Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20#include <trace/events/sock.h>
21
22#include <linux/ceph/ceph_features.h>
23#include <linux/ceph/libceph.h>
24#include <linux/ceph/messenger.h>
25#include <linux/ceph/decode.h>
26#include <linux/ceph/pagelist.h>
27#include <linux/export.h>
28
29/*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38/*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86static bool con_flag_valid(unsigned long con_flag)
87{
88 switch (con_flag) {
89 case CEPH_CON_F_LOSSYTX:
90 case CEPH_CON_F_KEEPALIVE_PENDING:
91 case CEPH_CON_F_WRITE_PENDING:
92 case CEPH_CON_F_SOCK_CLOSED:
93 case CEPH_CON_F_BACKOFF:
94 return true;
95 default:
96 return false;
97 }
98}
99
100void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101{
102 BUG_ON(!con_flag_valid(con_flag));
103
104 clear_bit(con_flag, &con->flags);
105}
106
107void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108{
109 BUG_ON(!con_flag_valid(con_flag));
110
111 set_bit(con_flag, &con->flags);
112}
113
114bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115{
116 BUG_ON(!con_flag_valid(con_flag));
117
118 return test_bit(con_flag, &con->flags);
119}
120
121bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122 unsigned long con_flag)
123{
124 BUG_ON(!con_flag_valid(con_flag));
125
126 return test_and_clear_bit(con_flag, &con->flags);
127}
128
129bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130 unsigned long con_flag)
131{
132 BUG_ON(!con_flag_valid(con_flag));
133
134 return test_and_set_bit(con_flag, &con->flags);
135}
136
137/* Slab caches for frequently-allocated structures */
138
139static struct kmem_cache *ceph_msg_cache;
140
141#ifdef CONFIG_LOCKDEP
142static struct lock_class_key socket_class;
143#endif
144
145static void queue_con(struct ceph_connection *con);
146static void cancel_con(struct ceph_connection *con);
147static void ceph_con_workfn(struct work_struct *);
148static void con_fault(struct ceph_connection *con);
149
150/*
151 * Nicely render a sockaddr as a string. An array of formatted
152 * strings is used, to approximate reentrancy.
153 */
154#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162struct page *ceph_zero_page; /* used in certain error cases */
163
164const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165{
166 int i;
167 char *s;
168 struct sockaddr_storage ss = addr->in_addr; /* align */
169 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173 s = addr_str[i];
174
175 switch (ss.ss_family) {
176 case AF_INET:
177 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178 le32_to_cpu(addr->type), &in4->sin_addr,
179 ntohs(in4->sin_port));
180 break;
181
182 case AF_INET6:
183 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184 le32_to_cpu(addr->type), &in6->sin6_addr,
185 ntohs(in6->sin6_port));
186 break;
187
188 default:
189 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190 ss.ss_family);
191 }
192
193 return s;
194}
195EXPORT_SYMBOL(ceph_pr_addr);
196
197void ceph_encode_my_addr(struct ceph_messenger *msgr)
198{
199 if (!ceph_msgr2(from_msgr(msgr))) {
200 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201 sizeof(msgr->my_enc_addr));
202 ceph_encode_banner_addr(&msgr->my_enc_addr);
203 }
204}
205
206/*
207 * work queue for all reading and writing to/from the socket.
208 */
209static struct workqueue_struct *ceph_msgr_wq;
210
211static int ceph_msgr_slab_init(void)
212{
213 BUG_ON(ceph_msg_cache);
214 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215 if (!ceph_msg_cache)
216 return -ENOMEM;
217
218 return 0;
219}
220
221static void ceph_msgr_slab_exit(void)
222{
223 BUG_ON(!ceph_msg_cache);
224 kmem_cache_destroy(ceph_msg_cache);
225 ceph_msg_cache = NULL;
226}
227
228static void _ceph_msgr_exit(void)
229{
230 if (ceph_msgr_wq) {
231 destroy_workqueue(ceph_msgr_wq);
232 ceph_msgr_wq = NULL;
233 }
234
235 BUG_ON(!ceph_zero_page);
236 put_page(ceph_zero_page);
237 ceph_zero_page = NULL;
238
239 ceph_msgr_slab_exit();
240}
241
242int __init ceph_msgr_init(void)
243{
244 if (ceph_msgr_slab_init())
245 return -ENOMEM;
246
247 BUG_ON(ceph_zero_page);
248 ceph_zero_page = ZERO_PAGE(0);
249 get_page(ceph_zero_page);
250
251 /*
252 * The number of active work items is limited by the number of
253 * connections, so leave @max_active at default.
254 */
255 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
256 if (ceph_msgr_wq)
257 return 0;
258
259 pr_err("msgr_init failed to create workqueue\n");
260 _ceph_msgr_exit();
261
262 return -ENOMEM;
263}
264
265void ceph_msgr_exit(void)
266{
267 BUG_ON(ceph_msgr_wq == NULL);
268
269 _ceph_msgr_exit();
270}
271
272void ceph_msgr_flush(void)
273{
274 flush_workqueue(ceph_msgr_wq);
275}
276EXPORT_SYMBOL(ceph_msgr_flush);
277
278/* Connection socket state transition functions */
279
280static void con_sock_state_init(struct ceph_connection *con)
281{
282 int old_state;
283
284 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
285 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
286 printk("%s: unexpected old state %d\n", __func__, old_state);
287 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
288 CON_SOCK_STATE_CLOSED);
289}
290
291static void con_sock_state_connecting(struct ceph_connection *con)
292{
293 int old_state;
294
295 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
296 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
297 printk("%s: unexpected old state %d\n", __func__, old_state);
298 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
299 CON_SOCK_STATE_CONNECTING);
300}
301
302static void con_sock_state_connected(struct ceph_connection *con)
303{
304 int old_state;
305
306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
307 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
308 printk("%s: unexpected old state %d\n", __func__, old_state);
309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310 CON_SOCK_STATE_CONNECTED);
311}
312
313static void con_sock_state_closing(struct ceph_connection *con)
314{
315 int old_state;
316
317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
318 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
319 old_state != CON_SOCK_STATE_CONNECTED &&
320 old_state != CON_SOCK_STATE_CLOSING))
321 printk("%s: unexpected old state %d\n", __func__, old_state);
322 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
323 CON_SOCK_STATE_CLOSING);
324}
325
326static void con_sock_state_closed(struct ceph_connection *con)
327{
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
332 old_state != CON_SOCK_STATE_CLOSING &&
333 old_state != CON_SOCK_STATE_CONNECTING &&
334 old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CLOSED);
338}
339
340/*
341 * socket callback functions
342 */
343
344/* data available on socket, or listen socket received a connect */
345static void ceph_sock_data_ready(struct sock *sk)
346{
347 struct ceph_connection *con = sk->sk_user_data;
348
349 trace_sk_data_ready(sk);
350
351 if (atomic_read(&con->msgr->stopping)) {
352 return;
353 }
354
355 if (sk->sk_state != TCP_CLOSE_WAIT) {
356 dout("%s %p state = %d, queueing work\n", __func__,
357 con, con->state);
358 queue_con(con);
359 }
360}
361
362/* socket has buffer space for writing */
363static void ceph_sock_write_space(struct sock *sk)
364{
365 struct ceph_connection *con = sk->sk_user_data;
366
367 /* only queue to workqueue if there is data we want to write,
368 * and there is sufficient space in the socket buffer to accept
369 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
370 * doesn't get called again until try_write() fills the socket
371 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372 * and net/core/stream.c:sk_stream_write_space().
373 */
374 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
375 if (sk_stream_is_writeable(sk)) {
376 dout("%s %p queueing write work\n", __func__, con);
377 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
378 queue_con(con);
379 }
380 } else {
381 dout("%s %p nothing to write\n", __func__, con);
382 }
383}
384
385/* socket's state has changed */
386static void ceph_sock_state_change(struct sock *sk)
387{
388 struct ceph_connection *con = sk->sk_user_data;
389
390 dout("%s %p state = %d sk_state = %u\n", __func__,
391 con, con->state, sk->sk_state);
392
393 switch (sk->sk_state) {
394 case TCP_CLOSE:
395 dout("%s TCP_CLOSE\n", __func__);
396 fallthrough;
397 case TCP_CLOSE_WAIT:
398 dout("%s TCP_CLOSE_WAIT\n", __func__);
399 con_sock_state_closing(con);
400 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
401 queue_con(con);
402 break;
403 case TCP_ESTABLISHED:
404 dout("%s TCP_ESTABLISHED\n", __func__);
405 con_sock_state_connected(con);
406 queue_con(con);
407 break;
408 default: /* Everything else is uninteresting */
409 break;
410 }
411}
412
413/*
414 * set up socket callbacks
415 */
416static void set_sock_callbacks(struct socket *sock,
417 struct ceph_connection *con)
418{
419 struct sock *sk = sock->sk;
420 sk->sk_user_data = con;
421 sk->sk_data_ready = ceph_sock_data_ready;
422 sk->sk_write_space = ceph_sock_write_space;
423 sk->sk_state_change = ceph_sock_state_change;
424}
425
426
427/*
428 * socket helpers
429 */
430
431/*
432 * initiate connection to a remote socket.
433 */
434int ceph_tcp_connect(struct ceph_connection *con)
435{
436 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
437 struct socket *sock;
438 unsigned int noio_flag;
439 int ret;
440
441 dout("%s con %p peer_addr %s\n", __func__, con,
442 ceph_pr_addr(&con->peer_addr));
443 BUG_ON(con->sock);
444
445 /* sock_create_kern() allocates with GFP_KERNEL */
446 noio_flag = memalloc_noio_save();
447 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
448 SOCK_STREAM, IPPROTO_TCP, &sock);
449 memalloc_noio_restore(noio_flag);
450 if (ret)
451 return ret;
452 sock->sk->sk_allocation = GFP_NOFS;
453 sock->sk->sk_use_task_frag = false;
454
455#ifdef CONFIG_LOCKDEP
456 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
457#endif
458
459 set_sock_callbacks(sock, con);
460
461 con_sock_state_connecting(con);
462 ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
463 O_NONBLOCK);
464 if (ret == -EINPROGRESS) {
465 dout("connect %s EINPROGRESS sk_state = %u\n",
466 ceph_pr_addr(&con->peer_addr),
467 sock->sk->sk_state);
468 } else if (ret < 0) {
469 pr_err("connect %s error %d\n",
470 ceph_pr_addr(&con->peer_addr), ret);
471 sock_release(sock);
472 return ret;
473 }
474
475 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
476 tcp_sock_set_nodelay(sock->sk);
477
478 con->sock = sock;
479 return 0;
480}
481
482/*
483 * Shutdown/close the socket for the given connection.
484 */
485int ceph_con_close_socket(struct ceph_connection *con)
486{
487 int rc = 0;
488
489 dout("%s con %p sock %p\n", __func__, con, con->sock);
490 if (con->sock) {
491 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
492 sock_release(con->sock);
493 con->sock = NULL;
494 }
495
496 /*
497 * Forcibly clear the SOCK_CLOSED flag. It gets set
498 * independent of the connection mutex, and we could have
499 * received a socket close event before we had the chance to
500 * shut the socket down.
501 */
502 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
503
504 con_sock_state_closed(con);
505 return rc;
506}
507
508static void ceph_con_reset_protocol(struct ceph_connection *con)
509{
510 dout("%s con %p\n", __func__, con);
511
512 ceph_con_close_socket(con);
513 if (con->in_msg) {
514 WARN_ON(con->in_msg->con != con);
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 }
518 if (con->out_msg) {
519 WARN_ON(con->out_msg->con != con);
520 ceph_msg_put(con->out_msg);
521 con->out_msg = NULL;
522 }
523 if (con->bounce_page) {
524 __free_page(con->bounce_page);
525 con->bounce_page = NULL;
526 }
527
528 if (ceph_msgr2(from_msgr(con->msgr)))
529 ceph_con_v2_reset_protocol(con);
530 else
531 ceph_con_v1_reset_protocol(con);
532}
533
534/*
535 * Reset a connection. Discard all incoming and outgoing messages
536 * and clear *_seq state.
537 */
538static void ceph_msg_remove(struct ceph_msg *msg)
539{
540 list_del_init(&msg->list_head);
541
542 ceph_msg_put(msg);
543}
544
545static void ceph_msg_remove_list(struct list_head *head)
546{
547 while (!list_empty(head)) {
548 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
549 list_head);
550 ceph_msg_remove(msg);
551 }
552}
553
554void ceph_con_reset_session(struct ceph_connection *con)
555{
556 dout("%s con %p\n", __func__, con);
557
558 WARN_ON(con->in_msg);
559 WARN_ON(con->out_msg);
560 ceph_msg_remove_list(&con->out_queue);
561 ceph_msg_remove_list(&con->out_sent);
562 con->out_seq = 0;
563 con->in_seq = 0;
564 con->in_seq_acked = 0;
565
566 if (ceph_msgr2(from_msgr(con->msgr)))
567 ceph_con_v2_reset_session(con);
568 else
569 ceph_con_v1_reset_session(con);
570}
571
572/*
573 * mark a peer down. drop any open connections.
574 */
575void ceph_con_close(struct ceph_connection *con)
576{
577 mutex_lock(&con->mutex);
578 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
579 con->state = CEPH_CON_S_CLOSED;
580
581 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
582 connect */
583 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
584 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
585 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
586
587 ceph_con_reset_protocol(con);
588 ceph_con_reset_session(con);
589 cancel_con(con);
590 mutex_unlock(&con->mutex);
591}
592EXPORT_SYMBOL(ceph_con_close);
593
594/*
595 * Reopen a closed connection, with a new peer address.
596 */
597void ceph_con_open(struct ceph_connection *con,
598 __u8 entity_type, __u64 entity_num,
599 struct ceph_entity_addr *addr)
600{
601 mutex_lock(&con->mutex);
602 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
603
604 WARN_ON(con->state != CEPH_CON_S_CLOSED);
605 con->state = CEPH_CON_S_PREOPEN;
606
607 con->peer_name.type = (__u8) entity_type;
608 con->peer_name.num = cpu_to_le64(entity_num);
609
610 memcpy(&con->peer_addr, addr, sizeof(*addr));
611 con->delay = 0; /* reset backoff memory */
612 mutex_unlock(&con->mutex);
613 queue_con(con);
614}
615EXPORT_SYMBOL(ceph_con_open);
616
617/*
618 * return true if this connection ever successfully opened
619 */
620bool ceph_con_opened(struct ceph_connection *con)
621{
622 if (ceph_msgr2(from_msgr(con->msgr)))
623 return ceph_con_v2_opened(con);
624
625 return ceph_con_v1_opened(con);
626}
627
628/*
629 * initialize a new connection.
630 */
631void ceph_con_init(struct ceph_connection *con, void *private,
632 const struct ceph_connection_operations *ops,
633 struct ceph_messenger *msgr)
634{
635 dout("con_init %p\n", con);
636 memset(con, 0, sizeof(*con));
637 con->private = private;
638 con->ops = ops;
639 con->msgr = msgr;
640
641 con_sock_state_init(con);
642
643 mutex_init(&con->mutex);
644 INIT_LIST_HEAD(&con->out_queue);
645 INIT_LIST_HEAD(&con->out_sent);
646 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
647
648 con->state = CEPH_CON_S_CLOSED;
649}
650EXPORT_SYMBOL(ceph_con_init);
651
652/*
653 * We maintain a global counter to order connection attempts. Get
654 * a unique seq greater than @gt.
655 */
656u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
657{
658 u32 ret;
659
660 spin_lock(&msgr->global_seq_lock);
661 if (msgr->global_seq < gt)
662 msgr->global_seq = gt;
663 ret = ++msgr->global_seq;
664 spin_unlock(&msgr->global_seq_lock);
665 return ret;
666}
667
668/*
669 * Discard messages that have been acked by the server.
670 */
671void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
672{
673 struct ceph_msg *msg;
674 u64 seq;
675
676 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
677 while (!list_empty(&con->out_sent)) {
678 msg = list_first_entry(&con->out_sent, struct ceph_msg,
679 list_head);
680 WARN_ON(msg->needs_out_seq);
681 seq = le64_to_cpu(msg->hdr.seq);
682 if (seq > ack_seq)
683 break;
684
685 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
686 msg, seq);
687 ceph_msg_remove(msg);
688 }
689}
690
691/*
692 * Discard messages that have been requeued in con_fault(), up to
693 * reconnect_seq. This avoids gratuitously resending messages that
694 * the server had received and handled prior to reconnect.
