Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent CRC32
  35 *         checksum of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So its main role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
 194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 197	case E820_TYPE_PMEM:		/* Fall through: */
 198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 199	default:			pr_cont("type %u", type);		break;
 200	}
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205	int i;
 206
 207	for (i = 0; i < e820_table->nr_entries; i++) {
 208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209			who,
 210			e820_table->entries[i].addr,
 211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213		e820_print_type(e820_table->entries[i].type);
 214		pr_cont("\n");
 215	}
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *	Visually we're performing the following
 245 *	(1,2,3,4 = memory types)...
 246 *
 247 *	Sample memory map (w/overlaps):
 248 *	   ____22__________________
 249 *	   ______________________4_
 250 *	   ____1111________________
 251 *	   _44_____________________
 252 *	   11111111________________
 253 *	   ____________________33__
 254 *	   ___________44___________
 255 *	   __________33333_________
 256 *	   ______________22________
 257 *	   ___________________2222_
 258 *	   _________111111111______
 259 *	   _____________________11_
 260 *	   _________________4______
 261 *
 262 *	Sanitized equivalent (no overlap):
 263 *	   1_______________________
 264 *	   _44_____________________
 265 *	   ___1____________________
 266 *	   ____22__________________
 267 *	   ______11________________
 268 *	   _________1______________
 269 *	   __________3_____________
 270 *	   ___________44___________
 271 *	   _____________33_________
 272 *	   _______________2________
 273 *	   ________________1_______
 274 *	   _________________4______
 275 *	   ___________________2____
 276 *	   ____________________33__
 277 *	   ______________________4_
 278 */
 279struct change_member {
 280	/* Pointer to the original entry: */
 281	struct e820_entry	*entry;
 282	/* Address for this change point: */
 283	unsigned long long	addr;
 284};
 285
 286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 292{
 293	struct change_member * const *app = a, * const *bpp = b;
 294	const struct change_member *ap = *app, *bp = *bpp;
 295
 296	/*
 297	 * Inputs are pointers to two elements of change_point[].  If their
 298	 * addresses are not equal, their difference dominates.  If the addresses
 299	 * are equal, then consider one that represents the end of its region
 300	 * to be greater than one that does not.
 301	 */
 302	if (ap->addr != bp->addr)
 303		return ap->addr > bp->addr ? 1 : -1;
 304
 305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 308static bool e820_nomerge(enum e820_type type)
 309{
 310	/*
 311	 * These types may indicate distinct platform ranges aligned to
 312	 * numa node, protection domain, performance domain, or other
 313	 * boundaries. Do not merge them.
 314	 */
 315	if (type == E820_TYPE_PRAM)
 316		return true;
 317	if (type == E820_TYPE_SOFT_RESERVED)
 318		return true;
 319	return false;
 320}
 321
 322int __init e820__update_table(struct e820_table *table)
 323{
 324	struct e820_entry *entries = table->entries;
 325	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 326	enum e820_type current_type, last_type;
 327	unsigned long long last_addr;
 328	u32 new_nr_entries, overlap_entries;
 329	u32 i, chg_idx, chg_nr;
 330
 331	/* If there's only one memory region, don't bother: */
 332	if (table->nr_entries < 2)
 333		return -1;
 334
 335	BUG_ON(table->nr_entries > max_nr_entries);
 336
 337	/* Bail out if we find any unreasonable addresses in the map: */
 338	for (i = 0; i < table->nr_entries; i++) {
 339		if (entries[i].addr + entries[i].size < entries[i].addr)
 340			return -1;
 341	}
 342
 343	/* Create pointers for initial change-point information (for sorting): */
 344	for (i = 0; i < 2 * table->nr_entries; i++)
 345		change_point[i] = &change_point_list[i];
 346
 347	/*
 348	 * Record all known change-points (starting and ending addresses),
 349	 * omitting empty memory regions:
 350	 */
 351	chg_idx = 0;
 352	for (i = 0; i < table->nr_entries; i++)	{
 353		if (entries[i].size != 0) {
 354			change_point[chg_idx]->addr	= entries[i].addr;
 355			change_point[chg_idx++]->entry	= &entries[i];
 356			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 357			change_point[chg_idx++]->entry	= &entries[i];
 358		}
 359	}
 360	chg_nr = chg_idx;
 361
 362	/* Sort change-point list by memory addresses (low -> high): */
 363	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 364
 365	/* Create a new memory map, removing overlaps: */
 366	overlap_entries = 0;	 /* Number of entries in the overlap table */
 367	new_nr_entries = 0;	 /* Index for creating new map entries */
 368	last_type = 0;		 /* Start with undefined memory type */
 369	last_addr = 0;		 /* Start with 0 as last starting address */
 370
 371	/* Loop through change-points, determining effect on the new map: */
 372	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 373		/* Keep track of all overlapping entries */
 374		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 375			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 376			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 377		} else {
 378			/* Remove entry from list (order independent, so swap with last): */
 379			for (i = 0; i < overlap_entries; i++) {
 380				if (overlap_list[i] == change_point[chg_idx]->entry)
 381					overlap_list[i] = overlap_list[overlap_entries-1];
 382			}
 383			overlap_entries--;
 384		}
 385		/*
 386		 * If there are overlapping entries, decide which
 387		 * "type" to use (larger value takes precedence --
 388		 * 1=usable, 2,3,4,4+=unusable)
 389		 */
 390		current_type = 0;
 391		for (i = 0; i < overlap_entries; i++) {
 392			if (overlap_list[i]->type > current_type)
 393				current_type = overlap_list[i]->type;
 394		}
 395
 396		/* Continue building up new map based on this information: */
 397		if (current_type != last_type || e820_nomerge(current_type)) {
 398			if (last_type) {
 399				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 400				/* Move forward only if the new size was non-zero: */
 401				if (new_entries[new_nr_entries].size != 0)
 402					/* No more space left for new entries? */
 403					if (++new_nr_entries >= max_nr_entries)
 404						break;
 405			}
 406			if (current_type) {
 407				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 408				new_entries[new_nr_entries].type = current_type;
 409				last_addr = change_point[chg_idx]->addr;
 410			}
 411			last_type = current_type;
 412		}
 413	}
 414
 415	/* Copy the new entries into the original location: */
 416	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 417	table->nr_entries = new_nr_entries;
 418
 419	return 0;
 420}
 421
 422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 423{
 424	struct boot_e820_entry *entry = entries;
 425
 426	while (nr_entries) {
 427		u64 start = entry->addr;
 428		u64 size = entry->size;
 429		u64 end = start + size - 1;
 430		u32 type = entry->type;
 431
 432		/* Ignore the entry on 64-bit overflow: */
 433		if (start > end && likely(size))
 434			return -1;
 435
 436		e820__range_add(start, size, type);
 437
 438		entry++;
 439		nr_entries--;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Copy the BIOS E820 map into a safe place.
 446 *
 447 * Sanity-check it while we're at it..
 448 *
 449 * If we're lucky and live on a modern system, the setup code
 450 * will have given us a memory map that we can use to properly
 451 * set up memory.  If we aren't, we'll fake a memory map.
