Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
646 /*
647 * set all-1 result as if reading from non-existing
648 * I/O port
649 */
650 *value = GENMASK(width, 0);
651 return AE_NOT_IMPLEMENTED;
652 }
653
654 if (value)
655 *value = 0;
656 else
657 value = &dummy;
658
659 if (width <= 8) {
660 *value = inb(port);
661 } else if (width <= 16) {
662 *value = inw(port);
663 } else if (width <= 32) {
664 *value = inl(port);
665 } else {
666 pr_debug("%s: Access width %d not supported\n", __func__, width);
667 return AE_BAD_PARAMETER;
668 }
669
670 return AE_OK;
671}
672
673EXPORT_SYMBOL(acpi_os_read_port);
674
675acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
676{
677 if (!IS_ENABLED(CONFIG_HAS_IOPORT))
678 return AE_NOT_IMPLEMENTED;
679
680 if (width <= 8) {
681 outb(value, port);
682 } else if (width <= 16) {
683 outw(value, port);
684 } else if (width <= 32) {
685 outl(value, port);
686 } else {
687 pr_debug("%s: Access width %d not supported\n", __func__, width);
688 return AE_BAD_PARAMETER;
689 }
690
691 return AE_OK;
692}
693
694EXPORT_SYMBOL(acpi_os_write_port);
695
696int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
697{
698
699 switch (width) {
700 case 8:
701 *(u8 *) value = readb(virt_addr);
702 break;
703 case 16:
704 *(u16 *) value = readw(virt_addr);
705 break;
706 case 32:
707 *(u32 *) value = readl(virt_addr);
708 break;
709 case 64:
710 *(u64 *) value = readq(virt_addr);
711 break;
712 default:
713 return -EINVAL;
714 }
715
716 return 0;
717}
718
719acpi_status
720acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
721{
722 void __iomem *virt_addr;
723 unsigned int size = width / 8;
724 bool unmap = false;
725 u64 dummy;
726 int error;
727
728 rcu_read_lock();
729 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
730 if (!virt_addr) {
731 rcu_read_unlock();
732 virt_addr = acpi_os_ioremap(phys_addr, size);
733 if (!virt_addr)
734 return AE_BAD_ADDRESS;
735 unmap = true;
736 }
737
738 if (!value)
739 value = &dummy;
740
741 error = acpi_os_read_iomem(virt_addr, value, width);
742 BUG_ON(error);
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
754{
755 void __iomem *virt_addr;
756 unsigned int size = width / 8;
757 bool unmap = false;
758
759 rcu_read_lock();
760 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
761 if (!virt_addr) {
762 rcu_read_unlock();
763 virt_addr = acpi_os_ioremap(phys_addr, size);
764 if (!virt_addr)
765 return AE_BAD_ADDRESS;
766 unmap = true;
767 }
768
769 switch (width) {
770 case 8:
771 writeb(value, virt_addr);
772 break;
773 case 16:
774 writew(value, virt_addr);
775 break;
776 case 32:
777 writel(value, virt_addr);
778 break;
779 case 64:
780 writeq(value, virt_addr);
781 break;
782 default:
783 BUG();
784 }
785
786 if (unmap)
787 iounmap(virt_addr);
788 else
789 rcu_read_unlock();
790
791 return AE_OK;
792}
793
794#ifdef CONFIG_PCI
795acpi_status
796acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
797 u64 *value, u32 width)
798{
799 int result, size;
800 u32 value32;
801
802 if (!value)
803 return AE_BAD_PARAMETER;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_read(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, &value32);
822 *value = value32;
823
824 return (result ? AE_ERROR : AE_OK);
825}
826
827acpi_status
828acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
829 u64 value, u32 width)
830{
831 int result, size;
832
833 switch (width) {
834 case 8:
835 size = 1;
836 break;
837 case 16:
838 size = 2;
839 break;
840 case 32:
841 size = 4;
842 break;
843 default:
844 return AE_ERROR;
845 }
846
847 result = raw_pci_write(pci_id->segment, pci_id->bus,
848 PCI_DEVFN(pci_id->device, pci_id->function),
849 reg, size, value);
850
851 return (result ? AE_ERROR : AE_OK);
852}
853#endif
854
855static void acpi_os_execute_deferred(struct work_struct *work)
856{
857 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
858
859 dpc->function(dpc->context);
860 kfree(dpc);
861}
862
863#ifdef CONFIG_ACPI_DEBUGGER
864static struct acpi_debugger acpi_debugger;
865static bool acpi_debugger_initialized;
866
867int acpi_register_debugger(struct module *owner,
868 const struct acpi_debugger_ops *ops)
869{
870 int ret = 0;
871
872 mutex_lock(&acpi_debugger.lock);
873 if (acpi_debugger.ops) {
874 ret = -EBUSY;
875 goto err_lock;
876 }
877
878 acpi_debugger.owner = owner;
879 acpi_debugger.ops = ops;
880
881err_lock:
882 mutex_unlock(&acpi_debugger.lock);
883 return ret;
884}
885EXPORT_SYMBOL(acpi_register_debugger);
886
887void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
888{
889 mutex_lock(&acpi_debugger.lock);
890 if (ops == acpi_debugger.ops) {
891 acpi_debugger.ops = NULL;
892 acpi_debugger.owner = NULL;
893 }
894 mutex_unlock(&acpi_debugger.lock);
895}
896EXPORT_SYMBOL(acpi_unregister_debugger);
897
898int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
899{
900 int ret;
901 int (*func)(acpi_osd_exec_callback, void *);
902 struct module *owner;
903
904 if (!acpi_debugger_initialized)
905 return -ENODEV;
906 mutex_lock(&acpi_debugger.lock);
907 if (!acpi_debugger.ops) {
908 ret = -ENODEV;
909 goto err_lock;
910 }
911 if (!try_module_get(acpi_debugger.owner)) {
912 ret = -ENODEV;
913 goto err_lock;
914 }
915 func = acpi_debugger.ops->create_thread;
916 owner = acpi_debugger.owner;
917 mutex_unlock(&acpi_debugger.lock);
918
919 ret = func(function, context);
920
921 mutex_lock(&acpi_debugger.lock);
922 module_put(owner);
923err_lock:
924 mutex_unlock(&acpi_debugger.lock);
925 return ret;
926}
927
928ssize_t acpi_debugger_write_log(const char *msg)
929{
930 ssize_t ret;
931 ssize_t (*func)(const char *);
932 struct module *owner;
933
934 if (!acpi_debugger_initialized)
935 return -ENODEV;
936 mutex_lock(&acpi_debugger.lock);
937 if (!acpi_debugger.ops) {
938 ret = -ENODEV;
939 goto err_lock;
940 }
941 if (!try_module_get(acpi_debugger.owner)) {
942 ret = -ENODEV;
943 goto err_lock;
944 }
945 func = acpi_debugger.ops->write_log;
946 owner = acpi_debugger.owner;
947 mutex_unlock(&acpi_debugger.lock);
948
949 ret = func(msg);
950
951 mutex_lock(&acpi_debugger.lock);
952 module_put(owner);
953err_lock:
954 mutex_unlock(&acpi_debugger.lock);
955 return ret;
956}
957
958ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
959{
960 ssize_t ret;
961 ssize_t (*func)(char *, size_t);
962 struct module *owner;
963
964 if (!acpi_debugger_initialized)
965 return -ENODEV;
966 mutex_lock(&acpi_debugger.lock);
967 if (!acpi_debugger.ops) {
968 ret = -ENODEV;
969 goto err_lock;
970 }
971 if (!try_module_get(acpi_debugger.owner)) {
972 ret = -ENODEV;
973 goto err_lock;
974 }
975 func = acpi_debugger.ops->read_cmd;
976 owner = acpi_debugger.owner;
977 mutex_unlock(&acpi_debugger.lock);
978
979 ret = func(buffer, buffer_length);
980
981 mutex_lock(&acpi_debugger.lock);
982 module_put(owner);
983err_lock:
984 mutex_unlock(&acpi_debugger.lock);
985 return ret;
986}
987
988int acpi_debugger_wait_command_ready(void)
989{
990 int ret;
991 int (*func)(bool, char *, size_t);
992 struct module *owner;
993
994 if (!acpi_debugger_initialized)
995 return -ENODEV;
996 mutex_lock(&acpi_debugger.lock);
997 if (!acpi_debugger.ops) {
998 ret = -ENODEV;
999 goto err_lock;
1000 }
1001 if (!try_module_get(acpi_debugger.owner)) {
1002 ret = -ENODEV;
1003 goto err_lock;
1004 }
1005 func = acpi_debugger.ops->wait_command_ready;
1006 owner = acpi_debugger.owner;
1007 mutex_unlock(&acpi_debugger.lock);
1008
1009 ret = func(acpi_gbl_method_executing,
1010 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1011
1012 mutex_lock(&acpi_debugger.lock);
1013 module_put(owner);
1014err_lock:
1015 mutex_unlock(&acpi_debugger.lock);
1016 return ret;
1017}
1018
1019int acpi_debugger_notify_command_complete(void)
1020{
1021 int ret;
1022 int (*func)(void);
1023 struct module *owner;
1024
1025 if (!acpi_debugger_initialized)
1026 return -ENODEV;
1027 mutex_lock(&acpi_debugger.lock);
1028 if (!acpi_debugger.ops) {
1029 ret = -ENODEV;
1030 goto err_lock;
1031 }
1032 if (!try_module_get(acpi_debugger.owner)) {
1033 ret = -ENODEV;
1034 goto err_lock;
1035 }
1036 func = acpi_debugger.ops->notify_command_complete;
1037 owner = acpi_debugger.owner;
1038 mutex_unlock(&acpi_debugger.lock);
1039
1040 ret = func();
1041
1042 mutex_lock(&acpi_debugger.lock);
1043 module_put(owner);
1044err_lock:
1045 mutex_unlock(&acpi_debugger.lock);
1046 return ret;
1047}
1048
1049int __init acpi_debugger_init(void)
1050{
1051 mutex_init(&acpi_debugger.lock);
1052 acpi_debugger_initialized = true;
1053 return 0;
1054}
1055#endif
1056
1057/*******************************************************************************
1058 *
1059 * FUNCTION: acpi_os_execute
1060 *
1061 * PARAMETERS: Type - Type of the callback
1062 * Function - Function to be executed
1063 * Context - Function parameters
1064 *
1065 * RETURN: Status
1066 *
1067 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1068 * immediately executes function on a separate thread.