695 */
696void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
697{
698 struct ceph_msg *msg;
699 u64 seq;
700
701 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
702 while (!list_empty(&con->out_queue)) {
703 msg = list_first_entry(&con->out_queue, struct ceph_msg,
704 list_head);
705 if (msg->needs_out_seq)
706 break;
707 seq = le64_to_cpu(msg->hdr.seq);
708 if (seq > reconnect_seq)
709 break;
710
711 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
712 msg, seq);
713 ceph_msg_remove(msg);
714 }
715}
716
717#ifdef CONFIG_BLOCK
718
719/*
720 * For a bio data item, a piece is whatever remains of the next
721 * entry in the current bio iovec, or the first entry in the next
722 * bio in the list.
723 */
724static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
725 size_t length)
726{
727 struct ceph_msg_data *data = cursor->data;
728 struct ceph_bio_iter *it = &cursor->bio_iter;
729
730 cursor->resid = min_t(size_t, length, data->bio_length);
731 *it = data->bio_pos;
732 if (cursor->resid < it->iter.bi_size)
733 it->iter.bi_size = cursor->resid;
734
735 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
736}
737
738static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
739 size_t *page_offset,
740 size_t *length)
741{
742 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
743 cursor->bio_iter.iter);
744
745 *page_offset = bv.bv_offset;
746 *length = bv.bv_len;
747 return bv.bv_page;
748}
749
750static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
751 size_t bytes)
752{
753 struct ceph_bio_iter *it = &cursor->bio_iter;
754 struct page *page = bio_iter_page(it->bio, it->iter);
755
756 BUG_ON(bytes > cursor->resid);
757 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
758 cursor->resid -= bytes;
759 bio_advance_iter(it->bio, &it->iter, bytes);
760
761 if (!cursor->resid)
762 return false; /* no more data */
763
764 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
765 page == bio_iter_page(it->bio, it->iter)))
766 return false; /* more bytes to process in this segment */
767
768 if (!it->iter.bi_size) {
769 it->bio = it->bio->bi_next;
770 it->iter = it->bio->bi_iter;
771 if (cursor->resid < it->iter.bi_size)
772 it->iter.bi_size = cursor->resid;
773 }
774
775 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
776 return true;
777}
778#endif /* CONFIG_BLOCK */
779
780static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
781 size_t length)
782{
783 struct ceph_msg_data *data = cursor->data;
784 struct bio_vec *bvecs = data->bvec_pos.bvecs;
785
786 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787 cursor->bvec_iter = data->bvec_pos.iter;
788 cursor->bvec_iter.bi_size = cursor->resid;
789
790 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
791}
792
793static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
794 size_t *page_offset,
795 size_t *length)
796{
797 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
798 cursor->bvec_iter);
799
800 *page_offset = bv.bv_offset;
801 *length = bv.bv_len;
802 return bv.bv_page;
803}
804
805static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
806 size_t bytes)
807{
808 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
809 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
810
811 BUG_ON(bytes > cursor->resid);
812 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
813 cursor->resid -= bytes;
814 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
815
816 if (!cursor->resid)
817 return false; /* no more data */
818
819 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 return false; /* more bytes to process in this segment */
822
823 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
824 return true;
825}
826
827/*
828 * For a page array, a piece comes from the first page in the array
829 * that has not already been fully consumed.
830 */
831static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
832 size_t length)
833{
834 struct ceph_msg_data *data = cursor->data;
835 int page_count;
836
837 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
838
839 BUG_ON(!data->pages);
840 BUG_ON(!data->length);
841
842 cursor->resid = min(length, data->length);
843 page_count = calc_pages_for(data->alignment, (u64)data->length);
844 cursor->page_offset = data->alignment & ~PAGE_MASK;
845 cursor->page_index = 0;
846 BUG_ON(page_count > (int)USHRT_MAX);
847 cursor->page_count = (unsigned short)page_count;
848 BUG_ON(length > SIZE_MAX - cursor->page_offset);
849}
850
851static struct page *
852ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
853 size_t *page_offset, size_t *length)
854{
855 struct ceph_msg_data *data = cursor->data;
856
857 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
858
859 BUG_ON(cursor->page_index >= cursor->page_count);
860 BUG_ON(cursor->page_offset >= PAGE_SIZE);
861
862 *page_offset = cursor->page_offset;
863 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
864 return data->pages[cursor->page_index];
865}
866
867static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
868 size_t bytes)
869{
870 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
871
872 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
873
874 /* Advance the cursor page offset */
875
876 cursor->resid -= bytes;
877 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
878 if (!bytes || cursor->page_offset)
879 return false; /* more bytes to process in the current page */
880
881 if (!cursor->resid)
882 return false; /* no more data */
883
884 /* Move on to the next page; offset is already at 0 */
885
886 BUG_ON(cursor->page_index >= cursor->page_count);
887 cursor->page_index++;
888 return true;
889}
890
891/*
892 * For a pagelist, a piece is whatever remains to be consumed in the
893 * first page in the list, or the front of the next page.
894 */
895static void
896ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
897 size_t length)
898{
899 struct ceph_msg_data *data = cursor->data;
900 struct ceph_pagelist *pagelist;
901 struct page *page;
902
903 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
904
905 pagelist = data->pagelist;
906 BUG_ON(!pagelist);
907
908 if (!length)
909 return; /* pagelist can be assigned but empty */
910
911 BUG_ON(list_empty(&pagelist->head));
912 page = list_first_entry(&pagelist->head, struct page, lru);
913
914 cursor->resid = min(length, pagelist->length);
915 cursor->page = page;
916 cursor->offset = 0;
917}
918
919static struct page *
920ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
921 size_t *page_offset, size_t *length)
922{
923 struct ceph_msg_data *data = cursor->data;
924 struct ceph_pagelist *pagelist;
925
926 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
927
928 pagelist = data->pagelist;
929 BUG_ON(!pagelist);
930
931 BUG_ON(!cursor->page);
932 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
933
934 /* offset of first page in pagelist is always 0 */
935 *page_offset = cursor->offset & ~PAGE_MASK;
936 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
937 return cursor->page;
938}
939
940static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
941 size_t bytes)
942{
943 struct ceph_msg_data *data = cursor->data;
944 struct ceph_pagelist *pagelist;
945
946 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948 pagelist = data->pagelist;
949 BUG_ON(!pagelist);
950
951 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
952 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
953
954 /* Advance the cursor offset */
955
956 cursor->resid -= bytes;
957 cursor->offset += bytes;
958 /* offset of first page in pagelist is always 0 */
959 if (!bytes || cursor->offset & ~PAGE_MASK)
960 return false; /* more bytes to process in the current page */
961
962 if (!cursor->resid)
963 return false; /* no more data */
964
965 /* Move on to the next page */
966
967 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
968 cursor->page = list_next_entry(cursor->page, lru);
969 return true;
970}
971
972static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
973 size_t length)
974{
975 struct ceph_msg_data *data = cursor->data;
976
977 cursor->iov_iter = data->iter;
978 cursor->lastlen = 0;
979 iov_iter_truncate(&cursor->iov_iter, length);
980 cursor->resid = iov_iter_count(&cursor->iov_iter);
981}
982
983static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
984 size_t *page_offset, size_t *length)
985{
986 struct page *page;
987 ssize_t len;
988
989 if (cursor->lastlen)
990 iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
991
992 len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
993 1, page_offset);
994 BUG_ON(len < 0);
995
996 cursor->lastlen = len;
997
998 /*
999 * FIXME: The assumption is that the pages represented by the iov_iter
1000 * are pinned, with the references held by the upper-level
1001 * callers, or by virtue of being under writeback. Eventually,
1002 * we'll get an iov_iter_get_pages2 variant that doesn't take
1003 * page refs. Until then, just put the page ref.
1004 */
1005 VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006 put_page(page);
1007
1008 *length = min_t(size_t, len, cursor->resid);
1009 return page;
1010}
1011
1012static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013 size_t bytes)
1014{
1015 BUG_ON(bytes > cursor->resid);
1016 cursor->resid -= bytes;
1017
1018 if (bytes < cursor->lastlen) {
1019 cursor->lastlen -= bytes;
1020 } else {
1021 iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022 cursor->lastlen = 0;
1023 }
1024
1025 return cursor->resid;
1026}
1027
1028/*
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page. The network layer might not
1031 * consume an entire piece at once. A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece. It also tracks whether the current
1034 * piece is the last one in the data item.
1035 */
1036static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037{
1038 size_t length = cursor->total_resid;
1039
1040 switch (cursor->data->type) {
1041 case CEPH_MSG_DATA_PAGELIST:
1042 ceph_msg_data_pagelist_cursor_init(cursor, length);
1043 break;
1044 case CEPH_MSG_DATA_PAGES:
1045 ceph_msg_data_pages_cursor_init(cursor, length);
1046 break;
1047#ifdef CONFIG_BLOCK
1048 case CEPH_MSG_DATA_BIO:
1049 ceph_msg_data_bio_cursor_init(cursor, length);
1050 break;
1051#endif /* CONFIG_BLOCK */
1052 case CEPH_MSG_DATA_BVECS:
1053 ceph_msg_data_bvecs_cursor_init(cursor, length);
1054 break;
1055 case CEPH_MSG_DATA_ITER:
1056 ceph_msg_data_iter_cursor_init(cursor, length);
1057 break;
1058 case CEPH_MSG_DATA_NONE:
1059 default:
1060 /* BUG(); */
1061 break;
1062 }
1063 cursor->need_crc = true;
1064}
1065
1066void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067 struct ceph_msg *msg, size_t length)
1068{
1069 BUG_ON(!length);
1070 BUG_ON(length > msg->data_length);
1071 BUG_ON(!msg->num_data_items);
1072
1073 cursor->total_resid = length;
1074 cursor->data = msg->data;
1075 cursor->sr_resid = 0;
1076
1077 __ceph_msg_data_cursor_init(cursor);
1078}
1079
1080/*
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1084 */
1085struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086 size_t *page_offset, size_t *length)
1087{
1088 struct page *page;
1089
1090 switch (cursor->data->type) {
1091 case CEPH_MSG_DATA_PAGELIST:
1092 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093 break;
1094 case CEPH_MSG_DATA_PAGES:
1095 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096 break;
1097#ifdef CONFIG_BLOCK
1098 case CEPH_MSG_DATA_BIO:
1099 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100 break;
1101#endif /* CONFIG_BLOCK */
1102 case CEPH_MSG_DATA_BVECS:
1103 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104 break;
1105 case CEPH_MSG_DATA_ITER:
1106 page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107 break;
1108 case CEPH_MSG_DATA_NONE:
1109 default:
1110 page = NULL;
1111 break;
1112 }
1113
1114 BUG_ON(!page);
1115 BUG_ON(*page_offset + *length > PAGE_SIZE);
1116 BUG_ON(!*length);
1117 BUG_ON(*length > cursor->resid);
1118
1119 return page;
1120}
1121
1122/*
1123 * Returns true if the result moves the cursor on to the next piece
1124 * of the data item.
1125 */
1126void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1127{
1128 bool new_piece;
1129
1130 BUG_ON(bytes > cursor->resid);
1131 switch (cursor->data->type) {
1132 case CEPH_MSG_DATA_PAGELIST:
1133 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134 break;
1135 case CEPH_MSG_DATA_PAGES:
1136 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137 break;
1138#ifdef CONFIG_BLOCK
1139 case CEPH_MSG_DATA_BIO:
1140 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141 break;
1142#endif /* CONFIG_BLOCK */
1143 case CEPH_MSG_DATA_BVECS:
1144 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145 break;
1146 case CEPH_MSG_DATA_ITER:
1147 new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148 break;
1149 case CEPH_MSG_DATA_NONE:
1150 default:
1151 BUG();
1152 break;
1153 }
1154 cursor->total_resid -= bytes;
1155
1156 if (!cursor->resid && cursor->total_resid) {
1157 cursor->data++;
1158 __ceph_msg_data_cursor_init(cursor);
1159 new_piece = true;
1160 }
1161 cursor->need_crc = new_piece;
1162}
1163
1164u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165 unsigned int length)
1166{
1167 char *kaddr;
1168
1169 kaddr = kmap(page);
1170 BUG_ON(kaddr == NULL);
1171 crc = crc32c(crc, kaddr + page_offset, length);
1172 kunmap(page);
1173
1174 return crc;
1175}
1176
1177bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1178{
1179 struct sockaddr_storage ss = addr->in_addr; /* align */
1180 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1182
1183 switch (ss.ss_family) {
1184 case AF_INET:
1185 return addr4->s_addr == htonl(INADDR_ANY);
1186 case AF_INET6:
1187 return ipv6_addr_any(addr6);
1188 default:
1189 return true;
1190 }
1191}
1192EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194int ceph_addr_port(const struct ceph_entity_addr *addr)
1195{
1196 switch (get_unaligned(&addr->in_addr.ss_family)) {
1197 case AF_INET:
1198 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199 case AF_INET6:
1200 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201 }
1202 return 0;
1203}
1204
1205void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206{
1207 switch (get_unaligned(&addr->in_addr.ss_family)) {
1208 case AF_INET:
1209 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210 break;
1211 case AF_INET6:
1212 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213 break;
1214 }
1215}
1216
1217/*
1218 * Unlike other *_pton function semantics, zero indicates success.
1219 */
1220static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221 char delim, const char **ipend)
1222{
1223 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1224
1225 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227 return 0;
1228 }
1229
1230 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232 return 0;
1233 }
1234
1235 return -EINVAL;
1236}
1237
1238/*
1239 * Extract hostname string and resolve using kernel DNS facility.
1240 */
1241#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243 struct ceph_entity_addr *addr, char delim, const char **ipend)
1244{
1245 const char *end, *delim_p;
1246 char *colon_p, *ip_addr = NULL;
1247 int ip_len, ret;
1248
1249 /*
1250 * The end of the hostname occurs immediately preceding the delimiter or
1251 * the port marker (':') where the delimiter takes precedence.
1252 */
1253 delim_p = memchr(name, delim, namelen);
1254 colon_p = memchr(name, ':', namelen);
1255
1256 if (delim_p && colon_p)
1257 end = min(delim_p, colon_p);
1258 else if (!delim_p && colon_p)
1259 end = colon_p;
1260 else {
1261 end = delim_p;
1262 if (!end) /* case: hostname:/ */
1263 end = name + namelen;
1264 }
1265
1266 if (end <= name)
1267 return -EINVAL;
1268
1269 /* do dns_resolve upcall */
1270 ip_len = dns_query(current->nsproxy->net_ns,
1271 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272 if (ip_len > 0)
1273 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274 else
1275 ret = -ESRCH;
1276
1277 kfree(ip_addr);
1278
1279 *ipend = end;
1280
1281 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282 ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284 return ret;
1285}
1286#else
1287static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288 struct ceph_entity_addr *addr, char delim, const char **ipend)
1289{
1290 return -EINVAL;
1291}
1292#endif
1293
1294/*
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1297 */
1298static int ceph_parse_server_name(const char *name, size_t namelen,
1299 struct ceph_entity_addr *addr, char delim, const char **ipend)
1300{
1301 int ret;
1302
1303 ret = ceph_pton(name, namelen, addr, delim, ipend);
1304 if (ret)
1305 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307 return ret;
1308}
1309
1310/*
1311 * Parse an ip[:port] list into an addr array. Use the default
1312 * monitor port if a port isn't specified.
1313 */
1314int ceph_parse_ips(const char *c, const char *end,
1315 struct ceph_entity_addr *addr,
1316 int max_count, int *count, char delim)
1317{
1318 int i, ret = -EINVAL;
1319 const char *p = c;
1320
1321 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322 for (i = 0; i < max_count; i++) {
1323 char cur_delim = delim;
1324 const char *ipend;
1325 int port;
1326
1327 if (*p == '[') {
1328 cur_delim = ']';
1329 p++;
1330 }
1331
1332 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333 &ipend);
1334 if (ret)
1335 goto bad;
1336 ret = -EINVAL;
1337
1338 p = ipend;
1339
1340 if (cur_delim == ']') {
1341 if (*p != ']') {
1342 dout("missing matching ']'\n");
1343 goto bad;
1344 }
1345 p++;
1346 }
1347
1348 /* port? */
1349 if (p < end && *p == ':') {
1350 port = 0;
1351 p++;
1352 while (p < end && *p >= '0' && *p <= '9') {
1353 port = (port * 10) + (*p - '0');
1354 p++;
1355 }
1356 if (port == 0)
1357 port = CEPH_MON_PORT;
1358 else if (port > 65535)
1359 goto bad;
1360 } else {
1361 port = CEPH_MON_PORT;
1362 }
1363
1364 ceph_addr_set_port(&addr[i], port);
1365 /*
1366 * We want the type to be set according to ms_mode
1367 * option, but options are normally parsed after mon
1368 * addresses. Rather than complicating parsing, set
1369 * to LEGACY and override in build_initial_monmap()
1370 * for mon addresses and ceph_messenger_init() for
1371 * ip option.
