Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
 
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
 
 
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
 
 
 
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
 
 
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
 
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
 
  21#include <asm/setup.h>
 
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent CRC32
  35 *         checksum of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So its main role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
 194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 197	case E820_TYPE_PMEM:		/* Fall through: */
 198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 199	default:			pr_cont("type %u", type);		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 200	}
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205	int i;
 206
 207	for (i = 0; i < e820_table->nr_entries; i++) {
 208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209			who,
 210			e820_table->entries[i].addr,
 211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213		e820_print_type(e820_table->entries[i].type);
 214		pr_cont("\n");
 215	}
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *	Visually we're performing the following
 245 *	(1,2,3,4 = memory types)...
 246 *
 247 *	Sample memory map (w/overlaps):
 248 *	   ____22__________________
 249 *	   ______________________4_
 250 *	   ____1111________________
 251 *	   _44_____________________
 252 *	   11111111________________
 253 *	   ____________________33__
 254 *	   ___________44___________
 255 *	   __________33333_________
 256 *	   ______________22________
 257 *	   ___________________2222_
 258 *	   _________111111111______
 259 *	   _____________________11_
 260 *	   _________________4______
 261 *
 262 *	Sanitized equivalent (no overlap):
 263 *	   1_______________________
 264 *	   _44_____________________
 265 *	   ___1____________________
 266 *	   ____22__________________
 267 *	   ______11________________
 268 *	   _________1______________
 269 *	   __________3_____________
 270 *	   ___________44___________
 271 *	   _____________33_________
 272 *	   _______________2________
 273 *	   ________________1_______
 274 *	   _________________4______
 275 *	   ___________________2____
 276 *	   ____________________33__
 277 *	   ______________________4_
 278 */
 279struct change_member {
 280	/* Pointer to the original entry: */
 281	struct e820_entry	*entry;
 282	/* Address for this change point: */
 283	unsigned long long	addr;
 284};
 285
 286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 292{
 293	struct change_member * const *app = a, * const *bpp = b;
 294	const struct change_member *ap = *app, *bp = *bpp;
 295
 296	/*
 297	 * Inputs are pointers to two elements of change_point[].  If their
 298	 * addresses are not equal, their difference dominates.  If the addresses
 299	 * are equal, then consider one that represents the end of its region
 300	 * to be greater than one that does not.
 301	 */
 302	if (ap->addr != bp->addr)
 303		return ap->addr > bp->addr ? 1 : -1;
 304
 305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 308static bool e820_nomerge(enum e820_type type)
 309{
 310	/*
 311	 * These types may indicate distinct platform ranges aligned to
 312	 * numa node, protection domain, performance domain, or other
 313	 * boundaries. Do not merge them.
 314	 */
 315	if (type == E820_TYPE_PRAM)
 316		return true;
 317	if (type == E820_TYPE_SOFT_RESERVED)
 318		return true;
 319	return false;
 320}
 321
 322int __init e820__update_table(struct e820_table *table)
 
 323{
 324	struct e820_entry *entries = table->entries;
 325	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 326	enum e820_type current_type, last_type;
 
 
 327	unsigned long long last_addr;
 328	u32 new_nr_entries, overlap_entries;
 329	u32 i, chg_idx, chg_nr;
 
 
 
 330
 331	/* If there's only one memory region, don't bother: */
 332	if (table->nr_entries < 2)
 333		return -1;
 334
 335	BUG_ON(table->nr_entries > max_nr_entries);
 
 336
 337	/* Bail out if we find any unreasonable addresses in the map: */
 338	for (i = 0; i < table->nr_entries; i++) {
 339		if (entries[i].addr + entries[i].size < entries[i].addr)
 340			return -1;
 341	}
 342
 343	/* Create pointers for initial change-point information (for sorting): */
 344	for (i = 0; i < 2 * table->nr_entries; i++)
 345		change_point[i] = &change_point_list[i];
 346
 347	/*
 348	 * Record all known change-points (starting and ending addresses),
 349	 * omitting empty memory regions:
 350	 */
 351	chg_idx = 0;
 352	for (i = 0; i < table->nr_entries; i++)	{
 353		if (entries[i].size != 0) {
 354			change_point[chg_idx]->addr	= entries[i].addr;
 355			change_point[chg_idx++]->entry	= &entries[i];
 356			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 357			change_point[chg_idx++]->entry	= &entries[i];
 358		}
 359	}
 360	chg_nr = chg_idx;
 361
 362	/* Sort change-point list by memory addresses (low -> high): */
 363	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 364
 365	/* Create a new memory map, removing overlaps: */
 366	overlap_entries = 0;	 /* Number of entries in the overlap table */
 367	new_nr_entries = 0;	 /* Index for creating new map entries */
 368	last_type = 0;		 /* Start with undefined memory type */
 369	last_addr = 0;		 /* Start with 0 as last starting address */
 370
 371	/* Loop through change-points, determining effect on the new map: */
 372	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 373		/* Keep track of all overlapping entries */
 374		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 375			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 376			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 
 
 
 
 
 377		} else {
 378			/* Remove entry from list (order independent, so swap with last): */
 
 
 
 379			for (i = 0; i < overlap_entries; i++) {
 380				if (overlap_list[i] == change_point[chg_idx]->entry)
 381					overlap_list[i] = overlap_list[overlap_entries-1];
 
 
 382			}
 383			overlap_entries--;
 384		}
 385		/*
 386		 * If there are overlapping entries, decide which
 387		 * "type" to use (larger value takes precedence --
 388		 * 1=usable, 2,3,4,4+=unusable)
 389		 */
 390		current_type = 0;
 391		for (i = 0; i < overlap_entries; i++) {
 392			if (overlap_list[i]->type > current_type)
 393				current_type = overlap_list[i]->type;
 394		}
 395
 396		/* Continue building up new map based on this information: */
 397		if (current_type != last_type || e820_nomerge(current_type)) {
 398			if (last_type) {
 399				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 400				/* Move forward only if the new size was non-zero: */
 401				if (new_entries[new_nr_entries].size != 0)
 402					/* No more space left for new entries? */
 403					if (++new_nr_entries >= max_nr_entries)
 
