Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/tcp.h>
8#include <linux/udp.h>
9#include <linux/ip.h>
10#include <linux/pm_runtime.h>
11#include <net/pkt_sched.h>
12#include <linux/bpf_trace.h>
13#include <net/xdp_sock_drv.h>
14#include <linux/pci.h>
15#include <linux/mdio.h>
16
17#include <net/ipv6.h>
18
19#include "igc.h"
20#include "igc_hw.h"
21#include "igc_tsn.h"
22#include "igc_xdp.h"
23
24#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28#define IGC_XDP_PASS 0
29#define IGC_XDP_CONSUMED BIT(0)
30#define IGC_XDP_TX BIT(1)
31#define IGC_XDP_REDIRECT BIT(2)
32
33static int debug = -1;
34
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37module_param(debug, int, 0);
38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40char igc_driver_name[] = "igc";
41static const char igc_driver_string[] = DRV_SUMMARY;
42static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47};
48
49static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68};
69
70MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77};
78
79void igc_reset(struct igc_adapter *adapter)
80{
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126}
127
128/**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
132static void igc_power_up_link(struct igc_adapter *adapter)
133{
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139}
140
141/**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
149static void igc_release_hw_control(struct igc_adapter *adapter)
150{
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161}
162
163/**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
171static void igc_get_hw_control(struct igc_adapter *adapter)
172{
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180}
181
182static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183{
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188}
189
190/**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
194static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195{
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267}
268
269/**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
275void igc_free_tx_resources(struct igc_ring *tx_ring)
276{
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290}
291
292/**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
298static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299{
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304}
305
306/**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
310static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311{
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317}
318
319static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320{
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329}
330
331/**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
335static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336{
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344}
345
346/**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
352int igc_setup_tx_resources(struct igc_ring *tx_ring)
353{
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382}
383
384/**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
390static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391{
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406}
407
408static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409{
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441}
442
443static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444{
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456}
457
458/**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
462static void igc_clean_rx_ring(struct igc_ring *ring)
463{
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474}
475
476/**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
480static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481{
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487}
488
489/**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
495void igc_free_rx_resources(struct igc_ring *rx_ring)
496{
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512}
513
514/**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
520static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521{
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526}
527
528/**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
534int igc_setup_rx_resources(struct igc_ring *rx_ring)
535{
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581}
582
583/**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
590static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591{
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606}
607
608static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610{
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616}
617
618/**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
625static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627{
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702}
703
704/**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
710static void igc_configure_rx(struct igc_adapter *adapter)
711{
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719}
720
721/**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
728static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730{
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758}
759
760/**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
766static void igc_configure_tx(struct igc_adapter *adapter)
767{
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772}
773
774/**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
778static void igc_setup_mrqc(struct igc_adapter *adapter)
779{
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829}
830
831/**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
835static void igc_setup_rctl(struct igc_adapter *adapter)
836{
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876}
877
878/**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
882static void igc_setup_tctl(struct igc_adapter *adapter)
883{
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900}
901
902/**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
912static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915{
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943}
944
945/**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
950static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951{
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962}
963
964/* Set default MAC address for the PF in the first RAR entry */
965static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966{
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973}
974
975/**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
982static int igc_set_mac(struct net_device *netdev, void *p)
983{
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998}
999
1000/**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
1009static int igc_write_mc_addr_list(struct net_device *netdev)
1010{
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036}
1037
1038static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040{
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082}
1083
1084static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087{
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1100 buffer->skb = skb;
1101 buffer->protocol = 0;
1102 buffer->bytecount = skb->len;
1103 buffer->gso_segs = 1;
1104 buffer->time_stamp = jiffies;
1105 dma_unmap_len_set(buffer, len, skb->len);
1106 dma_unmap_addr_set(buffer, dma, dma);
1107
1108 return 0;
1109}
1110
1111static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 struct sk_buff *skb,
1113 struct igc_tx_buffer *first)
1114{
1115 union igc_adv_tx_desc *desc;
1116 u32 cmd_type, olinfo_status;
1117 int err;
1118
1119 if (!igc_desc_unused(ring))
1120 return -EBUSY;
1121
1122 err = igc_init_empty_frame(ring, first, skb);
1123 if (err)
1124 return err;
1125
1126 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 first->bytecount;
1129 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130
1131 desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135
1136 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137
1138 first->next_to_watch = desc;
1139
1140 ring->next_to_use++;
1141 if (ring->next_to_use == ring->count)
1142 ring->next_to_use = 0;
1143
1144 return 0;
1145}
1146
1147#define IGC_EMPTY_FRAME_SIZE 60
1148
1149static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 __le32 launch_time, bool first_flag,
1151 u32 vlan_macip_lens, u32 type_tucmd,
1152 u32 mss_l4len_idx)
1153{
1154 struct igc_adv_tx_context_desc *context_desc;
1155 u16 i = tx_ring->next_to_use;
1156
1157 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158
1159 i++;
1160 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161
1162 /* set bits to identify this as an advanced context descriptor */
1163 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164
1165 /* For i225, context index must be unique per ring. */
1166 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 mss_l4len_idx |= tx_ring->reg_idx << 4;
1168
1169 if (first_flag)
1170 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171
1172 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1173 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1174 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1175 context_desc->launch_time = launch_time;
1176}
1177
1178static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 __le32 launch_time, bool first_flag)
1180{
1181 struct sk_buff *skb = first->skb;
1182 u32 vlan_macip_lens = 0;
1183 u32 type_tucmd = 0;
1184
1185 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186csum_failed:
1187 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 !tx_ring->launchtime_enable)
1189 return;
1190 goto no_csum;
1191 }
1192
1193 switch (skb->csum_offset) {
1194 case offsetof(struct tcphdr, check):
1195 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 fallthrough;
1197 case offsetof(struct udphdr, check):
1198 break;
1199 case offsetof(struct sctphdr, checksum):
1200 /* validate that this is actually an SCTP request */
1201 if (skb_csum_is_sctp(skb)) {
1202 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 break;
1204 }
1205 fallthrough;
1206 default:
1207 skb_checksum_help(skb);
1208 goto csum_failed;
1209 }
1210
1211 /* update TX checksum flag */
1212 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 skb_network_offset(skb);
1215no_csum:
1216 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218
1219 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 vlan_macip_lens, type_tucmd, 0);
1221}
1222
1223static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224{
1225 struct net_device *netdev = tx_ring->netdev;
1226
1227 netif_stop_subqueue(netdev, tx_ring->queue_index);
1228
1229 /* memory barriier comment */
1230 smp_mb();
1231
1232 /* We need to check again in a case another CPU has just
1233 * made room available.
1234 */
1235 if (igc_desc_unused(tx_ring) < size)
1236 return -EBUSY;
1237
1238 /* A reprieve! */
1239 netif_wake_subqueue(netdev, tx_ring->queue_index);
1240
1241 u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 tx_ring->tx_stats.restart_queue2++;
1243 u64_stats_update_end(&tx_ring->tx_syncp2);
1244
1245 return 0;
1246}
1247
1248static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249{
1250 if (igc_desc_unused(tx_ring) >= size)
1251 return 0;
1252 return __igc_maybe_stop_tx(tx_ring, size);
1253}
1254
1255#define IGC_SET_FLAG(_input, _flag, _result) \
1256 (((_flag) <= (_result)) ? \
1257 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1258 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259
1260static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261{
1262 /* set type for advanced descriptor with frame checksum insertion */
1263 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 IGC_ADVTXD_DCMD_DEXT |
1265 IGC_ADVTXD_DCMD_IFCS;
1266
1267 /* set HW vlan bit if vlan is present */
1268 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 IGC_ADVTXD_DCMD_VLE);
1270
1271 /* set segmentation bits for TSO */
1272 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 (IGC_ADVTXD_DCMD_TSE));
1274
1275 /* set timestamp bit if present, will select the register set
1276 * based on the _TSTAMP(_X) bit.
1277 */
1278 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1279 (IGC_ADVTXD_MAC_TSTAMP));
1280
1281 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1282 (IGC_ADVTXD_TSTAMP_REG_1));
1283
1284 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1285 (IGC_ADVTXD_TSTAMP_REG_2));
1286
1287 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1288 (IGC_ADVTXD_TSTAMP_REG_3));
1289
1290 /* insert frame checksum */
1291 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1292
1293 return cmd_type;
1294}
1295
1296static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1297 union igc_adv_tx_desc *tx_desc,
1298 u32 tx_flags, unsigned int paylen)
1299{
1300 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1301
1302 /* insert L4 checksum */
1303 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1304 (IGC_TXD_POPTS_TXSM << 8));
1305
1306 /* insert IPv4 checksum */
1307 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1308 (IGC_TXD_POPTS_IXSM << 8));
1309
1310 /* Use the second timer (free running, in general) for the timestamp */
1311 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1312 IGC_TXD_PTP2_TIMER_1);
1313
1314 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1315}
1316
1317static int igc_tx_map(struct igc_ring *tx_ring,
1318 struct igc_tx_buffer *first,
1319 const u8 hdr_len)
1320{
1321 struct sk_buff *skb = first->skb;
1322 struct igc_tx_buffer *tx_buffer;
1323 union igc_adv_tx_desc *tx_desc;
1324 u32 tx_flags = first->tx_flags;
1325 skb_frag_t *frag;
1326 u16 i = tx_ring->next_to_use;
1327 unsigned int data_len, size;
1328 dma_addr_t dma;
1329 u32 cmd_type;
1330
1331 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1332 tx_desc = IGC_TX_DESC(tx_ring, i);
1333
1334 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1335
1336 size = skb_headlen(skb);
1337 data_len = skb->data_len;
1338
1339 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1340
1341 tx_buffer = first;
1342
1343 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1344 if (dma_mapping_error(tx_ring->dev, dma))
1345 goto dma_error;
1346
1347 /* record length, and DMA address */
1348 dma_unmap_len_set(tx_buffer, len, size);
1349 dma_unmap_addr_set(tx_buffer, dma, dma);
1350
1351 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1352
1353 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1354 tx_desc->read.cmd_type_len =
1355 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1356
1357 i++;
1358 tx_desc++;
1359 if (i == tx_ring->count) {
1360 tx_desc = IGC_TX_DESC(tx_ring, 0);
1361 i = 0;
1362 }
1363 tx_desc->read.olinfo_status = 0;
1364
1365 dma += IGC_MAX_DATA_PER_TXD;
1366 size -= IGC_MAX_DATA_PER_TXD;
1367
1368 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1369 }
1370
1371 if (likely(!data_len))
1372 break;
1373
1374 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1375
1376 i++;
1377 tx_desc++;
1378 if (i == tx_ring->count) {
1379 tx_desc = IGC_TX_DESC(tx_ring, 0);
1380 i = 0;
1381 }
1382 tx_desc->read.olinfo_status = 0;
1383
1384 size = skb_frag_size(frag);
1385 data_len -= size;
1386
1387 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1388 size, DMA_TO_DEVICE);
1389
1390 tx_buffer = &tx_ring->tx_buffer_info[i];
1391 }
1392
1393 /* write last descriptor with RS and EOP bits */
1394 cmd_type |= size | IGC_TXD_DCMD;
1395 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1396
1397 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1398
1399 /* set the timestamp */
1400 first->time_stamp = jiffies;
1401
1402 skb_tx_timestamp(skb);
1403
1404 /* Force memory writes to complete before letting h/w know there
1405 * are new descriptors to fetch. (Only applicable for weak-ordered
1406 * memory model archs, such as IA-64).
1407 *
1408 * We also need this memory barrier to make certain all of the
1409 * status bits have been updated before next_to_watch is written.
1410 */
1411 wmb();
1412
1413 /* set next_to_watch value indicating a packet is present */
1414 first->next_to_watch = tx_desc;
1415
1416 i++;
1417 if (i == tx_ring->count)
1418 i = 0;
1419
1420 tx_ring->next_to_use = i;
1421
1422 /* Make sure there is space in the ring for the next send. */
1423 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1424
1425 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1426 writel(i, tx_ring->tail);
1427 }
1428
1429 return 0;
1430dma_error:
1431 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1432 tx_buffer = &tx_ring->tx_buffer_info[i];
1433
1434 /* clear dma mappings for failed tx_buffer_info map */
1435 while (tx_buffer != first) {
1436 if (dma_unmap_len(tx_buffer, len))
1437 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1438
1439 if (i-- == 0)
1440 i += tx_ring->count;
1441 tx_buffer = &tx_ring->tx_buffer_info[i];
1442 }
1443
1444 if (dma_unmap_len(tx_buffer, len))
1445 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1446
1447 dev_kfree_skb_any(tx_buffer->skb);
1448 tx_buffer->skb = NULL;
1449
1450 tx_ring->next_to_use = i;
1451
1452 return -1;
1453}
1454
1455static int igc_tso(struct igc_ring *tx_ring,
1456 struct igc_tx_buffer *first,
1457 __le32 launch_time, bool first_flag,
1458 u8 *hdr_len)
1459{
1460 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1461 struct sk_buff *skb = first->skb;
1462 union {
1463 struct iphdr *v4;
1464 struct ipv6hdr *v6;
1465 unsigned char *hdr;
1466 } ip;
1467 union {
1468 struct tcphdr *tcp;
1469 struct udphdr *udp;
1470 unsigned char *hdr;
1471 } l4;
1472 u32 paylen, l4_offset;
1473 int err;
1474
1475 if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 return 0;
1477
1478 if (!skb_is_gso(skb))
1479 return 0;
1480
1481 err = skb_cow_head(skb, 0);
1482 if (err < 0)
1483 return err;
1484
1485 ip.hdr = skb_network_header(skb);
1486 l4.hdr = skb_checksum_start(skb);
1487
1488 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1489 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1490
1491 /* initialize outer IP header fields */
1492 if (ip.v4->version == 4) {
1493 unsigned char *csum_start = skb_checksum_start(skb);
1494 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1495
1496 /* IP header will have to cancel out any data that
1497 * is not a part of the outer IP header
1498 */
1499 ip.v4->check = csum_fold(csum_partial(trans_start,
1500 csum_start - trans_start,
1501 0));
1502 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1503
1504 ip.v4->tot_len = 0;
1505 first->tx_flags |= IGC_TX_FLAGS_TSO |
1506 IGC_TX_FLAGS_CSUM |
1507 IGC_TX_FLAGS_IPV4;
1508 } else {
1509 ip.v6->payload_len = 0;
1510 first->tx_flags |= IGC_TX_FLAGS_TSO |
1511 IGC_TX_FLAGS_CSUM;
1512 }
1513
1514 /* determine offset of inner transport header */
1515 l4_offset = l4.hdr - skb->data;
1516
1517 /* remove payload length from inner checksum */
1518 paylen = skb->len - l4_offset;
1519 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1520 /* compute length of segmentation header */
1521 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1522 csum_replace_by_diff(&l4.tcp->check,
1523 (__force __wsum)htonl(paylen));
1524 } else {
1525 /* compute length of segmentation header */
1526 *hdr_len = sizeof(*l4.udp) + l4_offset;
1527 csum_replace_by_diff(&l4.udp->check,
1528 (__force __wsum)htonl(paylen));
1529 }
1530
1531 /* update gso size and bytecount with header size */
1532 first->gso_segs = skb_shinfo(skb)->gso_segs;
1533 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1534
1535 /* MSS L4LEN IDX */
1536 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1537 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1538
1539 /* VLAN MACLEN IPLEN */
1540 vlan_macip_lens = l4.hdr - ip.hdr;
1541 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1542 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1543
1544 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1545 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1546
1547 return 1;
1548}
1549
1550static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1551{
1552 int i;
1553
1554 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1555 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1556
1557 if (tstamp->skb)
1558 continue;
1559
1560 tstamp->skb = skb_get(skb);
1561 tstamp->start = jiffies;
1562 *flags = tstamp->flags;
1563
1564 return true;
1565 }
1566
1567 return false;
1568}
1569
1570static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1571 struct igc_ring *tx_ring)
1572{
1573 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1574 bool first_flag = false, insert_empty = false;
1575 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1576 __be16 protocol = vlan_get_protocol(skb);
1577 struct igc_tx_buffer *first;
1578 __le32 launch_time = 0;
1579 u32 tx_flags = 0;
1580 unsigned short f;
1581 ktime_t txtime;
1582 u8 hdr_len = 0;
1583 int tso = 0;
1584
1585 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1586 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1587 * + 2 desc gap to keep tail from touching head,
1588 * + 1 desc for context descriptor,
1589 * otherwise try next time
1590 */
1591 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1592 count += TXD_USE_COUNT(skb_frag_size(
1593 &skb_shinfo(skb)->frags[f]));
1594
1595 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1596 /* this is a hard error */
1597 return NETDEV_TX_BUSY;
1598 }
1599
1600 if (!tx_ring->launchtime_enable)
1601 goto done;
1602
1603 txtime = skb->tstamp;
1604 skb->tstamp = ktime_set(0, 0);
1605 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1606
1607 if (insert_empty) {
1608 struct igc_tx_buffer *empty_info;
1609 struct sk_buff *empty;
1610 void *data;
1611
1612 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1613 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1614 if (!empty)
1615 goto done;
1616
1617 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1618 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1619
1620 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1621
1622 if (igc_init_tx_empty_descriptor(tx_ring,
1623 empty,
1624 empty_info) < 0)
1625 dev_kfree_skb_any(empty);
1626 }
1627
1628done:
1629 /* record the location of the first descriptor for this packet */
1630 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1631 first->type = IGC_TX_BUFFER_TYPE_SKB;
1632 first->skb = skb;
1633 first->bytecount = skb->len;
1634 first->gso_segs = 1;
1635
1636 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1637 goto out_drop;
1638
1639 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1640 adapter->stats.txdrop++;
1641 goto out_drop;
1642 }
1643
1644 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1645 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1646 unsigned long flags;
1647 u32 tstamp_flags;
1648
1649 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1650 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1651 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1652 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1653 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1654 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1655 } else {
1656 adapter->tx_hwtstamp_skipped++;
1657 }
1658
1659 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1660 }
1661
1662 if (skb_vlan_tag_present(skb)) {
1663 tx_flags |= IGC_TX_FLAGS_VLAN;
1664 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1665 }
1666
1667 /* record initial flags and protocol */
1668 first->tx_flags = tx_flags;
1669 first->protocol = protocol;
1670
1671 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1672 if (tso < 0)
1673 goto out_drop;
1674 else if (!tso)
1675 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1676
1677 igc_tx_map(tx_ring, first, hdr_len);
1678
1679 return NETDEV_TX_OK;
1680
1681out_drop:
1682 dev_kfree_skb_any(first->skb);
1683 first->skb = NULL;
1684
1685 return NETDEV_TX_OK;
1686}
1687
1688static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1689 struct sk_buff *skb)
1690{
1691 unsigned int r_idx = skb->queue_mapping;
1692
1693 if (r_idx >= adapter->num_tx_queues)
1694 r_idx = r_idx % adapter->num_tx_queues;
1695
1696 return adapter->tx_ring[r_idx];
1697}
1698
1699static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1700 struct net_device *netdev)
1701{
1702 struct igc_adapter *adapter = netdev_priv(netdev);
1703
1704 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1705 * in order to meet this minimum size requirement.
1706 */
1707 if (skb->len < 17) {
1708 if (skb_padto(skb, 17))
1709 return NETDEV_TX_OK;
1710 skb->len = 17;
1711 }
1712
1713 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1714}
1715
1716static void igc_rx_checksum(struct igc_ring *ring,
1717 union igc_adv_rx_desc *rx_desc,
1718 struct sk_buff *skb)
1719{
1720 skb_checksum_none_assert(skb);
1721
1722 /* Ignore Checksum bit is set */
1723 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1724 return;
1725
1726 /* Rx checksum disabled via ethtool */
1727 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1728 return;
1729
1730 /* TCP/UDP checksum error bit is set */
1731 if (igc_test_staterr(rx_desc,
1732 IGC_RXDEXT_STATERR_L4E |
1733 IGC_RXDEXT_STATERR_IPE)) {
1734 /* work around errata with sctp packets where the TCPE aka
1735 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1736 * packets (aka let the stack check the crc32c)
1737 */
1738 if (!(skb->len == 60 &&
1739 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1740 u64_stats_update_begin(&ring->rx_syncp);
1741 ring->rx_stats.csum_err++;
1742 u64_stats_update_end(&ring->rx_syncp);
1743 }
1744 /* let the stack verify checksum errors */
1745 return;
1746 }
1747 /* It must be a TCP or UDP packet with a valid checksum */
1748 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1749 IGC_RXD_STAT_UDPCS))
1750 skb->ip_summed = CHECKSUM_UNNECESSARY;
1751
1752 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1753 le32_to_cpu(rx_desc->wb.upper.status_error));
1754}
1755
1756/* Mapping HW RSS Type to enum pkt_hash_types */
1757static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1758 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1759 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1760 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1761 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1762 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1763 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1764 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1765 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1766 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1767 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1769 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1770 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1771 [13] = PKT_HASH_TYPE_NONE,
1772 [14] = PKT_HASH_TYPE_NONE,
1773 [15] = PKT_HASH_TYPE_NONE,
1774};
1775
1776static inline void igc_rx_hash(struct igc_ring *ring,
1777 union igc_adv_rx_desc *rx_desc,
1778 struct sk_buff *skb)
1779{
1780 if (ring->netdev->features & NETIF_F_RXHASH) {
1781 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1782 u32 rss_type = igc_rss_type(rx_desc);
1783
1784 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1785 }
1786}
1787
1788static void igc_rx_vlan(struct igc_ring *rx_ring,
1789 union igc_adv_rx_desc *rx_desc,
1790 struct sk_buff *skb)
1791{
1792 struct net_device *dev = rx_ring->netdev;
1793 u16 vid;
1794
1795 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1796 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1797 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1798 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1799 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1800 else
1801 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1802
1803 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1804 }
1805}
1806
1807/**
1808 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1809 * @rx_ring: rx descriptor ring packet is being transacted on
1810 * @rx_desc: pointer to the EOP Rx descriptor
1811 * @skb: pointer to current skb being populated
1812 *
1813 * This function checks the ring, descriptor, and packet information in order
1814 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1815 * skb.
1816 */
1817static void igc_process_skb_fields(struct igc_ring *rx_ring,
1818 union igc_adv_rx_desc *rx_desc,
1819 struct sk_buff *skb)
1820{
1821 igc_rx_hash(rx_ring, rx_desc, skb);
1822
1823 igc_rx_checksum(rx_ring, rx_desc, skb);
1824
1825 igc_rx_vlan(rx_ring, rx_desc, skb);
1826
1827 skb_record_rx_queue(skb, rx_ring->queue_index);
1828
1829 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830}
1831
1832static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1833{
1834 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1835 struct igc_adapter *adapter = netdev_priv(netdev);
1836 struct igc_hw *hw = &adapter->hw;
1837 u32 ctrl;
1838
1839 ctrl = rd32(IGC_CTRL);
1840
1841 if (enable) {
1842 /* enable VLAN tag insert/strip */
1843 ctrl |= IGC_CTRL_VME;
1844 } else {
1845 /* disable VLAN tag insert/strip */
1846 ctrl &= ~IGC_CTRL_VME;
1847 }
1848 wr32(IGC_CTRL, ctrl);
1849}
1850
1851static void igc_restore_vlan(struct igc_adapter *adapter)
1852{
1853 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1854}
1855
1856static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1857 const unsigned int size,
1858 int *rx_buffer_pgcnt)
1859{
1860 struct igc_rx_buffer *rx_buffer;
1861
1862 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1863 *rx_buffer_pgcnt =
1864#if (PAGE_SIZE < 8192)
1865 page_count(rx_buffer->page);
1866#else
1867 0;
1868#endif
1869 prefetchw(rx_buffer->page);
1870
1871 /* we are reusing so sync this buffer for CPU use */
1872 dma_sync_single_range_for_cpu(rx_ring->dev,
1873 rx_buffer->dma,
1874 rx_buffer->page_offset,
1875 size,
1876 DMA_FROM_DEVICE);
1877
1878 rx_buffer->pagecnt_bias--;
1879
1880 return rx_buffer;
1881}
1882
1883static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1884 unsigned int truesize)
1885{
1886#if (PAGE_SIZE < 8192)
1887 buffer->page_offset ^= truesize;
1888#else
1889 buffer->page_offset += truesize;
1890#endif
1891}
1892
1893static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1894 unsigned int size)
1895{
1896 unsigned int truesize;
1897
1898#if (PAGE_SIZE < 8192)
1899 truesize = igc_rx_pg_size(ring) / 2;
1900#else
1901 truesize = ring_uses_build_skb(ring) ?
1902 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1903 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1904 SKB_DATA_ALIGN(size);
1905#endif
1906 return truesize;
1907}
1908
1909/**
1910 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1911 * @rx_ring: rx descriptor ring to transact packets on
1912 * @rx_buffer: buffer containing page to add
1913 * @skb: sk_buff to place the data into
1914 * @size: size of buffer to be added
1915 *
1916 * This function will add the data contained in rx_buffer->page to the skb.
1917 */
1918static void igc_add_rx_frag(struct igc_ring *rx_ring,
1919 struct igc_rx_buffer *rx_buffer,
1920 struct sk_buff *skb,
1921 unsigned int size)
1922{
1923 unsigned int truesize;
1924
1925#if (PAGE_SIZE < 8192)
1926 truesize = igc_rx_pg_size(rx_ring) / 2;
1927#else
1928 truesize = ring_uses_build_skb(rx_ring) ?
1929 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 SKB_DATA_ALIGN(size);
1931#endif
1932 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 rx_buffer->page_offset, size, truesize);
1934
1935 igc_rx_buffer_flip(rx_buffer, truesize);
1936}
1937
1938static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1939 struct igc_rx_buffer *rx_buffer,
1940 struct xdp_buff *xdp)
1941{
1942 unsigned int size = xdp->data_end - xdp->data;
1943 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1944 unsigned int metasize = xdp->data - xdp->data_meta;
1945 struct sk_buff *skb;
1946
1947 /* prefetch first cache line of first page */
1948 net_prefetch(xdp->data_meta);
1949
1950 /* build an skb around the page buffer */
1951 skb = napi_build_skb(xdp->data_hard_start, truesize);
1952 if (unlikely(!skb))
1953 return NULL;
1954
1955 /* update pointers within the skb to store the data */
1956 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1957 __skb_put(skb, size);
1958 if (metasize)
1959 skb_metadata_set(skb, metasize);
1960
1961 igc_rx_buffer_flip(rx_buffer, truesize);
1962 return skb;
1963}
1964
1965static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1966 struct igc_rx_buffer *rx_buffer,
1967 struct igc_xdp_buff *ctx)
1968{
1969 struct xdp_buff *xdp = &ctx->xdp;
1970 unsigned int metasize = xdp->data - xdp->data_meta;
1971 unsigned int size = xdp->data_end - xdp->data;
1972 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1973 void *va = xdp->data;
1974 unsigned int headlen;
1975 struct sk_buff *skb;
1976
1977 /* prefetch first cache line of first page */
1978 net_prefetch(xdp->data_meta);
1979
1980 /* allocate a skb to store the frags */
1981 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1982 IGC_RX_HDR_LEN + metasize);
1983 if (unlikely(!skb))
1984 return NULL;
1985
1986 if (ctx->rx_ts) {
1987 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1988 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1989 }
1990
1991 /* Determine available headroom for copy */
1992 headlen = size;
1993 if (headlen > IGC_RX_HDR_LEN)
1994 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1995
1996 /* align pull length to size of long to optimize memcpy performance */
1997 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1998 ALIGN(headlen + metasize, sizeof(long)));
1999
2000 if (metasize) {
2001 skb_metadata_set(skb, metasize);
2002 __skb_pull(skb, metasize);
2003 }
2004
2005 /* update all of the pointers */
2006 size -= headlen;
2007 if (size) {
2008 skb_add_rx_frag(skb, 0, rx_buffer->page,
2009 (va + headlen) - page_address(rx_buffer->page),
2010 size, truesize);
2011 igc_rx_buffer_flip(rx_buffer, truesize);
2012 } else {
2013 rx_buffer->pagecnt_bias++;
2014 }
2015
2016 return skb;
2017}
2018
2019/**
2020 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2021 * @rx_ring: rx descriptor ring to store buffers on
2022 * @old_buff: donor buffer to have page reused
2023 *
2024 * Synchronizes page for reuse by the adapter
2025 */
2026static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2027 struct igc_rx_buffer *old_buff)
2028{
2029 u16 nta = rx_ring->next_to_alloc;
2030 struct igc_rx_buffer *new_buff;
2031
2032 new_buff = &rx_ring->rx_buffer_info[nta];
2033
2034 /* update, and store next to alloc */
2035 nta++;
2036 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2037
2038 /* Transfer page from old buffer to new buffer.
2039 * Move each member individually to avoid possible store
2040 * forwarding stalls.
2041 */
2042 new_buff->dma = old_buff->dma;
2043 new_buff->page = old_buff->page;
2044 new_buff->page_offset = old_buff->page_offset;
2045 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2046}
2047
2048static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2049 int rx_buffer_pgcnt)
2050{
2051 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2052 struct page *page = rx_buffer->page;
2053
2054 /* avoid re-using remote and pfmemalloc pages */
2055 if (!dev_page_is_reusable(page))
2056 return false;
2057
2058#if (PAGE_SIZE < 8192)
2059 /* if we are only owner of page we can reuse it */
2060 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2061 return false;
2062#else
2063#define IGC_LAST_OFFSET \
2064 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2065
2066 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2067 return false;
2068#endif
2069
2070 /* If we have drained the page fragment pool we need to update
2071 * the pagecnt_bias and page count so that we fully restock the
2072 * number of references the driver holds.
2073 */
2074 if (unlikely(pagecnt_bias == 1)) {
2075 page_ref_add(page, USHRT_MAX - 1);
2076 rx_buffer->pagecnt_bias = USHRT_MAX;
2077 }
2078
2079 return true;
2080}
2081
2082/**
2083 * igc_is_non_eop - process handling of non-EOP buffers
2084 * @rx_ring: Rx ring being processed
2085 * @rx_desc: Rx descriptor for current buffer
2086 *
2087 * This function updates next to clean. If the buffer is an EOP buffer
2088 * this function exits returning false, otherwise it will place the
2089 * sk_buff in the next buffer to be chained and return true indicating
2090 * that this is in fact a non-EOP buffer.
2091 */
2092static bool igc_is_non_eop(struct igc_ring *rx_ring,
2093 union igc_adv_rx_desc *rx_desc)
2094{
2095 u32 ntc = rx_ring->next_to_clean + 1;
2096
2097 /* fetch, update, and store next to clean */
2098 ntc = (ntc < rx_ring->count) ? ntc : 0;
2099 rx_ring->next_to_clean = ntc;
2100
2101 prefetch(IGC_RX_DESC(rx_ring, ntc));
2102
2103 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2104 return false;
2105
2106 return true;
2107}
2108
2109/**
2110 * igc_cleanup_headers - Correct corrupted or empty headers
2111 * @rx_ring: rx descriptor ring packet is being transacted on
2112 * @rx_desc: pointer to the EOP Rx descriptor
2113 * @skb: pointer to current skb being fixed
2114 *
2115 * Address the case where we are pulling data in on pages only
2116 * and as such no data is present in the skb header.
2117 *
2118 * In addition if skb is not at least 60 bytes we need to pad it so that
2119 * it is large enough to qualify as a valid Ethernet frame.
2120 *
2121 * Returns true if an error was encountered and skb was freed.
2122 */
2123static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2124 union igc_adv_rx_desc *rx_desc,
2125 struct sk_buff *skb)
2126{
2127 /* XDP packets use error pointer so abort at this point */
2128 if (IS_ERR(skb))
2129 return true;
2130
2131 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2132 struct net_device *netdev = rx_ring->netdev;
2133
2134 if (!(netdev->features & NETIF_F_RXALL)) {
2135 dev_kfree_skb_any(skb);
2136 return true;
2137 }
2138 }
2139
2140 /* if eth_skb_pad returns an error the skb was freed */
2141 if (eth_skb_pad(skb))
2142 return true;
2143
2144 return false;
2145}
2146
2147static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2148 struct igc_rx_buffer *rx_buffer,
2149 int rx_buffer_pgcnt)
2150{
2151 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2152 /* hand second half of page back to the ring */
2153 igc_reuse_rx_page(rx_ring, rx_buffer);
2154 } else {
2155 /* We are not reusing the buffer so unmap it and free
2156 * any references we are holding to it
2157 */
2158 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2160 IGC_RX_DMA_ATTR);
2161 __page_frag_cache_drain(rx_buffer->page,
2162 rx_buffer->pagecnt_bias);
2163 }
2164
2165 /* clear contents of rx_buffer */
2166 rx_buffer->page = NULL;
2167}
2168
2169static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2170{
2171 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2172
2173 if (ring_uses_build_skb(rx_ring))
2174 return IGC_SKB_PAD;
2175 if (igc_xdp_is_enabled(adapter))
2176 return XDP_PACKET_HEADROOM;
2177
2178 return 0;
2179}
2180
2181static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2182 struct igc_rx_buffer *bi)
2183{
2184 struct page *page = bi->page;
2185 dma_addr_t dma;
2186
2187 /* since we are recycling buffers we should seldom need to alloc */
2188 if (likely(page))
2189 return true;
2190
2191 /* alloc new page for storage */
2192 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2193 if (unlikely(!page)) {
2194 rx_ring->rx_stats.alloc_failed++;
2195 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2196 return false;
2197 }
2198
2199 /* map page for use */
2200 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2201 igc_rx_pg_size(rx_ring),
2202 DMA_FROM_DEVICE,
2203 IGC_RX_DMA_ATTR);
2204
2205 /* if mapping failed free memory back to system since
2206 * there isn't much point in holding memory we can't use
2207 */
2208 if (dma_mapping_error(rx_ring->dev, dma)) {
2209 __free_page(page);
2210
2211 rx_ring->rx_stats.alloc_failed++;
2212 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2213 return false;
2214 }
2215
2216 bi->dma = dma;
2217 bi->page = page;
2218 bi->page_offset = igc_rx_offset(rx_ring);
2219 page_ref_add(page, USHRT_MAX - 1);
2220 bi->pagecnt_bias = USHRT_MAX;
2221
2222 return true;
2223}
2224
2225/**
2226 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2227 * @rx_ring: rx descriptor ring
2228 * @cleaned_count: number of buffers to clean
2229 */
2230static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2231{
2232 union igc_adv_rx_desc *rx_desc;
2233 u16 i = rx_ring->next_to_use;
2234 struct igc_rx_buffer *bi;
2235 u16 bufsz;
2236
2237 /* nothing to do */
2238 if (!cleaned_count)
2239 return;
2240
2241 rx_desc = IGC_RX_DESC(rx_ring, i);
2242 bi = &rx_ring->rx_buffer_info[i];
2243 i -= rx_ring->count;
2244
2245 bufsz = igc_rx_bufsz(rx_ring);
2246
2247 do {
2248 if (!igc_alloc_mapped_page(rx_ring, bi))
2249 break;
2250
2251 /* sync the buffer for use by the device */
2252 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2253 bi->page_offset, bufsz,
2254 DMA_FROM_DEVICE);
2255
2256 /* Refresh the desc even if buffer_addrs didn't change
2257 * because each write-back erases this info.
2258 */
2259 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2260
2261 rx_desc++;
2262 bi++;
2263 i++;
2264 if (unlikely(!i)) {
2265 rx_desc = IGC_RX_DESC(rx_ring, 0);
2266 bi = rx_ring->rx_buffer_info;
2267 i -= rx_ring->count;
2268 }
2269
2270 /* clear the length for the next_to_use descriptor */
2271 rx_desc->wb.upper.length = 0;
2272
2273 cleaned_count--;
2274 } while (cleaned_count);
2275
2276 i += rx_ring->count;
2277
2278 if (rx_ring->next_to_use != i) {
2279 /* record the next descriptor to use */
2280 rx_ring->next_to_use = i;
2281
2282 /* update next to alloc since we have filled the ring */
2283 rx_ring->next_to_alloc = i;
2284
2285 /* Force memory writes to complete before letting h/w
2286 * know there are new descriptors to fetch. (Only
2287 * applicable for weak-ordered memory model archs,
2288 * such as IA-64).
2289 */
2290 wmb();
2291 writel(i, rx_ring->tail);
2292 }
2293}
2294
2295static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2296{
2297 union igc_adv_rx_desc *desc;
2298 u16 i = ring->next_to_use;
2299 struct igc_rx_buffer *bi;
2300 dma_addr_t dma;
2301 bool ok = true;
2302
2303 if (!count)
2304 return ok;
2305
2306 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2307
2308 desc = IGC_RX_DESC(ring, i);
2309 bi = &ring->rx_buffer_info[i];
2310 i -= ring->count;
2311
2312 do {
2313 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2314 if (!bi->xdp) {
2315 ok = false;
2316 break;
2317 }
2318
2319 dma = xsk_buff_xdp_get_dma(bi->xdp);
2320 desc->read.pkt_addr = cpu_to_le64(dma);
2321
2322 desc++;
2323 bi++;
2324 i++;
2325 if (unlikely(!i)) {
2326 desc = IGC_RX_DESC(ring, 0);
2327 bi = ring->rx_buffer_info;
2328 i -= ring->count;
2329 }
2330
2331 /* Clear the length for the next_to_use descriptor. */
2332 desc->wb.upper.length = 0;
2333
2334 count--;
2335 } while (count);
2336
2337 i += ring->count;
2338
2339 if (ring->next_to_use != i) {
2340 ring->next_to_use = i;
2341
2342 /* Force memory writes to complete before letting h/w
2343 * know there are new descriptors to fetch. (Only
2344 * applicable for weak-ordered memory model archs,
2345 * such as IA-64).
2346 */
2347 wmb();
2348 writel(i, ring->tail);
2349 }
2350
2351 return ok;
2352}
2353
2354/* This function requires __netif_tx_lock is held by the caller. */
2355static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2356 struct xdp_frame *xdpf)
2357{
2358 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2359 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2360 u16 count, index = ring->next_to_use;
2361 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2362 struct igc_tx_buffer *buffer = head;
2363 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2364 u32 olinfo_status, len = xdpf->len, cmd_type;
2365 void *data = xdpf->data;
2366 u16 i;
2367
2368 count = TXD_USE_COUNT(len);
2369 for (i = 0; i < nr_frags; i++)
2370 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2371
2372 if (igc_maybe_stop_tx(ring, count + 3)) {
2373 /* this is a hard error */
2374 return -EBUSY;
2375 }
2376
2377 i = 0;
2378 head->bytecount = xdp_get_frame_len(xdpf);
2379 head->type = IGC_TX_BUFFER_TYPE_XDP;
2380 head->gso_segs = 1;
2381 head->xdpf = xdpf;
2382
2383 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2384 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2385
2386 for (;;) {
2387 dma_addr_t dma;
2388
2389 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2390 if (dma_mapping_error(ring->dev, dma)) {
2391 netdev_err_once(ring->netdev,
2392 "Failed to map DMA for TX\n");
2393 goto unmap;
2394 }
2395
2396 dma_unmap_len_set(buffer, len, len);
2397 dma_unmap_addr_set(buffer, dma, dma);
2398
2399 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2400 IGC_ADVTXD_DCMD_IFCS | len;
2401
2402 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2403 desc->read.buffer_addr = cpu_to_le64(dma);
2404
2405 buffer->protocol = 0;
2406
2407 if (++index == ring->count)
2408 index = 0;
2409
2410 if (i == nr_frags)
2411 break;
2412
2413 buffer = &ring->tx_buffer_info[index];
2414 desc = IGC_TX_DESC(ring, index);
2415 desc->read.olinfo_status = 0;
2416
2417 data = skb_frag_address(&sinfo->frags[i]);
2418 len = skb_frag_size(&sinfo->frags[i]);
2419 i++;
2420 }
2421 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2422
2423 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2424 /* set the timestamp */
2425 head->time_stamp = jiffies;
2426 /* set next_to_watch value indicating a packet is present */
2427 head->next_to_watch = desc;
2428 ring->next_to_use = index;
2429
2430 return 0;
2431
2432unmap:
2433 for (;;) {
2434 buffer = &ring->tx_buffer_info[index];
2435 if (dma_unmap_len(buffer, len))
2436 dma_unmap_page(ring->dev,
2437 dma_unmap_addr(buffer, dma),
2438 dma_unmap_len(buffer, len),
2439 DMA_TO_DEVICE);
2440 dma_unmap_len_set(buffer, len, 0);
2441 if (buffer == head)
2442 break;
2443
2444 if (!index)
2445 index += ring->count;
2446 index--;
2447 }
2448
2449 return -ENOMEM;
2450}
2451
2452static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2453 int cpu)
2454{
2455 int index = cpu;
2456
2457 if (unlikely(index < 0))
2458 index = 0;
2459
2460 while (index >= adapter->num_tx_queues)
2461 index -= adapter->num_tx_queues;
2462
2463 return adapter->tx_ring[index];
2464}
2465
2466static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2467{
2468 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2469 int cpu = smp_processor_id();
2470 struct netdev_queue *nq;
2471 struct igc_ring *ring;
2472 int res;
2473
2474 if (unlikely(!xdpf))
2475 return -EFAULT;
2476
2477 ring = igc_xdp_get_tx_ring(adapter, cpu);
2478 nq = txring_txq(ring);
2479
2480 __netif_tx_lock(nq, cpu);
2481 /* Avoid transmit queue timeout since we share it with the slow path */
2482 txq_trans_cond_update(nq);
2483 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2484 __netif_tx_unlock(nq);
2485 return res;
2486}
2487
2488/* This function assumes rcu_read_lock() is held by the caller. */
2489static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2490 struct bpf_prog *prog,
2491 struct xdp_buff *xdp)
2492{
2493 u32 act = bpf_prog_run_xdp(prog, xdp);
2494
2495 switch (act) {
2496 case XDP_PASS:
2497 return IGC_XDP_PASS;
2498 case XDP_TX:
2499 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2500 goto out_failure;
2501 return IGC_XDP_TX;
2502 case XDP_REDIRECT:
2503 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2504 goto out_failure;
2505 return IGC_XDP_REDIRECT;
2506 break;
2507 default:
2508 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2509 fallthrough;
2510 case XDP_ABORTED:
2511out_failure:
2512 trace_xdp_exception(adapter->netdev, prog, act);
2513 fallthrough;
2514 case XDP_DROP:
2515 return IGC_XDP_CONSUMED;
2516 }
2517}
2518
2519static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2520 struct xdp_buff *xdp)
2521{
2522 struct bpf_prog *prog;
2523 int res;
2524
2525 prog = READ_ONCE(adapter->xdp_prog);
2526 if (!prog) {
2527 res = IGC_XDP_PASS;
2528 goto out;
2529 }
2530
2531 res = __igc_xdp_run_prog(adapter, prog, xdp);
2532
2533out:
2534 return ERR_PTR(-res);
2535}
2536
2537/* This function assumes __netif_tx_lock is held by the caller. */
2538static void igc_flush_tx_descriptors(struct igc_ring *ring)
2539{
2540 /* Once tail pointer is updated, hardware can fetch the descriptors
2541 * any time so we issue a write membar here to ensure all memory
2542 * writes are complete before the tail pointer is updated.
2543 */
2544 wmb();
2545 writel(ring->next_to_use, ring->tail);
2546}
2547
2548static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2549{
2550 int cpu = smp_processor_id();
2551 struct netdev_queue *nq;
2552 struct igc_ring *ring;
2553
2554 if (status & IGC_XDP_TX) {
2555 ring = igc_xdp_get_tx_ring(adapter, cpu);
2556 nq = txring_txq(ring);
2557
2558 __netif_tx_lock(nq, cpu);
2559 igc_flush_tx_descriptors(ring);
2560 __netif_tx_unlock(nq);
2561 }
2562
2563 if (status & IGC_XDP_REDIRECT)
2564 xdp_do_flush();
2565}
2566
2567static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2568 unsigned int packets, unsigned int bytes)
2569{
2570 struct igc_ring *ring = q_vector->rx.ring;
2571
2572 u64_stats_update_begin(&ring->rx_syncp);
2573 ring->rx_stats.packets += packets;
2574 ring->rx_stats.bytes += bytes;
2575 u64_stats_update_end(&ring->rx_syncp);
2576
2577 q_vector->rx.total_packets += packets;
2578 q_vector->rx.total_bytes += bytes;
2579}
2580
2581static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2582{
2583 unsigned int total_bytes = 0, total_packets = 0;
2584 struct igc_adapter *adapter = q_vector->adapter;
2585 struct igc_ring *rx_ring = q_vector->rx.ring;
2586 struct sk_buff *skb = rx_ring->skb;
2587 u16 cleaned_count = igc_desc_unused(rx_ring);
2588 int xdp_status = 0, rx_buffer_pgcnt;
2589
2590 while (likely(total_packets < budget)) {
2591 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2592 struct igc_rx_buffer *rx_buffer;
2593 union igc_adv_rx_desc *rx_desc;
2594 unsigned int size, truesize;
2595 int pkt_offset = 0;
2596 void *pktbuf;
2597
2598 /* return some buffers to hardware, one at a time is too slow */
2599 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2600 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2601 cleaned_count = 0;
2602 }
2603
2604 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2605 size = le16_to_cpu(rx_desc->wb.upper.length);
2606 if (!size)
2607 break;
2608
2609 /* This memory barrier is needed to keep us from reading
2610 * any other fields out of the rx_desc until we know the
2611 * descriptor has been written back
2612 */
2613 dma_rmb();
2614
2615 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2616 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2617
2618 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2619
2620 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2621 ctx.rx_ts = pktbuf;
2622 pkt_offset = IGC_TS_HDR_LEN;
2623 size -= IGC_TS_HDR_LEN;
2624 }
2625
2626 if (!skb) {
2627 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2628 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2629 igc_rx_offset(rx_ring) + pkt_offset,
2630 size, true);
2631 xdp_buff_clear_frags_flag(&ctx.xdp);
2632 ctx.rx_desc = rx_desc;
2633
2634 skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2635 }
2636
2637 if (IS_ERR(skb)) {
2638 unsigned int xdp_res = -PTR_ERR(skb);
2639
2640 switch (xdp_res) {
2641 case IGC_XDP_CONSUMED:
2642 rx_buffer->pagecnt_bias++;
2643 break;
2644 case IGC_XDP_TX:
2645 case IGC_XDP_REDIRECT:
2646 igc_rx_buffer_flip(rx_buffer, truesize);
2647 xdp_status |= xdp_res;
2648 break;
2649 }
2650
2651 total_packets++;
2652 total_bytes += size;
2653 } else if (skb)
2654 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2655 else if (ring_uses_build_skb(rx_ring))
2656 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2657 else
2658 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2659
2660 /* exit if we failed to retrieve a buffer */
2661 if (!skb) {
2662 rx_ring->rx_stats.alloc_failed++;
2663 rx_buffer->pagecnt_bias++;
2664 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2665 break;
2666 }
2667
2668 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2669 cleaned_count++;
2670
2671 /* fetch next buffer in frame if non-eop */
2672 if (igc_is_non_eop(rx_ring, rx_desc))
2673 continue;
2674
2675 /* verify the packet layout is correct */
2676 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2677 skb = NULL;
2678 continue;
2679 }
2680
2681 /* probably a little skewed due to removing CRC */
2682 total_bytes += skb->len;
2683
2684 /* populate checksum, VLAN, and protocol */
2685 igc_process_skb_fields(rx_ring, rx_desc, skb);
2686
2687 napi_gro_receive(&q_vector->napi, skb);
2688
2689 /* reset skb pointer */
2690 skb = NULL;
2691
2692 /* update budget accounting */
2693 total_packets++;
2694 }
2695
2696 if (xdp_status)
2697 igc_finalize_xdp(adapter, xdp_status);
2698
2699 /* place incomplete frames back on ring for completion */
2700 rx_ring->skb = skb;
2701
2702 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2703
2704 if (cleaned_count)
2705 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2706
2707 return total_packets;
2708}
2709
2710static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2711 struct igc_xdp_buff *ctx)
2712{
2713 struct xdp_buff *xdp = &ctx->xdp;
2714 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2715 unsigned int metasize = xdp->data - xdp->data_meta;
2716 struct sk_buff *skb;
2717
2718 net_prefetch(xdp->data_meta);
2719
2720 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2721 if (unlikely(!skb))
2722 return NULL;
2723
2724 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2725 ALIGN(totalsize, sizeof(long)));
2726
2727 if (metasize) {
2728 skb_metadata_set(skb, metasize);
2729 __skb_pull(skb, metasize);
2730 }
2731
2732 if (ctx->rx_ts) {
2733 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2734 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2735 }
2736
2737 return skb;
2738}
2739
2740static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2741 union igc_adv_rx_desc *desc,
2742 struct igc_xdp_buff *ctx)
2743{
2744 struct igc_ring *ring = q_vector->rx.ring;
2745 struct sk_buff *skb;
2746
2747 skb = igc_construct_skb_zc(ring, ctx);
2748 if (!skb) {
2749 ring->rx_stats.alloc_failed++;
2750 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2751 return;
2752 }
2753
2754 if (igc_cleanup_headers(ring, desc, skb))
2755 return;
2756
2757 igc_process_skb_fields(ring, desc, skb);
2758 napi_gro_receive(&q_vector->napi, skb);
2759}
2760
2761static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2762{
2763 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2764 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2765 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2766 */
2767 return (struct igc_xdp_buff *)xdp;
2768}
2769
2770static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2771{
2772 struct igc_adapter *adapter = q_vector->adapter;
2773 struct igc_ring *ring = q_vector->rx.ring;
2774 u16 cleaned_count = igc_desc_unused(ring);
2775 int total_bytes = 0, total_packets = 0;
2776 u16 ntc = ring->next_to_clean;
2777 struct bpf_prog *prog;
2778 bool failure = false;
2779 int xdp_status = 0;
2780
2781 rcu_read_lock();
2782
2783 prog = READ_ONCE(adapter->xdp_prog);
2784
2785 while (likely(total_packets < budget)) {
2786 union igc_adv_rx_desc *desc;
2787 struct igc_rx_buffer *bi;
2788 struct igc_xdp_buff *ctx;
2789 unsigned int size;
2790 int res;
2791
2792 desc = IGC_RX_DESC(ring, ntc);
2793 size = le16_to_cpu(desc->wb.upper.length);
2794 if (!size)
2795 break;
2796
2797 /* This memory barrier is needed to keep us from reading
2798 * any other fields out of the rx_desc until we know the
2799 * descriptor has been written back
2800 */
2801 dma_rmb();
2802
2803 bi = &ring->rx_buffer_info[ntc];
2804
2805 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2806 ctx->rx_desc = desc;
2807
2808 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2809 ctx->rx_ts = bi->xdp->data;
2810
2811 bi->xdp->data += IGC_TS_HDR_LEN;
2812
2813 /* HW timestamp has been copied into local variable. Metadata
2814 * length when XDP program is called should be 0.
