Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/tcp.h>
8#include <linux/udp.h>
9#include <linux/ip.h>
10#include <linux/pm_runtime.h>
11#include <net/pkt_sched.h>
12#include <linux/bpf_trace.h>
13#include <net/xdp_sock_drv.h>
14#include <linux/pci.h>
15#include <linux/mdio.h>
16
17#include <net/ipv6.h>
18
19#include "igc.h"
20#include "igc_hw.h"
21#include "igc_tsn.h"
22#include "igc_xdp.h"
23
24#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28#define IGC_XDP_PASS 0
29#define IGC_XDP_CONSUMED BIT(0)
30#define IGC_XDP_TX BIT(1)
31#define IGC_XDP_REDIRECT BIT(2)
32
33static int debug = -1;
34
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37module_param(debug, int, 0);
38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40char igc_driver_name[] = "igc";
41static const char igc_driver_string[] = DRV_SUMMARY;
42static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47};
48
49static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68};
69
70MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77};
78
79void igc_reset(struct igc_adapter *adapter)
80{
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126}
127
128/**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
132static void igc_power_up_link(struct igc_adapter *adapter)
133{
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139}
140
141/**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
149static void igc_release_hw_control(struct igc_adapter *adapter)
150{
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161}
162
163/**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
171static void igc_get_hw_control(struct igc_adapter *adapter)
172{
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180}
181
182static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183{
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188}
189
190/**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
194static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195{
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267}
268
269/**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
275void igc_free_tx_resources(struct igc_ring *tx_ring)
276{
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290}
291
292/**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
298static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299{
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304}
305
306/**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
310static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311{
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317}
318
319static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320{
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329}
330
331/**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
335static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336{
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344}
345
346/**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
352int igc_setup_tx_resources(struct igc_ring *tx_ring)
353{
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382}
383
384/**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
390static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391{
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406}
407
408static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409{
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441}
442
443static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444{
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456}
457
458/**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
462static void igc_clean_rx_ring(struct igc_ring *ring)
463{
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474}
475
476/**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
480static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481{
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487}
488
489/**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
495void igc_free_rx_resources(struct igc_ring *rx_ring)
496{
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512}
513
514/**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
520static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521{
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526}
527
528/**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
534int igc_setup_rx_resources(struct igc_ring *rx_ring)
535{
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581}
582
583/**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
590static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591{
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606}
607
608static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610{
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616}
617
618/**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
625static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627{
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702}
703
704/**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
710static void igc_configure_rx(struct igc_adapter *adapter)
711{
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719}
720
721/**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
728static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730{
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758}
759
760/**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
766static void igc_configure_tx(struct igc_adapter *adapter)
767{
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772}
773
774/**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
778static void igc_setup_mrqc(struct igc_adapter *adapter)
779{
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829}
830
831/**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
835static void igc_setup_rctl(struct igc_adapter *adapter)
836{
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876}
877
878/**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
882static void igc_setup_tctl(struct igc_adapter *adapter)
883{
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900}
901
902/**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
912static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915{
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943}
944
945/**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
950static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951{
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962}
963
964/* Set default MAC address for the PF in the first RAR entry */
965static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966{
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973}
974
975/**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
982static int igc_set_mac(struct net_device *netdev, void *p)
983{
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998}
999
1000/**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
1009static int igc_write_mc_addr_list(struct net_device *netdev)
1010{
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036}
1037
1038static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040{
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082}
1083
1084static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087{
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1100 buffer->skb = skb;
1101 buffer->protocol = 0;
1102 buffer->bytecount = skb->len;
1103 buffer->gso_segs = 1;
1104 buffer->time_stamp = jiffies;
1105 dma_unmap_len_set(buffer, len, skb->len);
1106 dma_unmap_addr_set(buffer, dma, dma);
1107
1108 return 0;
1109}
1110
1111static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 struct sk_buff *skb,
1113 struct igc_tx_buffer *first)
1114{
1115 union igc_adv_tx_desc *desc;
1116 u32 cmd_type, olinfo_status;
1117 int err;
1118
1119 if (!igc_desc_unused(ring))
1120 return -EBUSY;
1121
1122 err = igc_init_empty_frame(ring, first, skb);
1123 if (err)
1124 return err;
1125
1126 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 first->bytecount;
1129 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130
1131 desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135
1136 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137
1138 first->next_to_watch = desc;
1139
1140 ring->next_to_use++;
1141 if (ring->next_to_use == ring->count)
1142 ring->next_to_use = 0;
1143
1144 return 0;
1145}
1146
1147#define IGC_EMPTY_FRAME_SIZE 60
1148
1149static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 __le32 launch_time, bool first_flag,
1151 u32 vlan_macip_lens, u32 type_tucmd,
1152 u32 mss_l4len_idx)
1153{
1154 struct igc_adv_tx_context_desc *context_desc;
1155 u16 i = tx_ring->next_to_use;
1156
1157 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158
1159 i++;
1160 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161
1162 /* set bits to identify this as an advanced context descriptor */
1163 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164
1165 /* For i225, context index must be unique per ring. */
1166 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 mss_l4len_idx |= tx_ring->reg_idx << 4;
1168
1169 if (first_flag)
1170 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171
1172 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1173 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1174 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1175 context_desc->launch_time = launch_time;
1176}
1177
1178static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 __le32 launch_time, bool first_flag)
1180{
1181 struct sk_buff *skb = first->skb;
1182 u32 vlan_macip_lens = 0;
1183 u32 type_tucmd = 0;
1184
1185 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186csum_failed:
1187 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 !tx_ring->launchtime_enable)
1189 return;
1190 goto no_csum;
1191 }
1192
1193 switch (skb->csum_offset) {
1194 case offsetof(struct tcphdr, check):
1195 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 fallthrough;
1197 case offsetof(struct udphdr, check):
1198 break;
1199 case offsetof(struct sctphdr, checksum):
1200 /* validate that this is actually an SCTP request */
1201 if (skb_csum_is_sctp(skb)) {
1202 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 break;
1204 }
1205 fallthrough;
1206 default:
1207 skb_checksum_help(skb);
1208 goto csum_failed;
1209 }
1210
1211 /* update TX checksum flag */
1212 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 skb_network_offset(skb);
1215no_csum:
1216 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218
1219 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 vlan_macip_lens, type_tucmd, 0);
1221}
1222
1223static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224{
1225 struct net_device *netdev = tx_ring->netdev;
1226
1227 netif_stop_subqueue(netdev, tx_ring->queue_index);
1228
1229 /* memory barriier comment */
1230 smp_mb();
1231
1232 /* We need to check again in a case another CPU has just
1233 * made room available.
1234 */
1235 if (igc_desc_unused(tx_ring) < size)
1236 return -EBUSY;
1237
1238 /* A reprieve! */
1239 netif_wake_subqueue(netdev, tx_ring->queue_index);
1240
1241 u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 tx_ring->tx_stats.restart_queue2++;
1243 u64_stats_update_end(&tx_ring->tx_syncp2);
1244
1245 return 0;
1246}
1247
1248static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249{
1250 if (igc_desc_unused(tx_ring) >= size)
1251 return 0;
1252 return __igc_maybe_stop_tx(tx_ring, size);
1253}
1254
1255#define IGC_SET_FLAG(_input, _flag, _result) \
1256 (((_flag) <= (_result)) ? \
1257 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1258 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259
1260static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261{
1262 /* set type for advanced descriptor with frame checksum insertion */
1263 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 IGC_ADVTXD_DCMD_DEXT |
1265 IGC_ADVTXD_DCMD_IFCS;
1266
1267 /* set HW vlan bit if vlan is present */
1268 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 IGC_ADVTXD_DCMD_VLE);
1270
1271 /* set segmentation bits for TSO */
1272 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 (IGC_ADVTXD_DCMD_TSE));
1274
1275 /* set timestamp bit if present, will select the register set
1276 * based on the _TSTAMP(_X) bit.
1277 */
1278 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1279 (IGC_ADVTXD_MAC_TSTAMP));
1280
1281 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1282 (IGC_ADVTXD_TSTAMP_REG_1));
1283
1284 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1285 (IGC_ADVTXD_TSTAMP_REG_2));
1286
1287 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1288 (IGC_ADVTXD_TSTAMP_REG_3));
1289
1290 /* insert frame checksum */
1291 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1292
1293 return cmd_type;
1294}
1295
1296static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1297 union igc_adv_tx_desc *tx_desc,
1298 u32 tx_flags, unsigned int paylen)
1299{
1300 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1301
1302 /* insert L4 checksum */
1303 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1304 (IGC_TXD_POPTS_TXSM << 8));
1305
1306 /* insert IPv4 checksum */
1307 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1308 (IGC_TXD_POPTS_IXSM << 8));
1309
1310 /* Use the second timer (free running, in general) for the timestamp */
1311 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1312 IGC_TXD_PTP2_TIMER_1);
1313
1314 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1315}
1316
1317static int igc_tx_map(struct igc_ring *tx_ring,
1318 struct igc_tx_buffer *first,
1319 const u8 hdr_len)
1320{
1321 struct sk_buff *skb = first->skb;
1322 struct igc_tx_buffer *tx_buffer;
1323 union igc_adv_tx_desc *tx_desc;
1324 u32 tx_flags = first->tx_flags;
1325 skb_frag_t *frag;
1326 u16 i = tx_ring->next_to_use;
1327 unsigned int data_len, size;
1328 dma_addr_t dma;
1329 u32 cmd_type;
1330
1331 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1332 tx_desc = IGC_TX_DESC(tx_ring, i);
1333
1334 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1335
1336 size = skb_headlen(skb);
1337 data_len = skb->data_len;
1338
1339 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1340
1341 tx_buffer = first;
1342
1343 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1344 if (dma_mapping_error(tx_ring->dev, dma))
1345 goto dma_error;
1346
1347 /* record length, and DMA address */
1348 dma_unmap_len_set(tx_buffer, len, size);
1349 dma_unmap_addr_set(tx_buffer, dma, dma);
1350
1351 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1352
1353 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1354 tx_desc->read.cmd_type_len =
1355 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1356
1357 i++;
1358 tx_desc++;
1359 if (i == tx_ring->count) {
1360 tx_desc = IGC_TX_DESC(tx_ring, 0);
1361 i = 0;
1362 }
1363 tx_desc->read.olinfo_status = 0;
1364
1365 dma += IGC_MAX_DATA_PER_TXD;
1366 size -= IGC_MAX_DATA_PER_TXD;
1367
1368 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1369 }
1370
1371 if (likely(!data_len))
1372 break;
1373
1374 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1375
1376 i++;
1377 tx_desc++;
1378 if (i == tx_ring->count) {
1379 tx_desc = IGC_TX_DESC(tx_ring, 0);
1380 i = 0;
1381 }
1382 tx_desc->read.olinfo_status = 0;
1383
1384 size = skb_frag_size(frag);
1385 data_len -= size;
1386
1387 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1388 size, DMA_TO_DEVICE);
1389
1390 tx_buffer = &tx_ring->tx_buffer_info[i];
1391 }
1392
1393 /* write last descriptor with RS and EOP bits */
1394 cmd_type |= size | IGC_TXD_DCMD;
1395 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1396
1397 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1398
1399 /* set the timestamp */
1400 first->time_stamp = jiffies;
1401
1402 skb_tx_timestamp(skb);
1403
1404 /* Force memory writes to complete before letting h/w know there
1405 * are new descriptors to fetch. (Only applicable for weak-ordered
1406 * memory model archs, such as IA-64).
1407 *
1408 * We also need this memory barrier to make certain all of the
1409 * status bits have been updated before next_to_watch is written.
1410 */
1411 wmb();
1412
1413 /* set next_to_watch value indicating a packet is present */
1414 first->next_to_watch = tx_desc;
1415
1416 i++;
1417 if (i == tx_ring->count)
1418 i = 0;
1419
1420 tx_ring->next_to_use = i;
1421
1422 /* Make sure there is space in the ring for the next send. */
1423 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1424
1425 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1426 writel(i, tx_ring->tail);
1427 }
1428
1429 return 0;
1430dma_error:
1431 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1432 tx_buffer = &tx_ring->tx_buffer_info[i];
1433
1434 /* clear dma mappings for failed tx_buffer_info map */
1435 while (tx_buffer != first) {
1436 if (dma_unmap_len(tx_buffer, len))
1437 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1438
1439 if (i-- == 0)
1440 i += tx_ring->count;
1441 tx_buffer = &tx_ring->tx_buffer_info[i];
1442 }
1443
1444 if (dma_unmap_len(tx_buffer, len))
1445 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1446
1447 dev_kfree_skb_any(tx_buffer->skb);
1448 tx_buffer->skb = NULL;
1449
1450 tx_ring->next_to_use = i;
1451
1452 return -1;
1453}
1454
1455static int igc_tso(struct igc_ring *tx_ring,
1456 struct igc_tx_buffer *first,
1457 __le32 launch_time, bool first_flag,
1458 u8 *hdr_len)
1459{
1460 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1461 struct sk_buff *skb = first->skb;
1462 union {
1463 struct iphdr *v4;
1464 struct ipv6hdr *v6;
1465 unsigned char *hdr;
1466 } ip;
1467 union {
1468 struct tcphdr *tcp;
1469 struct udphdr *udp;
1470 unsigned char *hdr;
1471 } l4;
1472 u32 paylen, l4_offset;
1473 int err;
1474
1475 if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 return 0;
1477
1478 if (!skb_is_gso(skb))
1479 return 0;
1480
1481 err = skb_cow_head(skb, 0);
1482 if (err < 0)
1483 return err;
1484
1485 ip.hdr = skb_network_header(skb);
1486 l4.hdr = skb_checksum_start(skb);
1487
1488 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1489 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1490
1491 /* initialize outer IP header fields */
1492 if (ip.v4->version == 4) {
1493 unsigned char *csum_start = skb_checksum_start(skb);
1494 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1495
1496 /* IP header will have to cancel out any data that
1497 * is not a part of the outer IP header
1498 */
1499 ip.v4->check = csum_fold(csum_partial(trans_start,
1500 csum_start - trans_start,
1501 0));
1502 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1503
1504 ip.v4->tot_len = 0;
1505 first->tx_flags |= IGC_TX_FLAGS_TSO |
1506 IGC_TX_FLAGS_CSUM |
1507 IGC_TX_FLAGS_IPV4;
1508 } else {
1509 ip.v6->payload_len = 0;
1510 first->tx_flags |= IGC_TX_FLAGS_TSO |
1511 IGC_TX_FLAGS_CSUM;
1512 }
1513
1514 /* determine offset of inner transport header */
1515 l4_offset = l4.hdr - skb->data;
1516
1517 /* remove payload length from inner checksum */
1518 paylen = skb->len - l4_offset;
1519 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1520 /* compute length of segmentation header */
1521 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1522 csum_replace_by_diff(&l4.tcp->check,
1523 (__force __wsum)htonl(paylen));
1524 } else {
1525 /* compute length of segmentation header */
1526 *hdr_len = sizeof(*l4.udp) + l4_offset;
1527 csum_replace_by_diff(&l4.udp->check,
1528 (__force __wsum)htonl(paylen));
1529 }
1530
1531 /* update gso size and bytecount with header size */
1532 first->gso_segs = skb_shinfo(skb)->gso_segs;
1533 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1534
1535 /* MSS L4LEN IDX */
1536 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1537 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1538
1539 /* VLAN MACLEN IPLEN */
1540 vlan_macip_lens = l4.hdr - ip.hdr;
1541 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1542 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1543
1544 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1545 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1546
1547 return 1;
1548}
1549
1550static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1551{
1552 int i;
1553
1554 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1555 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1556
1557 if (tstamp->skb)
1558 continue;
1559
1560 tstamp->skb = skb_get(skb);
1561 tstamp->start = jiffies;
1562 *flags = tstamp->flags;
1563
1564 return true;
1565 }
1566
1567 return false;
1568}
1569
1570static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1571 struct igc_ring *tx_ring)
1572{
1573 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1574 bool first_flag = false, insert_empty = false;
1575 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1576 __be16 protocol = vlan_get_protocol(skb);
1577 struct igc_tx_buffer *first;
1578 __le32 launch_time = 0;
1579 u32 tx_flags = 0;
1580 unsigned short f;
1581 ktime_t txtime;
1582 u8 hdr_len = 0;
1583 int tso = 0;
1584
1585 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1586 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1587 * + 2 desc gap to keep tail from touching head,
1588 * + 1 desc for context descriptor,
1589 * otherwise try next time
1590 */
1591 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1592 count += TXD_USE_COUNT(skb_frag_size(
1593 &skb_shinfo(skb)->frags[f]));
1594
1595 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1596 /* this is a hard error */
1597 return NETDEV_TX_BUSY;
1598 }
1599
1600 if (!tx_ring->launchtime_enable)
1601 goto done;
1602
1603 txtime = skb->tstamp;
1604 skb->tstamp = ktime_set(0, 0);
1605 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1606
1607 if (insert_empty) {
1608 struct igc_tx_buffer *empty_info;
1609 struct sk_buff *empty;
1610 void *data;
1611
1612 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1613 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1614 if (!empty)
1615 goto done;
1616
1617 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1618 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1619
1620 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1621
1622 if (igc_init_tx_empty_descriptor(tx_ring,
1623 empty,
1624 empty_info) < 0)
1625 dev_kfree_skb_any(empty);
1626 }
1627
1628done:
1629 /* record the location of the first descriptor for this packet */
1630 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1631 first->type = IGC_TX_BUFFER_TYPE_SKB;
1632 first->skb = skb;
1633 first->bytecount = skb->len;
1634 first->gso_segs = 1;
1635
1636 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1637 goto out_drop;
1638
1639 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1640 adapter->stats.txdrop++;
1641 goto out_drop;
1642 }
1643
1644 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1645 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1646 unsigned long flags;
1647 u32 tstamp_flags;
1648
1649 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1650 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1651 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1652 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1653 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1654 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1655 } else {
1656 adapter->tx_hwtstamp_skipped++;
1657 }
1658
1659 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1660 }
1661
1662 if (skb_vlan_tag_present(skb)) {
1663 tx_flags |= IGC_TX_FLAGS_VLAN;
1664 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1665 }
1666
1667 /* record initial flags and protocol */
1668 first->tx_flags = tx_flags;
1669 first->protocol = protocol;
1670
1671 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1672 if (tso < 0)
1673 goto out_drop;
1674 else if (!tso)
1675 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1676
1677 igc_tx_map(tx_ring, first, hdr_len);
1678
1679 return NETDEV_TX_OK;
1680
1681out_drop:
1682 dev_kfree_skb_any(first->skb);
1683 first->skb = NULL;
1684
1685 return NETDEV_TX_OK;
1686}
1687
1688static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1689 struct sk_buff *skb)
1690{
1691 unsigned int r_idx = skb->queue_mapping;
1692
1693 if (r_idx >= adapter->num_tx_queues)
1694 r_idx = r_idx % adapter->num_tx_queues;
1695
1696 return adapter->tx_ring[r_idx];
1697}
1698
1699static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1700 struct net_device *netdev)
1701{
1702 struct igc_adapter *adapter = netdev_priv(netdev);
1703
1704 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1705 * in order to meet this minimum size requirement.
1706 */
1707 if (skb->len < 17) {
1708 if (skb_padto(skb, 17))
1709 return NETDEV_TX_OK;
1710 skb->len = 17;
1711 }
1712
1713 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1714}
1715
1716static void igc_rx_checksum(struct igc_ring *ring,
1717 union igc_adv_rx_desc *rx_desc,
1718 struct sk_buff *skb)
1719{
1720 skb_checksum_none_assert(skb);
1721
1722 /* Ignore Checksum bit is set */
1723 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1724 return;
1725
1726 /* Rx checksum disabled via ethtool */
1727 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1728 return;
1729
1730 /* TCP/UDP checksum error bit is set */
1731 if (igc_test_staterr(rx_desc,
1732 IGC_RXDEXT_STATERR_L4E |
1733 IGC_RXDEXT_STATERR_IPE)) {
1734 /* work around errata with sctp packets where the TCPE aka
1735 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1736 * packets (aka let the stack check the crc32c)
1737 */
1738 if (!(skb->len == 60 &&
1739 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1740 u64_stats_update_begin(&ring->rx_syncp);
1741 ring->rx_stats.csum_err++;
1742 u64_stats_update_end(&ring->rx_syncp);
1743 }
1744 /* let the stack verify checksum errors */
1745 return;
1746 }
1747 /* It must be a TCP or UDP packet with a valid checksum */
1748 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1749 IGC_RXD_STAT_UDPCS))
1750 skb->ip_summed = CHECKSUM_UNNECESSARY;
1751
1752 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1753 le32_to_cpu(rx_desc->wb.upper.status_error));
1754}
1755
1756/* Mapping HW RSS Type to enum pkt_hash_types */
1757static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1758 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1759 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1760 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1761 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1762 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1763 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1764 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1765 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1766 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1767 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1769 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1770 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1771 [13] = PKT_HASH_TYPE_NONE,
1772 [14] = PKT_HASH_TYPE_NONE,
1773 [15] = PKT_HASH_TYPE_NONE,
1774};
1775
1776static inline void igc_rx_hash(struct igc_ring *ring,
1777 union igc_adv_rx_desc *rx_desc,
1778 struct sk_buff *skb)
1779{
1780 if (ring->netdev->features & NETIF_F_RXHASH) {
1781 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1782 u32 rss_type = igc_rss_type(rx_desc);
1783
1784 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1785 }
1786}
1787
1788static void igc_rx_vlan(struct igc_ring *rx_ring,
1789 union igc_adv_rx_desc *rx_desc,
1790 struct sk_buff *skb)
1791{
1792 struct net_device *dev = rx_ring->netdev;
1793 u16 vid;
1794
1795 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1796 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1797 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1798 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1799 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1800 else
1801 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1802
1803 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1804 }
1805}
1806
1807/**
1808 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1809 * @rx_ring: rx descriptor ring packet is being transacted on
1810 * @rx_desc: pointer to the EOP Rx descriptor
1811 * @skb: pointer to current skb being populated
1812 *
1813 * This function checks the ring, descriptor, and packet information in order
1814 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1815 * skb.
1816 */
1817static void igc_process_skb_fields(struct igc_ring *rx_ring,
1818 union igc_adv_rx_desc *rx_desc,
1819 struct sk_buff *skb)
1820{
1821 igc_rx_hash(rx_ring, rx_desc, skb);
1822
1823 igc_rx_checksum(rx_ring, rx_desc, skb);
1824
1825 igc_rx_vlan(rx_ring, rx_desc, skb);
1826
1827 skb_record_rx_queue(skb, rx_ring->queue_index);
1828
1829 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830}
1831
1832static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1833{
1834 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1835 struct igc_adapter *adapter = netdev_priv(netdev);
1836 struct igc_hw *hw = &adapter->hw;
1837 u32 ctrl;
1838
1839 ctrl = rd32(IGC_CTRL);
1840
1841 if (enable) {
1842 /* enable VLAN tag insert/strip */
1843 ctrl |= IGC_CTRL_VME;
1844 } else {
1845 /* disable VLAN tag insert/strip */
1846 ctrl &= ~IGC_CTRL_VME;
1847 }
1848 wr32(IGC_CTRL, ctrl);
1849}
1850
1851static void igc_restore_vlan(struct igc_adapter *adapter)
1852{
1853 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1854}
1855
1856static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1857 const unsigned int size,
1858 int *rx_buffer_pgcnt)
1859{
1860 struct igc_rx_buffer *rx_buffer;
1861
1862 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1863 *rx_buffer_pgcnt =
1864#if (PAGE_SIZE < 8192)
1865 page_count(rx_buffer->page);
1866#else
1867 0;
1868#endif
1869 prefetchw(rx_buffer->page);
1870
1871 /* we are reusing so sync this buffer for CPU use */
1872 dma_sync_single_range_for_cpu(rx_ring->dev,
1873 rx_buffer->dma,
1874 rx_buffer->page_offset,
1875 size,
1876 DMA_FROM_DEVICE);
1877
1878 rx_buffer->pagecnt_bias--;
1879
1880 return rx_buffer;
1881}
1882
1883static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1884 unsigned int truesize)
1885{
1886#if (PAGE_SIZE < 8192)
1887 buffer->page_offset ^= truesize;
1888#else
1889 buffer->page_offset += truesize;
1890#endif
1891}
1892
1893static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1894 unsigned int size)
1895{
1896 unsigned int truesize;
1897
1898#if (PAGE_SIZE < 8192)
1899 truesize = igc_rx_pg_size(ring) / 2;
1900#else
1901 truesize = ring_uses_build_skb(ring) ?
1902 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1903 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1904 SKB_DATA_ALIGN(size);
1905#endif
1906 return truesize;
1907}
1908
1909/**
1910 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1911 * @rx_ring: rx descriptor ring to transact packets on
1912 * @rx_buffer: buffer containing page to add
1913 * @skb: sk_buff to place the data into
1914 * @size: size of buffer to be added
1915 *
1916 * This function will add the data contained in rx_buffer->page to the skb.
1917 */
1918static void igc_add_rx_frag(struct igc_ring *rx_ring,
1919 struct igc_rx_buffer *rx_buffer,
1920 struct sk_buff *skb,
1921 unsigned int size)
1922{
1923 unsigned int truesize;
1924
1925#if (PAGE_SIZE < 8192)
1926 truesize = igc_rx_pg_size(rx_ring) / 2;
1927#else
1928 truesize = ring_uses_build_skb(rx_ring) ?
1929 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 SKB_DATA_ALIGN(size);
1931#endif
1932 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 rx_buffer->page_offset, size, truesize);
1934
1935 igc_rx_buffer_flip(rx_buffer, truesize);
1936}
1937
1938static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1939 struct igc_rx_buffer *rx_buffer,
1940 struct xdp_buff *xdp)
1941{
1942 unsigned int size = xdp->data_end - xdp->data;
1943 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1944 unsigned int metasize = xdp->data - xdp->data_meta;
1945 struct sk_buff *skb;
1946
1947 /* prefetch first cache line of first page */
1948 net_prefetch(xdp->data_meta);
1949
1950 /* build an skb around the page buffer */
1951 skb = napi_build_skb(xdp->data_hard_start, truesize);
1952 if (unlikely(!skb))
1953 return NULL;
1954
1955 /* update pointers within the skb to store the data */
1956 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1957 __skb_put(skb, size);
1958 if (metasize)
1959 skb_metadata_set(skb, metasize);
1960
1961 igc_rx_buffer_flip(rx_buffer, truesize);
1962 return skb;
1963}
1964
1965static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1966 struct igc_rx_buffer *rx_buffer,
1967 struct igc_xdp_buff *ctx)
1968{
1969 struct xdp_buff *xdp = &ctx->xdp;
1970 unsigned int metasize = xdp->data - xdp->data_meta;
1971 unsigned int size = xdp->data_end - xdp->data;
1972 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1973 void *va = xdp->data;
1974 unsigned int headlen;
1975 struct sk_buff *skb;
1976
1977 /* prefetch first cache line of first page */
1978 net_prefetch(xdp->data_meta);
1979
1980 /* allocate a skb to store the frags */
1981 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1982 IGC_RX_HDR_LEN + metasize);
1983 if (unlikely(!skb))
1984 return NULL;
1985
1986 if (ctx->rx_ts) {
1987 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1988 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1989 }
1990
1991 /* Determine available headroom for copy */
1992 headlen = size;
1993 if (headlen > IGC_RX_HDR_LEN)
1994 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1995
1996 /* align pull length to size of long to optimize memcpy performance */
1997 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1998 ALIGN(headlen + metasize, sizeof(long)));
1999
2000 if (metasize) {
2001 skb_metadata_set(skb, metasize);
2002 __skb_pull(skb, metasize);
2003 }
2004
2005 /* update all of the pointers */
2006 size -= headlen;
2007 if (size) {
2008 skb_add_rx_frag(skb, 0, rx_buffer->page,
2009 (va + headlen) - page_address(rx_buffer->page),
2010 size, truesize);
2011 igc_rx_buffer_flip(rx_buffer, truesize);
2012 } else {
2013 rx_buffer->pagecnt_bias++;
2014 }
2015
2016 return skb;
2017}
2018
2019/**
2020 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2021 * @rx_ring: rx descriptor ring to store buffers on
2022 * @old_buff: donor buffer to have page reused
2023 *
2024 * Synchronizes page for reuse by the adapter
2025 */
2026static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2027 struct igc_rx_buffer *old_buff)
2028{
2029 u16 nta = rx_ring->next_to_alloc;
2030 struct igc_rx_buffer *new_buff;
2031
2032 new_buff = &rx_ring->rx_buffer_info[nta];
2033
2034 /* update, and store next to alloc */
2035 nta++;
2036 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2037
2038 /* Transfer page from old buffer to new buffer.
2039 * Move each member individually to avoid possible store
2040 * forwarding stalls.
2041 */
2042 new_buff->dma = old_buff->dma;
2043 new_buff->page = old_buff->page;
2044 new_buff->page_offset = old_buff->page_offset;
2045 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2046}
2047
2048static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2049 int rx_buffer_pgcnt)
2050{
2051 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2052 struct page *page = rx_buffer->page;
2053
2054 /* avoid re-using remote and pfmemalloc pages */
2055 if (!dev_page_is_reusable(page))
2056 return false;
2057
2058#if (PAGE_SIZE < 8192)
2059 /* if we are only owner of page we can reuse it */
2060 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2061 return false;
2062#else
2063#define IGC_LAST_OFFSET \
2064 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2065
2066 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2067 return false;
2068#endif
2069
2070 /* If we have drained the page fragment pool we need to update
2071 * the pagecnt_bias and page count so that we fully restock the
2072 * number of references the driver holds.
2073 */
2074 if (unlikely(pagecnt_bias == 1)) {
2075 page_ref_add(page, USHRT_MAX - 1);
2076 rx_buffer->pagecnt_bias = USHRT_MAX;
2077 }
2078
2079 return true;
2080}
2081
2082/**
2083 * igc_is_non_eop - process handling of non-EOP buffers
2084 * @rx_ring: Rx ring being processed
2085 * @rx_desc: Rx descriptor for current buffer
2086 *
2087 * This function updates next to clean. If the buffer is an EOP buffer
2088 * this function exits returning false, otherwise it will place the
2089 * sk_buff in the next buffer to be chained and return true indicating
2090 * that this is in fact a non-EOP buffer.
2091 */
2092static bool igc_is_non_eop(struct igc_ring *rx_ring,
2093 union igc_adv_rx_desc *rx_desc)
2094{
2095 u32 ntc = rx_ring->next_to_clean + 1;
2096
2097 /* fetch, update, and store next to clean */
2098 ntc = (ntc < rx_ring->count) ? ntc : 0;
2099 rx_ring->next_to_clean = ntc;
2100
2101 prefetch(IGC_RX_DESC(rx_ring, ntc));
2102
2103 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2104 return false;
2105
2106 return true;
2107}
2108
2109/**
2110 * igc_cleanup_headers - Correct corrupted or empty headers
2111 * @rx_ring: rx descriptor ring packet is being transacted on
2112 * @rx_desc: pointer to the EOP Rx descriptor
2113 * @skb: pointer to current skb being fixed
2114 *
2115 * Address the case where we are pulling data in on pages only
2116 * and as such no data is present in the skb header.
2117 *
2118 * In addition if skb is not at least 60 bytes we need to pad it so that
2119 * it is large enough to qualify as a valid Ethernet frame.
2120 *
2121 * Returns true if an error was encountered and skb was freed.
2122 */
2123static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2124 union igc_adv_rx_desc *rx_desc,
2125 struct sk_buff *skb)
2126{
2127 /* XDP packets use error pointer so abort at this point */
2128 if (IS_ERR(skb))
2129 return true;
2130
2131 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2132 struct net_device *netdev = rx_ring->netdev;
2133
2134 if (!(netdev->features & NETIF_F_RXALL)) {
2135 dev_kfree_skb_any(skb);
2136 return true;
2137 }
2138 }
2139
2140 /* if eth_skb_pad returns an error the skb was freed */
2141 if (eth_skb_pad(skb))
2142 return true;
2143
2144 return false;
2145}
2146
2147static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2148 struct igc_rx_buffer *rx_buffer,
2149 int rx_buffer_pgcnt)
2150{
2151 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2152 /* hand second half of page back to the ring */
2153 igc_reuse_rx_page(rx_ring, rx_buffer);
2154 } else {
2155 /* We are not reusing the buffer so unmap it and free
2156 * any references we are holding to it
2157 */
2158 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2160 IGC_RX_DMA_ATTR);
2161 __page_frag_cache_drain(rx_buffer->page,
2162 rx_buffer->pagecnt_bias);
2163 }
2164
2165 /* clear contents of rx_buffer */
2166 rx_buffer->page = NULL;
2167}
2168
2169static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2170{
2171 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2172
2173 if (ring_uses_build_skb(rx_ring))
2174 return IGC_SKB_PAD;
2175 if (igc_xdp_is_enabled(adapter))
2176 return XDP_PACKET_HEADROOM;
2177
2178 return 0;
2179}
2180
2181static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2182 struct igc_rx_buffer *bi)
2183{
2184 struct page *page = bi->page;
2185 dma_addr_t dma;
2186
2187 /* since we are recycling buffers we should seldom need to alloc */
2188 if (likely(page))
2189 return true;
2190
2191 /* alloc new page for storage */
2192 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2193 if (unlikely(!page)) {
2194 rx_ring->rx_stats.alloc_failed++;
2195 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2196 return false;
2197 }
2198
2199 /* map page for use */
2200 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2201 igc_rx_pg_size(rx_ring),
2202 DMA_FROM_DEVICE,
2203 IGC_RX_DMA_ATTR);
2204
2205 /* if mapping failed free memory back to system since
2206 * there isn't much point in holding memory we can't use
2207 */
2208 if (dma_mapping_error(rx_ring->dev, dma)) {
2209 __free_page(page);
2210
2211 rx_ring->rx_stats.alloc_failed++;
2212 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2213 return false;
2214 }
2215
2216 bi->dma = dma;
2217 bi->page = page;
2218 bi->page_offset = igc_rx_offset(rx_ring);
2219 page_ref_add(page, USHRT_MAX - 1);
2220 bi->pagecnt_bias = USHRT_MAX;
2221
2222 return true;
2223}
2224
2225/**
2226 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2227 * @rx_ring: rx descriptor ring
2228 * @cleaned_count: number of buffers to clean
2229 */
2230static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2231{
2232 union igc_adv_rx_desc *rx_desc;
2233 u16 i = rx_ring->next_to_use;
2234 struct igc_rx_buffer *bi;
2235 u16 bufsz;
2236
2237 /* nothing to do */
2238 if (!cleaned_count)
2239 return;
2240
2241 rx_desc = IGC_RX_DESC(rx_ring, i);
2242 bi = &rx_ring->rx_buffer_info[i];
2243 i -= rx_ring->count;
2244
2245 bufsz = igc_rx_bufsz(rx_ring);
2246
2247 do {
2248 if (!igc_alloc_mapped_page(rx_ring, bi))
2249 break;
2250
2251 /* sync the buffer for use by the device */
2252 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2253 bi->page_offset, bufsz,
2254 DMA_FROM_DEVICE);
2255
2256 /* Refresh the desc even if buffer_addrs didn't change
2257 * because each write-back erases this info.
2258 */
2259 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2260
2261 rx_desc++;
2262 bi++;
2263 i++;
2264 if (unlikely(!i)) {
2265 rx_desc = IGC_RX_DESC(rx_ring, 0);
2266 bi = rx_ring->rx_buffer_info;
2267 i -= rx_ring->count;
2268 }
2269
2270 /* clear the length for the next_to_use descriptor */
2271 rx_desc->wb.upper.length = 0;
2272
2273 cleaned_count--;
2274 } while (cleaned_count);
2275
2276 i += rx_ring->count;
2277
2278 if (rx_ring->next_to_use != i) {
2279 /* record the next descriptor to use */
2280 rx_ring->next_to_use = i;
2281
2282 /* update next to alloc since we have filled the ring */
2283 rx_ring->next_to_alloc = i;
2284
2285 /* Force memory writes to complete before letting h/w
2286 * know there are new descriptors to fetch. (Only
2287 * applicable for weak-ordered memory model archs,
2288 * such as IA-64).
2289 */
2290 wmb();
2291 writel(i, rx_ring->tail);
2292 }
2293}
2294
2295static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2296{
2297 union igc_adv_rx_desc *desc;
2298 u16 i = ring->next_to_use;
2299 struct igc_rx_buffer *bi;
2300 dma_addr_t dma;
2301 bool ok = true;
2302
2303 if (!count)
2304 return ok;
2305
2306 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2307
2308 desc = IGC_RX_DESC(ring, i);
2309 bi = &ring->rx_buffer_info[i];
2310 i -= ring->count;
2311
2312 do {
2313 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2314 if (!bi->xdp) {
2315 ok = false;
2316 break;
2317 }
2318
2319 dma = xsk_buff_xdp_get_dma(bi->xdp);
2320 desc->read.pkt_addr = cpu_to_le64(dma);
2321
2322 desc++;
2323 bi++;
2324 i++;
2325 if (unlikely(!i)) {
2326 desc = IGC_RX_DESC(ring, 0);
2327 bi = ring->rx_buffer_info;
2328 i -= ring->count;
2329 }
2330
2331 /* Clear the length for the next_to_use descriptor. */
2332 desc->wb.upper.length = 0;
2333
2334 count--;
2335 } while (count);
2336
2337 i += ring->count;
2338
2339 if (ring->next_to_use != i) {
2340 ring->next_to_use = i;
2341
2342 /* Force memory writes to complete before letting h/w
2343 * know there are new descriptors to fetch. (Only
2344 * applicable for weak-ordered memory model archs,
2345 * such as IA-64).
2346 */
2347 wmb();
2348 writel(i, ring->tail);
2349 }
2350
2351 return ok;
2352}
2353
2354/* This function requires __netif_tx_lock is held by the caller. */
2355static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2356 struct xdp_frame *xdpf)
2357{
2358 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2359 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2360 u16 count, index = ring->next_to_use;
2361 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2362 struct igc_tx_buffer *buffer = head;
2363 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2364 u32 olinfo_status, len = xdpf->len, cmd_type;
2365 void *data = xdpf->data;
2366 u16 i;
2367
2368 count = TXD_USE_COUNT(len);
2369 for (i = 0; i < nr_frags; i++)
2370 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2371
2372 if (igc_maybe_stop_tx(ring, count + 3)) {
2373 /* this is a hard error */
2374 return -EBUSY;
2375 }
2376
2377 i = 0;
2378 head->bytecount = xdp_get_frame_len(xdpf);
2379 head->type = IGC_TX_BUFFER_TYPE_XDP;
2380 head->gso_segs = 1;
2381 head->xdpf = xdpf;
2382
2383 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2384 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2385
2386 for (;;) {
2387 dma_addr_t dma;
2388
2389 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2390 if (dma_mapping_error(ring->dev, dma)) {
2391 netdev_err_once(ring->netdev,
2392 "Failed to map DMA for TX\n");
2393 goto unmap;
2394 }
2395
2396 dma_unmap_len_set(buffer, len, len);
2397 dma_unmap_addr_set(buffer, dma, dma);
2398
2399 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2400 IGC_ADVTXD_DCMD_IFCS | len;
2401
2402 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2403 desc->read.buffer_addr = cpu_to_le64(dma);
2404
2405 buffer->protocol = 0;
2406
2407 if (++index == ring->count)
2408 index = 0;
2409
2410 if (i == nr_frags)
2411 break;
2412
2413 buffer = &ring->tx_buffer_info[index];
2414 desc = IGC_TX_DESC(ring, index);
2415 desc->read.olinfo_status = 0;
2416
2417 data = skb_frag_address(&sinfo->frags[i]);
2418 len = skb_frag_size(&sinfo->frags[i]);
2419 i++;
2420 }
2421 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2422
2423 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2424 /* set the timestamp */
2425 head->time_stamp = jiffies;
2426 /* set next_to_watch value indicating a packet is present */
2427 head->next_to_watch = desc;
2428 ring->next_to_use = index;
2429
2430 return 0;
2431
2432unmap:
2433 for (;;) {
2434 buffer = &ring->tx_buffer_info[index];
2435 if (dma_unmap_len(buffer, len))
2436 dma_unmap_page(ring->dev,
2437 dma_unmap_addr(buffer, dma),
2438 dma_unmap_len(buffer, len),
2439 DMA_TO_DEVICE);
2440 dma_unmap_len_set(buffer, len, 0);
2441 if (buffer == head)
2442 break;
2443
2444 if (!index)
2445 index += ring->count;
2446 index--;
2447 }
2448
2449 return -ENOMEM;
2450}
2451
2452static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2453 int cpu)
2454{
2455 int index = cpu;
2456
2457 if (unlikely(index < 0))
2458 index = 0;
2459
2460 while (index >= adapter->num_tx_queues)
2461 index -= adapter->num_tx_queues;
2462
2463 return adapter->tx_ring[index];
2464}
2465
2466static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2467{
2468 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2469 int cpu = smp_processor_id();
2470 struct netdev_queue *nq;
2471 struct igc_ring *ring;
2472 int res;
2473
2474 if (unlikely(!xdpf))
2475 return -EFAULT;
2476
2477 ring = igc_xdp_get_tx_ring(adapter, cpu);
2478 nq = txring_txq(ring);
2479
2480 __netif_tx_lock(nq, cpu);
2481 /* Avoid transmit queue timeout since we share it with the slow path */
2482 txq_trans_cond_update(nq);
2483 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2484 __netif_tx_unlock(nq);
2485 return res;
2486}
2487
2488/* This function assumes rcu_read_lock() is held by the caller. */
2489static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2490 struct bpf_prog *prog,
2491 struct xdp_buff *xdp)
2492{
2493 u32 act = bpf_prog_run_xdp(prog, xdp);
2494
2495 switch (act) {
2496 case XDP_PASS:
2497 return IGC_XDP_PASS;
2498 case XDP_TX:
2499 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2500 goto out_failure;
2501 return IGC_XDP_TX;
2502 case XDP_REDIRECT:
2503 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2504 goto out_failure;
2505 return IGC_XDP_REDIRECT;
2506 break;
2507 default:
2508 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2509 fallthrough;
2510 case XDP_ABORTED:
2511out_failure:
2512 trace_xdp_exception(adapter->netdev, prog, act);
2513 fallthrough;
2514 case XDP_DROP:
2515 return IGC_XDP_CONSUMED;
2516 }
2517}
2518
2519static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2520 struct xdp_buff *xdp)
2521{
2522 struct bpf_prog *prog;
2523 int res;
2524
2525 prog = READ_ONCE(adapter->xdp_prog);
2526 if (!prog) {
2527 res = IGC_XDP_PASS;
2528 goto out;
2529 }
2530
2531 res = __igc_xdp_run_prog(adapter, prog, xdp);
2532
2533out:
2534 return ERR_PTR(-res);
2535}
2536
2537/* This function assumes __netif_tx_lock is held by the caller. */
2538static void igc_flush_tx_descriptors(struct igc_ring *ring)
2539{
2540 /* Once tail pointer is updated, hardware can fetch the descriptors
2541 * any time so we issue a write membar here to ensure all memory
2542 * writes are complete before the tail pointer is updated.
2543 */
2544 wmb();
2545 writel(ring->next_to_use, ring->tail);
2546}
2547
2548static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2549{
2550 int cpu = smp_processor_id();
2551 struct netdev_queue *nq;
2552 struct igc_ring *ring;
2553
2554 if (status & IGC_XDP_TX) {
2555 ring = igc_xdp_get_tx_ring(adapter, cpu);
2556 nq = txring_txq(ring);
2557
2558 __netif_tx_lock(nq, cpu);
2559 igc_flush_tx_descriptors(ring);
2560 __netif_tx_unlock(nq);
2561 }
2562
2563 if (status & IGC_XDP_REDIRECT)
2564 xdp_do_flush();
2565}
2566
2567static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2568 unsigned int packets, unsigned int bytes)
2569{
2570 struct igc_ring *ring = q_vector->rx.ring;
2571
2572 u64_stats_update_begin(&ring->rx_syncp);
2573 ring->rx_stats.packets += packets;
2574 ring->rx_stats.bytes += bytes;
2575 u64_stats_update_end(&ring->rx_syncp);
2576
2577 q_vector->rx.total_packets += packets;
2578 q_vector->rx.total_bytes += bytes;
2579}
2580
2581static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2582{
2583 unsigned int total_bytes = 0, total_packets = 0;
2584 struct igc_adapter *adapter = q_vector->adapter;
2585 struct igc_ring *rx_ring = q_vector->rx.ring;
2586 struct sk_buff *skb = rx_ring->skb;
2587 u16 cleaned_count = igc_desc_unused(rx_ring);
2588 int xdp_status = 0, rx_buffer_pgcnt;
2589
2590 while (likely(total_packets < budget)) {
2591 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2592 struct igc_rx_buffer *rx_buffer;
2593 union igc_adv_rx_desc *rx_desc;
2594 unsigned int size, truesize;
2595 int pkt_offset = 0;
2596 void *pktbuf;
2597
2598 /* return some buffers to hardware, one at a time is too slow */
2599 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2600 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2601 cleaned_count = 0;
2602 }
2603
2604 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2605 size = le16_to_cpu(rx_desc->wb.upper.length);
2606 if (!size)
2607 break;
2608
2609 /* This memory barrier is needed to keep us from reading
2610 * any other fields out of the rx_desc until we know the
2611 * descriptor has been written back
2612 */
2613 dma_rmb();
2614
2615 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2616 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2617
2618 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2619
2620 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2621 ctx.rx_ts = pktbuf;
2622 pkt_offset = IGC_TS_HDR_LEN;
2623 size -= IGC_TS_HDR_LEN;
2624 }
2625
2626 if (!skb) {
2627 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2628 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2629 igc_rx_offset(rx_ring) + pkt_offset,
2630 size, true);
2631 xdp_buff_clear_frags_flag(&ctx.xdp);
2632 ctx.rx_desc = rx_desc;
2633
2634 skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2635 }
2636
2637 if (IS_ERR(skb)) {
2638 unsigned int xdp_res = -PTR_ERR(skb);
2639
2640 switch (xdp_res) {
2641 case IGC_XDP_CONSUMED:
2642 rx_buffer->pagecnt_bias++;
2643 break;
2644 case IGC_XDP_TX:
2645 case IGC_XDP_REDIRECT:
2646 igc_rx_buffer_flip(rx_buffer, truesize);
2647 xdp_status |= xdp_res;
2648 break;
2649 }
2650
2651 total_packets++;
2652 total_bytes += size;
2653 } else if (skb)
2654 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2655 else if (ring_uses_build_skb(rx_ring))
2656 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2657 else
2658 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2659
2660 /* exit if we failed to retrieve a buffer */
2661 if (!skb) {
2662 rx_ring->rx_stats.alloc_failed++;
2663 rx_buffer->pagecnt_bias++;
2664 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2665 break;
2666 }
2667
2668 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2669 cleaned_count++;
2670
2671 /* fetch next buffer in frame if non-eop */
2672 if (igc_is_non_eop(rx_ring, rx_desc))
2673 continue;
2674
2675 /* verify the packet layout is correct */
2676 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2677 skb = NULL;
2678 continue;
2679 }
2680
2681 /* probably a little skewed due to removing CRC */
2682 total_bytes += skb->len;
2683
2684 /* populate checksum, VLAN, and protocol */
2685 igc_process_skb_fields(rx_ring, rx_desc, skb);
2686
2687 napi_gro_receive(&q_vector->napi, skb);
2688
2689 /* reset skb pointer */
2690 skb = NULL;
2691
2692 /* update budget accounting */
2693 total_packets++;
2694 }
2695
2696 if (xdp_status)
2697 igc_finalize_xdp(adapter, xdp_status);
2698
2699 /* place incomplete frames back on ring for completion */
2700 rx_ring->skb = skb;
2701
2702 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2703
2704 if (cleaned_count)
2705 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2706
2707 return total_packets;
2708}
2709
2710static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2711 struct igc_xdp_buff *ctx)
2712{
2713 struct xdp_buff *xdp = &ctx->xdp;
2714 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2715 unsigned int metasize = xdp->data - xdp->data_meta;
2716 struct sk_buff *skb;
2717
2718 net_prefetch(xdp->data_meta);
2719
2720 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2721 if (unlikely(!skb))
2722 return NULL;
2723
2724 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2725 ALIGN(totalsize, sizeof(long)));
2726
2727 if (metasize) {
2728 skb_metadata_set(skb, metasize);
2729 __skb_pull(skb, metasize);
2730 }
2731
2732 if (ctx->rx_ts) {
2733 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2734 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2735 }
2736
2737 return skb;
2738}
2739
2740static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2741 union igc_adv_rx_desc *desc,
2742 struct igc_xdp_buff *ctx)
2743{
2744 struct igc_ring *ring = q_vector->rx.ring;
2745 struct sk_buff *skb;
2746
2747 skb = igc_construct_skb_zc(ring, ctx);
2748 if (!skb) {
2749 ring->rx_stats.alloc_failed++;
2750 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2751 return;
2752 }
2753
2754 if (igc_cleanup_headers(ring, desc, skb))
2755 return;
2756
2757 igc_process_skb_fields(ring, desc, skb);
2758 napi_gro_receive(&q_vector->napi, skb);
2759}
2760
2761static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2762{
2763 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2764 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2765 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2766 */
2767 return (struct igc_xdp_buff *)xdp;
2768}
2769
2770static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2771{
2772 struct igc_adapter *adapter = q_vector->adapter;
2773 struct igc_ring *ring = q_vector->rx.ring;
2774 u16 cleaned_count = igc_desc_unused(ring);
2775 int total_bytes = 0, total_packets = 0;
2776 u16 ntc = ring->next_to_clean;
2777 struct bpf_prog *prog;
2778 bool failure = false;
2779 int xdp_status = 0;
2780
2781 rcu_read_lock();
2782
2783 prog = READ_ONCE(adapter->xdp_prog);
2784
2785 while (likely(total_packets < budget)) {
2786 union igc_adv_rx_desc *desc;
2787 struct igc_rx_buffer *bi;
2788 struct igc_xdp_buff *ctx;
2789 unsigned int size;
2790 int res;
2791
2792 desc = IGC_RX_DESC(ring, ntc);
2793 size = le16_to_cpu(desc->wb.upper.length);
2794 if (!size)
2795 break;
2796
2797 /* This memory barrier is needed to keep us from reading
2798 * any other fields out of the rx_desc until we know the
2799 * descriptor has been written back
2800 */
2801 dma_rmb();
2802
2803 bi = &ring->rx_buffer_info[ntc];
2804
2805 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2806 ctx->rx_desc = desc;
2807
2808 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2809 ctx->rx_ts = bi->xdp->data;
2810
2811 bi->xdp->data += IGC_TS_HDR_LEN;
2812
2813 /* HW timestamp has been copied into local variable. Metadata
2814 * length when XDP program is called should be 0.