 452 */
 453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 454{
 455	/* Only one memory region (or negative)? Ignore it */
 456	if (nr_entries < 2)
 457		return -1;
 458
 459	return __append_e820_table(entries, nr_entries);
 460}
 461
 462static u64 __init
 463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 464{
 465	u64 end;
 466	unsigned int i;
 467	u64 real_updated_size = 0;
 468
 469	BUG_ON(old_type == new_type);
 470
 471	if (size > (ULLONG_MAX - start))
 472		size = ULLONG_MAX - start;
 473
 474	end = start + size;
 475	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 476	e820_print_type(old_type);
 477	pr_cont(" ==> ");
 478	e820_print_type(new_type);
 479	pr_cont("\n");
 480
 481	for (i = 0; i < table->nr_entries; i++) {
 482		struct e820_entry *entry = &table->entries[i];
 483		u64 final_start, final_end;
 484		u64 entry_end;
 485
 486		if (entry->type != old_type)
 487			continue;
 488
 489		entry_end = entry->addr + entry->size;
 490
 491		/* Completely covered by new range? */
 492		if (entry->addr >= start && entry_end <= end) {
 493			entry->type = new_type;
 494			real_updated_size += entry->size;
 495			continue;
 496		}
 497
 498		/* New range is completely covered? */
 499		if (entry->addr < start && entry_end > end) {
 500			__e820__range_add(table, start, size, new_type);
 501			__e820__range_add(table, end, entry_end - end, entry->type);
 502			entry->size = start - entry->addr;
 503			real_updated_size += size;
 504			continue;
 505		}
 506
 507		/* Partially covered: */
 508		final_start = max(start, entry->addr);
 509		final_end = min(end, entry_end);
 510		if (final_start >= final_end)
 511			continue;
 512
 513		__e820__range_add(table, final_start, final_end - final_start, new_type);
 514
 515		real_updated_size += final_end - final_start;
 516
 517		/*
 518		 * Left range could be head or tail, so need to update
 519		 * its size first:
 520		 */
 521		entry->size -= final_end - final_start;
 522		if (entry->addr < final_start)
 523			continue;
 524
 525		entry->addr = final_end;
 526	}
 527	return real_updated_size;
 528}
 529
 530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 531{
 532	return __e820__range_update(e820_table, start, size, old_type, new_type);
 533}
 534
 535u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size,
 536				    enum e820_type old_type, enum e820_type new_type)
 537{
 538	return __e820__range_update(t, start, size, old_type, new_type);
 539}
 540
 541/* Remove a range of memory from the E820 table: */
 542u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 543{
 544	int i;
 545	u64 end;
 546	u64 real_removed_size = 0;
 547
 548	if (size > (ULLONG_MAX - start))
 549		size = ULLONG_MAX - start;
 550
 551	end = start + size;
 552	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 553	if (check_type)
 554		e820_print_type(old_type);
 555	pr_cont("\n");
 556
 557	for (i = 0; i < e820_table->nr_entries; i++) {
 558		struct e820_entry *entry = &e820_table->entries[i];
 559		u64 final_start, final_end;
 560		u64 entry_end;
 561
 562		if (check_type && entry->type != old_type)
 563			continue;
 564
 565		entry_end = entry->addr + entry->size;
 566
 567		/* Completely covered? */
 568		if (entry->addr >= start && entry_end <= end) {
 569			real_removed_size += entry->size;
 570			memset(entry, 0, sizeof(*entry));
 571			continue;
 572		}
 573
 574		/* Is the new range completely covered? */
 575		if (entry->addr < start && entry_end > end) {
 576			e820__range_add(end, entry_end - end, entry->type);
 577			entry->size = start - entry->addr;
 578			real_removed_size += size;
 579			continue;
 580		}
 581
 582		/* Partially covered: */
 583		final_start = max(start, entry->addr);
 584		final_end = min(end, entry_end);
 585		if (final_start >= final_end)
 586			continue;
 587
 588		real_removed_size += final_end - final_start;
 589
 590		/*
 591		 * Left range could be head or tail, so need to update
 592		 * the size first:
 593		 */
 594		entry->size -= final_end - final_start;
 595		if (entry->addr < final_start)
 596			continue;
 597
 598		entry->addr = final_end;
 599	}
 600	return real_removed_size;
 601}
 602
 603void __init e820__update_table_print(void)
 604{
 605	if (e820__update_table(e820_table))
 606		return;
 607
 608	pr_info("modified physical RAM map:\n");
 609	e820__print_table("modified");
 610}
 611
 612static void __init e820__update_table_kexec(void)
 613{
 614	e820__update_table(e820_table_kexec);
 615}
 616
 617#define MAX_GAP_END 0x100000000ull
 618
 619/*
 620 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 621 */
 622static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 623{
 624	unsigned long long last = MAX_GAP_END;
 625	int i = e820_table->nr_entries;
 626	int found = 0;
 627
 628	while (--i >= 0) {
 629		unsigned long long start = e820_table->entries[i].addr;
 630		unsigned long long end = start + e820_table->entries[i].size;
 631
 632		/*
 633		 * Since "last" is at most 4GB, we know we'll
 634		 * fit in 32 bits if this condition is true:
 635		 */
 636		if (last > end) {
 637			unsigned long gap = last - end;
 638
 639			if (gap >= *gapsize) {
 640				*gapsize = gap;
 641				*gapstart = end;
 642				found = 1;
 643			}
 644		}
 645		if (start < last)
 646			last = start;
 647	}
 648	return found;
 649}
 650
 651/*
 652 * Search for the biggest gap in the low 32 bits of the E820
 653 * memory space. We pass this space to the PCI subsystem, so
 654 * that it can assign MMIO resources for hotplug or
 655 * unconfigured devices in.
 656 *
 657 * Hopefully the BIOS let enough space left.
 658 */
 659__init void e820__setup_pci_gap(void)
 660{
 661	unsigned long gapstart, gapsize;
 662	int found;
 663
 664	gapsize = 0x400000;
 665	found  = e820_search_gap(&gapstart, &gapsize);
 666
 667	if (!found) {
 668#ifdef CONFIG_X86_64
 669		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 670		pr_err("Cannot find an available gap in the 32-bit address range\n");
 671		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 672#else
 673		gapstart = 0x10000000;
 674#endif
 675	}
 676
 677	/*
 678	 * e820__reserve_resources_late() protects stolen RAM already:
 679	 */
 680	pci_mem_start = gapstart;
 681
 682	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 683		gapstart, gapstart + gapsize - 1);
 684}
 685
 686/*
 687 * Called late during init, in free_initmem().
 688 *
 689 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 690 *
 691 * Copy them to a (usually much smaller) dynamically allocated area that is
 692 * sized precisely after the number of e820 entries.
 693 *
 694 * This is done after we've performed all the fixes and tweaks to the tables.
 695 * All functions which modify them are __init functions, which won't exist
 696 * after free_initmem().
 697 */
 698__init void e820__reallocate_tables(void)
 699{
 700	struct e820_table *n;
 701	int size;
 702
 703	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 704	n = kmemdup(e820_table, size, GFP_KERNEL);
 705	BUG_ON(!n);
 706	e820_table = n;
 707
 708	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 709	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 710	BUG_ON(!n);
 711	e820_table_kexec = n;
 712
 713	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 714	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 715	BUG_ON(!n);
 716	e820_table_firmware = n;
 717}
 718
 719/*
 720 * Because of the small fixed size of struct boot_params, only the first
 721 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 722 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 723 * struct setup_data, which is parsed here.
 724 */
 725void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 726{
 727	int entries;
 728	struct boot_e820_entry *extmap;
 729	struct setup_data *sdata;
 730
 731	sdata = early_memremap(phys_addr, data_len);
 732	entries = sdata->len / sizeof(*extmap);
 733	extmap = (struct boot_e820_entry *)(sdata->data);
 734
 735	__append_e820_table(extmap, entries);
 736	e820__update_table(e820_table);
 737
 738	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 739	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 740
 741	early_memunmap(sdata, data_len);
 742	pr_info("extended physical RAM map:\n");
 743	e820__print_table("extended");
 744}
 745
 746/*
 747 * Find the ranges of physical addresses that do not correspond to
 748 * E820 RAM areas and register the corresponding pages as 'nosave' for
 749 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 750 *
 751 * This function requires the E820 map to be sorted and without any
 752 * overlapping entries.
