Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20#include <trace/events/sock.h>
21
22#include <linux/ceph/ceph_features.h>
23#include <linux/ceph/libceph.h>
24#include <linux/ceph/messenger.h>
25#include <linux/ceph/decode.h>
26#include <linux/ceph/pagelist.h>
27#include <linux/export.h>
28
29/*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38/*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86static bool con_flag_valid(unsigned long con_flag)
87{
88 switch (con_flag) {
89 case CEPH_CON_F_LOSSYTX:
90 case CEPH_CON_F_KEEPALIVE_PENDING:
91 case CEPH_CON_F_WRITE_PENDING:
92 case CEPH_CON_F_SOCK_CLOSED:
93 case CEPH_CON_F_BACKOFF:
94 return true;
95 default:
96 return false;
97 }
98}
99
100void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101{
102 BUG_ON(!con_flag_valid(con_flag));
103
104 clear_bit(con_flag, &con->flags);
105}
106
107void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108{
109 BUG_ON(!con_flag_valid(con_flag));
110
111 set_bit(con_flag, &con->flags);
112}
113
114bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115{
116 BUG_ON(!con_flag_valid(con_flag));
117
118 return test_bit(con_flag, &con->flags);
119}
120
121bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122 unsigned long con_flag)
123{
124 BUG_ON(!con_flag_valid(con_flag));
125
126 return test_and_clear_bit(con_flag, &con->flags);
127}
128
129bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130 unsigned long con_flag)
131{
132 BUG_ON(!con_flag_valid(con_flag));
133
134 return test_and_set_bit(con_flag, &con->flags);
135}
136
137/* Slab caches for frequently-allocated structures */
138
139static struct kmem_cache *ceph_msg_cache;
140
141#ifdef CONFIG_LOCKDEP
142static struct lock_class_key socket_class;
143#endif
144
145static void queue_con(struct ceph_connection *con);
146static void cancel_con(struct ceph_connection *con);
147static void ceph_con_workfn(struct work_struct *);
148static void con_fault(struct ceph_connection *con);
149
150/*
151 * Nicely render a sockaddr as a string. An array of formatted
152 * strings is used, to approximate reentrancy.
153 */
154#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162struct page *ceph_zero_page; /* used in certain error cases */
163
164const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165{
166 int i;
167 char *s;
168 struct sockaddr_storage ss = addr->in_addr; /* align */
169 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173 s = addr_str[i];
174
175 switch (ss.ss_family) {
176 case AF_INET:
177 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178 le32_to_cpu(addr->type), &in4->sin_addr,
179 ntohs(in4->sin_port));
180 break;
181
182 case AF_INET6:
183 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184 le32_to_cpu(addr->type), &in6->sin6_addr,
185 ntohs(in6->sin6_port));
186 break;
187
188 default:
189 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190 ss.ss_family);
191 }
192
193 return s;
194}
195EXPORT_SYMBOL(ceph_pr_addr);
196
197void ceph_encode_my_addr(struct ceph_messenger *msgr)
198{
199 if (!ceph_msgr2(from_msgr(msgr))) {
200 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201 sizeof(msgr->my_enc_addr));
202 ceph_encode_banner_addr(&msgr->my_enc_addr);
203 }
204}
205
206/*
207 * work queue for all reading and writing to/from the socket.
208 */
209static struct workqueue_struct *ceph_msgr_wq;
210
211static int ceph_msgr_slab_init(void)
212{
213 BUG_ON(ceph_msg_cache);
214 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215 if (!ceph_msg_cache)
216 return -ENOMEM;
217
218 return 0;
219}
220
221static void ceph_msgr_slab_exit(void)
222{
223 BUG_ON(!ceph_msg_cache);
224 kmem_cache_destroy(ceph_msg_cache);
225 ceph_msg_cache = NULL;
226}
227
228static void _ceph_msgr_exit(void)
229{
230 if (ceph_msgr_wq) {
231 destroy_workqueue(ceph_msgr_wq);
232 ceph_msgr_wq = NULL;
233 }
234
235 BUG_ON(!ceph_zero_page);
236 put_page(ceph_zero_page);
237 ceph_zero_page = NULL;
238
239 ceph_msgr_slab_exit();
240}
241
242int __init ceph_msgr_init(void)
243{
244 if (ceph_msgr_slab_init())
245 return -ENOMEM;
246
247 BUG_ON(ceph_zero_page);
248 ceph_zero_page = ZERO_PAGE(0);
249 get_page(ceph_zero_page);
250
251 /*
252 * The number of active work items is limited by the number of
253 * connections, so leave @max_active at default.
254 */
255 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
256 if (ceph_msgr_wq)
257 return 0;
258
259 pr_err("msgr_init failed to create workqueue\n");
260 _ceph_msgr_exit();
261
262 return -ENOMEM;
263}
264
265void ceph_msgr_exit(void)
266{
267 BUG_ON(ceph_msgr_wq == NULL);
268
269 _ceph_msgr_exit();
270}
271
272void ceph_msgr_flush(void)
273{
274 flush_workqueue(ceph_msgr_wq);
275}
276EXPORT_SYMBOL(ceph_msgr_flush);
277
278/* Connection socket state transition functions */
279
280static void con_sock_state_init(struct ceph_connection *con)
281{
282 int old_state;
283
284 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
285 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
286 printk("%s: unexpected old state %d\n", __func__, old_state);
287 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
288 CON_SOCK_STATE_CLOSED);
289}
290
291static void con_sock_state_connecting(struct ceph_connection *con)
292{
293 int old_state;
294
295 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
296 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
297 printk("%s: unexpected old state %d\n", __func__, old_state);
298 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
299 CON_SOCK_STATE_CONNECTING);
300}
301
302static void con_sock_state_connected(struct ceph_connection *con)
303{
304 int old_state;
305
306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
307 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
308 printk("%s: unexpected old state %d\n", __func__, old_state);
309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310 CON_SOCK_STATE_CONNECTED);
311}
312
313static void con_sock_state_closing(struct ceph_connection *con)
314{
315 int old_state;
316
317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
318 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
319 old_state != CON_SOCK_STATE_CONNECTED &&
320 old_state != CON_SOCK_STATE_CLOSING))
321 printk("%s: unexpected old state %d\n", __func__, old_state);
322 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
323 CON_SOCK_STATE_CLOSING);
324}
325
326static void con_sock_state_closed(struct ceph_connection *con)
327{
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
332 old_state != CON_SOCK_STATE_CLOSING &&
333 old_state != CON_SOCK_STATE_CONNECTING &&
334 old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CLOSED);
338}
339
340/*
341 * socket callback functions
342 */
343
344/* data available on socket, or listen socket received a connect */
345static void ceph_sock_data_ready(struct sock *sk)
346{
347 struct ceph_connection *con = sk->sk_user_data;
348
349 trace_sk_data_ready(sk);
350
351 if (atomic_read(&con->msgr->stopping)) {
352 return;
353 }
354
355 if (sk->sk_state != TCP_CLOSE_WAIT) {
356 dout("%s %p state = %d, queueing work\n", __func__,
357 con, con->state);
358 queue_con(con);
359 }
360}
361
362/* socket has buffer space for writing */
363static void ceph_sock_write_space(struct sock *sk)
364{
365 struct ceph_connection *con = sk->sk_user_data;
366
367 /* only queue to workqueue if there is data we want to write,
368 * and there is sufficient space in the socket buffer to accept
369 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
370 * doesn't get called again until try_write() fills the socket
371 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372 * and net/core/stream.c:sk_stream_write_space().
373 */
374 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
375 if (sk_stream_is_writeable(sk)) {
376 dout("%s %p queueing write work\n", __func__, con);
377 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
378 queue_con(con);
379 }
380 } else {
381 dout("%s %p nothing to write\n", __func__, con);
382 }
383}
384
385/* socket's state has changed */
386static void ceph_sock_state_change(struct sock *sk)
387{
388 struct ceph_connection *con = sk->sk_user_data;
389
390 dout("%s %p state = %d sk_state = %u\n", __func__,
391 con, con->state, sk->sk_state);
392
393 switch (sk->sk_state) {
394 case TCP_CLOSE:
395 dout("%s TCP_CLOSE\n", __func__);
396 fallthrough;
397 case TCP_CLOSE_WAIT:
398 dout("%s TCP_CLOSE_WAIT\n", __func__);
399 con_sock_state_closing(con);
400 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
401 queue_con(con);
402 break;
403 case TCP_ESTABLISHED:
404 dout("%s TCP_ESTABLISHED\n", __func__);
405 con_sock_state_connected(con);
406 queue_con(con);
407 break;
408 default: /* Everything else is uninteresting */
409 break;
410 }
411}
412
413/*
414 * set up socket callbacks
415 */
416static void set_sock_callbacks(struct socket *sock,
417 struct ceph_connection *con)
418{
419 struct sock *sk = sock->sk;
420 sk->sk_user_data = con;
421 sk->sk_data_ready = ceph_sock_data_ready;
422 sk->sk_write_space = ceph_sock_write_space;
423 sk->sk_state_change = ceph_sock_state_change;
424}
425
426
427/*
428 * socket helpers
429 */
430
431/*
432 * initiate connection to a remote socket.
433 */
434int ceph_tcp_connect(struct ceph_connection *con)
435{
436 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
437 struct socket *sock;
438 unsigned int noio_flag;
439 int ret;
440
441 dout("%s con %p peer_addr %s\n", __func__, con,
442 ceph_pr_addr(&con->peer_addr));
443 BUG_ON(con->sock);
444
445 /* sock_create_kern() allocates with GFP_KERNEL */
446 noio_flag = memalloc_noio_save();
447 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
448 SOCK_STREAM, IPPROTO_TCP, &sock);
449 memalloc_noio_restore(noio_flag);
450 if (ret)
451 return ret;
452 sock->sk->sk_allocation = GFP_NOFS;
453 sock->sk->sk_use_task_frag = false;
454
455#ifdef CONFIG_LOCKDEP
456 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
457#endif
458
459 set_sock_callbacks(sock, con);
460
461 con_sock_state_connecting(con);
462 ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
463 O_NONBLOCK);
464 if (ret == -EINPROGRESS) {
465 dout("connect %s EINPROGRESS sk_state = %u\n",
466 ceph_pr_addr(&con->peer_addr),
467 sock->sk->sk_state);
468 } else if (ret < 0) {
469 pr_err("connect %s error %d\n",
470 ceph_pr_addr(&con->peer_addr), ret);
471 sock_release(sock);
472 return ret;
473 }
474
475 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
476 tcp_sock_set_nodelay(sock->sk);
477
478 con->sock = sock;
479 return 0;
480}
481
482/*
483 * Shutdown/close the socket for the given connection.
484 */
485int ceph_con_close_socket(struct ceph_connection *con)
486{
487 int rc = 0;
488
489 dout("%s con %p sock %p\n", __func__, con, con->sock);
490 if (con->sock) {
491 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
492 sock_release(con->sock);
493 con->sock = NULL;
494 }
495
496 /*
497 * Forcibly clear the SOCK_CLOSED flag. It gets set
498 * independent of the connection mutex, and we could have
499 * received a socket close event before we had the chance to
500 * shut the socket down.
501 */
502 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
503
504 con_sock_state_closed(con);
505 return rc;
506}
507
508static void ceph_con_reset_protocol(struct ceph_connection *con)
509{
510 dout("%s con %p\n", __func__, con);
511
512 ceph_con_close_socket(con);
513 if (con->in_msg) {
514 WARN_ON(con->in_msg->con != con);
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 }
518 if (con->out_msg) {
519 WARN_ON(con->out_msg->con != con);
520 ceph_msg_put(con->out_msg);
521 con->out_msg = NULL;
522 }
523 if (con->bounce_page) {
524 __free_page(con->bounce_page);
525 con->bounce_page = NULL;
526 }
527
528 if (ceph_msgr2(from_msgr(con->msgr)))
529 ceph_con_v2_reset_protocol(con);
530 else
531 ceph_con_v1_reset_protocol(con);
532}
533
534/*
535 * Reset a connection. Discard all incoming and outgoing messages
536 * and clear *_seq state.
537 */
538static void ceph_msg_remove(struct ceph_msg *msg)
539{
540 list_del_init(&msg->list_head);
541
542 ceph_msg_put(msg);
543}
544
545static void ceph_msg_remove_list(struct list_head *head)
546{
547 while (!list_empty(head)) {
548 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
549 list_head);
550 ceph_msg_remove(msg);
551 }
552}
553
554void ceph_con_reset_session(struct ceph_connection *con)
555{
556 dout("%s con %p\n", __func__, con);
557
558 WARN_ON(con->in_msg);
559 WARN_ON(con->out_msg);
560 ceph_msg_remove_list(&con->out_queue);
561 ceph_msg_remove_list(&con->out_sent);
562 con->out_seq = 0;
563 con->in_seq = 0;
564 con->in_seq_acked = 0;
565
566 if (ceph_msgr2(from_msgr(con->msgr)))
567 ceph_con_v2_reset_session(con);
568 else
569 ceph_con_v1_reset_session(con);
570}
571
572/*
573 * mark a peer down. drop any open connections.
574 */
575void ceph_con_close(struct ceph_connection *con)
576{
577 mutex_lock(&con->mutex);
578 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
579 con->state = CEPH_CON_S_CLOSED;
580
581 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
582 connect */
583 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
584 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
585 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
586
587 ceph_con_reset_protocol(con);
588 ceph_con_reset_session(con);
589 cancel_con(con);
590 mutex_unlock(&con->mutex);
591}
592EXPORT_SYMBOL(ceph_con_close);
593
594/*
595 * Reopen a closed connection, with a new peer address.
596 */
597void ceph_con_open(struct ceph_connection *con,
598 __u8 entity_type, __u64 entity_num,
599 struct ceph_entity_addr *addr)
600{
601 mutex_lock(&con->mutex);
602 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
603
604 WARN_ON(con->state != CEPH_CON_S_CLOSED);
605 con->state = CEPH_CON_S_PREOPEN;
606
607 con->peer_name.type = (__u8) entity_type;
608 con->peer_name.num = cpu_to_le64(entity_num);
609
610 memcpy(&con->peer_addr, addr, sizeof(*addr));
611 con->delay = 0; /* reset backoff memory */
612 mutex_unlock(&con->mutex);
613 queue_con(con);
614}
615EXPORT_SYMBOL(ceph_con_open);
616
617/*
618 * return true if this connection ever successfully opened
619 */
620bool ceph_con_opened(struct ceph_connection *con)
621{
622 if (ceph_msgr2(from_msgr(con->msgr)))
623 return ceph_con_v2_opened(con);
624
625 return ceph_con_v1_opened(con);
626}
627
628/*
629 * initialize a new connection.
630 */
631void ceph_con_init(struct ceph_connection *con, void *private,
632 const struct ceph_connection_operations *ops,
633 struct ceph_messenger *msgr)
634{
635 dout("con_init %p\n", con);
636 memset(con, 0, sizeof(*con));
637 con->private = private;
638 con->ops = ops;
639 con->msgr = msgr;
640
641 con_sock_state_init(con);
642
643 mutex_init(&con->mutex);
644 INIT_LIST_HEAD(&con->out_queue);
645 INIT_LIST_HEAD(&con->out_sent);
646 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
647
648 con->state = CEPH_CON_S_CLOSED;
649}
650EXPORT_SYMBOL(ceph_con_init);
651
652/*
653 * We maintain a global counter to order connection attempts. Get
654 * a unique seq greater than @gt.
655 */
656u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
657{
658 u32 ret;
659
660 spin_lock(&msgr->global_seq_lock);
661 if (msgr->global_seq < gt)
662 msgr->global_seq = gt;
663 ret = ++msgr->global_seq;
664 spin_unlock(&msgr->global_seq_lock);
665 return ret;
666}
667
668/*
669 * Discard messages that have been acked by the server.
670 */
671void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
672{
673 struct ceph_msg *msg;
674 u64 seq;
675
676 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
677 while (!list_empty(&con->out_sent)) {
678 msg = list_first_entry(&con->out_sent, struct ceph_msg,
679 list_head);
680 WARN_ON(msg->needs_out_seq);
681 seq = le64_to_cpu(msg->hdr.seq);
682 if (seq > ack_seq)
683 break;
684
685 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
686 msg, seq);
687 ceph_msg_remove(msg);
688 }
689}
690
691/*
692 * Discard messages that have been requeued in con_fault(), up to
693 * reconnect_seq. This avoids gratuitously resending messages that
694 * the server had received and handled prior to reconnect.
695 */
696void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
697{
698 struct ceph_msg *msg;
699 u64 seq;
700
701 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
702 while (!list_empty(&con->out_queue)) {
703 msg = list_first_entry(&con->out_queue, struct ceph_msg,
704 list_head);
705 if (msg->needs_out_seq)
706 break;
707 seq = le64_to_cpu(msg->hdr.seq);
708 if (seq > reconnect_seq)
709 break;
710
711 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
712 msg, seq);
713 ceph_msg_remove(msg);
714 }
715}
716
717#ifdef CONFIG_BLOCK
718
719/*
720 * For a bio data item, a piece is whatever remains of the next
721 * entry in the current bio iovec, or the first entry in the next
722 * bio in the list.
723 */
724static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
725 size_t length)
726{
727 struct ceph_msg_data *data = cursor->data;
728 struct ceph_bio_iter *it = &cursor->bio_iter;
729
730 cursor->resid = min_t(size_t, length, data->bio_length);
731 *it = data->bio_pos;
732 if (cursor->resid < it->iter.bi_size)
733 it->iter.bi_size = cursor->resid;
734
735 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
736}
737
738static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
739 size_t *page_offset,
740 size_t *length)
741{
742 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
743 cursor->bio_iter.iter);
744
745 *page_offset = bv.bv_offset;
746 *length = bv.bv_len;
747 return bv.bv_page;
748}
749
750static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
751 size_t bytes)
752{
753 struct ceph_bio_iter *it = &cursor->bio_iter;
754 struct page *page = bio_iter_page(it->bio, it->iter);
755
756 BUG_ON(bytes > cursor->resid);
757 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
758 cursor->resid -= bytes;
759 bio_advance_iter(it->bio, &it->iter, bytes);
760
761 if (!cursor->resid)
762 return false; /* no more data */
763
764 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
765 page == bio_iter_page(it->bio, it->iter)))
766 return false; /* more bytes to process in this segment */
767
768 if (!it->iter.bi_size) {
769 it->bio = it->bio->bi_next;
770 it->iter = it->bio->bi_iter;
771 if (cursor->resid < it->iter.bi_size)
772 it->iter.bi_size = cursor->resid;
773 }
774
775 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
776 return true;
777}
778#endif /* CONFIG_BLOCK */
779
780static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
781 size_t length)
782{
783 struct ceph_msg_data *data = cursor->data;
784 struct bio_vec *bvecs = data->bvec_pos.bvecs;
785
786 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787 cursor->bvec_iter = data->bvec_pos.iter;
788 cursor->bvec_iter.bi_size = cursor->resid;
789
790 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
791}
792
793static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
794 size_t *page_offset,
795 size_t *length)
796{
797 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
798 cursor->bvec_iter);
799
800 *page_offset = bv.bv_offset;
801 *length = bv.bv_len;
802 return bv.bv_page;
803}
804
805static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
806 size_t bytes)
807{
808 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
809 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
810
811 BUG_ON(bytes > cursor->resid);
812 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
813 cursor->resid -= bytes;
814 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
815
816 if (!cursor->resid)
817 return false; /* no more data */
818
819 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 return false; /* more bytes to process in this segment */
822
823 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
824 return true;
825}
826
827/*
828 * For a page array, a piece comes from the first page in the array
829 * that has not already been fully consumed.