2815 */
2816 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2817 size -= IGC_TS_HDR_LEN;
2818 } else {
2819 ctx->rx_ts = NULL;
2820 }
2821
2822 bi->xdp->data_end = bi->xdp->data + size;
2823 xsk_buff_dma_sync_for_cpu(bi->xdp);
2824
2825 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2826 switch (res) {
2827 case IGC_XDP_PASS:
2828 igc_dispatch_skb_zc(q_vector, desc, ctx);
2829 fallthrough;
2830 case IGC_XDP_CONSUMED:
2831 xsk_buff_free(bi->xdp);
2832 break;
2833 case IGC_XDP_TX:
2834 case IGC_XDP_REDIRECT:
2835 xdp_status |= res;
2836 break;
2837 }
2838
2839 bi->xdp = NULL;
2840 total_bytes += size;
2841 total_packets++;
2842 cleaned_count++;
2843 ntc++;
2844 if (ntc == ring->count)
2845 ntc = 0;
2846 }
2847
2848 ring->next_to_clean = ntc;
2849 rcu_read_unlock();
2850
2851 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2852 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2853
2854 if (xdp_status)
2855 igc_finalize_xdp(adapter, xdp_status);
2856
2857 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2858
2859 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2860 if (failure || ring->next_to_clean == ring->next_to_use)
2861 xsk_set_rx_need_wakeup(ring->xsk_pool);
2862 else
2863 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2864 return total_packets;
2865 }
2866
2867 return failure ? budget : total_packets;
2868}
2869
2870static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2871 unsigned int packets, unsigned int bytes)
2872{
2873 struct igc_ring *ring = q_vector->tx.ring;
2874
2875 u64_stats_update_begin(&ring->tx_syncp);
2876 ring->tx_stats.bytes += bytes;
2877 ring->tx_stats.packets += packets;
2878 u64_stats_update_end(&ring->tx_syncp);
2879
2880 q_vector->tx.total_bytes += bytes;
2881 q_vector->tx.total_packets += packets;
2882}
2883
2884static void igc_xsk_request_timestamp(void *_priv)
2885{
2886 struct igc_metadata_request *meta_req = _priv;
2887 struct igc_ring *tx_ring = meta_req->tx_ring;
2888 struct igc_tx_timestamp_request *tstamp;
2889 u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2890 struct igc_adapter *adapter;
2891 unsigned long lock_flags;
2892 bool found = false;
2893 int i;
2894
2895 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2896 adapter = netdev_priv(tx_ring->netdev);
2897
2898 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2899
2900 /* Search for available tstamp regs */
2901 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2902 tstamp = &adapter->tx_tstamp[i];
2903
2904 /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2905 * When tstamp->skb is equal to NULL,
2906 * tstamp->xsk_tx_buffer is equal to NULL as well.
2907 * This condition means that the particular tstamp reg
2908 * is not occupied by other packet.
2909 */
2910 if (!tstamp->skb) {
2911 found = true;
2912 break;
2913 }
2914 }
2915
2916 /* Return if no available tstamp regs */
2917 if (!found) {
2918 adapter->tx_hwtstamp_skipped++;
2919 spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2920 lock_flags);
2921 return;
2922 }
2923
2924 tstamp->start = jiffies;
2925 tstamp->xsk_queue_index = tx_ring->queue_index;
2926 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2927 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2928
2929 /* Hold the transmit completion until timestamp is ready */
2930 meta_req->tx_buffer->xsk_pending_ts = true;
2931
2932 /* Keep the pointer to tx_timestamp, which is located in XDP
2933 * metadata area. It is the location to store the value of
2934 * tx hardware timestamp.
2935 */
2936 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2937
2938 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2939 tx_flags |= tstamp->flags;
2940 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2941 IGC_TX_FLAGS_TSTAMP,
2942 (IGC_ADVTXD_MAC_TSTAMP));
2943 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2944 IGC_TX_FLAGS_TSTAMP_1,
2945 (IGC_ADVTXD_TSTAMP_REG_1));
2946 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2947 IGC_TX_FLAGS_TSTAMP_2,
2948 (IGC_ADVTXD_TSTAMP_REG_2));
2949 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2950 IGC_TX_FLAGS_TSTAMP_3,
2951 (IGC_ADVTXD_TSTAMP_REG_3));
2952
2953 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2954 }
2955}
2956
2957static u64 igc_xsk_fill_timestamp(void *_priv)
2958{
2959 return *(u64 *)_priv;
2960}
2961
2962const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2963 .tmo_request_timestamp = igc_xsk_request_timestamp,
2964 .tmo_fill_timestamp = igc_xsk_fill_timestamp,
2965};
2966
2967static void igc_xdp_xmit_zc(struct igc_ring *ring)
2968{
2969 struct xsk_buff_pool *pool = ring->xsk_pool;
2970 struct netdev_queue *nq = txring_txq(ring);
2971 union igc_adv_tx_desc *tx_desc = NULL;
2972 int cpu = smp_processor_id();
2973 struct xdp_desc xdp_desc;
2974 u16 budget, ntu;
2975
2976 if (!netif_carrier_ok(ring->netdev))
2977 return;
2978
2979 __netif_tx_lock(nq, cpu);
2980
2981 /* Avoid transmit queue timeout since we share it with the slow path */
2982 txq_trans_cond_update(nq);
2983
2984 ntu = ring->next_to_use;
2985 budget = igc_desc_unused(ring);
2986
2987 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2988 struct igc_metadata_request meta_req;
2989 struct xsk_tx_metadata *meta = NULL;
2990 struct igc_tx_buffer *bi;
2991 u32 olinfo_status;
2992 dma_addr_t dma;
2993
2994 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2995 IGC_ADVTXD_DCMD_DEXT |
2996 IGC_ADVTXD_DCMD_IFCS |
2997 IGC_TXD_DCMD | xdp_desc.len;
2998 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2999
3000 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3001 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3002 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3003 bi = &ring->tx_buffer_info[ntu];
3004
3005 meta_req.tx_ring = ring;
3006 meta_req.tx_buffer = bi;
3007 meta_req.meta = meta;
3008 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3009 &meta_req);
3010
3011 tx_desc = IGC_TX_DESC(ring, ntu);
3012 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3013 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3014 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3015
3016 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3017 bi->protocol = 0;
3018 bi->bytecount = xdp_desc.len;
3019 bi->gso_segs = 1;
3020 bi->time_stamp = jiffies;
3021 bi->next_to_watch = tx_desc;
3022
3023 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3024
3025 ntu++;
3026 if (ntu == ring->count)
3027 ntu = 0;
3028 }
3029
3030 ring->next_to_use = ntu;
3031 if (tx_desc) {
3032 igc_flush_tx_descriptors(ring);
3033 xsk_tx_release(pool);
3034 }
3035
3036 __netif_tx_unlock(nq);
3037}
3038
3039/**
3040 * igc_clean_tx_irq - Reclaim resources after transmit completes
3041 * @q_vector: pointer to q_vector containing needed info
3042 * @napi_budget: Used to determine if we are in netpoll
3043 *
3044 * returns true if ring is completely cleaned
3045 */
3046static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3047{
3048 struct igc_adapter *adapter = q_vector->adapter;
3049 unsigned int total_bytes = 0, total_packets = 0;
3050 unsigned int budget = q_vector->tx.work_limit;
3051 struct igc_ring *tx_ring = q_vector->tx.ring;
3052 unsigned int i = tx_ring->next_to_clean;
3053 struct igc_tx_buffer *tx_buffer;
3054 union igc_adv_tx_desc *tx_desc;
3055 u32 xsk_frames = 0;
3056
3057 if (test_bit(__IGC_DOWN, &adapter->state))
3058 return true;
3059
3060 tx_buffer = &tx_ring->tx_buffer_info[i];
3061 tx_desc = IGC_TX_DESC(tx_ring, i);
3062 i -= tx_ring->count;
3063
3064 do {
3065 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3066
3067 /* if next_to_watch is not set then there is no work pending */
3068 if (!eop_desc)
3069 break;
3070
3071 /* prevent any other reads prior to eop_desc */
3072 smp_rmb();
3073
3074 /* if DD is not set pending work has not been completed */
3075 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3076 break;
3077
3078 /* Hold the completions while there's a pending tx hardware
3079 * timestamp request from XDP Tx metadata.
3080 */
3081 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3082 tx_buffer->xsk_pending_ts)
3083 break;
3084
3085 /* clear next_to_watch to prevent false hangs */
3086 tx_buffer->next_to_watch = NULL;
3087
3088 /* update the statistics for this packet */
3089 total_bytes += tx_buffer->bytecount;
3090 total_packets += tx_buffer->gso_segs;
3091
3092 switch (tx_buffer->type) {
3093 case IGC_TX_BUFFER_TYPE_XSK:
3094 xsk_frames++;
3095 break;
3096 case IGC_TX_BUFFER_TYPE_XDP:
3097 xdp_return_frame(tx_buffer->xdpf);
3098 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3099 break;
3100 case IGC_TX_BUFFER_TYPE_SKB:
3101 napi_consume_skb(tx_buffer->skb, napi_budget);
3102 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3103 break;
3104 default:
3105 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3106 break;
3107 }
3108
3109 /* clear last DMA location and unmap remaining buffers */
3110 while (tx_desc != eop_desc) {
3111 tx_buffer++;
3112 tx_desc++;
3113 i++;
3114 if (unlikely(!i)) {
3115 i -= tx_ring->count;
3116 tx_buffer = tx_ring->tx_buffer_info;
3117 tx_desc = IGC_TX_DESC(tx_ring, 0);
3118 }
3119
3120 /* unmap any remaining paged data */
3121 if (dma_unmap_len(tx_buffer, len))
3122 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3123 }
3124
3125 /* move us one more past the eop_desc for start of next pkt */
3126 tx_buffer++;
3127 tx_desc++;
3128 i++;
3129 if (unlikely(!i)) {
3130 i -= tx_ring->count;
3131 tx_buffer = tx_ring->tx_buffer_info;
3132 tx_desc = IGC_TX_DESC(tx_ring, 0);
3133 }
3134
3135 /* issue prefetch for next Tx descriptor */
3136 prefetch(tx_desc);
3137
3138 /* update budget accounting */
3139 budget--;
3140 } while (likely(budget));
3141
3142 netdev_tx_completed_queue(txring_txq(tx_ring),
3143 total_packets, total_bytes);
3144
3145 i += tx_ring->count;
3146 tx_ring->next_to_clean = i;
3147
3148 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3149
3150 if (tx_ring->xsk_pool) {
3151 if (xsk_frames)
3152 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3153 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3154 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3155 igc_xdp_xmit_zc(tx_ring);
3156 }
3157
3158 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3159 struct igc_hw *hw = &adapter->hw;
3160
3161 /* Detect a transmit hang in hardware, this serializes the
3162 * check with the clearing of time_stamp and movement of i
3163 */
3164 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3165 if (tx_buffer->next_to_watch &&
3166 time_after(jiffies, tx_buffer->time_stamp +
3167 (adapter->tx_timeout_factor * HZ)) &&
3168 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3169 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3170 !tx_ring->oper_gate_closed) {
3171 /* detected Tx unit hang */
3172 netdev_err(tx_ring->netdev,
3173 "Detected Tx Unit Hang\n"
3174 " Tx Queue <%d>\n"
3175 " TDH <%x>\n"
3176 " TDT <%x>\n"
3177 " next_to_use <%x>\n"
3178 " next_to_clean <%x>\n"
3179 "buffer_info[next_to_clean]\n"
3180 " time_stamp <%lx>\n"
3181 " next_to_watch <%p>\n"
3182 " jiffies <%lx>\n"
3183 " desc.status <%x>\n",
3184 tx_ring->queue_index,
3185 rd32(IGC_TDH(tx_ring->reg_idx)),
3186 readl(tx_ring->tail),
3187 tx_ring->next_to_use,
3188 tx_ring->next_to_clean,
3189 tx_buffer->time_stamp,
3190 tx_buffer->next_to_watch,
3191 jiffies,
3192 tx_buffer->next_to_watch->wb.status);
3193 netif_stop_subqueue(tx_ring->netdev,
3194 tx_ring->queue_index);
3195
3196 /* we are about to reset, no point in enabling stuff */
3197 return true;
3198 }
3199 }
3200
3201#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3202 if (unlikely(total_packets &&
3203 netif_carrier_ok(tx_ring->netdev) &&
3204 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3205 /* Make sure that anybody stopping the queue after this
3206 * sees the new next_to_clean.
3207 */
3208 smp_mb();
3209 if (__netif_subqueue_stopped(tx_ring->netdev,
3210 tx_ring->queue_index) &&
3211 !(test_bit(__IGC_DOWN, &adapter->state))) {
3212 netif_wake_subqueue(tx_ring->netdev,
3213 tx_ring->queue_index);
3214
3215 u64_stats_update_begin(&tx_ring->tx_syncp);
3216 tx_ring->tx_stats.restart_queue++;
3217 u64_stats_update_end(&tx_ring->tx_syncp);
3218 }
3219 }
3220
3221 return !!budget;
3222}
3223
3224static int igc_find_mac_filter(struct igc_adapter *adapter,
3225 enum igc_mac_filter_type type, const u8 *addr)
3226{
3227 struct igc_hw *hw = &adapter->hw;
3228 int max_entries = hw->mac.rar_entry_count;
3229 u32 ral, rah;
3230 int i;
3231
3232 for (i = 0; i < max_entries; i++) {
3233 ral = rd32(IGC_RAL(i));
3234 rah = rd32(IGC_RAH(i));
3235
3236 if (!(rah & IGC_RAH_AV))
3237 continue;
3238 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3239 continue;
3240 if ((rah & IGC_RAH_RAH_MASK) !=
3241 le16_to_cpup((__le16 *)(addr + 4)))
3242 continue;
3243 if (ral != le32_to_cpup((__le32 *)(addr)))
3244 continue;
3245
3246 return i;
3247 }
3248
3249 return -1;
3250}
3251
3252static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3253{
3254 struct igc_hw *hw = &adapter->hw;
3255 int max_entries = hw->mac.rar_entry_count;
3256 u32 rah;
3257 int i;
3258
3259 for (i = 0; i < max_entries; i++) {
3260 rah = rd32(IGC_RAH(i));
3261
3262 if (!(rah & IGC_RAH_AV))
3263 return i;
3264 }
3265
3266 return -1;
3267}
3268
3269/**
3270 * igc_add_mac_filter() - Add MAC address filter
3271 * @adapter: Pointer to adapter where the filter should be added
3272 * @type: MAC address filter type (source or destination)
3273 * @addr: MAC address
3274 * @queue: If non-negative, queue assignment feature is enabled and frames
3275 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3276 * assignment is disabled.
3277 *
3278 * Return: 0 in case of success, negative errno code otherwise.
3279 */
3280static int igc_add_mac_filter(struct igc_adapter *adapter,
3281 enum igc_mac_filter_type type, const u8 *addr,
3282 int queue)
3283{
3284 struct net_device *dev = adapter->netdev;
3285 int index;
3286
3287 index = igc_find_mac_filter(adapter, type, addr);
3288 if (index >= 0)
3289 goto update_filter;
3290
3291 index = igc_get_avail_mac_filter_slot(adapter);
3292 if (index < 0)
3293 return -ENOSPC;
3294
3295 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3296 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3297 addr, queue);
3298
3299update_filter:
3300 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3301 return 0;
3302}
3303
3304/**
3305 * igc_del_mac_filter() - Delete MAC address filter
3306 * @adapter: Pointer to adapter where the filter should be deleted from
3307 * @type: MAC address filter type (source or destination)
3308 * @addr: MAC address
3309 */
3310static void igc_del_mac_filter(struct igc_adapter *adapter,
3311 enum igc_mac_filter_type type, const u8 *addr)
3312{
3313 struct net_device *dev = adapter->netdev;
3314 int index;
3315
3316 index = igc_find_mac_filter(adapter, type, addr);
3317 if (index < 0)
3318 return;
3319
3320 if (index == 0) {
3321 /* If this is the default filter, we don't actually delete it.
3322 * We just reset to its default value i.e. disable queue
3323 * assignment.
3324 */
3325 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3326
3327 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3328 } else {
3329 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3330 index,
3331 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3332 addr);
3333
3334 igc_clear_mac_filter_hw(adapter, index);
3335 }
3336}
3337
3338/**
3339 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3340 * @adapter: Pointer to adapter where the filter should be added
3341 * @prio: VLAN priority value
3342 * @queue: Queue number which matching frames are assigned to
3343 *
3344 * Return: 0 in case of success, negative errno code otherwise.
3345 */
3346static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3347 int queue)
3348{
3349 struct net_device *dev = adapter->netdev;
3350 struct igc_hw *hw = &adapter->hw;
3351 u32 vlanpqf;
3352
3353 vlanpqf = rd32(IGC_VLANPQF);
3354
3355 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3356 netdev_dbg(dev, "VLAN priority filter already in use\n");
3357 return -EEXIST;
3358 }
3359
3360 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3361 vlanpqf |= IGC_VLANPQF_VALID(prio);
3362
3363 wr32(IGC_VLANPQF, vlanpqf);
3364
3365 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3366 prio, queue);
3367 return 0;
3368}
3369
3370/**
3371 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3372 * @adapter: Pointer to adapter where the filter should be deleted from
3373 * @prio: VLAN priority value
3374 */
3375static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3376{
3377 struct igc_hw *hw = &adapter->hw;
3378 u32 vlanpqf;
3379
3380 vlanpqf = rd32(IGC_VLANPQF);
3381
3382 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3383 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3384
3385 wr32(IGC_VLANPQF, vlanpqf);
3386
3387 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3388 prio);
3389}
3390
3391static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3392{
3393 struct igc_hw *hw = &adapter->hw;
3394 int i;
3395
3396 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3397 u32 etqf = rd32(IGC_ETQF(i));
3398
3399 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3400 return i;
3401 }
3402
3403 return -1;
3404}
3405
3406/**
3407 * igc_add_etype_filter() - Add ethertype filter
3408 * @adapter: Pointer to adapter where the filter should be added
3409 * @etype: Ethertype value
3410 * @queue: If non-negative, queue assignment feature is enabled and frames
3411 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3412 * assignment is disabled.
3413 *
3414 * Return: 0 in case of success, negative errno code otherwise.
3415 */
3416static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3417 int queue)
3418{
3419 struct igc_hw *hw = &adapter->hw;
3420 int index;
3421 u32 etqf;
3422
3423 index = igc_get_avail_etype_filter_slot(adapter);
3424 if (index < 0)
3425 return -ENOSPC;
3426
3427 etqf = rd32(IGC_ETQF(index));
3428
3429 etqf &= ~IGC_ETQF_ETYPE_MASK;
3430 etqf |= etype;
3431
3432 if (queue >= 0) {
3433 etqf &= ~IGC_ETQF_QUEUE_MASK;
3434 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3435 etqf |= IGC_ETQF_QUEUE_ENABLE;
3436 }
3437
3438 etqf |= IGC_ETQF_FILTER_ENABLE;
3439
3440 wr32(IGC_ETQF(index), etqf);
3441
3442 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3443 etype, queue);
3444 return 0;
3445}
3446
3447static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3448{
3449 struct igc_hw *hw = &adapter->hw;
3450 int i;
3451
3452 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3453 u32 etqf = rd32(IGC_ETQF(i));
3454
3455 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3456 return i;
3457 }
3458
3459 return -1;
3460}
3461
3462/**
3463 * igc_del_etype_filter() - Delete ethertype filter
3464 * @adapter: Pointer to adapter where the filter should be deleted from
3465 * @etype: Ethertype value
3466 */
3467static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3468{
3469 struct igc_hw *hw = &adapter->hw;
3470 int index;
3471
3472 index = igc_find_etype_filter(adapter, etype);
3473 if (index < 0)
3474 return;
3475
3476 wr32(IGC_ETQF(index), 0);
3477
3478 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3479 etype);
3480}
3481
3482static int igc_flex_filter_select(struct igc_adapter *adapter,
3483 struct igc_flex_filter *input,
3484 u32 *fhft)
3485{
3486 struct igc_hw *hw = &adapter->hw;
3487 u8 fhft_index;
3488 u32 fhftsl;
3489
3490 if (input->index >= MAX_FLEX_FILTER) {
3491 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3492 return -EINVAL;
3493 }
3494
3495 /* Indirect table select register */
3496 fhftsl = rd32(IGC_FHFTSL);
3497 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3498 switch (input->index) {
3499 case 0 ... 7:
3500 fhftsl |= 0x00;
3501 break;
3502 case 8 ... 15:
3503 fhftsl |= 0x01;
3504 break;
3505 case 16 ... 23:
3506 fhftsl |= 0x02;
3507 break;
3508 case 24 ... 31:
3509 fhftsl |= 0x03;
3510 break;
3511 }
3512 wr32(IGC_FHFTSL, fhftsl);
3513
3514 /* Normalize index down to host table register */
3515 fhft_index = input->index % 8;
3516
3517 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3518 IGC_FHFT_EXT(fhft_index - 4);
3519
3520 return 0;
3521}
3522
3523static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3524 struct igc_flex_filter *input)
3525{
3526 struct igc_hw *hw = &adapter->hw;
3527 u8 *data = input->data;
3528 u8 *mask = input->mask;
3529 u32 queuing;
3530 u32 fhft;
3531 u32 wufc;
3532 int ret;
3533 int i;
3534
3535 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3536 * out early to avoid surprises later.
3537 */
3538 if (input->length % 8 != 0) {
3539 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3540 return -EINVAL;
3541 }
3542
3543 /* Select corresponding flex filter register and get base for host table. */
3544 ret = igc_flex_filter_select(adapter, input, &fhft);
3545 if (ret)
3546 return ret;
3547
3548 /* When adding a filter globally disable flex filter feature. That is
3549 * recommended within the datasheet.
3550 */
3551 wufc = rd32(IGC_WUFC);
3552 wufc &= ~IGC_WUFC_FLEX_HQ;
3553 wr32(IGC_WUFC, wufc);
3554
3555 /* Configure filter */
3556 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3557 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3558 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3559
3560 if (input->immediate_irq)
3561 queuing |= IGC_FHFT_IMM_INT;
3562
3563 if (input->drop)
3564 queuing |= IGC_FHFT_DROP;
3565
3566 wr32(fhft + 0xFC, queuing);
3567
3568 /* Write data (128 byte) and mask (128 bit) */
3569 for (i = 0; i < 16; ++i) {
3570 const size_t data_idx = i * 8;
3571 const size_t row_idx = i * 16;
3572 u32 dw0 =
3573 (data[data_idx + 0] << 0) |
3574 (data[data_idx + 1] << 8) |
3575 (data[data_idx + 2] << 16) |
3576 (data[data_idx + 3] << 24);
3577 u32 dw1 =
3578 (data[data_idx + 4] << 0) |
3579 (data[data_idx + 5] << 8) |
3580 (data[data_idx + 6] << 16) |
3581 (data[data_idx + 7] << 24);
3582 u32 tmp;
3583
3584 /* Write row: dw0, dw1 and mask */
3585 wr32(fhft + row_idx, dw0);
3586 wr32(fhft + row_idx + 4, dw1);
3587
3588 /* mask is only valid for MASK(7, 0) */
3589 tmp = rd32(fhft + row_idx + 8);
3590 tmp &= ~GENMASK(7, 0);
3591 tmp |= mask[i];
3592 wr32(fhft + row_idx + 8, tmp);
3593 }
3594
3595 /* Enable filter. */
3596 wufc |= IGC_WUFC_FLEX_HQ;
3597 if (input->index > 8) {
3598 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3599 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3600
3601 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3602
3603 wr32(IGC_WUFC_EXT, wufc_ext);
3604 } else {
3605 wufc |= (IGC_WUFC_FLX0 << input->index);
3606 }
3607 wr32(IGC_WUFC, wufc);
3608
3609 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3610 input->index);
3611
3612 return 0;
3613}
3614
3615static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3616 const void *src, unsigned int offset,
3617 size_t len, const void *mask)
3618{
3619 int i;
3620
3621 /* data */
3622 memcpy(&flex->data[offset], src, len);
3623
3624 /* mask */
3625 for (i = 0; i < len; ++i) {
3626 const unsigned int idx = i + offset;
3627 const u8 *ptr = mask;
3628
3629 if (mask) {
3630 if (ptr[i] & 0xff)
3631 flex->mask[idx / 8] |= BIT(idx % 8);
3632
3633 continue;
3634 }
3635
3636 flex->mask[idx / 8] |= BIT(idx % 8);
3637 }
3638}
3639
3640static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3641{
3642 struct igc_hw *hw = &adapter->hw;
3643 u32 wufc, wufc_ext;
3644 int i;
3645
3646 wufc = rd32(IGC_WUFC);
3647 wufc_ext = rd32(IGC_WUFC_EXT);
3648
3649 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3650 if (i < 8) {
3651 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3652 return i;
3653 } else {
3654 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3655 return i;
3656 }
3657 }
3658
3659 return -ENOSPC;
3660}
3661
3662static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3663{
3664 struct igc_hw *hw = &adapter->hw;
3665 u32 wufc, wufc_ext;
3666
3667 wufc = rd32(IGC_WUFC);
3668 wufc_ext = rd32(IGC_WUFC_EXT);
3669
3670 if (wufc & IGC_WUFC_FILTER_MASK)
3671 return true;
3672
3673 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3674 return true;
3675
3676 return false;
3677}
3678
3679static int igc_add_flex_filter(struct igc_adapter *adapter,
3680 struct igc_nfc_rule *rule)
3681{
3682 struct igc_nfc_filter *filter = &rule->filter;
3683 unsigned int eth_offset, user_offset;
3684 struct igc_flex_filter flex = { };
3685 int ret, index;
3686 bool vlan;
3687
3688 index = igc_find_avail_flex_filter_slot(adapter);
3689 if (index < 0)
3690 return -ENOSPC;
3691
3692 /* Construct the flex filter:
3693 * -> dest_mac [6]
3694 * -> src_mac [6]
3695 * -> tpid [2]
3696 * -> vlan tci [2]
3697 * -> ether type [2]
3698 * -> user data [8]
3699 * -> = 26 bytes => 32 length
3700 */
3701 flex.index = index;
3702 flex.length = 32;
3703 flex.rx_queue = rule->action;
3704
3705 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3706 eth_offset = vlan ? 16 : 12;
3707 user_offset = vlan ? 18 : 14;
3708
3709 /* Add destination MAC */
3710 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3711 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3712 ETH_ALEN, NULL);
3713
3714 /* Add source MAC */
3715 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3716 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3717 ETH_ALEN, NULL);
3718
3719 /* Add VLAN etype */
3720 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3721 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3722
3723 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3724 sizeof(vlan_etype), NULL);
3725 }
3726
3727 /* Add VLAN TCI */
3728 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3729 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3730 sizeof(filter->vlan_tci), NULL);
3731
3732 /* Add Ether type */
3733 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3734 __be16 etype = cpu_to_be16(filter->etype);
3735
3736 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3737 sizeof(etype), NULL);
3738 }
3739
3740 /* Add user data */
3741 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3742 igc_flex_filter_add_field(&flex, &filter->user_data,
3743 user_offset,
3744 sizeof(filter->user_data),
3745 filter->user_mask);
3746
3747 /* Add it down to the hardware and enable it. */
3748 ret = igc_write_flex_filter_ll(adapter, &flex);
3749 if (ret)
3750 return ret;
3751
3752 filter->flex_index = index;
3753
3754 return 0;
3755}
3756
3757static void igc_del_flex_filter(struct igc_adapter *adapter,
3758 u16 reg_index)
3759{
3760 struct igc_hw *hw = &adapter->hw;
3761 u32 wufc;
3762
3763 /* Just disable the filter. The filter table itself is kept
3764 * intact. Another flex_filter_add() should override the "old" data
3765 * then.
3766 */
3767 if (reg_index > 8) {
3768 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3769
3770 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3771 wr32(IGC_WUFC_EXT, wufc_ext);
3772 } else {
3773 wufc = rd32(IGC_WUFC);
3774
3775 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3776 wr32(IGC_WUFC, wufc);
3777 }
3778
3779 if (igc_flex_filter_in_use(adapter))
3780 return;
3781
3782 /* No filters are in use, we may disable flex filters */
3783 wufc = rd32(IGC_WUFC);
3784 wufc &= ~IGC_WUFC_FLEX_HQ;
3785 wr32(IGC_WUFC, wufc);
3786}
3787
3788static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3789 struct igc_nfc_rule *rule)
3790{
3791 int err;
3792
3793 if (rule->flex) {
3794 return igc_add_flex_filter(adapter, rule);
3795 }
3796
3797 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3798 err = igc_add_etype_filter(adapter, rule->filter.etype,
3799 rule->action);
3800 if (err)
3801 return err;
3802 }
3803
3804 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3805 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3806 rule->filter.src_addr, rule->action);
3807 if (err)
3808 return err;
3809 }
3810
3811 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3812 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3813 rule->filter.dst_addr, rule->action);
3814 if (err)
3815 return err;
3816 }
3817
3818 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3819 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3820
3821 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3822 if (err)
3823 return err;
3824 }
3825
3826 return 0;
3827}
3828
3829static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3830 const struct igc_nfc_rule *rule)
3831{
3832 if (rule->flex) {
3833 igc_del_flex_filter(adapter, rule->filter.flex_index);
3834 return;
3835 }
3836
3837 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3838 igc_del_etype_filter(adapter, rule->filter.etype);
3839
3840 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3841 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3842
3843 igc_del_vlan_prio_filter(adapter, prio);
3844 }
3845
3846 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3847 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3848 rule->filter.src_addr);
3849
3850 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3851 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3852 rule->filter.dst_addr);
3853}
3854
3855/**
3856 * igc_get_nfc_rule() - Get NFC rule
3857 * @adapter: Pointer to adapter
3858 * @location: Rule location
3859 *
3860 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3861 *
3862 * Return: Pointer to NFC rule at @location. If not found, NULL.
3863 */
3864struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3865 u32 location)
3866{
3867 struct igc_nfc_rule *rule;
3868
3869 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3870 if (rule->location == location)
3871 return rule;
3872 if (rule->location > location)
3873 break;
3874 }
3875
3876 return NULL;
3877}
3878
3879/**
3880 * igc_del_nfc_rule() - Delete NFC rule
3881 * @adapter: Pointer to adapter
3882 * @rule: Pointer to rule to be deleted
3883 *
3884 * Disable NFC rule in hardware and delete it from adapter.
3885 *
3886 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3887 */
3888void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3889{
3890 igc_disable_nfc_rule(adapter, rule);
3891
3892 list_del(&rule->list);
3893 adapter->nfc_rule_count--;
3894
3895 kfree(rule);
3896}
3897
3898static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3899{
3900 struct igc_nfc_rule *rule, *tmp;
3901
3902 mutex_lock(&adapter->nfc_rule_lock);
3903
3904 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3905 igc_del_nfc_rule(adapter, rule);
3906
3907 mutex_unlock(&adapter->nfc_rule_lock);
3908}
3909
3910/**
3911 * igc_add_nfc_rule() - Add NFC rule
3912 * @adapter: Pointer to adapter
3913 * @rule: Pointer to rule to be added
3914 *
3915 * Enable NFC rule in hardware and add it to adapter.
3916 *
3917 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3918 *
3919 * Return: 0 on success, negative errno on failure.
3920 */
3921int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3922{
3923 struct igc_nfc_rule *pred, *cur;
3924 int err;
3925
3926 err = igc_enable_nfc_rule(adapter, rule);
3927 if (err)
3928 return err;
3929
3930 pred = NULL;
3931 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3932 if (cur->location >= rule->location)
3933 break;
3934 pred = cur;
3935 }
3936
3937 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3938 adapter->nfc_rule_count++;
3939 return 0;
3940}
3941
3942static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3943{
3944 struct igc_nfc_rule *rule;
3945
3946 mutex_lock(&adapter->nfc_rule_lock);
3947
3948 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3949 igc_enable_nfc_rule(adapter, rule);
3950
3951 mutex_unlock(&adapter->nfc_rule_lock);
3952}
3953
3954static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3955{
3956 struct igc_adapter *adapter = netdev_priv(netdev);
3957
3958 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3959}
3960
3961static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3962{
3963 struct igc_adapter *adapter = netdev_priv(netdev);
3964
3965 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3966 return 0;
3967}
3968
3969/**
3970 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3971 * @netdev: network interface device structure
3972 *
3973 * The set_rx_mode entry point is called whenever the unicast or multicast
3974 * address lists or the network interface flags are updated. This routine is
3975 * responsible for configuring the hardware for proper unicast, multicast,
3976 * promiscuous mode, and all-multi behavior.
3977 */
3978static void igc_set_rx_mode(struct net_device *netdev)
3979{
3980 struct igc_adapter *adapter = netdev_priv(netdev);
3981 struct igc_hw *hw = &adapter->hw;
3982 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3983 int count;
3984
3985 /* Check for Promiscuous and All Multicast modes */
3986 if (netdev->flags & IFF_PROMISC) {
3987 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3988 } else {
3989 if (netdev->flags & IFF_ALLMULTI) {
3990 rctl |= IGC_RCTL_MPE;
3991 } else {
3992 /* Write addresses to the MTA, if the attempt fails
3993 * then we should just turn on promiscuous mode so
3994 * that we can at least receive multicast traffic
3995 */
3996 count = igc_write_mc_addr_list(netdev);
3997 if (count < 0)
3998 rctl |= IGC_RCTL_MPE;
3999 }
4000 }
4001
4002 /* Write addresses to available RAR registers, if there is not
4003 * sufficient space to store all the addresses then enable
4004 * unicast promiscuous mode
4005 */
4006 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4007 rctl |= IGC_RCTL_UPE;
4008
4009 /* update state of unicast and multicast */
4010 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4011 wr32(IGC_RCTL, rctl);
4012
4013#if (PAGE_SIZE < 8192)
4014 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4015 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4016#endif
4017 wr32(IGC_RLPML, rlpml);
4018}
4019
4020/**
4021 * igc_configure - configure the hardware for RX and TX
4022 * @adapter: private board structure
4023 */
4024static void igc_configure(struct igc_adapter *adapter)
4025{
4026 struct net_device *netdev = adapter->netdev;
4027 int i = 0;
4028
4029 igc_get_hw_control(adapter);
4030 igc_set_rx_mode(netdev);
4031
4032 igc_restore_vlan(adapter);
4033
4034 igc_setup_tctl(adapter);
4035 igc_setup_mrqc(adapter);
4036 igc_setup_rctl(adapter);
4037
4038 igc_set_default_mac_filter(adapter);
4039 igc_restore_nfc_rules(adapter);
4040
4041 igc_configure_tx(adapter);
4042 igc_configure_rx(adapter);
4043
4044 igc_rx_fifo_flush_base(&adapter->hw);
4045
4046 /* call igc_desc_unused which always leaves
4047 * at least 1 descriptor unused to make sure
4048 * next_to_use != next_to_clean
4049 */
4050 for (i = 0; i < adapter->num_rx_queues; i++) {
4051 struct igc_ring *ring = adapter->rx_ring[i];
4052
4053 if (ring->xsk_pool)
4054 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4055 else
4056 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4057 }
4058}
4059
4060/**
4061 * igc_write_ivar - configure ivar for given MSI-X vector
4062 * @hw: pointer to the HW structure
4063 * @msix_vector: vector number we are allocating to a given ring
4064 * @index: row index of IVAR register to write within IVAR table
4065 * @offset: column offset of in IVAR, should be multiple of 8
4066 *
4067 * The IVAR table consists of 2 columns,
4068 * each containing an cause allocation for an Rx and Tx ring, and a
4069 * variable number of rows depending on the number of queues supported.
4070 */
4071static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4072 int index, int offset)
4073{
4074 u32 ivar = array_rd32(IGC_IVAR0, index);
4075
4076 /* clear any bits that are currently set */
4077 ivar &= ~((u32)0xFF << offset);
4078
4079 /* write vector and valid bit */
4080 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4081
4082 array_wr32(IGC_IVAR0, index, ivar);
4083}
4084
4085static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4086{
4087 struct igc_adapter *adapter = q_vector->adapter;
4088 struct igc_hw *hw = &adapter->hw;
4089 int rx_queue = IGC_N0_QUEUE;
4090 int tx_queue = IGC_N0_QUEUE;
4091
4092 if (q_vector->rx.ring)
4093 rx_queue = q_vector->rx.ring->reg_idx;
4094 if (q_vector->tx.ring)
4095 tx_queue = q_vector->tx.ring->reg_idx;
4096
4097 switch (hw->mac.type) {
4098 case igc_i225:
4099 if (rx_queue > IGC_N0_QUEUE)
4100 igc_write_ivar(hw, msix_vector,
4101 rx_queue >> 1,
4102 (rx_queue & 0x1) << 4);
4103 if (tx_queue > IGC_N0_QUEUE)
4104 igc_write_ivar(hw, msix_vector,
4105 tx_queue >> 1,
4106 ((tx_queue & 0x1) << 4) + 8);
4107 q_vector->eims_value = BIT(msix_vector);
4108 break;
4109 default:
4110 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4111 break;
4112 }
4113
4114 /* add q_vector eims value to global eims_enable_mask */
4115 adapter->eims_enable_mask |= q_vector->eims_value;
4116
4117 /* configure q_vector to set itr on first interrupt */
4118 q_vector->set_itr = 1;
4119}
4120
4121/**
4122 * igc_configure_msix - Configure MSI-X hardware
4123 * @adapter: Pointer to adapter structure
4124 *
4125 * igc_configure_msix sets up the hardware to properly
4126 * generate MSI-X interrupts.
4127 */
4128static void igc_configure_msix(struct igc_adapter *adapter)
4129{
4130 struct igc_hw *hw = &adapter->hw;
4131 int i, vector = 0;
4132 u32 tmp;
4133
4134 adapter->eims_enable_mask = 0;
4135
4136 /* set vector for other causes, i.e. link changes */
4137 switch (hw->mac.type) {
4138 case igc_i225:
4139 /* Turn on MSI-X capability first, or our settings
4140 * won't stick. And it will take days to debug.
4141 */
4142 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4143 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4144 IGC_GPIE_NSICR);
4145
4146 /* enable msix_other interrupt */
4147 adapter->eims_other = BIT(vector);
4148 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4149
4150 wr32(IGC_IVAR_MISC, tmp);
4151 break;
4152 default:
4153 /* do nothing, since nothing else supports MSI-X */
4154 break;
4155 } /* switch (hw->mac.type) */
4156
4157 adapter->eims_enable_mask |= adapter->eims_other;
4158
4159 for (i = 0; i < adapter->num_q_vectors; i++)
4160 igc_assign_vector(adapter->q_vector[i], vector++);
4161
4162 wrfl();
4163}
4164
4165/**
4166 * igc_irq_enable - Enable default interrupt generation settings
4167 * @adapter: board private structure
4168 */
4169static void igc_irq_enable(struct igc_adapter *adapter)
4170{
4171 struct igc_hw *hw = &adapter->hw;
4172
4173 if (adapter->msix_entries) {
4174 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4175 u32 regval = rd32(IGC_EIAC);
4176
4177 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4178 regval = rd32(IGC_EIAM);
4179 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4180 wr32(IGC_EIMS, adapter->eims_enable_mask);
4181 wr32(IGC_IMS, ims);
4182 } else {
4183 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4184 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4185 }
4186}
4187
4188/**
4189 * igc_irq_disable - Mask off interrupt generation on the NIC
4190 * @adapter: board private structure
4191 */
4192static void igc_irq_disable(struct igc_adapter *adapter)
4193{
4194 struct igc_hw *hw = &adapter->hw;
4195
4196 if (adapter->msix_entries) {
4197 u32 regval = rd32(IGC_EIAM);
4198
4199 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4200 wr32(IGC_EIMC, adapter->eims_enable_mask);
4201 regval = rd32(IGC_EIAC);
4202 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4203 }
4204
4205 wr32(IGC_IAM, 0);
4206 wr32(IGC_IMC, ~0);
4207 wrfl();
4208
4209 if (adapter->msix_entries) {
4210 int vector = 0, i;
4211
4212 synchronize_irq(adapter->msix_entries[vector++].vector);
4213
4214 for (i = 0; i < adapter->num_q_vectors; i++)
4215 synchronize_irq(adapter->msix_entries[vector++].vector);
4216 } else {
4217 synchronize_irq(adapter->pdev->irq);
4218 }
4219}
4220
4221void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4222 const u32 max_rss_queues)
4223{
4224 /* Determine if we need to pair queues. */
4225 /* If rss_queues > half of max_rss_queues, pair the queues in
4226 * order to conserve interrupts due to limited supply.
4227 */
4228 if (adapter->rss_queues > (max_rss_queues / 2))
4229 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4230 else
4231 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4232}
4233
4234unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4235{
4236 return IGC_MAX_RX_QUEUES;
4237}
4238
4239static void igc_init_queue_configuration(struct igc_adapter *adapter)
4240{
4241 u32 max_rss_queues;
4242
4243 max_rss_queues = igc_get_max_rss_queues(adapter);
4244 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4245
4246 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4247}
4248
4249/**
4250 * igc_reset_q_vector - Reset config for interrupt vector
4251 * @adapter: board private structure to initialize
4252 * @v_idx: Index of vector to be reset
4253 *
4254 * If NAPI is enabled it will delete any references to the
4255 * NAPI struct. This is preparation for igc_free_q_vector.
4256 */
4257static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4258{
4259 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4260
4261 /* if we're coming from igc_set_interrupt_capability, the vectors are
4262 * not yet allocated
4263 */
4264 if (!q_vector)
4265 return;
4266
4267 if (q_vector->tx.ring)
4268 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4269
4270 if (q_vector->rx.ring)
4271 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4272
4273 netif_napi_del(&q_vector->napi);
4274}
4275
4276/**
4277 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4278 * @adapter: board private structure to initialize
4279 * @v_idx: Index of vector to be freed
4280 *
4281 * This function frees the memory allocated to the q_vector.
4282 */
4283static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4284{
4285 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4286
4287 adapter->q_vector[v_idx] = NULL;
4288
4289 /* igc_get_stats64() might access the rings on this vector,
4290 * we must wait a grace period before freeing it.
4291 */
4292 if (q_vector)
4293 kfree_rcu(q_vector, rcu);
4294}
4295
4296/**
4297 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4298 * @adapter: board private structure to initialize
4299 *
4300 * This function frees the memory allocated to the q_vectors. In addition if
4301 * NAPI is enabled it will delete any references to the NAPI struct prior
4302 * to freeing the q_vector.
4303 */
4304static void igc_free_q_vectors(struct igc_adapter *adapter)
4305{
4306 int v_idx = adapter->num_q_vectors;
4307
4308 adapter->num_tx_queues = 0;
4309 adapter->num_rx_queues = 0;
4310 adapter->num_q_vectors = 0;
4311
4312 while (v_idx--) {
4313 igc_reset_q_vector(adapter, v_idx);
4314 igc_free_q_vector(adapter, v_idx);
4315 }
4316}
4317
4318/**
4319 * igc_update_itr - update the dynamic ITR value based on statistics
4320 * @q_vector: pointer to q_vector
4321 * @ring_container: ring info to update the itr for
4322 *
4323 * Stores a new ITR value based on packets and byte
4324 * counts during the last interrupt. The advantage of per interrupt
4325 * computation is faster updates and more accurate ITR for the current
4326 * traffic pattern. Constants in this function were computed
4327 * based on theoretical maximum wire speed and thresholds were set based
4328 * on testing data as well as attempting to minimize response time
4329 * while increasing bulk throughput.
4330 * NOTE: These calculations are only valid when operating in a single-
4331 * queue environment.
4332 */
4333static void igc_update_itr(struct igc_q_vector *q_vector,
4334 struct igc_ring_container *ring_container)
4335{
4336 unsigned int packets = ring_container->total_packets;
4337 unsigned int bytes = ring_container->total_bytes;
4338 u8 itrval = ring_container->itr;
4339
4340 /* no packets, exit with status unchanged */
4341 if (packets == 0)
4342 return;
4343
4344 switch (itrval) {
4345 case lowest_latency:
4346 /* handle TSO and jumbo frames */
4347 if (bytes / packets > 8000)
4348 itrval = bulk_latency;
4349 else if ((packets < 5) && (bytes > 512))
4350 itrval = low_latency;
4351 break;
4352 case low_latency: /* 50 usec aka 20000 ints/s */
4353 if (bytes > 10000) {
4354 /* this if handles the TSO accounting */
4355 if (bytes / packets > 8000)
4356 itrval = bulk_latency;
4357 else if ((packets < 10) || ((bytes / packets) > 1200))
4358 itrval = bulk_latency;
4359 else if ((packets > 35))
4360 itrval = lowest_latency;
4361 } else if (bytes / packets > 2000) {
4362 itrval = bulk_latency;
4363 } else if (packets <= 2 && bytes < 512) {
4364 itrval = lowest_latency;
4365 }
4366 break;
4367 case bulk_latency: /* 250 usec aka 4000 ints/s */
4368 if (bytes > 25000) {
4369 if (packets > 35)
4370 itrval = low_latency;
4371 } else if (bytes < 1500) {
4372 itrval = low_latency;
4373 }
4374 break;
4375 }
4376
4377 /* clear work counters since we have the values we need */
4378 ring_container->total_bytes = 0;
4379 ring_container->total_packets = 0;
4380
4381 /* write updated itr to ring container */
4382 ring_container->itr = itrval;
4383}
4384
4385static void igc_set_itr(struct igc_q_vector *q_vector)
4386{
4387 struct igc_adapter *adapter = q_vector->adapter;
4388 u32 new_itr = q_vector->itr_val;
4389 u8 current_itr = 0;
4390
4391 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4392 switch (adapter->link_speed) {
4393 case SPEED_10:
4394 case SPEED_100:
4395 current_itr = 0;
4396 new_itr = IGC_4K_ITR;
4397 goto set_itr_now;
4398 default:
4399 break;
4400 }
4401
4402 igc_update_itr(q_vector, &q_vector->tx);
4403 igc_update_itr(q_vector, &q_vector->rx);
4404
4405 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4406
4407 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4408 if (current_itr == lowest_latency &&
4409 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4410 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4411 current_itr = low_latency;
4412
4413 switch (current_itr) {
4414 /* counts and packets in update_itr are dependent on these numbers */
4415 case lowest_latency:
4416 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4417 break;
4418 case low_latency:
4419 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4420 break;
4421 case bulk_latency:
4422 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4423 break;
4424 default:
4425 break;
4426 }
4427
4428set_itr_now:
4429 if (new_itr != q_vector->itr_val) {
4430 /* this attempts to bias the interrupt rate towards Bulk
4431 * by adding intermediate steps when interrupt rate is
4432 * increasing
4433 */
4434 new_itr = new_itr > q_vector->itr_val ?