 753 */
 754void __init e820__register_nosave_regions(unsigned long limit_pfn)
 755{
 756	int i;
 757	unsigned long pfn = 0;
 758
 759	for (i = 0; i < e820_table->nr_entries; i++) {
 760		struct e820_entry *entry = &e820_table->entries[i];
 761
 762		if (pfn < PFN_UP(entry->addr))
 763			register_nosave_region(pfn, PFN_UP(entry->addr));
 764
 765		pfn = PFN_DOWN(entry->addr + entry->size);
 766
 767		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 768			register_nosave_region(PFN_UP(entry->addr), pfn);
 769
 770		if (pfn >= limit_pfn)
 771			break;
 772	}
 773}
 774
 775#ifdef CONFIG_ACPI
 776/*
 777 * Register ACPI NVS memory regions, so that we can save/restore them during
 778 * hibernation and the subsequent resume:
 779 */
 780static int __init e820__register_nvs_regions(void)
 781{
 782	int i;
 783
 784	for (i = 0; i < e820_table->nr_entries; i++) {
 785		struct e820_entry *entry = &e820_table->entries[i];
 786
 787		if (entry->type == E820_TYPE_NVS)
 788			acpi_nvs_register(entry->addr, entry->size);
 789	}
 790
 791	return 0;
 792}
 793core_initcall(e820__register_nvs_regions);
 794#endif
 795
 796/*
 797 * Allocate the requested number of bytes with the requested alignment
 798 * and return (the physical address) to the caller. Also register this
 799 * range in the 'kexec' E820 table as a reserved range.
 800 *
 801 * This allows kexec to fake a new mptable, as if it came from the real
 802 * system.
 803 */
 804u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 805{
 806	u64 addr;
 807
 808	addr = memblock_phys_alloc(size, align);
 809	if (addr) {
 810		e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 811		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 812		e820__update_table_kexec();
 813	}
 814
 815	return addr;
 816}
 817
 818#ifdef CONFIG_X86_32
 819# ifdef CONFIG_X86_PAE
 820#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 821# else
 822#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 823# endif
 824#else /* CONFIG_X86_32 */
 825# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 826#endif
 827
 828/*
 829 * Find the highest page frame number we have available
 830 */
 831static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn)
 832{
 833	int i;
 834	unsigned long last_pfn = 0;
 835	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 836
 837	for (i = 0; i < e820_table->nr_entries; i++) {
 838		struct e820_entry *entry = &e820_table->entries[i];
 839		unsigned long start_pfn;
 840		unsigned long end_pfn;
 841
 842		if (entry->type != E820_TYPE_RAM &&
 843		    entry->type != E820_TYPE_ACPI)
 844			continue;
 845
 846		start_pfn = entry->addr >> PAGE_SHIFT;
 847		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 848
 849		if (start_pfn >= limit_pfn)
 850			continue;
 851		if (end_pfn > limit_pfn) {
 852			last_pfn = limit_pfn;
 853			break;
 854		}
 855		if (end_pfn > last_pfn)
 856			last_pfn = end_pfn;
 857	}
 858
 859	if (last_pfn > max_arch_pfn)
 860		last_pfn = max_arch_pfn;
 861
 862	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 863		last_pfn, max_arch_pfn);
 864	return last_pfn;
 865}
 866
 867unsigned long __init e820__end_of_ram_pfn(void)
 868{
 869	return e820__end_ram_pfn(MAX_ARCH_PFN);
 870}
 871
 872unsigned long __init e820__end_of_low_ram_pfn(void)
 873{
 874	return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT));
 875}
 876
 877static void __init early_panic(char *msg)
 878{
 879	early_printk(msg);
 880	panic(msg);
 881}
 882
 883static int userdef __initdata;
 884
 885/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 886static int __init parse_memopt(char *p)
 887{
 888	u64 mem_size;
 889
 890	if (!p)
 891		return -EINVAL;
 892
 893	if (!strcmp(p, "nopentium")) {
 894#ifdef CONFIG_X86_32
 895		setup_clear_cpu_cap(X86_FEATURE_PSE);
 896		return 0;
 897#else
 898		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 899		return -EINVAL;
 900#endif
 901	}
 902
 903	userdef = 1;
 904	mem_size = memparse(p, &p);
 905
 906	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 907	if (mem_size == 0)
 908		return -EINVAL;
 909
 910	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 911
 912#ifdef CONFIG_MEMORY_HOTPLUG
 913	max_mem_size = mem_size;
 914#endif
 915
 916	return 0;
 917}
 918early_param("mem", parse_memopt);
 919
 920static int __init parse_memmap_one(char *p)
 921{
 922	char *oldp;
 923	u64 start_at, mem_size;
 924
 925	if (!p)
 926		return -EINVAL;
 927
 928	if (!strncmp(p, "exactmap", 8)) {
 929		e820_table->nr_entries = 0;
 930		userdef = 1;
 931		return 0;
 932	}
 933
 934	oldp = p;
 935	mem_size = memparse(p, &p);
 936	if (p == oldp)
 937		return -EINVAL;
 938
 939	userdef = 1;
 940	if (*p == '@') {
 941		start_at = memparse(p+1, &p);
 942		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 943	} else if (*p == '#') {
 944		start_at = memparse(p+1, &p);
 945		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 946	} else if (*p == '$') {
 947		start_at = memparse(p+1, &p);
 948		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 949	} else if (*p == '!') {
 950		start_at = memparse(p+1, &p);
 951		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 952	} else if (*p == '%') {
 953		enum e820_type from = 0, to = 0;
 954
 955		start_at = memparse(p + 1, &p);
 956		if (*p == '-')
 957			from = simple_strtoull(p + 1, &p, 0);
 958		if (*p == '+')
 959			to = simple_strtoull(p + 1, &p, 0);
 960		if (*p != '\0')
 961			return -EINVAL;
 962		if (from && to)
 963			e820__range_update(start_at, mem_size, from, to);
 964		else if (to)
 965			e820__range_add(start_at, mem_size, to);
 966		else if (from)
 967			e820__range_remove(start_at, mem_size, from, 1);
 968		else
 969			e820__range_remove(start_at, mem_size, 0, 0);
 970	} else {
 971		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 972	}
 973
 974	return *p == '\0' ? 0 : -EINVAL;
 975}
 976
 977static int __init parse_memmap_opt(char *str)
 978{
 979	while (str) {
 980		char *k = strchr(str, ',');
 981
 982		if (k)
 983			*k++ = 0;
 984
 985		parse_memmap_one(str);
 986		str = k;
 987	}
 988
 989	return 0;
 990}
 991early_param("memmap", parse_memmap_opt);
 992
 993/*
 994 * Reserve all entries from the bootloader's extensible data nodes list,
 995 * because if present we are going to use it later on to fetch e820
 996 * entries from it:
 997 */
 998void __init e820__reserve_setup_data(void)
 999{
1000	struct setup_indirect *indirect;
1001	struct setup_data *data;
1002	u64 pa_data, pa_next;
1003	u32 len;
1004
1005	pa_data = boot_params.hdr.setup_data;
1006	if (!pa_data)
1007		return;
1008
1009	while (pa_data) {
1010		data = early_memremap(pa_data, sizeof(*data));
1011		if (!data) {
1012			pr_warn("e820: failed to memremap setup_data entry\n");
1013			return;
1014		}
1015
1016		len = sizeof(*data);
1017		pa_next = data->next;
1018
1019		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1020
1021		if (data->type == SETUP_INDIRECT) {
1022			len += data->len;
1023			early_memunmap(data, sizeof(*data));
1024			data = early_memremap(pa_data, len);
1025			if (!data) {
1026				pr_warn("e820: failed to memremap indirect setup_data\n");
1027				return;
1028			}
1029
1030			indirect = (struct setup_indirect *)data->data;
1031
1032			if (indirect->type != SETUP_INDIRECT)
1033				e820__range_update(indirect->addr, indirect->len,
1034						   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 
 
 
1035		}
1036
1037		pa_data = pa_next;
1038		early_memunmap(data, len);
1039	}
1040
1041	e820__update_table(e820_table);
 
1042
1043	pr_info("extended physical RAM map:\n");
1044	e820__print_table("reserve setup_data");
1045}
1046
1047/*
1048 * Called after parse_early_param(), after early parameters (such as mem=)
1049 * have been processed, in which case we already have an E820 table filled in
1050 * via the parameter callback function(s), but it's not sorted and printed yet:
1051 */
1052void __init e820__finish_early_params(void)
1053{
1054	if (userdef) {
1055		if (e820__update_table(e820_table) < 0)