830 */
831static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
832 size_t length)
833{
834 struct ceph_msg_data *data = cursor->data;
835 int page_count;
836
837 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
838
839 BUG_ON(!data->pages);
840 BUG_ON(!data->length);
841
842 cursor->resid = min(length, data->length);
843 page_count = calc_pages_for(data->alignment, (u64)data->length);
844 cursor->page_offset = data->alignment & ~PAGE_MASK;
845 cursor->page_index = 0;
846 BUG_ON(page_count > (int)USHRT_MAX);
847 cursor->page_count = (unsigned short)page_count;
848 BUG_ON(length > SIZE_MAX - cursor->page_offset);
849}
850
851static struct page *
852ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
853 size_t *page_offset, size_t *length)
854{
855 struct ceph_msg_data *data = cursor->data;
856
857 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
858
859 BUG_ON(cursor->page_index >= cursor->page_count);
860 BUG_ON(cursor->page_offset >= PAGE_SIZE);
861
862 *page_offset = cursor->page_offset;
863 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
864 return data->pages[cursor->page_index];
865}
866
867static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
868 size_t bytes)
869{
870 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
871
872 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
873
874 /* Advance the cursor page offset */
875
876 cursor->resid -= bytes;
877 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
878 if (!bytes || cursor->page_offset)
879 return false; /* more bytes to process in the current page */
880
881 if (!cursor->resid)
882 return false; /* no more data */
883
884 /* Move on to the next page; offset is already at 0 */
885
886 BUG_ON(cursor->page_index >= cursor->page_count);
887 cursor->page_index++;
888 return true;
889}
890
891/*
892 * For a pagelist, a piece is whatever remains to be consumed in the
893 * first page in the list, or the front of the next page.
894 */
895static void
896ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
897 size_t length)
898{
899 struct ceph_msg_data *data = cursor->data;
900 struct ceph_pagelist *pagelist;
901 struct page *page;
902
903 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
904
905 pagelist = data->pagelist;
906 BUG_ON(!pagelist);
907
908 if (!length)
909 return; /* pagelist can be assigned but empty */
910
911 BUG_ON(list_empty(&pagelist->head));
912 page = list_first_entry(&pagelist->head, struct page, lru);
913
914 cursor->resid = min(length, pagelist->length);
915 cursor->page = page;
916 cursor->offset = 0;
917}
918
919static struct page *
920ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
921 size_t *page_offset, size_t *length)
922{
923 struct ceph_msg_data *data = cursor->data;
924 struct ceph_pagelist *pagelist;
925
926 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
927
928 pagelist = data->pagelist;
929 BUG_ON(!pagelist);
930
931 BUG_ON(!cursor->page);
932 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
933
934 /* offset of first page in pagelist is always 0 */
935 *page_offset = cursor->offset & ~PAGE_MASK;
936 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
937 return cursor->page;
938}
939
940static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
941 size_t bytes)
942{
943 struct ceph_msg_data *data = cursor->data;
944 struct ceph_pagelist *pagelist;
945
946 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948 pagelist = data->pagelist;
949 BUG_ON(!pagelist);
950
951 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
952 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
953
954 /* Advance the cursor offset */
955
956 cursor->resid -= bytes;
957 cursor->offset += bytes;
958 /* offset of first page in pagelist is always 0 */
959 if (!bytes || cursor->offset & ~PAGE_MASK)
960 return false; /* more bytes to process in the current page */
961
962 if (!cursor->resid)
963 return false; /* no more data */
964
965 /* Move on to the next page */
966
967 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
968 cursor->page = list_next_entry(cursor->page, lru);
969 return true;
970}
971
972static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
973 size_t length)
974{
975 struct ceph_msg_data *data = cursor->data;
976
977 cursor->iov_iter = data->iter;
978 cursor->lastlen = 0;
979 iov_iter_truncate(&cursor->iov_iter, length);
980 cursor->resid = iov_iter_count(&cursor->iov_iter);
981}
982
983static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
984 size_t *page_offset, size_t *length)
985{
986 struct page *page;
987 ssize_t len;
988
989 if (cursor->lastlen)
990 iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
991
992 len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
993 1, page_offset);
994 BUG_ON(len < 0);
995
996 cursor->lastlen = len;
997
998 /*
999 * FIXME: The assumption is that the pages represented by the iov_iter
1000 * are pinned, with the references held by the upper-level
1001 * callers, or by virtue of being under writeback. Eventually,
1002 * we'll get an iov_iter_get_pages2 variant that doesn't take
1003 * page refs. Until then, just put the page ref.
1004 */
1005 VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006 put_page(page);
1007
1008 *length = min_t(size_t, len, cursor->resid);
1009 return page;
1010}
1011
1012static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013 size_t bytes)
1014{
1015 BUG_ON(bytes > cursor->resid);
1016 cursor->resid -= bytes;
1017
1018 if (bytes < cursor->lastlen) {
1019 cursor->lastlen -= bytes;
1020 } else {
1021 iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022 cursor->lastlen = 0;
1023 }
1024
1025 return cursor->resid;
1026}
1027
1028/*
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page. The network layer might not
1031 * consume an entire piece at once. A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece. It also tracks whether the current
1034 * piece is the last one in the data item.
1035 */
1036static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037{
1038 size_t length = cursor->total_resid;
1039
1040 switch (cursor->data->type) {
1041 case CEPH_MSG_DATA_PAGELIST:
1042 ceph_msg_data_pagelist_cursor_init(cursor, length);
1043 break;
1044 case CEPH_MSG_DATA_PAGES:
1045 ceph_msg_data_pages_cursor_init(cursor, length);
1046 break;
1047#ifdef CONFIG_BLOCK
1048 case CEPH_MSG_DATA_BIO:
1049 ceph_msg_data_bio_cursor_init(cursor, length);
1050 break;
1051#endif /* CONFIG_BLOCK */
1052 case CEPH_MSG_DATA_BVECS:
1053 ceph_msg_data_bvecs_cursor_init(cursor, length);
1054 break;
1055 case CEPH_MSG_DATA_ITER:
1056 ceph_msg_data_iter_cursor_init(cursor, length);
1057 break;
1058 case CEPH_MSG_DATA_NONE:
1059 default:
1060 /* BUG(); */
1061 break;
1062 }
1063 cursor->need_crc = true;
1064}
1065
1066void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067 struct ceph_msg *msg, size_t length)
1068{
1069 BUG_ON(!length);
1070 BUG_ON(length > msg->data_length);
1071 BUG_ON(!msg->num_data_items);
1072
1073 cursor->total_resid = length;
1074 cursor->data = msg->data;
1075 cursor->sr_resid = 0;
1076
1077 __ceph_msg_data_cursor_init(cursor);
1078}
1079
1080/*
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1084 */
1085struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086 size_t *page_offset, size_t *length)
1087{
1088 struct page *page;
1089
1090 switch (cursor->data->type) {
1091 case CEPH_MSG_DATA_PAGELIST:
1092 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093 break;
1094 case CEPH_MSG_DATA_PAGES:
1095 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096 break;
1097#ifdef CONFIG_BLOCK
1098 case CEPH_MSG_DATA_BIO:
1099 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100 break;
1101#endif /* CONFIG_BLOCK */
1102 case CEPH_MSG_DATA_BVECS:
1103 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104 break;
1105 case CEPH_MSG_DATA_ITER:
1106 page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107 break;
1108 case CEPH_MSG_DATA_NONE:
1109 default:
1110 page = NULL;
1111 break;
1112 }
1113
1114 BUG_ON(!page);
1115 BUG_ON(*page_offset + *length > PAGE_SIZE);
1116 BUG_ON(!*length);
1117 BUG_ON(*length > cursor->resid);
1118
1119 return page;
1120}
1121
1122/*
1123 * Returns true if the result moves the cursor on to the next piece
1124 * of the data item.
1125 */
1126void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1127{
1128 bool new_piece;
1129
1130 BUG_ON(bytes > cursor->resid);
1131 switch (cursor->data->type) {
1132 case CEPH_MSG_DATA_PAGELIST:
1133 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134 break;
1135 case CEPH_MSG_DATA_PAGES:
1136 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137 break;
1138#ifdef CONFIG_BLOCK
1139 case CEPH_MSG_DATA_BIO:
1140 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141 break;
1142#endif /* CONFIG_BLOCK */
1143 case CEPH_MSG_DATA_BVECS:
1144 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145 break;
1146 case CEPH_MSG_DATA_ITER:
1147 new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148 break;
1149 case CEPH_MSG_DATA_NONE:
1150 default:
1151 BUG();
1152 break;
1153 }
1154 cursor->total_resid -= bytes;
1155
1156 if (!cursor->resid && cursor->total_resid) {
1157 cursor->data++;
1158 __ceph_msg_data_cursor_init(cursor);
1159 new_piece = true;
1160 }
1161 cursor->need_crc = new_piece;
1162}
1163
1164u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165 unsigned int length)
1166{
1167 char *kaddr;
1168
1169 kaddr = kmap(page);
1170 BUG_ON(kaddr == NULL);
1171 crc = crc32c(crc, kaddr + page_offset, length);
1172 kunmap(page);
1173
1174 return crc;
1175}
1176
1177bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1178{
1179 struct sockaddr_storage ss = addr->in_addr; /* align */
1180 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1182
1183 switch (ss.ss_family) {
1184 case AF_INET:
1185 return addr4->s_addr == htonl(INADDR_ANY);
1186 case AF_INET6:
1187 return ipv6_addr_any(addr6);
1188 default:
1189 return true;
1190 }
1191}
1192EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194int ceph_addr_port(const struct ceph_entity_addr *addr)
1195{
1196 switch (get_unaligned(&addr->in_addr.ss_family)) {
1197 case AF_INET:
1198 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199 case AF_INET6:
1200 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201 }
1202 return 0;
1203}
1204
1205void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206{
1207 switch (get_unaligned(&addr->in_addr.ss_family)) {
1208 case AF_INET:
1209 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210 break;
1211 case AF_INET6:
1212 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213 break;
1214 }
1215}
1216
1217/*
1218 * Unlike other *_pton function semantics, zero indicates success.
1219 */
1220static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221 char delim, const char **ipend)
1222{
1223 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1224
1225 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227 return 0;
1228 }
1229
1230 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232 return 0;
1233 }
1234
1235 return -EINVAL;
1236}
1237
1238/*
1239 * Extract hostname string and resolve using kernel DNS facility.
1240 */
1241#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243 struct ceph_entity_addr *addr, char delim, const char **ipend)
1244{
1245 const char *end, *delim_p;
1246 char *colon_p, *ip_addr = NULL;
1247 int ip_len, ret;
1248
1249 /*
1250 * The end of the hostname occurs immediately preceding the delimiter or
1251 * the port marker (':') where the delimiter takes precedence.
1252 */
1253 delim_p = memchr(name, delim, namelen);
1254 colon_p = memchr(name, ':', namelen);
1255
1256 if (delim_p && colon_p)
1257 end = min(delim_p, colon_p);
1258 else if (!delim_p && colon_p)
1259 end = colon_p;
1260 else {
1261 end = delim_p;
1262 if (!end) /* case: hostname:/ */
1263 end = name + namelen;
1264 }
1265
1266 if (end <= name)
1267 return -EINVAL;
1268
1269 /* do dns_resolve upcall */
1270 ip_len = dns_query(current->nsproxy->net_ns,
1271 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272 if (ip_len > 0)
1273 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274 else
1275 ret = -ESRCH;
1276
1277 kfree(ip_addr);
1278
1279 *ipend = end;
1280
1281 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282 ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284 return ret;
1285}
1286#else
1287static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288 struct ceph_entity_addr *addr, char delim, const char **ipend)
1289{
1290 return -EINVAL;
1291}
1292#endif
1293
1294/*
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1297 */
1298static int ceph_parse_server_name(const char *name, size_t namelen,
1299 struct ceph_entity_addr *addr, char delim, const char **ipend)
1300{
1301 int ret;
1302
1303 ret = ceph_pton(name, namelen, addr, delim, ipend);
1304 if (ret)
1305 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307 return ret;
1308}
1309
1310/*
1311 * Parse an ip[:port] list into an addr array. Use the default
1312 * monitor port if a port isn't specified.
1313 */
1314int ceph_parse_ips(const char *c, const char *end,
1315 struct ceph_entity_addr *addr,
1316 int max_count, int *count, char delim)
1317{
1318 int i, ret = -EINVAL;
1319 const char *p = c;
1320
1321 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322 for (i = 0; i < max_count; i++) {
1323 char cur_delim = delim;
1324 const char *ipend;
1325 int port;
1326
1327 if (*p == '[') {
1328 cur_delim = ']';
1329 p++;
1330 }
1331
1332 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333 &ipend);
1334 if (ret)
1335 goto bad;
1336 ret = -EINVAL;
1337
1338 p = ipend;
1339
1340 if (cur_delim == ']') {
1341 if (*p != ']') {
1342 dout("missing matching ']'\n");
1343 goto bad;
1344 }
1345 p++;
1346 }
1347
1348 /* port? */
1349 if (p < end && *p == ':') {
1350 port = 0;
1351 p++;
1352 while (p < end && *p >= '0' && *p <= '9') {
1353 port = (port * 10) + (*p - '0');
1354 p++;
1355 }
1356 if (port == 0)
1357 port = CEPH_MON_PORT;
1358 else if (port > 65535)
1359 goto bad;
1360 } else {
1361 port = CEPH_MON_PORT;
1362 }
1363
1364 ceph_addr_set_port(&addr[i], port);
1365 /*
1366 * We want the type to be set according to ms_mode
1367 * option, but options are normally parsed after mon
1368 * addresses. Rather than complicating parsing, set
1369 * to LEGACY and override in build_initial_monmap()
1370 * for mon addresses and ceph_messenger_init() for
1371 * ip option.
1372 */
1373 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374 addr[i].nonce = 0;
1375
1376 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378 if (p == end)
1379 break;
1380 if (*p != delim)
1381 goto bad;
1382 p++;
1383 }
1384
1385 if (p != end)
1386 goto bad;
1387
1388 if (count)
1389 *count = i + 1;
1390 return 0;
1391
1392bad:
1393 return ret;
1394}
1395
1396/*
1397 * Process message. This happens in the worker thread. The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1399 * may deadlock.
1400 */
1401void ceph_con_process_message(struct ceph_connection *con)
1402{
1403 struct ceph_msg *msg = con->in_msg;
1404
1405 BUG_ON(con->in_msg->con != con);
1406 con->in_msg = NULL;
1407
1408 /* if first message, set peer_name */
1409 if (con->peer_name.type == 0)
1410 con->peer_name = msg->hdr.src;
1411
1412 con->in_seq++;
1413 mutex_unlock(&con->mutex);
1414
1415 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416 msg, le64_to_cpu(msg->hdr.seq),
1417 ENTITY_NAME(msg->hdr.src),
1418 le16_to_cpu(msg->hdr.type),
1419 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420 le32_to_cpu(msg->hdr.front_len),
1421 le32_to_cpu(msg->hdr.middle_len),
1422 le32_to_cpu(msg->hdr.data_len),
1423 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424 con->ops->dispatch(con, msg);
1425
1426 mutex_lock(&con->mutex);
1427}
1428
1429/*
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1433 */
1434static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435{
1436 if (!con->ops->get(con)) {
1437 dout("%s %p ref count 0\n", __func__, con);
1438 return -ENOENT;
1439 }
1440
1441 if (delay >= HZ)
1442 delay = round_jiffies_relative(delay);
1443
1444 dout("%s %p %lu\n", __func__, con, delay);
1445 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446 dout("%s %p - already queued\n", __func__, con);
1447 con->ops->put(con);
1448 return -EBUSY;
1449 }
1450
1451 return 0;
1452}
1453
1454static void queue_con(struct ceph_connection *con)
1455{
1456 (void) queue_con_delay(con, 0);
1457}
1458
1459static void cancel_con(struct ceph_connection *con)
1460{
1461 if (cancel_delayed_work(&con->work)) {
1462 dout("%s %p\n", __func__, con);
1463 con->ops->put(con);
1464 }
1465}
1466
1467static bool con_sock_closed(struct ceph_connection *con)
1468{
1469 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470 return false;
1471
1472#define CASE(x) \
1473 case CEPH_CON_S_ ## x: \
1474 con->error_msg = "socket closed (con state " #x ")"; \
1475 break;
1476
1477 switch (con->state) {
1478 CASE(CLOSED);
1479 CASE(PREOPEN);
1480 CASE(V1_BANNER);
1481 CASE(V1_CONNECT_MSG);
1482 CASE(V2_BANNER_PREFIX);
1483 CASE(V2_BANNER_PAYLOAD);
1484 CASE(V2_HELLO);
1485 CASE(V2_AUTH);
1486 CASE(V2_AUTH_SIGNATURE);
1487 CASE(V2_SESSION_CONNECT);
1488 CASE(V2_SESSION_RECONNECT);
1489 CASE(OPEN);
1490 CASE(STANDBY);
1491 default:
1492 BUG();
1493 }
1494#undef CASE
1495
1496 return true;
1497}
1498
1499static bool con_backoff(struct ceph_connection *con)
1500{
1501 int ret;
1502
1503 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504 return false;
1505
1506 ret = queue_con_delay(con, con->delay);
1507 if (ret) {
1508 dout("%s: con %p FAILED to back off %lu\n", __func__,
1509 con, con->delay);
1510 BUG_ON(ret == -ENOENT);
1511 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512 }
1513
1514 return true;
1515}
1516
1517/* Finish fault handling; con->mutex must *not* be held here */
1518
1519static void con_fault_finish(struct ceph_connection *con)
1520{
1521 dout("%s %p\n", __func__, con);
1522
1523 /*
1524 * in case we faulted due to authentication, invalidate our
1525 * current tickets so that we can get new ones.
1526 */
1527 if (con->v1.auth_retry) {
1528 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529 if (con->ops->invalidate_authorizer)
1530 con->ops->invalidate_authorizer(con);
1531 con->v1.auth_retry = 0;
1532 }
1533
1534 if (con->ops->fault)
1535 con->ops->fault(con);
1536}
1537
1538/*
1539 * Do some work on a connection. Drop a connection ref when we're done.
