Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20#include <trace/events/sock.h>
  21
  22#include <linux/ceph/ceph_features.h>
  23#include <linux/ceph/libceph.h>
  24#include <linux/ceph/messenger.h>
  25#include <linux/ceph/decode.h>
  26#include <linux/ceph/pagelist.h>
  27#include <linux/export.h>
  28
  29/*
  30 * Ceph uses the messenger to exchange ceph_msg messages with other
  31 * hosts in the system.  The messenger provides ordered and reliable
  32 * delivery.  We tolerate TCP disconnects by reconnecting (with
  33 * exponential backoff) in the case of a fault (disconnection, bad
  34 * crc, protocol error).  Acks allow sent messages to be discarded by
  35 * the sender.
  36 */
  37
  38/*
  39 * We track the state of the socket on a given connection using
  40 * values defined below.  The transition to a new socket state is
  41 * handled by a function which verifies we aren't coming from an
  42 * unexpected state.
  43 *
  44 *      --------
  45 *      | NEW* |  transient initial state
  46 *      --------
  47 *          | con_sock_state_init()
  48 *          v
  49 *      ----------
  50 *      | CLOSED |  initialized, but no socket (and no
  51 *      ----------  TCP connection)
  52 *       ^      \
  53 *       |       \ con_sock_state_connecting()
  54 *       |        ----------------------
  55 *       |                              \
  56 *       + con_sock_state_closed()       \
  57 *       |+---------------------------    \
  58 *       | \                          \    \
  59 *       |  -----------                \    \
  60 *       |  | CLOSING |  socket event;  \    \
  61 *       |  -----------  await close     \    \
  62 *       |       ^                        \   |
  63 *       |       |                         \  |
  64 *       |       + con_sock_state_closing() \ |
  65 *       |      / \                         | |
  66 *       |     /   ---------------          | |
  67 *       |    /                   \         v v
  68 *       |   /                    --------------
  69 *       |  /    -----------------| CONNECTING |  socket created, TCP
  70 *       |  |   /                 --------------  connect initiated
  71 *       |  |   | con_sock_state_connected()
  72 *       |  |   v
  73 *      -------------
  74 *      | CONNECTED |  TCP connection established
  75 *      -------------
  76 *
  77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  78 */
  79
  80#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  81#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  82#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  83#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  84#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static bool con_flag_valid(unsigned long con_flag)
  87{
  88	switch (con_flag) {
  89	case CEPH_CON_F_LOSSYTX:
  90	case CEPH_CON_F_KEEPALIVE_PENDING:
  91	case CEPH_CON_F_WRITE_PENDING:
  92	case CEPH_CON_F_SOCK_CLOSED:
  93	case CEPH_CON_F_BACKOFF:
  94		return true;
  95	default:
  96		return false;
  97	}
  98}
  99
 100void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 101{
 102	BUG_ON(!con_flag_valid(con_flag));
 103
 104	clear_bit(con_flag, &con->flags);
 105}
 106
 107void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 108{
 109	BUG_ON(!con_flag_valid(con_flag));
 110
 111	set_bit(con_flag, &con->flags);
 112}
 113
 114bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 115{
 116	BUG_ON(!con_flag_valid(con_flag));
 117
 118	return test_bit(con_flag, &con->flags);
 119}
 120
 121bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
 122				  unsigned long con_flag)
 123{
 124	BUG_ON(!con_flag_valid(con_flag));
 125
 126	return test_and_clear_bit(con_flag, &con->flags);
 127}
 128
 129bool ceph_con_flag_test_and_set(struct ceph_connection *con,
 130				unsigned long con_flag)
 131{
 132	BUG_ON(!con_flag_valid(con_flag));
 133
 134	return test_and_set_bit(con_flag, &con->flags);
 135}
 136
 137/* Slab caches for frequently-allocated structures */
 138
 139static struct kmem_cache	*ceph_msg_cache;
 140
 
 
 
 
 
 
 141#ifdef CONFIG_LOCKDEP
 142static struct lock_class_key socket_class;
 143#endif
 144
 145static void queue_con(struct ceph_connection *con);
 146static void cancel_con(struct ceph_connection *con);
 147static void ceph_con_workfn(struct work_struct *);
 148static void con_fault(struct ceph_connection *con);
 149
 150/*
 151 * Nicely render a sockaddr as a string.  An array of formatted
 152 * strings is used, to approximate reentrancy.
 153 */
 154#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 155#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 156#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 157#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 158
 159static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 160static atomic_t addr_str_seq = ATOMIC_INIT(0);
 161
 162struct page *ceph_zero_page;		/* used in certain error cases */
 163
 164const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
 165{
 166	int i;
 167	char *s;
 168	struct sockaddr_storage ss = addr->in_addr; /* align */
 169	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
 170	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
 171
 172	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 173	s = addr_str[i];
 174
 175	switch (ss.ss_family) {
 176	case AF_INET:
 177		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
 178			 le32_to_cpu(addr->type), &in4->sin_addr,
 179			 ntohs(in4->sin_port));
 180		break;
 181
 182	case AF_INET6:
 183		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
 184			 le32_to_cpu(addr->type), &in6->sin6_addr,
 185			 ntohs(in6->sin6_port));
 186		break;
 187
 188	default:
 189		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 190			 ss.ss_family);
 191	}
 192
 193	return s;
 194}
 195EXPORT_SYMBOL(ceph_pr_addr);
 196
 197void ceph_encode_my_addr(struct ceph_messenger *msgr)
 198{
 199	if (!ceph_msgr2(from_msgr(msgr))) {
 200		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
 201		       sizeof(msgr->my_enc_addr));
 202		ceph_encode_banner_addr(&msgr->my_enc_addr);
 203	}
 204}
 205
 206/*
 207 * work queue for all reading and writing to/from the socket.
 208 */
 209static struct workqueue_struct *ceph_msgr_wq;
 210
 211static int ceph_msgr_slab_init(void)
 212{
 213	BUG_ON(ceph_msg_cache);
 214	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 215	if (!ceph_msg_cache)
 216		return -ENOMEM;
 217
 218	return 0;
 219}
 220
 221static void ceph_msgr_slab_exit(void)
 222{
 223	BUG_ON(!ceph_msg_cache);
 224	kmem_cache_destroy(ceph_msg_cache);
 225	ceph_msg_cache = NULL;
 226}
 227
 228static void _ceph_msgr_exit(void)
 229{
 230	if (ceph_msgr_wq) {
 231		destroy_workqueue(ceph_msgr_wq);
 232		ceph_msgr_wq = NULL;
 233	}
 234
 235	BUG_ON(!ceph_zero_page);
 236	put_page(ceph_zero_page);
 237	ceph_zero_page = NULL;
 238
 239	ceph_msgr_slab_exit();
 240}
 241
 242int __init ceph_msgr_init(void)
 243{
 244	if (ceph_msgr_slab_init())
 245		return -ENOMEM;
 246
 247	BUG_ON(ceph_zero_page);
 248	ceph_zero_page = ZERO_PAGE(0);
 249	get_page(ceph_zero_page);
 250
 251	/*
 252	 * The number of active work items is limited by the number of
 253	 * connections, so leave @max_active at default.
 254	 */
 255	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 256	if (ceph_msgr_wq)
 257		return 0;
 258
 259	pr_err("msgr_init failed to create workqueue\n");
 260	_ceph_msgr_exit();
 261
 262	return -ENOMEM;
 263}
 264
 265void ceph_msgr_exit(void)
 266{
 267	BUG_ON(ceph_msgr_wq == NULL);
 268
 269	_ceph_msgr_exit();
 270}
 271
 272void ceph_msgr_flush(void)
 273{
 274	flush_workqueue(ceph_msgr_wq);
 275}
 276EXPORT_SYMBOL(ceph_msgr_flush);
 277
 278/* Connection socket state transition functions */
 279
 280static void con_sock_state_init(struct ceph_connection *con)
 281{
 282	int old_state;
 283
 284	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 285	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 286		printk("%s: unexpected old state %d\n", __func__, old_state);
 287	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 288	     CON_SOCK_STATE_CLOSED);
 289}
 290
 291static void con_sock_state_connecting(struct ceph_connection *con)
 292{
 293	int old_state;
 294
 295	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 296	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 297		printk("%s: unexpected old state %d\n", __func__, old_state);
 298	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 299	     CON_SOCK_STATE_CONNECTING);
 300}
 301
 302static void con_sock_state_connected(struct ceph_connection *con)
 303{
 304	int old_state;
 305
 306	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 307	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 308		printk("%s: unexpected old state %d\n", __func__, old_state);
 309	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 310	     CON_SOCK_STATE_CONNECTED);
 311}
 312
 313static void con_sock_state_closing(struct ceph_connection *con)
 314{
 315	int old_state;
 316
 317	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 318	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 319			old_state != CON_SOCK_STATE_CONNECTED &&
 320			old_state != CON_SOCK_STATE_CLOSING))
 321		printk("%s: unexpected old state %d\n", __func__, old_state);
 322	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 323	     CON_SOCK_STATE_CLOSING);
 324}
 325
 326static void con_sock_state_closed(struct ceph_connection *con)
 327{
 328	int old_state;
 329
 330	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 331	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 332		    old_state != CON_SOCK_STATE_CLOSING &&
 333		    old_state != CON_SOCK_STATE_CONNECTING &&
 334		    old_state != CON_SOCK_STATE_CLOSED))
 335		printk("%s: unexpected old state %d\n", __func__, old_state);
 336	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337	     CON_SOCK_STATE_CLOSED);
 338}
 339
 340/*
 341 * socket callback functions
 342 */
 343
 344/* data available on socket, or listen socket received a connect */
 345static void ceph_sock_data_ready(struct sock *sk)
 346{
 347	struct ceph_connection *con = sk->sk_user_data;
 348
 349	trace_sk_data_ready(sk);
 350
 351	if (atomic_read(&con->msgr->stopping)) {
 352		return;
 353	}
 354
 355	if (sk->sk_state != TCP_CLOSE_WAIT) {
 356		dout("%s %p state = %d, queueing work\n", __func__,
 357		     con, con->state);
 358		queue_con(con);
 359	}
 360}
 361
 362/* socket has buffer space for writing */
 363static void ceph_sock_write_space(struct sock *sk)
 364{
 365	struct ceph_connection *con = sk->sk_user_data;
 366
 367	/* only queue to workqueue if there is data we want to write,
 368	 * and there is sufficient space in the socket buffer to accept
 369	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 370	 * doesn't get called again until try_write() fills the socket
 371	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 372	 * and net/core/stream.c:sk_stream_write_space().
 373	 */
 374	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
 375		if (sk_stream_is_writeable(sk)) {
 376			dout("%s %p queueing write work\n", __func__, con);
 377			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 378			queue_con(con);
 379		}
 380	} else {
 381		dout("%s %p nothing to write\n", __func__, con);
 382	}
 383}
 384
 385/* socket's state has changed */
 386static void ceph_sock_state_change(struct sock *sk)
 387{
 388	struct ceph_connection *con = sk->sk_user_data;
 389
 390	dout("%s %p state = %d sk_state = %u\n", __func__,
 391	     con, con->state, sk->sk_state);
 392
 393	switch (sk->sk_state) {
 394	case TCP_CLOSE:
 395		dout("%s TCP_CLOSE\n", __func__);
 396		fallthrough;
 397	case TCP_CLOSE_WAIT:
 398		dout("%s TCP_CLOSE_WAIT\n", __func__);
 399		con_sock_state_closing(con);
 400		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
 401		queue_con(con);
 402		break;
 403	case TCP_ESTABLISHED:
 404		dout("%s TCP_ESTABLISHED\n", __func__);
 405		con_sock_state_connected(con);
 406		queue_con(con);
 407		break;
 408	default:	/* Everything else is uninteresting */
 409		break;
 410	}
 411}
 412
 413/*
 414 * set up socket callbacks
 415 */
 416static void set_sock_callbacks(struct socket *sock,
 417			       struct ceph_connection *con)
 418{
 419	struct sock *sk = sock->sk;
 420	sk->sk_user_data = con;
 421	sk->sk_data_ready = ceph_sock_data_ready;
 422	sk->sk_write_space = ceph_sock_write_space;
 423	sk->sk_state_change = ceph_sock_state_change;
 424}
 425
 426
 427/*
 428 * socket helpers
 429 */
 430
 431/*
 432 * initiate connection to a remote socket.
 433 */
 434int ceph_tcp_connect(struct ceph_connection *con)
 435{
 436	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
 437	struct socket *sock;
 438	unsigned int noio_flag;
 439	int ret;
 440
 441	dout("%s con %p peer_addr %s\n", __func__, con,
 442	     ceph_pr_addr(&con->peer_addr));
 443	BUG_ON(con->sock);
 444
 445	/* sock_create_kern() allocates with GFP_KERNEL */
 446	noio_flag = memalloc_noio_save();
 447	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
 448			       SOCK_STREAM, IPPROTO_TCP, &sock);
 449	memalloc_noio_restore(noio_flag);
 450	if (ret)
 451		return ret;
 452	sock->sk->sk_allocation = GFP_NOFS;
 453	sock->sk->sk_use_task_frag = false;
 454
 455#ifdef CONFIG_LOCKDEP
 456	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 457#endif
 458
 459	set_sock_callbacks(sock, con);
 460
 
 
 461	con_sock_state_connecting(con);
 462	ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
 463			     O_NONBLOCK);
 464	if (ret == -EINPROGRESS) {
 465		dout("connect %s EINPROGRESS sk_state = %u\n",
 466		     ceph_pr_addr(&con->peer_addr),
 467		     sock->sk->sk_state);
 468	} else if (ret < 0) {
 469		pr_err("connect %s error %d\n",
 470		       ceph_pr_addr(&con->peer_addr), ret);
 471		sock_release(sock);
 472		return ret;
 473	}
 474
 475	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
 476		tcp_sock_set_nodelay(sock->sk);
 477
 478	con->sock = sock;
 479	return 0;
 480}
 481
 482/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483 * Shutdown/close the socket for the given connection.
 484 */
 485int ceph_con_close_socket(struct ceph_connection *con)
 486{
 487	int rc = 0;
 488
 489	dout("%s con %p sock %p\n", __func__, con, con->sock);
 490	if (con->sock) {
 491		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 492		sock_release(con->sock);
 493		con->sock = NULL;
 494	}
 495
 496	/*
 497	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 498	 * independent of the connection mutex, and we could have
 499	 * received a socket close event before we had the chance to
 500	 * shut the socket down.
 501	 */
 502	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
 503
 504	con_sock_state_closed(con);
 505	return rc;
 506}
 507
 508static void ceph_con_reset_protocol(struct ceph_connection *con)
 509{
 510	dout("%s con %p\n", __func__, con);
 511
 512	ceph_con_close_socket(con);
 513	if (con->in_msg) {
 514		WARN_ON(con->in_msg->con != con);
 515		ceph_msg_put(con->in_msg);
 516		con->in_msg = NULL;
 517	}
 518	if (con->out_msg) {
 519		WARN_ON(con->out_msg->con != con);
 520		ceph_msg_put(con->out_msg);
 521		con->out_msg = NULL;
 522	}
 523	if (con->bounce_page) {
 524		__free_page(con->bounce_page);
 525		con->bounce_page = NULL;
 526	}
 527
 528	if (ceph_msgr2(from_msgr(con->msgr)))
 529		ceph_con_v2_reset_protocol(con);
 530	else
 531		ceph_con_v1_reset_protocol(con);
 532}
 533
 534/*
 535 * Reset a connection.  Discard all incoming and outgoing messages
 536 * and clear *_seq state.
 537 */
 538static void ceph_msg_remove(struct ceph_msg *msg)
 539{
 540	list_del_init(&msg->list_head);
 541
 542	ceph_msg_put(msg);
 543}
 544
 545static void ceph_msg_remove_list(struct list_head *head)
 546{
 547	while (!list_empty(head)) {
 548		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 549							list_head);
 550		ceph_msg_remove(msg);
 551	}
 552}
 553
 554void ceph_con_reset_session(struct ceph_connection *con)
 555{
 556	dout("%s con %p\n", __func__, con);
 557
 558	WARN_ON(con->in_msg);
 559	WARN_ON(con->out_msg);
 560	ceph_msg_remove_list(&con->out_queue);
 561	ceph_msg_remove_list(&con->out_sent);
 
 
 
 
 
 
 
 
 562	con->out_seq = 0;
 
 
 
 
 
 563	con->in_seq = 0;
 564	con->in_seq_acked = 0;
 565
 566	if (ceph_msgr2(from_msgr(con->msgr)))
 567		ceph_con_v2_reset_session(con);
 568	else
 569		ceph_con_v1_reset_session(con);
 570}
 571
 572/*
 573 * mark a peer down.  drop any open connections.
 574 */
 575void ceph_con_close(struct ceph_connection *con)
 576{
 577	mutex_lock(&con->mutex);
 578	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
 579	con->state = CEPH_CON_S_CLOSED;
 580
 581	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
 582							  connect */
 583	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
 584	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
 585	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
 586
 587	ceph_con_reset_protocol(con);
 588	ceph_con_reset_session(con);
 589	cancel_con(con);
 
 590	mutex_unlock(&con->mutex);
 591}
 592EXPORT_SYMBOL(ceph_con_close);
 593
 594/*
 595 * Reopen a closed connection, with a new peer address.
 596 */
 597void ceph_con_open(struct ceph_connection *con,
 598		   __u8 entity_type, __u64 entity_num,
 599		   struct ceph_entity_addr *addr)
 600{
 601	mutex_lock(&con->mutex);
 602	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
 603
 604	WARN_ON(con->state != CEPH_CON_S_CLOSED);
 605	con->state = CEPH_CON_S_PREOPEN;
 606
 607	con->peer_name.type = (__u8) entity_type;
 608	con->peer_name.num = cpu_to_le64(entity_num);
 609
 610	memcpy(&con->peer_addr, addr, sizeof(*addr));
 611	con->delay = 0;      /* reset backoff memory */
 612	mutex_unlock(&con->mutex);
 613	queue_con(con);
 614}
 615EXPORT_SYMBOL(ceph_con_open);
 616
 617/*
 618 * return true if this connection ever successfully opened
 619 */
 620bool ceph_con_opened(struct ceph_connection *con)
 621{
 622	if (ceph_msgr2(from_msgr(con->msgr)))
 623		return ceph_con_v2_opened(con);
 624
 625	return ceph_con_v1_opened(con);
 626}
 627
 628/*
 629 * initialize a new connection.
 630 */
 631void ceph_con_init(struct ceph_connection *con, void *private,
 632	const struct ceph_connection_operations *ops,
 633	struct ceph_messenger *msgr)
 634{
 635	dout("con_init %p\n", con);
 636	memset(con, 0, sizeof(*con));
 637	con->private = private;
 638	con->ops = ops;
 639	con->msgr = msgr;
 640
 641	con_sock_state_init(con);
 642
 643	mutex_init(&con->mutex);
 644	INIT_LIST_HEAD(&con->out_queue);
 645	INIT_LIST_HEAD(&con->out_sent);
 646	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 647
 648	con->state = CEPH_CON_S_CLOSED;
 649}
 650EXPORT_SYMBOL(ceph_con_init);
 651
 
 652/*
 653 * We maintain a global counter to order connection attempts.  Get
 654 * a unique seq greater than @gt.
 655 */
 656u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
 657{
 658	u32 ret;
 659
 660	spin_lock(&msgr->global_seq_lock);
 661	if (msgr->global_seq < gt)
 662		msgr->global_seq = gt;
 663	ret = ++msgr->global_seq;
 664	spin_unlock(&msgr->global_seq_lock);
 665	return ret;
 666}
 667
 668/*
 669 * Discard messages that have been acked by the server.
 670 */
 671void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
 672{
 673	struct ceph_msg *msg;
 674	u64 seq;
 675
 676	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
 677	while (!list_empty(&con->out_sent)) {
 678		msg = list_first_entry(&con->out_sent, struct ceph_msg,
 679				       list_head);
 680		WARN_ON(msg->needs_out_seq);
 681		seq = le64_to_cpu(msg->hdr.seq);
 682		if (seq > ack_seq)
 683			break;
 684
 685		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 686		     msg, seq);
 687		ceph_msg_remove(msg);
 688	}
 
 
 
 
 
 
 