 
 
 
 
 
 
 
 404						break;
 405			}
 406			if (current_type) {
 407				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 408				new_entries[new_nr_entries].type = current_type;
 409				last_addr = change_point[chg_idx]->addr;
 
 410			}
 411			last_type = current_type;
 412		}
 413	}
 
 
 414
 415	/* Copy the new entries into the original location: */
 416	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 417	table->nr_entries = new_nr_entries;
 418
 419	return 0;
 420}
 421
 422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 423{
 424	struct boot_e820_entry *entry = entries;
 425
 426	while (nr_entries) {
 427		u64 start = entry->addr;
 428		u64 size = entry->size;
 429		u64 end = start + size - 1;
 430		u32 type = entry->type;
 431
 432		/* Ignore the entry on 64-bit overflow: */
 433		if (start > end && likely(size))
 434			return -1;
 435
 436		e820__range_add(start, size, type);
 437
 438		entry++;
 439		nr_entries--;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Copy the BIOS E820 map into a safe place.
 446 *
 447 * Sanity-check it while we're at it..
 448 *
 449 * If we're lucky and live on a modern system, the setup code
 450 * will have given us a memory map that we can use to properly
 451 * set up memory.  If we aren't, we'll fake a memory map.
 452 */
 453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 454{
 455	/* Only one memory region (or negative)? Ignore it */
 456	if (nr_entries < 2)
 457		return -1;
 458
 459	return __append_e820_table(entries, nr_entries);
 460}
 461
 462static u64 __init
 463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 464{
 465	u64 end;
 466	unsigned int i;
 467	u64 real_updated_size = 0;
 468
 469	BUG_ON(old_type == new_type);
 470
 471	if (size > (ULLONG_MAX - start))
 472		size = ULLONG_MAX - start;
 473
 474	end = start + size;
 475	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 
 476	e820_print_type(old_type);
 477	pr_cont(" ==> ");
 478	e820_print_type(new_type);
 479	pr_cont("\n");
 480
 481	for (i = 0; i < table->nr_entries; i++) {
 482		struct e820_entry *entry = &table->entries[i];
 483		u64 final_start, final_end;
 484		u64 entry_end;
 485
 486		if (entry->type != old_type)
 487			continue;
 488
 489		entry_end = entry->addr + entry->size;
 490
 491		/* Completely covered by new range? */
 492		if (entry->addr >= start && entry_end <= end) {
 493			entry->type = new_type;
 494			real_updated_size += entry->size;
 495			continue;
 496		}
 497
 498		/* New range is completely covered? */
 499		if (entry->addr < start && entry_end > end) {
 500			__e820__range_add(table, start, size, new_type);
 501			__e820__range_add(table, end, entry_end - end, entry->type);
 502			entry->size = start - entry->addr;
 503			real_updated_size += size;
 504			continue;
 505		}
 506
 507		/* Partially covered: */
 508		final_start = max(start, entry->addr);
 509		final_end = min(end, entry_end);
 510		if (final_start >= final_end)
 511			continue;
 512
 513		__e820__range_add(table, final_start, final_end - final_start, new_type);
 
 514
 515		real_updated_size += final_end - final_start;
 516
 517		/*
 518		 * Left range could be head or tail, so need to update
 519		 * its size first:
 520		 */
 521		entry->size -= final_end - final_start;
 522		if (entry->addr < final_start)
 523			continue;
 524
 525		entry->addr = final_end;
 526	}
 527	return real_updated_size;
 528}
 529
 530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 531{
 532	return __e820__range_update(e820_table, start, size, old_type, new_type);
 533}
 534
 535u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size,
 536				    enum e820_type old_type, enum e820_type new_type)
 537{
 538	return __e820__range_update(t, start, size, old_type, new_type);
 
 539}
 540
 541/* Remove a range of memory from the E820 table: */
 542u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 
 543{
 544	int i;
 545	u64 end;
 546	u64 real_removed_size = 0;
 547
 548	if (size > (ULLONG_MAX - start))
 549		size = ULLONG_MAX - start;
 550
 551	end = start + size;
 552	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 553	if (check_type)
 
 554		e820_print_type(old_type);
 555	pr_cont("\n");
 556
 557	for (i = 0; i < e820_table->nr_entries; i++) {
 558		struct e820_entry *entry = &e820_table->entries[i];
 559		u64 final_start, final_end;
 560		u64 entry_end;
 561
 562		if (check_type && entry->type != old_type)
 563			continue;
 564
 565		entry_end = entry->addr + entry->size;
 566
 567		/* Completely covered? */
 568		if (entry->addr >= start && entry_end <= end) {
 569			real_removed_size += entry->size;
 570			memset(entry, 0, sizeof(*entry));
 571			continue;
 572		}
 573
 574		/* Is the new range completely covered? */
 575		if (entry->addr < start && entry_end > end) {
 576			e820__range_add(end, entry_end - end, entry->type);
 577			entry->size = start - entry->addr;
 578			real_removed_size += size;
 579			continue;
 580		}
 581
 582		/* Partially covered: */
 583		final_start = max(start, entry->addr);
 584		final_end = min(end, entry_end);
 585		if (final_start >= final_end)
 586			continue;
 587
 588		real_removed_size += final_end - final_start;
 589
 590		/*
 591		 * Left range could be head or tail, so need to update
 592		 * the size first:
 593		 */
 594		entry->size -= final_end - final_start;
 595		if (entry->addr < final_start)
 596			continue;
 597
 598		entry->addr = final_end;
 599	}
 600	return real_removed_size;
 601}
 602
 603void __init e820__update_table_print(void)
 604{
 605	if (e820__update_table(e820_table))
 606		return;
 607
 608	pr_info("modified physical RAM map:\n");
 609	e820__print_table("modified");
 610}
 611
 612static void __init e820__update_table_kexec(void)
 613{
 614	e820__update_table(e820_table_kexec);
 