1540 */
1541static void ceph_con_workfn(struct work_struct *work)
1542{
1543 struct ceph_connection *con = container_of(work, struct ceph_connection,
1544 work.work);
1545 bool fault;
1546
1547 mutex_lock(&con->mutex);
1548 while (true) {
1549 int ret;
1550
1551 if ((fault = con_sock_closed(con))) {
1552 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553 break;
1554 }
1555 if (con_backoff(con)) {
1556 dout("%s: con %p BACKOFF\n", __func__, con);
1557 break;
1558 }
1559 if (con->state == CEPH_CON_S_STANDBY) {
1560 dout("%s: con %p STANDBY\n", __func__, con);
1561 break;
1562 }
1563 if (con->state == CEPH_CON_S_CLOSED) {
1564 dout("%s: con %p CLOSED\n", __func__, con);
1565 BUG_ON(con->sock);
1566 break;
1567 }
1568 if (con->state == CEPH_CON_S_PREOPEN) {
1569 dout("%s: con %p PREOPEN\n", __func__, con);
1570 BUG_ON(con->sock);
1571 }
1572
1573 if (ceph_msgr2(from_msgr(con->msgr)))
1574 ret = ceph_con_v2_try_read(con);
1575 else
1576 ret = ceph_con_v1_try_read(con);
1577 if (ret < 0) {
1578 if (ret == -EAGAIN)
1579 continue;
1580 if (!con->error_msg)
1581 con->error_msg = "socket error on read";
1582 fault = true;
1583 break;
1584 }
1585
1586 if (ceph_msgr2(from_msgr(con->msgr)))
1587 ret = ceph_con_v2_try_write(con);
1588 else
1589 ret = ceph_con_v1_try_write(con);
1590 if (ret < 0) {
1591 if (ret == -EAGAIN)
1592 continue;
1593 if (!con->error_msg)
1594 con->error_msg = "socket error on write";
1595 fault = true;
1596 }
1597
1598 break; /* If we make it to here, we're done */
1599 }
1600 if (fault)
1601 con_fault(con);
1602 mutex_unlock(&con->mutex);
1603
1604 if (fault)
1605 con_fault_finish(con);
1606
1607 con->ops->put(con);
1608}
1609
1610/*
1611 * Generic error/fault handler. A retry mechanism is used with
1612 * exponential backoff
1613 */
1614static void con_fault(struct ceph_connection *con)
1615{
1616 dout("fault %p state %d to peer %s\n",
1617 con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620 ceph_pr_addr(&con->peer_addr), con->error_msg);
1621 con->error_msg = NULL;
1622
1623 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624 con->state == CEPH_CON_S_CLOSED);
1625
1626 ceph_con_reset_protocol(con);
1627
1628 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629 dout("fault on LOSSYTX channel, marking CLOSED\n");
1630 con->state = CEPH_CON_S_CLOSED;
1631 return;
1632 }
1633
1634 /* Requeue anything that hasn't been acked */
1635 list_splice_init(&con->out_sent, &con->out_queue);
1636
1637 /* If there are no messages queued or keepalive pending, place
1638 * the connection in a STANDBY state */
1639 if (list_empty(&con->out_queue) &&
1640 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643 con->state = CEPH_CON_S_STANDBY;
1644 } else {
1645 /* retry after a delay. */
1646 con->state = CEPH_CON_S_PREOPEN;
1647 if (!con->delay) {
1648 con->delay = BASE_DELAY_INTERVAL;
1649 } else if (con->delay < MAX_DELAY_INTERVAL) {
1650 con->delay *= 2;
1651 if (con->delay > MAX_DELAY_INTERVAL)
1652 con->delay = MAX_DELAY_INTERVAL;
1653 }
1654 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655 queue_con(con);
1656 }
1657}
1658
1659void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660{
1661 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663 ceph_encode_my_addr(msgr);
1664}
1665
1666/*
1667 * initialize a new messenger instance
1668 */
1669void ceph_messenger_init(struct ceph_messenger *msgr,
1670 struct ceph_entity_addr *myaddr)
1671{
1672 spin_lock_init(&msgr->global_seq_lock);
1673
1674 if (myaddr) {
1675 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676 sizeof(msgr->inst.addr.in_addr));
1677 ceph_addr_set_port(&msgr->inst.addr, 0);
1678 }
1679
1680 /*
1681 * Since nautilus, clients are identified using type ANY.
1682 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683 */
1684 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686 /* generate a random non-zero nonce */
1687 do {
1688 get_random_bytes(&msgr->inst.addr.nonce,
1689 sizeof(msgr->inst.addr.nonce));
1690 } while (!msgr->inst.addr.nonce);
1691 ceph_encode_my_addr(msgr);
1692
1693 atomic_set(&msgr->stopping, 0);
1694 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696 dout("%s %p\n", __func__, msgr);
1697}
1698
1699void ceph_messenger_fini(struct ceph_messenger *msgr)
1700{
1701 put_net(read_pnet(&msgr->net));
1702}
1703
1704static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705{
1706 if (msg->con)
1707 msg->con->ops->put(msg->con);
1708
1709 msg->con = con ? con->ops->get(con) : NULL;
1710 BUG_ON(msg->con != con);
1711}
1712
1713static void clear_standby(struct ceph_connection *con)
1714{
1715 /* come back from STANDBY? */
1716 if (con->state == CEPH_CON_S_STANDBY) {
1717 dout("clear_standby %p and ++connect_seq\n", con);
1718 con->state = CEPH_CON_S_PREOPEN;
1719 con->v1.connect_seq++;
1720 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722 }
1723}
1724
1725/*
1726 * Queue up an outgoing message on the given connection.
1727 *
1728 * Consumes a ref on @msg.
1729 */
1730void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731{
1732 /* set src+dst */
1733 msg->hdr.src = con->msgr->inst.name;
1734 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735 msg->needs_out_seq = true;
1736
1737 mutex_lock(&con->mutex);
1738
1739 if (con->state == CEPH_CON_S_CLOSED) {
1740 dout("con_send %p closed, dropping %p\n", con, msg);
1741 ceph_msg_put(msg);
1742 mutex_unlock(&con->mutex);
1743 return;
1744 }
1745
1746 msg_con_set(msg, con);
1747
1748 BUG_ON(!list_empty(&msg->list_head));
1749 list_add_tail(&msg->list_head, &con->out_queue);
1750 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753 le32_to_cpu(msg->hdr.front_len),
1754 le32_to_cpu(msg->hdr.middle_len),
1755 le32_to_cpu(msg->hdr.data_len));
1756
1757 clear_standby(con);
1758 mutex_unlock(&con->mutex);
1759
1760 /* if there wasn't anything waiting to send before, queue
1761 * new work */
1762 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763 queue_con(con);
1764}
1765EXPORT_SYMBOL(ceph_con_send);
1766
1767/*
1768 * Revoke a message that was previously queued for send
1769 */
1770void ceph_msg_revoke(struct ceph_msg *msg)
1771{
1772 struct ceph_connection *con = msg->con;
1773
1774 if (!con) {
1775 dout("%s msg %p null con\n", __func__, msg);
1776 return; /* Message not in our possession */
1777 }
1778
1779 mutex_lock(&con->mutex);
1780 if (list_empty(&msg->list_head)) {
1781 WARN_ON(con->out_msg == msg);
1782 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783 mutex_unlock(&con->mutex);
1784 return;
1785 }
1786
1787 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788 msg->hdr.seq = 0;
1789 ceph_msg_remove(msg);
1790
1791 if (con->out_msg == msg) {
1792 WARN_ON(con->state != CEPH_CON_S_OPEN);
1793 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794 if (ceph_msgr2(from_msgr(con->msgr)))
1795 ceph_con_v2_revoke(con);
1796 else
1797 ceph_con_v1_revoke(con);
1798 ceph_msg_put(con->out_msg);
1799 con->out_msg = NULL;
1800 } else {
1801 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802 con, msg, con->out_msg);
1803 }
1804 mutex_unlock(&con->mutex);
1805}
1806
1807/*
1808 * Revoke a message that we may be reading data into
1809 */
1810void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811{
1812 struct ceph_connection *con = msg->con;
1813
1814 if (!con) {
1815 dout("%s msg %p null con\n", __func__, msg);
1816 return; /* Message not in our possession */
1817 }
1818
1819 mutex_lock(&con->mutex);
1820 if (con->in_msg == msg) {
1821 WARN_ON(con->state != CEPH_CON_S_OPEN);
1822 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823 if (ceph_msgr2(from_msgr(con->msgr)))
1824 ceph_con_v2_revoke_incoming(con);
1825 else
1826 ceph_con_v1_revoke_incoming(con);
1827 ceph_msg_put(con->in_msg);
1828 con->in_msg = NULL;
1829 } else {
1830 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831 con, msg, con->in_msg);
1832 }
1833 mutex_unlock(&con->mutex);
1834}
1835
1836/*
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1838 */
1839void ceph_con_keepalive(struct ceph_connection *con)
1840{
1841 dout("con_keepalive %p\n", con);
1842 mutex_lock(&con->mutex);
1843 clear_standby(con);
1844 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845 mutex_unlock(&con->mutex);
1846
1847 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848 queue_con(con);
1849}
1850EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853 unsigned long interval)
1854{
1855 if (interval > 0 &&
1856 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857 struct timespec64 now;
1858 struct timespec64 ts;
1859 ktime_get_real_ts64(&now);
1860 jiffies_to_timespec64(interval, &ts);
1861 ts = timespec64_add(con->last_keepalive_ack, ts);
1862 return timespec64_compare(&now, &ts) >= 0;
1863 }
1864 return false;
1865}
1866
1867static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868{
1869 BUG_ON(msg->num_data_items >= msg->max_data_items);
1870 return &msg->data[msg->num_data_items++];
1871}
1872
1873static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874{
1875 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876 int num_pages = calc_pages_for(data->alignment, data->length);
1877 ceph_release_page_vector(data->pages, num_pages);
1878 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1879 ceph_pagelist_release(data->pagelist);
1880 }
1881}
1882
1883void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884 size_t length, size_t alignment, bool own_pages)
1885{
1886 struct ceph_msg_data *data;
1887
1888 BUG_ON(!pages);
1889 BUG_ON(!length);
1890
1891 data = ceph_msg_data_add(msg);
1892 data->type = CEPH_MSG_DATA_PAGES;
1893 data->pages = pages;
1894 data->length = length;
1895 data->alignment = alignment & ~PAGE_MASK;
1896 data->own_pages = own_pages;
1897
1898 msg->data_length += length;
1899}
1900EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903 struct ceph_pagelist *pagelist)
1904{
1905 struct ceph_msg_data *data;
1906
1907 BUG_ON(!pagelist);
1908 BUG_ON(!pagelist->length);
1909
1910 data = ceph_msg_data_add(msg);
1911 data->type = CEPH_MSG_DATA_PAGELIST;
1912 refcount_inc(&pagelist->refcnt);
1913 data->pagelist = pagelist;
1914
1915 msg->data_length += pagelist->length;
1916}
1917EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919#ifdef CONFIG_BLOCK
1920void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921 u32 length)
1922{
1923 struct ceph_msg_data *data;
1924
1925 data = ceph_msg_data_add(msg);
1926 data->type = CEPH_MSG_DATA_BIO;
1927 data->bio_pos = *bio_pos;
1928 data->bio_length = length;
1929
1930 msg->data_length += length;
1931}
1932EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933#endif /* CONFIG_BLOCK */
1934
1935void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936 struct ceph_bvec_iter *bvec_pos)
1937{
1938 struct ceph_msg_data *data;
1939
1940 data = ceph_msg_data_add(msg);
1941 data->type = CEPH_MSG_DATA_BVECS;
1942 data->bvec_pos = *bvec_pos;
1943
1944 msg->data_length += bvec_pos->iter.bi_size;
1945}
1946EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949 struct iov_iter *iter)
1950{
1951 struct ceph_msg_data *data;
1952
1953 data = ceph_msg_data_add(msg);
1954 data->type = CEPH_MSG_DATA_ITER;
1955 data->iter = *iter;
1956
1957 msg->data_length += iov_iter_count(&data->iter);
1958}
1959
1960/*
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1963 */
1964struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965 gfp_t flags, bool can_fail)
1966{
1967 struct ceph_msg *m;
1968
1969 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970 if (m == NULL)
1971 goto out;
1972
1973 m->hdr.type = cpu_to_le16(type);
1974 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975 m->hdr.front_len = cpu_to_le32(front_len);
1976
1977 INIT_LIST_HEAD(&m->list_head);
1978 kref_init(&m->kref);
1979
1980 /* front */
1981 if (front_len) {
1982 m->front.iov_base = kvmalloc(front_len, flags);
1983 if (m->front.iov_base == NULL) {
1984 dout("ceph_msg_new can't allocate %d bytes\n",
1985 front_len);
1986 goto out2;
1987 }
1988 } else {
1989 m->front.iov_base = NULL;
1990 }
1991 m->front_alloc_len = m->front.iov_len = front_len;
1992
1993 if (max_data_items) {
1994 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995 flags);
1996 if (!m->data)
1997 goto out2;
1998
1999 m->max_data_items = max_data_items;
2000 }
2001
2002 dout("ceph_msg_new %p front %d\n", m, front_len);
2003 return m;
2004
2005out2:
2006 ceph_msg_put(m);
2007out:
2008 if (!can_fail) {
2009 pr_err("msg_new can't create type %d front %d\n", type,
2010 front_len);
2011 WARN_ON(1);
2012 } else {
2013 dout("msg_new can't create type %d front %d\n", type,
2014 front_len);
2015 }
2016 return NULL;
2017}
2018EXPORT_SYMBOL(ceph_msg_new2);
2019
2020struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021 bool can_fail)
2022{
2023 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024}
2025EXPORT_SYMBOL(ceph_msg_new);
2026
2027/*
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg. This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2033 */
2034static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035{
2036 int type = le16_to_cpu(msg->hdr.type);
2037 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040 ceph_msg_type_name(type), middle_len);
2041 BUG_ON(!middle_len);
2042 BUG_ON(msg->middle);
2043
2044 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045 if (!msg->middle)
2046 return -ENOMEM;
2047 return 0;
2048}
2049
2050/*
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg. Uses the
2053 * connection's private alloc_msg op if available.
2054 *
2055 * Returns 0 on success, or a negative error code.
2056 *
2057 * On success, if we set *skip = 1:
2058 * - the next message should be skipped and ignored.
2059 * - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 * - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 * - con->in_msg == NULL
2064 */
2065int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066 struct ceph_msg_header *hdr, int *skip)
2067{
2068 int middle_len = le32_to_cpu(hdr->middle_len);
2069 struct ceph_msg *msg;
2070 int ret = 0;
2071
2072 BUG_ON(con->in_msg != NULL);
2073 BUG_ON(!con->ops->alloc_msg);
2074
2075 mutex_unlock(&con->mutex);
2076 msg = con->ops->alloc_msg(con, hdr, skip);
2077 mutex_lock(&con->mutex);
2078 if (con->state != CEPH_CON_S_OPEN) {
2079 if (msg)
2080 ceph_msg_put(msg);
2081 return -EAGAIN;
2082 }
2083 if (msg) {
2084 BUG_ON(*skip);
2085 msg_con_set(msg, con);
2086 con->in_msg = msg;
2087 } else {
2088 /*
2089 * Null message pointer means either we should skip
2090 * this message or we couldn't allocate memory. The
2091 * former is not an error.
2092 */
2093 if (*skip)
2094 return 0;
2095
2096 con->error_msg = "error allocating memory for incoming message";
2097 return -ENOMEM;
2098 }
2099 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101 if (middle_len && !con->in_msg->middle) {
2102 ret = ceph_alloc_middle(con, con->in_msg);
2103 if (ret < 0) {
2104 ceph_msg_put(con->in_msg);
2105 con->in_msg = NULL;
2106 }
2107 }
2108
2109 return ret;
2110}
2111
2112void ceph_con_get_out_msg(struct ceph_connection *con)
2113{
2114 struct ceph_msg *msg;
2115
2116 BUG_ON(list_empty(&con->out_queue));
2117 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118 WARN_ON(msg->con != con);
2119
2120 /*
2121 * Put the message on "sent" list using a ref from ceph_con_send().
2122 * It is put when the message is acked or revoked.
2123 */
2124 list_move_tail(&msg->list_head, &con->out_sent);
2125
2126 /*
2127 * Only assign outgoing seq # if we haven't sent this message
2128 * yet. If it is requeued, resend with it's original seq.
2129 */
2130 if (msg->needs_out_seq) {
2131 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132 msg->needs_out_seq = false;
2133
2134 if (con->ops->reencode_message)
2135 con->ops->reencode_message(msg);
2136 }
2137
2138 /*
2139 * Get a ref for out_msg. It is put when we are done sending the
2140 * message or in case of a fault.
2141 */
2142 WARN_ON(con->out_msg);
2143 con->out_msg = ceph_msg_get(msg);
2144}
2145
2146/*
2147 * Free a generically kmalloc'd message.
2148 */
2149static void ceph_msg_free(struct ceph_msg *m)
2150{
2151 dout("%s %p\n", __func__, m);
2152 kvfree(m->front.iov_base);
2153 kfree(m->data);
2154 kmem_cache_free(ceph_msg_cache, m);
2155}
2156
2157static void ceph_msg_release(struct kref *kref)
2158{
2159 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160 int i;
2161
2162 dout("%s %p\n", __func__, m);
2163 WARN_ON(!list_empty(&m->list_head));
2164
2165 msg_con_set(m, NULL);
2166
2167 /* drop middle, data, if any */
2168 if (m->middle) {
2169 ceph_buffer_put(m->middle);
2170 m->middle = NULL;
2171 }
2172
2173 for (i = 0; i < m->num_data_items; i++)
2174 ceph_msg_data_destroy(&m->data[i]);
2175
2176 if (m->pool)
2177 ceph_msgpool_put(m->pool, m);
2178 else
2179 ceph_msg_free(m);
2180}
2181
2182struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183{
2184 dout("%s %p (was %d)\n", __func__, msg,
2185 kref_read(&msg->kref));
2186 kref_get(&msg->kref);
2187 return msg;
2188}
2189EXPORT_SYMBOL(ceph_msg_get);
2190
2191void ceph_msg_put(struct ceph_msg *msg)
2192{
2193 dout("%s %p (was %d)\n", __func__, msg,
2194 kref_read(&msg->kref));
2195 kref_put(&msg->kref, ceph_msg_release);
2196}
2197EXPORT_SYMBOL(ceph_msg_put);
2198
2199void ceph_msg_dump(struct ceph_msg *msg)
2200{
2201 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202 msg->front_alloc_len, msg->data_length);
2203 print_hex_dump(KERN_DEBUG, "header: ",
2204 DUMP_PREFIX_OFFSET, 16, 1,
2205 &msg->hdr, sizeof(msg->hdr), true);
2206 print_hex_dump(KERN_DEBUG, " front: ",
2207 DUMP_PREFIX_OFFSET, 16, 1,
2208 msg->front.iov_base, msg->front.iov_len, true);
2209 if (msg->middle)
2210 print_hex_dump(KERN_DEBUG, "middle: ",
2211 DUMP_PREFIX_OFFSET, 16, 1,
2212 msg->middle->vec.iov_base,
2213 msg->middle->vec.iov_len, true);
2214 print_hex_dump(KERN_DEBUG, "footer: ",
2215 DUMP_PREFIX_OFFSET, 16, 1,
2216 &msg->footer, sizeof(msg->footer), true);
2217}
2218EXPORT_SYMBOL(ceph_msg_dump);
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20
21#include <linux/ceph/ceph_features.h>
22#include <linux/ceph/libceph.h>
23#include <linux/ceph/messenger.h>
24#include <linux/ceph/decode.h>
25#include <linux/ceph/pagelist.h>
26#include <linux/export.h>
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85/*
86 * connection states
87 */
88#define CON_STATE_CLOSED 1 /* -> PREOPEN */
89#define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90#define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91#define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92#define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93#define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95/*
96 * ceph_connection flag bits
97 */
98#define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100#define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101#define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102#define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103#define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105static bool con_flag_valid(unsigned long con_flag)
106{
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117}
118
119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120{
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124}
125
126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127{
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131}
132
133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134{
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138}
139
140static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142{
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146}
147
148static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150{
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154}
155
156/* Slab caches for frequently-allocated structures */
157
158static struct kmem_cache *ceph_msg_cache;
159
160/* static tag bytes (protocol control messages) */
161static char tag_msg = CEPH_MSGR_TAG_MSG;
162static char tag_ack = CEPH_MSGR_TAG_ACK;
163static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166#ifdef CONFIG_LOCKDEP
167static struct lock_class_key socket_class;
168#endif
169
170static void queue_con(struct ceph_connection *con);
171static void cancel_con(struct ceph_connection *con);
172static void ceph_con_workfn(struct work_struct *);
173static void con_fault(struct ceph_connection *con);
174
175/*
176 * Nicely render a sockaddr as a string. An array of formatted
177 * strings is used, to approximate reentrancy.