 
 689}
 690
 691/*
 692 * Discard messages that have been requeued in con_fault(), up to
 693 * reconnect_seq.  This avoids gratuitously resending messages that
 694 * the server had received and handled prior to reconnect.
 695 */
 696void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
 697{
 698	struct ceph_msg *msg;
 699	u64 seq;
 700
 701	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
 702	while (!list_empty(&con->out_queue)) {
 703		msg = list_first_entry(&con->out_queue, struct ceph_msg,
 704				       list_head);
 705		if (msg->needs_out_seq)
 706			break;
 707		seq = le64_to_cpu(msg->hdr.seq);
 708		if (seq > reconnect_seq)
 709			break;
 710
 711		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 712		     msg, seq);
 713		ceph_msg_remove(msg);
 714	}
 
 
 715}
 716
 717#ifdef CONFIG_BLOCK
 718
 719/*
 720 * For a bio data item, a piece is whatever remains of the next
 721 * entry in the current bio iovec, or the first entry in the next
 722 * bio in the list.
 723 */
 724static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 725					size_t length)
 726{
 727	struct ceph_msg_data *data = cursor->data;
 728	struct ceph_bio_iter *it = &cursor->bio_iter;
 729
 730	cursor->resid = min_t(size_t, length, data->bio_length);
 731	*it = data->bio_pos;
 732	if (cursor->resid < it->iter.bi_size)
 733		it->iter.bi_size = cursor->resid;
 734
 735	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 
 736}
 737
 738static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 739						size_t *page_offset,
 740						size_t *length)
 741{
 742	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 743					   cursor->bio_iter.iter);
 744
 745	*page_offset = bv.bv_offset;
 746	*length = bv.bv_len;
 747	return bv.bv_page;
 748}
 749
 750static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 751					size_t bytes)
 752{
 753	struct ceph_bio_iter *it = &cursor->bio_iter;
 754	struct page *page = bio_iter_page(it->bio, it->iter);
 755
 756	BUG_ON(bytes > cursor->resid);
 757	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 758	cursor->resid -= bytes;
 759	bio_advance_iter(it->bio, &it->iter, bytes);
 760
 761	if (!cursor->resid)
 
 762		return false;   /* no more data */
 
 763
 764	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
 765		       page == bio_iter_page(it->bio, it->iter)))
 766		return false;	/* more bytes to process in this segment */
 767
 768	if (!it->iter.bi_size) {
 769		it->bio = it->bio->bi_next;
 770		it->iter = it->bio->bi_iter;
 771		if (cursor->resid < it->iter.bi_size)
 772			it->iter.bi_size = cursor->resid;
 773	}
 774
 
 775	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 
 776	return true;
 777}
 778#endif /* CONFIG_BLOCK */
 779
 780static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 781					size_t length)
 782{
 783	struct ceph_msg_data *data = cursor->data;
 784	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 785
 786	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 787	cursor->bvec_iter = data->bvec_pos.iter;
 788	cursor->bvec_iter.bi_size = cursor->resid;
 789
 790	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 
 
 791}
 792
 793static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 794						size_t *page_offset,
 795						size_t *length)
 796{
 797	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 798					   cursor->bvec_iter);
 799
 800	*page_offset = bv.bv_offset;
 801	*length = bv.bv_len;
 802	return bv.bv_page;
 803}
 804
 805static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 806					size_t bytes)
 807{
 808	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 809	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
 810
 811	BUG_ON(bytes > cursor->resid);
 812	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 813	cursor->resid -= bytes;
 814	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 815
 816	if (!cursor->resid)
 
 817		return false;   /* no more data */
 
 818
 819	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
 820		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
 821		return false;	/* more bytes to process in this segment */
 822
 
 823	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 
 
 824	return true;
 825}
 826
 827/*
 828 * For a page array, a piece comes from the first page in the array
 829 * that has not already been fully consumed.
 830 */
 831static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 832					size_t length)
 833{
 834	struct ceph_msg_data *data = cursor->data;
 835	int page_count;
 836
 837	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 838
 839	BUG_ON(!data->pages);
 840	BUG_ON(!data->length);
 841
 842	cursor->resid = min(length, data->length);
 843	page_count = calc_pages_for(data->alignment, (u64)data->length);
 844	cursor->page_offset = data->alignment & ~PAGE_MASK;
 845	cursor->page_index = 0;
 846	BUG_ON(page_count > (int)USHRT_MAX);
 847	cursor->page_count = (unsigned short)page_count;
 848	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 
 849}
 850
 851static struct page *
 852ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 853					size_t *page_offset, size_t *length)
 854{
 855	struct ceph_msg_data *data = cursor->data;
 856
 857	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 858
 859	BUG_ON(cursor->page_index >= cursor->page_count);
 860	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 861
 862	*page_offset = cursor->page_offset;
 863	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 864	return data->pages[cursor->page_index];
 865}
 866
 867static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 868						size_t bytes)
 869{
 870	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 871
 872	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 873
 874	/* Advance the cursor page offset */
 875
 876	cursor->resid -= bytes;
 877	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 878	if (!bytes || cursor->page_offset)
 879		return false;	/* more bytes to process in the current page */
 880
 881	if (!cursor->resid)
 882		return false;   /* no more data */
 883
 884	/* Move on to the next page; offset is already at 0 */
 885
 886	BUG_ON(cursor->page_index >= cursor->page_count);
 887	cursor->page_index++;
 
 
 888	return true;
 889}
 890
 891/*
 892 * For a pagelist, a piece is whatever remains to be consumed in the
 893 * first page in the list, or the front of the next page.
 894 */
 895static void
 896ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 897					size_t length)
 898{
 899	struct ceph_msg_data *data = cursor->data;
 900	struct ceph_pagelist *pagelist;
 901	struct page *page;
 902
 903	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 904
 905	pagelist = data->pagelist;
 906	BUG_ON(!pagelist);
 907
 908	if (!length)
 909		return;		/* pagelist can be assigned but empty */
 910
 911	BUG_ON(list_empty(&pagelist->head));
 912	page = list_first_entry(&pagelist->head, struct page, lru);
 913
 914	cursor->resid = min(length, pagelist->length);
 915	cursor->page = page;
 916	cursor->offset = 0;
 
 917}
 918
 919static struct page *
 920ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 921				size_t *page_offset, size_t *length)
 922{
 923	struct ceph_msg_data *data = cursor->data;
 924	struct ceph_pagelist *pagelist;
 925
 926	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 927
 928	pagelist = data->pagelist;
 929	BUG_ON(!pagelist);
 930
 931	BUG_ON(!cursor->page);
 932	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 933
 934	/* offset of first page in pagelist is always 0 */
 935	*page_offset = cursor->offset & ~PAGE_MASK;
 936	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 937	return cursor->page;
 938}
 939
 940static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
 941						size_t bytes)
 942{
 943	struct ceph_msg_data *data = cursor->data;
 944	struct ceph_pagelist *pagelist;
 945
 946	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 947
 948	pagelist = data->pagelist;
 949	BUG_ON(!pagelist);
 950
 951	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 952	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
 953
 954	/* Advance the cursor offset */
 955
 956	cursor->resid -= bytes;
 957	cursor->offset += bytes;
 958	/* offset of first page in pagelist is always 0 */
 959	if (!bytes || cursor->offset & ~PAGE_MASK)
 960		return false;	/* more bytes to process in the current page */
 961
 962	if (!cursor->resid)
 963		return false;   /* no more data */
 964
 965	/* Move on to the next page */
 966
 967	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
 968	cursor->page = list_next_entry(cursor->page, lru);
 969	return true;
 970}
 971
 972static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
 973					   size_t length)
 974{
 975	struct ceph_msg_data *data = cursor->data;
 976
 977	cursor->iov_iter = data->iter;
 978	cursor->lastlen = 0;
 979	iov_iter_truncate(&cursor->iov_iter, length);
 980	cursor->resid = iov_iter_count(&cursor->iov_iter);
 981}
 982
 983static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
 984					    size_t *page_offset, size_t *length)
 985{
 986	struct page *page;
 987	ssize_t len;
 988
 989	if (cursor->lastlen)
 990		iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
 991
 992	len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
 993				  1, page_offset);
 994	BUG_ON(len < 0);
 995
 996	cursor->lastlen = len;
 997
 998	/*
 999	 * FIXME: The assumption is that the pages represented by the iov_iter
1000	 *	  are pinned, with the references held by the upper-level
1001	 *	  callers, or by virtue of being under writeback. Eventually,
1002	 *	  we'll get an iov_iter_get_pages2 variant that doesn't take
1003	 *	  page refs. Until then, just put the page ref.
1004	 */
1005	VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006	put_page(page);
1007
1008	*length = min_t(size_t, len, cursor->resid);
1009	return page;
1010}
1011
1012static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013				       size_t bytes)
1014{
1015	BUG_ON(bytes > cursor->resid);
1016	cursor->resid -= bytes;
1017
1018	if (bytes < cursor->lastlen) {
1019		cursor->lastlen -= bytes;
1020	} else {
1021		iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022		cursor->lastlen = 0;
1023	}
1024
1025	return cursor->resid;
1026}
1027
1028/*
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page.  The network layer might not
1031 * consume an entire piece at once.  A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece.  It also tracks whether the current
1034 * piece is the last one in the data item.
1035 */
1036static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037{
1038	size_t length = cursor->total_resid;
1039
1040	switch (cursor->data->type) {
1041	case CEPH_MSG_DATA_PAGELIST:
1042		ceph_msg_data_pagelist_cursor_init(cursor, length);
1043		break;
1044	case CEPH_MSG_DATA_PAGES:
1045		ceph_msg_data_pages_cursor_init(cursor, length);
1046		break;
1047#ifdef CONFIG_BLOCK
1048	case CEPH_MSG_DATA_BIO:
1049		ceph_msg_data_bio_cursor_init(cursor, length);
1050		break;
1051#endif /* CONFIG_BLOCK */
1052	case CEPH_MSG_DATA_BVECS:
1053		ceph_msg_data_bvecs_cursor_init(cursor, length);
1054		break;
1055	case CEPH_MSG_DATA_ITER:
1056		ceph_msg_data_iter_cursor_init(cursor, length);
1057		break;
1058	case CEPH_MSG_DATA_NONE:
1059	default:
1060		/* BUG(); */
1061		break;
1062	}
1063	cursor->need_crc = true;
1064}
1065
1066void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067			       struct ceph_msg *msg, size_t length)
1068{
 
 
1069	BUG_ON(!length);
1070	BUG_ON(length > msg->data_length);
1071	BUG_ON(!msg->num_data_items);
1072
1073	cursor->total_resid = length;
1074	cursor->data = msg->data;
1075	cursor->sr_resid = 0;
1076
1077	__ceph_msg_data_cursor_init(cursor);
1078}
1079
1080/*
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1084 */
1085struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086				size_t *page_offset, size_t *length)
 
1087{
1088	struct page *page;
1089
1090	switch (cursor->data->type) {
1091	case CEPH_MSG_DATA_PAGELIST:
1092		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093		break;
1094	case CEPH_MSG_DATA_PAGES:
1095		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096		break;
1097#ifdef CONFIG_BLOCK
1098	case CEPH_MSG_DATA_BIO:
1099		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100		break;
1101#endif /* CONFIG_BLOCK */
1102	case CEPH_MSG_DATA_BVECS:
1103		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104		break;
1105	case CEPH_MSG_DATA_ITER:
1106		page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107		break;
1108	case CEPH_MSG_DATA_NONE:
1109	default:
1110		page = NULL;
1111		break;
1112	}
1113
1114	BUG_ON(!page);
1115	BUG_ON(*page_offset + *length > PAGE_SIZE);
1116	BUG_ON(!*length);
1117	BUG_ON(*length > cursor->resid);
 
 
1118
1119	return page;
1120}
1121
1122/*
1123 * Returns true if the result moves the cursor on to the next piece
1124 * of the data item.
1125 */
1126void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
 
1127{
1128	bool new_piece;
1129
1130	BUG_ON(bytes > cursor->resid);
1131	switch (cursor->data->type) {
1132	case CEPH_MSG_DATA_PAGELIST:
1133		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134		break;
1135	case CEPH_MSG_DATA_PAGES:
1136		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137		break;
1138#ifdef CONFIG_BLOCK
1139	case CEPH_MSG_DATA_BIO:
1140		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141		break;
1142#endif /* CONFIG_BLOCK */
1143	case CEPH_MSG_DATA_BVECS:
1144		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145		break;
1146	case CEPH_MSG_DATA_ITER:
1147		new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148		break;
1149	case CEPH_MSG_DATA_NONE:
1150	default:
1151		BUG();
1152		break;
1153	}
1154	cursor->total_resid -= bytes;
1155
1156	if (!cursor->resid && cursor->total_resid) {
 
1157		cursor->data++;
1158		__ceph_msg_data_cursor_init(cursor);
1159		new_piece = true;
1160	}
1161	cursor->need_crc = new_piece;
1162}
1163
1164u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165		     unsigned int length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	char *kaddr;
1168
1169	kaddr = kmap(page);
1170	BUG_ON(kaddr == NULL);
1171	crc = crc32c(crc, kaddr + page_offset, length);
1172	kunmap(page);
1173
1174	return crc;
1175}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176
1177bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178{
1179	struct sockaddr_storage ss = addr->in_addr; /* align */
1180	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1182
1183	switch (ss.ss_family) {
1184	case AF_INET:
1185		return addr4->s_addr == htonl(INADDR_ANY);
1186	case AF_INET6:
1187		return ipv6_addr_any(addr6);
1188	default:
1189		return true;
1190	}
1191}
1192EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194int ceph_addr_port(const struct ceph_entity_addr *addr)
1195{
1196	switch (get_unaligned(&addr->in_addr.ss_family)) {
1197	case AF_INET:
1198		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199	case AF_INET6:
1200		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201	}
1202	return 0;
1203}
1204
1205void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206{
1207	switch (get_unaligned(&addr->in_addr.ss_family)) {
1208	case AF_INET:
1209		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210		break;
1211	case AF_INET6:
1212		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213		break;
1214	}
1215}
1216
1217/*
1218 * Unlike other *_pton function semantics, zero indicates success.
1219 */
1220static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221		char delim, const char **ipend)
1222{
1223	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1224
1225	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227		return 0;
1228	}
1229
1230	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232		return 0;
1233	}
1234
1235	return -EINVAL;
1236}
1237
1238/*
1239 * Extract hostname string and resolve using kernel DNS facility.
1240 */
1241#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243		struct ceph_entity_addr *addr, char delim, const char **ipend)
1244{
1245	const char *end, *delim_p;
1246	char *colon_p, *ip_addr = NULL;
1247	int ip_len, ret;
1248
1249	/*
1250	 * The end of the hostname occurs immediately preceding the delimiter or
1251	 * the port marker (':') where the delimiter takes precedence.
1252	 */
1253	delim_p = memchr(name, delim, namelen);
1254	colon_p = memchr(name, ':', namelen);
1255
1256	if (delim_p && colon_p)
1257		end = min(delim_p, colon_p);
1258	else if (!delim_p && colon_p)
1259		end = colon_p;
1260	else {
1261		end = delim_p;
1262		if (!end) /* case: hostname:/ */
1263			end = name + namelen;
1264	}
1265
1266	if (end <= name)
1267		return -EINVAL;
1268
1269	/* do dns_resolve upcall */
1270	ip_len = dns_query(current->nsproxy->net_ns,
1271			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272	if (ip_len > 0)
1273		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274	else
1275		ret = -ESRCH;
1276
1277	kfree(ip_addr);
1278
1279	*ipend = end;
1280
1281	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282			ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284	return ret;
1285}
1286#else
1287static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288		struct ceph_entity_addr *addr, char delim, const char **ipend)
1289{
1290	return -EINVAL;
1291}
1292#endif
1293
1294/*
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1297 */
1298static int ceph_parse_server_name(const char *name, size_t namelen,
1299		struct ceph_entity_addr *addr, char delim, const char **ipend)
1300{
1301	int ret;
1302
1303	ret = ceph_pton(name, namelen, addr, delim, ipend);
1304	if (ret)
1305		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307	return ret;
1308}
1309
1310/*
1311 * Parse an ip[:port] list into an addr array.  Use the default
1312 * monitor port if a port isn't specified.
1313 */
1314int ceph_parse_ips(const char *c, const char *end,
1315		   struct ceph_entity_addr *addr,
1316		   int max_count, int *count, char delim)
1317{
1318	int i, ret = -EINVAL;
1319	const char *p = c;
1320
1321	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322	for (i = 0; i < max_count; i++) {
1323		char cur_delim = delim;
1324		const char *ipend;
1325		int port;
 
1326
1327		if (*p == '[') {
1328			cur_delim = ']';
1329			p++;
1330		}
1331
1332		ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333					     &ipend);
1334		if (ret)
1335			goto bad;
1336		ret = -EINVAL;
1337
1338		p = ipend;
1339
1340		if (cur_delim == ']') {
1341			if (*p != ']') {
1342				dout("missing matching ']'\n");
1343				goto bad;
1344			}
1345			p++;
1346		}
1347
1348		/* port? */
1349		if (p < end && *p == ':') {
1350			port = 0;
1351			p++;
1352			while (p < end && *p >= '0' && *p <= '9') {
1353				port = (port * 10) + (*p - '0');
1354				p++;
1355			}
1356			if (port == 0)
1357				port = CEPH_MON_PORT;
1358			else if (port > 65535)
1359				goto bad;
1360		} else {
1361			port = CEPH_MON_PORT;
1362		}
1363
1364		ceph_addr_set_port(&addr[i], port);
1365		/*
1366		 * We want the type to be set according to ms_mode
1367		 * option, but options are normally parsed after mon
1368		 * addresses.  Rather than complicating parsing, set
1369		 * to LEGACY and override in build_initial_monmap()
1370		 * for mon addresses and ceph_messenger_init() for
1371		 * ip option.
1372		 */
1373		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374		addr[i].nonce = 0;
1375
1376		dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378		if (p == end)
1379			break;
1380		if (*p != delim)
1381			goto bad;
1382		p++;
1383	}
1384
1385	if (p != end)
1386		goto bad;
1387
1388	if (count)
1389		*count = i + 1;
1390	return 0;
1391
1392bad:
1393	return ret;
1394}
1395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396/*
1397 * Process message.  This happens in the worker thread.  The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1399 * may deadlock.
1400 */
1401void ceph_con_process_message(struct ceph_connection *con)
1402{
1403	struct ceph_msg *msg = con->in_msg;
1404
1405	BUG_ON(con->in_msg->con != con);
1406	con->in_msg = NULL;
1407
1408	/* if first message, set peer_name */
1409	if (con->peer_name.type == 0)
1410		con->peer_name = msg->hdr.src;
1411
1412	con->in_seq++;
1413	mutex_unlock(&con->mutex);
1414
1415	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416	     msg, le64_to_cpu(msg->hdr.seq),
1417	     ENTITY_NAME(msg->hdr.src),
1418	     le16_to_cpu(msg->hdr.type),
1419	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420	     le32_to_cpu(msg->hdr.front_len),
1421	     le32_to_cpu(msg->hdr.middle_len),
1422	     le32_to_cpu(msg->hdr.data_len),
1423	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424	con->ops->dispatch(con, msg);
1425
1426	mutex_lock(&con->mutex);
1427}
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429/*
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1433 */
1434static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435{
1436	if (!con->ops->get(con)) {
1437		dout("%s %p ref count 0\n", __func__, con);
1438		return -ENOENT;
1439	}
1440
1441	if (delay >= HZ)
1442		delay = round_jiffies_relative(delay);
1443
1444	dout("%s %p %lu\n", __func__, con, delay);
1445	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446		dout("%s %p - already queued\n", __func__, con);
1447		con->ops->put(con);
1448		return -EBUSY;
1449	}
1450
 
1451	return 0;
1452}
1453
1454static void queue_con(struct ceph_connection *con)
1455{
1456	(void) queue_con_delay(con, 0);
1457}
1458
1459static void cancel_con(struct ceph_connection *con)
1460{
1461	if (cancel_delayed_work(&con->work)) {
1462		dout("%s %p\n", __func__, con);
1463		con->ops->put(con);
1464	}
1465}
1466
1467static bool con_sock_closed(struct ceph_connection *con)
1468{
1469	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470		return false;
1471
1472#define CASE(x)								\
1473	case CEPH_CON_S_ ## x:						\
1474		con->error_msg = "socket closed (con state " #x ")";	\
1475		break;
1476
1477	switch (con->state) {
1478	CASE(CLOSED);
1479	CASE(PREOPEN);
1480	CASE(V1_BANNER);
1481	CASE(V1_CONNECT_MSG);
1482	CASE(V2_BANNER_PREFIX);
1483	CASE(V2_BANNER_PAYLOAD);
1484	CASE(V2_HELLO);
1485	CASE(V2_AUTH);
1486	CASE(V2_AUTH_SIGNATURE);
1487	CASE(V2_SESSION_CONNECT);
1488	CASE(V2_SESSION_RECONNECT);
1489	CASE(OPEN);
1490	CASE(STANDBY);
1491	default:
 