1069 *
1070 ******************************************************************************/
1071
1072acpi_status acpi_os_execute(acpi_execute_type type,
1073 acpi_osd_exec_callback function, void *context)
1074{
1075 struct acpi_os_dpc *dpc;
1076 int ret;
1077
1078 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1079 "Scheduling function [%p(%p)] for deferred execution.\n",
1080 function, context));
1081
1082 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1083 ret = acpi_debugger_create_thread(function, context);
1084 if (ret) {
1085 pr_err("Kernel thread creation failed\n");
1086 return AE_ERROR;
1087 }
1088 return AE_OK;
1089 }
1090
1091 /*
1092 * Allocate/initialize DPC structure. Note that this memory will be
1093 * freed by the callee. The kernel handles the work_struct list in a
1094 * way that allows us to also free its memory inside the callee.
1095 * Because we may want to schedule several tasks with different
1096 * parameters we can't use the approach some kernel code uses of
1097 * having a static work_struct.
1098 */
1099
1100 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1101 if (!dpc)
1102 return AE_NO_MEMORY;
1103
1104 dpc->function = function;
1105 dpc->context = context;
1106 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107
1108 /*
1109 * To prevent lockdep from complaining unnecessarily, make sure that
1110 * there is a different static lockdep key for each workqueue by using
1111 * INIT_WORK() for each of them separately.
1112 */
1113 switch (type) {
1114 case OSL_NOTIFY_HANDLER:
1115 ret = queue_work(kacpi_notify_wq, &dpc->work);
1116 break;
1117 case OSL_GPE_HANDLER:
1118 /*
1119 * On some machines, a software-initiated SMI causes corruption
1120 * unless the SMI runs on CPU 0. An SMI can be initiated by
1121 * any AML, but typically it's done in GPE-related methods that
1122 * are run via workqueues, so we can avoid the known corruption
1123 * cases by always queueing on CPU 0.
1124 */
1125 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1126 break;
1127 default:
1128 pr_err("Unsupported os_execute type %d.\n", type);
1129 goto err;
1130 }
1131 if (!ret) {
1132 pr_err("Unable to queue work\n");
1133 goto err;
1134 }
1135
1136 return AE_OK;
1137
1138err:
1139 kfree(dpc);
1140 return AE_ERROR;
1141}
1142EXPORT_SYMBOL(acpi_os_execute);
1143
1144void acpi_os_wait_events_complete(void)
1145{
1146 /*
1147 * Make sure the GPE handler or the fixed event handler is not used
1148 * on another CPU after removal.
1149 */
1150 if (acpi_sci_irq_valid())
1151 synchronize_hardirq(acpi_sci_irq);
1152 flush_workqueue(kacpid_wq);
1153 flush_workqueue(kacpi_notify_wq);
1154}
1155EXPORT_SYMBOL(acpi_os_wait_events_complete);
1156
1157struct acpi_hp_work {
1158 struct work_struct work;
1159 struct acpi_device *adev;
1160 u32 src;
1161};
1162
1163static void acpi_hotplug_work_fn(struct work_struct *work)
1164{
1165 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1166
1167 acpi_os_wait_events_complete();
1168 acpi_device_hotplug(hpw->adev, hpw->src);
1169 kfree(hpw);
1170}
1171
1172acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1173{
1174 struct acpi_hp_work *hpw;
1175
1176 acpi_handle_debug(adev->handle,
1177 "Scheduling hotplug event %u for deferred handling\n",
1178 src);
1179
1180 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1181 if (!hpw)
1182 return AE_NO_MEMORY;
1183
1184 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1185 hpw->adev = adev;
1186 hpw->src = src;
1187 /*
1188 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1189 * the hotplug code may call driver .remove() functions, which may
1190 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1191 * these workqueues.
1192 */
1193 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1194 kfree(hpw);
1195 return AE_ERROR;
1196 }
1197 return AE_OK;
1198}
1199
1200bool acpi_queue_hotplug_work(struct work_struct *work)
1201{
1202 return queue_work(kacpi_hotplug_wq, work);
1203}
1204
1205acpi_status
1206acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1207{
1208 struct semaphore *sem = NULL;
1209
1210 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1211 if (!sem)
1212 return AE_NO_MEMORY;
1213
1214 sema_init(sem, initial_units);
1215
1216 *handle = (acpi_handle *) sem;
1217
1218 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1219 *handle, initial_units));
1220
1221 return AE_OK;
1222}
1223
1224/*
1225 * TODO: A better way to delete semaphores? Linux doesn't have a
1226 * 'delete_semaphore()' function -- may result in an invalid
1227 * pointer dereference for non-synchronized consumers. Should
1228 * we at least check for blocked threads and signal/cancel them?
1229 */
1230
1231acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1232{
1233 struct semaphore *sem = (struct semaphore *)handle;
1234
1235 if (!sem)
1236 return AE_BAD_PARAMETER;
1237
1238 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1239
1240 BUG_ON(!list_empty(&sem->wait_list));
1241 kfree(sem);
1242 sem = NULL;
1243
1244 return AE_OK;
1245}
1246
1247/*
1248 * TODO: Support for units > 1?
1249 */
1250acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1251{
1252 acpi_status status = AE_OK;
1253 struct semaphore *sem = (struct semaphore *)handle;
1254 long jiffies;
1255 int ret = 0;
1256
1257 if (!acpi_os_initialized)
1258 return AE_OK;
1259
1260 if (!sem || (units < 1))
1261 return AE_BAD_PARAMETER;
1262
1263 if (units > 1)
1264 return AE_SUPPORT;
1265
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1267 handle, units, timeout));
1268
1269 if (timeout == ACPI_WAIT_FOREVER)
1270 jiffies = MAX_SCHEDULE_TIMEOUT;
1271 else
1272 jiffies = msecs_to_jiffies(timeout);
1273
1274 ret = down_timeout(sem, jiffies);
1275 if (ret)
1276 status = AE_TIME;
1277
1278 if (ACPI_FAILURE(status)) {
1279 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280 "Failed to acquire semaphore[%p|%d|%d], %s",
1281 handle, units, timeout,
1282 acpi_format_exception(status)));
1283 } else {
1284 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1285 "Acquired semaphore[%p|%d|%d]", handle,
1286 units, timeout));
1287 }
1288
1289 return status;
1290}
1291
1292/*
1293 * TODO: Support for units > 1?