 615}
 616
 617#define MAX_GAP_END 0x100000000ull
 618
 619/*
 620 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 621 */
 622static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 
 623{
 624	unsigned long long last = MAX_GAP_END;
 625	int i = e820_table->nr_entries;
 626	int found = 0;
 627
 
 
 628	while (--i >= 0) {
 629		unsigned long long start = e820_table->entries[i].addr;
 630		unsigned long long end = start + e820_table->entries[i].size;
 
 
 
 631
 632		/*
 633		 * Since "last" is at most 4GB, we know we'll
 634		 * fit in 32 bits if this condition is true:
 635		 */
 636		if (last > end) {
 637			unsigned long gap = last - end;
 638
 639			if (gap >= *gapsize) {
 640				*gapsize = gap;
 641				*gapstart = end;
 642				found = 1;
 643			}
 644		}
 645		if (start < last)
 646			last = start;
 647	}
 648	return found;
 649}
 650
 651/*
 652 * Search for the biggest gap in the low 32 bits of the E820
 653 * memory space. We pass this space to the PCI subsystem, so
 654 * that it can assign MMIO resources for hotplug or
 655 * unconfigured devices in.
 656 *
 657 * Hopefully the BIOS let enough space left.
 658 */
 659__init void e820__setup_pci_gap(void)
 660{
 661	unsigned long gapstart, gapsize;
 662	int found;
 663
 
 664	gapsize = 0x400000;
 665	found  = e820_search_gap(&gapstart, &gapsize);
 666
 667	if (!found) {
 668#ifdef CONFIG_X86_64
 
 669		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 670		pr_err("Cannot find an available gap in the 32-bit address range\n");
 671		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 672#else
 673		gapstart = 0x10000000;
 674#endif
 675	}
 
 676
 677	/*
 678	 * e820__reserve_resources_late() protects stolen RAM already:
 679	 */
 680	pci_mem_start = gapstart;
 681
 682	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 683		gapstart, gapstart + gapsize - 1);
 
 684}
 685
 686/*
 687 * Called late during init, in free_initmem().
 688 *
 689 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 690 *
 691 * Copy them to a (usually much smaller) dynamically allocated area that is
 692 * sized precisely after the number of e820 entries.
 693 *
 694 * This is done after we've performed all the fixes and tweaks to the tables.
 695 * All functions which modify them are __init functions, which won't exist
 696 * after free_initmem().
 697 */
 698__init void e820__reallocate_tables(void)
 699{
 700	struct e820_table *n;
 701	int size;
 702
 703	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 704	n = kmemdup(e820_table, size, GFP_KERNEL);
 705	BUG_ON(!n);
 706	e820_table = n;
 707
 708	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 709	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 710	BUG_ON(!n);
 711	e820_table_kexec = n;
 
 712
 713	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 714	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 715	BUG_ON(!n);
 716	e820_table_firmware = n;
 
 717}
 718
 719/*
 720 * Because of the small fixed size of struct boot_params, only the first
 721 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 722 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 723 * struct setup_data, which is parsed here.
 724 */
 725void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 726{
 727	int entries;
 728	struct boot_e820_entry *extmap;
 729	struct setup_data *sdata;
 730
 731	sdata = early_memremap(phys_addr, data_len);
 732	entries = sdata->len / sizeof(*extmap);
 733	extmap = (struct boot_e820_entry *)(sdata->data);
 734
 735	__append_e820_table(extmap, entries);
 736	e820__update_table(e820_table);
 737
 738	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 739	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 740
 741	early_memunmap(sdata, data_len);
 742	pr_info("extended physical RAM map:\n");
 743	e820__print_table("extended");
 744}
 745
 746/*
 
 
 747 * Find the ranges of physical addresses that do not correspond to
 748 * E820 RAM areas and register the corresponding pages as 'nosave' for
 749 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 750 *
 751 * This function requires the E820 map to be sorted and without any
 752 * overlapping entries.
 753 */
 754void __init e820__register_nosave_regions(unsigned long limit_pfn)
 755{
 756	int i;
 757	unsigned long pfn = 0;
 758
 759	for (i = 0; i < e820_table->nr_entries; i++) {
 760		struct e820_entry *entry = &e820_table->entries[i];
 761
 762		if (pfn < PFN_UP(entry->addr))
 763			register_nosave_region(pfn, PFN_UP(entry->addr));
 764
 765		pfn = PFN_DOWN(entry->addr + entry->size);
 766
 767		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 768			register_nosave_region(PFN_UP(entry->addr), pfn);
 769
 770		if (pfn >= limit_pfn)
 771			break;
 772	}
 773}
 