 
 
1492		BUG();
 
1493	}
1494#undef CASE
1495
1496	return true;
1497}
1498
1499static bool con_backoff(struct ceph_connection *con)
1500{
1501	int ret;
1502
1503	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504		return false;
1505
1506	ret = queue_con_delay(con, con->delay);
1507	if (ret) {
1508		dout("%s: con %p FAILED to back off %lu\n", __func__,
1509			con, con->delay);
1510		BUG_ON(ret == -ENOENT);
1511		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512	}
1513
1514	return true;
1515}
1516
1517/* Finish fault handling; con->mutex must *not* be held here */
1518
1519static void con_fault_finish(struct ceph_connection *con)
1520{
1521	dout("%s %p\n", __func__, con);
1522
1523	/*
1524	 * in case we faulted due to authentication, invalidate our
1525	 * current tickets so that we can get new ones.
1526	 */
1527	if (con->v1.auth_retry) {
1528		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529		if (con->ops->invalidate_authorizer)
1530			con->ops->invalidate_authorizer(con);
1531		con->v1.auth_retry = 0;
1532	}
1533
1534	if (con->ops->fault)
1535		con->ops->fault(con);
1536}
1537
1538/*
1539 * Do some work on a connection.  Drop a connection ref when we're done.
1540 */
1541static void ceph_con_workfn(struct work_struct *work)
1542{
1543	struct ceph_connection *con = container_of(work, struct ceph_connection,
1544						   work.work);
1545	bool fault;
1546
1547	mutex_lock(&con->mutex);
1548	while (true) {
1549		int ret;
1550
1551		if ((fault = con_sock_closed(con))) {
1552			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553			break;
1554		}
1555		if (con_backoff(con)) {
1556			dout("%s: con %p BACKOFF\n", __func__, con);
1557			break;
1558		}
1559		if (con->state == CEPH_CON_S_STANDBY) {
1560			dout("%s: con %p STANDBY\n", __func__, con);
1561			break;
1562		}
1563		if (con->state == CEPH_CON_S_CLOSED) {
1564			dout("%s: con %p CLOSED\n", __func__, con);
1565			BUG_ON(con->sock);
1566			break;
1567		}
1568		if (con->state == CEPH_CON_S_PREOPEN) {
1569			dout("%s: con %p PREOPEN\n", __func__, con);
1570			BUG_ON(con->sock);
1571		}
1572
1573		if (ceph_msgr2(from_msgr(con->msgr)))
1574			ret = ceph_con_v2_try_read(con);
1575		else
1576			ret = ceph_con_v1_try_read(con);
1577		if (ret < 0) {
1578			if (ret == -EAGAIN)
1579				continue;
1580			if (!con->error_msg)
1581				con->error_msg = "socket error on read";
1582			fault = true;
1583			break;
1584		}
1585
1586		if (ceph_msgr2(from_msgr(con->msgr)))
1587			ret = ceph_con_v2_try_write(con);
1588		else
1589			ret = ceph_con_v1_try_write(con);
1590		if (ret < 0) {
1591			if (ret == -EAGAIN)
1592				continue;
1593			if (!con->error_msg)
1594				con->error_msg = "socket error on write";
1595			fault = true;
1596		}
1597
1598		break;	/* If we make it to here, we're done */
1599	}
1600	if (fault)
1601		con_fault(con);
1602	mutex_unlock(&con->mutex);
1603
1604	if (fault)
1605		con_fault_finish(con);
1606
1607	con->ops->put(con);
1608}
1609
1610/*
1611 * Generic error/fault handler.  A retry mechanism is used with
1612 * exponential backoff
1613 */
1614static void con_fault(struct ceph_connection *con)
1615{
1616	dout("fault %p state %d to peer %s\n",
1617	     con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620		ceph_pr_addr(&con->peer_addr), con->error_msg);
1621	con->error_msg = NULL;
1622
1623	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624		con->state == CEPH_CON_S_CLOSED);
 
1625
1626	ceph_con_reset_protocol(con);
1627
1628	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629		dout("fault on LOSSYTX channel, marking CLOSED\n");
1630		con->state = CEPH_CON_S_CLOSED;
1631		return;
1632	}
1633
 
 
 
 
 
 
1634	/* Requeue anything that hasn't been acked */
1635	list_splice_init(&con->out_sent, &con->out_queue);
1636
1637	/* If there are no messages queued or keepalive pending, place
1638	 * the connection in a STANDBY state */
1639	if (list_empty(&con->out_queue) &&
1640	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643		con->state = CEPH_CON_S_STANDBY;
1644	} else {
1645		/* retry after a delay. */
1646		con->state = CEPH_CON_S_PREOPEN;
1647		if (!con->delay) {
1648			con->delay = BASE_DELAY_INTERVAL;
1649		} else if (con->delay < MAX_DELAY_INTERVAL) {
1650			con->delay *= 2;
1651			if (con->delay > MAX_DELAY_INTERVAL)
1652				con->delay = MAX_DELAY_INTERVAL;
1653		}
1654		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655		queue_con(con);
1656	}
1657}
1658
 
1659void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660{
1661	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663	ceph_encode_my_addr(msgr);
1664}
1665
1666/*
1667 * initialize a new messenger instance
1668 */
1669void ceph_messenger_init(struct ceph_messenger *msgr,
1670			 struct ceph_entity_addr *myaddr)
1671{
1672	spin_lock_init(&msgr->global_seq_lock);
1673
1674	if (myaddr) {
1675		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676		       sizeof(msgr->inst.addr.in_addr));
1677		ceph_addr_set_port(&msgr->inst.addr, 0);
1678	}
1679
1680	/*
1681	 * Since nautilus, clients are identified using type ANY.
1682	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683	 */
1684	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686	/* generate a random non-zero nonce */
1687	do {
1688		get_random_bytes(&msgr->inst.addr.nonce,
1689				 sizeof(msgr->inst.addr.nonce));
1690	} while (!msgr->inst.addr.nonce);
1691	ceph_encode_my_addr(msgr);
1692
1693	atomic_set(&msgr->stopping, 0);
1694	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696	dout("%s %p\n", __func__, msgr);
1697}
 
1698
1699void ceph_messenger_fini(struct ceph_messenger *msgr)
1700{
1701	put_net(read_pnet(&msgr->net));
1702}
 
1703
1704static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705{
1706	if (msg->con)
1707		msg->con->ops->put(msg->con);
1708
1709	msg->con = con ? con->ops->get(con) : NULL;
1710	BUG_ON(msg->con != con);
1711}
1712
1713static void clear_standby(struct ceph_connection *con)
1714{
1715	/* come back from STANDBY? */
1716	if (con->state == CEPH_CON_S_STANDBY) {
1717		dout("clear_standby %p and ++connect_seq\n", con);
1718		con->state = CEPH_CON_S_PREOPEN;
1719		con->v1.connect_seq++;
1720		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722	}
1723}
1724
1725/*
1726 * Queue up an outgoing message on the given connection.
1727 *
1728 * Consumes a ref on @msg.
1729 */
1730void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731{
1732	/* set src+dst */
1733	msg->hdr.src = con->msgr->inst.name;
1734	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735	msg->needs_out_seq = true;
1736
1737	mutex_lock(&con->mutex);
1738
1739	if (con->state == CEPH_CON_S_CLOSED) {
1740		dout("con_send %p closed, dropping %p\n", con, msg);
1741		ceph_msg_put(msg);
1742		mutex_unlock(&con->mutex);
1743		return;
1744	}
1745
1746	msg_con_set(msg, con);
1747
1748	BUG_ON(!list_empty(&msg->list_head));
1749	list_add_tail(&msg->list_head, &con->out_queue);
1750	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753	     le32_to_cpu(msg->hdr.front_len),
1754	     le32_to_cpu(msg->hdr.middle_len),
1755	     le32_to_cpu(msg->hdr.data_len));
1756
1757	clear_standby(con);
1758	mutex_unlock(&con->mutex);
1759
1760	/* if there wasn't anything waiting to send before, queue
1761	 * new work */
1762	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763		queue_con(con);
1764}
1765EXPORT_SYMBOL(ceph_con_send);
1766
1767/*
1768 * Revoke a message that was previously queued for send
1769 */
1770void ceph_msg_revoke(struct ceph_msg *msg)
1771{
1772	struct ceph_connection *con = msg->con;
1773
1774	if (!con) {
1775		dout("%s msg %p null con\n", __func__, msg);
1776		return;		/* Message not in our possession */
1777	}
1778
1779	mutex_lock(&con->mutex);
1780	if (list_empty(&msg->list_head)) {
1781		WARN_ON(con->out_msg == msg);
1782		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783		mutex_unlock(&con->mutex);
1784		return;
1785	}
1786
1787	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788	msg->hdr.seq = 0;
1789	ceph_msg_remove(msg);
1790
 
 
1791	if (con->out_msg == msg) {
1792		WARN_ON(con->state != CEPH_CON_S_OPEN);
1793		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794		if (ceph_msgr2(from_msgr(con->msgr)))
1795			ceph_con_v2_revoke(con);
1796		else
1797			ceph_con_v1_revoke(con);
1798		ceph_msg_put(con->out_msg);
 
 
 
 
 
 
 
 
 
 
 
1799		con->out_msg = NULL;
1800	} else {
1801		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802		     con, msg, con->out_msg);
1803	}
 
1804	mutex_unlock(&con->mutex);
1805}
1806
1807/*
1808 * Revoke a message that we may be reading data into
1809 */
1810void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811{
1812	struct ceph_connection *con = msg->con;
1813
1814	if (!con) {
1815		dout("%s msg %p null con\n", __func__, msg);
1816		return;		/* Message not in our possession */
1817	}
1818
1819	mutex_lock(&con->mutex);
1820	if (con->in_msg == msg) {
1821		WARN_ON(con->state != CEPH_CON_S_OPEN);
1822		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823		if (ceph_msgr2(from_msgr(con->msgr)))
1824			ceph_con_v2_revoke_incoming(con);
1825		else
1826			ceph_con_v1_revoke_incoming(con);
 
 
 
 
 
 
1827		ceph_msg_put(con->in_msg);
1828		con->in_msg = NULL;
 
 
1829	} else {
1830		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831		     con, msg, con->in_msg);
1832	}
1833	mutex_unlock(&con->mutex);
1834}
1835
1836/*
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1838 */
1839void ceph_con_keepalive(struct ceph_connection *con)
1840{
1841	dout("con_keepalive %p\n", con);
1842	mutex_lock(&con->mutex);
1843	clear_standby(con);
1844	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845	mutex_unlock(&con->mutex);
1846
1847	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848		queue_con(con);
1849}
1850EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853			       unsigned long interval)
1854{
1855	if (interval > 0 &&
1856	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857		struct timespec64 now;
1858		struct timespec64 ts;
1859		ktime_get_real_ts64(&now);
1860		jiffies_to_timespec64(interval, &ts);
1861		ts = timespec64_add(con->last_keepalive_ack, ts);
1862		return timespec64_compare(&now, &ts) >= 0;
1863	}
1864	return false;
1865}
1866
1867static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868{
1869	BUG_ON(msg->num_data_items >= msg->max_data_items);
1870	return &msg->data[msg->num_data_items++];
1871}
1872
1873static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874{
1875	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876		int num_pages = calc_pages_for(data->alignment, data->length);
1877		ceph_release_page_vector(data->pages, num_pages);
1878	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1879		ceph_pagelist_release(data->pagelist);
1880	}
1881}
1882
1883void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884			     size_t length, size_t alignment, bool own_pages)
1885{
1886	struct ceph_msg_data *data;
1887
1888	BUG_ON(!pages);
1889	BUG_ON(!length);
1890
1891	data = ceph_msg_data_add(msg);
1892	data->type = CEPH_MSG_DATA_PAGES;
1893	data->pages = pages;
1894	data->length = length;
1895	data->alignment = alignment & ~PAGE_MASK;
1896	data->own_pages = own_pages;
1897
1898	msg->data_length += length;
1899}
1900EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903				struct ceph_pagelist *pagelist)
1904{
1905	struct ceph_msg_data *data;
1906
1907	BUG_ON(!pagelist);
1908	BUG_ON(!pagelist->length);
1909
1910	data = ceph_msg_data_add(msg);
1911	data->type = CEPH_MSG_DATA_PAGELIST;
1912	refcount_inc(&pagelist->refcnt);
1913	data->pagelist = pagelist;
1914
1915	msg->data_length += pagelist->length;
1916}
1917EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919#ifdef	CONFIG_BLOCK
1920void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921			   u32 length)
1922{
1923	struct ceph_msg_data *data;
1924
1925	data = ceph_msg_data_add(msg);
1926	data->type = CEPH_MSG_DATA_BIO;
1927	data->bio_pos = *bio_pos;
1928	data->bio_length = length;
1929
1930	msg->data_length += length;
1931}
1932EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933#endif	/* CONFIG_BLOCK */
1934
1935void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936			     struct ceph_bvec_iter *bvec_pos)
1937{
1938	struct ceph_msg_data *data;
1939
1940	data = ceph_msg_data_add(msg);
1941	data->type = CEPH_MSG_DATA_BVECS;
1942	data->bvec_pos = *bvec_pos;
1943
1944	msg->data_length += bvec_pos->iter.bi_size;
1945}
1946EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949			    struct iov_iter *iter)
1950{
1951	struct ceph_msg_data *data;
1952
1953	data = ceph_msg_data_add(msg);
1954	data->type = CEPH_MSG_DATA_ITER;
1955	data->iter = *iter;
1956
1957	msg->data_length += iov_iter_count(&data->iter);
1958}
1959
1960/*
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1963 */
1964struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965			       gfp_t flags, bool can_fail)
1966{
1967	struct ceph_msg *m;
1968
1969	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970	if (m == NULL)
1971		goto out;
1972
1973	m->hdr.type = cpu_to_le16(type);
1974	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975	m->hdr.front_len = cpu_to_le32(front_len);
1976
1977	INIT_LIST_HEAD(&m->list_head);
1978	kref_init(&m->kref);
1979
1980	/* front */
1981	if (front_len) {
1982		m->front.iov_base = kvmalloc(front_len, flags);
1983		if (m->front.iov_base == NULL) {
1984			dout("ceph_msg_new can't allocate %d bytes\n",
1985			     front_len);
1986			goto out2;
1987		}
1988	} else {
1989		m->front.iov_base = NULL;
1990	}
1991	m->front_alloc_len = m->front.iov_len = front_len;
1992
1993	if (max_data_items) {
1994		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995					flags);
1996		if (!m->data)
1997			goto out2;
1998
1999		m->max_data_items = max_data_items;
2000	}
2001
2002	dout("ceph_msg_new %p front %d\n", m, front_len);
2003	return m;
2004
2005out2:
2006	ceph_msg_put(m);
2007out:
2008	if (!can_fail) {
2009		pr_err("msg_new can't create type %d front %d\n", type,
2010		       front_len);
2011		WARN_ON(1);
2012	} else {
2013		dout("msg_new can't create type %d front %d\n", type,
2014		     front_len);
2015	}
2016	return NULL;
2017}
2018EXPORT_SYMBOL(ceph_msg_new2);
2019
2020struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021			      bool can_fail)
2022{
2023	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024}
2025EXPORT_SYMBOL(ceph_msg_new);
2026
2027/*
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg.  This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2033 */
2034static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035{
2036	int type = le16_to_cpu(msg->hdr.type);
2037	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040	     ceph_msg_type_name(type), middle_len);
2041	BUG_ON(!middle_len);
2042	BUG_ON(msg->middle);
2043
2044	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045	if (!msg->middle)
2046		return -ENOMEM;
2047	return 0;
2048}
2049
2050/*
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg.  Uses the
2053 * connection's private alloc_msg op if available.
2054 *
2055 * Returns 0 on success, or a negative error code.
2056 *
2057 * On success, if we set *skip = 1:
2058 *  - the next message should be skipped and ignored.
2059 *  - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 *  - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 *  - con->in_msg == NULL
2064 */
2065int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066			  struct ceph_msg_header *hdr, int *skip)
2067{
 
2068	int middle_len = le32_to_cpu(hdr->middle_len);
2069	struct ceph_msg *msg;
2070	int ret = 0;
2071
2072	BUG_ON(con->in_msg != NULL);
2073	BUG_ON(!con->ops->alloc_msg);
2074
2075	mutex_unlock(&con->mutex);
2076	msg = con->ops->alloc_msg(con, hdr, skip);
2077	mutex_lock(&con->mutex);
2078	if (con->state != CEPH_CON_S_OPEN) {
2079		if (msg)
2080			ceph_msg_put(msg);
2081		return -EAGAIN;
2082	}
2083	if (msg) {
2084		BUG_ON(*skip);
2085		msg_con_set(msg, con);
2086		con->in_msg = msg;
2087	} else {
2088		/*
2089		 * Null message pointer means either we should skip
2090		 * this message or we couldn't allocate memory.  The
2091		 * former is not an error.
2092		 */
2093		if (*skip)
2094			return 0;
2095
2096		con->error_msg = "error allocating memory for incoming message";
2097		return -ENOMEM;
2098	}
2099	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101	if (middle_len && !con->in_msg->middle) {
2102		ret = ceph_alloc_middle(con, con->in_msg);
2103		if (ret < 0) {
2104			ceph_msg_put(con->in_msg);
2105			con->in_msg = NULL;
2106		}
2107	}
2108
2109	return ret;
2110}
2111
2112void ceph_con_get_out_msg(struct ceph_connection *con)
2113{
2114	struct ceph_msg *msg;
2115
2116	BUG_ON(list_empty(&con->out_queue));
2117	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118	WARN_ON(msg->con != con);
2119
2120	/*
2121	 * Put the message on "sent" list using a ref from ceph_con_send().
2122	 * It is put when the message is acked or revoked.
2123	 */
2124	list_move_tail(&msg->list_head, &con->out_sent);
2125
2126	/*
2127	 * Only assign outgoing seq # if we haven't sent this message
2128	 * yet.  If it is requeued, resend with it's original seq.
2129	 */
2130	if (msg->needs_out_seq) {
2131		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132		msg->needs_out_seq = false;
2133
2134		if (con->ops->reencode_message)
2135			con->ops->reencode_message(msg);
2136	}
2137
2138	/*
2139	 * Get a ref for out_msg.  It is put when we are done sending the
2140	 * message or in case of a fault.
2141	 */
2142	WARN_ON(con->out_msg);
2143	con->out_msg = ceph_msg_get(msg);
2144}
2145
2146/*
2147 * Free a generically kmalloc'd message.
2148 */
2149static void ceph_msg_free(struct ceph_msg *m)
2150{
2151	dout("%s %p\n", __func__, m);
2152	kvfree(m->front.iov_base);
2153	kfree(m->data);
2154	kmem_cache_free(ceph_msg_cache, m);
2155}
2156
2157static void ceph_msg_release(struct kref *kref)
2158{
2159	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160	int i;
2161
2162	dout("%s %p\n", __func__, m);
2163	WARN_ON(!list_empty(&m->list_head));
2164
2165	msg_con_set(m, NULL);
2166
2167	/* drop middle, data, if any */
2168	if (m->middle) {
2169		ceph_buffer_put(m->middle);
2170		m->middle = NULL;
2171	}
2172
2173	for (i = 0; i < m->num_data_items; i++)
2174		ceph_msg_data_destroy(&m->data[i]);
2175
2176	if (m->pool)
2177		ceph_msgpool_put(m->pool, m);
2178	else
2179		ceph_msg_free(m);
2180}
2181
2182struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183{
2184	dout("%s %p (was %d)\n", __func__, msg,
2185	     kref_read(&msg->kref));
2186	kref_get(&msg->kref);
2187	return msg;
2188}
2189EXPORT_SYMBOL(ceph_msg_get);
2190
2191void ceph_msg_put(struct ceph_msg *msg)
2192{
2193	dout("%s %p (was %d)\n", __func__, msg,
2194	     kref_read(&msg->kref));
2195	kref_put(&msg->kref, ceph_msg_release);
2196}
2197EXPORT_SYMBOL(ceph_msg_put);
2198
2199void ceph_msg_dump(struct ceph_msg *msg)
2200{
2201	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202		 msg->front_alloc_len, msg->data_length);
2203	print_hex_dump(KERN_DEBUG, "header: ",
2204		       DUMP_PREFIX_OFFSET, 16, 1,
2205		       &msg->hdr, sizeof(msg->hdr), true);
2206	print_hex_dump(KERN_DEBUG, " front: ",
2207		       DUMP_PREFIX_OFFSET, 16, 1,
2208		       msg->front.iov_base, msg->front.iov_len, true);
2209	if (msg->middle)
2210		print_hex_dump(KERN_DEBUG, "middle: ",
2211			       DUMP_PREFIX_OFFSET, 16, 1,
2212			       msg->middle->vec.iov_base,
2213			       msg->middle->vec.iov_len, true);
2214	print_hex_dump(KERN_DEBUG, "footer: ",
2215		       DUMP_PREFIX_OFFSET, 16, 1,
2216		       &msg->footer, sizeof(msg->footer), true);
2217}
2218EXPORT_SYMBOL(ceph_msg_dump);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
 