1372 */
1373 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374 addr[i].nonce = 0;
1375
1376 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378 if (p == end)
1379 break;
1380 if (*p != delim)
1381 goto bad;
1382 p++;
1383 }
1384
1385 if (p != end)
1386 goto bad;
1387
1388 if (count)
1389 *count = i + 1;
1390 return 0;
1391
1392bad:
1393 return ret;
1394}
1395
1396/*
1397 * Process message. This happens in the worker thread. The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1399 * may deadlock.
1400 */
1401void ceph_con_process_message(struct ceph_connection *con)
1402{
1403 struct ceph_msg *msg = con->in_msg;
1404
1405 BUG_ON(con->in_msg->con != con);
1406 con->in_msg = NULL;
1407
1408 /* if first message, set peer_name */
1409 if (con->peer_name.type == 0)
1410 con->peer_name = msg->hdr.src;
1411
1412 con->in_seq++;
1413 mutex_unlock(&con->mutex);
1414
1415 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416 msg, le64_to_cpu(msg->hdr.seq),
1417 ENTITY_NAME(msg->hdr.src),
1418 le16_to_cpu(msg->hdr.type),
1419 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420 le32_to_cpu(msg->hdr.front_len),
1421 le32_to_cpu(msg->hdr.middle_len),
1422 le32_to_cpu(msg->hdr.data_len),
1423 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424 con->ops->dispatch(con, msg);
1425
1426 mutex_lock(&con->mutex);
1427}
1428
1429/*
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1433 */
1434static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435{
1436 if (!con->ops->get(con)) {
1437 dout("%s %p ref count 0\n", __func__, con);
1438 return -ENOENT;
1439 }
1440
1441 if (delay >= HZ)
1442 delay = round_jiffies_relative(delay);
1443
1444 dout("%s %p %lu\n", __func__, con, delay);
1445 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446 dout("%s %p - already queued\n", __func__, con);
1447 con->ops->put(con);
1448 return -EBUSY;
1449 }
1450
1451 return 0;
1452}
1453
1454static void queue_con(struct ceph_connection *con)
1455{
1456 (void) queue_con_delay(con, 0);
1457}
1458
1459static void cancel_con(struct ceph_connection *con)
1460{
1461 if (cancel_delayed_work(&con->work)) {
1462 dout("%s %p\n", __func__, con);
1463 con->ops->put(con);
1464 }
1465}
1466
1467static bool con_sock_closed(struct ceph_connection *con)
1468{
1469 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470 return false;
1471
1472#define CASE(x) \
1473 case CEPH_CON_S_ ## x: \
1474 con->error_msg = "socket closed (con state " #x ")"; \
1475 break;
1476
1477 switch (con->state) {
1478 CASE(CLOSED);
1479 CASE(PREOPEN);
1480 CASE(V1_BANNER);
1481 CASE(V1_CONNECT_MSG);
1482 CASE(V2_BANNER_PREFIX);
1483 CASE(V2_BANNER_PAYLOAD);
1484 CASE(V2_HELLO);
1485 CASE(V2_AUTH);
1486 CASE(V2_AUTH_SIGNATURE);
1487 CASE(V2_SESSION_CONNECT);
1488 CASE(V2_SESSION_RECONNECT);
1489 CASE(OPEN);
1490 CASE(STANDBY);
1491 default:
1492 BUG();
1493 }
1494#undef CASE
1495
1496 return true;
1497}
1498
1499static bool con_backoff(struct ceph_connection *con)
1500{
1501 int ret;
1502
1503 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504 return false;
1505
1506 ret = queue_con_delay(con, con->delay);
1507 if (ret) {
1508 dout("%s: con %p FAILED to back off %lu\n", __func__,
1509 con, con->delay);
1510 BUG_ON(ret == -ENOENT);
1511 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512 }
1513
1514 return true;
1515}
1516
1517/* Finish fault handling; con->mutex must *not* be held here */
1518
1519static void con_fault_finish(struct ceph_connection *con)
1520{
1521 dout("%s %p\n", __func__, con);
1522
1523 /*
1524 * in case we faulted due to authentication, invalidate our
1525 * current tickets so that we can get new ones.
1526 */
1527 if (con->v1.auth_retry) {
1528 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529 if (con->ops->invalidate_authorizer)
1530 con->ops->invalidate_authorizer(con);
1531 con->v1.auth_retry = 0;
1532 }
1533
1534 if (con->ops->fault)
1535 con->ops->fault(con);
1536}
1537
1538/*
1539 * Do some work on a connection. Drop a connection ref when we're done.
1540 */
1541static void ceph_con_workfn(struct work_struct *work)
1542{
1543 struct ceph_connection *con = container_of(work, struct ceph_connection,
1544 work.work);
1545 bool fault;
1546
1547 mutex_lock(&con->mutex);
1548 while (true) {
1549 int ret;
1550
1551 if ((fault = con_sock_closed(con))) {
1552 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553 break;
1554 }
1555 if (con_backoff(con)) {
1556 dout("%s: con %p BACKOFF\n", __func__, con);
1557 break;
1558 }
1559 if (con->state == CEPH_CON_S_STANDBY) {
1560 dout("%s: con %p STANDBY\n", __func__, con);
1561 break;
1562 }
1563 if (con->state == CEPH_CON_S_CLOSED) {
1564 dout("%s: con %p CLOSED\n", __func__, con);
1565 BUG_ON(con->sock);
1566 break;
1567 }
1568 if (con->state == CEPH_CON_S_PREOPEN) {
1569 dout("%s: con %p PREOPEN\n", __func__, con);
1570 BUG_ON(con->sock);
1571 }
1572
1573 if (ceph_msgr2(from_msgr(con->msgr)))
1574 ret = ceph_con_v2_try_read(con);
1575 else
1576 ret = ceph_con_v1_try_read(con);
1577 if (ret < 0) {
1578 if (ret == -EAGAIN)
1579 continue;
1580 if (!con->error_msg)
1581 con->error_msg = "socket error on read";
1582 fault = true;
1583 break;
1584 }
1585
1586 if (ceph_msgr2(from_msgr(con->msgr)))
1587 ret = ceph_con_v2_try_write(con);
1588 else
1589 ret = ceph_con_v1_try_write(con);
1590 if (ret < 0) {
1591 if (ret == -EAGAIN)
1592 continue;
1593 if (!con->error_msg)
1594 con->error_msg = "socket error on write";
1595 fault = true;
1596 }
1597
1598 break; /* If we make it to here, we're done */
1599 }
1600 if (fault)
1601 con_fault(con);
1602 mutex_unlock(&con->mutex);
1603
1604 if (fault)
1605 con_fault_finish(con);
1606
1607 con->ops->put(con);
1608}
1609
1610/*
1611 * Generic error/fault handler. A retry mechanism is used with
1612 * exponential backoff
1613 */
1614static void con_fault(struct ceph_connection *con)
1615{
1616 dout("fault %p state %d to peer %s\n",
1617 con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620 ceph_pr_addr(&con->peer_addr), con->error_msg);
1621 con->error_msg = NULL;
1622
1623 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624 con->state == CEPH_CON_S_CLOSED);
1625
1626 ceph_con_reset_protocol(con);
1627
1628 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629 dout("fault on LOSSYTX channel, marking CLOSED\n");
1630 con->state = CEPH_CON_S_CLOSED;
1631 return;
1632 }
1633
1634 /* Requeue anything that hasn't been acked */
1635 list_splice_init(&con->out_sent, &con->out_queue);
1636
1637 /* If there are no messages queued or keepalive pending, place
1638 * the connection in a STANDBY state */
1639 if (list_empty(&con->out_queue) &&
1640 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643 con->state = CEPH_CON_S_STANDBY;
1644 } else {
1645 /* retry after a delay. */
1646 con->state = CEPH_CON_S_PREOPEN;
1647 if (!con->delay) {
1648 con->delay = BASE_DELAY_INTERVAL;
1649 } else if (con->delay < MAX_DELAY_INTERVAL) {
1650 con->delay *= 2;
1651 if (con->delay > MAX_DELAY_INTERVAL)
1652 con->delay = MAX_DELAY_INTERVAL;
1653 }
1654 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655 queue_con(con);
1656 }
1657}
1658
1659void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660{
1661 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663 ceph_encode_my_addr(msgr);
1664}
1665
1666/*
1667 * initialize a new messenger instance
1668 */
1669void ceph_messenger_init(struct ceph_messenger *msgr,
1670 struct ceph_entity_addr *myaddr)
1671{
1672 spin_lock_init(&msgr->global_seq_lock);
1673
1674 if (myaddr) {
1675 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676 sizeof(msgr->inst.addr.in_addr));
1677 ceph_addr_set_port(&msgr->inst.addr, 0);
1678 }
1679
1680 /*
1681 * Since nautilus, clients are identified using type ANY.
1682 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683 */
1684 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686 /* generate a random non-zero nonce */
1687 do {
1688 get_random_bytes(&msgr->inst.addr.nonce,
1689 sizeof(msgr->inst.addr.nonce));
1690 } while (!msgr->inst.addr.nonce);
1691 ceph_encode_my_addr(msgr);
1692
1693 atomic_set(&msgr->stopping, 0);
1694 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696 dout("%s %p\n", __func__, msgr);
1697}
1698
1699void ceph_messenger_fini(struct ceph_messenger *msgr)
1700{
1701 put_net(read_pnet(&msgr->net));
1702}
1703
1704static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705{
1706 if (msg->con)
1707 msg->con->ops->put(msg->con);
1708
1709 msg->con = con ? con->ops->get(con) : NULL;
1710 BUG_ON(msg->con != con);
1711}
1712
1713static void clear_standby(struct ceph_connection *con)
1714{
1715 /* come back from STANDBY? */
1716 if (con->state == CEPH_CON_S_STANDBY) {
1717 dout("clear_standby %p and ++connect_seq\n", con);
1718 con->state = CEPH_CON_S_PREOPEN;
1719 con->v1.connect_seq++;
1720 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722 }
1723}
1724
1725/*
1726 * Queue up an outgoing message on the given connection.
1727 *
1728 * Consumes a ref on @msg.
1729 */
1730void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731{
1732 /* set src+dst */
1733 msg->hdr.src = con->msgr->inst.name;
1734 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735 msg->needs_out_seq = true;
1736
1737 mutex_lock(&con->mutex);
1738
1739 if (con->state == CEPH_CON_S_CLOSED) {
1740 dout("con_send %p closed, dropping %p\n", con, msg);
1741 ceph_msg_put(msg);
1742 mutex_unlock(&con->mutex);
1743 return;
1744 }
1745
1746 msg_con_set(msg, con);
1747
1748 BUG_ON(!list_empty(&msg->list_head));
1749 list_add_tail(&msg->list_head, &con->out_queue);
1750 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753 le32_to_cpu(msg->hdr.front_len),
1754 le32_to_cpu(msg->hdr.middle_len),
1755 le32_to_cpu(msg->hdr.data_len));
1756
1757 clear_standby(con);
1758 mutex_unlock(&con->mutex);
1759
1760 /* if there wasn't anything waiting to send before, queue
1761 * new work */
1762 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763 queue_con(con);
1764}
1765EXPORT_SYMBOL(ceph_con_send);
1766
1767/*
1768 * Revoke a message that was previously queued for send
1769 */
1770void ceph_msg_revoke(struct ceph_msg *msg)
1771{
1772 struct ceph_connection *con = msg->con;
1773
1774 if (!con) {
1775 dout("%s msg %p null con\n", __func__, msg);
1776 return; /* Message not in our possession */
1777 }
1778
1779 mutex_lock(&con->mutex);
1780 if (list_empty(&msg->list_head)) {
1781 WARN_ON(con->out_msg == msg);
1782 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783 mutex_unlock(&con->mutex);
1784 return;
1785 }
1786
1787 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788 msg->hdr.seq = 0;
1789 ceph_msg_remove(msg);
1790
1791 if (con->out_msg == msg) {
1792 WARN_ON(con->state != CEPH_CON_S_OPEN);
1793 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794 if (ceph_msgr2(from_msgr(con->msgr)))
1795 ceph_con_v2_revoke(con);
1796 else
1797 ceph_con_v1_revoke(con);
1798 ceph_msg_put(con->out_msg);
1799 con->out_msg = NULL;
1800 } else {
1801 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802 con, msg, con->out_msg);
1803 }
1804 mutex_unlock(&con->mutex);
1805}
1806
1807/*
1808 * Revoke a message that we may be reading data into
1809 */
1810void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811{
1812 struct ceph_connection *con = msg->con;
1813
1814 if (!con) {
1815 dout("%s msg %p null con\n", __func__, msg);
1816 return; /* Message not in our possession */
1817 }
1818
1819 mutex_lock(&con->mutex);
1820 if (con->in_msg == msg) {
1821 WARN_ON(con->state != CEPH_CON_S_OPEN);
1822 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823 if (ceph_msgr2(from_msgr(con->msgr)))
1824 ceph_con_v2_revoke_incoming(con);
1825 else
1826 ceph_con_v1_revoke_incoming(con);
1827 ceph_msg_put(con->in_msg);
1828 con->in_msg = NULL;
1829 } else {
1830 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831 con, msg, con->in_msg);
1832 }
1833 mutex_unlock(&con->mutex);
1834}
1835
1836/*
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1838 */
1839void ceph_con_keepalive(struct ceph_connection *con)
1840{
1841 dout("con_keepalive %p\n", con);
1842 mutex_lock(&con->mutex);
1843 clear_standby(con);
1844 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845 mutex_unlock(&con->mutex);
1846
1847 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848 queue_con(con);
1849}
1850EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853 unsigned long interval)
1854{
1855 if (interval > 0 &&
1856 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857 struct timespec64 now;
1858 struct timespec64 ts;
1859 ktime_get_real_ts64(&now);
1860 jiffies_to_timespec64(interval, &ts);
1861 ts = timespec64_add(con->last_keepalive_ack, ts);
1862 return timespec64_compare(&now, &ts) >= 0;
1863 }
1864 return false;
1865}
1866
1867static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868{
1869 BUG_ON(msg->num_data_items >= msg->max_data_items);
1870 return &msg->data[msg->num_data_items++];
1871}
1872
1873static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874{
1875 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876 int num_pages = calc_pages_for(data->alignment, data->length);
1877 ceph_release_page_vector(data->pages, num_pages);
1878 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1879 ceph_pagelist_release(data->pagelist);
1880 }
1881}
1882
1883void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884 size_t length, size_t alignment, bool own_pages)
1885{
1886 struct ceph_msg_data *data;
1887
1888 BUG_ON(!pages);
1889 BUG_ON(!length);
1890
1891 data = ceph_msg_data_add(msg);
1892 data->type = CEPH_MSG_DATA_PAGES;
1893 data->pages = pages;
1894 data->length = length;
1895 data->alignment = alignment & ~PAGE_MASK;
1896 data->own_pages = own_pages;
1897
1898 msg->data_length += length;
1899}
1900EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903 struct ceph_pagelist *pagelist)
1904{
1905 struct ceph_msg_data *data;
1906
1907 BUG_ON(!pagelist);
1908 BUG_ON(!pagelist->length);
1909
1910 data = ceph_msg_data_add(msg);
1911 data->type = CEPH_MSG_DATA_PAGELIST;
1912 refcount_inc(&pagelist->refcnt);
1913 data->pagelist = pagelist;
1914
1915 msg->data_length += pagelist->length;
1916}
1917EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919#ifdef CONFIG_BLOCK
1920void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921 u32 length)
1922{
1923 struct ceph_msg_data *data;
1924
1925 data = ceph_msg_data_add(msg);
1926 data->type = CEPH_MSG_DATA_BIO;
1927 data->bio_pos = *bio_pos;
1928 data->bio_length = length;
1929
1930 msg->data_length += length;
1931}
1932EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933#endif /* CONFIG_BLOCK */
1934
1935void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936 struct ceph_bvec_iter *bvec_pos)
1937{
1938 struct ceph_msg_data *data;
1939
1940 data = ceph_msg_data_add(msg);
1941 data->type = CEPH_MSG_DATA_BVECS;
1942 data->bvec_pos = *bvec_pos;
1943
1944 msg->data_length += bvec_pos->iter.bi_size;
1945}
1946EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949 struct iov_iter *iter)
1950{
1951 struct ceph_msg_data *data;
1952
1953 data = ceph_msg_data_add(msg);
1954 data->type = CEPH_MSG_DATA_ITER;
1955 data->iter = *iter;
1956
1957 msg->data_length += iov_iter_count(&data->iter);
1958}
1959
1960/*
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1963 */
1964struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965 gfp_t flags, bool can_fail)
1966{
1967 struct ceph_msg *m;
1968
1969 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970 if (m == NULL)
1971 goto out;
1972
1973 m->hdr.type = cpu_to_le16(type);
1974 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975 m->hdr.front_len = cpu_to_le32(front_len);
1976
1977 INIT_LIST_HEAD(&m->list_head);
1978 kref_init(&m->kref);
1979
1980 /* front */
1981 if (front_len) {
1982 m->front.iov_base = kvmalloc(front_len, flags);
1983 if (m->front.iov_base == NULL) {
1984 dout("ceph_msg_new can't allocate %d bytes\n",
1985 front_len);
1986 goto out2;
1987 }
1988 } else {
1989 m->front.iov_base = NULL;
1990 }
1991 m->front_alloc_len = m->front.iov_len = front_len;
1992
1993 if (max_data_items) {
1994 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995 flags);
1996 if (!m->data)
1997 goto out2;
1998
1999 m->max_data_items = max_data_items;
2000 }
2001
2002 dout("ceph_msg_new %p front %d\n", m, front_len);
2003 return m;
2004
2005out2:
2006 ceph_msg_put(m);
2007out:
2008 if (!can_fail) {
2009 pr_err("msg_new can't create type %d front %d\n", type,
2010 front_len);
2011 WARN_ON(1);
2012 } else {
2013 dout("msg_new can't create type %d front %d\n", type,
2014 front_len);
2015 }
2016 return NULL;
2017}
2018EXPORT_SYMBOL(ceph_msg_new2);
2019
2020struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021 bool can_fail)
2022{
2023 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024}
2025EXPORT_SYMBOL(ceph_msg_new);
2026
2027/*
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg. This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2033 */
2034static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035{
2036 int type = le16_to_cpu(msg->hdr.type);
2037 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040 ceph_msg_type_name(type), middle_len);
2041 BUG_ON(!middle_len);
2042 BUG_ON(msg->middle);
2043
2044 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045 if (!msg->middle)
2046 return -ENOMEM;
2047 return 0;
2048}
2049
2050/*
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg. Uses the
2053 * connection's private alloc_msg op if available.