2815 */
2816 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2817 size -= IGC_TS_HDR_LEN;
2818 } else {
2819 ctx->rx_ts = NULL;
2820 }
2821
2822 bi->xdp->data_end = bi->xdp->data + size;
2823 xsk_buff_dma_sync_for_cpu(bi->xdp);
2824
2825 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2826 switch (res) {
2827 case IGC_XDP_PASS:
2828 igc_dispatch_skb_zc(q_vector, desc, ctx);
2829 fallthrough;
2830 case IGC_XDP_CONSUMED:
2831 xsk_buff_free(bi->xdp);
2832 break;
2833 case IGC_XDP_TX:
2834 case IGC_XDP_REDIRECT:
2835 xdp_status |= res;
2836 break;
2837 }
2838
2839 bi->xdp = NULL;
2840 total_bytes += size;
2841 total_packets++;
2842 cleaned_count++;
2843 ntc++;
2844 if (ntc == ring->count)
2845 ntc = 0;
2846 }
2847
2848 ring->next_to_clean = ntc;
2849 rcu_read_unlock();
2850
2851 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2852 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2853
2854 if (xdp_status)
2855 igc_finalize_xdp(adapter, xdp_status);
2856
2857 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2858
2859 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2860 if (failure || ring->next_to_clean == ring->next_to_use)
2861 xsk_set_rx_need_wakeup(ring->xsk_pool);
2862 else
2863 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2864 return total_packets;
2865 }
2866
2867 return failure ? budget : total_packets;
2868}
2869
2870static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2871 unsigned int packets, unsigned int bytes)
2872{
2873 struct igc_ring *ring = q_vector->tx.ring;
2874
2875 u64_stats_update_begin(&ring->tx_syncp);
2876 ring->tx_stats.bytes += bytes;
2877 ring->tx_stats.packets += packets;
2878 u64_stats_update_end(&ring->tx_syncp);
2879
2880 q_vector->tx.total_bytes += bytes;
2881 q_vector->tx.total_packets += packets;
2882}
2883
2884static void igc_xsk_request_timestamp(void *_priv)
2885{
2886 struct igc_metadata_request *meta_req = _priv;
2887 struct igc_ring *tx_ring = meta_req->tx_ring;
2888 struct igc_tx_timestamp_request *tstamp;
2889 u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2890 struct igc_adapter *adapter;
2891 unsigned long lock_flags;
2892 bool found = false;
2893 int i;
2894
2895 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2896 adapter = netdev_priv(tx_ring->netdev);
2897
2898 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2899
2900 /* Search for available tstamp regs */
2901 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2902 tstamp = &adapter->tx_tstamp[i];
2903
2904 /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2905 * When tstamp->skb is equal to NULL,
2906 * tstamp->xsk_tx_buffer is equal to NULL as well.
2907 * This condition means that the particular tstamp reg
2908 * is not occupied by other packet.
2909 */
2910 if (!tstamp->skb) {
2911 found = true;
2912 break;
2913 }
2914 }
2915
2916 /* Return if no available tstamp regs */
2917 if (!found) {
2918 adapter->tx_hwtstamp_skipped++;
2919 spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2920 lock_flags);
2921 return;
2922 }
2923
2924 tstamp->start = jiffies;
2925 tstamp->xsk_queue_index = tx_ring->queue_index;
2926 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2927 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2928
2929 /* Hold the transmit completion until timestamp is ready */
2930 meta_req->tx_buffer->xsk_pending_ts = true;
2931
2932 /* Keep the pointer to tx_timestamp, which is located in XDP
2933 * metadata area. It is the location to store the value of
2934 * tx hardware timestamp.
2935 */
2936 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2937
2938 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2939 tx_flags |= tstamp->flags;
2940 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2941 IGC_TX_FLAGS_TSTAMP,
2942 (IGC_ADVTXD_MAC_TSTAMP));
2943 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2944 IGC_TX_FLAGS_TSTAMP_1,
2945 (IGC_ADVTXD_TSTAMP_REG_1));
2946 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2947 IGC_TX_FLAGS_TSTAMP_2,
2948 (IGC_ADVTXD_TSTAMP_REG_2));
2949 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2950 IGC_TX_FLAGS_TSTAMP_3,
2951 (IGC_ADVTXD_TSTAMP_REG_3));
2952
2953 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2954 }
2955}
2956
2957static u64 igc_xsk_fill_timestamp(void *_priv)
2958{
2959 return *(u64 *)_priv;
2960}
2961
2962const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2963 .tmo_request_timestamp = igc_xsk_request_timestamp,
2964 .tmo_fill_timestamp = igc_xsk_fill_timestamp,
2965};
2966
2967static void igc_xdp_xmit_zc(struct igc_ring *ring)
2968{
2969 struct xsk_buff_pool *pool = ring->xsk_pool;
2970 struct netdev_queue *nq = txring_txq(ring);
2971 union igc_adv_tx_desc *tx_desc = NULL;
2972 int cpu = smp_processor_id();
2973 struct xdp_desc xdp_desc;
2974 u16 budget, ntu;
2975
2976 if (!netif_carrier_ok(ring->netdev))
2977 return;
2978
2979 __netif_tx_lock(nq, cpu);
2980
2981 /* Avoid transmit queue timeout since we share it with the slow path */
2982 txq_trans_cond_update(nq);
2983
2984 ntu = ring->next_to_use;
2985 budget = igc_desc_unused(ring);
2986
2987 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2988 struct igc_metadata_request meta_req;
2989 struct xsk_tx_metadata *meta = NULL;
2990 struct igc_tx_buffer *bi;
2991 u32 olinfo_status;
2992 dma_addr_t dma;
2993
2994 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2995 IGC_ADVTXD_DCMD_DEXT |
2996 IGC_ADVTXD_DCMD_IFCS |
2997 IGC_TXD_DCMD | xdp_desc.len;
2998 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2999
3000 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3001 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3002 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3003 bi = &ring->tx_buffer_info[ntu];
3004
3005 meta_req.tx_ring = ring;
3006 meta_req.tx_buffer = bi;
3007 meta_req.meta = meta;
3008 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3009 &meta_req);
3010
3011 tx_desc = IGC_TX_DESC(ring, ntu);
3012 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3013 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3014 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3015
3016 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3017 bi->protocol = 0;
3018 bi->bytecount = xdp_desc.len;
3019 bi->gso_segs = 1;
3020 bi->time_stamp = jiffies;
3021 bi->next_to_watch = tx_desc;
3022
3023 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3024
3025 ntu++;
3026 if (ntu == ring->count)
3027 ntu = 0;
3028 }
3029
3030 ring->next_to_use = ntu;
3031 if (tx_desc) {
3032 igc_flush_tx_descriptors(ring);
3033 xsk_tx_release(pool);
3034 }
3035
3036 __netif_tx_unlock(nq);
3037}
3038
3039/**
3040 * igc_clean_tx_irq - Reclaim resources after transmit completes
3041 * @q_vector: pointer to q_vector containing needed info
3042 * @napi_budget: Used to determine if we are in netpoll
3043 *
3044 * returns true if ring is completely cleaned
3045 */
3046static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3047{
3048 struct igc_adapter *adapter = q_vector->adapter;
3049 unsigned int total_bytes = 0, total_packets = 0;
3050 unsigned int budget = q_vector->tx.work_limit;
3051 struct igc_ring *tx_ring = q_vector->tx.ring;
3052 unsigned int i = tx_ring->next_to_clean;
3053 struct igc_tx_buffer *tx_buffer;
3054 union igc_adv_tx_desc *tx_desc;
3055 u32 xsk_frames = 0;
3056
3057 if (test_bit(__IGC_DOWN, &adapter->state))
3058 return true;
3059
3060 tx_buffer = &tx_ring->tx_buffer_info[i];
3061 tx_desc = IGC_TX_DESC(tx_ring, i);
3062 i -= tx_ring->count;
3063
3064 do {
3065 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3066
3067 /* if next_to_watch is not set then there is no work pending */
3068 if (!eop_desc)
3069 break;
3070
3071 /* prevent any other reads prior to eop_desc */
3072 smp_rmb();
3073
3074 /* if DD is not set pending work has not been completed */
3075 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3076 break;
3077
3078 /* Hold the completions while there's a pending tx hardware
3079 * timestamp request from XDP Tx metadata.
3080 */
3081 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3082 tx_buffer->xsk_pending_ts)
3083 break;
3084
3085 /* clear next_to_watch to prevent false hangs */
3086 tx_buffer->next_to_watch = NULL;
3087
3088 /* update the statistics for this packet */
3089 total_bytes += tx_buffer->bytecount;
3090 total_packets += tx_buffer->gso_segs;
3091
3092 switch (tx_buffer->type) {
3093 case IGC_TX_BUFFER_TYPE_XSK:
3094 xsk_frames++;
3095 break;
3096 case IGC_TX_BUFFER_TYPE_XDP:
3097 xdp_return_frame(tx_buffer->xdpf);
3098 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3099 break;
3100 case IGC_TX_BUFFER_TYPE_SKB:
3101 napi_consume_skb(tx_buffer->skb, napi_budget);
3102 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3103 break;
3104 default:
3105 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3106 break;
3107 }
3108
3109 /* clear last DMA location and unmap remaining buffers */
3110 while (tx_desc != eop_desc) {
3111 tx_buffer++;
3112 tx_desc++;
3113 i++;
3114 if (unlikely(!i)) {
3115 i -= tx_ring->count;
3116 tx_buffer = tx_ring->tx_buffer_info;
3117 tx_desc = IGC_TX_DESC(tx_ring, 0);
3118 }
3119
3120 /* unmap any remaining paged data */
3121 if (dma_unmap_len(tx_buffer, len))
3122 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3123 }
3124
3125 /* move us one more past the eop_desc for start of next pkt */
3126 tx_buffer++;
3127 tx_desc++;
3128 i++;
3129 if (unlikely(!i)) {
3130 i -= tx_ring->count;
3131 tx_buffer = tx_ring->tx_buffer_info;
3132 tx_desc = IGC_TX_DESC(tx_ring, 0);
3133 }
3134
3135 /* issue prefetch for next Tx descriptor */
3136 prefetch(tx_desc);
3137
3138 /* update budget accounting */
3139 budget--;
3140 } while (likely(budget));
3141
3142 netdev_tx_completed_queue(txring_txq(tx_ring),
3143 total_packets, total_bytes);
3144
3145 i += tx_ring->count;
3146 tx_ring->next_to_clean = i;
3147
3148 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3149
3150 if (tx_ring->xsk_pool) {
3151 if (xsk_frames)
3152 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3153 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3154 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3155 igc_xdp_xmit_zc(tx_ring);
3156 }
3157
3158 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3159 struct igc_hw *hw = &adapter->hw;
3160
3161 /* Detect a transmit hang in hardware, this serializes the
3162 * check with the clearing of time_stamp and movement of i
3163 */
3164 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3165 if (tx_buffer->next_to_watch &&
3166 time_after(jiffies, tx_buffer->time_stamp +
3167 (adapter->tx_timeout_factor * HZ)) &&
3168 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3169 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3170 !tx_ring->oper_gate_closed) {
3171 /* detected Tx unit hang */
3172 netdev_err(tx_ring->netdev,
3173 "Detected Tx Unit Hang\n"
3174 " Tx Queue <%d>\n"
3175 " TDH <%x>\n"
3176 " TDT <%x>\n"
3177 " next_to_use <%x>\n"
3178 " next_to_clean <%x>\n"
3179 "buffer_info[next_to_clean]\n"
3180 " time_stamp <%lx>\n"
3181 " next_to_watch <%p>\n"
3182 " jiffies <%lx>\n"
3183 " desc.status <%x>\n",
3184 tx_ring->queue_index,
3185 rd32(IGC_TDH(tx_ring->reg_idx)),
3186 readl(tx_ring->tail),
3187 tx_ring->next_to_use,
3188 tx_ring->next_to_clean,
3189 tx_buffer->time_stamp,
3190 tx_buffer->next_to_watch,
3191 jiffies,
3192 tx_buffer->next_to_watch->wb.status);
3193 netif_stop_subqueue(tx_ring->netdev,
3194 tx_ring->queue_index);
3195
3196 /* we are about to reset, no point in enabling stuff */
3197 return true;
3198 }
3199 }
3200
3201#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3202 if (unlikely(total_packets &&
3203 netif_carrier_ok(tx_ring->netdev) &&
3204 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3205 /* Make sure that anybody stopping the queue after this
3206 * sees the new next_to_clean.
3207 */
3208 smp_mb();
3209 if (__netif_subqueue_stopped(tx_ring->netdev,
3210 tx_ring->queue_index) &&
3211 !(test_bit(__IGC_DOWN, &adapter->state))) {
3212 netif_wake_subqueue(tx_ring->netdev,
3213 tx_ring->queue_index);
3214
3215 u64_stats_update_begin(&tx_ring->tx_syncp);
3216 tx_ring->tx_stats.restart_queue++;
3217 u64_stats_update_end(&tx_ring->tx_syncp);
3218 }
3219 }
3220
3221 return !!budget;
3222}
3223
3224static int igc_find_mac_filter(struct igc_adapter *adapter,
3225 enum igc_mac_filter_type type, const u8 *addr)
3226{
3227 struct igc_hw *hw = &adapter->hw;
3228 int max_entries = hw->mac.rar_entry_count;
3229 u32 ral, rah;
3230 int i;
3231
3232 for (i = 0; i < max_entries; i++) {
3233 ral = rd32(IGC_RAL(i));
3234 rah = rd32(IGC_RAH(i));
3235
3236 if (!(rah & IGC_RAH_AV))
3237 continue;
3238 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3239 continue;
3240 if ((rah & IGC_RAH_RAH_MASK) !=
3241 le16_to_cpup((__le16 *)(addr + 4)))
3242 continue;
3243 if (ral != le32_to_cpup((__le32 *)(addr)))
3244 continue;
3245
3246 return i;
3247 }
3248
3249 return -1;
3250}
3251
3252static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3253{
3254 struct igc_hw *hw = &adapter->hw;
3255 int max_entries = hw->mac.rar_entry_count;
3256 u32 rah;
3257 int i;
3258
3259 for (i = 0; i < max_entries; i++) {
3260 rah = rd32(IGC_RAH(i));
3261
3262 if (!(rah & IGC_RAH_AV))
3263 return i;
3264 }
3265
3266 return -1;
3267}
3268
3269/**
3270 * igc_add_mac_filter() - Add MAC address filter
3271 * @adapter: Pointer to adapter where the filter should be added
3272 * @type: MAC address filter type (source or destination)
3273 * @addr: MAC address
3274 * @queue: If non-negative, queue assignment feature is enabled and frames
3275 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3276 * assignment is disabled.
3277 *
3278 * Return: 0 in case of success, negative errno code otherwise.
3279 */
3280static int igc_add_mac_filter(struct igc_adapter *adapter,
3281 enum igc_mac_filter_type type, const u8 *addr,
3282 int queue)
3283{
3284 struct net_device *dev = adapter->netdev;
3285 int index;
3286
3287 index = igc_find_mac_filter(adapter, type, addr);
3288 if (index >= 0)
3289 goto update_filter;
3290
3291 index = igc_get_avail_mac_filter_slot(adapter);
3292 if (index < 0)
3293 return -ENOSPC;
3294
3295 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3296 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3297 addr, queue);
3298
3299update_filter:
3300 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3301 return 0;
3302}
3303
3304/**
3305 * igc_del_mac_filter() - Delete MAC address filter
3306 * @adapter: Pointer to adapter where the filter should be deleted from
3307 * @type: MAC address filter type (source or destination)
3308 * @addr: MAC address
3309 */
3310static void igc_del_mac_filter(struct igc_adapter *adapter,
3311 enum igc_mac_filter_type type, const u8 *addr)
3312{
3313 struct net_device *dev = adapter->netdev;
3314 int index;
3315
3316 index = igc_find_mac_filter(adapter, type, addr);
3317 if (index < 0)
3318 return;
3319
3320 if (index == 0) {
3321 /* If this is the default filter, we don't actually delete it.
3322 * We just reset to its default value i.e. disable queue
3323 * assignment.
3324 */
3325 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3326
3327 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3328 } else {
3329 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3330 index,
3331 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3332 addr);
3333
3334 igc_clear_mac_filter_hw(adapter, index);
3335 }
3336}
3337
3338/**
3339 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3340 * @adapter: Pointer to adapter where the filter should be added
3341 * @prio: VLAN priority value
3342 * @queue: Queue number which matching frames are assigned to
3343 *
3344 * Return: 0 in case of success, negative errno code otherwise.
3345 */
3346static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3347 int queue)
3348{
3349 struct net_device *dev = adapter->netdev;
3350 struct igc_hw *hw = &adapter->hw;
3351 u32 vlanpqf;
3352
3353 vlanpqf = rd32(IGC_VLANPQF);
3354
3355 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3356 netdev_dbg(dev, "VLAN priority filter already in use\n");
3357 return -EEXIST;
3358 }
3359
3360 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3361 vlanpqf |= IGC_VLANPQF_VALID(prio);
3362
3363 wr32(IGC_VLANPQF, vlanpqf);
3364
3365 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3366 prio, queue);
3367 return 0;
3368}
3369
3370/**
3371 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3372 * @adapter: Pointer to adapter where the filter should be deleted from
3373 * @prio: VLAN priority value
3374 */
3375static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3376{
3377 struct igc_hw *hw = &adapter->hw;
3378 u32 vlanpqf;
3379
3380 vlanpqf = rd32(IGC_VLANPQF);
3381
3382 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3383 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3384
3385 wr32(IGC_VLANPQF, vlanpqf);
3386
3387 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3388 prio);
3389}
3390
3391static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3392{
3393 struct igc_hw *hw = &adapter->hw;
3394 int i;
3395
3396 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3397 u32 etqf = rd32(IGC_ETQF(i));
3398
3399 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3400 return i;
3401 }
3402
3403 return -1;
3404}
3405
3406/**
3407 * igc_add_etype_filter() - Add ethertype filter
3408 * @adapter: Pointer to adapter where the filter should be added
3409 * @etype: Ethertype value
3410 * @queue: If non-negative, queue assignment feature is enabled and frames
3411 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3412 * assignment is disabled.
3413 *
3414 * Return: 0 in case of success, negative errno code otherwise.
3415 */
3416static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3417 int queue)
3418{
3419 struct igc_hw *hw = &adapter->hw;
3420 int index;
3421 u32 etqf;
3422
3423 index = igc_get_avail_etype_filter_slot(adapter);
3424 if (index < 0)
3425 return -ENOSPC;
3426
3427 etqf = rd32(IGC_ETQF(index));
3428
3429 etqf &= ~IGC_ETQF_ETYPE_MASK;
3430 etqf |= etype;
3431
3432 if (queue >= 0) {
3433 etqf &= ~IGC_ETQF_QUEUE_MASK;
3434 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3435 etqf |= IGC_ETQF_QUEUE_ENABLE;
3436 }
3437
3438 etqf |= IGC_ETQF_FILTER_ENABLE;
3439
3440 wr32(IGC_ETQF(index), etqf);
3441
3442 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3443 etype, queue);
3444 return 0;
3445}
3446
3447static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3448{
3449 struct igc_hw *hw = &adapter->hw;
3450 int i;
3451
3452 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3453 u32 etqf = rd32(IGC_ETQF(i));
3454
3455 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3456 return i;
3457 }
3458
3459 return -1;
3460}
3461
3462/**
3463 * igc_del_etype_filter() - Delete ethertype filter
3464 * @adapter: Pointer to adapter where the filter should be deleted from
3465 * @etype: Ethertype value
3466 */
3467static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3468{
3469 struct igc_hw *hw = &adapter->hw;
3470 int index;
3471
3472 index = igc_find_etype_filter(adapter, etype);
3473 if (index < 0)
3474 return;
3475
3476 wr32(IGC_ETQF(index), 0);
3477
3478 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3479 etype);
3480}
3481
3482static int igc_flex_filter_select(struct igc_adapter *adapter,
3483 struct igc_flex_filter *input,
3484 u32 *fhft)
3485{
3486 struct igc_hw *hw = &adapter->hw;
3487 u8 fhft_index;
3488 u32 fhftsl;
3489
3490 if (input->index >= MAX_FLEX_FILTER) {
3491 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3492 return -EINVAL;
3493 }
3494
3495 /* Indirect table select register */
3496 fhftsl = rd32(IGC_FHFTSL);
3497 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3498 switch (input->index) {
3499 case 0 ... 7:
3500 fhftsl |= 0x00;
3501 break;
3502 case 8 ... 15:
3503 fhftsl |= 0x01;
3504 break;
3505 case 16 ... 23:
3506 fhftsl |= 0x02;
3507 break;
3508 case 24 ... 31:
3509 fhftsl |= 0x03;
3510 break;
3511 }
3512 wr32(IGC_FHFTSL, fhftsl);
3513
3514 /* Normalize index down to host table register */
3515 fhft_index = input->index % 8;
3516
3517 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3518 IGC_FHFT_EXT(fhft_index - 4);
3519
3520 return 0;
3521}
3522
3523static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3524 struct igc_flex_filter *input)
3525{
3526 struct igc_hw *hw = &adapter->hw;
3527 u8 *data = input->data;
3528 u8 *mask = input->mask;
3529 u32 queuing;
3530 u32 fhft;
3531 u32 wufc;
3532 int ret;
3533 int i;
3534
3535 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3536 * out early to avoid surprises later.
3537 */
3538 if (input->length % 8 != 0) {
3539 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3540 return -EINVAL;
3541 }
3542
3543 /* Select corresponding flex filter register and get base for host table. */
3544 ret = igc_flex_filter_select(adapter, input, &fhft);
3545 if (ret)
3546 return ret;
3547
3548 /* When adding a filter globally disable flex filter feature. That is
3549 * recommended within the datasheet.
3550 */
3551 wufc = rd32(IGC_WUFC);
3552 wufc &= ~IGC_WUFC_FLEX_HQ;
3553 wr32(IGC_WUFC, wufc);
3554
3555 /* Configure filter */
3556 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3557 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3558 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3559
3560 if (input->immediate_irq)
3561 queuing |= IGC_FHFT_IMM_INT;
3562
3563 if (input->drop)
3564 queuing |= IGC_FHFT_DROP;
3565
3566 wr32(fhft + 0xFC, queuing);
3567
3568 /* Write data (128 byte) and mask (128 bit) */
3569 for (i = 0; i < 16; ++i) {
3570 const size_t data_idx = i * 8;
3571 const size_t row_idx = i * 16;
3572 u32 dw0 =
3573 (data[data_idx + 0] << 0) |
3574 (data[data_idx + 1] << 8) |
3575 (data[data_idx + 2] << 16) |
3576 (data[data_idx + 3] << 24);
3577 u32 dw1 =
3578 (data[data_idx + 4] << 0) |
3579 (data[data_idx + 5] << 8) |
3580 (data[data_idx + 6] << 16) |
3581 (data[data_idx + 7] << 24);
3582 u32 tmp;
3583
3584 /* Write row: dw0, dw1 and mask */
3585 wr32(fhft + row_idx, dw0);
3586 wr32(fhft + row_idx + 4, dw1);
3587
3588 /* mask is only valid for MASK(7, 0) */
3589 tmp = rd32(fhft + row_idx + 8);
3590 tmp &= ~GENMASK(7, 0);
3591 tmp |= mask[i];
3592 wr32(fhft + row_idx + 8, tmp);
3593 }
3594
3595 /* Enable filter. */
3596 wufc |= IGC_WUFC_FLEX_HQ;
3597 if (input->index > 8) {
3598 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3599 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3600
3601 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3602
3603 wr32(IGC_WUFC_EXT, wufc_ext);
3604 } else {
3605 wufc |= (IGC_WUFC_FLX0 << input->index);
3606 }
3607 wr32(IGC_WUFC, wufc);
3608
3609 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3610 input->index);
3611
3612 return 0;
3613}
3614
3615static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3616 const void *src, unsigned int offset,
3617 size_t len, const void *mask)
3618{
3619 int i;
3620
3621 /* data */
3622 memcpy(&flex->data[offset], src, len);
3623
3624 /* mask */
3625 for (i = 0; i < len; ++i) {
3626 const unsigned int idx = i + offset;
3627 const u8 *ptr = mask;
3628
3629 if (mask) {
3630 if (ptr[i] & 0xff)
3631 flex->mask[idx / 8] |= BIT(idx % 8);
3632
3633 continue;
3634 }
3635
3636 flex->mask[idx / 8] |= BIT(idx % 8);
3637 }
3638}
3639
3640static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3641{
3642 struct igc_hw *hw = &adapter->hw;
3643 u32 wufc, wufc_ext;
3644 int i;
3645
3646 wufc = rd32(IGC_WUFC);
3647 wufc_ext = rd32(IGC_WUFC_EXT);
3648
3649 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3650 if (i < 8) {
3651 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3652 return i;
3653 } else {
3654 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3655 return i;
3656 }
3657 }
3658
3659 return -ENOSPC;
3660}
3661
3662static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3663{
3664 struct igc_hw *hw = &adapter->hw;
3665 u32 wufc, wufc_ext;
3666
3667 wufc = rd32(IGC_WUFC);
3668 wufc_ext = rd32(IGC_WUFC_EXT);
3669
3670 if (wufc & IGC_WUFC_FILTER_MASK)
3671 return true;
3672
3673 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3674 return true;
3675
3676 return false;
3677}
3678
3679static int igc_add_flex_filter(struct igc_adapter *adapter,
3680 struct igc_nfc_rule *rule)
3681{
3682 struct igc_nfc_filter *filter = &rule->filter;
3683 unsigned int eth_offset, user_offset;
3684 struct igc_flex_filter flex = { };
3685 int ret, index;
3686 bool vlan;
3687
3688 index = igc_find_avail_flex_filter_slot(adapter);
3689 if (index < 0)
3690 return -ENOSPC;
3691
3692 /* Construct the flex filter:
3693 * -> dest_mac [6]
3694 * -> src_mac [6]
3695 * -> tpid [2]
3696 * -> vlan tci [2]
3697 * -> ether type [2]
3698 * -> user data [8]
3699 * -> = 26 bytes => 32 length
3700 */
3701 flex.index = index;
3702 flex.length = 32;
3703 flex.rx_queue = rule->action;
3704
3705 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3706 eth_offset = vlan ? 16 : 12;
3707 user_offset = vlan ? 18 : 14;
3708
3709 /* Add destination MAC */
3710 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3711 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3712 ETH_ALEN, NULL);
3713
3714 /* Add source MAC */
3715 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3716 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3717 ETH_ALEN, NULL);
3718
3719 /* Add VLAN etype */
3720 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3721 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3722
3723 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3724 sizeof(vlan_etype), NULL);
3725 }
3726
3727 /* Add VLAN TCI */
3728 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3729 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3730 sizeof(filter->vlan_tci), NULL);
3731
3732 /* Add Ether type */
3733 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3734 __be16 etype = cpu_to_be16(filter->etype);
3735
3736 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3737 sizeof(etype), NULL);
3738 }
3739
3740 /* Add user data */
3741 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3742 igc_flex_filter_add_field(&flex, &filter->user_data,
3743 user_offset,
3744 sizeof(filter->user_data),
3745 filter->user_mask);
3746
3747 /* Add it down to the hardware and enable it. */
3748 ret = igc_write_flex_filter_ll(adapter, &flex);
3749 if (ret)
3750 return ret;
3751
3752 filter->flex_index = index;
3753
3754 return 0;
3755}
3756
3757static void igc_del_flex_filter(struct igc_adapter *adapter,
3758 u16 reg_index)
3759{
3760 struct igc_hw *hw = &adapter->hw;
3761 u32 wufc;
3762
3763 /* Just disable the filter. The filter table itself is kept
3764 * intact. Another flex_filter_add() should override the "old" data
3765 * then.
3766 */
3767 if (reg_index > 8) {
3768 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3769
3770 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3771 wr32(IGC_WUFC_EXT, wufc_ext);
3772 } else {
3773 wufc = rd32(IGC_WUFC);
3774
3775 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3776 wr32(IGC_WUFC, wufc);
3777 }
3778
3779 if (igc_flex_filter_in_use(adapter))
3780 return;
3781
3782 /* No filters are in use, we may disable flex filters */
3783 wufc = rd32(IGC_WUFC);
3784 wufc &= ~IGC_WUFC_FLEX_HQ;
3785 wr32(IGC_WUFC, wufc);
3786}
3787
3788static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3789 struct igc_nfc_rule *rule)
3790{
3791 int err;
3792
3793 if (rule->flex) {
3794 return igc_add_flex_filter(adapter, rule);
3795 }
3796
3797 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3798 err = igc_add_etype_filter(adapter, rule->filter.etype,
3799 rule->action);
3800 if (err)
3801 return err;
3802 }
3803
3804 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3805 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3806 rule->filter.src_addr, rule->action);
3807 if (err)
3808 return err;
3809 }
3810
3811 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3812 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3813 rule->filter.dst_addr, rule->action);
3814 if (err)
3815 return err;
3816 }
3817
3818 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3819 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3820
3821 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3822 if (err)
3823 return err;
3824 }
3825
3826 return 0;
3827}
3828
3829static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3830 const struct igc_nfc_rule *rule)
3831{
3832 if (rule->flex) {
3833 igc_del_flex_filter(adapter, rule->filter.flex_index);
3834 return;
3835 }
3836
3837 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3838 igc_del_etype_filter(adapter, rule->filter.etype);
3839
3840 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3841 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3842
3843 igc_del_vlan_prio_filter(adapter, prio);
3844 }
3845
3846 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3847 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3848 rule->filter.src_addr);
3849
3850 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3851 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3852 rule->filter.dst_addr);
3853}
3854
3855/**
3856 * igc_get_nfc_rule() - Get NFC rule
3857 * @adapter: Pointer to adapter
3858 * @location: Rule location
3859 *
3860 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3861 *
3862 * Return: Pointer to NFC rule at @location. If not found, NULL.
3863 */
3864struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3865 u32 location)
3866{
3867 struct igc_nfc_rule *rule;
3868
3869 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3870 if (rule->location == location)
3871 return rule;
3872 if (rule->location > location)
3873 break;
3874 }
3875
3876 return NULL;
3877}
3878
3879/**
3880 * igc_del_nfc_rule() - Delete NFC rule
3881 * @adapter: Pointer to adapter
3882 * @rule: Pointer to rule to be deleted
3883 *
3884 * Disable NFC rule in hardware and delete it from adapter.
3885 *
3886 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3887 */
3888void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3889{
3890 igc_disable_nfc_rule(adapter, rule);
3891
3892 list_del(&rule->list);
3893 adapter->nfc_rule_count--;
3894
3895 kfree(rule);
3896}
3897
3898static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3899{
3900 struct igc_nfc_rule *rule, *tmp;
3901
3902 mutex_lock(&adapter->nfc_rule_lock);
3903
3904 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3905 igc_del_nfc_rule(adapter, rule);
3906
3907 mutex_unlock(&adapter->nfc_rule_lock);
3908}
3909
3910/**
3911 * igc_add_nfc_rule() - Add NFC rule
3912 * @adapter: Pointer to adapter
3913 * @rule: Pointer to rule to be added
3914 *
3915 * Enable NFC rule in hardware and add it to adapter.
3916 *
3917 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3918 *
3919 * Return: 0 on success, negative errno on failure.
3920 */
3921int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3922{
3923 struct igc_nfc_rule *pred, *cur;
3924 int err;
3925
3926 err = igc_enable_nfc_rule(adapter, rule);
3927 if (err)
3928 return err;
3929
3930 pred = NULL;
3931 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3932 if (cur->location >= rule->location)
3933 break;
3934 pred = cur;
3935 }
3936
3937 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3938 adapter->nfc_rule_count++;
3939 return 0;
3940}
3941
3942static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3943{
3944 struct igc_nfc_rule *rule;
3945
3946 mutex_lock(&adapter->nfc_rule_lock);
3947
3948 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3949 igc_enable_nfc_rule(adapter, rule);
3950
3951 mutex_unlock(&adapter->nfc_rule_lock);
3952}
3953
3954static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3955{
3956 struct igc_adapter *adapter = netdev_priv(netdev);
3957
3958 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3959}
3960
3961static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3962{
3963 struct igc_adapter *adapter = netdev_priv(netdev);
3964
3965 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3966 return 0;
3967}
3968
3969/**
3970 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3971 * @netdev: network interface device structure
3972 *
3973 * The set_rx_mode entry point is called whenever the unicast or multicast
3974 * address lists or the network interface flags are updated. This routine is
3975 * responsible for configuring the hardware for proper unicast, multicast,
3976 * promiscuous mode, and all-multi behavior.
3977 */
3978static void igc_set_rx_mode(struct net_device *netdev)
3979{
3980 struct igc_adapter *adapter = netdev_priv(netdev);
3981 struct igc_hw *hw = &adapter->hw;
3982 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3983 int count;
3984
3985 /* Check for Promiscuous and All Multicast modes */
3986 if (netdev->flags & IFF_PROMISC) {
3987 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3988 } else {
3989 if (netdev->flags & IFF_ALLMULTI) {
3990 rctl |= IGC_RCTL_MPE;
3991 } else {
3992 /* Write addresses to the MTA, if the attempt fails
3993 * then we should just turn on promiscuous mode so
3994 * that we can at least receive multicast traffic
3995 */
3996 count = igc_write_mc_addr_list(netdev);
3997 if (count < 0)
3998 rctl |= IGC_RCTL_MPE;
3999 }
4000 }
4001
4002 /* Write addresses to available RAR registers, if there is not
4003 * sufficient space to store all the addresses then enable
4004 * unicast promiscuous mode
4005 */
4006 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4007 rctl |= IGC_RCTL_UPE;
4008
4009 /* update state of unicast and multicast */
4010 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4011 wr32(IGC_RCTL, rctl);
4012
4013#if (PAGE_SIZE < 8192)
4014 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4015 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4016#endif
4017 wr32(IGC_RLPML, rlpml);
4018}
4019
4020/**
4021 * igc_configure - configure the hardware for RX and TX
4022 * @adapter: private board structure
4023 */
4024static void igc_configure(struct igc_adapter *adapter)
4025{
4026 struct net_device *netdev = adapter->netdev;
4027 int i = 0;
4028
4029 igc_get_hw_control(adapter);
4030 igc_set_rx_mode(netdev);
4031
4032 igc_restore_vlan(adapter);
4033
4034 igc_setup_tctl(adapter);
4035 igc_setup_mrqc(adapter);
4036 igc_setup_rctl(adapter);
4037
4038 igc_set_default_mac_filter(adapter);
4039 igc_restore_nfc_rules(adapter);
4040
4041 igc_configure_tx(adapter);
4042 igc_configure_rx(adapter);
4043
4044 igc_rx_fifo_flush_base(&adapter->hw);
4045
4046 /* call igc_desc_unused which always leaves
4047 * at least 1 descriptor unused to make sure
4048 * next_to_use != next_to_clean
4049 */
4050 for (i = 0; i < adapter->num_rx_queues; i++) {
4051 struct igc_ring *ring = adapter->rx_ring[i];
4052
4053 if (ring->xsk_pool)
4054 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4055 else
4056 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4057 }
4058}
4059
4060/**
4061 * igc_write_ivar - configure ivar for given MSI-X vector
4062 * @hw: pointer to the HW structure
4063 * @msix_vector: vector number we are allocating to a given ring
4064 * @index: row index of IVAR register to write within IVAR table
4065 * @offset: column offset of in IVAR, should be multiple of 8
4066 *
4067 * The IVAR table consists of 2 columns,
4068 * each containing an cause allocation for an Rx and Tx ring, and a
4069 * variable number of rows depending on the number of queues supported.
4070 */
4071static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4072 int index, int offset)
4073{
4074 u32 ivar = array_rd32(IGC_IVAR0, index);
4075
4076 /* clear any bits that are currently set */
4077 ivar &= ~((u32)0xFF << offset);
4078
4079 /* write vector and valid bit */
4080 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4081
4082 array_wr32(IGC_IVAR0, index, ivar);
4083}
4084
4085static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4086{
4087 struct igc_adapter *adapter = q_vector->adapter;
4088 struct igc_hw *hw = &adapter->hw;
4089 int rx_queue = IGC_N0_QUEUE;
4090 int tx_queue = IGC_N0_QUEUE;
4091
4092 if (q_vector->rx.ring)
4093 rx_queue = q_vector->rx.ring->reg_idx;
4094 if (q_vector->tx.ring)
4095 tx_queue = q_vector->tx.ring->reg_idx;
4096
4097 switch (hw->mac.type) {
4098 case igc_i225:
4099 if (rx_queue > IGC_N0_QUEUE)
4100 igc_write_ivar(hw, msix_vector,
4101 rx_queue >> 1,
4102 (rx_queue & 0x1) << 4);
4103 if (tx_queue > IGC_N0_QUEUE)
4104 igc_write_ivar(hw, msix_vector,
4105 tx_queue >> 1,
4106 ((tx_queue & 0x1) << 4) + 8);
4107 q_vector->eims_value = BIT(msix_vector);
4108 break;
4109 default:
4110 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4111 break;
4112 }
4113
4114 /* add q_vector eims value to global eims_enable_mask */
4115 adapter->eims_enable_mask |= q_vector->eims_value;
4116
4117 /* configure q_vector to set itr on first interrupt */
4118 q_vector->set_itr = 1;
4119}
4120
4121/**
4122 * igc_configure_msix - Configure MSI-X hardware
4123 * @adapter: Pointer to adapter structure
4124 *
4125 * igc_configure_msix sets up the hardware to properly
4126 * generate MSI-X interrupts.
4127 */
4128static void igc_configure_msix(struct igc_adapter *adapter)
4129{
4130 struct igc_hw *hw = &adapter->hw;
4131 int i, vector = 0;
4132 u32 tmp;
4133
4134 adapter->eims_enable_mask = 0;
4135
4136 /* set vector for other causes, i.e. link changes */
4137 switch (hw->mac.type) {
4138 case igc_i225:
4139 /* Turn on MSI-X capability first, or our settings
4140 * won't stick. And it will take days to debug.
4141 */
4142 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4143 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4144 IGC_GPIE_NSICR);
4145
4146 /* enable msix_other interrupt */
4147 adapter->eims_other = BIT(vector);
4148 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4149
4150 wr32(IGC_IVAR_MISC, tmp);
4151 break;
4152 default:
4153 /* do nothing, since nothing else supports MSI-X */
4154 break;
4155 } /* switch (hw->mac.type) */
4156
4157 adapter->eims_enable_mask |= adapter->eims_other;
4158
4159 for (i = 0; i < adapter->num_q_vectors; i++)
4160 igc_assign_vector(adapter->q_vector[i], vector++);
4161
4162 wrfl();
4163}
4164
4165/**
4166 * igc_irq_enable - Enable default interrupt generation settings
4167 * @adapter: board private structure
4168 */
4169static void igc_irq_enable(struct igc_adapter *adapter)
4170{
4171 struct igc_hw *hw = &adapter->hw;
4172
4173 if (adapter->msix_entries) {
4174 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4175 u32 regval = rd32(IGC_EIAC);
4176
4177 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4178 regval = rd32(IGC_EIAM);
4179 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4180 wr32(IGC_EIMS, adapter->eims_enable_mask);
4181 wr32(IGC_IMS, ims);
4182 } else {
4183 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4184 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4185 }
4186}
4187
4188/**
4189 * igc_irq_disable - Mask off interrupt generation on the NIC
4190 * @adapter: board private structure
4191 */
4192static void igc_irq_disable(struct igc_adapter *adapter)
4193{
4194 struct igc_hw *hw = &adapter->hw;
4195
4196 if (adapter->msix_entries) {
4197 u32 regval = rd32(IGC_EIAM);
4198
4199 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4200 wr32(IGC_EIMC, adapter->eims_enable_mask);
4201 regval = rd32(IGC_EIAC);
4202 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4203 }
4204
4205 wr32(IGC_IAM, 0);
4206 wr32(IGC_IMC, ~0);
4207 wrfl();
4208
4209 if (adapter->msix_entries) {
4210 int vector = 0, i;
4211
4212 synchronize_irq(adapter->msix_entries[vector++].vector);
4213
4214 for (i = 0; i < adapter->num_q_vectors; i++)
4215 synchronize_irq(adapter->msix_entries[vector++].vector);
4216 } else {
4217 synchronize_irq(adapter->pdev->irq);
4218 }
4219}
4220
4221void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4222 const u32 max_rss_queues)
4223{
4224 /* Determine if we need to pair queues. */
4225 /* If rss_queues > half of max_rss_queues, pair the queues in
4226 * order to conserve interrupts due to limited supply.
4227 */
4228 if (adapter->rss_queues > (max_rss_queues / 2))
4229 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4230 else
4231 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4232}
4233
4234unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4235{
4236 return IGC_MAX_RX_QUEUES;
4237}
4238
4239static void igc_init_queue_configuration(struct igc_adapter *adapter)
4240{
4241 u32 max_rss_queues;
4242
4243 max_rss_queues = igc_get_max_rss_queues(adapter);
4244 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4245
4246 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4247}
4248
4249/**
4250 * igc_reset_q_vector - Reset config for interrupt vector
4251 * @adapter: board private structure to initialize
4252 * @v_idx: Index of vector to be reset
4253 *
4254 * If NAPI is enabled it will delete any references to the
4255 * NAPI struct. This is preparation for igc_free_q_vector.
4256 */
4257static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4258{
4259 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4260
4261 /* if we're coming from igc_set_interrupt_capability, the vectors are
4262 * not yet allocated
4263 */
4264 if (!q_vector)
4265 return;
4266
4267 if (q_vector->tx.ring)
4268 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4269
4270 if (q_vector->rx.ring)
4271 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4272
4273 netif_napi_del(&q_vector->napi);
4274}
4275
4276/**
4277 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4278 * @adapter: board private structure to initialize
4279 * @v_idx: Index of vector to be freed
4280 *
4281 * This function frees the memory allocated to the q_vector.
4282 */
4283static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4284{
4285 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4286
4287 adapter->q_vector[v_idx] = NULL;
4288
4289 /* igc_get_stats64() might access the rings on this vector,
4290 * we must wait a grace period before freeing it.
4291 */
4292 if (q_vector)
4293 kfree_rcu(q_vector, rcu);
4294}
4295
4296/**
4297 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4298 * @adapter: board private structure to initialize
4299 *
4300 * This function frees the memory allocated to the q_vectors. In addition if
4301 * NAPI is enabled it will delete any references to the NAPI struct prior
4302 * to freeing the q_vector.
4303 */
4304static void igc_free_q_vectors(struct igc_adapter *adapter)
4305{
4306 int v_idx = adapter->num_q_vectors;
4307
4308 adapter->num_tx_queues = 0;
4309 adapter->num_rx_queues = 0;
4310 adapter->num_q_vectors = 0;
4311
4312 while (v_idx--) {
4313 igc_reset_q_vector(adapter, v_idx);
4314 igc_free_q_vector(adapter, v_idx);
4315 }
4316}
4317
4318/**
4319 * igc_update_itr - update the dynamic ITR value based on statistics
4320 * @q_vector: pointer to q_vector
4321 * @ring_container: ring info to update the itr for
4322 *
4323 * Stores a new ITR value based on packets and byte
4324 * counts during the last interrupt. The advantage of per interrupt
4325 * computation is faster updates and more accurate ITR for the current
4326 * traffic pattern. Constants in this function were computed
4327 * based on theoretical maximum wire speed and thresholds were set based
4328 * on testing data as well as attempting to minimize response time
4329 * while increasing bulk throughput.
4330 * NOTE: These calculations are only valid when operating in a single-
4331 * queue environment.
4332 */
4333static void igc_update_itr(struct igc_q_vector *q_vector,
4334 struct igc_ring_container *ring_container)
4335{
4336 unsigned int packets = ring_container->total_packets;
4337 unsigned int bytes = ring_container->total_bytes;
4338 u8 itrval = ring_container->itr;
4339
4340 /* no packets, exit with status unchanged */
4341 if (packets == 0)
4342 return;
4343
4344 switch (itrval) {
4345 case lowest_latency:
4346 /* handle TSO and jumbo frames */
4347 if (bytes / packets > 8000)
4348 itrval = bulk_latency;
4349 else if ((packets < 5) && (bytes > 512))
4350 itrval = low_latency;
4351 break;
4352 case low_latency: /* 50 usec aka 20000 ints/s */
4353 if (bytes > 10000) {
4354 /* this if handles the TSO accounting */
4355 if (bytes / packets > 8000)
4356 itrval = bulk_latency;
4357 else if ((packets < 10) || ((bytes / packets) > 1200))
4358 itrval = bulk_latency;
4359 else if ((packets > 35))
4360 itrval = lowest_latency;
4361 } else if (bytes / packets > 2000) {
4362 itrval = bulk_latency;
4363 } else if (packets <= 2 && bytes < 512) {
4364 itrval = lowest_latency;
4365 }
4366 break;
4367 case bulk_latency: /* 250 usec aka 4000 ints/s */
4368 if (bytes > 25000) {
4369 if (packets > 35)
4370 itrval = low_latency;
4371 } else if (bytes < 1500) {
4372 itrval = low_latency;
4373 }
4374 break;
4375 }
4376
4377 /* clear work counters since we have the values we need */
4378 ring_container->total_bytes = 0;
4379 ring_container->total_packets = 0;
4380
4381 /* write updated itr to ring container */
4382 ring_container->itr = itrval;
4383}
4384
4385static void igc_set_itr(struct igc_q_vector *q_vector)
4386{
4387 struct igc_adapter *adapter = q_vector->adapter;
4388 u32 new_itr = q_vector->itr_val;
4389 u8 current_itr = 0;
4390
4391 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4392 switch (adapter->link_speed) {
4393 case SPEED_10:
4394 case SPEED_100:
4395 current_itr = 0;
4396 new_itr = IGC_4K_ITR;
4397 goto set_itr_now;
4398 default:
4399 break;
4400 }
4401
4402 igc_update_itr(q_vector, &q_vector->tx);
4403 igc_update_itr(q_vector, &q_vector->rx);
4404
4405 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4406
4407 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4408 if (current_itr == lowest_latency &&
4409 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4410 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4411 current_itr = low_latency;
4412
4413 switch (current_itr) {
4414 /* counts and packets in update_itr are dependent on these numbers */
4415 case lowest_latency:
4416 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4417 break;
4418 case low_latency:
4419 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4420 break;
4421 case bulk_latency:
4422 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4423 break;
4424 default:
4425 break;
4426 }
4427
4428set_itr_now:
4429 if (new_itr != q_vector->itr_val) {
4430 /* this attempts to bias the interrupt rate towards Bulk
4431 * by adding intermediate steps when interrupt rate is
4432 * increasing
4433 */
4434 new_itr = new_itr > q_vector->itr_val ?
4435 max((new_itr * q_vector->itr_val) /
4436 (new_itr + (q_vector->itr_val >> 2)),
4437 new_itr) : new_itr;
4438 /* Don't write the value here; it resets the adapter's
4439 * internal timer, and causes us to delay far longer than
4440 * we should between interrupts. Instead, we write the ITR
4441 * value at the beginning of the next interrupt so the timing
4442 * ends up being correct.