 774
 775#ifdef CONFIG_ACPI
 776/*
 777 * Register ACPI NVS memory regions, so that we can save/restore them during
 778 * hibernation and the subsequent resume:
 779 */
 780static int __init e820__register_nvs_regions(void)
 781{
 782	int i;
 783
 784	for (i = 0; i < e820_table->nr_entries; i++) {
 785		struct e820_entry *entry = &e820_table->entries[i];
 786
 787		if (entry->type == E820_TYPE_NVS)
 788			acpi_nvs_register(entry->addr, entry->size);
 789	}
 790
 791	return 0;
 792}
 793core_initcall(e820__register_nvs_regions);
 794#endif
 795
 796/*
 797 * Allocate the requested number of bytes with the requested alignment
 798 * and return (the physical address) to the caller. Also register this
 799 * range in the 'kexec' E820 table as a reserved range.
 800 *
 801 * This allows kexec to fake a new mptable, as if it came from the real
 802 * system.
 803 */
 804u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 805{
 806	u64 addr;
 807
 808	addr = memblock_phys_alloc(size, align);
 809	if (addr) {
 810		e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 811		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 812		e820__update_table_kexec();
 813	}
 814
 815	return addr;
 816}
 817
 818#ifdef CONFIG_X86_32
 819# ifdef CONFIG_X86_PAE
 820#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 821# else
 822#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 823# endif
 824#else /* CONFIG_X86_32 */
 825# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 826#endif
 827
 828/*
 829 * Find the highest page frame number we have available
 830 */
 831static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn)
 832{
 833	int i;
 834	unsigned long last_pfn = 0;
 835	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 836
 837	for (i = 0; i < e820_table->nr_entries; i++) {
 838		struct e820_entry *entry = &e820_table->entries[i];
 839		unsigned long start_pfn;
 840		unsigned long end_pfn;
 841
 842		if (entry->type != E820_TYPE_RAM &&
 843		    entry->type != E820_TYPE_ACPI)
 844			continue;
 845
 846		start_pfn = entry->addr >> PAGE_SHIFT;
 847		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 848
 849		if (start_pfn >= limit_pfn)
 850			continue;
 851		if (end_pfn > limit_pfn) {
 852			last_pfn = limit_pfn;
 853			break;
 854		}
 855		if (end_pfn > last_pfn)
 856			last_pfn = end_pfn;
 857	}
 858
 859	if (last_pfn > max_arch_pfn)
 860		last_pfn = max_arch_pfn;
 861
 862	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 863		last_pfn, max_arch_pfn);
 864	return last_pfn;
 865}
 866
 867unsigned long __init e820__end_of_ram_pfn(void)
 868{
 869	return e820__end_ram_pfn(MAX_ARCH_PFN);
 870}
 871
 872unsigned long __init e820__end_of_low_ram_pfn(void)
 873{
 874	return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT));
 875}
 876
 877static void __init early_panic(char *msg)
 878{
 879	early_printk(msg);
 880	panic(msg);
 881}
 882
 883static int userdef __initdata;
 884
 885/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 886static int __init parse_memopt(char *p)
 887{
 888	u64 mem_size;
 889
 890	if (!p)
 891		return -EINVAL;
 892
 893	if (!strcmp(p, "nopentium")) {
 894#ifdef CONFIG_X86_32
 895		setup_clear_cpu_cap(X86_FEATURE_PSE);
 896		return 0;
 897#else
 898		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 899		return -EINVAL;
 900#endif
 901	}
 902
 903	userdef = 1;
 904	mem_size = memparse(p, &p);
 905
 906	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 907	if (mem_size == 0)
 908		return -EINVAL;
 909
 910	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 911
 912#ifdef CONFIG_MEMORY_HOTPLUG
 913	max_mem_size = mem_size;
 914#endif
 915
 916	return 0;
 917}
 918early_param("mem", parse_memopt);
 919
 920static int __init parse_memmap_one(char *p)
 921{
 922	char *oldp;
 923	u64 start_at, mem_size;
 924
 925	if (!p)
 926		return -EINVAL;
 927
 928	if (!strncmp(p, "exactmap", 8)) {
 929		e820_table->nr_entries = 0;
 
 
 
 
 
 
 
 
 930		userdef = 1;
 931		return 0;
 932	}
 933
 934	oldp = p;
 935	mem_size = memparse(p, &p);
 936	if (p == oldp)
 937		return -EINVAL;
 938
 939	userdef = 1;
 940	if (*p == '@') {
 941		start_at = memparse(p+1, &p);
 942		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 943	} else if (*p == '#') {
 944		start_at = memparse(p+1, &p);
 945		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 946	} else if (*p == '$') {
 947		start_at = memparse(p+1, &p);
 948		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 949	} else if (*p == '!') {
 950		start_at = memparse(p+1, &p);
 951		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 952	} else if (*p == '%') {
 953		enum e820_type from = 0, to = 0;
 954
 955		start_at = memparse(p + 1, &p);
 956		if (*p == '-')
 957			from = simple_strtoull(p + 1, &p, 0);
 958		if (*p == '+')
 959			to = simple_strtoull(p + 1, &p, 0);
 960		if (*p != '\0')
 961			return -EINVAL;
 962		if (from && to)
 963			e820__range_update(start_at, mem_size, from, to);
 964		else if (to)
 965			e820__range_add(start_at, mem_size, to);
 966		else if (from)
 967			e820__range_remove(start_at, mem_size, from, 1);
 968		else
 969			e820__range_remove(start_at, mem_size, 0, 0);
 970	} else {
 971		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 972	}
 973
 974	return *p == '\0' ? 0 : -EINVAL;
 975}
 976
 977static int __init parse_memmap_opt(char *str)
 978{
 979	while (str) {
 980		char *k = strchr(str, ',');
 981
 982		if (k)
 983			*k++ = 0;
 984
 985		parse_memmap_one(str);
 986		str = k;
 987	}
 988
 989	return 0;
 990}
 991early_param("memmap", parse_memmap_opt);
 992
 993/*
 994 * Reserve all entries from the bootloader's extensible data nodes list,
 995 * because if present we are going to use it later on to fetch e820
 996 * entries from it:
 997 */
 998void __init e820__reserve_setup_data(void)
 999{
1000	struct setup_indirect *indirect;
1001	struct setup_data *data;
1002	u64 pa_data, pa_next;
1003	u32 len;
1004
1005	pa_data = boot_params.hdr.setup_data;
1006	if (!pa_data)
1007		return;
1008
1009	while (pa_data) {
1010		data = early_memremap(pa_data, sizeof(*data));
1011		if (!data) {
1012			pr_warn("e820: failed to memremap setup_data entry\n");
1013			return;
1014		}
1015
1016		len = sizeof(*data);
1017		pa_next = data->next;
1018
1019		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1020
1021		if (data->type == SETUP_INDIRECT) {
1022			len += data->len;
1023			early_memunmap(data, sizeof(*data));
1024			data = early_memremap(pa_data, len);
1025			if (!data) {
1026				pr_warn("e820: failed to memremap indirect setup_data\n");
1027				return;
1028			}
1029
1030			indirect = (struct setup_indirect *)data->data;
1031
1032			if (indirect->type != SETUP_INDIRECT)
1033				e820__range_update(indirect->addr, indirect->len,
1034						   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1035		}
1036
1037		pa_data = pa_next;
1038		early_memunmap(data, len);
1039	}
1040
1041	e820__update_table(e820_table);
1042
1043	pr_info("extended physical RAM map:\n");
1044	e820__print_table("reserve setup_data");
1045}
1046
1047/*
1048 * Called after parse_early_param(), after early parameters (such as mem=)
1049 * have been processed, in which case we already have an E820 table filled in
1050 * via the parameter callback function(s), but it's not sorted and printed yet:
1051 */
1052void __init e820__finish_early_params(void)
1053{
1054	if (userdef) {
1055		if (e820__update_table(e820_table) < 0)
 