2054 *
2055 * Returns 0 on success, or a negative error code.
2056 *
2057 * On success, if we set *skip = 1:
2058 * - the next message should be skipped and ignored.
2059 * - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 * - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 * - con->in_msg == NULL
2064 */
2065int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066 struct ceph_msg_header *hdr, int *skip)
2067{
2068 int middle_len = le32_to_cpu(hdr->middle_len);
2069 struct ceph_msg *msg;
2070 int ret = 0;
2071
2072 BUG_ON(con->in_msg != NULL);
2073 BUG_ON(!con->ops->alloc_msg);
2074
2075 mutex_unlock(&con->mutex);
2076 msg = con->ops->alloc_msg(con, hdr, skip);
2077 mutex_lock(&con->mutex);
2078 if (con->state != CEPH_CON_S_OPEN) {
2079 if (msg)
2080 ceph_msg_put(msg);
2081 return -EAGAIN;
2082 }
2083 if (msg) {
2084 BUG_ON(*skip);
2085 msg_con_set(msg, con);
2086 con->in_msg = msg;
2087 } else {
2088 /*
2089 * Null message pointer means either we should skip
2090 * this message or we couldn't allocate memory. The
2091 * former is not an error.
2092 */
2093 if (*skip)
2094 return 0;
2095
2096 con->error_msg = "error allocating memory for incoming message";
2097 return -ENOMEM;
2098 }
2099 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101 if (middle_len && !con->in_msg->middle) {
2102 ret = ceph_alloc_middle(con, con->in_msg);
2103 if (ret < 0) {
2104 ceph_msg_put(con->in_msg);
2105 con->in_msg = NULL;
2106 }
2107 }
2108
2109 return ret;
2110}
2111
2112void ceph_con_get_out_msg(struct ceph_connection *con)
2113{
2114 struct ceph_msg *msg;
2115
2116 BUG_ON(list_empty(&con->out_queue));
2117 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118 WARN_ON(msg->con != con);
2119
2120 /*
2121 * Put the message on "sent" list using a ref from ceph_con_send().
2122 * It is put when the message is acked or revoked.
2123 */
2124 list_move_tail(&msg->list_head, &con->out_sent);
2125
2126 /*
2127 * Only assign outgoing seq # if we haven't sent this message
2128 * yet. If it is requeued, resend with it's original seq.
2129 */
2130 if (msg->needs_out_seq) {
2131 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132 msg->needs_out_seq = false;
2133
2134 if (con->ops->reencode_message)
2135 con->ops->reencode_message(msg);
2136 }
2137
2138 /*
2139 * Get a ref for out_msg. It is put when we are done sending the
2140 * message or in case of a fault.
2141 */
2142 WARN_ON(con->out_msg);
2143 con->out_msg = ceph_msg_get(msg);
2144}
2145
2146/*
2147 * Free a generically kmalloc'd message.
2148 */
2149static void ceph_msg_free(struct ceph_msg *m)
2150{
2151 dout("%s %p\n", __func__, m);
2152 kvfree(m->front.iov_base);
2153 kfree(m->data);
2154 kmem_cache_free(ceph_msg_cache, m);
2155}
2156
2157static void ceph_msg_release(struct kref *kref)
2158{
2159 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160 int i;
2161
2162 dout("%s %p\n", __func__, m);
2163 WARN_ON(!list_empty(&m->list_head));
2164
2165 msg_con_set(m, NULL);
2166
2167 /* drop middle, data, if any */
2168 if (m->middle) {
2169 ceph_buffer_put(m->middle);
2170 m->middle = NULL;
2171 }
2172
2173 for (i = 0; i < m->num_data_items; i++)
2174 ceph_msg_data_destroy(&m->data[i]);
2175
2176 if (m->pool)
2177 ceph_msgpool_put(m->pool, m);
2178 else
2179 ceph_msg_free(m);
2180}
2181
2182struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183{
2184 dout("%s %p (was %d)\n", __func__, msg,
2185 kref_read(&msg->kref));
2186 kref_get(&msg->kref);
2187 return msg;
2188}
2189EXPORT_SYMBOL(ceph_msg_get);
2190
2191void ceph_msg_put(struct ceph_msg *msg)
2192{
2193 dout("%s %p (was %d)\n", __func__, msg,
2194 kref_read(&msg->kref));
2195 kref_put(&msg->kref, ceph_msg_release);
2196}
2197EXPORT_SYMBOL(ceph_msg_put);
2198
2199void ceph_msg_dump(struct ceph_msg *msg)
2200{
2201 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202 msg->front_alloc_len, msg->data_length);
2203 print_hex_dump(KERN_DEBUG, "header: ",
2204 DUMP_PREFIX_OFFSET, 16, 1,
2205 &msg->hdr, sizeof(msg->hdr), true);
2206 print_hex_dump(KERN_DEBUG, " front: ",
2207 DUMP_PREFIX_OFFSET, 16, 1,
2208 msg->front.iov_base, msg->front.iov_len, true);
2209 if (msg->middle)
2210 print_hex_dump(KERN_DEBUG, "middle: ",
2211 DUMP_PREFIX_OFFSET, 16, 1,
2212 msg->middle->vec.iov_base,
2213 msg->middle->vec.iov_len, true);
2214 print_hex_dump(KERN_DEBUG, "footer: ",
2215 DUMP_PREFIX_OFFSET, 16, 1,
2216 &msg->footer, sizeof(msg->footer), true);
2217}
2218EXPORT_SYMBOL(ceph_msg_dump);
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/slab.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#include <linux/bio.h>
13#include <linux/blkdev.h>
14#include <linux/dns_resolver.h>
15#include <net/tcp.h>
16
17#include <linux/ceph/libceph.h>
18#include <linux/ceph/messenger.h>
19#include <linux/ceph/decode.h>
20#include <linux/ceph/pagelist.h>
21#include <linux/export.h>
22
23/*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32/* static tag bytes (protocol control messages) */
33static char tag_msg = CEPH_MSGR_TAG_MSG;
34static char tag_ack = CEPH_MSGR_TAG_ACK;
35static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37#ifdef CONFIG_LOCKDEP
38static struct lock_class_key socket_class;
39#endif
40
41/*
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
44 */
45#define SKIP_BUF_SIZE 1024
46
47static void queue_con(struct ceph_connection *con);
48static void con_work(struct work_struct *);
49static void ceph_fault(struct ceph_connection *con);
50
51/*
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
54 */
55#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
59
60static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63static struct page *zero_page; /* used in certain error cases */
64
65const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66{
67 int i;
68 char *s;
69 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 s = addr_str[i];
74
75 switch (ss->ss_family) {
76 case AF_INET:
77 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 ntohs(in6->sin6_port));
84 break;
85
86 default:
87 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 ss->ss_family);
89 }
90
91 return s;
92}
93EXPORT_SYMBOL(ceph_pr_addr);
94
95static void encode_my_addr(struct ceph_messenger *msgr)
96{
97 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 ceph_encode_addr(&msgr->my_enc_addr);
99}
100
101/*
102 * work queue for all reading and writing to/from the socket.
103 */
104static struct workqueue_struct *ceph_msgr_wq;
105
106void _ceph_msgr_exit(void)
107{
108 if (ceph_msgr_wq) {
109 destroy_workqueue(ceph_msgr_wq);
110 ceph_msgr_wq = NULL;
111 }
112
113 BUG_ON(zero_page == NULL);
114 kunmap(zero_page);
115 page_cache_release(zero_page);
116 zero_page = NULL;
117}
118
119int ceph_msgr_init(void)
120{
121 BUG_ON(zero_page != NULL);
122 zero_page = ZERO_PAGE(0);
123 page_cache_get(zero_page);
124
125 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 if (ceph_msgr_wq)
127 return 0;
128
129 pr_err("msgr_init failed to create workqueue\n");
130 _ceph_msgr_exit();
131
132 return -ENOMEM;
133}
134EXPORT_SYMBOL(ceph_msgr_init);
135
136void ceph_msgr_exit(void)
137{
138 BUG_ON(ceph_msgr_wq == NULL);
139
140 _ceph_msgr_exit();
141}
142EXPORT_SYMBOL(ceph_msgr_exit);
143
144void ceph_msgr_flush(void)
145{
146 flush_workqueue(ceph_msgr_wq);
147}
148EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151/*
152 * socket callback functions
153 */
154
155/* data available on socket, or listen socket received a connect */
156static void ceph_data_ready(struct sock *sk, int count_unused)
157{
158 struct ceph_connection *con = sk->sk_user_data;
159
160 if (sk->sk_state != TCP_CLOSE_WAIT) {
161 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 con, con->state);
163 queue_con(con);
164 }
165}
166
167/* socket has buffer space for writing */
168static void ceph_write_space(struct sock *sk)
169{
170 struct ceph_connection *con = sk->sk_user_data;
171
172 /* only queue to workqueue if there is data we want to write,
173 * and there is sufficient space in the socket buffer to accept
174 * more data. clear SOCK_NOSPACE so that ceph_write_space()
175 * doesn't get called again until try_write() fills the socket
176 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 * and net/core/stream.c:sk_stream_write_space().
178 */
179 if (test_bit(WRITE_PENDING, &con->state)) {
180 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 dout("ceph_write_space %p queueing write work\n", con);
182 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 queue_con(con);
184 }
185 } else {
186 dout("ceph_write_space %p nothing to write\n", con);
187 }
188}
189
190/* socket's state has changed */
191static void ceph_state_change(struct sock *sk)
192{
193 struct ceph_connection *con = sk->sk_user_data;
194
195 dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 con, con->state, sk->sk_state);
197
198 if (test_bit(CLOSED, &con->state))
199 return;
200
201 switch (sk->sk_state) {
202 case TCP_CLOSE:
203 dout("ceph_state_change TCP_CLOSE\n");
204 case TCP_CLOSE_WAIT:
205 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 if (test_bit(CONNECTING, &con->state))
208 con->error_msg = "connection failed";
209 else
210 con->error_msg = "socket closed";
211 queue_con(con);
212 }
213 break;
214 case TCP_ESTABLISHED:
215 dout("ceph_state_change TCP_ESTABLISHED\n");
216 queue_con(con);
217 break;
218 default: /* Everything else is uninteresting */
219 break;
220 }
221}
222
223/*
224 * set up socket callbacks
225 */
226static void set_sock_callbacks(struct socket *sock,
227 struct ceph_connection *con)
228{
229 struct sock *sk = sock->sk;
230 sk->sk_user_data = con;
231 sk->sk_data_ready = ceph_data_ready;
232 sk->sk_write_space = ceph_write_space;
233 sk->sk_state_change = ceph_state_change;
234}
235
236
237/*
238 * socket helpers
239 */
240
241/*
242 * initiate connection to a remote socket.
243 */
244static int ceph_tcp_connect(struct ceph_connection *con)
245{
246 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 struct socket *sock;
248 int ret;
249
250 BUG_ON(con->sock);
251 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 IPPROTO_TCP, &sock);
253 if (ret)
254 return ret;
255 sock->sk->sk_allocation = GFP_NOFS;
256
257#ifdef CONFIG_LOCKDEP
258 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259#endif
260
261 set_sock_callbacks(sock, con);
262
263 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 O_NONBLOCK);
267 if (ret == -EINPROGRESS) {
268 dout("connect %s EINPROGRESS sk_state = %u\n",
269 ceph_pr_addr(&con->peer_addr.in_addr),
270 sock->sk->sk_state);
271 } else if (ret < 0) {
272 pr_err("connect %s error %d\n",
273 ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 sock_release(sock);
275 con->error_msg = "connect error";
276
277 return ret;
278 }
279 con->sock = sock;
280
281 return 0;
282}
283
284static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285{
286 struct kvec iov = {buf, len};
287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 int r;
289
290 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 if (r == -EAGAIN)
292 r = 0;
293 return r;
294}
295
296/*
297 * write something. @more is true if caller will be sending more data
298 * shortly.
299 */
300static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 size_t kvlen, size_t len, int more)
302{
303 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 int r;
305
306 if (more)
307 msg.msg_flags |= MSG_MORE;
308 else
309 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
310
311 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 if (r == -EAGAIN)
313 r = 0;
314 return r;
315}
316
317static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 int offset, size_t size, int more)
319{
320 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 int ret;
322
323 ret = kernel_sendpage(sock, page, offset, size, flags);
324 if (ret == -EAGAIN)
325 ret = 0;
326
327 return ret;
328}
329
330
331/*
332 * Shutdown/close the socket for the given connection.
333 */
334static int con_close_socket(struct ceph_connection *con)
335{
336 int rc;
337
338 dout("con_close_socket on %p sock %p\n", con, con->sock);
339 if (!con->sock)
340 return 0;
341 set_bit(SOCK_CLOSED, &con->state);
342 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 sock_release(con->sock);
344 con->sock = NULL;
345 clear_bit(SOCK_CLOSED, &con->state);
346 return rc;
347}
348
349/*
350 * Reset a connection. Discard all incoming and outgoing messages
351 * and clear *_seq state.
352 */
353static void ceph_msg_remove(struct ceph_msg *msg)
354{
355 list_del_init(&msg->list_head);
356 ceph_msg_put(msg);
357}
358static void ceph_msg_remove_list(struct list_head *head)
359{
360 while (!list_empty(head)) {
361 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 list_head);
363 ceph_msg_remove(msg);
364 }
365}
366
367static void reset_connection(struct ceph_connection *con)
368{
369 /* reset connection, out_queue, msg_ and connect_seq */
370 /* discard existing out_queue and msg_seq */
371 ceph_msg_remove_list(&con->out_queue);
372 ceph_msg_remove_list(&con->out_sent);
373
374 if (con->in_msg) {
375 ceph_msg_put(con->in_msg);
376 con->in_msg = NULL;
377 }
378
379 con->connect_seq = 0;
380 con->out_seq = 0;
381 if (con->out_msg) {
382 ceph_msg_put(con->out_msg);
383 con->out_msg = NULL;
384 }
385 con->in_seq = 0;
386 con->in_seq_acked = 0;
387}
388
389/*
390 * mark a peer down. drop any open connections.