4443 */
4444 q_vector->itr_val = new_itr;
4445 q_vector->set_itr = 1;
4446 }
4447}
4448
4449static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4450{
4451 int v_idx = adapter->num_q_vectors;
4452
4453 if (adapter->msix_entries) {
4454 pci_disable_msix(adapter->pdev);
4455 kfree(adapter->msix_entries);
4456 adapter->msix_entries = NULL;
4457 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4458 pci_disable_msi(adapter->pdev);
4459 }
4460
4461 while (v_idx--)
4462 igc_reset_q_vector(adapter, v_idx);
4463}
4464
4465/**
4466 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4467 * @adapter: Pointer to adapter structure
4468 * @msix: boolean value for MSI-X capability
4469 *
4470 * Attempt to configure interrupts using the best available
4471 * capabilities of the hardware and kernel.
4472 */
4473static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4474 bool msix)
4475{
4476 int numvecs, i;
4477 int err;
4478
4479 if (!msix)
4480 goto msi_only;
4481 adapter->flags |= IGC_FLAG_HAS_MSIX;
4482
4483 /* Number of supported queues. */
4484 adapter->num_rx_queues = adapter->rss_queues;
4485
4486 adapter->num_tx_queues = adapter->rss_queues;
4487
4488 /* start with one vector for every Rx queue */
4489 numvecs = adapter->num_rx_queues;
4490
4491 /* if Tx handler is separate add 1 for every Tx queue */
4492 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4493 numvecs += adapter->num_tx_queues;
4494
4495 /* store the number of vectors reserved for queues */
4496 adapter->num_q_vectors = numvecs;
4497
4498 /* add 1 vector for link status interrupts */
4499 numvecs++;
4500
4501 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4502 GFP_KERNEL);
4503
4504 if (!adapter->msix_entries)
4505 return;
4506
4507 /* populate entry values */
4508 for (i = 0; i < numvecs; i++)
4509 adapter->msix_entries[i].entry = i;
4510
4511 err = pci_enable_msix_range(adapter->pdev,
4512 adapter->msix_entries,
4513 numvecs,
4514 numvecs);
4515 if (err > 0)
4516 return;
4517
4518 kfree(adapter->msix_entries);
4519 adapter->msix_entries = NULL;
4520
4521 igc_reset_interrupt_capability(adapter);
4522
4523msi_only:
4524 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4525
4526 adapter->rss_queues = 1;
4527 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4528 adapter->num_rx_queues = 1;
4529 adapter->num_tx_queues = 1;
4530 adapter->num_q_vectors = 1;
4531 if (!pci_enable_msi(adapter->pdev))
4532 adapter->flags |= IGC_FLAG_HAS_MSI;
4533}
4534
4535/**
4536 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4537 * @q_vector: pointer to q_vector
4538 *
4539 * Stores a new ITR value based on strictly on packet size. This
4540 * algorithm is less sophisticated than that used in igc_update_itr,
4541 * due to the difficulty of synchronizing statistics across multiple
4542 * receive rings. The divisors and thresholds used by this function
4543 * were determined based on theoretical maximum wire speed and testing
4544 * data, in order to minimize response time while increasing bulk
4545 * throughput.
4546 * NOTE: This function is called only when operating in a multiqueue
4547 * receive environment.
4548 */
4549static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4550{
4551 struct igc_adapter *adapter = q_vector->adapter;
4552 int new_val = q_vector->itr_val;
4553 int avg_wire_size = 0;
4554 unsigned int packets;
4555
4556 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4557 * ints/sec - ITR timer value of 120 ticks.
4558 */
4559 switch (adapter->link_speed) {
4560 case SPEED_10:
4561 case SPEED_100:
4562 new_val = IGC_4K_ITR;
4563 goto set_itr_val;
4564 default:
4565 break;
4566 }
4567
4568 packets = q_vector->rx.total_packets;
4569 if (packets)
4570 avg_wire_size = q_vector->rx.total_bytes / packets;
4571
4572 packets = q_vector->tx.total_packets;
4573 if (packets)
4574 avg_wire_size = max_t(u32, avg_wire_size,
4575 q_vector->tx.total_bytes / packets);
4576
4577 /* if avg_wire_size isn't set no work was done */
4578 if (!avg_wire_size)
4579 goto clear_counts;
4580
4581 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4582 avg_wire_size += 24;
4583
4584 /* Don't starve jumbo frames */
4585 avg_wire_size = min(avg_wire_size, 3000);
4586
4587 /* Give a little boost to mid-size frames */
4588 if (avg_wire_size > 300 && avg_wire_size < 1200)
4589 new_val = avg_wire_size / 3;
4590 else
4591 new_val = avg_wire_size / 2;
4592
4593 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4594 if (new_val < IGC_20K_ITR &&
4595 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4596 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4597 new_val = IGC_20K_ITR;
4598
4599set_itr_val:
4600 if (new_val != q_vector->itr_val) {
4601 q_vector->itr_val = new_val;
4602 q_vector->set_itr = 1;
4603 }
4604clear_counts:
4605 q_vector->rx.total_bytes = 0;
4606 q_vector->rx.total_packets = 0;
4607 q_vector->tx.total_bytes = 0;
4608 q_vector->tx.total_packets = 0;
4609}
4610
4611static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4612{
4613 struct igc_adapter *adapter = q_vector->adapter;
4614 struct igc_hw *hw = &adapter->hw;
4615
4616 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4617 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4618 if (adapter->num_q_vectors == 1)
4619 igc_set_itr(q_vector);
4620 else
4621 igc_update_ring_itr(q_vector);
4622 }
4623
4624 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4625 if (adapter->msix_entries)
4626 wr32(IGC_EIMS, q_vector->eims_value);
4627 else
4628 igc_irq_enable(adapter);
4629 }
4630}
4631
4632static void igc_add_ring(struct igc_ring *ring,
4633 struct igc_ring_container *head)
4634{
4635 head->ring = ring;
4636 head->count++;
4637}
4638
4639/**
4640 * igc_cache_ring_register - Descriptor ring to register mapping
4641 * @adapter: board private structure to initialize
4642 *
4643 * Once we know the feature-set enabled for the device, we'll cache
4644 * the register offset the descriptor ring is assigned to.
4645 */
4646static void igc_cache_ring_register(struct igc_adapter *adapter)
4647{
4648 int i = 0, j = 0;
4649
4650 switch (adapter->hw.mac.type) {
4651 case igc_i225:
4652 default:
4653 for (; i < adapter->num_rx_queues; i++)
4654 adapter->rx_ring[i]->reg_idx = i;
4655 for (; j < adapter->num_tx_queues; j++)
4656 adapter->tx_ring[j]->reg_idx = j;
4657 break;
4658 }
4659}
4660
4661/**
4662 * igc_poll - NAPI Rx polling callback
4663 * @napi: napi polling structure
4664 * @budget: count of how many packets we should handle
4665 */
4666static int igc_poll(struct napi_struct *napi, int budget)
4667{
4668 struct igc_q_vector *q_vector = container_of(napi,
4669 struct igc_q_vector,
4670 napi);
4671 struct igc_ring *rx_ring = q_vector->rx.ring;
4672 bool clean_complete = true;
4673 int work_done = 0;
4674
4675 if (q_vector->tx.ring)
4676 clean_complete = igc_clean_tx_irq(q_vector, budget);
4677
4678 if (rx_ring) {
4679 int cleaned = rx_ring->xsk_pool ?
4680 igc_clean_rx_irq_zc(q_vector, budget) :
4681 igc_clean_rx_irq(q_vector, budget);
4682
4683 work_done += cleaned;
4684 if (cleaned >= budget)
4685 clean_complete = false;
4686 }
4687
4688 /* If all work not completed, return budget and keep polling */
4689 if (!clean_complete)
4690 return budget;
4691
4692 /* Exit the polling mode, but don't re-enable interrupts if stack might
4693 * poll us due to busy-polling
4694 */
4695 if (likely(napi_complete_done(napi, work_done)))
4696 igc_ring_irq_enable(q_vector);
4697
4698 return min(work_done, budget - 1);
4699}
4700
4701/**
4702 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4703 * @adapter: board private structure to initialize
4704 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4705 * @v_idx: index of vector in adapter struct
4706 * @txr_count: total number of Tx rings to allocate
4707 * @txr_idx: index of first Tx ring to allocate
4708 * @rxr_count: total number of Rx rings to allocate
4709 * @rxr_idx: index of first Rx ring to allocate
4710 *
4711 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4712 */
4713static int igc_alloc_q_vector(struct igc_adapter *adapter,
4714 unsigned int v_count, unsigned int v_idx,
4715 unsigned int txr_count, unsigned int txr_idx,
4716 unsigned int rxr_count, unsigned int rxr_idx)
4717{
4718 struct igc_q_vector *q_vector;
4719 struct igc_ring *ring;
4720 int ring_count;
4721
4722 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4723 if (txr_count > 1 || rxr_count > 1)
4724 return -ENOMEM;
4725
4726 ring_count = txr_count + rxr_count;
4727
4728 /* allocate q_vector and rings */
4729 q_vector = adapter->q_vector[v_idx];
4730 if (!q_vector)
4731 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4732 GFP_KERNEL);
4733 else
4734 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4735 if (!q_vector)
4736 return -ENOMEM;
4737
4738 /* initialize NAPI */
4739 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4740
4741 /* tie q_vector and adapter together */
4742 adapter->q_vector[v_idx] = q_vector;
4743 q_vector->adapter = adapter;
4744
4745 /* initialize work limits */
4746 q_vector->tx.work_limit = adapter->tx_work_limit;
4747
4748 /* initialize ITR configuration */
4749 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4750 q_vector->itr_val = IGC_START_ITR;
4751
4752 /* initialize pointer to rings */
4753 ring = q_vector->ring;
4754
4755 /* initialize ITR */
4756 if (rxr_count) {
4757 /* rx or rx/tx vector */
4758 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4759 q_vector->itr_val = adapter->rx_itr_setting;
4760 } else {
4761 /* tx only vector */
4762 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4763 q_vector->itr_val = adapter->tx_itr_setting;
4764 }
4765
4766 if (txr_count) {
4767 /* assign generic ring traits */
4768 ring->dev = &adapter->pdev->dev;
4769 ring->netdev = adapter->netdev;
4770
4771 /* configure backlink on ring */
4772 ring->q_vector = q_vector;
4773
4774 /* update q_vector Tx values */
4775 igc_add_ring(ring, &q_vector->tx);
4776
4777 /* apply Tx specific ring traits */
4778 ring->count = adapter->tx_ring_count;
4779 ring->queue_index = txr_idx;
4780
4781 /* assign ring to adapter */
4782 adapter->tx_ring[txr_idx] = ring;
4783
4784 /* push pointer to next ring */
4785 ring++;
4786 }
4787
4788 if (rxr_count) {
4789 /* assign generic ring traits */
4790 ring->dev = &adapter->pdev->dev;
4791 ring->netdev = adapter->netdev;
4792
4793 /* configure backlink on ring */
4794 ring->q_vector = q_vector;
4795
4796 /* update q_vector Rx values */
4797 igc_add_ring(ring, &q_vector->rx);
4798
4799 /* apply Rx specific ring traits */
4800 ring->count = adapter->rx_ring_count;
4801 ring->queue_index = rxr_idx;
4802
4803 /* assign ring to adapter */
4804 adapter->rx_ring[rxr_idx] = ring;
4805 }
4806
4807 return 0;
4808}
4809
4810/**
4811 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4812 * @adapter: board private structure to initialize
4813 *
4814 * We allocate one q_vector per queue interrupt. If allocation fails we
4815 * return -ENOMEM.
4816 */
4817static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4818{
4819 int rxr_remaining = adapter->num_rx_queues;
4820 int txr_remaining = adapter->num_tx_queues;
4821 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4822 int q_vectors = adapter->num_q_vectors;
4823 int err;
4824
4825 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4826 for (; rxr_remaining; v_idx++) {
4827 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4828 0, 0, 1, rxr_idx);
4829
4830 if (err)
4831 goto err_out;
4832
4833 /* update counts and index */
4834 rxr_remaining--;
4835 rxr_idx++;
4836 }
4837 }
4838
4839 for (; v_idx < q_vectors; v_idx++) {
4840 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4841 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4842
4843 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4844 tqpv, txr_idx, rqpv, rxr_idx);
4845
4846 if (err)
4847 goto err_out;
4848
4849 /* update counts and index */
4850 rxr_remaining -= rqpv;
4851 txr_remaining -= tqpv;
4852 rxr_idx++;
4853 txr_idx++;
4854 }
4855
4856 return 0;
4857
4858err_out:
4859 adapter->num_tx_queues = 0;
4860 adapter->num_rx_queues = 0;
4861 adapter->num_q_vectors = 0;
4862
4863 while (v_idx--)
4864 igc_free_q_vector(adapter, v_idx);
4865
4866 return -ENOMEM;
4867}
4868
4869/**
4870 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4871 * @adapter: Pointer to adapter structure
4872 * @msix: boolean for MSI-X capability
4873 *
4874 * This function initializes the interrupts and allocates all of the queues.
4875 */
4876static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4877{
4878 struct net_device *dev = adapter->netdev;
4879 int err = 0;
4880
4881 igc_set_interrupt_capability(adapter, msix);
4882
4883 err = igc_alloc_q_vectors(adapter);
4884 if (err) {
4885 netdev_err(dev, "Unable to allocate memory for vectors\n");
4886 goto err_alloc_q_vectors;
4887 }
4888
4889 igc_cache_ring_register(adapter);
4890
4891 return 0;
4892
4893err_alloc_q_vectors:
4894 igc_reset_interrupt_capability(adapter);
4895 return err;
4896}
4897
4898/**
4899 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4900 * @adapter: board private structure to initialize
4901 *
4902 * igc_sw_init initializes the Adapter private data structure.
4903 * Fields are initialized based on PCI device information and
4904 * OS network device settings (MTU size).
4905 */
4906static int igc_sw_init(struct igc_adapter *adapter)
4907{
4908 struct net_device *netdev = adapter->netdev;
4909 struct pci_dev *pdev = adapter->pdev;
4910 struct igc_hw *hw = &adapter->hw;
4911
4912 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4913
4914 /* set default ring sizes */
4915 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4916 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4917
4918 /* set default ITR values */
4919 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4920 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4921
4922 /* set default work limits */
4923 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4924
4925 /* adjust max frame to be at least the size of a standard frame */
4926 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4927 VLAN_HLEN;
4928 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4929
4930 mutex_init(&adapter->nfc_rule_lock);
4931 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4932 adapter->nfc_rule_count = 0;
4933
4934 spin_lock_init(&adapter->stats64_lock);
4935 spin_lock_init(&adapter->qbv_tx_lock);
4936 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4937 adapter->flags |= IGC_FLAG_HAS_MSIX;
4938
4939 igc_init_queue_configuration(adapter);
4940
4941 /* This call may decrease the number of queues */
4942 if (igc_init_interrupt_scheme(adapter, true)) {
4943 netdev_err(netdev, "Unable to allocate memory for queues\n");
4944 return -ENOMEM;
4945 }
4946
4947 /* Explicitly disable IRQ since the NIC can be in any state. */
4948 igc_irq_disable(adapter);
4949
4950 set_bit(__IGC_DOWN, &adapter->state);
4951
4952 return 0;
4953}
4954
4955/**
4956 * igc_up - Open the interface and prepare it to handle traffic
4957 * @adapter: board private structure
4958 */
4959void igc_up(struct igc_adapter *adapter)
4960{
4961 struct igc_hw *hw = &adapter->hw;
4962 int i = 0;
4963
4964 /* hardware has been reset, we need to reload some things */
4965 igc_configure(adapter);
4966
4967 clear_bit(__IGC_DOWN, &adapter->state);
4968
4969 for (i = 0; i < adapter->num_q_vectors; i++)
4970 napi_enable(&adapter->q_vector[i]->napi);
4971
4972 if (adapter->msix_entries)
4973 igc_configure_msix(adapter);
4974 else
4975 igc_assign_vector(adapter->q_vector[0], 0);
4976
4977 /* Clear any pending interrupts. */
4978 rd32(IGC_ICR);
4979 igc_irq_enable(adapter);
4980
4981 netif_tx_start_all_queues(adapter->netdev);
4982
4983 /* start the watchdog. */
4984 hw->mac.get_link_status = true;
4985 schedule_work(&adapter->watchdog_task);
4986}
4987
4988/**
4989 * igc_update_stats - Update the board statistics counters
4990 * @adapter: board private structure
4991 */
4992void igc_update_stats(struct igc_adapter *adapter)
4993{
4994 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4995 struct pci_dev *pdev = adapter->pdev;
4996 struct igc_hw *hw = &adapter->hw;
4997 u64 _bytes, _packets;
4998 u64 bytes, packets;
4999 unsigned int start;
5000 u32 mpc;
5001 int i;
5002
5003 /* Prevent stats update while adapter is being reset, or if the pci
5004 * connection is down.
5005 */
5006 if (adapter->link_speed == 0)
5007 return;
5008 if (pci_channel_offline(pdev))
5009 return;
5010
5011 packets = 0;
5012 bytes = 0;
5013
5014 rcu_read_lock();
5015 for (i = 0; i < adapter->num_rx_queues; i++) {
5016 struct igc_ring *ring = adapter->rx_ring[i];
5017 u32 rqdpc = rd32(IGC_RQDPC(i));
5018
5019 if (hw->mac.type >= igc_i225)
5020 wr32(IGC_RQDPC(i), 0);
5021
5022 if (rqdpc) {
5023 ring->rx_stats.drops += rqdpc;
5024 net_stats->rx_fifo_errors += rqdpc;
5025 }
5026
5027 do {
5028 start = u64_stats_fetch_begin(&ring->rx_syncp);
5029 _bytes = ring->rx_stats.bytes;
5030 _packets = ring->rx_stats.packets;
5031 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5032 bytes += _bytes;
5033 packets += _packets;
5034 }
5035
5036 net_stats->rx_bytes = bytes;
5037 net_stats->rx_packets = packets;
5038
5039 packets = 0;
5040 bytes = 0;
5041 for (i = 0; i < adapter->num_tx_queues; i++) {
5042 struct igc_ring *ring = adapter->tx_ring[i];
5043
5044 do {
5045 start = u64_stats_fetch_begin(&ring->tx_syncp);
5046 _bytes = ring->tx_stats.bytes;
5047 _packets = ring->tx_stats.packets;
5048 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5049 bytes += _bytes;
5050 packets += _packets;
5051 }
5052 net_stats->tx_bytes = bytes;
5053 net_stats->tx_packets = packets;
5054 rcu_read_unlock();
5055
5056 /* read stats registers */
5057 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5058 adapter->stats.gprc += rd32(IGC_GPRC);
5059 adapter->stats.gorc += rd32(IGC_GORCL);
5060 rd32(IGC_GORCH); /* clear GORCL */
5061 adapter->stats.bprc += rd32(IGC_BPRC);
5062 adapter->stats.mprc += rd32(IGC_MPRC);
5063 adapter->stats.roc += rd32(IGC_ROC);
5064
5065 adapter->stats.prc64 += rd32(IGC_PRC64);
5066 adapter->stats.prc127 += rd32(IGC_PRC127);
5067 adapter->stats.prc255 += rd32(IGC_PRC255);
5068 adapter->stats.prc511 += rd32(IGC_PRC511);
5069 adapter->stats.prc1023 += rd32(IGC_PRC1023);
5070 adapter->stats.prc1522 += rd32(IGC_PRC1522);
5071 adapter->stats.tlpic += rd32(IGC_TLPIC);
5072 adapter->stats.rlpic += rd32(IGC_RLPIC);
5073 adapter->stats.hgptc += rd32(IGC_HGPTC);
5074
5075 mpc = rd32(IGC_MPC);
5076 adapter->stats.mpc += mpc;
5077 net_stats->rx_fifo_errors += mpc;
5078 adapter->stats.scc += rd32(IGC_SCC);
5079 adapter->stats.ecol += rd32(IGC_ECOL);
5080 adapter->stats.mcc += rd32(IGC_MCC);
5081 adapter->stats.latecol += rd32(IGC_LATECOL);
5082 adapter->stats.dc += rd32(IGC_DC);
5083 adapter->stats.rlec += rd32(IGC_RLEC);
5084 adapter->stats.xonrxc += rd32(IGC_XONRXC);
5085 adapter->stats.xontxc += rd32(IGC_XONTXC);
5086 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5087 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5088 adapter->stats.fcruc += rd32(IGC_FCRUC);
5089 adapter->stats.gptc += rd32(IGC_GPTC);
5090 adapter->stats.gotc += rd32(IGC_GOTCL);
5091 rd32(IGC_GOTCH); /* clear GOTCL */
5092 adapter->stats.rnbc += rd32(IGC_RNBC);
5093 adapter->stats.ruc += rd32(IGC_RUC);
5094 adapter->stats.rfc += rd32(IGC_RFC);
5095 adapter->stats.rjc += rd32(IGC_RJC);
5096 adapter->stats.tor += rd32(IGC_TORH);
5097 adapter->stats.tot += rd32(IGC_TOTH);
5098 adapter->stats.tpr += rd32(IGC_TPR);
5099
5100 adapter->stats.ptc64 += rd32(IGC_PTC64);
5101 adapter->stats.ptc127 += rd32(IGC_PTC127);
5102 adapter->stats.ptc255 += rd32(IGC_PTC255);
5103 adapter->stats.ptc511 += rd32(IGC_PTC511);
5104 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5105 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5106
5107 adapter->stats.mptc += rd32(IGC_MPTC);
5108 adapter->stats.bptc += rd32(IGC_BPTC);
5109
5110 adapter->stats.tpt += rd32(IGC_TPT);
5111 adapter->stats.colc += rd32(IGC_COLC);
5112 adapter->stats.colc += rd32(IGC_RERC);
5113
5114 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5115
5116 adapter->stats.tsctc += rd32(IGC_TSCTC);
5117
5118 adapter->stats.iac += rd32(IGC_IAC);
5119
5120 /* Fill out the OS statistics structure */
5121 net_stats->multicast = adapter->stats.mprc;
5122 net_stats->collisions = adapter->stats.colc;
5123
5124 /* Rx Errors */
5125
5126 /* RLEC on some newer hardware can be incorrect so build
5127 * our own version based on RUC and ROC
5128 */
5129 net_stats->rx_errors = adapter->stats.rxerrc +
5130 adapter->stats.crcerrs + adapter->stats.algnerrc +
5131 adapter->stats.ruc + adapter->stats.roc +
5132 adapter->stats.cexterr;
5133 net_stats->rx_length_errors = adapter->stats.ruc +
5134 adapter->stats.roc;
5135 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5136 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5137 net_stats->rx_missed_errors = adapter->stats.mpc;
5138
5139 /* Tx Errors */
5140 net_stats->tx_errors = adapter->stats.ecol +
5141 adapter->stats.latecol;
5142 net_stats->tx_aborted_errors = adapter->stats.ecol;
5143 net_stats->tx_window_errors = adapter->stats.latecol;
5144 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5145
5146 /* Tx Dropped */
5147 net_stats->tx_dropped = adapter->stats.txdrop;
5148
5149 /* Management Stats */
5150 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5151 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5152 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5153}
5154
5155/**
5156 * igc_down - Close the interface
5157 * @adapter: board private structure
5158 */
5159void igc_down(struct igc_adapter *adapter)
5160{
5161 struct net_device *netdev = adapter->netdev;
5162 struct igc_hw *hw = &adapter->hw;
5163 u32 tctl, rctl;
5164 int i = 0;
5165
5166 set_bit(__IGC_DOWN, &adapter->state);
5167
5168 igc_ptp_suspend(adapter);
5169
5170 if (pci_device_is_present(adapter->pdev)) {
5171 /* disable receives in the hardware */
5172 rctl = rd32(IGC_RCTL);
5173 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5174 /* flush and sleep below */
5175 }
5176 /* set trans_start so we don't get spurious watchdogs during reset */
5177 netif_trans_update(netdev);
5178
5179 netif_carrier_off(netdev);
5180 netif_tx_stop_all_queues(netdev);
5181
5182 if (pci_device_is_present(adapter->pdev)) {
5183 /* disable transmits in the hardware */
5184 tctl = rd32(IGC_TCTL);
5185 tctl &= ~IGC_TCTL_EN;
5186 wr32(IGC_TCTL, tctl);
5187 /* flush both disables and wait for them to finish */
5188 wrfl();
5189 usleep_range(10000, 20000);
5190
5191 igc_irq_disable(adapter);
5192 }
5193
5194 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5195
5196 for (i = 0; i < adapter->num_q_vectors; i++) {
5197 if (adapter->q_vector[i]) {
5198 napi_synchronize(&adapter->q_vector[i]->napi);
5199 napi_disable(&adapter->q_vector[i]->napi);
5200 }
5201 }
5202
5203 del_timer_sync(&adapter->watchdog_timer);
5204 del_timer_sync(&adapter->phy_info_timer);
5205
5206 /* record the stats before reset*/
5207 spin_lock(&adapter->stats64_lock);
5208 igc_update_stats(adapter);
5209 spin_unlock(&adapter->stats64_lock);
5210
5211 adapter->link_speed = 0;
5212 adapter->link_duplex = 0;
5213
5214 if (!pci_channel_offline(adapter->pdev))
5215 igc_reset(adapter);
5216
5217 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5218 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5219
5220 igc_disable_all_tx_rings_hw(adapter);
5221 igc_clean_all_tx_rings(adapter);
5222 igc_clean_all_rx_rings(adapter);
5223}
5224
5225void igc_reinit_locked(struct igc_adapter *adapter)
5226{
5227 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5228 usleep_range(1000, 2000);
5229 igc_down(adapter);
5230 igc_up(adapter);
5231 clear_bit(__IGC_RESETTING, &adapter->state);
5232}
5233
5234static void igc_reset_task(struct work_struct *work)
5235{
5236 struct igc_adapter *adapter;
5237
5238 adapter = container_of(work, struct igc_adapter, reset_task);
5239
5240 rtnl_lock();
5241 /* If we're already down or resetting, just bail */
5242 if (test_bit(__IGC_DOWN, &adapter->state) ||
5243 test_bit(__IGC_RESETTING, &adapter->state)) {
5244 rtnl_unlock();
5245 return;
5246 }
5247
5248 igc_rings_dump(adapter);
5249 igc_regs_dump(adapter);
5250 netdev_err(adapter->netdev, "Reset adapter\n");
5251 igc_reinit_locked(adapter);
5252 rtnl_unlock();
5253}
5254
5255/**
5256 * igc_change_mtu - Change the Maximum Transfer Unit
5257 * @netdev: network interface device structure
5258 * @new_mtu: new value for maximum frame size
5259 *
5260 * Returns 0 on success, negative on failure
5261 */
5262static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5263{
5264 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5265 struct igc_adapter *adapter = netdev_priv(netdev);
5266
5267 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5268 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5269 return -EINVAL;
5270 }
5271
5272 /* adjust max frame to be at least the size of a standard frame */
5273 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5274 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5275
5276 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5277 usleep_range(1000, 2000);
5278
5279 /* igc_down has a dependency on max_frame_size */
5280 adapter->max_frame_size = max_frame;
5281
5282 if (netif_running(netdev))
5283 igc_down(adapter);
5284
5285 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5286 WRITE_ONCE(netdev->mtu, new_mtu);
5287
5288 if (netif_running(netdev))
5289 igc_up(adapter);
5290 else
5291 igc_reset(adapter);
5292
5293 clear_bit(__IGC_RESETTING, &adapter->state);
5294
5295 return 0;
5296}
5297
5298/**
5299 * igc_tx_timeout - Respond to a Tx Hang
5300 * @netdev: network interface device structure
5301 * @txqueue: queue number that timed out
5302 **/
5303static void igc_tx_timeout(struct net_device *netdev,
5304 unsigned int __always_unused txqueue)
5305{
5306 struct igc_adapter *adapter = netdev_priv(netdev);
5307 struct igc_hw *hw = &adapter->hw;
5308
5309 /* Do the reset outside of interrupt context */
5310 adapter->tx_timeout_count++;
5311 schedule_work(&adapter->reset_task);
5312 wr32(IGC_EICS,
5313 (adapter->eims_enable_mask & ~adapter->eims_other));
5314}
5315
5316/**
5317 * igc_get_stats64 - Get System Network Statistics
5318 * @netdev: network interface device structure
5319 * @stats: rtnl_link_stats64 pointer
5320 *
5321 * Returns the address of the device statistics structure.
5322 * The statistics are updated here and also from the timer callback.
5323 */
5324static void igc_get_stats64(struct net_device *netdev,
5325 struct rtnl_link_stats64 *stats)
5326{
5327 struct igc_adapter *adapter = netdev_priv(netdev);
5328
5329 spin_lock(&adapter->stats64_lock);
5330 if (!test_bit(__IGC_RESETTING, &adapter->state))
5331 igc_update_stats(adapter);
5332 memcpy(stats, &adapter->stats64, sizeof(*stats));
5333 spin_unlock(&adapter->stats64_lock);
5334}
5335
5336static netdev_features_t igc_fix_features(struct net_device *netdev,
5337 netdev_features_t features)
5338{
5339 /* Since there is no support for separate Rx/Tx vlan accel
5340 * enable/disable make sure Tx flag is always in same state as Rx.
5341 */
5342 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5343 features |= NETIF_F_HW_VLAN_CTAG_TX;
5344 else
5345 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5346
5347 return features;
5348}
5349
5350static int igc_set_features(struct net_device *netdev,
5351 netdev_features_t features)
5352{
5353 netdev_features_t changed = netdev->features ^ features;
5354 struct igc_adapter *adapter = netdev_priv(netdev);
5355
5356 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5357 igc_vlan_mode(netdev, features);
5358
5359 /* Add VLAN support */
5360 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5361 return 0;
5362
5363 if (!(features & NETIF_F_NTUPLE))
5364 igc_flush_nfc_rules(adapter);
5365
5366 netdev->features = features;
5367
5368 if (netif_running(netdev))
5369 igc_reinit_locked(adapter);
5370 else
5371 igc_reset(adapter);
5372
5373 return 1;
5374}
5375
5376static netdev_features_t
5377igc_features_check(struct sk_buff *skb, struct net_device *dev,
5378 netdev_features_t features)
5379{
5380 unsigned int network_hdr_len, mac_hdr_len;
5381
5382 /* Make certain the headers can be described by a context descriptor */
5383 mac_hdr_len = skb_network_offset(skb);
5384 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5385 return features & ~(NETIF_F_HW_CSUM |
5386 NETIF_F_SCTP_CRC |
5387 NETIF_F_HW_VLAN_CTAG_TX |
5388 NETIF_F_TSO |
5389 NETIF_F_TSO6);
5390
5391 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5392 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5393 return features & ~(NETIF_F_HW_CSUM |
5394 NETIF_F_SCTP_CRC |
5395 NETIF_F_TSO |
5396 NETIF_F_TSO6);
5397
5398 /* We can only support IPv4 TSO in tunnels if we can mangle the
5399 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5400 */
5401 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5402 features &= ~NETIF_F_TSO;
5403
5404 return features;
5405}
5406
5407static void igc_tsync_interrupt(struct igc_adapter *adapter)
5408{
5409 struct igc_hw *hw = &adapter->hw;
5410 u32 tsauxc, sec, nsec, tsicr;
5411 struct ptp_clock_event event;
5412 struct timespec64 ts;
5413
5414 tsicr = rd32(IGC_TSICR);
5415
5416 if (tsicr & IGC_TSICR_SYS_WRAP) {
5417 event.type = PTP_CLOCK_PPS;
5418 if (adapter->ptp_caps.pps)
5419 ptp_clock_event(adapter->ptp_clock, &event);
5420 }
5421
5422 if (tsicr & IGC_TSICR_TXTS) {
5423 /* retrieve hardware timestamp */
5424 igc_ptp_tx_tstamp_event(adapter);
5425 }
5426
5427 if (tsicr & IGC_TSICR_TT0) {
5428 spin_lock(&adapter->tmreg_lock);
5429 ts = timespec64_add(adapter->perout[0].start,
5430 adapter->perout[0].period);
5431 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5432 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5433 tsauxc = rd32(IGC_TSAUXC);
5434 tsauxc |= IGC_TSAUXC_EN_TT0;
5435 wr32(IGC_TSAUXC, tsauxc);
5436 adapter->perout[0].start = ts;
5437 spin_unlock(&adapter->tmreg_lock);
5438 }
5439
5440 if (tsicr & IGC_TSICR_TT1) {
5441 spin_lock(&adapter->tmreg_lock);
5442 ts = timespec64_add(adapter->perout[1].start,
5443 adapter->perout[1].period);
5444 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5445 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5446 tsauxc = rd32(IGC_TSAUXC);
5447 tsauxc |= IGC_TSAUXC_EN_TT1;
5448 wr32(IGC_TSAUXC, tsauxc);
5449 adapter->perout[1].start = ts;
5450 spin_unlock(&adapter->tmreg_lock);
5451 }
5452
5453 if (tsicr & IGC_TSICR_AUTT0) {
5454 nsec = rd32(IGC_AUXSTMPL0);
5455 sec = rd32(IGC_AUXSTMPH0);
5456 event.type = PTP_CLOCK_EXTTS;
5457 event.index = 0;
5458 event.timestamp = sec * NSEC_PER_SEC + nsec;
5459 ptp_clock_event(adapter->ptp_clock, &event);
5460 }
5461
5462 if (tsicr & IGC_TSICR_AUTT1) {
5463 nsec = rd32(IGC_AUXSTMPL1);
5464 sec = rd32(IGC_AUXSTMPH1);
5465 event.type = PTP_CLOCK_EXTTS;
5466 event.index = 1;
5467 event.timestamp = sec * NSEC_PER_SEC + nsec;
5468 ptp_clock_event(adapter->ptp_clock, &event);
5469 }
5470}
5471
5472/**
5473 * igc_msix_other - msix other interrupt handler
5474 * @irq: interrupt number
5475 * @data: pointer to a q_vector
5476 */
5477static irqreturn_t igc_msix_other(int irq, void *data)
5478{
5479 struct igc_adapter *adapter = data;
5480 struct igc_hw *hw = &adapter->hw;
5481 u32 icr = rd32(IGC_ICR);
5482
5483 /* reading ICR causes bit 31 of EICR to be cleared */
5484 if (icr & IGC_ICR_DRSTA)
5485 schedule_work(&adapter->reset_task);
5486
5487 if (icr & IGC_ICR_DOUTSYNC) {
5488 /* HW is reporting DMA is out of sync */
5489 adapter->stats.doosync++;
5490 }
5491
5492 if (icr & IGC_ICR_LSC) {
5493 hw->mac.get_link_status = true;
5494 /* guard against interrupt when we're going down */
5495 if (!test_bit(__IGC_DOWN, &adapter->state))
5496 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5497 }
5498
5499 if (icr & IGC_ICR_TS)
5500 igc_tsync_interrupt(adapter);
5501
5502 wr32(IGC_EIMS, adapter->eims_other);
5503
5504 return IRQ_HANDLED;
5505}
5506
5507static void igc_write_itr(struct igc_q_vector *q_vector)
5508{
5509 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5510
5511 if (!q_vector->set_itr)
5512 return;
5513
5514 if (!itr_val)
5515 itr_val = IGC_ITR_VAL_MASK;
5516
5517 itr_val |= IGC_EITR_CNT_IGNR;
5518
5519 writel(itr_val, q_vector->itr_register);
5520 q_vector->set_itr = 0;
5521}
5522
5523static irqreturn_t igc_msix_ring(int irq, void *data)
5524{
5525 struct igc_q_vector *q_vector = data;
5526
5527 /* Write the ITR value calculated from the previous interrupt. */
5528 igc_write_itr(q_vector);
5529
5530 napi_schedule(&q_vector->napi);
5531
5532 return IRQ_HANDLED;
5533}
5534
5535/**
5536 * igc_request_msix - Initialize MSI-X interrupts
5537 * @adapter: Pointer to adapter structure
5538 *
5539 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5540 * kernel.
5541 */
5542static int igc_request_msix(struct igc_adapter *adapter)
5543{
5544 unsigned int num_q_vectors = adapter->num_q_vectors;
5545 int i = 0, err = 0, vector = 0, free_vector = 0;
5546 struct net_device *netdev = adapter->netdev;
5547
5548 err = request_irq(adapter->msix_entries[vector].vector,
5549 &igc_msix_other, 0, netdev->name, adapter);
5550 if (err)
5551 goto err_out;
5552
5553 if (num_q_vectors > MAX_Q_VECTORS) {
5554 num_q_vectors = MAX_Q_VECTORS;
5555 dev_warn(&adapter->pdev->dev,
5556 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5557 adapter->num_q_vectors, MAX_Q_VECTORS);
5558 }
5559 for (i = 0; i < num_q_vectors; i++) {
5560 struct igc_q_vector *q_vector = adapter->q_vector[i];
5561
5562 vector++;
5563
5564 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5565
5566 if (q_vector->rx.ring && q_vector->tx.ring)
5567 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5568 q_vector->rx.ring->queue_index);
5569 else if (q_vector->tx.ring)
5570 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5571 q_vector->tx.ring->queue_index);
5572 else if (q_vector->rx.ring)
5573 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5574 q_vector->rx.ring->queue_index);
5575 else
5576 sprintf(q_vector->name, "%s-unused", netdev->name);
5577
5578 err = request_irq(adapter->msix_entries[vector].vector,
5579 igc_msix_ring, 0, q_vector->name,
5580 q_vector);
5581 if (err)
5582 goto err_free;
5583 }
5584
5585 igc_configure_msix(adapter);
5586 return 0;
5587
5588err_free:
5589 /* free already assigned IRQs */
5590 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5591
5592 vector--;
5593 for (i = 0; i < vector; i++) {
5594 free_irq(adapter->msix_entries[free_vector++].vector,
5595 adapter->q_vector[i]);
5596 }
5597err_out:
5598 return err;
5599}
5600
5601/**
5602 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5603 * @adapter: Pointer to adapter structure
5604 *
5605 * This function resets the device so that it has 0 rx queues, tx queues, and
5606 * MSI-X interrupts allocated.
5607 */
5608static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5609{
5610 igc_free_q_vectors(adapter);
5611 igc_reset_interrupt_capability(adapter);
5612}
5613
5614/* Need to wait a few seconds after link up to get diagnostic information from
5615 * the phy
5616 */
5617static void igc_update_phy_info(struct timer_list *t)
5618{
5619 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5620
5621 igc_get_phy_info(&adapter->hw);
5622}
5623
5624/**
5625 * igc_has_link - check shared code for link and determine up/down
5626 * @adapter: pointer to driver private info
5627 */
5628bool igc_has_link(struct igc_adapter *adapter)
5629{
5630 struct igc_hw *hw = &adapter->hw;
5631 bool link_active = false;
5632
5633 /* get_link_status is set on LSC (link status) interrupt or
5634 * rx sequence error interrupt. get_link_status will stay
5635 * false until the igc_check_for_link establishes link
5636 * for copper adapters ONLY
5637 */
5638 if (!hw->mac.get_link_status)
5639 return true;
5640 hw->mac.ops.check_for_link(hw);
5641 link_active = !hw->mac.get_link_status;
5642
5643 if (hw->mac.type == igc_i225) {
5644 if (!netif_carrier_ok(adapter->netdev)) {
5645 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5646 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5647 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5648 adapter->link_check_timeout = jiffies;
5649 }
5650 }
5651
5652 return link_active;
5653}
5654
5655/**
5656 * igc_watchdog - Timer Call-back
5657 * @t: timer for the watchdog
5658 */
5659static void igc_watchdog(struct timer_list *t)
5660{
5661 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5662 /* Do the rest outside of interrupt context */
5663 schedule_work(&adapter->watchdog_task);
5664}
5665
5666static void igc_watchdog_task(struct work_struct *work)
5667{
5668 struct igc_adapter *adapter = container_of(work,
5669 struct igc_adapter,
5670 watchdog_task);
5671 struct net_device *netdev = adapter->netdev;
5672 struct igc_hw *hw = &adapter->hw;
5673 struct igc_phy_info *phy = &hw->phy;
5674 u16 phy_data, retry_count = 20;
5675 u32 link;
5676 int i;
5677
5678 link = igc_has_link(adapter);
5679
5680 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5681 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5682 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5683 else
5684 link = false;
5685 }
5686
5687 if (link) {
5688 /* Cancel scheduled suspend requests. */
5689 pm_runtime_resume(netdev->dev.parent);
5690
5691 if (!netif_carrier_ok(netdev)) {
5692 u32 ctrl;
5693
5694 hw->mac.ops.get_speed_and_duplex(hw,
5695 &adapter->link_speed,
5696 &adapter->link_duplex);
5697
5698 ctrl = rd32(IGC_CTRL);
5699 /* Link status message must follow this format */
5700 netdev_info(netdev,
5701 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5702 adapter->link_speed,
5703 adapter->link_duplex == FULL_DUPLEX ?
5704 "Full" : "Half",
5705 (ctrl & IGC_CTRL_TFCE) &&
5706 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5707 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5708 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5709
5710 /* disable EEE if enabled */
5711 if ((adapter->flags & IGC_FLAG_EEE) &&
5712 adapter->link_duplex == HALF_DUPLEX) {
5713 netdev_info(netdev,
5714 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5715 adapter->hw.dev_spec._base.eee_enable = false;
5716 adapter->flags &= ~IGC_FLAG_EEE;
5717 }
5718
5719 /* check if SmartSpeed worked */
5720 igc_check_downshift(hw);
5721 if (phy->speed_downgraded)
5722 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5723
5724 /* adjust timeout factor according to speed/duplex */
5725 adapter->tx_timeout_factor = 1;
5726 switch (adapter->link_speed) {
5727 case SPEED_10:
5728 adapter->tx_timeout_factor = 14;
5729 break;
5730 case SPEED_100:
5731 case SPEED_1000:
5732 case SPEED_2500:
5733 adapter->tx_timeout_factor = 1;
5734 break;
5735 }
5736
5737 /* Once the launch time has been set on the wire, there
5738 * is a delay before the link speed can be determined
5739 * based on link-up activity. Write into the register
5740 * as soon as we know the correct link speed.
5741 */
5742 igc_tsn_adjust_txtime_offset(adapter);
5743
5744 if (adapter->link_speed != SPEED_1000)
5745 goto no_wait;
5746
5747 /* wait for Remote receiver status OK */
5748retry_read_status:
5749 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5750 &phy_data)) {
5751 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5752 retry_count) {
5753 msleep(100);
5754 retry_count--;
5755 goto retry_read_status;
5756 } else if (!retry_count) {
5757 netdev_err(netdev, "exceed max 2 second\n");
5758 }
5759 } else {
5760 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5761 }
5762no_wait:
5763 netif_carrier_on(netdev);
5764
5765 /* link state has changed, schedule phy info update */
5766 if (!test_bit(__IGC_DOWN, &adapter->state))
5767 mod_timer(&adapter->phy_info_timer,
5768 round_jiffies(jiffies + 2 * HZ));
5769 }
5770 } else {
5771 if (netif_carrier_ok(netdev)) {
5772 adapter->link_speed = 0;
5773 adapter->link_duplex = 0;
5774
5775 /* Links status message must follow this format */
5776 netdev_info(netdev, "NIC Link is Down\n");
5777 netif_carrier_off(netdev);
5778
5779 /* link state has changed, schedule phy info update */
5780 if (!test_bit(__IGC_DOWN, &adapter->state))
5781 mod_timer(&adapter->phy_info_timer,
5782 round_jiffies(jiffies + 2 * HZ));
5783
5784 pm_schedule_suspend(netdev->dev.parent,
5785 MSEC_PER_SEC * 5);
5786 }
5787 }
5788
5789 spin_lock(&adapter->stats64_lock);
5790 igc_update_stats(adapter);
5791 spin_unlock(&adapter->stats64_lock);
5792
5793 for (i = 0; i < adapter->num_tx_queues; i++) {
5794 struct igc_ring *tx_ring = adapter->tx_ring[i];
5795
5796 if (!netif_carrier_ok(netdev)) {
5797 /* We've lost link, so the controller stops DMA,
5798 * but we've got queued Tx work that's never going
5799 * to get done, so reset controller to flush Tx.
5800 * (Do the reset outside of interrupt context).
5801 */
5802 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5803 adapter->tx_timeout_count++;
5804 schedule_work(&adapter->reset_task);
5805 /* return immediately since reset is imminent */
5806 return;
5807 }
5808 }
5809
5810 /* Force detection of hung controller every watchdog period */
5811 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5812 }
5813
5814 /* Cause software interrupt to ensure Rx ring is cleaned */
5815 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5816 u32 eics = 0;
5817
5818 for (i = 0; i < adapter->num_q_vectors; i++) {
5819 struct igc_q_vector *q_vector = adapter->q_vector[i];
5820 struct igc_ring *rx_ring;
5821
5822 if (!q_vector->rx.ring)
5823 continue;
5824
5825 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5826
5827 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5828 eics |= q_vector->eims_value;
5829 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5830 }
5831 }
5832 if (eics)
5833 wr32(IGC_EICS, eics);
5834 } else {
5835 struct igc_ring *rx_ring = adapter->rx_ring[0];
5836
5837 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5838 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5839 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5840 }
5841 }
5842
5843 igc_ptp_tx_hang(adapter);
5844
5845 /* Reset the timer */
5846 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5847 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5848 mod_timer(&adapter->watchdog_timer,
5849 round_jiffies(jiffies + HZ));
5850 else
5851 mod_timer(&adapter->watchdog_timer,
5852 round_jiffies(jiffies + 2 * HZ));
5853 }
5854}
5855
5856/**
5857 * igc_intr_msi - Interrupt Handler
5858 * @irq: interrupt number
5859 * @data: pointer to a network interface device structure
5860 */
5861static irqreturn_t igc_intr_msi(int irq, void *data)
5862{
5863 struct igc_adapter *adapter = data;
5864 struct igc_q_vector *q_vector = adapter->q_vector[0];
5865 struct igc_hw *hw = &adapter->hw;
5866 /* read ICR disables interrupts using IAM */
5867 u32 icr = rd32(IGC_ICR);
5868
5869 igc_write_itr(q_vector);
5870
5871 if (icr & IGC_ICR_DRSTA)
5872 schedule_work(&adapter->reset_task);
5873
5874 if (icr & IGC_ICR_DOUTSYNC) {
5875 /* HW is reporting DMA is out of sync */
5876 adapter->stats.doosync++;
5877 }
5878
5879 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5880 hw->mac.get_link_status = true;
5881 if (!test_bit(__IGC_DOWN, &adapter->state))
5882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5883 }
5884
5885 if (icr & IGC_ICR_TS)
5886 igc_tsync_interrupt(adapter);
5887
5888 napi_schedule(&q_vector->napi);
5889
5890 return IRQ_HANDLED;
5891}
5892
5893/**
5894 * igc_intr - Legacy Interrupt Handler
5895 * @irq: interrupt number
5896 * @data: pointer to a network interface device structure
5897 */
5898static irqreturn_t igc_intr(int irq, void *data)
5899{
5900 struct igc_adapter *adapter = data;
5901 struct igc_q_vector *q_vector = adapter->q_vector[0];
5902 struct igc_hw *hw = &adapter->hw;
5903 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5904 * need for the IMC write
5905 */
5906 u32 icr = rd32(IGC_ICR);
5907
5908 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5909 * not set, then the adapter didn't send an interrupt
5910 */
5911 if (!(icr & IGC_ICR_INT_ASSERTED))
5912 return IRQ_NONE;
5913
5914 igc_write_itr(q_vector);
5915
5916 if (icr & IGC_ICR_DRSTA)
5917 schedule_work(&adapter->reset_task);
5918
5919 if (icr & IGC_ICR_DOUTSYNC) {
5920 /* HW is reporting DMA is out of sync */
5921 adapter->stats.doosync++;
5922 }
5923
5924 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5925 hw->mac.get_link_status = true;
5926 /* guard against interrupt when we're going down */
5927 if (!test_bit(__IGC_DOWN, &adapter->state))
5928 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5929 }
5930
5931 if (icr & IGC_ICR_TS)
5932 igc_tsync_interrupt(adapter);
5933
5934 napi_schedule(&q_vector->napi);
5935
5936 return IRQ_HANDLED;
5937}
5938
5939static void igc_free_irq(struct igc_adapter *adapter)
5940{
5941 if (adapter->msix_entries) {
5942 int vector = 0, i;
5943
5944 free_irq(adapter->msix_entries[vector++].vector, adapter);
5945
5946 for (i = 0; i < adapter->num_q_vectors; i++)
5947 free_irq(adapter->msix_entries[vector++].vector,
5948 adapter->q_vector[i]);
5949 } else {
5950 free_irq(adapter->pdev->irq, adapter);
5951 }
5952}
5953
5954/**
5955 * igc_request_irq - initialize interrupts
5956 * @adapter: Pointer to adapter structure
5957 *
5958 * Attempts to configure interrupts using the best available
5959 * capabilities of the hardware and kernel.
