Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/tcp.h>
8#include <linux/udp.h>
9#include <linux/ip.h>
10#include <linux/pm_runtime.h>
11#include <net/pkt_sched.h>
12#include <linux/bpf_trace.h>
13#include <net/xdp_sock_drv.h>
14#include <linux/pci.h>
15#include <linux/mdio.h>
16
17#include <net/ipv6.h>
18
19#include "igc.h"
20#include "igc_hw.h"
21#include "igc_tsn.h"
22#include "igc_xdp.h"
23
24#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28#define IGC_XDP_PASS 0
29#define IGC_XDP_CONSUMED BIT(0)
30#define IGC_XDP_TX BIT(1)
31#define IGC_XDP_REDIRECT BIT(2)
32
33static int debug = -1;
34
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37module_param(debug, int, 0);
38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40char igc_driver_name[] = "igc";
41static const char igc_driver_string[] = DRV_SUMMARY;
42static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47};
48
49static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68};
69
70MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77};
78
79void igc_reset(struct igc_adapter *adapter)
80{
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126}
127
128/**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
132static void igc_power_up_link(struct igc_adapter *adapter)
133{
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139}
140
141/**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
149static void igc_release_hw_control(struct igc_adapter *adapter)
150{
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161}
162
163/**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
171static void igc_get_hw_control(struct igc_adapter *adapter)
172{
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180}
181
182static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183{
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188}
189
190/**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
194static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195{
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267}
268
269/**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
275void igc_free_tx_resources(struct igc_ring *tx_ring)
276{
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290}
291
292/**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
298static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299{
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304}
305
306/**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
310static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311{
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317}
318
319static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320{
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329}
330
331/**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
335static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336{
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344}
345
346/**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
352int igc_setup_tx_resources(struct igc_ring *tx_ring)
353{
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382}
383
384/**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
390static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391{
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406}
407
408static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409{
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441}
442
443static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444{
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456}
457
458/**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
462static void igc_clean_rx_ring(struct igc_ring *ring)
463{
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474}
475
476/**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
480static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481{
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487}
488
489/**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
495void igc_free_rx_resources(struct igc_ring *rx_ring)
496{
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512}
513
514/**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
520static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521{
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526}
527
528/**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
534int igc_setup_rx_resources(struct igc_ring *rx_ring)
535{
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581}
582
583/**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
590static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591{
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606}
607
608static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610{
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616}
617
618/**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
625static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627{
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702}
703
704/**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
710static void igc_configure_rx(struct igc_adapter *adapter)
711{
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719}
720
721/**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
728static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730{
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758}
759
760/**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
766static void igc_configure_tx(struct igc_adapter *adapter)
767{
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772}
773
774/**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
778static void igc_setup_mrqc(struct igc_adapter *adapter)
779{
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829}
830
831/**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
835static void igc_setup_rctl(struct igc_adapter *adapter)
836{
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876}
877
878/**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
882static void igc_setup_tctl(struct igc_adapter *adapter)
883{
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900}
901
902/**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
912static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915{
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943}
944
945/**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
950static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951{
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962}
963
964/* Set default MAC address for the PF in the first RAR entry */
965static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966{
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973}
974
975/**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
982static int igc_set_mac(struct net_device *netdev, void *p)
983{
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998}
999
1000/**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
1009static int igc_write_mc_addr_list(struct net_device *netdev)
1010{
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036}
1037
1038static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040{
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082}
1083
1084static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087{
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1100 buffer->skb = skb;
1101 buffer->protocol = 0;
1102 buffer->bytecount = skb->len;
1103 buffer->gso_segs = 1;
1104 buffer->time_stamp = jiffies;
1105 dma_unmap_len_set(buffer, len, skb->len);
1106 dma_unmap_addr_set(buffer, dma, dma);
1107
1108 return 0;
1109}
1110
1111static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 struct sk_buff *skb,
1113 struct igc_tx_buffer *first)
1114{
1115 union igc_adv_tx_desc *desc;
1116 u32 cmd_type, olinfo_status;
1117 int err;
1118
1119 if (!igc_desc_unused(ring))
1120 return -EBUSY;
1121
1122 err = igc_init_empty_frame(ring, first, skb);
1123 if (err)
1124 return err;
1125
1126 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 first->bytecount;
1129 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130
1131 desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135
1136 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137
1138 first->next_to_watch = desc;
1139
1140 ring->next_to_use++;
1141 if (ring->next_to_use == ring->count)
1142 ring->next_to_use = 0;
1143
1144 return 0;
1145}
1146
1147#define IGC_EMPTY_FRAME_SIZE 60
1148
1149static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 __le32 launch_time, bool first_flag,
1151 u32 vlan_macip_lens, u32 type_tucmd,
1152 u32 mss_l4len_idx)
1153{
1154 struct igc_adv_tx_context_desc *context_desc;
1155 u16 i = tx_ring->next_to_use;
1156
1157 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158
1159 i++;
1160 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161
1162 /* set bits to identify this as an advanced context descriptor */
1163 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164
1165 /* For i225, context index must be unique per ring. */
1166 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 mss_l4len_idx |= tx_ring->reg_idx << 4;
1168
1169 if (first_flag)
1170 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171
1172 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1173 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1174 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1175 context_desc->launch_time = launch_time;
1176}
1177
1178static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 __le32 launch_time, bool first_flag)
1180{
1181 struct sk_buff *skb = first->skb;
1182 u32 vlan_macip_lens = 0;
1183 u32 type_tucmd = 0;
1184
1185 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186csum_failed:
1187 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 !tx_ring->launchtime_enable)
1189 return;
1190 goto no_csum;
1191 }
1192
1193 switch (skb->csum_offset) {
1194 case offsetof(struct tcphdr, check):
1195 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 fallthrough;
1197 case offsetof(struct udphdr, check):
1198 break;
1199 case offsetof(struct sctphdr, checksum):
1200 /* validate that this is actually an SCTP request */
1201 if (skb_csum_is_sctp(skb)) {
1202 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 break;
1204 }
1205 fallthrough;
1206 default:
1207 skb_checksum_help(skb);
1208 goto csum_failed;
1209 }
1210
1211 /* update TX checksum flag */
1212 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 skb_network_offset(skb);
1215no_csum:
1216 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218
1219 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 vlan_macip_lens, type_tucmd, 0);
1221}
1222
1223static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224{
1225 struct net_device *netdev = tx_ring->netdev;
1226
1227 netif_stop_subqueue(netdev, tx_ring->queue_index);
1228
1229 /* memory barriier comment */
1230 smp_mb();
1231
1232 /* We need to check again in a case another CPU has just
1233 * made room available.
1234 */
1235 if (igc_desc_unused(tx_ring) < size)
1236 return -EBUSY;
1237
1238 /* A reprieve! */
1239 netif_wake_subqueue(netdev, tx_ring->queue_index);
1240
1241 u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 tx_ring->tx_stats.restart_queue2++;
1243 u64_stats_update_end(&tx_ring->tx_syncp2);
1244
1245 return 0;
1246}
1247
1248static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249{
1250 if (igc_desc_unused(tx_ring) >= size)
1251 return 0;
1252 return __igc_maybe_stop_tx(tx_ring, size);
1253}
1254
1255#define IGC_SET_FLAG(_input, _flag, _result) \
1256 (((_flag) <= (_result)) ? \
1257 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1258 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259
1260static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261{
1262 /* set type for advanced descriptor with frame checksum insertion */
1263 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 IGC_ADVTXD_DCMD_DEXT |
1265 IGC_ADVTXD_DCMD_IFCS;
1266
1267 /* set HW vlan bit if vlan is present */
1268 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 IGC_ADVTXD_DCMD_VLE);
1270
1271 /* set segmentation bits for TSO */
1272 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 (IGC_ADVTXD_DCMD_TSE));
1274
1275 /* set timestamp bit if present, will select the register set
1276 * based on the _TSTAMP(_X) bit.
1277 */
1278 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1279 (IGC_ADVTXD_MAC_TSTAMP));
1280
1281 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1282 (IGC_ADVTXD_TSTAMP_REG_1));
1283
1284 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1285 (IGC_ADVTXD_TSTAMP_REG_2));
1286
1287 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1288 (IGC_ADVTXD_TSTAMP_REG_3));
1289
1290 /* insert frame checksum */
1291 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1292
1293 return cmd_type;
1294}
1295
1296static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1297 union igc_adv_tx_desc *tx_desc,
1298 u32 tx_flags, unsigned int paylen)
1299{
1300 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1301
1302 /* insert L4 checksum */
1303 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1304 (IGC_TXD_POPTS_TXSM << 8));
1305
1306 /* insert IPv4 checksum */
1307 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1308 (IGC_TXD_POPTS_IXSM << 8));
1309
1310 /* Use the second timer (free running, in general) for the timestamp */
1311 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1312 IGC_TXD_PTP2_TIMER_1);
1313
1314 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1315}
1316
1317static int igc_tx_map(struct igc_ring *tx_ring,
1318 struct igc_tx_buffer *first,
1319 const u8 hdr_len)
1320{
1321 struct sk_buff *skb = first->skb;
1322 struct igc_tx_buffer *tx_buffer;
1323 union igc_adv_tx_desc *tx_desc;
1324 u32 tx_flags = first->tx_flags;
1325 skb_frag_t *frag;
1326 u16 i = tx_ring->next_to_use;
1327 unsigned int data_len, size;
1328 dma_addr_t dma;
1329 u32 cmd_type;
1330
1331 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1332 tx_desc = IGC_TX_DESC(tx_ring, i);
1333
1334 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1335
1336 size = skb_headlen(skb);
1337 data_len = skb->data_len;
1338
1339 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1340
1341 tx_buffer = first;
1342
1343 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1344 if (dma_mapping_error(tx_ring->dev, dma))
1345 goto dma_error;
1346
1347 /* record length, and DMA address */
1348 dma_unmap_len_set(tx_buffer, len, size);
1349 dma_unmap_addr_set(tx_buffer, dma, dma);
1350
1351 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1352
1353 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1354 tx_desc->read.cmd_type_len =
1355 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1356
1357 i++;
1358 tx_desc++;
1359 if (i == tx_ring->count) {
1360 tx_desc = IGC_TX_DESC(tx_ring, 0);
1361 i = 0;
1362 }
1363 tx_desc->read.olinfo_status = 0;
1364
1365 dma += IGC_MAX_DATA_PER_TXD;
1366 size -= IGC_MAX_DATA_PER_TXD;
1367
1368 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1369 }
1370
1371 if (likely(!data_len))
1372 break;
1373
1374 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1375
1376 i++;
1377 tx_desc++;
1378 if (i == tx_ring->count) {
1379 tx_desc = IGC_TX_DESC(tx_ring, 0);
1380 i = 0;
1381 }
1382 tx_desc->read.olinfo_status = 0;
1383
1384 size = skb_frag_size(frag);
1385 data_len -= size;
1386
1387 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1388 size, DMA_TO_DEVICE);
1389
1390 tx_buffer = &tx_ring->tx_buffer_info[i];
1391 }
1392
1393 /* write last descriptor with RS and EOP bits */
1394 cmd_type |= size | IGC_TXD_DCMD;
1395 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1396
1397 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1398
1399 /* set the timestamp */
1400 first->time_stamp = jiffies;
1401
1402 skb_tx_timestamp(skb);
1403
1404 /* Force memory writes to complete before letting h/w know there
1405 * are new descriptors to fetch. (Only applicable for weak-ordered
1406 * memory model archs, such as IA-64).
1407 *
1408 * We also need this memory barrier to make certain all of the
1409 * status bits have been updated before next_to_watch is written.
1410 */
1411 wmb();
1412
1413 /* set next_to_watch value indicating a packet is present */
1414 first->next_to_watch = tx_desc;
1415
1416 i++;
1417 if (i == tx_ring->count)
1418 i = 0;
1419
1420 tx_ring->next_to_use = i;
1421
1422 /* Make sure there is space in the ring for the next send. */
1423 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1424
1425 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1426 writel(i, tx_ring->tail);
1427 }
1428
1429 return 0;
1430dma_error:
1431 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1432 tx_buffer = &tx_ring->tx_buffer_info[i];
1433
1434 /* clear dma mappings for failed tx_buffer_info map */
1435 while (tx_buffer != first) {
1436 if (dma_unmap_len(tx_buffer, len))
1437 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1438
1439 if (i-- == 0)
1440 i += tx_ring->count;
1441 tx_buffer = &tx_ring->tx_buffer_info[i];
1442 }
1443
1444 if (dma_unmap_len(tx_buffer, len))
1445 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1446
1447 dev_kfree_skb_any(tx_buffer->skb);
1448 tx_buffer->skb = NULL;
1449
1450 tx_ring->next_to_use = i;
1451
1452 return -1;
1453}
1454
1455static int igc_tso(struct igc_ring *tx_ring,
1456 struct igc_tx_buffer *first,
1457 __le32 launch_time, bool first_flag,
1458 u8 *hdr_len)
1459{
1460 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1461 struct sk_buff *skb = first->skb;
1462 union {
1463 struct iphdr *v4;
1464 struct ipv6hdr *v6;
1465 unsigned char *hdr;
1466 } ip;
1467 union {
1468 struct tcphdr *tcp;
1469 struct udphdr *udp;
1470 unsigned char *hdr;
1471 } l4;
1472 u32 paylen, l4_offset;
1473 int err;
1474
1475 if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 return 0;
1477
1478 if (!skb_is_gso(skb))
1479 return 0;
1480
1481 err = skb_cow_head(skb, 0);
1482 if (err < 0)
1483 return err;
1484
1485 ip.hdr = skb_network_header(skb);
1486 l4.hdr = skb_checksum_start(skb);
1487
1488 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1489 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1490
1491 /* initialize outer IP header fields */
1492 if (ip.v4->version == 4) {
1493 unsigned char *csum_start = skb_checksum_start(skb);
1494 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1495
1496 /* IP header will have to cancel out any data that
1497 * is not a part of the outer IP header
1498 */
1499 ip.v4->check = csum_fold(csum_partial(trans_start,
1500 csum_start - trans_start,
1501 0));
1502 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1503
1504 ip.v4->tot_len = 0;
1505 first->tx_flags |= IGC_TX_FLAGS_TSO |
1506 IGC_TX_FLAGS_CSUM |
1507 IGC_TX_FLAGS_IPV4;
1508 } else {
1509 ip.v6->payload_len = 0;
1510 first->tx_flags |= IGC_TX_FLAGS_TSO |
1511 IGC_TX_FLAGS_CSUM;
1512 }
1513
1514 /* determine offset of inner transport header */
1515 l4_offset = l4.hdr - skb->data;
1516
1517 /* remove payload length from inner checksum */
1518 paylen = skb->len - l4_offset;
1519 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1520 /* compute length of segmentation header */
1521 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1522 csum_replace_by_diff(&l4.tcp->check,
1523 (__force __wsum)htonl(paylen));
1524 } else {
1525 /* compute length of segmentation header */
1526 *hdr_len = sizeof(*l4.udp) + l4_offset;
1527 csum_replace_by_diff(&l4.udp->check,
1528 (__force __wsum)htonl(paylen));
1529 }
1530
1531 /* update gso size and bytecount with header size */
1532 first->gso_segs = skb_shinfo(skb)->gso_segs;
1533 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1534
1535 /* MSS L4LEN IDX */
1536 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1537 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1538
1539 /* VLAN MACLEN IPLEN */
1540 vlan_macip_lens = l4.hdr - ip.hdr;
1541 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1542 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1543
1544 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1545 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1546
1547 return 1;
1548}
1549
1550static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1551{
1552 int i;
1553
1554 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1555 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1556
1557 if (tstamp->skb)
1558 continue;
1559
1560 tstamp->skb = skb_get(skb);
1561 tstamp->start = jiffies;
1562 *flags = tstamp->flags;
1563
1564 return true;
1565 }
1566
1567 return false;
1568}
1569
1570static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1571 struct igc_ring *tx_ring)
1572{
1573 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1574 bool first_flag = false, insert_empty = false;
1575 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1576 __be16 protocol = vlan_get_protocol(skb);
1577 struct igc_tx_buffer *first;
1578 __le32 launch_time = 0;
1579 u32 tx_flags = 0;
1580 unsigned short f;
1581 ktime_t txtime;
1582 u8 hdr_len = 0;
1583 int tso = 0;
1584
1585 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1586 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1587 * + 2 desc gap to keep tail from touching head,
1588 * + 1 desc for context descriptor,
1589 * otherwise try next time
1590 */
1591 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1592 count += TXD_USE_COUNT(skb_frag_size(
1593 &skb_shinfo(skb)->frags[f]));
1594
1595 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1596 /* this is a hard error */
1597 return NETDEV_TX_BUSY;
1598 }
1599
1600 if (!tx_ring->launchtime_enable)
1601 goto done;
1602
1603 txtime = skb->tstamp;
1604 skb->tstamp = ktime_set(0, 0);
1605 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1606
1607 if (insert_empty) {
1608 struct igc_tx_buffer *empty_info;
1609 struct sk_buff *empty;
1610 void *data;
1611
1612 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1613 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1614 if (!empty)
1615 goto done;
1616
1617 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1618 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1619
1620 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1621
1622 if (igc_init_tx_empty_descriptor(tx_ring,
1623 empty,
1624 empty_info) < 0)
1625 dev_kfree_skb_any(empty);
1626 }
1627
1628done:
1629 /* record the location of the first descriptor for this packet */
1630 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1631 first->type = IGC_TX_BUFFER_TYPE_SKB;
1632 first->skb = skb;
1633 first->bytecount = skb->len;
1634 first->gso_segs = 1;
1635
1636 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1637 goto out_drop;
1638
1639 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1640 adapter->stats.txdrop++;
1641 goto out_drop;
1642 }
1643
1644 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1645 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1646 unsigned long flags;
1647 u32 tstamp_flags;
1648
1649 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1650 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1651 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1652 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1653 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1654 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1655 } else {
1656 adapter->tx_hwtstamp_skipped++;
1657 }
1658
1659 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1660 }
1661
1662 if (skb_vlan_tag_present(skb)) {
1663 tx_flags |= IGC_TX_FLAGS_VLAN;
1664 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1665 }
1666
1667 /* record initial flags and protocol */
1668 first->tx_flags = tx_flags;
1669 first->protocol = protocol;
1670
1671 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1672 if (tso < 0)
1673 goto out_drop;
1674 else if (!tso)
1675 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1676
1677 igc_tx_map(tx_ring, first, hdr_len);
1678
1679 return NETDEV_TX_OK;
1680
1681out_drop:
1682 dev_kfree_skb_any(first->skb);
1683 first->skb = NULL;
1684
1685 return NETDEV_TX_OK;
1686}
1687
1688static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1689 struct sk_buff *skb)
1690{
1691 unsigned int r_idx = skb->queue_mapping;
1692
1693 if (r_idx >= adapter->num_tx_queues)
1694 r_idx = r_idx % adapter->num_tx_queues;
1695
1696 return adapter->tx_ring[r_idx];
1697}
1698
1699static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1700 struct net_device *netdev)
1701{
1702 struct igc_adapter *adapter = netdev_priv(netdev);
1703
1704 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1705 * in order to meet this minimum size requirement.
1706 */
1707 if (skb->len < 17) {
1708 if (skb_padto(skb, 17))
1709 return NETDEV_TX_OK;
1710 skb->len = 17;
1711 }
1712
1713 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1714}
1715
1716static void igc_rx_checksum(struct igc_ring *ring,
1717 union igc_adv_rx_desc *rx_desc,
1718 struct sk_buff *skb)
1719{
1720 skb_checksum_none_assert(skb);
1721
1722 /* Ignore Checksum bit is set */
1723 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1724 return;
1725
1726 /* Rx checksum disabled via ethtool */
1727 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1728 return;
1729
1730 /* TCP/UDP checksum error bit is set */
1731 if (igc_test_staterr(rx_desc,
1732 IGC_RXDEXT_STATERR_L4E |
1733 IGC_RXDEXT_STATERR_IPE)) {
1734 /* work around errata with sctp packets where the TCPE aka
1735 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1736 * packets (aka let the stack check the crc32c)
1737 */
1738 if (!(skb->len == 60 &&
1739 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1740 u64_stats_update_begin(&ring->rx_syncp);
1741 ring->rx_stats.csum_err++;
1742 u64_stats_update_end(&ring->rx_syncp);
1743 }
1744 /* let the stack verify checksum errors */
1745 return;
1746 }
1747 /* It must be a TCP or UDP packet with a valid checksum */
1748 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1749 IGC_RXD_STAT_UDPCS))
1750 skb->ip_summed = CHECKSUM_UNNECESSARY;
1751
1752 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1753 le32_to_cpu(rx_desc->wb.upper.status_error));
1754}
1755
1756/* Mapping HW RSS Type to enum pkt_hash_types */
1757static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1758 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1759 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1760 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1761 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1762 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1763 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1764 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1765 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1766 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1767 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1769 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1770 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1771 [13] = PKT_HASH_TYPE_NONE,
1772 [14] = PKT_HASH_TYPE_NONE,
1773 [15] = PKT_HASH_TYPE_NONE,
1774};
1775
1776static inline void igc_rx_hash(struct igc_ring *ring,
1777 union igc_adv_rx_desc *rx_desc,
1778 struct sk_buff *skb)
1779{
1780 if (ring->netdev->features & NETIF_F_RXHASH) {
1781 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1782 u32 rss_type = igc_rss_type(rx_desc);
1783
1784 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1785 }
1786}
1787
1788static void igc_rx_vlan(struct igc_ring *rx_ring,
1789 union igc_adv_rx_desc *rx_desc,
1790 struct sk_buff *skb)
1791{
1792 struct net_device *dev = rx_ring->netdev;
1793 u16 vid;
1794
1795 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1796 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1797 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1798 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1799 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1800 else
1801 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1802
1803 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1804 }
1805}
1806
1807/**
1808 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1809 * @rx_ring: rx descriptor ring packet is being transacted on
1810 * @rx_desc: pointer to the EOP Rx descriptor
1811 * @skb: pointer to current skb being populated
1812 *
1813 * This function checks the ring, descriptor, and packet information in order
1814 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1815 * skb.
1816 */
1817static void igc_process_skb_fields(struct igc_ring *rx_ring,
1818 union igc_adv_rx_desc *rx_desc,
1819 struct sk_buff *skb)
1820{
1821 igc_rx_hash(rx_ring, rx_desc, skb);
1822
1823 igc_rx_checksum(rx_ring, rx_desc, skb);
1824
1825 igc_rx_vlan(rx_ring, rx_desc, skb);
1826
1827 skb_record_rx_queue(skb, rx_ring->queue_index);
1828
1829 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830}
1831
1832static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1833{
1834 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1835 struct igc_adapter *adapter = netdev_priv(netdev);
1836 struct igc_hw *hw = &adapter->hw;
1837 u32 ctrl;
1838
1839 ctrl = rd32(IGC_CTRL);
1840
1841 if (enable) {
1842 /* enable VLAN tag insert/strip */
1843 ctrl |= IGC_CTRL_VME;
1844 } else {
1845 /* disable VLAN tag insert/strip */
1846 ctrl &= ~IGC_CTRL_VME;
1847 }
1848 wr32(IGC_CTRL, ctrl);
1849}
1850
1851static void igc_restore_vlan(struct igc_adapter *adapter)
1852{
1853 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1854}
1855
1856static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1857 const unsigned int size,
1858 int *rx_buffer_pgcnt)
1859{
1860 struct igc_rx_buffer *rx_buffer;
1861
1862 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1863 *rx_buffer_pgcnt =
1864#if (PAGE_SIZE < 8192)
1865 page_count(rx_buffer->page);
1866#else
1867 0;
1868#endif
1869 prefetchw(rx_buffer->page);
1870
1871 /* we are reusing so sync this buffer for CPU use */
1872 dma_sync_single_range_for_cpu(rx_ring->dev,
1873 rx_buffer->dma,
1874 rx_buffer->page_offset,
1875 size,
1876 DMA_FROM_DEVICE);
1877
1878 rx_buffer->pagecnt_bias--;
1879
1880 return rx_buffer;
1881}
1882
1883static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1884 unsigned int truesize)
1885{
1886#if (PAGE_SIZE < 8192)
1887 buffer->page_offset ^= truesize;
1888#else
1889 buffer->page_offset += truesize;
1890#endif
1891}
1892
1893static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1894 unsigned int size)
1895{
1896 unsigned int truesize;
1897
1898#if (PAGE_SIZE < 8192)
1899 truesize = igc_rx_pg_size(ring) / 2;
1900#else
1901 truesize = ring_uses_build_skb(ring) ?
1902 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1903 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1904 SKB_DATA_ALIGN(size);
1905#endif
1906 return truesize;
1907}
1908
1909/**
1910 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1911 * @rx_ring: rx descriptor ring to transact packets on
1912 * @rx_buffer: buffer containing page to add
1913 * @skb: sk_buff to place the data into
1914 * @size: size of buffer to be added
1915 *
1916 * This function will add the data contained in rx_buffer->page to the skb.
1917 */
1918static void igc_add_rx_frag(struct igc_ring *rx_ring,
1919 struct igc_rx_buffer *rx_buffer,
1920 struct sk_buff *skb,
1921 unsigned int size)
1922{
1923 unsigned int truesize;
1924
1925#if (PAGE_SIZE < 8192)
1926 truesize = igc_rx_pg_size(rx_ring) / 2;
1927#else
1928 truesize = ring_uses_build_skb(rx_ring) ?
1929 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 SKB_DATA_ALIGN(size);
1931#endif
1932 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 rx_buffer->page_offset, size, truesize);
1934
1935 igc_rx_buffer_flip(rx_buffer, truesize);
1936}
1937
1938static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1939 struct igc_rx_buffer *rx_buffer,
1940 struct xdp_buff *xdp)
1941{
1942 unsigned int size = xdp->data_end - xdp->data;
1943 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1944 unsigned int metasize = xdp->data - xdp->data_meta;
1945 struct sk_buff *skb;
1946
1947 /* prefetch first cache line of first page */
1948 net_prefetch(xdp->data_meta);
1949
1950 /* build an skb around the page buffer */
1951 skb = napi_build_skb(xdp->data_hard_start, truesize);
1952 if (unlikely(!skb))
1953 return NULL;
1954
1955 /* update pointers within the skb to store the data */
1956 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1957 __skb_put(skb, size);
1958 if (metasize)
1959 skb_metadata_set(skb, metasize);
1960
1961 igc_rx_buffer_flip(rx_buffer, truesize);
1962 return skb;
1963}
1964
1965static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1966 struct igc_rx_buffer *rx_buffer,
1967 struct igc_xdp_buff *ctx)
1968{
1969 struct xdp_buff *xdp = &ctx->xdp;
1970 unsigned int metasize = xdp->data - xdp->data_meta;
1971 unsigned int size = xdp->data_end - xdp->data;
1972 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1973 void *va = xdp->data;
1974 unsigned int headlen;
1975 struct sk_buff *skb;
1976
1977 /* prefetch first cache line of first page */
1978 net_prefetch(xdp->data_meta);
1979
1980 /* allocate a skb to store the frags */
1981 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1982 IGC_RX_HDR_LEN + metasize);
1983 if (unlikely(!skb))
1984 return NULL;
1985
1986 if (ctx->rx_ts) {
1987 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1988 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1989 }
1990
1991 /* Determine available headroom for copy */
1992 headlen = size;
1993 if (headlen > IGC_RX_HDR_LEN)
1994 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1995
1996 /* align pull length to size of long to optimize memcpy performance */
1997 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1998 ALIGN(headlen + metasize, sizeof(long)));
1999
2000 if (metasize) {
2001 skb_metadata_set(skb, metasize);
2002 __skb_pull(skb, metasize);
2003 }
2004
2005 /* update all of the pointers */
2006 size -= headlen;
2007 if (size) {
2008 skb_add_rx_frag(skb, 0, rx_buffer->page,
2009 (va + headlen) - page_address(rx_buffer->page),
2010 size, truesize);
2011 igc_rx_buffer_flip(rx_buffer, truesize);
2012 } else {
2013 rx_buffer->pagecnt_bias++;
2014 }
2015
2016 return skb;
2017}
2018
2019/**
2020 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2021 * @rx_ring: rx descriptor ring to store buffers on
2022 * @old_buff: donor buffer to have page reused
2023 *
2024 * Synchronizes page for reuse by the adapter
2025 */
2026static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2027 struct igc_rx_buffer *old_buff)
2028{
2029 u16 nta = rx_ring->next_to_alloc;
2030 struct igc_rx_buffer *new_buff;
2031
2032 new_buff = &rx_ring->rx_buffer_info[nta];
2033
2034 /* update, and store next to alloc */
2035 nta++;
2036 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2037
2038 /* Transfer page from old buffer to new buffer.
2039 * Move each member individually to avoid possible store
2040 * forwarding stalls.
2041 */
2042 new_buff->dma = old_buff->dma;
2043 new_buff->page = old_buff->page;
2044 new_buff->page_offset = old_buff->page_offset;
2045 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2046}
2047
2048static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2049 int rx_buffer_pgcnt)
2050{
2051 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2052 struct page *page = rx_buffer->page;
2053
2054 /* avoid re-using remote and pfmemalloc pages */
2055 if (!dev_page_is_reusable(page))
2056 return false;
2057
2058#if (PAGE_SIZE < 8192)
2059 /* if we are only owner of page we can reuse it */
2060 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2061 return false;
2062#else
2063#define IGC_LAST_OFFSET \
2064 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2065
2066 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2067 return false;
2068#endif
2069
2070 /* If we have drained the page fragment pool we need to update
2071 * the pagecnt_bias and page count so that we fully restock the
2072 * number of references the driver holds.
2073 */
2074 if (unlikely(pagecnt_bias == 1)) {
2075 page_ref_add(page, USHRT_MAX - 1);
2076 rx_buffer->pagecnt_bias = USHRT_MAX;
2077 }
2078
2079 return true;
2080}
2081
2082/**
2083 * igc_is_non_eop - process handling of non-EOP buffers
2084 * @rx_ring: Rx ring being processed
2085 * @rx_desc: Rx descriptor for current buffer
2086 *
2087 * This function updates next to clean. If the buffer is an EOP buffer
2088 * this function exits returning false, otherwise it will place the
2089 * sk_buff in the next buffer to be chained and return true indicating
2090 * that this is in fact a non-EOP buffer.
2091 */
2092static bool igc_is_non_eop(struct igc_ring *rx_ring,
2093 union igc_adv_rx_desc *rx_desc)
2094{
2095 u32 ntc = rx_ring->next_to_clean + 1;
2096
2097 /* fetch, update, and store next to clean */
2098 ntc = (ntc < rx_ring->count) ? ntc : 0;
2099 rx_ring->next_to_clean = ntc;
2100
2101 prefetch(IGC_RX_DESC(rx_ring, ntc));
2102
2103 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2104 return false;
2105
2106 return true;
2107}
2108
2109/**
2110 * igc_cleanup_headers - Correct corrupted or empty headers
2111 * @rx_ring: rx descriptor ring packet is being transacted on
2112 * @rx_desc: pointer to the EOP Rx descriptor
2113 * @skb: pointer to current skb being fixed
2114 *
2115 * Address the case where we are pulling data in on pages only
2116 * and as such no data is present in the skb header.
2117 *
2118 * In addition if skb is not at least 60 bytes we need to pad it so that
2119 * it is large enough to qualify as a valid Ethernet frame.
2120 *
2121 * Returns true if an error was encountered and skb was freed.
2122 */
2123static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2124 union igc_adv_rx_desc *rx_desc,
2125 struct sk_buff *skb)
2126{
2127 /* XDP packets use error pointer so abort at this point */
2128 if (IS_ERR(skb))
2129 return true;
2130
2131 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2132 struct net_device *netdev = rx_ring->netdev;
2133
2134 if (!(netdev->features & NETIF_F_RXALL)) {
2135 dev_kfree_skb_any(skb);
2136 return true;
2137 }
2138 }
2139
2140 /* if eth_skb_pad returns an error the skb was freed */
2141 if (eth_skb_pad(skb))
2142 return true;
2143
2144 return false;
2145}
2146
2147static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2148 struct igc_rx_buffer *rx_buffer,
2149 int rx_buffer_pgcnt)
2150{
2151 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2152 /* hand second half of page back to the ring */
2153 igc_reuse_rx_page(rx_ring, rx_buffer);
2154 } else {
2155 /* We are not reusing the buffer so unmap it and free
2156 * any references we are holding to it
2157 */
2158 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2160 IGC_RX_DMA_ATTR);
2161 __page_frag_cache_drain(rx_buffer->page,
2162 rx_buffer->pagecnt_bias);
2163 }
2164
2165 /* clear contents of rx_buffer */
2166 rx_buffer->page = NULL;
2167}
2168
2169static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2170{
2171 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2172
2173 if (ring_uses_build_skb(rx_ring))
2174 return IGC_SKB_PAD;
2175 if (igc_xdp_is_enabled(adapter))
2176 return XDP_PACKET_HEADROOM;
2177
2178 return 0;
2179}
2180
2181static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2182 struct igc_rx_buffer *bi)
2183{
2184 struct page *page = bi->page;
2185 dma_addr_t dma;
2186
2187 /* since we are recycling buffers we should seldom need to alloc */
2188 if (likely(page))
2189 return true;
2190
2191 /* alloc new page for storage */
2192 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2193 if (unlikely(!page)) {
2194 rx_ring->rx_stats.alloc_failed++;
2195 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2196 return false;
2197 }
2198
2199 /* map page for use */
2200 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2201 igc_rx_pg_size(rx_ring),
2202 DMA_FROM_DEVICE,
2203 IGC_RX_DMA_ATTR);
2204
2205 /* if mapping failed free memory back to system since
2206 * there isn't much point in holding memory we can't use
2207 */
2208 if (dma_mapping_error(rx_ring->dev, dma)) {
2209 __free_page(page);
2210
2211 rx_ring->rx_stats.alloc_failed++;
2212 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2213 return false;
2214 }
2215
2216 bi->dma = dma;
2217 bi->page = page;
2218 bi->page_offset = igc_rx_offset(rx_ring);
2219 page_ref_add(page, USHRT_MAX - 1);
2220 bi->pagecnt_bias = USHRT_MAX;
2221
2222 return true;
2223}
2224
2225/**
2226 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2227 * @rx_ring: rx descriptor ring
2228 * @cleaned_count: number of buffers to clean
2229 */
2230static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2231{
2232 union igc_adv_rx_desc *rx_desc;
2233 u16 i = rx_ring->next_to_use;
2234 struct igc_rx_buffer *bi;
2235 u16 bufsz;
2236
2237 /* nothing to do */
2238 if (!cleaned_count)
2239 return;
2240
2241 rx_desc = IGC_RX_DESC(rx_ring, i);
2242 bi = &rx_ring->rx_buffer_info[i];
2243 i -= rx_ring->count;
2244
2245 bufsz = igc_rx_bufsz(rx_ring);
2246
2247 do {
2248 if (!igc_alloc_mapped_page(rx_ring, bi))
2249 break;
2250
2251 /* sync the buffer for use by the device */
2252 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2253 bi->page_offset, bufsz,
2254 DMA_FROM_DEVICE);
2255
2256 /* Refresh the desc even if buffer_addrs didn't change
2257 * because each write-back erases this info.
2258 */
2259 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2260
2261 rx_desc++;
2262 bi++;
2263 i++;
2264 if (unlikely(!i)) {
2265 rx_desc = IGC_RX_DESC(rx_ring, 0);
2266 bi = rx_ring->rx_buffer_info;
2267 i -= rx_ring->count;
2268 }
2269
2270 /* clear the length for the next_to_use descriptor */
2271 rx_desc->wb.upper.length = 0;
2272
2273 cleaned_count--;
2274 } while (cleaned_count);
2275
2276 i += rx_ring->count;
2277
2278 if (rx_ring->next_to_use != i) {
2279 /* record the next descriptor to use */
2280 rx_ring->next_to_use = i;
2281
2282 /* update next to alloc since we have filled the ring */
2283 rx_ring->next_to_alloc = i;
2284
2285 /* Force memory writes to complete before letting h/w
2286 * know there are new descriptors to fetch. (Only
2287 * applicable for weak-ordered memory model archs,
2288 * such as IA-64).
2289 */
2290 wmb();
2291 writel(i, rx_ring->tail);
2292 }
2293}
2294
2295static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2296{
2297 union igc_adv_rx_desc *desc;
2298 u16 i = ring->next_to_use;
2299 struct igc_rx_buffer *bi;
2300 dma_addr_t dma;
2301 bool ok = true;
2302
2303 if (!count)
2304 return ok;
2305
2306 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2307
2308 desc = IGC_RX_DESC(ring, i);
2309 bi = &ring->rx_buffer_info[i];
2310 i -= ring->count;
2311
2312 do {
2313 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2314 if (!bi->xdp) {
2315 ok = false;
2316 break;
2317 }
2318
2319 dma = xsk_buff_xdp_get_dma(bi->xdp);
2320 desc->read.pkt_addr = cpu_to_le64(dma);
2321
2322 desc++;
2323 bi++;
2324 i++;
2325 if (unlikely(!i)) {
2326 desc = IGC_RX_DESC(ring, 0);
2327 bi = ring->rx_buffer_info;
2328 i -= ring->count;
2329 }
2330
2331 /* Clear the length for the next_to_use descriptor. */
2332 desc->wb.upper.length = 0;
2333
2334 count--;
2335 } while (count);
2336
2337 i += ring->count;
2338
2339 if (ring->next_to_use != i) {
2340 ring->next_to_use = i;
2341
2342 /* Force memory writes to complete before letting h/w
2343 * know there are new descriptors to fetch. (Only
2344 * applicable for weak-ordered memory model archs,
2345 * such as IA-64).
2346 */
2347 wmb();
2348 writel(i, ring->tail);
2349 }
2350
2351 return ok;
2352}
2353
2354/* This function requires __netif_tx_lock is held by the caller. */
2355static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2356 struct xdp_frame *xdpf)
2357{
2358 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2359 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2360 u16 count, index = ring->next_to_use;
2361 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2362 struct igc_tx_buffer *buffer = head;
2363 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2364 u32 olinfo_status, len = xdpf->len, cmd_type;
2365 void *data = xdpf->data;
2366 u16 i;
2367
2368 count = TXD_USE_COUNT(len);
2369 for (i = 0; i < nr_frags; i++)
2370 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2371
2372 if (igc_maybe_stop_tx(ring, count + 3)) {
2373 /* this is a hard error */
2374 return -EBUSY;
2375 }
2376
2377 i = 0;
2378 head->bytecount = xdp_get_frame_len(xdpf);
2379 head->type = IGC_TX_BUFFER_TYPE_XDP;
2380 head->gso_segs = 1;
2381 head->xdpf = xdpf;
2382
2383 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2384 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2385
2386 for (;;) {
2387 dma_addr_t dma;
2388
2389 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2390 if (dma_mapping_error(ring->dev, dma)) {
2391 netdev_err_once(ring->netdev,
2392 "Failed to map DMA for TX\n");
2393 goto unmap;
2394 }
2395
2396 dma_unmap_len_set(buffer, len, len);
2397 dma_unmap_addr_set(buffer, dma, dma);
2398
2399 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2400 IGC_ADVTXD_DCMD_IFCS | len;
2401
2402 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2403 desc->read.buffer_addr = cpu_to_le64(dma);
2404
2405 buffer->protocol = 0;
2406
2407 if (++index == ring->count)
2408 index = 0;
2409
2410 if (i == nr_frags)
2411 break;
2412
2413 buffer = &ring->tx_buffer_info[index];
2414 desc = IGC_TX_DESC(ring, index);
2415 desc->read.olinfo_status = 0;
2416
2417 data = skb_frag_address(&sinfo->frags[i]);
2418 len = skb_frag_size(&sinfo->frags[i]);
2419 i++;
2420 }
2421 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2422
2423 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2424 /* set the timestamp */
2425 head->time_stamp = jiffies;
2426 /* set next_to_watch value indicating a packet is present */
2427 head->next_to_watch = desc;
2428 ring->next_to_use = index;
2429
2430 return 0;
2431
2432unmap:
2433 for (;;) {
2434 buffer = &ring->tx_buffer_info[index];
2435 if (dma_unmap_len(buffer, len))
2436 dma_unmap_page(ring->dev,
2437 dma_unmap_addr(buffer, dma),
2438 dma_unmap_len(buffer, len),
2439 DMA_TO_DEVICE);
2440 dma_unmap_len_set(buffer, len, 0);
2441 if (buffer == head)
2442 break;
2443
2444 if (!index)
2445 index += ring->count;
2446 index--;
2447 }
2448
2449 return -ENOMEM;
2450}
2451
2452static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2453 int cpu)
2454{
2455 int index = cpu;
2456
2457 if (unlikely(index < 0))
2458 index = 0;
2459
2460 while (index >= adapter->num_tx_queues)
2461 index -= adapter->num_tx_queues;
2462
2463 return adapter->tx_ring[index];
2464}
2465
2466static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2467{
2468 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2469 int cpu = smp_processor_id();
2470 struct netdev_queue *nq;
2471 struct igc_ring *ring;
2472 int res;
2473
2474 if (unlikely(!xdpf))
2475 return -EFAULT;
2476
2477 ring = igc_xdp_get_tx_ring(adapter, cpu);
2478 nq = txring_txq(ring);
2479
2480 __netif_tx_lock(nq, cpu);
2481 /* Avoid transmit queue timeout since we share it with the slow path */
2482 txq_trans_cond_update(nq);
2483 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2484 __netif_tx_unlock(nq);
2485 return res;
2486}
2487
2488/* This function assumes rcu_read_lock() is held by the caller. */
2489static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2490 struct bpf_prog *prog,
2491 struct xdp_buff *xdp)
2492{
2493 u32 act = bpf_prog_run_xdp(prog, xdp);
2494
2495 switch (act) {
2496 case XDP_PASS:
2497 return IGC_XDP_PASS;
2498 case XDP_TX:
2499 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2500 goto out_failure;
2501 return IGC_XDP_TX;
2502 case XDP_REDIRECT:
2503 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2504 goto out_failure;
2505 return IGC_XDP_REDIRECT;
2506 break;
2507 default:
2508 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2509 fallthrough;
2510 case XDP_ABORTED:
2511out_failure:
2512 trace_xdp_exception(adapter->netdev, prog, act);
2513 fallthrough;
2514 case XDP_DROP:
2515 return IGC_XDP_CONSUMED;
2516 }
2517}
2518
2519static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2520 struct xdp_buff *xdp)
2521{
2522 struct bpf_prog *prog;
2523 int res;
2524
2525 prog = READ_ONCE(adapter->xdp_prog);
2526 if (!prog) {
2527 res = IGC_XDP_PASS;
2528 goto out;
2529 }
2530
2531 res = __igc_xdp_run_prog(adapter, prog, xdp);
2532
2533out:
2534 return ERR_PTR(-res);
2535}
2536
2537/* This function assumes __netif_tx_lock is held by the caller. */
2538static void igc_flush_tx_descriptors(struct igc_ring *ring)
2539{
2540 /* Once tail pointer is updated, hardware can fetch the descriptors
2541 * any time so we issue a write membar here to ensure all memory
2542 * writes are complete before the tail pointer is updated.