  20
  21#include <linux/ceph/ceph_features.h>
  22#include <linux/ceph/libceph.h>
  23#include <linux/ceph/messenger.h>
  24#include <linux/ceph/decode.h>
  25#include <linux/ceph/pagelist.h>
  26#include <linux/export.h>
  27
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  84
  85/*
  86 * connection states
  87 */
  88#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  89#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  90#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  91#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  92#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  93#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  94
  95/*
  96 * ceph_connection flag bits
  97 */
  98#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  99				       * messages on errors */
 100#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 101#define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
 102#define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
 103#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 104
 105static bool con_flag_valid(unsigned long con_flag)
 106{
 107	switch (con_flag) {
 108	case CON_FLAG_LOSSYTX:
 109	case CON_FLAG_KEEPALIVE_PENDING:
 110	case CON_FLAG_WRITE_PENDING:
 111	case CON_FLAG_SOCK_CLOSED:
 112	case CON_FLAG_BACKOFF:
 113		return true;
 114	default:
 115		return false;
 116	}
 117}
 118
 119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 120{
 121	BUG_ON(!con_flag_valid(con_flag));
 122
 123	clear_bit(con_flag, &con->flags);
 124}
 125
 126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 127{
 128	BUG_ON(!con_flag_valid(con_flag));
 129
 130	set_bit(con_flag, &con->flags);
 131}
 132
 133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 134{
 135	BUG_ON(!con_flag_valid(con_flag));
 136
 137	return test_bit(con_flag, &con->flags);
 138}
 139
 140static bool con_flag_test_and_clear(struct ceph_connection *con,
 141					unsigned long con_flag)
 142{
 143	BUG_ON(!con_flag_valid(con_flag));
 144
 145	return test_and_clear_bit(con_flag, &con->flags);
 146}
 147
 148static bool con_flag_test_and_set(struct ceph_connection *con,
 149					unsigned long con_flag)
 150{
 151	BUG_ON(!con_flag_valid(con_flag));
 152
 153	return test_and_set_bit(con_flag, &con->flags);
 154}
 155
 156/* Slab caches for frequently-allocated structures */
 157
 158static struct kmem_cache	*ceph_msg_cache;
 159
 160/* static tag bytes (protocol control messages) */
 161static char tag_msg = CEPH_MSGR_TAG_MSG;
 162static char tag_ack = CEPH_MSGR_TAG_ACK;
 163static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 164static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 165
 166#ifdef CONFIG_LOCKDEP
 167static struct lock_class_key socket_class;
 168#endif
 169
 170static void queue_con(struct ceph_connection *con);
 171static void cancel_con(struct ceph_connection *con);
 172static void ceph_con_workfn(struct work_struct *);
 173static void con_fault(struct ceph_connection *con);
 174
 175/*
 176 * Nicely render a sockaddr as a string.  An array of formatted
 177 * strings is used, to approximate reentrancy.
 178 */
 179#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 180#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 181#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 182#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 183
 184static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 185static atomic_t addr_str_seq = ATOMIC_INIT(0);
 186
 187static struct page *zero_page;		/* used in certain error cases */
 188
 189const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
 190{
 191	int i;
 192	char *s;
 193	struct sockaddr_storage ss = addr->in_addr; /* align */
 194	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
 195	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
 196
 197	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 198	s = addr_str[i];
 199
 200	switch (ss.ss_family) {
 201	case AF_INET:
 202		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
 203			 le32_to_cpu(addr->type), &in4->sin_addr,
 204			 ntohs(in4->sin_port));
 205		break;
 206
 207	case AF_INET6:
 208		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
 209			 le32_to_cpu(addr->type), &in6->sin6_addr,
 210			 ntohs(in6->sin6_port));
 211		break;
 212
 213	default:
 214		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 215			 ss.ss_family);
 216	}
 217
 218	return s;
 219}
 220EXPORT_SYMBOL(ceph_pr_addr);
 221
 222static void encode_my_addr(struct ceph_messenger *msgr)
 223{
 224	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 225	ceph_encode_banner_addr(&msgr->my_enc_addr);
 
 
 
 226}
 227
 228/*
 229 * work queue for all reading and writing to/from the socket.
 230 */
 231static struct workqueue_struct *ceph_msgr_wq;
 232
 233static int ceph_msgr_slab_init(void)
 234{
 235	BUG_ON(ceph_msg_cache);
 236	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 237	if (!ceph_msg_cache)
 238		return -ENOMEM;
 239
 240	return 0;
 241}
 242
 243static void ceph_msgr_slab_exit(void)
 244{
 245	BUG_ON(!ceph_msg_cache);
 246	kmem_cache_destroy(ceph_msg_cache);
 247	ceph_msg_cache = NULL;
 248}
 249
 250static void _ceph_msgr_exit(void)
 251{
 252	if (ceph_msgr_wq) {
 253		destroy_workqueue(ceph_msgr_wq);
 254		ceph_msgr_wq = NULL;
 255	}
 256
 257	BUG_ON(zero_page == NULL);
 258	put_page(zero_page);
 259	zero_page = NULL;
 260
 261	ceph_msgr_slab_exit();
 262}
 263
 264int __init ceph_msgr_init(void)
 265{
 266	if (ceph_msgr_slab_init())
 267		return -ENOMEM;
 268
 269	BUG_ON(zero_page != NULL);
 270	zero_page = ZERO_PAGE(0);
 271	get_page(zero_page);
 272
 273	/*
 274	 * The number of active work items is limited by the number of
 275	 * connections, so leave @max_active at default.
 276	 */
 277	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 278	if (ceph_msgr_wq)
 279		return 0;
 280
 281	pr_err("msgr_init failed to create workqueue\n");
 282	_ceph_msgr_exit();
 283
 284	return -ENOMEM;
 285}
 286
 287void ceph_msgr_exit(void)
 288{
 289	BUG_ON(ceph_msgr_wq == NULL);
 290
 291	_ceph_msgr_exit();
 292}
 293
 294void ceph_msgr_flush(void)
 295{
 296	flush_workqueue(ceph_msgr_wq);
 297}
 298EXPORT_SYMBOL(ceph_msgr_flush);
 299
 300/* Connection socket state transition functions */
 301
 302static void con_sock_state_init(struct ceph_connection *con)
 303{
 304	int old_state;
 305
 306	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 307	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 308		printk("%s: unexpected old state %d\n", __func__, old_state);
 309	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 310	     CON_SOCK_STATE_CLOSED);
 311}
 312
 313static void con_sock_state_connecting(struct ceph_connection *con)
 314{
 315	int old_state;
 316
 317	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 318	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 319		printk("%s: unexpected old state %d\n", __func__, old_state);
 320	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 321	     CON_SOCK_STATE_CONNECTING);
 322}
 323
 324static void con_sock_state_connected(struct ceph_connection *con)
 325{
 326	int old_state;
 327
 328	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 329	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 330		printk("%s: unexpected old state %d\n", __func__, old_state);
 331	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 332	     CON_SOCK_STATE_CONNECTED);
 333}
 334
 335static void con_sock_state_closing(struct ceph_connection *con)
 336{
 337	int old_state;
 338
 339	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 340	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 341			old_state != CON_SOCK_STATE_CONNECTED &&
 342			old_state != CON_SOCK_STATE_CLOSING))
 343		printk("%s: unexpected old state %d\n", __func__, old_state);
 344	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 345	     CON_SOCK_STATE_CLOSING);
 346}
 347
 348static void con_sock_state_closed(struct ceph_connection *con)
 349{
 350	int old_state;
 351
 352	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 353	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 354		    old_state != CON_SOCK_STATE_CLOSING &&
 355		    old_state != CON_SOCK_STATE_CONNECTING &&
 356		    old_state != CON_SOCK_STATE_CLOSED))
 357		printk("%s: unexpected old state %d\n", __func__, old_state);
 358	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 359	     CON_SOCK_STATE_CLOSED);
 360}
 361
 362/*
 363 * socket callback functions
 364 */
 365
 366/* data available on socket, or listen socket received a connect */
 367static void ceph_sock_data_ready(struct sock *sk)
 368{
 369	struct ceph_connection *con = sk->sk_user_data;
 
 
 
 370	if (atomic_read(&con->msgr->stopping)) {
 371		return;
 372	}
 373
 374	if (sk->sk_state != TCP_CLOSE_WAIT) {
 375		dout("%s on %p state = %lu, queueing work\n", __func__,
 376		     con, con->state);
 377		queue_con(con);
 378	}
 379}
 380
 381/* socket has buffer space for writing */
 382static void ceph_sock_write_space(struct sock *sk)
 383{
 384	struct ceph_connection *con = sk->sk_user_data;
 385
 386	/* only queue to workqueue if there is data we want to write,
 387	 * and there is sufficient space in the socket buffer to accept
 388	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 389	 * doesn't get called again until try_write() fills the socket
 390	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 391	 * and net/core/stream.c:sk_stream_write_space().
 392	 */
 393	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 394		if (sk_stream_is_writeable(sk)) {
 395			dout("%s %p queueing write work\n", __func__, con);
 396			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 397			queue_con(con);
 398		}
 399	} else {
 400		dout("%s %p nothing to write\n", __func__, con);
 401	}
 402}
 403
 404/* socket's state has changed */
 405static void ceph_sock_state_change(struct sock *sk)
 406{
 407	struct ceph_connection *con = sk->sk_user_data;
 408
 409	dout("%s %p state = %lu sk_state = %u\n", __func__,
 410	     con, con->state, sk->sk_state);
 411
 412	switch (sk->sk_state) {
 413	case TCP_CLOSE:
 414		dout("%s TCP_CLOSE\n", __func__);
 415		fallthrough;
 416	case TCP_CLOSE_WAIT:
 417		dout("%s TCP_CLOSE_WAIT\n", __func__);
 418		con_sock_state_closing(con);
 419		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 420		queue_con(con);
 421		break;
 422	case TCP_ESTABLISHED:
 423		dout("%s TCP_ESTABLISHED\n", __func__);
 424		con_sock_state_connected(con);
 425		queue_con(con);
 426		break;
 427	default:	/* Everything else is uninteresting */
 428		break;
 429	}
 430}
 431
 432/*
 433 * set up socket callbacks
 434 */
 435static void set_sock_callbacks(struct socket *sock,
 436			       struct ceph_connection *con)
 437{
 438	struct sock *sk = sock->sk;
 439	sk->sk_user_data = con;
 440	sk->sk_data_ready = ceph_sock_data_ready;
 441	sk->sk_write_space = ceph_sock_write_space;
 442	sk->sk_state_change = ceph_sock_state_change;
 443}
 444
 445
 446/*
 447 * socket helpers
 448 */
 449
 450/*
 451 * initiate connection to a remote socket.
 452 */
 453static int ceph_tcp_connect(struct ceph_connection *con)
 454{
 455	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
 456	struct socket *sock;
 457	unsigned int noio_flag;
 458	int ret;
 459
 
 
 460	BUG_ON(con->sock);
 461
 462	/* sock_create_kern() allocates with GFP_KERNEL */
 463	noio_flag = memalloc_noio_save();
 464	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
 465			       SOCK_STREAM, IPPROTO_TCP, &sock);
 466	memalloc_noio_restore(noio_flag);
 467	if (ret)
 468		return ret;
 469	sock->sk->sk_allocation = GFP_NOFS;
 
 470
 471#ifdef CONFIG_LOCKDEP
 472	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 473#endif
 474
 475	set_sock_callbacks(sock, con);
 476
 477	dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
 478
 479	con_sock_state_connecting(con);
 480	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
 481				 O_NONBLOCK);
 482	if (ret == -EINPROGRESS) {
 483		dout("connect %s EINPROGRESS sk_state = %u\n",
 484		     ceph_pr_addr(&con->peer_addr),
 485		     sock->sk->sk_state);
 486	} else if (ret < 0) {
 487		pr_err("connect %s error %d\n",
 488		       ceph_pr_addr(&con->peer_addr), ret);
 489		sock_release(sock);
 490		return ret;
 491	}
 492
 493	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
 494		tcp_sock_set_nodelay(sock->sk);
 495
 496	con->sock = sock;
 497	return 0;
 498}
 499
 500/*
 501 * If @buf is NULL, discard up to @len bytes.
 502 */
 503static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 504{
 505	struct kvec iov = {buf, len};
 506	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 507	int r;
 508
 509	if (!buf)
 510		msg.msg_flags |= MSG_TRUNC;
 511
 512	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
 513	r = sock_recvmsg(sock, &msg, msg.msg_flags);
 514	if (r == -EAGAIN)
 515		r = 0;
 516	return r;
 517}
 518
 519static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 520		     int page_offset, size_t length)
 521{
 522	struct bio_vec bvec = {
 523		.bv_page = page,
 524		.bv_offset = page_offset,
 525		.bv_len = length
 526	};
 527	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 528	int r;
 529
 530	BUG_ON(page_offset + length > PAGE_SIZE);
 531	iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
 532	r = sock_recvmsg(sock, &msg, msg.msg_flags);
 533	if (r == -EAGAIN)
 534		r = 0;
 535	return r;
 536}
 537
 538/*
 539 * write something.  @more is true if caller will be sending more data
 540 * shortly.
 541 */
 542static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 543			    size_t kvlen, size_t len, bool more)
 544{
 545	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 546	int r;
 547
 548	if (more)
 549		msg.msg_flags |= MSG_MORE;
 550	else
 551		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 552
 553	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 554	if (r == -EAGAIN)
 555		r = 0;
 556	return r;
 557}
 558
 559/*
 560 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
 561 */
 562static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 563			     int offset, size_t size, int more)
 564{
 565	ssize_t (*sendpage)(struct socket *sock, struct page *page,
 566			    int offset, size_t size, int flags);
 567	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
 568	int ret;
 569
 570	/*
 571	 * sendpage cannot properly handle pages with page_count == 0,
 572	 * we need to fall back to sendmsg if that's the case.
 573	 *
 574	 * Same goes for slab pages: skb_can_coalesce() allows
 575	 * coalescing neighboring slab objects into a single frag which
 576	 * triggers one of hardened usercopy checks.
 577	 */
 578	if (sendpage_ok(page))
 579		sendpage = sock->ops->sendpage;
 580	else
 581		sendpage = sock_no_sendpage;
 582
 583	ret = sendpage(sock, page, offset, size, flags);
 584	if (ret == -EAGAIN)
 585		ret = 0;
 586
 587	return ret;
 588}
 589
 590/*
 591 * Shutdown/close the socket for the given connection.
 592 */
 593static int con_close_socket(struct ceph_connection *con)
 594{
 595	int rc = 0;
 596
 597	dout("con_close_socket on %p sock %p\n", con, con->sock);
 598	if (con->sock) {
 599		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 600		sock_release(con->sock);
 601		con->sock = NULL;
 602	}
 603
 604	/*
 605	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 606	 * independent of the connection mutex, and we could have
 607	 * received a socket close event before we had the chance to
 608	 * shut the socket down.
 609	 */
 610	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 611
 612	con_sock_state_closed(con);
 613	return rc;
 614}
 615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616/*
 617 * Reset a connection.  Discard all incoming and outgoing messages
 618 * and clear *_seq state.
 619 */
 620static void ceph_msg_remove(struct ceph_msg *msg)
 621{
 622	list_del_init(&msg->list_head);
 623
 624	ceph_msg_put(msg);
 625}
 
 626static void ceph_msg_remove_list(struct list_head *head)
 627{
 628	while (!list_empty(head)) {
 629		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 630							list_head);
 631		ceph_msg_remove(msg);
 632	}
 633}
 634
 635static void reset_connection(struct ceph_connection *con)
 636{
 637	/* reset connection, out_queue, msg_ and connect_seq */
 638	/* discard existing out_queue and msg_seq */
 639	dout("reset_connection %p\n", con);
 
 640	ceph_msg_remove_list(&con->out_queue);
 641	ceph_msg_remove_list(&con->out_sent);
 642
 643	if (con->in_msg) {
 644		BUG_ON(con->in_msg->con != con);
 645		ceph_msg_put(con->in_msg);
 646		con->in_msg = NULL;
 647	}
 648
 649	con->connect_seq = 0;
 650	con->out_seq = 0;
 651	if (con->out_msg) {
 652		BUG_ON(con->out_msg->con != con);
 653		ceph_msg_put(con->out_msg);
 654		con->out_msg = NULL;
 655	}
 656	con->in_seq = 0;
 657	con->in_seq_acked = 0;
 658
 659	con->out_skip = 0;
 
 
 
 660}
 661
 662/*
 663 * mark a peer down.  drop any open connections.
 664 */
 665void ceph_con_close(struct ceph_connection *con)
 666{
 667	mutex_lock(&con->mutex);
 668	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
 669	con->state = CON_STATE_CLOSED;
 670
 671	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
 672	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 673	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 674	con_flag_clear(con, CON_FLAG_BACKOFF);
 
 675
 676	reset_connection(con);
 677	con->peer_global_seq = 0;
 678	cancel_con(con);
 679	con_close_socket(con);
 680	mutex_unlock(&con->mutex);
 681}
 682EXPORT_SYMBOL(ceph_con_close);
 683
 684/*
 685 * Reopen a closed connection, with a new peer address.
 686 */
 687void ceph_con_open(struct ceph_connection *con,
 688		   __u8 entity_type, __u64 entity_num,
 689		   struct ceph_entity_addr *addr)
 690{
 691	mutex_lock(&con->mutex);
 692	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
 693
 694	WARN_ON(con->state != CON_STATE_CLOSED);
 695	con->state = CON_STATE_PREOPEN;
 696
 697	con->peer_name.type = (__u8) entity_type;
 698	con->peer_name.num = cpu_to_le64(entity_num);
 699
 700	memcpy(&con->peer_addr, addr, sizeof(*addr));
 701	con->delay = 0;      /* reset backoff memory */
 702	mutex_unlock(&con->mutex);
 703	queue_con(con);
 704}
 705EXPORT_SYMBOL(ceph_con_open);
 706
 707/*
 708 * return true if this connection ever successfully opened
 709 */
 710bool ceph_con_opened(struct ceph_connection *con)
 711{
 712	return con->connect_seq > 0;
 
 
 
 713}
 714
 715/*
 716 * initialize a new connection.
 717 */
 718void ceph_con_init(struct ceph_connection *con, void *private,
 719	const struct ceph_connection_operations *ops,
 720	struct ceph_messenger *msgr)
 721{
 722	dout("con_init %p\n", con);
 723	memset(con, 0, sizeof(*con));
 724	con->private = private;
 725	con->ops = ops;
 726	con->msgr = msgr;
 727
 728	con_sock_state_init(con);
 729
 730	mutex_init(&con->mutex);
 731	INIT_LIST_HEAD(&con->out_queue);
 732	INIT_LIST_HEAD(&con->out_sent);
 733	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 734
 735	con->state = CON_STATE_CLOSED;
 736}
 737EXPORT_SYMBOL(ceph_con_init);
 738
 739
 740/*
 741 * We maintain a global counter to order connection attempts.  Get
 742 * a unique seq greater than @gt.
 743 */
 744static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 745{
 746	u32 ret;
 747
 748	spin_lock(&msgr->global_seq_lock);
 749	if (msgr->global_seq < gt)
 750		msgr->global_seq = gt;
 751	ret = ++msgr->global_seq;
 752	spin_unlock(&msgr->global_seq_lock);
 753	return ret;
 754}
 755
 756static void con_out_kvec_reset(struct ceph_connection *con)
 