5960 */
5961static int igc_request_irq(struct igc_adapter *adapter)
5962{
5963 struct net_device *netdev = adapter->netdev;
5964 struct pci_dev *pdev = adapter->pdev;
5965 int err = 0;
5966
5967 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5968 err = igc_request_msix(adapter);
5969 if (!err)
5970 goto request_done;
5971 /* fall back to MSI */
5972 igc_free_all_tx_resources(adapter);
5973 igc_free_all_rx_resources(adapter);
5974
5975 igc_clear_interrupt_scheme(adapter);
5976 err = igc_init_interrupt_scheme(adapter, false);
5977 if (err)
5978 goto request_done;
5979 igc_setup_all_tx_resources(adapter);
5980 igc_setup_all_rx_resources(adapter);
5981 igc_configure(adapter);
5982 }
5983
5984 igc_assign_vector(adapter->q_vector[0], 0);
5985
5986 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5987 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5988 netdev->name, adapter);
5989 if (!err)
5990 goto request_done;
5991
5992 /* fall back to legacy interrupts */
5993 igc_reset_interrupt_capability(adapter);
5994 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5995 }
5996
5997 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5998 netdev->name, adapter);
5999
6000 if (err)
6001 netdev_err(netdev, "Error %d getting interrupt\n", err);
6002
6003request_done:
6004 return err;
6005}
6006
6007/**
6008 * __igc_open - Called when a network interface is made active
6009 * @netdev: network interface device structure
6010 * @resuming: boolean indicating if the device is resuming
6011 *
6012 * Returns 0 on success, negative value on failure
6013 *
6014 * The open entry point is called when a network interface is made
6015 * active by the system (IFF_UP). At this point all resources needed
6016 * for transmit and receive operations are allocated, the interrupt
6017 * handler is registered with the OS, the watchdog timer is started,
6018 * and the stack is notified that the interface is ready.
6019 */
6020static int __igc_open(struct net_device *netdev, bool resuming)
6021{
6022 struct igc_adapter *adapter = netdev_priv(netdev);
6023 struct pci_dev *pdev = adapter->pdev;
6024 struct igc_hw *hw = &adapter->hw;
6025 int err = 0;
6026 int i = 0;
6027
6028 /* disallow open during test */
6029
6030 if (test_bit(__IGC_TESTING, &adapter->state)) {
6031 WARN_ON(resuming);
6032 return -EBUSY;
6033 }
6034
6035 if (!resuming)
6036 pm_runtime_get_sync(&pdev->dev);
6037
6038 netif_carrier_off(netdev);
6039
6040 /* allocate transmit descriptors */
6041 err = igc_setup_all_tx_resources(adapter);
6042 if (err)
6043 goto err_setup_tx;
6044
6045 /* allocate receive descriptors */
6046 err = igc_setup_all_rx_resources(adapter);
6047 if (err)
6048 goto err_setup_rx;
6049
6050 igc_power_up_link(adapter);
6051
6052 igc_configure(adapter);
6053
6054 err = igc_request_irq(adapter);
6055 if (err)
6056 goto err_req_irq;
6057
6058 clear_bit(__IGC_DOWN, &adapter->state);
6059
6060 for (i = 0; i < adapter->num_q_vectors; i++)
6061 napi_enable(&adapter->q_vector[i]->napi);
6062
6063 /* Clear any pending interrupts. */
6064 rd32(IGC_ICR);
6065 igc_irq_enable(adapter);
6066
6067 if (!resuming)
6068 pm_runtime_put(&pdev->dev);
6069
6070 netif_tx_start_all_queues(netdev);
6071
6072 /* start the watchdog. */
6073 hw->mac.get_link_status = true;
6074 schedule_work(&adapter->watchdog_task);
6075
6076 return IGC_SUCCESS;
6077
6078err_req_irq:
6079 igc_release_hw_control(adapter);
6080 igc_power_down_phy_copper_base(&adapter->hw);
6081 igc_free_all_rx_resources(adapter);
6082err_setup_rx:
6083 igc_free_all_tx_resources(adapter);
6084err_setup_tx:
6085 igc_reset(adapter);
6086 if (!resuming)
6087 pm_runtime_put(&pdev->dev);
6088
6089 return err;
6090}
6091
6092int igc_open(struct net_device *netdev)
6093{
6094 struct igc_adapter *adapter = netdev_priv(netdev);
6095 int err;
6096
6097 /* Notify the stack of the actual queue counts. */
6098 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6099 adapter->num_rx_queues);
6100 if (err) {
6101 netdev_err(netdev, "error setting real queue count\n");
6102 return err;
6103 }
6104
6105 return __igc_open(netdev, false);
6106}
6107
6108/**
6109 * __igc_close - Disables a network interface
6110 * @netdev: network interface device structure
6111 * @suspending: boolean indicating the device is suspending
6112 *
6113 * Returns 0, this is not allowed to fail
6114 *
6115 * The close entry point is called when an interface is de-activated
6116 * by the OS. The hardware is still under the driver's control, but
6117 * needs to be disabled. A global MAC reset is issued to stop the
6118 * hardware, and all transmit and receive resources are freed.
6119 */
6120static int __igc_close(struct net_device *netdev, bool suspending)
6121{
6122 struct igc_adapter *adapter = netdev_priv(netdev);
6123 struct pci_dev *pdev = adapter->pdev;
6124
6125 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6126
6127 if (!suspending)
6128 pm_runtime_get_sync(&pdev->dev);
6129
6130 igc_down(adapter);
6131
6132 igc_release_hw_control(adapter);
6133
6134 igc_free_irq(adapter);
6135
6136 igc_free_all_tx_resources(adapter);
6137 igc_free_all_rx_resources(adapter);
6138
6139 if (!suspending)
6140 pm_runtime_put_sync(&pdev->dev);
6141
6142 return 0;
6143}
6144
6145int igc_close(struct net_device *netdev)
6146{
6147 if (netif_device_present(netdev) || netdev->dismantle)
6148 return __igc_close(netdev, false);
6149 return 0;
6150}
6151
6152/**
6153 * igc_ioctl - Access the hwtstamp interface
6154 * @netdev: network interface device structure
6155 * @ifr: interface request data
6156 * @cmd: ioctl command
6157 **/
6158static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6159{
6160 switch (cmd) {
6161 case SIOCGHWTSTAMP:
6162 return igc_ptp_get_ts_config(netdev, ifr);
6163 case SIOCSHWTSTAMP:
6164 return igc_ptp_set_ts_config(netdev, ifr);
6165 default:
6166 return -EOPNOTSUPP;
6167 }
6168}
6169
6170static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6171 bool enable)
6172{
6173 struct igc_ring *ring;
6174
6175 if (queue < 0 || queue >= adapter->num_tx_queues)
6176 return -EINVAL;
6177
6178 ring = adapter->tx_ring[queue];
6179 ring->launchtime_enable = enable;
6180
6181 return 0;
6182}
6183
6184static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6185{
6186 struct timespec64 b;
6187
6188 b = ktime_to_timespec64(base_time);
6189
6190 return timespec64_compare(now, &b) > 0;
6191}
6192
6193static bool validate_schedule(struct igc_adapter *adapter,
6194 const struct tc_taprio_qopt_offload *qopt)
6195{
6196 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6197 struct igc_hw *hw = &adapter->hw;
6198 struct timespec64 now;
6199 size_t n;
6200
6201 if (qopt->cycle_time_extension)
6202 return false;
6203
6204 igc_ptp_read(adapter, &now);
6205
6206 /* If we program the controller's BASET registers with a time
6207 * in the future, it will hold all the packets until that
6208 * time, causing a lot of TX Hangs, so to avoid that, we
6209 * reject schedules that would start in the future.
6210 * Note: Limitation above is no longer in i226.
6211 */
6212 if (!is_base_time_past(qopt->base_time, &now) &&
6213 igc_is_device_id_i225(hw))
6214 return false;
6215
6216 for (n = 0; n < qopt->num_entries; n++) {
6217 const struct tc_taprio_sched_entry *e, *prev;
6218 int i;
6219
6220 prev = n ? &qopt->entries[n - 1] : NULL;
6221 e = &qopt->entries[n];
6222
6223 /* i225 only supports "global" frame preemption
6224 * settings.
6225 */
6226 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6227 return false;
6228
6229 for (i = 0; i < adapter->num_tx_queues; i++)
6230 if (e->gate_mask & BIT(i)) {
6231 queue_uses[i]++;
6232
6233 /* There are limitations: A single queue cannot
6234 * be opened and closed multiple times per cycle
6235 * unless the gate stays open. Check for it.
6236 */
6237 if (queue_uses[i] > 1 &&
6238 !(prev->gate_mask & BIT(i)))
6239 return false;
6240 }
6241 }
6242
6243 return true;
6244}
6245
6246static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6247 struct tc_etf_qopt_offload *qopt)
6248{
6249 struct igc_hw *hw = &adapter->hw;
6250 int err;
6251
6252 if (hw->mac.type != igc_i225)
6253 return -EOPNOTSUPP;
6254
6255 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6256 if (err)
6257 return err;
6258
6259 return igc_tsn_offload_apply(adapter);
6260}
6261
6262static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6263{
6264 unsigned long flags;
6265 int i;
6266
6267 adapter->base_time = 0;
6268 adapter->cycle_time = NSEC_PER_SEC;
6269 adapter->taprio_offload_enable = false;
6270 adapter->qbv_config_change_errors = 0;
6271 adapter->qbv_count = 0;
6272
6273 for (i = 0; i < adapter->num_tx_queues; i++) {
6274 struct igc_ring *ring = adapter->tx_ring[i];
6275
6276 ring->start_time = 0;
6277 ring->end_time = NSEC_PER_SEC;
6278 ring->max_sdu = 0;
6279 }
6280
6281 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6282
6283 adapter->qbv_transition = false;
6284
6285 for (i = 0; i < adapter->num_tx_queues; i++) {
6286 struct igc_ring *ring = adapter->tx_ring[i];
6287
6288 ring->oper_gate_closed = false;
6289 ring->admin_gate_closed = false;
6290 }
6291
6292 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6293
6294 return 0;
6295}
6296
6297static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6298{
6299 igc_qbv_clear_schedule(adapter);
6300
6301 return 0;
6302}
6303
6304static void igc_taprio_stats(struct net_device *dev,
6305 struct tc_taprio_qopt_stats *stats)
6306{
6307 /* When Strict_End is enabled, the tx_overruns counter
6308 * will always be zero.
6309 */
6310 stats->tx_overruns = 0;
6311}
6312
6313static void igc_taprio_queue_stats(struct net_device *dev,
6314 struct tc_taprio_qopt_queue_stats *queue_stats)
6315{
6316 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6317
6318 /* When Strict_End is enabled, the tx_overruns counter
6319 * will always be zero.
6320 */
6321 stats->tx_overruns = 0;
6322}
6323
6324static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6325 struct tc_taprio_qopt_offload *qopt)
6326{
6327 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6328 struct igc_hw *hw = &adapter->hw;
6329 u32 start_time = 0, end_time = 0;
6330 struct timespec64 now;
6331 unsigned long flags;
6332 size_t n;
6333 int i;
6334
6335 if (qopt->base_time < 0)
6336 return -ERANGE;
6337
6338 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6339 return -EALREADY;
6340
6341 if (!validate_schedule(adapter, qopt))
6342 return -EINVAL;
6343
6344 igc_ptp_read(adapter, &now);
6345
6346 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6347 is_base_time_past(qopt->base_time, &now))
6348 adapter->qbv_config_change_errors++;
6349
6350 adapter->cycle_time = qopt->cycle_time;
6351 adapter->base_time = qopt->base_time;
6352 adapter->taprio_offload_enable = true;
6353
6354 for (n = 0; n < qopt->num_entries; n++) {
6355 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6356
6357 end_time += e->interval;
6358
6359 /* If any of the conditions below are true, we need to manually
6360 * control the end time of the cycle.
6361 * 1. Qbv users can specify a cycle time that is not equal
6362 * to the total GCL intervals. Hence, recalculation is
6363 * necessary here to exclude the time interval that
6364 * exceeds the cycle time.
6365 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6366 * once the end of the list is reached, it will switch
6367 * to the END_OF_CYCLE state and leave the gates in the
6368 * same state until the next cycle is started.
6369 */
6370 if (end_time > adapter->cycle_time ||
6371 n + 1 == qopt->num_entries)
6372 end_time = adapter->cycle_time;
6373
6374 for (i = 0; i < adapter->num_tx_queues; i++) {
6375 struct igc_ring *ring = adapter->tx_ring[i];
6376
6377 if (!(e->gate_mask & BIT(i)))
6378 continue;
6379
6380 /* Check whether a queue stays open for more than one
6381 * entry. If so, keep the start and advance the end
6382 * time.
6383 */
6384 if (!queue_configured[i])
6385 ring->start_time = start_time;
6386 ring->end_time = end_time;
6387
6388 if (ring->start_time >= adapter->cycle_time)
6389 queue_configured[i] = false;
6390 else
6391 queue_configured[i] = true;
6392 }
6393
6394 start_time += e->interval;
6395 }
6396
6397 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6398
6399 /* Check whether a queue gets configured.
6400 * If not, set the start and end time to be end time.
6401 */
6402 for (i = 0; i < adapter->num_tx_queues; i++) {
6403 struct igc_ring *ring = adapter->tx_ring[i];
6404
6405 if (!is_base_time_past(qopt->base_time, &now)) {
6406 ring->admin_gate_closed = false;
6407 } else {
6408 ring->oper_gate_closed = false;
6409 ring->admin_gate_closed = false;
6410 }
6411
6412 if (!queue_configured[i]) {
6413 if (!is_base_time_past(qopt->base_time, &now))
6414 ring->admin_gate_closed = true;
6415 else
6416 ring->oper_gate_closed = true;
6417
6418 ring->start_time = end_time;
6419 ring->end_time = end_time;
6420 }
6421 }
6422
6423 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6424
6425 for (i = 0; i < adapter->num_tx_queues; i++) {
6426 struct igc_ring *ring = adapter->tx_ring[i];
6427 struct net_device *dev = adapter->netdev;
6428
6429 if (qopt->max_sdu[i])
6430 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6431 else
6432 ring->max_sdu = 0;
6433 }
6434
6435 return 0;
6436}
6437
6438static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6439 struct tc_taprio_qopt_offload *qopt)
6440{
6441 struct igc_hw *hw = &adapter->hw;
6442 int err;
6443
6444 if (hw->mac.type != igc_i225)
6445 return -EOPNOTSUPP;
6446
6447 switch (qopt->cmd) {
6448 case TAPRIO_CMD_REPLACE:
6449 err = igc_save_qbv_schedule(adapter, qopt);
6450 break;
6451 case TAPRIO_CMD_DESTROY:
6452 err = igc_tsn_clear_schedule(adapter);
6453 break;
6454 case TAPRIO_CMD_STATS:
6455 igc_taprio_stats(adapter->netdev, &qopt->stats);
6456 return 0;
6457 case TAPRIO_CMD_QUEUE_STATS:
6458 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6459 return 0;
6460 default:
6461 return -EOPNOTSUPP;
6462 }
6463
6464 if (err)
6465 return err;
6466
6467 return igc_tsn_offload_apply(adapter);
6468}
6469
6470static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6471 bool enable, int idleslope, int sendslope,
6472 int hicredit, int locredit)
6473{
6474 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6475 struct net_device *netdev = adapter->netdev;
6476 struct igc_ring *ring;
6477 int i;
6478
6479 /* i225 has two sets of credit-based shaper logic.
6480 * Supporting it only on the top two priority queues
6481 */
6482 if (queue < 0 || queue > 1)
6483 return -EINVAL;
6484
6485 ring = adapter->tx_ring[queue];
6486
6487 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6488 if (adapter->tx_ring[i])
6489 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6490
6491 /* CBS should be enabled on the highest priority queue first in order
6492 * for the CBS algorithm to operate as intended.
6493 */
6494 if (enable) {
6495 if (queue == 1 && !cbs_status[0]) {
6496 netdev_err(netdev,
6497 "Enabling CBS on queue1 before queue0\n");
6498 return -EINVAL;
6499 }
6500 } else {
6501 if (queue == 0 && cbs_status[1]) {
6502 netdev_err(netdev,
6503 "Disabling CBS on queue0 before queue1\n");
6504 return -EINVAL;
6505 }
6506 }
6507
6508 ring->cbs_enable = enable;
6509 ring->idleslope = idleslope;
6510 ring->sendslope = sendslope;
6511 ring->hicredit = hicredit;
6512 ring->locredit = locredit;
6513
6514 return 0;
6515}
6516
6517static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6518 struct tc_cbs_qopt_offload *qopt)
6519{
6520 struct igc_hw *hw = &adapter->hw;
6521 int err;
6522
6523 if (hw->mac.type != igc_i225)
6524 return -EOPNOTSUPP;
6525
6526 if (qopt->queue < 0 || qopt->queue > 1)
6527 return -EINVAL;
6528
6529 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6530 qopt->idleslope, qopt->sendslope,
6531 qopt->hicredit, qopt->locredit);
6532 if (err)
6533 return err;
6534
6535 return igc_tsn_offload_apply(adapter);
6536}
6537
6538static int igc_tc_query_caps(struct igc_adapter *adapter,
6539 struct tc_query_caps_base *base)
6540{
6541 struct igc_hw *hw = &adapter->hw;
6542
6543 switch (base->type) {
6544 case TC_SETUP_QDISC_MQPRIO: {
6545 struct tc_mqprio_caps *caps = base->caps;
6546
6547 caps->validate_queue_counts = true;
6548
6549 return 0;
6550 }
6551 case TC_SETUP_QDISC_TAPRIO: {
6552 struct tc_taprio_caps *caps = base->caps;
6553
6554 caps->broken_mqprio = true;
6555
6556 if (hw->mac.type == igc_i225) {
6557 caps->supports_queue_max_sdu = true;
6558 caps->gate_mask_per_txq = true;
6559 }
6560
6561 return 0;
6562 }
6563 default:
6564 return -EOPNOTSUPP;
6565 }
6566}
6567
6568static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6569 u16 *offset)
6570{
6571 int i;
6572
6573 adapter->strict_priority_enable = true;
6574 adapter->num_tc = num_tc;
6575
6576 for (i = 0; i < num_tc; i++)
6577 adapter->queue_per_tc[i] = offset[i];
6578}
6579
6580static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6581 struct tc_mqprio_qopt_offload *mqprio)
6582{
6583 struct igc_hw *hw = &adapter->hw;
6584 int i;
6585
6586 if (hw->mac.type != igc_i225)
6587 return -EOPNOTSUPP;
6588
6589 if (!mqprio->qopt.num_tc) {
6590 adapter->strict_priority_enable = false;
6591 goto apply;
6592 }
6593
6594 /* There are as many TCs as Tx queues. */
6595 if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6596 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6597 "Only %d traffic classes supported",
6598 adapter->num_tx_queues);
6599 return -EOPNOTSUPP;
6600 }
6601
6602 /* Only one queue per TC is supported. */
6603 for (i = 0; i < mqprio->qopt.num_tc; i++) {
6604 if (mqprio->qopt.count[i] != 1) {
6605 NL_SET_ERR_MSG_MOD(mqprio->extack,
6606 "Only one queue per TC supported");
6607 return -EOPNOTSUPP;
6608 }
6609 }
6610
6611 /* Preemption is not supported yet. */
6612 if (mqprio->preemptible_tcs) {
6613 NL_SET_ERR_MSG_MOD(mqprio->extack,
6614 "Preemption is not supported yet");
6615 return -EOPNOTSUPP;
6616 }
6617
6618 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6619 mqprio->qopt.offset);
6620
6621 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6622
6623apply:
6624 return igc_tsn_offload_apply(adapter);
6625}
6626
6627static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6628 void *type_data)
6629{
6630 struct igc_adapter *adapter = netdev_priv(dev);
6631
6632 adapter->tc_setup_type = type;
6633
6634 switch (type) {
6635 case TC_QUERY_CAPS:
6636 return igc_tc_query_caps(adapter, type_data);
6637 case TC_SETUP_QDISC_TAPRIO:
6638 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6639
6640 case TC_SETUP_QDISC_ETF:
6641 return igc_tsn_enable_launchtime(adapter, type_data);
6642
6643 case TC_SETUP_QDISC_CBS:
6644 return igc_tsn_enable_cbs(adapter, type_data);
6645
6646 case TC_SETUP_QDISC_MQPRIO:
6647 return igc_tsn_enable_mqprio(adapter, type_data);
6648
6649 default:
6650 return -EOPNOTSUPP;
6651 }
6652}
6653
6654static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6655{
6656 struct igc_adapter *adapter = netdev_priv(dev);
6657
6658 switch (bpf->command) {
6659 case XDP_SETUP_PROG:
6660 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6661 case XDP_SETUP_XSK_POOL:
6662 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6663 bpf->xsk.queue_id);
6664 default:
6665 return -EOPNOTSUPP;
6666 }
6667}
6668
6669static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6670 struct xdp_frame **frames, u32 flags)
6671{
6672 struct igc_adapter *adapter = netdev_priv(dev);
6673 int cpu = smp_processor_id();
6674 struct netdev_queue *nq;
6675 struct igc_ring *ring;
6676 int i, nxmit;
6677
6678 if (unlikely(!netif_carrier_ok(dev)))
6679 return -ENETDOWN;
6680
6681 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6682 return -EINVAL;
6683
6684 ring = igc_xdp_get_tx_ring(adapter, cpu);
6685 nq = txring_txq(ring);
6686
6687 __netif_tx_lock(nq, cpu);
6688
6689 /* Avoid transmit queue timeout since we share it with the slow path */
6690 txq_trans_cond_update(nq);
6691
6692 nxmit = 0;
6693 for (i = 0; i < num_frames; i++) {
6694 int err;
6695 struct xdp_frame *xdpf = frames[i];
6696
6697 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6698 if (err)
6699 break;
6700 nxmit++;
6701 }
6702
6703 if (flags & XDP_XMIT_FLUSH)
6704 igc_flush_tx_descriptors(ring);
6705
6706 __netif_tx_unlock(nq);
6707
6708 return nxmit;
6709}
6710
6711static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6712 struct igc_q_vector *q_vector)
6713{
6714 struct igc_hw *hw = &adapter->hw;
6715 u32 eics = 0;
6716
6717 eics |= q_vector->eims_value;
6718 wr32(IGC_EICS, eics);
6719}
6720
6721int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6722{
6723 struct igc_adapter *adapter = netdev_priv(dev);
6724 struct igc_q_vector *q_vector;
6725 struct igc_ring *ring;
6726
6727 if (test_bit(__IGC_DOWN, &adapter->state))
6728 return -ENETDOWN;
6729
6730 if (!igc_xdp_is_enabled(adapter))
6731 return -ENXIO;
6732
6733 if (queue_id >= adapter->num_rx_queues)
6734 return -EINVAL;
6735
6736 ring = adapter->rx_ring[queue_id];
6737
6738 if (!ring->xsk_pool)
6739 return -ENXIO;
6740
6741 q_vector = adapter->q_vector[queue_id];
6742 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6743 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6744
6745 return 0;
6746}
6747
6748static ktime_t igc_get_tstamp(struct net_device *dev,
6749 const struct skb_shared_hwtstamps *hwtstamps,
6750 bool cycles)
6751{
6752 struct igc_adapter *adapter = netdev_priv(dev);
6753 struct igc_inline_rx_tstamps *tstamp;
6754 ktime_t timestamp;
6755
6756 tstamp = hwtstamps->netdev_data;
6757
6758 if (cycles)
6759 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6760 else
6761 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6762
6763 return timestamp;
6764}
6765
6766static const struct net_device_ops igc_netdev_ops = {
6767 .ndo_open = igc_open,
6768 .ndo_stop = igc_close,
6769 .ndo_start_xmit = igc_xmit_frame,
6770 .ndo_set_rx_mode = igc_set_rx_mode,
6771 .ndo_set_mac_address = igc_set_mac,
6772 .ndo_change_mtu = igc_change_mtu,
6773 .ndo_tx_timeout = igc_tx_timeout,
6774 .ndo_get_stats64 = igc_get_stats64,
6775 .ndo_fix_features = igc_fix_features,
6776 .ndo_set_features = igc_set_features,
6777 .ndo_features_check = igc_features_check,
6778 .ndo_eth_ioctl = igc_ioctl,
6779 .ndo_setup_tc = igc_setup_tc,
6780 .ndo_bpf = igc_bpf,
6781 .ndo_xdp_xmit = igc_xdp_xmit,
6782 .ndo_xsk_wakeup = igc_xsk_wakeup,
6783 .ndo_get_tstamp = igc_get_tstamp,
6784};
6785
6786/* PCIe configuration access */
6787void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6788{
6789 struct igc_adapter *adapter = hw->back;
6790
6791 pci_read_config_word(adapter->pdev, reg, value);
6792}
6793
6794void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6795{
6796 struct igc_adapter *adapter = hw->back;
6797
6798 pci_write_config_word(adapter->pdev, reg, *value);
6799}
6800
6801s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6802{
6803 struct igc_adapter *adapter = hw->back;
6804
6805 if (!pci_is_pcie(adapter->pdev))
6806 return -IGC_ERR_CONFIG;
6807
6808 pcie_capability_read_word(adapter->pdev, reg, value);
6809
6810 return IGC_SUCCESS;
6811}
6812
6813s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6814{
6815 struct igc_adapter *adapter = hw->back;
6816
6817 if (!pci_is_pcie(adapter->pdev))
6818 return -IGC_ERR_CONFIG;
6819
6820 pcie_capability_write_word(adapter->pdev, reg, *value);
6821
6822 return IGC_SUCCESS;
6823}
6824
6825u32 igc_rd32(struct igc_hw *hw, u32 reg)
6826{
6827 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6828 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6829 u32 value = 0;
6830
6831 if (IGC_REMOVED(hw_addr))
6832 return ~value;
6833
6834 value = readl(&hw_addr[reg]);
6835
6836 /* reads should not return all F's */
6837 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6838 struct net_device *netdev = igc->netdev;
6839
6840 hw->hw_addr = NULL;
6841 netif_device_detach(netdev);
6842 netdev_err(netdev, "PCIe link lost, device now detached\n");
6843 WARN(pci_device_is_present(igc->pdev),
6844 "igc: Failed to read reg 0x%x!\n", reg);
6845 }
6846
6847 return value;
6848}
6849
6850/* Mapping HW RSS Type to enum xdp_rss_hash_type */
6851static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6852 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6853 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6854 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6855 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6856 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6857 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6858 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6859 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6860 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6861 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6862 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6863 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6864 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6865 [13] = XDP_RSS_TYPE_NONE,
6866 [14] = XDP_RSS_TYPE_NONE,
6867 [15] = XDP_RSS_TYPE_NONE,
6868};
6869
6870static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6871 enum xdp_rss_hash_type *rss_type)
6872{
6873 const struct igc_xdp_buff *ctx = (void *)_ctx;
6874
6875 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6876 return -ENODATA;
6877
6878 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6879 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6880
6881 return 0;
6882}
6883
6884static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6885{
6886 const struct igc_xdp_buff *ctx = (void *)_ctx;
6887 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6888 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6889
6890 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6891 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6892
6893 return 0;
6894 }
6895
6896 return -ENODATA;
6897}
6898
6899static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6900 .xmo_rx_hash = igc_xdp_rx_hash,
6901 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6902};
6903
6904static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6905{
6906 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6907 hrtimer);
6908 unsigned long flags;
6909 unsigned int i;
6910
6911 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6912
6913 adapter->qbv_transition = true;
6914 for (i = 0; i < adapter->num_tx_queues; i++) {
6915 struct igc_ring *tx_ring = adapter->tx_ring[i];
6916
6917 if (tx_ring->admin_gate_closed) {
6918 tx_ring->admin_gate_closed = false;
6919 tx_ring->oper_gate_closed = true;
6920 } else {
6921 tx_ring->oper_gate_closed = false;
6922 }
6923 }
6924 adapter->qbv_transition = false;
6925
6926 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6927
6928 return HRTIMER_NORESTART;
6929}
6930
6931/**
6932 * igc_probe - Device Initialization Routine
6933 * @pdev: PCI device information struct
6934 * @ent: entry in igc_pci_tbl
6935 *
6936 * Returns 0 on success, negative on failure
6937 *
6938 * igc_probe initializes an adapter identified by a pci_dev structure.
6939 * The OS initialization, configuring the adapter private structure,
6940 * and a hardware reset occur.
6941 */
6942static int igc_probe(struct pci_dev *pdev,
6943 const struct pci_device_id *ent)
6944{
6945 struct igc_adapter *adapter;
6946 struct net_device *netdev;
6947 struct igc_hw *hw;
6948 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6949 int err;
6950
6951 err = pci_enable_device_mem(pdev);
6952 if (err)
6953 return err;
6954
6955 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6956 if (err) {
6957 dev_err(&pdev->dev,
6958 "No usable DMA configuration, aborting\n");
6959 goto err_dma;
6960 }
6961
6962 err = pci_request_mem_regions(pdev, igc_driver_name);
6963 if (err)
6964 goto err_pci_reg;
6965
6966 err = pci_enable_ptm(pdev, NULL);
6967 if (err < 0)
6968 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6969
6970 pci_set_master(pdev);
6971
6972 err = -ENOMEM;
6973 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6974 IGC_MAX_TX_QUEUES);
6975
6976 if (!netdev)
6977 goto err_alloc_etherdev;
6978
6979 SET_NETDEV_DEV(netdev, &pdev->dev);
6980
6981 pci_set_drvdata(pdev, netdev);
6982 adapter = netdev_priv(netdev);
6983 adapter->netdev = netdev;
6984 adapter->pdev = pdev;
6985 hw = &adapter->hw;
6986 hw->back = adapter;
6987 adapter->port_num = hw->bus.func;
6988 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6989
6990 err = pci_save_state(pdev);
6991 if (err)
6992 goto err_ioremap;
6993
6994 err = -EIO;
6995 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6996 pci_resource_len(pdev, 0));
6997 if (!adapter->io_addr)
6998 goto err_ioremap;
6999
7000 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7001 hw->hw_addr = adapter->io_addr;
7002
7003 netdev->netdev_ops = &igc_netdev_ops;
7004 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7005 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7006 igc_ethtool_set_ops(netdev);
7007 netdev->watchdog_timeo = 5 * HZ;
7008
7009 netdev->mem_start = pci_resource_start(pdev, 0);
7010 netdev->mem_end = pci_resource_end(pdev, 0);
7011
7012 /* PCI config space info */
7013 hw->vendor_id = pdev->vendor;
7014 hw->device_id = pdev->device;
7015 hw->revision_id = pdev->revision;
7016 hw->subsystem_vendor_id = pdev->subsystem_vendor;
7017 hw->subsystem_device_id = pdev->subsystem_device;
7018
7019 /* Copy the default MAC and PHY function pointers */
7020 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7021 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7022
7023 /* Initialize skew-specific constants */
7024 err = ei->get_invariants(hw);
7025 if (err)
7026 goto err_sw_init;
7027
7028 /* Add supported features to the features list*/
7029 netdev->features |= NETIF_F_SG;
7030 netdev->features |= NETIF_F_TSO;
7031 netdev->features |= NETIF_F_TSO6;
7032 netdev->features |= NETIF_F_TSO_ECN;
7033 netdev->features |= NETIF_F_RXHASH;
7034 netdev->features |= NETIF_F_RXCSUM;
7035 netdev->features |= NETIF_F_HW_CSUM;
7036 netdev->features |= NETIF_F_SCTP_CRC;
7037 netdev->features |= NETIF_F_HW_TC;
7038
7039#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7040 NETIF_F_GSO_GRE_CSUM | \
7041 NETIF_F_GSO_IPXIP4 | \
7042 NETIF_F_GSO_IPXIP6 | \
7043 NETIF_F_GSO_UDP_TUNNEL | \
7044 NETIF_F_GSO_UDP_TUNNEL_CSUM)
7045
7046 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7047 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7048
7049 /* setup the private structure */
7050 err = igc_sw_init(adapter);
7051 if (err)
7052 goto err_sw_init;
7053
7054 /* copy netdev features into list of user selectable features */
7055 netdev->hw_features |= NETIF_F_NTUPLE;
7056 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7057 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7058 netdev->hw_features |= netdev->features;
7059
7060 netdev->features |= NETIF_F_HIGHDMA;
7061
7062 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7063 netdev->mpls_features |= NETIF_F_HW_CSUM;
7064 netdev->hw_enc_features |= netdev->vlan_features;
7065
7066 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7067 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7068
7069 /* MTU range: 68 - 9216 */
7070 netdev->min_mtu = ETH_MIN_MTU;
7071 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7072
7073 /* before reading the NVM, reset the controller to put the device in a
7074 * known good starting state
7075 */
7076 hw->mac.ops.reset_hw(hw);
7077
7078 if (igc_get_flash_presence_i225(hw)) {
7079 if (hw->nvm.ops.validate(hw) < 0) {
7080 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7081 err = -EIO;
7082 goto err_eeprom;
7083 }
7084 }
7085
7086 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7087 /* copy the MAC address out of the NVM */
7088 if (hw->mac.ops.read_mac_addr(hw))
7089 dev_err(&pdev->dev, "NVM Read Error\n");
7090 }
7091
7092 eth_hw_addr_set(netdev, hw->mac.addr);
7093
7094 if (!is_valid_ether_addr(netdev->dev_addr)) {
7095 dev_err(&pdev->dev, "Invalid MAC Address\n");
7096 err = -EIO;
7097 goto err_eeprom;
7098 }
7099
7100 /* configure RXPBSIZE and TXPBSIZE */
7101 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7102 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7103
7104 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7105 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7106
7107 INIT_WORK(&adapter->reset_task, igc_reset_task);
7108 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7109
7110 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7111 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7112
7113 /* Initialize link properties that are user-changeable */
7114 adapter->fc_autoneg = true;
7115 hw->phy.autoneg_advertised = 0xaf;
7116
7117 hw->fc.requested_mode = igc_fc_default;
7118 hw->fc.current_mode = igc_fc_default;
7119
7120 /* By default, support wake on port A */
7121 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7122
7123 /* initialize the wol settings based on the eeprom settings */
7124 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7125 adapter->wol |= IGC_WUFC_MAG;
7126
7127 device_set_wakeup_enable(&adapter->pdev->dev,
7128 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7129
7130 igc_ptp_init(adapter);
7131
7132 igc_tsn_clear_schedule(adapter);
7133
7134 /* reset the hardware with the new settings */
7135 igc_reset(adapter);
7136
7137 /* let the f/w know that the h/w is now under the control of the
7138 * driver.
7139 */
7140 igc_get_hw_control(adapter);
7141
7142 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7143 err = register_netdev(netdev);
7144 if (err)
7145 goto err_register;
7146
7147 /* carrier off reporting is important to ethtool even BEFORE open */
7148 netif_carrier_off(netdev);
7149
7150 /* Check if Media Autosense is enabled */
7151 adapter->ei = *ei;
7152
7153 /* print pcie link status and MAC address */
7154 pcie_print_link_status(pdev);
7155 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7156
7157 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7158 /* Disable EEE for internal PHY devices */
7159 hw->dev_spec._base.eee_enable = false;
7160 adapter->flags &= ~IGC_FLAG_EEE;
7161 igc_set_eee_i225(hw, false, false, false);
7162
7163 pm_runtime_put_noidle(&pdev->dev);
7164
7165 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7166 err = igc_led_setup(adapter);
7167 if (err)
7168 goto err_register;
7169 }
7170
7171 return 0;
7172
7173err_register:
7174 igc_release_hw_control(adapter);
7175err_eeprom:
7176 if (!igc_check_reset_block(hw))
7177 igc_reset_phy(hw);
7178err_sw_init:
7179 igc_clear_interrupt_scheme(adapter);
7180 iounmap(adapter->io_addr);
7181err_ioremap:
7182 free_netdev(netdev);
7183err_alloc_etherdev:
7184 pci_release_mem_regions(pdev);
7185err_pci_reg:
7186err_dma:
7187 pci_disable_device(pdev);
7188 return err;
7189}
7190
7191/**
7192 * igc_remove - Device Removal Routine
7193 * @pdev: PCI device information struct
7194 *
7195 * igc_remove is called by the PCI subsystem to alert the driver
7196 * that it should release a PCI device. This could be caused by a
7197 * Hot-Plug event, or because the driver is going to be removed from
7198 * memory.
7199 */
7200static void igc_remove(struct pci_dev *pdev)
7201{
7202 struct net_device *netdev = pci_get_drvdata(pdev);
7203 struct igc_adapter *adapter = netdev_priv(netdev);
7204
7205 pm_runtime_get_noresume(&pdev->dev);
7206
7207 igc_flush_nfc_rules(adapter);
7208
7209 igc_ptp_stop(adapter);
7210
7211 pci_disable_ptm(pdev);
7212 pci_clear_master(pdev);
7213
7214 set_bit(__IGC_DOWN, &adapter->state);
7215
7216 del_timer_sync(&adapter->watchdog_timer);
7217 del_timer_sync(&adapter->phy_info_timer);
7218
7219 cancel_work_sync(&adapter->reset_task);
7220 cancel_work_sync(&adapter->watchdog_task);
7221 hrtimer_cancel(&adapter->hrtimer);
7222
7223 if (IS_ENABLED(CONFIG_IGC_LEDS))
7224 igc_led_free(adapter);
7225
7226 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7227 * would have already happened in close and is redundant.
7228 */
7229 igc_release_hw_control(adapter);
7230 unregister_netdev(netdev);
7231
7232 igc_clear_interrupt_scheme(adapter);
7233 pci_iounmap(pdev, adapter->io_addr);
7234 pci_release_mem_regions(pdev);
7235
7236 free_netdev(netdev);
7237
7238 pci_disable_device(pdev);
7239}
7240
7241static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7242 bool runtime)
7243{
7244 struct net_device *netdev = pci_get_drvdata(pdev);
7245 struct igc_adapter *adapter = netdev_priv(netdev);
7246 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7247 struct igc_hw *hw = &adapter->hw;
7248 u32 ctrl, rctl, status;
7249 bool wake;
7250
7251 rtnl_lock();
7252 netif_device_detach(netdev);
7253
7254 if (netif_running(netdev))
7255 __igc_close(netdev, true);
7256
7257 igc_ptp_suspend(adapter);
7258
7259 igc_clear_interrupt_scheme(adapter);
7260 rtnl_unlock();
7261
7262 status = rd32(IGC_STATUS);
7263 if (status & IGC_STATUS_LU)
7264 wufc &= ~IGC_WUFC_LNKC;
7265
7266 if (wufc) {
7267 igc_setup_rctl(adapter);
7268 igc_set_rx_mode(netdev);
7269
7270 /* turn on all-multi mode if wake on multicast is enabled */
7271 if (wufc & IGC_WUFC_MC) {
7272 rctl = rd32(IGC_RCTL);
7273 rctl |= IGC_RCTL_MPE;
7274 wr32(IGC_RCTL, rctl);
7275 }
7276
7277 ctrl = rd32(IGC_CTRL);
7278 ctrl |= IGC_CTRL_ADVD3WUC;
7279 wr32(IGC_CTRL, ctrl);
7280
7281 /* Allow time for pending master requests to run */
7282 igc_disable_pcie_master(hw);
7283
7284 wr32(IGC_WUC, IGC_WUC_PME_EN);
7285 wr32(IGC_WUFC, wufc);
7286 } else {
7287 wr32(IGC_WUC, 0);
7288 wr32(IGC_WUFC, 0);
7289 }
7290
7291 wake = wufc || adapter->en_mng_pt;
7292 if (!wake)
7293 igc_power_down_phy_copper_base(&adapter->hw);
7294 else
7295 igc_power_up_link(adapter);
7296
7297 if (enable_wake)
7298 *enable_wake = wake;
7299
7300 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7301 * would have already happened in close and is redundant.
7302 */
7303 igc_release_hw_control(adapter);
7304
7305 pci_disable_device(pdev);
7306
7307 return 0;
7308}
7309
7310static int igc_runtime_suspend(struct device *dev)
7311{
7312 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7313}
7314
7315static void igc_deliver_wake_packet(struct net_device *netdev)
7316{
7317 struct igc_adapter *adapter = netdev_priv(netdev);
7318 struct igc_hw *hw = &adapter->hw;
7319 struct sk_buff *skb;
7320 u32 wupl;
7321
7322 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7323
7324 /* WUPM stores only the first 128 bytes of the wake packet.
7325 * Read the packet only if we have the whole thing.
7326 */
7327 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7328 return;
7329
7330 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7331 if (!skb)
7332 return;
7333
7334 skb_put(skb, wupl);
7335
7336 /* Ensure reads are 32-bit aligned */
7337 wupl = roundup(wupl, 4);
7338
7339 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7340
7341 skb->protocol = eth_type_trans(skb, netdev);
7342 netif_rx(skb);
7343}
7344
7345static int igc_resume(struct device *dev)
7346{
7347 struct pci_dev *pdev = to_pci_dev(dev);
7348 struct net_device *netdev = pci_get_drvdata(pdev);
7349 struct igc_adapter *adapter = netdev_priv(netdev);
7350 struct igc_hw *hw = &adapter->hw;
7351 u32 err, val;
7352
7353 pci_set_power_state(pdev, PCI_D0);
7354 pci_restore_state(pdev);
7355 pci_save_state(pdev);
7356
7357 if (!pci_device_is_present(pdev))
7358 return -ENODEV;
7359 err = pci_enable_device_mem(pdev);
7360 if (err) {
7361 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7362 return err;
7363 }
7364 pci_set_master(pdev);
7365
7366 pci_enable_wake(pdev, PCI_D3hot, 0);
7367 pci_enable_wake(pdev, PCI_D3cold, 0);
7368
7369 if (igc_init_interrupt_scheme(adapter, true)) {
7370 netdev_err(netdev, "Unable to allocate memory for queues\n");
7371 return -ENOMEM;
7372 }
7373
7374 igc_reset(adapter);
7375
7376 /* let the f/w know that the h/w is now under the control of the
7377 * driver.
7378 */
7379 igc_get_hw_control(adapter);
7380
7381 val = rd32(IGC_WUS);
7382 if (val & WAKE_PKT_WUS)
7383 igc_deliver_wake_packet(netdev);
7384
7385 wr32(IGC_WUS, ~0);
7386
7387 if (netif_running(netdev)) {
7388 err = __igc_open(netdev, true);
7389 if (!err)
7390 netif_device_attach(netdev);
7391 }
7392
7393 return err;
7394}
7395
7396static int igc_runtime_resume(struct device *dev)
7397{
7398 return igc_resume(dev);
7399}
7400
7401static int igc_suspend(struct device *dev)
7402{
7403 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7404}
7405
7406static int __maybe_unused igc_runtime_idle(struct device *dev)
7407{
7408 struct net_device *netdev = dev_get_drvdata(dev);
7409 struct igc_adapter *adapter = netdev_priv(netdev);
7410
7411 if (!igc_has_link(adapter))
7412 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7413
7414 return -EBUSY;
7415}
7416
7417static void igc_shutdown(struct pci_dev *pdev)
7418{
7419 bool wake;
7420
7421 __igc_shutdown(pdev, &wake, 0);
7422
7423 if (system_state == SYSTEM_POWER_OFF) {
7424 pci_wake_from_d3(pdev, wake);
7425 pci_set_power_state(pdev, PCI_D3hot);
7426 }
7427}
7428
7429/**
7430 * igc_io_error_detected - called when PCI error is detected
7431 * @pdev: Pointer to PCI device
7432 * @state: The current PCI connection state
7433 *
7434 * This function is called after a PCI bus error affecting
7435 * this device has been detected.
7436 **/
7437static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7438 pci_channel_state_t state)
7439{
7440 struct net_device *netdev = pci_get_drvdata(pdev);
7441 struct igc_adapter *adapter = netdev_priv(netdev);
7442
7443 netif_device_detach(netdev);
7444
7445 if (state == pci_channel_io_perm_failure)
7446 return PCI_ERS_RESULT_DISCONNECT;
7447
7448 if (netif_running(netdev))
7449 igc_down(adapter);
7450 pci_disable_device(pdev);
7451
7452 /* Request a slot reset. */
7453 return PCI_ERS_RESULT_NEED_RESET;
7454}
7455
7456/**
7457 * igc_io_slot_reset - called after the PCI bus has been reset.
7458 * @pdev: Pointer to PCI device
7459 *
7460 * Restart the card from scratch, as if from a cold-boot. Implementation
7461 * resembles the first-half of the igc_resume routine.
7462 **/
7463static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7464{
7465 struct net_device *netdev = pci_get_drvdata(pdev);
7466 struct igc_adapter *adapter = netdev_priv(netdev);
7467 struct igc_hw *hw = &adapter->hw;
7468 pci_ers_result_t result;
7469
7470 if (pci_enable_device_mem(pdev)) {
7471 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7472 result = PCI_ERS_RESULT_DISCONNECT;
7473 } else {
7474 pci_set_master(pdev);
7475 pci_restore_state(pdev);
7476 pci_save_state(pdev);
7477
7478 pci_enable_wake(pdev, PCI_D3hot, 0);
7479 pci_enable_wake(pdev, PCI_D3cold, 0);
7480
7481 /* In case of PCI error, adapter loses its HW address
7482 * so we should re-assign it here.
7483 */
7484 hw->hw_addr = adapter->io_addr;
7485
7486 igc_reset(adapter);
7487 wr32(IGC_WUS, ~0);
7488 result = PCI_ERS_RESULT_RECOVERED;
7489 }
7490
7491 return result;
7492}
7493
7494/**
7495 * igc_io_resume - called when traffic can start to flow again.
7496 * @pdev: Pointer to PCI device
7497 *
7498 * This callback is called when the error recovery driver tells us that
7499 * its OK to resume normal operation. Implementation resembles the
7500 * second-half of the igc_resume routine.
7501 */
7502static void igc_io_resume(struct pci_dev *pdev)
7503{
7504 struct net_device *netdev = pci_get_drvdata(pdev);
7505 struct igc_adapter *adapter = netdev_priv(netdev);
7506
7507 rtnl_lock();
7508 if (netif_running(netdev)) {
7509 if (igc_open(netdev)) {
7510 rtnl_unlock();
7511 netdev_err(netdev, "igc_open failed after reset\n");
7512 return;
7513 }
7514 }
7515
7516 netif_device_attach(netdev);
7517
7518 /* let the f/w know that the h/w is now under the control of the
7519 * driver.
7520 */
7521 igc_get_hw_control(adapter);
7522 rtnl_unlock();
7523}
7524
7525static const struct pci_error_handlers igc_err_handler = {
7526 .error_detected = igc_io_error_detected,
7527 .slot_reset = igc_io_slot_reset,
7528 .resume = igc_io_resume,
7529};
7530
7531static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7532 igc_runtime_suspend, igc_runtime_resume,
7533 igc_runtime_idle);
7534
7535static struct pci_driver igc_driver = {
7536 .name = igc_driver_name,
7537 .id_table = igc_pci_tbl,
7538 .probe = igc_probe,
7539 .remove = igc_remove,
7540 .driver.pm = pm_ptr(&igc_pm_ops),
7541 .shutdown = igc_shutdown,
7542 .err_handler = &igc_err_handler,
7543};
7544
7545/**
7546 * igc_reinit_queues - return error
7547 * @adapter: pointer to adapter structure
7548 */
7549int igc_reinit_queues(struct igc_adapter *adapter)
7550{
7551 struct net_device *netdev = adapter->netdev;
7552 int err = 0;
7553
7554 if (netif_running(netdev))
7555 igc_close(netdev);
7556
7557 igc_reset_interrupt_capability(adapter);
7558
7559 if (igc_init_interrupt_scheme(adapter, true)) {
7560 netdev_err(netdev, "Unable to allocate memory for queues\n");
7561 return -ENOMEM;
7562 }
7563
7564 if (netif_running(netdev))
7565 err = igc_open(netdev);
7566
7567 return err;
7568}
7569
7570/**
7571 * igc_get_hw_dev - return device
7572 * @hw: pointer to hardware structure
7573 *
7574 * used by hardware layer to print debugging information
7575 */
7576struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7577{
7578 struct igc_adapter *adapter = hw->back;
7579
7580 return adapter->netdev;
7581}
7582
7583static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7584{
7585 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7586 u8 idx = ring->reg_idx;
7587 u32 rxdctl;
7588
7589 rxdctl = rd32(IGC_RXDCTL(idx));
7590 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7591 rxdctl |= IGC_RXDCTL_SWFLUSH;
7592 wr32(IGC_RXDCTL(idx), rxdctl);
7593}
7594
7595void igc_disable_rx_ring(struct igc_ring *ring)
7596{
7597 igc_disable_rx_ring_hw(ring);
7598 igc_clean_rx_ring(ring);
7599}
7600
7601void igc_enable_rx_ring(struct igc_ring *ring)
7602{
7603 struct igc_adapter *adapter = ring->q_vector->adapter;
7604
7605 igc_configure_rx_ring(adapter, ring);
7606
7607 if (ring->xsk_pool)
7608 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7609 else
7610 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7611}
7612
7613void igc_disable_tx_ring(struct igc_ring *ring)
7614{
7615 igc_disable_tx_ring_hw(ring);
7616 igc_clean_tx_ring(ring);
7617}
7618
7619void igc_enable_tx_ring(struct igc_ring *ring)
7620{
7621 struct igc_adapter *adapter = ring->q_vector->adapter;
7622
7623 igc_configure_tx_ring(adapter, ring);
7624}
7625
7626/**
7627 * igc_init_module - Driver Registration Routine
7628 *
7629 * igc_init_module is the first routine called when the driver is
7630 * loaded. All it does is register with the PCI subsystem.