2543 */
2544 wmb();
2545 writel(ring->next_to_use, ring->tail);
2546}
2547
2548static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2549{
2550 int cpu = smp_processor_id();
2551 struct netdev_queue *nq;
2552 struct igc_ring *ring;
2553
2554 if (status & IGC_XDP_TX) {
2555 ring = igc_xdp_get_tx_ring(adapter, cpu);
2556 nq = txring_txq(ring);
2557
2558 __netif_tx_lock(nq, cpu);
2559 igc_flush_tx_descriptors(ring);
2560 __netif_tx_unlock(nq);
2561 }
2562
2563 if (status & IGC_XDP_REDIRECT)
2564 xdp_do_flush();
2565}
2566
2567static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2568 unsigned int packets, unsigned int bytes)
2569{
2570 struct igc_ring *ring = q_vector->rx.ring;
2571
2572 u64_stats_update_begin(&ring->rx_syncp);
2573 ring->rx_stats.packets += packets;
2574 ring->rx_stats.bytes += bytes;
2575 u64_stats_update_end(&ring->rx_syncp);
2576
2577 q_vector->rx.total_packets += packets;
2578 q_vector->rx.total_bytes += bytes;
2579}
2580
2581static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2582{
2583 unsigned int total_bytes = 0, total_packets = 0;
2584 struct igc_adapter *adapter = q_vector->adapter;
2585 struct igc_ring *rx_ring = q_vector->rx.ring;
2586 struct sk_buff *skb = rx_ring->skb;
2587 u16 cleaned_count = igc_desc_unused(rx_ring);
2588 int xdp_status = 0, rx_buffer_pgcnt;
2589
2590 while (likely(total_packets < budget)) {
2591 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2592 struct igc_rx_buffer *rx_buffer;
2593 union igc_adv_rx_desc *rx_desc;
2594 unsigned int size, truesize;
2595 int pkt_offset = 0;
2596 void *pktbuf;
2597
2598 /* return some buffers to hardware, one at a time is too slow */
2599 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2600 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2601 cleaned_count = 0;
2602 }
2603
2604 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2605 size = le16_to_cpu(rx_desc->wb.upper.length);
2606 if (!size)
2607 break;
2608
2609 /* This memory barrier is needed to keep us from reading
2610 * any other fields out of the rx_desc until we know the
2611 * descriptor has been written back
2612 */
2613 dma_rmb();
2614
2615 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2616 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2617
2618 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2619
2620 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2621 ctx.rx_ts = pktbuf;
2622 pkt_offset = IGC_TS_HDR_LEN;
2623 size -= IGC_TS_HDR_LEN;
2624 }
2625
2626 if (!skb) {
2627 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2628 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2629 igc_rx_offset(rx_ring) + pkt_offset,
2630 size, true);
2631 xdp_buff_clear_frags_flag(&ctx.xdp);
2632 ctx.rx_desc = rx_desc;
2633
2634 skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2635 }
2636
2637 if (IS_ERR(skb)) {
2638 unsigned int xdp_res = -PTR_ERR(skb);
2639
2640 switch (xdp_res) {
2641 case IGC_XDP_CONSUMED:
2642 rx_buffer->pagecnt_bias++;
2643 break;
2644 case IGC_XDP_TX:
2645 case IGC_XDP_REDIRECT:
2646 igc_rx_buffer_flip(rx_buffer, truesize);
2647 xdp_status |= xdp_res;
2648 break;
2649 }
2650
2651 total_packets++;
2652 total_bytes += size;
2653 } else if (skb)
2654 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2655 else if (ring_uses_build_skb(rx_ring))
2656 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2657 else
2658 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2659
2660 /* exit if we failed to retrieve a buffer */
2661 if (!skb) {
2662 rx_ring->rx_stats.alloc_failed++;
2663 rx_buffer->pagecnt_bias++;
2664 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2665 break;
2666 }
2667
2668 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2669 cleaned_count++;
2670
2671 /* fetch next buffer in frame if non-eop */
2672 if (igc_is_non_eop(rx_ring, rx_desc))
2673 continue;
2674
2675 /* verify the packet layout is correct */
2676 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2677 skb = NULL;
2678 continue;
2679 }
2680
2681 /* probably a little skewed due to removing CRC */
2682 total_bytes += skb->len;
2683
2684 /* populate checksum, VLAN, and protocol */
2685 igc_process_skb_fields(rx_ring, rx_desc, skb);
2686
2687 napi_gro_receive(&q_vector->napi, skb);
2688
2689 /* reset skb pointer */
2690 skb = NULL;
2691
2692 /* update budget accounting */
2693 total_packets++;
2694 }
2695
2696 if (xdp_status)
2697 igc_finalize_xdp(adapter, xdp_status);
2698
2699 /* place incomplete frames back on ring for completion */
2700 rx_ring->skb = skb;
2701
2702 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2703
2704 if (cleaned_count)
2705 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2706
2707 return total_packets;
2708}
2709
2710static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2711 struct igc_xdp_buff *ctx)
2712{
2713 struct xdp_buff *xdp = &ctx->xdp;
2714 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2715 unsigned int metasize = xdp->data - xdp->data_meta;
2716 struct sk_buff *skb;
2717
2718 net_prefetch(xdp->data_meta);
2719
2720 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2721 if (unlikely(!skb))
2722 return NULL;
2723
2724 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2725 ALIGN(totalsize, sizeof(long)));
2726
2727 if (metasize) {
2728 skb_metadata_set(skb, metasize);
2729 __skb_pull(skb, metasize);
2730 }
2731
2732 if (ctx->rx_ts) {
2733 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2734 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2735 }
2736
2737 return skb;
2738}
2739
2740static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2741 union igc_adv_rx_desc *desc,
2742 struct igc_xdp_buff *ctx)
2743{
2744 struct igc_ring *ring = q_vector->rx.ring;
2745 struct sk_buff *skb;
2746
2747 skb = igc_construct_skb_zc(ring, ctx);
2748 if (!skb) {
2749 ring->rx_stats.alloc_failed++;
2750 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2751 return;
2752 }
2753
2754 if (igc_cleanup_headers(ring, desc, skb))
2755 return;
2756
2757 igc_process_skb_fields(ring, desc, skb);
2758 napi_gro_receive(&q_vector->napi, skb);
2759}
2760
2761static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2762{
2763 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2764 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2765 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2766 */
2767 return (struct igc_xdp_buff *)xdp;
2768}
2769
2770static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2771{
2772 struct igc_adapter *adapter = q_vector->adapter;
2773 struct igc_ring *ring = q_vector->rx.ring;
2774 u16 cleaned_count = igc_desc_unused(ring);
2775 int total_bytes = 0, total_packets = 0;
2776 u16 ntc = ring->next_to_clean;
2777 struct bpf_prog *prog;
2778 bool failure = false;
2779 int xdp_status = 0;
2780
2781 rcu_read_lock();
2782
2783 prog = READ_ONCE(adapter->xdp_prog);
2784
2785 while (likely(total_packets < budget)) {
2786 union igc_adv_rx_desc *desc;
2787 struct igc_rx_buffer *bi;
2788 struct igc_xdp_buff *ctx;
2789 unsigned int size;
2790 int res;
2791
2792 desc = IGC_RX_DESC(ring, ntc);
2793 size = le16_to_cpu(desc->wb.upper.length);
2794 if (!size)
2795 break;
2796
2797 /* This memory barrier is needed to keep us from reading
2798 * any other fields out of the rx_desc until we know the
2799 * descriptor has been written back
2800 */
2801 dma_rmb();
2802
2803 bi = &ring->rx_buffer_info[ntc];
2804
2805 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2806 ctx->rx_desc = desc;
2807
2808 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2809 ctx->rx_ts = bi->xdp->data;
2810
2811 bi->xdp->data += IGC_TS_HDR_LEN;
2812
2813 /* HW timestamp has been copied into local variable. Metadata
2814 * length when XDP program is called should be 0.
2815 */
2816 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2817 size -= IGC_TS_HDR_LEN;
2818 } else {
2819 ctx->rx_ts = NULL;
2820 }
2821
2822 bi->xdp->data_end = bi->xdp->data + size;
2823 xsk_buff_dma_sync_for_cpu(bi->xdp);
2824
2825 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2826 switch (res) {
2827 case IGC_XDP_PASS:
2828 igc_dispatch_skb_zc(q_vector, desc, ctx);
2829 fallthrough;
2830 case IGC_XDP_CONSUMED:
2831 xsk_buff_free(bi->xdp);
2832 break;
2833 case IGC_XDP_TX:
2834 case IGC_XDP_REDIRECT:
2835 xdp_status |= res;
2836 break;
2837 }
2838
2839 bi->xdp = NULL;
2840 total_bytes += size;
2841 total_packets++;
2842 cleaned_count++;
2843 ntc++;
2844 if (ntc == ring->count)
2845 ntc = 0;
2846 }
2847
2848 ring->next_to_clean = ntc;
2849 rcu_read_unlock();
2850
2851 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2852 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2853
2854 if (xdp_status)
2855 igc_finalize_xdp(adapter, xdp_status);
2856
2857 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2858
2859 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2860 if (failure || ring->next_to_clean == ring->next_to_use)
2861 xsk_set_rx_need_wakeup(ring->xsk_pool);
2862 else
2863 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2864 return total_packets;
2865 }
2866
2867 return failure ? budget : total_packets;
2868}
2869
2870static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2871 unsigned int packets, unsigned int bytes)
2872{
2873 struct igc_ring *ring = q_vector->tx.ring;
2874
2875 u64_stats_update_begin(&ring->tx_syncp);
2876 ring->tx_stats.bytes += bytes;
2877 ring->tx_stats.packets += packets;
2878 u64_stats_update_end(&ring->tx_syncp);
2879
2880 q_vector->tx.total_bytes += bytes;
2881 q_vector->tx.total_packets += packets;
2882}
2883
2884static void igc_xsk_request_timestamp(void *_priv)
2885{
2886 struct igc_metadata_request *meta_req = _priv;
2887 struct igc_ring *tx_ring = meta_req->tx_ring;
2888 struct igc_tx_timestamp_request *tstamp;
2889 u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2890 struct igc_adapter *adapter;
2891 unsigned long lock_flags;
2892 bool found = false;
2893 int i;
2894
2895 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2896 adapter = netdev_priv(tx_ring->netdev);
2897
2898 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2899
2900 /* Search for available tstamp regs */
2901 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2902 tstamp = &adapter->tx_tstamp[i];
2903
2904 /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2905 * When tstamp->skb is equal to NULL,
2906 * tstamp->xsk_tx_buffer is equal to NULL as well.
2907 * This condition means that the particular tstamp reg
2908 * is not occupied by other packet.
2909 */
2910 if (!tstamp->skb) {
2911 found = true;
2912 break;
2913 }
2914 }
2915
2916 /* Return if no available tstamp regs */
2917 if (!found) {
2918 adapter->tx_hwtstamp_skipped++;
2919 spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2920 lock_flags);
2921 return;
2922 }
2923
2924 tstamp->start = jiffies;
2925 tstamp->xsk_queue_index = tx_ring->queue_index;
2926 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2927 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2928
2929 /* Hold the transmit completion until timestamp is ready */
2930 meta_req->tx_buffer->xsk_pending_ts = true;
2931
2932 /* Keep the pointer to tx_timestamp, which is located in XDP
2933 * metadata area. It is the location to store the value of
2934 * tx hardware timestamp.
2935 */
2936 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2937
2938 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2939 tx_flags |= tstamp->flags;
2940 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2941 IGC_TX_FLAGS_TSTAMP,
2942 (IGC_ADVTXD_MAC_TSTAMP));
2943 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2944 IGC_TX_FLAGS_TSTAMP_1,
2945 (IGC_ADVTXD_TSTAMP_REG_1));
2946 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2947 IGC_TX_FLAGS_TSTAMP_2,
2948 (IGC_ADVTXD_TSTAMP_REG_2));
2949 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2950 IGC_TX_FLAGS_TSTAMP_3,
2951 (IGC_ADVTXD_TSTAMP_REG_3));
2952
2953 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2954 }
2955}
2956
2957static u64 igc_xsk_fill_timestamp(void *_priv)
2958{
2959 return *(u64 *)_priv;
2960}
2961
2962const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2963 .tmo_request_timestamp = igc_xsk_request_timestamp,
2964 .tmo_fill_timestamp = igc_xsk_fill_timestamp,
2965};
2966
2967static void igc_xdp_xmit_zc(struct igc_ring *ring)
2968{
2969 struct xsk_buff_pool *pool = ring->xsk_pool;
2970 struct netdev_queue *nq = txring_txq(ring);
2971 union igc_adv_tx_desc *tx_desc = NULL;
2972 int cpu = smp_processor_id();
2973 struct xdp_desc xdp_desc;
2974 u16 budget, ntu;
2975
2976 if (!netif_carrier_ok(ring->netdev))
2977 return;
2978
2979 __netif_tx_lock(nq, cpu);
2980
2981 /* Avoid transmit queue timeout since we share it with the slow path */
2982 txq_trans_cond_update(nq);
2983
2984 ntu = ring->next_to_use;
2985 budget = igc_desc_unused(ring);
2986
2987 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2988 struct igc_metadata_request meta_req;
2989 struct xsk_tx_metadata *meta = NULL;
2990 struct igc_tx_buffer *bi;
2991 u32 olinfo_status;
2992 dma_addr_t dma;
2993
2994 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2995 IGC_ADVTXD_DCMD_DEXT |
2996 IGC_ADVTXD_DCMD_IFCS |
2997 IGC_TXD_DCMD | xdp_desc.len;
2998 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2999
3000 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3001 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3002 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3003 bi = &ring->tx_buffer_info[ntu];
3004
3005 meta_req.tx_ring = ring;
3006 meta_req.tx_buffer = bi;
3007 meta_req.meta = meta;
3008 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3009 &meta_req);
3010
3011 tx_desc = IGC_TX_DESC(ring, ntu);
3012 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3013 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3014 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3015
3016 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3017 bi->protocol = 0;
3018 bi->bytecount = xdp_desc.len;
3019 bi->gso_segs = 1;
3020 bi->time_stamp = jiffies;
3021 bi->next_to_watch = tx_desc;
3022
3023 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3024
3025 ntu++;
3026 if (ntu == ring->count)
3027 ntu = 0;
3028 }
3029
3030 ring->next_to_use = ntu;
3031 if (tx_desc) {
3032 igc_flush_tx_descriptors(ring);
3033 xsk_tx_release(pool);
3034 }
3035
3036 __netif_tx_unlock(nq);
3037}
3038
3039/**
3040 * igc_clean_tx_irq - Reclaim resources after transmit completes
3041 * @q_vector: pointer to q_vector containing needed info
3042 * @napi_budget: Used to determine if we are in netpoll
3043 *
3044 * returns true if ring is completely cleaned
3045 */
3046static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3047{
3048 struct igc_adapter *adapter = q_vector->adapter;
3049 unsigned int total_bytes = 0, total_packets = 0;
3050 unsigned int budget = q_vector->tx.work_limit;
3051 struct igc_ring *tx_ring = q_vector->tx.ring;
3052 unsigned int i = tx_ring->next_to_clean;
3053 struct igc_tx_buffer *tx_buffer;
3054 union igc_adv_tx_desc *tx_desc;
3055 u32 xsk_frames = 0;
3056
3057 if (test_bit(__IGC_DOWN, &adapter->state))
3058 return true;
3059
3060 tx_buffer = &tx_ring->tx_buffer_info[i];
3061 tx_desc = IGC_TX_DESC(tx_ring, i);
3062 i -= tx_ring->count;
3063
3064 do {
3065 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3066
3067 /* if next_to_watch is not set then there is no work pending */
3068 if (!eop_desc)
3069 break;
3070
3071 /* prevent any other reads prior to eop_desc */
3072 smp_rmb();
3073
3074 /* if DD is not set pending work has not been completed */
3075 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3076 break;
3077
3078 /* Hold the completions while there's a pending tx hardware
3079 * timestamp request from XDP Tx metadata.
3080 */
3081 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3082 tx_buffer->xsk_pending_ts)
3083 break;
3084
3085 /* clear next_to_watch to prevent false hangs */
3086 tx_buffer->next_to_watch = NULL;
3087
3088 /* update the statistics for this packet */
3089 total_bytes += tx_buffer->bytecount;
3090 total_packets += tx_buffer->gso_segs;
3091
3092 switch (tx_buffer->type) {
3093 case IGC_TX_BUFFER_TYPE_XSK:
3094 xsk_frames++;
3095 break;
3096 case IGC_TX_BUFFER_TYPE_XDP:
3097 xdp_return_frame(tx_buffer->xdpf);
3098 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3099 break;
3100 case IGC_TX_BUFFER_TYPE_SKB:
3101 napi_consume_skb(tx_buffer->skb, napi_budget);
3102 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3103 break;
3104 default:
3105 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3106 break;
3107 }
3108
3109 /* clear last DMA location and unmap remaining buffers */
3110 while (tx_desc != eop_desc) {
3111 tx_buffer++;
3112 tx_desc++;
3113 i++;
3114 if (unlikely(!i)) {
3115 i -= tx_ring->count;
3116 tx_buffer = tx_ring->tx_buffer_info;
3117 tx_desc = IGC_TX_DESC(tx_ring, 0);
3118 }
3119
3120 /* unmap any remaining paged data */
3121 if (dma_unmap_len(tx_buffer, len))
3122 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3123 }
3124
3125 /* move us one more past the eop_desc for start of next pkt */
3126 tx_buffer++;
3127 tx_desc++;
3128 i++;
3129 if (unlikely(!i)) {
3130 i -= tx_ring->count;
3131 tx_buffer = tx_ring->tx_buffer_info;
3132 tx_desc = IGC_TX_DESC(tx_ring, 0);
3133 }
3134
3135 /* issue prefetch for next Tx descriptor */
3136 prefetch(tx_desc);
3137
3138 /* update budget accounting */
3139 budget--;
3140 } while (likely(budget));
3141
3142 netdev_tx_completed_queue(txring_txq(tx_ring),
3143 total_packets, total_bytes);
3144
3145 i += tx_ring->count;
3146 tx_ring->next_to_clean = i;
3147
3148 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3149
3150 if (tx_ring->xsk_pool) {
3151 if (xsk_frames)
3152 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3153 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3154 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3155 igc_xdp_xmit_zc(tx_ring);
3156 }
3157
3158 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3159 struct igc_hw *hw = &adapter->hw;
3160
3161 /* Detect a transmit hang in hardware, this serializes the
3162 * check with the clearing of time_stamp and movement of i
3163 */
3164 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3165 if (tx_buffer->next_to_watch &&
3166 time_after(jiffies, tx_buffer->time_stamp +
3167 (adapter->tx_timeout_factor * HZ)) &&
3168 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3169 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3170 !tx_ring->oper_gate_closed) {
3171 /* detected Tx unit hang */
3172 netdev_err(tx_ring->netdev,
3173 "Detected Tx Unit Hang\n"
3174 " Tx Queue <%d>\n"
3175 " TDH <%x>\n"
3176 " TDT <%x>\n"
3177 " next_to_use <%x>\n"
3178 " next_to_clean <%x>\n"
3179 "buffer_info[next_to_clean]\n"
3180 " time_stamp <%lx>\n"
3181 " next_to_watch <%p>\n"
3182 " jiffies <%lx>\n"
3183 " desc.status <%x>\n",
3184 tx_ring->queue_index,
3185 rd32(IGC_TDH(tx_ring->reg_idx)),
3186 readl(tx_ring->tail),
3187 tx_ring->next_to_use,
3188 tx_ring->next_to_clean,
3189 tx_buffer->time_stamp,
3190 tx_buffer->next_to_watch,
3191 jiffies,
3192 tx_buffer->next_to_watch->wb.status);
3193 netif_stop_subqueue(tx_ring->netdev,
3194 tx_ring->queue_index);
3195
3196 /* we are about to reset, no point in enabling stuff */
3197 return true;
3198 }
3199 }
3200
3201#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3202 if (unlikely(total_packets &&
3203 netif_carrier_ok(tx_ring->netdev) &&
3204 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3205 /* Make sure that anybody stopping the queue after this
3206 * sees the new next_to_clean.
3207 */
3208 smp_mb();
3209 if (__netif_subqueue_stopped(tx_ring->netdev,
3210 tx_ring->queue_index) &&
3211 !(test_bit(__IGC_DOWN, &adapter->state))) {
3212 netif_wake_subqueue(tx_ring->netdev,
3213 tx_ring->queue_index);
3214
3215 u64_stats_update_begin(&tx_ring->tx_syncp);
3216 tx_ring->tx_stats.restart_queue++;
3217 u64_stats_update_end(&tx_ring->tx_syncp);
3218 }
3219 }
3220
3221 return !!budget;
3222}
3223
3224static int igc_find_mac_filter(struct igc_adapter *adapter,
3225 enum igc_mac_filter_type type, const u8 *addr)
3226{
3227 struct igc_hw *hw = &adapter->hw;
3228 int max_entries = hw->mac.rar_entry_count;
3229 u32 ral, rah;
3230 int i;
3231
3232 for (i = 0; i < max_entries; i++) {
3233 ral = rd32(IGC_RAL(i));
3234 rah = rd32(IGC_RAH(i));
3235
3236 if (!(rah & IGC_RAH_AV))
3237 continue;
3238 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3239 continue;
3240 if ((rah & IGC_RAH_RAH_MASK) !=
3241 le16_to_cpup((__le16 *)(addr + 4)))
3242 continue;
3243 if (ral != le32_to_cpup((__le32 *)(addr)))
3244 continue;
3245
3246 return i;
3247 }
3248
3249 return -1;
3250}
3251
3252static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3253{
3254 struct igc_hw *hw = &adapter->hw;
3255 int max_entries = hw->mac.rar_entry_count;
3256 u32 rah;
3257 int i;
3258
3259 for (i = 0; i < max_entries; i++) {
3260 rah = rd32(IGC_RAH(i));
3261
3262 if (!(rah & IGC_RAH_AV))
3263 return i;
3264 }
3265
3266 return -1;
3267}
3268
3269/**
3270 * igc_add_mac_filter() - Add MAC address filter
3271 * @adapter: Pointer to adapter where the filter should be added
3272 * @type: MAC address filter type (source or destination)
3273 * @addr: MAC address
3274 * @queue: If non-negative, queue assignment feature is enabled and frames
3275 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3276 * assignment is disabled.
3277 *
3278 * Return: 0 in case of success, negative errno code otherwise.
3279 */
3280static int igc_add_mac_filter(struct igc_adapter *adapter,
3281 enum igc_mac_filter_type type, const u8 *addr,
3282 int queue)
3283{
3284 struct net_device *dev = adapter->netdev;
3285 int index;
3286
3287 index = igc_find_mac_filter(adapter, type, addr);
3288 if (index >= 0)
3289 goto update_filter;
3290
3291 index = igc_get_avail_mac_filter_slot(adapter);
3292 if (index < 0)
3293 return -ENOSPC;
3294
3295 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3296 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3297 addr, queue);
3298
3299update_filter:
3300 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3301 return 0;
3302}
3303
3304/**
3305 * igc_del_mac_filter() - Delete MAC address filter
3306 * @adapter: Pointer to adapter where the filter should be deleted from
3307 * @type: MAC address filter type (source or destination)
3308 * @addr: MAC address
3309 */
3310static void igc_del_mac_filter(struct igc_adapter *adapter,
3311 enum igc_mac_filter_type type, const u8 *addr)
3312{
3313 struct net_device *dev = adapter->netdev;
3314 int index;
3315
3316 index = igc_find_mac_filter(adapter, type, addr);
3317 if (index < 0)
3318 return;
3319
3320 if (index == 0) {
3321 /* If this is the default filter, we don't actually delete it.
3322 * We just reset to its default value i.e. disable queue
3323 * assignment.
3324 */
3325 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3326
3327 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3328 } else {
3329 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3330 index,
3331 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3332 addr);
3333
3334 igc_clear_mac_filter_hw(adapter, index);
3335 }
3336}
3337
3338/**
3339 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3340 * @adapter: Pointer to adapter where the filter should be added
3341 * @prio: VLAN priority value
3342 * @queue: Queue number which matching frames are assigned to
3343 *
3344 * Return: 0 in case of success, negative errno code otherwise.
3345 */
3346static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3347 int queue)
3348{
3349 struct net_device *dev = adapter->netdev;
3350 struct igc_hw *hw = &adapter->hw;
3351 u32 vlanpqf;
3352
3353 vlanpqf = rd32(IGC_VLANPQF);
3354
3355 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3356 netdev_dbg(dev, "VLAN priority filter already in use\n");
3357 return -EEXIST;
3358 }
3359
3360 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3361 vlanpqf |= IGC_VLANPQF_VALID(prio);
3362
3363 wr32(IGC_VLANPQF, vlanpqf);
3364
3365 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3366 prio, queue);
3367 return 0;
3368}
3369
3370/**
3371 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3372 * @adapter: Pointer to adapter where the filter should be deleted from
3373 * @prio: VLAN priority value
3374 */
3375static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3376{
3377 struct igc_hw *hw = &adapter->hw;
3378 u32 vlanpqf;
3379
3380 vlanpqf = rd32(IGC_VLANPQF);
3381
3382 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3383 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3384
3385 wr32(IGC_VLANPQF, vlanpqf);
3386
3387 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3388 prio);
3389}
3390
3391static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3392{
3393 struct igc_hw *hw = &adapter->hw;
3394 int i;
3395
3396 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3397 u32 etqf = rd32(IGC_ETQF(i));
3398
3399 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3400 return i;
3401 }
3402
3403 return -1;
3404}
3405
3406/**
3407 * igc_add_etype_filter() - Add ethertype filter
3408 * @adapter: Pointer to adapter where the filter should be added
3409 * @etype: Ethertype value
3410 * @queue: If non-negative, queue assignment feature is enabled and frames
3411 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3412 * assignment is disabled.
3413 *
3414 * Return: 0 in case of success, negative errno code otherwise.
3415 */
3416static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3417 int queue)
3418{
3419 struct igc_hw *hw = &adapter->hw;
3420 int index;
3421 u32 etqf;
3422
3423 index = igc_get_avail_etype_filter_slot(adapter);
3424 if (index < 0)
3425 return -ENOSPC;
3426
3427 etqf = rd32(IGC_ETQF(index));
3428
3429 etqf &= ~IGC_ETQF_ETYPE_MASK;
3430 etqf |= etype;
3431
3432 if (queue >= 0) {
3433 etqf &= ~IGC_ETQF_QUEUE_MASK;
3434 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3435 etqf |= IGC_ETQF_QUEUE_ENABLE;
3436 }
3437
3438 etqf |= IGC_ETQF_FILTER_ENABLE;
3439
3440 wr32(IGC_ETQF(index), etqf);
3441
3442 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3443 etype, queue);
3444 return 0;
3445}
3446
3447static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3448{
3449 struct igc_hw *hw = &adapter->hw;
3450 int i;
3451
3452 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3453 u32 etqf = rd32(IGC_ETQF(i));
3454
3455 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3456 return i;
3457 }
3458
3459 return -1;
3460}
3461
3462/**
3463 * igc_del_etype_filter() - Delete ethertype filter
3464 * @adapter: Pointer to adapter where the filter should be deleted from
3465 * @etype: Ethertype value
3466 */
3467static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3468{
3469 struct igc_hw *hw = &adapter->hw;
3470 int index;
3471
3472 index = igc_find_etype_filter(adapter, etype);
3473 if (index < 0)
3474 return;
3475
3476 wr32(IGC_ETQF(index), 0);
3477
3478 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3479 etype);
3480}
3481
3482static int igc_flex_filter_select(struct igc_adapter *adapter,
3483 struct igc_flex_filter *input,
3484 u32 *fhft)
3485{
3486 struct igc_hw *hw = &adapter->hw;
3487 u8 fhft_index;
3488 u32 fhftsl;
3489
3490 if (input->index >= MAX_FLEX_FILTER) {
3491 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3492 return -EINVAL;
3493 }
3494
3495 /* Indirect table select register */
3496 fhftsl = rd32(IGC_FHFTSL);
3497 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3498 switch (input->index) {
3499 case 0 ... 7:
3500 fhftsl |= 0x00;
3501 break;
3502 case 8 ... 15:
3503 fhftsl |= 0x01;
3504 break;
3505 case 16 ... 23:
3506 fhftsl |= 0x02;
3507 break;
3508 case 24 ... 31:
3509 fhftsl |= 0x03;
3510 break;
3511 }
3512 wr32(IGC_FHFTSL, fhftsl);
3513
3514 /* Normalize index down to host table register */
3515 fhft_index = input->index % 8;
3516
3517 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3518 IGC_FHFT_EXT(fhft_index - 4);
3519
3520 return 0;
3521}
3522
3523static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3524 struct igc_flex_filter *input)
3525{
3526 struct igc_hw *hw = &adapter->hw;
3527 u8 *data = input->data;
3528 u8 *mask = input->mask;
3529 u32 queuing;
3530 u32 fhft;
3531 u32 wufc;
3532 int ret;
3533 int i;
3534
3535 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3536 * out early to avoid surprises later.
3537 */
3538 if (input->length % 8 != 0) {
3539 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3540 return -EINVAL;
3541 }
3542
3543 /* Select corresponding flex filter register and get base for host table. */
3544 ret = igc_flex_filter_select(adapter, input, &fhft);
3545 if (ret)
3546 return ret;
3547
3548 /* When adding a filter globally disable flex filter feature. That is
3549 * recommended within the datasheet.
3550 */
3551 wufc = rd32(IGC_WUFC);
3552 wufc &= ~IGC_WUFC_FLEX_HQ;
3553 wr32(IGC_WUFC, wufc);
3554
3555 /* Configure filter */
3556 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3557 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3558 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3559
3560 if (input->immediate_irq)
3561 queuing |= IGC_FHFT_IMM_INT;
3562
3563 if (input->drop)
3564 queuing |= IGC_FHFT_DROP;
3565
3566 wr32(fhft + 0xFC, queuing);
3567
3568 /* Write data (128 byte) and mask (128 bit) */
3569 for (i = 0; i < 16; ++i) {
3570 const size_t data_idx = i * 8;
3571 const size_t row_idx = i * 16;
3572 u32 dw0 =
3573 (data[data_idx + 0] << 0) |
3574 (data[data_idx + 1] << 8) |
3575 (data[data_idx + 2] << 16) |
3576 (data[data_idx + 3] << 24);
3577 u32 dw1 =
3578 (data[data_idx + 4] << 0) |
3579 (data[data_idx + 5] << 8) |
3580 (data[data_idx + 6] << 16) |
3581 (data[data_idx + 7] << 24);
3582 u32 tmp;
3583
3584 /* Write row: dw0, dw1 and mask */
3585 wr32(fhft + row_idx, dw0);
3586 wr32(fhft + row_idx + 4, dw1);
3587
3588 /* mask is only valid for MASK(7, 0) */
3589 tmp = rd32(fhft + row_idx + 8);
3590 tmp &= ~GENMASK(7, 0);
3591 tmp |= mask[i];
3592 wr32(fhft + row_idx + 8, tmp);
3593 }
3594
3595 /* Enable filter. */
3596 wufc |= IGC_WUFC_FLEX_HQ;
3597 if (input->index > 8) {
3598 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3599 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3600
3601 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3602
3603 wr32(IGC_WUFC_EXT, wufc_ext);
3604 } else {
3605 wufc |= (IGC_WUFC_FLX0 << input->index);
3606 }
3607 wr32(IGC_WUFC, wufc);
3608
3609 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3610 input->index);
3611
3612 return 0;
3613}
3614
3615static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3616 const void *src, unsigned int offset,
3617 size_t len, const void *mask)
3618{
3619 int i;
3620
3621 /* data */
3622 memcpy(&flex->data[offset], src, len);
3623
3624 /* mask */
3625 for (i = 0; i < len; ++i) {
3626 const unsigned int idx = i + offset;
3627 const u8 *ptr = mask;
3628
3629 if (mask) {
3630 if (ptr[i] & 0xff)
3631 flex->mask[idx / 8] |= BIT(idx % 8);
3632
3633 continue;
3634 }
3635
3636 flex->mask[idx / 8] |= BIT(idx % 8);
3637 }
3638}
3639
3640static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3641{
3642 struct igc_hw *hw = &adapter->hw;
3643 u32 wufc, wufc_ext;
3644 int i;
3645
3646 wufc = rd32(IGC_WUFC);
3647 wufc_ext = rd32(IGC_WUFC_EXT);
3648
3649 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3650 if (i < 8) {
3651 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3652 return i;
3653 } else {
3654 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3655 return i;
3656 }
3657 }
3658
3659 return -ENOSPC;
3660}
3661
3662static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3663{
3664 struct igc_hw *hw = &adapter->hw;
3665 u32 wufc, wufc_ext;
3666
3667 wufc = rd32(IGC_WUFC);
3668 wufc_ext = rd32(IGC_WUFC_EXT);
3669
3670 if (wufc & IGC_WUFC_FILTER_MASK)
3671 return true;
3672
3673 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3674 return true;
3675
3676 return false;
3677}
3678
3679static int igc_add_flex_filter(struct igc_adapter *adapter,
3680 struct igc_nfc_rule *rule)
3681{
3682 struct igc_nfc_filter *filter = &rule->filter;
3683 unsigned int eth_offset, user_offset;
3684 struct igc_flex_filter flex = { };
3685 int ret, index;
3686 bool vlan;
3687
3688 index = igc_find_avail_flex_filter_slot(adapter);
3689 if (index < 0)
3690 return -ENOSPC;
3691
3692 /* Construct the flex filter:
3693 * -> dest_mac [6]
3694 * -> src_mac [6]
3695 * -> tpid [2]
3696 * -> vlan tci [2]
3697 * -> ether type [2]
3698 * -> user data [8]
3699 * -> = 26 bytes => 32 length
3700 */
3701 flex.index = index;
3702 flex.length = 32;
3703 flex.rx_queue = rule->action;
3704
3705 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3706 eth_offset = vlan ? 16 : 12;
3707 user_offset = vlan ? 18 : 14;
3708
3709 /* Add destination MAC */
3710 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3711 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3712 ETH_ALEN, NULL);
3713
3714 /* Add source MAC */
3715 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3716 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3717 ETH_ALEN, NULL);
3718
3719 /* Add VLAN etype */
3720 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3721 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3722
3723 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3724 sizeof(vlan_etype), NULL);
3725 }
3726
3727 /* Add VLAN TCI */
3728 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3729 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3730 sizeof(filter->vlan_tci), NULL);
3731
3732 /* Add Ether type */
3733 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3734 __be16 etype = cpu_to_be16(filter->etype);
3735
3736 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3737 sizeof(etype), NULL);
3738 }
3739
3740 /* Add user data */
3741 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3742 igc_flex_filter_add_field(&flex, &filter->user_data,
3743 user_offset,
3744 sizeof(filter->user_data),
3745 filter->user_mask);
3746
3747 /* Add it down to the hardware and enable it. */
3748 ret = igc_write_flex_filter_ll(adapter, &flex);
3749 if (ret)
3750 return ret;
3751
3752 filter->flex_index = index;
3753
3754 return 0;
3755}
3756
3757static void igc_del_flex_filter(struct igc_adapter *adapter,
3758 u16 reg_index)
3759{
3760 struct igc_hw *hw = &adapter->hw;
3761 u32 wufc;
3762
3763 /* Just disable the filter. The filter table itself is kept
3764 * intact. Another flex_filter_add() should override the "old" data
3765 * then.
3766 */
3767 if (reg_index > 8) {
3768 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3769
3770 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3771 wr32(IGC_WUFC_EXT, wufc_ext);
3772 } else {
3773 wufc = rd32(IGC_WUFC);
3774
3775 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3776 wr32(IGC_WUFC, wufc);
3777 }
3778
3779 if (igc_flex_filter_in_use(adapter))
3780 return;
3781
3782 /* No filters are in use, we may disable flex filters */
3783 wufc = rd32(IGC_WUFC);
3784 wufc &= ~IGC_WUFC_FLEX_HQ;
3785 wr32(IGC_WUFC, wufc);
3786}
3787
3788static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3789 struct igc_nfc_rule *rule)
3790{
3791 int err;
3792
3793 if (rule->flex) {
3794 return igc_add_flex_filter(adapter, rule);
3795 }
3796
3797 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3798 err = igc_add_etype_filter(adapter, rule->filter.etype,
3799 rule->action);
3800 if (err)
3801 return err;
3802 }
3803
3804 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3805 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3806 rule->filter.src_addr, rule->action);
3807 if (err)
3808 return err;
3809 }
3810
3811 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3812 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3813 rule->filter.dst_addr, rule->action);
3814 if (err)
3815 return err;
3816 }
3817
3818 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3819 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3820
3821 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3822 if (err)
3823 return err;
3824 }
3825
3826 return 0;
3827}
3828
3829static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3830 const struct igc_nfc_rule *rule)
3831{
3832 if (rule->flex) {
3833 igc_del_flex_filter(adapter, rule->filter.flex_index);
3834 return;
3835 }
3836
3837 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3838 igc_del_etype_filter(adapter, rule->filter.etype);
3839
3840 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3841 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3842
3843 igc_del_vlan_prio_filter(adapter, prio);
3844 }
3845
3846 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3847 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3848 rule->filter.src_addr);
3849
3850 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3851 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3852 rule->filter.dst_addr);
3853}
3854
3855/**
3856 * igc_get_nfc_rule() - Get NFC rule
3857 * @adapter: Pointer to adapter
3858 * @location: Rule location
3859 *
3860 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3861 *
3862 * Return: Pointer to NFC rule at @location. If not found, NULL.
3863 */
3864struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3865 u32 location)
3866{
3867 struct igc_nfc_rule *rule;
3868
3869 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3870 if (rule->location == location)
3871 return rule;
3872 if (rule->location > location)
3873 break;
3874 }
3875
3876 return NULL;
3877}
3878
3879/**
3880 * igc_del_nfc_rule() - Delete NFC rule
3881 * @adapter: Pointer to adapter
3882 * @rule: Pointer to rule to be deleted
3883 *
3884 * Disable NFC rule in hardware and delete it from adapter.
3885 *
3886 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3887 */
3888void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3889{
3890 igc_disable_nfc_rule(adapter, rule);
3891
3892 list_del(&rule->list);
3893 adapter->nfc_rule_count--;
3894
3895 kfree(rule);
3896}
3897
3898static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3899{
3900 struct igc_nfc_rule *rule, *tmp;
3901
3902 mutex_lock(&adapter->nfc_rule_lock);
3903
3904 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3905 igc_del_nfc_rule(adapter, rule);
3906
3907 mutex_unlock(&adapter->nfc_rule_lock);
3908}
3909
3910/**
3911 * igc_add_nfc_rule() - Add NFC rule
3912 * @adapter: Pointer to adapter
3913 * @rule: Pointer to rule to be added
3914 *
3915 * Enable NFC rule in hardware and add it to adapter.
3916 *
3917 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3918 *
3919 * Return: 0 on success, negative errno on failure.
3920 */
3921int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3922{
3923 struct igc_nfc_rule *pred, *cur;
3924 int err;
3925
3926 err = igc_enable_nfc_rule(adapter, rule);
3927 if (err)
3928 return err;
3929
3930 pred = NULL;
3931 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3932 if (cur->location >= rule->location)
3933 break;
3934 pred = cur;
3935 }
3936
3937 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3938 adapter->nfc_rule_count++;
3939 return 0;
3940}
3941
3942static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3943{
3944 struct igc_nfc_rule *rule;
3945
3946 mutex_lock(&adapter->nfc_rule_lock);
3947
3948 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3949 igc_enable_nfc_rule(adapter, rule);
3950
3951 mutex_unlock(&adapter->nfc_rule_lock);
3952}
3953
3954static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3955{
3956 struct igc_adapter *adapter = netdev_priv(netdev);
3957
3958 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3959}
3960
3961static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3962{
3963 struct igc_adapter *adapter = netdev_priv(netdev);
3964
3965 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3966 return 0;
3967}
3968
3969/**
3970 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3971 * @netdev: network interface device structure
3972 *
3973 * The set_rx_mode entry point is called whenever the unicast or multicast
3974 * address lists or the network interface flags are updated. This routine is
3975 * responsible for configuring the hardware for proper unicast, multicast,
3976 * promiscuous mode, and all-multi behavior.
3977 */
3978static void igc_set_rx_mode(struct net_device *netdev)
3979{
3980 struct igc_adapter *adapter = netdev_priv(netdev);
3981 struct igc_hw *hw = &adapter->hw;
3982 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3983 int count;
3984
3985 /* Check for Promiscuous and All Multicast modes */
3986 if (netdev->flags & IFF_PROMISC) {
3987 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3988 } else {
3989 if (netdev->flags & IFF_ALLMULTI) {
3990 rctl |= IGC_RCTL_MPE;
3991 } else {
3992 /* Write addresses to the MTA, if the attempt fails
3993 * then we should just turn on promiscuous mode so
3994 * that we can at least receive multicast traffic
3995 */
3996 count = igc_write_mc_addr_list(netdev);
3997 if (count < 0)
3998 rctl |= IGC_RCTL_MPE;
3999 }
4000 }
4001
4002 /* Write addresses to available RAR registers, if there is not
4003 * sufficient space to store all the addresses then enable
4004 * unicast promiscuous mode
4005 */
4006 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4007 rctl |= IGC_RCTL_UPE;
4008
4009 /* update state of unicast and multicast */
4010 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4011 wr32(IGC_RCTL, rctl);
4012
4013#if (PAGE_SIZE < 8192)
4014 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4015 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4016#endif
4017 wr32(IGC_RLPML, rlpml);
4018}
4019
4020/**
4021 * igc_configure - configure the hardware for RX and TX
4022 * @adapter: private board structure
4023 */
4024static void igc_configure(struct igc_adapter *adapter)
4025{
4026 struct net_device *netdev = adapter->netdev;
4027 int i = 0;
4028
4029 igc_get_hw_control(adapter);
4030 igc_set_rx_mode(netdev);
4031
4032 igc_restore_vlan(adapter);
4033
4034 igc_setup_tctl(adapter);
4035 igc_setup_mrqc(adapter);
4036 igc_setup_rctl(adapter);
4037
4038 igc_set_default_mac_filter(adapter);
4039 igc_restore_nfc_rules(adapter);
4040
4041 igc_configure_tx(adapter);
4042 igc_configure_rx(adapter);
4043
4044 igc_rx_fifo_flush_base(&adapter->hw);
4045
4046 /* call igc_desc_unused which always leaves
4047 * at least 1 descriptor unused to make sure
4048 * next_to_use != next_to_clean
4049 */
4050 for (i = 0; i < adapter->num_rx_queues; i++) {
4051 struct igc_ring *ring = adapter->rx_ring[i];
4052
4053 if (ring->xsk_pool)
4054 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4055 else
4056 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4057 }
4058}
4059
4060/**
4061 * igc_write_ivar - configure ivar for given MSI-X vector
4062 * @hw: pointer to the HW structure
4063 * @msix_vector: vector number we are allocating to a given ring
4064 * @index: row index of IVAR register to write within IVAR table
4065 * @offset: column offset of in IVAR, should be multiple of 8
4066 *
4067 * The IVAR table consists of 2 columns,
4068 * each containing an cause allocation for an Rx and Tx ring, and a
4069 * variable number of rows depending on the number of queues supported.
4070 */
4071static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4072 int index, int offset)
4073{
4074 u32 ivar = array_rd32(IGC_IVAR0, index);
4075
4076 /* clear any bits that are currently set */
4077 ivar &= ~((u32)0xFF << offset);
4078
4079 /* write vector and valid bit */
4080 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4081
4082 array_wr32(IGC_IVAR0, index, ivar);
4083}
4084
4085static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4086{
4087 struct igc_adapter *adapter = q_vector->adapter;
4088 struct igc_hw *hw = &adapter->hw;
4089 int rx_queue = IGC_N0_QUEUE;
4090 int tx_queue = IGC_N0_QUEUE;
4091
4092 if (q_vector->rx.ring)
4093 rx_queue = q_vector->rx.ring->reg_idx;
4094 if (q_vector->tx.ring)
4095 tx_queue = q_vector->tx.ring->reg_idx;
4096
4097 switch (hw->mac.type) {
4098 case igc_i225:
4099 if (rx_queue > IGC_N0_QUEUE)
4100 igc_write_ivar(hw, msix_vector,
4101 rx_queue >> 1,
4102 (rx_queue & 0x1) << 4);
4103 if (tx_queue > IGC_N0_QUEUE)
4104 igc_write_ivar(hw, msix_vector,
4105 tx_queue >> 1,
4106 ((tx_queue & 0x1) << 4) + 8);
4107 q_vector->eims_value = BIT(msix_vector);
4108 break;
4109 default:
4110 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4111 break;
4112 }
4113
4114 /* add q_vector eims value to global eims_enable_mask */
4115 adapter->eims_enable_mask |= q_vector->eims_value;
4116
4117 /* configure q_vector to set itr on first interrupt */
4118 q_vector->set_itr = 1;
4119}
4120
4121/**
4122 * igc_configure_msix - Configure MSI-X hardware
4123 * @adapter: Pointer to adapter structure
4124 *
4125 * igc_configure_msix sets up the hardware to properly
4126 * generate MSI-X interrupts.
4127 */
4128static void igc_configure_msix(struct igc_adapter *adapter)
4129{
4130 struct igc_hw *hw = &adapter->hw;
4131 int i, vector = 0;
4132 u32 tmp;
4133
4134 adapter->eims_enable_mask = 0;
4135
4136 /* set vector for other causes, i.e. link changes */
4137 switch (hw->mac.type) {
4138 case igc_i225:
4139 /* Turn on MSI-X capability first, or our settings
4140 * won't stick. And it will take days to debug.
4141 */
4142 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4143 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4144 IGC_GPIE_NSICR);
4145
4146 /* enable msix_other interrupt */
4147 adapter->eims_other = BIT(vector);
4148 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4149
4150 wr32(IGC_IVAR_MISC, tmp);
4151 break;
4152 default:
4153 /* do nothing, since nothing else supports MSI-X */
4154 break;
4155 } /* switch (hw->mac.type) */
4156
4157 adapter->eims_enable_mask |= adapter->eims_other;
4158
4159 for (i = 0; i < adapter->num_q_vectors; i++)
4160 igc_assign_vector(adapter->q_vector[i], vector++);
4161
4162 wrfl();
4163}
4164
4165/**
4166 * igc_irq_enable - Enable default interrupt generation settings
4167 * @adapter: board private structure
4168 */
4169static void igc_irq_enable(struct igc_adapter *adapter)
4170{
4171 struct igc_hw *hw = &adapter->hw;
4172
4173 if (adapter->msix_entries) {
4174 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4175 u32 regval = rd32(IGC_EIAC);
4176
4177 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4178 regval = rd32(IGC_EIAM);
4179 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4180 wr32(IGC_EIMS, adapter->eims_enable_mask);
4181 wr32(IGC_IMS, ims);
4182 } else {
4183 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4184 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4185 }
4186}
4187
4188/**
4189 * igc_irq_disable - Mask off interrupt generation on the NIC
4190 * @adapter: board private structure
4191 */
4192static void igc_irq_disable(struct igc_adapter *adapter)
4193{
4194 struct igc_hw *hw = &adapter->hw;
4195
4196 if (adapter->msix_entries) {
4197 u32 regval = rd32(IGC_EIAM);
4198
4199 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4200 wr32(IGC_EIMC, adapter->eims_enable_mask);
4201 regval = rd32(IGC_EIAC);
4202 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4203 }
4204
4205 wr32(IGC_IAM, 0);
4206 wr32(IGC_IMC, ~0);
4207 wrfl();
4208
4209 if (adapter->msix_entries) {
4210 int vector = 0, i;
4211
4212 synchronize_irq(adapter->msix_entries[vector++].vector);
4213
4214 for (i = 0; i < adapter->num_q_vectors; i++)
4215 synchronize_irq(adapter->msix_entries[vector++].vector);
4216 } else {
4217 synchronize_irq(adapter->pdev->irq);
4218 }
4219}
4220
4221void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4222 const u32 max_rss_queues)
4223{
4224 /* Determine if we need to pair queues. */
4225 /* If rss_queues > half of max_rss_queues, pair the queues in
4226 * order to conserve interrupts due to limited supply.
