_execute_deferred(struct work_struct *work)
 834{
 835	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 836
 837	dpc->function(dpc->context);
 838	kfree(dpc);
 839}
 840
 841#ifdef CONFIG_ACPI_DEBUGGER
 842static struct acpi_debugger acpi_debugger;
 843static bool acpi_debugger_initialized;
 844
 845int acpi_register_debugger(struct module *owner,
 846			   const struct acpi_debugger_ops *ops)
 847{
 848	int ret = 0;
 849
 850	mutex_lock(&acpi_debugger.lock);
 851	if (acpi_debugger.ops) {
 852		ret = -EBUSY;
 853		goto err_lock;
 854	}
 855
 856	acpi_debugger.owner = owner;
 857	acpi_debugger.ops = ops;
 858
 859err_lock:
 860	mutex_unlock(&acpi_debugger.lock);
 861	return ret;
 862}
 863EXPORT_SYMBOL(acpi_register_debugger);
 864
 865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 866{
 867	mutex_lock(&acpi_debugger.lock);
 868	if (ops == acpi_debugger.ops) {
 869		acpi_debugger.ops = NULL;
 870		acpi_debugger.owner = NULL;
 871	}
 872	mutex_unlock(&acpi_debugger.lock);
 873}
 874EXPORT_SYMBOL(acpi_unregister_debugger);
 875
 876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 877{
 878	int ret;
 879	int (*func)(acpi_osd_exec_callback, void *);
 880	struct module *owner;
 881
 882	if (!acpi_debugger_initialized)
 883		return -ENODEV;
 884	mutex_lock(&acpi_debugger.lock);
 885	if (!acpi_debugger.ops) {
 886		ret = -ENODEV;
 887		goto err_lock;
 888	}
 889	if (!try_module_get(acpi_debugger.owner)) {
 890		ret = -ENODEV;
 891		goto err_lock;
 892	}
 893	func = acpi_debugger.ops->create_thread;
 894	owner = acpi_debugger.owner;
 895	mutex_unlock(&acpi_debugger.lock);
 896
 897	ret = func(function, context);
 898
 899	mutex_lock(&acpi_debugger.lock);
 900	module_put(owner);
 901err_lock:
 902	mutex_unlock(&acpi_debugger.lock);
 903	return ret;
 904}
 905
 906ssize_t acpi_debugger_write_log(const char *msg)
 907{
 908	ssize_t ret;
 909	ssize_t (*func)(const char *);
 910	struct module *owner;
 911
 912	if (!acpi_debugger_initialized)
 913		return -ENODEV;
 914	mutex_lock(&acpi_debugger.lock);
 915	if (!acpi_debugger.ops) {
 916		ret = -ENODEV;
 917		goto err_lock;
 918	}
 919	if (!try_module_get(acpi_debugger.owner)) {
 920		ret = -ENODEV;
 921		goto err_lock;
 922	}
 923	func = acpi_debugger.ops->write_log;
 924	owner = acpi_debugger.owner;
 925	mutex_unlock(&acpi_debugger.lock);
 926
 927	ret = func(msg);
 928
 929	mutex_lock(&acpi_debugger.lock);
 930	module_put(owner);
 931err_lock:
 932	mutex_unlock(&acpi_debugger.lock);
 933	return ret;
 934}
 935
 936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 937{
 938	ssize_t ret;
 939	ssize_t (*func)(char *, size_t);
 940	struct module *owner;
 941
 942	if (!acpi_debugger_initialized)
 943		return -ENODEV;
 944	mutex_lock(&acpi_debugger.lock);
 945	if (!acpi_debugger.ops) {
 946		ret = -ENODEV;
 947		goto err_lock;
 948	}
 949	if (!try_module_get(acpi_debugger.owner)) {
 950		ret = -ENODEV;
 951		goto err_lock;
 952	}
 953	func = acpi_debugger.ops->read_cmd;
 954	owner = acpi_debugger.owner;
 955	mutex_unlock(&acpi_debugger.lock);
 956
 957	ret = func(buffer, buffer_length);
 958
 959	mutex_lock(&acpi_debugger.lock);
 960	module_put(owner);
 961err_lock:
 962	mutex_unlock(&acpi_debugger.lock);
 963	return ret;
 964}
 965
 966int acpi_debugger_wait_command_ready(void)
 967{
 968	int ret;
 969	int (*func)(bool, char *, size_t);
 970	struct module *owner;
 971
 972	if (!acpi_debugger_initialized)
 973		return -ENODEV;
 974	mutex_lock(&acpi_debugger.lock);
 975	if (!acpi_debugger.ops) {
 976		ret = -ENODEV;
 977		goto err_lock;
 978	}
 979	if (!try_module_get(acpi_debugger.owner)) {
 980		ret = -ENODEV;
 981		goto err_lock;
 982	}
 983	func = acpi_debugger.ops->wait_command_ready;
 984	owner = acpi_debugger.owner;
 985	mutex_unlock(&acpi_debugger.lock);
 986
 987	ret = func(acpi_gbl_method_executing,
 988		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 989
 990	mutex_lock(&acpi_debugger.lock);
 991	module_put(owner);
 992err_lock:
 993	mutex_unlock(&acpi_debugger.lock);
 994	return ret;
 995}
 996
 997int acpi_debugger_notify_command_complete(void)
 998{
 999	int ret;
1000	int (*func)(void);
1001	struct module *owner;
1002
1003	if (!acpi_debugger_initialized)
1004		return -ENODEV;
1005	mutex_lock(&acpi_debugger.lock);
1006	if (!acpi_debugger.ops) {
1007		ret = -ENODEV;
1008		goto err_lock;
1009	}
1010	if (!try_module_get(acpi_debugger.owner)) {
1011		ret = -ENODEV;
1012		goto err_lock;
1013	}
1014	func = acpi_debugger.ops->notify_command_complete;
1015	owner = acpi_debugger.owner;
1016	mutex_unlock(&acpi_debugger.lock);
1017
1018	ret = func();
1019
1020	mutex_lock(&acpi_debugger.lock);
1021	module_put(owner);
1022err_lock:
1023	mutex_unlock(&acpi_debugger.lock);
1024	return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029	mutex_init(&acpi_debugger.lock);
1030	acpi_debugger_initialized = true;
1031	return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION:    acpi_os_execute
1038 *
1039 * PARAMETERS:  Type               - Type of the callback
1040 *              Function           - Function to be executed
1041 *              Context            - Function parameters
1042 *
1043 * RETURN:      Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 *              immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051			    acpi_osd_exec_callback function, void *context)
1052{
1053	acpi_status status = AE_OK;
1054	struct acpi_os_dpc *dpc;
1055	struct workqueue_struct *queue;
1056	int ret;
 