7631 */
7632static int __init igc_init_module(void)
7633{
7634 int ret;
7635
7636 pr_info("%s\n", igc_driver_string);
7637 pr_info("%s\n", igc_copyright);
7638
7639 ret = pci_register_driver(&igc_driver);
7640 return ret;
7641}
7642
7643module_init(igc_init_module);
7644
7645/**
7646 * igc_exit_module - Driver Exit Cleanup Routine
7647 *
7648 * igc_exit_module is called just before the driver is removed
7649 * from memory.
7650 */
7651static void __exit igc_exit_module(void)
7652{
7653 pci_unregister_driver(&igc_driver);
7654}
7655
7656module_exit(igc_exit_module);
7657/* igc_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/aer.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/ip.h>
11#include <linux/pm_runtime.h>
12#include <net/pkt_sched.h>
13#include <linux/bpf_trace.h>
14#include <net/xdp_sock_drv.h>
15#include <net/ipv6.h>
16
17#include "igc.h"
18#include "igc_hw.h"
19#include "igc_tsn.h"
20#include "igc_xdp.h"
21
22#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
23
24#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25
26#define IGC_XDP_PASS 0
27#define IGC_XDP_CONSUMED BIT(0)
28#define IGC_XDP_TX BIT(1)
29#define IGC_XDP_REDIRECT BIT(2)
30
31static int debug = -1;
32
33MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34MODULE_DESCRIPTION(DRV_SUMMARY);
35MODULE_LICENSE("GPL v2");
36module_param(debug, int, 0);
37MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
39char igc_driver_name[] = "igc";
40static const char igc_driver_string[] = DRV_SUMMARY;
41static const char igc_copyright[] =
42 "Copyright(c) 2018 Intel Corporation.";
43
44static const struct igc_info *igc_info_tbl[] = {
45 [board_base] = &igc_base_info,
46};
47
48static const struct pci_device_id igc_pci_tbl[] = {
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64 /* required last entry */
65 {0, }
66};
67
68MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69
70enum latency_range {
71 lowest_latency = 0,
72 low_latency = 1,
73 bulk_latency = 2,
74 latency_invalid = 255
75};
76
77void igc_reset(struct igc_adapter *adapter)
78{
79 struct net_device *dev = adapter->netdev;
80 struct igc_hw *hw = &adapter->hw;
81 struct igc_fc_info *fc = &hw->fc;
82 u32 pba, hwm;
83
84 /* Repartition PBA for greater than 9k MTU if required */
85 pba = IGC_PBA_34K;
86
87 /* flow control settings
88 * The high water mark must be low enough to fit one full frame
89 * after transmitting the pause frame. As such we must have enough
90 * space to allow for us to complete our current transmit and then
91 * receive the frame that is in progress from the link partner.
92 * Set it to:
93 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 */
95 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96
97 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
98 fc->low_water = fc->high_water - 16;
99 fc->pause_time = 0xFFFF;
100 fc->send_xon = 1;
101 fc->current_mode = fc->requested_mode;
102
103 hw->mac.ops.reset_hw(hw);
104
105 if (hw->mac.ops.init_hw(hw))
106 netdev_err(dev, "Error on hardware initialization\n");
107
108 /* Re-establish EEE setting */
109 igc_set_eee_i225(hw, true, true, true);
110
111 if (!netif_running(adapter->netdev))
112 igc_power_down_phy_copper_base(&adapter->hw);
113
114 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
115 wr32(IGC_VET, ETH_P_8021Q);
116
117 /* Re-enable PTP, where applicable. */
118 igc_ptp_reset(adapter);
119
120 /* Re-enable TSN offloading, where applicable. */
121 igc_tsn_offload_apply(adapter);
122
123 igc_get_phy_info(hw);
124}
125
126/**
127 * igc_power_up_link - Power up the phy link
128 * @adapter: address of board private structure
129 */
130static void igc_power_up_link(struct igc_adapter *adapter)
131{
132 igc_reset_phy(&adapter->hw);
133
134 igc_power_up_phy_copper(&adapter->hw);
135
136 igc_setup_link(&adapter->hw);
137}
138
139/**
140 * igc_release_hw_control - release control of the h/w to f/w
141 * @adapter: address of board private structure
142 *
143 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
144 * For ASF and Pass Through versions of f/w this means that the
145 * driver is no longer loaded.
146 */
147static void igc_release_hw_control(struct igc_adapter *adapter)
148{
149 struct igc_hw *hw = &adapter->hw;
150 u32 ctrl_ext;
151
152 if (!pci_device_is_present(adapter->pdev))
153 return;
154
155 /* Let firmware take over control of h/w */
156 ctrl_ext = rd32(IGC_CTRL_EXT);
157 wr32(IGC_CTRL_EXT,
158 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
159}
160
161/**
162 * igc_get_hw_control - get control of the h/w from f/w
163 * @adapter: address of board private structure
164 *
165 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
166 * For ASF and Pass Through versions of f/w this means that
167 * the driver is loaded.
168 */
169static void igc_get_hw_control(struct igc_adapter *adapter)
170{
171 struct igc_hw *hw = &adapter->hw;
172 u32 ctrl_ext;
173
174 /* Let firmware know the driver has taken over */
175 ctrl_ext = rd32(IGC_CTRL_EXT);
176 wr32(IGC_CTRL_EXT,
177 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
178}
179
180static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
181{
182 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
183 dma_unmap_len(buf, len), DMA_TO_DEVICE);
184
185 dma_unmap_len_set(buf, len, 0);
186}
187
188/**
189 * igc_clean_tx_ring - Free Tx Buffers
190 * @tx_ring: ring to be cleaned
191 */
192static void igc_clean_tx_ring(struct igc_ring *tx_ring)
193{
194 u16 i = tx_ring->next_to_clean;
195 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
196 u32 xsk_frames = 0;
197
198 while (i != tx_ring->next_to_use) {
199 union igc_adv_tx_desc *eop_desc, *tx_desc;
200
201 switch (tx_buffer->type) {
202 case IGC_TX_BUFFER_TYPE_XSK:
203 xsk_frames++;
204 break;
205 case IGC_TX_BUFFER_TYPE_XDP:
206 xdp_return_frame(tx_buffer->xdpf);
207 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
208 break;
209 case IGC_TX_BUFFER_TYPE_SKB:
210 dev_kfree_skb_any(tx_buffer->skb);
211 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
212 break;
213 default:
214 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
215 break;
216 }
217
218 /* check for eop_desc to determine the end of the packet */
219 eop_desc = tx_buffer->next_to_watch;
220 tx_desc = IGC_TX_DESC(tx_ring, i);
221
222 /* unmap remaining buffers */
223 while (tx_desc != eop_desc) {
224 tx_buffer++;
225 tx_desc++;
226 i++;
227 if (unlikely(i == tx_ring->count)) {
228 i = 0;
229 tx_buffer = tx_ring->tx_buffer_info;
230 tx_desc = IGC_TX_DESC(tx_ring, 0);
231 }
232
233 /* unmap any remaining paged data */
234 if (dma_unmap_len(tx_buffer, len))
235 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
236 }
237
238 tx_buffer->next_to_watch = NULL;
239
240 /* move us one more past the eop_desc for start of next pkt */
241 tx_buffer++;
242 i++;
243 if (unlikely(i == tx_ring->count)) {
244 i = 0;
245 tx_buffer = tx_ring->tx_buffer_info;
246 }
247 }
248
249 if (tx_ring->xsk_pool && xsk_frames)
250 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
251
252 /* reset BQL for queue */
253 netdev_tx_reset_queue(txring_txq(tx_ring));
254
255 /* reset next_to_use and next_to_clean */
256 tx_ring->next_to_use = 0;
257 tx_ring->next_to_clean = 0;
258}
259
260/**
261 * igc_free_tx_resources - Free Tx Resources per Queue
262 * @tx_ring: Tx descriptor ring for a specific queue
263 *
264 * Free all transmit software resources
265 */
266void igc_free_tx_resources(struct igc_ring *tx_ring)
267{
268 igc_clean_tx_ring(tx_ring);
269
270 vfree(tx_ring->tx_buffer_info);
271 tx_ring->tx_buffer_info = NULL;
272
273 /* if not set, then don't free */
274 if (!tx_ring->desc)
275 return;
276
277 dma_free_coherent(tx_ring->dev, tx_ring->size,
278 tx_ring->desc, tx_ring->dma);
279
280 tx_ring->desc = NULL;
281}
282
283/**
284 * igc_free_all_tx_resources - Free Tx Resources for All Queues
285 * @adapter: board private structure
286 *
287 * Free all transmit software resources
288 */
289static void igc_free_all_tx_resources(struct igc_adapter *adapter)
290{
291 int i;
292
293 for (i = 0; i < adapter->num_tx_queues; i++)
294 igc_free_tx_resources(adapter->tx_ring[i]);
295}
296
297/**
298 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
299 * @adapter: board private structure
300 */
301static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
302{
303 int i;
304
305 for (i = 0; i < adapter->num_tx_queues; i++)
306 if (adapter->tx_ring[i])
307 igc_clean_tx_ring(adapter->tx_ring[i]);
308}
309
310/**
311 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
312 * @tx_ring: tx descriptor ring (for a specific queue) to setup
313 *
314 * Return 0 on success, negative on failure
315 */
316int igc_setup_tx_resources(struct igc_ring *tx_ring)
317{
318 struct net_device *ndev = tx_ring->netdev;
319 struct device *dev = tx_ring->dev;
320 int size = 0;
321
322 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
323 tx_ring->tx_buffer_info = vzalloc(size);
324 if (!tx_ring->tx_buffer_info)
325 goto err;
326
327 /* round up to nearest 4K */
328 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
329 tx_ring->size = ALIGN(tx_ring->size, 4096);
330
331 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
332 &tx_ring->dma, GFP_KERNEL);
333
334 if (!tx_ring->desc)
335 goto err;
336
337 tx_ring->next_to_use = 0;
338 tx_ring->next_to_clean = 0;
339
340 return 0;
341
342err:
343 vfree(tx_ring->tx_buffer_info);
344 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
345 return -ENOMEM;
346}
347
348/**
349 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
350 * @adapter: board private structure
351 *
352 * Return 0 on success, negative on failure
353 */
354static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
355{
356 struct net_device *dev = adapter->netdev;
357 int i, err = 0;
358
359 for (i = 0; i < adapter->num_tx_queues; i++) {
360 err = igc_setup_tx_resources(adapter->tx_ring[i]);
361 if (err) {
362 netdev_err(dev, "Error on Tx queue %u setup\n", i);
363 for (i--; i >= 0; i--)
364 igc_free_tx_resources(adapter->tx_ring[i]);
365 break;
366 }
367 }
368
369 return err;
370}
371
372static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
373{
374 u16 i = rx_ring->next_to_clean;
375
376 dev_kfree_skb(rx_ring->skb);
377 rx_ring->skb = NULL;
378
379 /* Free all the Rx ring sk_buffs */
380 while (i != rx_ring->next_to_alloc) {
381 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
382
383 /* Invalidate cache lines that may have been written to by
384 * device so that we avoid corrupting memory.
385 */
386 dma_sync_single_range_for_cpu(rx_ring->dev,
387 buffer_info->dma,
388 buffer_info->page_offset,
389 igc_rx_bufsz(rx_ring),
390 DMA_FROM_DEVICE);
391
392 /* free resources associated with mapping */
393 dma_unmap_page_attrs(rx_ring->dev,
394 buffer_info->dma,
395 igc_rx_pg_size(rx_ring),
396 DMA_FROM_DEVICE,
397 IGC_RX_DMA_ATTR);
398 __page_frag_cache_drain(buffer_info->page,
399 buffer_info->pagecnt_bias);
400
401 i++;
402 if (i == rx_ring->count)
403 i = 0;
404 }
405}
406
407static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
408{
409 struct igc_rx_buffer *bi;
410 u16 i;
411
412 for (i = 0; i < ring->count; i++) {
413 bi = &ring->rx_buffer_info[i];
414 if (!bi->xdp)
415 continue;
416
417 xsk_buff_free(bi->xdp);
418 bi->xdp = NULL;
419 }
420}
421
422/**
423 * igc_clean_rx_ring - Free Rx Buffers per Queue
424 * @ring: ring to free buffers from
425 */
426static void igc_clean_rx_ring(struct igc_ring *ring)
427{
428 if (ring->xsk_pool)
429 igc_clean_rx_ring_xsk_pool(ring);
430 else
431 igc_clean_rx_ring_page_shared(ring);
432
433 clear_ring_uses_large_buffer(ring);
434
435 ring->next_to_alloc = 0;
436 ring->next_to_clean = 0;
437 ring->next_to_use = 0;
438}
439
440/**
441 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
442 * @adapter: board private structure
443 */
444static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
445{
446 int i;
447
448 for (i = 0; i < adapter->num_rx_queues; i++)
449 if (adapter->rx_ring[i])
450 igc_clean_rx_ring(adapter->rx_ring[i]);
451}
452
453/**
454 * igc_free_rx_resources - Free Rx Resources
455 * @rx_ring: ring to clean the resources from
456 *
457 * Free all receive software resources
458 */
459void igc_free_rx_resources(struct igc_ring *rx_ring)
460{
461 igc_clean_rx_ring(rx_ring);
462
463 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
464
465 vfree(rx_ring->rx_buffer_info);
466 rx_ring->rx_buffer_info = NULL;
467
468 /* if not set, then don't free */
469 if (!rx_ring->desc)
470 return;
471
472 dma_free_coherent(rx_ring->dev, rx_ring->size,
473 rx_ring->desc, rx_ring->dma);
474
475 rx_ring->desc = NULL;
476}
477
478/**
479 * igc_free_all_rx_resources - Free Rx Resources for All Queues
480 * @adapter: board private structure
481 *
482 * Free all receive software resources
483 */
484static void igc_free_all_rx_resources(struct igc_adapter *adapter)
485{
486 int i;
487
488 for (i = 0; i < adapter->num_rx_queues; i++)
489 igc_free_rx_resources(adapter->rx_ring[i]);
490}
491
492/**
493 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
494 * @rx_ring: rx descriptor ring (for a specific queue) to setup
495 *
496 * Returns 0 on success, negative on failure
497 */
498int igc_setup_rx_resources(struct igc_ring *rx_ring)
499{
500 struct net_device *ndev = rx_ring->netdev;
501 struct device *dev = rx_ring->dev;
502 u8 index = rx_ring->queue_index;
503 int size, desc_len, res;
504
505 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
506 rx_ring->q_vector->napi.napi_id);
507 if (res < 0) {
508 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
509 index);
510 return res;
511 }
512
513 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
514 rx_ring->rx_buffer_info = vzalloc(size);
515 if (!rx_ring->rx_buffer_info)
516 goto err;
517
518 desc_len = sizeof(union igc_adv_rx_desc);
519
520 /* Round up to nearest 4K */
521 rx_ring->size = rx_ring->count * desc_len;
522 rx_ring->size = ALIGN(rx_ring->size, 4096);
523
524 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
525 &rx_ring->dma, GFP_KERNEL);
526
527 if (!rx_ring->desc)
528 goto err;
529
530 rx_ring->next_to_alloc = 0;
531 rx_ring->next_to_clean = 0;
532 rx_ring->next_to_use = 0;
533
534 return 0;
535
536err:
537 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
538 vfree(rx_ring->rx_buffer_info);
539 rx_ring->rx_buffer_info = NULL;
540 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
541 return -ENOMEM;
542}
543
544/**
545 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
546 * (Descriptors) for all queues
547 * @adapter: board private structure
548 *
549 * Return 0 on success, negative on failure
550 */
551static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
552{
553 struct net_device *dev = adapter->netdev;
554 int i, err = 0;
555
556 for (i = 0; i < adapter->num_rx_queues; i++) {
557 err = igc_setup_rx_resources(adapter->rx_ring[i]);
558 if (err) {
559 netdev_err(dev, "Error on Rx queue %u setup\n", i);
560 for (i--; i >= 0; i--)
561 igc_free_rx_resources(adapter->rx_ring[i]);
562 break;
563 }
564 }
565
566 return err;
567}
568
569static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
570 struct igc_ring *ring)
571{
572 if (!igc_xdp_is_enabled(adapter) ||
573 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
574 return NULL;
575
576 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
577}
578
579/**
580 * igc_configure_rx_ring - Configure a receive ring after Reset
581 * @adapter: board private structure
582 * @ring: receive ring to be configured
583 *
584 * Configure the Rx unit of the MAC after a reset.
585 */
586static void igc_configure_rx_ring(struct igc_adapter *adapter,
587 struct igc_ring *ring)
588{
589 struct igc_hw *hw = &adapter->hw;
590 union igc_adv_rx_desc *rx_desc;
591 int reg_idx = ring->reg_idx;
592 u32 srrctl = 0, rxdctl = 0;
593 u64 rdba = ring->dma;
594 u32 buf_size;
595
596 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
597 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
598 if (ring->xsk_pool) {
599 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
600 MEM_TYPE_XSK_BUFF_POOL,
601 NULL));
602 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
603 } else {
604 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
605 MEM_TYPE_PAGE_SHARED,
606 NULL));
607 }
608
609 if (igc_xdp_is_enabled(adapter))
610 set_ring_uses_large_buffer(ring);
611
612 /* disable the queue */
613 wr32(IGC_RXDCTL(reg_idx), 0);
614
615 /* Set DMA base address registers */
616 wr32(IGC_RDBAL(reg_idx),
617 rdba & 0x00000000ffffffffULL);
618 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
619 wr32(IGC_RDLEN(reg_idx),
620 ring->count * sizeof(union igc_adv_rx_desc));
621
622 /* initialize head and tail */
623 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
624 wr32(IGC_RDH(reg_idx), 0);
625 writel(0, ring->tail);
626
627 /* reset next-to- use/clean to place SW in sync with hardware */
628 ring->next_to_clean = 0;
629 ring->next_to_use = 0;
630
631 if (ring->xsk_pool)
632 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
633 else if (ring_uses_large_buffer(ring))
634 buf_size = IGC_RXBUFFER_3072;
635 else
636 buf_size = IGC_RXBUFFER_2048;
637
638 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
639 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
640 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
641
642 wr32(IGC_SRRCTL(reg_idx), srrctl);
643
644 rxdctl |= IGC_RX_PTHRESH;
645 rxdctl |= IGC_RX_HTHRESH << 8;
646 rxdctl |= IGC_RX_WTHRESH << 16;
647
648 /* initialize rx_buffer_info */
649 memset(ring->rx_buffer_info, 0,
650 sizeof(struct igc_rx_buffer) * ring->count);
651
652 /* initialize Rx descriptor 0 */
653 rx_desc = IGC_RX_DESC(ring, 0);
654 rx_desc->wb.upper.length = 0;
655
656 /* enable receive descriptor fetching */
657 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
658
659 wr32(IGC_RXDCTL(reg_idx), rxdctl);
660}
661
662/**
663 * igc_configure_rx - Configure receive Unit after Reset
664 * @adapter: board private structure
665 *
666 * Configure the Rx unit of the MAC after a reset.
667 */
668static void igc_configure_rx(struct igc_adapter *adapter)
669{
670 int i;
671
672 /* Setup the HW Rx Head and Tail Descriptor Pointers and
673 * the Base and Length of the Rx Descriptor Ring
674 */
675 for (i = 0; i < adapter->num_rx_queues; i++)
676 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
677}
678
679/**
680 * igc_configure_tx_ring - Configure transmit ring after Reset
681 * @adapter: board private structure
682 * @ring: tx ring to configure
683 *
684 * Configure a transmit ring after a reset.
685 */
686static void igc_configure_tx_ring(struct igc_adapter *adapter,
687 struct igc_ring *ring)
688{
689 struct igc_hw *hw = &adapter->hw;
690 int reg_idx = ring->reg_idx;
691 u64 tdba = ring->dma;
692 u32 txdctl = 0;
693
694 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
695
696 /* disable the queue */
697 wr32(IGC_TXDCTL(reg_idx), 0);
698 wrfl();
699 mdelay(10);
700
701 wr32(IGC_TDLEN(reg_idx),
702 ring->count * sizeof(union igc_adv_tx_desc));
703 wr32(IGC_TDBAL(reg_idx),
704 tdba & 0x00000000ffffffffULL);
705 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
706
707 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
708 wr32(IGC_TDH(reg_idx), 0);
709 writel(0, ring->tail);
710
711 txdctl |= IGC_TX_PTHRESH;
712 txdctl |= IGC_TX_HTHRESH << 8;
713 txdctl |= IGC_TX_WTHRESH << 16;
714
715 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
716 wr32(IGC_TXDCTL(reg_idx), txdctl);
717}
718
719/**
720 * igc_configure_tx - Configure transmit Unit after Reset
721 * @adapter: board private structure
722 *
723 * Configure the Tx unit of the MAC after a reset.
724 */
725static void igc_configure_tx(struct igc_adapter *adapter)
726{
727 int i;
728
729 for (i = 0; i < adapter->num_tx_queues; i++)
730 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
731}
732
733/**
734 * igc_setup_mrqc - configure the multiple receive queue control registers
735 * @adapter: Board private structure
736 */
737static void igc_setup_mrqc(struct igc_adapter *adapter)
738{
739 struct igc_hw *hw = &adapter->hw;
740 u32 j, num_rx_queues;
741 u32 mrqc, rxcsum;
742 u32 rss_key[10];
743
744 netdev_rss_key_fill(rss_key, sizeof(rss_key));
745 for (j = 0; j < 10; j++)
746 wr32(IGC_RSSRK(j), rss_key[j]);
747
748 num_rx_queues = adapter->rss_queues;
749
750 if (adapter->rss_indir_tbl_init != num_rx_queues) {
751 for (j = 0; j < IGC_RETA_SIZE; j++)
752 adapter->rss_indir_tbl[j] =
753 (j * num_rx_queues) / IGC_RETA_SIZE;
754 adapter->rss_indir_tbl_init = num_rx_queues;
755 }
756 igc_write_rss_indir_tbl(adapter);
757
758 /* Disable raw packet checksumming so that RSS hash is placed in
759 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
760 * offloads as they are enabled by default
761 */
762 rxcsum = rd32(IGC_RXCSUM);
763 rxcsum |= IGC_RXCSUM_PCSD;
764
765 /* Enable Receive Checksum Offload for SCTP */
766 rxcsum |= IGC_RXCSUM_CRCOFL;
767
768 /* Don't need to set TUOFL or IPOFL, they default to 1 */
769 wr32(IGC_RXCSUM, rxcsum);
770
771 /* Generate RSS hash based on packet types, TCP/UDP
772 * port numbers and/or IPv4/v6 src and dst addresses
773 */
774 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
775 IGC_MRQC_RSS_FIELD_IPV4_TCP |
776 IGC_MRQC_RSS_FIELD_IPV6 |
777 IGC_MRQC_RSS_FIELD_IPV6_TCP |
778 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
779
780 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
781 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
782 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
783 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
784
785 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
786
787 wr32(IGC_MRQC, mrqc);
788}
789
790/**
791 * igc_setup_rctl - configure the receive control registers
792 * @adapter: Board private structure
793 */
794static void igc_setup_rctl(struct igc_adapter *adapter)
795{
796 struct igc_hw *hw = &adapter->hw;
797 u32 rctl;
798
799 rctl = rd32(IGC_RCTL);
800
801 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
802 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
803
804 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
805 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
806
807 /* enable stripping of CRC. Newer features require
808 * that the HW strips the CRC.
809 */
810 rctl |= IGC_RCTL_SECRC;
811
812 /* disable store bad packets and clear size bits. */
813 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
814
815 /* enable LPE to allow for reception of jumbo frames */
816 rctl |= IGC_RCTL_LPE;
817
818 /* disable queue 0 to prevent tail write w/o re-config */
819 wr32(IGC_RXDCTL(0), 0);
820
821 /* This is useful for sniffing bad packets. */
822 if (adapter->netdev->features & NETIF_F_RXALL) {
823 /* UPE and MPE will be handled by normal PROMISC logic
824 * in set_rx_mode
825 */
826 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
827 IGC_RCTL_BAM | /* RX All Bcast Pkts */
828 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
829
830 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
831 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
832 }
833
834 wr32(IGC_RCTL, rctl);
835}
836
837/**
838 * igc_setup_tctl - configure the transmit control registers
839 * @adapter: Board private structure
840 */
841static void igc_setup_tctl(struct igc_adapter *adapter)
842{
843 struct igc_hw *hw = &adapter->hw;
844 u32 tctl;
845
846 /* disable queue 0 which icould be enabled by default */
847 wr32(IGC_TXDCTL(0), 0);
848
849 /* Program the Transmit Control Register */
850 tctl = rd32(IGC_TCTL);
851 tctl &= ~IGC_TCTL_CT;
852 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
853 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
854
855 /* Enable transmits */
856 tctl |= IGC_TCTL_EN;
857
858 wr32(IGC_TCTL, tctl);
859}
860
861/**
862 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
863 * @adapter: Pointer to adapter where the filter should be set
864 * @index: Filter index
865 * @type: MAC address filter type (source or destination)
866 * @addr: MAC address
867 * @queue: If non-negative, queue assignment feature is enabled and frames
868 * matching the filter are enqueued onto 'queue'. Otherwise, queue
869 * assignment is disabled.
870 */
871static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
872 enum igc_mac_filter_type type,
873 const u8 *addr, int queue)
874{
875 struct net_device *dev = adapter->netdev;
876 struct igc_hw *hw = &adapter->hw;
877 u32 ral, rah;
878
879 if (WARN_ON(index >= hw->mac.rar_entry_count))
880 return;
881
882 ral = le32_to_cpup((__le32 *)(addr));
883 rah = le16_to_cpup((__le16 *)(addr + 4));
884
885 if (type == IGC_MAC_FILTER_TYPE_SRC) {
886 rah &= ~IGC_RAH_ASEL_MASK;
887 rah |= IGC_RAH_ASEL_SRC_ADDR;
888 }
889
890 if (queue >= 0) {
891 rah &= ~IGC_RAH_QSEL_MASK;
892 rah |= (queue << IGC_RAH_QSEL_SHIFT);
893 rah |= IGC_RAH_QSEL_ENABLE;
894 }
895
896 rah |= IGC_RAH_AV;
897
898 wr32(IGC_RAL(index), ral);
899 wr32(IGC_RAH(index), rah);
900
901 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
902}
903
904/**
905 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
906 * @adapter: Pointer to adapter where the filter should be cleared
907 * @index: Filter index
908 */
909static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
910{
911 struct net_device *dev = adapter->netdev;
912 struct igc_hw *hw = &adapter->hw;
913
914 if (WARN_ON(index >= hw->mac.rar_entry_count))
915 return;
916
917 wr32(IGC_RAL(index), 0);
918 wr32(IGC_RAH(index), 0);
919
920 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
921}
922
923/* Set default MAC address for the PF in the first RAR entry */
924static void igc_set_default_mac_filter(struct igc_adapter *adapter)
925{
926 struct net_device *dev = adapter->netdev;
927 u8 *addr = adapter->hw.mac.addr;
928
929 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
930
931 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
932}
933
934/**
935 * igc_set_mac - Change the Ethernet Address of the NIC
936 * @netdev: network interface device structure
937 * @p: pointer to an address structure
938 *
939 * Returns 0 on success, negative on failure
940 */
941static int igc_set_mac(struct net_device *netdev, void *p)
942{
943 struct igc_adapter *adapter = netdev_priv(netdev);
944 struct igc_hw *hw = &adapter->hw;
945 struct sockaddr *addr = p;
946
947 if (!is_valid_ether_addr(addr->sa_data))
948 return -EADDRNOTAVAIL;
949
950 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
951 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
952
953 /* set the correct pool for the new PF MAC address in entry 0 */
954 igc_set_default_mac_filter(adapter);
955
956 return 0;
957}
958
959/**
960 * igc_write_mc_addr_list - write multicast addresses to MTA
961 * @netdev: network interface device structure
962 *
963 * Writes multicast address list to the MTA hash table.
964 * Returns: -ENOMEM on failure
965 * 0 on no addresses written
966 * X on writing X addresses to MTA
967 **/
968static int igc_write_mc_addr_list(struct net_device *netdev)
969{
970 struct igc_adapter *adapter = netdev_priv(netdev);
971 struct igc_hw *hw = &adapter->hw;
972 struct netdev_hw_addr *ha;
973 u8 *mta_list;
974 int i;
975
976 if (netdev_mc_empty(netdev)) {
977 /* nothing to program, so clear mc list */
978 igc_update_mc_addr_list(hw, NULL, 0);
979 return 0;
980 }
981
982 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
983 if (!mta_list)
984 return -ENOMEM;
985
986 /* The shared function expects a packed array of only addresses. */
987 i = 0;
988 netdev_for_each_mc_addr(ha, netdev)
989 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
990
991 igc_update_mc_addr_list(hw, mta_list, i);
992 kfree(mta_list);
993
994 return netdev_mc_count(netdev);
995}
996
997static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
998{
999 ktime_t cycle_time = adapter->cycle_time;
1000 ktime_t base_time = adapter->base_time;
1001 u32 launchtime;
1002
1003 /* FIXME: when using ETF together with taprio, we may have a
1004 * case where 'delta' is larger than the cycle_time, this may
1005 * cause problems if we don't read the current value of
1006 * IGC_BASET, as the value writen into the launchtime
1007 * descriptor field may be misinterpreted.
1008 */
1009 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1010
1011 return cpu_to_le32(launchtime);
1012}
1013
1014static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1015 struct igc_tx_buffer *first,
1016 u32 vlan_macip_lens, u32 type_tucmd,
1017 u32 mss_l4len_idx)
1018{
1019 struct igc_adv_tx_context_desc *context_desc;
1020 u16 i = tx_ring->next_to_use;
1021
1022 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1023
1024 i++;
1025 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1026
1027 /* set bits to identify this as an advanced context descriptor */
1028 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1029
1030 /* For i225, context index must be unique per ring. */
1031 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1032 mss_l4len_idx |= tx_ring->reg_idx << 4;
1033
1034 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1035 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1036 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1037
1038 /* We assume there is always a valid Tx time available. Invalid times
1039 * should have been handled by the upper layers.
1040 */
1041 if (tx_ring->launchtime_enable) {
1042 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1043 ktime_t txtime = first->skb->tstamp;
1044
1045 skb_txtime_consumed(first->skb);
1046 context_desc->launch_time = igc_tx_launchtime(adapter,
1047 txtime);
1048 } else {
1049 context_desc->launch_time = 0;
1050 }
1051}
1052
1053static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1054{
1055 struct sk_buff *skb = first->skb;
1056 u32 vlan_macip_lens = 0;
1057 u32 type_tucmd = 0;
1058
1059 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1060csum_failed:
1061 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1062 !tx_ring->launchtime_enable)
1063 return;
1064 goto no_csum;
1065 }
1066
1067 switch (skb->csum_offset) {
1068 case offsetof(struct tcphdr, check):
1069 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1070 fallthrough;
1071 case offsetof(struct udphdr, check):
1072 break;
1073 case offsetof(struct sctphdr, checksum):
1074 /* validate that this is actually an SCTP request */
1075 if (skb_csum_is_sctp(skb)) {
1076 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1077 break;
1078 }
1079 fallthrough;
1080 default:
1081 skb_checksum_help(skb);
1082 goto csum_failed;
1083 }
1084
1085 /* update TX checksum flag */
1086 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1087 vlan_macip_lens = skb_checksum_start_offset(skb) -
1088 skb_network_offset(skb);
1089no_csum:
1090 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1091 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1092
1093 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1094}
1095
1096static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1097{
1098 struct net_device *netdev = tx_ring->netdev;
1099
1100 netif_stop_subqueue(netdev, tx_ring->queue_index);
1101
1102 /* memory barriier comment */
1103 smp_mb();
1104
1105 /* We need to check again in a case another CPU has just
1106 * made room available.
1107 */
1108 if (igc_desc_unused(tx_ring) < size)
1109 return -EBUSY;
1110
1111 /* A reprieve! */
1112 netif_wake_subqueue(netdev, tx_ring->queue_index);
1113
1114 u64_stats_update_begin(&tx_ring->tx_syncp2);
1115 tx_ring->tx_stats.restart_queue2++;
1116 u64_stats_update_end(&tx_ring->tx_syncp2);
1117
1118 return 0;
1119}
1120
1121static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1122{
1123 if (igc_desc_unused(tx_ring) >= size)
1124 return 0;
1125 return __igc_maybe_stop_tx(tx_ring, size);
1126}
1127
1128#define IGC_SET_FLAG(_input, _flag, _result) \
1129 (((_flag) <= (_result)) ? \
1130 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1131 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1132
1133static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1134{
1135 /* set type for advanced descriptor with frame checksum insertion */
1136 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1137 IGC_ADVTXD_DCMD_DEXT |
1138 IGC_ADVTXD_DCMD_IFCS;
1139
1140 /* set HW vlan bit if vlan is present */
1141 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1142 IGC_ADVTXD_DCMD_VLE);
1143
1144 /* set segmentation bits for TSO */
1145 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1146 (IGC_ADVTXD_DCMD_TSE));
1147
1148 /* set timestamp bit if present */
1149 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1150 (IGC_ADVTXD_MAC_TSTAMP));
1151
1152 /* insert frame checksum */
1153 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1154
1155 return cmd_type;
1156}
1157
1158static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1159 union igc_adv_tx_desc *tx_desc,
1160 u32 tx_flags, unsigned int paylen)
1161{
1162 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1163
1164 /* insert L4 checksum */
1165 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1166 ((IGC_TXD_POPTS_TXSM << 8) /
1167 IGC_TX_FLAGS_CSUM);
1168
1169 /* insert IPv4 checksum */
1170 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1171 (((IGC_TXD_POPTS_IXSM << 8)) /
1172 IGC_TX_FLAGS_IPV4);
1173
1174 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1175}
1176
1177static int igc_tx_map(struct igc_ring *tx_ring,
1178 struct igc_tx_buffer *first,
1179 const u8 hdr_len)
1180{
1181 struct sk_buff *skb = first->skb;
1182 struct igc_tx_buffer *tx_buffer;
1183 union igc_adv_tx_desc *tx_desc;
1184 u32 tx_flags = first->tx_flags;
1185 skb_frag_t *frag;
1186 u16 i = tx_ring->next_to_use;
1187 unsigned int data_len, size;
1188 dma_addr_t dma;
1189 u32 cmd_type;
1190
1191 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1192 tx_desc = IGC_TX_DESC(tx_ring, i);
1193
1194 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1195
1196 size = skb_headlen(skb);
1197 data_len = skb->data_len;
1198
1199 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200
1201 tx_buffer = first;
1202
1203 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204 if (dma_mapping_error(tx_ring->dev, dma))
1205 goto dma_error;
1206
1207 /* record length, and DMA address */
1208 dma_unmap_len_set(tx_buffer, len, size);
1209 dma_unmap_addr_set(tx_buffer, dma, dma);
1210
1211 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1212
1213 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1214 tx_desc->read.cmd_type_len =
1215 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1216
1217 i++;
1218 tx_desc++;
1219 if (i == tx_ring->count) {
1220 tx_desc = IGC_TX_DESC(tx_ring, 0);
1221 i = 0;
1222 }
1223 tx_desc->read.olinfo_status = 0;
1224
1225 dma += IGC_MAX_DATA_PER_TXD;
1226 size -= IGC_MAX_DATA_PER_TXD;
1227
1228 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1229 }
1230
1231 if (likely(!data_len))
1232 break;
1233
1234 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1235
1236 i++;
1237 tx_desc++;
1238 if (i == tx_ring->count) {
1239 tx_desc = IGC_TX_DESC(tx_ring, 0);
1240 i = 0;
1241 }
1242 tx_desc->read.olinfo_status = 0;
1243
1244 size = skb_frag_size(frag);
1245 data_len -= size;
1246
1247 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1248 size, DMA_TO_DEVICE);
1249
1250 tx_buffer = &tx_ring->tx_buffer_info[i];
1251 }
1252
1253 /* write last descriptor with RS and EOP bits */
1254 cmd_type |= size | IGC_TXD_DCMD;
1255 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1256
1257 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1258
1259 /* set the timestamp */
1260 first->time_stamp = jiffies;
1261
1262 skb_tx_timestamp(skb);
1263
1264 /* Force memory writes to complete before letting h/w know there
1265 * are new descriptors to fetch. (Only applicable for weak-ordered
1266 * memory model archs, such as IA-64).
1267 *
1268 * We also need this memory barrier to make certain all of the
1269 * status bits have been updated before next_to_watch is written.
1270 */
1271 wmb();
1272
1273 /* set next_to_watch value indicating a packet is present */
1274 first->next_to_watch = tx_desc;
1275
1276 i++;
1277 if (i == tx_ring->count)
1278 i = 0;
1279
1280 tx_ring->next_to_use = i;
1281
1282 /* Make sure there is space in the ring for the next send. */
1283 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1284
1285 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1286 writel(i, tx_ring->tail);
1287 }
1288
1289 return 0;
1290dma_error:
1291 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1292 tx_buffer = &tx_ring->tx_buffer_info[i];
1293
1294 /* clear dma mappings for failed tx_buffer_info map */
1295 while (tx_buffer != first) {
1296 if (dma_unmap_len(tx_buffer, len))
1297 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1298
1299 if (i-- == 0)
1300 i += tx_ring->count;
1301 tx_buffer = &tx_ring->tx_buffer_info[i];
1302 }
1303
1304 if (dma_unmap_len(tx_buffer, len))
1305 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1306
1307 dev_kfree_skb_any(tx_buffer->skb);
1308 tx_buffer->skb = NULL;
1309
1310 tx_ring->next_to_use = i;
1311
1312 return -1;
1313}
1314
1315static int igc_tso(struct igc_ring *tx_ring,
1316 struct igc_tx_buffer *first,
1317 u8 *hdr_len)
1318{
1319 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1320 struct sk_buff *skb = first->skb;
1321 union {
1322 struct iphdr *v4;
1323 struct ipv6hdr *v6;
1324 unsigned char *hdr;
1325 } ip;
1326 union {
1327 struct tcphdr *tcp;
1328 struct udphdr *udp;
1329 unsigned char *hdr;
1330 } l4;
1331 u32 paylen, l4_offset;
1332 int err;
1333
1334 if (skb->ip_summed != CHECKSUM_PARTIAL)
1335 return 0;
1336
1337 if (!skb_is_gso(skb))
1338 return 0;
1339
1340 err = skb_cow_head(skb, 0);
1341 if (err < 0)
1342 return err;
1343
1344 ip.hdr = skb_network_header(skb);
1345 l4.hdr = skb_checksum_start(skb);
1346
1347 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1348 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1349
1350 /* initialize outer IP header fields */
1351 if (ip.v4->version == 4) {
1352 unsigned char *csum_start = skb_checksum_start(skb);
1353 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1354
1355 /* IP header will have to cancel out any data that
1356 * is not a part of the outer IP header
1357 */
1358 ip.v4->check = csum_fold(csum_partial(trans_start,
1359 csum_start - trans_start,
1360 0));
1361 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1362
1363 ip.v4->tot_len = 0;
1364 first->tx_flags |= IGC_TX_FLAGS_TSO |
1365 IGC_TX_FLAGS_CSUM |
1366 IGC_TX_FLAGS_IPV4;
1367 } else {
1368 ip.v6->payload_len = 0;
1369 first->tx_flags |= IGC_TX_FLAGS_TSO |
1370 IGC_TX_FLAGS_CSUM;
1371 }
1372
1373 /* determine offset of inner transport header */
1374 l4_offset = l4.hdr - skb->data;
1375
1376 /* remove payload length from inner checksum */
1377 paylen = skb->len - l4_offset;
1378 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1379 /* compute length of segmentation header */
1380 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1381 csum_replace_by_diff(&l4.tcp->check,
1382 (__force __wsum)htonl(paylen));
1383 } else {
1384 /* compute length of segmentation header */
1385 *hdr_len = sizeof(*l4.udp) + l4_offset;
1386 csum_replace_by_diff(&l4.udp->check,
1387 (__force __wsum)htonl(paylen));
1388 }
1389
1390 /* update gso size and bytecount with header size */
1391 first->gso_segs = skb_shinfo(skb)->gso_segs;
1392 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1393
1394 /* MSS L4LEN IDX */
1395 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1396 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1397
1398 /* VLAN MACLEN IPLEN */
1399 vlan_macip_lens = l4.hdr - ip.hdr;
1400 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1401 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1402
1403 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1404 type_tucmd, mss_l4len_idx);
1405
1406 return 1;
1407}
1408
1409static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1410 struct igc_ring *tx_ring)
1411{
1412 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1413 __be16 protocol = vlan_get_protocol(skb);
1414 struct igc_tx_buffer *first;
1415 u32 tx_flags = 0;
1416 unsigned short f;
1417 u8 hdr_len = 0;
1418 int tso = 0;
1419
1420 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1421 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1422 * + 2 desc gap to keep tail from touching head,
1423 * + 1 desc for context descriptor,
1424 * otherwise try next time
1425 */
1426 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1427 count += TXD_USE_COUNT(skb_frag_size(
1428 &skb_shinfo(skb)->frags[f]));
1429
1430 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1431 /* this is a hard error */
1432 return NETDEV_TX_BUSY;
1433 }
1434
1435 /* record the location of the first descriptor for this packet */
1436 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1437 first->type = IGC_TX_BUFFER_TYPE_SKB;
1438 first->skb = skb;
1439 first->bytecount = skb->len;
1440 first->gso_segs = 1;
1441
1442 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1443 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1444
1445 /* FIXME: add support for retrieving timestamps from
1446 * the other timer registers before skipping the
1447 * timestamping request.
1448 */
1449 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1450 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1451 &adapter->state)) {
1452 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1453 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1454
1455 adapter->ptp_tx_skb = skb_get(skb);
1456 adapter->ptp_tx_start = jiffies;
1457 } else {
1458 adapter->tx_hwtstamp_skipped++;
1459 }
1460 }
1461
1462 if (skb_vlan_tag_present(skb)) {
1463 tx_flags |= IGC_TX_FLAGS_VLAN;
1464 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1465 }
1466
1467 /* record initial flags and protocol */
1468 first->tx_flags = tx_flags;
1469 first->protocol = protocol;
1470
1471 tso = igc_tso(tx_ring, first, &hdr_len);
1472 if (tso < 0)
1473 goto out_drop;
1474 else if (!tso)
1475 igc_tx_csum(tx_ring, first);
1476
1477 igc_tx_map(tx_ring, first, hdr_len);
1478
1479 return NETDEV_TX_OK;
1480
1481out_drop:
1482 dev_kfree_skb_any(first->skb);
1483 first->skb = NULL;
1484
1485 return NETDEV_TX_OK;
1486}
1487
1488static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1489 struct sk_buff *skb)
1490{
1491 unsigned int r_idx = skb->queue_mapping;
1492
1493 if (r_idx >= adapter->num_tx_queues)
1494 r_idx = r_idx % adapter->num_tx_queues;
1495
1496 return adapter->tx_ring[r_idx];
1497}
1498
1499static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1500 struct net_device *netdev)
1501{
1502 struct igc_adapter *adapter = netdev_priv(netdev);
1503
1504 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1505 * in order to meet this minimum size requirement.
1506 */
1507 if (skb->len < 17) {
1508 if (skb_padto(skb, 17))
1509 return NETDEV_TX_OK;
1510 skb->len = 17;
1511 }
1512
1513 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1514}
1515
1516static void igc_rx_checksum(struct igc_ring *ring,
1517 union igc_adv_rx_desc *rx_desc,
1518 struct sk_buff *skb)
1519{
1520 skb_checksum_none_assert(skb);
1521
1522 /* Ignore Checksum bit is set */
1523 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1524 return;
1525
1526 /* Rx checksum disabled via ethtool */
1527 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1528 return;
1529
1530 /* TCP/UDP checksum error bit is set */
1531 if (igc_test_staterr(rx_desc,
1532 IGC_RXDEXT_STATERR_L4E |
1533 IGC_RXDEXT_STATERR_IPE)) {
1534 /* work around errata with sctp packets where the TCPE aka
1535 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1536 * packets (aka let the stack check the crc32c)
1537 */
1538 if (!(skb->len == 60 &&
1539 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1540 u64_stats_update_begin(&ring->rx_syncp);
1541 ring->rx_stats.csum_err++;
1542 u64_stats_update_end(&ring->rx_syncp);
1543 }
1544 /* let the stack verify checksum errors */
1545 return;
1546 }
1547 /* It must be a TCP or UDP packet with a valid checksum */
1548 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1549 IGC_RXD_STAT_UDPCS))
1550 skb->ip_summed = CHECKSUM_UNNECESSARY;
1551
1552 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1553 le32_to_cpu(rx_desc->wb.upper.status_error));
1554}
1555
1556static inline void igc_rx_hash(struct igc_ring *ring,
1557 union igc_adv_rx_desc *rx_desc,
1558 struct sk_buff *skb)
1559{
1560 if (ring->netdev->features & NETIF_F_RXHASH)
1561 skb_set_hash(skb,
1562 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1563 PKT_HASH_TYPE_L3);
1564}
1565
1566static void igc_rx_vlan(struct igc_ring *rx_ring,
1567 union igc_adv_rx_desc *rx_desc,
1568 struct sk_buff *skb)
1569{
1570 struct net_device *dev = rx_ring->netdev;
1571 u16 vid;
1572
1573 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1574 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1575 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1576 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1577 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1578 else
1579 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1580
1581 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1582 }
1583}
1584
1585/**
1586 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1587 * @rx_ring: rx descriptor ring packet is being transacted on
1588 * @rx_desc: pointer to the EOP Rx descriptor
1589 * @skb: pointer to current skb being populated
1590 *
1591 * This function checks the ring, descriptor, and packet information in order
1592 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1593 * skb.
1594 */
1595static void igc_process_skb_fields(struct igc_ring *rx_ring,
1596 union igc_adv_rx_desc *rx_desc,
1597 struct sk_buff *skb)
1598{
1599 igc_rx_hash(rx_ring, rx_desc, skb);
1600
1601 igc_rx_checksum(rx_ring, rx_desc, skb);
1602
1603 igc_rx_vlan(rx_ring, rx_desc, skb);
1604
1605 skb_record_rx_queue(skb, rx_ring->queue_index);
1606
1607 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1608}
1609
1610static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1611{
1612 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1613 struct igc_adapter *adapter = netdev_priv(netdev);
1614 struct igc_hw *hw = &adapter->hw;
1615 u32 ctrl;
1616
1617 ctrl = rd32(IGC_CTRL);
1618
1619 if (enable) {
1620 /* enable VLAN tag insert/strip */
1621 ctrl |= IGC_CTRL_VME;
1622 } else {
1623 /* disable VLAN tag insert/strip */
1624 ctrl &= ~IGC_CTRL_VME;
1625 }
1626 wr32(IGC_CTRL, ctrl);
1627}
1628
1629static void igc_restore_vlan(struct igc_adapter *adapter)
1630{
1631 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1632}
1633
1634static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1635 const unsigned int size,
1636 int *rx_buffer_pgcnt)
1637{
1638 struct igc_rx_buffer *rx_buffer;
1639
1640 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1641 *rx_buffer_pgcnt =
1642#if (PAGE_SIZE < 8192)
1643 page_count(rx_buffer->page);
1644#else
1645 0;
1646#endif
1647 prefetchw(rx_buffer->page);
1648
1649 /* we are reusing so sync this buffer for CPU use */
1650 dma_sync_single_range_for_cpu(rx_ring->dev,
1651 rx_buffer->dma,
1652 rx_buffer->page_offset,
1653 size,
1654 DMA_FROM_DEVICE);
1655
1656 rx_buffer->pagecnt_bias--;
1657
1658 return rx_buffer;
1659}
1660
1661static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1662 unsigned int truesize)
1663{
1664#if (PAGE_SIZE < 8192)
1665 buffer->page_offset ^= truesize;
1666#else
1667 buffer->page_offset += truesize;
1668#endif
1669}
1670
1671static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1672 unsigned int size)
1673{
1674 unsigned int truesize;
1675
1676#if (PAGE_SIZE < 8192)
1677 truesize = igc_rx_pg_size(ring) / 2;
1678#else
1679 truesize = ring_uses_build_skb(ring) ?
1680 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1681 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1682 SKB_DATA_ALIGN(size);
1683#endif
1684 return truesize;
1685}
1686
1687/**
1688 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1689 * @rx_ring: rx descriptor ring to transact packets on
1690 * @rx_buffer: buffer containing page to add
1691 * @skb: sk_buff to place the data into
1692 * @size: size of buffer to be added
1693 *
1694 * This function will add the data contained in rx_buffer->page to the skb.
1695 */
1696static void igc_add_rx_frag(struct igc_ring *rx_ring,
1697 struct igc_rx_buffer *rx_buffer,
1698 struct sk_buff *skb,
1699 unsigned int size)
1700{
1701 unsigned int truesize;
1702
1703#if (PAGE_SIZE < 8192)
1704 truesize = igc_rx_pg_size(rx_ring) / 2;
1705#else
1706 truesize = ring_uses_build_skb(rx_ring) ?