1294 */
1295acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1296{
1297 struct semaphore *sem = (struct semaphore *)handle;
1298
1299 if (!acpi_os_initialized)
1300 return AE_OK;
1301
1302 if (!sem || (units < 1))
1303 return AE_BAD_PARAMETER;
1304
1305 if (units > 1)
1306 return AE_SUPPORT;
1307
1308 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1309 units));
1310
1311 up(sem);
1312
1313 return AE_OK;
1314}
1315
1316acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1317{
1318#ifdef ENABLE_DEBUGGER
1319 if (acpi_in_debugger) {
1320 u32 chars;
1321
1322 kdb_read(buffer, buffer_length);
1323
1324 /* remove the CR kdb includes */
1325 chars = strlen(buffer) - 1;
1326 buffer[chars] = '\0';
1327 }
1328#else
1329 int ret;
1330
1331 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332 if (ret < 0)
1333 return AE_ERROR;
1334 if (bytes_read)
1335 *bytes_read = ret;
1336#endif
1337
1338 return AE_OK;
1339}
1340EXPORT_SYMBOL(acpi_os_get_line);
1341
1342acpi_status acpi_os_wait_command_ready(void)
1343{
1344 int ret;
1345
1346 ret = acpi_debugger_wait_command_ready();
1347 if (ret < 0)
1348 return AE_ERROR;
1349 return AE_OK;
1350}
1351
1352acpi_status acpi_os_notify_command_complete(void)
1353{
1354 int ret;
1355
1356 ret = acpi_debugger_notify_command_complete();
1357 if (ret < 0)
1358 return AE_ERROR;
1359 return AE_OK;
1360}
1361
1362acpi_status acpi_os_signal(u32 function, void *info)
1363{
1364 switch (function) {
1365 case ACPI_SIGNAL_FATAL:
1366 pr_err("Fatal opcode executed\n");
1367 break;
1368 case ACPI_SIGNAL_BREAKPOINT:
1369 /*
1370 * AML Breakpoint
1371 * ACPI spec. says to treat it as a NOP unless
1372 * you are debugging. So if/when we integrate
1373 * AML debugger into the kernel debugger its
1374 * hook will go here. But until then it is
1375 * not useful to print anything on breakpoints.
1376 */
1377 break;
1378 default:
1379 break;
1380 }
1381
1382 return AE_OK;
1383}
1384
1385static int __init acpi_os_name_setup(char *str)
1386{
1387 char *p = acpi_os_name;
1388 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1389
1390 if (!str || !*str)
1391 return 0;
1392
1393 for (; count-- && *str; str++) {
1394 if (isalnum(*str) || *str == ' ' || *str == ':')
1395 *p++ = *str;
1396 else if (*str == '\'' || *str == '"')
1397 continue;
1398 else
1399 break;
1400 }
1401 *p = 0;
1402
1403 return 1;
1404
1405}
1406
1407__setup("acpi_os_name=", acpi_os_name_setup);
1408
1409/*
1410 * Disable the auto-serialization of named objects creation methods.
1411 *
1412 * This feature is enabled by default. It marks the AML control methods
1413 * that contain the opcodes to create named objects as "Serialized".
1414 */
1415static int __init acpi_no_auto_serialize_setup(char *str)
1416{
1417 acpi_gbl_auto_serialize_methods = FALSE;
1418 pr_info("Auto-serialization disabled\n");
1419
1420 return 1;
1421}
1422
1423__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1424
1425/* Check of resource interference between native drivers and ACPI
1426 * OperationRegions (SystemIO and System Memory only).
1427 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1428 * in arbitrary AML code and can interfere with legacy drivers.
1429 * acpi_enforce_resources= can be set to:
1430 *
1431 * - strict (default) (2)
1432 * -> further driver trying to access the resources will not load
1433 * - lax (1)
1434 * -> further driver trying to access the resources will load, but you
1435 * get a system message that something might go wrong...
1436 *
1437 * - no (0)
1438 * -> ACPI Operation Region resources will not be registered
1439 *
1440 */
1441#define ENFORCE_RESOURCES_STRICT 2
1442#define ENFORCE_RESOURCES_LAX 1
1443#define ENFORCE_RESOURCES_NO 0
1444
1445static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446
1447static int __init acpi_enforce_resources_setup(char *str)
1448{
1449 if (str == NULL || *str == '\0')
1450 return 0;
1451
1452 if (!strcmp("strict", str))
1453 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1454 else if (!strcmp("lax", str))
1455 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1456 else if (!strcmp("no", str))
1457 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1458
1459 return 1;
1460}
1461
1462__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1463
1464/* Check for resource conflicts between ACPI OperationRegions and native
1465 * drivers */
1466int acpi_check_resource_conflict(const struct resource *res)
1467{
1468 acpi_adr_space_type space_id;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472
1473 if (res->flags & IORESOURCE_IO)
1474 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1475 else if (res->flags & IORESOURCE_MEM)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1477 else
1478 return 0;
1479
1480 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1481 return 0;
1482
1483 pr_info("Resource conflict; ACPI support missing from driver?\n");
1484
1485 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1486 return -EBUSY;
1487
1488 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1489 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1490
1491 return 0;
1492}
1493EXPORT_SYMBOL(acpi_check_resource_conflict);
1494
1495int acpi_check_region(resource_size_t start, resource_size_t n,
1496 const char *name)
1497{
1498 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1499
1500 return acpi_check_resource_conflict(&res);
1501}
1502EXPORT_SYMBOL(acpi_check_region);
1503
1504/*
1505 * Let drivers know whether the resource checks are effective
1506 */
1507int acpi_resources_are_enforced(void)
1508{
1509 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1510}
1511EXPORT_SYMBOL(acpi_resources_are_enforced);
1512
1513/*
1514 * Deallocate the memory for a spinlock.
1515 */
1516void acpi_os_delete_lock(acpi_spinlock handle)
1517{
1518 ACPI_FREE(handle);
1519}
1520
1521/*
1522 * Acquire a spinlock.
1523 *
1524 * handle is a pointer to the spinlock_t.
1525 */
1526
1527acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1528 __acquires(lockp)
1529{
1530 spin_lock(lockp);
1531 return 0;
1532}
1533
1534/*
1535 * Release a spinlock. See above.
1536 */
1537
1538void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1539 __releases(lockp)
1540{
1541 spin_unlock(lockp);
1542}
1543
1544#ifndef ACPI_USE_LOCAL_CACHE
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION: acpi_os_create_cache
1549 *
1550 * PARAMETERS: name - Ascii name for the cache
1551 * size - Size of each cached object
1552 * depth - Maximum depth of the cache (in objects) <ignored>
1553 * cache - Where the new cache object is returned
1554 *
1555 * RETURN: status
1556 *
1557 * DESCRIPTION: Create a cache object
1558 *
1559 ******************************************************************************/
1560
1561acpi_status
1562acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1563{
1564 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1565 if (*cache == NULL)
1566 return AE_ERROR;
1567 else
1568 return AE_OK;
1569}
1570
1571/*******************************************************************************
1572 *
1573 * FUNCTION: acpi_os_purge_cache
1574 *
1575 * PARAMETERS: Cache - Handle to cache object
1576 *
1577 * RETURN: Status
1578 *
1579 * DESCRIPTION: Free all objects within the requested cache.
1580 *
1581 ******************************************************************************/
1582
1583acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1584{
1585 kmem_cache_shrink(cache);
1586 return AE_OK;
1587}
1588
1589/*******************************************************************************
1590 *
1591 * FUNCTION: acpi_os_delete_cache
1592 *
1593 * PARAMETERS: Cache - Handle to cache object
1594 *
1595 * RETURN: Status
1596 *
1597 * DESCRIPTION: Free all objects within the requested cache and delete the
1598 * cache object.
1599 *
1600 ******************************************************************************/
1601
1602acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1603{
1604 kmem_cache_destroy(cache);
1605 return AE_OK;
1606}
1607
1608/*******************************************************************************
1609 *
1610 * FUNCTION: acpi_os_release_object
1611 *
1612 * PARAMETERS: Cache - Handle to cache object
1613 * Object - The object to be released
1614 *
1615 * RETURN: None
1616 *
1617 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1618 * the object is deleted.
1619 *
1620 ******************************************************************************/
1621
1622acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1623{
1624 kmem_cache_free(cache, object);
1625 return AE_OK;
1626}
1627#endif
1628
1629static int __init acpi_no_static_ssdt_setup(char *s)
1630{
1631 acpi_gbl_disable_ssdt_table_install = TRUE;
1632 pr_info("Static SSDT installation disabled\n");
1633
1634 return 0;
1635}
1636
1637early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1638
1639static int __init acpi_disable_return_repair(char *s)
1640{
1641 pr_notice("Predefined validation mechanism disabled\n");
1642 acpi_gbl_disable_auto_repair = TRUE;
1643
1644 return 1;
1645}
1646
1647__setup("acpica_no_return_repair", acpi_disable_return_repair);
1648
1649acpi_status __init acpi_os_initialize(void)
1650{
1651 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1652 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653
1654 acpi_gbl_xgpe0_block_logical_address =
1655 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1656 acpi_gbl_xgpe1_block_logical_address =
1657 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1658
1659 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1660 /*
1661 * Use acpi_os_map_generic_address to pre-map the reset
1662 * register if it's in system memory.