1056			early_panic("Invalid user supplied memory map");
1057
1058		pr_info("user-defined physical RAM map:\n");
1059		e820__print_table("user");
1060	}
1061}
1062
1063static const char *__init e820_type_to_string(struct e820_entry *entry)
1064{
1065	switch (entry->type) {
1066	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1067	case E820_TYPE_RAM:		return "System RAM";
1068	case E820_TYPE_ACPI:		return "ACPI Tables";
1069	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1070	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1071	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1072	case E820_TYPE_PMEM:		return "Persistent Memory";
1073	case E820_TYPE_RESERVED:	return "Reserved";
1074	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1075	default:			return "Unknown E820 type";
1076	}
1077}
1078
1079static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1080{
1081	switch (entry->type) {
1082	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1083	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1084	case E820_TYPE_ACPI:		/* Fall-through: */
1085	case E820_TYPE_NVS:		/* Fall-through: */
1086	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1087	case E820_TYPE_PRAM:		/* Fall-through: */
1088	case E820_TYPE_PMEM:		/* Fall-through: */
1089	case E820_TYPE_RESERVED:	/* Fall-through: */
1090	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1091	default:			return IORESOURCE_MEM;
1092	}
1093}
1094
1095static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1096{
1097	switch (entry->type) {
1098	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1099	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1100	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1101	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1102	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1103	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1104	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1105	case E820_TYPE_RAM:		/* Fall-through: */
1106	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1107	default:			return IORES_DESC_NONE;
 
 
 
1108	}
1109}
1110
1111static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1112{
1113	/* this is the legacy bios/dos rom-shadow + mmio region */
1114	if (res->start < (1ULL<<20))
1115		return true;
1116
1117	/*
1118	 * Treat persistent memory and other special memory ranges like
1119	 * device memory, i.e. reserve it for exclusive use of a driver
1120	 */
1121	switch (type) {
1122	case E820_TYPE_RESERVED:
1123	case E820_TYPE_SOFT_RESERVED:
1124	case E820_TYPE_PRAM:
1125	case E820_TYPE_PMEM:
1126		return false;
1127	case E820_TYPE_RESERVED_KERN:
1128	case E820_TYPE_RAM:
1129	case E820_TYPE_ACPI:
1130	case E820_TYPE_NVS:
1131	case E820_TYPE_UNUSABLE:
1132	default:
1133		return true;
1134	}
1135}
1136
1137/*
1138 * Mark E820 reserved areas as busy for the resource manager:
1139 */
1140
1141static struct resource __initdata *e820_res;
1142
1143void __init e820__reserve_resources(void)
1144{
1145	int i;
1146	struct resource *res;
1147	u64 end;
1148
1149	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1150			     SMP_CACHE_BYTES);
1151	if (!res)
1152		panic("%s: Failed to allocate %zu bytes\n", __func__,
1153		      sizeof(*res) * e820_table->nr_entries);
1154	e820_res = res;
1155
1156	for (i = 0; i < e820_table->nr_entries; i++) {
1157		struct e820_entry *entry = e820_table->entries + i;
1158
1159		end = entry->addr + entry->size - 1;
1160		if (end != (resource_size_t)end) {
1161			res++;
1162			continue;
1163		}
1164		res->start = entry->addr;
1165		res->end   = end;
1166		res->name  = e820_type_to_string(entry);
1167		res->flags = e820_type_to_iomem_type(entry);
1168		res->desc  = e820_type_to_iores_desc(entry);
 
1169
1170		/*
1171		 * Don't register the region that could be conflicted with
1172		 * PCI device BAR resources and insert them later in
1173		 * pcibios_resource_survey():
1174		 */
1175		if (do_mark_busy(entry->type, res)) {
1176			res->flags |= IORESOURCE_BUSY;
1177			insert_resource(&iomem_resource, res);
1178		}
1179		res++;
1180	}
1181
1182	/* Expose the bootloader-provided memory layout to the sysfs. */
1183	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1184		struct e820_entry *entry = e820_table_firmware->entries + i;
1185
1186		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1187	}
1188}
1189
1190/*
1191 * How much should we pad the end of RAM, depending on where it is?
1192 */
1193static unsigned long __init ram_alignment(resource_size_t pos)
1194{
1195	unsigned long mb = pos >> 20;
1196
1197	/* To 64kB in the first megabyte */
1198	if (!mb)
1199		return 64*1024;
1200
1201	/* To 1MB in the first 16MB */
1202	if (mb < 16)
1203		return 1024*1024;
1204
1205	/* To 64MB for anything above that */
1206	return 64*1024*1024;
1207}
1208
1209#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1210
1211void __init e820__reserve_resources_late(void)
1212{
1213	int i;
1214	struct resource *res;
1215
1216	res = e820_res;
1217	for (i = 0; i < e820_table->nr_entries; i++) {
1218		if (!res->parent && res->end)
1219			insert_resource_expand_to_fit(&iomem_resource, res);
1220		res++;
1221	}
1222
1223	/*
1224	 * Try to bump up RAM regions to reasonable boundaries, to
1225	 * avoid stolen RAM:
1226	 */
1227	for (i = 0; i < e820_table->nr_entries; i++) {
1228		struct e820_entry *entry = &e820_table->entries[i];
1229		u64 start, end;
1230
1231		if (entry->type != E820_TYPE_RAM)
1232			continue;
1233
1234		start = entry->addr + entry->size;
1235		end = round_up(start, ram_alignment(start)) - 1;
1236		if (end > MAX_RESOURCE_SIZE)
1237			end = MAX_RESOURCE_SIZE;
1238		if (start >= end)
1239			continue;
1240
1241		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1242		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
 