178 */
179#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
180#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
181#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
182#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
183
184static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185static atomic_t addr_str_seq = ATOMIC_INIT(0);
186
187static struct page *zero_page; /* used in certain error cases */
188
189const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190{
191 int i;
192 char *s;
193 struct sockaddr_storage ss = addr->in_addr; /* align */
194 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196
197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198 s = addr_str[i];
199
200 switch (ss.ss_family) {
201 case AF_INET:
202 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
203 le32_to_cpu(addr->type), &in4->sin_addr,
204 ntohs(in4->sin_port));
205 break;
206
207 case AF_INET6:
208 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
209 le32_to_cpu(addr->type), &in6->sin6_addr,
210 ntohs(in6->sin6_port));
211 break;
212
213 default:
214 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
215 ss.ss_family);
216 }
217
218 return s;
219}
220EXPORT_SYMBOL(ceph_pr_addr);
221
222static void encode_my_addr(struct ceph_messenger *msgr)
223{
224 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
225 ceph_encode_banner_addr(&msgr->my_enc_addr);
226}
227
228/*
229 * work queue for all reading and writing to/from the socket.
230 */
231static struct workqueue_struct *ceph_msgr_wq;
232
233static int ceph_msgr_slab_init(void)
234{
235 BUG_ON(ceph_msg_cache);
236 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
237 if (!ceph_msg_cache)
238 return -ENOMEM;
239
240 return 0;
241}
242
243static void ceph_msgr_slab_exit(void)
244{
245 BUG_ON(!ceph_msg_cache);
246 kmem_cache_destroy(ceph_msg_cache);
247 ceph_msg_cache = NULL;
248}
249
250static void _ceph_msgr_exit(void)
251{
252 if (ceph_msgr_wq) {
253 destroy_workqueue(ceph_msgr_wq);
254 ceph_msgr_wq = NULL;
255 }
256
257 BUG_ON(zero_page == NULL);
258 put_page(zero_page);
259 zero_page = NULL;
260
261 ceph_msgr_slab_exit();
262}
263
264int __init ceph_msgr_init(void)
265{
266 if (ceph_msgr_slab_init())
267 return -ENOMEM;
268
269 BUG_ON(zero_page != NULL);
270 zero_page = ZERO_PAGE(0);
271 get_page(zero_page);
272
273 /*
274 * The number of active work items is limited by the number of
275 * connections, so leave @max_active at default.
276 */
277 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
278 if (ceph_msgr_wq)
279 return 0;
280
281 pr_err("msgr_init failed to create workqueue\n");
282 _ceph_msgr_exit();
283
284 return -ENOMEM;
285}
286
287void ceph_msgr_exit(void)
288{
289 BUG_ON(ceph_msgr_wq == NULL);
290
291 _ceph_msgr_exit();
292}
293
294void ceph_msgr_flush(void)
295{
296 flush_workqueue(ceph_msgr_wq);
297}
298EXPORT_SYMBOL(ceph_msgr_flush);
299
300/* Connection socket state transition functions */
301
302static void con_sock_state_init(struct ceph_connection *con)
303{
304 int old_state;
305
306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
307 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
308 printk("%s: unexpected old state %d\n", __func__, old_state);
309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310 CON_SOCK_STATE_CLOSED);
311}
312
313static void con_sock_state_connecting(struct ceph_connection *con)
314{
315 int old_state;
316
317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
318 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
319 printk("%s: unexpected old state %d\n", __func__, old_state);
320 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
321 CON_SOCK_STATE_CONNECTING);
322}
323
324static void con_sock_state_connected(struct ceph_connection *con)
325{
326 int old_state;
327
328 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
329 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
330 printk("%s: unexpected old state %d\n", __func__, old_state);
331 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332 CON_SOCK_STATE_CONNECTED);
333}
334
335static void con_sock_state_closing(struct ceph_connection *con)
336{
337 int old_state;
338
339 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
340 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
341 old_state != CON_SOCK_STATE_CONNECTED &&
342 old_state != CON_SOCK_STATE_CLOSING))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CLOSING);
346}
347
348static void con_sock_state_closed(struct ceph_connection *con)
349{
350 int old_state;
351
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
354 old_state != CON_SOCK_STATE_CLOSING &&
355 old_state != CON_SOCK_STATE_CONNECTING &&
356 old_state != CON_SOCK_STATE_CLOSED))
357 printk("%s: unexpected old state %d\n", __func__, old_state);
358 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
359 CON_SOCK_STATE_CLOSED);
360}
361
362/*
363 * socket callback functions
364 */
365
366/* data available on socket, or listen socket received a connect */
367static void ceph_sock_data_ready(struct sock *sk)
368{
369 struct ceph_connection *con = sk->sk_user_data;
370 if (atomic_read(&con->msgr->stopping)) {
371 return;
372 }
373
374 if (sk->sk_state != TCP_CLOSE_WAIT) {
375 dout("%s on %p state = %lu, queueing work\n", __func__,
376 con, con->state);
377 queue_con(con);
378 }
379}
380
381/* socket has buffer space for writing */
382static void ceph_sock_write_space(struct sock *sk)
383{
384 struct ceph_connection *con = sk->sk_user_data;
385
386 /* only queue to workqueue if there is data we want to write,
387 * and there is sufficient space in the socket buffer to accept
388 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
389 * doesn't get called again until try_write() fills the socket
390 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
391 * and net/core/stream.c:sk_stream_write_space().
392 */
393 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
394 if (sk_stream_is_writeable(sk)) {
395 dout("%s %p queueing write work\n", __func__, con);
396 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
397 queue_con(con);
398 }
399 } else {
400 dout("%s %p nothing to write\n", __func__, con);
401 }
402}
403
404/* socket's state has changed */
405static void ceph_sock_state_change(struct sock *sk)
406{
407 struct ceph_connection *con = sk->sk_user_data;
408
409 dout("%s %p state = %lu sk_state = %u\n", __func__,
410 con, con->state, sk->sk_state);
411
412 switch (sk->sk_state) {
413 case TCP_CLOSE:
414 dout("%s TCP_CLOSE\n", __func__);
415 fallthrough;
416 case TCP_CLOSE_WAIT:
417 dout("%s TCP_CLOSE_WAIT\n", __func__);
418 con_sock_state_closing(con);
419 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
420 queue_con(con);
421 break;
422 case TCP_ESTABLISHED:
423 dout("%s TCP_ESTABLISHED\n", __func__);
424 con_sock_state_connected(con);
425 queue_con(con);
426 break;
427 default: /* Everything else is uninteresting */
428 break;
429 }
430}
431
432/*
433 * set up socket callbacks
434 */
435static void set_sock_callbacks(struct socket *sock,
436 struct ceph_connection *con)
437{
438 struct sock *sk = sock->sk;
439 sk->sk_user_data = con;
440 sk->sk_data_ready = ceph_sock_data_ready;
441 sk->sk_write_space = ceph_sock_write_space;
442 sk->sk_state_change = ceph_sock_state_change;
443}
444
445
446/*
447 * socket helpers
448 */
449
450/*
451 * initiate connection to a remote socket.
452 */
453static int ceph_tcp_connect(struct ceph_connection *con)
454{
455 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
456 struct socket *sock;
457 unsigned int noio_flag;
458 int ret;
459
460 BUG_ON(con->sock);
461
462 /* sock_create_kern() allocates with GFP_KERNEL */
463 noio_flag = memalloc_noio_save();
464 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
465 SOCK_STREAM, IPPROTO_TCP, &sock);
466 memalloc_noio_restore(noio_flag);
467 if (ret)
468 return ret;
469 sock->sk->sk_allocation = GFP_NOFS;
470
471#ifdef CONFIG_LOCKDEP
472 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
473#endif
474
475 set_sock_callbacks(sock, con);
476
477 dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
478
479 con_sock_state_connecting(con);
480 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
481 O_NONBLOCK);
482 if (ret == -EINPROGRESS) {
483 dout("connect %s EINPROGRESS sk_state = %u\n",
484 ceph_pr_addr(&con->peer_addr),
485 sock->sk->sk_state);
486 } else if (ret < 0) {
487 pr_err("connect %s error %d\n",
488 ceph_pr_addr(&con->peer_addr), ret);
489 sock_release(sock);
490 return ret;
491 }
492
493 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
494 tcp_sock_set_nodelay(sock->sk);
495
496 con->sock = sock;
497 return 0;
498}
499
500/*
501 * If @buf is NULL, discard up to @len bytes.
502 */
503static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
504{
505 struct kvec iov = {buf, len};
506 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
507 int r;
508
509 if (!buf)
510 msg.msg_flags |= MSG_TRUNC;
511
512 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
513 r = sock_recvmsg(sock, &msg, msg.msg_flags);
514 if (r == -EAGAIN)
515 r = 0;
516 return r;
517}
518
519static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
520 int page_offset, size_t length)
521{
522 struct bio_vec bvec = {
523 .bv_page = page,
524 .bv_offset = page_offset,
525 .bv_len = length
526 };
527 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528 int r;
529
530 BUG_ON(page_offset + length > PAGE_SIZE);
531 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
532 r = sock_recvmsg(sock, &msg, msg.msg_flags);
533 if (r == -EAGAIN)
534 r = 0;
535 return r;
536}
537
538/*
539 * write something. @more is true if caller will be sending more data
540 * shortly.
541 */
542static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543 size_t kvlen, size_t len, bool more)
544{
545 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 int r;
547
548 if (more)
549 msg.msg_flags |= MSG_MORE;
550 else
551 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
552
553 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554 if (r == -EAGAIN)
555 r = 0;
556 return r;
557}
558
559/*
560 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
561 */
562static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
563 int offset, size_t size, int more)
564{
565 ssize_t (*sendpage)(struct socket *sock, struct page *page,
566 int offset, size_t size, int flags);
567 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
568 int ret;
569
570 /*
571 * sendpage cannot properly handle pages with page_count == 0,
572 * we need to fall back to sendmsg if that's the case.
573 *
574 * Same goes for slab pages: skb_can_coalesce() allows
575 * coalescing neighboring slab objects into a single frag which
576 * triggers one of hardened usercopy checks.
577 */
578 if (sendpage_ok(page))
579 sendpage = sock->ops->sendpage;
580 else
581 sendpage = sock_no_sendpage;
582
583 ret = sendpage(sock, page, offset, size, flags);
584 if (ret == -EAGAIN)
585 ret = 0;
586
587 return ret;
588}
589
590/*
591 * Shutdown/close the socket for the given connection.
592 */
593static int con_close_socket(struct ceph_connection *con)
594{
595 int rc = 0;
596
597 dout("con_close_socket on %p sock %p\n", con, con->sock);
598 if (con->sock) {
599 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
600 sock_release(con->sock);
601 con->sock = NULL;
602 }
603
604 /*
605 * Forcibly clear the SOCK_CLOSED flag. It gets set
606 * independent of the connection mutex, and we could have
607 * received a socket close event before we had the chance to
608 * shut the socket down.
609 */
610 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
611
612 con_sock_state_closed(con);
613 return rc;
614}
615
616/*
617 * Reset a connection. Discard all incoming and outgoing messages
618 * and clear *_seq state.
619 */
620static void ceph_msg_remove(struct ceph_msg *msg)
621{
622 list_del_init(&msg->list_head);
623
624 ceph_msg_put(msg);
625}
626static void ceph_msg_remove_list(struct list_head *head)
627{
628 while (!list_empty(head)) {
629 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
630 list_head);
631 ceph_msg_remove(msg);
632 }
633}
634
635static void reset_connection(struct ceph_connection *con)
636{
637 /* reset connection, out_queue, msg_ and connect_seq */
638 /* discard existing out_queue and msg_seq */
639 dout("reset_connection %p\n", con);
640 ceph_msg_remove_list(&con->out_queue);
641 ceph_msg_remove_list(&con->out_sent);
642
643 if (con->in_msg) {
644 BUG_ON(con->in_msg->con != con);
645 ceph_msg_put(con->in_msg);
646 con->in_msg = NULL;
647 }
648
649 con->connect_seq = 0;
650 con->out_seq = 0;
651 if (con->out_msg) {
652 BUG_ON(con->out_msg->con != con);
653 ceph_msg_put(con->out_msg);
654 con->out_msg = NULL;
655 }
656 con->in_seq = 0;
657 con->in_seq_acked = 0;
658
659 con->out_skip = 0;
660}
661
662/*
663 * mark a peer down. drop any open connections.
664 */
665void ceph_con_close(struct ceph_connection *con)
666{
667 mutex_lock(&con->mutex);
668 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
669 con->state = CON_STATE_CLOSED;
670
671 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
672 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
673 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
674 con_flag_clear(con, CON_FLAG_BACKOFF);
675
676 reset_connection(con);
677 con->peer_global_seq = 0;
678 cancel_con(con);
679 con_close_socket(con);
680 mutex_unlock(&con->mutex);
681}
682EXPORT_SYMBOL(ceph_con_close);
683
684/*
685 * Reopen a closed connection, with a new peer address.
686 */
687void ceph_con_open(struct ceph_connection *con,
688 __u8 entity_type, __u64 entity_num,
689 struct ceph_entity_addr *addr)
690{
691 mutex_lock(&con->mutex);
692 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
693
694 WARN_ON(con->state != CON_STATE_CLOSED);
695 con->state = CON_STATE_PREOPEN;
696
697 con->peer_name.type = (__u8) entity_type;
698 con->peer_name.num = cpu_to_le64(entity_num);
699
700 memcpy(&con->peer_addr, addr, sizeof(*addr));
701 con->delay = 0; /* reset backoff memory */
702 mutex_unlock(&con->mutex);
703 queue_con(con);
704}
705EXPORT_SYMBOL(ceph_con_open);
706
707/*
708 * return true if this connection ever successfully opened
709 */
710bool ceph_con_opened(struct ceph_connection *con)
711{
712 return con->connect_seq > 0;
713}
714
715/*
716 * initialize a new connection.
717 */
718void ceph_con_init(struct ceph_connection *con, void *private,
719 const struct ceph_connection_operations *ops,
720 struct ceph_messenger *msgr)
721{
722 dout("con_init %p\n", con);
723 memset(con, 0, sizeof(*con));
724 con->private = private;
725 con->ops = ops;
726 con->msgr = msgr;
727
728 con_sock_state_init(con);
729
730 mutex_init(&con->mutex);
731 INIT_LIST_HEAD(&con->out_queue);
732 INIT_LIST_HEAD(&con->out_sent);
733 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
734
735 con->state = CON_STATE_CLOSED;
736}
737EXPORT_SYMBOL(ceph_con_init);
738
739
740/*
741 * We maintain a global counter to order connection attempts. Get
742 * a unique seq greater than @gt.
743 */
744static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
745{
746 u32 ret;
747
748 spin_lock(&msgr->global_seq_lock);
749 if (msgr->global_seq < gt)
750 msgr->global_seq = gt;
751 ret = ++msgr->global_seq;
752 spin_unlock(&msgr->global_seq_lock);
753 return ret;
754}
755
756static void con_out_kvec_reset(struct ceph_connection *con)
757{
758 BUG_ON(con->out_skip);
759
760 con->out_kvec_left = 0;
761 con->out_kvec_bytes = 0;
762 con->out_kvec_cur = &con->out_kvec[0];
763}
764
765static void con_out_kvec_add(struct ceph_connection *con,
766 size_t size, void *data)
767{
768 int index = con->out_kvec_left;
769
770 BUG_ON(con->out_skip);
771 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
772
773 con->out_kvec[index].iov_len = size;
774 con->out_kvec[index].iov_base = data;
775 con->out_kvec_left++;
776 con->out_kvec_bytes += size;
777}
778
779/*
780 * Chop off a kvec from the end. Return residual number of bytes for
781 * that kvec, i.e. how many bytes would have been written if the kvec
782 * hadn't been nuked.
783 */
784static int con_out_kvec_skip(struct ceph_connection *con)
785{
786 int off = con->out_kvec_cur - con->out_kvec;
787 int skip = 0;
788
789 if (con->out_kvec_bytes > 0) {
790 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
791 BUG_ON(con->out_kvec_bytes < skip);
792 BUG_ON(!con->out_kvec_left);
793 con->out_kvec_bytes -= skip;
794 con->out_kvec_left--;
795 }
796
797 return skip;
798}
799
800#ifdef CONFIG_BLOCK
801
802/*
803 * For a bio data item, a piece is whatever remains of the next
804 * entry in the current bio iovec, or the first entry in the next
805 * bio in the list.
806 */
807static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
808 size_t length)
809{
810 struct ceph_msg_data *data = cursor->data;
811 struct ceph_bio_iter *it = &cursor->bio_iter;
812
813 cursor->resid = min_t(size_t, length, data->bio_length);
814 *it = data->bio_pos;
815 if (cursor->resid < it->iter.bi_size)
816 it->iter.bi_size = cursor->resid;
817
818 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
819 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
820}
821
822static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
823 size_t *page_offset,
824 size_t *length)
825{
826 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
827 cursor->bio_iter.iter);
828
829 *page_offset = bv.bv_offset;
830 *length = bv.bv_len;
831 return bv.bv_page;
832}
833
834static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
835 size_t bytes)
836{
837 struct ceph_bio_iter *it = &cursor->bio_iter;
838 struct page *page = bio_iter_page(it->bio, it->iter);
839
840 BUG_ON(bytes > cursor->resid);
841 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
842 cursor->resid -= bytes;
843 bio_advance_iter(it->bio, &it->iter, bytes);
844
845 if (!cursor->resid) {
846 BUG_ON(!cursor->last_piece);
847 return false; /* no more data */
848 }
849
850 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
851 page == bio_iter_page(it->bio, it->iter)))
852 return false; /* more bytes to process in this segment */
853
854 if (!it->iter.bi_size) {
855 it->bio = it->bio->bi_next;
856 it->iter = it->bio->bi_iter;
857 if (cursor->resid < it->iter.bi_size)
858 it->iter.bi_size = cursor->resid;
859 }
860
861 BUG_ON(cursor->last_piece);
862 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
863 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
864 return true;
865}
866#endif /* CONFIG_BLOCK */
867
868static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
869 size_t length)
870{
871 struct ceph_msg_data *data = cursor->data;
872 struct bio_vec *bvecs = data->bvec_pos.bvecs;
873
874 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
875 cursor->bvec_iter = data->bvec_pos.iter;
876 cursor->bvec_iter.bi_size = cursor->resid;
877
878 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
879 cursor->last_piece =
880 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
881}
882
883static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
884 size_t *page_offset,
885 size_t *length)
886{
887 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
888 cursor->bvec_iter);
889
890 *page_offset = bv.bv_offset;
891 *length = bv.bv_len;
892 return bv.bv_page;
893}
894
895static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
896 size_t bytes)
897{
898 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
899 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
900
901 BUG_ON(bytes > cursor->resid);
902 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
903 cursor->resid -= bytes;
904 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
905
906 if (!cursor->resid) {
907 BUG_ON(!cursor->last_piece);
908 return false; /* no more data */
909 }
910
911 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
912 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
913 return false; /* more bytes to process in this segment */
914
915 BUG_ON(cursor->last_piece);
916 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
917 cursor->last_piece =
918 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
919 return true;
920}
921
922/*
923 * For a page array, a piece comes from the first page in the array
924 * that has not already been fully consumed.