1057	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058			  "Scheduling function [%p(%p)] for deferred execution.\n",
1059			  function, context));
1060
1061	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062		ret = acpi_debugger_create_thread(function, context);
1063		if (ret) {
1064			pr_err("Call to kthread_create() failed.\n");
1065			status = AE_ERROR;
1066		}
1067		goto out_thread;
1068	}
1069
1070	/*
1071	 * Allocate/initialize DPC structure.  Note that this memory will be
1072	 * freed by the callee.  The kernel handles the work_struct list  in a
1073	 * way that allows us to also free its memory inside the callee.
1074	 * Because we may want to schedule several tasks with different
1075	 * parameters we can't use the approach some kernel code uses of
1076	 * having a static work_struct.
1077	 */
1078
1079	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080	if (!dpc)
1081		return AE_NO_MEMORY;
1082
1083	dpc->function = function;
1084	dpc->context = context;
 
1085
1086	/*
1087	 * To prevent lockdep from complaining unnecessarily, make sure that
1088	 * there is a different static lockdep key for each workqueue by using
1089	 * INIT_WORK() for each of them separately.
1090	 */
1091	if (type == OSL_NOTIFY_HANDLER) {
1092		queue = kacpi_notify_wq;
1093		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094	} else if (type == OSL_GPE_HANDLER) {
1095		queue = kacpid_wq;
1096		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097	} else {
 
 
 
 
 
 
 
 
1098		pr_err("Unsupported os_execute type %d.\n", type);
1099		status = AE_ERROR;
 
 
 