 
1243	}
1244}
1245
1246/*
1247 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1248 */
1249char *__init e820__memory_setup_default(void)
1250{
1251	char *who = "BIOS-e820";
1252
1253	/*
1254	 * Try to copy the BIOS-supplied E820-map.
1255	 *
1256	 * Otherwise fake a memory map; one section from 0k->640k,
1257	 * the next section from 1mb->appropriate_mem_k
1258	 */
1259	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
 
 
 
 
 
 
1260		u64 mem_size;
1261
1262		/* Compare results from other methods and take the one that gives more RAM: */
1263		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
 
1264			mem_size = boot_params.screen_info.ext_mem_k;
1265			who = "BIOS-88";
1266		} else {
1267			mem_size = boot_params.alt_mem_k;
1268			who = "BIOS-e801";
1269		}
1270
1271		e820_table->nr_entries = 0;
1272		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1273		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1274	}
1275
1276	/* We just appended a lot of ranges, sanitize the table: */
1277	e820__update_table(e820_table);
1278
1279	return who;
1280}
1281
1282/*
1283 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1284 * E820 map - with an optional platform quirk available for virtual platforms
1285 * to override this method of boot environment processing:
1286 */
1287void __init e820__memory_setup(void)
1288{
1289	char *who;
1290
1291	/* This is a firmware interface ABI - make sure we don't break it: */
1292	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1293
1294	who = x86_init.resources.memory_setup();
1295
1296	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1297	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1298
1299	pr_info("BIOS-provided physical RAM map:\n");
1300	e820__print_table(who);
1301}
1302
1303void __init e820__memblock_setup(void)
1304{
1305	int i;
1306	u64 end;
1307
1308	/*
1309	 * The bootstrap memblock region count maximum is 128 entries
1310	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1311	 * than that - so allow memblock resizing.
1312	 *
1313	 * This is safe, because this call happens pretty late during x86 setup,
1314	 * so we know about reserved memory regions already. (This is important
1315	 * so that memblock resizing does no stomp over reserved areas.)
1316	 */
1317	memblock_allow_resize();
1318
1319	for (i = 0; i < e820_table->nr_entries; i++) {
1320		struct e820_entry *entry = &e820_table->entries[i];
1321
1322		end = entry->addr + entry->size;
1323		if (end != (resource_size_t)end)
1324			continue;
1325
1326		if (entry->type == E820_TYPE_SOFT_RESERVED)
1327			memblock_reserve(entry->addr, entry->size);
1328
1329		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1330			continue;
1331
1332		memblock_add(entry->addr, entry->size);
1333	}
1334
1335	/* Throw away partial pages: */
1336	memblock_trim_memory(PAGE_SIZE);
1337
1338	memblock_dump_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339}
v4.10.11
 
   1/*
   2 * Handle the memory map.
   3 * The functions here do the job until bootmem takes over.
   4 *
   5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
   6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
   7 *     Alex Achenbach <xela@slit.de>, December 2002.
   8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   9 *
 
 
 
  10 */
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/init.h>
  14#include <linux/crash_dump.h>
  15#include <linux/export.h>
  16#include <linux/bootmem.h>
  17#include <linux/pfn.h>
  18#include <linux/suspend.h>
  19#include <linux/acpi.h>
  20#include <linux/firmware-map.h>
  21#include <linux/memblock.h>
  22#include <linux/sort.h>
 
  23
  24#include <asm/e820.h>
  25#include <asm/proto.h>
  26#include <asm/setup.h>
  27#include <asm/cpufeature.h>
  28
  29/*
  30 * The e820 map is the map that gets modified e.g. with command line parameters
  31 * and that is also registered with modifications in the kernel resource tree
  32 * with the iomem_resource as parent.
  33 *
  34 * The e820_saved is directly saved after the BIOS-provided memory map is
  35 * copied. It doesn't get modified afterwards. It's registered for the
  36 * /sys/firmware/memmap interface.
  37 *
  38 * That memory map is not modified and is used as base for kexec. The kexec'd
  39 * kernel should get the same memory map as the firmware provides. Then the
  40 * user can e.g. boot the original kernel with mem=1G while still booting the
  41 * next kernel with full memory.
  42 */
  43static struct e820map initial_e820  __initdata;
  44static struct e820map initial_e820_saved  __initdata;
  45struct e820map *e820 __refdata = &initial_e820;
  46struct e820map *e820_saved __refdata = &initial_e820_saved;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48/* For PCI or other memory-mapped resources */
  49unsigned long pci_mem_start = 0xaeedbabe;
  50#ifdef CONFIG_PCI
  51EXPORT_SYMBOL(pci_mem_start);
  52#endif
  53
  54/*
  55 * This function checks if any part of the range <start,end> is mapped
  56 * with type.
  57 */
  58int
  59e820_any_mapped(u64 start, u64 end, unsigned type)
  60{
  61	int i;
  62
  63	for (i = 0; i < e820->nr_map; i++) {
  64		struct e820entry *ei = &e820->map[i];
  65
  66		if (type && ei->type != type)
  67			continue;
  68		if (ei->addr >= end || ei->addr + ei->size <= start)
  69			continue;
  70		return 1;
  71	}
  72	return 0;
 