4227 */
4228 if (adapter->rss_queues > (max_rss_queues / 2))
4229 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4230 else
4231 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4232}
4233
4234unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4235{
4236 return IGC_MAX_RX_QUEUES;
4237}
4238
4239static void igc_init_queue_configuration(struct igc_adapter *adapter)
4240{
4241 u32 max_rss_queues;
4242
4243 max_rss_queues = igc_get_max_rss_queues(adapter);
4244 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4245
4246 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4247}
4248
4249/**
4250 * igc_reset_q_vector - Reset config for interrupt vector
4251 * @adapter: board private structure to initialize
4252 * @v_idx: Index of vector to be reset
4253 *
4254 * If NAPI is enabled it will delete any references to the
4255 * NAPI struct. This is preparation for igc_free_q_vector.
4256 */
4257static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4258{
4259 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4260
4261 /* if we're coming from igc_set_interrupt_capability, the vectors are
4262 * not yet allocated
4263 */
4264 if (!q_vector)
4265 return;
4266
4267 if (q_vector->tx.ring)
4268 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4269
4270 if (q_vector->rx.ring)
4271 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4272
4273 netif_napi_del(&q_vector->napi);
4274}
4275
4276/**
4277 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4278 * @adapter: board private structure to initialize
4279 * @v_idx: Index of vector to be freed
4280 *
4281 * This function frees the memory allocated to the q_vector.
4282 */
4283static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4284{
4285 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4286
4287 adapter->q_vector[v_idx] = NULL;
4288
4289 /* igc_get_stats64() might access the rings on this vector,
4290 * we must wait a grace period before freeing it.
4291 */
4292 if (q_vector)
4293 kfree_rcu(q_vector, rcu);
4294}
4295
4296/**
4297 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4298 * @adapter: board private structure to initialize
4299 *
4300 * This function frees the memory allocated to the q_vectors. In addition if
4301 * NAPI is enabled it will delete any references to the NAPI struct prior
4302 * to freeing the q_vector.
4303 */
4304static void igc_free_q_vectors(struct igc_adapter *adapter)
4305{
4306 int v_idx = adapter->num_q_vectors;
4307
4308 adapter->num_tx_queues = 0;
4309 adapter->num_rx_queues = 0;
4310 adapter->num_q_vectors = 0;
4311
4312 while (v_idx--) {
4313 igc_reset_q_vector(adapter, v_idx);
4314 igc_free_q_vector(adapter, v_idx);
4315 }
4316}
4317
4318/**
4319 * igc_update_itr - update the dynamic ITR value based on statistics
4320 * @q_vector: pointer to q_vector
4321 * @ring_container: ring info to update the itr for
4322 *
4323 * Stores a new ITR value based on packets and byte
4324 * counts during the last interrupt. The advantage of per interrupt
4325 * computation is faster updates and more accurate ITR for the current
4326 * traffic pattern. Constants in this function were computed
4327 * based on theoretical maximum wire speed and thresholds were set based
4328 * on testing data as well as attempting to minimize response time
4329 * while increasing bulk throughput.
4330 * NOTE: These calculations are only valid when operating in a single-
4331 * queue environment.
4332 */
4333static void igc_update_itr(struct igc_q_vector *q_vector,
4334 struct igc_ring_container *ring_container)
4335{
4336 unsigned int packets = ring_container->total_packets;
4337 unsigned int bytes = ring_container->total_bytes;
4338 u8 itrval = ring_container->itr;
4339
4340 /* no packets, exit with status unchanged */
4341 if (packets == 0)
4342 return;
4343
4344 switch (itrval) {
4345 case lowest_latency:
4346 /* handle TSO and jumbo frames */
4347 if (bytes / packets > 8000)
4348 itrval = bulk_latency;
4349 else if ((packets < 5) && (bytes > 512))
4350 itrval = low_latency;
4351 break;
4352 case low_latency: /* 50 usec aka 20000 ints/s */
4353 if (bytes > 10000) {
4354 /* this if handles the TSO accounting */
4355 if (bytes / packets > 8000)
4356 itrval = bulk_latency;
4357 else if ((packets < 10) || ((bytes / packets) > 1200))
4358 itrval = bulk_latency;
4359 else if ((packets > 35))
4360 itrval = lowest_latency;
4361 } else if (bytes / packets > 2000) {
4362 itrval = bulk_latency;
4363 } else if (packets <= 2 && bytes < 512) {
4364 itrval = lowest_latency;
4365 }
4366 break;
4367 case bulk_latency: /* 250 usec aka 4000 ints/s */
4368 if (bytes > 25000) {
4369 if (packets > 35)
4370 itrval = low_latency;
4371 } else if (bytes < 1500) {
4372 itrval = low_latency;
4373 }
4374 break;
4375 }
4376
4377 /* clear work counters since we have the values we need */
4378 ring_container->total_bytes = 0;
4379 ring_container->total_packets = 0;
4380
4381 /* write updated itr to ring container */
4382 ring_container->itr = itrval;
4383}
4384
4385static void igc_set_itr(struct igc_q_vector *q_vector)
4386{
4387 struct igc_adapter *adapter = q_vector->adapter;
4388 u32 new_itr = q_vector->itr_val;
4389 u8 current_itr = 0;
4390
4391 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4392 switch (adapter->link_speed) {
4393 case SPEED_10:
4394 case SPEED_100:
4395 current_itr = 0;
4396 new_itr = IGC_4K_ITR;
4397 goto set_itr_now;
4398 default:
4399 break;
4400 }
4401
4402 igc_update_itr(q_vector, &q_vector->tx);
4403 igc_update_itr(q_vector, &q_vector->rx);
4404
4405 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4406
4407 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4408 if (current_itr == lowest_latency &&
4409 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4410 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4411 current_itr = low_latency;
4412
4413 switch (current_itr) {
4414 /* counts and packets in update_itr are dependent on these numbers */
4415 case lowest_latency:
4416 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4417 break;
4418 case low_latency:
4419 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4420 break;
4421 case bulk_latency:
4422 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4423 break;
4424 default:
4425 break;
4426 }
4427
4428set_itr_now:
4429 if (new_itr != q_vector->itr_val) {
4430 /* this attempts to bias the interrupt rate towards Bulk
4431 * by adding intermediate steps when interrupt rate is
4432 * increasing
4433 */
4434 new_itr = new_itr > q_vector->itr_val ?
4435 max((new_itr * q_vector->itr_val) /
4436 (new_itr + (q_vector->itr_val >> 2)),
4437 new_itr) : new_itr;
4438 /* Don't write the value here; it resets the adapter's
4439 * internal timer, and causes us to delay far longer than
4440 * we should between interrupts. Instead, we write the ITR
4441 * value at the beginning of the next interrupt so the timing
4442 * ends up being correct.
4443 */
4444 q_vector->itr_val = new_itr;
4445 q_vector->set_itr = 1;
4446 }
4447}
4448
4449static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4450{
4451 int v_idx = adapter->num_q_vectors;
4452
4453 if (adapter->msix_entries) {
4454 pci_disable_msix(adapter->pdev);
4455 kfree(adapter->msix_entries);
4456 adapter->msix_entries = NULL;
4457 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4458 pci_disable_msi(adapter->pdev);
4459 }
4460
4461 while (v_idx--)
4462 igc_reset_q_vector(adapter, v_idx);
4463}
4464
4465/**
4466 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4467 * @adapter: Pointer to adapter structure
4468 * @msix: boolean value for MSI-X capability
4469 *
4470 * Attempt to configure interrupts using the best available
4471 * capabilities of the hardware and kernel.
4472 */
4473static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4474 bool msix)
4475{
4476 int numvecs, i;
4477 int err;
4478
4479 if (!msix)
4480 goto msi_only;
4481 adapter->flags |= IGC_FLAG_HAS_MSIX;
4482
4483 /* Number of supported queues. */
4484 adapter->num_rx_queues = adapter->rss_queues;
4485
4486 adapter->num_tx_queues = adapter->rss_queues;
4487
4488 /* start with one vector for every Rx queue */
4489 numvecs = adapter->num_rx_queues;
4490
4491 /* if Tx handler is separate add 1 for every Tx queue */
4492 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4493 numvecs += adapter->num_tx_queues;
4494
4495 /* store the number of vectors reserved for queues */
4496 adapter->num_q_vectors = numvecs;
4497
4498 /* add 1 vector for link status interrupts */
4499 numvecs++;
4500
4501 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4502 GFP_KERNEL);
4503
4504 if (!adapter->msix_entries)
4505 return;
4506
4507 /* populate entry values */
4508 for (i = 0; i < numvecs; i++)
4509 adapter->msix_entries[i].entry = i;
4510
4511 err = pci_enable_msix_range(adapter->pdev,
4512 adapter->msix_entries,
4513 numvecs,
4514 numvecs);
4515 if (err > 0)
4516 return;
4517
4518 kfree(adapter->msix_entries);
4519 adapter->msix_entries = NULL;
4520
4521 igc_reset_interrupt_capability(adapter);
4522
4523msi_only:
4524 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4525
4526 adapter->rss_queues = 1;
4527 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4528 adapter->num_rx_queues = 1;
4529 adapter->num_tx_queues = 1;
4530 adapter->num_q_vectors = 1;
4531 if (!pci_enable_msi(adapter->pdev))
4532 adapter->flags |= IGC_FLAG_HAS_MSI;
4533}
4534
4535/**
4536 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4537 * @q_vector: pointer to q_vector
4538 *
4539 * Stores a new ITR value based on strictly on packet size. This
4540 * algorithm is less sophisticated than that used in igc_update_itr,
4541 * due to the difficulty of synchronizing statistics across multiple
4542 * receive rings. The divisors and thresholds used by this function
4543 * were determined based on theoretical maximum wire speed and testing
4544 * data, in order to minimize response time while increasing bulk
4545 * throughput.
4546 * NOTE: This function is called only when operating in a multiqueue
4547 * receive environment.
4548 */
4549static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4550{
4551 struct igc_adapter *adapter = q_vector->adapter;
4552 int new_val = q_vector->itr_val;
4553 int avg_wire_size = 0;
4554 unsigned int packets;
4555
4556 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4557 * ints/sec - ITR timer value of 120 ticks.
4558 */
4559 switch (adapter->link_speed) {
4560 case SPEED_10:
4561 case SPEED_100:
4562 new_val = IGC_4K_ITR;
4563 goto set_itr_val;
4564 default:
4565 break;
4566 }
4567
4568 packets = q_vector->rx.total_packets;
4569 if (packets)
4570 avg_wire_size = q_vector->rx.total_bytes / packets;
4571
4572 packets = q_vector->tx.total_packets;
4573 if (packets)
4574 avg_wire_size = max_t(u32, avg_wire_size,
4575 q_vector->tx.total_bytes / packets);
4576
4577 /* if avg_wire_size isn't set no work was done */
4578 if (!avg_wire_size)
4579 goto clear_counts;
4580
4581 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4582 avg_wire_size += 24;
4583
4584 /* Don't starve jumbo frames */
4585 avg_wire_size = min(avg_wire_size, 3000);
4586
4587 /* Give a little boost to mid-size frames */
4588 if (avg_wire_size > 300 && avg_wire_size < 1200)
4589 new_val = avg_wire_size / 3;
4590 else
4591 new_val = avg_wire_size / 2;
4592
4593 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4594 if (new_val < IGC_20K_ITR &&
4595 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4596 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4597 new_val = IGC_20K_ITR;
4598
4599set_itr_val:
4600 if (new_val != q_vector->itr_val) {
4601 q_vector->itr_val = new_val;
4602 q_vector->set_itr = 1;
4603 }
4604clear_counts:
4605 q_vector->rx.total_bytes = 0;
4606 q_vector->rx.total_packets = 0;
4607 q_vector->tx.total_bytes = 0;
4608 q_vector->tx.total_packets = 0;
4609}
4610
4611static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4612{
4613 struct igc_adapter *adapter = q_vector->adapter;
4614 struct igc_hw *hw = &adapter->hw;
4615
4616 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4617 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4618 if (adapter->num_q_vectors == 1)
4619 igc_set_itr(q_vector);
4620 else
4621 igc_update_ring_itr(q_vector);
4622 }
4623
4624 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4625 if (adapter->msix_entries)
4626 wr32(IGC_EIMS, q_vector->eims_value);
4627 else
4628 igc_irq_enable(adapter);
4629 }
4630}
4631
4632static void igc_add_ring(struct igc_ring *ring,
4633 struct igc_ring_container *head)
4634{
4635 head->ring = ring;
4636 head->count++;
4637}
4638
4639/**
4640 * igc_cache_ring_register - Descriptor ring to register mapping
4641 * @adapter: board private structure to initialize
4642 *
4643 * Once we know the feature-set enabled for the device, we'll cache
4644 * the register offset the descriptor ring is assigned to.
4645 */
4646static void igc_cache_ring_register(struct igc_adapter *adapter)
4647{
4648 int i = 0, j = 0;
4649
4650 switch (adapter->hw.mac.type) {
4651 case igc_i225:
4652 default:
4653 for (; i < adapter->num_rx_queues; i++)
4654 adapter->rx_ring[i]->reg_idx = i;
4655 for (; j < adapter->num_tx_queues; j++)
4656 adapter->tx_ring[j]->reg_idx = j;
4657 break;
4658 }
4659}
4660
4661/**
4662 * igc_poll - NAPI Rx polling callback
4663 * @napi: napi polling structure
4664 * @budget: count of how many packets we should handle
4665 */
4666static int igc_poll(struct napi_struct *napi, int budget)
4667{
4668 struct igc_q_vector *q_vector = container_of(napi,
4669 struct igc_q_vector,
4670 napi);
4671 struct igc_ring *rx_ring = q_vector->rx.ring;
4672 bool clean_complete = true;
4673 int work_done = 0;
4674
4675 if (q_vector->tx.ring)
4676 clean_complete = igc_clean_tx_irq(q_vector, budget);
4677
4678 if (rx_ring) {
4679 int cleaned = rx_ring->xsk_pool ?
4680 igc_clean_rx_irq_zc(q_vector, budget) :
4681 igc_clean_rx_irq(q_vector, budget);
4682
4683 work_done += cleaned;
4684 if (cleaned >= budget)
4685 clean_complete = false;
4686 }
4687
4688 /* If all work not completed, return budget and keep polling */
4689 if (!clean_complete)
4690 return budget;
4691
4692 /* Exit the polling mode, but don't re-enable interrupts if stack might
4693 * poll us due to busy-polling
4694 */
4695 if (likely(napi_complete_done(napi, work_done)))
4696 igc_ring_irq_enable(q_vector);
4697
4698 return min(work_done, budget - 1);
4699}
4700
4701/**
4702 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4703 * @adapter: board private structure to initialize
4704 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4705 * @v_idx: index of vector in adapter struct
4706 * @txr_count: total number of Tx rings to allocate
4707 * @txr_idx: index of first Tx ring to allocate
4708 * @rxr_count: total number of Rx rings to allocate
4709 * @rxr_idx: index of first Rx ring to allocate
4710 *
4711 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4712 */
4713static int igc_alloc_q_vector(struct igc_adapter *adapter,
4714 unsigned int v_count, unsigned int v_idx,
4715 unsigned int txr_count, unsigned int txr_idx,
4716 unsigned int rxr_count, unsigned int rxr_idx)
4717{
4718 struct igc_q_vector *q_vector;
4719 struct igc_ring *ring;
4720 int ring_count;
4721
4722 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4723 if (txr_count > 1 || rxr_count > 1)
4724 return -ENOMEM;
4725
4726 ring_count = txr_count + rxr_count;
4727
4728 /* allocate q_vector and rings */
4729 q_vector = adapter->q_vector[v_idx];
4730 if (!q_vector)
4731 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4732 GFP_KERNEL);
4733 else
4734 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4735 if (!q_vector)
4736 return -ENOMEM;
4737
4738 /* initialize NAPI */
4739 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4740
4741 /* tie q_vector and adapter together */
4742 adapter->q_vector[v_idx] = q_vector;
4743 q_vector->adapter = adapter;
4744
4745 /* initialize work limits */
4746 q_vector->tx.work_limit = adapter->tx_work_limit;
4747
4748 /* initialize ITR configuration */
4749 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4750 q_vector->itr_val = IGC_START_ITR;
4751
4752 /* initialize pointer to rings */
4753 ring = q_vector->ring;
4754
4755 /* initialize ITR */
4756 if (rxr_count) {
4757 /* rx or rx/tx vector */
4758 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4759 q_vector->itr_val = adapter->rx_itr_setting;
4760 } else {
4761 /* tx only vector */
4762 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4763 q_vector->itr_val = adapter->tx_itr_setting;
4764 }
4765
4766 if (txr_count) {
4767 /* assign generic ring traits */
4768 ring->dev = &adapter->pdev->dev;
4769 ring->netdev = adapter->netdev;
4770
4771 /* configure backlink on ring */
4772 ring->q_vector = q_vector;
4773
4774 /* update q_vector Tx values */
4775 igc_add_ring(ring, &q_vector->tx);
4776
4777 /* apply Tx specific ring traits */
4778 ring->count = adapter->tx_ring_count;
4779 ring->queue_index = txr_idx;
4780
4781 /* assign ring to adapter */
4782 adapter->tx_ring[txr_idx] = ring;
4783
4784 /* push pointer to next ring */
4785 ring++;
4786 }
4787
4788 if (rxr_count) {
4789 /* assign generic ring traits */
4790 ring->dev = &adapter->pdev->dev;
4791 ring->netdev = adapter->netdev;
4792
4793 /* configure backlink on ring */
4794 ring->q_vector = q_vector;
4795
4796 /* update q_vector Rx values */
4797 igc_add_ring(ring, &q_vector->rx);
4798
4799 /* apply Rx specific ring traits */
4800 ring->count = adapter->rx_ring_count;
4801 ring->queue_index = rxr_idx;
4802
4803 /* assign ring to adapter */
4804 adapter->rx_ring[rxr_idx] = ring;
4805 }
4806
4807 return 0;
4808}
4809
4810/**
4811 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4812 * @adapter: board private structure to initialize
4813 *
4814 * We allocate one q_vector per queue interrupt. If allocation fails we
4815 * return -ENOMEM.
4816 */
4817static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4818{
4819 int rxr_remaining = adapter->num_rx_queues;
4820 int txr_remaining = adapter->num_tx_queues;
4821 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4822 int q_vectors = adapter->num_q_vectors;
4823 int err;
4824
4825 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4826 for (; rxr_remaining; v_idx++) {
4827 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4828 0, 0, 1, rxr_idx);
4829
4830 if (err)
4831 goto err_out;
4832
4833 /* update counts and index */
4834 rxr_remaining--;
4835 rxr_idx++;
4836 }
4837 }
4838
4839 for (; v_idx < q_vectors; v_idx++) {
4840 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4841 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4842
4843 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4844 tqpv, txr_idx, rqpv, rxr_idx);
4845
4846 if (err)
4847 goto err_out;
4848
4849 /* update counts and index */
4850 rxr_remaining -= rqpv;
4851 txr_remaining -= tqpv;
4852 rxr_idx++;
4853 txr_idx++;
4854 }
4855
4856 return 0;
4857
4858err_out:
4859 adapter->num_tx_queues = 0;
4860 adapter->num_rx_queues = 0;
4861 adapter->num_q_vectors = 0;
4862
4863 while (v_idx--)
4864 igc_free_q_vector(adapter, v_idx);
4865
4866 return -ENOMEM;
4867}
4868
4869/**
4870 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4871 * @adapter: Pointer to adapter structure
4872 * @msix: boolean for MSI-X capability
4873 *
4874 * This function initializes the interrupts and allocates all of the queues.
4875 */
4876static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4877{
4878 struct net_device *dev = adapter->netdev;
4879 int err = 0;
4880
4881 igc_set_interrupt_capability(adapter, msix);
4882
4883 err = igc_alloc_q_vectors(adapter);
4884 if (err) {
4885 netdev_err(dev, "Unable to allocate memory for vectors\n");
4886 goto err_alloc_q_vectors;
4887 }
4888
4889 igc_cache_ring_register(adapter);
4890
4891 return 0;
4892
4893err_alloc_q_vectors:
4894 igc_reset_interrupt_capability(adapter);
4895 return err;
4896}
4897
4898/**
4899 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4900 * @adapter: board private structure to initialize
4901 *
4902 * igc_sw_init initializes the Adapter private data structure.
4903 * Fields are initialized based on PCI device information and
4904 * OS network device settings (MTU size).
4905 */
4906static int igc_sw_init(struct igc_adapter *adapter)
4907{
4908 struct net_device *netdev = adapter->netdev;
4909 struct pci_dev *pdev = adapter->pdev;
4910 struct igc_hw *hw = &adapter->hw;
4911
4912 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4913
4914 /* set default ring sizes */
4915 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4916 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4917
4918 /* set default ITR values */
4919 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4920 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4921
4922 /* set default work limits */
4923 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4924
4925 /* adjust max frame to be at least the size of a standard frame */
4926 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4927 VLAN_HLEN;
4928 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4929
4930 mutex_init(&adapter->nfc_rule_lock);
4931 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4932 adapter->nfc_rule_count = 0;
4933
4934 spin_lock_init(&adapter->stats64_lock);
4935 spin_lock_init(&adapter->qbv_tx_lock);
4936 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4937 adapter->flags |= IGC_FLAG_HAS_MSIX;
4938
4939 igc_init_queue_configuration(adapter);
4940
4941 /* This call may decrease the number of queues */
4942 if (igc_init_interrupt_scheme(adapter, true)) {
4943 netdev_err(netdev, "Unable to allocate memory for queues\n");
4944 return -ENOMEM;
4945 }
4946
4947 /* Explicitly disable IRQ since the NIC can be in any state. */
4948 igc_irq_disable(adapter);
4949
4950 set_bit(__IGC_DOWN, &adapter->state);
4951
4952 return 0;
4953}
4954
4955/**
4956 * igc_up - Open the interface and prepare it to handle traffic
4957 * @adapter: board private structure
4958 */
4959void igc_up(struct igc_adapter *adapter)
4960{
4961 struct igc_hw *hw = &adapter->hw;
4962 int i = 0;
4963
4964 /* hardware has been reset, we need to reload some things */
4965 igc_configure(adapter);
4966
4967 clear_bit(__IGC_DOWN, &adapter->state);
4968
4969 for (i = 0; i < adapter->num_q_vectors; i++)
4970 napi_enable(&adapter->q_vector[i]->napi);
4971
4972 if (adapter->msix_entries)
4973 igc_configure_msix(adapter);
4974 else
4975 igc_assign_vector(adapter->q_vector[0], 0);
4976
4977 /* Clear any pending interrupts. */
4978 rd32(IGC_ICR);
4979 igc_irq_enable(adapter);
4980
4981 netif_tx_start_all_queues(adapter->netdev);
4982
4983 /* start the watchdog. */
4984 hw->mac.get_link_status = true;
4985 schedule_work(&adapter->watchdog_task);
4986}
4987
4988/**
4989 * igc_update_stats - Update the board statistics counters
4990 * @adapter: board private structure
4991 */
4992void igc_update_stats(struct igc_adapter *adapter)
4993{
4994 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4995 struct pci_dev *pdev = adapter->pdev;
4996 struct igc_hw *hw = &adapter->hw;
4997 u64 _bytes, _packets;
4998 u64 bytes, packets;
4999 unsigned int start;
5000 u32 mpc;
5001 int i;
5002
5003 /* Prevent stats update while adapter is being reset, or if the pci
5004 * connection is down.
5005 */
5006 if (adapter->link_speed == 0)
5007 return;
5008 if (pci_channel_offline(pdev))
5009 return;
5010
5011 packets = 0;
5012 bytes = 0;
5013
5014 rcu_read_lock();
5015 for (i = 0; i < adapter->num_rx_queues; i++) {
5016 struct igc_ring *ring = adapter->rx_ring[i];
5017 u32 rqdpc = rd32(IGC_RQDPC(i));
5018
5019 if (hw->mac.type >= igc_i225)
5020 wr32(IGC_RQDPC(i), 0);
5021
5022 if (rqdpc) {
5023 ring->rx_stats.drops += rqdpc;
5024 net_stats->rx_fifo_errors += rqdpc;
5025 }
5026
5027 do {
5028 start = u64_stats_fetch_begin(&ring->rx_syncp);
5029 _bytes = ring->rx_stats.bytes;
5030 _packets = ring->rx_stats.packets;
5031 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5032 bytes += _bytes;
5033 packets += _packets;
5034 }
5035
5036 net_stats->rx_bytes = bytes;
5037 net_stats->rx_packets = packets;
5038
5039 packets = 0;
5040 bytes = 0;
5041 for (i = 0; i < adapter->num_tx_queues; i++) {
5042 struct igc_ring *ring = adapter->tx_ring[i];
5043
5044 do {
5045 start = u64_stats_fetch_begin(&ring->tx_syncp);
5046 _bytes = ring->tx_stats.bytes;
5047 _packets = ring->tx_stats.packets;
5048 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5049 bytes += _bytes;
5050 packets += _packets;
5051 }
5052 net_stats->tx_bytes = bytes;
5053 net_stats->tx_packets = packets;
5054 rcu_read_unlock();
5055
5056 /* read stats registers */
5057 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5058 adapter->stats.gprc += rd32(IGC_GPRC);
5059 adapter->stats.gorc += rd32(IGC_GORCL);
5060 rd32(IGC_GORCH); /* clear GORCL */
5061 adapter->stats.bprc += rd32(IGC_BPRC);
5062 adapter->stats.mprc += rd32(IGC_MPRC);
5063 adapter->stats.roc += rd32(IGC_ROC);
5064
5065 adapter->stats.prc64 += rd32(IGC_PRC64);
5066 adapter->stats.prc127 += rd32(IGC_PRC127);
5067 adapter->stats.prc255 += rd32(IGC_PRC255);
5068 adapter->stats.prc511 += rd32(IGC_PRC511);
5069 adapter->stats.prc1023 += rd32(IGC_PRC1023);
5070 adapter->stats.prc1522 += rd32(IGC_PRC1522);
5071 adapter->stats.tlpic += rd32(IGC_TLPIC);
5072 adapter->stats.rlpic += rd32(IGC_RLPIC);
5073 adapter->stats.hgptc += rd32(IGC_HGPTC);
5074
5075 mpc = rd32(IGC_MPC);
5076 adapter->stats.mpc += mpc;
5077 net_stats->rx_fifo_errors += mpc;
5078 adapter->stats.scc += rd32(IGC_SCC);
5079 adapter->stats.ecol += rd32(IGC_ECOL);
5080 adapter->stats.mcc += rd32(IGC_MCC);
5081 adapter->stats.latecol += rd32(IGC_LATECOL);
5082 adapter->stats.dc += rd32(IGC_DC);
5083 adapter->stats.rlec += rd32(IGC_RLEC);
5084 adapter->stats.xonrxc += rd32(IGC_XONRXC);
5085 adapter->stats.xontxc += rd32(IGC_XONTXC);
5086 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5087 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5088 adapter->stats.fcruc += rd32(IGC_FCRUC);
5089 adapter->stats.gptc += rd32(IGC_GPTC);
5090 adapter->stats.gotc += rd32(IGC_GOTCL);
5091 rd32(IGC_GOTCH); /* clear GOTCL */
5092 adapter->stats.rnbc += rd32(IGC_RNBC);
5093 adapter->stats.ruc += rd32(IGC_RUC);
5094 adapter->stats.rfc += rd32(IGC_RFC);
5095 adapter->stats.rjc += rd32(IGC_RJC);
5096 adapter->stats.tor += rd32(IGC_TORH);
5097 adapter->stats.tot += rd32(IGC_TOTH);
5098 adapter->stats.tpr += rd32(IGC_TPR);
5099
5100 adapter->stats.ptc64 += rd32(IGC_PTC64);
5101 adapter->stats.ptc127 += rd32(IGC_PTC127);
5102 adapter->stats.ptc255 += rd32(IGC_PTC255);
5103 adapter->stats.ptc511 += rd32(IGC_PTC511);
5104 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5105 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5106
5107 adapter->stats.mptc += rd32(IGC_MPTC);
5108 adapter->stats.bptc += rd32(IGC_BPTC);
5109
5110 adapter->stats.tpt += rd32(IGC_TPT);
5111 adapter->stats.colc += rd32(IGC_COLC);
5112 adapter->stats.colc += rd32(IGC_RERC);
5113
5114 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5115
5116 adapter->stats.tsctc += rd32(IGC_TSCTC);
5117
5118 adapter->stats.iac += rd32(IGC_IAC);
5119
5120 /* Fill out the OS statistics structure */
5121 net_stats->multicast = adapter->stats.mprc;
5122 net_stats->collisions = adapter->stats.colc;
5123
5124 /* Rx Errors */
5125
5126 /* RLEC on some newer hardware can be incorrect so build
5127 * our own version based on RUC and ROC
5128 */
5129 net_stats->rx_errors = adapter->stats.rxerrc +
5130 adapter->stats.crcerrs + adapter->stats.algnerrc +
5131 adapter->stats.ruc + adapter->stats.roc +
5132 adapter->stats.cexterr;
5133 net_stats->rx_length_errors = adapter->stats.ruc +
5134 adapter->stats.roc;
5135 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5136 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5137 net_stats->rx_missed_errors = adapter->stats.mpc;
5138
5139 /* Tx Errors */
5140 net_stats->tx_errors = adapter->stats.ecol +
5141 adapter->stats.latecol;
5142 net_stats->tx_aborted_errors = adapter->stats.ecol;
5143 net_stats->tx_window_errors = adapter->stats.latecol;
5144 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5145
5146 /* Tx Dropped */
5147 net_stats->tx_dropped = adapter->stats.txdrop;
5148
5149 /* Management Stats */
5150 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5151 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5152 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5153}
5154
5155/**
5156 * igc_down - Close the interface
5157 * @adapter: board private structure
5158 */
5159void igc_down(struct igc_adapter *adapter)
5160{
5161 struct net_device *netdev = adapter->netdev;
5162 struct igc_hw *hw = &adapter->hw;
5163 u32 tctl, rctl;
5164 int i = 0;
5165
5166 set_bit(__IGC_DOWN, &adapter->state);
5167
5168 igc_ptp_suspend(adapter);
5169
5170 if (pci_device_is_present(adapter->pdev)) {
5171 /* disable receives in the hardware */
5172 rctl = rd32(IGC_RCTL);
5173 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5174 /* flush and sleep below */
5175 }
5176 /* set trans_start so we don't get spurious watchdogs during reset */
5177 netif_trans_update(netdev);
5178
5179 netif_carrier_off(netdev);
5180 netif_tx_stop_all_queues(netdev);
5181
5182 if (pci_device_is_present(adapter->pdev)) {
5183 /* disable transmits in the hardware */
5184 tctl = rd32(IGC_TCTL);
5185 tctl &= ~IGC_TCTL_EN;
5186 wr32(IGC_TCTL, tctl);
5187 /* flush both disables and wait for them to finish */
5188 wrfl();
5189 usleep_range(10000, 20000);
5190
5191 igc_irq_disable(adapter);
5192 }
5193
5194 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5195
5196 for (i = 0; i < adapter->num_q_vectors; i++) {
5197 if (adapter->q_vector[i]) {
5198 napi_synchronize(&adapter->q_vector[i]->napi);
5199 napi_disable(&adapter->q_vector[i]->napi);
5200 }
5201 }
5202
5203 del_timer_sync(&adapter->watchdog_timer);
5204 del_timer_sync(&adapter->phy_info_timer);
5205
5206 /* record the stats before reset*/
5207 spin_lock(&adapter->stats64_lock);
5208 igc_update_stats(adapter);
5209 spin_unlock(&adapter->stats64_lock);
5210
5211 adapter->link_speed = 0;
5212 adapter->link_duplex = 0;
5213
5214 if (!pci_channel_offline(adapter->pdev))
5215 igc_reset(adapter);
5216
5217 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5218 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5219
5220 igc_disable_all_tx_rings_hw(adapter);
5221 igc_clean_all_tx_rings(adapter);
5222 igc_clean_all_rx_rings(adapter);
5223}
5224
5225void igc_reinit_locked(struct igc_adapter *adapter)
5226{
5227 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5228 usleep_range(1000, 2000);
5229 igc_down(adapter);
5230 igc_up(adapter);
5231 clear_bit(__IGC_RESETTING, &adapter->state);
5232}
5233
5234static void igc_reset_task(struct work_struct *work)
5235{
5236 struct igc_adapter *adapter;
5237
5238 adapter = container_of(work, struct igc_adapter, reset_task);
5239
5240 rtnl_lock();
5241 /* If we're already down or resetting, just bail */
5242 if (test_bit(__IGC_DOWN, &adapter->state) ||
5243 test_bit(__IGC_RESETTING, &adapter->state)) {
5244 rtnl_unlock();
5245 return;
5246 }
5247
5248 igc_rings_dump(adapter);
5249 igc_regs_dump(adapter);
5250 netdev_err(adapter->netdev, "Reset adapter\n");
5251 igc_reinit_locked(adapter);
5252 rtnl_unlock();
5253}
5254
5255/**
5256 * igc_change_mtu - Change the Maximum Transfer Unit
5257 * @netdev: network interface device structure
5258 * @new_mtu: new value for maximum frame size
5259 *
5260 * Returns 0 on success, negative on failure
5261 */
5262static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5263{
5264 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5265 struct igc_adapter *adapter = netdev_priv(netdev);
5266
5267 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5268 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5269 return -EINVAL;
5270 }
5271
5272 /* adjust max frame to be at least the size of a standard frame */
5273 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5274 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5275
5276 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5277 usleep_range(1000, 2000);
5278
5279 /* igc_down has a dependency on max_frame_size */
5280 adapter->max_frame_size = max_frame;
5281
5282 if (netif_running(netdev))
5283 igc_down(adapter);
5284
5285 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5286 WRITE_ONCE(netdev->mtu, new_mtu);
5287
5288 if (netif_running(netdev))
5289 igc_up(adapter);
5290 else
5291 igc_reset(adapter);
5292
5293 clear_bit(__IGC_RESETTING, &adapter->state);
5294
5295 return 0;
5296}
5297
5298/**
5299 * igc_tx_timeout - Respond to a Tx Hang
5300 * @netdev: network interface device structure
5301 * @txqueue: queue number that timed out
5302 **/
5303static void igc_tx_timeout(struct net_device *netdev,
5304 unsigned int __always_unused txqueue)
5305{
5306 struct igc_adapter *adapter = netdev_priv(netdev);
5307 struct igc_hw *hw = &adapter->hw;
5308
5309 /* Do the reset outside of interrupt context */
5310 adapter->tx_timeout_count++;
5311 schedule_work(&adapter->reset_task);
5312 wr32(IGC_EICS,
5313 (adapter->eims_enable_mask & ~adapter->eims_other));
5314}
5315
5316/**
5317 * igc_get_stats64 - Get System Network Statistics
5318 * @netdev: network interface device structure
5319 * @stats: rtnl_link_stats64 pointer
5320 *
5321 * Returns the address of the device statistics structure.
5322 * The statistics are updated here and also from the timer callback.
5323 */
5324static void igc_get_stats64(struct net_device *netdev,
5325 struct rtnl_link_stats64 *stats)
5326{
5327 struct igc_adapter *adapter = netdev_priv(netdev);
5328
5329 spin_lock(&adapter->stats64_lock);
5330 if (!test_bit(__IGC_RESETTING, &adapter->state))
5331 igc_update_stats(adapter);
5332 memcpy(stats, &adapter->stats64, sizeof(*stats));
5333 spin_unlock(&adapter->stats64_lock);
5334}
5335
5336static netdev_features_t igc_fix_features(struct net_device *netdev,
5337 netdev_features_t features)
5338{
5339 /* Since there is no support for separate Rx/Tx vlan accel
5340 * enable/disable make sure Tx flag is always in same state as Rx.
5341 */
5342 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5343 features |= NETIF_F_HW_VLAN_CTAG_TX;
5344 else
5345 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5346
5347 return features;
5348}
5349
5350static int igc_set_features(struct net_device *netdev,
5351 netdev_features_t features)
5352{
5353 netdev_features_t changed = netdev->features ^ features;
5354 struct igc_adapter *adapter = netdev_priv(netdev);
5355
5356 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5357 igc_vlan_mode(netdev, features);
5358
5359 /* Add VLAN support */
5360 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5361 return 0;
5362
5363 if (!(features & NETIF_F_NTUPLE))
5364 igc_flush_nfc_rules(adapter);
5365
5366 netdev->features = features;
5367
5368 if (netif_running(netdev))
5369 igc_reinit_locked(adapter);
5370 else
5371 igc_reset(adapter);
5372
5373 return 1;
5374}
5375
5376static netdev_features_t
5377igc_features_check(struct sk_buff *skb, struct net_device *dev,
5378 netdev_features_t features)
5379{
5380 unsigned int network_hdr_len, mac_hdr_len;
5381
5382 /* Make certain the headers can be described by a context descriptor */
5383 mac_hdr_len = skb_network_offset(skb);
5384 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5385 return features & ~(NETIF_F_HW_CSUM |
5386 NETIF_F_SCTP_CRC |
5387 NETIF_F_HW_VLAN_CTAG_TX |
5388 NETIF_F_TSO |
5389 NETIF_F_TSO6);
5390
5391 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5392 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5393 return features & ~(NETIF_F_HW_CSUM |
5394 NETIF_F_SCTP_CRC |
5395 NETIF_F_TSO |
5396 NETIF_F_TSO6);
5397
5398 /* We can only support IPv4 TSO in tunnels if we can mangle the
5399 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5400 */
5401 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5402 features &= ~NETIF_F_TSO;
5403
5404 return features;
5405}
5406
5407static void igc_tsync_interrupt(struct igc_adapter *adapter)
5408{
5409 struct igc_hw *hw = &adapter->hw;
5410 u32 tsauxc, sec, nsec, tsicr;
5411 struct ptp_clock_event event;
5412 struct timespec64 ts;
5413
5414 tsicr = rd32(IGC_TSICR);
5415
5416 if (tsicr & IGC_TSICR_SYS_WRAP) {
5417 event.type = PTP_CLOCK_PPS;
5418 if (adapter->ptp_caps.pps)
5419 ptp_clock_event(adapter->ptp_clock, &event);
5420 }
5421
5422 if (tsicr & IGC_TSICR_TXTS) {
5423 /* retrieve hardware timestamp */
5424 igc_ptp_tx_tstamp_event(adapter);
5425 }
5426
5427 if (tsicr & IGC_TSICR_TT0) {
5428 spin_lock(&adapter->tmreg_lock);
5429 ts = timespec64_add(adapter->perout[0].start,
5430 adapter->perout[0].period);
5431 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5432 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5433 tsauxc = rd32(IGC_TSAUXC);
5434 tsauxc |= IGC_TSAUXC_EN_TT0;
5435 wr32(IGC_TSAUXC, tsauxc);
5436 adapter->perout[0].start = ts;
5437 spin_unlock(&adapter->tmreg_lock);
5438 }
5439
5440 if (tsicr & IGC_TSICR_TT1) {
5441 spin_lock(&adapter->tmreg_lock);
5442 ts = timespec64_add(adapter->perout[1].start,
5443 adapter->perout[1].period);
5444 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5445 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5446 tsauxc = rd32(IGC_TSAUXC);
5447 tsauxc |= IGC_TSAUXC_EN_TT1;
5448 wr32(IGC_TSAUXC, tsauxc);
5449 adapter->perout[1].start = ts;
5450 spin_unlock(&adapter->tmreg_lock);
5451 }
5452
5453 if (tsicr & IGC_TSICR_AUTT0) {
5454 nsec = rd32(IGC_AUXSTMPL0);
5455 sec = rd32(IGC_AUXSTMPH0);
5456 event.type = PTP_CLOCK_EXTTS;
5457 event.index = 0;
5458 event.timestamp = sec * NSEC_PER_SEC + nsec;
5459 ptp_clock_event(adapter->ptp_clock, &event);
5460 }
5461
5462 if (tsicr & IGC_TSICR_AUTT1) {
5463 nsec = rd32(IGC_AUXSTMPL1);
5464 sec = rd32(IGC_AUXSTMPH1);
5465 event.type = PTP_CLOCK_EXTTS;
5466 event.index = 1;
5467 event.timestamp = sec * NSEC_PER_SEC + nsec;
5468 ptp_clock_event(adapter->ptp_clock, &event);
5469 }
5470}
5471
5472/**
5473 * igc_msix_other - msix other interrupt handler
5474 * @irq: interrupt number
5475 * @data: pointer to a q_vector
5476 */
5477static irqreturn_t igc_msix_other(int irq, void *data)
5478{
5479 struct igc_adapter *adapter = data;
5480 struct igc_hw *hw = &adapter->hw;
5481 u32 icr = rd32(IGC_ICR);
5482
5483 /* reading ICR causes bit 31 of EICR to be cleared */
5484 if (icr & IGC_ICR_DRSTA)
5485 schedule_work(&adapter->reset_task);
5486
5487 if (icr & IGC_ICR_DOUTSYNC) {
5488 /* HW is reporting DMA is out of sync */
5489 adapter->stats.doosync++;
5490 }
5491
5492 if (icr & IGC_ICR_LSC) {
5493 hw->mac.get_link_status = true;
5494 /* guard against interrupt when we're going down */
5495 if (!test_bit(__IGC_DOWN, &adapter->state))
5496 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5497 }
5498
5499 if (icr & IGC_ICR_TS)
5500 igc_tsync_interrupt(adapter);
5501
5502 wr32(IGC_EIMS, adapter->eims_other);
5503
5504 return IRQ_HANDLED;
5505}
5506
5507static void igc_write_itr(struct igc_q_vector *q_vector)
5508{
5509 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5510
5511 if (!q_vector->set_itr)
5512 return;
5513
5514 if (!itr_val)
5515 itr_val = IGC_ITR_VAL_MASK;
5516
5517 itr_val |= IGC_EITR_CNT_IGNR;
5518
5519 writel(itr_val, q_vector->itr_register);
5520 q_vector->set_itr = 0;
5521}
5522
5523static irqreturn_t igc_msix_ring(int irq, void *data)
5524{
5525 struct igc_q_vector *q_vector = data;
5526
5527 /* Write the ITR value calculated from the previous interrupt. */
5528 igc_write_itr(q_vector);
5529
5530 napi_schedule(&q_vector->napi);
5531
5532 return IRQ_HANDLED;
5533}
5534
5535/**
5536 * igc_request_msix - Initialize MSI-X interrupts
5537 * @adapter: Pointer to adapter structure
5538 *
5539 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5540 * kernel.
5541 */
5542static int igc_request_msix(struct igc_adapter *adapter)
5543{
5544 unsigned int num_q_vectors = adapter->num_q_vectors;
5545 int i = 0, err = 0, vector = 0, free_vector = 0;
5546 struct net_device *netdev = adapter->netdev;
5547
5548 err = request_irq(adapter->msix_entries[vector].vector,
5549 &igc_msix_other, 0, netdev->name, adapter);
5550 if (err)
5551 goto err_out;
5552
5553 if (num_q_vectors > MAX_Q_VECTORS) {
5554 num_q_vectors = MAX_Q_VECTORS;
5555 dev_warn(&adapter->pdev->dev,
5556 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5557 adapter->num_q_vectors, MAX_Q_VECTORS);
5558 }
5559 for (i = 0; i < num_q_vectors; i++) {
5560 struct igc_q_vector *q_vector = adapter->q_vector[i];
5561
5562 vector++;
5563
5564 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5565
5566 if (q_vector->rx.ring && q_vector->tx.ring)
5567 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5568 q_vector->rx.ring->queue_index);
5569 else if (q_vector->tx.ring)
5570 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5571 q_vector->tx.ring->queue_index);
5572 else if (q_vector->rx.ring)
5573 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5574 q_vector->rx.ring->queue_index);
5575 else
5576 sprintf(q_vector->name, "%s-unused", netdev->name);
5577
5578 err = request_irq(adapter->msix_entries[vector].vector,
5579 igc_msix_ring, 0, q_vector->name,
5580 q_vector);
5581 if (err)
5582 goto err_free;
5583 }
5584
5585 igc_configure_msix(adapter);
5586 return 0;
5587
5588err_free:
5589 /* free already assigned IRQs */
5590 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5591
5592 vector--;
5593 for (i = 0; i < vector; i++) {
5594 free_irq(adapter->msix_entries[free_vector++].vector,
5595 adapter->q_vector[i]);
5596 }
5597err_out:
5598 return err;
5599}
5600
5601/**
5602 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5603 * @adapter: Pointer to adapter structure
5604 *
5605 * This function resets the device so that it has 0 rx queues, tx queues, and
5606 * MSI-X interrupts allocated.