1056			early_panic("Invalid user supplied memory map");
1057
1058		pr_info("user-defined physical RAM map:\n");
1059		e820__print_table("user");
1060	}
1061}
1062
1063static const char *__init e820_type_to_string(struct e820_entry *entry)
1064{
1065	switch (entry->type) {
1066	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1067	case E820_TYPE_RAM:		return "System RAM";
1068	case E820_TYPE_ACPI:		return "ACPI Tables";
1069	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1070	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1071	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1072	case E820_TYPE_PMEM:		return "Persistent Memory";
1073	case E820_TYPE_RESERVED:	return "Reserved";
1074	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1075	default:			return "Unknown E820 type";
1076	}
1077}
1078
1079static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1080{
1081	switch (entry->type) {
1082	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1083	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1084	case E820_TYPE_ACPI:		/* Fall-through: */
1085	case E820_TYPE_NVS:		/* Fall-through: */
1086	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1087	case E820_TYPE_PRAM:		/* Fall-through: */
1088	case E820_TYPE_PMEM:		/* Fall-through: */
1089	case E820_TYPE_RESERVED:	/* Fall-through: */
1090	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1091	default:			return IORESOURCE_MEM;
1092	}
1093}
1094
1095static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1096{
1097	switch (entry->type) {
1098	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1099	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1100	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1101	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1102	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1103	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1104	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1105	case E820_TYPE_RAM:		/* Fall-through: */
1106	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1107	default:			return IORES_DESC_NONE;
1108	}
1109}
1110
1111static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1112{
1113	/* this is the legacy bios/dos rom-shadow + mmio region */
1114	if (res->start < (1ULL<<20))
1115		return true;
1116
1117	/*
1118	 * Treat persistent memory and other special memory ranges like
1119	 * device memory, i.e. reserve it for exclusive use of a driver
1120	 */
1121	switch (type) {
1122	case E820_TYPE_RESERVED:
1123	case E820_TYPE_SOFT_RESERVED:
1124	case E820_TYPE_PRAM:
1125	case E820_TYPE_PMEM:
1126		return false;
1127	case E820_TYPE_RESERVED_KERN:
1128	case E820_TYPE_RAM:
1129	case E820_TYPE_ACPI:
1130	case E820_TYPE_NVS:
1131	case E820_TYPE_UNUSABLE:
1132	default:
1133		return true;
1134	}
1135}
1136
1137/*
1138 * Mark E820 reserved areas as busy for the resource manager:
1139 */
1140
1141static struct resource __initdata *e820_res;
1142
1143void __init e820__reserve_resources(void)
1144{
1145	int i;
1146	struct resource *res;
1147	u64 end;
1148
1149	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1150			     SMP_CACHE_BYTES);
1151	if (!res)
1152		panic("%s: Failed to allocate %zu bytes\n", __func__,
1153		      sizeof(*res) * e820_table->nr_entries);
1154	e820_res = res;
1155
1156	for (i = 0; i < e820_table->nr_entries; i++) {
1157		struct e820_entry *entry = e820_table->entries + i;
1158
1159		end = entry->addr + entry->size - 1;
1160		if (end != (resource_size_t)end) {
1161			res++;
1162			continue;
1163		}
1164		res->start = entry->addr;
1165		res->end   = end;
1166		res->name  = e820_type_to_string(entry);
1167		res->flags = e820_type_to_iomem_type(entry);
1168		res->desc  = e820_type_to_iores_desc(entry);
1169
1170		/*
1171		 * Don't register the region that could be conflicted with
1172		 * PCI device BAR resources and insert them later in
1173		 * pcibios_resource_survey():
1174		 */
1175		if (do_mark_busy(entry->type, res)) {
1176			res->flags |= IORESOURCE_BUSY;
1177			insert_resource(&iomem_resource, res);
1178		}
1179		res++;
1180	}
1181
1182	/* Expose the bootloader-provided memory layout to the sysfs. */
1183	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1184		struct e820_entry *entry = e820_table_firmware->entries + i;
1185
1186		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1187	}
1188}
1189
1190/*
1191 * How much should we pad the end of RAM, depending on where it is?
1192 */
1193static unsigned long __init ram_alignment(resource_size_t pos)
1194{
1195	unsigned long mb = pos >> 20;
1196
1197	/* To 64kB in the first megabyte */
1198	if (!mb)
1199		return 64*1024;
1200
1201	/* To 1MB in the first 16MB */
1202	if (mb < 16)
1203		return 1024*1024;
1204
1205	/* To 64MB for anything above that */
1206	return 64*1024*1024;
1207}
1208
1209#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1210
1211void __init e820__reserve_resources_late(void)
1212{
1213	int i;
1214	struct resource *res;
1215
1216	res = e820_res;
1217	for (i = 0; i < e820_table->nr_entries; i++) {
1218		if (!res->parent && res->end)
1219			insert_resource_expand_to_fit(&iomem_resource, res);
1220		res++;
1221	}
1222
1223	/*
1224	 * Try to bump up RAM regions to reasonable boundaries, to
1225	 * avoid stolen RAM:
1226	 */
1227	for (i = 0; i < e820_table->nr_entries; i++) {
1228		struct e820_entry *entry = &e820_table->entries[i];
1229		u64 start, end;
1230
1231		if (entry->type != E820_TYPE_RAM)
1232			continue;
1233
1234		start = entry->addr + entry->size;
1235		end = round_up(start, ram_alignment(start)) - 1;
1236		if (end > MAX_RESOURCE_SIZE)
1237			end = MAX_RESOURCE_SIZE;
1238		if (start >= end)
1239			continue;
1240
1241		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1242		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1243	}
1244}
1245
1246/*
1247 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1248 */
1249char *__init e820__memory_setup_default(void)
1250{
1251	char *who = "BIOS-e820";
1252
1253	/*
1254	 * Try to copy the BIOS-supplied E820-map.
1255	 *
1256	 * Otherwise fake a memory map; one section from 0k->640k,
1257	 * the next section from 1mb->appropriate_mem_k
1258	 */
1259	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1260		u64 mem_size;
1261
1262		/* Compare results from other methods and take the one that gives more RAM: */
1263		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1264			mem_size = boot_params.screen_info.ext_mem_k;
1265			who = "BIOS-88";
1266		} else {
1267			mem_size = boot_params.alt_mem_k;
1268			who = "BIOS-e801";
1269		}
1270
1271		e820_table->nr_entries = 0;
1272		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1273		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1274	}
1275
1276	/* We just appended a lot of ranges, sanitize the table: */
1277	e820__update_table(e820_table);
1278
1279	return who;
1280}
1281
1282/*
1283 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1284 * E820 map - with an optional platform quirk available for virtual platforms
1285 * to override this method of boot environment processing:
1286 */
1287void __init e820__memory_setup(void)
1288{
1289	char *who;
1290
1291	/* This is a firmware interface ABI - make sure we don't break it: */
1292	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1293
1294	who = x86_init.resources.memory_setup();
1295
1296	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1297	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1298
1299	pr_info("BIOS-provided physical RAM map:\n");
1300	e820__print_table(who);
1301}
1302
1303void __init e820__memblock_setup(void)
1304{
1305	int i;
1306	u64 end;
1307
1308	/*
1309	 * The bootstrap memblock region count maximum is 128 entries
1310	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1311	 * than that - so allow memblock resizing.
1312	 *
1313	 * This is safe, because this call happens pretty late during x86 setup,
1314	 * so we know about reserved memory regions already. (This is important
1315	 * so that memblock resizing does no stomp over reserved areas.)