 
 
 
 
 
 
 
 
 
 
  73}
  74EXPORT_SYMBOL_GPL(e820_any_mapped);
  75
  76/*
  77 * This function checks if the entire range <start,end> is mapped with type.
  78 *
  79 * Note: this function only works correct if the e820 table is sorted and
  80 * not-overlapping, which is the case
  81 */
  82int __init e820_all_mapped(u64 start, u64 end, unsigned type)
 
  83{
  84	int i;
  85
  86	for (i = 0; i < e820->nr_map; i++) {
  87		struct e820entry *ei = &e820->map[i];
  88
  89		if (type && ei->type != type)
  90			continue;
  91		/* is the region (part) in overlap with the current region ?*/
  92		if (ei->addr >= end || ei->addr + ei->size <= start)
 
  93			continue;
  94
  95		/* if the region is at the beginning of <start,end> we move
  96		 * start to the end of the region since it's ok until there
 
  97		 */
  98		if (ei->addr <= start)
  99			start = ei->addr + ei->size;
 
 100		/*
 101		 * if start is now at or beyond end, we're done, full
 102		 * coverage
 103		 */
 104		if (start >= end)
 105			return 1;
 106	}
 107	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108}
 109
 110/*
 111 * Add a memory region to the kernel e820 map.
 112 */
 113static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
 114					 int type)
 115{
 116	int x = e820x->nr_map;
 117
 118	if (x >= ARRAY_SIZE(e820x->map)) {
 119		printk(KERN_ERR "e820: too many entries; ignoring [mem %#010llx-%#010llx]\n",
 120		       (unsigned long long) start,
 121		       (unsigned long long) (start + size - 1));
 122		return;
 123	}
 124
 125	e820x->map[x].addr = start;
 126	e820x->map[x].size = size;
 127	e820x->map[x].type = type;
 128	e820x->nr_map++;
 129}
 130
 131void __init e820_add_region(u64 start, u64 size, int type)
 132{
 133	__e820_add_region(e820, start, size, type);
 134}
 135
 136static void __init e820_print_type(u32 type)
 137{
 138	switch (type) {
 139	case E820_RAM:
 140	case E820_RESERVED_KERN:
 141		printk(KERN_CONT "usable");
 142		break;
 143	case E820_RESERVED:
 144		printk(KERN_CONT "reserved");
 145		break;
 146	case E820_ACPI:
 147		printk(KERN_CONT "ACPI data");
 148		break;
 149	case E820_NVS:
 150		printk(KERN_CONT "ACPI NVS");
 151		break;
 152	case E820_UNUSABLE:
 153		printk(KERN_CONT "unusable");
 154		break;
 155	case E820_PMEM:
 156	case E820_PRAM:
 157		printk(KERN_CONT "persistent (type %u)", type);
 158		break;
 159	default:
 160		printk(KERN_CONT "type %u", type);
 161		break;
 162	}
 163}
 164
 165void __init e820_print_map(char *who)
 166{
 167	int i;
 168
 169	for (i = 0; i < e820->nr_map; i++) {
 170		printk(KERN_INFO "%s: [mem %#018Lx-%#018Lx] ", who,
 171		       (unsigned long long) e820->map[i].addr,
 172		       (unsigned long long)
 173		       (e820->map[i].addr + e820->map[i].size - 1));
 174		e820_print_type(e820->map[i].type);
 175		printk(KERN_CONT "\n");
 
 176	}
 177}
 178
 179/*
 180 * Sanitize the BIOS e820 map.
 181 *
 182 * Some e820 responses include overlapping entries. The following
 183 * replaces the original e820 map with a new one, removing overlaps,
 184 * and resolving conflicting memory types in favor of highest
 185 * numbered type.
 186 *
 187 * The input parameter biosmap points to an array of 'struct
 188 * e820entry' which on entry has elements in the range [0, *pnr_map)
 189 * valid, and which has space for up to max_nr_map entries.
 190 * On return, the resulting sanitized e820 map entries will be in
 191 * overwritten in the same location, starting at biosmap.
 192 *
 193 * The integer pointed to by pnr_map must be valid on entry (the
 194 * current number of valid entries located at biosmap). If the
 195 * sanitizing succeeds the *pnr_map will be updated with the new
 196 * number of valid entries (something no more than max_nr_map).
 197 *
 198 * The return value from sanitize_e820_map() is zero if it
 199 * successfully 'sanitized' the map entries passed in, and is -1
 200 * if it did nothing, which can happen if either of (1) it was
 201 * only passed one map entry, or (2) any of the input map entries
 202 * were invalid (start + size < start, meaning that the size was
 203 * so big the described memory range wrapped around through zero.)
 204 *
 205 *	Visually we're performing the following
 206 *	(1,2,3,4 = memory types)...
 207 *
 208 *	Sample memory map (w/overlaps):
 209 *	   ____22__________________
 210 *	   ______________________4_
 211 *	   ____1111________________
 212 *	   _44_____________________
 213 *	   11111111________________
 214 *	   ____________________33__
 215 *	   ___________44___________
 216 *	   __________33333_________
 217 *	   ______________22________
 218 *	   ___________________2222_
 219 *	   _________111111111______
 220 *	   _____________________11_
 221 *	   _________________4______
 222 *
 223 *	Sanitized equivalent (no overlap):
 224 *	   1_______________________
 225 *	   _44_____________________
 226 *	   ___1____________________
 227 *	   ____22__________________
 228 *	   ______11________________
 229 *	   _________1______________
 230 *	   __________3_____________
 231 *	   ___________44___________
 232 *	   _____________33_________
 233 *	   _______________2________
 234 *	   ________________1_______
 235 *	   _________________4______
 236 *	   ___________________2____
 237 *	   ____________________33__
 238 *	   ______________________4_
 239 */
 240struct change_member {
 241	struct e820entry *pbios; /* pointer to original bios entry */
 242	unsigned long long addr; /* address for this change point */
 