 
1100	}
1101
1102	if (ACPI_FAILURE(status))
1103		goto err_workqueue;
1104
1105	/*
1106	 * On some machines, a software-initiated SMI causes corruption unless
1107	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1108	 * typically it's done in GPE-related methods that are run via
1109	 * workqueues, so we can avoid the known corruption cases by always
1110	 * queueing on CPU 0.
1111	 */
1112	ret = queue_work_on(0, queue, &dpc->work);
1113	if (!ret) {
1114		printk(KERN_ERR PREFIX
1115			  "Call to queue_work() failed.\n");
1116		status = AE_ERROR;
1117	}
1118err_workqueue:
1119	if (ACPI_FAILURE(status))
1120		kfree(dpc);
1121out_thread:
1122	return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
1127{
1128	/*
1129	 * Make sure the GPE handler or the fixed event handler is not used
1130	 * on another CPU after removal.
1131	 */
1132	if (acpi_sci_irq_valid())
1133		synchronize_hardirq(acpi_sci_irq);
1134	flush_workqueue(kacpid_wq);
1135	flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140	struct work_struct work;
1141	struct acpi_device *adev;
1142	u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
1146{
1147	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149	acpi_os_wait_events_complete();
1150	acpi_device_hotplug(hpw->adev, hpw->src);
1151	kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156	struct acpi_hp_work *hpw;
1157
1158	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160		  adev, src));
1161
1162	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163	if (!hpw)
1164		return AE_NO_MEMORY;
1165
1166	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167	hpw->adev = adev;
1168	hpw->src = src;
1169	/*
1170	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171	 * the hotplug code may call driver .remove() functions, which may
1172	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173	 * these workqueues.
1174	 */
1175	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176		kfree(hpw);
1177		return AE_ERROR;
1178	}
1179	return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184	return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190	struct semaphore *sem = NULL;
1191
1192	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193	if (!sem)
1194		return AE_NO_MEMORY;
1195
1196	sema_init(sem, initial_units);
1197
1198	*handle = (acpi_handle *) sem;
1199
1200	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201			  *handle, initial_units));
1202
1203	return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores?  Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers.	Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215	struct semaphore *sem = (struct semaphore *)handle;
1216
1217	if (!sem)
1218		return AE_BAD_PARAMETER;
1219
1220	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222	BUG_ON(!list_empty(&sem->wait_list));
1223	kfree(sem);
1224	sem = NULL;
1225
1226	return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234	acpi_status status = AE_OK;
1235	struct semaphore *sem = (struct semaphore *)handle;
1236	long jiffies;
1237	int ret = 0;
1238
1239	if (!acpi_os_initialized)
1240		return AE_OK;
1241
1242	if (!sem || (units < 1))
1243		return AE_BAD_PARAMETER;
1244
1245	if (units > 1)
1246		return AE_SUPPORT;
1247
1248	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249			  handle, units, timeout));
1250
1251	if (timeout == ACPI_WAIT_FOREVER)
1252		jiffies = MAX_SCHEDULE_TIMEOUT;
1253	else
1254		jiffies = msecs_to_jiffies(timeout);
1255
1256	ret = down_timeout(sem, jiffies);
1257	if (ret)
1258		status = AE_TIME;
1259
1260	if (ACPI_FAILURE(status)) {
1261		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262				  "Failed to acquire semaphore[%p|%d|%d], %s",
1263				  handle, units, timeout,
1264				  acpi_format_exception(status)));
1265	} else {
1266		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267				  "Acquired semaphore[%p|%d|%d]", handle,
1268				  units, timeout));
1269	}
1270
1271	return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279	struct semaphore *sem = (struct semaphore *)handle;
1280
1281	if (!acpi_os_initialized)
1282		return AE_OK;
1283
1284	if (!sem || (units < 1))
1285		return AE_BAD_PARAMETER;
1286
1287	if (units > 1)
1288		return AE_SUPPORT;
1289
1290	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291			  units));
1292
1293	up(sem);
1294
1295	return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299{
1300#ifdef ENABLE_DEBUGGER
1301	if (acpi_in_debugger) {
1302		u32 chars;
1303
1304		kdb_read(buffer, buffer_length);
1305
1306		/* remove the CR kdb includes */
1307		chars = strlen(buffer) - 1;
1308		buffer[chars] = '\0';
1309	}
1310#else
1311	int ret;
1312
1313	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314	if (ret < 0)
1315		return AE_ERROR;
1316	if (bytes_read)
1317		*bytes_read = ret;
1318#endif
1319
1320	return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326	int ret;
1327
1328	ret = acpi_debugger_wait_command_ready();
1329	if (ret < 0)
1330		return AE_ERROR;
1331	return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336	int ret;
1337
1338	ret = acpi_debugger_notify_command_complete();
1339	if (ret < 0)
1340		return AE_ERROR;
1341	return AE_OK;
1342}
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346	switch (function) {
1347	case ACPI_SIGNAL_FATAL:
1348		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349		break;
1350	case ACPI_SIGNAL_BREAKPOINT:
1351		/*
1352		 * AML Breakpoint
1353		 * ACPI spec. says to treat it as a NOP unless
1354		 * you are debugging.  So if/when we integrate
1355		 * AML debugger into the kernel debugger its
1356		 * hook will go here.  But until then it is
1357		 * not useful to print anything on breakpoints.
1358		 */
1359		break;
1360	default:
1361		break;
1362	}
1363
1364	return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369	char *p = acpi_os_name;
1370	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372	if (!str || !*str)
1373		return 0;
1374
1375	for (; count-- && *str; str++) {
1376		if (isalnum(*str) || *str == ' ' || *str == ':')
1377			*p++ = *str;
1378		else if (*str == '\'' || *str == '"')
1379			continue;
1380		else
1381			break;
1382	}
1383	*p = 0;
1384
1385	return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default.  It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
1398{
1399	acpi_gbl_auto_serialize_methods = FALSE;
1400	pr_info("ACPI: auto-serialization disabled\n");
1401
1402	return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 *   - strict (default) (2)
1414 *     -> further driver trying to access the resources will not load
1415 *   - lax              (1)
1416 *     -> further driver trying to access the resources will load, but you
1417 *     get a system message that something might go wrong...
1418 *
1419 *   - no               (0)
1420 *     -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX    1
1425#define ENFORCE_RESOURCES_NO     0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431	if (str == NULL || *str == '\0')
1432		return 0;
1433
1434	if (!strcmp("strict", str))
1435		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436	else if (!strcmp("lax", str))
1437		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438	else if (!strcmp("no", str))
1439		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441	return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450	acpi_adr_space_type space_id;
1451	acpi_size length;
1452	u8 warn = 0;
1453	int clash = 0;
1454
1455	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456		return 0;
1457	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458		return 0;
1459
1460	if (res->flags & IORESOURCE_IO)
1461		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
 