1316	 */
1317	memblock_allow_resize();
1318
1319	for (i = 0; i < e820_table->nr_entries; i++) {
1320		struct e820_entry *entry = &e820_table->entries[i];
1321
1322		end = entry->addr + entry->size;
1323		if (end != (resource_size_t)end)
1324			continue;
1325
1326		if (entry->type == E820_TYPE_SOFT_RESERVED)
1327			memblock_reserve(entry->addr, entry->size);
1328
1329		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1330			continue;
1331
1332		memblock_add(entry->addr, entry->size);
1333	}
1334
1335	/* Throw away partial pages: */
1336	memblock_trim_memory(PAGE_SIZE);
1337
1338	memblock_dump_all();
1339}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent MD5
  35 *         fingerprint of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
 194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 197	case E820_TYPE_PMEM:		/* Fall through: */
 198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 199	default:			pr_cont("type %u", type);		break;
 200	}
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205	int i;
 206
 207	for (i = 0; i < e820_table->nr_entries; i++) {
 208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209			who,
 210			e820_table->entries[i].addr,
 211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213		e820_print_type(e820_table->entries[i].type);
 214		pr_cont("\n");
 215	}
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *	Visually we're performing the following
 245 *	(1,2,3,4 = memory types)...
 246 *
 247 *	Sample memory map (w/overlaps):
 248 *	   ____22__________________
 249 *	   ______________________4_
 250 *	   ____1111________________
 251 *	   _44_____________________
 252 *	   11111111________________
 253 *	   ____________________33__
 254 *	   ___________44___________
 255 *	   __________33333_________
 256 *	   ______________22________
 257 *	   ___________________2222_
 258 *	   _________111111111______
 259 *	   _____________________11_
 260 *	   _________________4______
 261 *
 262 *	Sanitized equivalent (no overlap):
 263 *	   1_______________________
 264 *	   _44_____________________
 265 *	   ___1____________________
 266 *	   ____22__________________
 267 *	   ______11________________
 268 *	   _________1______________
 269 *	   __________3_____________
 270 *	   ___________44___________
 271 *	   _____________33_________
 272 *	   _______________2________
 273 *	   ________________1_______
 274 *	   _________________4______
 275 *	   ___________________2____
 276 *	   ____________________33__
 277 *	   ______________________4_
 278 */
 279struct change_member {
 280	/* Pointer to the original entry: */
 281	struct e820_entry	*entry;
 282	/* Address for this change point: */
 283	unsigned long long	addr;
 284};
 285
 286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 292{
 293	struct change_member * const *app = a, * const *bpp = b;
 294	const struct change_member *ap = *app, *bp = *bpp;
 295
 296	/*
 297	 * Inputs are pointers to two elements of change_point[].  If their
 298	 * addresses are not equal, their difference dominates.  If the addresses
 299	 * are equal, then consider one that represents the end of its region
 300	 * to be greater than one that does not.
 301	 */
 302	if (ap->addr != bp->addr)
 303		return ap->addr > bp->addr ? 1 : -1;
 304
 305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308int __init e820__update_table(struct e820_table *table)
 309{
 310	struct e820_entry *entries = table->entries;
 311	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 312	enum e820_type current_type, last_type;
 313	unsigned long long last_addr;
 314	u32 new_nr_entries, overlap_entries;
 315	u32 i, chg_idx, chg_nr;
 316
 317	/* If there's only one memory region, don't bother: */
 318	if (table->nr_entries < 2)
 319		return -1;
 320
 321	BUG_ON(table->nr_entries > max_nr_entries);
 322
 323	/* Bail out if we find any unreasonable addresses in the map: */
 324	for (i = 0; i < table->nr_entries; i++) {
 325		if (entries[i].addr + entries[i].size < entries[i].addr)
 326			return -1;
 327	}
 328
 329	/* Create pointers for initial change-point information (for sorting): */
 330	for (i = 0; i < 2 * table->nr_entries; i++)
 331		change_point[i] = &change_point_list[i];
 332
 333	/*
 334	 * Record all known change-points (starting and ending addresses),
 335	 * omitting empty memory regions:
 336	 */
 337	chg_idx = 0;
 338	for (i = 0; i < table->nr_entries; i++)	{
 339		if (entries[i].size != 0) {
 340			change_point[chg_idx]->addr	= entries[i].addr;
 341			change_point[chg_idx++]->entry	= &entries[i];
 342			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 343			change_point[chg_idx++]->entry	= &entries[i];
 344		}
 345	}
 346	chg_nr = chg_idx;
 347
 348	/* Sort change-point list by memory addresses (low -> high): */
 349	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 350
 351	/* Create a new memory map, removing overlaps: */
 352	overlap_entries = 0;	 /* Number of entries in the overlap table */
 353	new_nr_entries = 0;	 /* Index for creating new map entries */
 354	last_type = 0;		 /* Start with undefined memory type */
 355	last_addr = 0;		 /* Start with 0 as last starting address */
 356
 357	/* Loop through change-points, determining effect on the new map: */
 358	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 359		/* Keep track of all overlapping entries */
 360		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 361			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 362			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 363		} else {
 364			/* Remove entry from list (order independent, so swap with last): */
 365			for (i = 0; i < overlap_entries; i++) {
 366				if (overlap_list[i] == change_point[chg_idx]->entry)
 367					overlap_list[i] = overlap_list[overlap_entries-1];
 368			}
 369			overlap_entries--;
 370		}
 371		/*
 372		 * If there are overlapping entries, decide which
 373		 * "type" to use (larger value takes precedence --
 374		 * 1=usable, 2,3,4,4+=unusable)
 375		 */
 376		current_type = 0;
 377		for (i = 0; i < overlap_entries; i++) {
 378			if (overlap_list[i]->type > current_type)
 379				current_type = overlap_list[i]->type;
 380		}
 381
 382		/* Continue building up new map based on this information: */
 383		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 384			if (last_type != 0)	 {
 385				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 386				/* Move forward only if the new size was non-zero: */
 387				if (new_entries[new_nr_entries].size != 0)
 388					/* No more space left for new entries? */
 389					if (++new_nr_entries >= max_nr_entries)
 390						break;
 391			}
 392			if (current_type != 0)	{
 393				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 394				new_entries[new_nr_entries].type = current_type;
 395				last_addr = change_point[chg_idx]->addr;
 396			}
 397			last_type = current_type;
 398		}
 399	}
 400
 401	/* Copy the new entries into the original location: */
 402	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 403	table->nr_entries = new_nr_entries;
 404
 405	return 0;
 406}
 407
 408static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 409{
 410	struct boot_e820_entry *entry = entries;
 411
 412	while (nr_entries) {
 413		u64 start = entry->addr;
 414		u64 size = entry->size;
 415		u64 end = start + size - 1;
 416		u32 type = entry->type;
 417
 418		/* Ignore the entry on 64-bit overflow: */
 419		if (start > end && likely(size))
 420			return -1;
 421
 422		e820__range_add(start, size, type);
 423
 424		entry++;
 425		nr_entries--;
 426	}
 427	return 0;
 428}
 429
 430/*
 431 * Copy the BIOS E820 map into a safe place.
 432 *
 433 * Sanity-check it while we're at it..
 434 *
 435 * If we're lucky and live on a modern system, the setup code
 436 * will have given us a memory map that we can use to properly
 437 * set up memory.  If we aren't, we'll fake a memory map.