 
 
 757{
 758	BUG_ON(con->out_skip);
 
 759
 760	con->out_kvec_left = 0;
 761	con->out_kvec_bytes = 0;
 762	con->out_kvec_cur = &con->out_kvec[0];
 763}
 
 
 
 
 764
 765static void con_out_kvec_add(struct ceph_connection *con,
 766				size_t size, void *data)
 767{
 768	int index = con->out_kvec_left;
 769
 770	BUG_ON(con->out_skip);
 771	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 772
 773	con->out_kvec[index].iov_len = size;
 774	con->out_kvec[index].iov_base = data;
 775	con->out_kvec_left++;
 776	con->out_kvec_bytes += size;
 777}
 778
 779/*
 780 * Chop off a kvec from the end.  Return residual number of bytes for
 781 * that kvec, i.e. how many bytes would have been written if the kvec
 782 * hadn't been nuked.
 783 */
 784static int con_out_kvec_skip(struct ceph_connection *con)
 785{
 786	int off = con->out_kvec_cur - con->out_kvec;
 787	int skip = 0;
 788
 789	if (con->out_kvec_bytes > 0) {
 790		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 791		BUG_ON(con->out_kvec_bytes < skip);
 792		BUG_ON(!con->out_kvec_left);
 793		con->out_kvec_bytes -= skip;
 794		con->out_kvec_left--;
 
 
 
 
 
 
 
 795	}
 796
 797	return skip;
 798}
 799
 800#ifdef CONFIG_BLOCK
 801
 802/*
 803 * For a bio data item, a piece is whatever remains of the next
 804 * entry in the current bio iovec, or the first entry in the next
 805 * bio in the list.
 806 */
 807static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 808					size_t length)
 809{
 810	struct ceph_msg_data *data = cursor->data;
 811	struct ceph_bio_iter *it = &cursor->bio_iter;
 812
 813	cursor->resid = min_t(size_t, length, data->bio_length);
 814	*it = data->bio_pos;
 815	if (cursor->resid < it->iter.bi_size)
 816		it->iter.bi_size = cursor->resid;
 817
 818	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 819	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 820}
 821
 822static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 823						size_t *page_offset,
 824						size_t *length)
 825{
 826	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 827					   cursor->bio_iter.iter);
 828
 829	*page_offset = bv.bv_offset;
 830	*length = bv.bv_len;
 831	return bv.bv_page;
 832}
 833
 834static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 835					size_t bytes)
 836{
 837	struct ceph_bio_iter *it = &cursor->bio_iter;
 838	struct page *page = bio_iter_page(it->bio, it->iter);
 839
 840	BUG_ON(bytes > cursor->resid);
 841	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 842	cursor->resid -= bytes;
 843	bio_advance_iter(it->bio, &it->iter, bytes);
 844
 845	if (!cursor->resid) {
 846		BUG_ON(!cursor->last_piece);
 847		return false;   /* no more data */
 848	}
 849
 850	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
 851		       page == bio_iter_page(it->bio, it->iter)))
 852		return false;	/* more bytes to process in this segment */
 853
 854	if (!it->iter.bi_size) {
 855		it->bio = it->bio->bi_next;
 856		it->iter = it->bio->bi_iter;
 857		if (cursor->resid < it->iter.bi_size)
 858			it->iter.bi_size = cursor->resid;
 859	}
 860
 861	BUG_ON(cursor->last_piece);
 862	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 863	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 864	return true;
 865}
 866#endif /* CONFIG_BLOCK */
 867
 868static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 869					size_t length)
 870{
 871	struct ceph_msg_data *data = cursor->data;
 872	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 873
 874	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 875	cursor->bvec_iter = data->bvec_pos.iter;
 876	cursor->bvec_iter.bi_size = cursor->resid;
 877
 878	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 879	cursor->last_piece =
 880	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 881}
 882
 883static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 884						size_t *page_offset,
 885						size_t *length)
 886{
 887	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 888					   cursor->bvec_iter);
 889
 890	*page_offset = bv.bv_offset;
 891	*length = bv.bv_len;
 892	return bv.bv_page;
 893}
 894
 895static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 896					size_t bytes)
 897{
 898	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 899	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
 900
 901	BUG_ON(bytes > cursor->resid);
 902	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 903	cursor->resid -= bytes;
 904	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 905
 906	if (!cursor->resid) {
 907		BUG_ON(!cursor->last_piece);
 908		return false;   /* no more data */
 909	}
 910
 911	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
 912		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
 913		return false;	/* more bytes to process in this segment */
 914
 915	BUG_ON(cursor->last_piece);
 916	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 917	cursor->last_piece =
 918	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 919	return true;
 920}
 921
 922/*
 923 * For a page array, a piece comes from the first page in the array
 924 * that has not already been fully consumed.
 925 */
 926static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 927					size_t length)
 928{
 929	struct ceph_msg_data *data = cursor->data;
 930	int page_count;
 931
 932	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 933
 934	BUG_ON(!data->pages);
 935	BUG_ON(!data->length);
 936
 937	cursor->resid = min(length, data->length);
 938	page_count = calc_pages_for(data->alignment, (u64)data->length);
 939	cursor->page_offset = data->alignment & ~PAGE_MASK;
 940	cursor->page_index = 0;
 941	BUG_ON(page_count > (int)USHRT_MAX);
 942	cursor->page_count = (unsigned short)page_count;
 943	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 944	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 945}
 946
 947static struct page *
 948ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 949					size_t *page_offset, size_t *length)
 950{
 951	struct ceph_msg_data *data = cursor->data;
 952
 953	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 954
 955	BUG_ON(cursor->page_index >= cursor->page_count);
 956	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 957
 958	*page_offset = cursor->page_offset;
 959	if (cursor->last_piece)
 960		*length = cursor->resid;
 961	else
 962		*length = PAGE_SIZE - *page_offset;
 963
 964	return data->pages[cursor->page_index];
 965}
 966
 967static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 968						size_t bytes)
 969{
 970	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 971
 972	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 973
 974	/* Advance the cursor page offset */
 975
 976	cursor->resid -= bytes;
 977	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 978	if (!bytes || cursor->page_offset)
 979		return false;	/* more bytes to process in the current page */
 980
 981	if (!cursor->resid)
 982		return false;   /* no more data */
 983
 984	/* Move on to the next page; offset is already at 0 */
 985
 986	BUG_ON(cursor->page_index >= cursor->page_count);
 987	cursor->page_index++;
 988	cursor->last_piece = cursor->resid <= PAGE_SIZE;
 989
 990	return true;
 991}
 992
 993/*
 994 * For a pagelist, a piece is whatever remains to be consumed in the
 995 * first page in the list, or the front of the next page.
 996 */
 997static void
 998ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 999					size_t length)
1000{
1001	struct ceph_msg_data *data = cursor->data;
1002	struct ceph_pagelist *pagelist;
1003	struct page *page;
1004
1005	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1006
1007	pagelist = data->pagelist;
1008	BUG_ON(!pagelist);
1009
1010	if (!length)
1011		return;		/* pagelist can be assigned but empty */
1012
1013	BUG_ON(list_empty(&pagelist->head));
1014	page = list_first_entry(&pagelist->head, struct page, lru);
1015
1016	cursor->resid = min(length, pagelist->length);
1017	cursor->page = page;
1018	cursor->offset = 0;
1019	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1020}
1021
1022static struct page *
1023ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1024				size_t *page_offset, size_t *length)
1025{
1026	struct ceph_msg_data *data = cursor->data;
1027	struct ceph_pagelist *pagelist;
1028
1029	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1030
1031	pagelist = data->pagelist;
1032	BUG_ON(!pagelist);
1033
1034	BUG_ON(!cursor->page);
1035	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1036
1037	/* offset of first page in pagelist is always 0 */
1038	*page_offset = cursor->offset & ~PAGE_MASK;
1039	if (cursor->last_piece)
1040		*length = cursor->resid;
1041	else
1042		*length = PAGE_SIZE - *page_offset;
1043
1044	return cursor->page;
1045}
1046
1047static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1048						size_t bytes)
1049{
1050	struct ceph_msg_data *data = cursor->data;
1051	struct ceph_pagelist *pagelist;
1052
1053	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1054
1055	pagelist = data->pagelist;
1056	BUG_ON(!pagelist);
1057
1058	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1059	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1060
1061	/* Advance the cursor offset */
1062
1063	cursor->resid -= bytes;
1064	cursor->offset += bytes;
1065	/* offset of first page in pagelist is always 0 */
1066	if (!bytes || cursor->offset & ~PAGE_MASK)
1067		return false;	/* more bytes to process in the current page */
1068
1069	if (!cursor->resid)
1070		return false;   /* no more data */
1071
1072	/* Move on to the next page */
1073
1074	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1075	cursor->page = list_next_entry(cursor->page, lru);
1076	cursor->last_piece = cursor->resid <= PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078	return true;
 
 
 
 
 
 
 
1079}
1080
1081/*
1082 * Message data is handled (sent or received) in pieces, where each
1083 * piece resides on a single page.  The network layer might not
1084 * consume an entire piece at once.  A data item's cursor keeps
1085 * track of which piece is next to process and how much remains to
1086 * be processed in that piece.  It also tracks whether the current
1087 * piece is the last one in the data item.
1088 */
1089static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1090{
1091	size_t length = cursor->total_resid;
1092
1093	switch (cursor->data->type) {
1094	case CEPH_MSG_DATA_PAGELIST:
1095		ceph_msg_data_pagelist_cursor_init(cursor, length);
1096		break;
1097	case CEPH_MSG_DATA_PAGES:
1098		ceph_msg_data_pages_cursor_init(cursor, length);
1099		break;
1100#ifdef CONFIG_BLOCK
1101	case CEPH_MSG_DATA_BIO:
1102		ceph_msg_data_bio_cursor_init(cursor, length);
1103		break;
1104#endif /* CONFIG_BLOCK */
1105	case CEPH_MSG_DATA_BVECS:
1106		ceph_msg_data_bvecs_cursor_init(cursor, length);
1107		break;
 
 
 
1108	case CEPH_MSG_DATA_NONE:
1109	default:
1110		/* BUG(); */
1111		break;
1112	}
1113	cursor->need_crc = true;
1114}
1115
1116static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
 
1117{
1118	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1119
1120	BUG_ON(!length);
1121	BUG_ON(length > msg->data_length);
1122	BUG_ON(!msg->num_data_items);
1123
1124	cursor->total_resid = length;
1125	cursor->data = msg->data;
 
1126
1127	__ceph_msg_data_cursor_init(cursor);
1128}
1129
1130/*
1131 * Return the page containing the next piece to process for a given
1132 * data item, and supply the page offset and length of that piece.
1133 * Indicate whether this is the last piece in this data item.
1134 */
1135static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1136					size_t *page_offset, size_t *length,
1137					bool *last_piece)
1138{
1139	struct page *page;
1140
1141	switch (cursor->data->type) {
1142	case CEPH_MSG_DATA_PAGELIST:
1143		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1144		break;
1145	case CEPH_MSG_DATA_PAGES:
1146		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1147		break;
1148#ifdef CONFIG_BLOCK
1149	case CEPH_MSG_DATA_BIO:
1150		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1151		break;
1152#endif /* CONFIG_BLOCK */
1153	case CEPH_MSG_DATA_BVECS:
1154		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1155		break;
 
 
 
1156	case CEPH_MSG_DATA_NONE:
1157	default:
1158		page = NULL;
1159		break;
1160	}
1161
1162	BUG_ON(!page);
1163	BUG_ON(*page_offset + *length > PAGE_SIZE);
1164	BUG_ON(!*length);
1165	BUG_ON(*length > cursor->resid);
1166	if (last_piece)
1167		*last_piece = cursor->last_piece;
1168
1169	return page;
1170}
1171
1172/*
1173 * Returns true if the result moves the cursor on to the next piece
1174 * of the data item.
1175 */
1176static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1177				  size_t bytes)
1178{
1179	bool new_piece;
1180
1181	BUG_ON(bytes > cursor->resid);
1182	switch (cursor->data->type) {
1183	case CEPH_MSG_DATA_PAGELIST:
1184		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1185		break;
1186	case CEPH_MSG_DATA_PAGES:
1187		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1188		break;
1189#ifdef CONFIG_BLOCK
1190	case CEPH_MSG_DATA_BIO:
1191		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1192		break;
1193#endif /* CONFIG_BLOCK */
1194	case CEPH_MSG_DATA_BVECS:
1195		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1196		break;
 
 
 