1663 */
1664 void *rv;
1665
1666 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1667 pr_debug("%s: Reset register mapping %s\n", __func__,
1668 rv ? "successful" : "failed");
1669 }
1670 acpi_os_initialized = true;
1671
1672 return AE_OK;
1673}
1674
1675acpi_status __init acpi_os_initialize1(void)
1676{
1677 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1678 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1679 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1680 BUG_ON(!kacpid_wq);
1681 BUG_ON(!kacpi_notify_wq);
1682 BUG_ON(!kacpi_hotplug_wq);
1683 acpi_osi_init();
1684 return AE_OK;
1685}
1686
1687acpi_status acpi_os_terminate(void)
1688{
1689 if (acpi_irq_handler) {
1690 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1691 acpi_irq_handler);
1692 }
1693
1694 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1695 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1696 acpi_gbl_xgpe0_block_logical_address = 0UL;
1697 acpi_gbl_xgpe1_block_logical_address = 0UL;
1698
1699 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1700 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1701
1702 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1703 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1704
1705 destroy_workqueue(kacpid_wq);
1706 destroy_workqueue(kacpi_notify_wq);
1707 destroy_workqueue(kacpi_hotplug_wq);
1708
1709 return AE_OK;
1710}
1711
1712acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1713 u32 pm1b_control)
1714{
1715 int rc = 0;
1716
1717 if (__acpi_os_prepare_sleep)
1718 rc = __acpi_os_prepare_sleep(sleep_state,
1719 pm1a_control, pm1b_control);
1720 if (rc < 0)
1721 return AE_ERROR;
1722 else if (rc > 0)
1723 return AE_CTRL_TERMINATE;
1724
1725 return AE_OK;
1726}
1727
1728void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1729 u32 pm1a_ctrl, u32 pm1b_ctrl))
1730{
1731 __acpi_os_prepare_sleep = func;
1732}
1733
1734#if (ACPI_REDUCED_HARDWARE)
1735acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1736 u32 val_b)
1737{
1738 int rc = 0;
1739
1740 if (__acpi_os_prepare_extended_sleep)
1741 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1742 val_a, val_b);
1743 if (rc < 0)
1744 return AE_ERROR;
1745 else if (rc > 0)
1746 return AE_CTRL_TERMINATE;
1747
1748 return AE_OK;
1749}
1750#else
1751acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1752 u32 val_b)
1753{
1754 return AE_OK;
1755}
1756#endif
1757
1758void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1759 u32 val_a, u32 val_b))
1760{
1761 __acpi_os_prepare_extended_sleep = func;
1762}
1763
1764acpi_status acpi_os_enter_sleep(u8 sleep_state,
1765 u32 reg_a_value, u32 reg_b_value)
1766{
1767 acpi_status status;
1768
1769 if (acpi_gbl_reduced_hardware)
1770 status = acpi_os_prepare_extended_sleep(sleep_state,
1771 reg_a_value,
1772 reg_b_value);
1773 else
1774 status = acpi_os_prepare_sleep(sleep_state,
1775 reg_a_value, reg_b_value);
1776 return status;
1777}
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/pci.h>
32#include <linux/interrupt.h>
33#include <linux/kmod.h>
34#include <linux/delay.h>
35#include <linux/workqueue.h>
36#include <linux/nmi.h>
37#include <linux/acpi.h>
38#include <linux/efi.h>
39#include <linux/ioport.h>
40#include <linux/list.h>
41#include <linux/jiffies.h>
42#include <linux/semaphore.h>
43
44#include <asm/io.h>
45#include <linux/uaccess.h>
46#include <linux/io-64-nonatomic-lo-hi.h>
47
48#include "internal.h"
49
50#define _COMPONENT ACPI_OS_SERVICES
51ACPI_MODULE_NAME("osl");
52
53struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57};
58
59#ifdef ENABLE_DEBUGGER
60#include <linux/kdb.h>
61
62/* stuff for debugger support */
63int acpi_in_debugger;
64EXPORT_SYMBOL(acpi_in_debugger);
65#endif /*ENABLE_DEBUGGER */
66
67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72static acpi_osd_handler acpi_irq_handler;
73static void *acpi_irq_context;
74static struct workqueue_struct *kacpid_wq;
75static struct workqueue_struct *kacpi_notify_wq;
76static struct workqueue_struct *kacpi_hotplug_wq;
77static bool acpi_os_initialized;
78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79bool acpi_permanent_mmap = false;
80
81/*
82 * This list of permanent mappings is for memory that may be accessed from
83 * interrupt context, where we can't do the ioremap().
84 */
85struct acpi_ioremap {
86 struct list_head list;
87 void __iomem *virt;
88 acpi_physical_address phys;
89 acpi_size size;
90 unsigned long refcount;
91};
92
93static LIST_HEAD(acpi_ioremaps);
94static DEFINE_MUTEX(acpi_ioremap_lock);
95
96static void __init acpi_request_region (struct acpi_generic_address *gas,
97 unsigned int length, char *desc)
98{
99 u64 addr;
100
101 /* Handle possible alignment issues */
102 memcpy(&addr, &gas->address, sizeof(addr));
103 if (!addr || !length)
104 return;
105
106 /* Resources are never freed */
107 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 request_region(addr, length, desc);
109 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 request_mem_region(addr, length, desc);
111}
112
113static int __init acpi_reserve_resources(void)
114{
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1a_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 "ACPI PM1b_EVT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1a_CNT_BLK");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 "ACPI PM1b_CNT_BLK");
126
127 if (acpi_gbl_FADT.pm_timer_length == 4)
128 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 "ACPI PM2_CNT_BLK");
132
133 /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143 return 0;
144}
145fs_initcall_sync(acpi_reserve_resources);
146
147void acpi_os_printf(const char *fmt, ...)
148{
149 va_list args;
150 va_start(args, fmt);
151 acpi_os_vprintf(fmt, args);
152 va_end(args);
153}
154EXPORT_SYMBOL(acpi_os_printf);
155
156void acpi_os_vprintf(const char *fmt, va_list args)
157{
158 static char buffer[512];
159
160 vsprintf(buffer, fmt, args);
161
162#ifdef ENABLE_DEBUGGER
163 if (acpi_in_debugger) {
164 kdb_printf("%s", buffer);
165 } else {
166 if (printk_get_level(buffer))
167 printk("%s", buffer);
168 else
169 printk(KERN_CONT "%s", buffer);
170 }
171#else
172 if (acpi_debugger_write_log(buffer) < 0) {
173 if (printk_get_level(buffer))
174 printk("%s", buffer);
175 else
176 printk(KERN_CONT "%s", buffer);
177 }
178#endif
179}
180
181#ifdef CONFIG_KEXEC
182static unsigned long acpi_rsdp;
183static int __init setup_acpi_rsdp(char *arg)
184{
185 return kstrtoul(arg, 16, &acpi_rsdp);
186}
187early_param("acpi_rsdp", setup_acpi_rsdp);
188#endif
189
190acpi_physical_address __init acpi_os_get_root_pointer(void)
191{
192 acpi_physical_address pa;
193
194#ifdef CONFIG_KEXEC
195 if (acpi_rsdp)
196 return acpi_rsdp;
197#endif
198 pa = acpi_arch_get_root_pointer();
199 if (pa)
200 return pa;
201
202 if (efi_enabled(EFI_CONFIG_TABLES)) {
203 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
204 return efi.acpi20;
205 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi;
207 pr_err(PREFIX "System description tables not found\n");
208 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209 acpi_find_root_pointer(&pa);
210 }
211
212 return pa;
213}
214
215/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
216static struct acpi_ioremap *
217acpi_map_lookup(acpi_physical_address phys, acpi_size size)
218{
219 struct acpi_ioremap *map;
220
221 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
222 if (map->phys <= phys &&
223 phys + size <= map->phys + map->size)
224 return map;
225
226 return NULL;
227}
228
229/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
230static void __iomem *
231acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
232{
233 struct acpi_ioremap *map;
234
235 map = acpi_map_lookup(phys, size);
236 if (map)
237 return map->virt + (phys - map->phys);
238
239 return NULL;
240}
241
242void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
243{
244 struct acpi_ioremap *map;
245 void __iomem *virt = NULL;
246
247 mutex_lock(&acpi_ioremap_lock);
248 map = acpi_map_lookup(phys, size);
249 if (map) {
250 virt = map->virt + (phys - map->phys);
251 map->refcount++;
252 }
253 mutex_unlock(&acpi_ioremap_lock);
254 return virt;
255}
256EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
257
258/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
259static struct acpi_ioremap *
260acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
261{
262 struct acpi_ioremap *map;
263
264 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
265 if (map->virt <= virt &&
266 virt + size <= map->virt + map->size)
267 return map;
268
269 return NULL;
270}
271
272#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
273/* ioremap will take care of cache attributes */
274#define should_use_kmap(pfn) 0
275#else
276#define should_use_kmap(pfn) page_is_ram(pfn)
277#endif
278
279static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
280{
281 unsigned long pfn;
282
283 pfn = pg_off >> PAGE_SHIFT;
284 if (should_use_kmap(pfn)) {
285 if (pg_sz > PAGE_SIZE)
286 return NULL;
287 return (void __iomem __force *)kmap(pfn_to_page(pfn));
288 } else
289 return acpi_os_ioremap(pg_off, pg_sz);
290}
291
292static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
293{
294 unsigned long pfn;
295
296 pfn = pg_off >> PAGE_SHIFT;
297 if (should_use_kmap(pfn))
298 kunmap(pfn_to_page(pfn));
299 else
300 iounmap(vaddr);
301}
302
303/**
304 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
305 * @phys: Start of the physical address range to map.