925 */
926static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
927 size_t length)
928{
929 struct ceph_msg_data *data = cursor->data;
930 int page_count;
931
932 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
933
934 BUG_ON(!data->pages);
935 BUG_ON(!data->length);
936
937 cursor->resid = min(length, data->length);
938 page_count = calc_pages_for(data->alignment, (u64)data->length);
939 cursor->page_offset = data->alignment & ~PAGE_MASK;
940 cursor->page_index = 0;
941 BUG_ON(page_count > (int)USHRT_MAX);
942 cursor->page_count = (unsigned short)page_count;
943 BUG_ON(length > SIZE_MAX - cursor->page_offset);
944 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
945}
946
947static struct page *
948ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
949 size_t *page_offset, size_t *length)
950{
951 struct ceph_msg_data *data = cursor->data;
952
953 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
954
955 BUG_ON(cursor->page_index >= cursor->page_count);
956 BUG_ON(cursor->page_offset >= PAGE_SIZE);
957
958 *page_offset = cursor->page_offset;
959 if (cursor->last_piece)
960 *length = cursor->resid;
961 else
962 *length = PAGE_SIZE - *page_offset;
963
964 return data->pages[cursor->page_index];
965}
966
967static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
968 size_t bytes)
969{
970 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
971
972 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
973
974 /* Advance the cursor page offset */
975
976 cursor->resid -= bytes;
977 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
978 if (!bytes || cursor->page_offset)
979 return false; /* more bytes to process in the current page */
980
981 if (!cursor->resid)
982 return false; /* no more data */
983
984 /* Move on to the next page; offset is already at 0 */
985
986 BUG_ON(cursor->page_index >= cursor->page_count);
987 cursor->page_index++;
988 cursor->last_piece = cursor->resid <= PAGE_SIZE;
989
990 return true;
991}
992
993/*
994 * For a pagelist, a piece is whatever remains to be consumed in the
995 * first page in the list, or the front of the next page.
996 */
997static void
998ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
999 size_t length)
1000{
1001 struct ceph_msg_data *data = cursor->data;
1002 struct ceph_pagelist *pagelist;
1003 struct page *page;
1004
1005 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1006
1007 pagelist = data->pagelist;
1008 BUG_ON(!pagelist);
1009
1010 if (!length)
1011 return; /* pagelist can be assigned but empty */
1012
1013 BUG_ON(list_empty(&pagelist->head));
1014 page = list_first_entry(&pagelist->head, struct page, lru);
1015
1016 cursor->resid = min(length, pagelist->length);
1017 cursor->page = page;
1018 cursor->offset = 0;
1019 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1020}
1021
1022static struct page *
1023ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1024 size_t *page_offset, size_t *length)
1025{
1026 struct ceph_msg_data *data = cursor->data;
1027 struct ceph_pagelist *pagelist;
1028
1029 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1030
1031 pagelist = data->pagelist;
1032 BUG_ON(!pagelist);
1033
1034 BUG_ON(!cursor->page);
1035 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1036
1037 /* offset of first page in pagelist is always 0 */
1038 *page_offset = cursor->offset & ~PAGE_MASK;
1039 if (cursor->last_piece)
1040 *length = cursor->resid;
1041 else
1042 *length = PAGE_SIZE - *page_offset;
1043
1044 return cursor->page;
1045}
1046
1047static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1048 size_t bytes)
1049{
1050 struct ceph_msg_data *data = cursor->data;
1051 struct ceph_pagelist *pagelist;
1052
1053 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1054
1055 pagelist = data->pagelist;
1056 BUG_ON(!pagelist);
1057
1058 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1059 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1060
1061 /* Advance the cursor offset */
1062
1063 cursor->resid -= bytes;
1064 cursor->offset += bytes;
1065 /* offset of first page in pagelist is always 0 */
1066 if (!bytes || cursor->offset & ~PAGE_MASK)
1067 return false; /* more bytes to process in the current page */
1068
1069 if (!cursor->resid)
1070 return false; /* no more data */
1071
1072 /* Move on to the next page */
1073
1074 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1075 cursor->page = list_next_entry(cursor->page, lru);
1076 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1077
1078 return true;
1079}
1080
1081/*
1082 * Message data is handled (sent or received) in pieces, where each
1083 * piece resides on a single page. The network layer might not
1084 * consume an entire piece at once. A data item's cursor keeps
1085 * track of which piece is next to process and how much remains to
1086 * be processed in that piece. It also tracks whether the current
1087 * piece is the last one in the data item.
1088 */
1089static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1090{
1091 size_t length = cursor->total_resid;
1092
1093 switch (cursor->data->type) {
1094 case CEPH_MSG_DATA_PAGELIST:
1095 ceph_msg_data_pagelist_cursor_init(cursor, length);
1096 break;
1097 case CEPH_MSG_DATA_PAGES:
1098 ceph_msg_data_pages_cursor_init(cursor, length);
1099 break;
1100#ifdef CONFIG_BLOCK
1101 case CEPH_MSG_DATA_BIO:
1102 ceph_msg_data_bio_cursor_init(cursor, length);
1103 break;
1104#endif /* CONFIG_BLOCK */
1105 case CEPH_MSG_DATA_BVECS:
1106 ceph_msg_data_bvecs_cursor_init(cursor, length);
1107 break;
1108 case CEPH_MSG_DATA_NONE:
1109 default:
1110 /* BUG(); */
1111 break;
1112 }
1113 cursor->need_crc = true;
1114}
1115
1116static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1117{
1118 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1119
1120 BUG_ON(!length);
1121 BUG_ON(length > msg->data_length);
1122 BUG_ON(!msg->num_data_items);
1123
1124 cursor->total_resid = length;
1125 cursor->data = msg->data;
1126
1127 __ceph_msg_data_cursor_init(cursor);
1128}
1129
1130/*
1131 * Return the page containing the next piece to process for a given
1132 * data item, and supply the page offset and length of that piece.
1133 * Indicate whether this is the last piece in this data item.
1134 */
1135static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1136 size_t *page_offset, size_t *length,
1137 bool *last_piece)
1138{
1139 struct page *page;
1140
1141 switch (cursor->data->type) {
1142 case CEPH_MSG_DATA_PAGELIST:
1143 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1144 break;
1145 case CEPH_MSG_DATA_PAGES:
1146 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1147 break;
1148#ifdef CONFIG_BLOCK
1149 case CEPH_MSG_DATA_BIO:
1150 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1151 break;
1152#endif /* CONFIG_BLOCK */
1153 case CEPH_MSG_DATA_BVECS:
1154 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1155 break;
1156 case CEPH_MSG_DATA_NONE:
1157 default:
1158 page = NULL;
1159 break;
1160 }
1161
1162 BUG_ON(!page);
1163 BUG_ON(*page_offset + *length > PAGE_SIZE);
1164 BUG_ON(!*length);
1165 BUG_ON(*length > cursor->resid);
1166 if (last_piece)
1167 *last_piece = cursor->last_piece;
1168
1169 return page;
1170}
1171
1172/*
1173 * Returns true if the result moves the cursor on to the next piece
1174 * of the data item.
1175 */
1176static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1177 size_t bytes)
1178{
1179 bool new_piece;
1180
1181 BUG_ON(bytes > cursor->resid);
1182 switch (cursor->data->type) {
1183 case CEPH_MSG_DATA_PAGELIST:
1184 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1185 break;
1186 case CEPH_MSG_DATA_PAGES:
1187 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1188 break;
1189#ifdef CONFIG_BLOCK
1190 case CEPH_MSG_DATA_BIO:
1191 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1192 break;
1193#endif /* CONFIG_BLOCK */
1194 case CEPH_MSG_DATA_BVECS:
1195 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1196 break;
1197 case CEPH_MSG_DATA_NONE:
1198 default:
1199 BUG();
1200 break;
1201 }
1202 cursor->total_resid -= bytes;
1203
1204 if (!cursor->resid && cursor->total_resid) {
1205 WARN_ON(!cursor->last_piece);
1206 cursor->data++;
1207 __ceph_msg_data_cursor_init(cursor);
1208 new_piece = true;
1209 }
1210 cursor->need_crc = new_piece;
1211}
1212
1213static size_t sizeof_footer(struct ceph_connection *con)
1214{
1215 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1216 sizeof(struct ceph_msg_footer) :
1217 sizeof(struct ceph_msg_footer_old);
1218}
1219
1220static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1221{
1222 /* Initialize data cursor */
1223
1224 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1225}
1226
1227/*
1228 * Prepare footer for currently outgoing message, and finish things
1229 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1230 */
1231static void prepare_write_message_footer(struct ceph_connection *con)
1232{
1233 struct ceph_msg *m = con->out_msg;
1234
1235 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1236
1237 dout("prepare_write_message_footer %p\n", con);
1238 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1239 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1240 if (con->ops->sign_message)
1241 con->ops->sign_message(m);
1242 else
1243 m->footer.sig = 0;
1244 } else {
1245 m->old_footer.flags = m->footer.flags;
1246 }
1247 con->out_more = m->more_to_follow;
1248 con->out_msg_done = true;
1249}
1250
1251/*
1252 * Prepare headers for the next outgoing message.
1253 */
1254static void prepare_write_message(struct ceph_connection *con)
1255{
1256 struct ceph_msg *m;
1257 u32 crc;
1258
1259 con_out_kvec_reset(con);
1260 con->out_msg_done = false;
1261
1262 /* Sneak an ack in there first? If we can get it into the same
1263 * TCP packet that's a good thing. */
1264 if (con->in_seq > con->in_seq_acked) {
1265 con->in_seq_acked = con->in_seq;
1266 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1267 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1268 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1269 &con->out_temp_ack);
1270 }
1271
1272 BUG_ON(list_empty(&con->out_queue));
1273 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1274 con->out_msg = m;
1275 BUG_ON(m->con != con);
1276
1277 /* put message on sent list */
1278 ceph_msg_get(m);
1279 list_move_tail(&m->list_head, &con->out_sent);
1280
1281 /*
1282 * only assign outgoing seq # if we haven't sent this message
1283 * yet. if it is requeued, resend with it's original seq.
1284 */
1285 if (m->needs_out_seq) {
1286 m->hdr.seq = cpu_to_le64(++con->out_seq);
1287 m->needs_out_seq = false;
1288
1289 if (con->ops->reencode_message)
1290 con->ops->reencode_message(m);
1291 }
1292
1293 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1294 m, con->out_seq, le16_to_cpu(m->hdr.type),
1295 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1296 m->data_length);
1297 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1298 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1299
1300 /* tag + hdr + front + middle */
1301 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1302 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1303 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1304
1305 if (m->middle)
1306 con_out_kvec_add(con, m->middle->vec.iov_len,
1307 m->middle->vec.iov_base);
1308
1309 /* fill in hdr crc and finalize hdr */
1310 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1311 con->out_msg->hdr.crc = cpu_to_le32(crc);
1312 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1313
1314 /* fill in front and middle crc, footer */
1315 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1316 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1317 if (m->middle) {
1318 crc = crc32c(0, m->middle->vec.iov_base,
1319 m->middle->vec.iov_len);
1320 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1321 } else
1322 con->out_msg->footer.middle_crc = 0;
1323 dout("%s front_crc %u middle_crc %u\n", __func__,
1324 le32_to_cpu(con->out_msg->footer.front_crc),
1325 le32_to_cpu(con->out_msg->footer.middle_crc));
1326 con->out_msg->footer.flags = 0;
1327
1328 /* is there a data payload? */
1329 con->out_msg->footer.data_crc = 0;
1330 if (m->data_length) {
1331 prepare_message_data(con->out_msg, m->data_length);
1332 con->out_more = 1; /* data + footer will follow */
1333 } else {
1334 /* no, queue up footer too and be done */
1335 prepare_write_message_footer(con);
1336 }
1337
1338 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1339}
1340
1341/*
1342 * Prepare an ack.
1343 */
1344static void prepare_write_ack(struct ceph_connection *con)
1345{
1346 dout("prepare_write_ack %p %llu -> %llu\n", con,
1347 con->in_seq_acked, con->in_seq);
1348 con->in_seq_acked = con->in_seq;
1349
1350 con_out_kvec_reset(con);
1351
1352 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1353
1354 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356 &con->out_temp_ack);
1357
1358 con->out_more = 1; /* more will follow.. eventually.. */
1359 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1360}
1361
1362/*
1363 * Prepare to share the seq during handshake
1364 */
1365static void prepare_write_seq(struct ceph_connection *con)
1366{
1367 dout("prepare_write_seq %p %llu -> %llu\n", con,
1368 con->in_seq_acked, con->in_seq);
1369 con->in_seq_acked = con->in_seq;
1370
1371 con_out_kvec_reset(con);
1372
1373 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1374 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1375 &con->out_temp_ack);
1376
1377 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1378}
1379
1380/*
1381 * Prepare to write keepalive byte.
1382 */
1383static void prepare_write_keepalive(struct ceph_connection *con)
1384{
1385 dout("prepare_write_keepalive %p\n", con);
1386 con_out_kvec_reset(con);
1387 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1388 struct timespec64 now;
1389
1390 ktime_get_real_ts64(&now);
1391 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1392 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1393 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1394 &con->out_temp_keepalive2);
1395 } else {
1396 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1397 }
1398 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399}
1400
1401/*
1402 * Connection negotiation.
1403 */
1404
1405static int get_connect_authorizer(struct ceph_connection *con)
1406{
1407 struct ceph_auth_handshake *auth;
1408 int auth_proto;
1409
1410 if (!con->ops->get_authorizer) {
1411 con->auth = NULL;
1412 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1413 con->out_connect.authorizer_len = 0;
1414 return 0;
1415 }
1416
1417 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1418 if (IS_ERR(auth))
1419 return PTR_ERR(auth);
1420
1421 con->auth = auth;
1422 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1423 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1424 return 0;
1425}
1426
1427/*
1428 * We connected to a peer and are saying hello.
1429 */
1430static void prepare_write_banner(struct ceph_connection *con)
1431{
1432 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1433 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1434 &con->msgr->my_enc_addr);
1435
1436 con->out_more = 0;
1437 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1438}
1439
1440static void __prepare_write_connect(struct ceph_connection *con)
1441{
1442 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1443 if (con->auth)
1444 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1445 con->auth->authorizer_buf);
1446
1447 con->out_more = 0;
1448 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1449}
1450
1451static int prepare_write_connect(struct ceph_connection *con)
1452{
1453 unsigned int global_seq = get_global_seq(con->msgr, 0);
1454 int proto;
1455 int ret;
1456
1457 switch (con->peer_name.type) {
1458 case CEPH_ENTITY_TYPE_MON:
1459 proto = CEPH_MONC_PROTOCOL;
1460 break;
1461 case CEPH_ENTITY_TYPE_OSD:
1462 proto = CEPH_OSDC_PROTOCOL;
1463 break;
1464 case CEPH_ENTITY_TYPE_MDS:
1465 proto = CEPH_MDSC_PROTOCOL;
1466 break;
1467 default:
1468 BUG();
1469 }
1470
1471 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1472 con->connect_seq, global_seq, proto);
1473
1474 con->out_connect.features =
1475 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1476 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1477 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1478 con->out_connect.global_seq = cpu_to_le32(global_seq);
1479 con->out_connect.protocol_version = cpu_to_le32(proto);
1480 con->out_connect.flags = 0;
1481
1482 ret = get_connect_authorizer(con);
1483 if (ret)
1484 return ret;
1485
1486 __prepare_write_connect(con);
1487 return 0;
1488}
1489
1490/*
1491 * write as much of pending kvecs to the socket as we can.
1492 * 1 -> done
1493 * 0 -> socket full, but more to do
1494 * <0 -> error
1495 */
1496static int write_partial_kvec(struct ceph_connection *con)
1497{
1498 int ret;
1499
1500 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1501 while (con->out_kvec_bytes > 0) {
1502 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1503 con->out_kvec_left, con->out_kvec_bytes,
1504 con->out_more);
1505 if (ret <= 0)
1506 goto out;
1507 con->out_kvec_bytes -= ret;
1508 if (con->out_kvec_bytes == 0)
1509 break; /* done */
1510
1511 /* account for full iov entries consumed */
1512 while (ret >= con->out_kvec_cur->iov_len) {
1513 BUG_ON(!con->out_kvec_left);
1514 ret -= con->out_kvec_cur->iov_len;
1515 con->out_kvec_cur++;
1516 con->out_kvec_left--;
1517 }
1518 /* and for a partially-consumed entry */
1519 if (ret) {
1520 con->out_kvec_cur->iov_len -= ret;
1521 con->out_kvec_cur->iov_base += ret;
1522 }
1523 }
1524 con->out_kvec_left = 0;
1525 ret = 1;
1526out:
1527 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1528 con->out_kvec_bytes, con->out_kvec_left, ret);
1529 return ret; /* done! */
1530}
1531
1532static u32 ceph_crc32c_page(u32 crc, struct page *page,
1533 unsigned int page_offset,
1534 unsigned int length)
1535{
1536 char *kaddr;
1537
1538 kaddr = kmap(page);
1539 BUG_ON(kaddr == NULL);
1540 crc = crc32c(crc, kaddr + page_offset, length);
1541 kunmap(page);
1542
1543 return crc;
1544}
1545/*
1546 * Write as much message data payload as we can. If we finish, queue
1547 * up the footer.
1548 * 1 -> done, footer is now queued in out_kvec[].
1549 * 0 -> socket full, but more to do
1550 * <0 -> error
1551 */
1552static int write_partial_message_data(struct ceph_connection *con)
1553{
1554 struct ceph_msg *msg = con->out_msg;
1555 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1556 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1557 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1558 u32 crc;
1559
1560 dout("%s %p msg %p\n", __func__, con, msg);
1561
1562 if (!msg->num_data_items)
1563 return -EINVAL;
1564
1565 /*
1566 * Iterate through each page that contains data to be
1567 * written, and send as much as possible for each.
1568 *
1569 * If we are calculating the data crc (the default), we will
1570 * need to map the page. If we have no pages, they have
1571 * been revoked, so use the zero page.