1707 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1708 SKB_DATA_ALIGN(size);
1709#endif
1710 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1711 rx_buffer->page_offset, size, truesize);
1712
1713 igc_rx_buffer_flip(rx_buffer, truesize);
1714}
1715
1716static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1717 struct igc_rx_buffer *rx_buffer,
1718 union igc_adv_rx_desc *rx_desc,
1719 unsigned int size)
1720{
1721 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1722 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1723 struct sk_buff *skb;
1724
1725 /* prefetch first cache line of first page */
1726 net_prefetch(va);
1727
1728 /* build an skb around the page buffer */
1729 skb = build_skb(va - IGC_SKB_PAD, truesize);
1730 if (unlikely(!skb))
1731 return NULL;
1732
1733 /* update pointers within the skb to store the data */
1734 skb_reserve(skb, IGC_SKB_PAD);
1735 __skb_put(skb, size);
1736
1737 igc_rx_buffer_flip(rx_buffer, truesize);
1738 return skb;
1739}
1740
1741static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1742 struct igc_rx_buffer *rx_buffer,
1743 struct xdp_buff *xdp,
1744 ktime_t timestamp)
1745{
1746 unsigned int size = xdp->data_end - xdp->data;
1747 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1748 void *va = xdp->data;
1749 unsigned int headlen;
1750 struct sk_buff *skb;
1751
1752 /* prefetch first cache line of first page */
1753 net_prefetch(va);
1754
1755 /* allocate a skb to store the frags */
1756 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1757 if (unlikely(!skb))
1758 return NULL;
1759
1760 if (timestamp)
1761 skb_hwtstamps(skb)->hwtstamp = timestamp;
1762
1763 /* Determine available headroom for copy */
1764 headlen = size;
1765 if (headlen > IGC_RX_HDR_LEN)
1766 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1767
1768 /* align pull length to size of long to optimize memcpy performance */
1769 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1770
1771 /* update all of the pointers */
1772 size -= headlen;
1773 if (size) {
1774 skb_add_rx_frag(skb, 0, rx_buffer->page,
1775 (va + headlen) - page_address(rx_buffer->page),
1776 size, truesize);
1777 igc_rx_buffer_flip(rx_buffer, truesize);
1778 } else {
1779 rx_buffer->pagecnt_bias++;
1780 }
1781
1782 return skb;
1783}
1784
1785/**
1786 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1787 * @rx_ring: rx descriptor ring to store buffers on
1788 * @old_buff: donor buffer to have page reused
1789 *
1790 * Synchronizes page for reuse by the adapter
1791 */
1792static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1793 struct igc_rx_buffer *old_buff)
1794{
1795 u16 nta = rx_ring->next_to_alloc;
1796 struct igc_rx_buffer *new_buff;
1797
1798 new_buff = &rx_ring->rx_buffer_info[nta];
1799
1800 /* update, and store next to alloc */
1801 nta++;
1802 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1803
1804 /* Transfer page from old buffer to new buffer.
1805 * Move each member individually to avoid possible store
1806 * forwarding stalls.
1807 */
1808 new_buff->dma = old_buff->dma;
1809 new_buff->page = old_buff->page;
1810 new_buff->page_offset = old_buff->page_offset;
1811 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1812}
1813
1814static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1815 int rx_buffer_pgcnt)
1816{
1817 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1818 struct page *page = rx_buffer->page;
1819
1820 /* avoid re-using remote and pfmemalloc pages */
1821 if (!dev_page_is_reusable(page))
1822 return false;
1823
1824#if (PAGE_SIZE < 8192)
1825 /* if we are only owner of page we can reuse it */
1826 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1827 return false;
1828#else
1829#define IGC_LAST_OFFSET \
1830 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1831
1832 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1833 return false;
1834#endif
1835
1836 /* If we have drained the page fragment pool we need to update
1837 * the pagecnt_bias and page count so that we fully restock the
1838 * number of references the driver holds.
1839 */
1840 if (unlikely(pagecnt_bias == 1)) {
1841 page_ref_add(page, USHRT_MAX - 1);
1842 rx_buffer->pagecnt_bias = USHRT_MAX;
1843 }
1844
1845 return true;
1846}
1847
1848/**
1849 * igc_is_non_eop - process handling of non-EOP buffers
1850 * @rx_ring: Rx ring being processed
1851 * @rx_desc: Rx descriptor for current buffer
1852 *
1853 * This function updates next to clean. If the buffer is an EOP buffer
1854 * this function exits returning false, otherwise it will place the
1855 * sk_buff in the next buffer to be chained and return true indicating
1856 * that this is in fact a non-EOP buffer.
1857 */
1858static bool igc_is_non_eop(struct igc_ring *rx_ring,
1859 union igc_adv_rx_desc *rx_desc)
1860{
1861 u32 ntc = rx_ring->next_to_clean + 1;
1862
1863 /* fetch, update, and store next to clean */
1864 ntc = (ntc < rx_ring->count) ? ntc : 0;
1865 rx_ring->next_to_clean = ntc;
1866
1867 prefetch(IGC_RX_DESC(rx_ring, ntc));
1868
1869 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1870 return false;
1871
1872 return true;
1873}
1874
1875/**
1876 * igc_cleanup_headers - Correct corrupted or empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @rx_desc: pointer to the EOP Rx descriptor
1879 * @skb: pointer to current skb being fixed
1880 *
1881 * Address the case where we are pulling data in on pages only
1882 * and as such no data is present in the skb header.
1883 *
1884 * In addition if skb is not at least 60 bytes we need to pad it so that
1885 * it is large enough to qualify as a valid Ethernet frame.
1886 *
1887 * Returns true if an error was encountered and skb was freed.
1888 */
1889static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1890 union igc_adv_rx_desc *rx_desc,
1891 struct sk_buff *skb)
1892{
1893 /* XDP packets use error pointer so abort at this point */
1894 if (IS_ERR(skb))
1895 return true;
1896
1897 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1898 struct net_device *netdev = rx_ring->netdev;
1899
1900 if (!(netdev->features & NETIF_F_RXALL)) {
1901 dev_kfree_skb_any(skb);
1902 return true;
1903 }
1904 }
1905
1906 /* if eth_skb_pad returns an error the skb was freed */
1907 if (eth_skb_pad(skb))
1908 return true;
1909
1910 return false;
1911}
1912
1913static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1914 struct igc_rx_buffer *rx_buffer,
1915 int rx_buffer_pgcnt)
1916{
1917 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1918 /* hand second half of page back to the ring */
1919 igc_reuse_rx_page(rx_ring, rx_buffer);
1920 } else {
1921 /* We are not reusing the buffer so unmap it and free
1922 * any references we are holding to it
1923 */
1924 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1925 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1926 IGC_RX_DMA_ATTR);
1927 __page_frag_cache_drain(rx_buffer->page,
1928 rx_buffer->pagecnt_bias);
1929 }
1930
1931 /* clear contents of rx_buffer */
1932 rx_buffer->page = NULL;
1933}
1934
1935static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1936{
1937 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1938
1939 if (ring_uses_build_skb(rx_ring))
1940 return IGC_SKB_PAD;
1941 if (igc_xdp_is_enabled(adapter))
1942 return XDP_PACKET_HEADROOM;
1943
1944 return 0;
1945}
1946
1947static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1948 struct igc_rx_buffer *bi)
1949{
1950 struct page *page = bi->page;
1951 dma_addr_t dma;
1952
1953 /* since we are recycling buffers we should seldom need to alloc */
1954 if (likely(page))
1955 return true;
1956
1957 /* alloc new page for storage */
1958 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1959 if (unlikely(!page)) {
1960 rx_ring->rx_stats.alloc_failed++;
1961 return false;
1962 }
1963
1964 /* map page for use */
1965 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1966 igc_rx_pg_size(rx_ring),
1967 DMA_FROM_DEVICE,
1968 IGC_RX_DMA_ATTR);
1969
1970 /* if mapping failed free memory back to system since
1971 * there isn't much point in holding memory we can't use
1972 */
1973 if (dma_mapping_error(rx_ring->dev, dma)) {
1974 __free_page(page);
1975
1976 rx_ring->rx_stats.alloc_failed++;
1977 return false;
1978 }
1979
1980 bi->dma = dma;
1981 bi->page = page;
1982 bi->page_offset = igc_rx_offset(rx_ring);
1983 page_ref_add(page, USHRT_MAX - 1);
1984 bi->pagecnt_bias = USHRT_MAX;
1985
1986 return true;
1987}
1988
1989/**
1990 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1991 * @rx_ring: rx descriptor ring
1992 * @cleaned_count: number of buffers to clean
1993 */
1994static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1995{
1996 union igc_adv_rx_desc *rx_desc;
1997 u16 i = rx_ring->next_to_use;
1998 struct igc_rx_buffer *bi;
1999 u16 bufsz;
2000
2001 /* nothing to do */
2002 if (!cleaned_count)
2003 return;
2004
2005 rx_desc = IGC_RX_DESC(rx_ring, i);
2006 bi = &rx_ring->rx_buffer_info[i];
2007 i -= rx_ring->count;
2008
2009 bufsz = igc_rx_bufsz(rx_ring);
2010
2011 do {
2012 if (!igc_alloc_mapped_page(rx_ring, bi))
2013 break;
2014
2015 /* sync the buffer for use by the device */
2016 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2017 bi->page_offset, bufsz,
2018 DMA_FROM_DEVICE);
2019
2020 /* Refresh the desc even if buffer_addrs didn't change
2021 * because each write-back erases this info.
2022 */
2023 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2024
2025 rx_desc++;
2026 bi++;
2027 i++;
2028 if (unlikely(!i)) {
2029 rx_desc = IGC_RX_DESC(rx_ring, 0);
2030 bi = rx_ring->rx_buffer_info;
2031 i -= rx_ring->count;
2032 }
2033
2034 /* clear the length for the next_to_use descriptor */
2035 rx_desc->wb.upper.length = 0;
2036
2037 cleaned_count--;
2038 } while (cleaned_count);
2039
2040 i += rx_ring->count;
2041
2042 if (rx_ring->next_to_use != i) {
2043 /* record the next descriptor to use */
2044 rx_ring->next_to_use = i;
2045
2046 /* update next to alloc since we have filled the ring */
2047 rx_ring->next_to_alloc = i;
2048
2049 /* Force memory writes to complete before letting h/w
2050 * know there are new descriptors to fetch. (Only
2051 * applicable for weak-ordered memory model archs,
2052 * such as IA-64).
2053 */
2054 wmb();
2055 writel(i, rx_ring->tail);
2056 }
2057}
2058
2059static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2060{
2061 union igc_adv_rx_desc *desc;
2062 u16 i = ring->next_to_use;
2063 struct igc_rx_buffer *bi;
2064 dma_addr_t dma;
2065 bool ok = true;
2066
2067 if (!count)
2068 return ok;
2069
2070 desc = IGC_RX_DESC(ring, i);
2071 bi = &ring->rx_buffer_info[i];
2072 i -= ring->count;
2073
2074 do {
2075 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2076 if (!bi->xdp) {
2077 ok = false;
2078 break;
2079 }
2080
2081 dma = xsk_buff_xdp_get_dma(bi->xdp);
2082 desc->read.pkt_addr = cpu_to_le64(dma);
2083
2084 desc++;
2085 bi++;
2086 i++;
2087 if (unlikely(!i)) {
2088 desc = IGC_RX_DESC(ring, 0);
2089 bi = ring->rx_buffer_info;
2090 i -= ring->count;
2091 }
2092
2093 /* Clear the length for the next_to_use descriptor. */
2094 desc->wb.upper.length = 0;
2095
2096 count--;
2097 } while (count);
2098
2099 i += ring->count;
2100
2101 if (ring->next_to_use != i) {
2102 ring->next_to_use = i;
2103
2104 /* Force memory writes to complete before letting h/w
2105 * know there are new descriptors to fetch. (Only
2106 * applicable for weak-ordered memory model archs,
2107 * such as IA-64).
2108 */
2109 wmb();
2110 writel(i, ring->tail);
2111 }
2112
2113 return ok;
2114}
2115
2116static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2117 struct xdp_frame *xdpf,
2118 struct igc_ring *ring)
2119{
2120 dma_addr_t dma;
2121
2122 dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2123 if (dma_mapping_error(ring->dev, dma)) {
2124 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2125 return -ENOMEM;
2126 }
2127
2128 buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2129 buffer->xdpf = xdpf;
2130 buffer->protocol = 0;
2131 buffer->bytecount = xdpf->len;
2132 buffer->gso_segs = 1;
2133 buffer->time_stamp = jiffies;
2134 dma_unmap_len_set(buffer, len, xdpf->len);
2135 dma_unmap_addr_set(buffer, dma, dma);
2136 return 0;
2137}
2138
2139/* This function requires __netif_tx_lock is held by the caller. */
2140static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2141 struct xdp_frame *xdpf)
2142{
2143 struct igc_tx_buffer *buffer;
2144 union igc_adv_tx_desc *desc;
2145 u32 cmd_type, olinfo_status;
2146 int err;
2147
2148 if (!igc_desc_unused(ring))
2149 return -EBUSY;
2150
2151 buffer = &ring->tx_buffer_info[ring->next_to_use];
2152 err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2153 if (err)
2154 return err;
2155
2156 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2157 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2158 buffer->bytecount;
2159 olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2160
2161 desc = IGC_TX_DESC(ring, ring->next_to_use);
2162 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2163 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2164 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2165
2166 netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2167
2168 buffer->next_to_watch = desc;
2169
2170 ring->next_to_use++;
2171 if (ring->next_to_use == ring->count)
2172 ring->next_to_use = 0;
2173
2174 return 0;
2175}
2176
2177static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2178 int cpu)
2179{
2180 int index = cpu;
2181
2182 if (unlikely(index < 0))
2183 index = 0;
2184
2185 while (index >= adapter->num_tx_queues)
2186 index -= adapter->num_tx_queues;
2187
2188 return adapter->tx_ring[index];
2189}
2190
2191static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2192{
2193 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2194 int cpu = smp_processor_id();
2195 struct netdev_queue *nq;
2196 struct igc_ring *ring;
2197 int res;
2198
2199 if (unlikely(!xdpf))
2200 return -EFAULT;
2201
2202 ring = igc_xdp_get_tx_ring(adapter, cpu);
2203 nq = txring_txq(ring);
2204
2205 __netif_tx_lock(nq, cpu);
2206 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2207 __netif_tx_unlock(nq);
2208 return res;
2209}
2210
2211/* This function assumes rcu_read_lock() is held by the caller. */
2212static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2213 struct bpf_prog *prog,
2214 struct xdp_buff *xdp)
2215{
2216 u32 act = bpf_prog_run_xdp(prog, xdp);
2217
2218 switch (act) {
2219 case XDP_PASS:
2220 return IGC_XDP_PASS;
2221 case XDP_TX:
2222 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2223 goto out_failure;
2224 return IGC_XDP_TX;
2225 case XDP_REDIRECT:
2226 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2227 goto out_failure;
2228 return IGC_XDP_REDIRECT;
2229 break;
2230 default:
2231 bpf_warn_invalid_xdp_action(act);
2232 fallthrough;
2233 case XDP_ABORTED:
2234out_failure:
2235 trace_xdp_exception(adapter->netdev, prog, act);
2236 fallthrough;
2237 case XDP_DROP:
2238 return IGC_XDP_CONSUMED;
2239 }
2240}
2241
2242static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2243 struct xdp_buff *xdp)
2244{
2245 struct bpf_prog *prog;
2246 int res;
2247
2248 prog = READ_ONCE(adapter->xdp_prog);
2249 if (!prog) {
2250 res = IGC_XDP_PASS;
2251 goto out;
2252 }
2253
2254 res = __igc_xdp_run_prog(adapter, prog, xdp);
2255
2256out:
2257 return ERR_PTR(-res);
2258}
2259
2260/* This function assumes __netif_tx_lock is held by the caller. */
2261static void igc_flush_tx_descriptors(struct igc_ring *ring)
2262{
2263 /* Once tail pointer is updated, hardware can fetch the descriptors
2264 * any time so we issue a write membar here to ensure all memory
2265 * writes are complete before the tail pointer is updated.
2266 */
2267 wmb();
2268 writel(ring->next_to_use, ring->tail);
2269}
2270
2271static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2272{
2273 int cpu = smp_processor_id();
2274 struct netdev_queue *nq;
2275 struct igc_ring *ring;
2276
2277 if (status & IGC_XDP_TX) {
2278 ring = igc_xdp_get_tx_ring(adapter, cpu);
2279 nq = txring_txq(ring);
2280
2281 __netif_tx_lock(nq, cpu);
2282 igc_flush_tx_descriptors(ring);
2283 __netif_tx_unlock(nq);
2284 }
2285
2286 if (status & IGC_XDP_REDIRECT)
2287 xdp_do_flush();
2288}
2289
2290static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2291 unsigned int packets, unsigned int bytes)
2292{
2293 struct igc_ring *ring = q_vector->rx.ring;
2294
2295 u64_stats_update_begin(&ring->rx_syncp);
2296 ring->rx_stats.packets += packets;
2297 ring->rx_stats.bytes += bytes;
2298 u64_stats_update_end(&ring->rx_syncp);
2299
2300 q_vector->rx.total_packets += packets;
2301 q_vector->rx.total_bytes += bytes;
2302}
2303
2304static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2305{
2306 unsigned int total_bytes = 0, total_packets = 0;
2307 struct igc_adapter *adapter = q_vector->adapter;
2308 struct igc_ring *rx_ring = q_vector->rx.ring;
2309 struct sk_buff *skb = rx_ring->skb;
2310 u16 cleaned_count = igc_desc_unused(rx_ring);
2311 int xdp_status = 0, rx_buffer_pgcnt;
2312
2313 while (likely(total_packets < budget)) {
2314 union igc_adv_rx_desc *rx_desc;
2315 struct igc_rx_buffer *rx_buffer;
2316 unsigned int size, truesize;
2317 ktime_t timestamp = 0;
2318 struct xdp_buff xdp;
2319 int pkt_offset = 0;
2320 void *pktbuf;
2321
2322 /* return some buffers to hardware, one at a time is too slow */
2323 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2324 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2325 cleaned_count = 0;
2326 }
2327
2328 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2329 size = le16_to_cpu(rx_desc->wb.upper.length);
2330 if (!size)
2331 break;
2332
2333 /* This memory barrier is needed to keep us from reading
2334 * any other fields out of the rx_desc until we know the
2335 * descriptor has been written back
2336 */
2337 dma_rmb();
2338
2339 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2340 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2341
2342 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2343
2344 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2345 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2346 pktbuf);
2347 pkt_offset = IGC_TS_HDR_LEN;
2348 size -= IGC_TS_HDR_LEN;
2349 }
2350
2351 if (!skb) {
2352 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2353 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2354 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2355
2356 skb = igc_xdp_run_prog(adapter, &xdp);
2357 }
2358
2359 if (IS_ERR(skb)) {
2360 unsigned int xdp_res = -PTR_ERR(skb);
2361
2362 switch (xdp_res) {
2363 case IGC_XDP_CONSUMED:
2364 rx_buffer->pagecnt_bias++;
2365 break;
2366 case IGC_XDP_TX:
2367 case IGC_XDP_REDIRECT:
2368 igc_rx_buffer_flip(rx_buffer, truesize);
2369 xdp_status |= xdp_res;
2370 break;
2371 }
2372
2373 total_packets++;
2374 total_bytes += size;
2375 } else if (skb)
2376 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2377 else if (ring_uses_build_skb(rx_ring))
2378 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2379 else
2380 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2381 timestamp);
2382
2383 /* exit if we failed to retrieve a buffer */
2384 if (!skb) {
2385 rx_ring->rx_stats.alloc_failed++;
2386 rx_buffer->pagecnt_bias++;
2387 break;
2388 }
2389
2390 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2391 cleaned_count++;
2392
2393 /* fetch next buffer in frame if non-eop */
2394 if (igc_is_non_eop(rx_ring, rx_desc))
2395 continue;
2396
2397 /* verify the packet layout is correct */
2398 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2399 skb = NULL;
2400 continue;
2401 }
2402
2403 /* probably a little skewed due to removing CRC */
2404 total_bytes += skb->len;
2405
2406 /* populate checksum, VLAN, and protocol */
2407 igc_process_skb_fields(rx_ring, rx_desc, skb);
2408
2409 napi_gro_receive(&q_vector->napi, skb);
2410
2411 /* reset skb pointer */
2412 skb = NULL;
2413
2414 /* update budget accounting */
2415 total_packets++;
2416 }
2417
2418 if (xdp_status)
2419 igc_finalize_xdp(adapter, xdp_status);
2420
2421 /* place incomplete frames back on ring for completion */
2422 rx_ring->skb = skb;
2423
2424 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2425
2426 if (cleaned_count)
2427 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2428
2429 return total_packets;
2430}
2431
2432static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2433 struct xdp_buff *xdp)
2434{
2435 unsigned int metasize = xdp->data - xdp->data_meta;
2436 unsigned int datasize = xdp->data_end - xdp->data;
2437 unsigned int totalsize = metasize + datasize;
2438 struct sk_buff *skb;
2439
2440 skb = __napi_alloc_skb(&ring->q_vector->napi,
2441 xdp->data_end - xdp->data_hard_start,
2442 GFP_ATOMIC | __GFP_NOWARN);
2443 if (unlikely(!skb))
2444 return NULL;
2445
2446 skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2447 memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2448 if (metasize)
2449 skb_metadata_set(skb, metasize);
2450
2451 return skb;
2452}
2453
2454static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2455 union igc_adv_rx_desc *desc,
2456 struct xdp_buff *xdp,
2457 ktime_t timestamp)
2458{
2459 struct igc_ring *ring = q_vector->rx.ring;
2460 struct sk_buff *skb;
2461
2462 skb = igc_construct_skb_zc(ring, xdp);
2463 if (!skb) {
2464 ring->rx_stats.alloc_failed++;
2465 return;
2466 }
2467
2468 if (timestamp)
2469 skb_hwtstamps(skb)->hwtstamp = timestamp;
2470
2471 if (igc_cleanup_headers(ring, desc, skb))
2472 return;
2473
2474 igc_process_skb_fields(ring, desc, skb);
2475 napi_gro_receive(&q_vector->napi, skb);
2476}
2477
2478static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2479{
2480 struct igc_adapter *adapter = q_vector->adapter;
2481 struct igc_ring *ring = q_vector->rx.ring;
2482 u16 cleaned_count = igc_desc_unused(ring);
2483 int total_bytes = 0, total_packets = 0;
2484 u16 ntc = ring->next_to_clean;
2485 struct bpf_prog *prog;
2486 bool failure = false;
2487 int xdp_status = 0;
2488
2489 rcu_read_lock();
2490
2491 prog = READ_ONCE(adapter->xdp_prog);
2492
2493 while (likely(total_packets < budget)) {
2494 union igc_adv_rx_desc *desc;
2495 struct igc_rx_buffer *bi;
2496 ktime_t timestamp = 0;
2497 unsigned int size;
2498 int res;
2499
2500 desc = IGC_RX_DESC(ring, ntc);
2501 size = le16_to_cpu(desc->wb.upper.length);
2502 if (!size)
2503 break;
2504
2505 /* This memory barrier is needed to keep us from reading
2506 * any other fields out of the rx_desc until we know the
2507 * descriptor has been written back
2508 */
2509 dma_rmb();
2510
2511 bi = &ring->rx_buffer_info[ntc];
2512
2513 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2514 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2515 bi->xdp->data);
2516
2517 bi->xdp->data += IGC_TS_HDR_LEN;
2518
2519 /* HW timestamp has been copied into local variable. Metadata
2520 * length when XDP program is called should be 0.
2521 */
2522 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2523 size -= IGC_TS_HDR_LEN;
2524 }
2525
2526 bi->xdp->data_end = bi->xdp->data + size;
2527 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2528
2529 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2530 switch (res) {
2531 case IGC_XDP_PASS:
2532 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2533 fallthrough;
2534 case IGC_XDP_CONSUMED:
2535 xsk_buff_free(bi->xdp);
2536 break;
2537 case IGC_XDP_TX:
2538 case IGC_XDP_REDIRECT:
2539 xdp_status |= res;
2540 break;
2541 }
2542
2543 bi->xdp = NULL;
2544 total_bytes += size;
2545 total_packets++;
2546 cleaned_count++;
2547 ntc++;
2548 if (ntc == ring->count)
2549 ntc = 0;
2550 }
2551
2552 ring->next_to_clean = ntc;
2553 rcu_read_unlock();
2554
2555 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2556 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2557
2558 if (xdp_status)
2559 igc_finalize_xdp(adapter, xdp_status);
2560
2561 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2562
2563 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2564 if (failure || ring->next_to_clean == ring->next_to_use)
2565 xsk_set_rx_need_wakeup(ring->xsk_pool);
2566 else
2567 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2568 return total_packets;
2569 }
2570
2571 return failure ? budget : total_packets;
2572}
2573
2574static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2575 unsigned int packets, unsigned int bytes)
2576{
2577 struct igc_ring *ring = q_vector->tx.ring;
2578
2579 u64_stats_update_begin(&ring->tx_syncp);
2580 ring->tx_stats.bytes += bytes;
2581 ring->tx_stats.packets += packets;
2582 u64_stats_update_end(&ring->tx_syncp);
2583
2584 q_vector->tx.total_bytes += bytes;
2585 q_vector->tx.total_packets += packets;
2586}
2587
2588static void igc_xdp_xmit_zc(struct igc_ring *ring)
2589{
2590 struct xsk_buff_pool *pool = ring->xsk_pool;
2591 struct netdev_queue *nq = txring_txq(ring);
2592 union igc_adv_tx_desc *tx_desc = NULL;
2593 int cpu = smp_processor_id();
2594 u16 ntu = ring->next_to_use;
2595 struct xdp_desc xdp_desc;
2596 u16 budget;
2597
2598 if (!netif_carrier_ok(ring->netdev))
2599 return;
2600
2601 __netif_tx_lock(nq, cpu);
2602
2603 budget = igc_desc_unused(ring);
2604
2605 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2606 u32 cmd_type, olinfo_status;
2607 struct igc_tx_buffer *bi;
2608 dma_addr_t dma;
2609
2610 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2611 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2612 xdp_desc.len;
2613 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2614
2615 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2616 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2617
2618 tx_desc = IGC_TX_DESC(ring, ntu);
2619 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2620 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2621 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2622
2623 bi = &ring->tx_buffer_info[ntu];
2624 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2625 bi->protocol = 0;
2626 bi->bytecount = xdp_desc.len;
2627 bi->gso_segs = 1;
2628 bi->time_stamp = jiffies;
2629 bi->next_to_watch = tx_desc;
2630
2631 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2632
2633 ntu++;
2634 if (ntu == ring->count)
2635 ntu = 0;
2636 }
2637
2638 ring->next_to_use = ntu;
2639 if (tx_desc) {
2640 igc_flush_tx_descriptors(ring);
2641 xsk_tx_release(pool);
2642 }
2643
2644 __netif_tx_unlock(nq);
2645}
2646
2647/**
2648 * igc_clean_tx_irq - Reclaim resources after transmit completes
2649 * @q_vector: pointer to q_vector containing needed info
2650 * @napi_budget: Used to determine if we are in netpoll
2651 *
2652 * returns true if ring is completely cleaned
2653 */
2654static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2655{
2656 struct igc_adapter *adapter = q_vector->adapter;
2657 unsigned int total_bytes = 0, total_packets = 0;
2658 unsigned int budget = q_vector->tx.work_limit;
2659 struct igc_ring *tx_ring = q_vector->tx.ring;
2660 unsigned int i = tx_ring->next_to_clean;
2661 struct igc_tx_buffer *tx_buffer;
2662 union igc_adv_tx_desc *tx_desc;
2663 u32 xsk_frames = 0;
2664
2665 if (test_bit(__IGC_DOWN, &adapter->state))
2666 return true;
2667
2668 tx_buffer = &tx_ring->tx_buffer_info[i];
2669 tx_desc = IGC_TX_DESC(tx_ring, i);
2670 i -= tx_ring->count;
2671
2672 do {
2673 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2674
2675 /* if next_to_watch is not set then there is no work pending */
2676 if (!eop_desc)
2677 break;
2678
2679 /* prevent any other reads prior to eop_desc */
2680 smp_rmb();
2681
2682 /* if DD is not set pending work has not been completed */
2683 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2684 break;
2685
2686 /* clear next_to_watch to prevent false hangs */
2687 tx_buffer->next_to_watch = NULL;
2688
2689 /* update the statistics for this packet */
2690 total_bytes += tx_buffer->bytecount;
2691 total_packets += tx_buffer->gso_segs;
2692
2693 switch (tx_buffer->type) {
2694 case IGC_TX_BUFFER_TYPE_XSK:
2695 xsk_frames++;
2696 break;
2697 case IGC_TX_BUFFER_TYPE_XDP:
2698 xdp_return_frame(tx_buffer->xdpf);
2699 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2700 break;
2701 case IGC_TX_BUFFER_TYPE_SKB:
2702 napi_consume_skb(tx_buffer->skb, napi_budget);
2703 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2704 break;
2705 default:
2706 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2707 break;
2708 }
2709
2710 /* clear last DMA location and unmap remaining buffers */
2711 while (tx_desc != eop_desc) {
2712 tx_buffer++;
2713 tx_desc++;
2714 i++;
2715 if (unlikely(!i)) {
2716 i -= tx_ring->count;
2717 tx_buffer = tx_ring->tx_buffer_info;
2718 tx_desc = IGC_TX_DESC(tx_ring, 0);
2719 }
2720
2721 /* unmap any remaining paged data */
2722 if (dma_unmap_len(tx_buffer, len))
2723 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2724 }
2725
2726 /* move us one more past the eop_desc for start of next pkt */
2727 tx_buffer++;
2728 tx_desc++;
2729 i++;
2730 if (unlikely(!i)) {
2731 i -= tx_ring->count;
2732 tx_buffer = tx_ring->tx_buffer_info;
2733 tx_desc = IGC_TX_DESC(tx_ring, 0);
2734 }
2735
2736 /* issue prefetch for next Tx descriptor */
2737 prefetch(tx_desc);
2738
2739 /* update budget accounting */
2740 budget--;
2741 } while (likely(budget));
2742
2743 netdev_tx_completed_queue(txring_txq(tx_ring),
2744 total_packets, total_bytes);
2745
2746 i += tx_ring->count;
2747 tx_ring->next_to_clean = i;
2748
2749 igc_update_tx_stats(q_vector, total_packets, total_bytes);
2750
2751 if (tx_ring->xsk_pool) {
2752 if (xsk_frames)
2753 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2754 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2755 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2756 igc_xdp_xmit_zc(tx_ring);
2757 }
2758
2759 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2760 struct igc_hw *hw = &adapter->hw;
2761
2762 /* Detect a transmit hang in hardware, this serializes the
2763 * check with the clearing of time_stamp and movement of i
2764 */
2765 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2766 if (tx_buffer->next_to_watch &&
2767 time_after(jiffies, tx_buffer->time_stamp +
2768 (adapter->tx_timeout_factor * HZ)) &&
2769 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2770 /* detected Tx unit hang */
2771 netdev_err(tx_ring->netdev,
2772 "Detected Tx Unit Hang\n"
2773 " Tx Queue <%d>\n"
2774 " TDH <%x>\n"
2775 " TDT <%x>\n"
2776 " next_to_use <%x>\n"
2777 " next_to_clean <%x>\n"
2778 "buffer_info[next_to_clean]\n"
2779 " time_stamp <%lx>\n"
2780 " next_to_watch <%p>\n"
2781 " jiffies <%lx>\n"
2782 " desc.status <%x>\n",
2783 tx_ring->queue_index,
2784 rd32(IGC_TDH(tx_ring->reg_idx)),
2785 readl(tx_ring->tail),
2786 tx_ring->next_to_use,
2787 tx_ring->next_to_clean,
2788 tx_buffer->time_stamp,
2789 tx_buffer->next_to_watch,
2790 jiffies,
2791 tx_buffer->next_to_watch->wb.status);
2792 netif_stop_subqueue(tx_ring->netdev,
2793 tx_ring->queue_index);
2794
2795 /* we are about to reset, no point in enabling stuff */
2796 return true;
2797 }
2798 }
2799
2800#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2801 if (unlikely(total_packets &&
2802 netif_carrier_ok(tx_ring->netdev) &&
2803 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2804 /* Make sure that anybody stopping the queue after this
2805 * sees the new next_to_clean.
2806 */
2807 smp_mb();
2808 if (__netif_subqueue_stopped(tx_ring->netdev,
2809 tx_ring->queue_index) &&
2810 !(test_bit(__IGC_DOWN, &adapter->state))) {
2811 netif_wake_subqueue(tx_ring->netdev,
2812 tx_ring->queue_index);
2813
2814 u64_stats_update_begin(&tx_ring->tx_syncp);
2815 tx_ring->tx_stats.restart_queue++;
2816 u64_stats_update_end(&tx_ring->tx_syncp);
2817 }
2818 }
2819
2820 return !!budget;
2821}
2822
2823static int igc_find_mac_filter(struct igc_adapter *adapter,
2824 enum igc_mac_filter_type type, const u8 *addr)
2825{
2826 struct igc_hw *hw = &adapter->hw;
2827 int max_entries = hw->mac.rar_entry_count;
2828 u32 ral, rah;
2829 int i;
2830
2831 for (i = 0; i < max_entries; i++) {
2832 ral = rd32(IGC_RAL(i));
2833 rah = rd32(IGC_RAH(i));
2834
2835 if (!(rah & IGC_RAH_AV))
2836 continue;
2837 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2838 continue;
2839 if ((rah & IGC_RAH_RAH_MASK) !=
2840 le16_to_cpup((__le16 *)(addr + 4)))
2841 continue;
2842 if (ral != le32_to_cpup((__le32 *)(addr)))
2843 continue;
2844
2845 return i;
2846 }
2847
2848 return -1;
2849}
2850
2851static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2852{
2853 struct igc_hw *hw = &adapter->hw;
2854 int max_entries = hw->mac.rar_entry_count;
2855 u32 rah;
2856 int i;
2857
2858 for (i = 0; i < max_entries; i++) {
2859 rah = rd32(IGC_RAH(i));
2860
2861 if (!(rah & IGC_RAH_AV))
2862 return i;
2863 }
2864
2865 return -1;
2866}
2867
2868/**
2869 * igc_add_mac_filter() - Add MAC address filter
2870 * @adapter: Pointer to adapter where the filter should be added
2871 * @type: MAC address filter type (source or destination)
2872 * @addr: MAC address
2873 * @queue: If non-negative, queue assignment feature is enabled and frames
2874 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2875 * assignment is disabled.
2876 *
2877 * Return: 0 in case of success, negative errno code otherwise.
2878 */
2879static int igc_add_mac_filter(struct igc_adapter *adapter,
2880 enum igc_mac_filter_type type, const u8 *addr,
2881 int queue)
2882{
2883 struct net_device *dev = adapter->netdev;
2884 int index;
2885
2886 index = igc_find_mac_filter(adapter, type, addr);
2887 if (index >= 0)
2888 goto update_filter;
2889
2890 index = igc_get_avail_mac_filter_slot(adapter);
2891 if (index < 0)
2892 return -ENOSPC;
2893
2894 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2895 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2896 addr, queue);
2897
2898update_filter:
2899 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2900 return 0;
2901}
2902
2903/**
2904 * igc_del_mac_filter() - Delete MAC address filter
2905 * @adapter: Pointer to adapter where the filter should be deleted from
2906 * @type: MAC address filter type (source or destination)
2907 * @addr: MAC address
2908 */
2909static void igc_del_mac_filter(struct igc_adapter *adapter,
2910 enum igc_mac_filter_type type, const u8 *addr)
2911{
2912 struct net_device *dev = adapter->netdev;
2913 int index;
2914
2915 index = igc_find_mac_filter(adapter, type, addr);
2916 if (index < 0)
2917 return;
2918
2919 if (index == 0) {
2920 /* If this is the default filter, we don't actually delete it.
2921 * We just reset to its default value i.e. disable queue
2922 * assignment.
2923 */
2924 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2925
2926 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2927 } else {
2928 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2929 index,
2930 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2931 addr);
2932
2933 igc_clear_mac_filter_hw(adapter, index);
2934 }
2935}
2936
2937/**
2938 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2939 * @adapter: Pointer to adapter where the filter should be added
2940 * @prio: VLAN priority value
2941 * @queue: Queue number which matching frames are assigned to
2942 *
2943 * Return: 0 in case of success, negative errno code otherwise.
2944 */
2945static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2946 int queue)
2947{
2948 struct net_device *dev = adapter->netdev;
2949 struct igc_hw *hw = &adapter->hw;
2950 u32 vlanpqf;
2951
2952 vlanpqf = rd32(IGC_VLANPQF);
2953
2954 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2955 netdev_dbg(dev, "VLAN priority filter already in use\n");
2956 return -EEXIST;
2957 }
2958
2959 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2960 vlanpqf |= IGC_VLANPQF_VALID(prio);
2961
2962 wr32(IGC_VLANPQF, vlanpqf);
2963
2964 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2965 prio, queue);
2966 return 0;
2967}
2968
2969/**
2970 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2971 * @adapter: Pointer to adapter where the filter should be deleted from
2972 * @prio: VLAN priority value
2973 */
2974static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2975{
2976 struct igc_hw *hw = &adapter->hw;
2977 u32 vlanpqf;
2978
2979 vlanpqf = rd32(IGC_VLANPQF);
2980
2981 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2982 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2983
2984 wr32(IGC_VLANPQF, vlanpqf);
2985
2986 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2987 prio);
2988}
2989
2990static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2991{
2992 struct igc_hw *hw = &adapter->hw;
2993 int i;
2994
2995 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2996 u32 etqf = rd32(IGC_ETQF(i));
2997
2998 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2999 return i;
3000 }
3001
3002 return -1;
3003}
3004
3005/**
3006 * igc_add_etype_filter() - Add ethertype filter
3007 * @adapter: Pointer to adapter where the filter should be added
3008 * @etype: Ethertype value
3009 * @queue: If non-negative, queue assignment feature is enabled and frames
3010 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3011 * assignment is disabled.
3012 *
3013 * Return: 0 in case of success, negative errno code otherwise.
3014 */
3015static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3016 int queue)
3017{
3018 struct igc_hw *hw = &adapter->hw;
3019 int index;
3020 u32 etqf;
3021
3022 index = igc_get_avail_etype_filter_slot(adapter);
3023 if (index < 0)
3024 return -ENOSPC;
3025
3026 etqf = rd32(IGC_ETQF(index));
3027
3028 etqf &= ~IGC_ETQF_ETYPE_MASK;
3029 etqf |= etype;
3030
3031 if (queue >= 0) {
3032 etqf &= ~IGC_ETQF_QUEUE_MASK;
3033 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3034 etqf |= IGC_ETQF_QUEUE_ENABLE;
3035 }
3036
3037 etqf |= IGC_ETQF_FILTER_ENABLE;
3038
3039 wr32(IGC_ETQF(index), etqf);
3040
3041 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3042 etype, queue);
3043 return 0;
3044}
3045
3046static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3047{
3048 struct igc_hw *hw = &adapter->hw;
3049 int i;
3050
3051 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3052 u32 etqf = rd32(IGC_ETQF(i));
3053
3054 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3055 return i;
3056 }
3057
3058 return -1;
3059}
3060
3061/**
3062 * igc_del_etype_filter() - Delete ethertype filter
3063 * @adapter: Pointer to adapter where the filter should be deleted from
3064 * @etype: Ethertype value
3065 */
3066static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3067{
3068 struct igc_hw *hw = &adapter->hw;
3069 int index;
3070
3071 index = igc_find_etype_filter(adapter, etype);
3072 if (index < 0)
3073 return;
3074
3075 wr32(IGC_ETQF(index), 0);
3076
3077 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3078 etype);
3079}
3080
3081static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3082 const struct igc_nfc_rule *rule)
3083{
3084 int err;
3085
3086 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3087 err = igc_add_etype_filter(adapter, rule->filter.etype,
3088 rule->action);
3089 if (err)
3090 return err;
3091 }
3092
3093 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3094 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3095 rule->filter.src_addr, rule->action);
3096 if (err)
3097 return err;
3098 }
3099
3100 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3101 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3102 rule->filter.dst_addr, rule->action);
3103 if (err)
3104 return err;
3105 }
3106
3107 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3108 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3109 VLAN_PRIO_SHIFT;
3110
3111 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3112 if (err)
3113 return err;
3114 }
3115
3116 return 0;
3117}
3118
3119static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3120 const struct igc_nfc_rule *rule)
3121{
3122 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3123 igc_del_etype_filter(adapter, rule->filter.etype);
3124
3125 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3126 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3127 VLAN_PRIO_SHIFT;
3128
3129 igc_del_vlan_prio_filter(adapter, prio);
3130 }
3131
3132 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3133 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3134 rule->filter.src_addr);
3135
3136 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3137 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3138 rule->filter.dst_addr);
3139}
3140
3141/**
3142 * igc_get_nfc_rule() - Get NFC rule
3143 * @adapter: Pointer to adapter
3144 * @location: Rule location
3145 *
3146 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3147 *
3148 * Return: Pointer to NFC rule at @location. If not found, NULL.
3149 */
3150struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3151 u32 location)
3152{
3153 struct igc_nfc_rule *rule;
3154
3155 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3156 if (rule->location == location)
3157 return rule;
3158 if (rule->location > location)
3159 break;
3160 }
3161
3162 return NULL;
3163}
3164
3165/**
3166 * igc_del_nfc_rule() - Delete NFC rule
3167 * @adapter: Pointer to adapter
3168 * @rule: Pointer to rule to be deleted
3169 *
3170 * Disable NFC rule in hardware and delete it from adapter.
3171 *
3172 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3173 */
3174void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3175{
3176 igc_disable_nfc_rule(adapter, rule);
3177
3178 list_del(&rule->list);
3179 adapter->nfc_rule_count--;
3180
3181 kfree(rule);
3182}
3183
3184static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3185{
3186 struct igc_nfc_rule *rule, *tmp;
3187
3188 mutex_lock(&adapter->nfc_rule_lock);
3189
3190 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3191 igc_del_nfc_rule(adapter, rule);
3192
3193 mutex_unlock(&adapter->nfc_rule_lock);
3194}
3195
3196/**
3197 * igc_add_nfc_rule() - Add NFC rule
3198 * @adapter: Pointer to adapter
3199 * @rule: Pointer to rule to be added
3200 *
3201 * Enable NFC rule in hardware and add it to adapter.
3202 *
3203 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3204 *
3205 * Return: 0 on success, negative errno on failure.
3206 */
3207int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3208{
3209 struct igc_nfc_rule *pred, *cur;
3210 int err;
3211
3212 err = igc_enable_nfc_rule(adapter, rule);
3213 if (err)
3214 return err;
3215
3216 pred = NULL;
3217 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3218 if (cur->location >= rule->location)
3219 break;
3220 pred = cur;
3221 }
3222
3223 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3224 adapter->nfc_rule_count++;
3225 return 0;
3226}
3227
3228static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3229{
3230 struct igc_nfc_rule *rule;
3231
3232 mutex_lock(&adapter->nfc_rule_lock);
3233
3234 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3235 igc_enable_nfc_rule(adapter, rule);
3236
3237 mutex_unlock(&adapter->nfc_rule_lock);
3238}
3239
3240static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3241{
3242 struct igc_adapter *adapter = netdev_priv(netdev);
3243
3244 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3245}
3246
3247static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3248{
3249 struct igc_adapter *adapter = netdev_priv(netdev);
3250
3251 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3252 return 0;
3253}
3254
3255/**
3256 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3257 * @netdev: network interface device structure
3258 *
3259 * The set_rx_mode entry point is called whenever the unicast or multicast
3260 * address lists or the network interface flags are updated. This routine is
3261 * responsible for configuring the hardware for proper unicast, multicast,
3262 * promiscuous mode, and all-multi behavior.
3263 */
3264static void igc_set_rx_mode(struct net_device *netdev)
3265{
3266 struct igc_adapter *adapter = netdev_priv(netdev);
3267 struct igc_hw *hw = &adapter->hw;
3268 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3269 int count;
3270
3271 /* Check for Promiscuous and All Multicast modes */
3272 if (netdev->flags & IFF_PROMISC) {
3273 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3274 } else {
3275 if (netdev->flags & IFF_ALLMULTI) {
3276 rctl |= IGC_RCTL_MPE;
3277 } else {
3278 /* Write addresses to the MTA, if the attempt fails
3279 * then we should just turn on promiscuous mode so
3280 * that we can at least receive multicast traffic
3281 */
3282 count = igc_write_mc_addr_list(netdev);
3283 if (count < 0)
3284 rctl |= IGC_RCTL_MPE;
3285 }
3286 }
3287
3288 /* Write addresses to available RAR registers, if there is not
3289 * sufficient space to store all the addresses then enable
3290 * unicast promiscuous mode
3291 */
3292 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3293 rctl |= IGC_RCTL_UPE;
3294
3295 /* update state of unicast and multicast */
3296 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3297 wr32(IGC_RCTL, rctl);
3298
3299#if (PAGE_SIZE < 8192)
3300 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3301 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3302#endif
3303 wr32(IGC_RLPML, rlpml);
3304}
3305
3306/**
3307 * igc_configure - configure the hardware for RX and TX
3308 * @adapter: private board structure
3309 */
3310static void igc_configure(struct igc_adapter *adapter)
3311{
3312 struct net_device *netdev = adapter->netdev;
3313 int i = 0;
3314
3315 igc_get_hw_control(adapter);
3316 igc_set_rx_mode(netdev);
3317
3318 igc_restore_vlan(adapter);
3319
3320 igc_setup_tctl(adapter);
3321 igc_setup_mrqc(adapter);
3322 igc_setup_rctl(adapter);
3323
3324 igc_set_default_mac_filter(adapter);
3325 igc_restore_nfc_rules(adapter);
3326
3327 igc_configure_tx(adapter);
3328 igc_configure_rx(adapter);
3329
3330 igc_rx_fifo_flush_base(&adapter->hw);
3331
3332 /* call igc_desc_unused which always leaves
3333 * at least 1 descriptor unused to make sure
3334 * next_to_use != next_to_clean
3335 */
3336 for (i = 0; i < adapter->num_rx_queues; i++) {
3337 struct igc_ring *ring = adapter->rx_ring[i];
3338
3339 if (ring->xsk_pool)
3340 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3341 else
3342 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3343 }
3344}
3345
3346/**
3347 * igc_write_ivar - configure ivar for given MSI-X vector
3348 * @hw: pointer to the HW structure
3349 * @msix_vector: vector number we are allocating to a given ring
3350 * @index: row index of IVAR register to write within IVAR table
3351 * @offset: column offset of in IVAR, should be multiple of 8
3352 *
3353 * The IVAR table consists of 2 columns,
3354 * each containing an cause allocation for an Rx and Tx ring, and a
3355 * variable number of rows depending on the number of queues supported.
3356 */
3357static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3358 int index, int offset)
3359{
3360 u32 ivar = array_rd32(IGC_IVAR0, index);
3361
3362 /* clear any bits that are currently set */
3363 ivar &= ~((u32)0xFF << offset);
3364
3365 /* write vector and valid bit */
3366 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3367
3368 array_wr32(IGC_IVAR0, index, ivar);
3369}
3370
3371static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3372{
3373 struct igc_adapter *adapter = q_vector->adapter;
3374 struct igc_hw *hw = &adapter->hw;
3375 int rx_queue = IGC_N0_QUEUE;
3376 int tx_queue = IGC_N0_QUEUE;
3377
3378 if (q_vector->rx.ring)
3379 rx_queue = q_vector->rx.ring->reg_idx;
3380 if (q_vector->tx.ring)
3381 tx_queue = q_vector->tx.ring->reg_idx;
3382
3383 switch (hw->mac.type) {
3384 case igc_i225:
3385 if (rx_queue > IGC_N0_QUEUE)
3386 igc_write_ivar(hw, msix_vector,
3387 rx_queue >> 1,
3388 (rx_queue & 0x1) << 4);
3389 if (tx_queue > IGC_N0_QUEUE)
3390 igc_write_ivar(hw, msix_vector,
3391 tx_queue >> 1,
3392 ((tx_queue & 0x1) << 4) + 8);
3393 q_vector->eims_value = BIT(msix_vector);
3394 break;
3395 default:
3396 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3397 break;
3398 }
3399
3400 /* add q_vector eims value to global eims_enable_mask */
3401 adapter->eims_enable_mask |= q_vector->eims_value;
3402
3403 /* configure q_vector to set itr on first interrupt */
3404 q_vector->set_itr = 1;
3405}
3406
3407/**
3408 * igc_configure_msix - Configure MSI-X hardware
3409 * @adapter: Pointer to adapter structure
3410 *
3411 * igc_configure_msix sets up the hardware to properly
3412 * generate MSI-X interrupts.