5607 */
5608static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5609{
5610 igc_free_q_vectors(adapter);
5611 igc_reset_interrupt_capability(adapter);
5612}
5613
5614/* Need to wait a few seconds after link up to get diagnostic information from
5615 * the phy
5616 */
5617static void igc_update_phy_info(struct timer_list *t)
5618{
5619 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5620
5621 igc_get_phy_info(&adapter->hw);
5622}
5623
5624/**
5625 * igc_has_link - check shared code for link and determine up/down
5626 * @adapter: pointer to driver private info
5627 */
5628bool igc_has_link(struct igc_adapter *adapter)
5629{
5630 struct igc_hw *hw = &adapter->hw;
5631 bool link_active = false;
5632
5633 /* get_link_status is set on LSC (link status) interrupt or
5634 * rx sequence error interrupt. get_link_status will stay
5635 * false until the igc_check_for_link establishes link
5636 * for copper adapters ONLY
5637 */
5638 if (!hw->mac.get_link_status)
5639 return true;
5640 hw->mac.ops.check_for_link(hw);
5641 link_active = !hw->mac.get_link_status;
5642
5643 if (hw->mac.type == igc_i225) {
5644 if (!netif_carrier_ok(adapter->netdev)) {
5645 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5646 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5647 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5648 adapter->link_check_timeout = jiffies;
5649 }
5650 }
5651
5652 return link_active;
5653}
5654
5655/**
5656 * igc_watchdog - Timer Call-back
5657 * @t: timer for the watchdog
5658 */
5659static void igc_watchdog(struct timer_list *t)
5660{
5661 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5662 /* Do the rest outside of interrupt context */
5663 schedule_work(&adapter->watchdog_task);
5664}
5665
5666static void igc_watchdog_task(struct work_struct *work)
5667{
5668 struct igc_adapter *adapter = container_of(work,
5669 struct igc_adapter,
5670 watchdog_task);
5671 struct net_device *netdev = adapter->netdev;
5672 struct igc_hw *hw = &adapter->hw;
5673 struct igc_phy_info *phy = &hw->phy;
5674 u16 phy_data, retry_count = 20;
5675 u32 link;
5676 int i;
5677
5678 link = igc_has_link(adapter);
5679
5680 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5681 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5682 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5683 else
5684 link = false;
5685 }
5686
5687 if (link) {
5688 /* Cancel scheduled suspend requests. */
5689 pm_runtime_resume(netdev->dev.parent);
5690
5691 if (!netif_carrier_ok(netdev)) {
5692 u32 ctrl;
5693
5694 hw->mac.ops.get_speed_and_duplex(hw,
5695 &adapter->link_speed,
5696 &adapter->link_duplex);
5697
5698 ctrl = rd32(IGC_CTRL);
5699 /* Link status message must follow this format */
5700 netdev_info(netdev,
5701 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5702 adapter->link_speed,
5703 adapter->link_duplex == FULL_DUPLEX ?
5704 "Full" : "Half",
5705 (ctrl & IGC_CTRL_TFCE) &&
5706 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5707 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5708 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5709
5710 /* disable EEE if enabled */
5711 if ((adapter->flags & IGC_FLAG_EEE) &&
5712 adapter->link_duplex == HALF_DUPLEX) {
5713 netdev_info(netdev,
5714 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5715 adapter->hw.dev_spec._base.eee_enable = false;
5716 adapter->flags &= ~IGC_FLAG_EEE;
5717 }
5718
5719 /* check if SmartSpeed worked */
5720 igc_check_downshift(hw);
5721 if (phy->speed_downgraded)
5722 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5723
5724 /* adjust timeout factor according to speed/duplex */
5725 adapter->tx_timeout_factor = 1;
5726 switch (adapter->link_speed) {
5727 case SPEED_10:
5728 adapter->tx_timeout_factor = 14;
5729 break;
5730 case SPEED_100:
5731 case SPEED_1000:
5732 case SPEED_2500:
5733 adapter->tx_timeout_factor = 1;
5734 break;
5735 }
5736
5737 /* Once the launch time has been set on the wire, there
5738 * is a delay before the link speed can be determined
5739 * based on link-up activity. Write into the register
5740 * as soon as we know the correct link speed.
5741 */
5742 igc_tsn_adjust_txtime_offset(adapter);
5743
5744 if (adapter->link_speed != SPEED_1000)
5745 goto no_wait;
5746
5747 /* wait for Remote receiver status OK */
5748retry_read_status:
5749 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5750 &phy_data)) {
5751 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5752 retry_count) {
5753 msleep(100);
5754 retry_count--;
5755 goto retry_read_status;
5756 } else if (!retry_count) {
5757 netdev_err(netdev, "exceed max 2 second\n");
5758 }
5759 } else {
5760 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5761 }
5762no_wait:
5763 netif_carrier_on(netdev);
5764
5765 /* link state has changed, schedule phy info update */
5766 if (!test_bit(__IGC_DOWN, &adapter->state))
5767 mod_timer(&adapter->phy_info_timer,
5768 round_jiffies(jiffies + 2 * HZ));
5769 }
5770 } else {
5771 if (netif_carrier_ok(netdev)) {
5772 adapter->link_speed = 0;
5773 adapter->link_duplex = 0;
5774
5775 /* Links status message must follow this format */
5776 netdev_info(netdev, "NIC Link is Down\n");
5777 netif_carrier_off(netdev);
5778
5779 /* link state has changed, schedule phy info update */
5780 if (!test_bit(__IGC_DOWN, &adapter->state))
5781 mod_timer(&adapter->phy_info_timer,
5782 round_jiffies(jiffies + 2 * HZ));
5783
5784 pm_schedule_suspend(netdev->dev.parent,
5785 MSEC_PER_SEC * 5);
5786 }
5787 }
5788
5789 spin_lock(&adapter->stats64_lock);
5790 igc_update_stats(adapter);
5791 spin_unlock(&adapter->stats64_lock);
5792
5793 for (i = 0; i < adapter->num_tx_queues; i++) {
5794 struct igc_ring *tx_ring = adapter->tx_ring[i];
5795
5796 if (!netif_carrier_ok(netdev)) {
5797 /* We've lost link, so the controller stops DMA,
5798 * but we've got queued Tx work that's never going
5799 * to get done, so reset controller to flush Tx.
5800 * (Do the reset outside of interrupt context).
5801 */
5802 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5803 adapter->tx_timeout_count++;
5804 schedule_work(&adapter->reset_task);
5805 /* return immediately since reset is imminent */
5806 return;
5807 }
5808 }
5809
5810 /* Force detection of hung controller every watchdog period */
5811 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5812 }
5813
5814 /* Cause software interrupt to ensure Rx ring is cleaned */
5815 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5816 u32 eics = 0;
5817
5818 for (i = 0; i < adapter->num_q_vectors; i++) {
5819 struct igc_q_vector *q_vector = adapter->q_vector[i];
5820 struct igc_ring *rx_ring;
5821
5822 if (!q_vector->rx.ring)
5823 continue;
5824
5825 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5826
5827 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5828 eics |= q_vector->eims_value;
5829 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5830 }
5831 }
5832 if (eics)
5833 wr32(IGC_EICS, eics);
5834 } else {
5835 struct igc_ring *rx_ring = adapter->rx_ring[0];
5836
5837 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5838 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5839 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5840 }
5841 }
5842
5843 igc_ptp_tx_hang(adapter);
5844
5845 /* Reset the timer */
5846 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5847 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5848 mod_timer(&adapter->watchdog_timer,
5849 round_jiffies(jiffies + HZ));
5850 else
5851 mod_timer(&adapter->watchdog_timer,
5852 round_jiffies(jiffies + 2 * HZ));
5853 }
5854}
5855
5856/**
5857 * igc_intr_msi - Interrupt Handler
5858 * @irq: interrupt number
5859 * @data: pointer to a network interface device structure
5860 */
5861static irqreturn_t igc_intr_msi(int irq, void *data)
5862{
5863 struct igc_adapter *adapter = data;
5864 struct igc_q_vector *q_vector = adapter->q_vector[0];
5865 struct igc_hw *hw = &adapter->hw;
5866 /* read ICR disables interrupts using IAM */
5867 u32 icr = rd32(IGC_ICR);
5868
5869 igc_write_itr(q_vector);
5870
5871 if (icr & IGC_ICR_DRSTA)
5872 schedule_work(&adapter->reset_task);
5873
5874 if (icr & IGC_ICR_DOUTSYNC) {
5875 /* HW is reporting DMA is out of sync */
5876 adapter->stats.doosync++;
5877 }
5878
5879 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5880 hw->mac.get_link_status = true;
5881 if (!test_bit(__IGC_DOWN, &adapter->state))
5882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5883 }
5884
5885 if (icr & IGC_ICR_TS)
5886 igc_tsync_interrupt(adapter);
5887
5888 napi_schedule(&q_vector->napi);
5889
5890 return IRQ_HANDLED;
5891}
5892
5893/**
5894 * igc_intr - Legacy Interrupt Handler
5895 * @irq: interrupt number
5896 * @data: pointer to a network interface device structure
5897 */
5898static irqreturn_t igc_intr(int irq, void *data)
5899{
5900 struct igc_adapter *adapter = data;
5901 struct igc_q_vector *q_vector = adapter->q_vector[0];
5902 struct igc_hw *hw = &adapter->hw;
5903 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5904 * need for the IMC write
5905 */
5906 u32 icr = rd32(IGC_ICR);
5907
5908 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5909 * not set, then the adapter didn't send an interrupt
5910 */
5911 if (!(icr & IGC_ICR_INT_ASSERTED))
5912 return IRQ_NONE;
5913
5914 igc_write_itr(q_vector);
5915
5916 if (icr & IGC_ICR_DRSTA)
5917 schedule_work(&adapter->reset_task);
5918
5919 if (icr & IGC_ICR_DOUTSYNC) {
5920 /* HW is reporting DMA is out of sync */
5921 adapter->stats.doosync++;
5922 }
5923
5924 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5925 hw->mac.get_link_status = true;
5926 /* guard against interrupt when we're going down */
5927 if (!test_bit(__IGC_DOWN, &adapter->state))
5928 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5929 }
5930
5931 if (icr & IGC_ICR_TS)
5932 igc_tsync_interrupt(adapter);
5933
5934 napi_schedule(&q_vector->napi);
5935
5936 return IRQ_HANDLED;
5937}
5938
5939static void igc_free_irq(struct igc_adapter *adapter)
5940{
5941 if (adapter->msix_entries) {
5942 int vector = 0, i;
5943
5944 free_irq(adapter->msix_entries[vector++].vector, adapter);
5945
5946 for (i = 0; i < adapter->num_q_vectors; i++)
5947 free_irq(adapter->msix_entries[vector++].vector,
5948 adapter->q_vector[i]);
5949 } else {
5950 free_irq(adapter->pdev->irq, adapter);
5951 }
5952}
5953
5954/**
5955 * igc_request_irq - initialize interrupts
5956 * @adapter: Pointer to adapter structure
5957 *
5958 * Attempts to configure interrupts using the best available
5959 * capabilities of the hardware and kernel.
5960 */
5961static int igc_request_irq(struct igc_adapter *adapter)
5962{
5963 struct net_device *netdev = adapter->netdev;
5964 struct pci_dev *pdev = adapter->pdev;
5965 int err = 0;
5966
5967 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5968 err = igc_request_msix(adapter);
5969 if (!err)
5970 goto request_done;
5971 /* fall back to MSI */
5972 igc_free_all_tx_resources(adapter);
5973 igc_free_all_rx_resources(adapter);
5974
5975 igc_clear_interrupt_scheme(adapter);
5976 err = igc_init_interrupt_scheme(adapter, false);
5977 if (err)
5978 goto request_done;
5979 igc_setup_all_tx_resources(adapter);
5980 igc_setup_all_rx_resources(adapter);
5981 igc_configure(adapter);
5982 }
5983
5984 igc_assign_vector(adapter->q_vector[0], 0);
5985
5986 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5987 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5988 netdev->name, adapter);
5989 if (!err)
5990 goto request_done;
5991
5992 /* fall back to legacy interrupts */
5993 igc_reset_interrupt_capability(adapter);
5994 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5995 }
5996
5997 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5998 netdev->name, adapter);
5999
6000 if (err)
6001 netdev_err(netdev, "Error %d getting interrupt\n", err);
6002
6003request_done:
6004 return err;
6005}
6006
6007/**
6008 * __igc_open - Called when a network interface is made active
6009 * @netdev: network interface device structure
6010 * @resuming: boolean indicating if the device is resuming
6011 *
6012 * Returns 0 on success, negative value on failure
6013 *
6014 * The open entry point is called when a network interface is made
6015 * active by the system (IFF_UP). At this point all resources needed
6016 * for transmit and receive operations are allocated, the interrupt
6017 * handler is registered with the OS, the watchdog timer is started,
6018 * and the stack is notified that the interface is ready.
6019 */
6020static int __igc_open(struct net_device *netdev, bool resuming)
6021{
6022 struct igc_adapter *adapter = netdev_priv(netdev);
6023 struct pci_dev *pdev = adapter->pdev;
6024 struct igc_hw *hw = &adapter->hw;
6025 int err = 0;
6026 int i = 0;
6027
6028 /* disallow open during test */
6029
6030 if (test_bit(__IGC_TESTING, &adapter->state)) {
6031 WARN_ON(resuming);
6032 return -EBUSY;
6033 }
6034
6035 if (!resuming)
6036 pm_runtime_get_sync(&pdev->dev);
6037
6038 netif_carrier_off(netdev);
6039
6040 /* allocate transmit descriptors */
6041 err = igc_setup_all_tx_resources(adapter);
6042 if (err)
6043 goto err_setup_tx;
6044
6045 /* allocate receive descriptors */
6046 err = igc_setup_all_rx_resources(adapter);
6047 if (err)
6048 goto err_setup_rx;
6049
6050 igc_power_up_link(adapter);
6051
6052 igc_configure(adapter);
6053
6054 err = igc_request_irq(adapter);
6055 if (err)
6056 goto err_req_irq;
6057
6058 clear_bit(__IGC_DOWN, &adapter->state);
6059
6060 for (i = 0; i < adapter->num_q_vectors; i++)
6061 napi_enable(&adapter->q_vector[i]->napi);
6062
6063 /* Clear any pending interrupts. */
6064 rd32(IGC_ICR);
6065 igc_irq_enable(adapter);
6066
6067 if (!resuming)
6068 pm_runtime_put(&pdev->dev);
6069
6070 netif_tx_start_all_queues(netdev);
6071
6072 /* start the watchdog. */
6073 hw->mac.get_link_status = true;
6074 schedule_work(&adapter->watchdog_task);
6075
6076 return IGC_SUCCESS;
6077
6078err_req_irq:
6079 igc_release_hw_control(adapter);
6080 igc_power_down_phy_copper_base(&adapter->hw);
6081 igc_free_all_rx_resources(adapter);
6082err_setup_rx:
6083 igc_free_all_tx_resources(adapter);
6084err_setup_tx:
6085 igc_reset(adapter);
6086 if (!resuming)
6087 pm_runtime_put(&pdev->dev);
6088
6089 return err;
6090}
6091
6092int igc_open(struct net_device *netdev)
6093{
6094 struct igc_adapter *adapter = netdev_priv(netdev);
6095 int err;
6096
6097 /* Notify the stack of the actual queue counts. */
6098 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6099 adapter->num_rx_queues);
6100 if (err) {
6101 netdev_err(netdev, "error setting real queue count\n");
6102 return err;
6103 }
6104
6105 return __igc_open(netdev, false);
6106}
6107
6108/**
6109 * __igc_close - Disables a network interface
6110 * @netdev: network interface device structure
6111 * @suspending: boolean indicating the device is suspending
6112 *
6113 * Returns 0, this is not allowed to fail
6114 *
6115 * The close entry point is called when an interface is de-activated
6116 * by the OS. The hardware is still under the driver's control, but
6117 * needs to be disabled. A global MAC reset is issued to stop the
6118 * hardware, and all transmit and receive resources are freed.
6119 */
6120static int __igc_close(struct net_device *netdev, bool suspending)
6121{
6122 struct igc_adapter *adapter = netdev_priv(netdev);
6123 struct pci_dev *pdev = adapter->pdev;
6124
6125 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6126
6127 if (!suspending)
6128 pm_runtime_get_sync(&pdev->dev);
6129
6130 igc_down(adapter);
6131
6132 igc_release_hw_control(adapter);
6133
6134 igc_free_irq(adapter);
6135
6136 igc_free_all_tx_resources(adapter);
6137 igc_free_all_rx_resources(adapter);
6138
6139 if (!suspending)
6140 pm_runtime_put_sync(&pdev->dev);
6141
6142 return 0;
6143}
6144
6145int igc_close(struct net_device *netdev)
6146{
6147 if (netif_device_present(netdev) || netdev->dismantle)
6148 return __igc_close(netdev, false);
6149 return 0;
6150}
6151
6152/**
6153 * igc_ioctl - Access the hwtstamp interface
6154 * @netdev: network interface device structure
6155 * @ifr: interface request data
6156 * @cmd: ioctl command
6157 **/
6158static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6159{
6160 switch (cmd) {
6161 case SIOCGHWTSTAMP:
6162 return igc_ptp_get_ts_config(netdev, ifr);
6163 case SIOCSHWTSTAMP:
6164 return igc_ptp_set_ts_config(netdev, ifr);
6165 default:
6166 return -EOPNOTSUPP;
6167 }
6168}
6169
6170static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6171 bool enable)
6172{
6173 struct igc_ring *ring;
6174
6175 if (queue < 0 || queue >= adapter->num_tx_queues)
6176 return -EINVAL;
6177
6178 ring = adapter->tx_ring[queue];
6179 ring->launchtime_enable = enable;
6180
6181 return 0;
6182}
6183
6184static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6185{
6186 struct timespec64 b;
6187
6188 b = ktime_to_timespec64(base_time);
6189
6190 return timespec64_compare(now, &b) > 0;
6191}
6192
6193static bool validate_schedule(struct igc_adapter *adapter,
6194 const struct tc_taprio_qopt_offload *qopt)
6195{
6196 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6197 struct igc_hw *hw = &adapter->hw;
6198 struct timespec64 now;
6199 size_t n;
6200
6201 if (qopt->cycle_time_extension)
6202 return false;
6203
6204 igc_ptp_read(adapter, &now);
6205
6206 /* If we program the controller's BASET registers with a time
6207 * in the future, it will hold all the packets until that
6208 * time, causing a lot of TX Hangs, so to avoid that, we
6209 * reject schedules that would start in the future.
6210 * Note: Limitation above is no longer in i226.
6211 */
6212 if (!is_base_time_past(qopt->base_time, &now) &&
6213 igc_is_device_id_i225(hw))
6214 return false;
6215
6216 for (n = 0; n < qopt->num_entries; n++) {
6217 const struct tc_taprio_sched_entry *e, *prev;
6218 int i;
6219
6220 prev = n ? &qopt->entries[n - 1] : NULL;
6221 e = &qopt->entries[n];
6222
6223 /* i225 only supports "global" frame preemption
6224 * settings.
6225 */
6226 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6227 return false;
6228
6229 for (i = 0; i < adapter->num_tx_queues; i++)
6230 if (e->gate_mask & BIT(i)) {
6231 queue_uses[i]++;
6232
6233 /* There are limitations: A single queue cannot
6234 * be opened and closed multiple times per cycle
6235 * unless the gate stays open. Check for it.
6236 */
6237 if (queue_uses[i] > 1 &&
6238 !(prev->gate_mask & BIT(i)))
6239 return false;
6240 }
6241 }
6242
6243 return true;
6244}
6245
6246static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6247 struct tc_etf_qopt_offload *qopt)
6248{
6249 struct igc_hw *hw = &adapter->hw;
6250 int err;
6251
6252 if (hw->mac.type != igc_i225)
6253 return -EOPNOTSUPP;
6254
6255 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6256 if (err)
6257 return err;
6258
6259 return igc_tsn_offload_apply(adapter);
6260}
6261
6262static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6263{
6264 unsigned long flags;
6265 int i;
6266
6267 adapter->base_time = 0;
6268 adapter->cycle_time = NSEC_PER_SEC;
6269 adapter->taprio_offload_enable = false;
6270 adapter->qbv_config_change_errors = 0;
6271 adapter->qbv_count = 0;
6272
6273 for (i = 0; i < adapter->num_tx_queues; i++) {
6274 struct igc_ring *ring = adapter->tx_ring[i];
6275
6276 ring->start_time = 0;
6277 ring->end_time = NSEC_PER_SEC;
6278 ring->max_sdu = 0;
6279 }
6280
6281 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6282
6283 adapter->qbv_transition = false;
6284
6285 for (i = 0; i < adapter->num_tx_queues; i++) {
6286 struct igc_ring *ring = adapter->tx_ring[i];
6287
6288 ring->oper_gate_closed = false;
6289 ring->admin_gate_closed = false;
6290 }
6291
6292 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6293
6294 return 0;
6295}
6296
6297static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6298{
6299 igc_qbv_clear_schedule(adapter);
6300
6301 return 0;
6302}
6303
6304static void igc_taprio_stats(struct net_device *dev,
6305 struct tc_taprio_qopt_stats *stats)
6306{
6307 /* When Strict_End is enabled, the tx_overruns counter
6308 * will always be zero.
6309 */
6310 stats->tx_overruns = 0;
6311}
6312
6313static void igc_taprio_queue_stats(struct net_device *dev,
6314 struct tc_taprio_qopt_queue_stats *queue_stats)
6315{
6316 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6317
6318 /* When Strict_End is enabled, the tx_overruns counter
6319 * will always be zero.
6320 */
6321 stats->tx_overruns = 0;
6322}
6323
6324static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6325 struct tc_taprio_qopt_offload *qopt)
6326{
6327 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6328 struct igc_hw *hw = &adapter->hw;
6329 u32 start_time = 0, end_time = 0;
6330 struct timespec64 now;
6331 unsigned long flags;
6332 size_t n;
6333 int i;
6334
6335 if (qopt->base_time < 0)
6336 return -ERANGE;
6337
6338 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6339 return -EALREADY;
6340
6341 if (!validate_schedule(adapter, qopt))
6342 return -EINVAL;
6343
6344 igc_ptp_read(adapter, &now);
6345
6346 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6347 is_base_time_past(qopt->base_time, &now))
6348 adapter->qbv_config_change_errors++;
6349
6350 adapter->cycle_time = qopt->cycle_time;
6351 adapter->base_time = qopt->base_time;
6352 adapter->taprio_offload_enable = true;
6353
6354 for (n = 0; n < qopt->num_entries; n++) {
6355 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6356
6357 end_time += e->interval;
6358
6359 /* If any of the conditions below are true, we need to manually
6360 * control the end time of the cycle.
6361 * 1. Qbv users can specify a cycle time that is not equal
6362 * to the total GCL intervals. Hence, recalculation is
6363 * necessary here to exclude the time interval that
6364 * exceeds the cycle time.
6365 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6366 * once the end of the list is reached, it will switch
6367 * to the END_OF_CYCLE state and leave the gates in the
6368 * same state until the next cycle is started.
6369 */
6370 if (end_time > adapter->cycle_time ||
6371 n + 1 == qopt->num_entries)
6372 end_time = adapter->cycle_time;
6373
6374 for (i = 0; i < adapter->num_tx_queues; i++) {
6375 struct igc_ring *ring = adapter->tx_ring[i];
6376
6377 if (!(e->gate_mask & BIT(i)))
6378 continue;
6379
6380 /* Check whether a queue stays open for more than one
6381 * entry. If so, keep the start and advance the end
6382 * time.
6383 */
6384 if (!queue_configured[i])
6385 ring->start_time = start_time;
6386 ring->end_time = end_time;
6387
6388 if (ring->start_time >= adapter->cycle_time)
6389 queue_configured[i] = false;
6390 else
6391 queue_configured[i] = true;
6392 }
6393
6394 start_time += e->interval;
6395 }
6396
6397 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6398
6399 /* Check whether a queue gets configured.
6400 * If not, set the start and end time to be end time.
6401 */
6402 for (i = 0; i < adapter->num_tx_queues; i++) {
6403 struct igc_ring *ring = adapter->tx_ring[i];
6404
6405 if (!is_base_time_past(qopt->base_time, &now)) {
6406 ring->admin_gate_closed = false;
6407 } else {
6408 ring->oper_gate_closed = false;
6409 ring->admin_gate_closed = false;
6410 }
6411
6412 if (!queue_configured[i]) {
6413 if (!is_base_time_past(qopt->base_time, &now))
6414 ring->admin_gate_closed = true;
6415 else
6416 ring->oper_gate_closed = true;
6417
6418 ring->start_time = end_time;
6419 ring->end_time = end_time;
6420 }
6421 }
6422
6423 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6424
6425 for (i = 0; i < adapter->num_tx_queues; i++) {
6426 struct igc_ring *ring = adapter->tx_ring[i];
6427 struct net_device *dev = adapter->netdev;
6428
6429 if (qopt->max_sdu[i])
6430 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6431 else
6432 ring->max_sdu = 0;
6433 }
6434
6435 return 0;
6436}
6437
6438static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6439 struct tc_taprio_qopt_offload *qopt)
6440{
6441 struct igc_hw *hw = &adapter->hw;
6442 int err;
6443
6444 if (hw->mac.type != igc_i225)
6445 return -EOPNOTSUPP;
6446
6447 switch (qopt->cmd) {
6448 case TAPRIO_CMD_REPLACE:
6449 err = igc_save_qbv_schedule(adapter, qopt);
6450 break;
6451 case TAPRIO_CMD_DESTROY:
6452 err = igc_tsn_clear_schedule(adapter);
6453 break;
6454 case TAPRIO_CMD_STATS:
6455 igc_taprio_stats(adapter->netdev, &qopt->stats);
6456 return 0;
6457 case TAPRIO_CMD_QUEUE_STATS:
6458 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6459 return 0;
6460 default:
6461 return -EOPNOTSUPP;
6462 }
6463
6464 if (err)
6465 return err;
6466
6467 return igc_tsn_offload_apply(adapter);
6468}
6469
6470static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6471 bool enable, int idleslope, int sendslope,
6472 int hicredit, int locredit)
6473{
6474 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6475 struct net_device *netdev = adapter->netdev;
6476 struct igc_ring *ring;
6477 int i;
6478
6479 /* i225 has two sets of credit-based shaper logic.
6480 * Supporting it only on the top two priority queues
6481 */
6482 if (queue < 0 || queue > 1)
6483 return -EINVAL;
6484
6485 ring = adapter->tx_ring[queue];
6486
6487 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6488 if (adapter->tx_ring[i])
6489 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6490
6491 /* CBS should be enabled on the highest priority queue first in order
6492 * for the CBS algorithm to operate as intended.
6493 */
6494 if (enable) {
6495 if (queue == 1 && !cbs_status[0]) {
6496 netdev_err(netdev,
6497 "Enabling CBS on queue1 before queue0\n");
6498 return -EINVAL;
6499 }
6500 } else {
6501 if (queue == 0 && cbs_status[1]) {
6502 netdev_err(netdev,
6503 "Disabling CBS on queue0 before queue1\n");
6504 return -EINVAL;
6505 }
6506 }
6507
6508 ring->cbs_enable = enable;
6509 ring->idleslope = idleslope;
6510 ring->sendslope = sendslope;
6511 ring->hicredit = hicredit;
6512 ring->locredit = locredit;
6513
6514 return 0;
6515}
6516
6517static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6518 struct tc_cbs_qopt_offload *qopt)
6519{
6520 struct igc_hw *hw = &adapter->hw;
6521 int err;
6522
6523 if (hw->mac.type != igc_i225)
6524 return -EOPNOTSUPP;
6525
6526 if (qopt->queue < 0 || qopt->queue > 1)
6527 return -EINVAL;
6528
6529 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6530 qopt->idleslope, qopt->sendslope,
6531 qopt->hicredit, qopt->locredit);
6532 if (err)
6533 return err;
6534
6535 return igc_tsn_offload_apply(adapter);
6536}
6537
6538static int igc_tc_query_caps(struct igc_adapter *adapter,
6539 struct tc_query_caps_base *base)
6540{
6541 struct igc_hw *hw = &adapter->hw;
6542
6543 switch (base->type) {
6544 case TC_SETUP_QDISC_MQPRIO: {
6545 struct tc_mqprio_caps *caps = base->caps;
6546
6547 caps->validate_queue_counts = true;
6548
6549 return 0;
6550 }
6551 case TC_SETUP_QDISC_TAPRIO: {
6552 struct tc_taprio_caps *caps = base->caps;
6553
6554 caps->broken_mqprio = true;
6555
6556 if (hw->mac.type == igc_i225) {
6557 caps->supports_queue_max_sdu = true;
6558 caps->gate_mask_per_txq = true;
6559 }
6560
6561 return 0;
6562 }
6563 default:
6564 return -EOPNOTSUPP;
6565 }
6566}
6567
6568static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6569 u16 *offset)
6570{
6571 int i;
6572
6573 adapter->strict_priority_enable = true;
6574 adapter->num_tc = num_tc;
6575
6576 for (i = 0; i < num_tc; i++)
6577 adapter->queue_per_tc[i] = offset[i];
6578}
6579
6580static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6581 struct tc_mqprio_qopt_offload *mqprio)
6582{
6583 struct igc_hw *hw = &adapter->hw;
6584 int i;
6585
6586 if (hw->mac.type != igc_i225)
6587 return -EOPNOTSUPP;
6588
6589 if (!mqprio->qopt.num_tc) {
6590 adapter->strict_priority_enable = false;
6591 goto apply;
6592 }
6593
6594 /* There are as many TCs as Tx queues. */
6595 if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6596 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6597 "Only %d traffic classes supported",
6598 adapter->num_tx_queues);
6599 return -EOPNOTSUPP;
6600 }
6601
6602 /* Only one queue per TC is supported. */
6603 for (i = 0; i < mqprio->qopt.num_tc; i++) {
6604 if (mqprio->qopt.count[i] != 1) {
6605 NL_SET_ERR_MSG_MOD(mqprio->extack,
6606 "Only one queue per TC supported");
6607 return -EOPNOTSUPP;
6608 }
6609 }
6610
6611 /* Preemption is not supported yet. */
6612 if (mqprio->preemptible_tcs) {
6613 NL_SET_ERR_MSG_MOD(mqprio->extack,
6614 "Preemption is not supported yet");
6615 return -EOPNOTSUPP;
6616 }
6617
6618 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6619 mqprio->qopt.offset);
6620
6621 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6622
6623apply:
6624 return igc_tsn_offload_apply(adapter);
6625}
6626
6627static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6628 void *type_data)
6629{
6630 struct igc_adapter *adapter = netdev_priv(dev);
6631
6632 adapter->tc_setup_type = type;
6633
6634 switch (type) {
6635 case TC_QUERY_CAPS:
6636 return igc_tc_query_caps(adapter, type_data);
6637 case TC_SETUP_QDISC_TAPRIO:
6638 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6639
6640 case TC_SETUP_QDISC_ETF:
6641 return igc_tsn_enable_launchtime(adapter, type_data);
6642
6643 case TC_SETUP_QDISC_CBS:
6644 return igc_tsn_enable_cbs(adapter, type_data);
6645
6646 case TC_SETUP_QDISC_MQPRIO:
6647 return igc_tsn_enable_mqprio(adapter, type_data);
6648
6649 default:
6650 return -EOPNOTSUPP;
6651 }
6652}
6653
6654static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6655{
6656 struct igc_adapter *adapter = netdev_priv(dev);
6657
6658 switch (bpf->command) {
6659 case XDP_SETUP_PROG:
6660 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6661 case XDP_SETUP_XSK_POOL:
6662 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6663 bpf->xsk.queue_id);
6664 default:
6665 return -EOPNOTSUPP;
6666 }
6667}
6668
6669static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6670 struct xdp_frame **frames, u32 flags)
6671{
6672 struct igc_adapter *adapter = netdev_priv(dev);
6673 int cpu = smp_processor_id();
6674 struct netdev_queue *nq;
6675 struct igc_ring *ring;
6676 int i, nxmit;
6677
6678 if (unlikely(!netif_carrier_ok(dev)))
6679 return -ENETDOWN;
6680
6681 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6682 return -EINVAL;
6683
6684 ring = igc_xdp_get_tx_ring(adapter, cpu);
6685 nq = txring_txq(ring);
6686
6687 __netif_tx_lock(nq, cpu);
6688
6689 /* Avoid transmit queue timeout since we share it with the slow path */
6690 txq_trans_cond_update(nq);
6691
6692 nxmit = 0;
6693 for (i = 0; i < num_frames; i++) {
6694 int err;
6695 struct xdp_frame *xdpf = frames[i];
6696
6697 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6698 if (err)
6699 break;
6700 nxmit++;
6701 }
6702
6703 if (flags & XDP_XMIT_FLUSH)
6704 igc_flush_tx_descriptors(ring);
6705
6706 __netif_tx_unlock(nq);
6707
6708 return nxmit;
6709}
6710
6711static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6712 struct igc_q_vector *q_vector)
6713{
6714 struct igc_hw *hw = &adapter->hw;
6715 u32 eics = 0;
6716
6717 eics |= q_vector->eims_value;
6718 wr32(IGC_EICS, eics);
6719}
6720
6721int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6722{
6723 struct igc_adapter *adapter = netdev_priv(dev);
6724 struct igc_q_vector *q_vector;
6725 struct igc_ring *ring;
6726
6727 if (test_bit(__IGC_DOWN, &adapter->state))
6728 return -ENETDOWN;
6729
6730 if (!igc_xdp_is_enabled(adapter))
6731 return -ENXIO;
6732
6733 if (queue_id >= adapter->num_rx_queues)
6734 return -EINVAL;
6735
6736 ring = adapter->rx_ring[queue_id];
6737
6738 if (!ring->xsk_pool)
6739 return -ENXIO;
6740
6741 q_vector = adapter->q_vector[queue_id];
6742 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6743 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6744
6745 return 0;
6746}
6747
6748static ktime_t igc_get_tstamp(struct net_device *dev,
6749 const struct skb_shared_hwtstamps *hwtstamps,
6750 bool cycles)
6751{
6752 struct igc_adapter *adapter = netdev_priv(dev);
6753 struct igc_inline_rx_tstamps *tstamp;
6754 ktime_t timestamp;
6755
6756 tstamp = hwtstamps->netdev_data;
6757
6758 if (cycles)
6759 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6760 else
6761 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6762
6763 return timestamp;
6764}
6765
6766static const struct net_device_ops igc_netdev_ops = {
6767 .ndo_open = igc_open,
6768 .ndo_stop = igc_close,
6769 .ndo_start_xmit = igc_xmit_frame,
6770 .ndo_set_rx_mode = igc_set_rx_mode,
6771 .ndo_set_mac_address = igc_set_mac,
6772 .ndo_change_mtu = igc_change_mtu,
6773 .ndo_tx_timeout = igc_tx_timeout,
6774 .ndo_get_stats64 = igc_get_stats64,
6775 .ndo_fix_features = igc_fix_features,
6776 .ndo_set_features = igc_set_features,
6777 .ndo_features_check = igc_features_check,
6778 .ndo_eth_ioctl = igc_ioctl,
6779 .ndo_setup_tc = igc_setup_tc,
6780 .ndo_bpf = igc_bpf,
6781 .ndo_xdp_xmit = igc_xdp_xmit,
6782 .ndo_xsk_wakeup = igc_xsk_wakeup,
6783 .ndo_get_tstamp = igc_get_tstamp,
6784};
6785
6786/* PCIe configuration access */
6787void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6788{
6789 struct igc_adapter *adapter = hw->back;
6790
6791 pci_read_config_word(adapter->pdev, reg, value);
6792}
6793
6794void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6795{
6796 struct igc_adapter *adapter = hw->back;
6797
6798 pci_write_config_word(adapter->pdev, reg, *value);
6799}
6800
6801s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6802{
6803 struct igc_adapter *adapter = hw->back;
6804
6805 if (!pci_is_pcie(adapter->pdev))
6806 return -IGC_ERR_CONFIG;
6807
6808 pcie_capability_read_word(adapter->pdev, reg, value);
6809
6810 return IGC_SUCCESS;
6811}
6812
6813s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6814{
6815 struct igc_adapter *adapter = hw->back;
6816
6817 if (!pci_is_pcie(adapter->pdev))
6818 return -IGC_ERR_CONFIG;
6819
6820 pcie_capability_write_word(adapter->pdev, reg, *value);
6821
6822 return IGC_SUCCESS;
6823}
6824
6825u32 igc_rd32(struct igc_hw *hw, u32 reg)
6826{
6827 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6828 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6829 u32 value = 0;
6830
6831 if (IGC_REMOVED(hw_addr))
6832 return ~value;
6833
6834 value = readl(&hw_addr[reg]);
6835
6836 /* reads should not return all F's */
6837 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6838 struct net_device *netdev = igc->netdev;
6839
6840 hw->hw_addr = NULL;
6841 netif_device_detach(netdev);
6842 netdev_err(netdev, "PCIe link lost, device now detached\n");
6843 WARN(pci_device_is_present(igc->pdev),
6844 "igc: Failed to read reg 0x%x!\n", reg);
6845 }
6846
6847 return value;
6848}
6849
6850/* Mapping HW RSS Type to enum xdp_rss_hash_type */
6851static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6852 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6853 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6854 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6855 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6856 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6857 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6858 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6859 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6860 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6861 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6862 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6863 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6864 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6865 [13] = XDP_RSS_TYPE_NONE,
6866 [14] = XDP_RSS_TYPE_NONE,
6867 [15] = XDP_RSS_TYPE_NONE,
6868};
6869
6870static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6871 enum xdp_rss_hash_type *rss_type)
6872{
6873 const struct igc_xdp_buff *ctx = (void *)_ctx;
6874
6875 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6876 return -ENODATA;
6877
6878 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6879 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6880
6881 return 0;
6882}
6883
6884static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6885{
6886 const struct igc_xdp_buff *ctx = (void *)_ctx;
6887 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6888 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6889
6890 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6891 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6892
6893 return 0;
6894 }
6895
6896 return -ENODATA;
6897}
6898
6899static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6900 .xmo_rx_hash = igc_xdp_rx_hash,
6901 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6902};
6903
6904static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6905{
6906 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6907 hrtimer);
6908 unsigned long flags;
6909 unsigned int i;
6910
6911 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6912
6913 adapter->qbv_transition = true;
6914 for (i = 0; i < adapter->num_tx_queues; i++) {
6915 struct igc_ring *tx_ring = adapter->tx_ring[i];
6916
6917 if (tx_ring->admin_gate_closed) {
6918 tx_ring->admin_gate_closed = false;
6919 tx_ring->oper_gate_closed = true;
6920 } else {
6921 tx_ring->oper_gate_closed = false;
6922 }
6923 }
6924 adapter->qbv_transition = false;
6925
6926 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6927
6928 return HRTIMER_NORESTART;
6929}
6930
6931/**
6932 * igc_probe - Device Initialization Routine
6933 * @pdev: PCI device information struct
6934 * @ent: entry in igc_pci_tbl
6935 *
6936 * Returns 0 on success, negative on failure
6937 *
6938 * igc_probe initializes an adapter identified by a pci_dev structure.
6939 * The OS initialization, configuring the adapter private structure,
6940 * and a hardware reset occur.
6941 */
6942static int igc_probe(struct pci_dev *pdev,
6943 const struct pci_device_id *ent)
6944{
6945 struct igc_adapter *adapter;
6946 struct net_device *netdev;
6947 struct igc_hw *hw;
6948 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6949 int err;
6950
6951 err = pci_enable_device_mem(pdev);
6952 if (err)
6953 return err;
6954
6955 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6956 if (err) {
6957 dev_err(&pdev->dev,
6958 "No usable DMA configuration, aborting\n");
6959 goto err_dma;
6960 }
6961
6962 err = pci_request_mem_regions(pdev, igc_driver_name);
6963 if (err)
6964 goto err_pci_reg;
6965
6966 err = pci_enable_ptm(pdev, NULL);
6967 if (err < 0)
6968 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6969
6970 pci_set_master(pdev);
6971
6972 err = -ENOMEM;
6973 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6974 IGC_MAX_TX_QUEUES);
6975
6976 if (!netdev)
6977 goto err_alloc_etherdev;
6978
6979 SET_NETDEV_DEV(netdev, &pdev->dev);
6980
6981 pci_set_drvdata(pdev, netdev);
6982 adapter = netdev_priv(netdev);
6983 adapter->netdev = netdev;
6984 adapter->pdev = pdev;
6985 hw = &adapter->hw;
6986 hw->back = adapter;
6987 adapter->port_num = hw->bus.func;
6988 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6989
6990 err = pci_save_state(pdev);
6991 if (err)
6992 goto err_ioremap;
6993
6994 err = -EIO;
6995 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6996 pci_resource_len(pdev, 0));
6997 if (!adapter->io_addr)
6998 goto err_ioremap;
6999
7000 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7001 hw->hw_addr = adapter->io_addr;
7002
7003 netdev->netdev_ops = &igc_netdev_ops;
7004 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7005 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7006 igc_ethtool_set_ops(netdev);
7007 netdev->watchdog_timeo = 5 * HZ;
7008
7009 netdev->mem_start = pci_resource_start(pdev, 0);
7010 netdev->mem_end = pci_resource_end(pdev, 0);
7011
7012 /* PCI config space info */
7013 hw->vendor_id = pdev->vendor;
7014 hw->device_id = pdev->device;
7015 hw->revision_id = pdev->revision;
7016 hw->subsystem_vendor_id = pdev->subsystem_vendor;
7017 hw->subsystem_device_id = pdev->subsystem_device;
7018
7019 /* Copy the default MAC and PHY function pointers */
7020 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7021 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7022
7023 /* Initialize skew-specific constants */
7024 err = ei->get_invariants(hw);
7025 if (err)
7026 goto err_sw_init;
7027
7028 /* Add supported features to the features list*/
7029 netdev->features |= NETIF_F_SG;
7030 netdev->features |= NETIF_F_TSO;
7031 netdev->features |= NETIF_F_TSO6;
7032 netdev->features |= NETIF_F_TSO_ECN;
7033 netdev->features |= NETIF_F_RXHASH;
7034 netdev->features |= NETIF_F_RXCSUM;
7035 netdev->features |= NETIF_F_HW_CSUM;
7036 netdev->features |= NETIF_F_SCTP_CRC;
7037 netdev->features |= NETIF_F_HW_TC;
7038
7039#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7040 NETIF_F_GSO_GRE_CSUM | \
7041 NETIF_F_GSO_IPXIP4 | \
7042 NETIF_F_GSO_IPXIP6 | \
7043 NETIF_F_GSO_UDP_TUNNEL | \
7044 NETIF_F_GSO_UDP_TUNNEL_CSUM)
7045
7046 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7047 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7048
7049 /* setup the private structure */
7050 err = igc_sw_init(adapter);
7051 if (err)
7052 goto err_sw_init;
7053
7054 /* copy netdev features into list of user selectable features */
7055 netdev->hw_features |= NETIF_F_NTUPLE;
7056 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7057 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7058 netdev->hw_features |= netdev->features;
7059
7060 netdev->features |= NETIF_F_HIGHDMA;
7061
7062 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7063 netdev->mpls_features |= NETIF_F_HW_CSUM;
7064 netdev->hw_enc_features |= netdev->vlan_features;
7065
7066 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7067 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7068
7069 /* MTU range: 68 - 9216 */
7070 netdev->min_mtu = ETH_MIN_MTU;
7071 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7072
7073 /* before reading the NVM, reset the controller to put the device in a
7074 * known good starting state
7075 */
7076 hw->mac.ops.reset_hw(hw);
7077
7078 if (igc_get_flash_presence_i225(hw)) {
7079 if (hw->nvm.ops.validate(hw) < 0) {
7080 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7081 err = -EIO;
7082 goto err_eeprom;
7083 }
7084 }
7085
7086 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7087 /* copy the MAC address out of the NVM */
7088 if (hw->mac.ops.read_mac_addr(hw))
7089 dev_err(&pdev->dev, "NVM Read Error\n");
7090 }
7091
7092 eth_hw_addr_set(netdev, hw->mac.addr);
7093
7094 if (!is_valid_ether_addr(netdev->dev_addr)) {
7095 dev_err(&pdev->dev, "Invalid MAC Address\n");
7096 err = -EIO;
7097 goto err_eeprom;
7098 }
7099
7100 /* configure RXPBSIZE and TXPBSIZE */
7101 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7102 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7103
7104 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7105 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7106
7107 INIT_WORK(&adapter->reset_task, igc_reset_task);
7108 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7109
7110 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7111 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7112
7113 /* Initialize link properties that are user-changeable */
7114 adapter->fc_autoneg = true;
7115 hw->phy.autoneg_advertised = 0xaf;
7116
7117 hw->fc.requested_mode = igc_fc_default;
7118 hw->fc.current_mode = igc_fc_default;
7119
7120 /* By default, support wake on port A */
7121 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7122
7123 /* initialize the wol settings based on the eeprom settings */
7124 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7125 adapter->wol |= IGC_WUFC_MAG;
7126
7127 device_set_wakeup_enable(&adapter->pdev->dev,
7128 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7129
7130 igc_ptp_init(adapter);
7131
7132 igc_tsn_clear_schedule(adapter);
7133
7134 /* reset the hardware with the new settings */
7135 igc_reset(adapter);
7136
7137 /* let the f/w know that the h/w is now under the control of the
7138 * driver.
7139 */
7140 igc_get_hw_control(adapter);
7141
7142 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7143 err = register_netdev(netdev);
7144 if (err)
7145 goto err_register;
7146
7147 /* carrier off reporting is important to ethtool even BEFORE open */
7148 netif_carrier_off(netdev);
7149
7150 /* Check if Media Autosense is enabled */
7151 adapter->ei = *ei;
7152
7153 /* print pcie link status and MAC address */
7154 pcie_print_link_status(pdev);
7155 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7156
7157 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7158 /* Disable EEE for internal PHY devices */
7159 hw->dev_spec._base.eee_enable = false;
7160 adapter->flags &= ~IGC_FLAG_EEE;
7161 igc_set_eee_i225(hw, false, false, false);
7162
7163 pm_runtime_put_noidle(&pdev->dev);
7164
7165 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7166 err = igc_led_setup(adapter);
7167 if (err)
7168 goto err_register;
7169 }
7170
7171 return 0;
7172
7173err_register:
7174 igc_release_hw_control(adapter);
7175err_eeprom:
7176 if (!igc_check_reset_block(hw))
7177 igc_reset_phy(hw);
7178err_sw_init:
7179 igc_clear_interrupt_scheme(adapter);
7180 iounmap(adapter->io_addr);
7181err_ioremap:
7182 free_netdev(netdev);
7183err_alloc_etherdev:
7184 pci_release_mem_regions(pdev);
7185err_pci_reg:
7186err_dma:
7187 pci_disable_device(pdev);
7188 return err;
7189}
7190
7191/**
7192 * igc_remove - Device Removal Routine
7193 * @pdev: PCI device information struct
7194 *
7195 * igc_remove is called by the PCI subsystem to alert the driver
7196 * that it should release a PCI device. This could be caused by a
7197 * Hot-Plug event, or because the driver is going to be removed from
7198 * memory.