306 * @size: Size of the physical address range to map.
307 *
308 * Look up the given physical address range in the list of existing ACPI memory
309 * mappings. If found, get a reference to it and return a pointer to it (its
310 * virtual address). If not found, map it, add it to that list and return a
311 * pointer to it.
312 *
313 * During early init (when acpi_permanent_mmap has not been set yet) this
314 * routine simply calls __acpi_map_table() to get the job done.
315 */
316void __iomem *__ref
317acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
318{
319 struct acpi_ioremap *map;
320 void __iomem *virt;
321 acpi_physical_address pg_off;
322 acpi_size pg_sz;
323
324 if (phys > ULONG_MAX) {
325 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
326 return NULL;
327 }
328
329 if (!acpi_permanent_mmap)
330 return __acpi_map_table((unsigned long)phys, size);
331
332 mutex_lock(&acpi_ioremap_lock);
333 /* Check if there's a suitable mapping already. */
334 map = acpi_map_lookup(phys, size);
335 if (map) {
336 map->refcount++;
337 goto out;
338 }
339
340 map = kzalloc(sizeof(*map), GFP_KERNEL);
341 if (!map) {
342 mutex_unlock(&acpi_ioremap_lock);
343 return NULL;
344 }
345
346 pg_off = round_down(phys, PAGE_SIZE);
347 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
348 virt = acpi_map(pg_off, pg_sz);
349 if (!virt) {
350 mutex_unlock(&acpi_ioremap_lock);
351 kfree(map);
352 return NULL;
353 }
354
355 INIT_LIST_HEAD(&map->list);
356 map->virt = virt;
357 map->phys = pg_off;
358 map->size = pg_sz;
359 map->refcount = 1;
360
361 list_add_tail_rcu(&map->list, &acpi_ioremaps);
362
363out:
364 mutex_unlock(&acpi_ioremap_lock);
365 return map->virt + (phys - map->phys);
366}
367EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
368
369void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
370{
371 return (void *)acpi_os_map_iomem(phys, size);
372}
373EXPORT_SYMBOL_GPL(acpi_os_map_memory);
374
375static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
376{
377 if (!--map->refcount)
378 list_del_rcu(&map->list);
379}
380
381static void acpi_os_map_cleanup(struct acpi_ioremap *map)
382{
383 if (!map->refcount) {
384 synchronize_rcu_expedited();
385 acpi_unmap(map->phys, map->virt);
386 kfree(map);
387 }
388}
389
390/**
391 * acpi_os_unmap_iomem - Drop a memory mapping reference.
392 * @virt: Start of the address range to drop a reference to.
393 * @size: Size of the address range to drop a reference to.
394 *
395 * Look up the given virtual address range in the list of existing ACPI memory
396 * mappings, drop a reference to it and unmap it if there are no more active
397 * references to it.
398 *
399 * During early init (when acpi_permanent_mmap has not been set yet) this
400 * routine simply calls __acpi_unmap_table() to get the job done. Since
401 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
402 * here.
403 */
404void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
405{
406 struct acpi_ioremap *map;
407
408 if (!acpi_permanent_mmap) {
409 __acpi_unmap_table(virt, size);
410 return;
411 }
412
413 mutex_lock(&acpi_ioremap_lock);
414 map = acpi_map_lookup_virt(virt, size);
415 if (!map) {
416 mutex_unlock(&acpi_ioremap_lock);
417 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
418 return;
419 }
420 acpi_os_drop_map_ref(map);
421 mutex_unlock(&acpi_ioremap_lock);
422
423 acpi_os_map_cleanup(map);
424}
425EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
426
427void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
428{
429 return acpi_os_unmap_iomem((void __iomem *)virt, size);
430}
431EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
432
433int acpi_os_map_generic_address(struct acpi_generic_address *gas)
434{
435 u64 addr;
436 void __iomem *virt;
437
438 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
439 return 0;
440
441 /* Handle possible alignment issues */
442 memcpy(&addr, &gas->address, sizeof(addr));
443 if (!addr || !gas->bit_width)
444 return -EINVAL;
445
446 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
447 if (!virt)
448 return -EIO;
449
450 return 0;
451}
452EXPORT_SYMBOL(acpi_os_map_generic_address);
453
454void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
455{
456 u64 addr;
457 struct acpi_ioremap *map;
458
459 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
460 return;
461
462 /* Handle possible alignment issues */
463 memcpy(&addr, &gas->address, sizeof(addr));
464 if (!addr || !gas->bit_width)
465 return;
466
467 mutex_lock(&acpi_ioremap_lock);
468 map = acpi_map_lookup(addr, gas->bit_width / 8);
469 if (!map) {
470 mutex_unlock(&acpi_ioremap_lock);
471 return;
472 }
473 acpi_os_drop_map_ref(map);
474 mutex_unlock(&acpi_ioremap_lock);
475
476 acpi_os_map_cleanup(map);
477}
478EXPORT_SYMBOL(acpi_os_unmap_generic_address);
479
480#ifdef ACPI_FUTURE_USAGE
481acpi_status
482acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
483{
484 if (!phys || !virt)
485 return AE_BAD_PARAMETER;
486
487 *phys = virt_to_phys(virt);
488
489 return AE_OK;
490}
491#endif
492
493#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
494static bool acpi_rev_override;
495
496int __init acpi_rev_override_setup(char *str)
497{
498 acpi_rev_override = true;
499 return 1;
500}
501__setup("acpi_rev_override", acpi_rev_override_setup);
502#else
503#define acpi_rev_override false
504#endif
505
506#define ACPI_MAX_OVERRIDE_LEN 100
507
508static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
509
510acpi_status
511acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
512 acpi_string *new_val)
513{
514 if (!init_val || !new_val)
515 return AE_BAD_PARAMETER;
516
517 *new_val = NULL;
518 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
519 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
520 acpi_os_name);
521 *new_val = acpi_os_name;
522 }
523
524 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
525 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
526 *new_val = (char *)5;
527 }
528
529 return AE_OK;
530}
531
532static irqreturn_t acpi_irq(int irq, void *dev_id)
533{
534 u32 handled;
535
536 handled = (*acpi_irq_handler) (acpi_irq_context);
537
538 if (handled) {
539 acpi_irq_handled++;
540 return IRQ_HANDLED;
541 } else {
542 acpi_irq_not_handled++;
543 return IRQ_NONE;
544 }
545}
546
547acpi_status
548acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
549 void *context)
550{
551 unsigned int irq;
552
553 acpi_irq_stats_init();
554
555 /*
556 * ACPI interrupts different from the SCI in our copy of the FADT are
557 * not supported.