4435 max((new_itr * q_vector->itr_val) /
4436 (new_itr + (q_vector->itr_val >> 2)),
4437 new_itr) : new_itr;
4438 /* Don't write the value here; it resets the adapter's
4439 * internal timer, and causes us to delay far longer than
4440 * we should between interrupts. Instead, we write the ITR
4441 * value at the beginning of the next interrupt so the timing
4442 * ends up being correct.
4443 */
4444 q_vector->itr_val = new_itr;
4445 q_vector->set_itr = 1;
4446 }
4447}
4448
4449static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4450{
4451 int v_idx = adapter->num_q_vectors;
4452
4453 if (adapter->msix_entries) {
4454 pci_disable_msix(adapter->pdev);
4455 kfree(adapter->msix_entries);
4456 adapter->msix_entries = NULL;
4457 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4458 pci_disable_msi(adapter->pdev);
4459 }
4460
4461 while (v_idx--)
4462 igc_reset_q_vector(adapter, v_idx);
4463}
4464
4465/**
4466 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4467 * @adapter: Pointer to adapter structure
4468 * @msix: boolean value for MSI-X capability
4469 *
4470 * Attempt to configure interrupts using the best available
4471 * capabilities of the hardware and kernel.
4472 */
4473static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4474 bool msix)
4475{
4476 int numvecs, i;
4477 int err;
4478
4479 if (!msix)
4480 goto msi_only;
4481 adapter->flags |= IGC_FLAG_HAS_MSIX;
4482
4483 /* Number of supported queues. */
4484 adapter->num_rx_queues = adapter->rss_queues;
4485
4486 adapter->num_tx_queues = adapter->rss_queues;
4487
4488 /* start with one vector for every Rx queue */
4489 numvecs = adapter->num_rx_queues;
4490
4491 /* if Tx handler is separate add 1 for every Tx queue */
4492 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4493 numvecs += adapter->num_tx_queues;
4494
4495 /* store the number of vectors reserved for queues */
4496 adapter->num_q_vectors = numvecs;
4497
4498 /* add 1 vector for link status interrupts */
4499 numvecs++;
4500
4501 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4502 GFP_KERNEL);
4503
4504 if (!adapter->msix_entries)
4505 return;
4506
4507 /* populate entry values */
4508 for (i = 0; i < numvecs; i++)
4509 adapter->msix_entries[i].entry = i;
4510
4511 err = pci_enable_msix_range(adapter->pdev,
4512 adapter->msix_entries,
4513 numvecs,
4514 numvecs);
4515 if (err > 0)
4516 return;
4517
4518 kfree(adapter->msix_entries);
4519 adapter->msix_entries = NULL;
4520
4521 igc_reset_interrupt_capability(adapter);
4522
4523msi_only:
4524 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4525
4526 adapter->rss_queues = 1;
4527 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4528 adapter->num_rx_queues = 1;
4529 adapter->num_tx_queues = 1;
4530 adapter->num_q_vectors = 1;
4531 if (!pci_enable_msi(adapter->pdev))
4532 adapter->flags |= IGC_FLAG_HAS_MSI;
4533}
4534
4535/**
4536 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4537 * @q_vector: pointer to q_vector
4538 *
4539 * Stores a new ITR value based on strictly on packet size. This
4540 * algorithm is less sophisticated than that used in igc_update_itr,
4541 * due to the difficulty of synchronizing statistics across multiple
4542 * receive rings. The divisors and thresholds used by this function
4543 * were determined based on theoretical maximum wire speed and testing
4544 * data, in order to minimize response time while increasing bulk
4545 * throughput.
4546 * NOTE: This function is called only when operating in a multiqueue
4547 * receive environment.
4548 */
4549static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4550{
4551 struct igc_adapter *adapter = q_vector->adapter;
4552 int new_val = q_vector->itr_val;
4553 int avg_wire_size = 0;
4554 unsigned int packets;
4555
4556 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4557 * ints/sec - ITR timer value of 120 ticks.
4558 */
4559 switch (adapter->link_speed) {
4560 case SPEED_10:
4561 case SPEED_100:
4562 new_val = IGC_4K_ITR;
4563 goto set_itr_val;
4564 default:
4565 break;
4566 }
4567
4568 packets = q_vector->rx.total_packets;
4569 if (packets)
4570 avg_wire_size = q_vector->rx.total_bytes / packets;
4571
4572 packets = q_vector->tx.total_packets;
4573 if (packets)
4574 avg_wire_size = max_t(u32, avg_wire_size,
4575 q_vector->tx.total_bytes / packets);
4576
4577 /* if avg_wire_size isn't set no work was done */
4578 if (!avg_wire_size)
4579 goto clear_counts;
4580
4581 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4582 avg_wire_size += 24;
4583
4584 /* Don't starve jumbo frames */
4585 avg_wire_size = min(avg_wire_size, 3000);
4586
4587 /* Give a little boost to mid-size frames */
4588 if (avg_wire_size > 300 && avg_wire_size < 1200)
4589 new_val = avg_wire_size / 3;
4590 else
4591 new_val = avg_wire_size / 2;
4592
4593 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4594 if (new_val < IGC_20K_ITR &&
4595 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4596 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4597 new_val = IGC_20K_ITR;
4598
4599set_itr_val:
4600 if (new_val != q_vector->itr_val) {
4601 q_vector->itr_val = new_val;
4602 q_vector->set_itr = 1;
4603 }
4604clear_counts:
4605 q_vector->rx.total_bytes = 0;
4606 q_vector->rx.total_packets = 0;
4607 q_vector->tx.total_bytes = 0;
4608 q_vector->tx.total_packets = 0;
4609}
4610
4611static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4612{
4613 struct igc_adapter *adapter = q_vector->adapter;
4614 struct igc_hw *hw = &adapter->hw;
4615
4616 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4617 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4618 if (adapter->num_q_vectors == 1)
4619 igc_set_itr(q_vector);
4620 else
4621 igc_update_ring_itr(q_vector);
4622 }
4623
4624 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4625 if (adapter->msix_entries)
4626 wr32(IGC_EIMS, q_vector->eims_value);
4627 else
4628 igc_irq_enable(adapter);
4629 }
4630}
4631
4632static void igc_add_ring(struct igc_ring *ring,
4633 struct igc_ring_container *head)
4634{
4635 head->ring = ring;
4636 head->count++;
4637}
4638
4639/**
4640 * igc_cache_ring_register - Descriptor ring to register mapping
4641 * @adapter: board private structure to initialize
4642 *
4643 * Once we know the feature-set enabled for the device, we'll cache
4644 * the register offset the descriptor ring is assigned to.
4645 */
4646static void igc_cache_ring_register(struct igc_adapter *adapter)
4647{
4648 int i = 0, j = 0;
4649
4650 switch (adapter->hw.mac.type) {
4651 case igc_i225:
4652 default:
4653 for (; i < adapter->num_rx_queues; i++)
4654 adapter->rx_ring[i]->reg_idx = i;
4655 for (; j < adapter->num_tx_queues; j++)
4656 adapter->tx_ring[j]->reg_idx = j;
4657 break;
4658 }
4659}
4660
4661/**
4662 * igc_poll - NAPI Rx polling callback
4663 * @napi: napi polling structure
4664 * @budget: count of how many packets we should handle
4665 */
4666static int igc_poll(struct napi_struct *napi, int budget)
4667{
4668 struct igc_q_vector *q_vector = container_of(napi,
4669 struct igc_q_vector,
4670 napi);
4671 struct igc_ring *rx_ring = q_vector->rx.ring;
4672 bool clean_complete = true;
4673 int work_done = 0;
4674
4675 if (q_vector->tx.ring)
4676 clean_complete = igc_clean_tx_irq(q_vector, budget);
4677
4678 if (rx_ring) {
4679 int cleaned = rx_ring->xsk_pool ?
4680 igc_clean_rx_irq_zc(q_vector, budget) :
4681 igc_clean_rx_irq(q_vector, budget);
4682
4683 work_done += cleaned;
4684 if (cleaned >= budget)
4685 clean_complete = false;
4686 }
4687
4688 /* If all work not completed, return budget and keep polling */
4689 if (!clean_complete)
4690 return budget;
4691
4692 /* Exit the polling mode, but don't re-enable interrupts if stack might
4693 * poll us due to busy-polling
4694 */
4695 if (likely(napi_complete_done(napi, work_done)))
4696 igc_ring_irq_enable(q_vector);
4697
4698 return min(work_done, budget - 1);
4699}
4700
4701/**
4702 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4703 * @adapter: board private structure to initialize
4704 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4705 * @v_idx: index of vector in adapter struct
4706 * @txr_count: total number of Tx rings to allocate
4707 * @txr_idx: index of first Tx ring to allocate
4708 * @rxr_count: total number of Rx rings to allocate
4709 * @rxr_idx: index of first Rx ring to allocate
4710 *
4711 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4712 */
4713static int igc_alloc_q_vector(struct igc_adapter *adapter,
4714 unsigned int v_count, unsigned int v_idx,
4715 unsigned int txr_count, unsigned int txr_idx,
4716 unsigned int rxr_count, unsigned int rxr_idx)
4717{
4718 struct igc_q_vector *q_vector;
4719 struct igc_ring *ring;
4720 int ring_count;
4721
4722 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4723 if (txr_count > 1 || rxr_count > 1)
4724 return -ENOMEM;
4725
4726 ring_count = txr_count + rxr_count;
4727
4728 /* allocate q_vector and rings */
4729 q_vector = adapter->q_vector[v_idx];
4730 if (!q_vector)
4731 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4732 GFP_KERNEL);
4733 else
4734 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4735 if (!q_vector)
4736 return -ENOMEM;
4737
4738 /* initialize NAPI */
4739 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4740
4741 /* tie q_vector and adapter together */
4742 adapter->q_vector[v_idx] = q_vector;
4743 q_vector->adapter = adapter;
4744
4745 /* initialize work limits */
4746 q_vector->tx.work_limit = adapter->tx_work_limit;
4747
4748 /* initialize ITR configuration */
4749 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4750 q_vector->itr_val = IGC_START_ITR;
4751
4752 /* initialize pointer to rings */
4753 ring = q_vector->ring;
4754
4755 /* initialize ITR */
4756 if (rxr_count) {
4757 /* rx or rx/tx vector */
4758 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4759 q_vector->itr_val = adapter->rx_itr_setting;
4760 } else {
4761 /* tx only vector */
4762 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4763 q_vector->itr_val = adapter->tx_itr_setting;
4764 }
4765
4766 if (txr_count) {
4767 /* assign generic ring traits */
4768 ring->dev = &adapter->pdev->dev;
4769 ring->netdev = adapter->netdev;
4770
4771 /* configure backlink on ring */
4772 ring->q_vector = q_vector;
4773
4774 /* update q_vector Tx values */
4775 igc_add_ring(ring, &q_vector->tx);
4776
4777 /* apply Tx specific ring traits */
4778 ring->count = adapter->tx_ring_count;
4779 ring->queue_index = txr_idx;
4780
4781 /* assign ring to adapter */
4782 adapter->tx_ring[txr_idx] = ring;
4783
4784 /* push pointer to next ring */
4785 ring++;
4786 }
4787
4788 if (rxr_count) {
4789 /* assign generic ring traits */
4790 ring->dev = &adapter->pdev->dev;
4791 ring->netdev = adapter->netdev;
4792
4793 /* configure backlink on ring */
4794 ring->q_vector = q_vector;
4795
4796 /* update q_vector Rx values */
4797 igc_add_ring(ring, &q_vector->rx);
4798
4799 /* apply Rx specific ring traits */
4800 ring->count = adapter->rx_ring_count;
4801 ring->queue_index = rxr_idx;
4802
4803 /* assign ring to adapter */
4804 adapter->rx_ring[rxr_idx] = ring;
4805 }
4806
4807 return 0;
4808}
4809
4810/**
4811 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4812 * @adapter: board private structure to initialize
4813 *
4814 * We allocate one q_vector per queue interrupt. If allocation fails we
4815 * return -ENOMEM.
4816 */
4817static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4818{
4819 int rxr_remaining = adapter->num_rx_queues;
4820 int txr_remaining = adapter->num_tx_queues;
4821 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4822 int q_vectors = adapter->num_q_vectors;
4823 int err;
4824
4825 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4826 for (; rxr_remaining; v_idx++) {
4827 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4828 0, 0, 1, rxr_idx);
4829
4830 if (err)
4831 goto err_out;
4832
4833 /* update counts and index */
4834 rxr_remaining--;
4835 rxr_idx++;
4836 }
4837 }
4838
4839 for (; v_idx < q_vectors; v_idx++) {
4840 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4841 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4842
4843 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4844 tqpv, txr_idx, rqpv, rxr_idx);
4845
4846 if (err)
4847 goto err_out;
4848
4849 /* update counts and index */
4850 rxr_remaining -= rqpv;
4851 txr_remaining -= tqpv;
4852 rxr_idx++;
4853 txr_idx++;
4854 }
4855
4856 return 0;
4857
4858err_out:
4859 adapter->num_tx_queues = 0;
4860 adapter->num_rx_queues = 0;
4861 adapter->num_q_vectors = 0;
4862
4863 while (v_idx--)
4864 igc_free_q_vector(adapter, v_idx);
4865
4866 return -ENOMEM;
4867}
4868
4869/**
4870 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4871 * @adapter: Pointer to adapter structure
4872 * @msix: boolean for MSI-X capability
4873 *
4874 * This function initializes the interrupts and allocates all of the queues.
4875 */
4876static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4877{
4878 struct net_device *dev = adapter->netdev;
4879 int err = 0;
4880
4881 igc_set_interrupt_capability(adapter, msix);
4882
4883 err = igc_alloc_q_vectors(adapter);
4884 if (err) {
4885 netdev_err(dev, "Unable to allocate memory for vectors\n");
4886 goto err_alloc_q_vectors;
4887 }
4888
4889 igc_cache_ring_register(adapter);
4890
4891 return 0;
4892
4893err_alloc_q_vectors:
4894 igc_reset_interrupt_capability(adapter);
4895 return err;
4896}
4897
4898/**
4899 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4900 * @adapter: board private structure to initialize
4901 *
4902 * igc_sw_init initializes the Adapter private data structure.
4903 * Fields are initialized based on PCI device information and
4904 * OS network device settings (MTU size).
4905 */
4906static int igc_sw_init(struct igc_adapter *adapter)
4907{
4908 struct net_device *netdev = adapter->netdev;
4909 struct pci_dev *pdev = adapter->pdev;
4910 struct igc_hw *hw = &adapter->hw;
4911
4912 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4913
4914 /* set default ring sizes */
4915 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4916 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4917
4918 /* set default ITR values */
4919 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4920 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4921
4922 /* set default work limits */
4923 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4924
4925 /* adjust max frame to be at least the size of a standard frame */
4926 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4927 VLAN_HLEN;
4928 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4929
4930 mutex_init(&adapter->nfc_rule_lock);
4931 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4932 adapter->nfc_rule_count = 0;
4933
4934 spin_lock_init(&adapter->stats64_lock);
4935 spin_lock_init(&adapter->qbv_tx_lock);
4936 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4937 adapter->flags |= IGC_FLAG_HAS_MSIX;
4938
4939 igc_init_queue_configuration(adapter);
4940
4941 /* This call may decrease the number of queues */
4942 if (igc_init_interrupt_scheme(adapter, true)) {
4943 netdev_err(netdev, "Unable to allocate memory for queues\n");
4944 return -ENOMEM;
4945 }
4946
4947 /* Explicitly disable IRQ since the NIC can be in any state. */
4948 igc_irq_disable(adapter);
4949
4950 set_bit(__IGC_DOWN, &adapter->state);
4951
4952 return 0;
4953}
4954
4955/**
4956 * igc_up - Open the interface and prepare it to handle traffic
4957 * @adapter: board private structure
4958 */
4959void igc_up(struct igc_adapter *adapter)
4960{
4961 struct igc_hw *hw = &adapter->hw;
4962 int i = 0;
4963
4964 /* hardware has been reset, we need to reload some things */
4965 igc_configure(adapter);
4966
4967 clear_bit(__IGC_DOWN, &adapter->state);
4968
4969 for (i = 0; i < adapter->num_q_vectors; i++)
4970 napi_enable(&adapter->q_vector[i]->napi);
4971
4972 if (adapter->msix_entries)
4973 igc_configure_msix(adapter);
4974 else
4975 igc_assign_vector(adapter->q_vector[0], 0);
4976
4977 /* Clear any pending interrupts. */
4978 rd32(IGC_ICR);
4979 igc_irq_enable(adapter);
4980
4981 netif_tx_start_all_queues(adapter->netdev);
4982
4983 /* start the watchdog. */
4984 hw->mac.get_link_status = true;
4985 schedule_work(&adapter->watchdog_task);
4986}
4987
4988/**
4989 * igc_update_stats - Update the board statistics counters
4990 * @adapter: board private structure
4991 */
4992void igc_update_stats(struct igc_adapter *adapter)
4993{
4994 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4995 struct pci_dev *pdev = adapter->pdev;
4996 struct igc_hw *hw = &adapter->hw;
4997 u64 _bytes, _packets;
4998 u64 bytes, packets;
4999 unsigned int start;
5000 u32 mpc;
5001 int i;
5002
5003 /* Prevent stats update while adapter is being reset, or if the pci
5004 * connection is down.
5005 */
5006 if (adapter->link_speed == 0)
5007 return;
5008 if (pci_channel_offline(pdev))
5009 return;
5010
5011 packets = 0;
5012 bytes = 0;
5013
5014 rcu_read_lock();
5015 for (i = 0; i < adapter->num_rx_queues; i++) {
5016 struct igc_ring *ring = adapter->rx_ring[i];
5017 u32 rqdpc = rd32(IGC_RQDPC(i));
5018
5019 if (hw->mac.type >= igc_i225)
5020 wr32(IGC_RQDPC(i), 0);
5021
5022 if (rqdpc) {
5023 ring->rx_stats.drops += rqdpc;
5024 net_stats->rx_fifo_errors += rqdpc;
5025 }
5026
5027 do {
5028 start = u64_stats_fetch_begin(&ring->rx_syncp);
5029 _bytes = ring->rx_stats.bytes;
5030 _packets = ring->rx_stats.packets;
5031 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5032 bytes += _bytes;
5033 packets += _packets;
5034 }
5035
5036 net_stats->rx_bytes = bytes;
5037 net_stats->rx_packets = packets;
5038
5039 packets = 0;
5040 bytes = 0;
5041 for (i = 0; i < adapter->num_tx_queues; i++) {
5042 struct igc_ring *ring = adapter->tx_ring[i];
5043
5044 do {
5045 start = u64_stats_fetch_begin(&ring->tx_syncp);
5046 _bytes = ring->tx_stats.bytes;
5047 _packets = ring->tx_stats.packets;
5048 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5049 bytes += _bytes;
5050 packets += _packets;
5051 }
5052 net_stats->tx_bytes = bytes;
5053 net_stats->tx_packets = packets;
5054 rcu_read_unlock();
5055
5056 /* read stats registers */
5057 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5058 adapter->stats.gprc += rd32(IGC_GPRC);
5059 adapter->stats.gorc += rd32(IGC_GORCL);
5060 rd32(IGC_GORCH); /* clear GORCL */
5061 adapter->stats.bprc += rd32(IGC_BPRC);
5062 adapter->stats.mprc += rd32(IGC_MPRC);
5063 adapter->stats.roc += rd32(IGC_ROC);
5064
5065 adapter->stats.prc64 += rd32(IGC_PRC64);
5066 adapter->stats.prc127 += rd32(IGC_PRC127);
5067 adapter->stats.prc255 += rd32(IGC_PRC255);
5068 adapter->stats.prc511 += rd32(IGC_PRC511);
5069 adapter->stats.prc1023 += rd32(IGC_PRC1023);
5070 adapter->stats.prc1522 += rd32(IGC_PRC1522);
5071 adapter->stats.tlpic += rd32(IGC_TLPIC);
5072 adapter->stats.rlpic += rd32(IGC_RLPIC);
5073 adapter->stats.hgptc += rd32(IGC_HGPTC);
5074
5075 mpc = rd32(IGC_MPC);
5076 adapter->stats.mpc += mpc;
5077 net_stats->rx_fifo_errors += mpc;
5078 adapter->stats.scc += rd32(IGC_SCC);
5079 adapter->stats.ecol += rd32(IGC_ECOL);
5080 adapter->stats.mcc += rd32(IGC_MCC);
5081 adapter->stats.latecol += rd32(IGC_LATECOL);
5082 adapter->stats.dc += rd32(IGC_DC);
5083 adapter->stats.rlec += rd32(IGC_RLEC);
5084 adapter->stats.xonrxc += rd32(IGC_XONRXC);
5085 adapter->stats.xontxc += rd32(IGC_XONTXC);
5086 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5087 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5088 adapter->stats.fcruc += rd32(IGC_FCRUC);
5089 adapter->stats.gptc += rd32(IGC_GPTC);
5090 adapter->stats.gotc += rd32(IGC_GOTCL);
5091 rd32(IGC_GOTCH); /* clear GOTCL */
5092 adapter->stats.rnbc += rd32(IGC_RNBC);
5093 adapter->stats.ruc += rd32(IGC_RUC);
5094 adapter->stats.rfc += rd32(IGC_RFC);
5095 adapter->stats.rjc += rd32(IGC_RJC);
5096 adapter->stats.tor += rd32(IGC_TORH);
5097 adapter->stats.tot += rd32(IGC_TOTH);
5098 adapter->stats.tpr += rd32(IGC_TPR);
5099
5100 adapter->stats.ptc64 += rd32(IGC_PTC64);
5101 adapter->stats.ptc127 += rd32(IGC_PTC127);
5102 adapter->stats.ptc255 += rd32(IGC_PTC255);
5103 adapter->stats.ptc511 += rd32(IGC_PTC511);
5104 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5105 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5106
5107 adapter->stats.mptc += rd32(IGC_MPTC);
5108 adapter->stats.bptc += rd32(IGC_BPTC);
5109
5110 adapter->stats.tpt += rd32(IGC_TPT);
5111 adapter->stats.colc += rd32(IGC_COLC);
5112 adapter->stats.colc += rd32(IGC_RERC);
5113
5114 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5115
5116 adapter->stats.tsctc += rd32(IGC_TSCTC);
5117
5118 adapter->stats.iac += rd32(IGC_IAC);
5119
5120 /* Fill out the OS statistics structure */
5121 net_stats->multicast = adapter->stats.mprc;
5122 net_stats->collisions = adapter->stats.colc;
5123
5124 /* Rx Errors */
5125
5126 /* RLEC on some newer hardware can be incorrect so build
5127 * our own version based on RUC and ROC
5128 */
5129 net_stats->rx_errors = adapter->stats.rxerrc +
5130 adapter->stats.crcerrs + adapter->stats.algnerrc +
5131 adapter->stats.ruc + adapter->stats.roc +
5132 adapter->stats.cexterr;
5133 net_stats->rx_length_errors = adapter->stats.ruc +
5134 adapter->stats.roc;
5135 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5136 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5137 net_stats->rx_missed_errors = adapter->stats.mpc;
5138
5139 /* Tx Errors */
5140 net_stats->tx_errors = adapter->stats.ecol +
5141 adapter->stats.latecol;
5142 net_stats->tx_aborted_errors = adapter->stats.ecol;
5143 net_stats->tx_window_errors = adapter->stats.latecol;
5144 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5145
5146 /* Tx Dropped */
5147 net_stats->tx_dropped = adapter->stats.txdrop;
5148
5149 /* Management Stats */
5150 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5151 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5152 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5153}
5154
5155/**
5156 * igc_down - Close the interface
5157 * @adapter: board private structure
5158 */
5159void igc_down(struct igc_adapter *adapter)
5160{
5161 struct net_device *netdev = adapter->netdev;
5162 struct igc_hw *hw = &adapter->hw;
5163 u32 tctl, rctl;
5164 int i = 0;
5165
5166 set_bit(__IGC_DOWN, &adapter->state);
5167
5168 igc_ptp_suspend(adapter);
5169
5170 if (pci_device_is_present(adapter->pdev)) {
5171 /* disable receives in the hardware */
5172 rctl = rd32(IGC_RCTL);
5173 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5174 /* flush and sleep below */
5175 }
5176 /* set trans_start so we don't get spurious watchdogs during reset */
5177 netif_trans_update(netdev);
5178
5179 netif_carrier_off(netdev);
5180 netif_tx_stop_all_queues(netdev);
5181
5182 if (pci_device_is_present(adapter->pdev)) {
5183 /* disable transmits in the hardware */
5184 tctl = rd32(IGC_TCTL);
5185 tctl &= ~IGC_TCTL_EN;
5186 wr32(IGC_TCTL, tctl);
5187 /* flush both disables and wait for them to finish */
5188 wrfl();
5189 usleep_range(10000, 20000);
5190
5191 igc_irq_disable(adapter);
5192 }
5193
5194 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5195
5196 for (i = 0; i < adapter->num_q_vectors; i++) {
5197 if (adapter->q_vector[i]) {
5198 napi_synchronize(&adapter->q_vector[i]->napi);
5199 napi_disable(&adapter->q_vector[i]->napi);
5200 }
5201 }
5202
5203 del_timer_sync(&adapter->watchdog_timer);
5204 del_timer_sync(&adapter->phy_info_timer);
5205
5206 /* record the stats before reset*/
5207 spin_lock(&adapter->stats64_lock);
5208 igc_update_stats(adapter);
5209 spin_unlock(&adapter->stats64_lock);
5210
5211 adapter->link_speed = 0;
5212 adapter->link_duplex = 0;
5213
5214 if (!pci_channel_offline(adapter->pdev))
5215 igc_reset(adapter);
5216
5217 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5218 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5219
5220 igc_disable_all_tx_rings_hw(adapter);
5221 igc_clean_all_tx_rings(adapter);
5222 igc_clean_all_rx_rings(adapter);
5223}
5224
5225void igc_reinit_locked(struct igc_adapter *adapter)
5226{
5227 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5228 usleep_range(1000, 2000);
5229 igc_down(adapter);
5230 igc_up(adapter);
5231 clear_bit(__IGC_RESETTING, &adapter->state);
5232}
5233
5234static void igc_reset_task(struct work_struct *work)
5235{
5236 struct igc_adapter *adapter;
5237
5238 adapter = container_of(work, struct igc_adapter, reset_task);
5239
5240 rtnl_lock();
5241 /* If we're already down or resetting, just bail */
5242 if (test_bit(__IGC_DOWN, &adapter->state) ||
5243 test_bit(__IGC_RESETTING, &adapter->state)) {
5244 rtnl_unlock();
5245 return;
5246 }
5247
5248 igc_rings_dump(adapter);
5249 igc_regs_dump(adapter);
5250 netdev_err(adapter->netdev, "Reset adapter\n");
5251 igc_reinit_locked(adapter);
5252 rtnl_unlock();
5253}
5254
5255/**
5256 * igc_change_mtu - Change the Maximum Transfer Unit
5257 * @netdev: network interface device structure
5258 * @new_mtu: new value for maximum frame size
5259 *
5260 * Returns 0 on success, negative on failure
5261 */
5262static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5263{
5264 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5265 struct igc_adapter *adapter = netdev_priv(netdev);
5266
5267 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5268 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5269 return -EINVAL;
5270 }
5271
5272 /* adjust max frame to be at least the size of a standard frame */
5273 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5274 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5275
5276 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5277 usleep_range(1000, 2000);
5278
5279 /* igc_down has a dependency on max_frame_size */
5280 adapter->max_frame_size = max_frame;
5281
5282 if (netif_running(netdev))
5283 igc_down(adapter);
5284
5285 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5286 WRITE_ONCE(netdev->mtu, new_mtu);
5287
5288 if (netif_running(netdev))
5289 igc_up(adapter);
5290 else
5291 igc_reset(adapter);
5292
5293 clear_bit(__IGC_RESETTING, &adapter->state);
5294
5295 return 0;
5296}
5297
5298/**
5299 * igc_tx_timeout - Respond to a Tx Hang
5300 * @netdev: network interface device structure
5301 * @txqueue: queue number that timed out
5302 **/
5303static void igc_tx_timeout(struct net_device *netdev,
5304 unsigned int __always_unused txqueue)
5305{
5306 struct igc_adapter *adapter = netdev_priv(netdev);
5307 struct igc_hw *hw = &adapter->hw;
5308
5309 /* Do the reset outside of interrupt context */
5310 adapter->tx_timeout_count++;
5311 schedule_work(&adapter->reset_task);
5312 wr32(IGC_EICS,
5313 (adapter->eims_enable_mask & ~adapter->eims_other));
5314}
5315
5316/**
5317 * igc_get_stats64 - Get System Network Statistics
5318 * @netdev: network interface device structure
5319 * @stats: rtnl_link_stats64 pointer
5320 *
5321 * Returns the address of the device statistics structure.
5322 * The statistics are updated here and also from the timer callback.
5323 */
5324static void igc_get_stats64(struct net_device *netdev,
5325 struct rtnl_link_stats64 *stats)
5326{
5327 struct igc_adapter *adapter = netdev_priv(netdev);
5328
5329 spin_lock(&adapter->stats64_lock);
5330 if (!test_bit(__IGC_RESETTING, &adapter->state))
5331 igc_update_stats(adapter);
5332 memcpy(stats, &adapter->stats64, sizeof(*stats));
5333 spin_unlock(&adapter->stats64_lock);
5334}
5335
5336static netdev_features_t igc_fix_features(struct net_device *netdev,
5337 netdev_features_t features)
5338{
5339 /* Since there is no support for separate Rx/Tx vlan accel
5340 * enable/disable make sure Tx flag is always in same state as Rx.
5341 */
5342 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5343 features |= NETIF_F_HW_VLAN_CTAG_TX;
5344 else
5345 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5346
5347 return features;
5348}
5349
5350static int igc_set_features(struct net_device *netdev,
5351 netdev_features_t features)
5352{
5353 netdev_features_t changed = netdev->features ^ features;
5354 struct igc_adapter *adapter = netdev_priv(netdev);
5355
5356 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5357 igc_vlan_mode(netdev, features);
5358
5359 /* Add VLAN support */
5360 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5361 return 0;
5362
5363 if (!(features & NETIF_F_NTUPLE))
5364 igc_flush_nfc_rules(adapter);
5365
5366 netdev->features = features;
5367
5368 if (netif_running(netdev))
5369 igc_reinit_locked(adapter);
5370 else
5371 igc_reset(adapter);
5372
5373 return 1;
5374}
5375
5376static netdev_features_t
5377igc_features_check(struct sk_buff *skb, struct net_device *dev,
5378 netdev_features_t features)
5379{
5380 unsigned int network_hdr_len, mac_hdr_len;
5381
5382 /* Make certain the headers can be described by a context descriptor */
5383 mac_hdr_len = skb_network_offset(skb);
5384 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5385 return features & ~(NETIF_F_HW_CSUM |
5386 NETIF_F_SCTP_CRC |
5387 NETIF_F_HW_VLAN_CTAG_TX |
5388 NETIF_F_TSO |
5389 NETIF_F_TSO6);
5390
5391 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5392 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5393 return features & ~(NETIF_F_HW_CSUM |
5394 NETIF_F_SCTP_CRC |
5395 NETIF_F_TSO |
5396 NETIF_F_TSO6);
5397
5398 /* We can only support IPv4 TSO in tunnels if we can mangle the
5399 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5400 */
5401 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5402 features &= ~NETIF_F_TSO;
5403
5404 return features;
5405}
5406
5407static void igc_tsync_interrupt(struct igc_adapter *adapter)
5408{
5409 struct igc_hw *hw = &adapter->hw;
5410 u32 tsauxc, sec, nsec, tsicr;
5411 struct ptp_clock_event event;
5412 struct timespec64 ts;
5413
5414 tsicr = rd32(IGC_TSICR);
5415
5416 if (tsicr & IGC_TSICR_SYS_WRAP) {
5417 event.type = PTP_CLOCK_PPS;
5418 if (adapter->ptp_caps.pps)
5419 ptp_clock_event(adapter->ptp_clock, &event);
5420 }
5421
5422 if (tsicr & IGC_TSICR_TXTS) {
5423 /* retrieve hardware timestamp */
5424 igc_ptp_tx_tstamp_event(adapter);
5425 }
5426
5427 if (tsicr & IGC_TSICR_TT0) {
5428 spin_lock(&adapter->tmreg_lock);
5429 ts = timespec64_add(adapter->perout[0].start,
5430 adapter->perout[0].period);
5431 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5432 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5433 tsauxc = rd32(IGC_TSAUXC);
5434 tsauxc |= IGC_TSAUXC_EN_TT0;
5435 wr32(IGC_TSAUXC, tsauxc);
5436 adapter->perout[0].start = ts;
5437 spin_unlock(&adapter->tmreg_lock);
5438 }
5439
5440 if (tsicr & IGC_TSICR_TT1) {
5441 spin_lock(&adapter->tmreg_lock);
5442 ts = timespec64_add(adapter->perout[1].start,
5443 adapter->perout[1].period);
5444 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5445 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5446 tsauxc = rd32(IGC_TSAUXC);
5447 tsauxc |= IGC_TSAUXC_EN_TT1;
5448 wr32(IGC_TSAUXC, tsauxc);
5449 adapter->perout[1].start = ts;
5450 spin_unlock(&adapter->tmreg_lock);
5451 }
5452
5453 if (tsicr & IGC_TSICR_AUTT0) {
5454 nsec = rd32(IGC_AUXSTMPL0);
5455 sec = rd32(IGC_AUXSTMPH0);
5456 event.type = PTP_CLOCK_EXTTS;
5457 event.index = 0;
5458 event.timestamp = sec * NSEC_PER_SEC + nsec;
5459 ptp_clock_event(adapter->ptp_clock, &event);
5460 }
5461
5462 if (tsicr & IGC_TSICR_AUTT1) {
5463 nsec = rd32(IGC_AUXSTMPL1);
5464 sec = rd32(IGC_AUXSTMPH1);
5465 event.type = PTP_CLOCK_EXTTS;
5466 event.index = 1;
5467 event.timestamp = sec * NSEC_PER_SEC + nsec;
5468 ptp_clock_event(adapter->ptp_clock, &event);
5469 }
5470}
5471
5472/**
5473 * igc_msix_other - msix other interrupt handler
5474 * @irq: interrupt number
5475 * @data: pointer to a q_vector
5476 */
5477static irqreturn_t igc_msix_other(int irq, void *data)
5478{
5479 struct igc_adapter *adapter = data;
5480 struct igc_hw *hw = &adapter->hw;
5481 u32 icr = rd32(IGC_ICR);
5482
5483 /* reading ICR causes bit 31 of EICR to be cleared */
5484 if (icr & IGC_ICR_DRSTA)
5485 schedule_work(&adapter->reset_task);
5486
5487 if (icr & IGC_ICR_DOUTSYNC) {
5488 /* HW is reporting DMA is out of sync */
5489 adapter->stats.doosync++;
5490 }
5491
5492 if (icr & IGC_ICR_LSC) {
5493 hw->mac.get_link_status = true;
5494 /* guard against interrupt when we're going down */
5495 if (!test_bit(__IGC_DOWN, &adapter->state))
5496 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5497 }
5498
5499 if (icr & IGC_ICR_TS)
5500 igc_tsync_interrupt(adapter);
5501
5502 wr32(IGC_EIMS, adapter->eims_other);
5503
5504 return IRQ_HANDLED;
5505}
5506
5507static void igc_write_itr(struct igc_q_vector *q_vector)
5508{
5509 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5510
5511 if (!q_vector->set_itr)
5512 return;
5513
5514 if (!itr_val)
5515 itr_val = IGC_ITR_VAL_MASK;
5516
5517 itr_val |= IGC_EITR_CNT_IGNR;
5518
5519 writel(itr_val, q_vector->itr_register);
5520 q_vector->set_itr = 0;
5521}
5522
5523static irqreturn_t igc_msix_ring(int irq, void *data)
5524{
5525 struct igc_q_vector *q_vector = data;
5526
5527 /* Write the ITR value calculated from the previous interrupt. */
5528 igc_write_itr(q_vector);
5529
5530 napi_schedule(&q_vector->napi);
5531
5532 return IRQ_HANDLED;
5533}
5534
5535/**
5536 * igc_request_msix - Initialize MSI-X interrupts
5537 * @adapter: Pointer to adapter structure
5538 *
5539 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5540 * kernel.
5541 */
5542static int igc_request_msix(struct igc_adapter *adapter)
5543{
5544 unsigned int num_q_vectors = adapter->num_q_vectors;
5545 int i = 0, err = 0, vector = 0, free_vector = 0;
5546 struct net_device *netdev = adapter->netdev;
5547
5548 err = request_irq(adapter->msix_entries[vector].vector,
5549 &igc_msix_other, 0, netdev->name, adapter);
5550 if (err)
5551 goto err_out;
5552
5553 if (num_q_vectors > MAX_Q_VECTORS) {
5554 num_q_vectors = MAX_Q_VECTORS;
5555 dev_warn(&adapter->pdev->dev,
5556 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5557 adapter->num_q_vectors, MAX_Q_VECTORS);
5558 }
5559 for (i = 0; i < num_q_vectors; i++) {
5560 struct igc_q_vector *q_vector = adapter->q_vector[i];
5561
5562 vector++;
5563
5564 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5565
5566 if (q_vector->rx.ring && q_vector->tx.ring)
5567 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5568 q_vector->rx.ring->queue_index);
5569 else if (q_vector->tx.ring)
5570 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5571 q_vector->tx.ring->queue_index);
5572 else if (q_vector->rx.ring)
5573 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5574 q_vector->rx.ring->queue_index);
5575 else
5576 sprintf(q_vector->name, "%s-unused", netdev->name);
5577
5578 err = request_irq(adapter->msix_entries[vector].vector,
5579 igc_msix_ring, 0, q_vector->name,
5580 q_vector);
5581 if (err)
5582 goto err_free;
5583 }
5584
5585 igc_configure_msix(adapter);
5586 return 0;
5587
5588err_free:
5589 /* free already assigned IRQs */
5590 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5591
5592 vector--;
5593 for (i = 0; i < vector; i++) {
5594 free_irq(adapter->msix_entries[free_vector++].vector,
5595 adapter->q_vector[i]);
5596 }
5597err_out:
5598 return err;
5599}
5600
5601/**
5602 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5603 * @adapter: Pointer to adapter structure
5604 *
5605 * This function resets the device so that it has 0 rx queues, tx queues, and
5606 * MSI-X interrupts allocated.
5607 */
5608static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5609{
5610 igc_free_q_vectors(adapter);
5611 igc_reset_interrupt_capability(adapter);
5612}
5613
5614/* Need to wait a few seconds after link up to get diagnostic information from
5615 * the phy
5616 */
5617static void igc_update_phy_info(struct timer_list *t)
5618{
5619 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5620
5621 igc_get_phy_info(&adapter->hw);
5622}
5623
5624/**
5625 * igc_has_link - check shared code for link and determine up/down
5626 * @adapter: pointer to driver private info
5627 */
5628bool igc_has_link(struct igc_adapter *adapter)
5629{
5630 struct igc_hw *hw = &adapter->hw;
5631 bool link_active = false;
5632
5633 /* get_link_status is set on LSC (link status) interrupt or
5634 * rx sequence error interrupt. get_link_status will stay
5635 * false until the igc_check_for_link establishes link
5636 * for copper adapters ONLY
5637 */
5638 if (!hw->mac.get_link_status)
5639 return true;
5640 hw->mac.ops.check_for_link(hw);
5641 link_active = !hw->mac.get_link_status;
5642
5643 if (hw->mac.type == igc_i225) {
5644 if (!netif_carrier_ok(adapter->netdev)) {
5645 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5646 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5647 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5648 adapter->link_check_timeout = jiffies;
5649 }
5650 }
5651
5652 return link_active;
5653}
5654
5655/**
5656 * igc_watchdog - Timer Call-back
5657 * @t: timer for the watchdog
5658 */
5659static void igc_watchdog(struct timer_list *t)
5660{
5661 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5662 /* Do the rest outside of interrupt context */
5663 schedule_work(&adapter->watchdog_task);
5664}
5665
5666static void igc_watchdog_task(struct work_struct *work)
5667{
5668 struct igc_adapter *adapter = container_of(work,
5669 struct igc_adapter,
5670 watchdog_task);
5671 struct net_device *netdev = adapter->netdev;
5672 struct igc_hw *hw = &adapter->hw;
5673 struct igc_phy_info *phy = &hw->phy;
5674 u16 phy_data, retry_count = 20;
5675 u32 link;
5676 int i;
5677
5678 link = igc_has_link(adapter);
5679
5680 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5681 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5682 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5683 else
5684 link = false;
5685 }
5686
5687 if (link) {
5688 /* Cancel scheduled suspend requests. */
5689 pm_runtime_resume(netdev->dev.parent);
5690
5691 if (!netif_carrier_ok(netdev)) {
5692 u32 ctrl;
5693
5694 hw->mac.ops.get_speed_and_duplex(hw,
5695 &adapter->link_speed,
5696 &adapter->link_duplex);
5697
5698 ctrl = rd32(IGC_CTRL);
5699 /* Link status message must follow this format */
5700 netdev_info(netdev,
5701 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5702 adapter->link_speed,
5703 adapter->link_duplex == FULL_DUPLEX ?
5704 "Full" : "Half",
5705 (ctrl & IGC_CTRL_TFCE) &&
5706 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5707 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5708 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5709
5710 /* disable EEE if enabled */
5711 if ((adapter->flags & IGC_FLAG_EEE) &&
5712 adapter->link_duplex == HALF_DUPLEX) {
5713 netdev_info(netdev,
5714 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5715 adapter->hw.dev_spec._base.eee_enable = false;
5716 adapter->flags &= ~IGC_FLAG_EEE;
5717 }
5718
5719 /* check if SmartSpeed worked */
5720 igc_check_downshift(hw);
5721 if (phy->speed_downgraded)
5722 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5723
5724 /* adjust timeout factor according to speed/duplex */
5725 adapter->tx_timeout_factor = 1;
5726 switch (adapter->link_speed) {
5727 case SPEED_10:
5728 adapter->tx_timeout_factor = 14;
5729 break;
5730 case SPEED_100:
5731 case SPEED_1000:
5732 case SPEED_2500:
5733 adapter->tx_timeout_factor = 1;
5734 break;
5735 }
5736
5737 /* Once the launch time has been set on the wire, there
5738 * is a delay before the link speed can be determined
5739 * based on link-up activity. Write into the register
5740 * as soon as we know the correct link speed.
5741 */
5742 igc_tsn_adjust_txtime_offset(adapter);
5743
5744 if (adapter->link_speed != SPEED_1000)
5745 goto no_wait;
5746
5747 /* wait for Remote receiver status OK */
5748retry_read_status:
5749 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5750 &phy_data)) {
5751 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5752 retry_count) {
5753 msleep(100);
5754 retry_count--;
5755 goto retry_read_status;
5756 } else if (!retry_count) {
5757 netdev_err(netdev, "exceed max 2 second\n");
5758 }
5759 } else {
5760 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5761 }
5762no_wait:
5763 netif_carrier_on(netdev);
5764
5765 /* link state has changed, schedule phy info update */
5766 if (!test_bit(__IGC_DOWN, &adapter->state))
5767 mod_timer(&adapter->phy_info_timer,
5768 round_jiffies(jiffies + 2 * HZ));
5769 }
5770 } else {
5771 if (netif_carrier_ok(netdev)) {
5772 adapter->link_speed = 0;
5773 adapter->link_duplex = 0;
5774
5775 /* Links status message must follow this format */
5776 netdev_info(netdev, "NIC Link is Down\n");
5777 netif_carrier_off(netdev);
5778
5779 /* link state has changed, schedule phy info update */
5780 if (!test_bit(__IGC_DOWN, &adapter->state))
5781 mod_timer(&adapter->phy_info_timer,
5782 round_jiffies(jiffies + 2 * HZ));
5783
5784 pm_schedule_suspend(netdev->dev.parent,
5785 MSEC_PER_SEC * 5);
5786 }
5787 }
5788
5789 spin_lock(&adapter->stats64_lock);
5790 igc_update_stats(adapter);
5791 spin_unlock(&adapter->stats64_lock);
5792
5793 for (i = 0; i < adapter->num_tx_queues; i++) {
5794 struct igc_ring *tx_ring = adapter->tx_ring[i];
5795
5796 if (!netif_carrier_ok(netdev)) {
5797 /* We've lost link, so the controller stops DMA,
5798 * but we've got queued Tx work that's never going
5799 * to get done, so reset controller to flush Tx.
5800 * (Do the reset outside of interrupt context).
5801 */
5802 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5803 adapter->tx_timeout_count++;
5804 schedule_work(&adapter->reset_task);
5805 /* return immediately since reset is imminent */
5806 return;
5807 }
5808 }
5809
5810 /* Force detection of hung controller every watchdog period */
5811 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5812 }
5813
5814 /* Cause software interrupt to ensure Rx ring is cleaned */
5815 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5816 u32 eics = 0;
5817
5818 for (i = 0; i < adapter->num_q_vectors; i++) {
5819 struct igc_q_vector *q_vector = adapter->q_vector[i];
5820 struct igc_ring *rx_ring;
5821
5822 if (!q_vector->rx.ring)
5823 continue;
5824
5825 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5826
5827 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5828 eics |= q_vector->eims_value;
5829 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5830 }
5831 }
5832 if (eics)
5833 wr32(IGC_EICS, eics);
5834 } else {
5835 struct igc_ring *rx_ring = adapter->rx_ring[0];
5836
5837 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5838 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5839 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5840 }
5841 }
5842
5843 igc_ptp_tx_hang(adapter);
5844
5845 /* Reset the timer */
5846 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5847 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5848 mod_timer(&adapter->watchdog_timer,
5849 round_jiffies(jiffies + HZ));
5850 else
5851 mod_timer(&adapter->watchdog_timer,
5852 round_jiffies(jiffies + 2 * HZ));
5853 }
5854}
5855
5856/**
5857 * igc_intr_msi - Interrupt Handler
5858 * @irq: interrupt number
5859 * @data: pointer to a network interface device structure
5860 */
5861static irqreturn_t igc_intr_msi(int irq, void *data)
5862{
5863 struct igc_adapter *adapter = data;
5864 struct igc_q_vector *q_vector = adapter->q_vector[0];
5865 struct igc_hw *hw = &adapter->hw;
5866 /* read ICR disables interrupts using IAM */
5867 u32 icr = rd32(IGC_ICR);
5868
5869 igc_write_itr(q_vector);
5870
5871 if (icr & IGC_ICR_DRSTA)
5872 schedule_work(&adapter->reset_task);
5873
5874 if (icr & IGC_ICR_DOUTSYNC) {
5875 /* HW is reporting DMA is out of sync */
5876 adapter->stats.doosync++;
5877 }
5878
5879 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5880 hw->mac.get_link_status = true;
5881 if (!test_bit(__IGC_DOWN, &adapter->state))
5882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5883 }
5884
5885 if (icr & IGC_ICR_TS)
5886 igc_tsync_interrupt(adapter);
5887
5888 napi_schedule(&q_vector->napi);
5889
5890 return IRQ_HANDLED;
5891}
5892
5893/**
5894 * igc_intr - Legacy Interrupt Handler
5895 * @irq: interrupt number
5896 * @data: pointer to a network interface device structure
5897 */
5898static irqreturn_t igc_intr(int irq, void *data)
5899{
5900 struct igc_adapter *adapter = data;
5901 struct igc_q_vector *q_vector = adapter->q_vector[0];
5902 struct igc_hw *hw = &adapter->hw;
5903 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5904 * need for the IMC write
5905 */
5906 u32 icr = rd32(IGC_ICR);
5907
5908 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5909 * not set, then the adapter didn't send an interrupt
5910 */
5911 if (!(icr & IGC_ICR_INT_ASSERTED))
5912 return IRQ_NONE;
5913
5914 igc_write_itr(q_vector);
5915
5916 if (icr & IGC_ICR_DRSTA)
5917 schedule_work(&adapter->reset_task);
5918
5919 if (icr & IGC_ICR_DOUTSYNC) {
5920 /* HW is reporting DMA is out of sync */
5921 adapter->stats.doosync++;
5922 }
5923
5924 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5925 hw->mac.get_link_status = true;
5926 /* guard against interrupt when we're going down */
5927 if (!test_bit(__IGC_DOWN, &adapter->state))
5928 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5929 }
5930
5931 if (icr & IGC_ICR_TS)
5932 igc_tsync_interrupt(adapter);
5933
5934 napi_schedule(&q_vector->napi);
5935
5936 return IRQ_HANDLED;
5937}
5938
5939static void igc_free_irq(struct igc_adapter *adapter)
5940{
5941 if (adapter->msix_entries) {
5942 int vector = 0, i;
5943
5944 free_irq(adapter->msix_entries[vector++].vector, adapter);
5945
5946 for (i = 0; i < adapter->num_q_vectors; i++)
5947 free_irq(adapter->msix_entries[vector++].vector,
5948 adapter->q_vector[i]);
5949 } else {
5950 free_irq(adapter->pdev->irq, adapter);
5951 }
5952}
5953
5954/**
5955 * igc_request_irq - initialize interrupts
5956 * @adapter: Pointer to adapter structure
5957 *
5958 * Attempts to configure interrupts using the best available
5959 * capabilities of the hardware and kernel.