7199 */
7200static void igc_remove(struct pci_dev *pdev)
7201{
7202 struct net_device *netdev = pci_get_drvdata(pdev);
7203 struct igc_adapter *adapter = netdev_priv(netdev);
7204
7205 pm_runtime_get_noresume(&pdev->dev);
7206
7207 igc_flush_nfc_rules(adapter);
7208
7209 igc_ptp_stop(adapter);
7210
7211 pci_disable_ptm(pdev);
7212 pci_clear_master(pdev);
7213
7214 set_bit(__IGC_DOWN, &adapter->state);
7215
7216 del_timer_sync(&adapter->watchdog_timer);
7217 del_timer_sync(&adapter->phy_info_timer);
7218
7219 cancel_work_sync(&adapter->reset_task);
7220 cancel_work_sync(&adapter->watchdog_task);
7221 hrtimer_cancel(&adapter->hrtimer);
7222
7223 if (IS_ENABLED(CONFIG_IGC_LEDS))
7224 igc_led_free(adapter);
7225
7226 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7227 * would have already happened in close and is redundant.
7228 */
7229 igc_release_hw_control(adapter);
7230 unregister_netdev(netdev);
7231
7232 igc_clear_interrupt_scheme(adapter);
7233 pci_iounmap(pdev, adapter->io_addr);
7234 pci_release_mem_regions(pdev);
7235
7236 free_netdev(netdev);
7237
7238 pci_disable_device(pdev);
7239}
7240
7241static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7242 bool runtime)
7243{
7244 struct net_device *netdev = pci_get_drvdata(pdev);
7245 struct igc_adapter *adapter = netdev_priv(netdev);
7246 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7247 struct igc_hw *hw = &adapter->hw;
7248 u32 ctrl, rctl, status;
7249 bool wake;
7250
7251 rtnl_lock();
7252 netif_device_detach(netdev);
7253
7254 if (netif_running(netdev))
7255 __igc_close(netdev, true);
7256
7257 igc_ptp_suspend(adapter);
7258
7259 igc_clear_interrupt_scheme(adapter);
7260 rtnl_unlock();
7261
7262 status = rd32(IGC_STATUS);
7263 if (status & IGC_STATUS_LU)
7264 wufc &= ~IGC_WUFC_LNKC;
7265
7266 if (wufc) {
7267 igc_setup_rctl(adapter);
7268 igc_set_rx_mode(netdev);
7269
7270 /* turn on all-multi mode if wake on multicast is enabled */
7271 if (wufc & IGC_WUFC_MC) {
7272 rctl = rd32(IGC_RCTL);
7273 rctl |= IGC_RCTL_MPE;
7274 wr32(IGC_RCTL, rctl);
7275 }
7276
7277 ctrl = rd32(IGC_CTRL);
7278 ctrl |= IGC_CTRL_ADVD3WUC;
7279 wr32(IGC_CTRL, ctrl);
7280
7281 /* Allow time for pending master requests to run */
7282 igc_disable_pcie_master(hw);
7283
7284 wr32(IGC_WUC, IGC_WUC_PME_EN);
7285 wr32(IGC_WUFC, wufc);
7286 } else {
7287 wr32(IGC_WUC, 0);
7288 wr32(IGC_WUFC, 0);
7289 }
7290
7291 wake = wufc || adapter->en_mng_pt;
7292 if (!wake)
7293 igc_power_down_phy_copper_base(&adapter->hw);
7294 else
7295 igc_power_up_link(adapter);
7296
7297 if (enable_wake)
7298 *enable_wake = wake;
7299
7300 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7301 * would have already happened in close and is redundant.
7302 */
7303 igc_release_hw_control(adapter);
7304
7305 pci_disable_device(pdev);
7306
7307 return 0;
7308}
7309
7310static int igc_runtime_suspend(struct device *dev)
7311{
7312 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7313}
7314
7315static void igc_deliver_wake_packet(struct net_device *netdev)
7316{
7317 struct igc_adapter *adapter = netdev_priv(netdev);
7318 struct igc_hw *hw = &adapter->hw;
7319 struct sk_buff *skb;
7320 u32 wupl;
7321
7322 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7323
7324 /* WUPM stores only the first 128 bytes of the wake packet.
7325 * Read the packet only if we have the whole thing.
7326 */
7327 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7328 return;
7329
7330 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7331 if (!skb)
7332 return;
7333
7334 skb_put(skb, wupl);
7335
7336 /* Ensure reads are 32-bit aligned */
7337 wupl = roundup(wupl, 4);
7338
7339 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7340
7341 skb->protocol = eth_type_trans(skb, netdev);
7342 netif_rx(skb);
7343}
7344
7345static int igc_resume(struct device *dev)
7346{
7347 struct pci_dev *pdev = to_pci_dev(dev);
7348 struct net_device *netdev = pci_get_drvdata(pdev);
7349 struct igc_adapter *adapter = netdev_priv(netdev);
7350 struct igc_hw *hw = &adapter->hw;
7351 u32 err, val;
7352
7353 pci_set_power_state(pdev, PCI_D0);
7354 pci_restore_state(pdev);
7355 pci_save_state(pdev);
7356
7357 if (!pci_device_is_present(pdev))
7358 return -ENODEV;
7359 err = pci_enable_device_mem(pdev);
7360 if (err) {
7361 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7362 return err;
7363 }
7364 pci_set_master(pdev);
7365
7366 pci_enable_wake(pdev, PCI_D3hot, 0);
7367 pci_enable_wake(pdev, PCI_D3cold, 0);
7368
7369 if (igc_init_interrupt_scheme(adapter, true)) {
7370 netdev_err(netdev, "Unable to allocate memory for queues\n");
7371 return -ENOMEM;
7372 }
7373
7374 igc_reset(adapter);
7375
7376 /* let the f/w know that the h/w is now under the control of the
7377 * driver.
7378 */
7379 igc_get_hw_control(adapter);
7380
7381 val = rd32(IGC_WUS);
7382 if (val & WAKE_PKT_WUS)
7383 igc_deliver_wake_packet(netdev);
7384
7385 wr32(IGC_WUS, ~0);
7386
7387 if (netif_running(netdev)) {
7388 err = __igc_open(netdev, true);
7389 if (!err)
7390 netif_device_attach(netdev);
7391 }
7392
7393 return err;
7394}
7395
7396static int igc_runtime_resume(struct device *dev)
7397{
7398 return igc_resume(dev);
7399}
7400
7401static int igc_suspend(struct device *dev)
7402{
7403 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7404}
7405
7406static int __maybe_unused igc_runtime_idle(struct device *dev)
7407{
7408 struct net_device *netdev = dev_get_drvdata(dev);
7409 struct igc_adapter *adapter = netdev_priv(netdev);
7410
7411 if (!igc_has_link(adapter))
7412 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7413
7414 return -EBUSY;
7415}
7416
7417static void igc_shutdown(struct pci_dev *pdev)
7418{
7419 bool wake;
7420
7421 __igc_shutdown(pdev, &wake, 0);
7422
7423 if (system_state == SYSTEM_POWER_OFF) {
7424 pci_wake_from_d3(pdev, wake);
7425 pci_set_power_state(pdev, PCI_D3hot);
7426 }
7427}
7428
7429/**
7430 * igc_io_error_detected - called when PCI error is detected
7431 * @pdev: Pointer to PCI device
7432 * @state: The current PCI connection state
7433 *
7434 * This function is called after a PCI bus error affecting
7435 * this device has been detected.
7436 **/
7437static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7438 pci_channel_state_t state)
7439{
7440 struct net_device *netdev = pci_get_drvdata(pdev);
7441 struct igc_adapter *adapter = netdev_priv(netdev);
7442
7443 netif_device_detach(netdev);
7444
7445 if (state == pci_channel_io_perm_failure)
7446 return PCI_ERS_RESULT_DISCONNECT;
7447
7448 if (netif_running(netdev))
7449 igc_down(adapter);
7450 pci_disable_device(pdev);
7451
7452 /* Request a slot reset. */
7453 return PCI_ERS_RESULT_NEED_RESET;
7454}
7455
7456/**
7457 * igc_io_slot_reset - called after the PCI bus has been reset.
7458 * @pdev: Pointer to PCI device
7459 *
7460 * Restart the card from scratch, as if from a cold-boot. Implementation
7461 * resembles the first-half of the igc_resume routine.
7462 **/
7463static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7464{
7465 struct net_device *netdev = pci_get_drvdata(pdev);
7466 struct igc_adapter *adapter = netdev_priv(netdev);
7467 struct igc_hw *hw = &adapter->hw;
7468 pci_ers_result_t result;
7469
7470 if (pci_enable_device_mem(pdev)) {
7471 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7472 result = PCI_ERS_RESULT_DISCONNECT;
7473 } else {
7474 pci_set_master(pdev);
7475 pci_restore_state(pdev);
7476 pci_save_state(pdev);
7477
7478 pci_enable_wake(pdev, PCI_D3hot, 0);
7479 pci_enable_wake(pdev, PCI_D3cold, 0);
7480
7481 /* In case of PCI error, adapter loses its HW address
7482 * so we should re-assign it here.
7483 */
7484 hw->hw_addr = adapter->io_addr;
7485
7486 igc_reset(adapter);
7487 wr32(IGC_WUS, ~0);
7488 result = PCI_ERS_RESULT_RECOVERED;
7489 }
7490
7491 return result;
7492}
7493
7494/**
7495 * igc_io_resume - called when traffic can start to flow again.
7496 * @pdev: Pointer to PCI device
7497 *
7498 * This callback is called when the error recovery driver tells us that
7499 * its OK to resume normal operation. Implementation resembles the
7500 * second-half of the igc_resume routine.
7501 */
7502static void igc_io_resume(struct pci_dev *pdev)
7503{
7504 struct net_device *netdev = pci_get_drvdata(pdev);
7505 struct igc_adapter *adapter = netdev_priv(netdev);
7506
7507 rtnl_lock();
7508 if (netif_running(netdev)) {
7509 if (igc_open(netdev)) {
7510 rtnl_unlock();
7511 netdev_err(netdev, "igc_open failed after reset\n");
7512 return;
7513 }
7514 }
7515
7516 netif_device_attach(netdev);
7517
7518 /* let the f/w know that the h/w is now under the control of the
7519 * driver.
7520 */
7521 igc_get_hw_control(adapter);
7522 rtnl_unlock();
7523}
7524
7525static const struct pci_error_handlers igc_err_handler = {
7526 .error_detected = igc_io_error_detected,
7527 .slot_reset = igc_io_slot_reset,
7528 .resume = igc_io_resume,
7529};
7530
7531static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7532 igc_runtime_suspend, igc_runtime_resume,
7533 igc_runtime_idle);
7534
7535static struct pci_driver igc_driver = {
7536 .name = igc_driver_name,
7537 .id_table = igc_pci_tbl,
7538 .probe = igc_probe,
7539 .remove = igc_remove,
7540 .driver.pm = pm_ptr(&igc_pm_ops),
7541 .shutdown = igc_shutdown,
7542 .err_handler = &igc_err_handler,
7543};
7544
7545/**
7546 * igc_reinit_queues - return error
7547 * @adapter: pointer to adapter structure
7548 */
7549int igc_reinit_queues(struct igc_adapter *adapter)
7550{
7551 struct net_device *netdev = adapter->netdev;
7552 int err = 0;
7553
7554 if (netif_running(netdev))
7555 igc_close(netdev);
7556
7557 igc_reset_interrupt_capability(adapter);
7558
7559 if (igc_init_interrupt_scheme(adapter, true)) {
7560 netdev_err(netdev, "Unable to allocate memory for queues\n");
7561 return -ENOMEM;
7562 }
7563
7564 if (netif_running(netdev))
7565 err = igc_open(netdev);
7566
7567 return err;
7568}
7569
7570/**
7571 * igc_get_hw_dev - return device
7572 * @hw: pointer to hardware structure
7573 *
7574 * used by hardware layer to print debugging information
7575 */
7576struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7577{
7578 struct igc_adapter *adapter = hw->back;
7579
7580 return adapter->netdev;
7581}
7582
7583static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7584{
7585 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7586 u8 idx = ring->reg_idx;
7587 u32 rxdctl;
7588
7589 rxdctl = rd32(IGC_RXDCTL(idx));
7590 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7591 rxdctl |= IGC_RXDCTL_SWFLUSH;
7592 wr32(IGC_RXDCTL(idx), rxdctl);
7593}
7594
7595void igc_disable_rx_ring(struct igc_ring *ring)
7596{
7597 igc_disable_rx_ring_hw(ring);
7598 igc_clean_rx_ring(ring);
7599}
7600
7601void igc_enable_rx_ring(struct igc_ring *ring)
7602{
7603 struct igc_adapter *adapter = ring->q_vector->adapter;
7604
7605 igc_configure_rx_ring(adapter, ring);
7606
7607 if (ring->xsk_pool)
7608 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7609 else
7610 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7611}
7612
7613void igc_disable_tx_ring(struct igc_ring *ring)
7614{
7615 igc_disable_tx_ring_hw(ring);
7616 igc_clean_tx_ring(ring);
7617}
7618
7619void igc_enable_tx_ring(struct igc_ring *ring)
7620{
7621 struct igc_adapter *adapter = ring->q_vector->adapter;
7622
7623 igc_configure_tx_ring(adapter, ring);
7624}
7625
7626/**
7627 * igc_init_module - Driver Registration Routine
7628 *
7629 * igc_init_module is the first routine called when the driver is
7630 * loaded. All it does is register with the PCI subsystem.
7631 */
7632static int __init igc_init_module(void)
7633{
7634 int ret;
7635
7636 pr_info("%s\n", igc_driver_string);
7637 pr_info("%s\n", igc_copyright);
7638
7639 ret = pci_register_driver(&igc_driver);
7640 return ret;
7641}
7642
7643module_init(igc_init_module);
7644
7645/**
7646 * igc_exit_module - Driver Exit Cleanup Routine
7647 *
7648 * igc_exit_module is called just before the driver is removed
7649 * from memory.
7650 */
7651static void __exit igc_exit_module(void)
7652{
7653 pci_unregister_driver(&igc_driver);
7654}
7655
7656module_exit(igc_exit_module);
7657/* igc_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/aer.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/ip.h>
11#include <linux/pm_runtime.h>
12#include <net/pkt_sched.h>
13
14#include <net/ipv6.h>
15
16#include "igc.h"
17#include "igc_hw.h"
18#include "igc_tsn.h"
19
20#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
21
22#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23
24static int debug = -1;
25
26MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27MODULE_DESCRIPTION(DRV_SUMMARY);
28MODULE_LICENSE("GPL v2");
29module_param(debug, int, 0);
30MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31
32char igc_driver_name[] = "igc";
33static const char igc_driver_string[] = DRV_SUMMARY;
34static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39};
40
41static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
51 /* required last entry */
52 {0, }
53};
54
55MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
56
57enum latency_range {
58 lowest_latency = 0,
59 low_latency = 1,
60 bulk_latency = 2,
61 latency_invalid = 255
62};
63
64void igc_reset(struct igc_adapter *adapter)
65{
66 struct net_device *dev = adapter->netdev;
67 struct igc_hw *hw = &adapter->hw;
68 struct igc_fc_info *fc = &hw->fc;
69 u32 pba, hwm;
70
71 /* Repartition PBA for greater than 9k MTU if required */
72 pba = IGC_PBA_34K;
73
74 /* flow control settings
75 * The high water mark must be low enough to fit one full frame
76 * after transmitting the pause frame. As such we must have enough
77 * space to allow for us to complete our current transmit and then
78 * receive the frame that is in progress from the link partner.
79 * Set it to:
80 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
81 */
82 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
83
84 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
85 fc->low_water = fc->high_water - 16;
86 fc->pause_time = 0xFFFF;
87 fc->send_xon = 1;
88 fc->current_mode = fc->requested_mode;
89
90 hw->mac.ops.reset_hw(hw);
91
92 if (hw->mac.ops.init_hw(hw))
93 netdev_err(dev, "Error on hardware initialization\n");
94
95 /* Re-establish EEE setting */
96 igc_set_eee_i225(hw, true, true, true);
97
98 if (!netif_running(adapter->netdev))
99 igc_power_down_phy_copper_base(&adapter->hw);
100
101 /* Re-enable PTP, where applicable. */
102 igc_ptp_reset(adapter);
103
104 /* Re-enable TSN offloading, where applicable. */
105 igc_tsn_offload_apply(adapter);
106
107 igc_get_phy_info(hw);
108}
109
110/**
111 * igc_power_up_link - Power up the phy link
112 * @adapter: address of board private structure
113 */
114static void igc_power_up_link(struct igc_adapter *adapter)
115{
116 igc_reset_phy(&adapter->hw);
117
118 igc_power_up_phy_copper(&adapter->hw);
119
120 igc_setup_link(&adapter->hw);
121}
122
123/**
124 * igc_release_hw_control - release control of the h/w to f/w
125 * @adapter: address of board private structure
126 *
127 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
128 * For ASF and Pass Through versions of f/w this means that the
129 * driver is no longer loaded.
130 */
131static void igc_release_hw_control(struct igc_adapter *adapter)
132{
133 struct igc_hw *hw = &adapter->hw;
134 u32 ctrl_ext;
135
136 /* Let firmware take over control of h/w */
137 ctrl_ext = rd32(IGC_CTRL_EXT);
138 wr32(IGC_CTRL_EXT,
139 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
140}
141
142/**
143 * igc_get_hw_control - get control of the h/w from f/w
144 * @adapter: address of board private structure
145 *
146 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
147 * For ASF and Pass Through versions of f/w this means that
148 * the driver is loaded.
149 */
150static void igc_get_hw_control(struct igc_adapter *adapter)
151{
152 struct igc_hw *hw = &adapter->hw;
153 u32 ctrl_ext;
154
155 /* Let firmware know the driver has taken over */
156 ctrl_ext = rd32(IGC_CTRL_EXT);
157 wr32(IGC_CTRL_EXT,
158 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
159}
160
161/**
162 * igc_clean_tx_ring - Free Tx Buffers
163 * @tx_ring: ring to be cleaned
164 */
165static void igc_clean_tx_ring(struct igc_ring *tx_ring)
166{
167 u16 i = tx_ring->next_to_clean;
168 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
169
170 while (i != tx_ring->next_to_use) {
171 union igc_adv_tx_desc *eop_desc, *tx_desc;
172
173 /* Free all the Tx ring sk_buffs */
174 dev_kfree_skb_any(tx_buffer->skb);
175
176 /* unmap skb header data */
177 dma_unmap_single(tx_ring->dev,
178 dma_unmap_addr(tx_buffer, dma),
179 dma_unmap_len(tx_buffer, len),
180 DMA_TO_DEVICE);
181
182 /* check for eop_desc to determine the end of the packet */
183 eop_desc = tx_buffer->next_to_watch;
184 tx_desc = IGC_TX_DESC(tx_ring, i);
185
186 /* unmap remaining buffers */
187 while (tx_desc != eop_desc) {
188 tx_buffer++;
189 tx_desc++;
190 i++;
191 if (unlikely(i == tx_ring->count)) {
192 i = 0;
193 tx_buffer = tx_ring->tx_buffer_info;
194 tx_desc = IGC_TX_DESC(tx_ring, 0);
195 }
196
197 /* unmap any remaining paged data */
198 if (dma_unmap_len(tx_buffer, len))
199 dma_unmap_page(tx_ring->dev,
200 dma_unmap_addr(tx_buffer, dma),
201 dma_unmap_len(tx_buffer, len),
202 DMA_TO_DEVICE);
203 }
204
205 /* move us one more past the eop_desc for start of next pkt */
206 tx_buffer++;
207 i++;
208 if (unlikely(i == tx_ring->count)) {
209 i = 0;
210 tx_buffer = tx_ring->tx_buffer_info;
211 }
212 }
213
214 /* reset BQL for queue */
215 netdev_tx_reset_queue(txring_txq(tx_ring));
216
217 /* reset next_to_use and next_to_clean */
218 tx_ring->next_to_use = 0;
219 tx_ring->next_to_clean = 0;
220}
221
222/**
223 * igc_free_tx_resources - Free Tx Resources per Queue
224 * @tx_ring: Tx descriptor ring for a specific queue
225 *
226 * Free all transmit software resources
227 */
228void igc_free_tx_resources(struct igc_ring *tx_ring)
229{
230 igc_clean_tx_ring(tx_ring);
231
232 vfree(tx_ring->tx_buffer_info);
233 tx_ring->tx_buffer_info = NULL;
234
235 /* if not set, then don't free */
236 if (!tx_ring->desc)
237 return;
238
239 dma_free_coherent(tx_ring->dev, tx_ring->size,
240 tx_ring->desc, tx_ring->dma);
241
242 tx_ring->desc = NULL;
243}
244
245/**
246 * igc_free_all_tx_resources - Free Tx Resources for All Queues
247 * @adapter: board private structure
248 *
249 * Free all transmit software resources
250 */
251static void igc_free_all_tx_resources(struct igc_adapter *adapter)
252{
253 int i;
254
255 for (i = 0; i < adapter->num_tx_queues; i++)
256 igc_free_tx_resources(adapter->tx_ring[i]);
257}
258
259/**
260 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
261 * @adapter: board private structure
262 */
263static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
264{
265 int i;
266
267 for (i = 0; i < adapter->num_tx_queues; i++)
268 if (adapter->tx_ring[i])
269 igc_clean_tx_ring(adapter->tx_ring[i]);
270}
271
272/**
273 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
274 * @tx_ring: tx descriptor ring (for a specific queue) to setup
275 *
276 * Return 0 on success, negative on failure
277 */
278int igc_setup_tx_resources(struct igc_ring *tx_ring)
279{
280 struct net_device *ndev = tx_ring->netdev;
281 struct device *dev = tx_ring->dev;
282 int size = 0;
283
284 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
285 tx_ring->tx_buffer_info = vzalloc(size);
286 if (!tx_ring->tx_buffer_info)
287 goto err;
288
289 /* round up to nearest 4K */
290 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
291 tx_ring->size = ALIGN(tx_ring->size, 4096);
292
293 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
294 &tx_ring->dma, GFP_KERNEL);
295
296 if (!tx_ring->desc)
297 goto err;
298
299 tx_ring->next_to_use = 0;
300 tx_ring->next_to_clean = 0;
301
302 return 0;
303
304err:
305 vfree(tx_ring->tx_buffer_info);
306 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
307 return -ENOMEM;
308}
309
310/**
311 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
312 * @adapter: board private structure
313 *
314 * Return 0 on success, negative on failure
315 */
316static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
317{
318 struct net_device *dev = adapter->netdev;
319 int i, err = 0;
320
321 for (i = 0; i < adapter->num_tx_queues; i++) {
322 err = igc_setup_tx_resources(adapter->tx_ring[i]);
323 if (err) {
324 netdev_err(dev, "Error on Tx queue %u setup\n", i);
325 for (i--; i >= 0; i--)
326 igc_free_tx_resources(adapter->tx_ring[i]);
327 break;
328 }
329 }
330
331 return err;
332}
333
334/**
335 * igc_clean_rx_ring - Free Rx Buffers per Queue
336 * @rx_ring: ring to free buffers from
337 */
338static void igc_clean_rx_ring(struct igc_ring *rx_ring)
339{
340 u16 i = rx_ring->next_to_clean;
341
342 dev_kfree_skb(rx_ring->skb);
343 rx_ring->skb = NULL;
344
345 /* Free all the Rx ring sk_buffs */
346 while (i != rx_ring->next_to_alloc) {
347 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
348
349 /* Invalidate cache lines that may have been written to by
350 * device so that we avoid corrupting memory.
351 */
352 dma_sync_single_range_for_cpu(rx_ring->dev,
353 buffer_info->dma,
354 buffer_info->page_offset,
355 igc_rx_bufsz(rx_ring),
356 DMA_FROM_DEVICE);
357
358 /* free resources associated with mapping */
359 dma_unmap_page_attrs(rx_ring->dev,
360 buffer_info->dma,
361 igc_rx_pg_size(rx_ring),
362 DMA_FROM_DEVICE,
363 IGC_RX_DMA_ATTR);
364 __page_frag_cache_drain(buffer_info->page,
365 buffer_info->pagecnt_bias);
366
367 i++;
368 if (i == rx_ring->count)
369 i = 0;
370 }
371
372 rx_ring->next_to_alloc = 0;
373 rx_ring->next_to_clean = 0;
374 rx_ring->next_to_use = 0;
375}
376
377/**
378 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
379 * @adapter: board private structure
380 */
381static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
382{
383 int i;
384
385 for (i = 0; i < adapter->num_rx_queues; i++)
386 if (adapter->rx_ring[i])
387 igc_clean_rx_ring(adapter->rx_ring[i]);
388}
389
390/**
391 * igc_free_rx_resources - Free Rx Resources
392 * @rx_ring: ring to clean the resources from
393 *
394 * Free all receive software resources
395 */
396void igc_free_rx_resources(struct igc_ring *rx_ring)
397{
398 igc_clean_rx_ring(rx_ring);
399
400 vfree(rx_ring->rx_buffer_info);
401 rx_ring->rx_buffer_info = NULL;
402
403 /* if not set, then don't free */
404 if (!rx_ring->desc)
405 return;
406
407 dma_free_coherent(rx_ring->dev, rx_ring->size,
408 rx_ring->desc, rx_ring->dma);
409
410 rx_ring->desc = NULL;
411}
412
413/**
414 * igc_free_all_rx_resources - Free Rx Resources for All Queues
415 * @adapter: board private structure
416 *
417 * Free all receive software resources
418 */
419static void igc_free_all_rx_resources(struct igc_adapter *adapter)
420{
421 int i;
422
423 for (i = 0; i < adapter->num_rx_queues; i++)
424 igc_free_rx_resources(adapter->rx_ring[i]);
425}
426
427/**
428 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
429 * @rx_ring: rx descriptor ring (for a specific queue) to setup
430 *
431 * Returns 0 on success, negative on failure
432 */
433int igc_setup_rx_resources(struct igc_ring *rx_ring)
434{
435 struct net_device *ndev = rx_ring->netdev;
436 struct device *dev = rx_ring->dev;
437 int size, desc_len;
438
439 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
440 rx_ring->rx_buffer_info = vzalloc(size);
441 if (!rx_ring->rx_buffer_info)
442 goto err;
443
444 desc_len = sizeof(union igc_adv_rx_desc);
445
446 /* Round up to nearest 4K */
447 rx_ring->size = rx_ring->count * desc_len;
448 rx_ring->size = ALIGN(rx_ring->size, 4096);
449
450 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
451 &rx_ring->dma, GFP_KERNEL);
452
453 if (!rx_ring->desc)
454 goto err;
455
456 rx_ring->next_to_alloc = 0;
457 rx_ring->next_to_clean = 0;
458 rx_ring->next_to_use = 0;
459
460 return 0;
461
462err:
463 vfree(rx_ring->rx_buffer_info);
464 rx_ring->rx_buffer_info = NULL;
465 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
466 return -ENOMEM;
467}
468
469/**
470 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
471 * (Descriptors) for all queues
472 * @adapter: board private structure
473 *
474 * Return 0 on success, negative on failure
475 */
476static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
477{
478 struct net_device *dev = adapter->netdev;
479 int i, err = 0;
480
481 for (i = 0; i < adapter->num_rx_queues; i++) {
482 err = igc_setup_rx_resources(adapter->rx_ring[i]);
483 if (err) {
484 netdev_err(dev, "Error on Rx queue %u setup\n", i);
485 for (i--; i >= 0; i--)
486 igc_free_rx_resources(adapter->rx_ring[i]);
487 break;
488 }
489 }
490
491 return err;
492}
493
494/**
495 * igc_configure_rx_ring - Configure a receive ring after Reset
496 * @adapter: board private structure
497 * @ring: receive ring to be configured
498 *
499 * Configure the Rx unit of the MAC after a reset.
500 */
501static void igc_configure_rx_ring(struct igc_adapter *adapter,
502 struct igc_ring *ring)
503{
504 struct igc_hw *hw = &adapter->hw;
505 union igc_adv_rx_desc *rx_desc;
506 int reg_idx = ring->reg_idx;
507 u32 srrctl = 0, rxdctl = 0;
508 u64 rdba = ring->dma;
509
510 /* disable the queue */
511 wr32(IGC_RXDCTL(reg_idx), 0);
512
513 /* Set DMA base address registers */
514 wr32(IGC_RDBAL(reg_idx),
515 rdba & 0x00000000ffffffffULL);
516 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
517 wr32(IGC_RDLEN(reg_idx),
518 ring->count * sizeof(union igc_adv_rx_desc));
519
520 /* initialize head and tail */
521 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
522 wr32(IGC_RDH(reg_idx), 0);
523 writel(0, ring->tail);
524
525 /* reset next-to- use/clean to place SW in sync with hardware */
526 ring->next_to_clean = 0;
527 ring->next_to_use = 0;
528
529 /* set descriptor configuration */
530 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
531 if (ring_uses_large_buffer(ring))
532 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
533 else
534 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
535 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
536
537 wr32(IGC_SRRCTL(reg_idx), srrctl);
538
539 rxdctl |= IGC_RX_PTHRESH;
540 rxdctl |= IGC_RX_HTHRESH << 8;
541 rxdctl |= IGC_RX_WTHRESH << 16;
542
543 /* initialize rx_buffer_info */
544 memset(ring->rx_buffer_info, 0,
545 sizeof(struct igc_rx_buffer) * ring->count);
546
547 /* initialize Rx descriptor 0 */
548 rx_desc = IGC_RX_DESC(ring, 0);
549 rx_desc->wb.upper.length = 0;
550
551 /* enable receive descriptor fetching */
552 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
553
554 wr32(IGC_RXDCTL(reg_idx), rxdctl);
555}
556
557/**
558 * igc_configure_rx - Configure receive Unit after Reset
559 * @adapter: board private structure
560 *
561 * Configure the Rx unit of the MAC after a reset.
562 */
563static void igc_configure_rx(struct igc_adapter *adapter)
564{
565 int i;
566
567 /* Setup the HW Rx Head and Tail Descriptor Pointers and
568 * the Base and Length of the Rx Descriptor Ring
569 */
570 for (i = 0; i < adapter->num_rx_queues; i++)
571 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
572}
573
574/**
575 * igc_configure_tx_ring - Configure transmit ring after Reset
576 * @adapter: board private structure
577 * @ring: tx ring to configure
578 *
579 * Configure a transmit ring after a reset.
580 */
581static void igc_configure_tx_ring(struct igc_adapter *adapter,
582 struct igc_ring *ring)
583{
584 struct igc_hw *hw = &adapter->hw;
585 int reg_idx = ring->reg_idx;
586 u64 tdba = ring->dma;
587 u32 txdctl = 0;
588
589 /* disable the queue */
590 wr32(IGC_TXDCTL(reg_idx), 0);
591 wrfl();
592 mdelay(10);
593
594 wr32(IGC_TDLEN(reg_idx),
595 ring->count * sizeof(union igc_adv_tx_desc));
596 wr32(IGC_TDBAL(reg_idx),
597 tdba & 0x00000000ffffffffULL);
598 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
599
600 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
601 wr32(IGC_TDH(reg_idx), 0);
602 writel(0, ring->tail);
603
604 txdctl |= IGC_TX_PTHRESH;
605 txdctl |= IGC_TX_HTHRESH << 8;
606 txdctl |= IGC_TX_WTHRESH << 16;
607
608 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
609 wr32(IGC_TXDCTL(reg_idx), txdctl);
610}
611
612/**
613 * igc_configure_tx - Configure transmit Unit after Reset
614 * @adapter: board private structure
615 *
616 * Configure the Tx unit of the MAC after a reset.
617 */
618static void igc_configure_tx(struct igc_adapter *adapter)
619{
620 int i;
621
622 for (i = 0; i < adapter->num_tx_queues; i++)
623 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
624}
625
626/**
627 * igc_setup_mrqc - configure the multiple receive queue control registers
628 * @adapter: Board private structure
629 */
630static void igc_setup_mrqc(struct igc_adapter *adapter)
631{
632 struct igc_hw *hw = &adapter->hw;
633 u32 j, num_rx_queues;
634 u32 mrqc, rxcsum;
635 u32 rss_key[10];
636
637 netdev_rss_key_fill(rss_key, sizeof(rss_key));
638 for (j = 0; j < 10; j++)
639 wr32(IGC_RSSRK(j), rss_key[j]);
640
641 num_rx_queues = adapter->rss_queues;
642
643 if (adapter->rss_indir_tbl_init != num_rx_queues) {
644 for (j = 0; j < IGC_RETA_SIZE; j++)
645 adapter->rss_indir_tbl[j] =
646 (j * num_rx_queues) / IGC_RETA_SIZE;
647 adapter->rss_indir_tbl_init = num_rx_queues;
648 }
649 igc_write_rss_indir_tbl(adapter);
650
651 /* Disable raw packet checksumming so that RSS hash is placed in
652 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
653 * offloads as they are enabled by default
654 */
655 rxcsum = rd32(IGC_RXCSUM);
656 rxcsum |= IGC_RXCSUM_PCSD;
657
658 /* Enable Receive Checksum Offload for SCTP */
659 rxcsum |= IGC_RXCSUM_CRCOFL;
660
661 /* Don't need to set TUOFL or IPOFL, they default to 1 */
662 wr32(IGC_RXCSUM, rxcsum);
663
664 /* Generate RSS hash based on packet types, TCP/UDP
665 * port numbers and/or IPv4/v6 src and dst addresses
666 */
667 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
668 IGC_MRQC_RSS_FIELD_IPV4_TCP |
669 IGC_MRQC_RSS_FIELD_IPV6 |
670 IGC_MRQC_RSS_FIELD_IPV6_TCP |
671 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
672
673 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
674 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
675 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
676 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
677
678 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
679
680 wr32(IGC_MRQC, mrqc);
681}
682
683/**
684 * igc_setup_rctl - configure the receive control registers
685 * @adapter: Board private structure
686 */
687static void igc_setup_rctl(struct igc_adapter *adapter)
688{
689 struct igc_hw *hw = &adapter->hw;
690 u32 rctl;
691
692 rctl = rd32(IGC_RCTL);
693
694 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
695 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
696
697 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
698 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
699
700 /* enable stripping of CRC. Newer features require
701 * that the HW strips the CRC.
702 */
703 rctl |= IGC_RCTL_SECRC;
704
705 /* disable store bad packets and clear size bits. */
706 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
707
708 /* enable LPE to allow for reception of jumbo frames */
709 rctl |= IGC_RCTL_LPE;
710
711 /* disable queue 0 to prevent tail write w/o re-config */
712 wr32(IGC_RXDCTL(0), 0);
713
714 /* This is useful for sniffing bad packets. */
715 if (adapter->netdev->features & NETIF_F_RXALL) {
716 /* UPE and MPE will be handled by normal PROMISC logic
717 * in set_rx_mode
718 */
719 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
720 IGC_RCTL_BAM | /* RX All Bcast Pkts */
721 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
722
723 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
724 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
725 }
726
727 wr32(IGC_RCTL, rctl);
728}
729
730/**
731 * igc_setup_tctl - configure the transmit control registers
732 * @adapter: Board private structure
733 */
734static void igc_setup_tctl(struct igc_adapter *adapter)
735{
736 struct igc_hw *hw = &adapter->hw;
737 u32 tctl;
738
739 /* disable queue 0 which icould be enabled by default */
740 wr32(IGC_TXDCTL(0), 0);
741
742 /* Program the Transmit Control Register */
743 tctl = rd32(IGC_TCTL);
744 tctl &= ~IGC_TCTL_CT;
745 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
746 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
747
748 /* Enable transmits */
749 tctl |= IGC_TCTL_EN;
750
751 wr32(IGC_TCTL, tctl);
752}
753
754/**
755 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
756 * @adapter: Pointer to adapter where the filter should be set
757 * @index: Filter index
758 * @type: MAC address filter type (source or destination)
759 * @addr: MAC address
760 * @queue: If non-negative, queue assignment feature is enabled and frames
761 * matching the filter are enqueued onto 'queue'. Otherwise, queue
762 * assignment is disabled.
763 */
764static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
765 enum igc_mac_filter_type type,
766 const u8 *addr, int queue)
767{
768 struct net_device *dev = adapter->netdev;
769 struct igc_hw *hw = &adapter->hw;
770 u32 ral, rah;
771
772 if (WARN_ON(index >= hw->mac.rar_entry_count))
773 return;
774
775 ral = le32_to_cpup((__le32 *)(addr));
776 rah = le16_to_cpup((__le16 *)(addr + 4));
777
778 if (type == IGC_MAC_FILTER_TYPE_SRC) {
779 rah &= ~IGC_RAH_ASEL_MASK;
780 rah |= IGC_RAH_ASEL_SRC_ADDR;
781 }
782
783 if (queue >= 0) {
784 rah &= ~IGC_RAH_QSEL_MASK;
785 rah |= (queue << IGC_RAH_QSEL_SHIFT);
786 rah |= IGC_RAH_QSEL_ENABLE;
787 }
788
789 rah |= IGC_RAH_AV;
790
791 wr32(IGC_RAL(index), ral);
792 wr32(IGC_RAH(index), rah);
793
794 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
795}
796
797/**
798 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
799 * @adapter: Pointer to adapter where the filter should be cleared
800 * @index: Filter index
801 */
802static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
803{
804 struct net_device *dev = adapter->netdev;
805 struct igc_hw *hw = &adapter->hw;
806
807 if (WARN_ON(index >= hw->mac.rar_entry_count))
808 return;
809
810 wr32(IGC_RAL(index), 0);
811 wr32(IGC_RAH(index), 0);
812
813 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
814}
815
816/* Set default MAC address for the PF in the first RAR entry */
817static void igc_set_default_mac_filter(struct igc_adapter *adapter)
818{
819 struct net_device *dev = adapter->netdev;
820 u8 *addr = adapter->hw.mac.addr;
821
822 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
823
824 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
825}
826
827/**
828 * igc_set_mac - Change the Ethernet Address of the NIC
829 * @netdev: network interface device structure
830 * @p: pointer to an address structure
831 *
832 * Returns 0 on success, negative on failure
833 */
834static int igc_set_mac(struct net_device *netdev, void *p)
835{
836 struct igc_adapter *adapter = netdev_priv(netdev);
837 struct igc_hw *hw = &adapter->hw;
838 struct sockaddr *addr = p;
839
840 if (!is_valid_ether_addr(addr->sa_data))
841 return -EADDRNOTAVAIL;
842
843 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
844 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
845
846 /* set the correct pool for the new PF MAC address in entry 0 */
847 igc_set_default_mac_filter(adapter);
848
849 return 0;
850}
851
852/**
853 * igc_write_mc_addr_list - write multicast addresses to MTA
854 * @netdev: network interface device structure
855 *
856 * Writes multicast address list to the MTA hash table.
857 * Returns: -ENOMEM on failure
858 * 0 on no addresses written
859 * X on writing X addresses to MTA
860 **/
861static int igc_write_mc_addr_list(struct net_device *netdev)
862{
863 struct igc_adapter *adapter = netdev_priv(netdev);
864 struct igc_hw *hw = &adapter->hw;
865 struct netdev_hw_addr *ha;
866 u8 *mta_list;
867 int i;
868
869 if (netdev_mc_empty(netdev)) {
870 /* nothing to program, so clear mc list */
871 igc_update_mc_addr_list(hw, NULL, 0);
872 return 0;
873 }
874
875 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
876 if (!mta_list)
877 return -ENOMEM;
878
879 /* The shared function expects a packed array of only addresses. */
880 i = 0;
881 netdev_for_each_mc_addr(ha, netdev)
882 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
883
884 igc_update_mc_addr_list(hw, mta_list, i);
885 kfree(mta_list);
886
887 return netdev_mc_count(netdev);
888}
889
890static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
891{
892 ktime_t cycle_time = adapter->cycle_time;
893 ktime_t base_time = adapter->base_time;
894 u32 launchtime;
895
896 /* FIXME: when using ETF together with taprio, we may have a
897 * case where 'delta' is larger than the cycle_time, this may
898 * cause problems if we don't read the current value of
899 * IGC_BASET, as the value writen into the launchtime
900 * descriptor field may be misinterpreted.
901 */
902 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
903
904 return cpu_to_le32(launchtime);
905}
906
907static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
908 struct igc_tx_buffer *first,
909 u32 vlan_macip_lens, u32 type_tucmd,
910 u32 mss_l4len_idx)
911{
912 struct igc_adv_tx_context_desc *context_desc;
913 u16 i = tx_ring->next_to_use;
914
915 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
916
917 i++;
918 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
919
920 /* set bits to identify this as an advanced context descriptor */
921 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
922
923 /* For i225, context index must be unique per ring. */
924 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
925 mss_l4len_idx |= tx_ring->reg_idx << 4;
926
927 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
928 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
929 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
930
931 /* We assume there is always a valid Tx time available. Invalid times
932 * should have been handled by the upper layers.
933 */
934 if (tx_ring->launchtime_enable) {
935 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
936 ktime_t txtime = first->skb->tstamp;
937
938 first->skb->tstamp = ktime_set(0, 0);
939 context_desc->launch_time = igc_tx_launchtime(adapter,
940 txtime);
941 } else {
942 context_desc->launch_time = 0;
943 }
944}
945
946static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
947{
948 unsigned int offset = 0;
949
950 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
951
952 return offset == skb_checksum_start_offset(skb);
953}
954
955static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
956{
957 struct sk_buff *skb = first->skb;
958 u32 vlan_macip_lens = 0;
959 u32 type_tucmd = 0;
960
961 if (skb->ip_summed != CHECKSUM_PARTIAL) {
962csum_failed:
963 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
964 !tx_ring->launchtime_enable)
965 return;
966 goto no_csum;
967 }
968
969 switch (skb->csum_offset) {
970 case offsetof(struct tcphdr, check):
971 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
972 fallthrough;
973 case offsetof(struct udphdr, check):
974 break;
975 case offsetof(struct sctphdr, checksum):
976 /* validate that this is actually an SCTP request */
977 if ((first->protocol == htons(ETH_P_IP) &&
978 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
979 (first->protocol == htons(ETH_P_IPV6) &&
980 igc_ipv6_csum_is_sctp(skb))) {
981 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
982 break;
983 }
984 fallthrough;
985 default:
986 skb_checksum_help(skb);
987 goto csum_failed;
988 }
989
990 /* update TX checksum flag */
991 first->tx_flags |= IGC_TX_FLAGS_CSUM;
992 vlan_macip_lens = skb_checksum_start_offset(skb) -
993 skb_network_offset(skb);
994no_csum:
995 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
996 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
997
998 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
999}
1000
1001static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1002{
1003 struct net_device *netdev = tx_ring->netdev;
1004
1005 netif_stop_subqueue(netdev, tx_ring->queue_index);
1006
1007 /* memory barriier comment */
1008 smp_mb();
1009
1010 /* We need to check again in a case another CPU has just
1011 * made room available.
1012 */
1013 if (igc_desc_unused(tx_ring) < size)
1014 return -EBUSY;
1015
1016 /* A reprieve! */
1017 netif_wake_subqueue(netdev, tx_ring->queue_index);
1018
1019 u64_stats_update_begin(&tx_ring->tx_syncp2);
1020 tx_ring->tx_stats.restart_queue2++;
1021 u64_stats_update_end(&tx_ring->tx_syncp2);
1022
1023 return 0;
1024}
1025
1026static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1027{
1028 if (igc_desc_unused(tx_ring) >= size)
1029 return 0;
1030 return __igc_maybe_stop_tx(tx_ring, size);
1031}
1032
1033#define IGC_SET_FLAG(_input, _flag, _result) \
1034 (((_flag) <= (_result)) ? \
1035 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1036 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1037
1038static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1039{
1040 /* set type for advanced descriptor with frame checksum insertion */
1041 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1042 IGC_ADVTXD_DCMD_DEXT |
1043 IGC_ADVTXD_DCMD_IFCS;
1044
1045 /* set segmentation bits for TSO */
1046 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1047 (IGC_ADVTXD_DCMD_TSE));
1048
1049 /* set timestamp bit if present */
1050 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1051 (IGC_ADVTXD_MAC_TSTAMP));
1052
1053 return cmd_type;
1054}
1055
1056static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1057 union igc_adv_tx_desc *tx_desc,
1058 u32 tx_flags, unsigned int paylen)
1059{
1060 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1061
1062 /* insert L4 checksum */
1063 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1064 ((IGC_TXD_POPTS_TXSM << 8) /
1065 IGC_TX_FLAGS_CSUM);
1066
1067 /* insert IPv4 checksum */
1068 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1069 (((IGC_TXD_POPTS_IXSM << 8)) /
1070 IGC_TX_FLAGS_IPV4);
1071
1072 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1073}
1074
1075static int igc_tx_map(struct igc_ring *tx_ring,
1076 struct igc_tx_buffer *first,
1077 const u8 hdr_len)
1078{
1079 struct sk_buff *skb = first->skb;
1080 struct igc_tx_buffer *tx_buffer;
1081 union igc_adv_tx_desc *tx_desc;
1082 u32 tx_flags = first->tx_flags;
1083 skb_frag_t *frag;
1084 u16 i = tx_ring->next_to_use;
1085 unsigned int data_len, size;
1086 dma_addr_t dma;
1087 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1088
1089 tx_desc = IGC_TX_DESC(tx_ring, i);
1090
1091 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1092
1093 size = skb_headlen(skb);
1094 data_len = skb->data_len;
1095
1096 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1097
1098 tx_buffer = first;
1099
1100 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1101 if (dma_mapping_error(tx_ring->dev, dma))
1102 goto dma_error;
1103
1104 /* record length, and DMA address */
1105 dma_unmap_len_set(tx_buffer, len, size);
1106 dma_unmap_addr_set(tx_buffer, dma, dma);
1107
1108 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1109
1110 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1111 tx_desc->read.cmd_type_len =
1112 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1113
1114 i++;
1115 tx_desc++;
1116 if (i == tx_ring->count) {
1117 tx_desc = IGC_TX_DESC(tx_ring, 0);
1118 i = 0;
1119 }
1120 tx_desc->read.olinfo_status = 0;
1121
1122 dma += IGC_MAX_DATA_PER_TXD;
1123 size -= IGC_MAX_DATA_PER_TXD;
1124
1125 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1126 }
1127
1128 if (likely(!data_len))
1129 break;
1130
1131 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1132
1133 i++;
1134 tx_desc++;
1135 if (i == tx_ring->count) {
1136 tx_desc = IGC_TX_DESC(tx_ring, 0);
1137 i = 0;
1138 }
1139 tx_desc->read.olinfo_status = 0;
1140
1141 size = skb_frag_size(frag);
1142 data_len -= size;
1143
1144 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1145 size, DMA_TO_DEVICE);
1146
1147 tx_buffer = &tx_ring->tx_buffer_info[i];
1148 }
1149
1150 /* write last descriptor with RS and EOP bits */
1151 cmd_type |= size | IGC_TXD_DCMD;
1152 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1153
1154 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1155
1156 /* set the timestamp */
1157 first->time_stamp = jiffies;
1158
1159 skb_tx_timestamp(skb);
1160
1161 /* Force memory writes to complete before letting h/w know there
1162 * are new descriptors to fetch. (Only applicable for weak-ordered
1163 * memory model archs, such as IA-64).