558 */
559 if (gsi != acpi_gbl_FADT.sci_interrupt)
560 return AE_BAD_PARAMETER;
561
562 if (acpi_irq_handler)
563 return AE_ALREADY_ACQUIRED;
564
565 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
566 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
567 gsi);
568 return AE_OK;
569 }
570
571 acpi_irq_handler = handler;
572 acpi_irq_context = context;
573 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
574 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
575 acpi_irq_handler = NULL;
576 return AE_NOT_ACQUIRED;
577 }
578 acpi_sci_irq = irq;
579
580 return AE_OK;
581}
582
583acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
584{
585 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
586 return AE_BAD_PARAMETER;
587
588 free_irq(acpi_sci_irq, acpi_irq);
589 acpi_irq_handler = NULL;
590 acpi_sci_irq = INVALID_ACPI_IRQ;
591
592 return AE_OK;
593}
594
595/*
596 * Running in interpreter thread context, safe to sleep
597 */
598
599void acpi_os_sleep(u64 ms)
600{
601 msleep(ms);
602}
603
604void acpi_os_stall(u32 us)
605{
606 while (us) {
607 u32 delay = 1000;
608
609 if (delay > us)
610 delay = us;
611 udelay(delay);
612 touch_nmi_watchdog();
613 us -= delay;
614 }
615}
616
617/*
618 * Support ACPI 3.0 AML Timer operand
619 * Returns 64-bit free-running, monotonically increasing timer
620 * with 100ns granularity
621 */
622u64 acpi_os_get_timer(void)
623{
624 u64 time_ns = ktime_to_ns(ktime_get());
625 do_div(time_ns, 100);
626 return time_ns;
627}
628
629acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
630{
631 u32 dummy;
632
633 if (!value)
634 value = &dummy;
635
636 *value = 0;
637 if (width <= 8) {
638 *(u8 *) value = inb(port);
639 } else if (width <= 16) {
640 *(u16 *) value = inw(port);
641 } else if (width <= 32) {
642 *(u32 *) value = inl(port);
643 } else {
644 BUG();
645 }
646
647 return AE_OK;
648}
649
650EXPORT_SYMBOL(acpi_os_read_port);
651
652acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
653{
654 if (width <= 8) {
655 outb(value, port);
656 } else if (width <= 16) {
657 outw(value, port);
658 } else if (width <= 32) {
659 outl(value, port);
660 } else {
661 BUG();
662 }
663
664 return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_write_port);
668
669int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
670{
671
672 switch (width) {
673 case 8:
674 *(u8 *) value = readb(virt_addr);
675 break;
676 case 16:
677 *(u16 *) value = readw(virt_addr);
678 break;
679 case 32:
680 *(u32 *) value = readl(virt_addr);
681 break;
682 case 64:
683 *(u64 *) value = readq(virt_addr);
684 break;
685 default:
686 return -EINVAL;
687 }
688
689 return 0;
690}
691
692acpi_status
693acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
694{
695 void __iomem *virt_addr;
696 unsigned int size = width / 8;
697 bool unmap = false;
698 u64 dummy;
699 int error;
700
701 rcu_read_lock();
702 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
703 if (!virt_addr) {
704 rcu_read_unlock();
705 virt_addr = acpi_os_ioremap(phys_addr, size);
706 if (!virt_addr)
707 return AE_BAD_ADDRESS;
708 unmap = true;
709 }
710
711 if (!value)
712 value = &dummy;
713
714 error = acpi_os_read_iomem(virt_addr, value, width);
715 BUG_ON(error);
716
717 if (unmap)
718 iounmap(virt_addr);
719 else
720 rcu_read_unlock();
721
722 return AE_OK;
723}
724
725acpi_status
726acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
727{
728 void __iomem *virt_addr;
729 unsigned int size = width / 8;
730 bool unmap = false;
731
732 rcu_read_lock();
733 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
734 if (!virt_addr) {
735 rcu_read_unlock();
736 virt_addr = acpi_os_ioremap(phys_addr, size);
737 if (!virt_addr)
738 return AE_BAD_ADDRESS;
739 unmap = true;
740 }
741
742 switch (width) {
743 case 8:
744 writeb(value, virt_addr);
745 break;
746 case 16:
747 writew(value, virt_addr);
748 break;
749 case 32:
750 writel(value, virt_addr);
751 break;
752 case 64:
753 writeq(value, virt_addr);
754 break;
755 default:
756 BUG();
757 }
758
759 if (unmap)
760 iounmap(virt_addr);
761 else
762 rcu_read_unlock();
763
764 return AE_OK;
765}
766
767acpi_status
768acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
769 u64 *value, u32 width)
770{
771 int result, size;
772 u32 value32;
773
774 if (!value)
775 return AE_BAD_PARAMETER;
776
777 switch (width) {
778 case 8:
779 size = 1;
780 break;
781 case 16:
782 size = 2;
783 break;
784 case 32:
785 size = 4;
786 break;
787 default:
788 return AE_ERROR;
789 }
790
791 result = raw_pci_read(pci_id->segment, pci_id->bus,
792 PCI_DEVFN(pci_id->device, pci_id->function),
793 reg, size, &value32);
794 *value = value32;
795
796 return (result ? AE_ERROR : AE_OK);
797}
798
799acpi_status
800acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
801 u64 value, u32 width)
802{
803 int result, size;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_write(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, value);
822
823 return (result ? AE_ERROR : AE_OK);
824}
825
826static void acpi_os_execute_deferred(struct work_struct *work)
827{
828 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
829
830 dpc->function(dpc->context);
831 kfree(dpc);
832}
833
834#ifdef CONFIG_ACPI_DEBUGGER
835static struct acpi_debugger acpi_debugger;
836static bool acpi_debugger_initialized;
837
838int acpi_register_debugger(struct module *owner,
839 const struct acpi_debugger_ops *ops)
840{
841 int ret = 0;
842
843 mutex_lock(&acpi_debugger.lock);
844 if (acpi_debugger.ops) {
845 ret = -EBUSY;
846 goto err_lock;
847 }
848
849 acpi_debugger.owner = owner;
850 acpi_debugger.ops = ops;
851
852err_lock:
853 mutex_unlock(&acpi_debugger.lock);
854 return ret;
855}
856EXPORT_SYMBOL(acpi_register_debugger);
857
858void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
859{
860 mutex_lock(&acpi_debugger.lock);
861 if (ops == acpi_debugger.ops) {
862 acpi_debugger.ops = NULL;
863 acpi_debugger.owner = NULL;
864 }
865 mutex_unlock(&acpi_debugger.lock);
866}
867EXPORT_SYMBOL(acpi_unregister_debugger);
868
869int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
870{
871 int ret;
872 int (*func)(acpi_osd_exec_callback, void *);
873 struct module *owner;
874
875 if (!acpi_debugger_initialized)
876 return -ENODEV;
877 mutex_lock(&acpi_debugger.lock);
878 if (!acpi_debugger.ops) {
879 ret = -ENODEV;
880 goto err_lock;
881 }
882 if (!try_module_get(acpi_debugger.owner)) {
883 ret = -ENODEV;
884 goto err_lock;
885 }
886 func = acpi_debugger.ops->create_thread;
887 owner = acpi_debugger.owner;
888 mutex_unlock(&acpi_debugger.lock);
889
890 ret = func(function, context);
891
892 mutex_lock(&acpi_debugger.lock);
893 module_put(owner);
894err_lock:
895 mutex_unlock(&acpi_debugger.lock);
896 return ret;
897}
898
899ssize_t acpi_debugger_write_log(const char *msg)
900{
901 ssize_t ret;
902 ssize_t (*func)(const char *);
903 struct module *owner;
904
905 if (!acpi_debugger_initialized)
906 return -ENODEV;
907 mutex_lock(&acpi_debugger.lock);
908 if (!acpi_debugger.ops) {
909 ret = -ENODEV;
910 goto err_lock;
911 }
912 if (!try_module_get(acpi_debugger.owner)) {
913 ret = -ENODEV;
914 goto err_lock;
915 }
916 func = acpi_debugger.ops->write_log;
917 owner = acpi_debugger.owner;
918 mutex_unlock(&acpi_debugger.lock);
919
920 ret = func(msg);
921
922 mutex_lock(&acpi_debugger.lock);
923 module_put(owner);
924err_lock:
925 mutex_unlock(&acpi_debugger.lock);
926 return ret;
927}
928
929ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
930{
931 ssize_t ret;
932 ssize_t (*func)(char *, size_t);
933 struct module *owner;
934
935 if (!acpi_debugger_initialized)
936 return -ENODEV;
937 mutex_lock(&acpi_debugger.lock);
938 if (!acpi_debugger.ops) {
939 ret = -ENODEV;
940 goto err_lock;
941 }
942 if (!try_module_get(acpi_debugger.owner)) {
943 ret = -ENODEV;
944 goto err_lock;
945 }
946 func = acpi_debugger.ops->read_cmd;
947 owner = acpi_debugger.owner;
948 mutex_unlock(&acpi_debugger.lock);
949
950 ret = func(buffer, buffer_length);
951
952 mutex_lock(&acpi_debugger.lock);
953 module_put(owner);
954err_lock:
955 mutex_unlock(&acpi_debugger.lock);
956 return ret;
957}
958
959int acpi_debugger_wait_command_ready(void)
960{
961 int ret;
962 int (*func)(bool, char *, size_t);
963 struct module *owner;
964
965 if (!acpi_debugger_initialized)
966 return -ENODEV;
967 mutex_lock(&acpi_debugger.lock);
968 if (!acpi_debugger.ops) {
969 ret = -ENODEV;
970 goto err_lock;
971 }
972 if (!try_module_get(acpi_debugger.owner)) {
973 ret = -ENODEV;
974 goto err_lock;
975 }
976 func = acpi_debugger.ops->wait_command_ready;
977 owner = acpi_debugger.owner;
978 mutex_unlock(&acpi_debugger.lock);
979
980 ret = func(acpi_gbl_method_executing,
981 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
982
983 mutex_lock(&acpi_debugger.lock);
984 module_put(owner);
985err_lock:
986 mutex_unlock(&acpi_debugger.lock);
987 return ret;
988}
989
990int acpi_debugger_notify_command_complete(void)
991{
992 int ret;
993 int (*func)(void);
994 struct module *owner;
995
996 if (!acpi_debugger_initialized)
997 return -ENODEV;
998 mutex_lock(&acpi_debugger.lock);
999 if (!acpi_debugger.ops) {
1000 ret = -ENODEV;
1001 goto err_lock;
1002 }
1003 if (!try_module_get(acpi_debugger.owner)) {
1004 ret = -ENODEV;
1005 goto err_lock;
1006 }
1007 func = acpi_debugger.ops->notify_command_complete;
1008 owner = acpi_debugger.owner;
1009 mutex_unlock(&acpi_debugger.lock);
1010
1011 ret = func();
1012
1013 mutex_lock(&acpi_debugger.lock);
1014 module_put(owner);
1015err_lock:
1016 mutex_unlock(&acpi_debugger.lock);
1017 return ret;
1018}
1019
1020int __init acpi_debugger_init(void)
1021{
1022 mutex_init(&acpi_debugger.lock);
1023 acpi_debugger_initialized = true;
1024 return 0;
1025}
1026#endif
1027
1028/*******************************************************************************
1029 *
1030 * FUNCTION: acpi_os_execute
1031 *
1032 * PARAMETERS: Type - Type of the callback
1033 * Function - Function to be executed
1034 * Context - Function parameters
1035 *
1036 * RETURN: Status
1037 *
1038 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1039 * immediately executes function on a separate thread.