5960 */
5961static int igc_request_irq(struct igc_adapter *adapter)
5962{
5963 struct net_device *netdev = adapter->netdev;
5964 struct pci_dev *pdev = adapter->pdev;
5965 int err = 0;
5966
5967 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5968 err = igc_request_msix(adapter);
5969 if (!err)
5970 goto request_done;
5971 /* fall back to MSI */
5972 igc_free_all_tx_resources(adapter);
5973 igc_free_all_rx_resources(adapter);
5974
5975 igc_clear_interrupt_scheme(adapter);
5976 err = igc_init_interrupt_scheme(adapter, false);
5977 if (err)
5978 goto request_done;
5979 igc_setup_all_tx_resources(adapter);
5980 igc_setup_all_rx_resources(adapter);
5981 igc_configure(adapter);
5982 }
5983
5984 igc_assign_vector(adapter->q_vector[0], 0);
5985
5986 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5987 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5988 netdev->name, adapter);
5989 if (!err)
5990 goto request_done;
5991
5992 /* fall back to legacy interrupts */
5993 igc_reset_interrupt_capability(adapter);
5994 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5995 }
5996
5997 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5998 netdev->name, adapter);
5999
6000 if (err)
6001 netdev_err(netdev, "Error %d getting interrupt\n", err);
6002
6003request_done:
6004 return err;
6005}
6006
6007/**
6008 * __igc_open - Called when a network interface is made active
6009 * @netdev: network interface device structure
6010 * @resuming: boolean indicating if the device is resuming
6011 *
6012 * Returns 0 on success, negative value on failure
6013 *
6014 * The open entry point is called when a network interface is made
6015 * active by the system (IFF_UP). At this point all resources needed
6016 * for transmit and receive operations are allocated, the interrupt
6017 * handler is registered with the OS, the watchdog timer is started,
6018 * and the stack is notified that the interface is ready.
6019 */
6020static int __igc_open(struct net_device *netdev, bool resuming)
6021{
6022 struct igc_adapter *adapter = netdev_priv(netdev);
6023 struct pci_dev *pdev = adapter->pdev;
6024 struct igc_hw *hw = &adapter->hw;
6025 int err = 0;
6026 int i = 0;
6027
6028 /* disallow open during test */
6029
6030 if (test_bit(__IGC_TESTING, &adapter->state)) {
6031 WARN_ON(resuming);
6032 return -EBUSY;
6033 }
6034
6035 if (!resuming)
6036 pm_runtime_get_sync(&pdev->dev);
6037
6038 netif_carrier_off(netdev);
6039
6040 /* allocate transmit descriptors */
6041 err = igc_setup_all_tx_resources(adapter);
6042 if (err)
6043 goto err_setup_tx;
6044
6045 /* allocate receive descriptors */
6046 err = igc_setup_all_rx_resources(adapter);
6047 if (err)
6048 goto err_setup_rx;
6049
6050 igc_power_up_link(adapter);
6051
6052 igc_configure(adapter);
6053
6054 err = igc_request_irq(adapter);
6055 if (err)
6056 goto err_req_irq;
6057
6058 clear_bit(__IGC_DOWN, &adapter->state);
6059
6060 for (i = 0; i < adapter->num_q_vectors; i++)
6061 napi_enable(&adapter->q_vector[i]->napi);
6062
6063 /* Clear any pending interrupts. */
6064 rd32(IGC_ICR);
6065 igc_irq_enable(adapter);
6066
6067 if (!resuming)
6068 pm_runtime_put(&pdev->dev);
6069
6070 netif_tx_start_all_queues(netdev);
6071
6072 /* start the watchdog. */
6073 hw->mac.get_link_status = true;
6074 schedule_work(&adapter->watchdog_task);
6075
6076 return IGC_SUCCESS;
6077
6078err_req_irq:
6079 igc_release_hw_control(adapter);
6080 igc_power_down_phy_copper_base(&adapter->hw);
6081 igc_free_all_rx_resources(adapter);
6082err_setup_rx:
6083 igc_free_all_tx_resources(adapter);
6084err_setup_tx:
6085 igc_reset(adapter);
6086 if (!resuming)
6087 pm_runtime_put(&pdev->dev);
6088
6089 return err;
6090}
6091
6092int igc_open(struct net_device *netdev)
6093{
6094 struct igc_adapter *adapter = netdev_priv(netdev);
6095 int err;
6096
6097 /* Notify the stack of the actual queue counts. */
6098 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6099 adapter->num_rx_queues);
6100 if (err) {
6101 netdev_err(netdev, "error setting real queue count\n");
6102 return err;
6103 }
6104
6105 return __igc_open(netdev, false);
6106}
6107
6108/**
6109 * __igc_close - Disables a network interface
6110 * @netdev: network interface device structure
6111 * @suspending: boolean indicating the device is suspending
6112 *
6113 * Returns 0, this is not allowed to fail
6114 *
6115 * The close entry point is called when an interface is de-activated
6116 * by the OS. The hardware is still under the driver's control, but
6117 * needs to be disabled. A global MAC reset is issued to stop the
6118 * hardware, and all transmit and receive resources are freed.
6119 */
6120static int __igc_close(struct net_device *netdev, bool suspending)
6121{
6122 struct igc_adapter *adapter = netdev_priv(netdev);
6123 struct pci_dev *pdev = adapter->pdev;
6124
6125 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6126
6127 if (!suspending)
6128 pm_runtime_get_sync(&pdev->dev);
6129
6130 igc_down(adapter);
6131
6132 igc_release_hw_control(adapter);
6133
6134 igc_free_irq(adapter);
6135
6136 igc_free_all_tx_resources(adapter);
6137 igc_free_all_rx_resources(adapter);
6138
6139 if (!suspending)
6140 pm_runtime_put_sync(&pdev->dev);
6141
6142 return 0;
6143}
6144
6145int igc_close(struct net_device *netdev)
6146{
6147 if (netif_device_present(netdev) || netdev->dismantle)
6148 return __igc_close(netdev, false);
6149 return 0;
6150}
6151
6152/**
6153 * igc_ioctl - Access the hwtstamp interface
6154 * @netdev: network interface device structure
6155 * @ifr: interface request data
6156 * @cmd: ioctl command
6157 **/
6158static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6159{
6160 switch (cmd) {
6161 case SIOCGHWTSTAMP:
6162 return igc_ptp_get_ts_config(netdev, ifr);
6163 case SIOCSHWTSTAMP:
6164 return igc_ptp_set_ts_config(netdev, ifr);
6165 default:
6166 return -EOPNOTSUPP;
6167 }
6168}
6169
6170static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6171 bool enable)
6172{
6173 struct igc_ring *ring;
6174
6175 if (queue < 0 || queue >= adapter->num_tx_queues)
6176 return -EINVAL;
6177
6178 ring = adapter->tx_ring[queue];
6179 ring->launchtime_enable = enable;
6180
6181 return 0;
6182}
6183
6184static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6185{
6186 struct timespec64 b;
6187
6188 b = ktime_to_timespec64(base_time);
6189
6190 return timespec64_compare(now, &b) > 0;
6191}
6192
6193static bool validate_schedule(struct igc_adapter *adapter,
6194 const struct tc_taprio_qopt_offload *qopt)
6195{
6196 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6197 struct igc_hw *hw = &adapter->hw;
6198 struct timespec64 now;
6199 size_t n;
6200
6201 if (qopt->cycle_time_extension)
6202 return false;
6203
6204 igc_ptp_read(adapter, &now);
6205
6206 /* If we program the controller's BASET registers with a time
6207 * in the future, it will hold all the packets until that
6208 * time, causing a lot of TX Hangs, so to avoid that, we
6209 * reject schedules that would start in the future.
6210 * Note: Limitation above is no longer in i226.
6211 */
6212 if (!is_base_time_past(qopt->base_time, &now) &&
6213 igc_is_device_id_i225(hw))
6214 return false;
6215
6216 for (n = 0; n < qopt->num_entries; n++) {
6217 const struct tc_taprio_sched_entry *e, *prev;
6218 int i;
6219
6220 prev = n ? &qopt->entries[n - 1] : NULL;
6221 e = &qopt->entries[n];
6222
6223 /* i225 only supports "global" frame preemption
6224 * settings.
6225 */
6226 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6227 return false;
6228
6229 for (i = 0; i < adapter->num_tx_queues; i++)
6230 if (e->gate_mask & BIT(i)) {
6231 queue_uses[i]++;
6232
6233 /* There are limitations: A single queue cannot
6234 * be opened and closed multiple times per cycle
6235 * unless the gate stays open. Check for it.
6236 */
6237 if (queue_uses[i] > 1 &&
6238 !(prev->gate_mask & BIT(i)))
6239 return false;
6240 }
6241 }
6242
6243 return true;
6244}
6245
6246static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6247 struct tc_etf_qopt_offload *qopt)
6248{
6249 struct igc_hw *hw = &adapter->hw;
6250 int err;
6251
6252 if (hw->mac.type != igc_i225)
6253 return -EOPNOTSUPP;
6254
6255 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6256 if (err)
6257 return err;
6258
6259 return igc_tsn_offload_apply(adapter);
6260}
6261
6262static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6263{
6264 unsigned long flags;
6265 int i;
6266
6267 adapter->base_time = 0;
6268 adapter->cycle_time = NSEC_PER_SEC;
6269 adapter->taprio_offload_enable = false;
6270 adapter->qbv_config_change_errors = 0;
6271 adapter->qbv_count = 0;
6272
6273 for (i = 0; i < adapter->num_tx_queues; i++) {
6274 struct igc_ring *ring = adapter->tx_ring[i];
6275
6276 ring->start_time = 0;
6277 ring->end_time = NSEC_PER_SEC;
6278 ring->max_sdu = 0;
6279 }
6280
6281 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6282
6283 adapter->qbv_transition = false;
6284
6285 for (i = 0; i < adapter->num_tx_queues; i++) {
6286 struct igc_ring *ring = adapter->tx_ring[i];
6287
6288 ring->oper_gate_closed = false;
6289 ring->admin_gate_closed = false;
6290 }
6291
6292 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6293
6294 return 0;
6295}
6296
6297static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6298{
6299 igc_qbv_clear_schedule(adapter);
6300
6301 return 0;
6302}
6303
6304static void igc_taprio_stats(struct net_device *dev,
6305 struct tc_taprio_qopt_stats *stats)
6306{
6307 /* When Strict_End is enabled, the tx_overruns counter
6308 * will always be zero.
6309 */
6310 stats->tx_overruns = 0;
6311}
6312
6313static void igc_taprio_queue_stats(struct net_device *dev,
6314 struct tc_taprio_qopt_queue_stats *queue_stats)
6315{
6316 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6317
6318 /* When Strict_End is enabled, the tx_overruns counter
6319 * will always be zero.
6320 */
6321 stats->tx_overruns = 0;
6322}
6323
6324static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6325 struct tc_taprio_qopt_offload *qopt)
6326{
6327 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6328 struct igc_hw *hw = &adapter->hw;
6329 u32 start_time = 0, end_time = 0;
6330 struct timespec64 now;
6331 unsigned long flags;
6332 size_t n;
6333 int i;
6334
6335 if (qopt->base_time < 0)
6336 return -ERANGE;
6337
6338 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6339 return -EALREADY;
6340
6341 if (!validate_schedule(adapter, qopt))
6342 return -EINVAL;
6343
6344 igc_ptp_read(adapter, &now);
6345
6346 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6347 is_base_time_past(qopt->base_time, &now))
6348 adapter->qbv_config_change_errors++;
6349
6350 adapter->cycle_time = qopt->cycle_time;
6351 adapter->base_time = qopt->base_time;
6352 adapter->taprio_offload_enable = true;
6353
6354 for (n = 0; n < qopt->num_entries; n++) {
6355 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6356
6357 end_time += e->interval;
6358
6359 /* If any of the conditions below are true, we need to manually
6360 * control the end time of the cycle.
6361 * 1. Qbv users can specify a cycle time that is not equal
6362 * to the total GCL intervals. Hence, recalculation is
6363 * necessary here to exclude the time interval that
6364 * exceeds the cycle time.
6365 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6366 * once the end of the list is reached, it will switch
6367 * to the END_OF_CYCLE state and leave the gates in the
6368 * same state until the next cycle is started.
6369 */
6370 if (end_time > adapter->cycle_time ||
6371 n + 1 == qopt->num_entries)
6372 end_time = adapter->cycle_time;
6373
6374 for (i = 0; i < adapter->num_tx_queues; i++) {
6375 struct igc_ring *ring = adapter->tx_ring[i];
6376
6377 if (!(e->gate_mask & BIT(i)))
6378 continue;
6379
6380 /* Check whether a queue stays open for more than one
6381 * entry. If so, keep the start and advance the end
6382 * time.
6383 */
6384 if (!queue_configured[i])
6385 ring->start_time = start_time;
6386 ring->end_time = end_time;
6387
6388 if (ring->start_time >= adapter->cycle_time)
6389 queue_configured[i] = false;
6390 else
6391 queue_configured[i] = true;
6392 }
6393
6394 start_time += e->interval;
6395 }
6396
6397 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6398
6399 /* Check whether a queue gets configured.
6400 * If not, set the start and end time to be end time.
6401 */
6402 for (i = 0; i < adapter->num_tx_queues; i++) {
6403 struct igc_ring *ring = adapter->tx_ring[i];
6404
6405 if (!is_base_time_past(qopt->base_time, &now)) {
6406 ring->admin_gate_closed = false;
6407 } else {
6408 ring->oper_gate_closed = false;
6409 ring->admin_gate_closed = false;
6410 }
6411
6412 if (!queue_configured[i]) {
6413 if (!is_base_time_past(qopt->base_time, &now))
6414 ring->admin_gate_closed = true;
6415 else
6416 ring->oper_gate_closed = true;
6417
6418 ring->start_time = end_time;
6419 ring->end_time = end_time;
6420 }
6421 }
6422
6423 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6424
6425 for (i = 0; i < adapter->num_tx_queues; i++) {
6426 struct igc_ring *ring = adapter->tx_ring[i];
6427 struct net_device *dev = adapter->netdev;
6428
6429 if (qopt->max_sdu[i])
6430 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6431 else
6432 ring->max_sdu = 0;
6433 }
6434
6435 return 0;
6436}
6437
6438static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6439 struct tc_taprio_qopt_offload *qopt)
6440{
6441 struct igc_hw *hw = &adapter->hw;
6442 int err;
6443
6444 if (hw->mac.type != igc_i225)
6445 return -EOPNOTSUPP;
6446
6447 switch (qopt->cmd) {
6448 case TAPRIO_CMD_REPLACE:
6449 err = igc_save_qbv_schedule(adapter, qopt);
6450 break;
6451 case TAPRIO_CMD_DESTROY:
6452 err = igc_tsn_clear_schedule(adapter);
6453 break;
6454 case TAPRIO_CMD_STATS:
6455 igc_taprio_stats(adapter->netdev, &qopt->stats);
6456 return 0;
6457 case TAPRIO_CMD_QUEUE_STATS:
6458 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6459 return 0;
6460 default:
6461 return -EOPNOTSUPP;
6462 }
6463
6464 if (err)
6465 return err;
6466
6467 return igc_tsn_offload_apply(adapter);
6468}
6469
6470static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6471 bool enable, int idleslope, int sendslope,
6472 int hicredit, int locredit)
6473{
6474 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6475 struct net_device *netdev = adapter->netdev;
6476 struct igc_ring *ring;
6477 int i;
6478
6479 /* i225 has two sets of credit-based shaper logic.
6480 * Supporting it only on the top two priority queues
6481 */
6482 if (queue < 0 || queue > 1)
6483 return -EINVAL;
6484
6485 ring = adapter->tx_ring[queue];
6486
6487 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6488 if (adapter->tx_ring[i])
6489 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6490
6491 /* CBS should be enabled on the highest priority queue first in order
6492 * for the CBS algorithm to operate as intended.
6493 */
6494 if (enable) {
6495 if (queue == 1 && !cbs_status[0]) {
6496 netdev_err(netdev,
6497 "Enabling CBS on queue1 before queue0\n");
6498 return -EINVAL;
6499 }
6500 } else {
6501 if (queue == 0 && cbs_status[1]) {
6502 netdev_err(netdev,
6503 "Disabling CBS on queue0 before queue1\n");
6504 return -EINVAL;
6505 }
6506 }
6507
6508 ring->cbs_enable = enable;
6509 ring->idleslope = idleslope;
6510 ring->sendslope = sendslope;
6511 ring->hicredit = hicredit;
6512 ring->locredit = locredit;
6513
6514 return 0;
6515}
6516
6517static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6518 struct tc_cbs_qopt_offload *qopt)
6519{
6520 struct igc_hw *hw = &adapter->hw;
6521 int err;
6522
6523 if (hw->mac.type != igc_i225)
6524 return -EOPNOTSUPP;
6525
6526 if (qopt->queue < 0 || qopt->queue > 1)
6527 return -EINVAL;
6528
6529 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6530 qopt->idleslope, qopt->sendslope,
6531 qopt->hicredit, qopt->locredit);
6532 if (err)
6533 return err;
6534
6535 return igc_tsn_offload_apply(adapter);
6536}
6537
6538static int igc_tc_query_caps(struct igc_adapter *adapter,
6539 struct tc_query_caps_base *base)
6540{
6541 struct igc_hw *hw = &adapter->hw;
6542
6543 switch (base->type) {
6544 case TC_SETUP_QDISC_MQPRIO: {
6545 struct tc_mqprio_caps *caps = base->caps;
6546
6547 caps->validate_queue_counts = true;
6548
6549 return 0;
6550 }
6551 case TC_SETUP_QDISC_TAPRIO: {
6552 struct tc_taprio_caps *caps = base->caps;
6553
6554 caps->broken_mqprio = true;
6555
6556 if (hw->mac.type == igc_i225) {
6557 caps->supports_queue_max_sdu = true;
6558 caps->gate_mask_per_txq = true;
6559 }
6560
6561 return 0;
6562 }
6563 default:
6564 return -EOPNOTSUPP;
6565 }
6566}
6567
6568static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6569 u16 *offset)
6570{
6571 int i;
6572
6573 adapter->strict_priority_enable = true;
6574 adapter->num_tc = num_tc;
6575
6576 for (i = 0; i < num_tc; i++)
6577 adapter->queue_per_tc[i] = offset[i];
6578}
6579
6580static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6581 struct tc_mqprio_qopt_offload *mqprio)
6582{
6583 struct igc_hw *hw = &adapter->hw;
6584 int i;
6585
6586 if (hw->mac.type != igc_i225)
6587 return -EOPNOTSUPP;
6588
6589 if (!mqprio->qopt.num_tc) {
6590 adapter->strict_priority_enable = false;
6591 goto apply;
6592 }
6593
6594 /* There are as many TCs as Tx queues. */
6595 if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6596 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6597 "Only %d traffic classes supported",
6598 adapter->num_tx_queues);
6599 return -EOPNOTSUPP;
6600 }
6601
6602 /* Only one queue per TC is supported. */
6603 for (i = 0; i < mqprio->qopt.num_tc; i++) {
6604 if (mqprio->qopt.count[i] != 1) {
6605 NL_SET_ERR_MSG_MOD(mqprio->extack,
6606 "Only one queue per TC supported");
6607 return -EOPNOTSUPP;
6608 }
6609 }
6610
6611 /* Preemption is not supported yet. */
6612 if (mqprio->preemptible_tcs) {
6613 NL_SET_ERR_MSG_MOD(mqprio->extack,
6614 "Preemption is not supported yet");
6615 return -EOPNOTSUPP;
6616 }
6617
6618 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6619 mqprio->qopt.offset);
6620
6621 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6622
6623apply:
6624 return igc_tsn_offload_apply(adapter);
6625}
6626
6627static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6628 void *type_data)
6629{
6630 struct igc_adapter *adapter = netdev_priv(dev);
6631
6632 adapter->tc_setup_type = type;
6633
6634 switch (type) {
6635 case TC_QUERY_CAPS:
6636 return igc_tc_query_caps(adapter, type_data);
6637 case TC_SETUP_QDISC_TAPRIO:
6638 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6639
6640 case TC_SETUP_QDISC_ETF:
6641 return igc_tsn_enable_launchtime(adapter, type_data);
6642
6643 case TC_SETUP_QDISC_CBS:
6644 return igc_tsn_enable_cbs(adapter, type_data);
6645
6646 case TC_SETUP_QDISC_MQPRIO:
6647 return igc_tsn_enable_mqprio(adapter, type_data);
6648
6649 default:
6650 return -EOPNOTSUPP;
6651 }
6652}
6653
6654static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6655{
6656 struct igc_adapter *adapter = netdev_priv(dev);
6657
6658 switch (bpf->command) {
6659 case XDP_SETUP_PROG:
6660 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6661 case XDP_SETUP_XSK_POOL:
6662 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6663 bpf->xsk.queue_id);
6664 default:
6665 return -EOPNOTSUPP;
6666 }
6667}
6668
6669static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6670 struct xdp_frame **frames, u32 flags)
6671{
6672 struct igc_adapter *adapter = netdev_priv(dev);
6673 int cpu = smp_processor_id();
6674 struct netdev_queue *nq;
6675 struct igc_ring *ring;
6676 int i, nxmit;
6677
6678 if (unlikely(!netif_carrier_ok(dev)))
6679 return -ENETDOWN;
6680
6681 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6682 return -EINVAL;
6683
6684 ring = igc_xdp_get_tx_ring(adapter, cpu);
6685 nq = txring_txq(ring);
6686
6687 __netif_tx_lock(nq, cpu);
6688
6689 /* Avoid transmit queue timeout since we share it with the slow path */
6690 txq_trans_cond_update(nq);
6691
6692 nxmit = 0;
6693 for (i = 0; i < num_frames; i++) {
6694 int err;
6695 struct xdp_frame *xdpf = frames[i];
6696
6697 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6698 if (err)
6699 break;
6700 nxmit++;
6701 }
6702
6703 if (flags & XDP_XMIT_FLUSH)
6704 igc_flush_tx_descriptors(ring);
6705
6706 __netif_tx_unlock(nq);
6707
6708 return nxmit;
6709}
6710
6711static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6712 struct igc_q_vector *q_vector)
6713{
6714 struct igc_hw *hw = &adapter->hw;
6715 u32 eics = 0;
6716
6717 eics |= q_vector->eims_value;
6718 wr32(IGC_EICS, eics);
6719}
6720
6721int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6722{
6723 struct igc_adapter *adapter = netdev_priv(dev);
6724 struct igc_q_vector *q_vector;
6725 struct igc_ring *ring;
6726
6727 if (test_bit(__IGC_DOWN, &adapter->state))
6728 return -ENETDOWN;
6729
6730 if (!igc_xdp_is_enabled(adapter))
6731 return -ENXIO;
6732
6733 if (queue_id >= adapter->num_rx_queues)
6734 return -EINVAL;
6735
6736 ring = adapter->rx_ring[queue_id];
6737
6738 if (!ring->xsk_pool)
6739 return -ENXIO;
6740
6741 q_vector = adapter->q_vector[queue_id];
6742 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6743 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6744
6745 return 0;
6746}
6747
6748static ktime_t igc_get_tstamp(struct net_device *dev,
6749 const struct skb_shared_hwtstamps *hwtstamps,
6750 bool cycles)
6751{
6752 struct igc_adapter *adapter = netdev_priv(dev);
6753 struct igc_inline_rx_tstamps *tstamp;
6754 ktime_t timestamp;
6755
6756 tstamp = hwtstamps->netdev_data;
6757
6758 if (cycles)
6759 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6760 else
6761 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6762
6763 return timestamp;
6764}
6765
6766static const struct net_device_ops igc_netdev_ops = {
6767 .ndo_open = igc_open,
6768 .ndo_stop = igc_close,
6769 .ndo_start_xmit = igc_xmit_frame,
6770 .ndo_set_rx_mode = igc_set_rx_mode,
6771 .ndo_set_mac_address = igc_set_mac,
6772 .ndo_change_mtu = igc_change_mtu,
6773 .ndo_tx_timeout = igc_tx_timeout,
6774 .ndo_get_stats64 = igc_get_stats64,
6775 .ndo_fix_features = igc_fix_features,
6776 .ndo_set_features = igc_set_features,
6777 .ndo_features_check = igc_features_check,
6778 .ndo_eth_ioctl = igc_ioctl,
6779 .ndo_setup_tc = igc_setup_tc,
6780 .ndo_bpf = igc_bpf,
6781 .ndo_xdp_xmit = igc_xdp_xmit,
6782 .ndo_xsk_wakeup = igc_xsk_wakeup,
6783 .ndo_get_tstamp = igc_get_tstamp,
6784};
6785
6786/* PCIe configuration access */
6787void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6788{
6789 struct igc_adapter *adapter = hw->back;
6790
6791 pci_read_config_word(adapter->pdev, reg, value);
6792}
6793
6794void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6795{
6796 struct igc_adapter *adapter = hw->back;
6797
6798 pci_write_config_word(adapter->pdev, reg, *value);
6799}
6800
6801s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6802{
6803 struct igc_adapter *adapter = hw->back;
6804
6805 if (!pci_is_pcie(adapter->pdev))
6806 return -IGC_ERR_CONFIG;
6807
6808 pcie_capability_read_word(adapter->pdev, reg, value);
6809
6810 return IGC_SUCCESS;
6811}
6812
6813s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6814{
6815 struct igc_adapter *adapter = hw->back;
6816
6817 if (!pci_is_pcie(adapter->pdev))
6818 return -IGC_ERR_CONFIG;
6819
6820 pcie_capability_write_word(adapter->pdev, reg, *value);
6821
6822 return IGC_SUCCESS;
6823}
6824
6825u32 igc_rd32(struct igc_hw *hw, u32 reg)
6826{
6827 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6828 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6829 u32 value = 0;
6830
6831 if (IGC_REMOVED(hw_addr))
6832 return ~value;
6833
6834 value = readl(&hw_addr[reg]);
6835
6836 /* reads should not return all F's */
6837 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6838 struct net_device *netdev = igc->netdev;
6839
6840 hw->hw_addr = NULL;
6841 netif_device_detach(netdev);
6842 netdev_err(netdev, "PCIe link lost, device now detached\n");
6843 WARN(pci_device_is_present(igc->pdev),
6844 "igc: Failed to read reg 0x%x!\n", reg);
6845 }
6846
6847 return value;
6848}
6849
6850/* Mapping HW RSS Type to enum xdp_rss_hash_type */
6851static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6852 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6853 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6854 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6855 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6856 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6857 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6858 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6859 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6860 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6861 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6862 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6863 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6864 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6865 [13] = XDP_RSS_TYPE_NONE,
6866 [14] = XDP_RSS_TYPE_NONE,
6867 [15] = XDP_RSS_TYPE_NONE,
6868};
6869
6870static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6871 enum xdp_rss_hash_type *rss_type)
6872{
6873 const struct igc_xdp_buff *ctx = (void *)_ctx;
6874
6875 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6876 return -ENODATA;
6877
6878 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6879 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6880
6881 return 0;
6882}
6883
6884static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6885{
6886 const struct igc_xdp_buff *ctx = (void *)_ctx;
6887 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6888 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6889
6890 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6891 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6892
6893 return 0;
6894 }
6895
6896 return -ENODATA;
6897}
6898
6899static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6900 .xmo_rx_hash = igc_xdp_rx_hash,
6901 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6902};
6903
6904static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6905{
6906 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6907 hrtimer);
6908 unsigned long flags;
6909 unsigned int i;
6910
6911 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6912
6913 adapter->qbv_transition = true;
6914 for (i = 0; i < adapter->num_tx_queues; i++) {
6915 struct igc_ring *tx_ring = adapter->tx_ring[i];
6916
6917 if (tx_ring->admin_gate_closed) {
6918 tx_ring->admin_gate_closed = false;
6919 tx_ring->oper_gate_closed = true;
6920 } else {
6921 tx_ring->oper_gate_closed = false;
6922 }
6923 }
6924 adapter->qbv_transition = false;
6925
6926 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6927
6928 return HRTIMER_NORESTART;
6929}
6930
6931/**
6932 * igc_probe - Device Initialization Routine
6933 * @pdev: PCI device information struct
6934 * @ent: entry in igc_pci_tbl
6935 *
6936 * Returns 0 on success, negative on failure
6937 *
6938 * igc_probe initializes an adapter identified by a pci_dev structure.
6939 * The OS initialization, configuring the adapter private structure,
6940 * and a hardware reset occur.
6941 */
6942static int igc_probe(struct pci_dev *pdev,
6943 const struct pci_device_id *ent)
6944{
6945 struct igc_adapter *adapter;
6946 struct net_device *netdev;
6947 struct igc_hw *hw;
6948 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6949 int err;
6950
6951 err = pci_enable_device_mem(pdev);
6952 if (err)
6953 return err;
6954
6955 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6956 if (err) {
6957 dev_err(&pdev->dev,
6958 "No usable DMA configuration, aborting\n");
6959 goto err_dma;
6960 }
6961
6962 err = pci_request_mem_regions(pdev, igc_driver_name);
6963 if (err)
6964 goto err_pci_reg;
6965
6966 err = pci_enable_ptm(pdev, NULL);
6967 if (err < 0)
6968 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6969
6970 pci_set_master(pdev);
6971
6972 err = -ENOMEM;
6973 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6974 IGC_MAX_TX_QUEUES);
6975
6976 if (!netdev)
6977 goto err_alloc_etherdev;
6978
6979 SET_NETDEV_DEV(netdev, &pdev->dev);
6980
6981 pci_set_drvdata(pdev, netdev);
6982 adapter = netdev_priv(netdev);
6983 adapter->netdev = netdev;
6984 adapter->pdev = pdev;
6985 hw = &adapter->hw;
6986 hw->back = adapter;
6987 adapter->port_num = hw->bus.func;
6988 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6989
6990 err = pci_save_state(pdev);
6991 if (err)
6992 goto err_ioremap;
6993
6994 err = -EIO;
6995 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6996 pci_resource_len(pdev, 0));
6997 if (!adapter->io_addr)
6998 goto err_ioremap;
6999
7000 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7001 hw->hw_addr = adapter->io_addr;
7002
7003 netdev->netdev_ops = &igc_netdev_ops;
7004 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7005 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7006 igc_ethtool_set_ops(netdev);
7007 netdev->watchdog_timeo = 5 * HZ;
7008
7009 netdev->mem_start = pci_resource_start(pdev, 0);
7010 netdev->mem_end = pci_resource_end(pdev, 0);
7011
7012 /* PCI config space info */
7013 hw->vendor_id = pdev->vendor;
7014 hw->device_id = pdev->device;
7015 hw->revision_id = pdev->revision;
7016 hw->subsystem_vendor_id = pdev->subsystem_vendor;
7017 hw->subsystem_device_id = pdev->subsystem_device;
7018
7019 /* Copy the default MAC and PHY function pointers */
7020 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7021 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7022
7023 /* Initialize skew-specific constants */
7024 err = ei->get_invariants(hw);
7025 if (err)
7026 goto err_sw_init;
7027
7028 /* Add supported features to the features list*/
7029 netdev->features |= NETIF_F_SG;
7030 netdev->features |= NETIF_F_TSO;
7031 netdev->features |= NETIF_F_TSO6;
7032 netdev->features |= NETIF_F_TSO_ECN;
7033 netdev->features |= NETIF_F_RXHASH;
7034 netdev->features |= NETIF_F_RXCSUM;
7035 netdev->features |= NETIF_F_HW_CSUM;
7036 netdev->features |= NETIF_F_SCTP_CRC;
7037 netdev->features |= NETIF_F_HW_TC;
7038
7039#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7040 NETIF_F_GSO_GRE_CSUM | \
7041 NETIF_F_GSO_IPXIP4 | \
7042 NETIF_F_GSO_IPXIP6 | \
7043 NETIF_F_GSO_UDP_TUNNEL | \
7044 NETIF_F_GSO_UDP_TUNNEL_CSUM)
7045
7046 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7047 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7048
7049 /* setup the private structure */
7050 err = igc_sw_init(adapter);
7051 if (err)
7052 goto err_sw_init;
7053
7054 /* copy netdev features into list of user selectable features */
7055 netdev->hw_features |= NETIF_F_NTUPLE;
7056 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7057 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7058 netdev->hw_features |= netdev->features;
7059
7060 netdev->features |= NETIF_F_HIGHDMA;
7061
7062 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7063 netdev->mpls_features |= NETIF_F_HW_CSUM;
7064 netdev->hw_enc_features |= netdev->vlan_features;
7065
7066 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7067 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7068
7069 /* MTU range: 68 - 9216 */
7070 netdev->min_mtu = ETH_MIN_MTU;
7071 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7072
7073 /* before reading the NVM, reset the controller to put the device in a
7074 * known good starting state
7075 */
7076 hw->mac.ops.reset_hw(hw);
7077
7078 if (igc_get_flash_presence_i225(hw)) {
7079 if (hw->nvm.ops.validate(hw) < 0) {
7080 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7081 err = -EIO;
7082 goto err_eeprom;
7083 }
7084 }
7085
7086 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7087 /* copy the MAC address out of the NVM */
7088 if (hw->mac.ops.read_mac_addr(hw))
7089 dev_err(&pdev->dev, "NVM Read Error\n");
7090 }
7091
7092 eth_hw_addr_set(netdev, hw->mac.addr);
7093
7094 if (!is_valid_ether_addr(netdev->dev_addr)) {
7095 dev_err(&pdev->dev, "Invalid MAC Address\n");
7096 err = -EIO;
7097 goto err_eeprom;
7098 }
7099
7100 /* configure RXPBSIZE and TXPBSIZE */
7101 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7102 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7103
7104 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7105 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7106
7107 INIT_WORK(&adapter->reset_task, igc_reset_task);
7108 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7109
7110 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7111 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7112
7113 /* Initialize link properties that are user-changeable */
7114 adapter->fc_autoneg = true;
7115 hw->phy.autoneg_advertised = 0xaf;
7116
7117 hw->fc.requested_mode = igc_fc_default;
7118 hw->fc.current_mode = igc_fc_default;
7119
7120 /* By default, support wake on port A */
7121 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7122
7123 /* initialize the wol settings based on the eeprom settings */
7124 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7125 adapter->wol |= IGC_WUFC_MAG;
7126
7127 device_set_wakeup_enable(&adapter->pdev->dev,
7128 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7129
7130 igc_ptp_init(adapter);
7131
7132 igc_tsn_clear_schedule(adapter);
7133
7134 /* reset the hardware with the new settings */
7135 igc_reset(adapter);
7136
7137 /* let the f/w know that the h/w is now under the control of the
7138 * driver.
7139 */
7140 igc_get_hw_control(adapter);
7141
7142 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7143 err = register_netdev(netdev);
7144 if (err)
7145 goto err_register;
7146
7147 /* carrier off reporting is important to ethtool even BEFORE open */
7148 netif_carrier_off(netdev);
7149
7150 /* Check if Media Autosense is enabled */
7151 adapter->ei = *ei;
7152
7153 /* print pcie link status and MAC address */
7154 pcie_print_link_status(pdev);
7155 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7156
7157 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7158 /* Disable EEE for internal PHY devices */
7159 hw->dev_spec._base.eee_enable = false;
7160 adapter->flags &= ~IGC_FLAG_EEE;
7161 igc_set_eee_i225(hw, false, false, false);
7162
7163 pm_runtime_put_noidle(&pdev->dev);
7164
7165 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7166 err = igc_led_setup(adapter);
7167 if (err)
7168 goto err_register;
7169 }
7170
7171 return 0;
7172
7173err_register:
7174 igc_release_hw_control(adapter);
7175err_eeprom:
7176 if (!igc_check_reset_block(hw))
7177 igc_reset_phy(hw);
7178err_sw_init:
7179 igc_clear_interrupt_scheme(adapter);
7180 iounmap(adapter->io_addr);
7181err_ioremap:
7182 free_netdev(netdev);
7183err_alloc_etherdev:
7184 pci_release_mem_regions(pdev);
7185err_pci_reg:
7186err_dma:
7187 pci_disable_device(pdev);
7188 return err;
7189}
7190
7191/**
7192 * igc_remove - Device Removal Routine
7193 * @pdev: PCI device information struct
7194 *
7195 * igc_remove is called by the PCI subsystem to alert the driver
7196 * that it should release a PCI device. This could be caused by a
7197 * Hot-Plug event, or because the driver is going to be removed from
7198 * memory.
7199 */
7200static void igc_remove(struct pci_dev *pdev)
7201{
7202 struct net_device *netdev = pci_get_drvdata(pdev);
7203 struct igc_adapter *adapter = netdev_priv(netdev);
7204
7205 pm_runtime_get_noresume(&pdev->dev);
7206
7207 igc_flush_nfc_rules(adapter);
7208
7209 igc_ptp_stop(adapter);
7210
7211 pci_disable_ptm(pdev);
7212 pci_clear_master(pdev);
7213
7214 set_bit(__IGC_DOWN, &adapter->state);
7215
7216 del_timer_sync(&adapter->watchdog_timer);
7217 del_timer_sync(&adapter->phy_info_timer);
7218
7219 cancel_work_sync(&adapter->reset_task);
7220 cancel_work_sync(&adapter->watchdog_task);
7221 hrtimer_cancel(&adapter->hrtimer);
7222
7223 if (IS_ENABLED(CONFIG_IGC_LEDS))
7224 igc_led_free(adapter);
7225
7226 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7227 * would have already happened in close and is redundant.
7228 */
7229 igc_release_hw_control(adapter);
7230 unregister_netdev(netdev);
7231
7232 igc_clear_interrupt_scheme(adapter);
7233 pci_iounmap(pdev, adapter->io_addr);
7234 pci_release_mem_regions(pdev);
7235
7236 free_netdev(netdev);
7237
7238 pci_disable_device(pdev);
7239}
7240
7241static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7242 bool runtime)
7243{
7244 struct net_device *netdev = pci_get_drvdata(pdev);
7245 struct igc_adapter *adapter = netdev_priv(netdev);
7246 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7247 struct igc_hw *hw = &adapter->hw;
7248 u32 ctrl, rctl, status;
7249 bool wake;
7250
7251 rtnl_lock();
7252 netif_device_detach(netdev);
7253
7254 if (netif_running(netdev))
7255 __igc_close(netdev, true);
7256
7257 igc_ptp_suspend(adapter);
7258
7259 igc_clear_interrupt_scheme(adapter);
7260 rtnl_unlock();
7261
7262 status = rd32(IGC_STATUS);
7263 if (status & IGC_STATUS_LU)
7264 wufc &= ~IGC_WUFC_LNKC;
7265
7266 if (wufc) {
7267 igc_setup_rctl(adapter);
7268 igc_set_rx_mode(netdev);
7269
7270 /* turn on all-multi mode if wake on multicast is enabled */
7271 if (wufc & IGC_WUFC_MC) {
7272 rctl = rd32(IGC_RCTL);
7273 rctl |= IGC_RCTL_MPE;
7274 wr32(IGC_RCTL, rctl);
7275 }
7276
7277 ctrl = rd32(IGC_CTRL);
7278 ctrl |= IGC_CTRL_ADVD3WUC;
7279 wr32(IGC_CTRL, ctrl);
7280
7281 /* Allow time for pending master requests to run */
7282 igc_disable_pcie_master(hw);
7283
7284 wr32(IGC_WUC, IGC_WUC_PME_EN);
7285 wr32(IGC_WUFC, wufc);
7286 } else {
7287 wr32(IGC_WUC, 0);
7288 wr32(IGC_WUFC, 0);
7289 }
7290
7291 wake = wufc || adapter->en_mng_pt;
7292 if (!wake)
7293 igc_power_down_phy_copper_base(&adapter->hw);
7294 else
7295 igc_power_up_link(adapter);
7296
7297 if (enable_wake)
7298 *enable_wake = wake;
7299
7300 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7301 * would have already happened in close and is redundant.
7302 */
7303 igc_release_hw_control(adapter);
7304
7305 pci_disable_device(pdev);
7306
7307 return 0;
7308}
7309
7310static int igc_runtime_suspend(struct device *dev)
7311{
7312 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7313}
7314
7315static void igc_deliver_wake_packet(struct net_device *netdev)
7316{
7317 struct igc_adapter *adapter = netdev_priv(netdev);
7318 struct igc_hw *hw = &adapter->hw;
7319 struct sk_buff *skb;
7320 u32 wupl;
7321
7322 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7323
7324 /* WUPM stores only the first 128 bytes of the wake packet.
7325 * Read the packet only if we have the whole thing.
7326 */
7327 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7328 return;
7329
7330 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7331 if (!skb)
7332 return;
7333
7334 skb_put(skb, wupl);
7335
7336 /* Ensure reads are 32-bit aligned */
7337 wupl = roundup(wupl, 4);
7338
7339 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7340
7341 skb->protocol = eth_type_trans(skb, netdev);
7342 netif_rx(skb);
7343}
7344
7345static int igc_resume(struct device *dev)
7346{
7347 struct pci_dev *pdev = to_pci_dev(dev);
7348 struct net_device *netdev = pci_get_drvdata(pdev);
7349 struct igc_adapter *adapter = netdev_priv(netdev);
7350 struct igc_hw *hw = &adapter->hw;
7351 u32 err, val;
7352
7353 pci_set_power_state(pdev, PCI_D0);
7354 pci_restore_state(pdev);
7355 pci_save_state(pdev);
7356
7357 if (!pci_device_is_present(pdev))
7358 return -ENODEV;
7359 err = pci_enable_device_mem(pdev);
7360 if (err) {
7361 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7362 return err;
7363 }
7364 pci_set_master(pdev);
7365
7366 pci_enable_wake(pdev, PCI_D3hot, 0);
7367 pci_enable_wake(pdev, PCI_D3cold, 0);
7368
7369 if (igc_init_interrupt_scheme(adapter, true)) {
7370 netdev_err(netdev, "Unable to allocate memory for queues\n");
7371 return -ENOMEM;
7372 }
7373
7374 igc_reset(adapter);
7375
7376 /* let the f/w know that the h/w is now under the control of the
7377 * driver.
7378 */
7379 igc_get_hw_control(adapter);
7380
7381 val = rd32(IGC_WUS);
7382 if (val & WAKE_PKT_WUS)
7383 igc_deliver_wake_packet(netdev);
7384
7385 wr32(IGC_WUS, ~0);
7386
7387 if (netif_running(netdev)) {
7388 err = __igc_open(netdev, true);
7389 if (!err)
7390 netif_device_attach(netdev);
7391 }
7392
7393 return err;
7394}
7395
7396static int igc_runtime_resume(struct device *dev)
7397{
7398 return igc_resume(dev);
7399}
7400
7401static int igc_suspend(struct device *dev)
7402{
7403 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7404}
7405
7406static int __maybe_unused igc_runtime_idle(struct device *dev)
7407{
7408 struct net_device *netdev = dev_get_drvdata(dev);
7409 struct igc_adapter *adapter = netdev_priv(netdev);
7410
7411 if (!igc_has_link(adapter))
7412 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7413
7414 return -EBUSY;
7415}
7416
7417static void igc_shutdown(struct pci_dev *pdev)
7418{
7419 bool wake;
7420
7421 __igc_shutdown(pdev, &wake, 0);
7422
7423 if (system_state == SYSTEM_POWER_OFF) {
7424 pci_wake_from_d3(pdev, wake);
7425 pci_set_power_state(pdev, PCI_D3hot);
7426 }
7427}
7428
7429/**
7430 * igc_io_error_detected - called when PCI error is detected
7431 * @pdev: Pointer to PCI device
7432 * @state: The current PCI connection state
7433 *
7434 * This function is called after a PCI bus error affecting
7435 * this device has been detected.
7436 **/
7437static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7438 pci_channel_state_t state)
7439{
7440 struct net_device *netdev = pci_get_drvdata(pdev);
7441 struct igc_adapter *adapter = netdev_priv(netdev);
7442
7443 netif_device_detach(netdev);
7444
7445 if (state == pci_channel_io_perm_failure)
7446 return PCI_ERS_RESULT_DISCONNECT;
7447
7448 if (netif_running(netdev))
7449 igc_down(adapter);
7450 pci_disable_device(pdev);
7451
7452 /* Request a slot reset. */
7453 return PCI_ERS_RESULT_NEED_RESET;
7454}
7455
7456/**
7457 * igc_io_slot_reset - called after the PCI bus has been reset.
7458 * @pdev: Pointer to PCI device
7459 *
7460 * Restart the card from scratch, as if from a cold-boot. Implementation
7461 * resembles the first-half of the igc_resume routine.
7462 **/
7463static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7464{
7465 struct net_device *netdev = pci_get_drvdata(pdev);
7466 struct igc_adapter *adapter = netdev_priv(netdev);
7467 struct igc_hw *hw = &adapter->hw;
7468 pci_ers_result_t result;
7469
7470 if (pci_enable_device_mem(pdev)) {
7471 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7472 result = PCI_ERS_RESULT_DISCONNECT;
7473 } else {
7474 pci_set_master(pdev);
7475 pci_restore_state(pdev);
7476 pci_save_state(pdev);
7477
7478 pci_enable_wake(pdev, PCI_D3hot, 0);
7479 pci_enable_wake(pdev, PCI_D3cold, 0);
7480
7481 /* In case of PCI error, adapter loses its HW address
7482 * so we should re-assign it here.
7483 */
7484 hw->hw_addr = adapter->io_addr;
7485
7486 igc_reset(adapter);
7487 wr32(IGC_WUS, ~0);
7488 result = PCI_ERS_RESULT_RECOVERED;
7489 }
7490
7491 return result;
7492}
7493
7494/**
7495 * igc_io_resume - called when traffic can start to flow again.
7496 * @pdev: Pointer to PCI device
7497 *
7498 * This callback is called when the error recovery driver tells us that
7499 * its OK to resume normal operation. Implementation resembles the
7500 * second-half of the igc_resume routine.
7501 */
7502static void igc_io_resume(struct pci_dev *pdev)
7503{
7504 struct net_device *netdev = pci_get_drvdata(pdev);
7505 struct igc_adapter *adapter = netdev_priv(netdev);
7506
7507 rtnl_lock();
7508 if (netif_running(netdev)) {
7509 if (igc_open(netdev)) {
7510 rtnl_unlock();
7511 netdev_err(netdev, "igc_open failed after reset\n");
7512 return;
7513 }
7514 }
7515
7516 netif_device_attach(netdev);
7517
7518 /* let the f/w know that the h/w is now under the control of the
7519 * driver.