 438 */
 439static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 440{
 441	/* Only one memory region (or negative)? Ignore it */
 442	if (nr_entries < 2)
 443		return -1;
 444
 445	return __append_e820_table(entries, nr_entries);
 446}
 447
 448static u64 __init
 449__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 450{
 451	u64 end;
 452	unsigned int i;
 453	u64 real_updated_size = 0;
 454
 455	BUG_ON(old_type == new_type);
 456
 457	if (size > (ULLONG_MAX - start))
 458		size = ULLONG_MAX - start;
 459
 460	end = start + size;
 461	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 462	e820_print_type(old_type);
 463	pr_cont(" ==> ");
 464	e820_print_type(new_type);
 465	pr_cont("\n");
 466
 467	for (i = 0; i < table->nr_entries; i++) {
 468		struct e820_entry *entry = &table->entries[i];
 469		u64 final_start, final_end;
 470		u64 entry_end;
 471
 472		if (entry->type != old_type)
 473			continue;
 474
 475		entry_end = entry->addr + entry->size;
 476
 477		/* Completely covered by new range? */
 478		if (entry->addr >= start && entry_end <= end) {
 479			entry->type = new_type;
 480			real_updated_size += entry->size;
 481			continue;
 482		}
 483
 484		/* New range is completely covered? */
 485		if (entry->addr < start && entry_end > end) {
 486			__e820__range_add(table, start, size, new_type);
 487			__e820__range_add(table, end, entry_end - end, entry->type);
 488			entry->size = start - entry->addr;
 489			real_updated_size += size;
 490			continue;
 491		}
 492
 493		/* Partially covered: */
 494		final_start = max(start, entry->addr);
 495		final_end = min(end, entry_end);
 496		if (final_start >= final_end)
 497			continue;
 498
 499		__e820__range_add(table, final_start, final_end - final_start, new_type);
 500
 501		real_updated_size += final_end - final_start;
 502
 503		/*
 504		 * Left range could be head or tail, so need to update
 505		 * its size first:
 506		 */
 507		entry->size -= final_end - final_start;
 508		if (entry->addr < final_start)
 509			continue;
 510
 511		entry->addr = final_end;
 512	}
 513	return real_updated_size;
 514}
 515
 516u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 517{
 518	return __e820__range_update(e820_table, start, size, old_type, new_type);
 519}
 520
 521static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 
 522{
 523	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 524}
 525
 526/* Remove a range of memory from the E820 table: */
 527u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 528{
 529	int i;
 530	u64 end;
 531	u64 real_removed_size = 0;
 532
 533	if (size > (ULLONG_MAX - start))
 534		size = ULLONG_MAX - start;
 535
 536	end = start + size;
 537	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 538	if (check_type)
 539		e820_print_type(old_type);
 540	pr_cont("\n");
 541
 542	for (i = 0; i < e820_table->nr_entries; i++) {
 543		struct e820_entry *entry = &e820_table->entries[i];
 544		u64 final_start, final_end;
 545		u64 entry_end;
 546
 547		if (check_type && entry->type != old_type)
 548			continue;
 549
 550		entry_end = entry->addr + entry->size;
 551
 552		/* Completely covered? */
 553		if (entry->addr >= start && entry_end <= end) {
 554			real_removed_size += entry->size;
 555			memset(entry, 0, sizeof(*entry));
 556			continue;
 557		}
 558
 559		/* Is the new range completely covered? */
 560		if (entry->addr < start && entry_end > end) {
 561			e820__range_add(end, entry_end - end, entry->type);
 562			entry->size = start - entry->addr;
 563			real_removed_size += size;
 564			continue;
 565		}
 566
 567		/* Partially covered: */
 568		final_start = max(start, entry->addr);
 569		final_end = min(end, entry_end);
 570		if (final_start >= final_end)
 571			continue;
 572
 573		real_removed_size += final_end - final_start;
 574
 575		/*
 576		 * Left range could be head or tail, so need to update
 577		 * the size first:
 578		 */
 579		entry->size -= final_end - final_start;
 580		if (entry->addr < final_start)
 581			continue;
 582
 583		entry->addr = final_end;
 584	}
 585	return real_removed_size;
 586}
 587
 588void __init e820__update_table_print(void)
 589{
 590	if (e820__update_table(e820_table))
 591		return;
 592
 593	pr_info("modified physical RAM map:\n");
 594	e820__print_table("modified");
 595}
 596
 597static void __init e820__update_table_kexec(void)
 598{
 599	e820__update_table(e820_table_kexec);
 600}
 601
 602#define MAX_GAP_END 0x100000000ull
 603
 604/*
 605 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 606 */
 607static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 608{
 609	unsigned long long last = MAX_GAP_END;
 610	int i = e820_table->nr_entries;
 611	int found = 0;
 612
 613	while (--i >= 0) {
 614		unsigned long long start = e820_table->entries[i].addr;
 615		unsigned long long end = start + e820_table->entries[i].size;
 616
 617		/*
 618		 * Since "last" is at most 4GB, we know we'll
 619		 * fit in 32 bits if this condition is true:
 620		 */
 621		if (last > end) {
 622			unsigned long gap = last - end;
 623
 624			if (gap >= *gapsize) {
 625				*gapsize = gap;
 626				*gapstart = end;
 627				found = 1;
 628			}
 629		}
 630		if (start < last)
 631			last = start;
 632	}
 633	return found;
 634}
 635
 636/*
 637 * Search for the biggest gap in the low 32 bits of the E820
 638 * memory space. We pass this space to the PCI subsystem, so
 639 * that it can assign MMIO resources for hotplug or
 640 * unconfigured devices in.
 641 *
 642 * Hopefully the BIOS let enough space left.
 643 */
 644__init void e820__setup_pci_gap(void)
 645{
 646	unsigned long gapstart, gapsize;
 647	int found;
 648
 649	gapsize = 0x400000;
 650	found  = e820_search_gap(&gapstart, &gapsize);
 651
 652	if (!found) {
 653#ifdef CONFIG_X86_64
 654		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 655		pr_err("Cannot find an available gap in the 32-bit address range\n");
 656		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 657#else
 658		gapstart = 0x10000000;
 659#endif
 660	}
 661
 662	/*
 663	 * e820__reserve_resources_late() protects stolen RAM already:
 664	 */
 665	pci_mem_start = gapstart;
 666
 667	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 668		gapstart, gapstart + gapsize - 1);
 669}
 670
 671/*
 672 * Called late during init, in free_initmem().
 673 *
 674 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 675 *
 676 * Copy them to a (usually much smaller) dynamically allocated area that is
 677 * sized precisely after the number of e820 entries.
 678 *
 679 * This is done after we've performed all the fixes and tweaks to the tables.
 680 * All functions which modify them are __init functions, which won't exist
 681 * after free_initmem().
 682 */
 683__init void e820__reallocate_tables(void)
 684{
 685	struct e820_table *n;
 686	int size;
 687
 688	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 689	n = kmemdup(e820_table, size, GFP_KERNEL);
 690	BUG_ON(!n);
 691	e820_table = n;
 692
 693	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 694	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 695	BUG_ON(!n);
 696	e820_table_kexec = n;
 697
 698	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 699	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 700	BUG_ON(!n);
 701	e820_table_firmware = n;
 702}
 703
 704/*
 705 * Because of the small fixed size of struct boot_params, only the first
 706 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 707 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 708 * struct setup_data, which is parsed here.
 709 */
 710void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 711{
 712	int entries;
 713	struct boot_e820_entry *extmap;
 714	struct setup_data *sdata;
 715
 716	sdata = early_memremap(phys_addr, data_len);
 717	entries = sdata->len / sizeof(*extmap);
 718	extmap = (struct boot_e820_entry *)(sdata->data);
 719
 720	__append_e820_table(extmap, entries);
 721	e820__update_table(e820_table);
 722
 723	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 724	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 725
 726	early_memunmap(sdata, data_len);
 727	pr_info("extended physical RAM map:\n");
 728	e820__print_table("extended");
 729}
 730
 731/*
 732 * Find the ranges of physical addresses that do not correspond to
 733 * E820 RAM areas and register the corresponding pages as 'nosave' for
 734 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 735 *
 736 * This function requires the E820 map to be sorted and without any
 737 * overlapping entries.