391 */
392void ceph_con_close(struct ceph_connection *con)
393{
394 dout("con_close %p peer %s\n", con,
395 ceph_pr_addr(&con->peer_addr.in_addr));
396 set_bit(CLOSED, &con->state); /* in case there's queued work */
397 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
398 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
399 clear_bit(KEEPALIVE_PENDING, &con->state);
400 clear_bit(WRITE_PENDING, &con->state);
401 mutex_lock(&con->mutex);
402 reset_connection(con);
403 con->peer_global_seq = 0;
404 cancel_delayed_work(&con->work);
405 mutex_unlock(&con->mutex);
406 queue_con(con);
407}
408EXPORT_SYMBOL(ceph_con_close);
409
410/*
411 * Reopen a closed connection, with a new peer address.
412 */
413void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414{
415 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 set_bit(OPENING, &con->state);
417 clear_bit(CLOSED, &con->state);
418 memcpy(&con->peer_addr, addr, sizeof(*addr));
419 con->delay = 0; /* reset backoff memory */
420 queue_con(con);
421}
422EXPORT_SYMBOL(ceph_con_open);
423
424/*
425 * return true if this connection ever successfully opened
426 */
427bool ceph_con_opened(struct ceph_connection *con)
428{
429 return con->connect_seq > 0;
430}
431
432/*
433 * generic get/put
434 */
435struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436{
437 int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439 dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441 return nref ? con : NULL;
442}
443
444void ceph_con_put(struct ceph_connection *con)
445{
446 int nref = atomic_dec_return(&con->nref);
447
448 BUG_ON(nref < 0);
449 if (nref == 0) {
450 BUG_ON(con->sock);
451 kfree(con);
452 }
453 dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454}
455
456/*
457 * initialize a new connection.
458 */
459void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460{
461 dout("con_init %p\n", con);
462 memset(con, 0, sizeof(*con));
463 atomic_set(&con->nref, 1);
464 con->msgr = msgr;
465 mutex_init(&con->mutex);
466 INIT_LIST_HEAD(&con->out_queue);
467 INIT_LIST_HEAD(&con->out_sent);
468 INIT_DELAYED_WORK(&con->work, con_work);
469}
470EXPORT_SYMBOL(ceph_con_init);
471
472
473/*
474 * We maintain a global counter to order connection attempts. Get
475 * a unique seq greater than @gt.
476 */
477static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478{
479 u32 ret;
480
481 spin_lock(&msgr->global_seq_lock);
482 if (msgr->global_seq < gt)
483 msgr->global_seq = gt;
484 ret = ++msgr->global_seq;
485 spin_unlock(&msgr->global_seq_lock);
486 return ret;
487}
488
489static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490{
491 con->out_kvec_left = 0;
492 con->out_kvec_bytes = 0;
493 con->out_kvec_cur = &con->out_kvec[0];
494}
495
496static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 size_t size, void *data)
498{
499 int index;
500
501 index = con->out_kvec_left;
502 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504 con->out_kvec[index].iov_len = size;
505 con->out_kvec[index].iov_base = data;
506 con->out_kvec_left++;
507 con->out_kvec_bytes += size;
508}
509
510/*
511 * Prepare footer for currently outgoing message, and finish things
512 * off. Assumes out_kvec* are already valid.. we just add on to the end.
513 */
514static void prepare_write_message_footer(struct ceph_connection *con)
515{
516 struct ceph_msg *m = con->out_msg;
517 int v = con->out_kvec_left;
518
519 dout("prepare_write_message_footer %p\n", con);
520 con->out_kvec_is_msg = true;
521 con->out_kvec[v].iov_base = &m->footer;
522 con->out_kvec[v].iov_len = sizeof(m->footer);
523 con->out_kvec_bytes += sizeof(m->footer);
524 con->out_kvec_left++;
525 con->out_more = m->more_to_follow;
526 con->out_msg_done = true;
527}
528
529/*
530 * Prepare headers for the next outgoing message.
531 */
532static void prepare_write_message(struct ceph_connection *con)
533{
534 struct ceph_msg *m;
535 u32 crc;
536
537 ceph_con_out_kvec_reset(con);
538 con->out_kvec_is_msg = true;
539 con->out_msg_done = false;
540
541 /* Sneak an ack in there first? If we can get it into the same
542 * TCP packet that's a good thing. */
543 if (con->in_seq > con->in_seq_acked) {
544 con->in_seq_acked = con->in_seq;
545 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 &con->out_temp_ack);
549 }
550
551 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 con->out_msg = m;
553
554 /* put message on sent list */
555 ceph_msg_get(m);
556 list_move_tail(&m->list_head, &con->out_sent);
557
558 /*
559 * only assign outgoing seq # if we haven't sent this message
560 * yet. if it is requeued, resend with it's original seq.
561 */
562 if (m->needs_out_seq) {
563 m->hdr.seq = cpu_to_le64(++con->out_seq);
564 m->needs_out_seq = false;
565 }
566#ifdef CONFIG_BLOCK
567 else
568 m->bio_iter = NULL;
569#endif
570
571 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
572 m, con->out_seq, le16_to_cpu(m->hdr.type),
573 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
574 le32_to_cpu(m->hdr.data_len),
575 m->nr_pages);
576 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
577
578 /* tag + hdr + front + middle */
579 ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
580 ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
581 ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
582
583 if (m->middle)
584 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
585 m->middle->vec.iov_base);
586
587 /* fill in crc (except data pages), footer */
588 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
589 con->out_msg->hdr.crc = cpu_to_le32(crc);
590 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
591
592 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
593 con->out_msg->footer.front_crc = cpu_to_le32(crc);
594 if (m->middle) {
595 crc = crc32c(0, m->middle->vec.iov_base,
596 m->middle->vec.iov_len);
597 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
598 } else
599 con->out_msg->footer.middle_crc = 0;
600 con->out_msg->footer.data_crc = 0;
601 dout("prepare_write_message front_crc %u data_crc %u\n",
602 le32_to_cpu(con->out_msg->footer.front_crc),
603 le32_to_cpu(con->out_msg->footer.middle_crc));
604
605 /* is there a data payload? */
606 if (le32_to_cpu(m->hdr.data_len) > 0) {
607 /* initialize page iterator */
608 con->out_msg_pos.page = 0;
609 if (m->pages)
610 con->out_msg_pos.page_pos = m->page_alignment;
611 else
612 con->out_msg_pos.page_pos = 0;
613 con->out_msg_pos.data_pos = 0;
614 con->out_msg_pos.did_page_crc = false;
615 con->out_more = 1; /* data + footer will follow */
616 } else {
617 /* no, queue up footer too and be done */
618 prepare_write_message_footer(con);
619 }
620
621 set_bit(WRITE_PENDING, &con->state);
622}
623
624/*
625 * Prepare an ack.
626 */
627static void prepare_write_ack(struct ceph_connection *con)
628{
629 dout("prepare_write_ack %p %llu -> %llu\n", con,
630 con->in_seq_acked, con->in_seq);
631 con->in_seq_acked = con->in_seq;
632
633 ceph_con_out_kvec_reset(con);
634
635 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
636
637 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
638 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
639 &con->out_temp_ack);
640
641 con->out_more = 1; /* more will follow.. eventually.. */
642 set_bit(WRITE_PENDING, &con->state);
643}
644
645/*
646 * Prepare to write keepalive byte.
647 */
648static void prepare_write_keepalive(struct ceph_connection *con)
649{
650 dout("prepare_write_keepalive %p\n", con);
651 ceph_con_out_kvec_reset(con);
652 ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
653 set_bit(WRITE_PENDING, &con->state);
654}
655
656/*
657 * Connection negotiation.
658 */
659
660static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
661 int *auth_proto)
662{
663 struct ceph_auth_handshake *auth;
664
665 if (!con->ops->get_authorizer) {
666 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
667 con->out_connect.authorizer_len = 0;
668
669 return NULL;
670 }
671
672 /* Can't hold the mutex while getting authorizer */
673
674 mutex_unlock(&con->mutex);
675
676 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
677
678 mutex_lock(&con->mutex);
679
680 if (IS_ERR(auth))
681 return auth;
682 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
683 return ERR_PTR(-EAGAIN);
684
685 con->auth_reply_buf = auth->authorizer_reply_buf;
686 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
687
688
689 return auth;
690}
691
692/*
693 * We connected to a peer and are saying hello.
694 */
695static void prepare_write_banner(struct ceph_connection *con)
696{
697 ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
698 ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
699 &con->msgr->my_enc_addr);
700
701 con->out_more = 0;
702 set_bit(WRITE_PENDING, &con->state);
703}
704
705static int prepare_write_connect(struct ceph_connection *con)
706{
707 unsigned int global_seq = get_global_seq(con->msgr, 0);
708 int proto;
709 int auth_proto;
710 struct ceph_auth_handshake *auth;
711
712 switch (con->peer_name.type) {
713 case CEPH_ENTITY_TYPE_MON:
714 proto = CEPH_MONC_PROTOCOL;
715 break;
716 case CEPH_ENTITY_TYPE_OSD:
717 proto = CEPH_OSDC_PROTOCOL;
718 break;
719 case CEPH_ENTITY_TYPE_MDS:
720 proto = CEPH_MDSC_PROTOCOL;
721 break;
722 default:
723 BUG();
724 }
725
726 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
727 con->connect_seq, global_seq, proto);
728
729 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
730 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
731 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
732 con->out_connect.global_seq = cpu_to_le32(global_seq);
733 con->out_connect.protocol_version = cpu_to_le32(proto);
734 con->out_connect.flags = 0;
735
736 auth_proto = CEPH_AUTH_UNKNOWN;
737 auth = get_connect_authorizer(con, &auth_proto);
738 if (IS_ERR(auth))
739 return PTR_ERR(auth);
740
741 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
742 con->out_connect.authorizer_len = auth ?
743 cpu_to_le32(auth->authorizer_buf_len) : 0;
744
745 ceph_con_out_kvec_add(con, sizeof (con->out_connect),
746 &con->out_connect);
747 if (auth && auth->authorizer_buf_len)
748 ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
749 auth->authorizer_buf);
750
751 con->out_more = 0;
752 set_bit(WRITE_PENDING, &con->state);
753
754 return 0;
755}
756
757/*
758 * write as much of pending kvecs to the socket as we can.
759 * 1 -> done
760 * 0 -> socket full, but more to do
761 * <0 -> error
762 */
763static int write_partial_kvec(struct ceph_connection *con)
764{
765 int ret;
766
767 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
768 while (con->out_kvec_bytes > 0) {
769 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
770 con->out_kvec_left, con->out_kvec_bytes,
771 con->out_more);
772 if (ret <= 0)
773 goto out;
774 con->out_kvec_bytes -= ret;
775 if (con->out_kvec_bytes == 0)
776 break; /* done */
777
778 /* account for full iov entries consumed */
779 while (ret >= con->out_kvec_cur->iov_len) {
780 BUG_ON(!con->out_kvec_left);
781 ret -= con->out_kvec_cur->iov_len;
782 con->out_kvec_cur++;
783 con->out_kvec_left--;
784 }
785 /* and for a partially-consumed entry */
786 if (ret) {
787 con->out_kvec_cur->iov_len -= ret;
788 con->out_kvec_cur->iov_base += ret;
789 }
790 }
791 con->out_kvec_left = 0;
792 con->out_kvec_is_msg = false;
793 ret = 1;
794out:
795 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
796 con->out_kvec_bytes, con->out_kvec_left, ret);
797 return ret; /* done! */
798}
799
800#ifdef CONFIG_BLOCK
801static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
802{
803 if (!bio) {
804 *iter = NULL;
805 *seg = 0;
806 return;
807 }
808 *iter = bio;
809 *seg = bio->bi_idx;
810}
811
812static void iter_bio_next(struct bio **bio_iter, int *seg)
813{
814 if (*bio_iter == NULL)
815 return;
816
817 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
818
819 (*seg)++;
820 if (*seg == (*bio_iter)->bi_vcnt)
821 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
822}
823#endif
824
825/*
826 * Write as much message data payload as we can. If we finish, queue
827 * up the footer.
828 * 1 -> done, footer is now queued in out_kvec[].
829 * 0 -> socket full, but more to do
830 * <0 -> error
831 */
832static int write_partial_msg_pages(struct ceph_connection *con)
833{
834 struct ceph_msg *msg = con->out_msg;
835 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
836 size_t len;
837 bool do_datacrc = !con->msgr->nocrc;
838 int ret;
839 int total_max_write;
840 int in_trail = 0;
841 size_t trail_len = (msg->trail ? msg->trail->length : 0);
842
843 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
844 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
845 con->out_msg_pos.page_pos);
846
847#ifdef CONFIG_BLOCK
848 if (msg->bio && !msg->bio_iter)
849 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
850#endif
851
852 while (data_len > con->out_msg_pos.data_pos) {
853 struct page *page = NULL;
854 int max_write = PAGE_SIZE;
855 int bio_offset = 0;
856
857 total_max_write = data_len - trail_len -
858 con->out_msg_pos.data_pos;
859
860 /*
861 * if we are calculating the data crc (the default), we need
862 * to map the page. if our pages[] has been revoked, use the
863 * zero page.
864 */
865
866 /* have we reached the trail part of the data? */
867 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
868 in_trail = 1;
869
870 total_max_write = data_len - con->out_msg_pos.data_pos;
871
872 page = list_first_entry(&msg->trail->head,
873 struct page, lru);
874 max_write = PAGE_SIZE;
875 } else if (msg->pages) {
876 page = msg->pages[con->out_msg_pos.page];
877 } else if (msg->pagelist) {
878 page = list_first_entry(&msg->pagelist->head,
879 struct page, lru);
880#ifdef CONFIG_BLOCK
881 } else if (msg->bio) {
882 struct bio_vec *bv;
883
884 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
885 page = bv->bv_page;
886 bio_offset = bv->bv_offset;
887 max_write = bv->bv_len;
888#endif
889 } else {
890 page = zero_page;
891 }
892 len = min_t(int, max_write - con->out_msg_pos.page_pos,
893 total_max_write);
894
895 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
896 void *base;
897 u32 crc;
898 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
899 char *kaddr;
900
901 kaddr = kmap(page);
902 BUG_ON(kaddr == NULL);
903 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
904 crc = crc32c(tmpcrc, base, len);
905 con->out_msg->footer.data_crc = cpu_to_le32(crc);
906 con->out_msg_pos.did_page_crc = true;
907 }
908 ret = ceph_tcp_sendpage(con->sock, page,
909 con->out_msg_pos.page_pos + bio_offset,
910 len, 1);
911
912 if (do_datacrc)
913 kunmap(page);
914
915 if (ret <= 0)
916 goto out;
917
918 con->out_msg_pos.data_pos += ret;
919 con->out_msg_pos.page_pos += ret;
920 if (ret == len) {
921 con->out_msg_pos.page_pos = 0;
922 con->out_msg_pos.page++;
923 con->out_msg_pos.did_page_crc = false;
924 if (in_trail)
925 list_move_tail(&page->lru,
926 &msg->trail->head);
927 else if (msg->pagelist)
928 list_move_tail(&page->lru,
929 &msg->pagelist->head);
930#ifdef CONFIG_BLOCK
931 else if (msg->bio)
932 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
933#endif
934 }
935 }
936
937 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
938
939 /* prepare and queue up footer, too */
940 if (!do_datacrc)
941 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
942 ceph_con_out_kvec_reset(con);
943 prepare_write_message_footer(con);
944 ret = 1;
945out:
946 return ret;
947}
948
949/*
950 * write some zeros
951 */
952static int write_partial_skip(struct ceph_connection *con)
953{
954 int ret;
955
956 while (con->out_skip > 0) {
957 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
958
959 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
960 if (ret <= 0)
961 goto out;
962 con->out_skip -= ret;
963 }
964 ret = 1;
965out:
966 return ret;
967}
968
969/*
970 * Prepare to read connection handshake, or an ack.