7520 */
7521 igc_get_hw_control(adapter);
7522 rtnl_unlock();
7523}
7524
7525static const struct pci_error_handlers igc_err_handler = {
7526 .error_detected = igc_io_error_detected,
7527 .slot_reset = igc_io_slot_reset,
7528 .resume = igc_io_resume,
7529};
7530
7531static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7532 igc_runtime_suspend, igc_runtime_resume,
7533 igc_runtime_idle);
7534
7535static struct pci_driver igc_driver = {
7536 .name = igc_driver_name,
7537 .id_table = igc_pci_tbl,
7538 .probe = igc_probe,
7539 .remove = igc_remove,
7540 .driver.pm = pm_ptr(&igc_pm_ops),
7541 .shutdown = igc_shutdown,
7542 .err_handler = &igc_err_handler,
7543};
7544
7545/**
7546 * igc_reinit_queues - return error
7547 * @adapter: pointer to adapter structure
7548 */
7549int igc_reinit_queues(struct igc_adapter *adapter)
7550{
7551 struct net_device *netdev = adapter->netdev;
7552 int err = 0;
7553
7554 if (netif_running(netdev))
7555 igc_close(netdev);
7556
7557 igc_reset_interrupt_capability(adapter);
7558
7559 if (igc_init_interrupt_scheme(adapter, true)) {
7560 netdev_err(netdev, "Unable to allocate memory for queues\n");
7561 return -ENOMEM;
7562 }
7563
7564 if (netif_running(netdev))
7565 err = igc_open(netdev);
7566
7567 return err;
7568}
7569
7570/**
7571 * igc_get_hw_dev - return device
7572 * @hw: pointer to hardware structure
7573 *
7574 * used by hardware layer to print debugging information
7575 */
7576struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7577{
7578 struct igc_adapter *adapter = hw->back;
7579
7580 return adapter->netdev;
7581}
7582
7583static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7584{
7585 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7586 u8 idx = ring->reg_idx;
7587 u32 rxdctl;
7588
7589 rxdctl = rd32(IGC_RXDCTL(idx));
7590 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7591 rxdctl |= IGC_RXDCTL_SWFLUSH;
7592 wr32(IGC_RXDCTL(idx), rxdctl);
7593}
7594
7595void igc_disable_rx_ring(struct igc_ring *ring)
7596{
7597 igc_disable_rx_ring_hw(ring);
7598 igc_clean_rx_ring(ring);
7599}
7600
7601void igc_enable_rx_ring(struct igc_ring *ring)
7602{
7603 struct igc_adapter *adapter = ring->q_vector->adapter;
7604
7605 igc_configure_rx_ring(adapter, ring);
7606
7607 if (ring->xsk_pool)
7608 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7609 else
7610 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7611}
7612
7613void igc_disable_tx_ring(struct igc_ring *ring)
7614{
7615 igc_disable_tx_ring_hw(ring);
7616 igc_clean_tx_ring(ring);
7617}
7618
7619void igc_enable_tx_ring(struct igc_ring *ring)
7620{
7621 struct igc_adapter *adapter = ring->q_vector->adapter;
7622
7623 igc_configure_tx_ring(adapter, ring);
7624}
7625
7626/**
7627 * igc_init_module - Driver Registration Routine
7628 *
7629 * igc_init_module is the first routine called when the driver is
7630 * loaded. All it does is register with the PCI subsystem.
7631 */
7632static int __init igc_init_module(void)
7633{
7634 int ret;
7635
7636 pr_info("%s\n", igc_driver_string);
7637 pr_info("%s\n", igc_copyright);
7638
7639 ret = pci_register_driver(&igc_driver);
7640 return ret;
7641}
7642
7643module_init(igc_init_module);
7644
7645/**
7646 * igc_exit_module - Driver Exit Cleanup Routine
7647 *
7648 * igc_exit_module is called just before the driver is removed
7649 * from memory.
7650 */
7651static void __exit igc_exit_module(void)
7652{
7653 pci_unregister_driver(&igc_driver);
7654}
7655
7656module_exit(igc_exit_module);
7657/* igc_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/tcp.h>
8#include <linux/udp.h>
9#include <linux/ip.h>
10#include <linux/pm_runtime.h>
11#include <net/pkt_sched.h>
12#include <linux/bpf_trace.h>
13#include <net/xdp_sock_drv.h>
14#include <linux/pci.h>
15
16#include <net/ipv6.h>
17
18#include "igc.h"
19#include "igc_hw.h"
20#include "igc_tsn.h"
21#include "igc_xdp.h"
22
23#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
24
25#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26
27#define IGC_XDP_PASS 0
28#define IGC_XDP_CONSUMED BIT(0)
29#define IGC_XDP_TX BIT(1)
30#define IGC_XDP_REDIRECT BIT(2)
31
32static int debug = -1;
33
34MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37module_param(debug, int, 0);
38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40char igc_driver_name[] = "igc";
41static const char igc_driver_string[] = DRV_SUMMARY;
42static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47};
48
49static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68};
69
70MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77};
78
79void igc_reset(struct igc_adapter *adapter)
80{
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126}
127
128/**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
132static void igc_power_up_link(struct igc_adapter *adapter)
133{
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139}
140
141/**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
149static void igc_release_hw_control(struct igc_adapter *adapter)
150{
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161}
162
163/**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
171static void igc_get_hw_control(struct igc_adapter *adapter)
172{
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180}
181
182static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183{
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188}
189
190/**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
194static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195{
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267}
268
269/**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
275void igc_free_tx_resources(struct igc_ring *tx_ring)
276{
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290}
291
292/**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
298static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299{
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304}
305
306/**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
310static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311{
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317}
318
319static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320{
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329}
330
331/**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
335static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336{
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344}
345
346/**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
352int igc_setup_tx_resources(struct igc_ring *tx_ring)
353{
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382}
383
384/**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
390static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391{
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406}
407
408static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409{
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441}
442
443static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444{
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456}
457
458/**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
462static void igc_clean_rx_ring(struct igc_ring *ring)
463{
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474}
475
476/**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
480static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481{
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487}
488
489/**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
495void igc_free_rx_resources(struct igc_ring *rx_ring)
496{
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512}
513
514/**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
520static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521{
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526}
527
528/**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
534int igc_setup_rx_resources(struct igc_ring *rx_ring)
535{
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581}
582
583/**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
590static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591{
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606}
607
608static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610{
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616}
617
618/**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
625static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627{
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702}
703
704/**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
710static void igc_configure_rx(struct igc_adapter *adapter)
711{
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719}
720
721/**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
728static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730{
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758}
759
760/**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
766static void igc_configure_tx(struct igc_adapter *adapter)
767{
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772}
773
774/**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
778static void igc_setup_mrqc(struct igc_adapter *adapter)
779{
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829}
830
831/**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
835static void igc_setup_rctl(struct igc_adapter *adapter)
836{
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876}
877
878/**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
882static void igc_setup_tctl(struct igc_adapter *adapter)
883{
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900}
901
902/**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
912static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915{
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943}
944
945/**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
950static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951{
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962}
963
964/* Set default MAC address for the PF in the first RAR entry */
965static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966{
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973}
974
975/**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
982static int igc_set_mac(struct net_device *netdev, void *p)
983{
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998}
999
1000/**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
1009static int igc_write_mc_addr_list(struct net_device *netdev)
1010{
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036}
1037
1038static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040{
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082}
1083
1084static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087{
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->skb = skb;
1100 buffer->protocol = 0;
1101 buffer->bytecount = skb->len;
1102 buffer->gso_segs = 1;
1103 buffer->time_stamp = jiffies;
1104 dma_unmap_len_set(buffer, len, skb->len);
1105 dma_unmap_addr_set(buffer, dma, dma);
1106
1107 return 0;
1108}
1109
1110static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 struct sk_buff *skb,
1112 struct igc_tx_buffer *first)
1113{
1114 union igc_adv_tx_desc *desc;
1115 u32 cmd_type, olinfo_status;
1116 int err;
1117
1118 if (!igc_desc_unused(ring))
1119 return -EBUSY;
1120
1121 err = igc_init_empty_frame(ring, first, skb);
1122 if (err)
1123 return err;
1124
1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 first->bytecount;
1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130 desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137 first->next_to_watch = desc;
1138
1139 ring->next_to_use++;
1140 if (ring->next_to_use == ring->count)
1141 ring->next_to_use = 0;
1142
1143 return 0;
1144}
1145
1146#define IGC_EMPTY_FRAME_SIZE 60
1147
1148static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 __le32 launch_time, bool first_flag,
1150 u32 vlan_macip_lens, u32 type_tucmd,
1151 u32 mss_l4len_idx)
1152{
1153 struct igc_adv_tx_context_desc *context_desc;
1154 u16 i = tx_ring->next_to_use;
1155
1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158 i++;
1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161 /* set bits to identify this as an advanced context descriptor */
1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164 /* For i225, context index must be unique per ring. */
1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168 if (first_flag)
1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1174 context_desc->launch_time = launch_time;
1175}
1176
1177static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 __le32 launch_time, bool first_flag)
1179{
1180 struct sk_buff *skb = first->skb;
1181 u32 vlan_macip_lens = 0;
1182 u32 type_tucmd = 0;
1183
1184 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185csum_failed:
1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 !tx_ring->launchtime_enable)
1188 return;
1189 goto no_csum;
1190 }
1191
1192 switch (skb->csum_offset) {
1193 case offsetof(struct tcphdr, check):
1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 fallthrough;
1196 case offsetof(struct udphdr, check):
1197 break;
1198 case offsetof(struct sctphdr, checksum):
1199 /* validate that this is actually an SCTP request */
1200 if (skb_csum_is_sctp(skb)) {
1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 break;
1203 }
1204 fallthrough;
1205 default:
1206 skb_checksum_help(skb);
1207 goto csum_failed;
1208 }
1209
1210 /* update TX checksum flag */
1211 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 skb_network_offset(skb);
1214no_csum:
1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 vlan_macip_lens, type_tucmd, 0);
1220}
1221
1222static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223{
1224 struct net_device *netdev = tx_ring->netdev;
1225
1226 netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228 /* memory barriier comment */
1229 smp_mb();
1230
1231 /* We need to check again in a case another CPU has just
1232 * made room available.
1233 */
1234 if (igc_desc_unused(tx_ring) < size)
1235 return -EBUSY;
1236
1237 /* A reprieve! */
1238 netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240 u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 tx_ring->tx_stats.restart_queue2++;
1242 u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244 return 0;
1245}
1246
1247static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248{
1249 if (igc_desc_unused(tx_ring) >= size)
1250 return 0;
1251 return __igc_maybe_stop_tx(tx_ring, size);
1252}
1253
1254#define IGC_SET_FLAG(_input, _flag, _result) \
1255 (((_flag) <= (_result)) ? \
1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
1259static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260{
1261 /* set type for advanced descriptor with frame checksum insertion */
1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 IGC_ADVTXD_DCMD_DEXT |
1264 IGC_ADVTXD_DCMD_IFCS;
1265
1266 /* set HW vlan bit if vlan is present */
1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 IGC_ADVTXD_DCMD_VLE);
1269
1270 /* set segmentation bits for TSO */
1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 (IGC_ADVTXD_DCMD_TSE));
1273
1274 /* set timestamp bit if present, will select the register set
1275 * based on the _TSTAMP(_X) bit.
1276 */
1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278 (IGC_ADVTXD_MAC_TSTAMP));
1279
1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281 (IGC_ADVTXD_TSTAMP_REG_1));
1282
1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284 (IGC_ADVTXD_TSTAMP_REG_2));
1285
1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287 (IGC_ADVTXD_TSTAMP_REG_3));
1288
1289 /* insert frame checksum */
1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291
1292 return cmd_type;
1293}
1294
1295static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296 union igc_adv_tx_desc *tx_desc,
1297 u32 tx_flags, unsigned int paylen)
1298{
1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300
1301 /* insert L4 checksum */
1302 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1303 (IGC_TXD_POPTS_TXSM << 8));
1304
1305 /* insert IPv4 checksum */
1306 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1307 (IGC_TXD_POPTS_IXSM << 8));
1308
1309 /* Use the second timer (free running, in general) for the timestamp */
1310 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1311 IGC_TXD_PTP2_TIMER_1);
1312
1313 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1314}
1315
1316static int igc_tx_map(struct igc_ring *tx_ring,
1317 struct igc_tx_buffer *first,
1318 const u8 hdr_len)
1319{
1320 struct sk_buff *skb = first->skb;
1321 struct igc_tx_buffer *tx_buffer;
1322 union igc_adv_tx_desc *tx_desc;
1323 u32 tx_flags = first->tx_flags;
1324 skb_frag_t *frag;
1325 u16 i = tx_ring->next_to_use;
1326 unsigned int data_len, size;
1327 dma_addr_t dma;
1328 u32 cmd_type;
1329
1330 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1331 tx_desc = IGC_TX_DESC(tx_ring, i);
1332
1333 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1334
1335 size = skb_headlen(skb);
1336 data_len = skb->data_len;
1337
1338 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1339
1340 tx_buffer = first;
1341
1342 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1343 if (dma_mapping_error(tx_ring->dev, dma))
1344 goto dma_error;
1345
1346 /* record length, and DMA address */
1347 dma_unmap_len_set(tx_buffer, len, size);
1348 dma_unmap_addr_set(tx_buffer, dma, dma);
1349
1350 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1351
1352 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1353 tx_desc->read.cmd_type_len =
1354 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1355
1356 i++;
1357 tx_desc++;
1358 if (i == tx_ring->count) {
1359 tx_desc = IGC_TX_DESC(tx_ring, 0);
1360 i = 0;
1361 }
1362 tx_desc->read.olinfo_status = 0;
1363
1364 dma += IGC_MAX_DATA_PER_TXD;
1365 size -= IGC_MAX_DATA_PER_TXD;
1366
1367 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1368 }
1369
1370 if (likely(!data_len))
1371 break;
1372
1373 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1374
1375 i++;
1376 tx_desc++;
1377 if (i == tx_ring->count) {
1378 tx_desc = IGC_TX_DESC(tx_ring, 0);
1379 i = 0;
1380 }
1381 tx_desc->read.olinfo_status = 0;
1382
1383 size = skb_frag_size(frag);
1384 data_len -= size;
1385
1386 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1387 size, DMA_TO_DEVICE);
1388
1389 tx_buffer = &tx_ring->tx_buffer_info[i];
1390 }
1391
1392 /* write last descriptor with RS and EOP bits */
1393 cmd_type |= size | IGC_TXD_DCMD;
1394 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1395
1396 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1397
1398 /* set the timestamp */
1399 first->time_stamp = jiffies;
1400
1401 skb_tx_timestamp(skb);
1402
1403 /* Force memory writes to complete before letting h/w know there
1404 * are new descriptors to fetch. (Only applicable for weak-ordered
1405 * memory model archs, such as IA-64).
1406 *
1407 * We also need this memory barrier to make certain all of the
1408 * status bits have been updated before next_to_watch is written.
1409 */
1410 wmb();
1411
1412 /* set next_to_watch value indicating a packet is present */
1413 first->next_to_watch = tx_desc;
1414
1415 i++;
1416 if (i == tx_ring->count)
1417 i = 0;
1418
1419 tx_ring->next_to_use = i;
1420
1421 /* Make sure there is space in the ring for the next send. */
1422 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1423
1424 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1425 writel(i, tx_ring->tail);
1426 }
1427
1428 return 0;
1429dma_error:
1430 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1431 tx_buffer = &tx_ring->tx_buffer_info[i];
1432
1433 /* clear dma mappings for failed tx_buffer_info map */
1434 while (tx_buffer != first) {
1435 if (dma_unmap_len(tx_buffer, len))
1436 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437
1438 if (i-- == 0)
1439 i += tx_ring->count;
1440 tx_buffer = &tx_ring->tx_buffer_info[i];
1441 }
1442
1443 if (dma_unmap_len(tx_buffer, len))
1444 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1445
1446 dev_kfree_skb_any(tx_buffer->skb);
1447 tx_buffer->skb = NULL;
1448
1449 tx_ring->next_to_use = i;
1450
1451 return -1;
1452}
1453
1454static int igc_tso(struct igc_ring *tx_ring,
1455 struct igc_tx_buffer *first,
1456 __le32 launch_time, bool first_flag,
1457 u8 *hdr_len)
1458{
1459 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1460 struct sk_buff *skb = first->skb;
1461 union {
1462 struct iphdr *v4;
1463 struct ipv6hdr *v6;
1464 unsigned char *hdr;
1465 } ip;
1466 union {
1467 struct tcphdr *tcp;
1468 struct udphdr *udp;
1469 unsigned char *hdr;
1470 } l4;
1471 u32 paylen, l4_offset;
1472 int err;
1473
1474 if (skb->ip_summed != CHECKSUM_PARTIAL)
1475 return 0;
1476
1477 if (!skb_is_gso(skb))
1478 return 0;
1479
1480 err = skb_cow_head(skb, 0);
1481 if (err < 0)
1482 return err;
1483
1484 ip.hdr = skb_network_header(skb);
1485 l4.hdr = skb_checksum_start(skb);
1486
1487 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1488 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1489
1490 /* initialize outer IP header fields */
1491 if (ip.v4->version == 4) {
1492 unsigned char *csum_start = skb_checksum_start(skb);
1493 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1494
1495 /* IP header will have to cancel out any data that
1496 * is not a part of the outer IP header
1497 */
1498 ip.v4->check = csum_fold(csum_partial(trans_start,
1499 csum_start - trans_start,
1500 0));
1501 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1502
1503 ip.v4->tot_len = 0;
1504 first->tx_flags |= IGC_TX_FLAGS_TSO |
1505 IGC_TX_FLAGS_CSUM |
1506 IGC_TX_FLAGS_IPV4;
1507 } else {
1508 ip.v6->payload_len = 0;
1509 first->tx_flags |= IGC_TX_FLAGS_TSO |
1510 IGC_TX_FLAGS_CSUM;
1511 }
1512
1513 /* determine offset of inner transport header */
1514 l4_offset = l4.hdr - skb->data;
1515
1516 /* remove payload length from inner checksum */
1517 paylen = skb->len - l4_offset;
1518 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1519 /* compute length of segmentation header */
1520 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1521 csum_replace_by_diff(&l4.tcp->check,
1522 (__force __wsum)htonl(paylen));
1523 } else {
1524 /* compute length of segmentation header */
1525 *hdr_len = sizeof(*l4.udp) + l4_offset;
1526 csum_replace_by_diff(&l4.udp->check,
1527 (__force __wsum)htonl(paylen));
1528 }
1529
1530 /* update gso size and bytecount with header size */
1531 first->gso_segs = skb_shinfo(skb)->gso_segs;
1532 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1533
1534 /* MSS L4LEN IDX */
1535 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1536 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1537
1538 /* VLAN MACLEN IPLEN */
1539 vlan_macip_lens = l4.hdr - ip.hdr;
1540 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1541 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1542
1543 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1544 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1545
1546 return 1;
1547}
1548
1549static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1550{
1551 int i;
1552
1553 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1554 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1555
1556 if (tstamp->skb)
1557 continue;
1558
1559 tstamp->skb = skb_get(skb);
1560 tstamp->start = jiffies;
1561 *flags = tstamp->flags;
1562
1563 return true;
1564 }
1565
1566 return false;
1567}
1568
1569static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1570 struct igc_ring *tx_ring)
1571{
1572 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1573 bool first_flag = false, insert_empty = false;
1574 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1575 __be16 protocol = vlan_get_protocol(skb);
1576 struct igc_tx_buffer *first;
1577 __le32 launch_time = 0;
1578 u32 tx_flags = 0;
1579 unsigned short f;
1580 ktime_t txtime;
1581 u8 hdr_len = 0;
1582 int tso = 0;
1583
1584 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1585 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1586 * + 2 desc gap to keep tail from touching head,
1587 * + 1 desc for context descriptor,
1588 * otherwise try next time
1589 */
1590 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1591 count += TXD_USE_COUNT(skb_frag_size(
1592 &skb_shinfo(skb)->frags[f]));
1593
1594 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1595 /* this is a hard error */
1596 return NETDEV_TX_BUSY;
1597 }
1598
1599 if (!tx_ring->launchtime_enable)
1600 goto done;
1601
1602 txtime = skb->tstamp;
1603 skb->tstamp = ktime_set(0, 0);
1604 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1605
1606 if (insert_empty) {
1607 struct igc_tx_buffer *empty_info;
1608 struct sk_buff *empty;
1609 void *data;
1610
1611 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1612 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1613 if (!empty)
1614 goto done;
1615
1616 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1617 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1618
1619 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1620
1621 if (igc_init_tx_empty_descriptor(tx_ring,
1622 empty,
1623 empty_info) < 0)
1624 dev_kfree_skb_any(empty);
1625 }
1626
1627done:
1628 /* record the location of the first descriptor for this packet */
1629 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1630 first->type = IGC_TX_BUFFER_TYPE_SKB;
1631 first->skb = skb;
1632 first->bytecount = skb->len;
1633 first->gso_segs = 1;
1634
1635 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1636 goto out_drop;
1637
1638 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1639 adapter->stats.txdrop++;
1640 goto out_drop;
1641 }
1642
1643 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1644 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1645 unsigned long flags;
1646 u32 tstamp_flags;
1647
1648 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1649 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1650 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1651 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1652 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1653 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1654 } else {
1655 adapter->tx_hwtstamp_skipped++;
1656 }
1657
1658 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1659 }
1660
1661 if (skb_vlan_tag_present(skb)) {
1662 tx_flags |= IGC_TX_FLAGS_VLAN;
1663 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1664 }
1665
1666 /* record initial flags and protocol */
1667 first->tx_flags = tx_flags;
1668 first->protocol = protocol;
1669
1670 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1671 if (tso < 0)
1672 goto out_drop;
1673 else if (!tso)
1674 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1675
1676 igc_tx_map(tx_ring, first, hdr_len);
1677
1678 return NETDEV_TX_OK;
1679
1680out_drop:
1681 dev_kfree_skb_any(first->skb);
1682 first->skb = NULL;
1683
1684 return NETDEV_TX_OK;
1685}
1686
1687static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1688 struct sk_buff *skb)
1689{
1690 unsigned int r_idx = skb->queue_mapping;
1691
1692 if (r_idx >= adapter->num_tx_queues)
1693 r_idx = r_idx % adapter->num_tx_queues;
1694
1695 return adapter->tx_ring[r_idx];
1696}
1697
1698static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1699 struct net_device *netdev)
1700{
1701 struct igc_adapter *adapter = netdev_priv(netdev);
1702
1703 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1704 * in order to meet this minimum size requirement.
1705 */
1706 if (skb->len < 17) {
1707 if (skb_padto(skb, 17))
1708 return NETDEV_TX_OK;
1709 skb->len = 17;
1710 }
1711
1712 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1713}
1714
1715static void igc_rx_checksum(struct igc_ring *ring,
1716 union igc_adv_rx_desc *rx_desc,
1717 struct sk_buff *skb)
1718{
1719 skb_checksum_none_assert(skb);
1720
1721 /* Ignore Checksum bit is set */
1722 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1723 return;
1724
1725 /* Rx checksum disabled via ethtool */
1726 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1727 return;
1728
1729 /* TCP/UDP checksum error bit is set */
1730 if (igc_test_staterr(rx_desc,
1731 IGC_RXDEXT_STATERR_L4E |
1732 IGC_RXDEXT_STATERR_IPE)) {
1733 /* work around errata with sctp packets where the TCPE aka
1734 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1735 * packets (aka let the stack check the crc32c)
1736 */
1737 if (!(skb->len == 60 &&
1738 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1739 u64_stats_update_begin(&ring->rx_syncp);
1740 ring->rx_stats.csum_err++;
1741 u64_stats_update_end(&ring->rx_syncp);
1742 }
1743 /* let the stack verify checksum errors */
1744 return;
1745 }
1746 /* It must be a TCP or UDP packet with a valid checksum */
1747 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1748 IGC_RXD_STAT_UDPCS))
1749 skb->ip_summed = CHECKSUM_UNNECESSARY;
1750
1751 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1752 le32_to_cpu(rx_desc->wb.upper.status_error));
1753}
1754
1755/* Mapping HW RSS Type to enum pkt_hash_types */
1756static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1757 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1759 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1761 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1762 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1767 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1768 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1769 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1770 [13] = PKT_HASH_TYPE_NONE,
1771 [14] = PKT_HASH_TYPE_NONE,
1772 [15] = PKT_HASH_TYPE_NONE,
1773};
1774
1775static inline void igc_rx_hash(struct igc_ring *ring,
1776 union igc_adv_rx_desc *rx_desc,
1777 struct sk_buff *skb)
1778{
1779 if (ring->netdev->features & NETIF_F_RXHASH) {
1780 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1781 u32 rss_type = igc_rss_type(rx_desc);
1782
1783 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1784 }
1785}
1786
1787static void igc_rx_vlan(struct igc_ring *rx_ring,
1788 union igc_adv_rx_desc *rx_desc,
1789 struct sk_buff *skb)
1790{
1791 struct net_device *dev = rx_ring->netdev;
1792 u16 vid;
1793
1794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1796 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1797 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1798 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1799 else
1800 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1801
1802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1803 }
1804}
1805
1806/**
1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1808 * @rx_ring: rx descriptor ring packet is being transacted on
1809 * @rx_desc: pointer to the EOP Rx descriptor
1810 * @skb: pointer to current skb being populated
1811 *
1812 * This function checks the ring, descriptor, and packet information in order
1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1814 * skb.
1815 */
1816static void igc_process_skb_fields(struct igc_ring *rx_ring,
1817 union igc_adv_rx_desc *rx_desc,
1818 struct sk_buff *skb)
1819{
1820 igc_rx_hash(rx_ring, rx_desc, skb);
1821
1822 igc_rx_checksum(rx_ring, rx_desc, skb);
1823
1824 igc_rx_vlan(rx_ring, rx_desc, skb);
1825
1826 skb_record_rx_queue(skb, rx_ring->queue_index);
1827
1828 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1829}
1830
1831static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1832{
1833 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1834 struct igc_adapter *adapter = netdev_priv(netdev);
1835 struct igc_hw *hw = &adapter->hw;
1836 u32 ctrl;
1837
1838 ctrl = rd32(IGC_CTRL);
1839
1840 if (enable) {
1841 /* enable VLAN tag insert/strip */
1842 ctrl |= IGC_CTRL_VME;
1843 } else {
1844 /* disable VLAN tag insert/strip */
1845 ctrl &= ~IGC_CTRL_VME;
1846 }
1847 wr32(IGC_CTRL, ctrl);
1848}
1849
1850static void igc_restore_vlan(struct igc_adapter *adapter)
1851{
1852 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1853}
1854
1855static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1856 const unsigned int size,
1857 int *rx_buffer_pgcnt)
1858{
1859 struct igc_rx_buffer *rx_buffer;
1860
1861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1862 *rx_buffer_pgcnt =
1863#if (PAGE_SIZE < 8192)
1864 page_count(rx_buffer->page);
1865#else
1866 0;
1867#endif
1868 prefetchw(rx_buffer->page);
1869
1870 /* we are reusing so sync this buffer for CPU use */
1871 dma_sync_single_range_for_cpu(rx_ring->dev,
1872 rx_buffer->dma,
1873 rx_buffer->page_offset,
1874 size,
1875 DMA_FROM_DEVICE);
1876
1877 rx_buffer->pagecnt_bias--;
1878
1879 return rx_buffer;
1880}
1881
1882static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1883 unsigned int truesize)
1884{
1885#if (PAGE_SIZE < 8192)
1886 buffer->page_offset ^= truesize;
1887#else
1888 buffer->page_offset += truesize;
1889#endif
1890}
1891
1892static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1893 unsigned int size)
1894{
1895 unsigned int truesize;
1896
1897#if (PAGE_SIZE < 8192)
1898 truesize = igc_rx_pg_size(ring) / 2;
1899#else
1900 truesize = ring_uses_build_skb(ring) ?
1901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1902 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1903 SKB_DATA_ALIGN(size);
1904#endif
1905 return truesize;
1906}
1907
1908/**
1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1910 * @rx_ring: rx descriptor ring to transact packets on
1911 * @rx_buffer: buffer containing page to add
1912 * @skb: sk_buff to place the data into
1913 * @size: size of buffer to be added
1914 *
1915 * This function will add the data contained in rx_buffer->page to the skb.
1916 */
1917static void igc_add_rx_frag(struct igc_ring *rx_ring,
1918 struct igc_rx_buffer *rx_buffer,
1919 struct sk_buff *skb,
1920 unsigned int size)
1921{
1922 unsigned int truesize;
1923
1924#if (PAGE_SIZE < 8192)
1925 truesize = igc_rx_pg_size(rx_ring) / 2;
1926#else
1927 truesize = ring_uses_build_skb(rx_ring) ?
1928 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1929 SKB_DATA_ALIGN(size);
1930#endif
1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932 rx_buffer->page_offset, size, truesize);
1933
1934 igc_rx_buffer_flip(rx_buffer, truesize);
1935}
1936
1937static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1938 struct igc_rx_buffer *rx_buffer,
1939 struct xdp_buff *xdp)
1940{
1941 unsigned int size = xdp->data_end - xdp->data;
1942 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943 unsigned int metasize = xdp->data - xdp->data_meta;
1944 struct sk_buff *skb;
1945
1946 /* prefetch first cache line of first page */
1947 net_prefetch(xdp->data_meta);
1948
1949 /* build an skb around the page buffer */
1950 skb = napi_build_skb(xdp->data_hard_start, truesize);
1951 if (unlikely(!skb))
1952 return NULL;
1953
1954 /* update pointers within the skb to store the data */
1955 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1956 __skb_put(skb, size);
1957 if (metasize)
1958 skb_metadata_set(skb, metasize);
1959
1960 igc_rx_buffer_flip(rx_buffer, truesize);
1961 return skb;
1962}
1963
1964static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1965 struct igc_rx_buffer *rx_buffer,
1966 struct igc_xdp_buff *ctx)
1967{
1968 struct xdp_buff *xdp = &ctx->xdp;
1969 unsigned int metasize = xdp->data - xdp->data_meta;
1970 unsigned int size = xdp->data_end - xdp->data;
1971 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1972 void *va = xdp->data;
1973 unsigned int headlen;
1974 struct sk_buff *skb;
1975
1976 /* prefetch first cache line of first page */
1977 net_prefetch(xdp->data_meta);
1978
1979 /* allocate a skb to store the frags */
1980 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1981 IGC_RX_HDR_LEN + metasize);
1982 if (unlikely(!skb))
1983 return NULL;
1984
1985 if (ctx->rx_ts) {
1986 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1987 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1988 }
1989
1990 /* Determine available headroom for copy */
1991 headlen = size;
1992 if (headlen > IGC_RX_HDR_LEN)
1993 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1994
1995 /* align pull length to size of long to optimize memcpy performance */
1996 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1997 ALIGN(headlen + metasize, sizeof(long)));
1998
1999 if (metasize) {
2000 skb_metadata_set(skb, metasize);
2001 __skb_pull(skb, metasize);
2002 }
2003
2004 /* update all of the pointers */
2005 size -= headlen;
2006 if (size) {
2007 skb_add_rx_frag(skb, 0, rx_buffer->page,
2008 (va + headlen) - page_address(rx_buffer->page),
2009 size, truesize);
2010 igc_rx_buffer_flip(rx_buffer, truesize);
2011 } else {
2012 rx_buffer->pagecnt_bias++;
2013 }
2014
2015 return skb;
2016}
2017
2018/**
2019 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2020 * @rx_ring: rx descriptor ring to store buffers on
2021 * @old_buff: donor buffer to have page reused
2022 *
2023 * Synchronizes page for reuse by the adapter
2024 */
2025static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2026 struct igc_rx_buffer *old_buff)
2027{
2028 u16 nta = rx_ring->next_to_alloc;
2029 struct igc_rx_buffer *new_buff;
2030
2031 new_buff = &rx_ring->rx_buffer_info[nta];
2032
2033 /* update, and store next to alloc */
2034 nta++;
2035 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2036
2037 /* Transfer page from old buffer to new buffer.
2038 * Move each member individually to avoid possible store
2039 * forwarding stalls.
2040 */
2041 new_buff->dma = old_buff->dma;
2042 new_buff->page = old_buff->page;
2043 new_buff->page_offset = old_buff->page_offset;
2044 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2045}
2046
2047static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2048 int rx_buffer_pgcnt)
2049{
2050 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2051 struct page *page = rx_buffer->page;
2052
2053 /* avoid re-using remote and pfmemalloc pages */
2054 if (!dev_page_is_reusable(page))
2055 return false;
2056
2057#if (PAGE_SIZE < 8192)
2058 /* if we are only owner of page we can reuse it */
2059 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2060 return false;
2061#else
2062#define IGC_LAST_OFFSET \
2063 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2064
2065 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2066 return false;
2067#endif
2068
2069 /* If we have drained the page fragment pool we need to update
2070 * the pagecnt_bias and page count so that we fully restock the
2071 * number of references the driver holds.
2072 */
2073 if (unlikely(pagecnt_bias == 1)) {
2074 page_ref_add(page, USHRT_MAX - 1);
2075 rx_buffer->pagecnt_bias = USHRT_MAX;
2076 }
2077
2078 return true;
2079}
2080
2081/**
2082 * igc_is_non_eop - process handling of non-EOP buffers
2083 * @rx_ring: Rx ring being processed
2084 * @rx_desc: Rx descriptor for current buffer
2085 *
2086 * This function updates next to clean. If the buffer is an EOP buffer
2087 * this function exits returning false, otherwise it will place the
2088 * sk_buff in the next buffer to be chained and return true indicating
2089 * that this is in fact a non-EOP buffer.
2090 */
2091static bool igc_is_non_eop(struct igc_ring *rx_ring,
2092 union igc_adv_rx_desc *rx_desc)
2093{
2094 u32 ntc = rx_ring->next_to_clean + 1;
2095
2096 /* fetch, update, and store next to clean */
2097 ntc = (ntc < rx_ring->count) ? ntc : 0;
2098 rx_ring->next_to_clean = ntc;
2099
2100 prefetch(IGC_RX_DESC(rx_ring, ntc));
2101
2102 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2103 return false;
2104
2105 return true;
2106}
2107
2108/**
2109 * igc_cleanup_headers - Correct corrupted or empty headers
2110 * @rx_ring: rx descriptor ring packet is being transacted on
2111 * @rx_desc: pointer to the EOP Rx descriptor
2112 * @skb: pointer to current skb being fixed
2113 *
2114 * Address the case where we are pulling data in on pages only
2115 * and as such no data is present in the skb header.
2116 *
2117 * In addition if skb is not at least 60 bytes we need to pad it so that
2118 * it is large enough to qualify as a valid Ethernet frame.
2119 *
2120 * Returns true if an error was encountered and skb was freed.
2121 */
2122static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2123 union igc_adv_rx_desc *rx_desc,
2124 struct sk_buff *skb)
2125{
2126 /* XDP packets use error pointer so abort at this point */
2127 if (IS_ERR(skb))
2128 return true;
2129
2130 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2131 struct net_device *netdev = rx_ring->netdev;
2132
2133 if (!(netdev->features & NETIF_F_RXALL)) {
2134 dev_kfree_skb_any(skb);
2135 return true;
2136 }
2137 }
2138
2139 /* if eth_skb_pad returns an error the skb was freed */
2140 if (eth_skb_pad(skb))
2141 return true;
2142
2143 return false;
2144}
2145
2146static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2147 struct igc_rx_buffer *rx_buffer,
2148 int rx_buffer_pgcnt)
2149{
2150 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2151 /* hand second half of page back to the ring */
2152 igc_reuse_rx_page(rx_ring, rx_buffer);
2153 } else {
2154 /* We are not reusing the buffer so unmap it and free
2155 * any references we are holding to it
2156 */
2157 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2158 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2159 IGC_RX_DMA_ATTR);
2160 __page_frag_cache_drain(rx_buffer->page,
2161 rx_buffer->pagecnt_bias);
2162 }
2163
2164 /* clear contents of rx_buffer */
2165 rx_buffer->page = NULL;
2166}
2167
2168static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2169{
2170 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2171
2172 if (ring_uses_build_skb(rx_ring))
2173 return IGC_SKB_PAD;
2174 if (igc_xdp_is_enabled(adapter))
2175 return XDP_PACKET_HEADROOM;
2176
2177 return 0;
2178}
2179
2180static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2181 struct igc_rx_buffer *bi)
2182{
2183 struct page *page = bi->page;
2184 dma_addr_t dma;
2185
2186 /* since we are recycling buffers we should seldom need to alloc */
2187 if (likely(page))
2188 return true;
2189
2190 /* alloc new page for storage */
2191 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2192 if (unlikely(!page)) {
2193 rx_ring->rx_stats.alloc_failed++;
2194 return false;
2195 }
2196
2197 /* map page for use */
2198 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2199 igc_rx_pg_size(rx_ring),
2200 DMA_FROM_DEVICE,
2201 IGC_RX_DMA_ATTR);
2202
2203 /* if mapping failed free memory back to system since
2204 * there isn't much point in holding memory we can't use
2205 */
2206 if (dma_mapping_error(rx_ring->dev, dma)) {
2207 __free_page(page);
2208
2209 rx_ring->rx_stats.alloc_failed++;
2210 return false;
2211 }
2212
2213 bi->dma = dma;
2214 bi->page = page;
2215 bi->page_offset = igc_rx_offset(rx_ring);
2216 page_ref_add(page, USHRT_MAX - 1);
2217 bi->pagecnt_bias = USHRT_MAX;
2218
2219 return true;
2220}
2221
2222/**
2223 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2224 * @rx_ring: rx descriptor ring
2225 * @cleaned_count: number of buffers to clean
2226 */
2227static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2228{
2229 union igc_adv_rx_desc *rx_desc;
2230 u16 i = rx_ring->next_to_use;
2231 struct igc_rx_buffer *bi;
2232 u16 bufsz;
2233
2234 /* nothing to do */
2235 if (!cleaned_count)
2236 return;
2237
2238 rx_desc = IGC_RX_DESC(rx_ring, i);
2239 bi = &rx_ring->rx_buffer_info[i];
2240 i -= rx_ring->count;
2241
2242 bufsz = igc_rx_bufsz(rx_ring);
2243
2244 do {
2245 if (!igc_alloc_mapped_page(rx_ring, bi))
2246 break;
2247
2248 /* sync the buffer for use by the device */
2249 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2250 bi->page_offset, bufsz,
2251 DMA_FROM_DEVICE);
2252
2253 /* Refresh the desc even if buffer_addrs didn't change
2254 * because each write-back erases this info.
2255 */
2256 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2257
2258 rx_desc++;
2259 bi++;
2260 i++;
2261 if (unlikely(!i)) {
2262 rx_desc = IGC_RX_DESC(rx_ring, 0);
2263 bi = rx_ring->rx_buffer_info;
2264 i -= rx_ring->count;
2265 }
2266
2267 /* clear the length for the next_to_use descriptor */
2268 rx_desc->wb.upper.length = 0;
2269
2270 cleaned_count--;
2271 } while (cleaned_count);
2272
2273 i += rx_ring->count;
2274
2275 if (rx_ring->next_to_use != i) {
2276 /* record the next descriptor to use */
2277 rx_ring->next_to_use = i;
2278
2279 /* update next to alloc since we have filled the ring */
2280 rx_ring->next_to_alloc = i;
2281
2282 /* Force memory writes to complete before letting h/w
2283 * know there are new descriptors to fetch. (Only
2284 * applicable for weak-ordered memory model archs,
2285 * such as IA-64).
2286 */
2287 wmb();
2288 writel(i, rx_ring->tail);
2289 }
2290}
2291
2292static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2293{
2294 union igc_adv_rx_desc *desc;
2295 u16 i = ring->next_to_use;
2296 struct igc_rx_buffer *bi;
2297 dma_addr_t dma;
2298 bool ok = true;
2299
2300 if (!count)
2301 return ok;
2302
2303 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2304
2305 desc = IGC_RX_DESC(ring, i);
2306 bi = &ring->rx_buffer_info[i];
2307 i -= ring->count;
2308
2309 do {
2310 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2311 if (!bi->xdp) {
2312 ok = false;
2313 break;
2314 }
2315
2316 dma = xsk_buff_xdp_get_dma(bi->xdp);
2317 desc->read.pkt_addr = cpu_to_le64(dma);
2318
2319 desc++;
2320 bi++;
2321 i++;
2322 if (unlikely(!i)) {
2323 desc = IGC_RX_DESC(ring, 0);
2324 bi = ring->rx_buffer_info;
2325 i -= ring->count;
2326 }
2327
2328 /* Clear the length for the next_to_use descriptor. */
2329 desc->wb.upper.length = 0;
2330
2331 count--;
2332 } while (count);
2333
2334 i += ring->count;
2335
2336 if (ring->next_to_use != i) {
2337 ring->next_to_use = i;
2338
2339 /* Force memory writes to complete before letting h/w
2340 * know there are new descriptors to fetch. (Only
2341 * applicable for weak-ordered memory model archs,
2342 * such as IA-64).
2343 */
2344 wmb();
2345 writel(i, ring->tail);
2346 }
2347
2348 return ok;
2349}
2350
2351/* This function requires __netif_tx_lock is held by the caller. */
2352static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2353 struct xdp_frame *xdpf)
2354{
2355 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2356 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2357 u16 count, index = ring->next_to_use;
2358 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2359 struct igc_tx_buffer *buffer = head;
2360 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2361 u32 olinfo_status, len = xdpf->len, cmd_type;
2362 void *data = xdpf->data;
2363 u16 i;
2364
2365 count = TXD_USE_COUNT(len);
2366 for (i = 0; i < nr_frags; i++)
2367 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2368
2369 if (igc_maybe_stop_tx(ring, count + 3)) {
2370 /* this is a hard error */
2371 return -EBUSY;
2372 }
2373
2374 i = 0;
2375 head->bytecount = xdp_get_frame_len(xdpf);
2376 head->type = IGC_TX_BUFFER_TYPE_XDP;
2377 head->gso_segs = 1;
2378 head->xdpf = xdpf;
2379
2380 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2381 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2382
2383 for (;;) {
2384 dma_addr_t dma;
2385
2386 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2387 if (dma_mapping_error(ring->dev, dma)) {
2388 netdev_err_once(ring->netdev,
2389 "Failed to map DMA for TX\n");
2390 goto unmap;
2391 }
2392
2393 dma_unmap_len_set(buffer, len, len);
2394 dma_unmap_addr_set(buffer, dma, dma);
2395
2396 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2397 IGC_ADVTXD_DCMD_IFCS | len;
2398
2399 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2400 desc->read.buffer_addr = cpu_to_le64(dma);
2401
2402 buffer->protocol = 0;
2403
2404 if (++index == ring->count)
2405 index = 0;
2406
2407 if (i == nr_frags)
2408 break;
2409
2410 buffer = &ring->tx_buffer_info[index];
2411 desc = IGC_TX_DESC(ring, index);
2412 desc->read.olinfo_status = 0;
2413
2414 data = skb_frag_address(&sinfo->frags[i]);
2415 len = skb_frag_size(&sinfo->frags[i]);
2416 i++;
2417 }
2418 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2419
2420 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2421 /* set the timestamp */
2422 head->time_stamp = jiffies;
2423 /* set next_to_watch value indicating a packet is present */
2424 head->next_to_watch = desc;
2425 ring->next_to_use = index;
2426
2427 return 0;
2428
2429unmap:
2430 for (;;) {
2431 buffer = &ring->tx_buffer_info[index];
2432 if (dma_unmap_len(buffer, len))
2433 dma_unmap_page(ring->dev,
2434 dma_unmap_addr(buffer, dma),
2435 dma_unmap_len(buffer, len),
2436 DMA_TO_DEVICE);
2437 dma_unmap_len_set(buffer, len, 0);
2438 if (buffer == head)
2439 break;
2440
2441 if (!index)
2442 index += ring->count;
2443 index--;
2444 }
2445
2446 return -ENOMEM;
2447}
2448
2449static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2450 int cpu)
2451{
2452 int index = cpu;
2453
2454 if (unlikely(index < 0))
2455 index = 0;
2456
2457 while (index >= adapter->num_tx_queues)
2458 index -= adapter->num_tx_queues;
2459
2460 return adapter->tx_ring[index];
2461}
2462
2463static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2464{
2465 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2466 int cpu = smp_processor_id();
2467 struct netdev_queue *nq;
2468 struct igc_ring *ring;
2469 int res;
2470
2471 if (unlikely(!xdpf))
2472 return -EFAULT;
2473
2474 ring = igc_xdp_get_tx_ring(adapter, cpu);
2475 nq = txring_txq(ring);
2476
2477 __netif_tx_lock(nq, cpu);
2478 /* Avoid transmit queue timeout since we share it with the slow path */
2479 txq_trans_cond_update(nq);
2480 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2481 __netif_tx_unlock(nq);
2482 return res;
2483}
2484
2485/* This function assumes rcu_read_lock() is held by the caller. */
2486static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2487 struct bpf_prog *prog,
2488 struct xdp_buff *xdp)
2489{
2490 u32 act = bpf_prog_run_xdp(prog, xdp);
2491
2492 switch (act) {
2493 case XDP_PASS:
2494 return IGC_XDP_PASS;
2495 case XDP_TX:
2496 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2497 goto out_failure;
2498 return IGC_XDP_TX;
2499 case XDP_REDIRECT:
2500 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2501 goto out_failure;
2502 return IGC_XDP_REDIRECT;
2503 break;
2504 default:
2505 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2506 fallthrough;
2507 case XDP_ABORTED:
2508out_failure:
2509 trace_xdp_exception(adapter->netdev, prog, act);
2510 fallthrough;
2511 case XDP_DROP:
2512 return IGC_XDP_CONSUMED;
2513 }
2514}
2515
2516static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2517 struct xdp_buff *xdp)
2518{
2519 struct bpf_prog *prog;
2520 int res;
2521
2522 prog = READ_ONCE(adapter->xdp_prog);
2523 if (!prog) {
2524 res = IGC_XDP_PASS;
2525 goto out;
2526 }
2527
2528 res = __igc_xdp_run_prog(adapter, prog, xdp);
2529
2530out:
2531 return ERR_PTR(-res);
2532}
2533
2534/* This function assumes __netif_tx_lock is held by the caller. */
2535static void igc_flush_tx_descriptors(struct igc_ring *ring)
2536{
2537 /* Once tail pointer is updated, hardware can fetch the descriptors
2538 * any time so we issue a write membar here to ensure all memory
2539 * writes are complete before the tail pointer is updated.