3413 */
3414static void igc_configure_msix(struct igc_adapter *adapter)
3415{
3416 struct igc_hw *hw = &adapter->hw;
3417 int i, vector = 0;
3418 u32 tmp;
3419
3420 adapter->eims_enable_mask = 0;
3421
3422 /* set vector for other causes, i.e. link changes */
3423 switch (hw->mac.type) {
3424 case igc_i225:
3425 /* Turn on MSI-X capability first, or our settings
3426 * won't stick. And it will take days to debug.
3427 */
3428 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3429 IGC_GPIE_PBA | IGC_GPIE_EIAME |
3430 IGC_GPIE_NSICR);
3431
3432 /* enable msix_other interrupt */
3433 adapter->eims_other = BIT(vector);
3434 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3435
3436 wr32(IGC_IVAR_MISC, tmp);
3437 break;
3438 default:
3439 /* do nothing, since nothing else supports MSI-X */
3440 break;
3441 } /* switch (hw->mac.type) */
3442
3443 adapter->eims_enable_mask |= adapter->eims_other;
3444
3445 for (i = 0; i < adapter->num_q_vectors; i++)
3446 igc_assign_vector(adapter->q_vector[i], vector++);
3447
3448 wrfl();
3449}
3450
3451/**
3452 * igc_irq_enable - Enable default interrupt generation settings
3453 * @adapter: board private structure
3454 */
3455static void igc_irq_enable(struct igc_adapter *adapter)
3456{
3457 struct igc_hw *hw = &adapter->hw;
3458
3459 if (adapter->msix_entries) {
3460 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3461 u32 regval = rd32(IGC_EIAC);
3462
3463 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3464 regval = rd32(IGC_EIAM);
3465 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3466 wr32(IGC_EIMS, adapter->eims_enable_mask);
3467 wr32(IGC_IMS, ims);
3468 } else {
3469 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3470 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3471 }
3472}
3473
3474/**
3475 * igc_irq_disable - Mask off interrupt generation on the NIC
3476 * @adapter: board private structure
3477 */
3478static void igc_irq_disable(struct igc_adapter *adapter)
3479{
3480 struct igc_hw *hw = &adapter->hw;
3481
3482 if (adapter->msix_entries) {
3483 u32 regval = rd32(IGC_EIAM);
3484
3485 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3486 wr32(IGC_EIMC, adapter->eims_enable_mask);
3487 regval = rd32(IGC_EIAC);
3488 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3489 }
3490
3491 wr32(IGC_IAM, 0);
3492 wr32(IGC_IMC, ~0);
3493 wrfl();
3494
3495 if (adapter->msix_entries) {
3496 int vector = 0, i;
3497
3498 synchronize_irq(adapter->msix_entries[vector++].vector);
3499
3500 for (i = 0; i < adapter->num_q_vectors; i++)
3501 synchronize_irq(adapter->msix_entries[vector++].vector);
3502 } else {
3503 synchronize_irq(adapter->pdev->irq);
3504 }
3505}
3506
3507void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3508 const u32 max_rss_queues)
3509{
3510 /* Determine if we need to pair queues. */
3511 /* If rss_queues > half of max_rss_queues, pair the queues in
3512 * order to conserve interrupts due to limited supply.
3513 */
3514 if (adapter->rss_queues > (max_rss_queues / 2))
3515 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3516 else
3517 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3518}
3519
3520unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3521{
3522 return IGC_MAX_RX_QUEUES;
3523}
3524
3525static void igc_init_queue_configuration(struct igc_adapter *adapter)
3526{
3527 u32 max_rss_queues;
3528
3529 max_rss_queues = igc_get_max_rss_queues(adapter);
3530 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3531
3532 igc_set_flag_queue_pairs(adapter, max_rss_queues);
3533}
3534
3535/**
3536 * igc_reset_q_vector - Reset config for interrupt vector
3537 * @adapter: board private structure to initialize
3538 * @v_idx: Index of vector to be reset
3539 *
3540 * If NAPI is enabled it will delete any references to the
3541 * NAPI struct. This is preparation for igc_free_q_vector.
3542 */
3543static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3544{
3545 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3546
3547 /* if we're coming from igc_set_interrupt_capability, the vectors are
3548 * not yet allocated
3549 */
3550 if (!q_vector)
3551 return;
3552
3553 if (q_vector->tx.ring)
3554 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3555
3556 if (q_vector->rx.ring)
3557 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3558
3559 netif_napi_del(&q_vector->napi);
3560}
3561
3562/**
3563 * igc_free_q_vector - Free memory allocated for specific interrupt vector
3564 * @adapter: board private structure to initialize
3565 * @v_idx: Index of vector to be freed
3566 *
3567 * This function frees the memory allocated to the q_vector.
3568 */
3569static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3570{
3571 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3572
3573 adapter->q_vector[v_idx] = NULL;
3574
3575 /* igc_get_stats64() might access the rings on this vector,
3576 * we must wait a grace period before freeing it.
3577 */
3578 if (q_vector)
3579 kfree_rcu(q_vector, rcu);
3580}
3581
3582/**
3583 * igc_free_q_vectors - Free memory allocated for interrupt vectors
3584 * @adapter: board private structure to initialize
3585 *
3586 * This function frees the memory allocated to the q_vectors. In addition if
3587 * NAPI is enabled it will delete any references to the NAPI struct prior
3588 * to freeing the q_vector.
3589 */
3590static void igc_free_q_vectors(struct igc_adapter *adapter)
3591{
3592 int v_idx = adapter->num_q_vectors;
3593
3594 adapter->num_tx_queues = 0;
3595 adapter->num_rx_queues = 0;
3596 adapter->num_q_vectors = 0;
3597
3598 while (v_idx--) {
3599 igc_reset_q_vector(adapter, v_idx);
3600 igc_free_q_vector(adapter, v_idx);
3601 }
3602}
3603
3604/**
3605 * igc_update_itr - update the dynamic ITR value based on statistics
3606 * @q_vector: pointer to q_vector
3607 * @ring_container: ring info to update the itr for
3608 *
3609 * Stores a new ITR value based on packets and byte
3610 * counts during the last interrupt. The advantage of per interrupt
3611 * computation is faster updates and more accurate ITR for the current
3612 * traffic pattern. Constants in this function were computed
3613 * based on theoretical maximum wire speed and thresholds were set based
3614 * on testing data as well as attempting to minimize response time
3615 * while increasing bulk throughput.
3616 * NOTE: These calculations are only valid when operating in a single-
3617 * queue environment.
3618 */
3619static void igc_update_itr(struct igc_q_vector *q_vector,
3620 struct igc_ring_container *ring_container)
3621{
3622 unsigned int packets = ring_container->total_packets;
3623 unsigned int bytes = ring_container->total_bytes;
3624 u8 itrval = ring_container->itr;
3625
3626 /* no packets, exit with status unchanged */
3627 if (packets == 0)
3628 return;
3629
3630 switch (itrval) {
3631 case lowest_latency:
3632 /* handle TSO and jumbo frames */
3633 if (bytes / packets > 8000)
3634 itrval = bulk_latency;
3635 else if ((packets < 5) && (bytes > 512))
3636 itrval = low_latency;
3637 break;
3638 case low_latency: /* 50 usec aka 20000 ints/s */
3639 if (bytes > 10000) {
3640 /* this if handles the TSO accounting */
3641 if (bytes / packets > 8000)
3642 itrval = bulk_latency;
3643 else if ((packets < 10) || ((bytes / packets) > 1200))
3644 itrval = bulk_latency;
3645 else if ((packets > 35))
3646 itrval = lowest_latency;
3647 } else if (bytes / packets > 2000) {
3648 itrval = bulk_latency;
3649 } else if (packets <= 2 && bytes < 512) {
3650 itrval = lowest_latency;
3651 }
3652 break;
3653 case bulk_latency: /* 250 usec aka 4000 ints/s */
3654 if (bytes > 25000) {
3655 if (packets > 35)
3656 itrval = low_latency;
3657 } else if (bytes < 1500) {
3658 itrval = low_latency;
3659 }
3660 break;
3661 }
3662
3663 /* clear work counters since we have the values we need */
3664 ring_container->total_bytes = 0;
3665 ring_container->total_packets = 0;
3666
3667 /* write updated itr to ring container */
3668 ring_container->itr = itrval;
3669}
3670
3671static void igc_set_itr(struct igc_q_vector *q_vector)
3672{
3673 struct igc_adapter *adapter = q_vector->adapter;
3674 u32 new_itr = q_vector->itr_val;
3675 u8 current_itr = 0;
3676
3677 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3678 switch (adapter->link_speed) {
3679 case SPEED_10:
3680 case SPEED_100:
3681 current_itr = 0;
3682 new_itr = IGC_4K_ITR;
3683 goto set_itr_now;
3684 default:
3685 break;
3686 }
3687
3688 igc_update_itr(q_vector, &q_vector->tx);
3689 igc_update_itr(q_vector, &q_vector->rx);
3690
3691 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3692
3693 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3694 if (current_itr == lowest_latency &&
3695 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3696 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3697 current_itr = low_latency;
3698
3699 switch (current_itr) {
3700 /* counts and packets in update_itr are dependent on these numbers */
3701 case lowest_latency:
3702 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3703 break;
3704 case low_latency:
3705 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3706 break;
3707 case bulk_latency:
3708 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3709 break;
3710 default:
3711 break;
3712 }
3713
3714set_itr_now:
3715 if (new_itr != q_vector->itr_val) {
3716 /* this attempts to bias the interrupt rate towards Bulk
3717 * by adding intermediate steps when interrupt rate is
3718 * increasing
3719 */
3720 new_itr = new_itr > q_vector->itr_val ?
3721 max((new_itr * q_vector->itr_val) /
3722 (new_itr + (q_vector->itr_val >> 2)),
3723 new_itr) : new_itr;
3724 /* Don't write the value here; it resets the adapter's
3725 * internal timer, and causes us to delay far longer than
3726 * we should between interrupts. Instead, we write the ITR
3727 * value at the beginning of the next interrupt so the timing
3728 * ends up being correct.
3729 */
3730 q_vector->itr_val = new_itr;
3731 q_vector->set_itr = 1;
3732 }
3733}
3734
3735static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3736{
3737 int v_idx = adapter->num_q_vectors;
3738
3739 if (adapter->msix_entries) {
3740 pci_disable_msix(adapter->pdev);
3741 kfree(adapter->msix_entries);
3742 adapter->msix_entries = NULL;
3743 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3744 pci_disable_msi(adapter->pdev);
3745 }
3746
3747 while (v_idx--)
3748 igc_reset_q_vector(adapter, v_idx);
3749}
3750
3751/**
3752 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3753 * @adapter: Pointer to adapter structure
3754 * @msix: boolean value for MSI-X capability
3755 *
3756 * Attempt to configure interrupts using the best available
3757 * capabilities of the hardware and kernel.
3758 */
3759static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3760 bool msix)
3761{
3762 int numvecs, i;
3763 int err;
3764
3765 if (!msix)
3766 goto msi_only;
3767 adapter->flags |= IGC_FLAG_HAS_MSIX;
3768
3769 /* Number of supported queues. */
3770 adapter->num_rx_queues = adapter->rss_queues;
3771
3772 adapter->num_tx_queues = adapter->rss_queues;
3773
3774 /* start with one vector for every Rx queue */
3775 numvecs = adapter->num_rx_queues;
3776
3777 /* if Tx handler is separate add 1 for every Tx queue */
3778 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3779 numvecs += adapter->num_tx_queues;
3780
3781 /* store the number of vectors reserved for queues */
3782 adapter->num_q_vectors = numvecs;
3783
3784 /* add 1 vector for link status interrupts */
3785 numvecs++;
3786
3787 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3788 GFP_KERNEL);
3789
3790 if (!adapter->msix_entries)
3791 return;
3792
3793 /* populate entry values */
3794 for (i = 0; i < numvecs; i++)
3795 adapter->msix_entries[i].entry = i;
3796
3797 err = pci_enable_msix_range(adapter->pdev,
3798 adapter->msix_entries,
3799 numvecs,
3800 numvecs);
3801 if (err > 0)
3802 return;
3803
3804 kfree(adapter->msix_entries);
3805 adapter->msix_entries = NULL;
3806
3807 igc_reset_interrupt_capability(adapter);
3808
3809msi_only:
3810 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3811
3812 adapter->rss_queues = 1;
3813 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3814 adapter->num_rx_queues = 1;
3815 adapter->num_tx_queues = 1;
3816 adapter->num_q_vectors = 1;
3817 if (!pci_enable_msi(adapter->pdev))
3818 adapter->flags |= IGC_FLAG_HAS_MSI;
3819}
3820
3821/**
3822 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3823 * @q_vector: pointer to q_vector
3824 *
3825 * Stores a new ITR value based on strictly on packet size. This
3826 * algorithm is less sophisticated than that used in igc_update_itr,
3827 * due to the difficulty of synchronizing statistics across multiple
3828 * receive rings. The divisors and thresholds used by this function
3829 * were determined based on theoretical maximum wire speed and testing
3830 * data, in order to minimize response time while increasing bulk
3831 * throughput.
3832 * NOTE: This function is called only when operating in a multiqueue
3833 * receive environment.
3834 */
3835static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3836{
3837 struct igc_adapter *adapter = q_vector->adapter;
3838 int new_val = q_vector->itr_val;
3839 int avg_wire_size = 0;
3840 unsigned int packets;
3841
3842 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3843 * ints/sec - ITR timer value of 120 ticks.
3844 */
3845 switch (adapter->link_speed) {
3846 case SPEED_10:
3847 case SPEED_100:
3848 new_val = IGC_4K_ITR;
3849 goto set_itr_val;
3850 default:
3851 break;
3852 }
3853
3854 packets = q_vector->rx.total_packets;
3855 if (packets)
3856 avg_wire_size = q_vector->rx.total_bytes / packets;
3857
3858 packets = q_vector->tx.total_packets;
3859 if (packets)
3860 avg_wire_size = max_t(u32, avg_wire_size,
3861 q_vector->tx.total_bytes / packets);
3862
3863 /* if avg_wire_size isn't set no work was done */
3864 if (!avg_wire_size)
3865 goto clear_counts;
3866
3867 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3868 avg_wire_size += 24;
3869
3870 /* Don't starve jumbo frames */
3871 avg_wire_size = min(avg_wire_size, 3000);
3872
3873 /* Give a little boost to mid-size frames */
3874 if (avg_wire_size > 300 && avg_wire_size < 1200)
3875 new_val = avg_wire_size / 3;
3876 else
3877 new_val = avg_wire_size / 2;
3878
3879 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3880 if (new_val < IGC_20K_ITR &&
3881 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3882 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3883 new_val = IGC_20K_ITR;
3884
3885set_itr_val:
3886 if (new_val != q_vector->itr_val) {
3887 q_vector->itr_val = new_val;
3888 q_vector->set_itr = 1;
3889 }
3890clear_counts:
3891 q_vector->rx.total_bytes = 0;
3892 q_vector->rx.total_packets = 0;
3893 q_vector->tx.total_bytes = 0;
3894 q_vector->tx.total_packets = 0;
3895}
3896
3897static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3898{
3899 struct igc_adapter *adapter = q_vector->adapter;
3900 struct igc_hw *hw = &adapter->hw;
3901
3902 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3903 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3904 if (adapter->num_q_vectors == 1)
3905 igc_set_itr(q_vector);
3906 else
3907 igc_update_ring_itr(q_vector);
3908 }
3909
3910 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3911 if (adapter->msix_entries)
3912 wr32(IGC_EIMS, q_vector->eims_value);
3913 else
3914 igc_irq_enable(adapter);
3915 }
3916}
3917
3918static void igc_add_ring(struct igc_ring *ring,
3919 struct igc_ring_container *head)
3920{
3921 head->ring = ring;
3922 head->count++;
3923}
3924
3925/**
3926 * igc_cache_ring_register - Descriptor ring to register mapping
3927 * @adapter: board private structure to initialize
3928 *
3929 * Once we know the feature-set enabled for the device, we'll cache
3930 * the register offset the descriptor ring is assigned to.
3931 */
3932static void igc_cache_ring_register(struct igc_adapter *adapter)
3933{
3934 int i = 0, j = 0;
3935
3936 switch (adapter->hw.mac.type) {
3937 case igc_i225:
3938 default:
3939 for (; i < adapter->num_rx_queues; i++)
3940 adapter->rx_ring[i]->reg_idx = i;
3941 for (; j < adapter->num_tx_queues; j++)
3942 adapter->tx_ring[j]->reg_idx = j;
3943 break;
3944 }
3945}
3946
3947/**
3948 * igc_poll - NAPI Rx polling callback
3949 * @napi: napi polling structure
3950 * @budget: count of how many packets we should handle
3951 */
3952static int igc_poll(struct napi_struct *napi, int budget)
3953{
3954 struct igc_q_vector *q_vector = container_of(napi,
3955 struct igc_q_vector,
3956 napi);
3957 struct igc_ring *rx_ring = q_vector->rx.ring;
3958 bool clean_complete = true;
3959 int work_done = 0;
3960
3961 if (q_vector->tx.ring)
3962 clean_complete = igc_clean_tx_irq(q_vector, budget);
3963
3964 if (rx_ring) {
3965 int cleaned = rx_ring->xsk_pool ?
3966 igc_clean_rx_irq_zc(q_vector, budget) :
3967 igc_clean_rx_irq(q_vector, budget);
3968
3969 work_done += cleaned;
3970 if (cleaned >= budget)
3971 clean_complete = false;
3972 }
3973
3974 /* If all work not completed, return budget and keep polling */
3975 if (!clean_complete)
3976 return budget;
3977
3978 /* Exit the polling mode, but don't re-enable interrupts if stack might
3979 * poll us due to busy-polling
3980 */
3981 if (likely(napi_complete_done(napi, work_done)))
3982 igc_ring_irq_enable(q_vector);
3983
3984 return min(work_done, budget - 1);
3985}
3986
3987/**
3988 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3989 * @adapter: board private structure to initialize
3990 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3991 * @v_idx: index of vector in adapter struct
3992 * @txr_count: total number of Tx rings to allocate
3993 * @txr_idx: index of first Tx ring to allocate
3994 * @rxr_count: total number of Rx rings to allocate
3995 * @rxr_idx: index of first Rx ring to allocate
3996 *
3997 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3998 */
3999static int igc_alloc_q_vector(struct igc_adapter *adapter,
4000 unsigned int v_count, unsigned int v_idx,
4001 unsigned int txr_count, unsigned int txr_idx,
4002 unsigned int rxr_count, unsigned int rxr_idx)
4003{
4004 struct igc_q_vector *q_vector;
4005 struct igc_ring *ring;
4006 int ring_count;
4007
4008 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4009 if (txr_count > 1 || rxr_count > 1)
4010 return -ENOMEM;
4011
4012 ring_count = txr_count + rxr_count;
4013
4014 /* allocate q_vector and rings */
4015 q_vector = adapter->q_vector[v_idx];
4016 if (!q_vector)
4017 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4018 GFP_KERNEL);
4019 else
4020 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4021 if (!q_vector)
4022 return -ENOMEM;
4023
4024 /* initialize NAPI */
4025 netif_napi_add(adapter->netdev, &q_vector->napi,
4026 igc_poll, 64);
4027
4028 /* tie q_vector and adapter together */
4029 adapter->q_vector[v_idx] = q_vector;
4030 q_vector->adapter = adapter;
4031
4032 /* initialize work limits */
4033 q_vector->tx.work_limit = adapter->tx_work_limit;
4034
4035 /* initialize ITR configuration */
4036 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4037 q_vector->itr_val = IGC_START_ITR;
4038
4039 /* initialize pointer to rings */
4040 ring = q_vector->ring;
4041
4042 /* initialize ITR */
4043 if (rxr_count) {
4044 /* rx or rx/tx vector */
4045 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4046 q_vector->itr_val = adapter->rx_itr_setting;
4047 } else {
4048 /* tx only vector */
4049 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4050 q_vector->itr_val = adapter->tx_itr_setting;
4051 }
4052
4053 if (txr_count) {
4054 /* assign generic ring traits */
4055 ring->dev = &adapter->pdev->dev;
4056 ring->netdev = adapter->netdev;
4057
4058 /* configure backlink on ring */
4059 ring->q_vector = q_vector;
4060
4061 /* update q_vector Tx values */
4062 igc_add_ring(ring, &q_vector->tx);
4063
4064 /* apply Tx specific ring traits */
4065 ring->count = adapter->tx_ring_count;
4066 ring->queue_index = txr_idx;
4067
4068 /* assign ring to adapter */
4069 adapter->tx_ring[txr_idx] = ring;
4070
4071 /* push pointer to next ring */
4072 ring++;
4073 }
4074
4075 if (rxr_count) {
4076 /* assign generic ring traits */
4077 ring->dev = &adapter->pdev->dev;
4078 ring->netdev = adapter->netdev;
4079
4080 /* configure backlink on ring */
4081 ring->q_vector = q_vector;
4082
4083 /* update q_vector Rx values */
4084 igc_add_ring(ring, &q_vector->rx);
4085
4086 /* apply Rx specific ring traits */
4087 ring->count = adapter->rx_ring_count;
4088 ring->queue_index = rxr_idx;
4089
4090 /* assign ring to adapter */
4091 adapter->rx_ring[rxr_idx] = ring;
4092 }
4093
4094 return 0;
4095}
4096
4097/**
4098 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4099 * @adapter: board private structure to initialize
4100 *
4101 * We allocate one q_vector per queue interrupt. If allocation fails we
4102 * return -ENOMEM.
4103 */
4104static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4105{
4106 int rxr_remaining = adapter->num_rx_queues;
4107 int txr_remaining = adapter->num_tx_queues;
4108 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4109 int q_vectors = adapter->num_q_vectors;
4110 int err;
4111
4112 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4113 for (; rxr_remaining; v_idx++) {
4114 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4115 0, 0, 1, rxr_idx);
4116
4117 if (err)
4118 goto err_out;
4119
4120 /* update counts and index */
4121 rxr_remaining--;
4122 rxr_idx++;
4123 }
4124 }
4125
4126 for (; v_idx < q_vectors; v_idx++) {
4127 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4128 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4129
4130 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4131 tqpv, txr_idx, rqpv, rxr_idx);
4132
4133 if (err)
4134 goto err_out;
4135
4136 /* update counts and index */
4137 rxr_remaining -= rqpv;
4138 txr_remaining -= tqpv;
4139 rxr_idx++;
4140 txr_idx++;
4141 }
4142
4143 return 0;
4144
4145err_out:
4146 adapter->num_tx_queues = 0;
4147 adapter->num_rx_queues = 0;
4148 adapter->num_q_vectors = 0;
4149
4150 while (v_idx--)
4151 igc_free_q_vector(adapter, v_idx);
4152
4153 return -ENOMEM;
4154}
4155
4156/**
4157 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4158 * @adapter: Pointer to adapter structure
4159 * @msix: boolean for MSI-X capability
4160 *
4161 * This function initializes the interrupts and allocates all of the queues.
4162 */
4163static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4164{
4165 struct net_device *dev = adapter->netdev;
4166 int err = 0;
4167
4168 igc_set_interrupt_capability(adapter, msix);
4169
4170 err = igc_alloc_q_vectors(adapter);
4171 if (err) {
4172 netdev_err(dev, "Unable to allocate memory for vectors\n");
4173 goto err_alloc_q_vectors;
4174 }
4175
4176 igc_cache_ring_register(adapter);
4177
4178 return 0;
4179
4180err_alloc_q_vectors:
4181 igc_reset_interrupt_capability(adapter);
4182 return err;
4183}
4184
4185/**
4186 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4187 * @adapter: board private structure to initialize
4188 *
4189 * igc_sw_init initializes the Adapter private data structure.
4190 * Fields are initialized based on PCI device information and
4191 * OS network device settings (MTU size).
4192 */
4193static int igc_sw_init(struct igc_adapter *adapter)
4194{
4195 struct net_device *netdev = adapter->netdev;
4196 struct pci_dev *pdev = adapter->pdev;
4197 struct igc_hw *hw = &adapter->hw;
4198
4199 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4200
4201 /* set default ring sizes */
4202 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4203 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4204
4205 /* set default ITR values */
4206 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4207 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4208
4209 /* set default work limits */
4210 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4211
4212 /* adjust max frame to be at least the size of a standard frame */
4213 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4214 VLAN_HLEN;
4215 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4216
4217 mutex_init(&adapter->nfc_rule_lock);
4218 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4219 adapter->nfc_rule_count = 0;
4220
4221 spin_lock_init(&adapter->stats64_lock);
4222 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4223 adapter->flags |= IGC_FLAG_HAS_MSIX;
4224
4225 igc_init_queue_configuration(adapter);
4226
4227 /* This call may decrease the number of queues */
4228 if (igc_init_interrupt_scheme(adapter, true)) {
4229 netdev_err(netdev, "Unable to allocate memory for queues\n");
4230 return -ENOMEM;
4231 }
4232
4233 /* Explicitly disable IRQ since the NIC can be in any state. */
4234 igc_irq_disable(adapter);
4235
4236 set_bit(__IGC_DOWN, &adapter->state);
4237
4238 return 0;
4239}
4240
4241/**
4242 * igc_up - Open the interface and prepare it to handle traffic
4243 * @adapter: board private structure
4244 */
4245void igc_up(struct igc_adapter *adapter)
4246{
4247 struct igc_hw *hw = &adapter->hw;
4248 int i = 0;
4249
4250 /* hardware has been reset, we need to reload some things */
4251 igc_configure(adapter);
4252
4253 clear_bit(__IGC_DOWN, &adapter->state);
4254
4255 for (i = 0; i < adapter->num_q_vectors; i++)
4256 napi_enable(&adapter->q_vector[i]->napi);
4257
4258 if (adapter->msix_entries)
4259 igc_configure_msix(adapter);
4260 else
4261 igc_assign_vector(adapter->q_vector[0], 0);
4262
4263 /* Clear any pending interrupts. */
4264 rd32(IGC_ICR);
4265 igc_irq_enable(adapter);
4266
4267 netif_tx_start_all_queues(adapter->netdev);
4268
4269 /* start the watchdog. */
4270 hw->mac.get_link_status = true;
4271 schedule_work(&adapter->watchdog_task);
4272}
4273
4274/**
4275 * igc_update_stats - Update the board statistics counters
4276 * @adapter: board private structure
4277 */
4278void igc_update_stats(struct igc_adapter *adapter)
4279{
4280 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4281 struct pci_dev *pdev = adapter->pdev;
4282 struct igc_hw *hw = &adapter->hw;
4283 u64 _bytes, _packets;
4284 u64 bytes, packets;
4285 unsigned int start;
4286 u32 mpc;
4287 int i;
4288
4289 /* Prevent stats update while adapter is being reset, or if the pci
4290 * connection is down.
4291 */
4292 if (adapter->link_speed == 0)
4293 return;
4294 if (pci_channel_offline(pdev))
4295 return;
4296
4297 packets = 0;
4298 bytes = 0;
4299
4300 rcu_read_lock();
4301 for (i = 0; i < adapter->num_rx_queues; i++) {
4302 struct igc_ring *ring = adapter->rx_ring[i];
4303 u32 rqdpc = rd32(IGC_RQDPC(i));
4304
4305 if (hw->mac.type >= igc_i225)
4306 wr32(IGC_RQDPC(i), 0);
4307
4308 if (rqdpc) {
4309 ring->rx_stats.drops += rqdpc;
4310 net_stats->rx_fifo_errors += rqdpc;
4311 }
4312
4313 do {
4314 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4315 _bytes = ring->rx_stats.bytes;
4316 _packets = ring->rx_stats.packets;
4317 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4318 bytes += _bytes;
4319 packets += _packets;
4320 }
4321
4322 net_stats->rx_bytes = bytes;
4323 net_stats->rx_packets = packets;
4324
4325 packets = 0;
4326 bytes = 0;
4327 for (i = 0; i < adapter->num_tx_queues; i++) {
4328 struct igc_ring *ring = adapter->tx_ring[i];
4329
4330 do {
4331 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4332 _bytes = ring->tx_stats.bytes;
4333 _packets = ring->tx_stats.packets;
4334 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4335 bytes += _bytes;
4336 packets += _packets;
4337 }
4338 net_stats->tx_bytes = bytes;
4339 net_stats->tx_packets = packets;
4340 rcu_read_unlock();
4341
4342 /* read stats registers */
4343 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4344 adapter->stats.gprc += rd32(IGC_GPRC);
4345 adapter->stats.gorc += rd32(IGC_GORCL);
4346 rd32(IGC_GORCH); /* clear GORCL */
4347 adapter->stats.bprc += rd32(IGC_BPRC);
4348 adapter->stats.mprc += rd32(IGC_MPRC);
4349 adapter->stats.roc += rd32(IGC_ROC);
4350
4351 adapter->stats.prc64 += rd32(IGC_PRC64);
4352 adapter->stats.prc127 += rd32(IGC_PRC127);
4353 adapter->stats.prc255 += rd32(IGC_PRC255);
4354 adapter->stats.prc511 += rd32(IGC_PRC511);
4355 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4356 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4357 adapter->stats.tlpic += rd32(IGC_TLPIC);
4358 adapter->stats.rlpic += rd32(IGC_RLPIC);
4359 adapter->stats.hgptc += rd32(IGC_HGPTC);
4360
4361 mpc = rd32(IGC_MPC);
4362 adapter->stats.mpc += mpc;
4363 net_stats->rx_fifo_errors += mpc;
4364 adapter->stats.scc += rd32(IGC_SCC);
4365 adapter->stats.ecol += rd32(IGC_ECOL);
4366 adapter->stats.mcc += rd32(IGC_MCC);
4367 adapter->stats.latecol += rd32(IGC_LATECOL);
4368 adapter->stats.dc += rd32(IGC_DC);
4369 adapter->stats.rlec += rd32(IGC_RLEC);
4370 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4371 adapter->stats.xontxc += rd32(IGC_XONTXC);
4372 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4373 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4374 adapter->stats.fcruc += rd32(IGC_FCRUC);
4375 adapter->stats.gptc += rd32(IGC_GPTC);
4376 adapter->stats.gotc += rd32(IGC_GOTCL);
4377 rd32(IGC_GOTCH); /* clear GOTCL */
4378 adapter->stats.rnbc += rd32(IGC_RNBC);
4379 adapter->stats.ruc += rd32(IGC_RUC);
4380 adapter->stats.rfc += rd32(IGC_RFC);
4381 adapter->stats.rjc += rd32(IGC_RJC);
4382 adapter->stats.tor += rd32(IGC_TORH);
4383 adapter->stats.tot += rd32(IGC_TOTH);
4384 adapter->stats.tpr += rd32(IGC_TPR);
4385
4386 adapter->stats.ptc64 += rd32(IGC_PTC64);
4387 adapter->stats.ptc127 += rd32(IGC_PTC127);
4388 adapter->stats.ptc255 += rd32(IGC_PTC255);
4389 adapter->stats.ptc511 += rd32(IGC_PTC511);
4390 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4391 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4392
4393 adapter->stats.mptc += rd32(IGC_MPTC);
4394 adapter->stats.bptc += rd32(IGC_BPTC);
4395
4396 adapter->stats.tpt += rd32(IGC_TPT);
4397 adapter->stats.colc += rd32(IGC_COLC);
4398 adapter->stats.colc += rd32(IGC_RERC);
4399
4400 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4401
4402 adapter->stats.tsctc += rd32(IGC_TSCTC);
4403
4404 adapter->stats.iac += rd32(IGC_IAC);
4405
4406 /* Fill out the OS statistics structure */
4407 net_stats->multicast = adapter->stats.mprc;
4408 net_stats->collisions = adapter->stats.colc;
4409
4410 /* Rx Errors */
4411
4412 /* RLEC on some newer hardware can be incorrect so build
4413 * our own version based on RUC and ROC
4414 */
4415 net_stats->rx_errors = adapter->stats.rxerrc +
4416 adapter->stats.crcerrs + adapter->stats.algnerrc +
4417 adapter->stats.ruc + adapter->stats.roc +
4418 adapter->stats.cexterr;
4419 net_stats->rx_length_errors = adapter->stats.ruc +
4420 adapter->stats.roc;
4421 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4422 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4423 net_stats->rx_missed_errors = adapter->stats.mpc;
4424
4425 /* Tx Errors */
4426 net_stats->tx_errors = adapter->stats.ecol +
4427 adapter->stats.latecol;
4428 net_stats->tx_aborted_errors = adapter->stats.ecol;
4429 net_stats->tx_window_errors = adapter->stats.latecol;
4430 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4431
4432 /* Tx Dropped needs to be maintained elsewhere */
4433
4434 /* Management Stats */
4435 adapter->stats.mgptc += rd32(IGC_MGTPTC);
4436 adapter->stats.mgprc += rd32(IGC_MGTPRC);
4437 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4438}
4439
4440/**
4441 * igc_down - Close the interface
4442 * @adapter: board private structure
4443 */
4444void igc_down(struct igc_adapter *adapter)
4445{
4446 struct net_device *netdev = adapter->netdev;
4447 struct igc_hw *hw = &adapter->hw;
4448 u32 tctl, rctl;
4449 int i = 0;
4450
4451 set_bit(__IGC_DOWN, &adapter->state);
4452
4453 igc_ptp_suspend(adapter);
4454
4455 if (pci_device_is_present(adapter->pdev)) {
4456 /* disable receives in the hardware */
4457 rctl = rd32(IGC_RCTL);
4458 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4459 /* flush and sleep below */
4460 }
4461 /* set trans_start so we don't get spurious watchdogs during reset */
4462 netif_trans_update(netdev);
4463
4464 netif_carrier_off(netdev);
4465 netif_tx_stop_all_queues(netdev);
4466
4467 if (pci_device_is_present(adapter->pdev)) {
4468 /* disable transmits in the hardware */
4469 tctl = rd32(IGC_TCTL);
4470 tctl &= ~IGC_TCTL_EN;
4471 wr32(IGC_TCTL, tctl);
4472 /* flush both disables and wait for them to finish */
4473 wrfl();
4474 usleep_range(10000, 20000);
4475
4476 igc_irq_disable(adapter);
4477 }
4478
4479 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4480
4481 for (i = 0; i < adapter->num_q_vectors; i++) {
4482 if (adapter->q_vector[i]) {
4483 napi_synchronize(&adapter->q_vector[i]->napi);
4484 napi_disable(&adapter->q_vector[i]->napi);
4485 }
4486 }
4487
4488 del_timer_sync(&adapter->watchdog_timer);
4489 del_timer_sync(&adapter->phy_info_timer);
4490
4491 /* record the stats before reset*/
4492 spin_lock(&adapter->stats64_lock);
4493 igc_update_stats(adapter);
4494 spin_unlock(&adapter->stats64_lock);
4495
4496 adapter->link_speed = 0;
4497 adapter->link_duplex = 0;
4498
4499 if (!pci_channel_offline(adapter->pdev))
4500 igc_reset(adapter);
4501
4502 /* clear VLAN promisc flag so VFTA will be updated if necessary */
4503 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4504
4505 igc_clean_all_tx_rings(adapter);
4506 igc_clean_all_rx_rings(adapter);
4507}
4508
4509void igc_reinit_locked(struct igc_adapter *adapter)
4510{
4511 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4512 usleep_range(1000, 2000);
4513 igc_down(adapter);
4514 igc_up(adapter);
4515 clear_bit(__IGC_RESETTING, &adapter->state);
4516}
4517
4518static void igc_reset_task(struct work_struct *work)
4519{
4520 struct igc_adapter *adapter;
4521
4522 adapter = container_of(work, struct igc_adapter, reset_task);
4523
4524 rtnl_lock();
4525 /* If we're already down or resetting, just bail */
4526 if (test_bit(__IGC_DOWN, &adapter->state) ||
4527 test_bit(__IGC_RESETTING, &adapter->state)) {
4528 rtnl_unlock();
4529 return;
4530 }
4531
4532 igc_rings_dump(adapter);
4533 igc_regs_dump(adapter);
4534 netdev_err(adapter->netdev, "Reset adapter\n");
4535 igc_reinit_locked(adapter);
4536 rtnl_unlock();
4537}
4538
4539/**
4540 * igc_change_mtu - Change the Maximum Transfer Unit
4541 * @netdev: network interface device structure
4542 * @new_mtu: new value for maximum frame size
4543 *
4544 * Returns 0 on success, negative on failure
4545 */
4546static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4547{
4548 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4549 struct igc_adapter *adapter = netdev_priv(netdev);
4550
4551 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4552 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4553 return -EINVAL;
4554 }
4555
4556 /* adjust max frame to be at least the size of a standard frame */
4557 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4558 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4559
4560 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4561 usleep_range(1000, 2000);
4562
4563 /* igc_down has a dependency on max_frame_size */
4564 adapter->max_frame_size = max_frame;
4565
4566 if (netif_running(netdev))
4567 igc_down(adapter);
4568
4569 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4570 netdev->mtu = new_mtu;
4571
4572 if (netif_running(netdev))
4573 igc_up(adapter);
4574 else
4575 igc_reset(adapter);
4576
4577 clear_bit(__IGC_RESETTING, &adapter->state);
4578
4579 return 0;
4580}
4581
4582/**
4583 * igc_get_stats64 - Get System Network Statistics
4584 * @netdev: network interface device structure
4585 * @stats: rtnl_link_stats64 pointer
4586 *
4587 * Returns the address of the device statistics structure.
4588 * The statistics are updated here and also from the timer callback.
4589 */
4590static void igc_get_stats64(struct net_device *netdev,
4591 struct rtnl_link_stats64 *stats)
4592{
4593 struct igc_adapter *adapter = netdev_priv(netdev);
4594
4595 spin_lock(&adapter->stats64_lock);
4596 if (!test_bit(__IGC_RESETTING, &adapter->state))
4597 igc_update_stats(adapter);
4598 memcpy(stats, &adapter->stats64, sizeof(*stats));
4599 spin_unlock(&adapter->stats64_lock);
4600}
4601
4602static netdev_features_t igc_fix_features(struct net_device *netdev,
4603 netdev_features_t features)
4604{
4605 /* Since there is no support for separate Rx/Tx vlan accel
4606 * enable/disable make sure Tx flag is always in same state as Rx.
4607 */
4608 if (features & NETIF_F_HW_VLAN_CTAG_RX)
4609 features |= NETIF_F_HW_VLAN_CTAG_TX;
4610 else
4611 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4612
4613 return features;
4614}
4615
4616static int igc_set_features(struct net_device *netdev,
4617 netdev_features_t features)
4618{
4619 netdev_features_t changed = netdev->features ^ features;
4620 struct igc_adapter *adapter = netdev_priv(netdev);
4621
4622 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4623 igc_vlan_mode(netdev, features);
4624
4625 /* Add VLAN support */
4626 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4627 return 0;
4628
4629 if (!(features & NETIF_F_NTUPLE))
4630 igc_flush_nfc_rules(adapter);
4631
4632 netdev->features = features;
4633
4634 if (netif_running(netdev))
4635 igc_reinit_locked(adapter);
4636 else
4637 igc_reset(adapter);
4638
4639 return 1;
4640}
4641
4642static netdev_features_t
4643igc_features_check(struct sk_buff *skb, struct net_device *dev,
4644 netdev_features_t features)
4645{
4646 unsigned int network_hdr_len, mac_hdr_len;
4647
4648 /* Make certain the headers can be described by a context descriptor */
4649 mac_hdr_len = skb_network_header(skb) - skb->data;
4650 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4651 return features & ~(NETIF_F_HW_CSUM |
4652 NETIF_F_SCTP_CRC |
4653 NETIF_F_HW_VLAN_CTAG_TX |
4654 NETIF_F_TSO |
4655 NETIF_F_TSO6);
4656
4657 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4658 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
4659 return features & ~(NETIF_F_HW_CSUM |
4660 NETIF_F_SCTP_CRC |
4661 NETIF_F_TSO |
4662 NETIF_F_TSO6);
4663
4664 /* We can only support IPv4 TSO in tunnels if we can mangle the
4665 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4666 */
4667 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4668 features &= ~NETIF_F_TSO;
4669
4670 return features;
4671}
4672
4673static void igc_tsync_interrupt(struct igc_adapter *adapter)
4674{
4675 u32 ack, tsauxc, sec, nsec, tsicr;
4676 struct igc_hw *hw = &adapter->hw;
4677 struct ptp_clock_event event;
4678 struct timespec64 ts;
4679
4680 tsicr = rd32(IGC_TSICR);
4681 ack = 0;
4682
4683 if (tsicr & IGC_TSICR_SYS_WRAP) {
4684 event.type = PTP_CLOCK_PPS;
4685 if (adapter->ptp_caps.pps)
4686 ptp_clock_event(adapter->ptp_clock, &event);
4687 ack |= IGC_TSICR_SYS_WRAP;
4688 }
4689
4690 if (tsicr & IGC_TSICR_TXTS) {
4691 /* retrieve hardware timestamp */
4692 schedule_work(&adapter->ptp_tx_work);
4693 ack |= IGC_TSICR_TXTS;
4694 }
4695
4696 if (tsicr & IGC_TSICR_TT0) {
4697 spin_lock(&adapter->tmreg_lock);
4698 ts = timespec64_add(adapter->perout[0].start,
4699 adapter->perout[0].period);
4700 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4701 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4702 tsauxc = rd32(IGC_TSAUXC);
4703 tsauxc |= IGC_TSAUXC_EN_TT0;
4704 wr32(IGC_TSAUXC, tsauxc);
4705 adapter->perout[0].start = ts;
4706 spin_unlock(&adapter->tmreg_lock);
4707 ack |= IGC_TSICR_TT0;
4708 }
4709
4710 if (tsicr & IGC_TSICR_TT1) {
4711 spin_lock(&adapter->tmreg_lock);
4712 ts = timespec64_add(adapter->perout[1].start,
4713 adapter->perout[1].period);
4714 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4715 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4716 tsauxc = rd32(IGC_TSAUXC);
4717 tsauxc |= IGC_TSAUXC_EN_TT1;
4718 wr32(IGC_TSAUXC, tsauxc);
4719 adapter->perout[1].start = ts;
4720 spin_unlock(&adapter->tmreg_lock);
4721 ack |= IGC_TSICR_TT1;
4722 }
4723
4724 if (tsicr & IGC_TSICR_AUTT0) {
4725 nsec = rd32(IGC_AUXSTMPL0);
4726 sec = rd32(IGC_AUXSTMPH0);
4727 event.type = PTP_CLOCK_EXTTS;
4728 event.index = 0;
4729 event.timestamp = sec * NSEC_PER_SEC + nsec;
4730 ptp_clock_event(adapter->ptp_clock, &event);
4731 ack |= IGC_TSICR_AUTT0;
4732 }
4733
4734 if (tsicr & IGC_TSICR_AUTT1) {
4735 nsec = rd32(IGC_AUXSTMPL1);
4736 sec = rd32(IGC_AUXSTMPH1);
4737 event.type = PTP_CLOCK_EXTTS;
4738 event.index = 1;
4739 event.timestamp = sec * NSEC_PER_SEC + nsec;
4740 ptp_clock_event(adapter->ptp_clock, &event);
4741 ack |= IGC_TSICR_AUTT1;
4742 }
4743
4744 /* acknowledge the interrupts */
4745 wr32(IGC_TSICR, ack);
4746}
4747
4748/**
4749 * igc_msix_other - msix other interrupt handler
4750 * @irq: interrupt number
4751 * @data: pointer to a q_vector
4752 */
4753static irqreturn_t igc_msix_other(int irq, void *data)
4754{
4755 struct igc_adapter *adapter = data;
4756 struct igc_hw *hw = &adapter->hw;
4757 u32 icr = rd32(IGC_ICR);
4758
4759 /* reading ICR causes bit 31 of EICR to be cleared */
4760 if (icr & IGC_ICR_DRSTA)
4761 schedule_work(&adapter->reset_task);
4762
4763 if (icr & IGC_ICR_DOUTSYNC) {
4764 /* HW is reporting DMA is out of sync */
4765 adapter->stats.doosync++;
4766 }
4767
4768 if (icr & IGC_ICR_LSC) {
4769 hw->mac.get_link_status = true;
4770 /* guard against interrupt when we're going down */
4771 if (!test_bit(__IGC_DOWN, &adapter->state))
4772 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4773 }
4774
4775 if (icr & IGC_ICR_TS)
4776 igc_tsync_interrupt(adapter);
4777
4778 wr32(IGC_EIMS, adapter->eims_other);
4779
4780 return IRQ_HANDLED;
4781}
4782
4783static void igc_write_itr(struct igc_q_vector *q_vector)
4784{
4785 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4786
4787 if (!q_vector->set_itr)
4788 return;
4789
4790 if (!itr_val)
4791 itr_val = IGC_ITR_VAL_MASK;
4792
4793 itr_val |= IGC_EITR_CNT_IGNR;
4794
4795 writel(itr_val, q_vector->itr_register);
4796 q_vector->set_itr = 0;
4797}
4798
4799static irqreturn_t igc_msix_ring(int irq, void *data)
4800{
4801 struct igc_q_vector *q_vector = data;
4802
4803 /* Write the ITR value calculated from the previous interrupt. */
4804 igc_write_itr(q_vector);
4805
4806 napi_schedule(&q_vector->napi);
4807
4808 return IRQ_HANDLED;
4809}
4810
4811/**
4812 * igc_request_msix - Initialize MSI-X interrupts
4813 * @adapter: Pointer to adapter structure
4814 *
4815 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4816 * kernel.
4817 */
4818static int igc_request_msix(struct igc_adapter *adapter)
4819{
4820 unsigned int num_q_vectors = adapter->num_q_vectors;
4821 int i = 0, err = 0, vector = 0, free_vector = 0;
4822 struct net_device *netdev = adapter->netdev;
4823
4824 err = request_irq(adapter->msix_entries[vector].vector,
4825 &igc_msix_other, 0, netdev->name, adapter);
4826 if (err)
4827 goto err_out;
4828
4829 if (num_q_vectors > MAX_Q_VECTORS) {
4830 num_q_vectors = MAX_Q_VECTORS;
4831 dev_warn(&adapter->pdev->dev,
4832 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
4833 adapter->num_q_vectors, MAX_Q_VECTORS);
4834 }
4835 for (i = 0; i < num_q_vectors; i++) {
4836 struct igc_q_vector *q_vector = adapter->q_vector[i];
4837
4838 vector++;
4839
4840 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4841
4842 if (q_vector->rx.ring && q_vector->tx.ring)
4843 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4844 q_vector->rx.ring->queue_index);
4845 else if (q_vector->tx.ring)
4846 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4847 q_vector->tx.ring->queue_index);
4848 else if (q_vector->rx.ring)
4849 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4850 q_vector->rx.ring->queue_index);
4851 else
4852 sprintf(q_vector->name, "%s-unused", netdev->name);
4853
4854 err = request_irq(adapter->msix_entries[vector].vector,
4855 igc_msix_ring, 0, q_vector->name,
4856 q_vector);
4857 if (err)
4858 goto err_free;
4859 }
4860
4861 igc_configure_msix(adapter);
4862 return 0;
4863
4864err_free:
4865 /* free already assigned IRQs */
4866 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4867
4868 vector--;
4869 for (i = 0; i < vector; i++) {
4870 free_irq(adapter->msix_entries[free_vector++].vector,
4871 adapter->q_vector[i]);
4872 }
4873err_out:
4874 return err;
4875}
4876
4877/**
4878 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4879 * @adapter: Pointer to adapter structure
4880 *
4881 * This function resets the device so that it has 0 rx queues, tx queues, and
4882 * MSI-X interrupts allocated.
4883 */
4884static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4885{
4886 igc_free_q_vectors(adapter);
4887 igc_reset_interrupt_capability(adapter);
4888}
4889
4890/* Need to wait a few seconds after link up to get diagnostic information from
4891 * the phy
4892 */
4893static void igc_update_phy_info(struct timer_list *t)
4894{
4895 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4896
4897 igc_get_phy_info(&adapter->hw);
4898}
4899
4900/**
4901 * igc_has_link - check shared code for link and determine up/down
4902 * @adapter: pointer to driver private info
4903 */
4904bool igc_has_link(struct igc_adapter *adapter)
4905{
4906 struct igc_hw *hw = &adapter->hw;
4907 bool link_active = false;
4908
4909 /* get_link_status is set on LSC (link status) interrupt or
4910 * rx sequence error interrupt. get_link_status will stay
4911 * false until the igc_check_for_link establishes link
4912 * for copper adapters ONLY
4913 */
4914 switch (hw->phy.media_type) {
4915 case igc_media_type_copper:
4916 if (!hw->mac.get_link_status)
4917 return true;
4918 hw->mac.ops.check_for_link(hw);
4919 link_active = !hw->mac.get_link_status;
4920 break;
4921 default:
4922 case igc_media_type_unknown:
4923 break;
4924 }
4925
4926 if (hw->mac.type == igc_i225 &&
4927 hw->phy.id == I225_I_PHY_ID) {
4928 if (!netif_carrier_ok(adapter->netdev)) {
4929 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4930 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4931 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4932 adapter->link_check_timeout = jiffies;
4933 }
4934 }
4935
4936 return link_active;
4937}
4938
4939/**
4940 * igc_watchdog - Timer Call-back
4941 * @t: timer for the watchdog
4942 */
4943static void igc_watchdog(struct timer_list *t)
4944{
4945 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4946 /* Do the rest outside of interrupt context */
4947 schedule_work(&adapter->watchdog_task);
4948}
4949
4950static void igc_watchdog_task(struct work_struct *work)
4951{
4952 struct igc_adapter *adapter = container_of(work,
4953 struct igc_adapter,
4954 watchdog_task);
4955 struct net_device *netdev = adapter->netdev;
4956 struct igc_hw *hw = &adapter->hw;
4957 struct igc_phy_info *phy = &hw->phy;
4958 u16 phy_data, retry_count = 20;
4959 u32 link;
4960 int i;
4961
4962 link = igc_has_link(adapter);
4963
4964 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4965 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4966 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4967 else
4968 link = false;
4969 }
4970
4971 if (link) {
4972 /* Cancel scheduled suspend requests. */
4973 pm_runtime_resume(netdev->dev.parent);
4974
4975 if (!netif_carrier_ok(netdev)) {
4976 u32 ctrl;
4977
4978 hw->mac.ops.get_speed_and_duplex(hw,
4979 &adapter->link_speed,
4980 &adapter->link_duplex);
4981
4982 ctrl = rd32(IGC_CTRL);
4983 /* Link status message must follow this format */
4984 netdev_info(netdev,
4985 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4986 adapter->link_speed,
4987 adapter->link_duplex == FULL_DUPLEX ?