1164 *
1165 * We also need this memory barrier to make certain all of the
1166 * status bits have been updated before next_to_watch is written.
1167 */
1168 wmb();
1169
1170 /* set next_to_watch value indicating a packet is present */
1171 first->next_to_watch = tx_desc;
1172
1173 i++;
1174 if (i == tx_ring->count)
1175 i = 0;
1176
1177 tx_ring->next_to_use = i;
1178
1179 /* Make sure there is space in the ring for the next send. */
1180 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1181
1182 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1183 writel(i, tx_ring->tail);
1184 }
1185
1186 return 0;
1187dma_error:
1188 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1189 tx_buffer = &tx_ring->tx_buffer_info[i];
1190
1191 /* clear dma mappings for failed tx_buffer_info map */
1192 while (tx_buffer != first) {
1193 if (dma_unmap_len(tx_buffer, len))
1194 dma_unmap_page(tx_ring->dev,
1195 dma_unmap_addr(tx_buffer, dma),
1196 dma_unmap_len(tx_buffer, len),
1197 DMA_TO_DEVICE);
1198 dma_unmap_len_set(tx_buffer, len, 0);
1199
1200 if (i-- == 0)
1201 i += tx_ring->count;
1202 tx_buffer = &tx_ring->tx_buffer_info[i];
1203 }
1204
1205 if (dma_unmap_len(tx_buffer, len))
1206 dma_unmap_single(tx_ring->dev,
1207 dma_unmap_addr(tx_buffer, dma),
1208 dma_unmap_len(tx_buffer, len),
1209 DMA_TO_DEVICE);
1210 dma_unmap_len_set(tx_buffer, len, 0);
1211
1212 dev_kfree_skb_any(tx_buffer->skb);
1213 tx_buffer->skb = NULL;
1214
1215 tx_ring->next_to_use = i;
1216
1217 return -1;
1218}
1219
1220static int igc_tso(struct igc_ring *tx_ring,
1221 struct igc_tx_buffer *first,
1222 u8 *hdr_len)
1223{
1224 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1225 struct sk_buff *skb = first->skb;
1226 union {
1227 struct iphdr *v4;
1228 struct ipv6hdr *v6;
1229 unsigned char *hdr;
1230 } ip;
1231 union {
1232 struct tcphdr *tcp;
1233 struct udphdr *udp;
1234 unsigned char *hdr;
1235 } l4;
1236 u32 paylen, l4_offset;
1237 int err;
1238
1239 if (skb->ip_summed != CHECKSUM_PARTIAL)
1240 return 0;
1241
1242 if (!skb_is_gso(skb))
1243 return 0;
1244
1245 err = skb_cow_head(skb, 0);
1246 if (err < 0)
1247 return err;
1248
1249 ip.hdr = skb_network_header(skb);
1250 l4.hdr = skb_checksum_start(skb);
1251
1252 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1253 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1254
1255 /* initialize outer IP header fields */
1256 if (ip.v4->version == 4) {
1257 unsigned char *csum_start = skb_checksum_start(skb);
1258 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1259
1260 /* IP header will have to cancel out any data that
1261 * is not a part of the outer IP header
1262 */
1263 ip.v4->check = csum_fold(csum_partial(trans_start,
1264 csum_start - trans_start,
1265 0));
1266 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1267
1268 ip.v4->tot_len = 0;
1269 first->tx_flags |= IGC_TX_FLAGS_TSO |
1270 IGC_TX_FLAGS_CSUM |
1271 IGC_TX_FLAGS_IPV4;
1272 } else {
1273 ip.v6->payload_len = 0;
1274 first->tx_flags |= IGC_TX_FLAGS_TSO |
1275 IGC_TX_FLAGS_CSUM;
1276 }
1277
1278 /* determine offset of inner transport header */
1279 l4_offset = l4.hdr - skb->data;
1280
1281 /* remove payload length from inner checksum */
1282 paylen = skb->len - l4_offset;
1283 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1284 /* compute length of segmentation header */
1285 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1286 csum_replace_by_diff(&l4.tcp->check,
1287 (__force __wsum)htonl(paylen));
1288 } else {
1289 /* compute length of segmentation header */
1290 *hdr_len = sizeof(*l4.udp) + l4_offset;
1291 csum_replace_by_diff(&l4.udp->check,
1292 (__force __wsum)htonl(paylen));
1293 }
1294
1295 /* update gso size and bytecount with header size */
1296 first->gso_segs = skb_shinfo(skb)->gso_segs;
1297 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1298
1299 /* MSS L4LEN IDX */
1300 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1301 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1302
1303 /* VLAN MACLEN IPLEN */
1304 vlan_macip_lens = l4.hdr - ip.hdr;
1305 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1306 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1307
1308 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1309 type_tucmd, mss_l4len_idx);
1310
1311 return 1;
1312}
1313
1314static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1315 struct igc_ring *tx_ring)
1316{
1317 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1318 __be16 protocol = vlan_get_protocol(skb);
1319 struct igc_tx_buffer *first;
1320 u32 tx_flags = 0;
1321 unsigned short f;
1322 u8 hdr_len = 0;
1323 int tso = 0;
1324
1325 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1326 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1327 * + 2 desc gap to keep tail from touching head,
1328 * + 1 desc for context descriptor,
1329 * otherwise try next time
1330 */
1331 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1332 count += TXD_USE_COUNT(skb_frag_size(
1333 &skb_shinfo(skb)->frags[f]));
1334
1335 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1336 /* this is a hard error */
1337 return NETDEV_TX_BUSY;
1338 }
1339
1340 /* record the location of the first descriptor for this packet */
1341 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1342 first->skb = skb;
1343 first->bytecount = skb->len;
1344 first->gso_segs = 1;
1345
1346 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1347 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1348
1349 /* FIXME: add support for retrieving timestamps from
1350 * the other timer registers before skipping the
1351 * timestamping request.
1352 */
1353 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1354 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1355 &adapter->state)) {
1356 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1357 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1358
1359 adapter->ptp_tx_skb = skb_get(skb);
1360 adapter->ptp_tx_start = jiffies;
1361 } else {
1362 adapter->tx_hwtstamp_skipped++;
1363 }
1364 }
1365
1366 /* record initial flags and protocol */
1367 first->tx_flags = tx_flags;
1368 first->protocol = protocol;
1369
1370 tso = igc_tso(tx_ring, first, &hdr_len);
1371 if (tso < 0)
1372 goto out_drop;
1373 else if (!tso)
1374 igc_tx_csum(tx_ring, first);
1375
1376 igc_tx_map(tx_ring, first, hdr_len);
1377
1378 return NETDEV_TX_OK;
1379
1380out_drop:
1381 dev_kfree_skb_any(first->skb);
1382 first->skb = NULL;
1383
1384 return NETDEV_TX_OK;
1385}
1386
1387static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1388 struct sk_buff *skb)
1389{
1390 unsigned int r_idx = skb->queue_mapping;
1391
1392 if (r_idx >= adapter->num_tx_queues)
1393 r_idx = r_idx % adapter->num_tx_queues;
1394
1395 return adapter->tx_ring[r_idx];
1396}
1397
1398static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1399 struct net_device *netdev)
1400{
1401 struct igc_adapter *adapter = netdev_priv(netdev);
1402
1403 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1404 * in order to meet this minimum size requirement.
1405 */
1406 if (skb->len < 17) {
1407 if (skb_padto(skb, 17))
1408 return NETDEV_TX_OK;
1409 skb->len = 17;
1410 }
1411
1412 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1413}
1414
1415static void igc_rx_checksum(struct igc_ring *ring,
1416 union igc_adv_rx_desc *rx_desc,
1417 struct sk_buff *skb)
1418{
1419 skb_checksum_none_assert(skb);
1420
1421 /* Ignore Checksum bit is set */
1422 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1423 return;
1424
1425 /* Rx checksum disabled via ethtool */
1426 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1427 return;
1428
1429 /* TCP/UDP checksum error bit is set */
1430 if (igc_test_staterr(rx_desc,
1431 IGC_RXDEXT_STATERR_TCPE |
1432 IGC_RXDEXT_STATERR_IPE)) {
1433 /* work around errata with sctp packets where the TCPE aka
1434 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1435 * packets (aka let the stack check the crc32c)
1436 */
1437 if (!(skb->len == 60 &&
1438 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1439 u64_stats_update_begin(&ring->rx_syncp);
1440 ring->rx_stats.csum_err++;
1441 u64_stats_update_end(&ring->rx_syncp);
1442 }
1443 /* let the stack verify checksum errors */
1444 return;
1445 }
1446 /* It must be a TCP or UDP packet with a valid checksum */
1447 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1448 IGC_RXD_STAT_UDPCS))
1449 skb->ip_summed = CHECKSUM_UNNECESSARY;
1450
1451 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1452 le32_to_cpu(rx_desc->wb.upper.status_error));
1453}
1454
1455static inline void igc_rx_hash(struct igc_ring *ring,
1456 union igc_adv_rx_desc *rx_desc,
1457 struct sk_buff *skb)
1458{
1459 if (ring->netdev->features & NETIF_F_RXHASH)
1460 skb_set_hash(skb,
1461 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1462 PKT_HASH_TYPE_L3);
1463}
1464
1465/**
1466 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1467 * @rx_ring: rx descriptor ring packet is being transacted on
1468 * @rx_desc: pointer to the EOP Rx descriptor
1469 * @skb: pointer to current skb being populated
1470 *
1471 * This function checks the ring, descriptor, and packet information in order
1472 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1473 * skb.
1474 */
1475static void igc_process_skb_fields(struct igc_ring *rx_ring,
1476 union igc_adv_rx_desc *rx_desc,
1477 struct sk_buff *skb)
1478{
1479 igc_rx_hash(rx_ring, rx_desc, skb);
1480
1481 igc_rx_checksum(rx_ring, rx_desc, skb);
1482
1483 skb_record_rx_queue(skb, rx_ring->queue_index);
1484
1485 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1486}
1487
1488static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1489 const unsigned int size)
1490{
1491 struct igc_rx_buffer *rx_buffer;
1492
1493 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1494 prefetchw(rx_buffer->page);
1495
1496 /* we are reusing so sync this buffer for CPU use */
1497 dma_sync_single_range_for_cpu(rx_ring->dev,
1498 rx_buffer->dma,
1499 rx_buffer->page_offset,
1500 size,
1501 DMA_FROM_DEVICE);
1502
1503 rx_buffer->pagecnt_bias--;
1504
1505 return rx_buffer;
1506}
1507
1508/**
1509 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1510 * @rx_ring: rx descriptor ring to transact packets on
1511 * @rx_buffer: buffer containing page to add
1512 * @skb: sk_buff to place the data into
1513 * @size: size of buffer to be added
1514 *
1515 * This function will add the data contained in rx_buffer->page to the skb.
1516 */
1517static void igc_add_rx_frag(struct igc_ring *rx_ring,
1518 struct igc_rx_buffer *rx_buffer,
1519 struct sk_buff *skb,
1520 unsigned int size)
1521{
1522#if (PAGE_SIZE < 8192)
1523 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1524
1525 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1526 rx_buffer->page_offset, size, truesize);
1527 rx_buffer->page_offset ^= truesize;
1528#else
1529 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1530 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1531 SKB_DATA_ALIGN(size);
1532 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1533 rx_buffer->page_offset, size, truesize);
1534 rx_buffer->page_offset += truesize;
1535#endif
1536}
1537
1538static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1539 struct igc_rx_buffer *rx_buffer,
1540 union igc_adv_rx_desc *rx_desc,
1541 unsigned int size)
1542{
1543 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1544#if (PAGE_SIZE < 8192)
1545 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1546#else
1547 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1548 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1549#endif
1550 struct sk_buff *skb;
1551
1552 /* prefetch first cache line of first page */
1553 prefetch(va);
1554#if L1_CACHE_BYTES < 128
1555 prefetch(va + L1_CACHE_BYTES);
1556#endif
1557
1558 /* build an skb around the page buffer */
1559 skb = build_skb(va - IGC_SKB_PAD, truesize);
1560 if (unlikely(!skb))
1561 return NULL;
1562
1563 /* update pointers within the skb to store the data */
1564 skb_reserve(skb, IGC_SKB_PAD);
1565 __skb_put(skb, size);
1566
1567 /* update buffer offset */
1568#if (PAGE_SIZE < 8192)
1569 rx_buffer->page_offset ^= truesize;
1570#else
1571 rx_buffer->page_offset += truesize;
1572#endif
1573
1574 return skb;
1575}
1576
1577static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1578 struct igc_rx_buffer *rx_buffer,
1579 union igc_adv_rx_desc *rx_desc,
1580 unsigned int size)
1581{
1582 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1583#if (PAGE_SIZE < 8192)
1584 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1585#else
1586 unsigned int truesize = SKB_DATA_ALIGN(size);
1587#endif
1588 unsigned int headlen;
1589 struct sk_buff *skb;
1590
1591 /* prefetch first cache line of first page */
1592 prefetch(va);
1593#if L1_CACHE_BYTES < 128
1594 prefetch(va + L1_CACHE_BYTES);
1595#endif
1596
1597 /* allocate a skb to store the frags */
1598 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1599 if (unlikely(!skb))
1600 return NULL;
1601
1602 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1603 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1604 va += IGC_TS_HDR_LEN;
1605 size -= IGC_TS_HDR_LEN;
1606 }
1607
1608 /* Determine available headroom for copy */
1609 headlen = size;
1610 if (headlen > IGC_RX_HDR_LEN)
1611 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1612
1613 /* align pull length to size of long to optimize memcpy performance */
1614 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1615
1616 /* update all of the pointers */
1617 size -= headlen;
1618 if (size) {
1619 skb_add_rx_frag(skb, 0, rx_buffer->page,
1620 (va + headlen) - page_address(rx_buffer->page),
1621 size, truesize);
1622#if (PAGE_SIZE < 8192)
1623 rx_buffer->page_offset ^= truesize;
1624#else
1625 rx_buffer->page_offset += truesize;
1626#endif
1627 } else {
1628 rx_buffer->pagecnt_bias++;
1629 }
1630
1631 return skb;
1632}
1633
1634/**
1635 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1636 * @rx_ring: rx descriptor ring to store buffers on
1637 * @old_buff: donor buffer to have page reused
1638 *
1639 * Synchronizes page for reuse by the adapter
1640 */
1641static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1642 struct igc_rx_buffer *old_buff)
1643{
1644 u16 nta = rx_ring->next_to_alloc;
1645 struct igc_rx_buffer *new_buff;
1646
1647 new_buff = &rx_ring->rx_buffer_info[nta];
1648
1649 /* update, and store next to alloc */
1650 nta++;
1651 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1652
1653 /* Transfer page from old buffer to new buffer.
1654 * Move each member individually to avoid possible store
1655 * forwarding stalls.
1656 */
1657 new_buff->dma = old_buff->dma;
1658 new_buff->page = old_buff->page;
1659 new_buff->page_offset = old_buff->page_offset;
1660 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1661}
1662
1663static inline bool igc_page_is_reserved(struct page *page)
1664{
1665 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1666}
1667
1668static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1669{
1670 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1671 struct page *page = rx_buffer->page;
1672
1673 /* avoid re-using remote pages */
1674 if (unlikely(igc_page_is_reserved(page)))
1675 return false;
1676
1677#if (PAGE_SIZE < 8192)
1678 /* if we are only owner of page we can reuse it */
1679 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1680 return false;
1681#else
1682#define IGC_LAST_OFFSET \
1683 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1684
1685 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1686 return false;
1687#endif
1688
1689 /* If we have drained the page fragment pool we need to update
1690 * the pagecnt_bias and page count so that we fully restock the
1691 * number of references the driver holds.
1692 */
1693 if (unlikely(!pagecnt_bias)) {
1694 page_ref_add(page, USHRT_MAX);
1695 rx_buffer->pagecnt_bias = USHRT_MAX;
1696 }
1697
1698 return true;
1699}
1700
1701/**
1702 * igc_is_non_eop - process handling of non-EOP buffers
1703 * @rx_ring: Rx ring being processed
1704 * @rx_desc: Rx descriptor for current buffer
1705 *
1706 * This function updates next to clean. If the buffer is an EOP buffer
1707 * this function exits returning false, otherwise it will place the
1708 * sk_buff in the next buffer to be chained and return true indicating
1709 * that this is in fact a non-EOP buffer.
1710 */
1711static bool igc_is_non_eop(struct igc_ring *rx_ring,
1712 union igc_adv_rx_desc *rx_desc)
1713{
1714 u32 ntc = rx_ring->next_to_clean + 1;
1715
1716 /* fetch, update, and store next to clean */
1717 ntc = (ntc < rx_ring->count) ? ntc : 0;
1718 rx_ring->next_to_clean = ntc;
1719
1720 prefetch(IGC_RX_DESC(rx_ring, ntc));
1721
1722 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1723 return false;
1724
1725 return true;
1726}
1727
1728/**
1729 * igc_cleanup_headers - Correct corrupted or empty headers
1730 * @rx_ring: rx descriptor ring packet is being transacted on
1731 * @rx_desc: pointer to the EOP Rx descriptor
1732 * @skb: pointer to current skb being fixed
1733 *
1734 * Address the case where we are pulling data in on pages only
1735 * and as such no data is present in the skb header.
1736 *
1737 * In addition if skb is not at least 60 bytes we need to pad it so that
1738 * it is large enough to qualify as a valid Ethernet frame.
1739 *
1740 * Returns true if an error was encountered and skb was freed.
1741 */
1742static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1743 union igc_adv_rx_desc *rx_desc,
1744 struct sk_buff *skb)
1745{
1746 if (unlikely((igc_test_staterr(rx_desc,
1747 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1748 struct net_device *netdev = rx_ring->netdev;
1749
1750 if (!(netdev->features & NETIF_F_RXALL)) {
1751 dev_kfree_skb_any(skb);
1752 return true;
1753 }
1754 }
1755
1756 /* if eth_skb_pad returns an error the skb was freed */
1757 if (eth_skb_pad(skb))
1758 return true;
1759
1760 return false;
1761}
1762
1763static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1764 struct igc_rx_buffer *rx_buffer)
1765{
1766 if (igc_can_reuse_rx_page(rx_buffer)) {
1767 /* hand second half of page back to the ring */
1768 igc_reuse_rx_page(rx_ring, rx_buffer);
1769 } else {
1770 /* We are not reusing the buffer so unmap it and free
1771 * any references we are holding to it
1772 */
1773 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1774 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1775 IGC_RX_DMA_ATTR);
1776 __page_frag_cache_drain(rx_buffer->page,
1777 rx_buffer->pagecnt_bias);
1778 }
1779
1780 /* clear contents of rx_buffer */
1781 rx_buffer->page = NULL;
1782}
1783
1784static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1785{
1786 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1787}
1788
1789static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1790 struct igc_rx_buffer *bi)
1791{
1792 struct page *page = bi->page;
1793 dma_addr_t dma;
1794
1795 /* since we are recycling buffers we should seldom need to alloc */
1796 if (likely(page))
1797 return true;
1798
1799 /* alloc new page for storage */
1800 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1801 if (unlikely(!page)) {
1802 rx_ring->rx_stats.alloc_failed++;
1803 return false;
1804 }
1805
1806 /* map page for use */
1807 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1808 igc_rx_pg_size(rx_ring),
1809 DMA_FROM_DEVICE,
1810 IGC_RX_DMA_ATTR);
1811
1812 /* if mapping failed free memory back to system since
1813 * there isn't much point in holding memory we can't use
1814 */
1815 if (dma_mapping_error(rx_ring->dev, dma)) {
1816 __free_page(page);
1817
1818 rx_ring->rx_stats.alloc_failed++;
1819 return false;
1820 }
1821
1822 bi->dma = dma;
1823 bi->page = page;
1824 bi->page_offset = igc_rx_offset(rx_ring);
1825 bi->pagecnt_bias = 1;
1826
1827 return true;
1828}
1829
1830/**
1831 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1832 * @rx_ring: rx descriptor ring
1833 * @cleaned_count: number of buffers to clean
1834 */
1835static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1836{
1837 union igc_adv_rx_desc *rx_desc;
1838 u16 i = rx_ring->next_to_use;
1839 struct igc_rx_buffer *bi;
1840 u16 bufsz;
1841
1842 /* nothing to do */
1843 if (!cleaned_count)
1844 return;
1845
1846 rx_desc = IGC_RX_DESC(rx_ring, i);
1847 bi = &rx_ring->rx_buffer_info[i];
1848 i -= rx_ring->count;
1849
1850 bufsz = igc_rx_bufsz(rx_ring);
1851
1852 do {
1853 if (!igc_alloc_mapped_page(rx_ring, bi))
1854 break;
1855
1856 /* sync the buffer for use by the device */
1857 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1858 bi->page_offset, bufsz,
1859 DMA_FROM_DEVICE);
1860
1861 /* Refresh the desc even if buffer_addrs didn't change
1862 * because each write-back erases this info.
1863 */
1864 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1865
1866 rx_desc++;
1867 bi++;
1868 i++;
1869 if (unlikely(!i)) {
1870 rx_desc = IGC_RX_DESC(rx_ring, 0);
1871 bi = rx_ring->rx_buffer_info;
1872 i -= rx_ring->count;
1873 }
1874
1875 /* clear the length for the next_to_use descriptor */
1876 rx_desc->wb.upper.length = 0;
1877
1878 cleaned_count--;
1879 } while (cleaned_count);
1880
1881 i += rx_ring->count;
1882
1883 if (rx_ring->next_to_use != i) {
1884 /* record the next descriptor to use */
1885 rx_ring->next_to_use = i;
1886
1887 /* update next to alloc since we have filled the ring */
1888 rx_ring->next_to_alloc = i;
1889
1890 /* Force memory writes to complete before letting h/w
1891 * know there are new descriptors to fetch. (Only
1892 * applicable for weak-ordered memory model archs,
1893 * such as IA-64).
1894 */
1895 wmb();
1896 writel(i, rx_ring->tail);
1897 }
1898}
1899
1900static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1901{
1902 unsigned int total_bytes = 0, total_packets = 0;
1903 struct igc_ring *rx_ring = q_vector->rx.ring;
1904 struct sk_buff *skb = rx_ring->skb;
1905 u16 cleaned_count = igc_desc_unused(rx_ring);
1906
1907 while (likely(total_packets < budget)) {
1908 union igc_adv_rx_desc *rx_desc;
1909 struct igc_rx_buffer *rx_buffer;
1910 unsigned int size;
1911
1912 /* return some buffers to hardware, one at a time is too slow */
1913 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1914 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1915 cleaned_count = 0;
1916 }
1917
1918 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1919 size = le16_to_cpu(rx_desc->wb.upper.length);
1920 if (!size)
1921 break;
1922
1923 /* This memory barrier is needed to keep us from reading
1924 * any other fields out of the rx_desc until we know the
1925 * descriptor has been written back
1926 */
1927 dma_rmb();
1928
1929 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1930
1931 /* retrieve a buffer from the ring */
1932 if (skb)
1933 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1934 else if (ring_uses_build_skb(rx_ring))
1935 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1936 else
1937 skb = igc_construct_skb(rx_ring, rx_buffer,
1938 rx_desc, size);
1939
1940 /* exit if we failed to retrieve a buffer */
1941 if (!skb) {
1942 rx_ring->rx_stats.alloc_failed++;
1943 rx_buffer->pagecnt_bias++;
1944 break;
1945 }
1946
1947 igc_put_rx_buffer(rx_ring, rx_buffer);
1948 cleaned_count++;
1949
1950 /* fetch next buffer in frame if non-eop */
1951 if (igc_is_non_eop(rx_ring, rx_desc))
1952 continue;
1953
1954 /* verify the packet layout is correct */
1955 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1956 skb = NULL;
1957 continue;
1958 }
1959
1960 /* probably a little skewed due to removing CRC */
1961 total_bytes += skb->len;
1962
1963 /* populate checksum, VLAN, and protocol */
1964 igc_process_skb_fields(rx_ring, rx_desc, skb);
1965
1966 napi_gro_receive(&q_vector->napi, skb);
1967
1968 /* reset skb pointer */
1969 skb = NULL;
1970
1971 /* update budget accounting */
1972 total_packets++;
1973 }
1974
1975 /* place incomplete frames back on ring for completion */
1976 rx_ring->skb = skb;
1977
1978 u64_stats_update_begin(&rx_ring->rx_syncp);
1979 rx_ring->rx_stats.packets += total_packets;
1980 rx_ring->rx_stats.bytes += total_bytes;
1981 u64_stats_update_end(&rx_ring->rx_syncp);
1982 q_vector->rx.total_packets += total_packets;
1983 q_vector->rx.total_bytes += total_bytes;
1984
1985 if (cleaned_count)
1986 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1987
1988 return total_packets;
1989}
1990
1991/**
1992 * igc_clean_tx_irq - Reclaim resources after transmit completes
1993 * @q_vector: pointer to q_vector containing needed info
1994 * @napi_budget: Used to determine if we are in netpoll
1995 *
1996 * returns true if ring is completely cleaned
1997 */
1998static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1999{
2000 struct igc_adapter *adapter = q_vector->adapter;
2001 unsigned int total_bytes = 0, total_packets = 0;
2002 unsigned int budget = q_vector->tx.work_limit;
2003 struct igc_ring *tx_ring = q_vector->tx.ring;
2004 unsigned int i = tx_ring->next_to_clean;
2005 struct igc_tx_buffer *tx_buffer;
2006 union igc_adv_tx_desc *tx_desc;
2007
2008 if (test_bit(__IGC_DOWN, &adapter->state))
2009 return true;
2010
2011 tx_buffer = &tx_ring->tx_buffer_info[i];
2012 tx_desc = IGC_TX_DESC(tx_ring, i);
2013 i -= tx_ring->count;
2014
2015 do {
2016 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2017
2018 /* if next_to_watch is not set then there is no work pending */
2019 if (!eop_desc)
2020 break;
2021
2022 /* prevent any other reads prior to eop_desc */
2023 smp_rmb();
2024
2025 /* if DD is not set pending work has not been completed */
2026 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2027 break;
2028
2029 /* clear next_to_watch to prevent false hangs */
2030 tx_buffer->next_to_watch = NULL;
2031
2032 /* update the statistics for this packet */
2033 total_bytes += tx_buffer->bytecount;
2034 total_packets += tx_buffer->gso_segs;
2035
2036 /* free the skb */
2037 napi_consume_skb(tx_buffer->skb, napi_budget);
2038
2039 /* unmap skb header data */
2040 dma_unmap_single(tx_ring->dev,
2041 dma_unmap_addr(tx_buffer, dma),
2042 dma_unmap_len(tx_buffer, len),
2043 DMA_TO_DEVICE);
2044
2045 /* clear tx_buffer data */
2046 dma_unmap_len_set(tx_buffer, len, 0);
2047
2048 /* clear last DMA location and unmap remaining buffers */
2049 while (tx_desc != eop_desc) {
2050 tx_buffer++;
2051 tx_desc++;
2052 i++;
2053 if (unlikely(!i)) {
2054 i -= tx_ring->count;
2055 tx_buffer = tx_ring->tx_buffer_info;
2056 tx_desc = IGC_TX_DESC(tx_ring, 0);
2057 }
2058
2059 /* unmap any remaining paged data */
2060 if (dma_unmap_len(tx_buffer, len)) {
2061 dma_unmap_page(tx_ring->dev,
2062 dma_unmap_addr(tx_buffer, dma),
2063 dma_unmap_len(tx_buffer, len),
2064 DMA_TO_DEVICE);
2065 dma_unmap_len_set(tx_buffer, len, 0);
2066 }
2067 }
2068
2069 /* move us one more past the eop_desc for start of next pkt */
2070 tx_buffer++;
2071 tx_desc++;
2072 i++;
2073 if (unlikely(!i)) {
2074 i -= tx_ring->count;
2075 tx_buffer = tx_ring->tx_buffer_info;
2076 tx_desc = IGC_TX_DESC(tx_ring, 0);
2077 }
2078
2079 /* issue prefetch for next Tx descriptor */
2080 prefetch(tx_desc);
2081
2082 /* update budget accounting */
2083 budget--;
2084 } while (likely(budget));
2085
2086 netdev_tx_completed_queue(txring_txq(tx_ring),
2087 total_packets, total_bytes);
2088
2089 i += tx_ring->count;
2090 tx_ring->next_to_clean = i;
2091 u64_stats_update_begin(&tx_ring->tx_syncp);
2092 tx_ring->tx_stats.bytes += total_bytes;
2093 tx_ring->tx_stats.packets += total_packets;
2094 u64_stats_update_end(&tx_ring->tx_syncp);
2095 q_vector->tx.total_bytes += total_bytes;
2096 q_vector->tx.total_packets += total_packets;
2097
2098 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2099 struct igc_hw *hw = &adapter->hw;
2100
2101 /* Detect a transmit hang in hardware, this serializes the
2102 * check with the clearing of time_stamp and movement of i
2103 */
2104 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2105 if (tx_buffer->next_to_watch &&
2106 time_after(jiffies, tx_buffer->time_stamp +
2107 (adapter->tx_timeout_factor * HZ)) &&
2108 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2109 /* detected Tx unit hang */
2110 netdev_err(tx_ring->netdev,
2111 "Detected Tx Unit Hang\n"
2112 " Tx Queue <%d>\n"
2113 " TDH <%x>\n"
2114 " TDT <%x>\n"
2115 " next_to_use <%x>\n"
2116 " next_to_clean <%x>\n"
2117 "buffer_info[next_to_clean]\n"
2118 " time_stamp <%lx>\n"
2119 " next_to_watch <%p>\n"
2120 " jiffies <%lx>\n"
2121 " desc.status <%x>\n",
2122 tx_ring->queue_index,
2123 rd32(IGC_TDH(tx_ring->reg_idx)),
2124 readl(tx_ring->tail),
2125 tx_ring->next_to_use,
2126 tx_ring->next_to_clean,
2127 tx_buffer->time_stamp,
2128 tx_buffer->next_to_watch,
2129 jiffies,
2130 tx_buffer->next_to_watch->wb.status);
2131 netif_stop_subqueue(tx_ring->netdev,
2132 tx_ring->queue_index);
2133
2134 /* we are about to reset, no point in enabling stuff */
2135 return true;
2136 }
2137 }
2138
2139#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2140 if (unlikely(total_packets &&
2141 netif_carrier_ok(tx_ring->netdev) &&
2142 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2143 /* Make sure that anybody stopping the queue after this
2144 * sees the new next_to_clean.
2145 */
2146 smp_mb();
2147 if (__netif_subqueue_stopped(tx_ring->netdev,
2148 tx_ring->queue_index) &&
2149 !(test_bit(__IGC_DOWN, &adapter->state))) {
2150 netif_wake_subqueue(tx_ring->netdev,
2151 tx_ring->queue_index);
2152
2153 u64_stats_update_begin(&tx_ring->tx_syncp);
2154 tx_ring->tx_stats.restart_queue++;
2155 u64_stats_update_end(&tx_ring->tx_syncp);
2156 }
2157 }
2158
2159 return !!budget;
2160}
2161
2162static int igc_find_mac_filter(struct igc_adapter *adapter,
2163 enum igc_mac_filter_type type, const u8 *addr)
2164{
2165 struct igc_hw *hw = &adapter->hw;
2166 int max_entries = hw->mac.rar_entry_count;
2167 u32 ral, rah;
2168 int i;
2169
2170 for (i = 0; i < max_entries; i++) {
2171 ral = rd32(IGC_RAL(i));
2172 rah = rd32(IGC_RAH(i));
2173
2174 if (!(rah & IGC_RAH_AV))
2175 continue;
2176 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2177 continue;
2178 if ((rah & IGC_RAH_RAH_MASK) !=
2179 le16_to_cpup((__le16 *)(addr + 4)))
2180 continue;
2181 if (ral != le32_to_cpup((__le32 *)(addr)))
2182 continue;
2183
2184 return i;
2185 }
2186
2187 return -1;
2188}
2189
2190static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2191{
2192 struct igc_hw *hw = &adapter->hw;
2193 int max_entries = hw->mac.rar_entry_count;
2194 u32 rah;
2195 int i;
2196
2197 for (i = 0; i < max_entries; i++) {
2198 rah = rd32(IGC_RAH(i));
2199
2200 if (!(rah & IGC_RAH_AV))
2201 return i;
2202 }
2203
2204 return -1;
2205}
2206
2207/**
2208 * igc_add_mac_filter() - Add MAC address filter
2209 * @adapter: Pointer to adapter where the filter should be added
2210 * @type: MAC address filter type (source or destination)
2211 * @addr: MAC address
2212 * @queue: If non-negative, queue assignment feature is enabled and frames
2213 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2214 * assignment is disabled.
2215 *
2216 * Return: 0 in case of success, negative errno code otherwise.
2217 */
2218static int igc_add_mac_filter(struct igc_adapter *adapter,
2219 enum igc_mac_filter_type type, const u8 *addr,
2220 int queue)
2221{
2222 struct net_device *dev = adapter->netdev;
2223 int index;
2224
2225 index = igc_find_mac_filter(adapter, type, addr);
2226 if (index >= 0)
2227 goto update_filter;
2228
2229 index = igc_get_avail_mac_filter_slot(adapter);
2230 if (index < 0)
2231 return -ENOSPC;
2232
2233 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2234 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2235 addr, queue);
2236
2237update_filter:
2238 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2239 return 0;
2240}
2241
2242/**
2243 * igc_del_mac_filter() - Delete MAC address filter
2244 * @adapter: Pointer to adapter where the filter should be deleted from
2245 * @type: MAC address filter type (source or destination)
2246 * @addr: MAC address
2247 */
2248static void igc_del_mac_filter(struct igc_adapter *adapter,
2249 enum igc_mac_filter_type type, const u8 *addr)
2250{
2251 struct net_device *dev = adapter->netdev;
2252 int index;
2253
2254 index = igc_find_mac_filter(adapter, type, addr);
2255 if (index < 0)
2256 return;
2257
2258 if (index == 0) {
2259 /* If this is the default filter, we don't actually delete it.
2260 * We just reset to its default value i.e. disable queue
2261 * assignment.
2262 */
2263 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2264
2265 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2266 } else {
2267 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2268 index,
2269 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2270 addr);
2271
2272 igc_clear_mac_filter_hw(adapter, index);
2273 }
2274}
2275
2276/**
2277 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2278 * @adapter: Pointer to adapter where the filter should be added
2279 * @prio: VLAN priority value
2280 * @queue: Queue number which matching frames are assigned to
2281 *
2282 * Return: 0 in case of success, negative errno code otherwise.
2283 */
2284static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2285 int queue)
2286{
2287 struct net_device *dev = adapter->netdev;
2288 struct igc_hw *hw = &adapter->hw;
2289 u32 vlanpqf;
2290
2291 vlanpqf = rd32(IGC_VLANPQF);
2292
2293 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2294 netdev_dbg(dev, "VLAN priority filter already in use\n");
2295 return -EEXIST;
2296 }
2297
2298 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2299 vlanpqf |= IGC_VLANPQF_VALID(prio);
2300
2301 wr32(IGC_VLANPQF, vlanpqf);
2302
2303 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2304 prio, queue);
2305 return 0;
2306}
2307
2308/**
2309 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2310 * @adapter: Pointer to adapter where the filter should be deleted from
2311 * @prio: VLAN priority value
2312 */
2313static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2314{
2315 struct igc_hw *hw = &adapter->hw;
2316 u32 vlanpqf;
2317
2318 vlanpqf = rd32(IGC_VLANPQF);
2319
2320 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2321 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2322
2323 wr32(IGC_VLANPQF, vlanpqf);
2324
2325 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2326 prio);
2327}
2328
2329static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2330{
2331 struct igc_hw *hw = &adapter->hw;
2332 int i;
2333
2334 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2335 u32 etqf = rd32(IGC_ETQF(i));
2336
2337 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2338 return i;
2339 }
2340
2341 return -1;
2342}
2343
2344/**
2345 * igc_add_etype_filter() - Add ethertype filter
2346 * @adapter: Pointer to adapter where the filter should be added
2347 * @etype: Ethertype value
2348 * @queue: If non-negative, queue assignment feature is enabled and frames
2349 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2350 * assignment is disabled.
2351 *
2352 * Return: 0 in case of success, negative errno code otherwise.
2353 */
2354static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2355 int queue)
2356{
2357 struct igc_hw *hw = &adapter->hw;
2358 int index;
2359 u32 etqf;
2360
2361 index = igc_get_avail_etype_filter_slot(adapter);
2362 if (index < 0)
2363 return -ENOSPC;
2364
2365 etqf = rd32(IGC_ETQF(index));
2366
2367 etqf &= ~IGC_ETQF_ETYPE_MASK;
2368 etqf |= etype;
2369
2370 if (queue >= 0) {
2371 etqf &= ~IGC_ETQF_QUEUE_MASK;
2372 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2373 etqf |= IGC_ETQF_QUEUE_ENABLE;
2374 }
2375
2376 etqf |= IGC_ETQF_FILTER_ENABLE;
2377
2378 wr32(IGC_ETQF(index), etqf);
2379
2380 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2381 etype, queue);
2382 return 0;
2383}
2384
2385static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2386{
2387 struct igc_hw *hw = &adapter->hw;
2388 int i;
2389
2390 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2391 u32 etqf = rd32(IGC_ETQF(i));
2392
2393 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2394 return i;
2395 }
2396
2397 return -1;
2398}
2399
2400/**
2401 * igc_del_etype_filter() - Delete ethertype filter
2402 * @adapter: Pointer to adapter where the filter should be deleted from
2403 * @etype: Ethertype value
2404 */
2405static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2406{
2407 struct igc_hw *hw = &adapter->hw;
2408 int index;
2409
2410 index = igc_find_etype_filter(adapter, etype);
2411 if (index < 0)
2412 return;
2413
2414 wr32(IGC_ETQF(index), 0);
2415
2416 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2417 etype);
2418}
2419
2420static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2421 const struct igc_nfc_rule *rule)
2422{
2423 int err;
2424
2425 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2426 err = igc_add_etype_filter(adapter, rule->filter.etype,
2427 rule->action);
2428 if (err)
2429 return err;
2430 }
2431
2432 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2433 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2434 rule->filter.src_addr, rule->action);
2435 if (err)
2436 return err;
2437 }
2438
2439 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2440 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2441 rule->filter.dst_addr, rule->action);
2442 if (err)
2443 return err;
2444 }
2445
2446 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2447 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2448 VLAN_PRIO_SHIFT;
2449
2450 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2451 if (err)
2452 return err;
2453 }
2454
2455 return 0;
2456}
2457
2458static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2459 const struct igc_nfc_rule *rule)
2460{
2461 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2462 igc_del_etype_filter(adapter, rule->filter.etype);
2463
2464 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2465 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2466 VLAN_PRIO_SHIFT;
2467
2468 igc_del_vlan_prio_filter(adapter, prio);
2469 }
2470
2471 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2472 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2473 rule->filter.src_addr);
2474
2475 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2476 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2477 rule->filter.dst_addr);
2478}
2479
2480/**
2481 * igc_get_nfc_rule() - Get NFC rule
2482 * @adapter: Pointer to adapter
2483 * @location: Rule location
2484 *
2485 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2486 *
2487 * Return: Pointer to NFC rule at @location. If not found, NULL.
2488 */
2489struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2490 u32 location)
2491{
2492 struct igc_nfc_rule *rule;
2493
2494 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2495 if (rule->location == location)
2496 return rule;
2497 if (rule->location > location)
2498 break;
2499 }
2500
2501 return NULL;
2502}
2503
2504/**
2505 * igc_del_nfc_rule() - Delete NFC rule
2506 * @adapter: Pointer to adapter
2507 * @rule: Pointer to rule to be deleted
2508 *
2509 * Disable NFC rule in hardware and delete it from adapter.
2510 *
2511 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2512 */
2513void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2514{
2515 igc_disable_nfc_rule(adapter, rule);
2516
2517 list_del(&rule->list);
2518 adapter->nfc_rule_count--;
2519
2520 kfree(rule);
2521}
2522
2523static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2524{
2525 struct igc_nfc_rule *rule, *tmp;
2526
2527 mutex_lock(&adapter->nfc_rule_lock);
2528
2529 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2530 igc_del_nfc_rule(adapter, rule);
2531
2532 mutex_unlock(&adapter->nfc_rule_lock);
2533}
2534
2535/**
2536 * igc_add_nfc_rule() - Add NFC rule
2537 * @adapter: Pointer to adapter
2538 * @rule: Pointer to rule to be added
2539 *
2540 * Enable NFC rule in hardware and add it to adapter.
2541 *
2542 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2543 *
2544 * Return: 0 on success, negative errno on failure.
2545 */
2546int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2547{
2548 struct igc_nfc_rule *pred, *cur;
2549 int err;
2550
2551 err = igc_enable_nfc_rule(adapter, rule);
2552 if (err)
2553 return err;
2554
2555 pred = NULL;
2556 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2557 if (cur->location >= rule->location)
2558 break;
2559 pred = cur;
2560 }
2561
2562 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2563 adapter->nfc_rule_count++;
2564 return 0;
2565}
2566
2567static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2568{
2569 struct igc_nfc_rule *rule;
2570
2571 mutex_lock(&adapter->nfc_rule_lock);
2572
2573 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2574 igc_enable_nfc_rule(adapter, rule);
2575
2576 mutex_unlock(&adapter->nfc_rule_lock);
2577}
2578
2579static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2580{
2581 struct igc_adapter *adapter = netdev_priv(netdev);
2582
2583 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2584}
2585
2586static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2587{
2588 struct igc_adapter *adapter = netdev_priv(netdev);
2589
2590 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2591 return 0;
2592}
2593
2594/**
2595 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2596 * @netdev: network interface device structure
2597 *
2598 * The set_rx_mode entry point is called whenever the unicast or multicast
2599 * address lists or the network interface flags are updated. This routine is
2600 * responsible for configuring the hardware for proper unicast, multicast,
2601 * promiscuous mode, and all-multi behavior.
2602 */
2603static void igc_set_rx_mode(struct net_device *netdev)
2604{
2605 struct igc_adapter *adapter = netdev_priv(netdev);
2606 struct igc_hw *hw = &adapter->hw;
2607 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2608 int count;
2609
2610 /* Check for Promiscuous and All Multicast modes */
2611 if (netdev->flags & IFF_PROMISC) {
2612 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2613 } else {
2614 if (netdev->flags & IFF_ALLMULTI) {
2615 rctl |= IGC_RCTL_MPE;
2616 } else {
2617 /* Write addresses to the MTA, if the attempt fails
2618 * then we should just turn on promiscuous mode so
2619 * that we can at least receive multicast traffic
2620 */
2621 count = igc_write_mc_addr_list(netdev);
2622 if (count < 0)
2623 rctl |= IGC_RCTL_MPE;
2624 }
2625 }
2626
2627 /* Write addresses to available RAR registers, if there is not
2628 * sufficient space to store all the addresses then enable
2629 * unicast promiscuous mode
2630 */
2631 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2632 rctl |= IGC_RCTL_UPE;
2633
2634 /* update state of unicast and multicast */
2635 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2636 wr32(IGC_RCTL, rctl);
2637
2638#if (PAGE_SIZE < 8192)
2639 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2640 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2641#endif
2642 wr32(IGC_RLPML, rlpml);
2643}
2644
2645/**
2646 * igc_configure - configure the hardware for RX and TX
2647 * @adapter: private board structure
2648 */
2649static void igc_configure(struct igc_adapter *adapter)
2650{
2651 struct net_device *netdev = adapter->netdev;
2652 int i = 0;
2653
2654 igc_get_hw_control(adapter);
2655 igc_set_rx_mode(netdev);
2656
2657 igc_setup_tctl(adapter);
2658 igc_setup_mrqc(adapter);
2659 igc_setup_rctl(adapter);
2660
2661 igc_set_default_mac_filter(adapter);
2662 igc_restore_nfc_rules(adapter);
2663
2664 igc_configure_tx(adapter);
2665 igc_configure_rx(adapter);
2666
2667 igc_rx_fifo_flush_base(&adapter->hw);
2668
2669 /* call igc_desc_unused which always leaves
2670 * at least 1 descriptor unused to make sure
2671 * next_to_use != next_to_clean
2672 */
2673 for (i = 0; i < adapter->num_rx_queues; i++) {
2674 struct igc_ring *ring = adapter->rx_ring[i];
2675
2676 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2677 }
2678}
2679
2680/**
2681 * igc_write_ivar - configure ivar for given MSI-X vector
2682 * @hw: pointer to the HW structure
2683 * @msix_vector: vector number we are allocating to a given ring
2684 * @index: row index of IVAR register to write within IVAR table
2685 * @offset: column offset of in IVAR, should be multiple of 8
2686 *
2687 * The IVAR table consists of 2 columns,
2688 * each containing an cause allocation for an Rx and Tx ring, and a
2689 * variable number of rows depending on the number of queues supported.