2540 */
2541 wmb();
2542 writel(ring->next_to_use, ring->tail);
2543}
2544
2545static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2546{
2547 int cpu = smp_processor_id();
2548 struct netdev_queue *nq;
2549 struct igc_ring *ring;
2550
2551 if (status & IGC_XDP_TX) {
2552 ring = igc_xdp_get_tx_ring(adapter, cpu);
2553 nq = txring_txq(ring);
2554
2555 __netif_tx_lock(nq, cpu);
2556 igc_flush_tx_descriptors(ring);
2557 __netif_tx_unlock(nq);
2558 }
2559
2560 if (status & IGC_XDP_REDIRECT)
2561 xdp_do_flush();
2562}
2563
2564static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2565 unsigned int packets, unsigned int bytes)
2566{
2567 struct igc_ring *ring = q_vector->rx.ring;
2568
2569 u64_stats_update_begin(&ring->rx_syncp);
2570 ring->rx_stats.packets += packets;
2571 ring->rx_stats.bytes += bytes;
2572 u64_stats_update_end(&ring->rx_syncp);
2573
2574 q_vector->rx.total_packets += packets;
2575 q_vector->rx.total_bytes += bytes;
2576}
2577
2578static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2579{
2580 unsigned int total_bytes = 0, total_packets = 0;
2581 struct igc_adapter *adapter = q_vector->adapter;
2582 struct igc_ring *rx_ring = q_vector->rx.ring;
2583 struct sk_buff *skb = rx_ring->skb;
2584 u16 cleaned_count = igc_desc_unused(rx_ring);
2585 int xdp_status = 0, rx_buffer_pgcnt;
2586
2587 while (likely(total_packets < budget)) {
2588 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2589 struct igc_rx_buffer *rx_buffer;
2590 union igc_adv_rx_desc *rx_desc;
2591 unsigned int size, truesize;
2592 int pkt_offset = 0;
2593 void *pktbuf;
2594
2595 /* return some buffers to hardware, one at a time is too slow */
2596 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2597 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2598 cleaned_count = 0;
2599 }
2600
2601 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2602 size = le16_to_cpu(rx_desc->wb.upper.length);
2603 if (!size)
2604 break;
2605
2606 /* This memory barrier is needed to keep us from reading
2607 * any other fields out of the rx_desc until we know the
2608 * descriptor has been written back
2609 */
2610 dma_rmb();
2611
2612 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2613 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2614
2615 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2616
2617 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2618 ctx.rx_ts = pktbuf;
2619 pkt_offset = IGC_TS_HDR_LEN;
2620 size -= IGC_TS_HDR_LEN;
2621 }
2622
2623 if (!skb) {
2624 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2625 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2626 igc_rx_offset(rx_ring) + pkt_offset,
2627 size, true);
2628 xdp_buff_clear_frags_flag(&ctx.xdp);
2629 ctx.rx_desc = rx_desc;
2630
2631 skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2632 }
2633
2634 if (IS_ERR(skb)) {
2635 unsigned int xdp_res = -PTR_ERR(skb);
2636
2637 switch (xdp_res) {
2638 case IGC_XDP_CONSUMED:
2639 rx_buffer->pagecnt_bias++;
2640 break;
2641 case IGC_XDP_TX:
2642 case IGC_XDP_REDIRECT:
2643 igc_rx_buffer_flip(rx_buffer, truesize);
2644 xdp_status |= xdp_res;
2645 break;
2646 }
2647
2648 total_packets++;
2649 total_bytes += size;
2650 } else if (skb)
2651 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2652 else if (ring_uses_build_skb(rx_ring))
2653 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2654 else
2655 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2656
2657 /* exit if we failed to retrieve a buffer */
2658 if (!skb) {
2659 rx_ring->rx_stats.alloc_failed++;
2660 rx_buffer->pagecnt_bias++;
2661 break;
2662 }
2663
2664 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2665 cleaned_count++;
2666
2667 /* fetch next buffer in frame if non-eop */
2668 if (igc_is_non_eop(rx_ring, rx_desc))
2669 continue;
2670
2671 /* verify the packet layout is correct */
2672 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2673 skb = NULL;
2674 continue;
2675 }
2676
2677 /* probably a little skewed due to removing CRC */
2678 total_bytes += skb->len;
2679
2680 /* populate checksum, VLAN, and protocol */
2681 igc_process_skb_fields(rx_ring, rx_desc, skb);
2682
2683 napi_gro_receive(&q_vector->napi, skb);
2684
2685 /* reset skb pointer */
2686 skb = NULL;
2687
2688 /* update budget accounting */
2689 total_packets++;
2690 }
2691
2692 if (xdp_status)
2693 igc_finalize_xdp(adapter, xdp_status);
2694
2695 /* place incomplete frames back on ring for completion */
2696 rx_ring->skb = skb;
2697
2698 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2699
2700 if (cleaned_count)
2701 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2702
2703 return total_packets;
2704}
2705
2706static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2707 struct xdp_buff *xdp)
2708{
2709 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2710 unsigned int metasize = xdp->data - xdp->data_meta;
2711 struct sk_buff *skb;
2712
2713 net_prefetch(xdp->data_meta);
2714
2715 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2716 GFP_ATOMIC | __GFP_NOWARN);
2717 if (unlikely(!skb))
2718 return NULL;
2719
2720 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2721 ALIGN(totalsize, sizeof(long)));
2722
2723 if (metasize) {
2724 skb_metadata_set(skb, metasize);
2725 __skb_pull(skb, metasize);
2726 }
2727
2728 return skb;
2729}
2730
2731static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2732 union igc_adv_rx_desc *desc,
2733 struct xdp_buff *xdp,
2734 ktime_t timestamp)
2735{
2736 struct igc_ring *ring = q_vector->rx.ring;
2737 struct sk_buff *skb;
2738
2739 skb = igc_construct_skb_zc(ring, xdp);
2740 if (!skb) {
2741 ring->rx_stats.alloc_failed++;
2742 return;
2743 }
2744
2745 if (timestamp)
2746 skb_hwtstamps(skb)->hwtstamp = timestamp;
2747
2748 if (igc_cleanup_headers(ring, desc, skb))
2749 return;
2750
2751 igc_process_skb_fields(ring, desc, skb);
2752 napi_gro_receive(&q_vector->napi, skb);
2753}
2754
2755static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2756{
2757 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2758 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2759 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2760 */
2761 return (struct igc_xdp_buff *)xdp;
2762}
2763
2764static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2765{
2766 struct igc_adapter *adapter = q_vector->adapter;
2767 struct igc_ring *ring = q_vector->rx.ring;
2768 u16 cleaned_count = igc_desc_unused(ring);
2769 int total_bytes = 0, total_packets = 0;
2770 u16 ntc = ring->next_to_clean;
2771 struct bpf_prog *prog;
2772 bool failure = false;
2773 int xdp_status = 0;
2774
2775 rcu_read_lock();
2776
2777 prog = READ_ONCE(adapter->xdp_prog);
2778
2779 while (likely(total_packets < budget)) {
2780 union igc_adv_rx_desc *desc;
2781 struct igc_rx_buffer *bi;
2782 struct igc_xdp_buff *ctx;
2783 ktime_t timestamp = 0;
2784 unsigned int size;
2785 int res;
2786
2787 desc = IGC_RX_DESC(ring, ntc);
2788 size = le16_to_cpu(desc->wb.upper.length);
2789 if (!size)
2790 break;
2791
2792 /* This memory barrier is needed to keep us from reading
2793 * any other fields out of the rx_desc until we know the
2794 * descriptor has been written back
2795 */
2796 dma_rmb();
2797
2798 bi = &ring->rx_buffer_info[ntc];
2799
2800 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2801 ctx->rx_desc = desc;
2802
2803 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2804 ctx->rx_ts = bi->xdp->data;
2805
2806 bi->xdp->data += IGC_TS_HDR_LEN;
2807
2808 /* HW timestamp has been copied into local variable. Metadata
2809 * length when XDP program is called should be 0.
2810 */
2811 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2812 size -= IGC_TS_HDR_LEN;
2813 }
2814
2815 bi->xdp->data_end = bi->xdp->data + size;
2816 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2817
2818 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2819 switch (res) {
2820 case IGC_XDP_PASS:
2821 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2822 fallthrough;
2823 case IGC_XDP_CONSUMED:
2824 xsk_buff_free(bi->xdp);
2825 break;
2826 case IGC_XDP_TX:
2827 case IGC_XDP_REDIRECT:
2828 xdp_status |= res;
2829 break;
2830 }
2831
2832 bi->xdp = NULL;
2833 total_bytes += size;
2834 total_packets++;
2835 cleaned_count++;
2836 ntc++;
2837 if (ntc == ring->count)
2838 ntc = 0;
2839 }
2840
2841 ring->next_to_clean = ntc;
2842 rcu_read_unlock();
2843
2844 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2845 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2846
2847 if (xdp_status)
2848 igc_finalize_xdp(adapter, xdp_status);
2849
2850 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2851
2852 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2853 if (failure || ring->next_to_clean == ring->next_to_use)
2854 xsk_set_rx_need_wakeup(ring->xsk_pool);
2855 else
2856 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2857 return total_packets;
2858 }
2859
2860 return failure ? budget : total_packets;
2861}
2862
2863static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2864 unsigned int packets, unsigned int bytes)
2865{
2866 struct igc_ring *ring = q_vector->tx.ring;
2867
2868 u64_stats_update_begin(&ring->tx_syncp);
2869 ring->tx_stats.bytes += bytes;
2870 ring->tx_stats.packets += packets;
2871 u64_stats_update_end(&ring->tx_syncp);
2872
2873 q_vector->tx.total_bytes += bytes;
2874 q_vector->tx.total_packets += packets;
2875}
2876
2877static void igc_xdp_xmit_zc(struct igc_ring *ring)
2878{
2879 struct xsk_buff_pool *pool = ring->xsk_pool;
2880 struct netdev_queue *nq = txring_txq(ring);
2881 union igc_adv_tx_desc *tx_desc = NULL;
2882 int cpu = smp_processor_id();
2883 struct xdp_desc xdp_desc;
2884 u16 budget, ntu;
2885
2886 if (!netif_carrier_ok(ring->netdev))
2887 return;
2888
2889 __netif_tx_lock(nq, cpu);
2890
2891 /* Avoid transmit queue timeout since we share it with the slow path */
2892 txq_trans_cond_update(nq);
2893
2894 ntu = ring->next_to_use;
2895 budget = igc_desc_unused(ring);
2896
2897 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2898 u32 cmd_type, olinfo_status;
2899 struct igc_tx_buffer *bi;
2900 dma_addr_t dma;
2901
2902 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2903 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2904 xdp_desc.len;
2905 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2906
2907 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2908 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2909
2910 tx_desc = IGC_TX_DESC(ring, ntu);
2911 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2912 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2913 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2914
2915 bi = &ring->tx_buffer_info[ntu];
2916 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2917 bi->protocol = 0;
2918 bi->bytecount = xdp_desc.len;
2919 bi->gso_segs = 1;
2920 bi->time_stamp = jiffies;
2921 bi->next_to_watch = tx_desc;
2922
2923 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2924
2925 ntu++;
2926 if (ntu == ring->count)
2927 ntu = 0;
2928 }
2929
2930 ring->next_to_use = ntu;
2931 if (tx_desc) {
2932 igc_flush_tx_descriptors(ring);
2933 xsk_tx_release(pool);
2934 }
2935
2936 __netif_tx_unlock(nq);
2937}
2938
2939/**
2940 * igc_clean_tx_irq - Reclaim resources after transmit completes
2941 * @q_vector: pointer to q_vector containing needed info
2942 * @napi_budget: Used to determine if we are in netpoll
2943 *
2944 * returns true if ring is completely cleaned
2945 */
2946static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2947{
2948 struct igc_adapter *adapter = q_vector->adapter;
2949 unsigned int total_bytes = 0, total_packets = 0;
2950 unsigned int budget = q_vector->tx.work_limit;
2951 struct igc_ring *tx_ring = q_vector->tx.ring;
2952 unsigned int i = tx_ring->next_to_clean;
2953 struct igc_tx_buffer *tx_buffer;
2954 union igc_adv_tx_desc *tx_desc;
2955 u32 xsk_frames = 0;
2956
2957 if (test_bit(__IGC_DOWN, &adapter->state))
2958 return true;
2959
2960 tx_buffer = &tx_ring->tx_buffer_info[i];
2961 tx_desc = IGC_TX_DESC(tx_ring, i);
2962 i -= tx_ring->count;
2963
2964 do {
2965 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2966
2967 /* if next_to_watch is not set then there is no work pending */
2968 if (!eop_desc)
2969 break;
2970
2971 /* prevent any other reads prior to eop_desc */
2972 smp_rmb();
2973
2974 /* if DD is not set pending work has not been completed */
2975 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2976 break;
2977
2978 /* clear next_to_watch to prevent false hangs */
2979 tx_buffer->next_to_watch = NULL;
2980
2981 /* update the statistics for this packet */
2982 total_bytes += tx_buffer->bytecount;
2983 total_packets += tx_buffer->gso_segs;
2984
2985 switch (tx_buffer->type) {
2986 case IGC_TX_BUFFER_TYPE_XSK:
2987 xsk_frames++;
2988 break;
2989 case IGC_TX_BUFFER_TYPE_XDP:
2990 xdp_return_frame(tx_buffer->xdpf);
2991 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2992 break;
2993 case IGC_TX_BUFFER_TYPE_SKB:
2994 napi_consume_skb(tx_buffer->skb, napi_budget);
2995 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2996 break;
2997 default:
2998 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2999 break;
3000 }
3001
3002 /* clear last DMA location and unmap remaining buffers */
3003 while (tx_desc != eop_desc) {
3004 tx_buffer++;
3005 tx_desc++;
3006 i++;
3007 if (unlikely(!i)) {
3008 i -= tx_ring->count;
3009 tx_buffer = tx_ring->tx_buffer_info;
3010 tx_desc = IGC_TX_DESC(tx_ring, 0);
3011 }
3012
3013 /* unmap any remaining paged data */
3014 if (dma_unmap_len(tx_buffer, len))
3015 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3016 }
3017
3018 /* move us one more past the eop_desc for start of next pkt */
3019 tx_buffer++;
3020 tx_desc++;
3021 i++;
3022 if (unlikely(!i)) {
3023 i -= tx_ring->count;
3024 tx_buffer = tx_ring->tx_buffer_info;
3025 tx_desc = IGC_TX_DESC(tx_ring, 0);
3026 }
3027
3028 /* issue prefetch for next Tx descriptor */
3029 prefetch(tx_desc);
3030
3031 /* update budget accounting */
3032 budget--;
3033 } while (likely(budget));
3034
3035 netdev_tx_completed_queue(txring_txq(tx_ring),
3036 total_packets, total_bytes);
3037
3038 i += tx_ring->count;
3039 tx_ring->next_to_clean = i;
3040
3041 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3042
3043 if (tx_ring->xsk_pool) {
3044 if (xsk_frames)
3045 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3046 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3047 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3048 igc_xdp_xmit_zc(tx_ring);
3049 }
3050
3051 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3052 struct igc_hw *hw = &adapter->hw;
3053
3054 /* Detect a transmit hang in hardware, this serializes the
3055 * check with the clearing of time_stamp and movement of i
3056 */
3057 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3058 if (tx_buffer->next_to_watch &&
3059 time_after(jiffies, tx_buffer->time_stamp +
3060 (adapter->tx_timeout_factor * HZ)) &&
3061 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3062 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3063 !tx_ring->oper_gate_closed) {
3064 /* detected Tx unit hang */
3065 netdev_err(tx_ring->netdev,
3066 "Detected Tx Unit Hang\n"
3067 " Tx Queue <%d>\n"
3068 " TDH <%x>\n"
3069 " TDT <%x>\n"
3070 " next_to_use <%x>\n"
3071 " next_to_clean <%x>\n"
3072 "buffer_info[next_to_clean]\n"
3073 " time_stamp <%lx>\n"
3074 " next_to_watch <%p>\n"
3075 " jiffies <%lx>\n"
3076 " desc.status <%x>\n",
3077 tx_ring->queue_index,
3078 rd32(IGC_TDH(tx_ring->reg_idx)),
3079 readl(tx_ring->tail),
3080 tx_ring->next_to_use,
3081 tx_ring->next_to_clean,
3082 tx_buffer->time_stamp,
3083 tx_buffer->next_to_watch,
3084 jiffies,
3085 tx_buffer->next_to_watch->wb.status);
3086 netif_stop_subqueue(tx_ring->netdev,
3087 tx_ring->queue_index);
3088
3089 /* we are about to reset, no point in enabling stuff */
3090 return true;
3091 }
3092 }
3093
3094#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3095 if (unlikely(total_packets &&
3096 netif_carrier_ok(tx_ring->netdev) &&
3097 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3098 /* Make sure that anybody stopping the queue after this
3099 * sees the new next_to_clean.
3100 */
3101 smp_mb();
3102 if (__netif_subqueue_stopped(tx_ring->netdev,
3103 tx_ring->queue_index) &&
3104 !(test_bit(__IGC_DOWN, &adapter->state))) {
3105 netif_wake_subqueue(tx_ring->netdev,
3106 tx_ring->queue_index);
3107
3108 u64_stats_update_begin(&tx_ring->tx_syncp);
3109 tx_ring->tx_stats.restart_queue++;
3110 u64_stats_update_end(&tx_ring->tx_syncp);
3111 }
3112 }
3113
3114 return !!budget;
3115}
3116
3117static int igc_find_mac_filter(struct igc_adapter *adapter,
3118 enum igc_mac_filter_type type, const u8 *addr)
3119{
3120 struct igc_hw *hw = &adapter->hw;
3121 int max_entries = hw->mac.rar_entry_count;
3122 u32 ral, rah;
3123 int i;
3124
3125 for (i = 0; i < max_entries; i++) {
3126 ral = rd32(IGC_RAL(i));
3127 rah = rd32(IGC_RAH(i));
3128
3129 if (!(rah & IGC_RAH_AV))
3130 continue;
3131 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3132 continue;
3133 if ((rah & IGC_RAH_RAH_MASK) !=
3134 le16_to_cpup((__le16 *)(addr + 4)))
3135 continue;
3136 if (ral != le32_to_cpup((__le32 *)(addr)))
3137 continue;
3138
3139 return i;
3140 }
3141
3142 return -1;
3143}
3144
3145static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3146{
3147 struct igc_hw *hw = &adapter->hw;
3148 int max_entries = hw->mac.rar_entry_count;
3149 u32 rah;
3150 int i;
3151
3152 for (i = 0; i < max_entries; i++) {
3153 rah = rd32(IGC_RAH(i));
3154
3155 if (!(rah & IGC_RAH_AV))
3156 return i;
3157 }
3158
3159 return -1;
3160}
3161
3162/**
3163 * igc_add_mac_filter() - Add MAC address filter
3164 * @adapter: Pointer to adapter where the filter should be added
3165 * @type: MAC address filter type (source or destination)
3166 * @addr: MAC address
3167 * @queue: If non-negative, queue assignment feature is enabled and frames
3168 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3169 * assignment is disabled.
3170 *
3171 * Return: 0 in case of success, negative errno code otherwise.
3172 */
3173static int igc_add_mac_filter(struct igc_adapter *adapter,
3174 enum igc_mac_filter_type type, const u8 *addr,
3175 int queue)
3176{
3177 struct net_device *dev = adapter->netdev;
3178 int index;
3179
3180 index = igc_find_mac_filter(adapter, type, addr);
3181 if (index >= 0)
3182 goto update_filter;
3183
3184 index = igc_get_avail_mac_filter_slot(adapter);
3185 if (index < 0)
3186 return -ENOSPC;
3187
3188 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3189 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3190 addr, queue);
3191
3192update_filter:
3193 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3194 return 0;
3195}
3196
3197/**
3198 * igc_del_mac_filter() - Delete MAC address filter
3199 * @adapter: Pointer to adapter where the filter should be deleted from
3200 * @type: MAC address filter type (source or destination)
3201 * @addr: MAC address
3202 */
3203static void igc_del_mac_filter(struct igc_adapter *adapter,
3204 enum igc_mac_filter_type type, const u8 *addr)
3205{
3206 struct net_device *dev = adapter->netdev;
3207 int index;
3208
3209 index = igc_find_mac_filter(adapter, type, addr);
3210 if (index < 0)
3211 return;
3212
3213 if (index == 0) {
3214 /* If this is the default filter, we don't actually delete it.
3215 * We just reset to its default value i.e. disable queue
3216 * assignment.
3217 */
3218 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3219
3220 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3221 } else {
3222 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3223 index,
3224 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3225 addr);
3226
3227 igc_clear_mac_filter_hw(adapter, index);
3228 }
3229}
3230
3231/**
3232 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3233 * @adapter: Pointer to adapter where the filter should be added
3234 * @prio: VLAN priority value
3235 * @queue: Queue number which matching frames are assigned to
3236 *
3237 * Return: 0 in case of success, negative errno code otherwise.
3238 */
3239static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3240 int queue)
3241{
3242 struct net_device *dev = adapter->netdev;
3243 struct igc_hw *hw = &adapter->hw;
3244 u32 vlanpqf;
3245
3246 vlanpqf = rd32(IGC_VLANPQF);
3247
3248 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3249 netdev_dbg(dev, "VLAN priority filter already in use\n");
3250 return -EEXIST;
3251 }
3252
3253 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3254 vlanpqf |= IGC_VLANPQF_VALID(prio);
3255
3256 wr32(IGC_VLANPQF, vlanpqf);
3257
3258 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3259 prio, queue);
3260 return 0;
3261}
3262
3263/**
3264 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3265 * @adapter: Pointer to adapter where the filter should be deleted from
3266 * @prio: VLAN priority value
3267 */
3268static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3269{
3270 struct igc_hw *hw = &adapter->hw;
3271 u32 vlanpqf;
3272
3273 vlanpqf = rd32(IGC_VLANPQF);
3274
3275 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3276 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3277
3278 wr32(IGC_VLANPQF, vlanpqf);
3279
3280 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3281 prio);
3282}
3283
3284static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3285{
3286 struct igc_hw *hw = &adapter->hw;
3287 int i;
3288
3289 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3290 u32 etqf = rd32(IGC_ETQF(i));
3291
3292 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3293 return i;
3294 }
3295
3296 return -1;
3297}
3298
3299/**
3300 * igc_add_etype_filter() - Add ethertype filter
3301 * @adapter: Pointer to adapter where the filter should be added
3302 * @etype: Ethertype value
3303 * @queue: If non-negative, queue assignment feature is enabled and frames
3304 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3305 * assignment is disabled.
3306 *
3307 * Return: 0 in case of success, negative errno code otherwise.
3308 */
3309static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3310 int queue)
3311{
3312 struct igc_hw *hw = &adapter->hw;
3313 int index;
3314 u32 etqf;
3315
3316 index = igc_get_avail_etype_filter_slot(adapter);
3317 if (index < 0)
3318 return -ENOSPC;
3319
3320 etqf = rd32(IGC_ETQF(index));
3321
3322 etqf &= ~IGC_ETQF_ETYPE_MASK;
3323 etqf |= etype;
3324
3325 if (queue >= 0) {
3326 etqf &= ~IGC_ETQF_QUEUE_MASK;
3327 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3328 etqf |= IGC_ETQF_QUEUE_ENABLE;
3329 }
3330
3331 etqf |= IGC_ETQF_FILTER_ENABLE;
3332
3333 wr32(IGC_ETQF(index), etqf);
3334
3335 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3336 etype, queue);
3337 return 0;
3338}
3339
3340static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3341{
3342 struct igc_hw *hw = &adapter->hw;
3343 int i;
3344
3345 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3346 u32 etqf = rd32(IGC_ETQF(i));
3347
3348 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3349 return i;
3350 }
3351
3352 return -1;
3353}
3354
3355/**
3356 * igc_del_etype_filter() - Delete ethertype filter
3357 * @adapter: Pointer to adapter where the filter should be deleted from
3358 * @etype: Ethertype value
3359 */
3360static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3361{
3362 struct igc_hw *hw = &adapter->hw;
3363 int index;
3364
3365 index = igc_find_etype_filter(adapter, etype);
3366 if (index < 0)
3367 return;
3368
3369 wr32(IGC_ETQF(index), 0);
3370
3371 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3372 etype);
3373}
3374
3375static int igc_flex_filter_select(struct igc_adapter *adapter,
3376 struct igc_flex_filter *input,
3377 u32 *fhft)
3378{
3379 struct igc_hw *hw = &adapter->hw;
3380 u8 fhft_index;
3381 u32 fhftsl;
3382
3383 if (input->index >= MAX_FLEX_FILTER) {
3384 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3385 return -EINVAL;
3386 }
3387
3388 /* Indirect table select register */
3389 fhftsl = rd32(IGC_FHFTSL);
3390 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3391 switch (input->index) {
3392 case 0 ... 7:
3393 fhftsl |= 0x00;
3394 break;
3395 case 8 ... 15:
3396 fhftsl |= 0x01;
3397 break;
3398 case 16 ... 23:
3399 fhftsl |= 0x02;
3400 break;
3401 case 24 ... 31:
3402 fhftsl |= 0x03;
3403 break;
3404 }
3405 wr32(IGC_FHFTSL, fhftsl);
3406
3407 /* Normalize index down to host table register */
3408 fhft_index = input->index % 8;
3409
3410 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3411 IGC_FHFT_EXT(fhft_index - 4);
3412
3413 return 0;
3414}
3415
3416static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3417 struct igc_flex_filter *input)
3418{
3419 struct igc_hw *hw = &adapter->hw;
3420 u8 *data = input->data;
3421 u8 *mask = input->mask;
3422 u32 queuing;
3423 u32 fhft;
3424 u32 wufc;
3425 int ret;
3426 int i;
3427
3428 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3429 * out early to avoid surprises later.
3430 */
3431 if (input->length % 8 != 0) {
3432 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3433 return -EINVAL;
3434 }
3435
3436 /* Select corresponding flex filter register and get base for host table. */
3437 ret = igc_flex_filter_select(adapter, input, &fhft);
3438 if (ret)
3439 return ret;
3440
3441 /* When adding a filter globally disable flex filter feature. That is
3442 * recommended within the datasheet.
3443 */
3444 wufc = rd32(IGC_WUFC);
3445 wufc &= ~IGC_WUFC_FLEX_HQ;
3446 wr32(IGC_WUFC, wufc);
3447
3448 /* Configure filter */
3449 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3450 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3451 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3452
3453 if (input->immediate_irq)
3454 queuing |= IGC_FHFT_IMM_INT;
3455
3456 if (input->drop)
3457 queuing |= IGC_FHFT_DROP;
3458
3459 wr32(fhft + 0xFC, queuing);
3460
3461 /* Write data (128 byte) and mask (128 bit) */
3462 for (i = 0; i < 16; ++i) {
3463 const size_t data_idx = i * 8;
3464 const size_t row_idx = i * 16;
3465 u32 dw0 =
3466 (data[data_idx + 0] << 0) |
3467 (data[data_idx + 1] << 8) |
3468 (data[data_idx + 2] << 16) |
3469 (data[data_idx + 3] << 24);
3470 u32 dw1 =
3471 (data[data_idx + 4] << 0) |
3472 (data[data_idx + 5] << 8) |
3473 (data[data_idx + 6] << 16) |
3474 (data[data_idx + 7] << 24);
3475 u32 tmp;
3476
3477 /* Write row: dw0, dw1 and mask */
3478 wr32(fhft + row_idx, dw0);
3479 wr32(fhft + row_idx + 4, dw1);
3480
3481 /* mask is only valid for MASK(7, 0) */
3482 tmp = rd32(fhft + row_idx + 8);
3483 tmp &= ~GENMASK(7, 0);
3484 tmp |= mask[i];
3485 wr32(fhft + row_idx + 8, tmp);
3486 }
3487
3488 /* Enable filter. */
3489 wufc |= IGC_WUFC_FLEX_HQ;
3490 if (input->index > 8) {
3491 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3492 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3493
3494 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3495
3496 wr32(IGC_WUFC_EXT, wufc_ext);
3497 } else {
3498 wufc |= (IGC_WUFC_FLX0 << input->index);
3499 }
3500 wr32(IGC_WUFC, wufc);
3501
3502 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3503 input->index);
3504
3505 return 0;
3506}
3507
3508static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3509 const void *src, unsigned int offset,
3510 size_t len, const void *mask)
3511{
3512 int i;
3513
3514 /* data */
3515 memcpy(&flex->data[offset], src, len);
3516
3517 /* mask */
3518 for (i = 0; i < len; ++i) {
3519 const unsigned int idx = i + offset;
3520 const u8 *ptr = mask;
3521
3522 if (mask) {
3523 if (ptr[i] & 0xff)
3524 flex->mask[idx / 8] |= BIT(idx % 8);
3525
3526 continue;
3527 }
3528
3529 flex->mask[idx / 8] |= BIT(idx % 8);
3530 }
3531}
3532
3533static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3534{
3535 struct igc_hw *hw = &adapter->hw;
3536 u32 wufc, wufc_ext;
3537 int i;
3538
3539 wufc = rd32(IGC_WUFC);
3540 wufc_ext = rd32(IGC_WUFC_EXT);
3541
3542 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3543 if (i < 8) {
3544 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3545 return i;
3546 } else {
3547 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3548 return i;
3549 }
3550 }
3551
3552 return -ENOSPC;
3553}
3554
3555static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3556{
3557 struct igc_hw *hw = &adapter->hw;
3558 u32 wufc, wufc_ext;
3559
3560 wufc = rd32(IGC_WUFC);
3561 wufc_ext = rd32(IGC_WUFC_EXT);
3562
3563 if (wufc & IGC_WUFC_FILTER_MASK)
3564 return true;
3565
3566 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3567 return true;
3568
3569 return false;
3570}
3571
3572static int igc_add_flex_filter(struct igc_adapter *adapter,
3573 struct igc_nfc_rule *rule)
3574{
3575 struct igc_nfc_filter *filter = &rule->filter;
3576 unsigned int eth_offset, user_offset;
3577 struct igc_flex_filter flex = { };
3578 int ret, index;
3579 bool vlan;
3580
3581 index = igc_find_avail_flex_filter_slot(adapter);
3582 if (index < 0)
3583 return -ENOSPC;
3584
3585 /* Construct the flex filter:
3586 * -> dest_mac [6]
3587 * -> src_mac [6]
3588 * -> tpid [2]
3589 * -> vlan tci [2]
3590 * -> ether type [2]
3591 * -> user data [8]
3592 * -> = 26 bytes => 32 length
3593 */
3594 flex.index = index;
3595 flex.length = 32;
3596 flex.rx_queue = rule->action;
3597
3598 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3599 eth_offset = vlan ? 16 : 12;
3600 user_offset = vlan ? 18 : 14;
3601
3602 /* Add destination MAC */
3603 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3604 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3605 ETH_ALEN, NULL);
3606
3607 /* Add source MAC */
3608 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3609 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3610 ETH_ALEN, NULL);
3611
3612 /* Add VLAN etype */
3613 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3614 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3615
3616 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3617 sizeof(vlan_etype), NULL);
3618 }
3619
3620 /* Add VLAN TCI */
3621 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3622 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3623 sizeof(filter->vlan_tci), NULL);
3624
3625 /* Add Ether type */
3626 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3627 __be16 etype = cpu_to_be16(filter->etype);
3628
3629 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3630 sizeof(etype), NULL);
3631 }
3632
3633 /* Add user data */
3634 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3635 igc_flex_filter_add_field(&flex, &filter->user_data,
3636 user_offset,
3637 sizeof(filter->user_data),
3638 filter->user_mask);
3639
3640 /* Add it down to the hardware and enable it. */
3641 ret = igc_write_flex_filter_ll(adapter, &flex);
3642 if (ret)
3643 return ret;
3644
3645 filter->flex_index = index;
3646
3647 return 0;
3648}
3649
3650static void igc_del_flex_filter(struct igc_adapter *adapter,
3651 u16 reg_index)
3652{
3653 struct igc_hw *hw = &adapter->hw;
3654 u32 wufc;
3655
3656 /* Just disable the filter. The filter table itself is kept
3657 * intact. Another flex_filter_add() should override the "old" data
3658 * then.
3659 */
3660 if (reg_index > 8) {
3661 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3662
3663 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3664 wr32(IGC_WUFC_EXT, wufc_ext);
3665 } else {
3666 wufc = rd32(IGC_WUFC);
3667
3668 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3669 wr32(IGC_WUFC, wufc);
3670 }
3671
3672 if (igc_flex_filter_in_use(adapter))
3673 return;
3674
3675 /* No filters are in use, we may disable flex filters */
3676 wufc = rd32(IGC_WUFC);
3677 wufc &= ~IGC_WUFC_FLEX_HQ;
3678 wr32(IGC_WUFC, wufc);
3679}
3680
3681static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3682 struct igc_nfc_rule *rule)
3683{
3684 int err;
3685
3686 if (rule->flex) {
3687 return igc_add_flex_filter(adapter, rule);
3688 }
3689
3690 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3691 err = igc_add_etype_filter(adapter, rule->filter.etype,
3692 rule->action);
3693 if (err)
3694 return err;
3695 }
3696
3697 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3698 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3699 rule->filter.src_addr, rule->action);
3700 if (err)
3701 return err;
3702 }
3703
3704 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3705 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3706 rule->filter.dst_addr, rule->action);
3707 if (err)
3708 return err;
3709 }
3710
3711 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3712 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3713
3714 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3715 if (err)
3716 return err;
3717 }
3718
3719 return 0;
3720}
3721
3722static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3723 const struct igc_nfc_rule *rule)
3724{
3725 if (rule->flex) {
3726 igc_del_flex_filter(adapter, rule->filter.flex_index);
3727 return;
3728 }
3729
3730 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3731 igc_del_etype_filter(adapter, rule->filter.etype);
3732
3733 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3734 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3735
3736 igc_del_vlan_prio_filter(adapter, prio);
3737 }
3738
3739 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3740 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3741 rule->filter.src_addr);
3742
3743 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3744 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3745 rule->filter.dst_addr);
3746}
3747
3748/**
3749 * igc_get_nfc_rule() - Get NFC rule
3750 * @adapter: Pointer to adapter
3751 * @location: Rule location
3752 *
3753 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3754 *
3755 * Return: Pointer to NFC rule at @location. If not found, NULL.
3756 */
3757struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3758 u32 location)
3759{
3760 struct igc_nfc_rule *rule;
3761
3762 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3763 if (rule->location == location)
3764 return rule;
3765 if (rule->location > location)
3766 break;
3767 }
3768
3769 return NULL;
3770}
3771
3772/**
3773 * igc_del_nfc_rule() - Delete NFC rule
3774 * @adapter: Pointer to adapter
3775 * @rule: Pointer to rule to be deleted
3776 *
3777 * Disable NFC rule in hardware and delete it from adapter.
3778 *
3779 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3780 */
3781void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3782{
3783 igc_disable_nfc_rule(adapter, rule);
3784
3785 list_del(&rule->list);
3786 adapter->nfc_rule_count--;
3787
3788 kfree(rule);
3789}
3790
3791static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3792{
3793 struct igc_nfc_rule *rule, *tmp;
3794
3795 mutex_lock(&adapter->nfc_rule_lock);
3796
3797 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3798 igc_del_nfc_rule(adapter, rule);
3799
3800 mutex_unlock(&adapter->nfc_rule_lock);
3801}
3802
3803/**
3804 * igc_add_nfc_rule() - Add NFC rule
3805 * @adapter: Pointer to adapter
3806 * @rule: Pointer to rule to be added
3807 *
3808 * Enable NFC rule in hardware and add it to adapter.
3809 *
3810 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3811 *
3812 * Return: 0 on success, negative errno on failure.
3813 */
3814int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3815{
3816 struct igc_nfc_rule *pred, *cur;
3817 int err;
3818
3819 err = igc_enable_nfc_rule(adapter, rule);
3820 if (err)
3821 return err;
3822
3823 pred = NULL;
3824 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3825 if (cur->location >= rule->location)
3826 break;
3827 pred = cur;
3828 }
3829
3830 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3831 adapter->nfc_rule_count++;
3832 return 0;
3833}
3834
3835static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3836{
3837 struct igc_nfc_rule *rule;
3838
3839 mutex_lock(&adapter->nfc_rule_lock);
3840
3841 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3842 igc_enable_nfc_rule(adapter, rule);
3843
3844 mutex_unlock(&adapter->nfc_rule_lock);
3845}
3846
3847static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3848{
3849 struct igc_adapter *adapter = netdev_priv(netdev);
3850
3851 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3852}
3853
3854static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3855{
3856 struct igc_adapter *adapter = netdev_priv(netdev);
3857
3858 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3859 return 0;
3860}
3861
3862/**
3863 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3864 * @netdev: network interface device structure
3865 *
3866 * The set_rx_mode entry point is called whenever the unicast or multicast
3867 * address lists or the network interface flags are updated. This routine is
3868 * responsible for configuring the hardware for proper unicast, multicast,
3869 * promiscuous mode, and all-multi behavior.
3870 */
3871static void igc_set_rx_mode(struct net_device *netdev)
3872{
3873 struct igc_adapter *adapter = netdev_priv(netdev);
3874 struct igc_hw *hw = &adapter->hw;
3875 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3876 int count;
3877
3878 /* Check for Promiscuous and All Multicast modes */
3879 if (netdev->flags & IFF_PROMISC) {
3880 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3881 } else {
3882 if (netdev->flags & IFF_ALLMULTI) {
3883 rctl |= IGC_RCTL_MPE;
3884 } else {
3885 /* Write addresses to the MTA, if the attempt fails
3886 * then we should just turn on promiscuous mode so
3887 * that we can at least receive multicast traffic
3888 */
3889 count = igc_write_mc_addr_list(netdev);
3890 if (count < 0)
3891 rctl |= IGC_RCTL_MPE;
3892 }
3893 }
3894
3895 /* Write addresses to available RAR registers, if there is not
3896 * sufficient space to store all the addresses then enable
3897 * unicast promiscuous mode
3898 */
3899 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3900 rctl |= IGC_RCTL_UPE;
3901
3902 /* update state of unicast and multicast */
3903 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3904 wr32(IGC_RCTL, rctl);
3905
3906#if (PAGE_SIZE < 8192)
3907 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3908 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3909#endif
3910 wr32(IGC_RLPML, rlpml);
3911}
3912
3913/**
3914 * igc_configure - configure the hardware for RX and TX
3915 * @adapter: private board structure
3916 */
3917static void igc_configure(struct igc_adapter *adapter)
3918{
3919 struct net_device *netdev = adapter->netdev;
3920 int i = 0;
3921
3922 igc_get_hw_control(adapter);
3923 igc_set_rx_mode(netdev);
3924
3925 igc_restore_vlan(adapter);
3926
3927 igc_setup_tctl(adapter);
3928 igc_setup_mrqc(adapter);
3929 igc_setup_rctl(adapter);
3930
3931 igc_set_default_mac_filter(adapter);
3932 igc_restore_nfc_rules(adapter);
3933
3934 igc_configure_tx(adapter);
3935 igc_configure_rx(adapter);
3936
3937 igc_rx_fifo_flush_base(&adapter->hw);
3938
3939 /* call igc_desc_unused which always leaves
3940 * at least 1 descriptor unused to make sure
3941 * next_to_use != next_to_clean
3942 */
3943 for (i = 0; i < adapter->num_rx_queues; i++) {
3944 struct igc_ring *ring = adapter->rx_ring[i];
3945
3946 if (ring->xsk_pool)
3947 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3948 else
3949 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3950 }
3951}
3952
3953/**
3954 * igc_write_ivar - configure ivar for given MSI-X vector
3955 * @hw: pointer to the HW structure
3956 * @msix_vector: vector number we are allocating to a given ring
3957 * @index: row index of IVAR register to write within IVAR table
3958 * @offset: column offset of in IVAR, should be multiple of 8
3959 *
3960 * The IVAR table consists of 2 columns,
3961 * each containing an cause allocation for an Rx and Tx ring, and a
3962 * variable number of rows depending on the number of queues supported.
3963 */
3964static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3965 int index, int offset)
3966{
3967 u32 ivar = array_rd32(IGC_IVAR0, index);
3968
3969 /* clear any bits that are currently set */
3970 ivar &= ~((u32)0xFF << offset);
3971
3972 /* write vector and valid bit */
3973 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3974
3975 array_wr32(IGC_IVAR0, index, ivar);
3976}
3977
3978static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3979{
3980 struct igc_adapter *adapter = q_vector->adapter;
3981 struct igc_hw *hw = &adapter->hw;
3982 int rx_queue = IGC_N0_QUEUE;
3983 int tx_queue = IGC_N0_QUEUE;
3984
3985 if (q_vector->rx.ring)
3986 rx_queue = q_vector->rx.ring->reg_idx;
3987 if (q_vector->tx.ring)
3988 tx_queue = q_vector->tx.ring->reg_idx;
3989
3990 switch (hw->mac.type) {
3991 case igc_i225:
3992 if (rx_queue > IGC_N0_QUEUE)
3993 igc_write_ivar(hw, msix_vector,
3994 rx_queue >> 1,
3995 (rx_queue & 0x1) << 4);
3996 if (tx_queue > IGC_N0_QUEUE)
3997 igc_write_ivar(hw, msix_vector,
3998 tx_queue >> 1,
3999 ((tx_queue & 0x1) << 4) + 8);
4000 q_vector->eims_value = BIT(msix_vector);
4001 break;
4002 default:
4003 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4004 break;
4005 }
4006
4007 /* add q_vector eims value to global eims_enable_mask */
4008 adapter->eims_enable_mask |= q_vector->eims_value;
4009
4010 /* configure q_vector to set itr on first interrupt */
4011 q_vector->set_itr = 1;
4012}
4013
4014/**
4015 * igc_configure_msix - Configure MSI-X hardware
4016 * @adapter: Pointer to adapter structure
4017 *
4018 * igc_configure_msix sets up the hardware to properly
4019 * generate MSI-X interrupts.
4020 */
4021static void igc_configure_msix(struct igc_adapter *adapter)
4022{
4023 struct igc_hw *hw = &adapter->hw;
4024 int i, vector = 0;
4025 u32 tmp;
4026
4027 adapter->eims_enable_mask = 0;
4028
4029 /* set vector for other causes, i.e. link changes */
4030 switch (hw->mac.type) {
4031 case igc_i225:
4032 /* Turn on MSI-X capability first, or our settings
4033 * won't stick. And it will take days to debug.
4034 */
4035 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4036 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4037 IGC_GPIE_NSICR);
4038
4039 /* enable msix_other interrupt */
4040 adapter->eims_other = BIT(vector);
4041 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4042
4043 wr32(IGC_IVAR_MISC, tmp);
4044 break;
4045 default:
4046 /* do nothing, since nothing else supports MSI-X */
4047 break;
4048 } /* switch (hw->mac.type) */
4049
4050 adapter->eims_enable_mask |= adapter->eims_other;
4051
4052 for (i = 0; i < adapter->num_q_vectors; i++)
4053 igc_assign_vector(adapter->q_vector[i], vector++);
4054
4055 wrfl();
4056}
4057
4058/**
4059 * igc_irq_enable - Enable default interrupt generation settings
4060 * @adapter: board private structure
4061 */
4062static void igc_irq_enable(struct igc_adapter *adapter)
4063{
4064 struct igc_hw *hw = &adapter->hw;
4065
4066 if (adapter->msix_entries) {
4067 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4068 u32 regval = rd32(IGC_EIAC);
4069
4070 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4071 regval = rd32(IGC_EIAM);
4072 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4073 wr32(IGC_EIMS, adapter->eims_enable_mask);
4074 wr32(IGC_IMS, ims);
4075 } else {
4076 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4077 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4078 }
4079}
4080
4081/**
4082 * igc_irq_disable - Mask off interrupt generation on the NIC
4083 * @adapter: board private structure
4084 */
4085static void igc_irq_disable(struct igc_adapter *adapter)
4086{
4087 struct igc_hw *hw = &adapter->hw;
4088
4089 if (adapter->msix_entries) {
4090 u32 regval = rd32(IGC_EIAM);
4091
4092 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4093 wr32(IGC_EIMC, adapter->eims_enable_mask);
4094 regval = rd32(IGC_EIAC);
4095 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4096 }
4097
4098 wr32(IGC_IAM, 0);
4099 wr32(IGC_IMC, ~0);
4100 wrfl();
4101
4102 if (adapter->msix_entries) {
4103 int vector = 0, i;
4104
4105 synchronize_irq(adapter->msix_entries[vector++].vector);
4106
4107 for (i = 0; i < adapter->num_q_vectors; i++)
4108 synchronize_irq(adapter->msix_entries[vector++].vector);
4109 } else {
4110 synchronize_irq(adapter->pdev->irq);
4111 }
4112}
4113
4114void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4115 const u32 max_rss_queues)
4116{
4117 /* Determine if we need to pair queues. */
4118 /* If rss_queues > half of max_rss_queues, pair the queues in
4119 * order to conserve interrupts due to limited supply.
4120 */
4121 if (adapter->rss_queues > (max_rss_queues / 2))
4122 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4123 else
4124 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4125}
4126
4127unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4128{
4129 return IGC_MAX_RX_QUEUES;
4130}
4131
4132static void igc_init_queue_configuration(struct igc_adapter *adapter)
4133{
4134 u32 max_rss_queues;
4135
4136 max_rss_queues = igc_get_max_rss_queues(adapter);
4137 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4138
4139 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4140}
4141
4142/**
4143 * igc_reset_q_vector - Reset config for interrupt vector
4144 * @adapter: board private structure to initialize
4145 * @v_idx: Index of vector to be reset
4146 *
4147 * If NAPI is enabled it will delete any references to the
4148 * NAPI struct. This is preparation for igc_free_q_vector.
4149 */
4150static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4151{
4152 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4153
4154 /* if we're coming from igc_set_interrupt_capability, the vectors are
4155 * not yet allocated
4156 */
4157 if (!q_vector)
4158 return;
4159
4160 if (q_vector->tx.ring)
4161 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4162
4163 if (q_vector->rx.ring)
4164 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4165
4166 netif_napi_del(&q_vector->napi);
4167}
4168
4169/**
4170 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4171 * @adapter: board private structure to initialize
4172 * @v_idx: Index of vector to be freed
4173 *
4174 * This function frees the memory allocated to the q_vector.
4175 */
4176static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4177{
4178 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4179
4180 adapter->q_vector[v_idx] = NULL;
4181
4182 /* igc_get_stats64() might access the rings on this vector,
4183 * we must wait a grace period before freeing it.
4184 */
4185 if (q_vector)
4186 kfree_rcu(q_vector, rcu);
4187}
4188
4189/**
4190 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4191 * @adapter: board private structure to initialize
4192 *
4193 * This function frees the memory allocated to the q_vectors. In addition if
4194 * NAPI is enabled it will delete any references to the NAPI struct prior
4195 * to freeing the q_vector.
4196 */
4197static void igc_free_q_vectors(struct igc_adapter *adapter)
4198{
4199 int v_idx = adapter->num_q_vectors;
4200
4201 adapter->num_tx_queues = 0;
4202 adapter->num_rx_queues = 0;
4203 adapter->num_q_vectors = 0;
4204
4205 while (v_idx--) {
4206 igc_reset_q_vector(adapter, v_idx);
4207 igc_free_q_vector(adapter, v_idx);
4208 }
4209}
4210
4211/**
4212 * igc_update_itr - update the dynamic ITR value based on statistics
4213 * @q_vector: pointer to q_vector
4214 * @ring_container: ring info to update the itr for
4215 *
4216 * Stores a new ITR value based on packets and byte
4217 * counts during the last interrupt. The advantage of per interrupt
4218 * computation is faster updates and more accurate ITR for the current
4219 * traffic pattern. Constants in this function were computed
4220 * based on theoretical maximum wire speed and thresholds were set based
4221 * on testing data as well as attempting to minimize response time
4222 * while increasing bulk throughput.
4223 * NOTE: These calculations are only valid when operating in a single-
4224 * queue environment.
4225 */
4226static void igc_update_itr(struct igc_q_vector *q_vector,
4227 struct igc_ring_container *ring_container)
4228{
4229 unsigned int packets = ring_container->total_packets;
4230 unsigned int bytes = ring_container->total_bytes;
4231 u8 itrval = ring_container->itr;
4232
4233 /* no packets, exit with status unchanged */
4234 if (packets == 0)
4235 return;
4236
4237 switch (itrval) {
4238 case lowest_latency:
4239 /* handle TSO and jumbo frames */
4240 if (bytes / packets > 8000)
4241 itrval = bulk_latency;
4242 else if ((packets < 5) && (bytes > 512))
4243 itrval = low_latency;
4244 break;
4245 case low_latency: /* 50 usec aka 20000 ints/s */
4246 if (bytes > 10000) {
4247 /* this if handles the TSO accounting */
4248 if (bytes / packets > 8000)
4249 itrval = bulk_latency;
4250 else if ((packets < 10) || ((bytes / packets) > 1200))
4251 itrval = bulk_latency;
4252 else if ((packets > 35))
4253 itrval = lowest_latency;
4254 } else if (bytes / packets > 2000) {
4255 itrval = bulk_latency;
4256 } else if (packets <= 2 && bytes < 512) {
4257 itrval = lowest_latency;
4258 }
4259 break;
4260 case bulk_latency: /* 250 usec aka 4000 ints/s */
4261 if (bytes > 25000) {
4262 if (packets > 35)
4263 itrval = low_latency;
4264 } else if (bytes < 1500) {
4265 itrval = low_latency;
4266 }
4267 break;
4268 }
4269
4270 /* clear work counters since we have the values we need */
4271 ring_container->total_bytes = 0;
4272 ring_container->total_packets = 0;
4273
4274 /* write updated itr to ring container */
4275 ring_container->itr = itrval;
4276}
4277
4278static void igc_set_itr(struct igc_q_vector *q_vector)
4279{
4280 struct igc_adapter *adapter = q_vector->adapter;
4281 u32 new_itr = q_vector->itr_val;
4282 u8 current_itr = 0;
4283
4284 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4285 switch (adapter->link_speed) {
4286 case SPEED_10:
4287 case SPEED_100:
4288 current_itr = 0;
4289 new_itr = IGC_4K_ITR;
4290 goto set_itr_now;
4291 default:
4292 break;
4293 }
4294
4295 igc_update_itr(q_vector, &q_vector->tx);
4296 igc_update_itr(q_vector, &q_vector->rx);
4297
4298 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4299
4300 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4301 if (current_itr == lowest_latency &&
4302 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4303 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4304 current_itr = low_latency;
4305
4306 switch (current_itr) {
4307 /* counts and packets in update_itr are dependent on these numbers */
4308 case lowest_latency:
4309 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4310 break;
4311 case low_latency:
4312 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4313 break;
4314 case bulk_latency:
4315 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4316 break;
4317 default:
4318 break;
4319 }
4320
4321set_itr_now:
4322 if (new_itr != q_vector->itr_val) {
4323 /* this attempts to bias the interrupt rate towards Bulk
4324 * by adding intermediate steps when interrupt rate is
4325 * increasing
4326 */
4327 new_itr = new_itr > q_vector->itr_val ?