971 */
972static void prepare_read_banner(struct ceph_connection *con)
973{
974 dout("prepare_read_banner %p\n", con);
975 con->in_base_pos = 0;
976}
977
978static void prepare_read_connect(struct ceph_connection *con)
979{
980 dout("prepare_read_connect %p\n", con);
981 con->in_base_pos = 0;
982}
983
984static void prepare_read_ack(struct ceph_connection *con)
985{
986 dout("prepare_read_ack %p\n", con);
987 con->in_base_pos = 0;
988}
989
990static void prepare_read_tag(struct ceph_connection *con)
991{
992 dout("prepare_read_tag %p\n", con);
993 con->in_base_pos = 0;
994 con->in_tag = CEPH_MSGR_TAG_READY;
995}
996
997/*
998 * Prepare to read a message.
999 */
1000static int prepare_read_message(struct ceph_connection *con)
1001{
1002 dout("prepare_read_message %p\n", con);
1003 BUG_ON(con->in_msg != NULL);
1004 con->in_base_pos = 0;
1005 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1006 return 0;
1007}
1008
1009
1010static int read_partial(struct ceph_connection *con,
1011 int end, int size, void *object)
1012{
1013 while (con->in_base_pos < end) {
1014 int left = end - con->in_base_pos;
1015 int have = size - left;
1016 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1017 if (ret <= 0)
1018 return ret;
1019 con->in_base_pos += ret;
1020 }
1021 return 1;
1022}
1023
1024
1025/*
1026 * Read all or part of the connect-side handshake on a new connection
1027 */
1028static int read_partial_banner(struct ceph_connection *con)
1029{
1030 int size;
1031 int end;
1032 int ret;
1033
1034 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1035
1036 /* peer's banner */
1037 size = strlen(CEPH_BANNER);
1038 end = size;
1039 ret = read_partial(con, end, size, con->in_banner);
1040 if (ret <= 0)
1041 goto out;
1042
1043 size = sizeof (con->actual_peer_addr);
1044 end += size;
1045 ret = read_partial(con, end, size, &con->actual_peer_addr);
1046 if (ret <= 0)
1047 goto out;
1048
1049 size = sizeof (con->peer_addr_for_me);
1050 end += size;
1051 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1052 if (ret <= 0)
1053 goto out;
1054
1055out:
1056 return ret;
1057}
1058
1059static int read_partial_connect(struct ceph_connection *con)
1060{
1061 int size;
1062 int end;
1063 int ret;
1064
1065 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1066
1067 size = sizeof (con->in_reply);
1068 end = size;
1069 ret = read_partial(con, end, size, &con->in_reply);
1070 if (ret <= 0)
1071 goto out;
1072
1073 size = le32_to_cpu(con->in_reply.authorizer_len);
1074 end += size;
1075 ret = read_partial(con, end, size, con->auth_reply_buf);
1076 if (ret <= 0)
1077 goto out;
1078
1079 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1080 con, (int)con->in_reply.tag,
1081 le32_to_cpu(con->in_reply.connect_seq),
1082 le32_to_cpu(con->in_reply.global_seq));
1083out:
1084 return ret;
1085
1086}
1087
1088/*
1089 * Verify the hello banner looks okay.
1090 */
1091static int verify_hello(struct ceph_connection *con)
1092{
1093 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1094 pr_err("connect to %s got bad banner\n",
1095 ceph_pr_addr(&con->peer_addr.in_addr));
1096 con->error_msg = "protocol error, bad banner";
1097 return -1;
1098 }
1099 return 0;
1100}
1101
1102static bool addr_is_blank(struct sockaddr_storage *ss)
1103{
1104 switch (ss->ss_family) {
1105 case AF_INET:
1106 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1107 case AF_INET6:
1108 return
1109 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1110 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1111 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1112 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1113 }
1114 return false;
1115}
1116
1117static int addr_port(struct sockaddr_storage *ss)
1118{
1119 switch (ss->ss_family) {
1120 case AF_INET:
1121 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1122 case AF_INET6:
1123 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1124 }
1125 return 0;
1126}
1127
1128static void addr_set_port(struct sockaddr_storage *ss, int p)
1129{
1130 switch (ss->ss_family) {
1131 case AF_INET:
1132 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1133 break;
1134 case AF_INET6:
1135 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1136 break;
1137 }
1138}
1139
1140/*
1141 * Unlike other *_pton function semantics, zero indicates success.
1142 */
1143static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1144 char delim, const char **ipend)
1145{
1146 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1147 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1148
1149 memset(ss, 0, sizeof(*ss));
1150
1151 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1152 ss->ss_family = AF_INET;
1153 return 0;
1154 }
1155
1156 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1157 ss->ss_family = AF_INET6;
1158 return 0;
1159 }
1160
1161 return -EINVAL;
1162}
1163
1164/*
1165 * Extract hostname string and resolve using kernel DNS facility.
1166 */
1167#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1168static int ceph_dns_resolve_name(const char *name, size_t namelen,
1169 struct sockaddr_storage *ss, char delim, const char **ipend)
1170{
1171 const char *end, *delim_p;
1172 char *colon_p, *ip_addr = NULL;
1173 int ip_len, ret;
1174
1175 /*
1176 * The end of the hostname occurs immediately preceding the delimiter or
1177 * the port marker (':') where the delimiter takes precedence.
1178 */
1179 delim_p = memchr(name, delim, namelen);
1180 colon_p = memchr(name, ':', namelen);
1181
1182 if (delim_p && colon_p)
1183 end = delim_p < colon_p ? delim_p : colon_p;
1184 else if (!delim_p && colon_p)
1185 end = colon_p;
1186 else {
1187 end = delim_p;
1188 if (!end) /* case: hostname:/ */
1189 end = name + namelen;
1190 }
1191
1192 if (end <= name)
1193 return -EINVAL;
1194
1195 /* do dns_resolve upcall */
1196 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1197 if (ip_len > 0)
1198 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1199 else
1200 ret = -ESRCH;
1201
1202 kfree(ip_addr);
1203
1204 *ipend = end;
1205
1206 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1207 ret, ret ? "failed" : ceph_pr_addr(ss));
1208
1209 return ret;
1210}
1211#else
1212static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1213 struct sockaddr_storage *ss, char delim, const char **ipend)
1214{
1215 return -EINVAL;
1216}
1217#endif
1218
1219/*
1220 * Parse a server name (IP or hostname). If a valid IP address is not found
1221 * then try to extract a hostname to resolve using userspace DNS upcall.
1222 */
1223static int ceph_parse_server_name(const char *name, size_t namelen,
1224 struct sockaddr_storage *ss, char delim, const char **ipend)
1225{
1226 int ret;
1227
1228 ret = ceph_pton(name, namelen, ss, delim, ipend);
1229 if (ret)
1230 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1231
1232 return ret;
1233}
1234
1235/*
1236 * Parse an ip[:port] list into an addr array. Use the default
1237 * monitor port if a port isn't specified.
1238 */
1239int ceph_parse_ips(const char *c, const char *end,
1240 struct ceph_entity_addr *addr,
1241 int max_count, int *count)
1242{
1243 int i, ret = -EINVAL;
1244 const char *p = c;
1245
1246 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1247 for (i = 0; i < max_count; i++) {
1248 const char *ipend;
1249 struct sockaddr_storage *ss = &addr[i].in_addr;
1250 int port;
1251 char delim = ',';
1252
1253 if (*p == '[') {
1254 delim = ']';
1255 p++;
1256 }
1257
1258 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1259 if (ret)
1260 goto bad;
1261 ret = -EINVAL;
1262
1263 p = ipend;
1264
1265 if (delim == ']') {
1266 if (*p != ']') {
1267 dout("missing matching ']'\n");
1268 goto bad;
1269 }
1270 p++;
1271 }
1272
1273 /* port? */
1274 if (p < end && *p == ':') {
1275 port = 0;
1276 p++;
1277 while (p < end && *p >= '0' && *p <= '9') {
1278 port = (port * 10) + (*p - '0');
1279 p++;
1280 }
1281 if (port > 65535 || port == 0)
1282 goto bad;
1283 } else {
1284 port = CEPH_MON_PORT;
1285 }
1286
1287 addr_set_port(ss, port);
1288
1289 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1290
1291 if (p == end)
1292 break;
1293 if (*p != ',')
1294 goto bad;
1295 p++;
1296 }
1297
1298 if (p != end)
1299 goto bad;
1300
1301 if (count)
1302 *count = i + 1;
1303 return 0;
1304
1305bad:
1306 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1307 return ret;
1308}
1309EXPORT_SYMBOL(ceph_parse_ips);
1310
1311static int process_banner(struct ceph_connection *con)
1312{
1313 dout("process_banner on %p\n", con);
1314
1315 if (verify_hello(con) < 0)
1316 return -1;
1317
1318 ceph_decode_addr(&con->actual_peer_addr);
1319 ceph_decode_addr(&con->peer_addr_for_me);
1320
1321 /*
1322 * Make sure the other end is who we wanted. note that the other
1323 * end may not yet know their ip address, so if it's 0.0.0.0, give
1324 * them the benefit of the doubt.
1325 */
1326 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1327 sizeof(con->peer_addr)) != 0 &&
1328 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1329 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1330 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1331 ceph_pr_addr(&con->peer_addr.in_addr),
1332 (int)le32_to_cpu(con->peer_addr.nonce),
1333 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1334 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1335 con->error_msg = "wrong peer at address";
1336 return -1;
1337 }
1338
1339 /*
1340 * did we learn our address?
1341 */
1342 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1343 int port = addr_port(&con->msgr->inst.addr.in_addr);
1344
1345 memcpy(&con->msgr->inst.addr.in_addr,
1346 &con->peer_addr_for_me.in_addr,
1347 sizeof(con->peer_addr_for_me.in_addr));
1348 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1349 encode_my_addr(con->msgr);
1350 dout("process_banner learned my addr is %s\n",
1351 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1352 }
1353
1354 set_bit(NEGOTIATING, &con->state);
1355 prepare_read_connect(con);
1356 return 0;
1357}
1358
1359static void fail_protocol(struct ceph_connection *con)
1360{
1361 reset_connection(con);
1362 set_bit(CLOSED, &con->state); /* in case there's queued work */
1363
1364 mutex_unlock(&con->mutex);
1365 if (con->ops->bad_proto)
1366 con->ops->bad_proto(con);
1367 mutex_lock(&con->mutex);
1368}
1369
1370static int process_connect(struct ceph_connection *con)
1371{
1372 u64 sup_feat = con->msgr->supported_features;
1373 u64 req_feat = con->msgr->required_features;
1374 u64 server_feat = le64_to_cpu(con->in_reply.features);
1375 int ret;
1376
1377 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1378
1379 switch (con->in_reply.tag) {
1380 case CEPH_MSGR_TAG_FEATURES:
1381 pr_err("%s%lld %s feature set mismatch,"
1382 " my %llx < server's %llx, missing %llx\n",
1383 ENTITY_NAME(con->peer_name),
1384 ceph_pr_addr(&con->peer_addr.in_addr),
1385 sup_feat, server_feat, server_feat & ~sup_feat);
1386 con->error_msg = "missing required protocol features";
1387 fail_protocol(con);
1388 return -1;
1389
1390 case CEPH_MSGR_TAG_BADPROTOVER:
1391 pr_err("%s%lld %s protocol version mismatch,"
1392 " my %d != server's %d\n",
1393 ENTITY_NAME(con->peer_name),
1394 ceph_pr_addr(&con->peer_addr.in_addr),
1395 le32_to_cpu(con->out_connect.protocol_version),
1396 le32_to_cpu(con->in_reply.protocol_version));
1397 con->error_msg = "protocol version mismatch";
1398 fail_protocol(con);
1399 return -1;
1400
1401 case CEPH_MSGR_TAG_BADAUTHORIZER:
1402 con->auth_retry++;
1403 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1404 con->auth_retry);
1405 if (con->auth_retry == 2) {
1406 con->error_msg = "connect authorization failure";
1407 return -1;
1408 }
1409 con->auth_retry = 1;
1410 ceph_con_out_kvec_reset(con);
1411 ret = prepare_write_connect(con);
1412 if (ret < 0)
1413 return ret;
1414 prepare_read_connect(con);
1415 break;
1416
1417 case CEPH_MSGR_TAG_RESETSESSION:
1418 /*
1419 * If we connected with a large connect_seq but the peer
1420 * has no record of a session with us (no connection, or
1421 * connect_seq == 0), they will send RESETSESION to indicate
1422 * that they must have reset their session, and may have
1423 * dropped messages.
1424 */
1425 dout("process_connect got RESET peer seq %u\n",
1426 le32_to_cpu(con->in_reply.connect_seq));
1427 pr_err("%s%lld %s connection reset\n",
1428 ENTITY_NAME(con->peer_name),
1429 ceph_pr_addr(&con->peer_addr.in_addr));
1430 reset_connection(con);
1431 ceph_con_out_kvec_reset(con);
1432 ret = prepare_write_connect(con);
1433 if (ret < 0)
1434 return ret;
1435 prepare_read_connect(con);
1436
1437 /* Tell ceph about it. */
1438 mutex_unlock(&con->mutex);
1439 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1440 if (con->ops->peer_reset)
1441 con->ops->peer_reset(con);
1442 mutex_lock(&con->mutex);
1443 if (test_bit(CLOSED, &con->state) ||
1444 test_bit(OPENING, &con->state))
1445 return -EAGAIN;
1446 break;
1447
1448 case CEPH_MSGR_TAG_RETRY_SESSION:
1449 /*
1450 * If we sent a smaller connect_seq than the peer has, try
1451 * again with a larger value.
1452 */
1453 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1454 le32_to_cpu(con->out_connect.connect_seq),
1455 le32_to_cpu(con->in_reply.connect_seq));
1456 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1457 ceph_con_out_kvec_reset(con);
1458 ret = prepare_write_connect(con);
1459 if (ret < 0)
1460 return ret;
1461 prepare_read_connect(con);
1462 break;
1463
1464 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1465 /*
1466 * If we sent a smaller global_seq than the peer has, try
1467 * again with a larger value.
1468 */
1469 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1470 con->peer_global_seq,
1471 le32_to_cpu(con->in_reply.global_seq));
1472 get_global_seq(con->msgr,
1473 le32_to_cpu(con->in_reply.global_seq));
1474 ceph_con_out_kvec_reset(con);
1475 ret = prepare_write_connect(con);
1476 if (ret < 0)
1477 return ret;
1478 prepare_read_connect(con);
1479 break;
1480
1481 case CEPH_MSGR_TAG_READY:
1482 if (req_feat & ~server_feat) {
1483 pr_err("%s%lld %s protocol feature mismatch,"
1484 " my required %llx > server's %llx, need %llx\n",
1485 ENTITY_NAME(con->peer_name),
1486 ceph_pr_addr(&con->peer_addr.in_addr),
1487 req_feat, server_feat, req_feat & ~server_feat);
1488 con->error_msg = "missing required protocol features";
1489 fail_protocol(con);
1490 return -1;
1491 }
1492 clear_bit(CONNECTING, &con->state);
1493 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1494 con->connect_seq++;
1495 con->peer_features = server_feat;
1496 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1497 con->peer_global_seq,
1498 le32_to_cpu(con->in_reply.connect_seq),
1499 con->connect_seq);
1500 WARN_ON(con->connect_seq !=
1501 le32_to_cpu(con->in_reply.connect_seq));
1502
1503 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1504 set_bit(LOSSYTX, &con->state);
1505
1506 prepare_read_tag(con);
1507 break;
1508
1509 case CEPH_MSGR_TAG_WAIT:
1510 /*
1511 * If there is a connection race (we are opening
1512 * connections to each other), one of us may just have
1513 * to WAIT. This shouldn't happen if we are the
1514 * client.
1515 */
1516 pr_err("process_connect got WAIT as client\n");
1517 con->error_msg = "protocol error, got WAIT as client";
1518 return -1;
1519
1520 default:
1521 pr_err("connect protocol error, will retry\n");
1522 con->error_msg = "protocol error, garbage tag during connect";
1523 return -1;
1524 }
1525 return 0;
1526}
1527
1528
1529/*
1530 * read (part of) an ack
1531 */
1532static int read_partial_ack(struct ceph_connection *con)
1533{
1534 int size = sizeof (con->in_temp_ack);
1535 int end = size;
1536
1537 return read_partial(con, end, size, &con->in_temp_ack);
1538}
1539
1540
1541/*
1542 * We can finally discard anything that's been acked.