2690 */
2691static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2692 int index, int offset)
2693{
2694 u32 ivar = array_rd32(IGC_IVAR0, index);
2695
2696 /* clear any bits that are currently set */
2697 ivar &= ~((u32)0xFF << offset);
2698
2699 /* write vector and valid bit */
2700 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2701
2702 array_wr32(IGC_IVAR0, index, ivar);
2703}
2704
2705static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2706{
2707 struct igc_adapter *adapter = q_vector->adapter;
2708 struct igc_hw *hw = &adapter->hw;
2709 int rx_queue = IGC_N0_QUEUE;
2710 int tx_queue = IGC_N0_QUEUE;
2711
2712 if (q_vector->rx.ring)
2713 rx_queue = q_vector->rx.ring->reg_idx;
2714 if (q_vector->tx.ring)
2715 tx_queue = q_vector->tx.ring->reg_idx;
2716
2717 switch (hw->mac.type) {
2718 case igc_i225:
2719 if (rx_queue > IGC_N0_QUEUE)
2720 igc_write_ivar(hw, msix_vector,
2721 rx_queue >> 1,
2722 (rx_queue & 0x1) << 4);
2723 if (tx_queue > IGC_N0_QUEUE)
2724 igc_write_ivar(hw, msix_vector,
2725 tx_queue >> 1,
2726 ((tx_queue & 0x1) << 4) + 8);
2727 q_vector->eims_value = BIT(msix_vector);
2728 break;
2729 default:
2730 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2731 break;
2732 }
2733
2734 /* add q_vector eims value to global eims_enable_mask */
2735 adapter->eims_enable_mask |= q_vector->eims_value;
2736
2737 /* configure q_vector to set itr on first interrupt */
2738 q_vector->set_itr = 1;
2739}
2740
2741/**
2742 * igc_configure_msix - Configure MSI-X hardware
2743 * @adapter: Pointer to adapter structure
2744 *
2745 * igc_configure_msix sets up the hardware to properly
2746 * generate MSI-X interrupts.
2747 */
2748static void igc_configure_msix(struct igc_adapter *adapter)
2749{
2750 struct igc_hw *hw = &adapter->hw;
2751 int i, vector = 0;
2752 u32 tmp;
2753
2754 adapter->eims_enable_mask = 0;
2755
2756 /* set vector for other causes, i.e. link changes */
2757 switch (hw->mac.type) {
2758 case igc_i225:
2759 /* Turn on MSI-X capability first, or our settings
2760 * won't stick. And it will take days to debug.
2761 */
2762 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2763 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2764 IGC_GPIE_NSICR);
2765
2766 /* enable msix_other interrupt */
2767 adapter->eims_other = BIT(vector);
2768 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2769
2770 wr32(IGC_IVAR_MISC, tmp);
2771 break;
2772 default:
2773 /* do nothing, since nothing else supports MSI-X */
2774 break;
2775 } /* switch (hw->mac.type) */
2776
2777 adapter->eims_enable_mask |= adapter->eims_other;
2778
2779 for (i = 0; i < adapter->num_q_vectors; i++)
2780 igc_assign_vector(adapter->q_vector[i], vector++);
2781
2782 wrfl();
2783}
2784
2785/**
2786 * igc_irq_enable - Enable default interrupt generation settings
2787 * @adapter: board private structure
2788 */
2789static void igc_irq_enable(struct igc_adapter *adapter)
2790{
2791 struct igc_hw *hw = &adapter->hw;
2792
2793 if (adapter->msix_entries) {
2794 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2795 u32 regval = rd32(IGC_EIAC);
2796
2797 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2798 regval = rd32(IGC_EIAM);
2799 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2800 wr32(IGC_EIMS, adapter->eims_enable_mask);
2801 wr32(IGC_IMS, ims);
2802 } else {
2803 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2804 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2805 }
2806}
2807
2808/**
2809 * igc_irq_disable - Mask off interrupt generation on the NIC
2810 * @adapter: board private structure
2811 */
2812static void igc_irq_disable(struct igc_adapter *adapter)
2813{
2814 struct igc_hw *hw = &adapter->hw;
2815
2816 if (adapter->msix_entries) {
2817 u32 regval = rd32(IGC_EIAM);
2818
2819 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2820 wr32(IGC_EIMC, adapter->eims_enable_mask);
2821 regval = rd32(IGC_EIAC);
2822 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2823 }
2824
2825 wr32(IGC_IAM, 0);
2826 wr32(IGC_IMC, ~0);
2827 wrfl();
2828
2829 if (adapter->msix_entries) {
2830 int vector = 0, i;
2831
2832 synchronize_irq(adapter->msix_entries[vector++].vector);
2833
2834 for (i = 0; i < adapter->num_q_vectors; i++)
2835 synchronize_irq(adapter->msix_entries[vector++].vector);
2836 } else {
2837 synchronize_irq(adapter->pdev->irq);
2838 }
2839}
2840
2841void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2842 const u32 max_rss_queues)
2843{
2844 /* Determine if we need to pair queues. */
2845 /* If rss_queues > half of max_rss_queues, pair the queues in
2846 * order to conserve interrupts due to limited supply.
2847 */
2848 if (adapter->rss_queues > (max_rss_queues / 2))
2849 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2850 else
2851 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2852}
2853
2854unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2855{
2856 return IGC_MAX_RX_QUEUES;
2857}
2858
2859static void igc_init_queue_configuration(struct igc_adapter *adapter)
2860{
2861 u32 max_rss_queues;
2862
2863 max_rss_queues = igc_get_max_rss_queues(adapter);
2864 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2865
2866 igc_set_flag_queue_pairs(adapter, max_rss_queues);
2867}
2868
2869/**
2870 * igc_reset_q_vector - Reset config for interrupt vector
2871 * @adapter: board private structure to initialize
2872 * @v_idx: Index of vector to be reset
2873 *
2874 * If NAPI is enabled it will delete any references to the
2875 * NAPI struct. This is preparation for igc_free_q_vector.
2876 */
2877static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2878{
2879 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2880
2881 /* if we're coming from igc_set_interrupt_capability, the vectors are
2882 * not yet allocated
2883 */
2884 if (!q_vector)
2885 return;
2886
2887 if (q_vector->tx.ring)
2888 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2889
2890 if (q_vector->rx.ring)
2891 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2892
2893 netif_napi_del(&q_vector->napi);
2894}
2895
2896/**
2897 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2898 * @adapter: board private structure to initialize
2899 * @v_idx: Index of vector to be freed
2900 *
2901 * This function frees the memory allocated to the q_vector.
2902 */
2903static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2904{
2905 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2906
2907 adapter->q_vector[v_idx] = NULL;
2908
2909 /* igc_get_stats64() might access the rings on this vector,
2910 * we must wait a grace period before freeing it.
2911 */
2912 if (q_vector)
2913 kfree_rcu(q_vector, rcu);
2914}
2915
2916/**
2917 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2918 * @adapter: board private structure to initialize
2919 *
2920 * This function frees the memory allocated to the q_vectors. In addition if
2921 * NAPI is enabled it will delete any references to the NAPI struct prior
2922 * to freeing the q_vector.
2923 */
2924static void igc_free_q_vectors(struct igc_adapter *adapter)
2925{
2926 int v_idx = adapter->num_q_vectors;
2927
2928 adapter->num_tx_queues = 0;
2929 adapter->num_rx_queues = 0;
2930 adapter->num_q_vectors = 0;
2931
2932 while (v_idx--) {
2933 igc_reset_q_vector(adapter, v_idx);
2934 igc_free_q_vector(adapter, v_idx);
2935 }
2936}
2937
2938/**
2939 * igc_update_itr - update the dynamic ITR value based on statistics
2940 * @q_vector: pointer to q_vector
2941 * @ring_container: ring info to update the itr for
2942 *
2943 * Stores a new ITR value based on packets and byte
2944 * counts during the last interrupt. The advantage of per interrupt
2945 * computation is faster updates and more accurate ITR for the current
2946 * traffic pattern. Constants in this function were computed
2947 * based on theoretical maximum wire speed and thresholds were set based
2948 * on testing data as well as attempting to minimize response time
2949 * while increasing bulk throughput.
2950 * NOTE: These calculations are only valid when operating in a single-
2951 * queue environment.
2952 */
2953static void igc_update_itr(struct igc_q_vector *q_vector,
2954 struct igc_ring_container *ring_container)
2955{
2956 unsigned int packets = ring_container->total_packets;
2957 unsigned int bytes = ring_container->total_bytes;
2958 u8 itrval = ring_container->itr;
2959
2960 /* no packets, exit with status unchanged */
2961 if (packets == 0)
2962 return;
2963
2964 switch (itrval) {
2965 case lowest_latency:
2966 /* handle TSO and jumbo frames */
2967 if (bytes / packets > 8000)
2968 itrval = bulk_latency;
2969 else if ((packets < 5) && (bytes > 512))
2970 itrval = low_latency;
2971 break;
2972 case low_latency: /* 50 usec aka 20000 ints/s */
2973 if (bytes > 10000) {
2974 /* this if handles the TSO accounting */
2975 if (bytes / packets > 8000)
2976 itrval = bulk_latency;
2977 else if ((packets < 10) || ((bytes / packets) > 1200))
2978 itrval = bulk_latency;
2979 else if ((packets > 35))
2980 itrval = lowest_latency;
2981 } else if (bytes / packets > 2000) {
2982 itrval = bulk_latency;
2983 } else if (packets <= 2 && bytes < 512) {
2984 itrval = lowest_latency;
2985 }
2986 break;
2987 case bulk_latency: /* 250 usec aka 4000 ints/s */
2988 if (bytes > 25000) {
2989 if (packets > 35)
2990 itrval = low_latency;
2991 } else if (bytes < 1500) {
2992 itrval = low_latency;
2993 }
2994 break;
2995 }
2996
2997 /* clear work counters since we have the values we need */
2998 ring_container->total_bytes = 0;
2999 ring_container->total_packets = 0;
3000
3001 /* write updated itr to ring container */
3002 ring_container->itr = itrval;
3003}
3004
3005static void igc_set_itr(struct igc_q_vector *q_vector)
3006{
3007 struct igc_adapter *adapter = q_vector->adapter;
3008 u32 new_itr = q_vector->itr_val;
3009 u8 current_itr = 0;
3010
3011 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3012 switch (adapter->link_speed) {
3013 case SPEED_10:
3014 case SPEED_100:
3015 current_itr = 0;
3016 new_itr = IGC_4K_ITR;
3017 goto set_itr_now;
3018 default:
3019 break;
3020 }
3021
3022 igc_update_itr(q_vector, &q_vector->tx);
3023 igc_update_itr(q_vector, &q_vector->rx);
3024
3025 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3026
3027 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3028 if (current_itr == lowest_latency &&
3029 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3030 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3031 current_itr = low_latency;
3032
3033 switch (current_itr) {
3034 /* counts and packets in update_itr are dependent on these numbers */
3035 case lowest_latency:
3036 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3037 break;
3038 case low_latency:
3039 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3040 break;
3041 case bulk_latency:
3042 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3043 break;
3044 default:
3045 break;
3046 }
3047
3048set_itr_now:
3049 if (new_itr != q_vector->itr_val) {
3050 /* this attempts to bias the interrupt rate towards Bulk
3051 * by adding intermediate steps when interrupt rate is
3052 * increasing
3053 */
3054 new_itr = new_itr > q_vector->itr_val ?
3055 max((new_itr * q_vector->itr_val) /
3056 (new_itr + (q_vector->itr_val >> 2)),
3057 new_itr) : new_itr;
3058 /* Don't write the value here; it resets the adapter's
3059 * internal timer, and causes us to delay far longer than
3060 * we should between interrupts. Instead, we write the ITR
3061 * value at the beginning of the next interrupt so the timing
3062 * ends up being correct.
3063 */
3064 q_vector->itr_val = new_itr;
3065 q_vector->set_itr = 1;
3066 }
3067}
3068
3069static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3070{
3071 int v_idx = adapter->num_q_vectors;
3072
3073 if (adapter->msix_entries) {
3074 pci_disable_msix(adapter->pdev);
3075 kfree(adapter->msix_entries);
3076 adapter->msix_entries = NULL;
3077 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3078 pci_disable_msi(adapter->pdev);
3079 }
3080
3081 while (v_idx--)
3082 igc_reset_q_vector(adapter, v_idx);
3083}
3084
3085/**
3086 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3087 * @adapter: Pointer to adapter structure
3088 * @msix: boolean value for MSI-X capability
3089 *
3090 * Attempt to configure interrupts using the best available
3091 * capabilities of the hardware and kernel.
3092 */
3093static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3094 bool msix)
3095{
3096 int numvecs, i;
3097 int err;
3098
3099 if (!msix)
3100 goto msi_only;
3101 adapter->flags |= IGC_FLAG_HAS_MSIX;
3102
3103 /* Number of supported queues. */
3104 adapter->num_rx_queues = adapter->rss_queues;
3105
3106 adapter->num_tx_queues = adapter->rss_queues;
3107
3108 /* start with one vector for every Rx queue */
3109 numvecs = adapter->num_rx_queues;
3110
3111 /* if Tx handler is separate add 1 for every Tx queue */
3112 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3113 numvecs += adapter->num_tx_queues;
3114
3115 /* store the number of vectors reserved for queues */
3116 adapter->num_q_vectors = numvecs;
3117
3118 /* add 1 vector for link status interrupts */
3119 numvecs++;
3120
3121 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3122 GFP_KERNEL);
3123
3124 if (!adapter->msix_entries)
3125 return;
3126
3127 /* populate entry values */
3128 for (i = 0; i < numvecs; i++)
3129 adapter->msix_entries[i].entry = i;
3130
3131 err = pci_enable_msix_range(adapter->pdev,
3132 adapter->msix_entries,
3133 numvecs,
3134 numvecs);
3135 if (err > 0)
3136 return;
3137
3138 kfree(adapter->msix_entries);
3139 adapter->msix_entries = NULL;
3140
3141 igc_reset_interrupt_capability(adapter);
3142
3143msi_only:
3144 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3145
3146 adapter->rss_queues = 1;
3147 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3148 adapter->num_rx_queues = 1;
3149 adapter->num_tx_queues = 1;
3150 adapter->num_q_vectors = 1;
3151 if (!pci_enable_msi(adapter->pdev))
3152 adapter->flags |= IGC_FLAG_HAS_MSI;
3153}
3154
3155/**
3156 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3157 * @q_vector: pointer to q_vector
3158 *
3159 * Stores a new ITR value based on strictly on packet size. This
3160 * algorithm is less sophisticated than that used in igc_update_itr,
3161 * due to the difficulty of synchronizing statistics across multiple
3162 * receive rings. The divisors and thresholds used by this function
3163 * were determined based on theoretical maximum wire speed and testing
3164 * data, in order to minimize response time while increasing bulk
3165 * throughput.
3166 * NOTE: This function is called only when operating in a multiqueue
3167 * receive environment.
3168 */
3169static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3170{
3171 struct igc_adapter *adapter = q_vector->adapter;
3172 int new_val = q_vector->itr_val;
3173 int avg_wire_size = 0;
3174 unsigned int packets;
3175
3176 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3177 * ints/sec - ITR timer value of 120 ticks.
3178 */
3179 switch (adapter->link_speed) {
3180 case SPEED_10:
3181 case SPEED_100:
3182 new_val = IGC_4K_ITR;
3183 goto set_itr_val;
3184 default:
3185 break;
3186 }
3187
3188 packets = q_vector->rx.total_packets;
3189 if (packets)
3190 avg_wire_size = q_vector->rx.total_bytes / packets;
3191
3192 packets = q_vector->tx.total_packets;
3193 if (packets)
3194 avg_wire_size = max_t(u32, avg_wire_size,
3195 q_vector->tx.total_bytes / packets);
3196
3197 /* if avg_wire_size isn't set no work was done */
3198 if (!avg_wire_size)
3199 goto clear_counts;
3200
3201 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3202 avg_wire_size += 24;
3203
3204 /* Don't starve jumbo frames */
3205 avg_wire_size = min(avg_wire_size, 3000);
3206
3207 /* Give a little boost to mid-size frames */
3208 if (avg_wire_size > 300 && avg_wire_size < 1200)
3209 new_val = avg_wire_size / 3;
3210 else
3211 new_val = avg_wire_size / 2;
3212
3213 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3214 if (new_val < IGC_20K_ITR &&
3215 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3216 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3217 new_val = IGC_20K_ITR;
3218
3219set_itr_val:
3220 if (new_val != q_vector->itr_val) {
3221 q_vector->itr_val = new_val;
3222 q_vector->set_itr = 1;
3223 }
3224clear_counts:
3225 q_vector->rx.total_bytes = 0;
3226 q_vector->rx.total_packets = 0;
3227 q_vector->tx.total_bytes = 0;
3228 q_vector->tx.total_packets = 0;
3229}
3230
3231static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3232{
3233 struct igc_adapter *adapter = q_vector->adapter;
3234 struct igc_hw *hw = &adapter->hw;
3235
3236 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3237 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3238 if (adapter->num_q_vectors == 1)
3239 igc_set_itr(q_vector);
3240 else
3241 igc_update_ring_itr(q_vector);
3242 }
3243
3244 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3245 if (adapter->msix_entries)
3246 wr32(IGC_EIMS, q_vector->eims_value);
3247 else
3248 igc_irq_enable(adapter);
3249 }
3250}
3251
3252static void igc_add_ring(struct igc_ring *ring,
3253 struct igc_ring_container *head)
3254{
3255 head->ring = ring;
3256 head->count++;
3257}
3258
3259/**
3260 * igc_cache_ring_register - Descriptor ring to register mapping
3261 * @adapter: board private structure to initialize
3262 *
3263 * Once we know the feature-set enabled for the device, we'll cache
3264 * the register offset the descriptor ring is assigned to.
3265 */
3266static void igc_cache_ring_register(struct igc_adapter *adapter)
3267{
3268 int i = 0, j = 0;
3269
3270 switch (adapter->hw.mac.type) {
3271 case igc_i225:
3272 default:
3273 for (; i < adapter->num_rx_queues; i++)
3274 adapter->rx_ring[i]->reg_idx = i;
3275 for (; j < adapter->num_tx_queues; j++)
3276 adapter->tx_ring[j]->reg_idx = j;
3277 break;
3278 }
3279}
3280
3281/**
3282 * igc_poll - NAPI Rx polling callback
3283 * @napi: napi polling structure
3284 * @budget: count of how many packets we should handle
3285 */
3286static int igc_poll(struct napi_struct *napi, int budget)
3287{
3288 struct igc_q_vector *q_vector = container_of(napi,
3289 struct igc_q_vector,
3290 napi);
3291 bool clean_complete = true;
3292 int work_done = 0;
3293
3294 if (q_vector->tx.ring)
3295 clean_complete = igc_clean_tx_irq(q_vector, budget);
3296
3297 if (q_vector->rx.ring) {
3298 int cleaned = igc_clean_rx_irq(q_vector, budget);
3299
3300 work_done += cleaned;
3301 if (cleaned >= budget)
3302 clean_complete = false;
3303 }
3304
3305 /* If all work not completed, return budget and keep polling */
3306 if (!clean_complete)
3307 return budget;
3308
3309 /* Exit the polling mode, but don't re-enable interrupts if stack might
3310 * poll us due to busy-polling
3311 */
3312 if (likely(napi_complete_done(napi, work_done)))
3313 igc_ring_irq_enable(q_vector);
3314
3315 return min(work_done, budget - 1);
3316}
3317
3318/**
3319 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3320 * @adapter: board private structure to initialize
3321 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3322 * @v_idx: index of vector in adapter struct
3323 * @txr_count: total number of Tx rings to allocate
3324 * @txr_idx: index of first Tx ring to allocate
3325 * @rxr_count: total number of Rx rings to allocate
3326 * @rxr_idx: index of first Rx ring to allocate
3327 *
3328 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3329 */
3330static int igc_alloc_q_vector(struct igc_adapter *adapter,
3331 unsigned int v_count, unsigned int v_idx,
3332 unsigned int txr_count, unsigned int txr_idx,
3333 unsigned int rxr_count, unsigned int rxr_idx)
3334{
3335 struct igc_q_vector *q_vector;
3336 struct igc_ring *ring;
3337 int ring_count;
3338
3339 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3340 if (txr_count > 1 || rxr_count > 1)
3341 return -ENOMEM;
3342
3343 ring_count = txr_count + rxr_count;
3344
3345 /* allocate q_vector and rings */
3346 q_vector = adapter->q_vector[v_idx];
3347 if (!q_vector)
3348 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3349 GFP_KERNEL);
3350 else
3351 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3352 if (!q_vector)
3353 return -ENOMEM;
3354
3355 /* initialize NAPI */
3356 netif_napi_add(adapter->netdev, &q_vector->napi,
3357 igc_poll, 64);
3358
3359 /* tie q_vector and adapter together */
3360 adapter->q_vector[v_idx] = q_vector;
3361 q_vector->adapter = adapter;
3362
3363 /* initialize work limits */
3364 q_vector->tx.work_limit = adapter->tx_work_limit;
3365
3366 /* initialize ITR configuration */
3367 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3368 q_vector->itr_val = IGC_START_ITR;
3369
3370 /* initialize pointer to rings */
3371 ring = q_vector->ring;
3372
3373 /* initialize ITR */
3374 if (rxr_count) {
3375 /* rx or rx/tx vector */
3376 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3377 q_vector->itr_val = adapter->rx_itr_setting;
3378 } else {
3379 /* tx only vector */
3380 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3381 q_vector->itr_val = adapter->tx_itr_setting;
3382 }
3383
3384 if (txr_count) {
3385 /* assign generic ring traits */
3386 ring->dev = &adapter->pdev->dev;
3387 ring->netdev = adapter->netdev;
3388
3389 /* configure backlink on ring */
3390 ring->q_vector = q_vector;
3391
3392 /* update q_vector Tx values */
3393 igc_add_ring(ring, &q_vector->tx);
3394
3395 /* apply Tx specific ring traits */
3396 ring->count = adapter->tx_ring_count;
3397 ring->queue_index = txr_idx;
3398
3399 /* assign ring to adapter */
3400 adapter->tx_ring[txr_idx] = ring;
3401
3402 /* push pointer to next ring */
3403 ring++;
3404 }
3405
3406 if (rxr_count) {
3407 /* assign generic ring traits */
3408 ring->dev = &adapter->pdev->dev;
3409 ring->netdev = adapter->netdev;
3410
3411 /* configure backlink on ring */
3412 ring->q_vector = q_vector;
3413
3414 /* update q_vector Rx values */
3415 igc_add_ring(ring, &q_vector->rx);
3416
3417 /* apply Rx specific ring traits */
3418 ring->count = adapter->rx_ring_count;
3419 ring->queue_index = rxr_idx;
3420
3421 /* assign ring to adapter */
3422 adapter->rx_ring[rxr_idx] = ring;
3423 }
3424
3425 return 0;
3426}
3427
3428/**
3429 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3430 * @adapter: board private structure to initialize
3431 *
3432 * We allocate one q_vector per queue interrupt. If allocation fails we
3433 * return -ENOMEM.
3434 */
3435static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3436{
3437 int rxr_remaining = adapter->num_rx_queues;
3438 int txr_remaining = adapter->num_tx_queues;
3439 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3440 int q_vectors = adapter->num_q_vectors;
3441 int err;
3442
3443 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3444 for (; rxr_remaining; v_idx++) {
3445 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3446 0, 0, 1, rxr_idx);
3447
3448 if (err)
3449 goto err_out;
3450
3451 /* update counts and index */
3452 rxr_remaining--;
3453 rxr_idx++;
3454 }
3455 }
3456
3457 for (; v_idx < q_vectors; v_idx++) {
3458 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3459 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3460
3461 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3462 tqpv, txr_idx, rqpv, rxr_idx);
3463
3464 if (err)
3465 goto err_out;
3466
3467 /* update counts and index */
3468 rxr_remaining -= rqpv;
3469 txr_remaining -= tqpv;
3470 rxr_idx++;
3471 txr_idx++;
3472 }
3473
3474 return 0;
3475
3476err_out:
3477 adapter->num_tx_queues = 0;
3478 adapter->num_rx_queues = 0;
3479 adapter->num_q_vectors = 0;
3480
3481 while (v_idx--)
3482 igc_free_q_vector(adapter, v_idx);
3483
3484 return -ENOMEM;
3485}
3486
3487/**
3488 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3489 * @adapter: Pointer to adapter structure
3490 * @msix: boolean for MSI-X capability
3491 *
3492 * This function initializes the interrupts and allocates all of the queues.
3493 */
3494static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3495{
3496 struct net_device *dev = adapter->netdev;
3497 int err = 0;
3498
3499 igc_set_interrupt_capability(adapter, msix);
3500
3501 err = igc_alloc_q_vectors(adapter);
3502 if (err) {
3503 netdev_err(dev, "Unable to allocate memory for vectors\n");
3504 goto err_alloc_q_vectors;
3505 }
3506
3507 igc_cache_ring_register(adapter);
3508
3509 return 0;
3510
3511err_alloc_q_vectors:
3512 igc_reset_interrupt_capability(adapter);
3513 return err;
3514}
3515
3516/**
3517 * igc_sw_init - Initialize general software structures (struct igc_adapter)
3518 * @adapter: board private structure to initialize
3519 *
3520 * igc_sw_init initializes the Adapter private data structure.
3521 * Fields are initialized based on PCI device information and
3522 * OS network device settings (MTU size).
3523 */
3524static int igc_sw_init(struct igc_adapter *adapter)
3525{
3526 struct net_device *netdev = adapter->netdev;
3527 struct pci_dev *pdev = adapter->pdev;
3528 struct igc_hw *hw = &adapter->hw;
3529
3530 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3531
3532 /* set default ring sizes */
3533 adapter->tx_ring_count = IGC_DEFAULT_TXD;
3534 adapter->rx_ring_count = IGC_DEFAULT_RXD;
3535
3536 /* set default ITR values */
3537 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3538 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3539
3540 /* set default work limits */
3541 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3542
3543 /* adjust max frame to be at least the size of a standard frame */
3544 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3545 VLAN_HLEN;
3546 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3547
3548 mutex_init(&adapter->nfc_rule_lock);
3549 INIT_LIST_HEAD(&adapter->nfc_rule_list);
3550 adapter->nfc_rule_count = 0;
3551
3552 spin_lock_init(&adapter->stats64_lock);
3553 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3554 adapter->flags |= IGC_FLAG_HAS_MSIX;
3555
3556 igc_init_queue_configuration(adapter);
3557
3558 /* This call may decrease the number of queues */
3559 if (igc_init_interrupt_scheme(adapter, true)) {
3560 netdev_err(netdev, "Unable to allocate memory for queues\n");
3561 return -ENOMEM;
3562 }
3563
3564 /* Explicitly disable IRQ since the NIC can be in any state. */
3565 igc_irq_disable(adapter);
3566
3567 set_bit(__IGC_DOWN, &adapter->state);
3568
3569 return 0;
3570}
3571
3572/**
3573 * igc_up - Open the interface and prepare it to handle traffic
3574 * @adapter: board private structure
3575 */
3576void igc_up(struct igc_adapter *adapter)
3577{
3578 struct igc_hw *hw = &adapter->hw;
3579 int i = 0;
3580
3581 /* hardware has been reset, we need to reload some things */
3582 igc_configure(adapter);
3583
3584 clear_bit(__IGC_DOWN, &adapter->state);
3585
3586 for (i = 0; i < adapter->num_q_vectors; i++)
3587 napi_enable(&adapter->q_vector[i]->napi);
3588
3589 if (adapter->msix_entries)
3590 igc_configure_msix(adapter);
3591 else
3592 igc_assign_vector(adapter->q_vector[0], 0);
3593
3594 /* Clear any pending interrupts. */
3595 rd32(IGC_ICR);
3596 igc_irq_enable(adapter);
3597
3598 netif_tx_start_all_queues(adapter->netdev);
3599
3600 /* start the watchdog. */
3601 hw->mac.get_link_status = 1;
3602 schedule_work(&adapter->watchdog_task);
3603}
3604
3605/**
3606 * igc_update_stats - Update the board statistics counters
3607 * @adapter: board private structure
3608 */
3609void igc_update_stats(struct igc_adapter *adapter)
3610{
3611 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3612 struct pci_dev *pdev = adapter->pdev;
3613 struct igc_hw *hw = &adapter->hw;
3614 u64 _bytes, _packets;
3615 u64 bytes, packets;
3616 unsigned int start;
3617 u32 mpc;
3618 int i;
3619
3620 /* Prevent stats update while adapter is being reset, or if the pci
3621 * connection is down.
3622 */
3623 if (adapter->link_speed == 0)
3624 return;
3625 if (pci_channel_offline(pdev))
3626 return;
3627
3628 packets = 0;
3629 bytes = 0;
3630
3631 rcu_read_lock();
3632 for (i = 0; i < adapter->num_rx_queues; i++) {
3633 struct igc_ring *ring = adapter->rx_ring[i];
3634 u32 rqdpc = rd32(IGC_RQDPC(i));
3635
3636 if (hw->mac.type >= igc_i225)
3637 wr32(IGC_RQDPC(i), 0);
3638
3639 if (rqdpc) {
3640 ring->rx_stats.drops += rqdpc;
3641 net_stats->rx_fifo_errors += rqdpc;
3642 }
3643
3644 do {
3645 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3646 _bytes = ring->rx_stats.bytes;
3647 _packets = ring->rx_stats.packets;
3648 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3649 bytes += _bytes;
3650 packets += _packets;
3651 }
3652
3653 net_stats->rx_bytes = bytes;
3654 net_stats->rx_packets = packets;
3655
3656 packets = 0;
3657 bytes = 0;
3658 for (i = 0; i < adapter->num_tx_queues; i++) {
3659 struct igc_ring *ring = adapter->tx_ring[i];
3660
3661 do {
3662 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3663 _bytes = ring->tx_stats.bytes;
3664 _packets = ring->tx_stats.packets;
3665 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3666 bytes += _bytes;
3667 packets += _packets;
3668 }
3669 net_stats->tx_bytes = bytes;
3670 net_stats->tx_packets = packets;
3671 rcu_read_unlock();
3672
3673 /* read stats registers */
3674 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3675 adapter->stats.gprc += rd32(IGC_GPRC);
3676 adapter->stats.gorc += rd32(IGC_GORCL);
3677 rd32(IGC_GORCH); /* clear GORCL */
3678 adapter->stats.bprc += rd32(IGC_BPRC);
3679 adapter->stats.mprc += rd32(IGC_MPRC);
3680 adapter->stats.roc += rd32(IGC_ROC);
3681
3682 adapter->stats.prc64 += rd32(IGC_PRC64);
3683 adapter->stats.prc127 += rd32(IGC_PRC127);
3684 adapter->stats.prc255 += rd32(IGC_PRC255);
3685 adapter->stats.prc511 += rd32(IGC_PRC511);
3686 adapter->stats.prc1023 += rd32(IGC_PRC1023);
3687 adapter->stats.prc1522 += rd32(IGC_PRC1522);
3688
3689 mpc = rd32(IGC_MPC);
3690 adapter->stats.mpc += mpc;
3691 net_stats->rx_fifo_errors += mpc;
3692 adapter->stats.scc += rd32(IGC_SCC);
3693 adapter->stats.ecol += rd32(IGC_ECOL);
3694 adapter->stats.mcc += rd32(IGC_MCC);
3695 adapter->stats.latecol += rd32(IGC_LATECOL);
3696 adapter->stats.dc += rd32(IGC_DC);
3697 adapter->stats.rlec += rd32(IGC_RLEC);
3698 adapter->stats.xonrxc += rd32(IGC_XONRXC);
3699 adapter->stats.xontxc += rd32(IGC_XONTXC);
3700 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3701 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3702 adapter->stats.fcruc += rd32(IGC_FCRUC);
3703 adapter->stats.gptc += rd32(IGC_GPTC);
3704 adapter->stats.gotc += rd32(IGC_GOTCL);
3705 rd32(IGC_GOTCH); /* clear GOTCL */
3706 adapter->stats.rnbc += rd32(IGC_RNBC);
3707 adapter->stats.ruc += rd32(IGC_RUC);
3708 adapter->stats.rfc += rd32(IGC_RFC);
3709 adapter->stats.rjc += rd32(IGC_RJC);
3710 adapter->stats.tor += rd32(IGC_TORH);
3711 adapter->stats.tot += rd32(IGC_TOTH);
3712 adapter->stats.tpr += rd32(IGC_TPR);
3713
3714 adapter->stats.ptc64 += rd32(IGC_PTC64);
3715 adapter->stats.ptc127 += rd32(IGC_PTC127);
3716 adapter->stats.ptc255 += rd32(IGC_PTC255);
3717 adapter->stats.ptc511 += rd32(IGC_PTC511);
3718 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3719 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3720
3721 adapter->stats.mptc += rd32(IGC_MPTC);
3722 adapter->stats.bptc += rd32(IGC_BPTC);
3723
3724 adapter->stats.tpt += rd32(IGC_TPT);
3725 adapter->stats.colc += rd32(IGC_COLC);
3726 adapter->stats.colc += rd32(IGC_RERC);
3727
3728 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3729
3730 adapter->stats.tsctc += rd32(IGC_TSCTC);
3731
3732 adapter->stats.iac += rd32(IGC_IAC);
3733
3734 /* Fill out the OS statistics structure */
3735 net_stats->multicast = adapter->stats.mprc;
3736 net_stats->collisions = adapter->stats.colc;
3737
3738 /* Rx Errors */
3739
3740 /* RLEC on some newer hardware can be incorrect so build
3741 * our own version based on RUC and ROC
3742 */
3743 net_stats->rx_errors = adapter->stats.rxerrc +
3744 adapter->stats.crcerrs + adapter->stats.algnerrc +
3745 adapter->stats.ruc + adapter->stats.roc +
3746 adapter->stats.cexterr;
3747 net_stats->rx_length_errors = adapter->stats.ruc +
3748 adapter->stats.roc;
3749 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3750 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3751 net_stats->rx_missed_errors = adapter->stats.mpc;
3752
3753 /* Tx Errors */
3754 net_stats->tx_errors = adapter->stats.ecol +
3755 adapter->stats.latecol;
3756 net_stats->tx_aborted_errors = adapter->stats.ecol;
3757 net_stats->tx_window_errors = adapter->stats.latecol;
3758 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3759
3760 /* Tx Dropped needs to be maintained elsewhere */
3761
3762 /* Management Stats */
3763 adapter->stats.mgptc += rd32(IGC_MGTPTC);
3764 adapter->stats.mgprc += rd32(IGC_MGTPRC);
3765 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3766}
3767
3768/**
3769 * igc_down - Close the interface
3770 * @adapter: board private structure
3771 */
3772void igc_down(struct igc_adapter *adapter)
3773{
3774 struct net_device *netdev = adapter->netdev;
3775 struct igc_hw *hw = &adapter->hw;
3776 u32 tctl, rctl;
3777 int i = 0;
3778
3779 set_bit(__IGC_DOWN, &adapter->state);
3780
3781 /* disable receives in the hardware */
3782 rctl = rd32(IGC_RCTL);
3783 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3784 /* flush and sleep below */
3785
3786 /* set trans_start so we don't get spurious watchdogs during reset */
3787 netif_trans_update(netdev);
3788
3789 netif_carrier_off(netdev);
3790 netif_tx_stop_all_queues(netdev);
3791
3792 /* disable transmits in the hardware */
3793 tctl = rd32(IGC_TCTL);
3794 tctl &= ~IGC_TCTL_EN;
3795 wr32(IGC_TCTL, tctl);
3796 /* flush both disables and wait for them to finish */
3797 wrfl();
3798 usleep_range(10000, 20000);
3799
3800 igc_irq_disable(adapter);
3801
3802 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3803
3804 for (i = 0; i < adapter->num_q_vectors; i++) {
3805 if (adapter->q_vector[i]) {
3806 napi_synchronize(&adapter->q_vector[i]->napi);
3807 napi_disable(&adapter->q_vector[i]->napi);
3808 }
3809 }
3810
3811 del_timer_sync(&adapter->watchdog_timer);
3812 del_timer_sync(&adapter->phy_info_timer);
3813
3814 /* record the stats before reset*/
3815 spin_lock(&adapter->stats64_lock);
3816 igc_update_stats(adapter);
3817 spin_unlock(&adapter->stats64_lock);
3818
3819 adapter->link_speed = 0;
3820 adapter->link_duplex = 0;
3821
3822 if (!pci_channel_offline(adapter->pdev))
3823 igc_reset(adapter);
3824
3825 /* clear VLAN promisc flag so VFTA will be updated if necessary */
3826 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3827
3828 igc_clean_all_tx_rings(adapter);
3829 igc_clean_all_rx_rings(adapter);
3830}
3831
3832void igc_reinit_locked(struct igc_adapter *adapter)
3833{
3834 WARN_ON(in_interrupt());
3835 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3836 usleep_range(1000, 2000);
3837 igc_down(adapter);
3838 igc_up(adapter);
3839 clear_bit(__IGC_RESETTING, &adapter->state);
3840}
3841
3842static void igc_reset_task(struct work_struct *work)
3843{
3844 struct igc_adapter *adapter;
3845
3846 adapter = container_of(work, struct igc_adapter, reset_task);
3847
3848 igc_rings_dump(adapter);
3849 igc_regs_dump(adapter);
3850 netdev_err(adapter->netdev, "Reset adapter\n");
3851 igc_reinit_locked(adapter);
3852}
3853
3854/**
3855 * igc_change_mtu - Change the Maximum Transfer Unit
3856 * @netdev: network interface device structure
3857 * @new_mtu: new value for maximum frame size
3858 *
3859 * Returns 0 on success, negative on failure
3860 */
3861static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3862{
3863 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3864 struct igc_adapter *adapter = netdev_priv(netdev);
3865
3866 /* adjust max frame to be at least the size of a standard frame */
3867 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3868 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3869
3870 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3871 usleep_range(1000, 2000);
3872
3873 /* igc_down has a dependency on max_frame_size */
3874 adapter->max_frame_size = max_frame;
3875
3876 if (netif_running(netdev))
3877 igc_down(adapter);
3878
3879 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3880 netdev->mtu = new_mtu;
3881
3882 if (netif_running(netdev))
3883 igc_up(adapter);
3884 else
3885 igc_reset(adapter);
3886
3887 clear_bit(__IGC_RESETTING, &adapter->state);
3888
3889 return 0;
3890}
3891
3892/**
3893 * igc_get_stats - Get System Network Statistics
3894 * @netdev: network interface device structure
3895 *
3896 * Returns the address of the device statistics structure.
3897 * The statistics are updated here and also from the timer callback.
3898 */
3899static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3900{
3901 struct igc_adapter *adapter = netdev_priv(netdev);
3902
3903 if (!test_bit(__IGC_RESETTING, &adapter->state))
3904 igc_update_stats(adapter);
3905
3906 /* only return the current stats */
3907 return &netdev->stats;
3908}
3909
3910static netdev_features_t igc_fix_features(struct net_device *netdev,
3911 netdev_features_t features)
3912{
3913 /* Since there is no support for separate Rx/Tx vlan accel
3914 * enable/disable make sure Tx flag is always in same state as Rx.
3915 */
3916 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3917 features |= NETIF_F_HW_VLAN_CTAG_TX;
3918 else
3919 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3920
3921 return features;
3922}
3923
3924static int igc_set_features(struct net_device *netdev,
3925 netdev_features_t features)
3926{
3927 netdev_features_t changed = netdev->features ^ features;
3928 struct igc_adapter *adapter = netdev_priv(netdev);
3929
3930 /* Add VLAN support */
3931 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3932 return 0;
3933
3934 if (!(features & NETIF_F_NTUPLE))
3935 igc_flush_nfc_rules(adapter);
3936
3937 netdev->features = features;
3938
3939 if (netif_running(netdev))
3940 igc_reinit_locked(adapter);
3941 else
3942 igc_reset(adapter);
3943
3944 return 1;
3945}
3946
3947static netdev_features_t
3948igc_features_check(struct sk_buff *skb, struct net_device *dev,
3949 netdev_features_t features)
3950{
3951 unsigned int network_hdr_len, mac_hdr_len;
3952
3953 /* Make certain the headers can be described by a context descriptor */
3954 mac_hdr_len = skb_network_header(skb) - skb->data;
3955 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3956 return features & ~(NETIF_F_HW_CSUM |
3957 NETIF_F_SCTP_CRC |
3958 NETIF_F_HW_VLAN_CTAG_TX |
3959 NETIF_F_TSO |
3960 NETIF_F_TSO6);
3961
3962 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3963 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
3964 return features & ~(NETIF_F_HW_CSUM |
3965 NETIF_F_SCTP_CRC |
3966 NETIF_F_TSO |
3967 NETIF_F_TSO6);
3968
3969 /* We can only support IPv4 TSO in tunnels if we can mangle the
3970 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3971 */
3972 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3973 features &= ~NETIF_F_TSO;
3974
3975 return features;
3976}
3977
3978static void igc_tsync_interrupt(struct igc_adapter *adapter)
3979{
3980 struct igc_hw *hw = &adapter->hw;
3981 u32 tsicr = rd32(IGC_TSICR);
3982 u32 ack = 0;
3983
3984 if (tsicr & IGC_TSICR_TXTS) {
3985 /* retrieve hardware timestamp */
3986 schedule_work(&adapter->ptp_tx_work);
3987 ack |= IGC_TSICR_TXTS;
3988 }
3989
3990 /* acknowledge the interrupts */
3991 wr32(IGC_TSICR, ack);
3992}
3993
3994/**
3995 * igc_msix_other - msix other interrupt handler
3996 * @irq: interrupt number
3997 * @data: pointer to a q_vector
3998 */
3999static irqreturn_t igc_msix_other(int irq, void *data)
4000{
4001 struct igc_adapter *adapter = data;
4002 struct igc_hw *hw = &adapter->hw;
4003 u32 icr = rd32(IGC_ICR);
4004
4005 /* reading ICR causes bit 31 of EICR to be cleared */
4006 if (icr & IGC_ICR_DRSTA)
4007 schedule_work(&adapter->reset_task);
4008
4009 if (icr & IGC_ICR_DOUTSYNC) {
4010 /* HW is reporting DMA is out of sync */
4011 adapter->stats.doosync++;
4012 }
4013
4014 if (icr & IGC_ICR_LSC) {
4015 hw->mac.get_link_status = 1;
4016 /* guard against interrupt when we're going down */
4017 if (!test_bit(__IGC_DOWN, &adapter->state))
4018 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4019 }
4020
4021 if (icr & IGC_ICR_TS)
4022 igc_tsync_interrupt(adapter);
4023
4024 wr32(IGC_EIMS, adapter->eims_other);
4025
4026 return IRQ_HANDLED;
4027}
4028
4029static void igc_write_itr(struct igc_q_vector *q_vector)
4030{
4031 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4032
4033 if (!q_vector->set_itr)
4034 return;
4035
4036 if (!itr_val)
4037 itr_val = IGC_ITR_VAL_MASK;
4038
4039 itr_val |= IGC_EITR_CNT_IGNR;
4040
4041 writel(itr_val, q_vector->itr_register);
4042 q_vector->set_itr = 0;
4043}
4044
4045static irqreturn_t igc_msix_ring(int irq, void *data)
4046{
4047 struct igc_q_vector *q_vector = data;
4048
4049 /* Write the ITR value calculated from the previous interrupt. */
4050 igc_write_itr(q_vector);
4051
4052 napi_schedule(&q_vector->napi);
4053
4054 return IRQ_HANDLED;
4055}
4056
4057/**
4058 * igc_request_msix - Initialize MSI-X interrupts
4059 * @adapter: Pointer to adapter structure
4060 *
4061 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4062 * kernel.
4063 */
4064static int igc_request_msix(struct igc_adapter *adapter)
4065{
4066 int i = 0, err = 0, vector = 0, free_vector = 0;
4067 struct net_device *netdev = adapter->netdev;
4068
4069 err = request_irq(adapter->msix_entries[vector].vector,
4070 &igc_msix_other, 0, netdev->name, adapter);
4071 if (err)
4072 goto err_out;
4073
4074 for (i = 0; i < adapter->num_q_vectors; i++) {
4075 struct igc_q_vector *q_vector = adapter->q_vector[i];
4076
4077 vector++;
4078
4079 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4080
4081 if (q_vector->rx.ring && q_vector->tx.ring)
4082 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4083 q_vector->rx.ring->queue_index);
4084 else if (q_vector->tx.ring)
4085 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4086 q_vector->tx.ring->queue_index);
4087 else if (q_vector->rx.ring)
4088 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4089 q_vector->rx.ring->queue_index);
4090 else
4091 sprintf(q_vector->name, "%s-unused", netdev->name);
4092
4093 err = request_irq(adapter->msix_entries[vector].vector,
4094 igc_msix_ring, 0, q_vector->name,
4095 q_vector);
4096 if (err)
4097 goto err_free;
4098 }
4099
4100 igc_configure_msix(adapter);
4101 return 0;
4102
4103err_free:
4104 /* free already assigned IRQs */
4105 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4106
4107 vector--;
4108 for (i = 0; i < vector; i++) {
4109 free_irq(adapter->msix_entries[free_vector++].vector,
4110 adapter->q_vector[i]);
4111 }
4112err_out:
4113 return err;
4114}
4115
4116/**
4117 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4118 * @adapter: Pointer to adapter structure
4119 *
4120 * This function resets the device so that it has 0 rx queues, tx queues, and
4121 * MSI-X interrupts allocated.