1197	case CEPH_MSG_DATA_NONE:
1198	default:
1199		BUG();
1200		break;
1201	}
1202	cursor->total_resid -= bytes;
1203
1204	if (!cursor->resid && cursor->total_resid) {
1205		WARN_ON(!cursor->last_piece);
1206		cursor->data++;
1207		__ceph_msg_data_cursor_init(cursor);
1208		new_piece = true;
1209	}
1210	cursor->need_crc = new_piece;
1211}
1212
1213static size_t sizeof_footer(struct ceph_connection *con)
1214{
1215	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1216	    sizeof(struct ceph_msg_footer) :
1217	    sizeof(struct ceph_msg_footer_old);
1218}
1219
1220static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1221{
1222	/* Initialize data cursor */
1223
1224	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1225}
1226
1227/*
1228 * Prepare footer for currently outgoing message, and finish things
1229 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1230 */
1231static void prepare_write_message_footer(struct ceph_connection *con)
1232{
1233	struct ceph_msg *m = con->out_msg;
1234
1235	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1236
1237	dout("prepare_write_message_footer %p\n", con);
1238	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1239	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1240		if (con->ops->sign_message)
1241			con->ops->sign_message(m);
1242		else
1243			m->footer.sig = 0;
1244	} else {
1245		m->old_footer.flags = m->footer.flags;
1246	}
1247	con->out_more = m->more_to_follow;
1248	con->out_msg_done = true;
1249}
1250
1251/*
1252 * Prepare headers for the next outgoing message.
1253 */
1254static void prepare_write_message(struct ceph_connection *con)
1255{
1256	struct ceph_msg *m;
1257	u32 crc;
1258
1259	con_out_kvec_reset(con);
1260	con->out_msg_done = false;
1261
1262	/* Sneak an ack in there first?  If we can get it into the same
1263	 * TCP packet that's a good thing. */
1264	if (con->in_seq > con->in_seq_acked) {
1265		con->in_seq_acked = con->in_seq;
1266		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1267		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1268		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1269			&con->out_temp_ack);
1270	}
1271
1272	BUG_ON(list_empty(&con->out_queue));
1273	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1274	con->out_msg = m;
1275	BUG_ON(m->con != con);
1276
1277	/* put message on sent list */
1278	ceph_msg_get(m);
1279	list_move_tail(&m->list_head, &con->out_sent);
1280
1281	/*
1282	 * only assign outgoing seq # if we haven't sent this message
1283	 * yet.  if it is requeued, resend with it's original seq.
1284	 */
1285	if (m->needs_out_seq) {
1286		m->hdr.seq = cpu_to_le64(++con->out_seq);
1287		m->needs_out_seq = false;
1288
1289		if (con->ops->reencode_message)
1290			con->ops->reencode_message(m);
1291	}
1292
1293	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1294	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1295	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1296	     m->data_length);
1297	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1298	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1299
1300	/* tag + hdr + front + middle */
1301	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1302	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1303	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1304
1305	if (m->middle)
1306		con_out_kvec_add(con, m->middle->vec.iov_len,
1307			m->middle->vec.iov_base);
1308
1309	/* fill in hdr crc and finalize hdr */
1310	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1311	con->out_msg->hdr.crc = cpu_to_le32(crc);
1312	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1313
1314	/* fill in front and middle crc, footer */
1315	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1316	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1317	if (m->middle) {
1318		crc = crc32c(0, m->middle->vec.iov_base,
1319				m->middle->vec.iov_len);
1320		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1321	} else
1322		con->out_msg->footer.middle_crc = 0;
1323	dout("%s front_crc %u middle_crc %u\n", __func__,
1324	     le32_to_cpu(con->out_msg->footer.front_crc),
1325	     le32_to_cpu(con->out_msg->footer.middle_crc));
1326	con->out_msg->footer.flags = 0;
1327
1328	/* is there a data payload? */
1329	con->out_msg->footer.data_crc = 0;
1330	if (m->data_length) {
1331		prepare_message_data(con->out_msg, m->data_length);
1332		con->out_more = 1;  /* data + footer will follow */
1333	} else {
1334		/* no, queue up footer too and be done */
1335		prepare_write_message_footer(con);
1336	}
1337
1338	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1339}
1340
1341/*
1342 * Prepare an ack.
1343 */
1344static void prepare_write_ack(struct ceph_connection *con)
1345{
1346	dout("prepare_write_ack %p %llu -> %llu\n", con,
1347	     con->in_seq_acked, con->in_seq);
1348	con->in_seq_acked = con->in_seq;
1349
1350	con_out_kvec_reset(con);
1351
1352	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1353
1354	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356				&con->out_temp_ack);
1357
1358	con->out_more = 1;  /* more will follow.. eventually.. */
1359	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1360}
1361
1362/*
1363 * Prepare to share the seq during handshake
1364 */
1365static void prepare_write_seq(struct ceph_connection *con)
1366{
1367	dout("prepare_write_seq %p %llu -> %llu\n", con,
1368	     con->in_seq_acked, con->in_seq);
1369	con->in_seq_acked = con->in_seq;
1370
1371	con_out_kvec_reset(con);
1372
1373	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1374	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1375			 &con->out_temp_ack);
1376
1377	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1378}
1379
1380/*
1381 * Prepare to write keepalive byte.
1382 */
1383static void prepare_write_keepalive(struct ceph_connection *con)
1384{
1385	dout("prepare_write_keepalive %p\n", con);
1386	con_out_kvec_reset(con);
1387	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1388		struct timespec64 now;
1389
1390		ktime_get_real_ts64(&now);
1391		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1392		ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1393		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1394				 &con->out_temp_keepalive2);
1395	} else {
1396		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1397	}
1398	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399}
1400
1401/*
1402 * Connection negotiation.
1403 */
1404
1405static int get_connect_authorizer(struct ceph_connection *con)
1406{
1407	struct ceph_auth_handshake *auth;
1408	int auth_proto;
1409
1410	if (!con->ops->get_authorizer) {
1411		con->auth = NULL;
1412		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1413		con->out_connect.authorizer_len = 0;
1414		return 0;
1415	}
1416
1417	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1418	if (IS_ERR(auth))
1419		return PTR_ERR(auth);
1420
1421	con->auth = auth;
1422	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1423	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1424	return 0;
1425}
1426
1427/*
1428 * We connected to a peer and are saying hello.
1429 */
1430static void prepare_write_banner(struct ceph_connection *con)
1431{
1432	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1433	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1434					&con->msgr->my_enc_addr);
1435
1436	con->out_more = 0;
1437	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1438}
1439
1440static void __prepare_write_connect(struct ceph_connection *con)
1441{
1442	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1443	if (con->auth)
1444		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1445				 con->auth->authorizer_buf);
1446
1447	con->out_more = 0;
1448	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1449}
1450
1451static int prepare_write_connect(struct ceph_connection *con)
1452{
1453	unsigned int global_seq = get_global_seq(con->msgr, 0);
1454	int proto;
1455	int ret;
1456
1457	switch (con->peer_name.type) {
1458	case CEPH_ENTITY_TYPE_MON:
1459		proto = CEPH_MONC_PROTOCOL;
1460		break;
1461	case CEPH_ENTITY_TYPE_OSD:
1462		proto = CEPH_OSDC_PROTOCOL;
1463		break;
1464	case CEPH_ENTITY_TYPE_MDS:
1465		proto = CEPH_MDSC_PROTOCOL;
1466		break;
1467	default:
1468		BUG();
1469	}
1470
1471	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1472	     con->connect_seq, global_seq, proto);
1473
1474	con->out_connect.features =
1475	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1476	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1477	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1478	con->out_connect.global_seq = cpu_to_le32(global_seq);
1479	con->out_connect.protocol_version = cpu_to_le32(proto);
1480	con->out_connect.flags = 0;
1481
1482	ret = get_connect_authorizer(con);
1483	if (ret)
1484		return ret;
1485
1486	__prepare_write_connect(con);
1487	return 0;
1488}
1489
1490/*
1491 * write as much of pending kvecs to the socket as we can.
1492 *  1 -> done
1493 *  0 -> socket full, but more to do
1494 * <0 -> error
1495 */
1496static int write_partial_kvec(struct ceph_connection *con)
1497{
1498	int ret;
1499
1500	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1501	while (con->out_kvec_bytes > 0) {
1502		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1503				       con->out_kvec_left, con->out_kvec_bytes,
1504				       con->out_more);
1505		if (ret <= 0)
1506			goto out;
1507		con->out_kvec_bytes -= ret;
1508		if (con->out_kvec_bytes == 0)
1509			break;            /* done */
1510
1511		/* account for full iov entries consumed */
1512		while (ret >= con->out_kvec_cur->iov_len) {
1513			BUG_ON(!con->out_kvec_left);
1514			ret -= con->out_kvec_cur->iov_len;
1515			con->out_kvec_cur++;
1516			con->out_kvec_left--;
1517		}
1518		/* and for a partially-consumed entry */
1519		if (ret) {
1520			con->out_kvec_cur->iov_len -= ret;
1521			con->out_kvec_cur->iov_base += ret;
1522		}
1523	}
1524	con->out_kvec_left = 0;
1525	ret = 1;
1526out:
1527	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1528	     con->out_kvec_bytes, con->out_kvec_left, ret);
1529	return ret;  /* done! */
1530}
1531
1532static u32 ceph_crc32c_page(u32 crc, struct page *page,
1533				unsigned int page_offset,
1534				unsigned int length)
1535{
1536	char *kaddr;
1537
1538	kaddr = kmap(page);
1539	BUG_ON(kaddr == NULL);
1540	crc = crc32c(crc, kaddr + page_offset, length);
1541	kunmap(page);
1542
1543	return crc;
1544}
1545/*
1546 * Write as much message data payload as we can.  If we finish, queue
1547 * up the footer.
1548 *  1 -> done, footer is now queued in out_kvec[].
1549 *  0 -> socket full, but more to do
1550 * <0 -> error
1551 */
1552static int write_partial_message_data(struct ceph_connection *con)
1553{
1554	struct ceph_msg *msg = con->out_msg;
1555	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1556	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1557	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1558	u32 crc;
1559
1560	dout("%s %p msg %p\n", __func__, con, msg);
1561
1562	if (!msg->num_data_items)
1563		return -EINVAL;
1564
1565	/*
1566	 * Iterate through each page that contains data to be
1567	 * written, and send as much as possible for each.
1568	 *
1569	 * If we are calculating the data crc (the default), we will
1570	 * need to map the page.  If we have no pages, they have
1571	 * been revoked, so use the zero page.
1572	 */
1573	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1574	while (cursor->total_resid) {
1575		struct page *page;
1576		size_t page_offset;
1577		size_t length;
1578		int ret;
1579
1580		if (!cursor->resid) {
1581			ceph_msg_data_advance(cursor, 0);
1582			continue;
1583		}
1584
1585		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1586		if (length == cursor->total_resid)
1587			more = MSG_MORE;
1588		ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1589					more);
1590		if (ret <= 0) {
1591			if (do_datacrc)
1592				msg->footer.data_crc = cpu_to_le32(crc);
1593
1594			return ret;
1595		}
1596		if (do_datacrc && cursor->need_crc)
1597			crc = ceph_crc32c_page(crc, page, page_offset, length);
1598		ceph_msg_data_advance(cursor, (size_t)ret);
1599	}
1600
1601	dout("%s %p msg %p done\n", __func__, con, msg);
1602
1603	/* prepare and queue up footer, too */
1604	if (do_datacrc)
1605		msg->footer.data_crc = cpu_to_le32(crc);
1606	else
1607		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1608	con_out_kvec_reset(con);
1609	prepare_write_message_footer(con);
1610
1611	return 1;	/* must return > 0 to indicate success */
1612}
1613
1614/*
1615 * write some zeros
1616 */
1617static int write_partial_skip(struct ceph_connection *con)
1618{
1619	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1620	int ret;
1621
1622	dout("%s %p %d left\n", __func__, con, con->out_skip);
1623	while (con->out_skip > 0) {
1624		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1625
1626		if (size == con->out_skip)
1627			more = MSG_MORE;
1628		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1629		if (ret <= 0)
1630			goto out;
1631		con->out_skip -= ret;
1632	}
1633	ret = 1;
1634out:
1635	return ret;
1636}
1637
1638/*
1639 * Prepare to read connection handshake, or an ack.
1640 */
1641static void prepare_read_banner(struct ceph_connection *con)
1642{
1643	dout("prepare_read_banner %p\n", con);
1644	con->in_base_pos = 0;
1645}
1646
1647static void prepare_read_connect(struct ceph_connection *con)
1648{
1649	dout("prepare_read_connect %p\n", con);
1650	con->in_base_pos = 0;
1651}
1652
1653static void prepare_read_ack(struct ceph_connection *con)
1654{
1655	dout("prepare_read_ack %p\n", con);
1656	con->in_base_pos = 0;
1657}
1658
1659static void prepare_read_seq(struct ceph_connection *con)
1660{
1661	dout("prepare_read_seq %p\n", con);
1662	con->in_base_pos = 0;
1663	con->in_tag = CEPH_MSGR_TAG_SEQ;
1664}
1665
1666static void prepare_read_tag(struct ceph_connection *con)
1667{
1668	dout("prepare_read_tag %p\n", con);
1669	con->in_base_pos = 0;
1670	con->in_tag = CEPH_MSGR_TAG_READY;
1671}
1672
1673static void prepare_read_keepalive_ack(struct ceph_connection *con)
1674{
1675	dout("prepare_read_keepalive_ack %p\n", con);
1676	con->in_base_pos = 0;
1677}
1678
1679/*
1680 * Prepare to read a message.
1681 */
1682static int prepare_read_message(struct ceph_connection *con)
1683{
1684	dout("prepare_read_message %p\n", con);
1685	BUG_ON(con->in_msg != NULL);
1686	con->in_base_pos = 0;
1687	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1688	return 0;
1689}
1690
1691
1692static int read_partial(struct ceph_connection *con,
1693			int end, int size, void *object)
1694{
1695	while (con->in_base_pos < end) {
1696		int left = end - con->in_base_pos;
1697		int have = size - left;
1698		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1699		if (ret <= 0)
1700			return ret;
1701		con->in_base_pos += ret;
1702	}
1703	return 1;
1704}
1705
1706
1707/*
1708 * Read all or part of the connect-side handshake on a new connection
1709 */
1710static int read_partial_banner(struct ceph_connection *con)
1711{
1712	int size;
1713	int end;
1714	int ret;
1715
1716	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1717
1718	/* peer's banner */
1719	size = strlen(CEPH_BANNER);
1720	end = size;
1721	ret = read_partial(con, end, size, con->in_banner);
1722	if (ret <= 0)
1723		goto out;
1724
1725	size = sizeof (con->actual_peer_addr);
1726	end += size;
1727	ret = read_partial(con, end, size, &con->actual_peer_addr);
1728	if (ret <= 0)
1729		goto out;
1730	ceph_decode_banner_addr(&con->actual_peer_addr);
1731
1732	size = sizeof (con->peer_addr_for_me);
1733	end += size;
1734	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1735	if (ret <= 0)
1736		goto out;
1737	ceph_decode_banner_addr(&con->peer_addr_for_me);
1738
1739out:
1740	return ret;
1741}
1742
1743static int read_partial_connect(struct ceph_connection *con)
1744{
1745	int size;
1746	int end;
1747	int ret;
1748
1749	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1750
1751	size = sizeof (con->in_reply);
1752	end = size;
1753	ret = read_partial(con, end, size, &con->in_reply);
1754	if (ret <= 0)
1755		goto out;
1756
1757	if (con->auth) {
1758		size = le32_to_cpu(con->in_reply.authorizer_len);
1759		if (size > con->auth->authorizer_reply_buf_len) {
1760			pr_err("authorizer reply too big: %d > %zu\n", size,
1761			       con->auth->authorizer_reply_buf_len);
1762			ret = -EINVAL;
1763			goto out;
1764		}
1765
1766		end += size;
1767		ret = read_partial(con, end, size,
1768				   con->auth->authorizer_reply_buf);
1769		if (ret <= 0)
1770			goto out;
1771	}
1772
1773	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1774	     con, (int)con->in_reply.tag,
1775	     le32_to_cpu(con->in_reply.connect_seq),
1776	     le32_to_cpu(con->in_reply.global_seq));
1777out:
1778	return ret;
1779}
1780
1781/*
1782 * Verify the hello banner looks okay.
1783 */
1784static int verify_hello(struct ceph_connection *con)
1785{
1786	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1787		pr_err("connect to %s got bad banner\n",
1788		       ceph_pr_addr(&con->peer_addr));
1789		con->error_msg = "protocol error, bad banner";
1790		return -1;
1791	}
1792	return 0;
1793}
1794
1795static bool addr_is_blank(struct ceph_entity_addr *addr)
1796{
1797	struct sockaddr_storage ss = addr->in_addr; /* align */
1798	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1799	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1800
1801	switch (ss.ss_family) {
1802	case AF_INET:
1803		return addr4->s_addr == htonl(INADDR_ANY);
1804	case AF_INET6:
1805		return ipv6_addr_any(addr6);
1806	default:
1807		return true;
1808	}
1809}
 
1810
1811static int addr_port(struct ceph_entity_addr *addr)
1812{
1813	switch (get_unaligned(&addr->in_addr.ss_family)) {
1814	case AF_INET:
1815		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1816	case AF_INET6:
1817		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1818	}
1819	return 0;
1820}
1821
1822static void addr_set_port(struct ceph_entity_addr *addr, int p)
1823{
1824	switch (get_unaligned(&addr->in_addr.ss_family)) {
1825	case AF_INET:
1826		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1827		break;
1828	case AF_INET6:
1829		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1830		break;
1831	}
1832}
1833
1834/*
1835 * Unlike other *_pton function semantics, zero indicates success.
1836 */
1837static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1838		char delim, const char **ipend)
1839{
1840	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1841
1842	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1843		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1844		return 0;
1845	}
1846
1847	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1848		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1849		return 0;
1850	}
1851
1852	return -EINVAL;
1853}
1854
1855/*
1856 * Extract hostname string and resolve using kernel DNS facility.
1857 */
1858#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1859static int ceph_dns_resolve_name(const char *name, size_t namelen,
1860		struct ceph_entity_addr *addr, char delim, const char **ipend)
1861{
1862	const char *end, *delim_p;
1863	char *colon_p, *ip_addr = NULL;
1864	int ip_len, ret;
1865
1866	/*
1867	 * The end of the hostname occurs immediately preceding the delimiter or
1868	 * the port marker (':') where the delimiter takes precedence.
1869	 */
1870	delim_p = memchr(name, delim, namelen);
1871	colon_p = memchr(name, ':', namelen);
1872
1873	if (delim_p && colon_p)
1874		end = delim_p < colon_p ? delim_p : colon_p;
1875	else if (!delim_p && colon_p)
1876		end = colon_p;
1877	else {
1878		end = delim_p;
1879		if (!end) /* case: hostname:/ */
1880			end = name + namelen;
1881	}
1882
1883	if (end <= name)
1884		return -EINVAL;
1885
1886	/* do dns_resolve upcall */
1887	ip_len = dns_query(current->nsproxy->net_ns,
1888			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1889	if (ip_len > 0)
1890		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1891	else
1892		ret = -ESRCH;
1893
1894	kfree(ip_addr);
1895
1896	*ipend = end;
1897
1898	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1899			ret, ret ? "failed" : ceph_pr_addr(addr));
1900
1901	return ret;
1902}
1903#else
1904static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1905		struct ceph_entity_addr *addr, char delim, const char **ipend)
1906{
1907	return -EINVAL;
1908}
1909#endif
1910
1911/*
1912 * Parse a server name (IP or hostname). If a valid IP address is not found
1913 * then try to extract a hostname to resolve using userspace DNS upcall.
1914 */
1915static int ceph_parse_server_name(const char *name, size_t namelen,
1916		struct ceph_entity_addr *addr, char delim, const char **ipend)
1917{
1918	int ret;
1919
1920	ret = ceph_pton(name, namelen, addr, delim, ipend);
1921	if (ret)
1922		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1923
1924	return ret;
1925}
1926
1927/*
1928 * Parse an ip[:port] list into an addr array.  Use the default
1929 * monitor port if a port isn't specified.
1930 */
1931int ceph_parse_ips(const char *c, const char *end,
1932		   struct ceph_entity_addr *addr,
1933		   int max_count, int *count)
1934{
1935	int i, ret = -EINVAL;
1936	const char *p = c;
1937
1938	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1939	for (i = 0; i < max_count; i++) {
 
1940		const char *ipend;
1941		int port;
1942		char delim = ',';
1943
1944		if (*p == '[') {
1945			delim = ']';
1946			p++;
1947		}
1948
1949		ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
 
1950		if (ret)
1951			goto bad;
1952		ret = -EINVAL;
1953
1954		p = ipend;
1955
1956		if (delim == ']') {
1957			if (*p != ']') {
1958				dout("missing matching ']'\n");
1959				goto bad;
1960			}
1961			p++;
1962		}
1963
1964		/* port? */
1965		if (p < end && *p == ':') {
1966			port = 0;
1967			p++;
1968			while (p < end && *p >= '0' && *p <= '9') {
1969				port = (port * 10) + (*p - '0');
1970				p++;
1971			}
1972			if (port == 0)
1973				port = CEPH_MON_PORT;
1974			else if (port > 65535)
1975				goto bad;
1976		} else {
1977			port = CEPH_MON_PORT;
1978		}
1979
1980		addr_set_port(&addr[i], port);
 
 
 
 
 
 
 