1040 *
1041 ******************************************************************************/
1042
1043acpi_status acpi_os_execute(acpi_execute_type type,
1044 acpi_osd_exec_callback function, void *context)
1045{
1046 acpi_status status = AE_OK;
1047 struct acpi_os_dpc *dpc;
1048 struct workqueue_struct *queue;
1049 int ret;
1050 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1051 "Scheduling function [%p(%p)] for deferred execution.\n",
1052 function, context));
1053
1054 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1055 ret = acpi_debugger_create_thread(function, context);
1056 if (ret) {
1057 pr_err("Call to kthread_create() failed.\n");
1058 status = AE_ERROR;
1059 }
1060 goto out_thread;
1061 }
1062
1063 /*
1064 * Allocate/initialize DPC structure. Note that this memory will be
1065 * freed by the callee. The kernel handles the work_struct list in a
1066 * way that allows us to also free its memory inside the callee.
1067 * Because we may want to schedule several tasks with different
1068 * parameters we can't use the approach some kernel code uses of
1069 * having a static work_struct.
1070 */
1071
1072 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1073 if (!dpc)
1074 return AE_NO_MEMORY;
1075
1076 dpc->function = function;
1077 dpc->context = context;
1078
1079 /*
1080 * To prevent lockdep from complaining unnecessarily, make sure that
1081 * there is a different static lockdep key for each workqueue by using
1082 * INIT_WORK() for each of them separately.
1083 */
1084 if (type == OSL_NOTIFY_HANDLER) {
1085 queue = kacpi_notify_wq;
1086 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087 } else if (type == OSL_GPE_HANDLER) {
1088 queue = kacpid_wq;
1089 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1090 } else {
1091 pr_err("Unsupported os_execute type %d.\n", type);
1092 status = AE_ERROR;
1093 }
1094
1095 if (ACPI_FAILURE(status))
1096 goto err_workqueue;
1097
1098 /*
1099 * On some machines, a software-initiated SMI causes corruption unless
1100 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1101 * typically it's done in GPE-related methods that are run via
1102 * workqueues, so we can avoid the known corruption cases by always
1103 * queueing on CPU 0.
1104 */
1105 ret = queue_work_on(0, queue, &dpc->work);
1106 if (!ret) {
1107 printk(KERN_ERR PREFIX
1108 "Call to queue_work() failed.\n");
1109 status = AE_ERROR;
1110 }
1111err_workqueue:
1112 if (ACPI_FAILURE(status))
1113 kfree(dpc);
1114out_thread:
1115 return status;
1116}
1117EXPORT_SYMBOL(acpi_os_execute);
1118
1119void acpi_os_wait_events_complete(void)
1120{
1121 /*
1122 * Make sure the GPE handler or the fixed event handler is not used
1123 * on another CPU after removal.
1124 */
1125 if (acpi_sci_irq_valid())
1126 synchronize_hardirq(acpi_sci_irq);
1127 flush_workqueue(kacpid_wq);
1128 flush_workqueue(kacpi_notify_wq);
1129}
1130
1131struct acpi_hp_work {
1132 struct work_struct work;
1133 struct acpi_device *adev;
1134 u32 src;
1135};
1136
1137static void acpi_hotplug_work_fn(struct work_struct *work)
1138{
1139 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1140
1141 acpi_os_wait_events_complete();
1142 acpi_device_hotplug(hpw->adev, hpw->src);
1143 kfree(hpw);
1144}
1145
1146acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1147{
1148 struct acpi_hp_work *hpw;
1149
1150 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1151 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1152 adev, src));
1153
1154 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1155 if (!hpw)
1156 return AE_NO_MEMORY;
1157
1158 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1159 hpw->adev = adev;
1160 hpw->src = src;
1161 /*
1162 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1163 * the hotplug code may call driver .remove() functions, which may
1164 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1165 * these workqueues.
1166 */
1167 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1168 kfree(hpw);
1169 return AE_ERROR;
1170 }
1171 return AE_OK;
1172}
1173
1174bool acpi_queue_hotplug_work(struct work_struct *work)
1175{
1176 return queue_work(kacpi_hotplug_wq, work);
1177}
1178
1179acpi_status
1180acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1181{
1182 struct semaphore *sem = NULL;
1183
1184 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1185 if (!sem)
1186 return AE_NO_MEMORY;
1187
1188 sema_init(sem, initial_units);
1189
1190 *handle = (acpi_handle *) sem;
1191
1192 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1193 *handle, initial_units));
1194
1195 return AE_OK;
1196}
1197
1198/*
1199 * TODO: A better way to delete semaphores? Linux doesn't have a
1200 * 'delete_semaphore()' function -- may result in an invalid
1201 * pointer dereference for non-synchronized consumers. Should
1202 * we at least check for blocked threads and signal/cancel them?
1203 */
1204
1205acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1206{
1207 struct semaphore *sem = (struct semaphore *)handle;
1208
1209 if (!sem)
1210 return AE_BAD_PARAMETER;
1211
1212 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1213
1214 BUG_ON(!list_empty(&sem->wait_list));
1215 kfree(sem);
1216 sem = NULL;
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: Support for units > 1?
1223 */
1224acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1225{
1226 acpi_status status = AE_OK;
1227 struct semaphore *sem = (struct semaphore *)handle;
1228 long jiffies;
1229 int ret = 0;
1230
1231 if (!acpi_os_initialized)
1232 return AE_OK;
1233
1234 if (!sem || (units < 1))
1235 return AE_BAD_PARAMETER;
1236
1237 if (units > 1)
1238 return AE_SUPPORT;
1239
1240 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1241 handle, units, timeout));
1242
1243 if (timeout == ACPI_WAIT_FOREVER)
1244 jiffies = MAX_SCHEDULE_TIMEOUT;
1245 else
1246 jiffies = msecs_to_jiffies(timeout);
1247
1248 ret = down_timeout(sem, jiffies);
1249 if (ret)
1250 status = AE_TIME;
1251
1252 if (ACPI_FAILURE(status)) {
1253 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1254 "Failed to acquire semaphore[%p|%d|%d], %s",
1255 handle, units, timeout,
1256 acpi_format_exception(status)));
1257 } else {
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1259 "Acquired semaphore[%p|%d|%d]", handle,
1260 units, timeout));
1261 }
1262
1263 return status;
1264}
1265
1266/*
1267 * TODO: Support for units > 1?
1268 */
1269acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1270{
1271 struct semaphore *sem = (struct semaphore *)handle;
1272
1273 if (!acpi_os_initialized)
1274 return AE_OK;
1275
1276 if (!sem || (units < 1))
1277 return AE_BAD_PARAMETER;
1278
1279 if (units > 1)
1280 return AE_SUPPORT;
1281
1282 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1283 units));
1284
1285 up(sem);
1286
1287 return AE_OK;
1288}
1289
1290acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1291{
1292#ifdef ENABLE_DEBUGGER
1293 if (acpi_in_debugger) {
1294 u32 chars;
1295
1296 kdb_read(buffer, buffer_length);
1297
1298 /* remove the CR kdb includes */
1299 chars = strlen(buffer) - 1;
1300 buffer[chars] = '\0';
1301 }
1302#else
1303 int ret;
1304
1305 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1306 if (ret < 0)
1307 return AE_ERROR;
1308 if (bytes_read)
1309 *bytes_read = ret;
1310#endif
1311
1312 return AE_OK;
1313}
1314EXPORT_SYMBOL(acpi_os_get_line);
1315
1316acpi_status acpi_os_wait_command_ready(void)
1317{
1318 int ret;
1319
1320 ret = acpi_debugger_wait_command_ready();
1321 if (ret < 0)
1322 return AE_ERROR;
1323 return AE_OK;
1324}
1325
1326acpi_status acpi_os_notify_command_complete(void)
1327{
1328 int ret;
1329
1330 ret = acpi_debugger_notify_command_complete();
1331 if (ret < 0)
1332 return AE_ERROR;
1333 return AE_OK;
1334}
1335
1336acpi_status acpi_os_signal(u32 function, void *info)
1337{
1338 switch (function) {
1339 case ACPI_SIGNAL_FATAL:
1340 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1341 break;
1342 case ACPI_SIGNAL_BREAKPOINT:
1343 /*
1344 * AML Breakpoint
1345 * ACPI spec. says to treat it as a NOP unless
1346 * you are debugging. So if/when we integrate
1347 * AML debugger into the kernel debugger its
1348 * hook will go here. But until then it is
1349 * not useful to print anything on breakpoints.