4122 */
4123static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4124{
4125 igc_free_q_vectors(adapter);
4126 igc_reset_interrupt_capability(adapter);
4127}
4128
4129/* Need to wait a few seconds after link up to get diagnostic information from
4130 * the phy
4131 */
4132static void igc_update_phy_info(struct timer_list *t)
4133{
4134 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4135
4136 igc_get_phy_info(&adapter->hw);
4137}
4138
4139/**
4140 * igc_has_link - check shared code for link and determine up/down
4141 * @adapter: pointer to driver private info
4142 */
4143bool igc_has_link(struct igc_adapter *adapter)
4144{
4145 struct igc_hw *hw = &adapter->hw;
4146 bool link_active = false;
4147
4148 /* get_link_status is set on LSC (link status) interrupt or
4149 * rx sequence error interrupt. get_link_status will stay
4150 * false until the igc_check_for_link establishes link
4151 * for copper adapters ONLY
4152 */
4153 switch (hw->phy.media_type) {
4154 case igc_media_type_copper:
4155 if (!hw->mac.get_link_status)
4156 return true;
4157 hw->mac.ops.check_for_link(hw);
4158 link_active = !hw->mac.get_link_status;
4159 break;
4160 default:
4161 case igc_media_type_unknown:
4162 break;
4163 }
4164
4165 if (hw->mac.type == igc_i225 &&
4166 hw->phy.id == I225_I_PHY_ID) {
4167 if (!netif_carrier_ok(adapter->netdev)) {
4168 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4169 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4170 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4171 adapter->link_check_timeout = jiffies;
4172 }
4173 }
4174
4175 return link_active;
4176}
4177
4178/**
4179 * igc_watchdog - Timer Call-back
4180 * @t: timer for the watchdog
4181 */
4182static void igc_watchdog(struct timer_list *t)
4183{
4184 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4185 /* Do the rest outside of interrupt context */
4186 schedule_work(&adapter->watchdog_task);
4187}
4188
4189static void igc_watchdog_task(struct work_struct *work)
4190{
4191 struct igc_adapter *adapter = container_of(work,
4192 struct igc_adapter,
4193 watchdog_task);
4194 struct net_device *netdev = adapter->netdev;
4195 struct igc_hw *hw = &adapter->hw;
4196 struct igc_phy_info *phy = &hw->phy;
4197 u16 phy_data, retry_count = 20;
4198 u32 link;
4199 int i;
4200
4201 link = igc_has_link(adapter);
4202
4203 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4204 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4205 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4206 else
4207 link = false;
4208 }
4209
4210 if (link) {
4211 /* Cancel scheduled suspend requests. */
4212 pm_runtime_resume(netdev->dev.parent);
4213
4214 if (!netif_carrier_ok(netdev)) {
4215 u32 ctrl;
4216
4217 hw->mac.ops.get_speed_and_duplex(hw,
4218 &adapter->link_speed,
4219 &adapter->link_duplex);
4220
4221 ctrl = rd32(IGC_CTRL);
4222 /* Link status message must follow this format */
4223 netdev_info(netdev,
4224 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4225 adapter->link_speed,
4226 adapter->link_duplex == FULL_DUPLEX ?
4227 "Full" : "Half",
4228 (ctrl & IGC_CTRL_TFCE) &&
4229 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4230 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4231 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4232
4233 /* disable EEE if enabled */
4234 if ((adapter->flags & IGC_FLAG_EEE) &&
4235 adapter->link_duplex == HALF_DUPLEX) {
4236 netdev_info(netdev,
4237 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4238 adapter->hw.dev_spec._base.eee_enable = false;
4239 adapter->flags &= ~IGC_FLAG_EEE;
4240 }
4241
4242 /* check if SmartSpeed worked */
4243 igc_check_downshift(hw);
4244 if (phy->speed_downgraded)
4245 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4246
4247 /* adjust timeout factor according to speed/duplex */
4248 adapter->tx_timeout_factor = 1;
4249 switch (adapter->link_speed) {
4250 case SPEED_10:
4251 adapter->tx_timeout_factor = 14;
4252 break;
4253 case SPEED_100:
4254 /* maybe add some timeout factor ? */
4255 break;
4256 }
4257
4258 if (adapter->link_speed != SPEED_1000)
4259 goto no_wait;
4260
4261 /* wait for Remote receiver status OK */
4262retry_read_status:
4263 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4264 &phy_data)) {
4265 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4266 retry_count) {
4267 msleep(100);
4268 retry_count--;
4269 goto retry_read_status;
4270 } else if (!retry_count) {
4271 netdev_err(netdev, "exceed max 2 second\n");
4272 }
4273 } else {
4274 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4275 }
4276no_wait:
4277 netif_carrier_on(netdev);
4278
4279 /* link state has changed, schedule phy info update */
4280 if (!test_bit(__IGC_DOWN, &adapter->state))
4281 mod_timer(&adapter->phy_info_timer,
4282 round_jiffies(jiffies + 2 * HZ));
4283 }
4284 } else {
4285 if (netif_carrier_ok(netdev)) {
4286 adapter->link_speed = 0;
4287 adapter->link_duplex = 0;
4288
4289 /* Links status message must follow this format */
4290 netdev_info(netdev, "NIC Link is Down\n");
4291 netif_carrier_off(netdev);
4292
4293 /* link state has changed, schedule phy info update */
4294 if (!test_bit(__IGC_DOWN, &adapter->state))
4295 mod_timer(&adapter->phy_info_timer,
4296 round_jiffies(jiffies + 2 * HZ));
4297
4298 /* link is down, time to check for alternate media */
4299 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4300 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4301 schedule_work(&adapter->reset_task);
4302 /* return immediately */
4303 return;
4304 }
4305 }
4306 pm_schedule_suspend(netdev->dev.parent,
4307 MSEC_PER_SEC * 5);
4308
4309 /* also check for alternate media here */
4310 } else if (!netif_carrier_ok(netdev) &&
4311 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4312 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4313 schedule_work(&adapter->reset_task);
4314 /* return immediately */
4315 return;
4316 }
4317 }
4318 }
4319
4320 spin_lock(&adapter->stats64_lock);
4321 igc_update_stats(adapter);
4322 spin_unlock(&adapter->stats64_lock);
4323
4324 for (i = 0; i < adapter->num_tx_queues; i++) {
4325 struct igc_ring *tx_ring = adapter->tx_ring[i];
4326
4327 if (!netif_carrier_ok(netdev)) {
4328 /* We've lost link, so the controller stops DMA,
4329 * but we've got queued Tx work that's never going
4330 * to get done, so reset controller to flush Tx.
4331 * (Do the reset outside of interrupt context).
4332 */
4333 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4334 adapter->tx_timeout_count++;
4335 schedule_work(&adapter->reset_task);
4336 /* return immediately since reset is imminent */
4337 return;
4338 }
4339 }
4340
4341 /* Force detection of hung controller every watchdog period */
4342 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4343 }
4344
4345 /* Cause software interrupt to ensure Rx ring is cleaned */
4346 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4347 u32 eics = 0;
4348
4349 for (i = 0; i < adapter->num_q_vectors; i++)
4350 eics |= adapter->q_vector[i]->eims_value;
4351 wr32(IGC_EICS, eics);
4352 } else {
4353 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4354 }
4355
4356 igc_ptp_tx_hang(adapter);
4357
4358 /* Reset the timer */
4359 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4360 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4361 mod_timer(&adapter->watchdog_timer,
4362 round_jiffies(jiffies + HZ));
4363 else
4364 mod_timer(&adapter->watchdog_timer,
4365 round_jiffies(jiffies + 2 * HZ));
4366 }
4367}
4368
4369/**
4370 * igc_intr_msi - Interrupt Handler
4371 * @irq: interrupt number
4372 * @data: pointer to a network interface device structure
4373 */
4374static irqreturn_t igc_intr_msi(int irq, void *data)
4375{
4376 struct igc_adapter *adapter = data;
4377 struct igc_q_vector *q_vector = adapter->q_vector[0];
4378 struct igc_hw *hw = &adapter->hw;
4379 /* read ICR disables interrupts using IAM */
4380 u32 icr = rd32(IGC_ICR);
4381
4382 igc_write_itr(q_vector);
4383
4384 if (icr & IGC_ICR_DRSTA)
4385 schedule_work(&adapter->reset_task);
4386
4387 if (icr & IGC_ICR_DOUTSYNC) {
4388 /* HW is reporting DMA is out of sync */
4389 adapter->stats.doosync++;
4390 }
4391
4392 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4393 hw->mac.get_link_status = 1;
4394 if (!test_bit(__IGC_DOWN, &adapter->state))
4395 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4396 }
4397
4398 napi_schedule(&q_vector->napi);
4399
4400 return IRQ_HANDLED;
4401}
4402
4403/**
4404 * igc_intr - Legacy Interrupt Handler
4405 * @irq: interrupt number
4406 * @data: pointer to a network interface device structure
4407 */
4408static irqreturn_t igc_intr(int irq, void *data)
4409{
4410 struct igc_adapter *adapter = data;
4411 struct igc_q_vector *q_vector = adapter->q_vector[0];
4412 struct igc_hw *hw = &adapter->hw;
4413 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4414 * need for the IMC write
4415 */
4416 u32 icr = rd32(IGC_ICR);
4417
4418 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4419 * not set, then the adapter didn't send an interrupt
4420 */
4421 if (!(icr & IGC_ICR_INT_ASSERTED))
4422 return IRQ_NONE;
4423
4424 igc_write_itr(q_vector);
4425
4426 if (icr & IGC_ICR_DRSTA)
4427 schedule_work(&adapter->reset_task);
4428
4429 if (icr & IGC_ICR_DOUTSYNC) {
4430 /* HW is reporting DMA is out of sync */
4431 adapter->stats.doosync++;
4432 }
4433
4434 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4435 hw->mac.get_link_status = 1;
4436 /* guard against interrupt when we're going down */
4437 if (!test_bit(__IGC_DOWN, &adapter->state))
4438 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4439 }
4440
4441 napi_schedule(&q_vector->napi);
4442
4443 return IRQ_HANDLED;
4444}
4445
4446static void igc_free_irq(struct igc_adapter *adapter)
4447{
4448 if (adapter->msix_entries) {
4449 int vector = 0, i;
4450
4451 free_irq(adapter->msix_entries[vector++].vector, adapter);
4452
4453 for (i = 0; i < adapter->num_q_vectors; i++)
4454 free_irq(adapter->msix_entries[vector++].vector,
4455 adapter->q_vector[i]);
4456 } else {
4457 free_irq(adapter->pdev->irq, adapter);
4458 }
4459}
4460
4461/**
4462 * igc_request_irq - initialize interrupts
4463 * @adapter: Pointer to adapter structure
4464 *
4465 * Attempts to configure interrupts using the best available
4466 * capabilities of the hardware and kernel.
4467 */
4468static int igc_request_irq(struct igc_adapter *adapter)
4469{
4470 struct net_device *netdev = adapter->netdev;
4471 struct pci_dev *pdev = adapter->pdev;
4472 int err = 0;
4473
4474 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4475 err = igc_request_msix(adapter);
4476 if (!err)
4477 goto request_done;
4478 /* fall back to MSI */
4479 igc_free_all_tx_resources(adapter);
4480 igc_free_all_rx_resources(adapter);
4481
4482 igc_clear_interrupt_scheme(adapter);
4483 err = igc_init_interrupt_scheme(adapter, false);
4484 if (err)
4485 goto request_done;
4486 igc_setup_all_tx_resources(adapter);
4487 igc_setup_all_rx_resources(adapter);
4488 igc_configure(adapter);
4489 }
4490
4491 igc_assign_vector(adapter->q_vector[0], 0);
4492
4493 if (adapter->flags & IGC_FLAG_HAS_MSI) {
4494 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4495 netdev->name, adapter);
4496 if (!err)
4497 goto request_done;
4498
4499 /* fall back to legacy interrupts */
4500 igc_reset_interrupt_capability(adapter);
4501 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4502 }
4503
4504 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4505 netdev->name, adapter);
4506
4507 if (err)
4508 netdev_err(netdev, "Error %d getting interrupt\n", err);
4509
4510request_done:
4511 return err;
4512}
4513
4514/**
4515 * __igc_open - Called when a network interface is made active
4516 * @netdev: network interface device structure
4517 * @resuming: boolean indicating if the device is resuming
4518 *
4519 * Returns 0 on success, negative value on failure
4520 *
4521 * The open entry point is called when a network interface is made
4522 * active by the system (IFF_UP). At this point all resources needed
4523 * for transmit and receive operations are allocated, the interrupt
4524 * handler is registered with the OS, the watchdog timer is started,
4525 * and the stack is notified that the interface is ready.
4526 */
4527static int __igc_open(struct net_device *netdev, bool resuming)
4528{
4529 struct igc_adapter *adapter = netdev_priv(netdev);
4530 struct pci_dev *pdev = adapter->pdev;
4531 struct igc_hw *hw = &adapter->hw;
4532 int err = 0;
4533 int i = 0;
4534
4535 /* disallow open during test */
4536
4537 if (test_bit(__IGC_TESTING, &adapter->state)) {
4538 WARN_ON(resuming);
4539 return -EBUSY;
4540 }
4541
4542 if (!resuming)
4543 pm_runtime_get_sync(&pdev->dev);
4544
4545 netif_carrier_off(netdev);
4546
4547 /* allocate transmit descriptors */
4548 err = igc_setup_all_tx_resources(adapter);
4549 if (err)
4550 goto err_setup_tx;
4551
4552 /* allocate receive descriptors */
4553 err = igc_setup_all_rx_resources(adapter);
4554 if (err)
4555 goto err_setup_rx;
4556
4557 igc_power_up_link(adapter);
4558
4559 igc_configure(adapter);
4560
4561 err = igc_request_irq(adapter);
4562 if (err)
4563 goto err_req_irq;
4564
4565 /* Notify the stack of the actual queue counts. */
4566 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4567 if (err)
4568 goto err_set_queues;
4569
4570 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4571 if (err)
4572 goto err_set_queues;
4573
4574 clear_bit(__IGC_DOWN, &adapter->state);
4575
4576 for (i = 0; i < adapter->num_q_vectors; i++)
4577 napi_enable(&adapter->q_vector[i]->napi);
4578
4579 /* Clear any pending interrupts. */
4580 rd32(IGC_ICR);
4581 igc_irq_enable(adapter);
4582
4583 if (!resuming)
4584 pm_runtime_put(&pdev->dev);
4585
4586 netif_tx_start_all_queues(netdev);
4587
4588 /* start the watchdog. */
4589 hw->mac.get_link_status = 1;
4590 schedule_work(&adapter->watchdog_task);
4591
4592 return IGC_SUCCESS;
4593
4594err_set_queues:
4595 igc_free_irq(adapter);
4596err_req_irq:
4597 igc_release_hw_control(adapter);
4598 igc_power_down_phy_copper_base(&adapter->hw);
4599 igc_free_all_rx_resources(adapter);
4600err_setup_rx:
4601 igc_free_all_tx_resources(adapter);
4602err_setup_tx:
4603 igc_reset(adapter);
4604 if (!resuming)
4605 pm_runtime_put(&pdev->dev);
4606
4607 return err;
4608}
4609
4610int igc_open(struct net_device *netdev)
4611{
4612 return __igc_open(netdev, false);
4613}
4614
4615/**
4616 * __igc_close - Disables a network interface
4617 * @netdev: network interface device structure
4618 * @suspending: boolean indicating the device is suspending
4619 *
4620 * Returns 0, this is not allowed to fail
4621 *
4622 * The close entry point is called when an interface is de-activated
4623 * by the OS. The hardware is still under the driver's control, but
4624 * needs to be disabled. A global MAC reset is issued to stop the
4625 * hardware, and all transmit and receive resources are freed.
4626 */
4627static int __igc_close(struct net_device *netdev, bool suspending)
4628{
4629 struct igc_adapter *adapter = netdev_priv(netdev);
4630 struct pci_dev *pdev = adapter->pdev;
4631
4632 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4633
4634 if (!suspending)
4635 pm_runtime_get_sync(&pdev->dev);
4636
4637 igc_down(adapter);
4638
4639 igc_release_hw_control(adapter);
4640
4641 igc_free_irq(adapter);
4642
4643 igc_free_all_tx_resources(adapter);
4644 igc_free_all_rx_resources(adapter);
4645
4646 if (!suspending)
4647 pm_runtime_put_sync(&pdev->dev);
4648
4649 return 0;
4650}
4651
4652int igc_close(struct net_device *netdev)
4653{
4654 if (netif_device_present(netdev) || netdev->dismantle)
4655 return __igc_close(netdev, false);
4656 return 0;
4657}
4658
4659/**
4660 * igc_ioctl - Access the hwtstamp interface
4661 * @netdev: network interface device structure
4662 * @ifreq: interface request data
4663 * @cmd: ioctl command
4664 **/
4665static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4666{
4667 switch (cmd) {
4668 case SIOCGHWTSTAMP:
4669 return igc_ptp_get_ts_config(netdev, ifr);
4670 case SIOCSHWTSTAMP:
4671 return igc_ptp_set_ts_config(netdev, ifr);
4672 default:
4673 return -EOPNOTSUPP;
4674 }
4675}
4676
4677static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4678 bool enable)
4679{
4680 struct igc_ring *ring;
4681 int i;
4682
4683 if (queue < 0 || queue >= adapter->num_tx_queues)
4684 return -EINVAL;
4685
4686 ring = adapter->tx_ring[queue];
4687 ring->launchtime_enable = enable;
4688
4689 if (adapter->base_time)
4690 return 0;
4691
4692 adapter->cycle_time = NSEC_PER_SEC;
4693
4694 for (i = 0; i < adapter->num_tx_queues; i++) {
4695 ring = adapter->tx_ring[i];
4696 ring->start_time = 0;
4697 ring->end_time = NSEC_PER_SEC;
4698 }
4699
4700 return 0;
4701}
4702
4703static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4704{
4705 int queue_uses[IGC_MAX_TX_QUEUES] = { };
4706 size_t n;
4707
4708 if (qopt->cycle_time_extension)
4709 return false;
4710
4711 for (n = 0; n < qopt->num_entries; n++) {
4712 const struct tc_taprio_sched_entry *e;
4713 int i;
4714
4715 e = &qopt->entries[n];
4716
4717 /* i225 only supports "global" frame preemption
4718 * settings.
4719 */
4720 if (e->command != TC_TAPRIO_CMD_SET_GATES)
4721 return false;
4722
4723 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4724 if (e->gate_mask & BIT(i))
4725 queue_uses[i]++;
4726
4727 if (queue_uses[i] > 1)
4728 return false;
4729 }
4730 }
4731
4732 return true;
4733}
4734
4735static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4736 struct tc_etf_qopt_offload *qopt)
4737{
4738 struct igc_hw *hw = &adapter->hw;
4739 int err;
4740
4741 if (hw->mac.type != igc_i225)
4742 return -EOPNOTSUPP;
4743
4744 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4745 if (err)
4746 return err;
4747
4748 return igc_tsn_offload_apply(adapter);
4749}
4750
4751static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4752 struct tc_taprio_qopt_offload *qopt)
4753{
4754 u32 start_time = 0, end_time = 0;
4755 size_t n;
4756
4757 if (!qopt->enable) {
4758 adapter->base_time = 0;
4759 return 0;
4760 }
4761
4762 if (adapter->base_time)
4763 return -EALREADY;
4764
4765 if (!validate_schedule(qopt))
4766 return -EINVAL;
4767
4768 adapter->cycle_time = qopt->cycle_time;
4769 adapter->base_time = qopt->base_time;
4770
4771 /* FIXME: be a little smarter about cases when the gate for a
4772 * queue stays open for more than one entry.
4773 */
4774 for (n = 0; n < qopt->num_entries; n++) {
4775 struct tc_taprio_sched_entry *e = &qopt->entries[n];
4776 int i;
4777
4778 end_time += e->interval;
4779
4780 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4781 struct igc_ring *ring = adapter->tx_ring[i];
4782
4783 if (!(e->gate_mask & BIT(i)))
4784 continue;
4785
4786 ring->start_time = start_time;
4787 ring->end_time = end_time;
4788 }
4789
4790 start_time += e->interval;
4791 }
4792
4793 return 0;
4794}
4795
4796static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4797 struct tc_taprio_qopt_offload *qopt)
4798{
4799 struct igc_hw *hw = &adapter->hw;
4800 int err;
4801
4802 if (hw->mac.type != igc_i225)
4803 return -EOPNOTSUPP;
4804
4805 err = igc_save_qbv_schedule(adapter, qopt);
4806 if (err)
4807 return err;
4808
4809 return igc_tsn_offload_apply(adapter);
4810}
4811
4812static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4813 void *type_data)
4814{
4815 struct igc_adapter *adapter = netdev_priv(dev);
4816
4817 switch (type) {
4818 case TC_SETUP_QDISC_TAPRIO:
4819 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4820
4821 case TC_SETUP_QDISC_ETF:
4822 return igc_tsn_enable_launchtime(adapter, type_data);
4823
4824 default:
4825 return -EOPNOTSUPP;
4826 }
4827}
4828
4829static const struct net_device_ops igc_netdev_ops = {
4830 .ndo_open = igc_open,
4831 .ndo_stop = igc_close,
4832 .ndo_start_xmit = igc_xmit_frame,
4833 .ndo_set_rx_mode = igc_set_rx_mode,
4834 .ndo_set_mac_address = igc_set_mac,
4835 .ndo_change_mtu = igc_change_mtu,
4836 .ndo_get_stats = igc_get_stats,
4837 .ndo_fix_features = igc_fix_features,
4838 .ndo_set_features = igc_set_features,
4839 .ndo_features_check = igc_features_check,
4840 .ndo_do_ioctl = igc_ioctl,
4841 .ndo_setup_tc = igc_setup_tc,
4842};
4843
4844/* PCIe configuration access */
4845void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4846{
4847 struct igc_adapter *adapter = hw->back;
4848
4849 pci_read_config_word(adapter->pdev, reg, value);
4850}
4851
4852void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4853{
4854 struct igc_adapter *adapter = hw->back;
4855
4856 pci_write_config_word(adapter->pdev, reg, *value);
4857}
4858
4859s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4860{
4861 struct igc_adapter *adapter = hw->back;
4862
4863 if (!pci_is_pcie(adapter->pdev))
4864 return -IGC_ERR_CONFIG;
4865
4866 pcie_capability_read_word(adapter->pdev, reg, value);
4867
4868 return IGC_SUCCESS;
4869}
4870
4871s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4872{
4873 struct igc_adapter *adapter = hw->back;
4874
4875 if (!pci_is_pcie(adapter->pdev))
4876 return -IGC_ERR_CONFIG;
4877
4878 pcie_capability_write_word(adapter->pdev, reg, *value);
4879
4880 return IGC_SUCCESS;
4881}
4882
4883u32 igc_rd32(struct igc_hw *hw, u32 reg)
4884{
4885 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4886 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4887 u32 value = 0;
4888
4889 value = readl(&hw_addr[reg]);
4890
4891 /* reads should not return all F's */
4892 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4893 struct net_device *netdev = igc->netdev;
4894
4895 hw->hw_addr = NULL;
4896 netif_device_detach(netdev);
4897 netdev_err(netdev, "PCIe link lost, device now detached\n");
4898 WARN(pci_device_is_present(igc->pdev),
4899 "igc: Failed to read reg 0x%x!\n", reg);
4900 }
4901
4902 return value;
4903}
4904
4905int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4906{
4907 struct igc_mac_info *mac = &adapter->hw.mac;
4908
4909 mac->autoneg = 0;
4910
4911 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4912 * for the switch() below to work
4913 */
4914 if ((spd & 1) || (dplx & ~1))
4915 goto err_inval;
4916
4917 switch (spd + dplx) {
4918 case SPEED_10 + DUPLEX_HALF:
4919 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4920 break;
4921 case SPEED_10 + DUPLEX_FULL:
4922 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4923 break;
4924 case SPEED_100 + DUPLEX_HALF:
4925 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4926 break;
4927 case SPEED_100 + DUPLEX_FULL:
4928 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4929 break;
4930 case SPEED_1000 + DUPLEX_FULL:
4931 mac->autoneg = 1;
4932 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4933 break;
4934 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4935 goto err_inval;
4936 case SPEED_2500 + DUPLEX_FULL:
4937 mac->autoneg = 1;
4938 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4939 break;
4940 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4941 default:
4942 goto err_inval;
4943 }
4944
4945 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4946 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4947
4948 return 0;
4949
4950err_inval:
4951 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4952 return -EINVAL;
4953}
4954
4955/**
4956 * igc_probe - Device Initialization Routine
4957 * @pdev: PCI device information struct
4958 * @ent: entry in igc_pci_tbl
4959 *
4960 * Returns 0 on success, negative on failure
4961 *
4962 * igc_probe initializes an adapter identified by a pci_dev structure.
4963 * The OS initialization, configuring the adapter private structure,
4964 * and a hardware reset occur.
4965 */
4966static int igc_probe(struct pci_dev *pdev,
4967 const struct pci_device_id *ent)
4968{
4969 struct igc_adapter *adapter;
4970 struct net_device *netdev;
4971 struct igc_hw *hw;
4972 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4973 int err, pci_using_dac;
4974
4975 err = pci_enable_device_mem(pdev);
4976 if (err)
4977 return err;
4978
4979 pci_using_dac = 0;
4980 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4981 if (!err) {
4982 pci_using_dac = 1;
4983 } else {
4984 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4985 if (err) {
4986 dev_err(&pdev->dev,
4987 "No usable DMA configuration, aborting\n");
4988 goto err_dma;
4989 }
4990 }
4991
4992 err = pci_request_mem_regions(pdev, igc_driver_name);
4993 if (err)
4994 goto err_pci_reg;
4995
4996 pci_enable_pcie_error_reporting(pdev);
4997
4998 pci_set_master(pdev);
4999
5000 err = -ENOMEM;
5001 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5002 IGC_MAX_TX_QUEUES);
5003
5004 if (!netdev)
5005 goto err_alloc_etherdev;
5006
5007 SET_NETDEV_DEV(netdev, &pdev->dev);
5008
5009 pci_set_drvdata(pdev, netdev);
5010 adapter = netdev_priv(netdev);
5011 adapter->netdev = netdev;
5012 adapter->pdev = pdev;
5013 hw = &adapter->hw;
5014 hw->back = adapter;
5015 adapter->port_num = hw->bus.func;
5016 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5017
5018 err = pci_save_state(pdev);
5019 if (err)
5020 goto err_ioremap;
5021
5022 err = -EIO;
5023 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5024 pci_resource_len(pdev, 0));
5025 if (!adapter->io_addr)
5026 goto err_ioremap;
5027
5028 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5029 hw->hw_addr = adapter->io_addr;
5030
5031 netdev->netdev_ops = &igc_netdev_ops;
5032 igc_ethtool_set_ops(netdev);
5033 netdev->watchdog_timeo = 5 * HZ;
5034
5035 netdev->mem_start = pci_resource_start(pdev, 0);
5036 netdev->mem_end = pci_resource_end(pdev, 0);
5037
5038 /* PCI config space info */
5039 hw->vendor_id = pdev->vendor;
5040 hw->device_id = pdev->device;
5041 hw->revision_id = pdev->revision;
5042 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5043 hw->subsystem_device_id = pdev->subsystem_device;
5044
5045 /* Copy the default MAC and PHY function pointers */
5046 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5047 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5048
5049 /* Initialize skew-specific constants */
5050 err = ei->get_invariants(hw);
5051 if (err)
5052 goto err_sw_init;
5053
5054 /* Add supported features to the features list*/
5055 netdev->features |= NETIF_F_SG;
5056 netdev->features |= NETIF_F_TSO;
5057 netdev->features |= NETIF_F_TSO6;
5058 netdev->features |= NETIF_F_TSO_ECN;
5059 netdev->features |= NETIF_F_RXCSUM;
5060 netdev->features |= NETIF_F_HW_CSUM;
5061 netdev->features |= NETIF_F_SCTP_CRC;
5062 netdev->features |= NETIF_F_HW_TC;
5063
5064#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5065 NETIF_F_GSO_GRE_CSUM | \
5066 NETIF_F_GSO_IPXIP4 | \
5067 NETIF_F_GSO_IPXIP6 | \
5068 NETIF_F_GSO_UDP_TUNNEL | \
5069 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5070
5071 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5072 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5073
5074 /* setup the private structure */
5075 err = igc_sw_init(adapter);
5076 if (err)
5077 goto err_sw_init;
5078
5079 /* copy netdev features into list of user selectable features */
5080 netdev->hw_features |= NETIF_F_NTUPLE;
5081 netdev->hw_features |= netdev->features;
5082
5083 if (pci_using_dac)
5084 netdev->features |= NETIF_F_HIGHDMA;
5085
5086 /* MTU range: 68 - 9216 */
5087 netdev->min_mtu = ETH_MIN_MTU;
5088 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5089
5090 /* before reading the NVM, reset the controller to put the device in a
5091 * known good starting state
5092 */
5093 hw->mac.ops.reset_hw(hw);
5094
5095 if (igc_get_flash_presence_i225(hw)) {
5096 if (hw->nvm.ops.validate(hw) < 0) {
5097 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5098 err = -EIO;
5099 goto err_eeprom;
5100 }
5101 }
5102
5103 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5104 /* copy the MAC address out of the NVM */
5105 if (hw->mac.ops.read_mac_addr(hw))
5106 dev_err(&pdev->dev, "NVM Read Error\n");
5107 }
5108
5109 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5110
5111 if (!is_valid_ether_addr(netdev->dev_addr)) {
5112 dev_err(&pdev->dev, "Invalid MAC Address\n");
5113 err = -EIO;
5114 goto err_eeprom;
5115 }
5116
5117 /* configure RXPBSIZE and TXPBSIZE */
5118 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5119 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5120
5121 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5122 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5123
5124 INIT_WORK(&adapter->reset_task, igc_reset_task);
5125 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5126
5127 /* Initialize link properties that are user-changeable */
5128 adapter->fc_autoneg = true;
5129 hw->mac.autoneg = true;
5130 hw->phy.autoneg_advertised = 0xaf;
5131
5132 hw->fc.requested_mode = igc_fc_default;
5133 hw->fc.current_mode = igc_fc_default;
5134
5135 /* By default, support wake on port A */
5136 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5137
5138 /* initialize the wol settings based on the eeprom settings */
5139 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5140 adapter->wol |= IGC_WUFC_MAG;
5141
5142 device_set_wakeup_enable(&adapter->pdev->dev,
5143 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5144
5145 igc_ptp_init(adapter);
5146
5147 /* reset the hardware with the new settings */
5148 igc_reset(adapter);
5149
5150 /* let the f/w know that the h/w is now under the control of the
5151 * driver.
5152 */
5153 igc_get_hw_control(adapter);
5154
5155 strncpy(netdev->name, "eth%d", IFNAMSIZ);
5156 err = register_netdev(netdev);
5157 if (err)
5158 goto err_register;
5159
5160 /* carrier off reporting is important to ethtool even BEFORE open */
5161 netif_carrier_off(netdev);
5162
5163 /* Check if Media Autosense is enabled */
5164 adapter->ei = *ei;
5165
5166 /* print pcie link status and MAC address */
5167 pcie_print_link_status(pdev);
5168 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5169
5170 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5171 /* Disable EEE for internal PHY devices */
5172 hw->dev_spec._base.eee_enable = false;
5173 adapter->flags &= ~IGC_FLAG_EEE;
5174 igc_set_eee_i225(hw, false, false, false);
5175
5176 pm_runtime_put_noidle(&pdev->dev);
5177
5178 return 0;
5179
5180err_register:
5181 igc_release_hw_control(adapter);
5182err_eeprom:
5183 if (!igc_check_reset_block(hw))
5184 igc_reset_phy(hw);
5185err_sw_init:
5186 igc_clear_interrupt_scheme(adapter);
5187 iounmap(adapter->io_addr);
5188err_ioremap:
5189 free_netdev(netdev);
5190err_alloc_etherdev:
5191 pci_release_mem_regions(pdev);
5192err_pci_reg:
5193err_dma:
5194 pci_disable_device(pdev);
5195 return err;
5196}
5197
5198/**
5199 * igc_remove - Device Removal Routine
5200 * @pdev: PCI device information struct
5201 *
5202 * igc_remove is called by the PCI subsystem to alert the driver
5203 * that it should release a PCI device. This could be caused by a
5204 * Hot-Plug event, or because the driver is going to be removed from
5205 * memory.
5206 */
5207static void igc_remove(struct pci_dev *pdev)
5208{
5209 struct net_device *netdev = pci_get_drvdata(pdev);
5210 struct igc_adapter *adapter = netdev_priv(netdev);
5211
5212 pm_runtime_get_noresume(&pdev->dev);
5213
5214 igc_flush_nfc_rules(adapter);
5215
5216 igc_ptp_stop(adapter);
5217
5218 set_bit(__IGC_DOWN, &adapter->state);
5219
5220 del_timer_sync(&adapter->watchdog_timer);
5221 del_timer_sync(&adapter->phy_info_timer);
5222
5223 cancel_work_sync(&adapter->reset_task);
5224 cancel_work_sync(&adapter->watchdog_task);
5225
5226 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5227 * would have already happened in close and is redundant.
5228 */
5229 igc_release_hw_control(adapter);
5230 unregister_netdev(netdev);
5231
5232 igc_clear_interrupt_scheme(adapter);
5233 pci_iounmap(pdev, adapter->io_addr);
5234 pci_release_mem_regions(pdev);
5235
5236 free_netdev(netdev);
5237
5238 pci_disable_pcie_error_reporting(pdev);
5239
5240 pci_disable_device(pdev);
5241}
5242
5243static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5244 bool runtime)
5245{
5246 struct net_device *netdev = pci_get_drvdata(pdev);
5247 struct igc_adapter *adapter = netdev_priv(netdev);
5248 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5249 struct igc_hw *hw = &adapter->hw;
5250 u32 ctrl, rctl, status;
5251 bool wake;
5252
5253 rtnl_lock();
5254 netif_device_detach(netdev);
5255
5256 if (netif_running(netdev))
5257 __igc_close(netdev, true);
5258
5259 igc_ptp_suspend(adapter);
5260
5261 igc_clear_interrupt_scheme(adapter);
5262 rtnl_unlock();
5263
5264 status = rd32(IGC_STATUS);
5265 if (status & IGC_STATUS_LU)
5266 wufc &= ~IGC_WUFC_LNKC;
5267
5268 if (wufc) {
5269 igc_setup_rctl(adapter);
5270 igc_set_rx_mode(netdev);
5271
5272 /* turn on all-multi mode if wake on multicast is enabled */
5273 if (wufc & IGC_WUFC_MC) {
5274 rctl = rd32(IGC_RCTL);
5275 rctl |= IGC_RCTL_MPE;
5276 wr32(IGC_RCTL, rctl);
5277 }
5278
5279 ctrl = rd32(IGC_CTRL);
5280 ctrl |= IGC_CTRL_ADVD3WUC;
5281 wr32(IGC_CTRL, ctrl);
5282
5283 /* Allow time for pending master requests to run */
5284 igc_disable_pcie_master(hw);
5285
5286 wr32(IGC_WUC, IGC_WUC_PME_EN);
5287 wr32(IGC_WUFC, wufc);
5288 } else {
5289 wr32(IGC_WUC, 0);
5290 wr32(IGC_WUFC, 0);
5291 }
5292
5293 wake = wufc || adapter->en_mng_pt;
5294 if (!wake)
5295 igc_power_down_phy_copper_base(&adapter->hw);
5296 else
5297 igc_power_up_link(adapter);
5298
5299 if (enable_wake)
5300 *enable_wake = wake;
5301
5302 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5303 * would have already happened in close and is redundant.
5304 */
5305 igc_release_hw_control(adapter);
5306
5307 pci_disable_device(pdev);
5308
5309 return 0;
5310}
5311
5312#ifdef CONFIG_PM
5313static int __maybe_unused igc_runtime_suspend(struct device *dev)
5314{
5315 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5316}
5317
5318static void igc_deliver_wake_packet(struct net_device *netdev)
5319{
5320 struct igc_adapter *adapter = netdev_priv(netdev);
5321 struct igc_hw *hw = &adapter->hw;
5322 struct sk_buff *skb;
5323 u32 wupl;
5324
5325 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5326
5327 /* WUPM stores only the first 128 bytes of the wake packet.
5328 * Read the packet only if we have the whole thing.
5329 */
5330 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5331 return;
5332
5333 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5334 if (!skb)
5335 return;
5336
5337 skb_put(skb, wupl);
5338
5339 /* Ensure reads are 32-bit aligned */
5340 wupl = roundup(wupl, 4);
5341
5342 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5343
5344 skb->protocol = eth_type_trans(skb, netdev);
5345 netif_rx(skb);
5346}
5347
5348static int __maybe_unused igc_resume(struct device *dev)
5349{
5350 struct pci_dev *pdev = to_pci_dev(dev);
5351 struct net_device *netdev = pci_get_drvdata(pdev);
5352 struct igc_adapter *adapter = netdev_priv(netdev);
5353 struct igc_hw *hw = &adapter->hw;
5354 u32 err, val;
5355
5356 pci_set_power_state(pdev, PCI_D0);
5357 pci_restore_state(pdev);
5358 pci_save_state(pdev);
5359
5360 if (!pci_device_is_present(pdev))
5361 return -ENODEV;
5362 err = pci_enable_device_mem(pdev);
5363 if (err) {
5364 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5365 return err;
5366 }
5367 pci_set_master(pdev);
5368
5369 pci_enable_wake(pdev, PCI_D3hot, 0);
5370 pci_enable_wake(pdev, PCI_D3cold, 0);
5371
5372 if (igc_init_interrupt_scheme(adapter, true)) {
5373 netdev_err(netdev, "Unable to allocate memory for queues\n");
5374 return -ENOMEM;
5375 }
5376
5377 igc_reset(adapter);
5378
5379 /* let the f/w know that the h/w is now under the control of the
5380 * driver.
5381 */
5382 igc_get_hw_control(adapter);
5383
5384 val = rd32(IGC_WUS);
5385 if (val & WAKE_PKT_WUS)
5386 igc_deliver_wake_packet(netdev);
5387
5388 wr32(IGC_WUS, ~0);
5389
5390 rtnl_lock();
5391 if (!err && netif_running(netdev))
5392 err = __igc_open(netdev, true);
5393
5394 if (!err)
5395 netif_device_attach(netdev);
5396 rtnl_unlock();
5397
5398 return err;
5399}
5400
5401static int __maybe_unused igc_runtime_resume(struct device *dev)
5402{
5403 return igc_resume(dev);
5404}
5405
5406static int __maybe_unused igc_suspend(struct device *dev)
5407{
5408 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5409}
5410
5411static int __maybe_unused igc_runtime_idle(struct device *dev)
5412{
5413 struct net_device *netdev = dev_get_drvdata(dev);
5414 struct igc_adapter *adapter = netdev_priv(netdev);
5415
5416 if (!igc_has_link(adapter))
5417 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5418
5419 return -EBUSY;
5420}
5421#endif /* CONFIG_PM */
5422
5423static void igc_shutdown(struct pci_dev *pdev)
5424{
5425 bool wake;
5426
5427 __igc_shutdown(pdev, &wake, 0);
5428
5429 if (system_state == SYSTEM_POWER_OFF) {
5430 pci_wake_from_d3(pdev, wake);
5431 pci_set_power_state(pdev, PCI_D3hot);
5432 }
5433}
5434
5435/**
5436 * igc_io_error_detected - called when PCI error is detected
5437 * @pdev: Pointer to PCI device
5438 * @state: The current PCI connection state
5439 *
5440 * This function is called after a PCI bus error affecting
5441 * this device has been detected.
5442 **/
5443static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5444 pci_channel_state_t state)
5445{
5446 struct net_device *netdev = pci_get_drvdata(pdev);
5447 struct igc_adapter *adapter = netdev_priv(netdev);
5448
5449 netif_device_detach(netdev);
5450
5451 if (state == pci_channel_io_perm_failure)
5452 return PCI_ERS_RESULT_DISCONNECT;
5453
5454 if (netif_running(netdev))
5455 igc_down(adapter);
5456 pci_disable_device(pdev);
5457
5458 /* Request a slot reset. */
5459 return PCI_ERS_RESULT_NEED_RESET;
5460}
5461
5462/**
5463 * igc_io_slot_reset - called after the PCI bus has been reset.
5464 * @pdev: Pointer to PCI device
5465 *
5466 * Restart the card from scratch, as if from a cold-boot. Implementation
5467 * resembles the first-half of the igc_resume routine.
5468 **/
5469static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5470{
5471 struct net_device *netdev = pci_get_drvdata(pdev);
5472 struct igc_adapter *adapter = netdev_priv(netdev);
5473 struct igc_hw *hw = &adapter->hw;
5474 pci_ers_result_t result;
5475
5476 if (pci_enable_device_mem(pdev)) {
5477 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5478 result = PCI_ERS_RESULT_DISCONNECT;
5479 } else {
5480 pci_set_master(pdev);
5481 pci_restore_state(pdev);
5482 pci_save_state(pdev);
5483
5484 pci_enable_wake(pdev, PCI_D3hot, 0);
5485 pci_enable_wake(pdev, PCI_D3cold, 0);
5486
5487 /* In case of PCI error, adapter loses its HW address
5488 * so we should re-assign it here.
5489 */
5490 hw->hw_addr = adapter->io_addr;
5491
5492 igc_reset(adapter);
5493 wr32(IGC_WUS, ~0);
5494 result = PCI_ERS_RESULT_RECOVERED;
5495 }
5496
5497 return result;
5498}
5499
5500/**
5501 * igc_io_resume - called when traffic can start to flow again.
5502 * @pdev: Pointer to PCI device
5503 *
5504 * This callback is called when the error recovery driver tells us that
5505 * its OK to resume normal operation. Implementation resembles the
5506 * second-half of the igc_resume routine.
5507 */
5508static void igc_io_resume(struct pci_dev *pdev)
5509{
5510 struct net_device *netdev = pci_get_drvdata(pdev);
5511 struct igc_adapter *adapter = netdev_priv(netdev);
5512
5513 rtnl_lock();
5514 if (netif_running(netdev)) {
5515 if (igc_open(netdev)) {
5516 netdev_err(netdev, "igc_open failed after reset\n");
5517 return;
5518 }
5519 }
5520
5521 netif_device_attach(netdev);
5522
5523 /* let the f/w know that the h/w is now under the control of the
5524 * driver.
5525 */
5526 igc_get_hw_control(adapter);
5527 rtnl_unlock();
5528}
5529
5530static const struct pci_error_handlers igc_err_handler = {
5531 .error_detected = igc_io_error_detected,
5532 .slot_reset = igc_io_slot_reset,
5533 .resume = igc_io_resume,
5534};
5535
5536#ifdef CONFIG_PM
5537static const struct dev_pm_ops igc_pm_ops = {
5538 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5539 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5540 igc_runtime_idle)
5541};
5542#endif
5543
5544static struct pci_driver igc_driver = {
5545 .name = igc_driver_name,
5546 .id_table = igc_pci_tbl,
5547 .probe = igc_probe,
5548 .remove = igc_remove,
5549#ifdef CONFIG_PM
5550 .driver.pm = &igc_pm_ops,
5551#endif
5552 .shutdown = igc_shutdown,
5553 .err_handler = &igc_err_handler,
5554};
5555
5556/**
5557 * igc_reinit_queues - return error
5558 * @adapter: pointer to adapter structure
5559 */
5560int igc_reinit_queues(struct igc_adapter *adapter)
5561{
5562 struct net_device *netdev = adapter->netdev;
5563 int err = 0;
5564
5565 if (netif_running(netdev))
5566 igc_close(netdev);
5567
5568 igc_reset_interrupt_capability(adapter);
5569
5570 if (igc_init_interrupt_scheme(adapter, true)) {
5571 netdev_err(netdev, "Unable to allocate memory for queues\n");
5572 return -ENOMEM;
5573 }
5574
5575 if (netif_running(netdev))
5576 err = igc_open(netdev);
5577
5578 return err;
5579}
5580
5581/**
5582 * igc_get_hw_dev - return device
5583 * @hw: pointer to hardware structure
5584 *
5585 * used by hardware layer to print debugging information
5586 */
5587struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5588{
5589 struct igc_adapter *adapter = hw->back;
5590
5591 return adapter->netdev;
5592}
5593
5594/**
5595 * igc_init_module - Driver Registration Routine
5596 *
5597 * igc_init_module is the first routine called when the driver is
5598 * loaded. All it does is register with the PCI subsystem.
5599 */
5600static int __init igc_init_module(void)
5601{
5602 int ret;
5603
5604 pr_info("%s\n", igc_driver_string);
5605 pr_info("%s\n", igc_copyright);
5606
5607 ret = pci_register_driver(&igc_driver);
5608 return ret;
5609}
5610
5611module_init(igc_init_module);
5612
5613/**
5614 * igc_exit_module - Driver Exit Cleanup Routine
5615 *
5616 * igc_exit_module is called just before the driver is removed
5617 * from memory.
5618 */
5619static void __exit igc_exit_module(void)
5620{
5621 pci_unregister_driver(&igc_driver);
5622}
5623
5624module_exit(igc_exit_module);
5625/* igc_main.c */