 
1462	else
1463		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
 
 
 
 
 
 
 
 
 
 
 
1464
1465	length = resource_size(res);
1466	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467		warn = 1;
1468	clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470	if (clash) {
1471		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473				printk(KERN_NOTICE "ACPI: This conflict may"
1474				       " cause random problems and system"
1475				       " instability\n");
1476			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477			       " for this device, you should use it instead of"
1478			       " the native driver\n");
1479		}
1480		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481			return -EBUSY;
1482	}
1483	return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488		      const char *name)
1489{
1490	struct resource res = {
1491		.start = start,
1492		.end   = start + n - 1,
1493		.name  = name,
1494		.flags = IORESOURCE_IO,
1495	};
1496
1497	return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502					      void *_res, void **return_value)
1503{
1504	struct acpi_mem_space_context **mem_ctx;
1505	union acpi_operand_object *handler_obj;
1506	union acpi_operand_object *region_obj2;
1507	union acpi_operand_object *region_obj;
1508	struct resource *res = _res;
1509	acpi_status status;
1510
1511	region_obj = acpi_ns_get_attached_object(handle);
1512	if (!region_obj)
1513		return AE_OK;
1514
1515	handler_obj = region_obj->region.handler;
1516	if (!handler_obj)
1517		return AE_OK;
1518
1519	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520		return AE_OK;
1521
1522	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523		return AE_OK;
1524
1525	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526	if (!region_obj2)
1527		return AE_OK;
1528
1529	mem_ctx = (void *)&region_obj2->extra.region_context;
1530
1531	if (!(mem_ctx[0]->address >= res->start &&
1532	      mem_ctx[0]->address < res->end))
1533		return AE_OK;
1534
1535	status = handler_obj->address_space.setup(region_obj,
1536						  ACPI_REGION_DEACTIVATE,
1537						  NULL, (void **)mem_ctx);
1538	if (ACPI_SUCCESS(status))
1539		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541	return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561				u32 level)
1562{
1563	if (!(res->flags & IORESOURCE_MEM))
1564		return AE_TYPE;
1565
1566	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567				   acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585	ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
 