1543 */
1544static void process_ack(struct ceph_connection *con)
1545{
1546 struct ceph_msg *m;
1547 u64 ack = le64_to_cpu(con->in_temp_ack);
1548 u64 seq;
1549
1550 while (!list_empty(&con->out_sent)) {
1551 m = list_first_entry(&con->out_sent, struct ceph_msg,
1552 list_head);
1553 seq = le64_to_cpu(m->hdr.seq);
1554 if (seq > ack)
1555 break;
1556 dout("got ack for seq %llu type %d at %p\n", seq,
1557 le16_to_cpu(m->hdr.type), m);
1558 m->ack_stamp = jiffies;
1559 ceph_msg_remove(m);
1560 }
1561 prepare_read_tag(con);
1562}
1563
1564
1565
1566
1567static int read_partial_message_section(struct ceph_connection *con,
1568 struct kvec *section,
1569 unsigned int sec_len, u32 *crc)
1570{
1571 int ret, left;
1572
1573 BUG_ON(!section);
1574
1575 while (section->iov_len < sec_len) {
1576 BUG_ON(section->iov_base == NULL);
1577 left = sec_len - section->iov_len;
1578 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1579 section->iov_len, left);
1580 if (ret <= 0)
1581 return ret;
1582 section->iov_len += ret;
1583 }
1584 if (section->iov_len == sec_len)
1585 *crc = crc32c(0, section->iov_base, section->iov_len);
1586
1587 return 1;
1588}
1589
1590static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1591 struct ceph_msg_header *hdr,
1592 int *skip);
1593
1594
1595static int read_partial_message_pages(struct ceph_connection *con,
1596 struct page **pages,
1597 unsigned int data_len, bool do_datacrc)
1598{
1599 void *p;
1600 int ret;
1601 int left;
1602
1603 left = min((int)(data_len - con->in_msg_pos.data_pos),
1604 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1605 /* (page) data */
1606 BUG_ON(pages == NULL);
1607 p = kmap(pages[con->in_msg_pos.page]);
1608 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1609 left);
1610 if (ret > 0 && do_datacrc)
1611 con->in_data_crc =
1612 crc32c(con->in_data_crc,
1613 p + con->in_msg_pos.page_pos, ret);
1614 kunmap(pages[con->in_msg_pos.page]);
1615 if (ret <= 0)
1616 return ret;
1617 con->in_msg_pos.data_pos += ret;
1618 con->in_msg_pos.page_pos += ret;
1619 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1620 con->in_msg_pos.page_pos = 0;
1621 con->in_msg_pos.page++;
1622 }
1623
1624 return ret;
1625}
1626
1627#ifdef CONFIG_BLOCK
1628static int read_partial_message_bio(struct ceph_connection *con,
1629 struct bio **bio_iter, int *bio_seg,
1630 unsigned int data_len, bool do_datacrc)
1631{
1632 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1633 void *p;
1634 int ret, left;
1635
1636 if (IS_ERR(bv))
1637 return PTR_ERR(bv);
1638
1639 left = min((int)(data_len - con->in_msg_pos.data_pos),
1640 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1641
1642 p = kmap(bv->bv_page) + bv->bv_offset;
1643
1644 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1645 left);
1646 if (ret > 0 && do_datacrc)
1647 con->in_data_crc =
1648 crc32c(con->in_data_crc,
1649 p + con->in_msg_pos.page_pos, ret);
1650 kunmap(bv->bv_page);
1651 if (ret <= 0)
1652 return ret;
1653 con->in_msg_pos.data_pos += ret;
1654 con->in_msg_pos.page_pos += ret;
1655 if (con->in_msg_pos.page_pos == bv->bv_len) {
1656 con->in_msg_pos.page_pos = 0;
1657 iter_bio_next(bio_iter, bio_seg);
1658 }
1659
1660 return ret;
1661}
1662#endif
1663
1664/*
1665 * read (part of) a message.
1666 */
1667static int read_partial_message(struct ceph_connection *con)
1668{
1669 struct ceph_msg *m = con->in_msg;
1670 int size;
1671 int end;
1672 int ret;
1673 unsigned int front_len, middle_len, data_len;
1674 bool do_datacrc = !con->msgr->nocrc;
1675 int skip;
1676 u64 seq;
1677 u32 crc;
1678
1679 dout("read_partial_message con %p msg %p\n", con, m);
1680
1681 /* header */
1682 size = sizeof (con->in_hdr);
1683 end = size;
1684 ret = read_partial(con, end, size, &con->in_hdr);
1685 if (ret <= 0)
1686 return ret;
1687
1688 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1689 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1690 pr_err("read_partial_message bad hdr "
1691 " crc %u != expected %u\n",
1692 crc, con->in_hdr.crc);
1693 return -EBADMSG;
1694 }
1695
1696 front_len = le32_to_cpu(con->in_hdr.front_len);
1697 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1698 return -EIO;
1699 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1700 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1701 return -EIO;
1702 data_len = le32_to_cpu(con->in_hdr.data_len);
1703 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1704 return -EIO;
1705
1706 /* verify seq# */
1707 seq = le64_to_cpu(con->in_hdr.seq);
1708 if ((s64)seq - (s64)con->in_seq < 1) {
1709 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1710 ENTITY_NAME(con->peer_name),
1711 ceph_pr_addr(&con->peer_addr.in_addr),
1712 seq, con->in_seq + 1);
1713 con->in_base_pos = -front_len - middle_len - data_len -
1714 sizeof(m->footer);
1715 con->in_tag = CEPH_MSGR_TAG_READY;
1716 return 0;
1717 } else if ((s64)seq - (s64)con->in_seq > 1) {
1718 pr_err("read_partial_message bad seq %lld expected %lld\n",
1719 seq, con->in_seq + 1);
1720 con->error_msg = "bad message sequence # for incoming message";
1721 return -EBADMSG;
1722 }
1723
1724 /* allocate message? */
1725 if (!con->in_msg) {
1726 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1727 con->in_hdr.front_len, con->in_hdr.data_len);
1728 skip = 0;
1729 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1730 if (skip) {
1731 /* skip this message */
1732 dout("alloc_msg said skip message\n");
1733 BUG_ON(con->in_msg);
1734 con->in_base_pos = -front_len - middle_len - data_len -
1735 sizeof(m->footer);
1736 con->in_tag = CEPH_MSGR_TAG_READY;
1737 con->in_seq++;
1738 return 0;
1739 }
1740 if (!con->in_msg) {
1741 con->error_msg =
1742 "error allocating memory for incoming message";
1743 return -ENOMEM;
1744 }
1745 m = con->in_msg;
1746 m->front.iov_len = 0; /* haven't read it yet */
1747 if (m->middle)
1748 m->middle->vec.iov_len = 0;
1749
1750 con->in_msg_pos.page = 0;
1751 if (m->pages)
1752 con->in_msg_pos.page_pos = m->page_alignment;
1753 else
1754 con->in_msg_pos.page_pos = 0;
1755 con->in_msg_pos.data_pos = 0;
1756 }
1757
1758 /* front */
1759 ret = read_partial_message_section(con, &m->front, front_len,
1760 &con->in_front_crc);
1761 if (ret <= 0)
1762 return ret;
1763
1764 /* middle */
1765 if (m->middle) {
1766 ret = read_partial_message_section(con, &m->middle->vec,
1767 middle_len,
1768 &con->in_middle_crc);
1769 if (ret <= 0)
1770 return ret;
1771 }
1772#ifdef CONFIG_BLOCK
1773 if (m->bio && !m->bio_iter)
1774 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1775#endif
1776
1777 /* (page) data */
1778 while (con->in_msg_pos.data_pos < data_len) {
1779 if (m->pages) {
1780 ret = read_partial_message_pages(con, m->pages,
1781 data_len, do_datacrc);
1782 if (ret <= 0)
1783 return ret;
1784#ifdef CONFIG_BLOCK
1785 } else if (m->bio) {
1786
1787 ret = read_partial_message_bio(con,
1788 &m->bio_iter, &m->bio_seg,
1789 data_len, do_datacrc);
1790 if (ret <= 0)
1791 return ret;
1792#endif
1793 } else {
1794 BUG_ON(1);
1795 }
1796 }
1797
1798 /* footer */
1799 size = sizeof (m->footer);
1800 end += size;
1801 ret = read_partial(con, end, size, &m->footer);
1802 if (ret <= 0)
1803 return ret;
1804
1805 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1806 m, front_len, m->footer.front_crc, middle_len,
1807 m->footer.middle_crc, data_len, m->footer.data_crc);
1808
1809 /* crc ok? */
1810 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1811 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1812 m, con->in_front_crc, m->footer.front_crc);
1813 return -EBADMSG;
1814 }
1815 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1816 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1817 m, con->in_middle_crc, m->footer.middle_crc);
1818 return -EBADMSG;
1819 }
1820 if (do_datacrc &&
1821 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1822 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1823 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1824 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1825 return -EBADMSG;
1826 }
1827
1828 return 1; /* done! */
1829}
1830
1831/*
1832 * Process message. This happens in the worker thread. The callback should
1833 * be careful not to do anything that waits on other incoming messages or it
1834 * may deadlock.
1835 */
1836static void process_message(struct ceph_connection *con)
1837{
1838 struct ceph_msg *msg;
1839
1840 msg = con->in_msg;
1841 con->in_msg = NULL;
1842
1843 /* if first message, set peer_name */
1844 if (con->peer_name.type == 0)
1845 con->peer_name = msg->hdr.src;
1846
1847 con->in_seq++;
1848 mutex_unlock(&con->mutex);
1849
1850 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1851 msg, le64_to_cpu(msg->hdr.seq),
1852 ENTITY_NAME(msg->hdr.src),
1853 le16_to_cpu(msg->hdr.type),
1854 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1855 le32_to_cpu(msg->hdr.front_len),
1856 le32_to_cpu(msg->hdr.data_len),
1857 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1858 con->ops->dispatch(con, msg);
1859
1860 mutex_lock(&con->mutex);
1861 prepare_read_tag(con);
1862}
1863
1864
1865/*
1866 * Write something to the socket. Called in a worker thread when the
1867 * socket appears to be writeable and we have something ready to send.
1868 */
1869static int try_write(struct ceph_connection *con)
1870{
1871 int ret = 1;
1872
1873 dout("try_write start %p state %lu nref %d\n", con, con->state,
1874 atomic_read(&con->nref));
1875
1876more:
1877 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1878
1879 /* open the socket first? */
1880 if (con->sock == NULL) {
1881 ceph_con_out_kvec_reset(con);
1882 prepare_write_banner(con);
1883 ret = prepare_write_connect(con);
1884 if (ret < 0)
1885 goto out;
1886 prepare_read_banner(con);
1887 set_bit(CONNECTING, &con->state);
1888 clear_bit(NEGOTIATING, &con->state);
1889
1890 BUG_ON(con->in_msg);
1891 con->in_tag = CEPH_MSGR_TAG_READY;
1892 dout("try_write initiating connect on %p new state %lu\n",
1893 con, con->state);
1894 ret = ceph_tcp_connect(con);
1895 if (ret < 0) {
1896 con->error_msg = "connect error";
1897 goto out;
1898 }
1899 }
1900
1901more_kvec:
1902 /* kvec data queued? */
1903 if (con->out_skip) {
1904 ret = write_partial_skip(con);
1905 if (ret <= 0)
1906 goto out;
1907 }
1908 if (con->out_kvec_left) {
1909 ret = write_partial_kvec(con);
1910 if (ret <= 0)
1911 goto out;
1912 }
1913
1914 /* msg pages? */
1915 if (con->out_msg) {
1916 if (con->out_msg_done) {
1917 ceph_msg_put(con->out_msg);
1918 con->out_msg = NULL; /* we're done with this one */
1919 goto do_next;
1920 }
1921
1922 ret = write_partial_msg_pages(con);
1923 if (ret == 1)
1924 goto more_kvec; /* we need to send the footer, too! */
1925 if (ret == 0)
1926 goto out;
1927 if (ret < 0) {
1928 dout("try_write write_partial_msg_pages err %d\n",
1929 ret);
1930 goto out;
1931 }
1932 }
1933
1934do_next:
1935 if (!test_bit(CONNECTING, &con->state)) {
1936 /* is anything else pending? */
1937 if (!list_empty(&con->out_queue)) {
1938 prepare_write_message(con);
1939 goto more;
1940 }
1941 if (con->in_seq > con->in_seq_acked) {
1942 prepare_write_ack(con);
1943 goto more;
1944 }
1945 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1946 prepare_write_keepalive(con);
1947 goto more;
1948 }
1949 }
1950
1951 /* Nothing to do! */
1952 clear_bit(WRITE_PENDING, &con->state);
1953 dout("try_write nothing else to write.\n");
1954 ret = 0;
1955out:
1956 dout("try_write done on %p ret %d\n", con, ret);
1957 return ret;
1958}
1959
1960
1961
1962/*
1963 * Read what we can from the socket.
1964 */
1965static int try_read(struct ceph_connection *con)
1966{
1967 int ret = -1;
1968
1969 if (!con->sock)
1970 return 0;
1971
1972 if (test_bit(STANDBY, &con->state))
1973 return 0;
1974
1975 dout("try_read start on %p\n", con);
1976
1977more:
1978 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1979 con->in_base_pos);
1980
1981 /*
1982 * process_connect and process_message drop and re-take
1983 * con->mutex. make sure we handle a racing close or reopen.
1984 */
1985 if (test_bit(CLOSED, &con->state) ||
1986 test_bit(OPENING, &con->state)) {
1987 ret = -EAGAIN;
1988 goto out;
1989 }
1990
1991 if (test_bit(CONNECTING, &con->state)) {
1992 if (!test_bit(NEGOTIATING, &con->state)) {
1993 dout("try_read connecting\n");
1994 ret = read_partial_banner(con);
1995 if (ret <= 0)
1996 goto out;
1997 ret = process_banner(con);
1998 if (ret < 0)
1999 goto out;
2000 }
2001 ret = read_partial_connect(con);
2002 if (ret <= 0)
2003 goto out;
2004 ret = process_connect(con);
2005 if (ret < 0)
2006 goto out;
2007 goto more;
2008 }
2009
2010 if (con->in_base_pos < 0) {
2011 /*
2012 * skipping + discarding content.
2013 *
2014 * FIXME: there must be a better way to do this!
2015 */
2016 static char buf[SKIP_BUF_SIZE];
2017 int skip = min((int) sizeof (buf), -con->in_base_pos);
2018
2019 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2020 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2021 if (ret <= 0)
2022 goto out;
2023 con->in_base_pos += ret;
2024 if (con->in_base_pos)
2025 goto more;
2026 }
2027 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2028 /*
2029 * what's next?
2030 */
2031 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2032 if (ret <= 0)
2033 goto out;
2034 dout("try_read got tag %d\n", (int)con->in_tag);
2035 switch (con->in_tag) {
2036 case CEPH_MSGR_TAG_MSG:
2037 prepare_read_message(con);
2038 break;
2039 case CEPH_MSGR_TAG_ACK:
2040 prepare_read_ack(con);
2041 break;
2042 case CEPH_MSGR_TAG_CLOSE:
2043 set_bit(CLOSED, &con->state); /* fixme */
2044 goto out;
2045 default:
2046 goto bad_tag;
2047 }
2048 }
2049 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2050 ret = read_partial_message(con);
2051 if (ret <= 0) {
2052 switch (ret) {
2053 case -EBADMSG:
2054 con->error_msg = "bad crc";
2055 ret = -EIO;
2056 break;
2057 case -EIO:
2058 con->error_msg = "io error";
2059 break;
2060 }
2061 goto out;
2062 }
2063 if (con->in_tag == CEPH_MSGR_TAG_READY)
2064 goto more;
2065 process_message(con);
2066 goto more;
2067 }
2068 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2069 ret = read_partial_ack(con);
2070 if (ret <= 0)
2071 goto out;
2072 process_ack(con);
2073 goto more;
2074 }
2075
2076out:
2077 dout("try_read done on %p ret %d\n", con, ret);
2078 return ret;
2079
2080bad_tag:
2081 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2082 con->error_msg = "protocol error, garbage tag";
2083 ret = -1;
2084 goto out;
2085}
2086
2087
2088/*
2089 * Atomically queue work on a connection. Bump @con reference to
2090 * avoid races with connection teardown.