4328 max((new_itr * q_vector->itr_val) /
4329 (new_itr + (q_vector->itr_val >> 2)),
4330 new_itr) : new_itr;
4331 /* Don't write the value here; it resets the adapter's
4332 * internal timer, and causes us to delay far longer than
4333 * we should between interrupts. Instead, we write the ITR
4334 * value at the beginning of the next interrupt so the timing
4335 * ends up being correct.
4336 */
4337 q_vector->itr_val = new_itr;
4338 q_vector->set_itr = 1;
4339 }
4340}
4341
4342static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4343{
4344 int v_idx = adapter->num_q_vectors;
4345
4346 if (adapter->msix_entries) {
4347 pci_disable_msix(adapter->pdev);
4348 kfree(adapter->msix_entries);
4349 adapter->msix_entries = NULL;
4350 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4351 pci_disable_msi(adapter->pdev);
4352 }
4353
4354 while (v_idx--)
4355 igc_reset_q_vector(adapter, v_idx);
4356}
4357
4358/**
4359 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4360 * @adapter: Pointer to adapter structure
4361 * @msix: boolean value for MSI-X capability
4362 *
4363 * Attempt to configure interrupts using the best available
4364 * capabilities of the hardware and kernel.
4365 */
4366static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4367 bool msix)
4368{
4369 int numvecs, i;
4370 int err;
4371
4372 if (!msix)
4373 goto msi_only;
4374 adapter->flags |= IGC_FLAG_HAS_MSIX;
4375
4376 /* Number of supported queues. */
4377 adapter->num_rx_queues = adapter->rss_queues;
4378
4379 adapter->num_tx_queues = adapter->rss_queues;
4380
4381 /* start with one vector for every Rx queue */
4382 numvecs = adapter->num_rx_queues;
4383
4384 /* if Tx handler is separate add 1 for every Tx queue */
4385 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4386 numvecs += adapter->num_tx_queues;
4387
4388 /* store the number of vectors reserved for queues */
4389 adapter->num_q_vectors = numvecs;
4390
4391 /* add 1 vector for link status interrupts */
4392 numvecs++;
4393
4394 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4395 GFP_KERNEL);
4396
4397 if (!adapter->msix_entries)
4398 return;
4399
4400 /* populate entry values */
4401 for (i = 0; i < numvecs; i++)
4402 adapter->msix_entries[i].entry = i;
4403
4404 err = pci_enable_msix_range(adapter->pdev,
4405 adapter->msix_entries,
4406 numvecs,
4407 numvecs);
4408 if (err > 0)
4409 return;
4410
4411 kfree(adapter->msix_entries);
4412 adapter->msix_entries = NULL;
4413
4414 igc_reset_interrupt_capability(adapter);
4415
4416msi_only:
4417 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4418
4419 adapter->rss_queues = 1;
4420 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4421 adapter->num_rx_queues = 1;
4422 adapter->num_tx_queues = 1;
4423 adapter->num_q_vectors = 1;
4424 if (!pci_enable_msi(adapter->pdev))
4425 adapter->flags |= IGC_FLAG_HAS_MSI;
4426}
4427
4428/**
4429 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4430 * @q_vector: pointer to q_vector
4431 *
4432 * Stores a new ITR value based on strictly on packet size. This
4433 * algorithm is less sophisticated than that used in igc_update_itr,
4434 * due to the difficulty of synchronizing statistics across multiple
4435 * receive rings. The divisors and thresholds used by this function
4436 * were determined based on theoretical maximum wire speed and testing
4437 * data, in order to minimize response time while increasing bulk
4438 * throughput.
4439 * NOTE: This function is called only when operating in a multiqueue
4440 * receive environment.
4441 */
4442static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4443{
4444 struct igc_adapter *adapter = q_vector->adapter;
4445 int new_val = q_vector->itr_val;
4446 int avg_wire_size = 0;
4447 unsigned int packets;
4448
4449 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4450 * ints/sec - ITR timer value of 120 ticks.
4451 */
4452 switch (adapter->link_speed) {
4453 case SPEED_10:
4454 case SPEED_100:
4455 new_val = IGC_4K_ITR;
4456 goto set_itr_val;
4457 default:
4458 break;
4459 }
4460
4461 packets = q_vector->rx.total_packets;
4462 if (packets)
4463 avg_wire_size = q_vector->rx.total_bytes / packets;
4464
4465 packets = q_vector->tx.total_packets;
4466 if (packets)
4467 avg_wire_size = max_t(u32, avg_wire_size,
4468 q_vector->tx.total_bytes / packets);
4469
4470 /* if avg_wire_size isn't set no work was done */
4471 if (!avg_wire_size)
4472 goto clear_counts;
4473
4474 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4475 avg_wire_size += 24;
4476
4477 /* Don't starve jumbo frames */
4478 avg_wire_size = min(avg_wire_size, 3000);
4479
4480 /* Give a little boost to mid-size frames */
4481 if (avg_wire_size > 300 && avg_wire_size < 1200)
4482 new_val = avg_wire_size / 3;
4483 else
4484 new_val = avg_wire_size / 2;
4485
4486 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4487 if (new_val < IGC_20K_ITR &&
4488 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4489 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4490 new_val = IGC_20K_ITR;
4491
4492set_itr_val:
4493 if (new_val != q_vector->itr_val) {
4494 q_vector->itr_val = new_val;
4495 q_vector->set_itr = 1;
4496 }
4497clear_counts:
4498 q_vector->rx.total_bytes = 0;
4499 q_vector->rx.total_packets = 0;
4500 q_vector->tx.total_bytes = 0;
4501 q_vector->tx.total_packets = 0;
4502}
4503
4504static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4505{
4506 struct igc_adapter *adapter = q_vector->adapter;
4507 struct igc_hw *hw = &adapter->hw;
4508
4509 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4510 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4511 if (adapter->num_q_vectors == 1)
4512 igc_set_itr(q_vector);
4513 else
4514 igc_update_ring_itr(q_vector);
4515 }
4516
4517 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4518 if (adapter->msix_entries)
4519 wr32(IGC_EIMS, q_vector->eims_value);
4520 else
4521 igc_irq_enable(adapter);
4522 }
4523}
4524
4525static void igc_add_ring(struct igc_ring *ring,
4526 struct igc_ring_container *head)
4527{
4528 head->ring = ring;
4529 head->count++;
4530}
4531
4532/**
4533 * igc_cache_ring_register - Descriptor ring to register mapping
4534 * @adapter: board private structure to initialize
4535 *
4536 * Once we know the feature-set enabled for the device, we'll cache
4537 * the register offset the descriptor ring is assigned to.
4538 */
4539static void igc_cache_ring_register(struct igc_adapter *adapter)
4540{
4541 int i = 0, j = 0;
4542
4543 switch (adapter->hw.mac.type) {
4544 case igc_i225:
4545 default:
4546 for (; i < adapter->num_rx_queues; i++)
4547 adapter->rx_ring[i]->reg_idx = i;
4548 for (; j < adapter->num_tx_queues; j++)
4549 adapter->tx_ring[j]->reg_idx = j;
4550 break;
4551 }
4552}
4553
4554/**
4555 * igc_poll - NAPI Rx polling callback
4556 * @napi: napi polling structure
4557 * @budget: count of how many packets we should handle
4558 */
4559static int igc_poll(struct napi_struct *napi, int budget)
4560{
4561 struct igc_q_vector *q_vector = container_of(napi,
4562 struct igc_q_vector,
4563 napi);
4564 struct igc_ring *rx_ring = q_vector->rx.ring;
4565 bool clean_complete = true;
4566 int work_done = 0;
4567
4568 if (q_vector->tx.ring)
4569 clean_complete = igc_clean_tx_irq(q_vector, budget);
4570
4571 if (rx_ring) {
4572 int cleaned = rx_ring->xsk_pool ?
4573 igc_clean_rx_irq_zc(q_vector, budget) :
4574 igc_clean_rx_irq(q_vector, budget);
4575
4576 work_done += cleaned;
4577 if (cleaned >= budget)
4578 clean_complete = false;
4579 }
4580
4581 /* If all work not completed, return budget and keep polling */
4582 if (!clean_complete)
4583 return budget;
4584
4585 /* Exit the polling mode, but don't re-enable interrupts if stack might
4586 * poll us due to busy-polling
4587 */
4588 if (likely(napi_complete_done(napi, work_done)))
4589 igc_ring_irq_enable(q_vector);
4590
4591 return min(work_done, budget - 1);
4592}
4593
4594/**
4595 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4596 * @adapter: board private structure to initialize
4597 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4598 * @v_idx: index of vector in adapter struct
4599 * @txr_count: total number of Tx rings to allocate
4600 * @txr_idx: index of first Tx ring to allocate
4601 * @rxr_count: total number of Rx rings to allocate
4602 * @rxr_idx: index of first Rx ring to allocate
4603 *
4604 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4605 */
4606static int igc_alloc_q_vector(struct igc_adapter *adapter,
4607 unsigned int v_count, unsigned int v_idx,
4608 unsigned int txr_count, unsigned int txr_idx,
4609 unsigned int rxr_count, unsigned int rxr_idx)
4610{
4611 struct igc_q_vector *q_vector;
4612 struct igc_ring *ring;
4613 int ring_count;
4614
4615 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4616 if (txr_count > 1 || rxr_count > 1)
4617 return -ENOMEM;
4618
4619 ring_count = txr_count + rxr_count;
4620
4621 /* allocate q_vector and rings */
4622 q_vector = adapter->q_vector[v_idx];
4623 if (!q_vector)
4624 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4625 GFP_KERNEL);
4626 else
4627 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4628 if (!q_vector)
4629 return -ENOMEM;
4630
4631 /* initialize NAPI */
4632 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4633
4634 /* tie q_vector and adapter together */
4635 adapter->q_vector[v_idx] = q_vector;
4636 q_vector->adapter = adapter;
4637
4638 /* initialize work limits */
4639 q_vector->tx.work_limit = adapter->tx_work_limit;
4640
4641 /* initialize ITR configuration */
4642 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4643 q_vector->itr_val = IGC_START_ITR;
4644
4645 /* initialize pointer to rings */
4646 ring = q_vector->ring;
4647
4648 /* initialize ITR */
4649 if (rxr_count) {
4650 /* rx or rx/tx vector */
4651 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4652 q_vector->itr_val = adapter->rx_itr_setting;
4653 } else {
4654 /* tx only vector */
4655 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4656 q_vector->itr_val = adapter->tx_itr_setting;
4657 }
4658
4659 if (txr_count) {
4660 /* assign generic ring traits */
4661 ring->dev = &adapter->pdev->dev;
4662 ring->netdev = adapter->netdev;
4663
4664 /* configure backlink on ring */
4665 ring->q_vector = q_vector;
4666
4667 /* update q_vector Tx values */
4668 igc_add_ring(ring, &q_vector->tx);
4669
4670 /* apply Tx specific ring traits */
4671 ring->count = adapter->tx_ring_count;
4672 ring->queue_index = txr_idx;
4673
4674 /* assign ring to adapter */
4675 adapter->tx_ring[txr_idx] = ring;
4676
4677 /* push pointer to next ring */
4678 ring++;
4679 }
4680
4681 if (rxr_count) {
4682 /* assign generic ring traits */
4683 ring->dev = &adapter->pdev->dev;
4684 ring->netdev = adapter->netdev;
4685
4686 /* configure backlink on ring */
4687 ring->q_vector = q_vector;
4688
4689 /* update q_vector Rx values */
4690 igc_add_ring(ring, &q_vector->rx);
4691
4692 /* apply Rx specific ring traits */
4693 ring->count = adapter->rx_ring_count;
4694 ring->queue_index = rxr_idx;
4695
4696 /* assign ring to adapter */
4697 adapter->rx_ring[rxr_idx] = ring;
4698 }
4699
4700 return 0;
4701}
4702
4703/**
4704 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4705 * @adapter: board private structure to initialize
4706 *
4707 * We allocate one q_vector per queue interrupt. If allocation fails we
4708 * return -ENOMEM.
4709 */
4710static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4711{
4712 int rxr_remaining = adapter->num_rx_queues;
4713 int txr_remaining = adapter->num_tx_queues;
4714 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4715 int q_vectors = adapter->num_q_vectors;
4716 int err;
4717
4718 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4719 for (; rxr_remaining; v_idx++) {
4720 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4721 0, 0, 1, rxr_idx);
4722
4723 if (err)
4724 goto err_out;
4725
4726 /* update counts and index */
4727 rxr_remaining--;
4728 rxr_idx++;
4729 }
4730 }
4731
4732 for (; v_idx < q_vectors; v_idx++) {
4733 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4734 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4735
4736 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4737 tqpv, txr_idx, rqpv, rxr_idx);
4738
4739 if (err)
4740 goto err_out;
4741
4742 /* update counts and index */
4743 rxr_remaining -= rqpv;
4744 txr_remaining -= tqpv;
4745 rxr_idx++;
4746 txr_idx++;
4747 }
4748
4749 return 0;
4750
4751err_out:
4752 adapter->num_tx_queues = 0;
4753 adapter->num_rx_queues = 0;
4754 adapter->num_q_vectors = 0;
4755
4756 while (v_idx--)
4757 igc_free_q_vector(adapter, v_idx);
4758
4759 return -ENOMEM;
4760}
4761
4762/**
4763 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4764 * @adapter: Pointer to adapter structure
4765 * @msix: boolean for MSI-X capability
4766 *
4767 * This function initializes the interrupts and allocates all of the queues.
4768 */
4769static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4770{
4771 struct net_device *dev = adapter->netdev;
4772 int err = 0;
4773
4774 igc_set_interrupt_capability(adapter, msix);
4775
4776 err = igc_alloc_q_vectors(adapter);
4777 if (err) {
4778 netdev_err(dev, "Unable to allocate memory for vectors\n");
4779 goto err_alloc_q_vectors;
4780 }
4781
4782 igc_cache_ring_register(adapter);
4783
4784 return 0;
4785
4786err_alloc_q_vectors:
4787 igc_reset_interrupt_capability(adapter);
4788 return err;
4789}
4790
4791/**
4792 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4793 * @adapter: board private structure to initialize
4794 *
4795 * igc_sw_init initializes the Adapter private data structure.
4796 * Fields are initialized based on PCI device information and
4797 * OS network device settings (MTU size).
4798 */
4799static int igc_sw_init(struct igc_adapter *adapter)
4800{
4801 struct net_device *netdev = adapter->netdev;
4802 struct pci_dev *pdev = adapter->pdev;
4803 struct igc_hw *hw = &adapter->hw;
4804
4805 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4806
4807 /* set default ring sizes */
4808 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4809 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4810
4811 /* set default ITR values */
4812 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4813 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4814
4815 /* set default work limits */
4816 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4817
4818 /* adjust max frame to be at least the size of a standard frame */
4819 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4820 VLAN_HLEN;
4821 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4822
4823 mutex_init(&adapter->nfc_rule_lock);
4824 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4825 adapter->nfc_rule_count = 0;
4826
4827 spin_lock_init(&adapter->stats64_lock);
4828 spin_lock_init(&adapter->qbv_tx_lock);
4829 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4830 adapter->flags |= IGC_FLAG_HAS_MSIX;
4831
4832 igc_init_queue_configuration(adapter);
4833
4834 /* This call may decrease the number of queues */
4835 if (igc_init_interrupt_scheme(adapter, true)) {
4836 netdev_err(netdev, "Unable to allocate memory for queues\n");
4837 return -ENOMEM;
4838 }
4839
4840 /* Explicitly disable IRQ since the NIC can be in any state. */
4841 igc_irq_disable(adapter);
4842
4843 set_bit(__IGC_DOWN, &adapter->state);
4844
4845 return 0;
4846}
4847
4848/**
4849 * igc_up - Open the interface and prepare it to handle traffic
4850 * @adapter: board private structure
4851 */
4852void igc_up(struct igc_adapter *adapter)
4853{
4854 struct igc_hw *hw = &adapter->hw;
4855 int i = 0;
4856
4857 /* hardware has been reset, we need to reload some things */
4858 igc_configure(adapter);
4859
4860 clear_bit(__IGC_DOWN, &adapter->state);
4861
4862 for (i = 0; i < adapter->num_q_vectors; i++)
4863 napi_enable(&adapter->q_vector[i]->napi);
4864
4865 if (adapter->msix_entries)
4866 igc_configure_msix(adapter);
4867 else
4868 igc_assign_vector(adapter->q_vector[0], 0);
4869
4870 /* Clear any pending interrupts. */
4871 rd32(IGC_ICR);
4872 igc_irq_enable(adapter);
4873
4874 netif_tx_start_all_queues(adapter->netdev);
4875
4876 /* start the watchdog. */
4877 hw->mac.get_link_status = true;
4878 schedule_work(&adapter->watchdog_task);
4879}
4880
4881/**
4882 * igc_update_stats - Update the board statistics counters
4883 * @adapter: board private structure
4884 */
4885void igc_update_stats(struct igc_adapter *adapter)
4886{
4887 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4888 struct pci_dev *pdev = adapter->pdev;
4889 struct igc_hw *hw = &adapter->hw;
4890 u64 _bytes, _packets;
4891 u64 bytes, packets;
4892 unsigned int start;
4893 u32 mpc;
4894 int i;
4895
4896 /* Prevent stats update while adapter is being reset, or if the pci
4897 * connection is down.
4898 */
4899 if (adapter->link_speed == 0)
4900 return;
4901 if (pci_channel_offline(pdev))
4902 return;
4903
4904 packets = 0;
4905 bytes = 0;
4906
4907 rcu_read_lock();
4908 for (i = 0; i < adapter->num_rx_queues; i++) {
4909 struct igc_ring *ring = adapter->rx_ring[i];
4910 u32 rqdpc = rd32(IGC_RQDPC(i));
4911
4912 if (hw->mac.type >= igc_i225)
4913 wr32(IGC_RQDPC(i), 0);
4914
4915 if (rqdpc) {
4916 ring->rx_stats.drops += rqdpc;
4917 net_stats->rx_fifo_errors += rqdpc;
4918 }
4919
4920 do {
4921 start = u64_stats_fetch_begin(&ring->rx_syncp);
4922 _bytes = ring->rx_stats.bytes;
4923 _packets = ring->rx_stats.packets;
4924 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4925 bytes += _bytes;
4926 packets += _packets;
4927 }
4928
4929 net_stats->rx_bytes = bytes;
4930 net_stats->rx_packets = packets;
4931
4932 packets = 0;
4933 bytes = 0;
4934 for (i = 0; i < adapter->num_tx_queues; i++) {
4935 struct igc_ring *ring = adapter->tx_ring[i];
4936
4937 do {
4938 start = u64_stats_fetch_begin(&ring->tx_syncp);
4939 _bytes = ring->tx_stats.bytes;
4940 _packets = ring->tx_stats.packets;
4941 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4942 bytes += _bytes;
4943 packets += _packets;
4944 }
4945 net_stats->tx_bytes = bytes;
4946 net_stats->tx_packets = packets;
4947 rcu_read_unlock();
4948
4949 /* read stats registers */
4950 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4951 adapter->stats.gprc += rd32(IGC_GPRC);
4952 adapter->stats.gorc += rd32(IGC_GORCL);
4953 rd32(IGC_GORCH); /* clear GORCL */
4954 adapter->stats.bprc += rd32(IGC_BPRC);
4955 adapter->stats.mprc += rd32(IGC_MPRC);
4956 adapter->stats.roc += rd32(IGC_ROC);
4957
4958 adapter->stats.prc64 += rd32(IGC_PRC64);
4959 adapter->stats.prc127 += rd32(IGC_PRC127);
4960 adapter->stats.prc255 += rd32(IGC_PRC255);
4961 adapter->stats.prc511 += rd32(IGC_PRC511);
4962 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4963 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4964 adapter->stats.tlpic += rd32(IGC_TLPIC);
4965 adapter->stats.rlpic += rd32(IGC_RLPIC);
4966 adapter->stats.hgptc += rd32(IGC_HGPTC);
4967
4968 mpc = rd32(IGC_MPC);
4969 adapter->stats.mpc += mpc;
4970 net_stats->rx_fifo_errors += mpc;
4971 adapter->stats.scc += rd32(IGC_SCC);
4972 adapter->stats.ecol += rd32(IGC_ECOL);
4973 adapter->stats.mcc += rd32(IGC_MCC);
4974 adapter->stats.latecol += rd32(IGC_LATECOL);
4975 adapter->stats.dc += rd32(IGC_DC);
4976 adapter->stats.rlec += rd32(IGC_RLEC);
4977 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4978 adapter->stats.xontxc += rd32(IGC_XONTXC);
4979 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4980 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4981 adapter->stats.fcruc += rd32(IGC_FCRUC);
4982 adapter->stats.gptc += rd32(IGC_GPTC);
4983 adapter->stats.gotc += rd32(IGC_GOTCL);
4984 rd32(IGC_GOTCH); /* clear GOTCL */
4985 adapter->stats.rnbc += rd32(IGC_RNBC);
4986 adapter->stats.ruc += rd32(IGC_RUC);
4987 adapter->stats.rfc += rd32(IGC_RFC);
4988 adapter->stats.rjc += rd32(IGC_RJC);
4989 adapter->stats.tor += rd32(IGC_TORH);
4990 adapter->stats.tot += rd32(IGC_TOTH);
4991 adapter->stats.tpr += rd32(IGC_TPR);
4992
4993 adapter->stats.ptc64 += rd32(IGC_PTC64);
4994 adapter->stats.ptc127 += rd32(IGC_PTC127);
4995 adapter->stats.ptc255 += rd32(IGC_PTC255);
4996 adapter->stats.ptc511 += rd32(IGC_PTC511);
4997 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4998 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4999
5000 adapter->stats.mptc += rd32(IGC_MPTC);
5001 adapter->stats.bptc += rd32(IGC_BPTC);
5002
5003 adapter->stats.tpt += rd32(IGC_TPT);
5004 adapter->stats.colc += rd32(IGC_COLC);
5005 adapter->stats.colc += rd32(IGC_RERC);
5006
5007 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5008
5009 adapter->stats.tsctc += rd32(IGC_TSCTC);
5010
5011 adapter->stats.iac += rd32(IGC_IAC);
5012
5013 /* Fill out the OS statistics structure */
5014 net_stats->multicast = adapter->stats.mprc;
5015 net_stats->collisions = adapter->stats.colc;
5016
5017 /* Rx Errors */
5018
5019 /* RLEC on some newer hardware can be incorrect so build
5020 * our own version based on RUC and ROC
5021 */
5022 net_stats->rx_errors = adapter->stats.rxerrc +
5023 adapter->stats.crcerrs + adapter->stats.algnerrc +
5024 adapter->stats.ruc + adapter->stats.roc +
5025 adapter->stats.cexterr;
5026 net_stats->rx_length_errors = adapter->stats.ruc +
5027 adapter->stats.roc;
5028 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5029 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5030 net_stats->rx_missed_errors = adapter->stats.mpc;
5031
5032 /* Tx Errors */
5033 net_stats->tx_errors = adapter->stats.ecol +
5034 adapter->stats.latecol;
5035 net_stats->tx_aborted_errors = adapter->stats.ecol;
5036 net_stats->tx_window_errors = adapter->stats.latecol;
5037 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5038
5039 /* Tx Dropped */
5040 net_stats->tx_dropped = adapter->stats.txdrop;
5041
5042 /* Management Stats */
5043 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5044 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5045 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5046}
5047
5048/**
5049 * igc_down - Close the interface
5050 * @adapter: board private structure
5051 */
5052void igc_down(struct igc_adapter *adapter)
5053{
5054 struct net_device *netdev = adapter->netdev;
5055 struct igc_hw *hw = &adapter->hw;
5056 u32 tctl, rctl;
5057 int i = 0;
5058
5059 set_bit(__IGC_DOWN, &adapter->state);
5060
5061 igc_ptp_suspend(adapter);
5062
5063 if (pci_device_is_present(adapter->pdev)) {
5064 /* disable receives in the hardware */
5065 rctl = rd32(IGC_RCTL);
5066 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5067 /* flush and sleep below */
5068 }
5069 /* set trans_start so we don't get spurious watchdogs during reset */
5070 netif_trans_update(netdev);
5071
5072 netif_carrier_off(netdev);
5073 netif_tx_stop_all_queues(netdev);
5074
5075 if (pci_device_is_present(adapter->pdev)) {
5076 /* disable transmits in the hardware */
5077 tctl = rd32(IGC_TCTL);
5078 tctl &= ~IGC_TCTL_EN;
5079 wr32(IGC_TCTL, tctl);
5080 /* flush both disables and wait for them to finish */
5081 wrfl();
5082 usleep_range(10000, 20000);
5083
5084 igc_irq_disable(adapter);
5085 }
5086
5087 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5088
5089 for (i = 0; i < adapter->num_q_vectors; i++) {
5090 if (adapter->q_vector[i]) {
5091 napi_synchronize(&adapter->q_vector[i]->napi);
5092 napi_disable(&adapter->q_vector[i]->napi);
5093 }
5094 }
5095
5096 del_timer_sync(&adapter->watchdog_timer);
5097 del_timer_sync(&adapter->phy_info_timer);
5098
5099 /* record the stats before reset*/
5100 spin_lock(&adapter->stats64_lock);
5101 igc_update_stats(adapter);
5102 spin_unlock(&adapter->stats64_lock);
5103
5104 adapter->link_speed = 0;
5105 adapter->link_duplex = 0;
5106
5107 if (!pci_channel_offline(adapter->pdev))
5108 igc_reset(adapter);
5109
5110 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5111 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5112
5113 igc_disable_all_tx_rings_hw(adapter);
5114 igc_clean_all_tx_rings(adapter);
5115 igc_clean_all_rx_rings(adapter);
5116}
5117
5118void igc_reinit_locked(struct igc_adapter *adapter)
5119{
5120 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5121 usleep_range(1000, 2000);
5122 igc_down(adapter);
5123 igc_up(adapter);
5124 clear_bit(__IGC_RESETTING, &adapter->state);
5125}
5126
5127static void igc_reset_task(struct work_struct *work)
5128{
5129 struct igc_adapter *adapter;
5130
5131 adapter = container_of(work, struct igc_adapter, reset_task);
5132
5133 rtnl_lock();
5134 /* If we're already down or resetting, just bail */
5135 if (test_bit(__IGC_DOWN, &adapter->state) ||
5136 test_bit(__IGC_RESETTING, &adapter->state)) {
5137 rtnl_unlock();
5138 return;
5139 }
5140
5141 igc_rings_dump(adapter);
5142 igc_regs_dump(adapter);
5143 netdev_err(adapter->netdev, "Reset adapter\n");
5144 igc_reinit_locked(adapter);
5145 rtnl_unlock();
5146}
5147
5148/**
5149 * igc_change_mtu - Change the Maximum Transfer Unit
5150 * @netdev: network interface device structure
5151 * @new_mtu: new value for maximum frame size
5152 *
5153 * Returns 0 on success, negative on failure
5154 */
5155static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5156{
5157 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5158 struct igc_adapter *adapter = netdev_priv(netdev);
5159
5160 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5161 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5162 return -EINVAL;
5163 }
5164
5165 /* adjust max frame to be at least the size of a standard frame */
5166 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5167 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5168
5169 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5170 usleep_range(1000, 2000);
5171
5172 /* igc_down has a dependency on max_frame_size */
5173 adapter->max_frame_size = max_frame;
5174
5175 if (netif_running(netdev))
5176 igc_down(adapter);
5177
5178 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5179 netdev->mtu = new_mtu;
5180
5181 if (netif_running(netdev))
5182 igc_up(adapter);
5183 else
5184 igc_reset(adapter);
5185
5186 clear_bit(__IGC_RESETTING, &adapter->state);
5187
5188 return 0;
5189}
5190
5191/**
5192 * igc_tx_timeout - Respond to a Tx Hang
5193 * @netdev: network interface device structure
5194 * @txqueue: queue number that timed out
5195 **/
5196static void igc_tx_timeout(struct net_device *netdev,
5197 unsigned int __always_unused txqueue)
5198{
5199 struct igc_adapter *adapter = netdev_priv(netdev);
5200 struct igc_hw *hw = &adapter->hw;
5201
5202 /* Do the reset outside of interrupt context */
5203 adapter->tx_timeout_count++;
5204 schedule_work(&adapter->reset_task);
5205 wr32(IGC_EICS,
5206 (adapter->eims_enable_mask & ~adapter->eims_other));
5207}
5208
5209/**
5210 * igc_get_stats64 - Get System Network Statistics
5211 * @netdev: network interface device structure
5212 * @stats: rtnl_link_stats64 pointer
5213 *
5214 * Returns the address of the device statistics structure.
5215 * The statistics are updated here and also from the timer callback.
5216 */
5217static void igc_get_stats64(struct net_device *netdev,
5218 struct rtnl_link_stats64 *stats)
5219{
5220 struct igc_adapter *adapter = netdev_priv(netdev);
5221
5222 spin_lock(&adapter->stats64_lock);
5223 if (!test_bit(__IGC_RESETTING, &adapter->state))
5224 igc_update_stats(adapter);
5225 memcpy(stats, &adapter->stats64, sizeof(*stats));
5226 spin_unlock(&adapter->stats64_lock);
5227}
5228
5229static netdev_features_t igc_fix_features(struct net_device *netdev,
5230 netdev_features_t features)
5231{
5232 /* Since there is no support for separate Rx/Tx vlan accel
5233 * enable/disable make sure Tx flag is always in same state as Rx.
5234 */
5235 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5236 features |= NETIF_F_HW_VLAN_CTAG_TX;
5237 else
5238 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5239
5240 return features;
5241}
5242
5243static int igc_set_features(struct net_device *netdev,
5244 netdev_features_t features)
5245{
5246 netdev_features_t changed = netdev->features ^ features;
5247 struct igc_adapter *adapter = netdev_priv(netdev);
5248
5249 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5250 igc_vlan_mode(netdev, features);
5251
5252 /* Add VLAN support */
5253 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5254 return 0;
5255
5256 if (!(features & NETIF_F_NTUPLE))
5257 igc_flush_nfc_rules(adapter);
5258
5259 netdev->features = features;
5260
5261 if (netif_running(netdev))
5262 igc_reinit_locked(adapter);
5263 else
5264 igc_reset(adapter);
5265
5266 return 1;
5267}
5268
5269static netdev_features_t
5270igc_features_check(struct sk_buff *skb, struct net_device *dev,
5271 netdev_features_t features)
5272{
5273 unsigned int network_hdr_len, mac_hdr_len;
5274
5275 /* Make certain the headers can be described by a context descriptor */
5276 mac_hdr_len = skb_network_offset(skb);
5277 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5278 return features & ~(NETIF_F_HW_CSUM |
5279 NETIF_F_SCTP_CRC |
5280 NETIF_F_HW_VLAN_CTAG_TX |
5281 NETIF_F_TSO |
5282 NETIF_F_TSO6);
5283
5284 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5285 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5286 return features & ~(NETIF_F_HW_CSUM |
5287 NETIF_F_SCTP_CRC |
5288 NETIF_F_TSO |
5289 NETIF_F_TSO6);
5290
5291 /* We can only support IPv4 TSO in tunnels if we can mangle the
5292 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5293 */
5294 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5295 features &= ~NETIF_F_TSO;
5296
5297 return features;
5298}
5299
5300static void igc_tsync_interrupt(struct igc_adapter *adapter)
5301{
5302 struct igc_hw *hw = &adapter->hw;
5303 u32 tsauxc, sec, nsec, tsicr;
5304 struct ptp_clock_event event;
5305 struct timespec64 ts;
5306
5307 tsicr = rd32(IGC_TSICR);
5308
5309 if (tsicr & IGC_TSICR_SYS_WRAP) {
5310 event.type = PTP_CLOCK_PPS;
5311 if (adapter->ptp_caps.pps)
5312 ptp_clock_event(adapter->ptp_clock, &event);
5313 }
5314
5315 if (tsicr & IGC_TSICR_TXTS) {
5316 /* retrieve hardware timestamp */
5317 igc_ptp_tx_tstamp_event(adapter);
5318 }
5319
5320 if (tsicr & IGC_TSICR_TT0) {
5321 spin_lock(&adapter->tmreg_lock);
5322 ts = timespec64_add(adapter->perout[0].start,
5323 adapter->perout[0].period);
5324 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5325 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5326 tsauxc = rd32(IGC_TSAUXC);
5327 tsauxc |= IGC_TSAUXC_EN_TT0;
5328 wr32(IGC_TSAUXC, tsauxc);
5329 adapter->perout[0].start = ts;
5330 spin_unlock(&adapter->tmreg_lock);
5331 }
5332
5333 if (tsicr & IGC_TSICR_TT1) {
5334 spin_lock(&adapter->tmreg_lock);
5335 ts = timespec64_add(adapter->perout[1].start,
5336 adapter->perout[1].period);
5337 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5338 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5339 tsauxc = rd32(IGC_TSAUXC);
5340 tsauxc |= IGC_TSAUXC_EN_TT1;
5341 wr32(IGC_TSAUXC, tsauxc);
5342 adapter->perout[1].start = ts;
5343 spin_unlock(&adapter->tmreg_lock);
5344 }
5345
5346 if (tsicr & IGC_TSICR_AUTT0) {
5347 nsec = rd32(IGC_AUXSTMPL0);
5348 sec = rd32(IGC_AUXSTMPH0);
5349 event.type = PTP_CLOCK_EXTTS;
5350 event.index = 0;
5351 event.timestamp = sec * NSEC_PER_SEC + nsec;
5352 ptp_clock_event(adapter->ptp_clock, &event);
5353 }
5354
5355 if (tsicr & IGC_TSICR_AUTT1) {
5356 nsec = rd32(IGC_AUXSTMPL1);
5357 sec = rd32(IGC_AUXSTMPH1);
5358 event.type = PTP_CLOCK_EXTTS;
5359 event.index = 1;
5360 event.timestamp = sec * NSEC_PER_SEC + nsec;
5361 ptp_clock_event(adapter->ptp_clock, &event);
5362 }
5363}
5364
5365/**
5366 * igc_msix_other - msix other interrupt handler
5367 * @irq: interrupt number
5368 * @data: pointer to a q_vector
5369 */
5370static irqreturn_t igc_msix_other(int irq, void *data)
5371{
5372 struct igc_adapter *adapter = data;
5373 struct igc_hw *hw = &adapter->hw;
5374 u32 icr = rd32(IGC_ICR);
5375
5376 /* reading ICR causes bit 31 of EICR to be cleared */
5377 if (icr & IGC_ICR_DRSTA)
5378 schedule_work(&adapter->reset_task);
5379
5380 if (icr & IGC_ICR_DOUTSYNC) {
5381 /* HW is reporting DMA is out of sync */
5382 adapter->stats.doosync++;
5383 }
5384
5385 if (icr & IGC_ICR_LSC) {
5386 hw->mac.get_link_status = true;
5387 /* guard against interrupt when we're going down */
5388 if (!test_bit(__IGC_DOWN, &adapter->state))
5389 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5390 }
5391
5392 if (icr & IGC_ICR_TS)
5393 igc_tsync_interrupt(adapter);
5394
5395 wr32(IGC_EIMS, adapter->eims_other);
5396
5397 return IRQ_HANDLED;
5398}
5399
5400static void igc_write_itr(struct igc_q_vector *q_vector)
5401{
5402 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5403
5404 if (!q_vector->set_itr)
5405 return;
5406
5407 if (!itr_val)
5408 itr_val = IGC_ITR_VAL_MASK;
5409
5410 itr_val |= IGC_EITR_CNT_IGNR;
5411
5412 writel(itr_val, q_vector->itr_register);
5413 q_vector->set_itr = 0;
5414}
5415
5416static irqreturn_t igc_msix_ring(int irq, void *data)
5417{
5418 struct igc_q_vector *q_vector = data;
5419
5420 /* Write the ITR value calculated from the previous interrupt. */
5421 igc_write_itr(q_vector);
5422
5423 napi_schedule(&q_vector->napi);
5424
5425 return IRQ_HANDLED;
5426}
5427
5428/**
5429 * igc_request_msix - Initialize MSI-X interrupts
5430 * @adapter: Pointer to adapter structure
5431 *
5432 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5433 * kernel.
5434 */
5435static int igc_request_msix(struct igc_adapter *adapter)
5436{
5437 unsigned int num_q_vectors = adapter->num_q_vectors;
5438 int i = 0, err = 0, vector = 0, free_vector = 0;
5439 struct net_device *netdev = adapter->netdev;
5440
5441 err = request_irq(adapter->msix_entries[vector].vector,
5442 &igc_msix_other, 0, netdev->name, adapter);
5443 if (err)
5444 goto err_out;
5445
5446 if (num_q_vectors > MAX_Q_VECTORS) {
5447 num_q_vectors = MAX_Q_VECTORS;
5448 dev_warn(&adapter->pdev->dev,
5449 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5450 adapter->num_q_vectors, MAX_Q_VECTORS);
5451 }
5452 for (i = 0; i < num_q_vectors; i++) {
5453 struct igc_q_vector *q_vector = adapter->q_vector[i];
5454
5455 vector++;
5456
5457 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5458
5459 if (q_vector->rx.ring && q_vector->tx.ring)
5460 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5461 q_vector->rx.ring->queue_index);
5462 else if (q_vector->tx.ring)
5463 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5464 q_vector->tx.ring->queue_index);
5465 else if (q_vector->rx.ring)
5466 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5467 q_vector->rx.ring->queue_index);
5468 else
5469 sprintf(q_vector->name, "%s-unused", netdev->name);
5470
5471 err = request_irq(adapter->msix_entries[vector].vector,
5472 igc_msix_ring, 0, q_vector->name,
5473 q_vector);
5474 if (err)
5475 goto err_free;
5476 }
5477
5478 igc_configure_msix(adapter);
5479 return 0;
5480
5481err_free:
5482 /* free already assigned IRQs */
5483 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5484
5485 vector--;
5486 for (i = 0; i < vector; i++) {
5487 free_irq(adapter->msix_entries[free_vector++].vector,
5488 adapter->q_vector[i]);
5489 }
5490err_out:
5491 return err;
5492}
5493
5494/**
5495 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5496 * @adapter: Pointer to adapter structure
5497 *
5498 * This function resets the device so that it has 0 rx queues, tx queues, and
5499 * MSI-X interrupts allocated.
5500 */
5501static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5502{
5503 igc_free_q_vectors(adapter);
5504 igc_reset_interrupt_capability(adapter);
5505}
5506
5507/* Need to wait a few seconds after link up to get diagnostic information from
5508 * the phy
5509 */
5510static void igc_update_phy_info(struct timer_list *t)
5511{
5512 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5513
5514 igc_get_phy_info(&adapter->hw);
5515}
5516
5517/**
5518 * igc_has_link - check shared code for link and determine up/down
5519 * @adapter: pointer to driver private info
5520 */
5521bool igc_has_link(struct igc_adapter *adapter)
5522{
5523 struct igc_hw *hw = &adapter->hw;
5524 bool link_active = false;
5525
5526 /* get_link_status is set on LSC (link status) interrupt or
5527 * rx sequence error interrupt. get_link_status will stay
5528 * false until the igc_check_for_link establishes link
5529 * for copper adapters ONLY
5530 */
5531 if (!hw->mac.get_link_status)
5532 return true;
5533 hw->mac.ops.check_for_link(hw);
5534 link_active = !hw->mac.get_link_status;
5535
5536 if (hw->mac.type == igc_i225) {
5537 if (!netif_carrier_ok(adapter->netdev)) {
5538 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5539 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5540 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5541 adapter->link_check_timeout = jiffies;
5542 }
5543 }
5544
5545 return link_active;
5546}
5547
5548/**
5549 * igc_watchdog - Timer Call-back
5550 * @t: timer for the watchdog
5551 */
5552static void igc_watchdog(struct timer_list *t)
5553{
5554 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5555 /* Do the rest outside of interrupt context */
5556 schedule_work(&adapter->watchdog_task);
5557}
5558
5559static void igc_watchdog_task(struct work_struct *work)
5560{
5561 struct igc_adapter *adapter = container_of(work,
5562 struct igc_adapter,
5563 watchdog_task);
5564 struct net_device *netdev = adapter->netdev;
5565 struct igc_hw *hw = &adapter->hw;
5566 struct igc_phy_info *phy = &hw->phy;
5567 u16 phy_data, retry_count = 20;
5568 u32 link;
5569 int i;
5570
5571 link = igc_has_link(adapter);
5572
5573 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5574 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5575 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5576 else
5577 link = false;
5578 }
5579
5580 if (link) {
5581 /* Cancel scheduled suspend requests. */
5582 pm_runtime_resume(netdev->dev.parent);
5583
5584 if (!netif_carrier_ok(netdev)) {
5585 u32 ctrl;
5586
5587 hw->mac.ops.get_speed_and_duplex(hw,
5588 &adapter->link_speed,
5589 &adapter->link_duplex);
5590
5591 ctrl = rd32(IGC_CTRL);
5592 /* Link status message must follow this format */
5593 netdev_info(netdev,
5594 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5595 adapter->link_speed,
5596 adapter->link_duplex == FULL_DUPLEX ?
5597 "Full" : "Half",
5598 (ctrl & IGC_CTRL_TFCE) &&
5599 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5600 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5601 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5602
5603 /* disable EEE if enabled */
5604 if ((adapter->flags & IGC_FLAG_EEE) &&
5605 adapter->link_duplex == HALF_DUPLEX) {
5606 netdev_info(netdev,
5607 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5608 adapter->hw.dev_spec._base.eee_enable = false;
5609 adapter->flags &= ~IGC_FLAG_EEE;
5610 }
5611
5612 /* check if SmartSpeed worked */
5613 igc_check_downshift(hw);
5614 if (phy->speed_downgraded)
5615 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5616
5617 /* adjust timeout factor according to speed/duplex */
5618 adapter->tx_timeout_factor = 1;
5619 switch (adapter->link_speed) {
5620 case SPEED_10:
5621 adapter->tx_timeout_factor = 14;
5622 break;
5623 case SPEED_100:
5624 case SPEED_1000:
5625 case SPEED_2500:
5626 adapter->tx_timeout_factor = 1;
5627 break;
5628 }
5629
5630 /* Once the launch time has been set on the wire, there
5631 * is a delay before the link speed can be determined
5632 * based on link-up activity. Write into the register
5633 * as soon as we know the correct link speed.
5634 */
5635 igc_tsn_adjust_txtime_offset(adapter);
5636
5637 if (adapter->link_speed != SPEED_1000)
5638 goto no_wait;
5639
5640 /* wait for Remote receiver status OK */
5641retry_read_status:
5642 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5643 &phy_data)) {
5644 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5645 retry_count) {
5646 msleep(100);
5647 retry_count--;
5648 goto retry_read_status;
5649 } else if (!retry_count) {
5650 netdev_err(netdev, "exceed max 2 second\n");
5651 }
5652 } else {
5653 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5654 }
5655no_wait:
5656 netif_carrier_on(netdev);
5657
5658 /* link state has changed, schedule phy info update */
5659 if (!test_bit(__IGC_DOWN, &adapter->state))
5660 mod_timer(&adapter->phy_info_timer,
5661 round_jiffies(jiffies + 2 * HZ));
5662 }
5663 } else {
5664 if (netif_carrier_ok(netdev)) {
5665 adapter->link_speed = 0;
5666 adapter->link_duplex = 0;
5667
5668 /* Links status message must follow this format */
5669 netdev_info(netdev, "NIC Link is Down\n");
5670 netif_carrier_off(netdev);
5671
5672 /* link state has changed, schedule phy info update */
5673 if (!test_bit(__IGC_DOWN, &adapter->state))
5674 mod_timer(&adapter->phy_info_timer,
5675 round_jiffies(jiffies + 2 * HZ));
5676
5677 pm_schedule_suspend(netdev->dev.parent,
5678 MSEC_PER_SEC * 5);
5679 }
5680 }
5681
5682 spin_lock(&adapter->stats64_lock);
5683 igc_update_stats(adapter);
5684 spin_unlock(&adapter->stats64_lock);
5685
5686 for (i = 0; i < adapter->num_tx_queues; i++) {
5687 struct igc_ring *tx_ring = adapter->tx_ring[i];
5688
5689 if (!netif_carrier_ok(netdev)) {
5690 /* We've lost link, so the controller stops DMA,
5691 * but we've got queued Tx work that's never going
5692 * to get done, so reset controller to flush Tx.
5693 * (Do the reset outside of interrupt context).
5694 */
5695 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5696 adapter->tx_timeout_count++;
5697 schedule_work(&adapter->reset_task);
5698 /* return immediately since reset is imminent */
5699 return;
5700 }
5701 }
5702
5703 /* Force detection of hung controller every watchdog period */
5704 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5705 }
5706
5707 /* Cause software interrupt to ensure Rx ring is cleaned */
5708 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5709 u32 eics = 0;
5710
5711 for (i = 0; i < adapter->num_q_vectors; i++)
5712 eics |= adapter->q_vector[i]->eims_value;
5713 wr32(IGC_EICS, eics);
5714 } else {
5715 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5716 }
5717
5718 igc_ptp_tx_hang(adapter);
5719
5720 /* Reset the timer */
5721 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5722 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5723 mod_timer(&adapter->watchdog_timer,
5724 round_jiffies(jiffies + HZ));
5725 else
5726 mod_timer(&adapter->watchdog_timer,
5727 round_jiffies(jiffies + 2 * HZ));
5728 }
5729}
5730
5731/**
5732 * igc_intr_msi - Interrupt Handler
5733 * @irq: interrupt number
5734 * @data: pointer to a network interface device structure
5735 */
5736static irqreturn_t igc_intr_msi(int irq, void *data)
5737{
5738 struct igc_adapter *adapter = data;
5739 struct igc_q_vector *q_vector = adapter->q_vector[0];
5740 struct igc_hw *hw = &adapter->hw;
5741 /* read ICR disables interrupts using IAM */
5742 u32 icr = rd32(IGC_ICR);
5743
5744 igc_write_itr(q_vector);
5745
5746 if (icr & IGC_ICR_DRSTA)
5747 schedule_work(&adapter->reset_task);
5748
5749 if (icr & IGC_ICR_DOUTSYNC) {
5750 /* HW is reporting DMA is out of sync */
5751 adapter->stats.doosync++;
5752 }
5753
5754 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5755 hw->mac.get_link_status = true;
5756 if (!test_bit(__IGC_DOWN, &adapter->state))
5757 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5758 }
5759
5760 if (icr & IGC_ICR_TS)
5761 igc_tsync_interrupt(adapter);
5762
5763 napi_schedule(&q_vector->napi);
5764
5765 return IRQ_HANDLED;
5766}
5767
5768/**
5769 * igc_intr - Legacy Interrupt Handler
5770 * @irq: interrupt number
5771 * @data: pointer to a network interface device structure
5772 */
5773static irqreturn_t igc_intr(int irq, void *data)
5774{
5775 struct igc_adapter *adapter = data;
5776 struct igc_q_vector *q_vector = adapter->q_vector[0];
5777 struct igc_hw *hw = &adapter->hw;
5778 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5779 * need for the IMC write
5780 */
5781 u32 icr = rd32(IGC_ICR);
5782
5783 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5784 * not set, then the adapter didn't send an interrupt
5785 */
5786 if (!(icr & IGC_ICR_INT_ASSERTED))
5787 return IRQ_NONE;
5788
5789 igc_write_itr(q_vector);
5790
5791 if (icr & IGC_ICR_DRSTA)
5792 schedule_work(&adapter->reset_task);
5793
5794 if (icr & IGC_ICR_DOUTSYNC) {
5795 /* HW is reporting DMA is out of sync */
5796 adapter->stats.doosync++;
5797 }
5798
5799 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5800 hw->mac.get_link_status = true;
5801 /* guard against interrupt when we're going down */
5802 if (!test_bit(__IGC_DOWN, &adapter->state))
5803 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5804 }
5805
5806 if (icr & IGC_ICR_TS)
5807 igc_tsync_interrupt(adapter);
5808
5809 napi_schedule(&q_vector->napi);
5810
5811 return IRQ_HANDLED;
5812}
5813
5814static void igc_free_irq(struct igc_adapter *adapter)
5815{
5816 if (adapter->msix_entries) {
5817 int vector = 0, i;
5818
5819 free_irq(adapter->msix_entries[vector++].vector, adapter);
5820
5821 for (i = 0; i < adapter->num_q_vectors; i++)
5822 free_irq(adapter->msix_entries[vector++].vector,
5823 adapter->q_vector[i]);
5824 } else {
5825 free_irq(adapter->pdev->irq, adapter);
5826 }
5827}
5828
5829/**
5830 * igc_request_irq - initialize interrupts
5831 * @adapter: Pointer to adapter structure
5832 *
5833 * Attempts to configure interrupts using the best available
5834 * capabilities of the hardware and kernel.