1572 */
1573 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1574 while (cursor->total_resid) {
1575 struct page *page;
1576 size_t page_offset;
1577 size_t length;
1578 int ret;
1579
1580 if (!cursor->resid) {
1581 ceph_msg_data_advance(cursor, 0);
1582 continue;
1583 }
1584
1585 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1586 if (length == cursor->total_resid)
1587 more = MSG_MORE;
1588 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1589 more);
1590 if (ret <= 0) {
1591 if (do_datacrc)
1592 msg->footer.data_crc = cpu_to_le32(crc);
1593
1594 return ret;
1595 }
1596 if (do_datacrc && cursor->need_crc)
1597 crc = ceph_crc32c_page(crc, page, page_offset, length);
1598 ceph_msg_data_advance(cursor, (size_t)ret);
1599 }
1600
1601 dout("%s %p msg %p done\n", __func__, con, msg);
1602
1603 /* prepare and queue up footer, too */
1604 if (do_datacrc)
1605 msg->footer.data_crc = cpu_to_le32(crc);
1606 else
1607 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1608 con_out_kvec_reset(con);
1609 prepare_write_message_footer(con);
1610
1611 return 1; /* must return > 0 to indicate success */
1612}
1613
1614/*
1615 * write some zeros
1616 */
1617static int write_partial_skip(struct ceph_connection *con)
1618{
1619 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1620 int ret;
1621
1622 dout("%s %p %d left\n", __func__, con, con->out_skip);
1623 while (con->out_skip > 0) {
1624 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1625
1626 if (size == con->out_skip)
1627 more = MSG_MORE;
1628 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1629 if (ret <= 0)
1630 goto out;
1631 con->out_skip -= ret;
1632 }
1633 ret = 1;
1634out:
1635 return ret;
1636}
1637
1638/*
1639 * Prepare to read connection handshake, or an ack.
1640 */
1641static void prepare_read_banner(struct ceph_connection *con)
1642{
1643 dout("prepare_read_banner %p\n", con);
1644 con->in_base_pos = 0;
1645}
1646
1647static void prepare_read_connect(struct ceph_connection *con)
1648{
1649 dout("prepare_read_connect %p\n", con);
1650 con->in_base_pos = 0;
1651}
1652
1653static void prepare_read_ack(struct ceph_connection *con)
1654{
1655 dout("prepare_read_ack %p\n", con);
1656 con->in_base_pos = 0;
1657}
1658
1659static void prepare_read_seq(struct ceph_connection *con)
1660{
1661 dout("prepare_read_seq %p\n", con);
1662 con->in_base_pos = 0;
1663 con->in_tag = CEPH_MSGR_TAG_SEQ;
1664}
1665
1666static void prepare_read_tag(struct ceph_connection *con)
1667{
1668 dout("prepare_read_tag %p\n", con);
1669 con->in_base_pos = 0;
1670 con->in_tag = CEPH_MSGR_TAG_READY;
1671}
1672
1673static void prepare_read_keepalive_ack(struct ceph_connection *con)
1674{
1675 dout("prepare_read_keepalive_ack %p\n", con);
1676 con->in_base_pos = 0;
1677}
1678
1679/*
1680 * Prepare to read a message.
1681 */
1682static int prepare_read_message(struct ceph_connection *con)
1683{
1684 dout("prepare_read_message %p\n", con);
1685 BUG_ON(con->in_msg != NULL);
1686 con->in_base_pos = 0;
1687 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1688 return 0;
1689}
1690
1691
1692static int read_partial(struct ceph_connection *con,
1693 int end, int size, void *object)
1694{
1695 while (con->in_base_pos < end) {
1696 int left = end - con->in_base_pos;
1697 int have = size - left;
1698 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1699 if (ret <= 0)
1700 return ret;
1701 con->in_base_pos += ret;
1702 }
1703 return 1;
1704}
1705
1706
1707/*
1708 * Read all or part of the connect-side handshake on a new connection
1709 */
1710static int read_partial_banner(struct ceph_connection *con)
1711{
1712 int size;
1713 int end;
1714 int ret;
1715
1716 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1717
1718 /* peer's banner */
1719 size = strlen(CEPH_BANNER);
1720 end = size;
1721 ret = read_partial(con, end, size, con->in_banner);
1722 if (ret <= 0)
1723 goto out;
1724
1725 size = sizeof (con->actual_peer_addr);
1726 end += size;
1727 ret = read_partial(con, end, size, &con->actual_peer_addr);
1728 if (ret <= 0)
1729 goto out;
1730 ceph_decode_banner_addr(&con->actual_peer_addr);
1731
1732 size = sizeof (con->peer_addr_for_me);
1733 end += size;
1734 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1735 if (ret <= 0)
1736 goto out;
1737 ceph_decode_banner_addr(&con->peer_addr_for_me);
1738
1739out:
1740 return ret;
1741}
1742
1743static int read_partial_connect(struct ceph_connection *con)
1744{
1745 int size;
1746 int end;
1747 int ret;
1748
1749 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1750
1751 size = sizeof (con->in_reply);
1752 end = size;
1753 ret = read_partial(con, end, size, &con->in_reply);
1754 if (ret <= 0)
1755 goto out;
1756
1757 if (con->auth) {
1758 size = le32_to_cpu(con->in_reply.authorizer_len);
1759 if (size > con->auth->authorizer_reply_buf_len) {
1760 pr_err("authorizer reply too big: %d > %zu\n", size,
1761 con->auth->authorizer_reply_buf_len);
1762 ret = -EINVAL;
1763 goto out;
1764 }
1765
1766 end += size;
1767 ret = read_partial(con, end, size,
1768 con->auth->authorizer_reply_buf);
1769 if (ret <= 0)
1770 goto out;
1771 }
1772
1773 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1774 con, (int)con->in_reply.tag,
1775 le32_to_cpu(con->in_reply.connect_seq),
1776 le32_to_cpu(con->in_reply.global_seq));
1777out:
1778 return ret;
1779}
1780
1781/*
1782 * Verify the hello banner looks okay.
1783 */
1784static int verify_hello(struct ceph_connection *con)
1785{
1786 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1787 pr_err("connect to %s got bad banner\n",
1788 ceph_pr_addr(&con->peer_addr));
1789 con->error_msg = "protocol error, bad banner";
1790 return -1;
1791 }
1792 return 0;
1793}
1794
1795static bool addr_is_blank(struct ceph_entity_addr *addr)
1796{
1797 struct sockaddr_storage ss = addr->in_addr; /* align */
1798 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1799 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1800
1801 switch (ss.ss_family) {
1802 case AF_INET:
1803 return addr4->s_addr == htonl(INADDR_ANY);
1804 case AF_INET6:
1805 return ipv6_addr_any(addr6);
1806 default:
1807 return true;
1808 }
1809}
1810
1811static int addr_port(struct ceph_entity_addr *addr)
1812{
1813 switch (get_unaligned(&addr->in_addr.ss_family)) {
1814 case AF_INET:
1815 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1816 case AF_INET6:
1817 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1818 }
1819 return 0;
1820}
1821
1822static void addr_set_port(struct ceph_entity_addr *addr, int p)
1823{
1824 switch (get_unaligned(&addr->in_addr.ss_family)) {
1825 case AF_INET:
1826 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1827 break;
1828 case AF_INET6:
1829 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1830 break;
1831 }
1832}
1833
1834/*
1835 * Unlike other *_pton function semantics, zero indicates success.
1836 */
1837static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1838 char delim, const char **ipend)
1839{
1840 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1841
1842 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1843 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1844 return 0;
1845 }
1846
1847 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1848 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1849 return 0;
1850 }
1851
1852 return -EINVAL;
1853}
1854
1855/*
1856 * Extract hostname string and resolve using kernel DNS facility.
1857 */
1858#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1859static int ceph_dns_resolve_name(const char *name, size_t namelen,
1860 struct ceph_entity_addr *addr, char delim, const char **ipend)
1861{
1862 const char *end, *delim_p;
1863 char *colon_p, *ip_addr = NULL;
1864 int ip_len, ret;
1865
1866 /*
1867 * The end of the hostname occurs immediately preceding the delimiter or
1868 * the port marker (':') where the delimiter takes precedence.
1869 */
1870 delim_p = memchr(name, delim, namelen);
1871 colon_p = memchr(name, ':', namelen);
1872
1873 if (delim_p && colon_p)
1874 end = delim_p < colon_p ? delim_p : colon_p;
1875 else if (!delim_p && colon_p)
1876 end = colon_p;
1877 else {
1878 end = delim_p;
1879 if (!end) /* case: hostname:/ */
1880 end = name + namelen;
1881 }
1882
1883 if (end <= name)
1884 return -EINVAL;
1885
1886 /* do dns_resolve upcall */
1887 ip_len = dns_query(current->nsproxy->net_ns,
1888 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1889 if (ip_len > 0)
1890 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1891 else
1892 ret = -ESRCH;
1893
1894 kfree(ip_addr);
1895
1896 *ipend = end;
1897
1898 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1899 ret, ret ? "failed" : ceph_pr_addr(addr));
1900
1901 return ret;
1902}
1903#else
1904static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1905 struct ceph_entity_addr *addr, char delim, const char **ipend)
1906{
1907 return -EINVAL;
1908}
1909#endif
1910
1911/*
1912 * Parse a server name (IP or hostname). If a valid IP address is not found
1913 * then try to extract a hostname to resolve using userspace DNS upcall.
1914 */
1915static int ceph_parse_server_name(const char *name, size_t namelen,
1916 struct ceph_entity_addr *addr, char delim, const char **ipend)
1917{
1918 int ret;
1919
1920 ret = ceph_pton(name, namelen, addr, delim, ipend);
1921 if (ret)
1922 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1923
1924 return ret;
1925}
1926
1927/*
1928 * Parse an ip[:port] list into an addr array. Use the default
1929 * monitor port if a port isn't specified.
1930 */
1931int ceph_parse_ips(const char *c, const char *end,
1932 struct ceph_entity_addr *addr,
1933 int max_count, int *count)
1934{
1935 int i, ret = -EINVAL;
1936 const char *p = c;
1937
1938 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1939 for (i = 0; i < max_count; i++) {
1940 const char *ipend;
1941 int port;
1942 char delim = ',';
1943
1944 if (*p == '[') {
1945 delim = ']';
1946 p++;
1947 }
1948
1949 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1950 if (ret)
1951 goto bad;
1952 ret = -EINVAL;
1953
1954 p = ipend;
1955
1956 if (delim == ']') {
1957 if (*p != ']') {
1958 dout("missing matching ']'\n");
1959 goto bad;
1960 }
1961 p++;
1962 }
1963
1964 /* port? */
1965 if (p < end && *p == ':') {
1966 port = 0;
1967 p++;
1968 while (p < end && *p >= '0' && *p <= '9') {
1969 port = (port * 10) + (*p - '0');
1970 p++;
1971 }
1972 if (port == 0)
1973 port = CEPH_MON_PORT;
1974 else if (port > 65535)
1975 goto bad;
1976 } else {
1977 port = CEPH_MON_PORT;
1978 }
1979
1980 addr_set_port(&addr[i], port);
1981 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1982
1983 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1984
1985 if (p == end)
1986 break;
1987 if (*p != ',')
1988 goto bad;
1989 p++;
1990 }
1991
1992 if (p != end)
1993 goto bad;
1994
1995 if (count)
1996 *count = i + 1;
1997 return 0;
1998
1999bad:
2000 return ret;
2001}
2002
2003static int process_banner(struct ceph_connection *con)
2004{
2005 dout("process_banner on %p\n", con);
2006
2007 if (verify_hello(con) < 0)
2008 return -1;
2009
2010 /*
2011 * Make sure the other end is who we wanted. note that the other
2012 * end may not yet know their ip address, so if it's 0.0.0.0, give
2013 * them the benefit of the doubt.
2014 */
2015 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2016 sizeof(con->peer_addr)) != 0 &&
2017 !(addr_is_blank(&con->actual_peer_addr) &&
2018 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2019 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2020 ceph_pr_addr(&con->peer_addr),
2021 (int)le32_to_cpu(con->peer_addr.nonce),
2022 ceph_pr_addr(&con->actual_peer_addr),
2023 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2024 con->error_msg = "wrong peer at address";
2025 return -1;
2026 }
2027
2028 /*
2029 * did we learn our address?
2030 */
2031 if (addr_is_blank(&con->msgr->inst.addr)) {
2032 int port = addr_port(&con->msgr->inst.addr);
2033
2034 memcpy(&con->msgr->inst.addr.in_addr,
2035 &con->peer_addr_for_me.in_addr,
2036 sizeof(con->peer_addr_for_me.in_addr));
2037 addr_set_port(&con->msgr->inst.addr, port);
2038 encode_my_addr(con->msgr);
2039 dout("process_banner learned my addr is %s\n",
2040 ceph_pr_addr(&con->msgr->inst.addr));
2041 }
2042
2043 return 0;
2044}
2045
2046static int process_connect(struct ceph_connection *con)
2047{
2048 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2049 u64 req_feat = from_msgr(con->msgr)->required_features;
2050 u64 server_feat = le64_to_cpu(con->in_reply.features);
2051 int ret;
2052
2053 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2054
2055 if (con->auth) {
2056 int len = le32_to_cpu(con->in_reply.authorizer_len);
2057
2058 /*
2059 * Any connection that defines ->get_authorizer()
2060 * should also define ->add_authorizer_challenge() and
2061 * ->verify_authorizer_reply().
2062 *
2063 * See get_connect_authorizer().
2064 */
2065 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2066 ret = con->ops->add_authorizer_challenge(
2067 con, con->auth->authorizer_reply_buf, len);
2068 if (ret < 0)
2069 return ret;
2070
2071 con_out_kvec_reset(con);
2072 __prepare_write_connect(con);
2073 prepare_read_connect(con);
2074 return 0;
2075 }
2076
2077 if (len) {
2078 ret = con->ops->verify_authorizer_reply(con);
2079 if (ret < 0) {
2080 con->error_msg = "bad authorize reply";
2081 return ret;
2082 }
2083 }
2084 }
2085
2086 switch (con->in_reply.tag) {
2087 case CEPH_MSGR_TAG_FEATURES:
2088 pr_err("%s%lld %s feature set mismatch,"
2089 " my %llx < server's %llx, missing %llx\n",
2090 ENTITY_NAME(con->peer_name),
2091 ceph_pr_addr(&con->peer_addr),
2092 sup_feat, server_feat, server_feat & ~sup_feat);
2093 con->error_msg = "missing required protocol features";
2094 reset_connection(con);
2095 return -1;
2096
2097 case CEPH_MSGR_TAG_BADPROTOVER:
2098 pr_err("%s%lld %s protocol version mismatch,"
2099 " my %d != server's %d\n",
2100 ENTITY_NAME(con->peer_name),
2101 ceph_pr_addr(&con->peer_addr),
2102 le32_to_cpu(con->out_connect.protocol_version),
2103 le32_to_cpu(con->in_reply.protocol_version));
2104 con->error_msg = "protocol version mismatch";
2105 reset_connection(con);
2106 return -1;
2107
2108 case CEPH_MSGR_TAG_BADAUTHORIZER:
2109 con->auth_retry++;
2110 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2111 con->auth_retry);
2112 if (con->auth_retry == 2) {
2113 con->error_msg = "connect authorization failure";
2114 return -1;
2115 }
2116 con_out_kvec_reset(con);
2117 ret = prepare_write_connect(con);
2118 if (ret < 0)
2119 return ret;
2120 prepare_read_connect(con);
2121 break;
2122
2123 case CEPH_MSGR_TAG_RESETSESSION:
2124 /*
2125 * If we connected with a large connect_seq but the peer
2126 * has no record of a session with us (no connection, or
2127 * connect_seq == 0), they will send RESETSESION to indicate
2128 * that they must have reset their session, and may have
2129 * dropped messages.
2130 */
2131 dout("process_connect got RESET peer seq %u\n",
2132 le32_to_cpu(con->in_reply.connect_seq));
2133 pr_err("%s%lld %s connection reset\n",
2134 ENTITY_NAME(con->peer_name),
2135 ceph_pr_addr(&con->peer_addr));
2136 reset_connection(con);
2137 con_out_kvec_reset(con);
2138 ret = prepare_write_connect(con);
2139 if (ret < 0)
2140 return ret;
2141 prepare_read_connect(con);
2142
2143 /* Tell ceph about it. */
2144 mutex_unlock(&con->mutex);
2145 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2146 if (con->ops->peer_reset)
2147 con->ops->peer_reset(con);
2148 mutex_lock(&con->mutex);
2149 if (con->state != CON_STATE_NEGOTIATING)
2150 return -EAGAIN;
2151 break;
2152
2153 case CEPH_MSGR_TAG_RETRY_SESSION:
2154 /*
2155 * If we sent a smaller connect_seq than the peer has, try
2156 * again with a larger value.
2157 */
2158 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2159 le32_to_cpu(con->out_connect.connect_seq),
2160 le32_to_cpu(con->in_reply.connect_seq));
2161 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2162 con_out_kvec_reset(con);
2163 ret = prepare_write_connect(con);
2164 if (ret < 0)
2165 return ret;
2166 prepare_read_connect(con);
2167 break;
2168
2169 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2170 /*
2171 * If we sent a smaller global_seq than the peer has, try
2172 * again with a larger value.
2173 */
2174 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2175 con->peer_global_seq,
2176 le32_to_cpu(con->in_reply.global_seq));
2177 get_global_seq(con->msgr,
2178 le32_to_cpu(con->in_reply.global_seq));
2179 con_out_kvec_reset(con);
2180 ret = prepare_write_connect(con);
2181 if (ret < 0)
2182 return ret;
2183 prepare_read_connect(con);
2184 break;
2185
2186 case CEPH_MSGR_TAG_SEQ:
2187 case CEPH_MSGR_TAG_READY:
2188 if (req_feat & ~server_feat) {
2189 pr_err("%s%lld %s protocol feature mismatch,"
2190 " my required %llx > server's %llx, need %llx\n",
2191 ENTITY_NAME(con->peer_name),
2192 ceph_pr_addr(&con->peer_addr),
2193 req_feat, server_feat, req_feat & ~server_feat);
2194 con->error_msg = "missing required protocol features";
2195 reset_connection(con);
2196 return -1;
2197 }
2198
2199 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2200 con->state = CON_STATE_OPEN;
2201 con->auth_retry = 0; /* we authenticated; clear flag */
2202 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2203 con->connect_seq++;
2204 con->peer_features = server_feat;
2205 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2206 con->peer_global_seq,
2207 le32_to_cpu(con->in_reply.connect_seq),
2208 con->connect_seq);
2209 WARN_ON(con->connect_seq !=
2210 le32_to_cpu(con->in_reply.connect_seq));
2211
2212 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2213 con_flag_set(con, CON_FLAG_LOSSYTX);
2214
2215 con->delay = 0; /* reset backoff memory */
2216
2217 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2218 prepare_write_seq(con);
2219 prepare_read_seq(con);
2220 } else {
2221 prepare_read_tag(con);
2222 }
2223 break;
2224
2225 case CEPH_MSGR_TAG_WAIT:
2226 /*
2227 * If there is a connection race (we are opening
2228 * connections to each other), one of us may just have
2229 * to WAIT. This shouldn't happen if we are the
2230 * client.