4988 "Full" : "Half",
4989 (ctrl & IGC_CTRL_TFCE) &&
4990 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4991 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4992 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4993
4994 /* disable EEE if enabled */
4995 if ((adapter->flags & IGC_FLAG_EEE) &&
4996 adapter->link_duplex == HALF_DUPLEX) {
4997 netdev_info(netdev,
4998 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4999 adapter->hw.dev_spec._base.eee_enable = false;
5000 adapter->flags &= ~IGC_FLAG_EEE;
5001 }
5002
5003 /* check if SmartSpeed worked */
5004 igc_check_downshift(hw);
5005 if (phy->speed_downgraded)
5006 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5007
5008 /* adjust timeout factor according to speed/duplex */
5009 adapter->tx_timeout_factor = 1;
5010 switch (adapter->link_speed) {
5011 case SPEED_10:
5012 adapter->tx_timeout_factor = 14;
5013 break;
5014 case SPEED_100:
5015 /* maybe add some timeout factor ? */
5016 break;
5017 }
5018
5019 if (adapter->link_speed != SPEED_1000)
5020 goto no_wait;
5021
5022 /* wait for Remote receiver status OK */
5023retry_read_status:
5024 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5025 &phy_data)) {
5026 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5027 retry_count) {
5028 msleep(100);
5029 retry_count--;
5030 goto retry_read_status;
5031 } else if (!retry_count) {
5032 netdev_err(netdev, "exceed max 2 second\n");
5033 }
5034 } else {
5035 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5036 }
5037no_wait:
5038 netif_carrier_on(netdev);
5039
5040 /* link state has changed, schedule phy info update */
5041 if (!test_bit(__IGC_DOWN, &adapter->state))
5042 mod_timer(&adapter->phy_info_timer,
5043 round_jiffies(jiffies + 2 * HZ));
5044 }
5045 } else {
5046 if (netif_carrier_ok(netdev)) {
5047 adapter->link_speed = 0;
5048 adapter->link_duplex = 0;
5049
5050 /* Links status message must follow this format */
5051 netdev_info(netdev, "NIC Link is Down\n");
5052 netif_carrier_off(netdev);
5053
5054 /* link state has changed, schedule phy info update */
5055 if (!test_bit(__IGC_DOWN, &adapter->state))
5056 mod_timer(&adapter->phy_info_timer,
5057 round_jiffies(jiffies + 2 * HZ));
5058
5059 /* link is down, time to check for alternate media */
5060 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5061 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5062 schedule_work(&adapter->reset_task);
5063 /* return immediately */
5064 return;
5065 }
5066 }
5067 pm_schedule_suspend(netdev->dev.parent,
5068 MSEC_PER_SEC * 5);
5069
5070 /* also check for alternate media here */
5071 } else if (!netif_carrier_ok(netdev) &&
5072 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5073 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5074 schedule_work(&adapter->reset_task);
5075 /* return immediately */
5076 return;
5077 }
5078 }
5079 }
5080
5081 spin_lock(&adapter->stats64_lock);
5082 igc_update_stats(adapter);
5083 spin_unlock(&adapter->stats64_lock);
5084
5085 for (i = 0; i < adapter->num_tx_queues; i++) {
5086 struct igc_ring *tx_ring = adapter->tx_ring[i];
5087
5088 if (!netif_carrier_ok(netdev)) {
5089 /* We've lost link, so the controller stops DMA,
5090 * but we've got queued Tx work that's never going
5091 * to get done, so reset controller to flush Tx.
5092 * (Do the reset outside of interrupt context).
5093 */
5094 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5095 adapter->tx_timeout_count++;
5096 schedule_work(&adapter->reset_task);
5097 /* return immediately since reset is imminent */
5098 return;
5099 }
5100 }
5101
5102 /* Force detection of hung controller every watchdog period */
5103 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5104 }
5105
5106 /* Cause software interrupt to ensure Rx ring is cleaned */
5107 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5108 u32 eics = 0;
5109
5110 for (i = 0; i < adapter->num_q_vectors; i++)
5111 eics |= adapter->q_vector[i]->eims_value;
5112 wr32(IGC_EICS, eics);
5113 } else {
5114 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5115 }
5116
5117 igc_ptp_tx_hang(adapter);
5118
5119 /* Reset the timer */
5120 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5121 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5122 mod_timer(&adapter->watchdog_timer,
5123 round_jiffies(jiffies + HZ));
5124 else
5125 mod_timer(&adapter->watchdog_timer,
5126 round_jiffies(jiffies + 2 * HZ));
5127 }
5128}
5129
5130/**
5131 * igc_intr_msi - Interrupt Handler
5132 * @irq: interrupt number
5133 * @data: pointer to a network interface device structure
5134 */
5135static irqreturn_t igc_intr_msi(int irq, void *data)
5136{
5137 struct igc_adapter *adapter = data;
5138 struct igc_q_vector *q_vector = adapter->q_vector[0];
5139 struct igc_hw *hw = &adapter->hw;
5140 /* read ICR disables interrupts using IAM */
5141 u32 icr = rd32(IGC_ICR);
5142
5143 igc_write_itr(q_vector);
5144
5145 if (icr & IGC_ICR_DRSTA)
5146 schedule_work(&adapter->reset_task);
5147
5148 if (icr & IGC_ICR_DOUTSYNC) {
5149 /* HW is reporting DMA is out of sync */
5150 adapter->stats.doosync++;
5151 }
5152
5153 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5154 hw->mac.get_link_status = true;
5155 if (!test_bit(__IGC_DOWN, &adapter->state))
5156 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5157 }
5158
5159 napi_schedule(&q_vector->napi);
5160
5161 return IRQ_HANDLED;
5162}
5163
5164/**
5165 * igc_intr - Legacy Interrupt Handler
5166 * @irq: interrupt number
5167 * @data: pointer to a network interface device structure
5168 */
5169static irqreturn_t igc_intr(int irq, void *data)
5170{
5171 struct igc_adapter *adapter = data;
5172 struct igc_q_vector *q_vector = adapter->q_vector[0];
5173 struct igc_hw *hw = &adapter->hw;
5174 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5175 * need for the IMC write
5176 */
5177 u32 icr = rd32(IGC_ICR);
5178
5179 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5180 * not set, then the adapter didn't send an interrupt
5181 */
5182 if (!(icr & IGC_ICR_INT_ASSERTED))
5183 return IRQ_NONE;
5184
5185 igc_write_itr(q_vector);
5186
5187 if (icr & IGC_ICR_DRSTA)
5188 schedule_work(&adapter->reset_task);
5189
5190 if (icr & IGC_ICR_DOUTSYNC) {
5191 /* HW is reporting DMA is out of sync */
5192 adapter->stats.doosync++;
5193 }
5194
5195 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5196 hw->mac.get_link_status = true;
5197 /* guard against interrupt when we're going down */
5198 if (!test_bit(__IGC_DOWN, &adapter->state))
5199 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5200 }
5201
5202 napi_schedule(&q_vector->napi);
5203
5204 return IRQ_HANDLED;
5205}
5206
5207static void igc_free_irq(struct igc_adapter *adapter)
5208{
5209 if (adapter->msix_entries) {
5210 int vector = 0, i;
5211
5212 free_irq(adapter->msix_entries[vector++].vector, adapter);
5213
5214 for (i = 0; i < adapter->num_q_vectors; i++)
5215 free_irq(adapter->msix_entries[vector++].vector,
5216 adapter->q_vector[i]);
5217 } else {
5218 free_irq(adapter->pdev->irq, adapter);
5219 }
5220}
5221
5222/**
5223 * igc_request_irq - initialize interrupts
5224 * @adapter: Pointer to adapter structure
5225 *
5226 * Attempts to configure interrupts using the best available
5227 * capabilities of the hardware and kernel.
5228 */
5229static int igc_request_irq(struct igc_adapter *adapter)
5230{
5231 struct net_device *netdev = adapter->netdev;
5232 struct pci_dev *pdev = adapter->pdev;
5233 int err = 0;
5234
5235 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5236 err = igc_request_msix(adapter);
5237 if (!err)
5238 goto request_done;
5239 /* fall back to MSI */
5240 igc_free_all_tx_resources(adapter);
5241 igc_free_all_rx_resources(adapter);
5242
5243 igc_clear_interrupt_scheme(adapter);
5244 err = igc_init_interrupt_scheme(adapter, false);
5245 if (err)
5246 goto request_done;
5247 igc_setup_all_tx_resources(adapter);
5248 igc_setup_all_rx_resources(adapter);
5249 igc_configure(adapter);
5250 }
5251
5252 igc_assign_vector(adapter->q_vector[0], 0);
5253
5254 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5255 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5256 netdev->name, adapter);
5257 if (!err)
5258 goto request_done;
5259
5260 /* fall back to legacy interrupts */
5261 igc_reset_interrupt_capability(adapter);
5262 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5263 }
5264
5265 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5266 netdev->name, adapter);
5267
5268 if (err)
5269 netdev_err(netdev, "Error %d getting interrupt\n", err);
5270
5271request_done:
5272 return err;
5273}
5274
5275/**
5276 * __igc_open - Called when a network interface is made active
5277 * @netdev: network interface device structure
5278 * @resuming: boolean indicating if the device is resuming
5279 *
5280 * Returns 0 on success, negative value on failure
5281 *
5282 * The open entry point is called when a network interface is made
5283 * active by the system (IFF_UP). At this point all resources needed
5284 * for transmit and receive operations are allocated, the interrupt
5285 * handler is registered with the OS, the watchdog timer is started,
5286 * and the stack is notified that the interface is ready.
5287 */
5288static int __igc_open(struct net_device *netdev, bool resuming)
5289{
5290 struct igc_adapter *adapter = netdev_priv(netdev);
5291 struct pci_dev *pdev = adapter->pdev;
5292 struct igc_hw *hw = &adapter->hw;
5293 int err = 0;
5294 int i = 0;
5295
5296 /* disallow open during test */
5297
5298 if (test_bit(__IGC_TESTING, &adapter->state)) {
5299 WARN_ON(resuming);
5300 return -EBUSY;
5301 }
5302
5303 if (!resuming)
5304 pm_runtime_get_sync(&pdev->dev);
5305
5306 netif_carrier_off(netdev);
5307
5308 /* allocate transmit descriptors */
5309 err = igc_setup_all_tx_resources(adapter);
5310 if (err)
5311 goto err_setup_tx;
5312
5313 /* allocate receive descriptors */
5314 err = igc_setup_all_rx_resources(adapter);
5315 if (err)
5316 goto err_setup_rx;
5317
5318 igc_power_up_link(adapter);
5319
5320 igc_configure(adapter);
5321
5322 err = igc_request_irq(adapter);
5323 if (err)
5324 goto err_req_irq;
5325
5326 /* Notify the stack of the actual queue counts. */
5327 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5328 if (err)
5329 goto err_set_queues;
5330
5331 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5332 if (err)
5333 goto err_set_queues;
5334
5335 clear_bit(__IGC_DOWN, &adapter->state);
5336
5337 for (i = 0; i < adapter->num_q_vectors; i++)
5338 napi_enable(&adapter->q_vector[i]->napi);
5339
5340 /* Clear any pending interrupts. */
5341 rd32(IGC_ICR);
5342 igc_irq_enable(adapter);
5343
5344 if (!resuming)
5345 pm_runtime_put(&pdev->dev);
5346
5347 netif_tx_start_all_queues(netdev);
5348
5349 /* start the watchdog. */
5350 hw->mac.get_link_status = true;
5351 schedule_work(&adapter->watchdog_task);
5352
5353 return IGC_SUCCESS;
5354
5355err_set_queues:
5356 igc_free_irq(adapter);
5357err_req_irq:
5358 igc_release_hw_control(adapter);
5359 igc_power_down_phy_copper_base(&adapter->hw);
5360 igc_free_all_rx_resources(adapter);
5361err_setup_rx:
5362 igc_free_all_tx_resources(adapter);
5363err_setup_tx:
5364 igc_reset(adapter);
5365 if (!resuming)
5366 pm_runtime_put(&pdev->dev);
5367
5368 return err;
5369}
5370
5371int igc_open(struct net_device *netdev)
5372{
5373 return __igc_open(netdev, false);
5374}
5375
5376/**
5377 * __igc_close - Disables a network interface
5378 * @netdev: network interface device structure
5379 * @suspending: boolean indicating the device is suspending
5380 *
5381 * Returns 0, this is not allowed to fail
5382 *
5383 * The close entry point is called when an interface is de-activated
5384 * by the OS. The hardware is still under the driver's control, but
5385 * needs to be disabled. A global MAC reset is issued to stop the
5386 * hardware, and all transmit and receive resources are freed.
5387 */
5388static int __igc_close(struct net_device *netdev, bool suspending)
5389{
5390 struct igc_adapter *adapter = netdev_priv(netdev);
5391 struct pci_dev *pdev = adapter->pdev;
5392
5393 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5394
5395 if (!suspending)
5396 pm_runtime_get_sync(&pdev->dev);
5397
5398 igc_down(adapter);
5399
5400 igc_release_hw_control(adapter);
5401
5402 igc_free_irq(adapter);
5403
5404 igc_free_all_tx_resources(adapter);
5405 igc_free_all_rx_resources(adapter);
5406
5407 if (!suspending)
5408 pm_runtime_put_sync(&pdev->dev);
5409
5410 return 0;
5411}
5412
5413int igc_close(struct net_device *netdev)
5414{
5415 if (netif_device_present(netdev) || netdev->dismantle)
5416 return __igc_close(netdev, false);
5417 return 0;
5418}
5419
5420/**
5421 * igc_ioctl - Access the hwtstamp interface
5422 * @netdev: network interface device structure
5423 * @ifr: interface request data
5424 * @cmd: ioctl command
5425 **/
5426static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5427{
5428 switch (cmd) {
5429 case SIOCGHWTSTAMP:
5430 return igc_ptp_get_ts_config(netdev, ifr);
5431 case SIOCSHWTSTAMP:
5432 return igc_ptp_set_ts_config(netdev, ifr);
5433 default:
5434 return -EOPNOTSUPP;
5435 }
5436}
5437
5438static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5439 bool enable)
5440{
5441 struct igc_ring *ring;
5442 int i;
5443
5444 if (queue < 0 || queue >= adapter->num_tx_queues)
5445 return -EINVAL;
5446
5447 ring = adapter->tx_ring[queue];
5448 ring->launchtime_enable = enable;
5449
5450 if (adapter->base_time)
5451 return 0;
5452
5453 adapter->cycle_time = NSEC_PER_SEC;
5454
5455 for (i = 0; i < adapter->num_tx_queues; i++) {
5456 ring = adapter->tx_ring[i];
5457 ring->start_time = 0;
5458 ring->end_time = NSEC_PER_SEC;
5459 }
5460
5461 return 0;
5462}
5463
5464static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5465{
5466 struct timespec64 b;
5467
5468 b = ktime_to_timespec64(base_time);
5469
5470 return timespec64_compare(now, &b) > 0;
5471}
5472
5473static bool validate_schedule(struct igc_adapter *adapter,
5474 const struct tc_taprio_qopt_offload *qopt)
5475{
5476 int queue_uses[IGC_MAX_TX_QUEUES] = { };
5477 struct timespec64 now;
5478 size_t n;
5479
5480 if (qopt->cycle_time_extension)
5481 return false;
5482
5483 igc_ptp_read(adapter, &now);
5484
5485 /* If we program the controller's BASET registers with a time
5486 * in the future, it will hold all the packets until that
5487 * time, causing a lot of TX Hangs, so to avoid that, we
5488 * reject schedules that would start in the future.
5489 */
5490 if (!is_base_time_past(qopt->base_time, &now))
5491 return false;
5492
5493 for (n = 0; n < qopt->num_entries; n++) {
5494 const struct tc_taprio_sched_entry *e;
5495 int i;
5496
5497 e = &qopt->entries[n];
5498
5499 /* i225 only supports "global" frame preemption
5500 * settings.
5501 */
5502 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5503 return false;
5504
5505 for (i = 0; i < adapter->num_tx_queues; i++) {
5506 if (e->gate_mask & BIT(i))
5507 queue_uses[i]++;
5508
5509 if (queue_uses[i] > 1)
5510 return false;
5511 }
5512 }
5513
5514 return true;
5515}
5516
5517static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5518 struct tc_etf_qopt_offload *qopt)
5519{
5520 struct igc_hw *hw = &adapter->hw;
5521 int err;
5522
5523 if (hw->mac.type != igc_i225)
5524 return -EOPNOTSUPP;
5525
5526 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5527 if (err)
5528 return err;
5529
5530 return igc_tsn_offload_apply(adapter);
5531}
5532
5533static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5534 struct tc_taprio_qopt_offload *qopt)
5535{
5536 u32 start_time = 0, end_time = 0;
5537 size_t n;
5538
5539 if (!qopt->enable) {
5540 adapter->base_time = 0;
5541 return 0;
5542 }
5543
5544 if (adapter->base_time)
5545 return -EALREADY;
5546
5547 if (!validate_schedule(adapter, qopt))
5548 return -EINVAL;
5549
5550 adapter->cycle_time = qopt->cycle_time;
5551 adapter->base_time = qopt->base_time;
5552
5553 /* FIXME: be a little smarter about cases when the gate for a
5554 * queue stays open for more than one entry.
5555 */
5556 for (n = 0; n < qopt->num_entries; n++) {
5557 struct tc_taprio_sched_entry *e = &qopt->entries[n];
5558 int i;
5559
5560 end_time += e->interval;
5561
5562 for (i = 0; i < adapter->num_tx_queues; i++) {
5563 struct igc_ring *ring = adapter->tx_ring[i];
5564
5565 if (!(e->gate_mask & BIT(i)))
5566 continue;
5567
5568 ring->start_time = start_time;
5569 ring->end_time = end_time;
5570 }
5571
5572 start_time += e->interval;
5573 }
5574
5575 return 0;
5576}
5577
5578static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5579 struct tc_taprio_qopt_offload *qopt)
5580{
5581 struct igc_hw *hw = &adapter->hw;
5582 int err;
5583
5584 if (hw->mac.type != igc_i225)
5585 return -EOPNOTSUPP;
5586
5587 err = igc_save_qbv_schedule(adapter, qopt);
5588 if (err)
5589 return err;
5590
5591 return igc_tsn_offload_apply(adapter);
5592}
5593
5594static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5595 void *type_data)
5596{
5597 struct igc_adapter *adapter = netdev_priv(dev);
5598
5599 switch (type) {
5600 case TC_SETUP_QDISC_TAPRIO:
5601 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5602
5603 case TC_SETUP_QDISC_ETF:
5604 return igc_tsn_enable_launchtime(adapter, type_data);
5605
5606 default:
5607 return -EOPNOTSUPP;
5608 }
5609}
5610
5611static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5612{
5613 struct igc_adapter *adapter = netdev_priv(dev);
5614
5615 switch (bpf->command) {
5616 case XDP_SETUP_PROG:
5617 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5618 case XDP_SETUP_XSK_POOL:
5619 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5620 bpf->xsk.queue_id);
5621 default:
5622 return -EOPNOTSUPP;
5623 }
5624}
5625
5626static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5627 struct xdp_frame **frames, u32 flags)
5628{
5629 struct igc_adapter *adapter = netdev_priv(dev);
5630 int cpu = smp_processor_id();
5631 struct netdev_queue *nq;
5632 struct igc_ring *ring;
5633 int i, drops;
5634
5635 if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5636 return -ENETDOWN;
5637
5638 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5639 return -EINVAL;
5640
5641 ring = igc_xdp_get_tx_ring(adapter, cpu);
5642 nq = txring_txq(ring);
5643
5644 __netif_tx_lock(nq, cpu);
5645
5646 drops = 0;
5647 for (i = 0; i < num_frames; i++) {
5648 int err;
5649 struct xdp_frame *xdpf = frames[i];
5650
5651 err = igc_xdp_init_tx_descriptor(ring, xdpf);
5652 if (err) {
5653 xdp_return_frame_rx_napi(xdpf);
5654 drops++;
5655 }
5656 }
5657
5658 if (flags & XDP_XMIT_FLUSH)
5659 igc_flush_tx_descriptors(ring);
5660
5661 __netif_tx_unlock(nq);
5662
5663 return num_frames - drops;
5664}
5665
5666static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5667 struct igc_q_vector *q_vector)
5668{
5669 struct igc_hw *hw = &adapter->hw;
5670 u32 eics = 0;
5671
5672 eics |= q_vector->eims_value;
5673 wr32(IGC_EICS, eics);
5674}
5675
5676int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5677{
5678 struct igc_adapter *adapter = netdev_priv(dev);
5679 struct igc_q_vector *q_vector;
5680 struct igc_ring *ring;
5681
5682 if (test_bit(__IGC_DOWN, &adapter->state))
5683 return -ENETDOWN;
5684
5685 if (!igc_xdp_is_enabled(adapter))
5686 return -ENXIO;
5687
5688 if (queue_id >= adapter->num_rx_queues)
5689 return -EINVAL;
5690
5691 ring = adapter->rx_ring[queue_id];
5692
5693 if (!ring->xsk_pool)
5694 return -ENXIO;
5695
5696 q_vector = adapter->q_vector[queue_id];
5697 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
5698 igc_trigger_rxtxq_interrupt(adapter, q_vector);
5699
5700 return 0;
5701}
5702
5703static const struct net_device_ops igc_netdev_ops = {
5704 .ndo_open = igc_open,
5705 .ndo_stop = igc_close,
5706 .ndo_start_xmit = igc_xmit_frame,
5707 .ndo_set_rx_mode = igc_set_rx_mode,
5708 .ndo_set_mac_address = igc_set_mac,
5709 .ndo_change_mtu = igc_change_mtu,
5710 .ndo_get_stats64 = igc_get_stats64,
5711 .ndo_fix_features = igc_fix_features,
5712 .ndo_set_features = igc_set_features,
5713 .ndo_features_check = igc_features_check,
5714 .ndo_do_ioctl = igc_ioctl,
5715 .ndo_setup_tc = igc_setup_tc,
5716 .ndo_bpf = igc_bpf,
5717 .ndo_xdp_xmit = igc_xdp_xmit,
5718 .ndo_xsk_wakeup = igc_xsk_wakeup,
5719};
5720
5721/* PCIe configuration access */
5722void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5723{
5724 struct igc_adapter *adapter = hw->back;
5725
5726 pci_read_config_word(adapter->pdev, reg, value);
5727}
5728
5729void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5730{
5731 struct igc_adapter *adapter = hw->back;
5732
5733 pci_write_config_word(adapter->pdev, reg, *value);
5734}
5735
5736s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5737{
5738 struct igc_adapter *adapter = hw->back;
5739
5740 if (!pci_is_pcie(adapter->pdev))
5741 return -IGC_ERR_CONFIG;
5742
5743 pcie_capability_read_word(adapter->pdev, reg, value);
5744
5745 return IGC_SUCCESS;
5746}
5747
5748s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5749{
5750 struct igc_adapter *adapter = hw->back;
5751
5752 if (!pci_is_pcie(adapter->pdev))
5753 return -IGC_ERR_CONFIG;
5754
5755 pcie_capability_write_word(adapter->pdev, reg, *value);
5756
5757 return IGC_SUCCESS;
5758}
5759
5760u32 igc_rd32(struct igc_hw *hw, u32 reg)
5761{
5762 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5763 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5764 u32 value = 0;
5765
5766 value = readl(&hw_addr[reg]);
5767
5768 /* reads should not return all F's */
5769 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5770 struct net_device *netdev = igc->netdev;
5771
5772 hw->hw_addr = NULL;
5773 netif_device_detach(netdev);
5774 netdev_err(netdev, "PCIe link lost, device now detached\n");
5775 WARN(pci_device_is_present(igc->pdev),
5776 "igc: Failed to read reg 0x%x!\n", reg);
5777 }
5778
5779 return value;
5780}
5781
5782int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5783{
5784 struct igc_mac_info *mac = &adapter->hw.mac;
5785
5786 mac->autoneg = false;
5787
5788 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5789 * for the switch() below to work
5790 */
5791 if ((spd & 1) || (dplx & ~1))
5792 goto err_inval;
5793
5794 switch (spd + dplx) {
5795 case SPEED_10 + DUPLEX_HALF:
5796 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5797 break;
5798 case SPEED_10 + DUPLEX_FULL:
5799 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5800 break;
5801 case SPEED_100 + DUPLEX_HALF:
5802 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5803 break;
5804 case SPEED_100 + DUPLEX_FULL:
5805 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5806 break;
5807 case SPEED_1000 + DUPLEX_FULL:
5808 mac->autoneg = true;
5809 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5810 break;
5811 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5812 goto err_inval;
5813 case SPEED_2500 + DUPLEX_FULL:
5814 mac->autoneg = true;
5815 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5816 break;
5817 case SPEED_2500 + DUPLEX_HALF: /* not supported */
5818 default:
5819 goto err_inval;
5820 }
5821
5822 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5823 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5824
5825 return 0;
5826
5827err_inval:
5828 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5829 return -EINVAL;
5830}
5831
5832/**
5833 * igc_probe - Device Initialization Routine
5834 * @pdev: PCI device information struct
5835 * @ent: entry in igc_pci_tbl
5836 *
5837 * Returns 0 on success, negative on failure
5838 *
5839 * igc_probe initializes an adapter identified by a pci_dev structure.
5840 * The OS initialization, configuring the adapter private structure,
5841 * and a hardware reset occur.
5842 */
5843static int igc_probe(struct pci_dev *pdev,
5844 const struct pci_device_id *ent)
5845{
5846 struct igc_adapter *adapter;
5847 struct net_device *netdev;
5848 struct igc_hw *hw;
5849 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5850 int err, pci_using_dac;
5851
5852 err = pci_enable_device_mem(pdev);
5853 if (err)
5854 return err;
5855
5856 pci_using_dac = 0;
5857 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5858 if (!err) {
5859 pci_using_dac = 1;
5860 } else {
5861 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5862 if (err) {
5863 dev_err(&pdev->dev,
5864 "No usable DMA configuration, aborting\n");
5865 goto err_dma;
5866 }
5867 }
5868
5869 err = pci_request_mem_regions(pdev, igc_driver_name);
5870 if (err)
5871 goto err_pci_reg;
5872
5873 pci_enable_pcie_error_reporting(pdev);
5874
5875 pci_set_master(pdev);
5876
5877 err = -ENOMEM;
5878 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5879 IGC_MAX_TX_QUEUES);
5880
5881 if (!netdev)
5882 goto err_alloc_etherdev;
5883
5884 SET_NETDEV_DEV(netdev, &pdev->dev);
5885
5886 pci_set_drvdata(pdev, netdev);
5887 adapter = netdev_priv(netdev);
5888 adapter->netdev = netdev;
5889 adapter->pdev = pdev;
5890 hw = &adapter->hw;
5891 hw->back = adapter;
5892 adapter->port_num = hw->bus.func;
5893 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5894
5895 err = pci_save_state(pdev);
5896 if (err)
5897 goto err_ioremap;
5898
5899 err = -EIO;
5900 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5901 pci_resource_len(pdev, 0));
5902 if (!adapter->io_addr)
5903 goto err_ioremap;
5904
5905 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5906 hw->hw_addr = adapter->io_addr;
5907
5908 netdev->netdev_ops = &igc_netdev_ops;
5909 igc_ethtool_set_ops(netdev);
5910 netdev->watchdog_timeo = 5 * HZ;
5911
5912 netdev->mem_start = pci_resource_start(pdev, 0);
5913 netdev->mem_end = pci_resource_end(pdev, 0);
5914
5915 /* PCI config space info */
5916 hw->vendor_id = pdev->vendor;
5917 hw->device_id = pdev->device;
5918 hw->revision_id = pdev->revision;
5919 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5920 hw->subsystem_device_id = pdev->subsystem_device;
5921
5922 /* Copy the default MAC and PHY function pointers */
5923 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5924 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5925
5926 /* Initialize skew-specific constants */
5927 err = ei->get_invariants(hw);
5928 if (err)
5929 goto err_sw_init;
5930
5931 /* Add supported features to the features list*/
5932 netdev->features |= NETIF_F_SG;
5933 netdev->features |= NETIF_F_TSO;
5934 netdev->features |= NETIF_F_TSO6;
5935 netdev->features |= NETIF_F_TSO_ECN;
5936 netdev->features |= NETIF_F_RXCSUM;
5937 netdev->features |= NETIF_F_HW_CSUM;
5938 netdev->features |= NETIF_F_SCTP_CRC;
5939 netdev->features |= NETIF_F_HW_TC;
5940
5941#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5942 NETIF_F_GSO_GRE_CSUM | \
5943 NETIF_F_GSO_IPXIP4 | \
5944 NETIF_F_GSO_IPXIP6 | \
5945 NETIF_F_GSO_UDP_TUNNEL | \
5946 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5947
5948 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5949 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5950
5951 /* setup the private structure */
5952 err = igc_sw_init(adapter);
5953 if (err)
5954 goto err_sw_init;
5955
5956 /* copy netdev features into list of user selectable features */
5957 netdev->hw_features |= NETIF_F_NTUPLE;
5958 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
5959 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
5960 netdev->hw_features |= netdev->features;
5961
5962 if (pci_using_dac)
5963 netdev->features |= NETIF_F_HIGHDMA;
5964
5965 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
5966 netdev->mpls_features |= NETIF_F_HW_CSUM;
5967 netdev->hw_enc_features |= netdev->vlan_features;
5968
5969 /* MTU range: 68 - 9216 */
5970 netdev->min_mtu = ETH_MIN_MTU;
5971 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5972
5973 /* before reading the NVM, reset the controller to put the device in a
5974 * known good starting state
5975 */
5976 hw->mac.ops.reset_hw(hw);
5977
5978 if (igc_get_flash_presence_i225(hw)) {
5979 if (hw->nvm.ops.validate(hw) < 0) {
5980 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5981 err = -EIO;
5982 goto err_eeprom;
5983 }
5984 }
5985
5986 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5987 /* copy the MAC address out of the NVM */
5988 if (hw->mac.ops.read_mac_addr(hw))
5989 dev_err(&pdev->dev, "NVM Read Error\n");
5990 }
5991
5992 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5993
5994 if (!is_valid_ether_addr(netdev->dev_addr)) {
5995 dev_err(&pdev->dev, "Invalid MAC Address\n");
5996 err = -EIO;
5997 goto err_eeprom;
5998 }
5999
6000 /* configure RXPBSIZE and TXPBSIZE */
6001 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6002 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6003
6004 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6005 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6006
6007 INIT_WORK(&adapter->reset_task, igc_reset_task);
6008 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6009
6010 /* Initialize link properties that are user-changeable */
6011 adapter->fc_autoneg = true;
6012 hw->mac.autoneg = true;
6013 hw->phy.autoneg_advertised = 0xaf;
6014
6015 hw->fc.requested_mode = igc_fc_default;
6016 hw->fc.current_mode = igc_fc_default;
6017
6018 /* By default, support wake on port A */
6019 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6020
6021 /* initialize the wol settings based on the eeprom settings */
6022 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6023 adapter->wol |= IGC_WUFC_MAG;
6024
6025 device_set_wakeup_enable(&adapter->pdev->dev,
6026 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6027
6028 igc_ptp_init(adapter);
6029
6030 /* reset the hardware with the new settings */
6031 igc_reset(adapter);
6032
6033 /* let the f/w know that the h/w is now under the control of the
6034 * driver.
6035 */
6036 igc_get_hw_control(adapter);
6037
6038 strncpy(netdev->name, "eth%d", IFNAMSIZ);
6039 err = register_netdev(netdev);
6040 if (err)
6041 goto err_register;
6042
6043 /* carrier off reporting is important to ethtool even BEFORE open */
6044 netif_carrier_off(netdev);
6045
6046 /* Check if Media Autosense is enabled */
6047 adapter->ei = *ei;
6048
6049 /* print pcie link status and MAC address */
6050 pcie_print_link_status(pdev);
6051 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6052
6053 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6054 /* Disable EEE for internal PHY devices */
6055 hw->dev_spec._base.eee_enable = false;
6056 adapter->flags &= ~IGC_FLAG_EEE;
6057 igc_set_eee_i225(hw, false, false, false);
6058
6059 pm_runtime_put_noidle(&pdev->dev);
6060
6061 return 0;
6062
6063err_register:
6064 igc_release_hw_control(adapter);
6065err_eeprom:
6066 if (!igc_check_reset_block(hw))
6067 igc_reset_phy(hw);
6068err_sw_init:
6069 igc_clear_interrupt_scheme(adapter);
6070 iounmap(adapter->io_addr);
6071err_ioremap:
6072 free_netdev(netdev);
6073err_alloc_etherdev:
6074 pci_disable_pcie_error_reporting(pdev);
6075 pci_release_mem_regions(pdev);
6076err_pci_reg:
6077err_dma:
6078 pci_disable_device(pdev);
6079 return err;
6080}
6081
6082/**
6083 * igc_remove - Device Removal Routine
6084 * @pdev: PCI device information struct
6085 *
6086 * igc_remove is called by the PCI subsystem to alert the driver
6087 * that it should release a PCI device. This could be caused by a
6088 * Hot-Plug event, or because the driver is going to be removed from
6089 * memory.
6090 */
6091static void igc_remove(struct pci_dev *pdev)
6092{
6093 struct net_device *netdev = pci_get_drvdata(pdev);
6094 struct igc_adapter *adapter = netdev_priv(netdev);
6095
6096 pm_runtime_get_noresume(&pdev->dev);
6097
6098 igc_flush_nfc_rules(adapter);
6099
6100 igc_ptp_stop(adapter);
6101
6102 set_bit(__IGC_DOWN, &adapter->state);
6103
6104 del_timer_sync(&adapter->watchdog_timer);
6105 del_timer_sync(&adapter->phy_info_timer);
6106
6107 cancel_work_sync(&adapter->reset_task);
6108 cancel_work_sync(&adapter->watchdog_task);
6109
6110 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6111 * would have already happened in close and is redundant.
6112 */
6113 igc_release_hw_control(adapter);
6114 unregister_netdev(netdev);
6115
6116 igc_clear_interrupt_scheme(adapter);
6117 pci_iounmap(pdev, adapter->io_addr);
6118 pci_release_mem_regions(pdev);
6119
6120 free_netdev(netdev);
6121
6122 pci_disable_pcie_error_reporting(pdev);
6123
6124 pci_disable_device(pdev);
6125}
6126
6127static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6128 bool runtime)
6129{
6130 struct net_device *netdev = pci_get_drvdata(pdev);
6131 struct igc_adapter *adapter = netdev_priv(netdev);
6132 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6133 struct igc_hw *hw = &adapter->hw;
6134 u32 ctrl, rctl, status;
6135 bool wake;
6136
6137 rtnl_lock();
6138 netif_device_detach(netdev);
6139
6140 if (netif_running(netdev))
6141 __igc_close(netdev, true);
6142
6143 igc_ptp_suspend(adapter);
6144
6145 igc_clear_interrupt_scheme(adapter);
6146 rtnl_unlock();
6147
6148 status = rd32(IGC_STATUS);
6149 if (status & IGC_STATUS_LU)
6150 wufc &= ~IGC_WUFC_LNKC;
6151
6152 if (wufc) {
6153 igc_setup_rctl(adapter);
6154 igc_set_rx_mode(netdev);
6155
6156 /* turn on all-multi mode if wake on multicast is enabled */
6157 if (wufc & IGC_WUFC_MC) {
6158 rctl = rd32(IGC_RCTL);
6159 rctl |= IGC_RCTL_MPE;
6160 wr32(IGC_RCTL, rctl);
6161 }
6162
6163 ctrl = rd32(IGC_CTRL);
6164 ctrl |= IGC_CTRL_ADVD3WUC;
6165 wr32(IGC_CTRL, ctrl);
6166
6167 /* Allow time for pending master requests to run */
6168 igc_disable_pcie_master(hw);
6169
6170 wr32(IGC_WUC, IGC_WUC_PME_EN);
6171 wr32(IGC_WUFC, wufc);
6172 } else {
6173 wr32(IGC_WUC, 0);
6174 wr32(IGC_WUFC, 0);
6175 }
6176
6177 wake = wufc || adapter->en_mng_pt;
6178 if (!wake)
6179 igc_power_down_phy_copper_base(&adapter->hw);
6180 else
6181 igc_power_up_link(adapter);
6182
6183 if (enable_wake)
6184 *enable_wake = wake;
6185
6186 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6187 * would have already happened in close and is redundant.
6188 */
6189 igc_release_hw_control(adapter);
6190
6191 pci_disable_device(pdev);
6192
6193 return 0;
6194}
6195
6196#ifdef CONFIG_PM
6197static int __maybe_unused igc_runtime_suspend(struct device *dev)
6198{
6199 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6200}
6201
6202static void igc_deliver_wake_packet(struct net_device *netdev)
6203{
6204 struct igc_adapter *adapter = netdev_priv(netdev);
6205 struct igc_hw *hw = &adapter->hw;
6206 struct sk_buff *skb;
6207 u32 wupl;
6208
6209 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6210
6211 /* WUPM stores only the first 128 bytes of the wake packet.
6212 * Read the packet only if we have the whole thing.
6213 */
6214 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6215 return;
6216
6217 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6218 if (!skb)
6219 return;
6220
6221 skb_put(skb, wupl);
6222
6223 /* Ensure reads are 32-bit aligned */
6224 wupl = roundup(wupl, 4);
6225
6226 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6227
6228 skb->protocol = eth_type_trans(skb, netdev);
6229 netif_rx(skb);
6230}
6231
6232static int __maybe_unused igc_resume(struct device *dev)
6233{
6234 struct pci_dev *pdev = to_pci_dev(dev);
6235 struct net_device *netdev = pci_get_drvdata(pdev);
6236 struct igc_adapter *adapter = netdev_priv(netdev);
6237 struct igc_hw *hw = &adapter->hw;
6238 u32 err, val;
6239
6240 pci_set_power_state(pdev, PCI_D0);
6241 pci_restore_state(pdev);
6242 pci_save_state(pdev);
6243
6244 if (!pci_device_is_present(pdev))
6245 return -ENODEV;
6246 err = pci_enable_device_mem(pdev);
6247 if (err) {
6248 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6249 return err;
6250 }
6251 pci_set_master(pdev);
6252
6253 pci_enable_wake(pdev, PCI_D3hot, 0);
6254 pci_enable_wake(pdev, PCI_D3cold, 0);
6255
6256 if (igc_init_interrupt_scheme(adapter, true)) {
6257 netdev_err(netdev, "Unable to allocate memory for queues\n");
6258 return -ENOMEM;
6259 }
6260
6261 igc_reset(adapter);
6262
6263 /* let the f/w know that the h/w is now under the control of the
6264 * driver.
6265 */
6266 igc_get_hw_control(adapter);
6267
6268 val = rd32(IGC_WUS);
6269 if (val & WAKE_PKT_WUS)
6270 igc_deliver_wake_packet(netdev);
6271
6272 wr32(IGC_WUS, ~0);
6273
6274 rtnl_lock();
6275 if (!err && netif_running(netdev))
6276 err = __igc_open(netdev, true);
6277
6278 if (!err)
6279 netif_device_attach(netdev);
6280 rtnl_unlock();
6281
6282 return err;
6283}
6284
6285static int __maybe_unused igc_runtime_resume(struct device *dev)
6286{
6287 return igc_resume(dev);
6288}
6289
6290static int __maybe_unused igc_suspend(struct device *dev)
6291{
6292 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6293}
6294
6295static int __maybe_unused igc_runtime_idle(struct device *dev)
6296{
6297 struct net_device *netdev = dev_get_drvdata(dev);
6298 struct igc_adapter *adapter = netdev_priv(netdev);
6299
6300 if (!igc_has_link(adapter))
6301 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6302
6303 return -EBUSY;
6304}
6305#endif /* CONFIG_PM */
6306
6307static void igc_shutdown(struct pci_dev *pdev)
6308{
6309 bool wake;
6310
6311 __igc_shutdown(pdev, &wake, 0);
6312
6313 if (system_state == SYSTEM_POWER_OFF) {
6314 pci_wake_from_d3(pdev, wake);
6315 pci_set_power_state(pdev, PCI_D3hot);
6316 }
6317}
6318
6319/**
6320 * igc_io_error_detected - called when PCI error is detected
6321 * @pdev: Pointer to PCI device
6322 * @state: The current PCI connection state
6323 *
6324 * This function is called after a PCI bus error affecting
6325 * this device has been detected.
6326 **/
6327static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6328 pci_channel_state_t state)
6329{
6330 struct net_device *netdev = pci_get_drvdata(pdev);
6331 struct igc_adapter *adapter = netdev_priv(netdev);
6332
6333 netif_device_detach(netdev);
6334
6335 if (state == pci_channel_io_perm_failure)
6336 return PCI_ERS_RESULT_DISCONNECT;
6337
6338 if (netif_running(netdev))
6339 igc_down(adapter);
6340 pci_disable_device(pdev);
6341
6342 /* Request a slot reset. */
6343 return PCI_ERS_RESULT_NEED_RESET;
6344}
6345
6346/**
6347 * igc_io_slot_reset - called after the PCI bus has been reset.
6348 * @pdev: Pointer to PCI device
6349 *
6350 * Restart the card from scratch, as if from a cold-boot. Implementation
6351 * resembles the first-half of the igc_resume routine.
6352 **/
6353static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6354{
6355 struct net_device *netdev = pci_get_drvdata(pdev);
6356 struct igc_adapter *adapter = netdev_priv(netdev);
6357 struct igc_hw *hw = &adapter->hw;
6358 pci_ers_result_t result;
6359
6360 if (pci_enable_device_mem(pdev)) {
6361 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6362 result = PCI_ERS_RESULT_DISCONNECT;
6363 } else {
6364 pci_set_master(pdev);
6365 pci_restore_state(pdev);
6366 pci_save_state(pdev);
6367
6368 pci_enable_wake(pdev, PCI_D3hot, 0);
6369 pci_enable_wake(pdev, PCI_D3cold, 0);
6370
6371 /* In case of PCI error, adapter loses its HW address
6372 * so we should re-assign it here.
6373 */
6374 hw->hw_addr = adapter->io_addr;
6375
6376 igc_reset(adapter);
6377 wr32(IGC_WUS, ~0);
6378 result = PCI_ERS_RESULT_RECOVERED;
6379 }
6380
6381 return result;
6382}
6383
6384/**
6385 * igc_io_resume - called when traffic can start to flow again.
6386 * @pdev: Pointer to PCI device
6387 *
6388 * This callback is called when the error recovery driver tells us that
6389 * its OK to resume normal operation. Implementation resembles the
6390 * second-half of the igc_resume routine.
6391 */
6392static void igc_io_resume(struct pci_dev *pdev)
6393{
6394 struct net_device *netdev = pci_get_drvdata(pdev);
6395 struct igc_adapter *adapter = netdev_priv(netdev);
6396
6397 rtnl_lock();
6398 if (netif_running(netdev)) {
6399 if (igc_open(netdev)) {
6400 netdev_err(netdev, "igc_open failed after reset\n");
6401 return;
6402 }
6403 }
6404
6405 netif_device_attach(netdev);
6406
6407 /* let the f/w know that the h/w is now under the control of the
6408 * driver.
6409 */
6410 igc_get_hw_control(adapter);
6411 rtnl_unlock();
6412}
6413
6414static const struct pci_error_handlers igc_err_handler = {
6415 .error_detected = igc_io_error_detected,
6416 .slot_reset = igc_io_slot_reset,
6417 .resume = igc_io_resume,
6418};
6419
6420#ifdef CONFIG_PM
6421static const struct dev_pm_ops igc_pm_ops = {
6422 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6423 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6424 igc_runtime_idle)
6425};
6426#endif
6427
6428static struct pci_driver igc_driver = {
6429 .name = igc_driver_name,
6430 .id_table = igc_pci_tbl,
6431 .probe = igc_probe,
6432 .remove = igc_remove,
6433#ifdef CONFIG_PM
6434 .driver.pm = &igc_pm_ops,
6435#endif
6436 .shutdown = igc_shutdown,
6437 .err_handler = &igc_err_handler,
6438};
6439
6440/**
6441 * igc_reinit_queues - return error
6442 * @adapter: pointer to adapter structure
6443 */
6444int igc_reinit_queues(struct igc_adapter *adapter)
6445{
6446 struct net_device *netdev = adapter->netdev;
6447 int err = 0;
6448
6449 if (netif_running(netdev))
6450 igc_close(netdev);
6451
6452 igc_reset_interrupt_capability(adapter);
6453
6454 if (igc_init_interrupt_scheme(adapter, true)) {
6455 netdev_err(netdev, "Unable to allocate memory for queues\n");
6456 return -ENOMEM;
6457 }
6458
6459 if (netif_running(netdev))
6460 err = igc_open(netdev);
6461
6462 return err;
6463}
6464
6465/**
6466 * igc_get_hw_dev - return device
6467 * @hw: pointer to hardware structure
6468 *
6469 * used by hardware layer to print debugging information
6470 */
6471struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6472{
6473 struct igc_adapter *adapter = hw->back;
6474
6475 return adapter->netdev;
6476}
6477
6478static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6479{
6480 struct igc_hw *hw = &ring->q_vector->adapter->hw;
6481 u8 idx = ring->reg_idx;
6482 u32 rxdctl;
6483
6484 rxdctl = rd32(IGC_RXDCTL(idx));
6485 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6486 rxdctl |= IGC_RXDCTL_SWFLUSH;
6487 wr32(IGC_RXDCTL(idx), rxdctl);
6488}
6489
6490void igc_disable_rx_ring(struct igc_ring *ring)
6491{
6492 igc_disable_rx_ring_hw(ring);
6493 igc_clean_rx_ring(ring);
6494}
6495
6496void igc_enable_rx_ring(struct igc_ring *ring)
6497{
6498 struct igc_adapter *adapter = ring->q_vector->adapter;
6499
6500 igc_configure_rx_ring(adapter, ring);
6501
6502 if (ring->xsk_pool)
6503 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6504 else
6505 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6506}
6507
6508static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6509{
6510 struct igc_hw *hw = &ring->q_vector->adapter->hw;
6511 u8 idx = ring->reg_idx;
6512 u32 txdctl;
6513
6514 txdctl = rd32(IGC_TXDCTL(idx));
6515 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6516 txdctl |= IGC_TXDCTL_SWFLUSH;
6517 wr32(IGC_TXDCTL(idx), txdctl);
6518}
6519
6520void igc_disable_tx_ring(struct igc_ring *ring)
6521{
6522 igc_disable_tx_ring_hw(ring);
6523 igc_clean_tx_ring(ring);
6524}
6525
6526void igc_enable_tx_ring(struct igc_ring *ring)
6527{
6528 struct igc_adapter *adapter = ring->q_vector->adapter;
6529
6530 igc_configure_tx_ring(adapter, ring);
6531}
6532
6533/**
6534 * igc_init_module - Driver Registration Routine
6535 *
6536 * igc_init_module is the first routine called when the driver is
6537 * loaded. All it does is register with the PCI subsystem.
6538 */
6539static int __init igc_init_module(void)
6540{
6541 int ret;
6542
6543 pr_info("%s\n", igc_driver_string);
6544 pr_info("%s\n", igc_copyright);
6545
6546 ret = pci_register_driver(&igc_driver);
6547 return ret;
6548}
6549
6550module_init(igc_init_module);
6551
6552/**
6553 * igc_exit_module - Driver Exit Cleanup Routine
6554 *
6555 * igc_exit_module is called just before the driver is removed
6556 * from memory.
6557 */
6558static void __exit igc_exit_module(void)
6559{
6560 pci_unregister_driver(&igc_driver);
6561}
6562
6563module_exit(igc_exit_module);
6564/* igc_main.c */