5835 */
5836static int igc_request_irq(struct igc_adapter *adapter)
5837{
5838 struct net_device *netdev = adapter->netdev;
5839 struct pci_dev *pdev = adapter->pdev;
5840 int err = 0;
5841
5842 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5843 err = igc_request_msix(adapter);
5844 if (!err)
5845 goto request_done;
5846 /* fall back to MSI */
5847 igc_free_all_tx_resources(adapter);
5848 igc_free_all_rx_resources(adapter);
5849
5850 igc_clear_interrupt_scheme(adapter);
5851 err = igc_init_interrupt_scheme(adapter, false);
5852 if (err)
5853 goto request_done;
5854 igc_setup_all_tx_resources(adapter);
5855 igc_setup_all_rx_resources(adapter);
5856 igc_configure(adapter);
5857 }
5858
5859 igc_assign_vector(adapter->q_vector[0], 0);
5860
5861 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5862 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5863 netdev->name, adapter);
5864 if (!err)
5865 goto request_done;
5866
5867 /* fall back to legacy interrupts */
5868 igc_reset_interrupt_capability(adapter);
5869 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5870 }
5871
5872 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5873 netdev->name, adapter);
5874
5875 if (err)
5876 netdev_err(netdev, "Error %d getting interrupt\n", err);
5877
5878request_done:
5879 return err;
5880}
5881
5882/**
5883 * __igc_open - Called when a network interface is made active
5884 * @netdev: network interface device structure
5885 * @resuming: boolean indicating if the device is resuming
5886 *
5887 * Returns 0 on success, negative value on failure
5888 *
5889 * The open entry point is called when a network interface is made
5890 * active by the system (IFF_UP). At this point all resources needed
5891 * for transmit and receive operations are allocated, the interrupt
5892 * handler is registered with the OS, the watchdog timer is started,
5893 * and the stack is notified that the interface is ready.
5894 */
5895static int __igc_open(struct net_device *netdev, bool resuming)
5896{
5897 struct igc_adapter *adapter = netdev_priv(netdev);
5898 struct pci_dev *pdev = adapter->pdev;
5899 struct igc_hw *hw = &adapter->hw;
5900 int err = 0;
5901 int i = 0;
5902
5903 /* disallow open during test */
5904
5905 if (test_bit(__IGC_TESTING, &adapter->state)) {
5906 WARN_ON(resuming);
5907 return -EBUSY;
5908 }
5909
5910 if (!resuming)
5911 pm_runtime_get_sync(&pdev->dev);
5912
5913 netif_carrier_off(netdev);
5914
5915 /* allocate transmit descriptors */
5916 err = igc_setup_all_tx_resources(adapter);
5917 if (err)
5918 goto err_setup_tx;
5919
5920 /* allocate receive descriptors */
5921 err = igc_setup_all_rx_resources(adapter);
5922 if (err)
5923 goto err_setup_rx;
5924
5925 igc_power_up_link(adapter);
5926
5927 igc_configure(adapter);
5928
5929 err = igc_request_irq(adapter);
5930 if (err)
5931 goto err_req_irq;
5932
5933 /* Notify the stack of the actual queue counts. */
5934 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5935 if (err)
5936 goto err_set_queues;
5937
5938 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5939 if (err)
5940 goto err_set_queues;
5941
5942 clear_bit(__IGC_DOWN, &adapter->state);
5943
5944 for (i = 0; i < adapter->num_q_vectors; i++)
5945 napi_enable(&adapter->q_vector[i]->napi);
5946
5947 /* Clear any pending interrupts. */
5948 rd32(IGC_ICR);
5949 igc_irq_enable(adapter);
5950
5951 if (!resuming)
5952 pm_runtime_put(&pdev->dev);
5953
5954 netif_tx_start_all_queues(netdev);
5955
5956 /* start the watchdog. */
5957 hw->mac.get_link_status = true;
5958 schedule_work(&adapter->watchdog_task);
5959
5960 return IGC_SUCCESS;
5961
5962err_set_queues:
5963 igc_free_irq(adapter);
5964err_req_irq:
5965 igc_release_hw_control(adapter);
5966 igc_power_down_phy_copper_base(&adapter->hw);
5967 igc_free_all_rx_resources(adapter);
5968err_setup_rx:
5969 igc_free_all_tx_resources(adapter);
5970err_setup_tx:
5971 igc_reset(adapter);
5972 if (!resuming)
5973 pm_runtime_put(&pdev->dev);
5974
5975 return err;
5976}
5977
5978int igc_open(struct net_device *netdev)
5979{
5980 return __igc_open(netdev, false);
5981}
5982
5983/**
5984 * __igc_close - Disables a network interface
5985 * @netdev: network interface device structure
5986 * @suspending: boolean indicating the device is suspending
5987 *
5988 * Returns 0, this is not allowed to fail
5989 *
5990 * The close entry point is called when an interface is de-activated
5991 * by the OS. The hardware is still under the driver's control, but
5992 * needs to be disabled. A global MAC reset is issued to stop the
5993 * hardware, and all transmit and receive resources are freed.
5994 */
5995static int __igc_close(struct net_device *netdev, bool suspending)
5996{
5997 struct igc_adapter *adapter = netdev_priv(netdev);
5998 struct pci_dev *pdev = adapter->pdev;
5999
6000 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6001
6002 if (!suspending)
6003 pm_runtime_get_sync(&pdev->dev);
6004
6005 igc_down(adapter);
6006
6007 igc_release_hw_control(adapter);
6008
6009 igc_free_irq(adapter);
6010
6011 igc_free_all_tx_resources(adapter);
6012 igc_free_all_rx_resources(adapter);
6013
6014 if (!suspending)
6015 pm_runtime_put_sync(&pdev->dev);
6016
6017 return 0;
6018}
6019
6020int igc_close(struct net_device *netdev)
6021{
6022 if (netif_device_present(netdev) || netdev->dismantle)
6023 return __igc_close(netdev, false);
6024 return 0;
6025}
6026
6027/**
6028 * igc_ioctl - Access the hwtstamp interface
6029 * @netdev: network interface device structure
6030 * @ifr: interface request data
6031 * @cmd: ioctl command
6032 **/
6033static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6034{
6035 switch (cmd) {
6036 case SIOCGHWTSTAMP:
6037 return igc_ptp_get_ts_config(netdev, ifr);
6038 case SIOCSHWTSTAMP:
6039 return igc_ptp_set_ts_config(netdev, ifr);
6040 default:
6041 return -EOPNOTSUPP;
6042 }
6043}
6044
6045static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6046 bool enable)
6047{
6048 struct igc_ring *ring;
6049
6050 if (queue < 0 || queue >= adapter->num_tx_queues)
6051 return -EINVAL;
6052
6053 ring = adapter->tx_ring[queue];
6054 ring->launchtime_enable = enable;
6055
6056 return 0;
6057}
6058
6059static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6060{
6061 struct timespec64 b;
6062
6063 b = ktime_to_timespec64(base_time);
6064
6065 return timespec64_compare(now, &b) > 0;
6066}
6067
6068static bool validate_schedule(struct igc_adapter *adapter,
6069 const struct tc_taprio_qopt_offload *qopt)
6070{
6071 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6072 struct igc_hw *hw = &adapter->hw;
6073 struct timespec64 now;
6074 size_t n;
6075
6076 if (qopt->cycle_time_extension)
6077 return false;
6078
6079 igc_ptp_read(adapter, &now);
6080
6081 /* If we program the controller's BASET registers with a time
6082 * in the future, it will hold all the packets until that
6083 * time, causing a lot of TX Hangs, so to avoid that, we
6084 * reject schedules that would start in the future.
6085 * Note: Limitation above is no longer in i226.
6086 */
6087 if (!is_base_time_past(qopt->base_time, &now) &&
6088 igc_is_device_id_i225(hw))
6089 return false;
6090
6091 for (n = 0; n < qopt->num_entries; n++) {
6092 const struct tc_taprio_sched_entry *e, *prev;
6093 int i;
6094
6095 prev = n ? &qopt->entries[n - 1] : NULL;
6096 e = &qopt->entries[n];
6097
6098 /* i225 only supports "global" frame preemption
6099 * settings.
6100 */
6101 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6102 return false;
6103
6104 for (i = 0; i < adapter->num_tx_queues; i++)
6105 if (e->gate_mask & BIT(i)) {
6106 queue_uses[i]++;
6107
6108 /* There are limitations: A single queue cannot
6109 * be opened and closed multiple times per cycle
6110 * unless the gate stays open. Check for it.
6111 */
6112 if (queue_uses[i] > 1 &&
6113 !(prev->gate_mask & BIT(i)))
6114 return false;
6115 }
6116 }
6117
6118 return true;
6119}
6120
6121static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6122 struct tc_etf_qopt_offload *qopt)
6123{
6124 struct igc_hw *hw = &adapter->hw;
6125 int err;
6126
6127 if (hw->mac.type != igc_i225)
6128 return -EOPNOTSUPP;
6129
6130 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6131 if (err)
6132 return err;
6133
6134 return igc_tsn_offload_apply(adapter);
6135}
6136
6137static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6138{
6139 unsigned long flags;
6140 int i;
6141
6142 adapter->base_time = 0;
6143 adapter->cycle_time = NSEC_PER_SEC;
6144 adapter->taprio_offload_enable = false;
6145 adapter->qbv_config_change_errors = 0;
6146 adapter->qbv_count = 0;
6147
6148 for (i = 0; i < adapter->num_tx_queues; i++) {
6149 struct igc_ring *ring = adapter->tx_ring[i];
6150
6151 ring->start_time = 0;
6152 ring->end_time = NSEC_PER_SEC;
6153 ring->max_sdu = 0;
6154 }
6155
6156 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6157
6158 adapter->qbv_transition = false;
6159
6160 for (i = 0; i < adapter->num_tx_queues; i++) {
6161 struct igc_ring *ring = adapter->tx_ring[i];
6162
6163 ring->oper_gate_closed = false;
6164 ring->admin_gate_closed = false;
6165 }
6166
6167 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6168
6169 return 0;
6170}
6171
6172static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6173{
6174 igc_qbv_clear_schedule(adapter);
6175
6176 return 0;
6177}
6178
6179static void igc_taprio_stats(struct net_device *dev,
6180 struct tc_taprio_qopt_stats *stats)
6181{
6182 /* When Strict_End is enabled, the tx_overruns counter
6183 * will always be zero.
6184 */
6185 stats->tx_overruns = 0;
6186}
6187
6188static void igc_taprio_queue_stats(struct net_device *dev,
6189 struct tc_taprio_qopt_queue_stats *queue_stats)
6190{
6191 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6192
6193 /* When Strict_End is enabled, the tx_overruns counter
6194 * will always be zero.
6195 */
6196 stats->tx_overruns = 0;
6197}
6198
6199static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6200 struct tc_taprio_qopt_offload *qopt)
6201{
6202 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6203 struct igc_hw *hw = &adapter->hw;
6204 u32 start_time = 0, end_time = 0;
6205 struct timespec64 now;
6206 unsigned long flags;
6207 size_t n;
6208 int i;
6209
6210 switch (qopt->cmd) {
6211 case TAPRIO_CMD_REPLACE:
6212 break;
6213 case TAPRIO_CMD_DESTROY:
6214 return igc_tsn_clear_schedule(adapter);
6215 case TAPRIO_CMD_STATS:
6216 igc_taprio_stats(adapter->netdev, &qopt->stats);
6217 return 0;
6218 case TAPRIO_CMD_QUEUE_STATS:
6219 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6220 return 0;
6221 default:
6222 return -EOPNOTSUPP;
6223 }
6224
6225 if (qopt->base_time < 0)
6226 return -ERANGE;
6227
6228 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6229 return -EALREADY;
6230
6231 if (!validate_schedule(adapter, qopt))
6232 return -EINVAL;
6233
6234 adapter->cycle_time = qopt->cycle_time;
6235 adapter->base_time = qopt->base_time;
6236 adapter->taprio_offload_enable = true;
6237
6238 igc_ptp_read(adapter, &now);
6239
6240 for (n = 0; n < qopt->num_entries; n++) {
6241 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6242
6243 end_time += e->interval;
6244
6245 /* If any of the conditions below are true, we need to manually
6246 * control the end time of the cycle.
6247 * 1. Qbv users can specify a cycle time that is not equal
6248 * to the total GCL intervals. Hence, recalculation is
6249 * necessary here to exclude the time interval that
6250 * exceeds the cycle time.
6251 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6252 * once the end of the list is reached, it will switch
6253 * to the END_OF_CYCLE state and leave the gates in the
6254 * same state until the next cycle is started.
6255 */
6256 if (end_time > adapter->cycle_time ||
6257 n + 1 == qopt->num_entries)
6258 end_time = adapter->cycle_time;
6259
6260 for (i = 0; i < adapter->num_tx_queues; i++) {
6261 struct igc_ring *ring = adapter->tx_ring[i];
6262
6263 if (!(e->gate_mask & BIT(i)))
6264 continue;
6265
6266 /* Check whether a queue stays open for more than one
6267 * entry. If so, keep the start and advance the end
6268 * time.
6269 */
6270 if (!queue_configured[i])
6271 ring->start_time = start_time;
6272 ring->end_time = end_time;
6273
6274 if (ring->start_time >= adapter->cycle_time)
6275 queue_configured[i] = false;
6276 else
6277 queue_configured[i] = true;
6278 }
6279
6280 start_time += e->interval;
6281 }
6282
6283 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6284
6285 /* Check whether a queue gets configured.
6286 * If not, set the start and end time to be end time.
6287 */
6288 for (i = 0; i < adapter->num_tx_queues; i++) {
6289 struct igc_ring *ring = adapter->tx_ring[i];
6290
6291 if (!is_base_time_past(qopt->base_time, &now)) {
6292 ring->admin_gate_closed = false;
6293 } else {
6294 ring->oper_gate_closed = false;
6295 ring->admin_gate_closed = false;
6296 }
6297
6298 if (!queue_configured[i]) {
6299 if (!is_base_time_past(qopt->base_time, &now))
6300 ring->admin_gate_closed = true;
6301 else
6302 ring->oper_gate_closed = true;
6303
6304 ring->start_time = end_time;
6305 ring->end_time = end_time;
6306 }
6307 }
6308
6309 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6310
6311 for (i = 0; i < adapter->num_tx_queues; i++) {
6312 struct igc_ring *ring = adapter->tx_ring[i];
6313 struct net_device *dev = adapter->netdev;
6314
6315 if (qopt->max_sdu[i])
6316 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6317 else
6318 ring->max_sdu = 0;
6319 }
6320
6321 return 0;
6322}
6323
6324static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6325 struct tc_taprio_qopt_offload *qopt)
6326{
6327 struct igc_hw *hw = &adapter->hw;
6328 int err;
6329
6330 if (hw->mac.type != igc_i225)
6331 return -EOPNOTSUPP;
6332
6333 err = igc_save_qbv_schedule(adapter, qopt);
6334 if (err)
6335 return err;
6336
6337 return igc_tsn_offload_apply(adapter);
6338}
6339
6340static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6341 bool enable, int idleslope, int sendslope,
6342 int hicredit, int locredit)
6343{
6344 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6345 struct net_device *netdev = adapter->netdev;
6346 struct igc_ring *ring;
6347 int i;
6348
6349 /* i225 has two sets of credit-based shaper logic.
6350 * Supporting it only on the top two priority queues
6351 */
6352 if (queue < 0 || queue > 1)
6353 return -EINVAL;
6354
6355 ring = adapter->tx_ring[queue];
6356
6357 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6358 if (adapter->tx_ring[i])
6359 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6360
6361 /* CBS should be enabled on the highest priority queue first in order
6362 * for the CBS algorithm to operate as intended.
6363 */
6364 if (enable) {
6365 if (queue == 1 && !cbs_status[0]) {
6366 netdev_err(netdev,
6367 "Enabling CBS on queue1 before queue0\n");
6368 return -EINVAL;
6369 }
6370 } else {
6371 if (queue == 0 && cbs_status[1]) {
6372 netdev_err(netdev,
6373 "Disabling CBS on queue0 before queue1\n");
6374 return -EINVAL;
6375 }
6376 }
6377
6378 ring->cbs_enable = enable;
6379 ring->idleslope = idleslope;
6380 ring->sendslope = sendslope;
6381 ring->hicredit = hicredit;
6382 ring->locredit = locredit;
6383
6384 return 0;
6385}
6386
6387static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6388 struct tc_cbs_qopt_offload *qopt)
6389{
6390 struct igc_hw *hw = &adapter->hw;
6391 int err;
6392
6393 if (hw->mac.type != igc_i225)
6394 return -EOPNOTSUPP;
6395
6396 if (qopt->queue < 0 || qopt->queue > 1)
6397 return -EINVAL;
6398
6399 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6400 qopt->idleslope, qopt->sendslope,
6401 qopt->hicredit, qopt->locredit);
6402 if (err)
6403 return err;
6404
6405 return igc_tsn_offload_apply(adapter);
6406}
6407
6408static int igc_tc_query_caps(struct igc_adapter *adapter,
6409 struct tc_query_caps_base *base)
6410{
6411 struct igc_hw *hw = &adapter->hw;
6412
6413 switch (base->type) {
6414 case TC_SETUP_QDISC_TAPRIO: {
6415 struct tc_taprio_caps *caps = base->caps;
6416
6417 caps->broken_mqprio = true;
6418
6419 if (hw->mac.type == igc_i225) {
6420 caps->supports_queue_max_sdu = true;
6421 caps->gate_mask_per_txq = true;
6422 }
6423
6424 return 0;
6425 }
6426 default:
6427 return -EOPNOTSUPP;
6428 }
6429}
6430
6431static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6432 void *type_data)
6433{
6434 struct igc_adapter *adapter = netdev_priv(dev);
6435
6436 adapter->tc_setup_type = type;
6437
6438 switch (type) {
6439 case TC_QUERY_CAPS:
6440 return igc_tc_query_caps(adapter, type_data);
6441 case TC_SETUP_QDISC_TAPRIO:
6442 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6443
6444 case TC_SETUP_QDISC_ETF:
6445 return igc_tsn_enable_launchtime(adapter, type_data);
6446
6447 case TC_SETUP_QDISC_CBS:
6448 return igc_tsn_enable_cbs(adapter, type_data);
6449
6450 default:
6451 return -EOPNOTSUPP;
6452 }
6453}
6454
6455static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6456{
6457 struct igc_adapter *adapter = netdev_priv(dev);
6458
6459 switch (bpf->command) {
6460 case XDP_SETUP_PROG:
6461 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6462 case XDP_SETUP_XSK_POOL:
6463 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6464 bpf->xsk.queue_id);
6465 default:
6466 return -EOPNOTSUPP;
6467 }
6468}
6469
6470static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6471 struct xdp_frame **frames, u32 flags)
6472{
6473 struct igc_adapter *adapter = netdev_priv(dev);
6474 int cpu = smp_processor_id();
6475 struct netdev_queue *nq;
6476 struct igc_ring *ring;
6477 int i, nxmit;
6478
6479 if (unlikely(!netif_carrier_ok(dev)))
6480 return -ENETDOWN;
6481
6482 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6483 return -EINVAL;
6484
6485 ring = igc_xdp_get_tx_ring(adapter, cpu);
6486 nq = txring_txq(ring);
6487
6488 __netif_tx_lock(nq, cpu);
6489
6490 /* Avoid transmit queue timeout since we share it with the slow path */
6491 txq_trans_cond_update(nq);
6492
6493 nxmit = 0;
6494 for (i = 0; i < num_frames; i++) {
6495 int err;
6496 struct xdp_frame *xdpf = frames[i];
6497
6498 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6499 if (err)
6500 break;
6501 nxmit++;
6502 }
6503
6504 if (flags & XDP_XMIT_FLUSH)
6505 igc_flush_tx_descriptors(ring);
6506
6507 __netif_tx_unlock(nq);
6508
6509 return nxmit;
6510}
6511
6512static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6513 struct igc_q_vector *q_vector)
6514{
6515 struct igc_hw *hw = &adapter->hw;
6516 u32 eics = 0;
6517
6518 eics |= q_vector->eims_value;
6519 wr32(IGC_EICS, eics);
6520}
6521
6522int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6523{
6524 struct igc_adapter *adapter = netdev_priv(dev);
6525 struct igc_q_vector *q_vector;
6526 struct igc_ring *ring;
6527
6528 if (test_bit(__IGC_DOWN, &adapter->state))
6529 return -ENETDOWN;
6530
6531 if (!igc_xdp_is_enabled(adapter))
6532 return -ENXIO;
6533
6534 if (queue_id >= adapter->num_rx_queues)
6535 return -EINVAL;
6536
6537 ring = adapter->rx_ring[queue_id];
6538
6539 if (!ring->xsk_pool)
6540 return -ENXIO;
6541
6542 q_vector = adapter->q_vector[queue_id];
6543 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6544 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6545
6546 return 0;
6547}
6548
6549static ktime_t igc_get_tstamp(struct net_device *dev,
6550 const struct skb_shared_hwtstamps *hwtstamps,
6551 bool cycles)
6552{
6553 struct igc_adapter *adapter = netdev_priv(dev);
6554 struct igc_inline_rx_tstamps *tstamp;
6555 ktime_t timestamp;
6556
6557 tstamp = hwtstamps->netdev_data;
6558
6559 if (cycles)
6560 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6561 else
6562 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6563
6564 return timestamp;
6565}
6566
6567static const struct net_device_ops igc_netdev_ops = {
6568 .ndo_open = igc_open,
6569 .ndo_stop = igc_close,
6570 .ndo_start_xmit = igc_xmit_frame,
6571 .ndo_set_rx_mode = igc_set_rx_mode,
6572 .ndo_set_mac_address = igc_set_mac,
6573 .ndo_change_mtu = igc_change_mtu,
6574 .ndo_tx_timeout = igc_tx_timeout,
6575 .ndo_get_stats64 = igc_get_stats64,
6576 .ndo_fix_features = igc_fix_features,
6577 .ndo_set_features = igc_set_features,
6578 .ndo_features_check = igc_features_check,
6579 .ndo_eth_ioctl = igc_ioctl,
6580 .ndo_setup_tc = igc_setup_tc,
6581 .ndo_bpf = igc_bpf,
6582 .ndo_xdp_xmit = igc_xdp_xmit,
6583 .ndo_xsk_wakeup = igc_xsk_wakeup,
6584 .ndo_get_tstamp = igc_get_tstamp,
6585};
6586
6587/* PCIe configuration access */
6588void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6589{
6590 struct igc_adapter *adapter = hw->back;
6591
6592 pci_read_config_word(adapter->pdev, reg, value);
6593}
6594
6595void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6596{
6597 struct igc_adapter *adapter = hw->back;
6598
6599 pci_write_config_word(adapter->pdev, reg, *value);
6600}
6601
6602s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6603{
6604 struct igc_adapter *adapter = hw->back;
6605
6606 if (!pci_is_pcie(adapter->pdev))
6607 return -IGC_ERR_CONFIG;
6608
6609 pcie_capability_read_word(adapter->pdev, reg, value);
6610
6611 return IGC_SUCCESS;
6612}
6613
6614s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6615{
6616 struct igc_adapter *adapter = hw->back;
6617
6618 if (!pci_is_pcie(adapter->pdev))
6619 return -IGC_ERR_CONFIG;
6620
6621 pcie_capability_write_word(adapter->pdev, reg, *value);
6622
6623 return IGC_SUCCESS;
6624}
6625
6626u32 igc_rd32(struct igc_hw *hw, u32 reg)
6627{
6628 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6629 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6630 u32 value = 0;
6631
6632 if (IGC_REMOVED(hw_addr))
6633 return ~value;
6634
6635 value = readl(&hw_addr[reg]);
6636
6637 /* reads should not return all F's */
6638 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6639 struct net_device *netdev = igc->netdev;
6640
6641 hw->hw_addr = NULL;
6642 netif_device_detach(netdev);
6643 netdev_err(netdev, "PCIe link lost, device now detached\n");
6644 WARN(pci_device_is_present(igc->pdev),
6645 "igc: Failed to read reg 0x%x!\n", reg);
6646 }
6647
6648 return value;
6649}
6650
6651/* Mapping HW RSS Type to enum xdp_rss_hash_type */
6652static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6653 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6654 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6655 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6656 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6657 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6658 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6659 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6660 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6661 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6662 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6663 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6664 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6665 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6666 [13] = XDP_RSS_TYPE_NONE,
6667 [14] = XDP_RSS_TYPE_NONE,
6668 [15] = XDP_RSS_TYPE_NONE,
6669};
6670
6671static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6672 enum xdp_rss_hash_type *rss_type)
6673{
6674 const struct igc_xdp_buff *ctx = (void *)_ctx;
6675
6676 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6677 return -ENODATA;
6678
6679 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6680 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6681
6682 return 0;
6683}
6684
6685static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6686{
6687 const struct igc_xdp_buff *ctx = (void *)_ctx;
6688 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6689 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6690
6691 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6692 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6693
6694 return 0;
6695 }
6696
6697 return -ENODATA;
6698}
6699
6700static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6701 .xmo_rx_hash = igc_xdp_rx_hash,
6702 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6703};
6704
6705static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6706{
6707 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6708 hrtimer);
6709 unsigned long flags;
6710 unsigned int i;
6711
6712 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6713
6714 adapter->qbv_transition = true;
6715 for (i = 0; i < adapter->num_tx_queues; i++) {
6716 struct igc_ring *tx_ring = adapter->tx_ring[i];
6717
6718 if (tx_ring->admin_gate_closed) {
6719 tx_ring->admin_gate_closed = false;
6720 tx_ring->oper_gate_closed = true;
6721 } else {
6722 tx_ring->oper_gate_closed = false;
6723 }
6724 }
6725 adapter->qbv_transition = false;
6726
6727 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6728
6729 return HRTIMER_NORESTART;
6730}
6731
6732/**
6733 * igc_probe - Device Initialization Routine
6734 * @pdev: PCI device information struct
6735 * @ent: entry in igc_pci_tbl
6736 *
6737 * Returns 0 on success, negative on failure
6738 *
6739 * igc_probe initializes an adapter identified by a pci_dev structure.
6740 * The OS initialization, configuring the adapter private structure,
6741 * and a hardware reset occur.
6742 */
6743static int igc_probe(struct pci_dev *pdev,
6744 const struct pci_device_id *ent)
6745{
6746 struct igc_adapter *adapter;
6747 struct net_device *netdev;
6748 struct igc_hw *hw;
6749 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6750 int err;
6751
6752 err = pci_enable_device_mem(pdev);
6753 if (err)
6754 return err;
6755
6756 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6757 if (err) {
6758 dev_err(&pdev->dev,
6759 "No usable DMA configuration, aborting\n");
6760 goto err_dma;
6761 }
6762
6763 err = pci_request_mem_regions(pdev, igc_driver_name);
6764 if (err)
6765 goto err_pci_reg;
6766
6767 err = pci_enable_ptm(pdev, NULL);
6768 if (err < 0)
6769 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6770
6771 pci_set_master(pdev);
6772
6773 err = -ENOMEM;
6774 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6775 IGC_MAX_TX_QUEUES);
6776
6777 if (!netdev)
6778 goto err_alloc_etherdev;
6779
6780 SET_NETDEV_DEV(netdev, &pdev->dev);
6781
6782 pci_set_drvdata(pdev, netdev);
6783 adapter = netdev_priv(netdev);
6784 adapter->netdev = netdev;
6785 adapter->pdev = pdev;
6786 hw = &adapter->hw;
6787 hw->back = adapter;
6788 adapter->port_num = hw->bus.func;
6789 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6790
6791 err = pci_save_state(pdev);
6792 if (err)
6793 goto err_ioremap;
6794
6795 err = -EIO;
6796 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6797 pci_resource_len(pdev, 0));
6798 if (!adapter->io_addr)
6799 goto err_ioremap;
6800
6801 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6802 hw->hw_addr = adapter->io_addr;
6803
6804 netdev->netdev_ops = &igc_netdev_ops;
6805 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6806 igc_ethtool_set_ops(netdev);
6807 netdev->watchdog_timeo = 5 * HZ;
6808
6809 netdev->mem_start = pci_resource_start(pdev, 0);
6810 netdev->mem_end = pci_resource_end(pdev, 0);
6811
6812 /* PCI config space info */
6813 hw->vendor_id = pdev->vendor;
6814 hw->device_id = pdev->device;
6815 hw->revision_id = pdev->revision;
6816 hw->subsystem_vendor_id = pdev->subsystem_vendor;
6817 hw->subsystem_device_id = pdev->subsystem_device;
6818
6819 /* Copy the default MAC and PHY function pointers */
6820 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6821 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6822
6823 /* Initialize skew-specific constants */
6824 err = ei->get_invariants(hw);
6825 if (err)
6826 goto err_sw_init;
6827
6828 /* Add supported features to the features list*/
6829 netdev->features |= NETIF_F_SG;
6830 netdev->features |= NETIF_F_TSO;
6831 netdev->features |= NETIF_F_TSO6;
6832 netdev->features |= NETIF_F_TSO_ECN;
6833 netdev->features |= NETIF_F_RXHASH;
6834 netdev->features |= NETIF_F_RXCSUM;
6835 netdev->features |= NETIF_F_HW_CSUM;
6836 netdev->features |= NETIF_F_SCTP_CRC;
6837 netdev->features |= NETIF_F_HW_TC;
6838
6839#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6840 NETIF_F_GSO_GRE_CSUM | \
6841 NETIF_F_GSO_IPXIP4 | \
6842 NETIF_F_GSO_IPXIP6 | \
6843 NETIF_F_GSO_UDP_TUNNEL | \
6844 NETIF_F_GSO_UDP_TUNNEL_CSUM)
6845
6846 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6847 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6848
6849 /* setup the private structure */
6850 err = igc_sw_init(adapter);
6851 if (err)
6852 goto err_sw_init;
6853
6854 /* copy netdev features into list of user selectable features */
6855 netdev->hw_features |= NETIF_F_NTUPLE;
6856 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6857 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6858 netdev->hw_features |= netdev->features;
6859
6860 netdev->features |= NETIF_F_HIGHDMA;
6861
6862 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6863 netdev->mpls_features |= NETIF_F_HW_CSUM;
6864 netdev->hw_enc_features |= netdev->vlan_features;
6865
6866 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6867 NETDEV_XDP_ACT_XSK_ZEROCOPY;
6868
6869 /* MTU range: 68 - 9216 */
6870 netdev->min_mtu = ETH_MIN_MTU;
6871 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6872
6873 /* before reading the NVM, reset the controller to put the device in a
6874 * known good starting state
6875 */
6876 hw->mac.ops.reset_hw(hw);
6877
6878 if (igc_get_flash_presence_i225(hw)) {
6879 if (hw->nvm.ops.validate(hw) < 0) {
6880 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6881 err = -EIO;
6882 goto err_eeprom;
6883 }
6884 }
6885
6886 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6887 /* copy the MAC address out of the NVM */
6888 if (hw->mac.ops.read_mac_addr(hw))
6889 dev_err(&pdev->dev, "NVM Read Error\n");
6890 }
6891
6892 eth_hw_addr_set(netdev, hw->mac.addr);
6893
6894 if (!is_valid_ether_addr(netdev->dev_addr)) {
6895 dev_err(&pdev->dev, "Invalid MAC Address\n");
6896 err = -EIO;
6897 goto err_eeprom;
6898 }
6899
6900 /* configure RXPBSIZE and TXPBSIZE */
6901 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6902 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6903
6904 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6905 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6906
6907 INIT_WORK(&adapter->reset_task, igc_reset_task);
6908 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6909
6910 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6911 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6912
6913 /* Initialize link properties that are user-changeable */
6914 adapter->fc_autoneg = true;
6915 hw->mac.autoneg = true;
6916 hw->phy.autoneg_advertised = 0xaf;
6917
6918 hw->fc.requested_mode = igc_fc_default;
6919 hw->fc.current_mode = igc_fc_default;
6920
6921 /* By default, support wake on port A */
6922 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6923
6924 /* initialize the wol settings based on the eeprom settings */
6925 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6926 adapter->wol |= IGC_WUFC_MAG;
6927
6928 device_set_wakeup_enable(&adapter->pdev->dev,
6929 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6930
6931 igc_ptp_init(adapter);
6932
6933 igc_tsn_clear_schedule(adapter);
6934
6935 /* reset the hardware with the new settings */
6936 igc_reset(adapter);
6937
6938 /* let the f/w know that the h/w is now under the control of the
6939 * driver.
6940 */
6941 igc_get_hw_control(adapter);
6942
6943 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
6944 err = register_netdev(netdev);
6945 if (err)
6946 goto err_register;
6947
6948 /* carrier off reporting is important to ethtool even BEFORE open */
6949 netif_carrier_off(netdev);
6950
6951 /* Check if Media Autosense is enabled */
6952 adapter->ei = *ei;
6953
6954 /* print pcie link status and MAC address */
6955 pcie_print_link_status(pdev);
6956 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6957
6958 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6959 /* Disable EEE for internal PHY devices */
6960 hw->dev_spec._base.eee_enable = false;
6961 adapter->flags &= ~IGC_FLAG_EEE;
6962 igc_set_eee_i225(hw, false, false, false);
6963
6964 pm_runtime_put_noidle(&pdev->dev);
6965
6966 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
6967 err = igc_led_setup(adapter);
6968 if (err)
6969 goto err_register;
6970 }
6971
6972 return 0;
6973
6974err_register:
6975 igc_release_hw_control(adapter);
6976err_eeprom:
6977 if (!igc_check_reset_block(hw))
6978 igc_reset_phy(hw);
6979err_sw_init:
6980 igc_clear_interrupt_scheme(adapter);
6981 iounmap(adapter->io_addr);
6982err_ioremap:
6983 free_netdev(netdev);
6984err_alloc_etherdev:
6985 pci_release_mem_regions(pdev);
6986err_pci_reg:
6987err_dma:
6988 pci_disable_device(pdev);
6989 return err;
6990}
6991
6992/**
6993 * igc_remove - Device Removal Routine
6994 * @pdev: PCI device information struct
6995 *
6996 * igc_remove is called by the PCI subsystem to alert the driver
6997 * that it should release a PCI device. This could be caused by a
6998 * Hot-Plug event, or because the driver is going to be removed from
6999 * memory.
7000 */
7001static void igc_remove(struct pci_dev *pdev)
7002{
7003 struct net_device *netdev = pci_get_drvdata(pdev);
7004 struct igc_adapter *adapter = netdev_priv(netdev);
7005
7006 pm_runtime_get_noresume(&pdev->dev);
7007
7008 igc_flush_nfc_rules(adapter);
7009
7010 igc_ptp_stop(adapter);
7011
7012 pci_disable_ptm(pdev);
7013 pci_clear_master(pdev);
7014
7015 set_bit(__IGC_DOWN, &adapter->state);
7016
7017 del_timer_sync(&adapter->watchdog_timer);
7018 del_timer_sync(&adapter->phy_info_timer);
7019
7020 cancel_work_sync(&adapter->reset_task);
7021 cancel_work_sync(&adapter->watchdog_task);
7022 hrtimer_cancel(&adapter->hrtimer);
7023
7024 if (IS_ENABLED(CONFIG_IGC_LEDS))
7025 igc_led_free(adapter);
7026
7027 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7028 * would have already happened in close and is redundant.
7029 */
7030 igc_release_hw_control(adapter);
7031 unregister_netdev(netdev);
7032
7033 igc_clear_interrupt_scheme(adapter);
7034 pci_iounmap(pdev, adapter->io_addr);
7035 pci_release_mem_regions(pdev);
7036
7037 free_netdev(netdev);
7038
7039 pci_disable_device(pdev);
7040}
7041
7042static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7043 bool runtime)
7044{
7045 struct net_device *netdev = pci_get_drvdata(pdev);
7046 struct igc_adapter *adapter = netdev_priv(netdev);
7047 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7048 struct igc_hw *hw = &adapter->hw;
7049 u32 ctrl, rctl, status;
7050 bool wake;
7051
7052 rtnl_lock();
7053 netif_device_detach(netdev);
7054
7055 if (netif_running(netdev))
7056 __igc_close(netdev, true);
7057
7058 igc_ptp_suspend(adapter);
7059
7060 igc_clear_interrupt_scheme(adapter);
7061 rtnl_unlock();
7062
7063 status = rd32(IGC_STATUS);
7064 if (status & IGC_STATUS_LU)
7065 wufc &= ~IGC_WUFC_LNKC;
7066
7067 if (wufc) {
7068 igc_setup_rctl(adapter);
7069 igc_set_rx_mode(netdev);
7070
7071 /* turn on all-multi mode if wake on multicast is enabled */
7072 if (wufc & IGC_WUFC_MC) {
7073 rctl = rd32(IGC_RCTL);
7074 rctl |= IGC_RCTL_MPE;
7075 wr32(IGC_RCTL, rctl);
7076 }
7077
7078 ctrl = rd32(IGC_CTRL);
7079 ctrl |= IGC_CTRL_ADVD3WUC;
7080 wr32(IGC_CTRL, ctrl);
7081
7082 /* Allow time for pending master requests to run */
7083 igc_disable_pcie_master(hw);
7084
7085 wr32(IGC_WUC, IGC_WUC_PME_EN);
7086 wr32(IGC_WUFC, wufc);
7087 } else {
7088 wr32(IGC_WUC, 0);
7089 wr32(IGC_WUFC, 0);
7090 }
7091
7092 wake = wufc || adapter->en_mng_pt;
7093 if (!wake)
7094 igc_power_down_phy_copper_base(&adapter->hw);
7095 else
7096 igc_power_up_link(adapter);
7097
7098 if (enable_wake)
7099 *enable_wake = wake;
7100
7101 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7102 * would have already happened in close and is redundant.
7103 */
7104 igc_release_hw_control(adapter);
7105
7106 pci_disable_device(pdev);
7107
7108 return 0;
7109}
7110
7111#ifdef CONFIG_PM
7112static int __maybe_unused igc_runtime_suspend(struct device *dev)
7113{
7114 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7115}
7116
7117static void igc_deliver_wake_packet(struct net_device *netdev)
7118{
7119 struct igc_adapter *adapter = netdev_priv(netdev);
7120 struct igc_hw *hw = &adapter->hw;
7121 struct sk_buff *skb;
7122 u32 wupl;
7123
7124 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7125
7126 /* WUPM stores only the first 128 bytes of the wake packet.
7127 * Read the packet only if we have the whole thing.
7128 */
7129 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7130 return;
7131
7132 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7133 if (!skb)
7134 return;
7135
7136 skb_put(skb, wupl);
7137
7138 /* Ensure reads are 32-bit aligned */
7139 wupl = roundup(wupl, 4);
7140
7141 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7142
7143 skb->protocol = eth_type_trans(skb, netdev);
7144 netif_rx(skb);
7145}
7146
7147static int __maybe_unused igc_resume(struct device *dev)
7148{
7149 struct pci_dev *pdev = to_pci_dev(dev);
7150 struct net_device *netdev = pci_get_drvdata(pdev);
7151 struct igc_adapter *adapter = netdev_priv(netdev);
7152 struct igc_hw *hw = &adapter->hw;
7153 u32 err, val;
7154
7155 pci_set_power_state(pdev, PCI_D0);
7156 pci_restore_state(pdev);
7157 pci_save_state(pdev);
7158
7159 if (!pci_device_is_present(pdev))
7160 return -ENODEV;
7161 err = pci_enable_device_mem(pdev);
7162 if (err) {
7163 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7164 return err;
7165 }
7166 pci_set_master(pdev);
7167
7168 pci_enable_wake(pdev, PCI_D3hot, 0);
7169 pci_enable_wake(pdev, PCI_D3cold, 0);
7170
7171 if (igc_init_interrupt_scheme(adapter, true)) {
7172 netdev_err(netdev, "Unable to allocate memory for queues\n");
7173 return -ENOMEM;
7174 }
7175
7176 igc_reset(adapter);
7177
7178 /* let the f/w know that the h/w is now under the control of the
7179 * driver.
7180 */
7181 igc_get_hw_control(adapter);
7182
7183 val = rd32(IGC_WUS);
7184 if (val & WAKE_PKT_WUS)
7185 igc_deliver_wake_packet(netdev);
7186
7187 wr32(IGC_WUS, ~0);
7188
7189 rtnl_lock();
7190 if (!err && netif_running(netdev))
7191 err = __igc_open(netdev, true);
7192
7193 if (!err)
7194 netif_device_attach(netdev);
7195 rtnl_unlock();
7196
7197 return err;
7198}
7199
7200static int __maybe_unused igc_runtime_resume(struct device *dev)
7201{
7202 return igc_resume(dev);
7203}
7204
7205static int __maybe_unused igc_suspend(struct device *dev)
7206{
7207 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7208}
7209
7210static int __maybe_unused igc_runtime_idle(struct device *dev)
7211{
7212 struct net_device *netdev = dev_get_drvdata(dev);
7213 struct igc_adapter *adapter = netdev_priv(netdev);
7214
7215 if (!igc_has_link(adapter))
7216 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7217
7218 return -EBUSY;
7219}
7220#endif /* CONFIG_PM */
7221
7222static void igc_shutdown(struct pci_dev *pdev)
7223{
7224 bool wake;
7225
7226 __igc_shutdown(pdev, &wake, 0);
7227
7228 if (system_state == SYSTEM_POWER_OFF) {
7229 pci_wake_from_d3(pdev, wake);
7230 pci_set_power_state(pdev, PCI_D3hot);
7231 }
7232}
7233
7234/**
7235 * igc_io_error_detected - called when PCI error is detected
7236 * @pdev: Pointer to PCI device
7237 * @state: The current PCI connection state
7238 *
7239 * This function is called after a PCI bus error affecting
7240 * this device has been detected.
7241 **/
7242static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7243 pci_channel_state_t state)
7244{
7245 struct net_device *netdev = pci_get_drvdata(pdev);
7246 struct igc_adapter *adapter = netdev_priv(netdev);
7247
7248 netif_device_detach(netdev);
7249
7250 if (state == pci_channel_io_perm_failure)
7251 return PCI_ERS_RESULT_DISCONNECT;
7252
7253 if (netif_running(netdev))
7254 igc_down(adapter);
7255 pci_disable_device(pdev);
7256
7257 /* Request a slot reset. */
7258 return PCI_ERS_RESULT_NEED_RESET;
7259}
7260
7261/**
7262 * igc_io_slot_reset - called after the PCI bus has been reset.
7263 * @pdev: Pointer to PCI device
7264 *
7265 * Restart the card from scratch, as if from a cold-boot. Implementation
7266 * resembles the first-half of the igc_resume routine.
7267 **/
7268static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7269{
7270 struct net_device *netdev = pci_get_drvdata(pdev);
7271 struct igc_adapter *adapter = netdev_priv(netdev);
7272 struct igc_hw *hw = &adapter->hw;
7273 pci_ers_result_t result;
7274
7275 if (pci_enable_device_mem(pdev)) {
7276 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7277 result = PCI_ERS_RESULT_DISCONNECT;
7278 } else {
7279 pci_set_master(pdev);
7280 pci_restore_state(pdev);
7281 pci_save_state(pdev);
7282
7283 pci_enable_wake(pdev, PCI_D3hot, 0);
7284 pci_enable_wake(pdev, PCI_D3cold, 0);
7285
7286 /* In case of PCI error, adapter loses its HW address
7287 * so we should re-assign it here.
7288 */
7289 hw->hw_addr = adapter->io_addr;
7290
7291 igc_reset(adapter);
7292 wr32(IGC_WUS, ~0);
7293 result = PCI_ERS_RESULT_RECOVERED;
7294 }
7295
7296 return result;
7297}
7298
7299/**
7300 * igc_io_resume - called when traffic can start to flow again.
7301 * @pdev: Pointer to PCI device
7302 *
7303 * This callback is called when the error recovery driver tells us that
7304 * its OK to resume normal operation. Implementation resembles the
7305 * second-half of the igc_resume routine.
7306 */
7307static void igc_io_resume(struct pci_dev *pdev)
7308{
7309 struct net_device *netdev = pci_get_drvdata(pdev);
7310 struct igc_adapter *adapter = netdev_priv(netdev);
7311
7312 rtnl_lock();
7313 if (netif_running(netdev)) {
7314 if (igc_open(netdev)) {
7315 netdev_err(netdev, "igc_open failed after reset\n");
7316 return;
7317 }
7318 }
7319
7320 netif_device_attach(netdev);
7321
7322 /* let the f/w know that the h/w is now under the control of the
7323 * driver.
7324 */
7325 igc_get_hw_control(adapter);
7326 rtnl_unlock();
7327}
7328
7329static const struct pci_error_handlers igc_err_handler = {
7330 .error_detected = igc_io_error_detected,
7331 .slot_reset = igc_io_slot_reset,
7332 .resume = igc_io_resume,
7333};
7334
7335#ifdef CONFIG_PM
7336static const struct dev_pm_ops igc_pm_ops = {
7337 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7338 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7339 igc_runtime_idle)
7340};
7341#endif
7342
7343static struct pci_driver igc_driver = {
7344 .name = igc_driver_name,
7345 .id_table = igc_pci_tbl,
7346 .probe = igc_probe,
7347 .remove = igc_remove,
7348#ifdef CONFIG_PM
7349 .driver.pm = &igc_pm_ops,
7350#endif
7351 .shutdown = igc_shutdown,
7352 .err_handler = &igc_err_handler,
7353};
7354
7355/**
7356 * igc_reinit_queues - return error
7357 * @adapter: pointer to adapter structure
7358 */
7359int igc_reinit_queues(struct igc_adapter *adapter)
7360{
7361 struct net_device *netdev = adapter->netdev;
7362 int err = 0;
7363
7364 if (netif_running(netdev))
7365 igc_close(netdev);
7366
7367 igc_reset_interrupt_capability(adapter);
7368
7369 if (igc_init_interrupt_scheme(adapter, true)) {
7370 netdev_err(netdev, "Unable to allocate memory for queues\n");
7371 return -ENOMEM;
7372 }
7373
7374 if (netif_running(netdev))
7375 err = igc_open(netdev);
7376
7377 return err;
7378}
7379
7380/**
7381 * igc_get_hw_dev - return device
7382 * @hw: pointer to hardware structure
7383 *
7384 * used by hardware layer to print debugging information
7385 */
7386struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7387{
7388 struct igc_adapter *adapter = hw->back;
7389
7390 return adapter->netdev;
7391}
7392
7393static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7394{
7395 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7396 u8 idx = ring->reg_idx;
7397 u32 rxdctl;
7398
7399 rxdctl = rd32(IGC_RXDCTL(idx));
7400 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7401 rxdctl |= IGC_RXDCTL_SWFLUSH;
7402 wr32(IGC_RXDCTL(idx), rxdctl);
7403}
7404
7405void igc_disable_rx_ring(struct igc_ring *ring)
7406{
7407 igc_disable_rx_ring_hw(ring);
7408 igc_clean_rx_ring(ring);
7409}
7410
7411void igc_enable_rx_ring(struct igc_ring *ring)
7412{
7413 struct igc_adapter *adapter = ring->q_vector->adapter;
7414
7415 igc_configure_rx_ring(adapter, ring);
7416
7417 if (ring->xsk_pool)
7418 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7419 else
7420 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7421}
7422
7423void igc_disable_tx_ring(struct igc_ring *ring)
7424{
7425 igc_disable_tx_ring_hw(ring);
7426 igc_clean_tx_ring(ring);
7427}
7428
7429void igc_enable_tx_ring(struct igc_ring *ring)
7430{
7431 struct igc_adapter *adapter = ring->q_vector->adapter;
7432
7433 igc_configure_tx_ring(adapter, ring);
7434}
7435
7436/**
7437 * igc_init_module - Driver Registration Routine
7438 *
7439 * igc_init_module is the first routine called when the driver is
7440 * loaded. All it does is register with the PCI subsystem.
7441 */
7442static int __init igc_init_module(void)
7443{
7444 int ret;
7445
7446 pr_info("%s\n", igc_driver_string);
7447 pr_info("%s\n", igc_copyright);
7448
7449 ret = pci_register_driver(&igc_driver);
7450 return ret;
7451}
7452
7453module_init(igc_init_module);
7454
7455/**
7456 * igc_exit_module - Driver Exit Cleanup Routine
7457 *
7458 * igc_exit_module is called just before the driver is removed
7459 * from memory.
7460 */
7461static void __exit igc_exit_module(void)
7462{
7463 pci_unregister_driver(&igc_driver);
7464}
7465
7466module_exit(igc_exit_module);
7467/* igc_main.c */