2091 */
2092static void queue_con(struct ceph_connection *con)
2093{
2094 if (test_bit(DEAD, &con->state)) {
2095 dout("queue_con %p ignoring: DEAD\n",
2096 con);
2097 return;
2098 }
2099
2100 if (!con->ops->get(con)) {
2101 dout("queue_con %p ref count 0\n", con);
2102 return;
2103 }
2104
2105 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2106 dout("queue_con %p - already queued\n", con);
2107 con->ops->put(con);
2108 } else {
2109 dout("queue_con %p\n", con);
2110 }
2111}
2112
2113/*
2114 * Do some work on a connection. Drop a connection ref when we're done.
2115 */
2116static void con_work(struct work_struct *work)
2117{
2118 struct ceph_connection *con = container_of(work, struct ceph_connection,
2119 work.work);
2120 int ret;
2121
2122 mutex_lock(&con->mutex);
2123restart:
2124 if (test_and_clear_bit(BACKOFF, &con->state)) {
2125 dout("con_work %p backing off\n", con);
2126 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2127 round_jiffies_relative(con->delay))) {
2128 dout("con_work %p backoff %lu\n", con, con->delay);
2129 mutex_unlock(&con->mutex);
2130 return;
2131 } else {
2132 con->ops->put(con);
2133 dout("con_work %p FAILED to back off %lu\n", con,
2134 con->delay);
2135 }
2136 }
2137
2138 if (test_bit(STANDBY, &con->state)) {
2139 dout("con_work %p STANDBY\n", con);
2140 goto done;
2141 }
2142 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2143 dout("con_work CLOSED\n");
2144 con_close_socket(con);
2145 goto done;
2146 }
2147 if (test_and_clear_bit(OPENING, &con->state)) {
2148 /* reopen w/ new peer */
2149 dout("con_work OPENING\n");
2150 con_close_socket(con);
2151 }
2152
2153 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2154 goto fault;
2155
2156 ret = try_read(con);
2157 if (ret == -EAGAIN)
2158 goto restart;
2159 if (ret < 0)
2160 goto fault;
2161
2162 ret = try_write(con);
2163 if (ret == -EAGAIN)
2164 goto restart;
2165 if (ret < 0)
2166 goto fault;
2167
2168done:
2169 mutex_unlock(&con->mutex);
2170done_unlocked:
2171 con->ops->put(con);
2172 return;
2173
2174fault:
2175 mutex_unlock(&con->mutex);
2176 ceph_fault(con); /* error/fault path */
2177 goto done_unlocked;
2178}
2179
2180
2181/*
2182 * Generic error/fault handler. A retry mechanism is used with
2183 * exponential backoff
2184 */
2185static void ceph_fault(struct ceph_connection *con)
2186{
2187 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2188 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2189 dout("fault %p state %lu to peer %s\n",
2190 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2191
2192 if (test_bit(LOSSYTX, &con->state)) {
2193 dout("fault on LOSSYTX channel\n");
2194 goto out;
2195 }
2196
2197 mutex_lock(&con->mutex);
2198 if (test_bit(CLOSED, &con->state))
2199 goto out_unlock;
2200
2201 con_close_socket(con);
2202
2203 if (con->in_msg) {
2204 ceph_msg_put(con->in_msg);
2205 con->in_msg = NULL;
2206 }
2207
2208 /* Requeue anything that hasn't been acked */
2209 list_splice_init(&con->out_sent, &con->out_queue);
2210
2211 /* If there are no messages queued or keepalive pending, place
2212 * the connection in a STANDBY state */
2213 if (list_empty(&con->out_queue) &&
2214 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2215 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2216 clear_bit(WRITE_PENDING, &con->state);
2217 set_bit(STANDBY, &con->state);
2218 } else {
2219 /* retry after a delay. */
2220 if (con->delay == 0)
2221 con->delay = BASE_DELAY_INTERVAL;
2222 else if (con->delay < MAX_DELAY_INTERVAL)
2223 con->delay *= 2;
2224 con->ops->get(con);
2225 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2226 round_jiffies_relative(con->delay))) {
2227 dout("fault queued %p delay %lu\n", con, con->delay);
2228 } else {
2229 con->ops->put(con);
2230 dout("fault failed to queue %p delay %lu, backoff\n",
2231 con, con->delay);
2232 /*
2233 * In many cases we see a socket state change
2234 * while con_work is running and end up
2235 * queuing (non-delayed) work, such that we
2236 * can't backoff with a delay. Set a flag so
2237 * that when con_work restarts we schedule the
2238 * delay then.
2239 */
2240 set_bit(BACKOFF, &con->state);
2241 }
2242 }
2243
2244out_unlock:
2245 mutex_unlock(&con->mutex);
2246out:
2247 /*
2248 * in case we faulted due to authentication, invalidate our
2249 * current tickets so that we can get new ones.
2250 */
2251 if (con->auth_retry && con->ops->invalidate_authorizer) {
2252 dout("calling invalidate_authorizer()\n");
2253 con->ops->invalidate_authorizer(con);
2254 }
2255
2256 if (con->ops->fault)
2257 con->ops->fault(con);
2258}
2259
2260
2261
2262/*
2263 * create a new messenger instance
2264 */
2265struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2266 u32 supported_features,
2267 u32 required_features)
2268{
2269 struct ceph_messenger *msgr;
2270
2271 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2272 if (msgr == NULL)
2273 return ERR_PTR(-ENOMEM);
2274
2275 msgr->supported_features = supported_features;
2276 msgr->required_features = required_features;
2277
2278 spin_lock_init(&msgr->global_seq_lock);
2279
2280 if (myaddr)
2281 msgr->inst.addr = *myaddr;
2282
2283 /* select a random nonce */
2284 msgr->inst.addr.type = 0;
2285 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2286 encode_my_addr(msgr);
2287
2288 dout("messenger_create %p\n", msgr);
2289 return msgr;
2290}
2291EXPORT_SYMBOL(ceph_messenger_create);
2292
2293void ceph_messenger_destroy(struct ceph_messenger *msgr)
2294{
2295 dout("destroy %p\n", msgr);
2296 kfree(msgr);
2297 dout("destroyed messenger %p\n", msgr);
2298}
2299EXPORT_SYMBOL(ceph_messenger_destroy);
2300
2301static void clear_standby(struct ceph_connection *con)
2302{
2303 /* come back from STANDBY? */
2304 if (test_and_clear_bit(STANDBY, &con->state)) {
2305 mutex_lock(&con->mutex);
2306 dout("clear_standby %p and ++connect_seq\n", con);
2307 con->connect_seq++;
2308 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2309 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2310 mutex_unlock(&con->mutex);
2311 }
2312}
2313
2314/*
2315 * Queue up an outgoing message on the given connection.
2316 */
2317void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2318{
2319 if (test_bit(CLOSED, &con->state)) {
2320 dout("con_send %p closed, dropping %p\n", con, msg);
2321 ceph_msg_put(msg);
2322 return;
2323 }
2324
2325 /* set src+dst */
2326 msg->hdr.src = con->msgr->inst.name;
2327
2328 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2329
2330 msg->needs_out_seq = true;
2331
2332 /* queue */
2333 mutex_lock(&con->mutex);
2334 BUG_ON(!list_empty(&msg->list_head));
2335 list_add_tail(&msg->list_head, &con->out_queue);
2336 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2337 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2338 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2339 le32_to_cpu(msg->hdr.front_len),
2340 le32_to_cpu(msg->hdr.middle_len),
2341 le32_to_cpu(msg->hdr.data_len));
2342 mutex_unlock(&con->mutex);
2343
2344 /* if there wasn't anything waiting to send before, queue
2345 * new work */
2346 clear_standby(con);
2347 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2348 queue_con(con);
2349}
2350EXPORT_SYMBOL(ceph_con_send);
2351
2352/*
2353 * Revoke a message that was previously queued for send
2354 */
2355void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2356{
2357 mutex_lock(&con->mutex);
2358 if (!list_empty(&msg->list_head)) {
2359 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2360 list_del_init(&msg->list_head);
2361 ceph_msg_put(msg);
2362 msg->hdr.seq = 0;
2363 }
2364 if (con->out_msg == msg) {
2365 dout("con_revoke %p msg %p - was sending\n", con, msg);
2366 con->out_msg = NULL;
2367 if (con->out_kvec_is_msg) {
2368 con->out_skip = con->out_kvec_bytes;
2369 con->out_kvec_is_msg = false;
2370 }
2371 ceph_msg_put(msg);
2372 msg->hdr.seq = 0;
2373 }
2374 mutex_unlock(&con->mutex);
2375}
2376
2377/*
2378 * Revoke a message that we may be reading data into
2379 */
2380void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2381{
2382 mutex_lock(&con->mutex);
2383 if (con->in_msg && con->in_msg == msg) {
2384 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2385 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2386 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2387
2388 /* skip rest of message */
2389 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2390 con->in_base_pos = con->in_base_pos -
2391 sizeof(struct ceph_msg_header) -
2392 front_len -
2393 middle_len -
2394 data_len -
2395 sizeof(struct ceph_msg_footer);
2396 ceph_msg_put(con->in_msg);
2397 con->in_msg = NULL;
2398 con->in_tag = CEPH_MSGR_TAG_READY;
2399 con->in_seq++;
2400 } else {
2401 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2402 con, con->in_msg, msg);
2403 }
2404 mutex_unlock(&con->mutex);
2405}
2406
2407/*
2408 * Queue a keepalive byte to ensure the tcp connection is alive.
2409 */
2410void ceph_con_keepalive(struct ceph_connection *con)
2411{
2412 dout("con_keepalive %p\n", con);
2413 clear_standby(con);
2414 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2415 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2416 queue_con(con);
2417}
2418EXPORT_SYMBOL(ceph_con_keepalive);
2419
2420
2421/*
2422 * construct a new message with given type, size
2423 * the new msg has a ref count of 1.
2424 */
2425struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2426 bool can_fail)
2427{
2428 struct ceph_msg *m;
2429
2430 m = kmalloc(sizeof(*m), flags);
2431 if (m == NULL)
2432 goto out;
2433 kref_init(&m->kref);
2434 INIT_LIST_HEAD(&m->list_head);
2435
2436 m->hdr.tid = 0;
2437 m->hdr.type = cpu_to_le16(type);
2438 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2439 m->hdr.version = 0;
2440 m->hdr.front_len = cpu_to_le32(front_len);
2441 m->hdr.middle_len = 0;
2442 m->hdr.data_len = 0;
2443 m->hdr.data_off = 0;
2444 m->hdr.reserved = 0;
2445 m->footer.front_crc = 0;
2446 m->footer.middle_crc = 0;
2447 m->footer.data_crc = 0;
2448 m->footer.flags = 0;
2449 m->front_max = front_len;
2450 m->front_is_vmalloc = false;
2451 m->more_to_follow = false;
2452 m->ack_stamp = 0;
2453 m->pool = NULL;
2454
2455 /* middle */
2456 m->middle = NULL;
2457
2458 /* data */
2459 m->nr_pages = 0;
2460 m->page_alignment = 0;
2461 m->pages = NULL;
2462 m->pagelist = NULL;
2463 m->bio = NULL;
2464 m->bio_iter = NULL;
2465 m->bio_seg = 0;
2466 m->trail = NULL;
2467
2468 /* front */
2469 if (front_len) {
2470 if (front_len > PAGE_CACHE_SIZE) {
2471 m->front.iov_base = __vmalloc(front_len, flags,
2472 PAGE_KERNEL);
2473 m->front_is_vmalloc = true;
2474 } else {
2475 m->front.iov_base = kmalloc(front_len, flags);
2476 }
2477 if (m->front.iov_base == NULL) {
2478 dout("ceph_msg_new can't allocate %d bytes\n",
2479 front_len);
2480 goto out2;
2481 }
2482 } else {
2483 m->front.iov_base = NULL;
2484 }
2485 m->front.iov_len = front_len;
2486
2487 dout("ceph_msg_new %p front %d\n", m, front_len);
2488 return m;
2489
2490out2:
2491 ceph_msg_put(m);
2492out:
2493 if (!can_fail) {
2494 pr_err("msg_new can't create type %d front %d\n", type,
2495 front_len);
2496 WARN_ON(1);
2497 } else {
2498 dout("msg_new can't create type %d front %d\n", type,
2499 front_len);
2500 }
2501 return NULL;
2502}
2503EXPORT_SYMBOL(ceph_msg_new);
2504
2505/*
2506 * Allocate "middle" portion of a message, if it is needed and wasn't
2507 * allocated by alloc_msg. This allows us to read a small fixed-size
2508 * per-type header in the front and then gracefully fail (i.e.,
2509 * propagate the error to the caller based on info in the front) when
2510 * the middle is too large.
2511 */
2512static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2513{
2514 int type = le16_to_cpu(msg->hdr.type);
2515 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2516
2517 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2518 ceph_msg_type_name(type), middle_len);
2519 BUG_ON(!middle_len);
2520 BUG_ON(msg->middle);
2521
2522 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2523 if (!msg->middle)
2524 return -ENOMEM;
2525 return 0;
2526}
2527
2528/*
2529 * Generic message allocator, for incoming messages.
2530 */
2531static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2532 struct ceph_msg_header *hdr,
2533 int *skip)
2534{
2535 int type = le16_to_cpu(hdr->type);
2536 int front_len = le32_to_cpu(hdr->front_len);
2537 int middle_len = le32_to_cpu(hdr->middle_len);
2538 struct ceph_msg *msg = NULL;
2539 int ret;
2540
2541 if (con->ops->alloc_msg) {
2542 mutex_unlock(&con->mutex);
2543 msg = con->ops->alloc_msg(con, hdr, skip);
2544 mutex_lock(&con->mutex);
2545 if (!msg || *skip)
2546 return NULL;
2547 }
2548 if (!msg) {
2549 *skip = 0;
2550 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2551 if (!msg) {
2552 pr_err("unable to allocate msg type %d len %d\n",
2553 type, front_len);
2554 return NULL;
2555 }
2556 msg->page_alignment = le16_to_cpu(hdr->data_off);
2557 }
2558 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2559
2560 if (middle_len && !msg->middle) {
2561 ret = ceph_alloc_middle(con, msg);
2562 if (ret < 0) {
2563 ceph_msg_put(msg);
2564 return NULL;
2565 }
2566 }
2567
2568 return msg;
2569}
2570
2571
2572/*
2573 * Free a generically kmalloc'd message.
2574 */
2575void ceph_msg_kfree(struct ceph_msg *m)
2576{
2577 dout("msg_kfree %p\n", m);
2578 if (m->front_is_vmalloc)
2579 vfree(m->front.iov_base);
2580 else
2581 kfree(m->front.iov_base);
2582 kfree(m);
2583}
2584
2585/*
2586 * Drop a msg ref. Destroy as needed.
2587 */
2588void ceph_msg_last_put(struct kref *kref)
2589{
2590 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2591
2592 dout("ceph_msg_put last one on %p\n", m);
2593 WARN_ON(!list_empty(&m->list_head));
2594
2595 /* drop middle, data, if any */
2596 if (m->middle) {
2597 ceph_buffer_put(m->middle);
2598 m->middle = NULL;
2599 }
2600 m->nr_pages = 0;
2601 m->pages = NULL;
2602
2603 if (m->pagelist) {
2604 ceph_pagelist_release(m->pagelist);
2605 kfree(m->pagelist);
2606 m->pagelist = NULL;
2607 }
2608
2609 m->trail = NULL;
2610
2611 if (m->pool)
2612 ceph_msgpool_put(m->pool, m);
2613 else
2614 ceph_msg_kfree(m);
2615}
2616EXPORT_SYMBOL(ceph_msg_last_put);
2617
2618void ceph_msg_dump(struct ceph_msg *msg)
2619{
2620 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2621 msg->front_max, msg->nr_pages);
2622 print_hex_dump(KERN_DEBUG, "header: ",
2623 DUMP_PREFIX_OFFSET, 16, 1,
2624 &msg->hdr, sizeof(msg->hdr), true);
2625 print_hex_dump(KERN_DEBUG, " front: ",
2626 DUMP_PREFIX_OFFSET, 16, 1,
2627 msg->front.iov_base, msg->front.iov_len, true);
2628 if (msg->middle)
2629 print_hex_dump(KERN_DEBUG, "middle: ",
2630 DUMP_PREFIX_OFFSET, 16, 1,
2631 msg->middle->vec.iov_base,
2632 msg->middle->vec.iov_len, true);
2633 print_hex_dump(KERN_DEBUG, "footer: ",
2634 DUMP_PREFIX_OFFSET, 16, 1,
2635 &msg->footer, sizeof(msg->footer), true);
2636}
2637EXPORT_SYMBOL(ceph_msg_dump);