 
1981		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
 
1982
1983		dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1984
1985		if (p == end)
1986			break;
1987		if (*p != ',')
1988			goto bad;
1989		p++;
1990	}
1991
1992	if (p != end)
1993		goto bad;
1994
1995	if (count)
1996		*count = i + 1;
1997	return 0;
1998
1999bad:
2000	return ret;
2001}
2002
2003static int process_banner(struct ceph_connection *con)
2004{
2005	dout("process_banner on %p\n", con);
2006
2007	if (verify_hello(con) < 0)
2008		return -1;
2009
2010	/*
2011	 * Make sure the other end is who we wanted.  note that the other
2012	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2013	 * them the benefit of the doubt.
2014	 */
2015	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2016		   sizeof(con->peer_addr)) != 0 &&
2017	    !(addr_is_blank(&con->actual_peer_addr) &&
2018	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2019		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2020			ceph_pr_addr(&con->peer_addr),
2021			(int)le32_to_cpu(con->peer_addr.nonce),
2022			ceph_pr_addr(&con->actual_peer_addr),
2023			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2024		con->error_msg = "wrong peer at address";
2025		return -1;
2026	}
2027
2028	/*
2029	 * did we learn our address?
2030	 */
2031	if (addr_is_blank(&con->msgr->inst.addr)) {
2032		int port = addr_port(&con->msgr->inst.addr);
2033
2034		memcpy(&con->msgr->inst.addr.in_addr,
2035		       &con->peer_addr_for_me.in_addr,
2036		       sizeof(con->peer_addr_for_me.in_addr));
2037		addr_set_port(&con->msgr->inst.addr, port);
2038		encode_my_addr(con->msgr);
2039		dout("process_banner learned my addr is %s\n",
2040		     ceph_pr_addr(&con->msgr->inst.addr));
2041	}
2042
2043	return 0;
2044}
2045
2046static int process_connect(struct ceph_connection *con)
2047{
2048	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2049	u64 req_feat = from_msgr(con->msgr)->required_features;
2050	u64 server_feat = le64_to_cpu(con->in_reply.features);
2051	int ret;
2052
2053	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2054
2055	if (con->auth) {
2056		int len = le32_to_cpu(con->in_reply.authorizer_len);
2057
2058		/*
2059		 * Any connection that defines ->get_authorizer()
2060		 * should also define ->add_authorizer_challenge() and
2061		 * ->verify_authorizer_reply().
2062		 *
2063		 * See get_connect_authorizer().
2064		 */
2065		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2066			ret = con->ops->add_authorizer_challenge(
2067				    con, con->auth->authorizer_reply_buf, len);
2068			if (ret < 0)
2069				return ret;
2070
2071			con_out_kvec_reset(con);
2072			__prepare_write_connect(con);
2073			prepare_read_connect(con);
2074			return 0;
2075		}
2076
2077		if (len) {
2078			ret = con->ops->verify_authorizer_reply(con);
2079			if (ret < 0) {
2080				con->error_msg = "bad authorize reply";
2081				return ret;
2082			}
2083		}
2084	}
2085
2086	switch (con->in_reply.tag) {
2087	case CEPH_MSGR_TAG_FEATURES:
2088		pr_err("%s%lld %s feature set mismatch,"
2089		       " my %llx < server's %llx, missing %llx\n",
2090		       ENTITY_NAME(con->peer_name),
2091		       ceph_pr_addr(&con->peer_addr),
2092		       sup_feat, server_feat, server_feat & ~sup_feat);
2093		con->error_msg = "missing required protocol features";
2094		reset_connection(con);
2095		return -1;
2096
2097	case CEPH_MSGR_TAG_BADPROTOVER:
2098		pr_err("%s%lld %s protocol version mismatch,"
2099		       " my %d != server's %d\n",
2100		       ENTITY_NAME(con->peer_name),
2101		       ceph_pr_addr(&con->peer_addr),
2102		       le32_to_cpu(con->out_connect.protocol_version),
2103		       le32_to_cpu(con->in_reply.protocol_version));
2104		con->error_msg = "protocol version mismatch";
2105		reset_connection(con);
2106		return -1;
2107
2108	case CEPH_MSGR_TAG_BADAUTHORIZER:
2109		con->auth_retry++;
2110		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2111		     con->auth_retry);
2112		if (con->auth_retry == 2) {
2113			con->error_msg = "connect authorization failure";
2114			return -1;
2115		}
2116		con_out_kvec_reset(con);
2117		ret = prepare_write_connect(con);
2118		if (ret < 0)
2119			return ret;
2120		prepare_read_connect(con);
2121		break;
2122
2123	case CEPH_MSGR_TAG_RESETSESSION:
2124		/*
2125		 * If we connected with a large connect_seq but the peer
2126		 * has no record of a session with us (no connection, or
2127		 * connect_seq == 0), they will send RESETSESION to indicate
2128		 * that they must have reset their session, and may have
2129		 * dropped messages.
2130		 */
2131		dout("process_connect got RESET peer seq %u\n",
2132		     le32_to_cpu(con->in_reply.connect_seq));
2133		pr_err("%s%lld %s connection reset\n",
2134		       ENTITY_NAME(con->peer_name),
2135		       ceph_pr_addr(&con->peer_addr));
2136		reset_connection(con);
2137		con_out_kvec_reset(con);
2138		ret = prepare_write_connect(con);
2139		if (ret < 0)
2140			return ret;
2141		prepare_read_connect(con);
2142
2143		/* Tell ceph about it. */
2144		mutex_unlock(&con->mutex);
2145		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2146		if (con->ops->peer_reset)
2147			con->ops->peer_reset(con);
2148		mutex_lock(&con->mutex);
2149		if (con->state != CON_STATE_NEGOTIATING)
2150			return -EAGAIN;
2151		break;
2152
2153	case CEPH_MSGR_TAG_RETRY_SESSION:
2154		/*
2155		 * If we sent a smaller connect_seq than the peer has, try
2156		 * again with a larger value.
2157		 */
2158		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2159		     le32_to_cpu(con->out_connect.connect_seq),
2160		     le32_to_cpu(con->in_reply.connect_seq));
2161		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2162		con_out_kvec_reset(con);
2163		ret = prepare_write_connect(con);
2164		if (ret < 0)
2165			return ret;
2166		prepare_read_connect(con);
2167		break;
2168
2169	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2170		/*
2171		 * If we sent a smaller global_seq than the peer has, try
2172		 * again with a larger value.
2173		 */
2174		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2175		     con->peer_global_seq,
2176		     le32_to_cpu(con->in_reply.global_seq));
2177		get_global_seq(con->msgr,
2178			       le32_to_cpu(con->in_reply.global_seq));
2179		con_out_kvec_reset(con);
2180		ret = prepare_write_connect(con);
2181		if (ret < 0)
2182			return ret;
2183		prepare_read_connect(con);
2184		break;
2185
2186	case CEPH_MSGR_TAG_SEQ:
2187	case CEPH_MSGR_TAG_READY:
2188		if (req_feat & ~server_feat) {
2189			pr_err("%s%lld %s protocol feature mismatch,"
2190			       " my required %llx > server's %llx, need %llx\n",
2191			       ENTITY_NAME(con->peer_name),
2192			       ceph_pr_addr(&con->peer_addr),
2193			       req_feat, server_feat, req_feat & ~server_feat);
2194			con->error_msg = "missing required protocol features";
2195			reset_connection(con);
2196			return -1;
2197		}
2198
2199		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2200		con->state = CON_STATE_OPEN;
2201		con->auth_retry = 0;    /* we authenticated; clear flag */
2202		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2203		con->connect_seq++;
2204		con->peer_features = server_feat;
2205		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2206		     con->peer_global_seq,
2207		     le32_to_cpu(con->in_reply.connect_seq),
2208		     con->connect_seq);
2209		WARN_ON(con->connect_seq !=
2210			le32_to_cpu(con->in_reply.connect_seq));
2211
2212		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2213			con_flag_set(con, CON_FLAG_LOSSYTX);
2214
2215		con->delay = 0;      /* reset backoff memory */
2216
2217		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2218			prepare_write_seq(con);
2219			prepare_read_seq(con);
2220		} else {
2221			prepare_read_tag(con);
2222		}
2223		break;
2224
2225	case CEPH_MSGR_TAG_WAIT:
2226		/*
2227		 * If there is a connection race (we are opening
2228		 * connections to each other), one of us may just have
2229		 * to WAIT.  This shouldn't happen if we are the
2230		 * client.
2231		 */
2232		con->error_msg = "protocol error, got WAIT as client";
2233		return -1;
2234
2235	default:
2236		con->error_msg = "protocol error, garbage tag during connect";
2237		return -1;
2238	}
2239	return 0;
2240}
2241
2242
2243/*
2244 * read (part of) an ack
2245 */
2246static int read_partial_ack(struct ceph_connection *con)
2247{
2248	int size = sizeof (con->in_temp_ack);
2249	int end = size;
2250
2251	return read_partial(con, end, size, &con->in_temp_ack);
2252}
2253
2254/*
2255 * We can finally discard anything that's been acked.
2256 */
2257static void process_ack(struct ceph_connection *con)
2258{
2259	struct ceph_msg *m;
2260	u64 ack = le64_to_cpu(con->in_temp_ack);
2261	u64 seq;
2262	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2263	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2264
2265	/*
2266	 * In the reconnect case, con_fault() has requeued messages
2267	 * in out_sent. We should cleanup old messages according to
2268	 * the reconnect seq.
2269	 */
2270	while (!list_empty(list)) {
2271		m = list_first_entry(list, struct ceph_msg, list_head);
2272		if (reconnect && m->needs_out_seq)
2273			break;
2274		seq = le64_to_cpu(m->hdr.seq);
2275		if (seq > ack)
2276			break;
2277		dout("got ack for seq %llu type %d at %p\n", seq,
2278		     le16_to_cpu(m->hdr.type), m);
2279		m->ack_stamp = jiffies;
2280		ceph_msg_remove(m);
2281	}
2282
2283	prepare_read_tag(con);
2284}
2285
2286
2287static int read_partial_message_section(struct ceph_connection *con,
2288					struct kvec *section,
2289					unsigned int sec_len, u32 *crc)
2290{
2291	int ret, left;
2292
2293	BUG_ON(!section);
2294
2295	while (section->iov_len < sec_len) {
2296		BUG_ON(section->iov_base == NULL);
2297		left = sec_len - section->iov_len;
2298		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2299				       section->iov_len, left);
2300		if (ret <= 0)
2301			return ret;
2302		section->iov_len += ret;
2303	}
2304	if (section->iov_len == sec_len)
2305		*crc = crc32c(0, section->iov_base, section->iov_len);
2306
2307	return 1;
2308}
2309
2310static int read_partial_msg_data(struct ceph_connection *con)
2311{
2312	struct ceph_msg *msg = con->in_msg;
2313	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2314	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2315	struct page *page;
2316	size_t page_offset;
2317	size_t length;
2318	u32 crc = 0;
2319	int ret;
2320
2321	if (!msg->num_data_items)
2322		return -EIO;
2323
2324	if (do_datacrc)
2325		crc = con->in_data_crc;
2326	while (cursor->total_resid) {
2327		if (!cursor->resid) {
2328			ceph_msg_data_advance(cursor, 0);
2329			continue;
2330		}
2331
2332		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2333		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2334		if (ret <= 0) {
2335			if (do_datacrc)
2336				con->in_data_crc = crc;
2337
2338			return ret;
2339		}
2340
2341		if (do_datacrc)
2342			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2343		ceph_msg_data_advance(cursor, (size_t)ret);
2344	}
2345	if (do_datacrc)
2346		con->in_data_crc = crc;
2347
2348	return 1;	/* must return > 0 to indicate success */
2349}
2350
2351/*
2352 * read (part of) a message.
2353 */
2354static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2355
2356static int read_partial_message(struct ceph_connection *con)
2357{
2358	struct ceph_msg *m = con->in_msg;
2359	int size;
2360	int end;
2361	int ret;
2362	unsigned int front_len, middle_len, data_len;
2363	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2364	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2365	u64 seq;
2366	u32 crc;
2367
2368	dout("read_partial_message con %p msg %p\n", con, m);
2369
2370	/* header */
2371	size = sizeof (con->in_hdr);
2372	end = size;
2373	ret = read_partial(con, end, size, &con->in_hdr);
2374	if (ret <= 0)
2375		return ret;
2376
2377	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2378	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2379		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2380		       crc, con->in_hdr.crc);
2381		return -EBADMSG;
2382	}
2383
2384	front_len = le32_to_cpu(con->in_hdr.front_len);
2385	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2386		return -EIO;
2387	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2388	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2389		return -EIO;
2390	data_len = le32_to_cpu(con->in_hdr.data_len);
2391	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2392		return -EIO;
2393
2394	/* verify seq# */
2395	seq = le64_to_cpu(con->in_hdr.seq);
2396	if ((s64)seq - (s64)con->in_seq < 1) {
2397		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2398			ENTITY_NAME(con->peer_name),
2399			ceph_pr_addr(&con->peer_addr),
2400			seq, con->in_seq + 1);
2401		con->in_base_pos = -front_len - middle_len - data_len -
2402			sizeof_footer(con);
2403		con->in_tag = CEPH_MSGR_TAG_READY;
2404		return 1;
2405	} else if ((s64)seq - (s64)con->in_seq > 1) {
2406		pr_err("read_partial_message bad seq %lld expected %lld\n",
2407		       seq, con->in_seq + 1);
2408		con->error_msg = "bad message sequence # for incoming message";
2409		return -EBADE;
2410	}
2411
2412	/* allocate message? */
2413	if (!con->in_msg) {
2414		int skip = 0;
2415
2416		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2417		     front_len, data_len);
2418		ret = ceph_con_in_msg_alloc(con, &skip);
2419		if (ret < 0)
2420			return ret;
2421
2422		BUG_ON(!con->in_msg ^ skip);
2423		if (skip) {
2424			/* skip this message */
2425			dout("alloc_msg said skip message\n");
2426			con->in_base_pos = -front_len - middle_len - data_len -
2427				sizeof_footer(con);
2428			con->in_tag = CEPH_MSGR_TAG_READY;
2429			con->in_seq++;
2430			return 1;
2431		}
2432
2433		BUG_ON(!con->in_msg);
2434		BUG_ON(con->in_msg->con != con);
2435		m = con->in_msg;
2436		m->front.iov_len = 0;    /* haven't read it yet */
2437		if (m->middle)
2438			m->middle->vec.iov_len = 0;
2439
2440		/* prepare for data payload, if any */
2441
2442		if (data_len)
2443			prepare_message_data(con->in_msg, data_len);
2444	}
2445
2446	/* front */
2447	ret = read_partial_message_section(con, &m->front, front_len,
2448					   &con->in_front_crc);
2449	if (ret <= 0)
2450		return ret;
2451
2452	/* middle */
2453	if (m->middle) {
2454		ret = read_partial_message_section(con, &m->middle->vec,
2455						   middle_len,
2456						   &con->in_middle_crc);
2457		if (ret <= 0)
2458			return ret;
2459	}
2460
2461	/* (page) data */
2462	if (data_len) {
2463		ret = read_partial_msg_data(con);
2464		if (ret <= 0)
2465			return ret;
2466	}
2467
2468	/* footer */
2469	size = sizeof_footer(con);
2470	end += size;
2471	ret = read_partial(con, end, size, &m->footer);
2472	if (ret <= 0)
2473		return ret;
2474
2475	if (!need_sign) {
2476		m->footer.flags = m->old_footer.flags;
2477		m->footer.sig = 0;
2478	}
2479
2480	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2481	     m, front_len, m->footer.front_crc, middle_len,
2482	     m->footer.middle_crc, data_len, m->footer.data_crc);
2483
2484	/* crc ok? */
2485	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2486		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2487		       m, con->in_front_crc, m->footer.front_crc);
2488		return -EBADMSG;
2489	}
2490	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2491		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2492		       m, con->in_middle_crc, m->footer.middle_crc);
2493		return -EBADMSG;
2494	}
2495	if (do_datacrc &&
2496	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2497	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2498		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2499		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2500		return -EBADMSG;
2501	}
2502
2503	if (need_sign && con->ops->check_message_signature &&
2504	    con->ops->check_message_signature(m)) {
2505		pr_err("read_partial_message %p signature check failed\n", m);
2506		return -EBADMSG;
2507	}
2508
2509	return 1; /* done! */
2510}
2511
2512/*
2513 * Process message.  This happens in the worker thread.  The callback should
2514 * be careful not to do anything that waits on other incoming messages or it
2515 * may deadlock.
2516 */
2517static void process_message(struct ceph_connection *con)
2518{
2519	struct ceph_msg *msg = con->in_msg;
2520
2521	BUG_ON(con->in_msg->con != con);
2522	con->in_msg = NULL;
2523
2524	/* if first message, set peer_name */
2525	if (con->peer_name.type == 0)
2526		con->peer_name = msg->hdr.src;
2527
2528	con->in_seq++;
2529	mutex_unlock(&con->mutex);
2530
2531	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2532	     msg, le64_to_cpu(msg->hdr.seq),
2533	     ENTITY_NAME(msg->hdr.src),
2534	     le16_to_cpu(msg->hdr.type),
2535	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2536	     le32_to_cpu(msg->hdr.front_len),
 
2537	     le32_to_cpu(msg->hdr.data_len),
2538	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2539	con->ops->dispatch(con, msg);
2540
2541	mutex_lock(&con->mutex);
2542}
2543
2544static int read_keepalive_ack(struct ceph_connection *con)
2545{
2546	struct ceph_timespec ceph_ts;
2547	size_t size = sizeof(ceph_ts);
2548	int ret = read_partial(con, size, size, &ceph_ts);
2549	if (ret <= 0)
2550		return ret;
2551	ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2552	prepare_read_tag(con);
2553	return 1;
2554}
2555
2556/*
2557 * Write something to the socket.  Called in a worker thread when the
2558 * socket appears to be writeable and we have something ready to send.
2559 */
2560static int try_write(struct ceph_connection *con)
2561{
2562	int ret = 1;
2563
2564	dout("try_write start %p state %lu\n", con, con->state);
2565	if (con->state != CON_STATE_PREOPEN &&
2566	    con->state != CON_STATE_CONNECTING &&
2567	    con->state != CON_STATE_NEGOTIATING &&
2568	    con->state != CON_STATE_OPEN)
2569		return 0;
2570
2571	/* open the socket first? */
2572	if (con->state == CON_STATE_PREOPEN) {
2573		BUG_ON(con->sock);
2574		con->state = CON_STATE_CONNECTING;
2575
2576		con_out_kvec_reset(con);
2577		prepare_write_banner(con);
2578		prepare_read_banner(con);
2579
2580		BUG_ON(con->in_msg);
2581		con->in_tag = CEPH_MSGR_TAG_READY;
2582		dout("try_write initiating connect on %p new state %lu\n",
2583		     con, con->state);
2584		ret = ceph_tcp_connect(con);
2585		if (ret < 0) {
2586			con->error_msg = "connect error";
2587			goto out;
2588		}
2589	}
2590
2591more:
2592	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2593	BUG_ON(!con->sock);
2594
2595	/* kvec data queued? */
2596	if (con->out_kvec_left) {
2597		ret = write_partial_kvec(con);
2598		if (ret <= 0)
2599			goto out;
2600	}
2601	if (con->out_skip) {
2602		ret = write_partial_skip(con);
2603		if (ret <= 0)
2604			goto out;
2605	}
2606
2607	/* msg pages? */
2608	if (con->out_msg) {
2609		if (con->out_msg_done) {
2610			ceph_msg_put(con->out_msg);
2611			con->out_msg = NULL;   /* we're done with this one */
2612			goto do_next;
2613		}
2614
2615		ret = write_partial_message_data(con);
2616		if (ret == 1)
2617			goto more;  /* we need to send the footer, too! */
2618		if (ret == 0)
2619			goto out;
2620		if (ret < 0) {
2621			dout("try_write write_partial_message_data err %d\n",
2622			     ret);
2623			goto out;
2624		}
2625	}
2626
2627do_next:
2628	if (con->state == CON_STATE_OPEN) {
2629		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2630			prepare_write_keepalive(con);
2631			goto more;
2632		}
2633		/* is anything else pending? */
2634		if (!list_empty(&con->out_queue)) {
2635			prepare_write_message(con);
2636			goto more;
2637		}
2638		if (con->in_seq > con->in_seq_acked) {
2639			prepare_write_ack(con);
2640			goto more;
2641		}
2642	}
2643
2644	/* Nothing to do! */
2645	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2646	dout("try_write nothing else to write.\n");
2647	ret = 0;
2648out:
2649	dout("try_write done on %p ret %d\n", con, ret);
2650	return ret;
2651}
2652
2653/*
2654 * Read what we can from the socket.
2655 */
2656static int try_read(struct ceph_connection *con)
2657{
2658	int ret = -1;
2659
2660more:
2661	dout("try_read start on %p state %lu\n", con, con->state);
2662	if (con->state != CON_STATE_CONNECTING &&
2663	    con->state != CON_STATE_NEGOTIATING &&
2664	    con->state != CON_STATE_OPEN)
2665		return 0;
2666
2667	BUG_ON(!con->sock);
2668
2669	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2670	     con->in_base_pos);
2671
2672	if (con->state == CON_STATE_CONNECTING) {
2673		dout("try_read connecting\n");
2674		ret = read_partial_banner(con);
2675		if (ret <= 0)
2676			goto out;
2677		ret = process_banner(con);
2678		if (ret < 0)
2679			goto out;
2680
2681		con->state = CON_STATE_NEGOTIATING;
2682
2683		/*
2684		 * Received banner is good, exchange connection info.
2685		 * Do not reset out_kvec, as sending our banner raced
2686		 * with receiving peer banner after connect completed.
2687		 */
2688		ret = prepare_write_connect(con);
2689		if (ret < 0)
2690			goto out;
2691		prepare_read_connect(con);
2692
2693		/* Send connection info before awaiting response */
2694		goto out;
2695	}
2696
2697	if (con->state == CON_STATE_NEGOTIATING) {
2698		dout("try_read negotiating\n");
2699		ret = read_partial_connect(con);
2700		if (ret <= 0)
2701			goto out;
2702		ret = process_connect(con);
2703		if (ret < 0)
2704			goto out;
2705		goto more;
2706	}
2707
2708	WARN_ON(con->state != CON_STATE_OPEN);
2709
2710	if (con->in_base_pos < 0) {
2711		/*
2712		 * skipping + discarding content.
2713		 */
2714		ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2715		if (ret <= 0)
2716			goto out;
2717		dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2718		con->in_base_pos += ret;
2719		if (con->in_base_pos)
2720			goto more;
2721	}
2722	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2723		/*
2724		 * what's next?
2725		 */
2726		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2727		if (ret <= 0)
2728			goto out;
2729		dout("try_read got tag %d\n", (int)con->in_tag);
2730		switch (con->in_tag) {
2731		case CEPH_MSGR_TAG_MSG:
2732			prepare_read_message(con);
2733			break;
2734		case CEPH_MSGR_TAG_ACK:
2735			prepare_read_ack(con);
2736			break;
2737		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2738			prepare_read_keepalive_ack(con);
2739			break;
2740		case CEPH_MSGR_TAG_CLOSE:
2741			con_close_socket(con);
2742			con->state = CON_STATE_CLOSED;
2743			goto out;
2744		default:
2745			goto bad_tag;
2746		}
2747	}
2748	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2749		ret = read_partial_message(con);
2750		if (ret <= 0) {
2751			switch (ret) {
2752			case -EBADMSG:
2753				con->error_msg = "bad crc/signature";
2754				fallthrough;
2755			case -EBADE:
2756				ret = -EIO;
2757				break;
2758			case -EIO:
2759				con->error_msg = "io error";
2760				break;
2761			}
2762			goto out;
2763		}
2764		if (con->in_tag == CEPH_MSGR_TAG_READY)
2765			goto more;
2766		process_message(con);
2767		if (con->state == CON_STATE_OPEN)
2768			prepare_read_tag(con);
2769		goto more;
2770	}
2771	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2772	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2773		/*
2774		 * the final handshake seq exchange is semantically
2775		 * equivalent to an ACK
2776		 */
2777		ret = read_partial_ack(con);
2778		if (ret <= 0)
2779			goto out;
2780		process_ack(con);
2781		goto more;
2782	}
2783	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2784		ret = read_keepalive_ack(con);
2785		if (ret <= 0)
2786			goto out;
2787		goto more;
2788	}
2789
2790out:
2791	dout("try_read done on %p ret %d\n", con, ret);
2792	return ret;
2793
2794bad_tag:
2795	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2796	con->error_msg = "protocol error, garbage tag";
2797	ret = -1;
2798	goto out;
2799}
2800
2801
2802/*
2803 * Atomically queue work on a connection after the specified delay.
2804 * Bump @con reference to avoid races with connection teardown.
2805 * Returns 0 if work was queued, or an error code otherwise.
2806 */
2807static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2808{
2809	if (!con->ops->get(con)) {
2810		dout("%s %p ref count 0\n", __func__, con);
2811		return -ENOENT;
2812	}
2813
 
 
 
 
2814	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2815		dout("%s %p - already queued\n", __func__, con);
2816		con->ops->put(con);
2817		return -EBUSY;
2818	}
2819
2820	dout("%s %p %lu\n", __func__, con, delay);
2821	return 0;
2822}
2823
2824static void queue_con(struct ceph_connection *con)
2825{
2826	(void) queue_con_delay(con, 0);
2827}
2828
2829static void cancel_con(struct ceph_connection *con)
2830{
2831	if (cancel_delayed_work(&con->work)) {
2832		dout("%s %p\n", __func__, con);
2833		con->ops->put(con);
2834	}
2835}
2836
2837static bool con_sock_closed(struct ceph_connection *con)
2838{
2839	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2840		return false;
2841
2842#define CASE(x)								\
2843	case CON_STATE_ ## x:						\
2844		con->error_msg = "socket closed (con state " #x ")";	\
2845		break;
2846
2847	switch (con->state) {
2848	CASE(CLOSED);
2849	CASE(PREOPEN);
2850	CASE(CONNECTING);
2851	CASE(NEGOTIATING);
 
 
 
 
 
 
 