 738 */
 739void __init e820__register_nosave_regions(unsigned long limit_pfn)
 740{
 741	int i;
 742	unsigned long pfn = 0;
 743
 744	for (i = 0; i < e820_table->nr_entries; i++) {
 745		struct e820_entry *entry = &e820_table->entries[i];
 746
 747		if (pfn < PFN_UP(entry->addr))
 748			register_nosave_region(pfn, PFN_UP(entry->addr));
 749
 750		pfn = PFN_DOWN(entry->addr + entry->size);
 751
 752		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 753			register_nosave_region(PFN_UP(entry->addr), pfn);
 754
 755		if (pfn >= limit_pfn)
 756			break;
 757	}
 758}
 759
 760#ifdef CONFIG_ACPI
 761/*
 762 * Register ACPI NVS memory regions, so that we can save/restore them during
 763 * hibernation and the subsequent resume:
 764 */
 765static int __init e820__register_nvs_regions(void)
 766{
 767	int i;
 768
 769	for (i = 0; i < e820_table->nr_entries; i++) {
 770		struct e820_entry *entry = &e820_table->entries[i];
 771
 772		if (entry->type == E820_TYPE_NVS)
 773			acpi_nvs_register(entry->addr, entry->size);
 774	}
 775
 776	return 0;
 777}
 778core_initcall(e820__register_nvs_regions);
 779#endif
 780
 781/*
 782 * Allocate the requested number of bytes with the requsted alignment
 783 * and return (the physical address) to the caller. Also register this
 784 * range in the 'kexec' E820 table as a reserved range.
 785 *
 786 * This allows kexec to fake a new mptable, as if it came from the real
 787 * system.
 788 */
 789u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 790{
 791	u64 addr;
 792
 793	addr = memblock_phys_alloc(size, align);
 794	if (addr) {
 795		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 796		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 797		e820__update_table_kexec();
 798	}
 799
 800	return addr;
 801}
 802
 803#ifdef CONFIG_X86_32
 804# ifdef CONFIG_X86_PAE
 805#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 806# else
 807#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 808# endif
 809#else /* CONFIG_X86_32 */
 810# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 811#endif
 812
 813/*
 814 * Find the highest page frame number we have available
 815 */
 816static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 817{
 818	int i;
 819	unsigned long last_pfn = 0;
 820	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 821
 822	for (i = 0; i < e820_table->nr_entries; i++) {
 823		struct e820_entry *entry = &e820_table->entries[i];
 824		unsigned long start_pfn;
 825		unsigned long end_pfn;
 826
 827		if (entry->type != type)
 
 828			continue;
 829
 830		start_pfn = entry->addr >> PAGE_SHIFT;
 831		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 832
 833		if (start_pfn >= limit_pfn)
 834			continue;
 835		if (end_pfn > limit_pfn) {
 836			last_pfn = limit_pfn;
 837			break;
 838		}
 839		if (end_pfn > last_pfn)
 840			last_pfn = end_pfn;
 841	}
 842
 843	if (last_pfn > max_arch_pfn)
 844		last_pfn = max_arch_pfn;
 845
 846	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 847		last_pfn, max_arch_pfn);
 848	return last_pfn;
 849}
 850
 851unsigned long __init e820__end_of_ram_pfn(void)
 852{
 853	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 854}
 855
 856unsigned long __init e820__end_of_low_ram_pfn(void)
 857{
 858	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 859}
 860
 861static void __init early_panic(char *msg)
 862{
 863	early_printk(msg);
 864	panic(msg);
 865}
 866
 867static int userdef __initdata;
 868
 869/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 870static int __init parse_memopt(char *p)
 871{
 872	u64 mem_size;
 873
 874	if (!p)
 875		return -EINVAL;
 876
 877	if (!strcmp(p, "nopentium")) {
 878#ifdef CONFIG_X86_32
 879		setup_clear_cpu_cap(X86_FEATURE_PSE);
 880		return 0;
 881#else
 882		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 883		return -EINVAL;
 884#endif
 885	}
 886
 887	userdef = 1;
 888	mem_size = memparse(p, &p);
 889
 890	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 891	if (mem_size == 0)
 892		return -EINVAL;
 893
 894	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 895
 896#ifdef CONFIG_MEMORY_HOTPLUG
 897	max_mem_size = mem_size;
 898#endif
 899
 900	return 0;
 901}
 902early_param("mem", parse_memopt);
 903
 904static int __init parse_memmap_one(char *p)
 905{
 906	char *oldp;
 907	u64 start_at, mem_size;
 908
 909	if (!p)
 910		return -EINVAL;
 911
 912	if (!strncmp(p, "exactmap", 8)) {
 913		e820_table->nr_entries = 0;
 914		userdef = 1;
 915		return 0;
 916	}
 917
 918	oldp = p;
 919	mem_size = memparse(p, &p);
 920	if (p == oldp)
 921		return -EINVAL;
 922
 923	userdef = 1;
 924	if (*p == '@') {
 925		start_at = memparse(p+1, &p);
 926		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 927	} else if (*p == '#') {
 928		start_at = memparse(p+1, &p);
 929		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 930	} else if (*p == '$') {
 931		start_at = memparse(p+1, &p);
 932		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 933	} else if (*p == '!') {
 934		start_at = memparse(p+1, &p);
 935		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 936	} else if (*p == '%') {
 937		enum e820_type from = 0, to = 0;
 938
 939		start_at = memparse(p + 1, &p);
 940		if (*p == '-')
 941			from = simple_strtoull(p + 1, &p, 0);
 942		if (*p == '+')
 943			to = simple_strtoull(p + 1, &p, 0);
 944		if (*p != '\0')
 945			return -EINVAL;
 946		if (from && to)
 947			e820__range_update(start_at, mem_size, from, to);
 948		else if (to)
 949			e820__range_add(start_at, mem_size, to);
 950		else if (from)
 951			e820__range_remove(start_at, mem_size, from, 1);
 952		else
 953			e820__range_remove(start_at, mem_size, 0, 0);
 954	} else {
 955		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 956	}
 957
 958	return *p == '\0' ? 0 : -EINVAL;
 959}
 960
 961static int __init parse_memmap_opt(char *str)
 962{
 963	while (str) {
 964		char *k = strchr(str, ',');
 965
 966		if (k)
 967			*k++ = 0;
 968
 969		parse_memmap_one(str);
 970		str = k;
 971	}
 972
 973	return 0;
 974}
 975early_param("memmap", parse_memmap_opt);
 976
 977/*
 978 * Reserve all entries from the bootloader's extensible data nodes list,
 979 * because if present we are going to use it later on to fetch e820
 980 * entries from it:
 981 */
 982void __init e820__reserve_setup_data(void)
 983{
 
 984	struct setup_data *data;
 985	u64 pa_data;
 
 986
 987	pa_data = boot_params.hdr.setup_data;
 988	if (!pa_data)
 989		return;
 990
 991	while (pa_data) {
 992		data = early_memremap(pa_data, sizeof(*data));
 
 
 
 
 
 
 
 
 993		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 994
 995		/*
 996		 * SETUP_EFI is supplied by kexec and does not need to be
 997		 * reserved.