2231 */
2232 con->error_msg = "protocol error, got WAIT as client";
2233 return -1;
2234
2235 default:
2236 con->error_msg = "protocol error, garbage tag during connect";
2237 return -1;
2238 }
2239 return 0;
2240}
2241
2242
2243/*
2244 * read (part of) an ack
2245 */
2246static int read_partial_ack(struct ceph_connection *con)
2247{
2248 int size = sizeof (con->in_temp_ack);
2249 int end = size;
2250
2251 return read_partial(con, end, size, &con->in_temp_ack);
2252}
2253
2254/*
2255 * We can finally discard anything that's been acked.
2256 */
2257static void process_ack(struct ceph_connection *con)
2258{
2259 struct ceph_msg *m;
2260 u64 ack = le64_to_cpu(con->in_temp_ack);
2261 u64 seq;
2262 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2263 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2264
2265 /*
2266 * In the reconnect case, con_fault() has requeued messages
2267 * in out_sent. We should cleanup old messages according to
2268 * the reconnect seq.
2269 */
2270 while (!list_empty(list)) {
2271 m = list_first_entry(list, struct ceph_msg, list_head);
2272 if (reconnect && m->needs_out_seq)
2273 break;
2274 seq = le64_to_cpu(m->hdr.seq);
2275 if (seq > ack)
2276 break;
2277 dout("got ack for seq %llu type %d at %p\n", seq,
2278 le16_to_cpu(m->hdr.type), m);
2279 m->ack_stamp = jiffies;
2280 ceph_msg_remove(m);
2281 }
2282
2283 prepare_read_tag(con);
2284}
2285
2286
2287static int read_partial_message_section(struct ceph_connection *con,
2288 struct kvec *section,
2289 unsigned int sec_len, u32 *crc)
2290{
2291 int ret, left;
2292
2293 BUG_ON(!section);
2294
2295 while (section->iov_len < sec_len) {
2296 BUG_ON(section->iov_base == NULL);
2297 left = sec_len - section->iov_len;
2298 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2299 section->iov_len, left);
2300 if (ret <= 0)
2301 return ret;
2302 section->iov_len += ret;
2303 }
2304 if (section->iov_len == sec_len)
2305 *crc = crc32c(0, section->iov_base, section->iov_len);
2306
2307 return 1;
2308}
2309
2310static int read_partial_msg_data(struct ceph_connection *con)
2311{
2312 struct ceph_msg *msg = con->in_msg;
2313 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2314 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2315 struct page *page;
2316 size_t page_offset;
2317 size_t length;
2318 u32 crc = 0;
2319 int ret;
2320
2321 if (!msg->num_data_items)
2322 return -EIO;
2323
2324 if (do_datacrc)
2325 crc = con->in_data_crc;
2326 while (cursor->total_resid) {
2327 if (!cursor->resid) {
2328 ceph_msg_data_advance(cursor, 0);
2329 continue;
2330 }
2331
2332 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2333 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2334 if (ret <= 0) {
2335 if (do_datacrc)
2336 con->in_data_crc = crc;
2337
2338 return ret;
2339 }
2340
2341 if (do_datacrc)
2342 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2343 ceph_msg_data_advance(cursor, (size_t)ret);
2344 }
2345 if (do_datacrc)
2346 con->in_data_crc = crc;
2347
2348 return 1; /* must return > 0 to indicate success */
2349}
2350
2351/*
2352 * read (part of) a message.
2353 */
2354static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2355
2356static int read_partial_message(struct ceph_connection *con)
2357{
2358 struct ceph_msg *m = con->in_msg;
2359 int size;
2360 int end;
2361 int ret;
2362 unsigned int front_len, middle_len, data_len;
2363 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2364 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2365 u64 seq;
2366 u32 crc;
2367
2368 dout("read_partial_message con %p msg %p\n", con, m);
2369
2370 /* header */
2371 size = sizeof (con->in_hdr);
2372 end = size;
2373 ret = read_partial(con, end, size, &con->in_hdr);
2374 if (ret <= 0)
2375 return ret;
2376
2377 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2378 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2379 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2380 crc, con->in_hdr.crc);
2381 return -EBADMSG;
2382 }
2383
2384 front_len = le32_to_cpu(con->in_hdr.front_len);
2385 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2386 return -EIO;
2387 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2388 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2389 return -EIO;
2390 data_len = le32_to_cpu(con->in_hdr.data_len);
2391 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2392 return -EIO;
2393
2394 /* verify seq# */
2395 seq = le64_to_cpu(con->in_hdr.seq);
2396 if ((s64)seq - (s64)con->in_seq < 1) {
2397 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2398 ENTITY_NAME(con->peer_name),
2399 ceph_pr_addr(&con->peer_addr),
2400 seq, con->in_seq + 1);
2401 con->in_base_pos = -front_len - middle_len - data_len -
2402 sizeof_footer(con);
2403 con->in_tag = CEPH_MSGR_TAG_READY;
2404 return 1;
2405 } else if ((s64)seq - (s64)con->in_seq > 1) {
2406 pr_err("read_partial_message bad seq %lld expected %lld\n",
2407 seq, con->in_seq + 1);
2408 con->error_msg = "bad message sequence # for incoming message";
2409 return -EBADE;
2410 }
2411
2412 /* allocate message? */
2413 if (!con->in_msg) {
2414 int skip = 0;
2415
2416 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2417 front_len, data_len);
2418 ret = ceph_con_in_msg_alloc(con, &skip);
2419 if (ret < 0)
2420 return ret;
2421
2422 BUG_ON(!con->in_msg ^ skip);
2423 if (skip) {
2424 /* skip this message */
2425 dout("alloc_msg said skip message\n");
2426 con->in_base_pos = -front_len - middle_len - data_len -
2427 sizeof_footer(con);
2428 con->in_tag = CEPH_MSGR_TAG_READY;
2429 con->in_seq++;
2430 return 1;
2431 }
2432
2433 BUG_ON(!con->in_msg);
2434 BUG_ON(con->in_msg->con != con);
2435 m = con->in_msg;
2436 m->front.iov_len = 0; /* haven't read it yet */
2437 if (m->middle)
2438 m->middle->vec.iov_len = 0;
2439
2440 /* prepare for data payload, if any */
2441
2442 if (data_len)
2443 prepare_message_data(con->in_msg, data_len);
2444 }
2445
2446 /* front */
2447 ret = read_partial_message_section(con, &m->front, front_len,
2448 &con->in_front_crc);
2449 if (ret <= 0)
2450 return ret;
2451
2452 /* middle */
2453 if (m->middle) {
2454 ret = read_partial_message_section(con, &m->middle->vec,
2455 middle_len,
2456 &con->in_middle_crc);
2457 if (ret <= 0)
2458 return ret;
2459 }
2460
2461 /* (page) data */
2462 if (data_len) {
2463 ret = read_partial_msg_data(con);
2464 if (ret <= 0)
2465 return ret;
2466 }
2467
2468 /* footer */
2469 size = sizeof_footer(con);
2470 end += size;
2471 ret = read_partial(con, end, size, &m->footer);
2472 if (ret <= 0)
2473 return ret;
2474
2475 if (!need_sign) {
2476 m->footer.flags = m->old_footer.flags;
2477 m->footer.sig = 0;
2478 }
2479
2480 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2481 m, front_len, m->footer.front_crc, middle_len,
2482 m->footer.middle_crc, data_len, m->footer.data_crc);
2483
2484 /* crc ok? */
2485 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2486 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2487 m, con->in_front_crc, m->footer.front_crc);
2488 return -EBADMSG;
2489 }
2490 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2491 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2492 m, con->in_middle_crc, m->footer.middle_crc);
2493 return -EBADMSG;
2494 }
2495 if (do_datacrc &&
2496 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2497 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2498 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2499 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2500 return -EBADMSG;
2501 }
2502
2503 if (need_sign && con->ops->check_message_signature &&
2504 con->ops->check_message_signature(m)) {
2505 pr_err("read_partial_message %p signature check failed\n", m);
2506 return -EBADMSG;
2507 }
2508
2509 return 1; /* done! */
2510}
2511
2512/*
2513 * Process message. This happens in the worker thread. The callback should
2514 * be careful not to do anything that waits on other incoming messages or it
2515 * may deadlock.
2516 */
2517static void process_message(struct ceph_connection *con)
2518{
2519 struct ceph_msg *msg = con->in_msg;
2520
2521 BUG_ON(con->in_msg->con != con);
2522 con->in_msg = NULL;
2523
2524 /* if first message, set peer_name */
2525 if (con->peer_name.type == 0)
2526 con->peer_name = msg->hdr.src;
2527
2528 con->in_seq++;
2529 mutex_unlock(&con->mutex);
2530
2531 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2532 msg, le64_to_cpu(msg->hdr.seq),
2533 ENTITY_NAME(msg->hdr.src),
2534 le16_to_cpu(msg->hdr.type),
2535 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2536 le32_to_cpu(msg->hdr.front_len),
2537 le32_to_cpu(msg->hdr.data_len),
2538 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2539 con->ops->dispatch(con, msg);
2540
2541 mutex_lock(&con->mutex);
2542}
2543
2544static int read_keepalive_ack(struct ceph_connection *con)
2545{
2546 struct ceph_timespec ceph_ts;
2547 size_t size = sizeof(ceph_ts);
2548 int ret = read_partial(con, size, size, &ceph_ts);
2549 if (ret <= 0)
2550 return ret;
2551 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2552 prepare_read_tag(con);
2553 return 1;
2554}
2555
2556/*
2557 * Write something to the socket. Called in a worker thread when the
2558 * socket appears to be writeable and we have something ready to send.
2559 */
2560static int try_write(struct ceph_connection *con)
2561{
2562 int ret = 1;
2563
2564 dout("try_write start %p state %lu\n", con, con->state);
2565 if (con->state != CON_STATE_PREOPEN &&
2566 con->state != CON_STATE_CONNECTING &&
2567 con->state != CON_STATE_NEGOTIATING &&
2568 con->state != CON_STATE_OPEN)
2569 return 0;
2570
2571 /* open the socket first? */
2572 if (con->state == CON_STATE_PREOPEN) {
2573 BUG_ON(con->sock);
2574 con->state = CON_STATE_CONNECTING;
2575
2576 con_out_kvec_reset(con);
2577 prepare_write_banner(con);
2578 prepare_read_banner(con);
2579
2580 BUG_ON(con->in_msg);
2581 con->in_tag = CEPH_MSGR_TAG_READY;
2582 dout("try_write initiating connect on %p new state %lu\n",
2583 con, con->state);
2584 ret = ceph_tcp_connect(con);
2585 if (ret < 0) {
2586 con->error_msg = "connect error";
2587 goto out;
2588 }
2589 }
2590
2591more:
2592 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2593 BUG_ON(!con->sock);
2594
2595 /* kvec data queued? */
2596 if (con->out_kvec_left) {
2597 ret = write_partial_kvec(con);
2598 if (ret <= 0)
2599 goto out;
2600 }
2601 if (con->out_skip) {
2602 ret = write_partial_skip(con);
2603 if (ret <= 0)
2604 goto out;
2605 }
2606
2607 /* msg pages? */
2608 if (con->out_msg) {
2609 if (con->out_msg_done) {
2610 ceph_msg_put(con->out_msg);
2611 con->out_msg = NULL; /* we're done with this one */
2612 goto do_next;
2613 }
2614
2615 ret = write_partial_message_data(con);
2616 if (ret == 1)
2617 goto more; /* we need to send the footer, too! */
2618 if (ret == 0)
2619 goto out;
2620 if (ret < 0) {
2621 dout("try_write write_partial_message_data err %d\n",
2622 ret);
2623 goto out;
2624 }
2625 }
2626
2627do_next:
2628 if (con->state == CON_STATE_OPEN) {
2629 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2630 prepare_write_keepalive(con);
2631 goto more;
2632 }
2633 /* is anything else pending? */
2634 if (!list_empty(&con->out_queue)) {
2635 prepare_write_message(con);
2636 goto more;
2637 }
2638 if (con->in_seq > con->in_seq_acked) {
2639 prepare_write_ack(con);
2640 goto more;
2641 }
2642 }
2643
2644 /* Nothing to do! */
2645 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2646 dout("try_write nothing else to write.\n");
2647 ret = 0;
2648out:
2649 dout("try_write done on %p ret %d\n", con, ret);
2650 return ret;
2651}
2652
2653/*
2654 * Read what we can from the socket.
2655 */
2656static int try_read(struct ceph_connection *con)
2657{
2658 int ret = -1;
2659
2660more:
2661 dout("try_read start on %p state %lu\n", con, con->state);
2662 if (con->state != CON_STATE_CONNECTING &&
2663 con->state != CON_STATE_NEGOTIATING &&
2664 con->state != CON_STATE_OPEN)
2665 return 0;
2666
2667 BUG_ON(!con->sock);
2668
2669 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2670 con->in_base_pos);
2671
2672 if (con->state == CON_STATE_CONNECTING) {
2673 dout("try_read connecting\n");
2674 ret = read_partial_banner(con);
2675 if (ret <= 0)
2676 goto out;
2677 ret = process_banner(con);
2678 if (ret < 0)
2679 goto out;
2680
2681 con->state = CON_STATE_NEGOTIATING;
2682
2683 /*
2684 * Received banner is good, exchange connection info.
2685 * Do not reset out_kvec, as sending our banner raced
2686 * with receiving peer banner after connect completed.
2687 */
2688 ret = prepare_write_connect(con);
2689 if (ret < 0)
2690 goto out;
2691 prepare_read_connect(con);
2692
2693 /* Send connection info before awaiting response */
2694 goto out;
2695 }
2696
2697 if (con->state == CON_STATE_NEGOTIATING) {
2698 dout("try_read negotiating\n");
2699 ret = read_partial_connect(con);
2700 if (ret <= 0)
2701 goto out;
2702 ret = process_connect(con);
2703 if (ret < 0)
2704 goto out;
2705 goto more;
2706 }
2707
2708 WARN_ON(con->state != CON_STATE_OPEN);
2709
2710 if (con->in_base_pos < 0) {
2711 /*
2712 * skipping + discarding content.
2713 */
2714 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2715 if (ret <= 0)
2716 goto out;
2717 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2718 con->in_base_pos += ret;
2719 if (con->in_base_pos)
2720 goto more;
2721 }
2722 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2723 /*
2724 * what's next?
2725 */
2726 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2727 if (ret <= 0)
2728 goto out;
2729 dout("try_read got tag %d\n", (int)con->in_tag);
2730 switch (con->in_tag) {
2731 case CEPH_MSGR_TAG_MSG:
2732 prepare_read_message(con);
2733 break;
2734 case CEPH_MSGR_TAG_ACK:
2735 prepare_read_ack(con);
2736 break;
2737 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2738 prepare_read_keepalive_ack(con);
2739 break;
2740 case CEPH_MSGR_TAG_CLOSE:
2741 con_close_socket(con);
2742 con->state = CON_STATE_CLOSED;
2743 goto out;
2744 default:
2745 goto bad_tag;
2746 }
2747 }
2748 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2749 ret = read_partial_message(con);
2750 if (ret <= 0) {
2751 switch (ret) {
2752 case -EBADMSG:
2753 con->error_msg = "bad crc/signature";
2754 fallthrough;
2755 case -EBADE:
2756 ret = -EIO;
2757 break;
2758 case -EIO:
2759 con->error_msg = "io error";
2760 break;
2761 }
2762 goto out;
2763 }
2764 if (con->in_tag == CEPH_MSGR_TAG_READY)
2765 goto more;
2766 process_message(con);
2767 if (con->state == CON_STATE_OPEN)
2768 prepare_read_tag(con);
2769 goto more;
2770 }
2771 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2772 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2773 /*
2774 * the final handshake seq exchange is semantically
2775 * equivalent to an ACK
2776 */
2777 ret = read_partial_ack(con);
2778 if (ret <= 0)
2779 goto out;
2780 process_ack(con);
2781 goto more;
2782 }
2783 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2784 ret = read_keepalive_ack(con);
2785 if (ret <= 0)
2786 goto out;
2787 goto more;
2788 }
2789
2790out:
2791 dout("try_read done on %p ret %d\n", con, ret);
2792 return ret;
2793
2794bad_tag:
2795 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2796 con->error_msg = "protocol error, garbage tag";
2797 ret = -1;
2798 goto out;
2799}
2800
2801
2802/*
2803 * Atomically queue work on a connection after the specified delay.
2804 * Bump @con reference to avoid races with connection teardown.
2805 * Returns 0 if work was queued, or an error code otherwise.
2806 */
2807static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2808{
2809 if (!con->ops->get(con)) {
2810 dout("%s %p ref count 0\n", __func__, con);
2811 return -ENOENT;
2812 }
2813
2814 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2815 dout("%s %p - already queued\n", __func__, con);
2816 con->ops->put(con);
2817 return -EBUSY;
2818 }
2819
2820 dout("%s %p %lu\n", __func__, con, delay);
2821 return 0;
2822}
2823
2824static void queue_con(struct ceph_connection *con)
2825{
2826 (void) queue_con_delay(con, 0);
2827}
2828
2829static void cancel_con(struct ceph_connection *con)
2830{
2831 if (cancel_delayed_work(&con->work)) {
2832 dout("%s %p\n", __func__, con);
2833 con->ops->put(con);
2834 }
2835}
2836
2837static bool con_sock_closed(struct ceph_connection *con)
2838{
2839 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2840 return false;
2841
2842#define CASE(x) \
2843 case CON_STATE_ ## x: \
2844 con->error_msg = "socket closed (con state " #x ")"; \
2845 break;
2846
2847 switch (con->state) {
2848 CASE(CLOSED);
2849 CASE(PREOPEN);
2850 CASE(CONNECTING);
2851 CASE(NEGOTIATING);
2852 CASE(OPEN);
2853 CASE(STANDBY);
2854 default:
2855 pr_warn("%s con %p unrecognized state %lu\n",
2856 __func__, con, con->state);
2857 con->error_msg = "unrecognized con state";
2858 BUG();
2859 break;
2860 }
2861#undef CASE
2862
2863 return true;
2864}
2865
2866static bool con_backoff(struct ceph_connection *con)
2867{
2868 int ret;
2869
2870 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2871 return false;
2872
2873 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2874 if (ret) {
2875 dout("%s: con %p FAILED to back off %lu\n", __func__,
2876 con, con->delay);
2877 BUG_ON(ret == -ENOENT);
2878 con_flag_set(con, CON_FLAG_BACKOFF);
2879 }
2880
2881 return true;
2882}
2883
2884/* Finish fault handling; con->mutex must *not* be held here */
2885
2886static void con_fault_finish(struct ceph_connection *con)
2887{
2888 dout("%s %p\n", __func__, con);
2889
2890 /*
2891 * in case we faulted due to authentication, invalidate our
2892 * current tickets so that we can get new ones.
2893 */
2894 if (con->auth_retry) {
2895 dout("auth_retry %d, invalidating\n", con->auth_retry);
2896 if (con->ops->invalidate_authorizer)
2897 con->ops->invalidate_authorizer(con);
2898 con->auth_retry = 0;
2899 }
2900
2901 if (con->ops->fault)
2902 con->ops->fault(con);
2903}
2904
2905/*
2906 * Do some work on a connection. Drop a connection ref when we're done.