2852	CASE(OPEN);
2853	CASE(STANDBY);
2854	default:
2855		pr_warn("%s con %p unrecognized state %lu\n",
2856			__func__, con, con->state);
2857		con->error_msg = "unrecognized con state";
2858		BUG();
2859		break;
2860	}
2861#undef CASE
2862
2863	return true;
2864}
2865
2866static bool con_backoff(struct ceph_connection *con)
2867{
2868	int ret;
2869
2870	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2871		return false;
2872
2873	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2874	if (ret) {
2875		dout("%s: con %p FAILED to back off %lu\n", __func__,
2876			con, con->delay);
2877		BUG_ON(ret == -ENOENT);
2878		con_flag_set(con, CON_FLAG_BACKOFF);
2879	}
2880
2881	return true;
2882}
2883
2884/* Finish fault handling; con->mutex must *not* be held here */
2885
2886static void con_fault_finish(struct ceph_connection *con)
2887{
2888	dout("%s %p\n", __func__, con);
2889
2890	/*
2891	 * in case we faulted due to authentication, invalidate our
2892	 * current tickets so that we can get new ones.
2893	 */
2894	if (con->auth_retry) {
2895		dout("auth_retry %d, invalidating\n", con->auth_retry);
2896		if (con->ops->invalidate_authorizer)
2897			con->ops->invalidate_authorizer(con);
2898		con->auth_retry = 0;
2899	}
2900
2901	if (con->ops->fault)
2902		con->ops->fault(con);
2903}
2904
2905/*
2906 * Do some work on a connection.  Drop a connection ref when we're done.
2907 */
2908static void ceph_con_workfn(struct work_struct *work)
2909{
2910	struct ceph_connection *con = container_of(work, struct ceph_connection,
2911						   work.work);
2912	bool fault;
2913
2914	mutex_lock(&con->mutex);
2915	while (true) {
2916		int ret;
2917
2918		if ((fault = con_sock_closed(con))) {
2919			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2920			break;
2921		}
2922		if (con_backoff(con)) {
2923			dout("%s: con %p BACKOFF\n", __func__, con);
2924			break;
2925		}
2926		if (con->state == CON_STATE_STANDBY) {
2927			dout("%s: con %p STANDBY\n", __func__, con);
2928			break;
2929		}
2930		if (con->state == CON_STATE_CLOSED) {
2931			dout("%s: con %p CLOSED\n", __func__, con);
2932			BUG_ON(con->sock);
2933			break;
2934		}
2935		if (con->state == CON_STATE_PREOPEN) {
2936			dout("%s: con %p PREOPEN\n", __func__, con);
2937			BUG_ON(con->sock);
2938		}
2939
2940		ret = try_read(con);
 
 
 
2941		if (ret < 0) {
2942			if (ret == -EAGAIN)
2943				continue;
2944			if (!con->error_msg)
2945				con->error_msg = "socket error on read";
2946			fault = true;
2947			break;
2948		}
2949
2950		ret = try_write(con);
 
 
 
2951		if (ret < 0) {
2952			if (ret == -EAGAIN)
2953				continue;
2954			if (!con->error_msg)
2955				con->error_msg = "socket error on write";
2956			fault = true;
2957		}
2958
2959		break;	/* If we make it to here, we're done */
2960	}
2961	if (fault)
2962		con_fault(con);
2963	mutex_unlock(&con->mutex);
2964
2965	if (fault)
2966		con_fault_finish(con);
2967
2968	con->ops->put(con);
2969}
2970
2971/*
2972 * Generic error/fault handler.  A retry mechanism is used with
2973 * exponential backoff
2974 */
2975static void con_fault(struct ceph_connection *con)
2976{
2977	dout("fault %p state %lu to peer %s\n",
2978	     con, con->state, ceph_pr_addr(&con->peer_addr));
2979
2980	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2981		ceph_pr_addr(&con->peer_addr), con->error_msg);
2982	con->error_msg = NULL;
2983
2984	WARN_ON(con->state != CON_STATE_CONNECTING &&
2985	       con->state != CON_STATE_NEGOTIATING &&
2986	       con->state != CON_STATE_OPEN);
2987
2988	con_close_socket(con);
2989
2990	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2991		dout("fault on LOSSYTX channel, marking CLOSED\n");
2992		con->state = CON_STATE_CLOSED;
2993		return;
2994	}
2995
2996	if (con->in_msg) {
2997		BUG_ON(con->in_msg->con != con);
2998		ceph_msg_put(con->in_msg);
2999		con->in_msg = NULL;
3000	}
3001
3002	/* Requeue anything that hasn't been acked */
3003	list_splice_init(&con->out_sent, &con->out_queue);
3004
3005	/* If there are no messages queued or keepalive pending, place
3006	 * the connection in a STANDBY state */
3007	if (list_empty(&con->out_queue) &&
3008	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3009		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3010		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3011		con->state = CON_STATE_STANDBY;
3012	} else {
3013		/* retry after a delay. */
3014		con->state = CON_STATE_PREOPEN;
3015		if (con->delay == 0)
3016			con->delay = BASE_DELAY_INTERVAL;
3017		else if (con->delay < MAX_DELAY_INTERVAL)
3018			con->delay *= 2;
3019		con_flag_set(con, CON_FLAG_BACKOFF);
 
 
 
3020		queue_con(con);
3021	}
3022}
3023
3024
3025void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
3026{
3027	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
3028	msgr->inst.addr.nonce = cpu_to_le32(nonce);
3029	encode_my_addr(msgr);
3030}
3031
3032/*
3033 * initialize a new messenger instance
3034 */
3035void ceph_messenger_init(struct ceph_messenger *msgr,
3036			 struct ceph_entity_addr *myaddr)
3037{
3038	spin_lock_init(&msgr->global_seq_lock);
3039
3040	if (myaddr)
3041		msgr->inst.addr = *myaddr;
 
 
 
3042
3043	/* select a random nonce */
3044	msgr->inst.addr.type = 0;
3045	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3046	encode_my_addr(msgr);
 
 
 
 
 
 
 
 
3047
3048	atomic_set(&msgr->stopping, 0);
3049	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3050
3051	dout("%s %p\n", __func__, msgr);
3052}
3053EXPORT_SYMBOL(ceph_messenger_init);
3054
3055void ceph_messenger_fini(struct ceph_messenger *msgr)
3056{
3057	put_net(read_pnet(&msgr->net));
3058}
3059EXPORT_SYMBOL(ceph_messenger_fini);
3060
3061static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3062{
3063	if (msg->con)
3064		msg->con->ops->put(msg->con);
3065
3066	msg->con = con ? con->ops->get(con) : NULL;
3067	BUG_ON(msg->con != con);
3068}
3069
3070static void clear_standby(struct ceph_connection *con)
3071{
3072	/* come back from STANDBY? */
3073	if (con->state == CON_STATE_STANDBY) {
3074		dout("clear_standby %p and ++connect_seq\n", con);
3075		con->state = CON_STATE_PREOPEN;
3076		con->connect_seq++;
3077		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3078		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3079	}
3080}
3081
3082/*
3083 * Queue up an outgoing message on the given connection.
 
 
3084 */
3085void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3086{
3087	/* set src+dst */
3088	msg->hdr.src = con->msgr->inst.name;
3089	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3090	msg->needs_out_seq = true;
3091
3092	mutex_lock(&con->mutex);
3093
3094	if (con->state == CON_STATE_CLOSED) {
3095		dout("con_send %p closed, dropping %p\n", con, msg);
3096		ceph_msg_put(msg);
3097		mutex_unlock(&con->mutex);
3098		return;
3099	}
3100
3101	msg_con_set(msg, con);
3102
3103	BUG_ON(!list_empty(&msg->list_head));
3104	list_add_tail(&msg->list_head, &con->out_queue);
3105	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3106	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3107	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3108	     le32_to_cpu(msg->hdr.front_len),
3109	     le32_to_cpu(msg->hdr.middle_len),
3110	     le32_to_cpu(msg->hdr.data_len));
3111
3112	clear_standby(con);
3113	mutex_unlock(&con->mutex);
3114
3115	/* if there wasn't anything waiting to send before, queue
3116	 * new work */
3117	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3118		queue_con(con);
3119}
3120EXPORT_SYMBOL(ceph_con_send);
3121
3122/*
3123 * Revoke a message that was previously queued for send
3124 */
3125void ceph_msg_revoke(struct ceph_msg *msg)
3126{
3127	struct ceph_connection *con = msg->con;
3128
3129	if (!con) {
3130		dout("%s msg %p null con\n", __func__, msg);
3131		return;		/* Message not in our possession */
3132	}
3133
3134	mutex_lock(&con->mutex);
3135	if (!list_empty(&msg->list_head)) {
3136		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3137		list_del_init(&msg->list_head);
3138		msg->hdr.seq = 0;
 
 
 
 
 
 
3139
3140		ceph_msg_put(msg);
3141	}
3142	if (con->out_msg == msg) {
3143		BUG_ON(con->out_skip);
3144		/* footer */
3145		if (con->out_msg_done) {
3146			con->out_skip += con_out_kvec_skip(con);
3147		} else {
3148			BUG_ON(!msg->data_length);
3149			con->out_skip += sizeof_footer(con);
3150		}
3151		/* data, middle, front */
3152		if (msg->data_length)
3153			con->out_skip += msg->cursor.total_resid;
3154		if (msg->middle)
3155			con->out_skip += con_out_kvec_skip(con);
3156		con->out_skip += con_out_kvec_skip(con);
3157
3158		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3159		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3160		msg->hdr.seq = 0;
3161		con->out_msg = NULL;
3162		ceph_msg_put(msg);
 
 
3163	}
3164
3165	mutex_unlock(&con->mutex);
3166}
3167
3168/*
3169 * Revoke a message that we may be reading data into
3170 */
3171void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3172{
3173	struct ceph_connection *con = msg->con;
3174
3175	if (!con) {
3176		dout("%s msg %p null con\n", __func__, msg);
3177		return;		/* Message not in our possession */
3178	}
3179
3180	mutex_lock(&con->mutex);
3181	if (con->in_msg == msg) {
3182		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3183		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3184		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3185
3186		/* skip rest of message */
3187		dout("%s %p msg %p revoked\n", __func__, con, msg);
3188		con->in_base_pos = con->in_base_pos -
3189				sizeof(struct ceph_msg_header) -
3190				front_len -
3191				middle_len -
3192				data_len -
3193				sizeof(struct ceph_msg_footer);
3194		ceph_msg_put(con->in_msg);
3195		con->in_msg = NULL;
3196		con->in_tag = CEPH_MSGR_TAG_READY;
3197		con->in_seq++;
3198	} else {
3199		dout("%s %p in_msg %p msg %p no-op\n",
3200		     __func__, con, con->in_msg, msg);
3201	}
3202	mutex_unlock(&con->mutex);
3203}
3204
3205/*
3206 * Queue a keepalive byte to ensure the tcp connection is alive.
3207 */
3208void ceph_con_keepalive(struct ceph_connection *con)
3209{
3210	dout("con_keepalive %p\n", con);
3211	mutex_lock(&con->mutex);
3212	clear_standby(con);
3213	con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3214	mutex_unlock(&con->mutex);
3215
3216	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3217		queue_con(con);
3218}
3219EXPORT_SYMBOL(ceph_con_keepalive);
3220
3221bool ceph_con_keepalive_expired(struct ceph_connection *con,
3222			       unsigned long interval)
3223{
3224	if (interval > 0 &&
3225	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3226		struct timespec64 now;
3227		struct timespec64 ts;
3228		ktime_get_real_ts64(&now);
3229		jiffies_to_timespec64(interval, &ts);
3230		ts = timespec64_add(con->last_keepalive_ack, ts);
3231		return timespec64_compare(&now, &ts) >= 0;
3232	}
3233	return false;
3234}
3235
3236static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3237{
3238	BUG_ON(msg->num_data_items >= msg->max_data_items);
3239	return &msg->data[msg->num_data_items++];
3240}
3241
3242static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3243{
3244	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
3245		int num_pages = calc_pages_for(data->alignment, data->length);
3246		ceph_release_page_vector(data->pages, num_pages);
3247	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
3248		ceph_pagelist_release(data->pagelist);
3249	}
3250}
3251
3252void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3253			     size_t length, size_t alignment, bool own_pages)
3254{
3255	struct ceph_msg_data *data;
3256
3257	BUG_ON(!pages);
3258	BUG_ON(!length);
3259
3260	data = ceph_msg_data_add(msg);
3261	data->type = CEPH_MSG_DATA_PAGES;
3262	data->pages = pages;
3263	data->length = length;
3264	data->alignment = alignment & ~PAGE_MASK;
3265	data->own_pages = own_pages;
3266
3267	msg->data_length += length;
3268}
3269EXPORT_SYMBOL(ceph_msg_data_add_pages);
3270
3271void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3272				struct ceph_pagelist *pagelist)
3273{
3274	struct ceph_msg_data *data;
3275
3276	BUG_ON(!pagelist);
3277	BUG_ON(!pagelist->length);
3278
3279	data = ceph_msg_data_add(msg);
3280	data->type = CEPH_MSG_DATA_PAGELIST;
3281	refcount_inc(&pagelist->refcnt);
3282	data->pagelist = pagelist;
3283
3284	msg->data_length += pagelist->length;
3285}
3286EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3287
3288#ifdef	CONFIG_BLOCK
3289void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3290			   u32 length)
3291{
3292	struct ceph_msg_data *data;
3293
3294	data = ceph_msg_data_add(msg);
3295	data->type = CEPH_MSG_DATA_BIO;
3296	data->bio_pos = *bio_pos;
3297	data->bio_length = length;
3298
3299	msg->data_length += length;
3300}
3301EXPORT_SYMBOL(ceph_msg_data_add_bio);
3302#endif	/* CONFIG_BLOCK */
3303
3304void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3305			     struct ceph_bvec_iter *bvec_pos)
3306{
3307	struct ceph_msg_data *data;
3308
3309	data = ceph_msg_data_add(msg);
3310	data->type = CEPH_MSG_DATA_BVECS;
3311	data->bvec_pos = *bvec_pos;
3312
3313	msg->data_length += bvec_pos->iter.bi_size;
3314}
3315EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3316
 
 
 
 
 
 
 
 
 
 
 
 
3317/*
3318 * construct a new message with given type, size
3319 * the new msg has a ref count of 1.
3320 */
3321struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3322			       gfp_t flags, bool can_fail)
3323{
3324	struct ceph_msg *m;
3325
3326	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3327	if (m == NULL)
3328		goto out;
3329
3330	m->hdr.type = cpu_to_le16(type);
3331	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3332	m->hdr.front_len = cpu_to_le32(front_len);
3333
3334	INIT_LIST_HEAD(&m->list_head);
3335	kref_init(&m->kref);
3336
3337	/* front */
3338	if (front_len) {
3339		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3340		if (m->front.iov_base == NULL) {
3341			dout("ceph_msg_new can't allocate %d bytes\n",
3342			     front_len);
3343			goto out2;
3344		}
3345	} else {
3346		m->front.iov_base = NULL;
3347	}
3348	m->front_alloc_len = m->front.iov_len = front_len;
3349
3350	if (max_data_items) {
3351		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3352					flags);
3353		if (!m->data)
3354			goto out2;
3355
3356		m->max_data_items = max_data_items;
3357	}
3358
3359	dout("ceph_msg_new %p front %d\n", m, front_len);
3360	return m;
3361
3362out2:
3363	ceph_msg_put(m);
3364out:
3365	if (!can_fail) {
3366		pr_err("msg_new can't create type %d front %d\n", type,
3367		       front_len);
3368		WARN_ON(1);
3369	} else {
3370		dout("msg_new can't create type %d front %d\n", type,
3371		     front_len);
3372	}
3373	return NULL;
3374}
3375EXPORT_SYMBOL(ceph_msg_new2);
3376
3377struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3378			      bool can_fail)
3379{
3380	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3381}
3382EXPORT_SYMBOL(ceph_msg_new);
3383
3384/*
3385 * Allocate "middle" portion of a message, if it is needed and wasn't
3386 * allocated by alloc_msg.  This allows us to read a small fixed-size
3387 * per-type header in the front and then gracefully fail (i.e.,
3388 * propagate the error to the caller based on info in the front) when
3389 * the middle is too large.
3390 */
3391static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3392{
3393	int type = le16_to_cpu(msg->hdr.type);
3394	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3395
3396	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3397	     ceph_msg_type_name(type), middle_len);
3398	BUG_ON(!middle_len);
3399	BUG_ON(msg->middle);
3400
3401	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3402	if (!msg->middle)
3403		return -ENOMEM;
3404	return 0;
3405}
3406
3407/*
3408 * Allocate a message for receiving an incoming message on a
3409 * connection, and save the result in con->in_msg.  Uses the
3410 * connection's private alloc_msg op if available.
3411 *
3412 * Returns 0 on success, or a negative error code.
3413 *
3414 * On success, if we set *skip = 1:
3415 *  - the next message should be skipped and ignored.
3416 *  - con->in_msg == NULL
3417 * or if we set *skip = 0:
3418 *  - con->in_msg is non-null.
3419 * On error (ENOMEM, EAGAIN, ...),
3420 *  - con->in_msg == NULL
3421 */
3422static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
 
3423{
3424	struct ceph_msg_header *hdr = &con->in_hdr;
3425	int middle_len = le32_to_cpu(hdr->middle_len);
3426	struct ceph_msg *msg;
3427	int ret = 0;
3428
3429	BUG_ON(con->in_msg != NULL);
3430	BUG_ON(!con->ops->alloc_msg);
3431
3432	mutex_unlock(&con->mutex);
3433	msg = con->ops->alloc_msg(con, hdr, skip);
3434	mutex_lock(&con->mutex);
3435	if (con->state != CON_STATE_OPEN) {
3436		if (msg)
3437			ceph_msg_put(msg);
3438		return -EAGAIN;
3439	}
3440	if (msg) {
3441		BUG_ON(*skip);
3442		msg_con_set(msg, con);
3443		con->in_msg = msg;
3444	} else {
3445		/*
3446		 * Null message pointer means either we should skip
3447		 * this message or we couldn't allocate memory.  The
3448		 * former is not an error.
3449		 */
3450		if (*skip)
3451			return 0;
3452
3453		con->error_msg = "error allocating memory for incoming message";
3454		return -ENOMEM;
3455	}
3456	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3457
3458	if (middle_len && !con->in_msg->middle) {
3459		ret = ceph_alloc_middle(con, con->in_msg);
3460		if (ret < 0) {
3461			ceph_msg_put(con->in_msg);
3462			con->in_msg = NULL;
3463		}
3464	}
3465
3466	return ret;
3467}
3468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3469
3470/*
3471 * Free a generically kmalloc'd message.
3472 */
3473static void ceph_msg_free(struct ceph_msg *m)
3474{
3475	dout("%s %p\n", __func__, m);
3476	kvfree(m->front.iov_base);
3477	kfree(m->data);
3478	kmem_cache_free(ceph_msg_cache, m);
3479}
3480
3481static void ceph_msg_release(struct kref *kref)
3482{
3483	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3484	int i;
3485
3486	dout("%s %p\n", __func__, m);
3487	WARN_ON(!list_empty(&m->list_head));
3488
3489	msg_con_set(m, NULL);
3490
3491	/* drop middle, data, if any */
3492	if (m->middle) {
3493		ceph_buffer_put(m->middle);
3494		m->middle = NULL;
3495	}
3496
3497	for (i = 0; i < m->num_data_items; i++)
3498		ceph_msg_data_destroy(&m->data[i]);
3499
3500	if (m->pool)
3501		ceph_msgpool_put(m->pool, m);
3502	else
3503		ceph_msg_free(m);
3504}
3505
3506struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3507{
3508	dout("%s %p (was %d)\n", __func__, msg,
3509	     kref_read(&msg->kref));
3510	kref_get(&msg->kref);
3511	return msg;
3512}
3513EXPORT_SYMBOL(ceph_msg_get);
3514
3515void ceph_msg_put(struct ceph_msg *msg)
3516{
3517	dout("%s %p (was %d)\n", __func__, msg,
3518	     kref_read(&msg->kref));
3519	kref_put(&msg->kref, ceph_msg_release);
3520}
3521EXPORT_SYMBOL(ceph_msg_put);
3522
3523void ceph_msg_dump(struct ceph_msg *msg)
3524{
3525	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3526		 msg->front_alloc_len, msg->data_length);
3527	print_hex_dump(KERN_DEBUG, "header: ",
3528		       DUMP_PREFIX_OFFSET, 16, 1,
3529		       &msg->hdr, sizeof(msg->hdr), true);
3530	print_hex_dump(KERN_DEBUG, " front: ",
3531		       DUMP_PREFIX_OFFSET, 16, 1,
3532		       msg->front.iov_base, msg->front.iov_len, true);
3533	if (msg->middle)
3534		print_hex_dump(KERN_DEBUG, "middle: ",
3535			       DUMP_PREFIX_OFFSET, 16, 1,
3536			       msg->middle->vec.iov_base,
3537			       msg->middle->vec.iov_len, true);
3538	print_hex_dump(KERN_DEBUG, "footer: ",
3539		       DUMP_PREFIX_OFFSET, 16, 1,
3540		       &msg->footer, sizeof(msg->footer), true);
3541}
3542EXPORT_SYMBOL(ceph_msg_dump);