 998		 */
 999		if (data->type != SETUP_EFI)
1000			e820__range_update_kexec(pa_data,
1001						 sizeof(*data) + data->len,
1002						 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1003
1004		if (data->type == SETUP_INDIRECT &&
1005		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
1006			e820__range_update(((struct setup_indirect *)data->data)->addr,
1007					   ((struct setup_indirect *)data->data)->len,
1008					   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1009			e820__range_update_kexec(((struct setup_indirect *)data->data)->addr,
1010						 ((struct setup_indirect *)data->data)->len,
1011						 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1012		}
1013
1014		pa_data = data->next;
1015		early_memunmap(data, sizeof(*data));
1016	}
1017
1018	e820__update_table(e820_table);
1019	e820__update_table(e820_table_kexec);
1020
1021	pr_info("extended physical RAM map:\n");
1022	e820__print_table("reserve setup_data");
1023}
1024
1025/*
1026 * Called after parse_early_param(), after early parameters (such as mem=)
1027 * have been processed, in which case we already have an E820 table filled in
1028 * via the parameter callback function(s), but it's not sorted and printed yet:
1029 */
1030void __init e820__finish_early_params(void)
1031{
1032	if (userdef) {
1033		if (e820__update_table(e820_table) < 0)
1034			early_panic("Invalid user supplied memory map");
1035
1036		pr_info("user-defined physical RAM map:\n");
1037		e820__print_table("user");
1038	}
1039}
1040
1041static const char *__init e820_type_to_string(struct e820_entry *entry)
1042{
1043	switch (entry->type) {
1044	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1045	case E820_TYPE_RAM:		return "System RAM";
1046	case E820_TYPE_ACPI:		return "ACPI Tables";
1047	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1048	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1049	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1050	case E820_TYPE_PMEM:		return "Persistent Memory";
1051	case E820_TYPE_RESERVED:	return "Reserved";
1052	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1053	default:			return "Unknown E820 type";
1054	}
1055}
1056
1057static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1058{
1059	switch (entry->type) {
1060	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1061	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1062	case E820_TYPE_ACPI:		/* Fall-through: */
1063	case E820_TYPE_NVS:		/* Fall-through: */
1064	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1065	case E820_TYPE_PRAM:		/* Fall-through: */
1066	case E820_TYPE_PMEM:		/* Fall-through: */
1067	case E820_TYPE_RESERVED:	/* Fall-through: */
1068	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1069	default:			return IORESOURCE_MEM;
1070	}
1071}
1072
1073static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1074{
1075	switch (entry->type) {
1076	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1077	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1078	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1079	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1080	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1081	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1082	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1083	case E820_TYPE_RAM:		/* Fall-through: */
1084	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1085	default:			return IORES_DESC_NONE;
1086	}
1087}
1088
1089static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1090{
1091	/* this is the legacy bios/dos rom-shadow + mmio region */
1092	if (res->start < (1ULL<<20))
1093		return true;
1094
1095	/*
1096	 * Treat persistent memory and other special memory ranges like
1097	 * device memory, i.e. reserve it for exclusive use of a driver
1098	 */
1099	switch (type) {
1100	case E820_TYPE_RESERVED:
1101	case E820_TYPE_SOFT_RESERVED:
1102	case E820_TYPE_PRAM:
1103	case E820_TYPE_PMEM:
1104		return false;
1105	case E820_TYPE_RESERVED_KERN:
1106	case E820_TYPE_RAM:
1107	case E820_TYPE_ACPI:
1108	case E820_TYPE_NVS:
1109	case E820_TYPE_UNUSABLE:
1110	default:
1111		return true;
1112	}
1113}
1114
1115/*
1116 * Mark E820 reserved areas as busy for the resource manager:
1117 */
1118
1119static struct resource __initdata *e820_res;
1120
1121void __init e820__reserve_resources(void)
1122{
1123	int i;
1124	struct resource *res;
1125	u64 end;
1126
1127	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1128			     SMP_CACHE_BYTES);
1129	if (!res)
1130		panic("%s: Failed to allocate %zu bytes\n", __func__,
1131		      sizeof(*res) * e820_table->nr_entries);
1132	e820_res = res;
1133
1134	for (i = 0; i < e820_table->nr_entries; i++) {
1135		struct e820_entry *entry = e820_table->entries + i;
1136
1137		end = entry->addr + entry->size - 1;
1138		if (end != (resource_size_t)end) {
1139			res++;
1140			continue;
1141		}
1142		res->start = entry->addr;
1143		res->end   = end;
1144		res->name  = e820_type_to_string(entry);
1145		res->flags = e820_type_to_iomem_type(entry);
1146		res->desc  = e820_type_to_iores_desc(entry);
1147
1148		/*
1149		 * Don't register the region that could be conflicted with
1150		 * PCI device BAR resources and insert them later in
1151		 * pcibios_resource_survey():
1152		 */
1153		if (do_mark_busy(entry->type, res)) {
1154			res->flags |= IORESOURCE_BUSY;
1155			insert_resource(&iomem_resource, res);
1156		}
1157		res++;
1158	}
1159
1160	/* Expose the bootloader-provided memory layout to the sysfs. */
1161	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1162		struct e820_entry *entry = e820_table_firmware->entries + i;
1163
1164		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1165	}
1166}
1167
1168/*
1169 * How much should we pad the end of RAM, depending on where it is?
1170 */
1171static unsigned long __init ram_alignment(resource_size_t pos)
1172{
1173	unsigned long mb = pos >> 20;
1174
1175	/* To 64kB in the first megabyte */
1176	if (!mb)
1177		return 64*1024;
1178
1179	/* To 1MB in the first 16MB */
1180	if (mb < 16)
1181		return 1024*1024;
1182
1183	/* To 64MB for anything above that */
1184	return 64*1024*1024;
1185}
1186
1187#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1188
1189void __init e820__reserve_resources_late(void)
1190{
1191	int i;
1192	struct resource *res;
1193
1194	res = e820_res;
1195	for (i = 0; i < e820_table->nr_entries; i++) {
1196		if (!res->parent && res->end)
1197			insert_resource_expand_to_fit(&iomem_resource, res);
1198		res++;
1199	}
1200
1201	/*
1202	 * Try to bump up RAM regions to reasonable boundaries, to
1203	 * avoid stolen RAM:
1204	 */
1205	for (i = 0; i < e820_table->nr_entries; i++) {
1206		struct e820_entry *entry = &e820_table->entries[i];
1207		u64 start, end;
1208
1209		if (entry->type != E820_TYPE_RAM)
1210			continue;
1211
1212		start = entry->addr + entry->size;
1213		end = round_up(start, ram_alignment(start)) - 1;
1214		if (end > MAX_RESOURCE_SIZE)
1215			end = MAX_RESOURCE_SIZE;
1216		if (start >= end)
1217			continue;
1218
1219		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1220		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1221	}
1222}
1223
1224/*
1225 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1226 */
1227char *__init e820__memory_setup_default(void)
1228{
1229	char *who = "BIOS-e820";
1230
1231	/*
1232	 * Try to copy the BIOS-supplied E820-map.
1233	 *
1234	 * Otherwise fake a memory map; one section from 0k->640k,
1235	 * the next section from 1mb->appropriate_mem_k
1236	 */
1237	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1238		u64 mem_size;
1239
1240		/* Compare results from other methods and take the one that gives more RAM: */
1241		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1242			mem_size = boot_params.screen_info.ext_mem_k;
1243			who = "BIOS-88";
1244		} else {
1245			mem_size = boot_params.alt_mem_k;
1246			who = "BIOS-e801";
1247		}
1248
1249		e820_table->nr_entries = 0;
1250		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1251		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1252	}
1253
1254	/* We just appended a lot of ranges, sanitize the table: */
1255	e820__update_table(e820_table);
1256
1257	return who;
1258}
1259
1260/*
1261 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1262 * E820 map - with an optional platform quirk available for virtual platforms
1263 * to override this method of boot environment processing:
1264 */
1265void __init e820__memory_setup(void)
1266{
1267	char *who;
1268
1269	/* This is a firmware interface ABI - make sure we don't break it: */
1270	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1271
1272	who = x86_init.resources.memory_setup();
1273
1274	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1275	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1276
1277	pr_info("BIOS-provided physical RAM map:\n");
1278	e820__print_table(who);
1279}
1280
1281void __init e820__memblock_setup(void)
1282{
1283	int i;
1284	u64 end;
1285
1286	/*
1287	 * The bootstrap memblock region count maximum is 128 entries
1288	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1289	 * than that - so allow memblock resizing.
1290	 *
1291	 * This is safe, because this call happens pretty late during x86 setup,
1292	 * so we know about reserved memory regions already. (This is important
1293	 * so that memblock resizing does no stomp over reserved areas.)
1294	 */
1295	memblock_allow_resize();
1296
1297	for (i = 0; i < e820_table->nr_entries; i++) {
1298		struct e820_entry *entry = &e820_table->entries[i];
1299
1300		end = entry->addr + entry->size;
1301		if (end != (resource_size_t)end)
1302			continue;
1303
1304		if (entry->type == E820_TYPE_SOFT_RESERVED)
1305			memblock_reserve(entry->addr, entry->size);
1306
1307		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1308			continue;
1309
1310		memblock_add(entry->addr, entry->size);
1311	}
1312
1313	/* Throw away partial pages: */
1314	memblock_trim_memory(PAGE_SIZE);
1315
1316	memblock_dump_all();
1317}