2907 */
2908static void ceph_con_workfn(struct work_struct *work)
2909{
2910 struct ceph_connection *con = container_of(work, struct ceph_connection,
2911 work.work);
2912 bool fault;
2913
2914 mutex_lock(&con->mutex);
2915 while (true) {
2916 int ret;
2917
2918 if ((fault = con_sock_closed(con))) {
2919 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2920 break;
2921 }
2922 if (con_backoff(con)) {
2923 dout("%s: con %p BACKOFF\n", __func__, con);
2924 break;
2925 }
2926 if (con->state == CON_STATE_STANDBY) {
2927 dout("%s: con %p STANDBY\n", __func__, con);
2928 break;
2929 }
2930 if (con->state == CON_STATE_CLOSED) {
2931 dout("%s: con %p CLOSED\n", __func__, con);
2932 BUG_ON(con->sock);
2933 break;
2934 }
2935 if (con->state == CON_STATE_PREOPEN) {
2936 dout("%s: con %p PREOPEN\n", __func__, con);
2937 BUG_ON(con->sock);
2938 }
2939
2940 ret = try_read(con);
2941 if (ret < 0) {
2942 if (ret == -EAGAIN)
2943 continue;
2944 if (!con->error_msg)
2945 con->error_msg = "socket error on read";
2946 fault = true;
2947 break;
2948 }
2949
2950 ret = try_write(con);
2951 if (ret < 0) {
2952 if (ret == -EAGAIN)
2953 continue;
2954 if (!con->error_msg)
2955 con->error_msg = "socket error on write";
2956 fault = true;
2957 }
2958
2959 break; /* If we make it to here, we're done */
2960 }
2961 if (fault)
2962 con_fault(con);
2963 mutex_unlock(&con->mutex);
2964
2965 if (fault)
2966 con_fault_finish(con);
2967
2968 con->ops->put(con);
2969}
2970
2971/*
2972 * Generic error/fault handler. A retry mechanism is used with
2973 * exponential backoff
2974 */
2975static void con_fault(struct ceph_connection *con)
2976{
2977 dout("fault %p state %lu to peer %s\n",
2978 con, con->state, ceph_pr_addr(&con->peer_addr));
2979
2980 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2981 ceph_pr_addr(&con->peer_addr), con->error_msg);
2982 con->error_msg = NULL;
2983
2984 WARN_ON(con->state != CON_STATE_CONNECTING &&
2985 con->state != CON_STATE_NEGOTIATING &&
2986 con->state != CON_STATE_OPEN);
2987
2988 con_close_socket(con);
2989
2990 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2991 dout("fault on LOSSYTX channel, marking CLOSED\n");
2992 con->state = CON_STATE_CLOSED;
2993 return;
2994 }
2995
2996 if (con->in_msg) {
2997 BUG_ON(con->in_msg->con != con);
2998 ceph_msg_put(con->in_msg);
2999 con->in_msg = NULL;
3000 }
3001
3002 /* Requeue anything that hasn't been acked */
3003 list_splice_init(&con->out_sent, &con->out_queue);
3004
3005 /* If there are no messages queued or keepalive pending, place
3006 * the connection in a STANDBY state */
3007 if (list_empty(&con->out_queue) &&
3008 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3009 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3010 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3011 con->state = CON_STATE_STANDBY;
3012 } else {
3013 /* retry after a delay. */
3014 con->state = CON_STATE_PREOPEN;
3015 if (con->delay == 0)
3016 con->delay = BASE_DELAY_INTERVAL;
3017 else if (con->delay < MAX_DELAY_INTERVAL)
3018 con->delay *= 2;
3019 con_flag_set(con, CON_FLAG_BACKOFF);
3020 queue_con(con);
3021 }
3022}
3023
3024
3025void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
3026{
3027 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
3028 msgr->inst.addr.nonce = cpu_to_le32(nonce);
3029 encode_my_addr(msgr);
3030}
3031
3032/*
3033 * initialize a new messenger instance
3034 */
3035void ceph_messenger_init(struct ceph_messenger *msgr,
3036 struct ceph_entity_addr *myaddr)
3037{
3038 spin_lock_init(&msgr->global_seq_lock);
3039
3040 if (myaddr)
3041 msgr->inst.addr = *myaddr;
3042
3043 /* select a random nonce */
3044 msgr->inst.addr.type = 0;
3045 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3046 encode_my_addr(msgr);
3047
3048 atomic_set(&msgr->stopping, 0);
3049 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3050
3051 dout("%s %p\n", __func__, msgr);
3052}
3053EXPORT_SYMBOL(ceph_messenger_init);
3054
3055void ceph_messenger_fini(struct ceph_messenger *msgr)
3056{
3057 put_net(read_pnet(&msgr->net));
3058}
3059EXPORT_SYMBOL(ceph_messenger_fini);
3060
3061static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3062{
3063 if (msg->con)
3064 msg->con->ops->put(msg->con);
3065
3066 msg->con = con ? con->ops->get(con) : NULL;
3067 BUG_ON(msg->con != con);
3068}
3069
3070static void clear_standby(struct ceph_connection *con)
3071{
3072 /* come back from STANDBY? */
3073 if (con->state == CON_STATE_STANDBY) {
3074 dout("clear_standby %p and ++connect_seq\n", con);
3075 con->state = CON_STATE_PREOPEN;
3076 con->connect_seq++;
3077 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3078 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3079 }
3080}
3081
3082/*
3083 * Queue up an outgoing message on the given connection.
3084 */
3085void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3086{
3087 /* set src+dst */
3088 msg->hdr.src = con->msgr->inst.name;
3089 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3090 msg->needs_out_seq = true;
3091
3092 mutex_lock(&con->mutex);
3093
3094 if (con->state == CON_STATE_CLOSED) {
3095 dout("con_send %p closed, dropping %p\n", con, msg);
3096 ceph_msg_put(msg);
3097 mutex_unlock(&con->mutex);
3098 return;
3099 }
3100
3101 msg_con_set(msg, con);
3102
3103 BUG_ON(!list_empty(&msg->list_head));
3104 list_add_tail(&msg->list_head, &con->out_queue);
3105 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3106 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3107 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3108 le32_to_cpu(msg->hdr.front_len),
3109 le32_to_cpu(msg->hdr.middle_len),
3110 le32_to_cpu(msg->hdr.data_len));
3111
3112 clear_standby(con);
3113 mutex_unlock(&con->mutex);
3114
3115 /* if there wasn't anything waiting to send before, queue
3116 * new work */
3117 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3118 queue_con(con);
3119}
3120EXPORT_SYMBOL(ceph_con_send);
3121
3122/*
3123 * Revoke a message that was previously queued for send
3124 */
3125void ceph_msg_revoke(struct ceph_msg *msg)
3126{
3127 struct ceph_connection *con = msg->con;
3128
3129 if (!con) {
3130 dout("%s msg %p null con\n", __func__, msg);
3131 return; /* Message not in our possession */
3132 }
3133
3134 mutex_lock(&con->mutex);
3135 if (!list_empty(&msg->list_head)) {
3136 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3137 list_del_init(&msg->list_head);
3138 msg->hdr.seq = 0;
3139
3140 ceph_msg_put(msg);
3141 }
3142 if (con->out_msg == msg) {
3143 BUG_ON(con->out_skip);
3144 /* footer */
3145 if (con->out_msg_done) {
3146 con->out_skip += con_out_kvec_skip(con);
3147 } else {
3148 BUG_ON(!msg->data_length);
3149 con->out_skip += sizeof_footer(con);
3150 }
3151 /* data, middle, front */
3152 if (msg->data_length)
3153 con->out_skip += msg->cursor.total_resid;
3154 if (msg->middle)
3155 con->out_skip += con_out_kvec_skip(con);
3156 con->out_skip += con_out_kvec_skip(con);
3157
3158 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3159 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3160 msg->hdr.seq = 0;
3161 con->out_msg = NULL;
3162 ceph_msg_put(msg);
3163 }
3164
3165 mutex_unlock(&con->mutex);
3166}
3167
3168/*
3169 * Revoke a message that we may be reading data into
3170 */
3171void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3172{
3173 struct ceph_connection *con = msg->con;
3174
3175 if (!con) {
3176 dout("%s msg %p null con\n", __func__, msg);
3177 return; /* Message not in our possession */
3178 }
3179
3180 mutex_lock(&con->mutex);
3181 if (con->in_msg == msg) {
3182 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3183 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3184 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3185
3186 /* skip rest of message */
3187 dout("%s %p msg %p revoked\n", __func__, con, msg);
3188 con->in_base_pos = con->in_base_pos -
3189 sizeof(struct ceph_msg_header) -
3190 front_len -
3191 middle_len -
3192 data_len -
3193 sizeof(struct ceph_msg_footer);
3194 ceph_msg_put(con->in_msg);
3195 con->in_msg = NULL;
3196 con->in_tag = CEPH_MSGR_TAG_READY;
3197 con->in_seq++;
3198 } else {
3199 dout("%s %p in_msg %p msg %p no-op\n",
3200 __func__, con, con->in_msg, msg);
3201 }
3202 mutex_unlock(&con->mutex);
3203}
3204
3205/*
3206 * Queue a keepalive byte to ensure the tcp connection is alive.
3207 */
3208void ceph_con_keepalive(struct ceph_connection *con)
3209{
3210 dout("con_keepalive %p\n", con);
3211 mutex_lock(&con->mutex);
3212 clear_standby(con);
3213 con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3214 mutex_unlock(&con->mutex);
3215
3216 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3217 queue_con(con);
3218}
3219EXPORT_SYMBOL(ceph_con_keepalive);
3220
3221bool ceph_con_keepalive_expired(struct ceph_connection *con,
3222 unsigned long interval)
3223{
3224 if (interval > 0 &&
3225 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3226 struct timespec64 now;
3227 struct timespec64 ts;
3228 ktime_get_real_ts64(&now);
3229 jiffies_to_timespec64(interval, &ts);
3230 ts = timespec64_add(con->last_keepalive_ack, ts);
3231 return timespec64_compare(&now, &ts) >= 0;
3232 }
3233 return false;
3234}
3235
3236static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3237{
3238 BUG_ON(msg->num_data_items >= msg->max_data_items);
3239 return &msg->data[msg->num_data_items++];
3240}
3241
3242static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3243{
3244 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
3245 int num_pages = calc_pages_for(data->alignment, data->length);
3246 ceph_release_page_vector(data->pages, num_pages);
3247 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
3248 ceph_pagelist_release(data->pagelist);
3249 }
3250}
3251
3252void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3253 size_t length, size_t alignment, bool own_pages)
3254{
3255 struct ceph_msg_data *data;
3256
3257 BUG_ON(!pages);
3258 BUG_ON(!length);
3259
3260 data = ceph_msg_data_add(msg);
3261 data->type = CEPH_MSG_DATA_PAGES;
3262 data->pages = pages;
3263 data->length = length;
3264 data->alignment = alignment & ~PAGE_MASK;
3265 data->own_pages = own_pages;
3266
3267 msg->data_length += length;
3268}
3269EXPORT_SYMBOL(ceph_msg_data_add_pages);
3270
3271void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3272 struct ceph_pagelist *pagelist)
3273{
3274 struct ceph_msg_data *data;
3275
3276 BUG_ON(!pagelist);
3277 BUG_ON(!pagelist->length);
3278
3279 data = ceph_msg_data_add(msg);
3280 data->type = CEPH_MSG_DATA_PAGELIST;
3281 refcount_inc(&pagelist->refcnt);
3282 data->pagelist = pagelist;
3283
3284 msg->data_length += pagelist->length;
3285}
3286EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3287
3288#ifdef CONFIG_BLOCK
3289void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3290 u32 length)
3291{
3292 struct ceph_msg_data *data;
3293
3294 data = ceph_msg_data_add(msg);
3295 data->type = CEPH_MSG_DATA_BIO;
3296 data->bio_pos = *bio_pos;
3297 data->bio_length = length;
3298
3299 msg->data_length += length;
3300}
3301EXPORT_SYMBOL(ceph_msg_data_add_bio);
3302#endif /* CONFIG_BLOCK */
3303
3304void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3305 struct ceph_bvec_iter *bvec_pos)
3306{
3307 struct ceph_msg_data *data;
3308
3309 data = ceph_msg_data_add(msg);
3310 data->type = CEPH_MSG_DATA_BVECS;
3311 data->bvec_pos = *bvec_pos;
3312
3313 msg->data_length += bvec_pos->iter.bi_size;
3314}
3315EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3316
3317/*
3318 * construct a new message with given type, size
3319 * the new msg has a ref count of 1.
3320 */
3321struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3322 gfp_t flags, bool can_fail)
3323{
3324 struct ceph_msg *m;
3325
3326 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3327 if (m == NULL)
3328 goto out;
3329
3330 m->hdr.type = cpu_to_le16(type);
3331 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3332 m->hdr.front_len = cpu_to_le32(front_len);
3333
3334 INIT_LIST_HEAD(&m->list_head);
3335 kref_init(&m->kref);
3336
3337 /* front */
3338 if (front_len) {
3339 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3340 if (m->front.iov_base == NULL) {
3341 dout("ceph_msg_new can't allocate %d bytes\n",
3342 front_len);
3343 goto out2;
3344 }
3345 } else {
3346 m->front.iov_base = NULL;
3347 }
3348 m->front_alloc_len = m->front.iov_len = front_len;
3349
3350 if (max_data_items) {
3351 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3352 flags);
3353 if (!m->data)
3354 goto out2;
3355
3356 m->max_data_items = max_data_items;
3357 }
3358
3359 dout("ceph_msg_new %p front %d\n", m, front_len);
3360 return m;
3361
3362out2:
3363 ceph_msg_put(m);
3364out:
3365 if (!can_fail) {
3366 pr_err("msg_new can't create type %d front %d\n", type,
3367 front_len);
3368 WARN_ON(1);
3369 } else {
3370 dout("msg_new can't create type %d front %d\n", type,
3371 front_len);
3372 }
3373 return NULL;
3374}
3375EXPORT_SYMBOL(ceph_msg_new2);
3376
3377struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3378 bool can_fail)
3379{
3380 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3381}
3382EXPORT_SYMBOL(ceph_msg_new);
3383
3384/*
3385 * Allocate "middle" portion of a message, if it is needed and wasn't
3386 * allocated by alloc_msg. This allows us to read a small fixed-size
3387 * per-type header in the front and then gracefully fail (i.e.,
3388 * propagate the error to the caller based on info in the front) when
3389 * the middle is too large.
3390 */
3391static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3392{
3393 int type = le16_to_cpu(msg->hdr.type);
3394 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3395
3396 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3397 ceph_msg_type_name(type), middle_len);
3398 BUG_ON(!middle_len);
3399 BUG_ON(msg->middle);
3400
3401 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3402 if (!msg->middle)
3403 return -ENOMEM;
3404 return 0;
3405}
3406
3407/*
3408 * Allocate a message for receiving an incoming message on a
3409 * connection, and save the result in con->in_msg. Uses the
3410 * connection's private alloc_msg op if available.
3411 *
3412 * Returns 0 on success, or a negative error code.
3413 *
3414 * On success, if we set *skip = 1:
3415 * - the next message should be skipped and ignored.
3416 * - con->in_msg == NULL
3417 * or if we set *skip = 0:
3418 * - con->in_msg is non-null.
3419 * On error (ENOMEM, EAGAIN, ...),
3420 * - con->in_msg == NULL
3421 */
3422static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3423{
3424 struct ceph_msg_header *hdr = &con->in_hdr;
3425 int middle_len = le32_to_cpu(hdr->middle_len);
3426 struct ceph_msg *msg;
3427 int ret = 0;
3428
3429 BUG_ON(con->in_msg != NULL);
3430 BUG_ON(!con->ops->alloc_msg);
3431
3432 mutex_unlock(&con->mutex);
3433 msg = con->ops->alloc_msg(con, hdr, skip);
3434 mutex_lock(&con->mutex);
3435 if (con->state != CON_STATE_OPEN) {
3436 if (msg)
3437 ceph_msg_put(msg);
3438 return -EAGAIN;
3439 }
3440 if (msg) {
3441 BUG_ON(*skip);
3442 msg_con_set(msg, con);
3443 con->in_msg = msg;
3444 } else {
3445 /*
3446 * Null message pointer means either we should skip
3447 * this message or we couldn't allocate memory. The
3448 * former is not an error.
3449 */
3450 if (*skip)
3451 return 0;
3452
3453 con->error_msg = "error allocating memory for incoming message";
3454 return -ENOMEM;
3455 }
3456 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3457
3458 if (middle_len && !con->in_msg->middle) {
3459 ret = ceph_alloc_middle(con, con->in_msg);
3460 if (ret < 0) {
3461 ceph_msg_put(con->in_msg);
3462 con->in_msg = NULL;
3463 }
3464 }
3465
3466 return ret;
3467}
3468
3469
3470/*
3471 * Free a generically kmalloc'd message.
3472 */
3473static void ceph_msg_free(struct ceph_msg *m)
3474{
3475 dout("%s %p\n", __func__, m);
3476 kvfree(m->front.iov_base);
3477 kfree(m->data);
3478 kmem_cache_free(ceph_msg_cache, m);
3479}
3480
3481static void ceph_msg_release(struct kref *kref)
3482{
3483 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3484 int i;
3485
3486 dout("%s %p\n", __func__, m);
3487 WARN_ON(!list_empty(&m->list_head));
3488
3489 msg_con_set(m, NULL);
3490
3491 /* drop middle, data, if any */
3492 if (m->middle) {
3493 ceph_buffer_put(m->middle);
3494 m->middle = NULL;
3495 }
3496
3497 for (i = 0; i < m->num_data_items; i++)
3498 ceph_msg_data_destroy(&m->data[i]);
3499
3500 if (m->pool)
3501 ceph_msgpool_put(m->pool, m);
3502 else
3503 ceph_msg_free(m);
3504}
3505
3506struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3507{
3508 dout("%s %p (was %d)\n", __func__, msg,
3509 kref_read(&msg->kref));
3510 kref_get(&msg->kref);
3511 return msg;
3512}
3513EXPORT_SYMBOL(ceph_msg_get);
3514
3515void ceph_msg_put(struct ceph_msg *msg)
3516{
3517 dout("%s %p (was %d)\n", __func__, msg,
3518 kref_read(&msg->kref));
3519 kref_put(&msg->kref, ceph_msg_release);
3520}
3521EXPORT_SYMBOL(ceph_msg_put);
3522
3523void ceph_msg_dump(struct ceph_msg *msg)
3524{
3525 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3526 msg->front_alloc_len, msg->data_length);
3527 print_hex_dump(KERN_DEBUG, "header: ",
3528 DUMP_PREFIX_OFFSET, 16, 1,
3529 &msg->hdr, sizeof(msg->hdr), true);
3530 print_hex_dump(KERN_DEBUG, " front: ",
3531 DUMP_PREFIX_OFFSET, 16, 1,
3532 msg->front.iov_base, msg->front.iov_len, true);
3533 if (msg->middle)
3534 print_hex_dump(KERN_DEBUG, "middle: ",
3535 DUMP_PREFIX_OFFSET, 16, 1,
3536 msg->middle->vec.iov_base,
3537 msg->middle->vec.iov_len, true);
3538 print_hex_dump(KERN_DEBUG, "footer: ",
3539 DUMP_PREFIX_OFFSET, 16, 1,
3540 &msg->footer, sizeof(msg->footer), true);
3541}
3542EXPORT_SYMBOL(ceph_msg_dump);