1350 */
1351 break;
1352 default:
1353 break;
1354 }
1355
1356 return AE_OK;
1357}
1358
1359static int __init acpi_os_name_setup(char *str)
1360{
1361 char *p = acpi_os_name;
1362 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1363
1364 if (!str || !*str)
1365 return 0;
1366
1367 for (; count-- && *str; str++) {
1368 if (isalnum(*str) || *str == ' ' || *str == ':')
1369 *p++ = *str;
1370 else if (*str == '\'' || *str == '"')
1371 continue;
1372 else
1373 break;
1374 }
1375 *p = 0;
1376
1377 return 1;
1378
1379}
1380
1381__setup("acpi_os_name=", acpi_os_name_setup);
1382
1383/*
1384 * Disable the auto-serialization of named objects creation methods.
1385 *
1386 * This feature is enabled by default. It marks the AML control methods
1387 * that contain the opcodes to create named objects as "Serialized".
1388 */
1389static int __init acpi_no_auto_serialize_setup(char *str)
1390{
1391 acpi_gbl_auto_serialize_methods = FALSE;
1392 pr_info("ACPI: auto-serialization disabled\n");
1393
1394 return 1;
1395}
1396
1397__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1398
1399/* Check of resource interference between native drivers and ACPI
1400 * OperationRegions (SystemIO and System Memory only).
1401 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1402 * in arbitrary AML code and can interfere with legacy drivers.
1403 * acpi_enforce_resources= can be set to:
1404 *
1405 * - strict (default) (2)
1406 * -> further driver trying to access the resources will not load
1407 * - lax (1)
1408 * -> further driver trying to access the resources will load, but you
1409 * get a system message that something might go wrong...
1410 *
1411 * - no (0)
1412 * -> ACPI Operation Region resources will not be registered
1413 *
1414 */
1415#define ENFORCE_RESOURCES_STRICT 2
1416#define ENFORCE_RESOURCES_LAX 1
1417#define ENFORCE_RESOURCES_NO 0
1418
1419static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1420
1421static int __init acpi_enforce_resources_setup(char *str)
1422{
1423 if (str == NULL || *str == '\0')
1424 return 0;
1425
1426 if (!strcmp("strict", str))
1427 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428 else if (!strcmp("lax", str))
1429 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1430 else if (!strcmp("no", str))
1431 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1432
1433 return 1;
1434}
1435
1436__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1437
1438/* Check for resource conflicts between ACPI OperationRegions and native
1439 * drivers */
1440int acpi_check_resource_conflict(const struct resource *res)
1441{
1442 acpi_adr_space_type space_id;
1443 acpi_size length;
1444 u8 warn = 0;
1445 int clash = 0;
1446
1447 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1448 return 0;
1449 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1450 return 0;
1451
1452 if (res->flags & IORESOURCE_IO)
1453 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1454 else
1455 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1456
1457 length = resource_size(res);
1458 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1459 warn = 1;
1460 clash = acpi_check_address_range(space_id, res->start, length, warn);
1461
1462 if (clash) {
1463 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1464 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1465 printk(KERN_NOTICE "ACPI: This conflict may"
1466 " cause random problems and system"
1467 " instability\n");
1468 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1469 " for this device, you should use it instead of"
1470 " the native driver\n");
1471 }
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1473 return -EBUSY;
1474 }
1475 return 0;
1476}
1477EXPORT_SYMBOL(acpi_check_resource_conflict);
1478
1479int acpi_check_region(resource_size_t start, resource_size_t n,
1480 const char *name)
1481{
1482 struct resource res = {
1483 .start = start,
1484 .end = start + n - 1,
1485 .name = name,
1486 .flags = IORESOURCE_IO,
1487 };
1488
1489 return acpi_check_resource_conflict(&res);
1490}
1491EXPORT_SYMBOL(acpi_check_region);
1492
1493/*
1494 * Let drivers know whether the resource checks are effective
1495 */
1496int acpi_resources_are_enforced(void)
1497{
1498 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1499}
1500EXPORT_SYMBOL(acpi_resources_are_enforced);
1501
1502/*
1503 * Deallocate the memory for a spinlock.
1504 */
1505void acpi_os_delete_lock(acpi_spinlock handle)
1506{
1507 ACPI_FREE(handle);
1508}
1509
1510/*
1511 * Acquire a spinlock.
1512 *
1513 * handle is a pointer to the spinlock_t.
1514 */
1515
1516acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1517{
1518 acpi_cpu_flags flags;
1519 spin_lock_irqsave(lockp, flags);
1520 return flags;
1521}
1522
1523/*
1524 * Release a spinlock. See above.
1525 */
1526
1527void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1528{
1529 spin_unlock_irqrestore(lockp, flags);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return (AE_OK);
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return (AE_OK);
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return (AE_OK);
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("ACPI: static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 printk(KERN_NOTICE PREFIX
1630 "ACPI: Predefined validation mechanism disabled\n");
1631 acpi_gbl_disable_auto_repair = TRUE;
1632
1633 return 1;
1634}
1635
1636__setup("acpica_no_return_repair", acpi_disable_return_repair);
1637
1638acpi_status __init acpi_os_initialize(void)
1639{
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1641 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1642 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1643 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1644 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1645 /*
1646 * Use acpi_os_map_generic_address to pre-map the reset
1647 * register if it's in system memory.
1648 */
1649 int rv;
1650
1651 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1652 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1653 }
1654 acpi_os_initialized = true;
1655
1656 return AE_OK;
1657}
1658
1659acpi_status __init acpi_os_initialize1(void)
1660{
1661 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1662 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1663 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1664 BUG_ON(!kacpid_wq);
1665 BUG_ON(!kacpi_notify_wq);
1666 BUG_ON(!kacpi_hotplug_wq);
1667 acpi_osi_init();
1668 return AE_OK;
1669}
1670
1671acpi_status acpi_os_terminate(void)
1672{
1673 if (acpi_irq_handler) {
1674 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1675 acpi_irq_handler);
1676 }
1677
1678 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1679 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1680 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1681 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1682 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1684
1685 destroy_workqueue(kacpid_wq);
1686 destroy_workqueue(kacpi_notify_wq);
1687 destroy_workqueue(kacpi_hotplug_wq);
1688
1689 return AE_OK;
1690}
1691
1692acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1693 u32 pm1b_control)
1694{
1695 int rc = 0;
1696 if (__acpi_os_prepare_sleep)
1697 rc = __acpi_os_prepare_sleep(sleep_state,
1698 pm1a_control, pm1b_control);
1699 if (rc < 0)
1700 return AE_ERROR;
1701 else if (rc > 0)
1702 return AE_CTRL_TERMINATE;
1703
1704 return AE_OK;
1705}
1706
1707void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1708 u32 pm1a_ctrl, u32 pm1b_ctrl))
1709{
1710 __acpi_os_prepare_sleep = func;
1711}
1712
1713#if (ACPI_REDUCED_HARDWARE)
1714acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1715 u32 val_b)
1716{
1717 int rc = 0;
1718 if (__acpi_os_prepare_extended_sleep)
1719 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1720 val_a, val_b);
1721 if (rc < 0)
1722 return AE_ERROR;
1723 else if (rc > 0)
1724 return AE_CTRL_TERMINATE;
1725
1726 return AE_OK;
1727}
1728#else
1729acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730 u32 val_b)
1731{
1732 return AE_OK;
1733}
1734#endif
1735
1736void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1737 u32 val_a, u32 val_b))
1738{
1739 __acpi_os_prepare_extended_sleep = func;
1740}
1741
1742acpi_status acpi_os_enter_sleep(u8 sleep_state,
1743 u32 reg_a_value, u32 reg_b_value)
1744{
1745 acpi_status status;
1746
1747 if (acpi_gbl_reduced_hardware)
1748 status = acpi_os_prepare_extended_sleep(sleep_state,
1749 reg_a_value,
1750 reg_b_value);
1751 else
1752 status = acpi_os_prepare_sleep(sleep_state,
1753 reg_a_value, reg_b_value);
1754 return status;
1755}