1595{
1596	acpi_cpu_flags flags;
1597	spin_lock_irqsave(lockp, flags);
1598	return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
 
1606{
1607	spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION:    acpi_os_create_cache
1615 *
1616 * PARAMETERS:  name      - Ascii name for the cache
1617 *              size      - Size of each cached object
1618 *              depth     - Maximum depth of the cache (in objects) <ignored>
1619 *              cache     - Where the new cache object is returned
1620 *
1621 * RETURN:      status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1631	if (*cache == NULL)
1632		return AE_ERROR;
1633	else
1634		return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION:    acpi_os_purge_cache
1640 *
1641 * PARAMETERS:  Cache           - Handle to cache object
1642 *
1643 * RETURN:      Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651	kmem_cache_shrink(cache);
1652	return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION:    acpi_os_delete_cache
1658 *
1659 * PARAMETERS:  Cache           - Handle to cache object
1660 *
1661 * RETURN:      Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 *              cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670	kmem_cache_destroy(cache);
1671	return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION:    acpi_os_release_object
1677 *
1678 * PARAMETERS:  Cache       - Handle to cache object
1679 *              Object      - The object to be released
1680 *
1681 * RETURN:      None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1684 *              the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690	kmem_cache_free(cache, object);
1691	return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697	acpi_gbl_disable_ssdt_table_install = TRUE;
1698	pr_info("ACPI: static SSDT installation disabled\n");
1699
1700	return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707	printk(KERN_NOTICE PREFIX
1708	       "ACPI: Predefined validation mechanism disabled\n");
1709	acpi_gbl_disable_auto_repair = TRUE;
1710
1711	return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
 
 
 
 
1722	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723		/*
1724		 * Use acpi_os_map_generic_address to pre-map the reset
1725		 * register if it's in system memory.
1726		 */
1727		int rv;
1728
1729		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
 
1731	}
1732	acpi_os_initialized = true;
1733
1734	return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742	BUG_ON(!kacpid_wq);
1743	BUG_ON(!kacpi_notify_wq);
1744	BUG_ON(!kacpi_hotplug_wq);
1745	acpi_osi_init();
1746	return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751	if (acpi_irq_handler) {
1752		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753						 acpi_irq_handler);
1754	}
1755
1756	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
 
 
 
1758	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
 
1760	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763	destroy_workqueue(kacpid_wq);
1764	destroy_workqueue(kacpi_notify_wq);
1765	destroy_workqueue(kacpi_hotplug_wq);
1766
1767	return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771				  u32 pm1b_control)
1772{
1773	int rc = 0;
 
1774	if (__acpi_os_prepare_sleep)
1775		rc = __acpi_os_prepare_sleep(sleep_state,
1776					     pm1a_control, pm1b_control);
1777	if (rc < 0)
1778		return AE_ERROR;
1779	else if (rc > 0)
1780		return AE_CTRL_TERMINATE;
1781
1782	return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788	__acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793				  u32 val_b)
1794{
1795	int rc = 0;
 
1796	if (__acpi_os_prepare_extended_sleep)
1797		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798					     val_a, val_b);
1799	if (rc < 0)
1800		return AE_ERROR;
1801	else if (rc > 0)
1802		return AE_CTRL_TERMINATE;
1803
1804	return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808				  u32 val_b)
1809{
1810	return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815			       u32 val_a, u32 val_b))
1816{
1817	__acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821				u32 reg_a_value, u32 reg_b_value)
1822{
1823	acpi_status status;
1824
1825	if (acpi_gbl_reduced_hardware)
1826		status = acpi_os_prepare_extended_sleep(sleep_state,
1827							reg_a_value,
1828							reg_b_value);
1829	else
1830		status = acpi_os_prepare_sleep(sleep_state,
1831					       reg_a_value, reg_b_value);
1832	return status;
1833}