 
 243};
 244
 
 
 
 
 
 245static int __init cpcompare(const void *a, const void *b)
 246{
 247	struct change_member * const *app = a, * const *bpp = b;
 248	const struct change_member *ap = *app, *bp = *bpp;
 249
 250	/*
 251	 * Inputs are pointers to two elements of change_point[].  If their
 252	 * addresses are unequal, their difference dominates.  If the addresses
 253	 * are equal, then consider one that represents the end of its region
 254	 * to be greater than one that does not.
 255	 */
 256	if (ap->addr != bp->addr)
 257		return ap->addr > bp->addr ? 1 : -1;
 258
 259	return (ap->addr != ap->pbios->addr) - (bp->addr != bp->pbios->addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260}
 261
 262int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
 263			     u32 *pnr_map)
 264{
 265	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
 266	static struct change_member *change_point[2*E820_X_MAX] __initdata;
 267	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
 268	static struct e820entry new_bios[E820_X_MAX] __initdata;
 269	unsigned long current_type, last_type;
 270	unsigned long long last_addr;
 271	int chgidx;
 272	int overlap_entries;
 273	int new_bios_entry;
 274	int old_nr, new_nr, chg_nr;
 275	int i;
 276
 277	/* if there's only one memory region, don't bother */
 278	if (*pnr_map < 2)
 279		return -1;
 280
 281	old_nr = *pnr_map;
 282	BUG_ON(old_nr > max_nr_map);
 283
 284	/* bail out if we find any unreasonable addresses in bios map */
 285	for (i = 0; i < old_nr; i++)
 286		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
 287			return -1;
 
 288
 289	/* create pointers for initial change-point information (for sorting) */
 290	for (i = 0; i < 2 * old_nr; i++)
 291		change_point[i] = &change_point_list[i];
 292
 293	/* record all known change-points (starting and ending addresses),
 294	   omitting those that are for empty memory regions */
 295	chgidx = 0;
 296	for (i = 0; i < old_nr; i++)	{
 297		if (biosmap[i].size != 0) {
 298			change_point[chgidx]->addr = biosmap[i].addr;
 299			change_point[chgidx++]->pbios = &biosmap[i];
 300			change_point[chgidx]->addr = biosmap[i].addr +
 301				biosmap[i].size;
 302			change_point[chgidx++]->pbios = &biosmap[i];
 
 303		}
 304	}
 305	chg_nr = chgidx;
 306
 307	/* sort change-point list by memory addresses (low -> high) */
 308	sort(change_point, chg_nr, sizeof *change_point, cpcompare, NULL);
 309
 310	/* create a new bios memory map, removing overlaps */
 311	overlap_entries = 0;	 /* number of entries in the overlap table */
 312	new_bios_entry = 0;	 /* index for creating new bios map entries */
 313	last_type = 0;		 /* start with undefined memory type */
 314	last_addr = 0;		 /* start with 0 as last starting address */
 315
 316	/* loop through change-points, determining affect on the new bios map */
 317	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
 318		/* keep track of all overlapping bios entries */
 319		if (change_point[chgidx]->addr ==
 320		    change_point[chgidx]->pbios->addr) {
 321			/*
 322			 * add map entry to overlap list (> 1 entry
 323			 * implies an overlap)
 324			 */
 325			overlap_list[overlap_entries++] =
 326				change_point[chgidx]->pbios;
 327		} else {
 328			/*
 329			 * remove entry from list (order independent,
 330			 * so swap with last)
 331			 */
 332			for (i = 0; i < overlap_entries; i++) {
 333				if (overlap_list[i] ==
 334				    change_point[chgidx]->pbios)
 335					overlap_list[i] =
 336						overlap_list[overlap_entries-1];
 337			}
 338			overlap_entries--;
 339		}
 340		/*
 341		 * if there are overlapping entries, decide which
 342		 * "type" to use (larger value takes precedence --
 343		 * 1=usable, 2,3,4,4+=unusable)
 344		 */
 345		current_type = 0;
 346		for (i = 0; i < overlap_entries; i++)
 347			if (overlap_list[i]->type > current_type)
 348				current_type = overlap_list[i]->type;
 349		/*
 350		 * continue building up new bios map based on this
 351		 * information
 352		 */
 353		if (current_type != last_type || current_type == E820_PRAM) {
 354			if (last_type != 0)	 {
 355				new_bios[new_bios_entry].size =
 356					change_point[chgidx]->addr - last_addr;
 357				/*
 358				 * move forward only if the new size
 359				 * was non-zero
 360				 */
 361				if (new_bios[new_bios_entry].size != 0)
 362					/*
 363					 * no more space left for new
 364					 * bios entries ?
 365					 */
 366					if (++new_bios_entry >= max_nr_map)
 367						break;
 368			}
 369			if (current_type != 0)	{
 370				new_bios[new_bios_entry].addr =
 371					change_point[chgidx]->addr;
 372				new_bios[new_bios_entry].type = current_type;
 373				last_addr = change_point[chgidx]->addr;
 374			}
 375			last_type = current_type;
 376		}
 377	}
 378	/* retain count for new bios entries */
 379	new_nr = new_bios_entry;
 380
 381	/* copy new bios mapping into original location */
 382	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
 383	*pnr_map = new_nr;
 384
 385	return 0;
 386}
 387
 388static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
 389{
 390	while (nr_map) {
 391		u64 start = biosmap->addr;
 392		u64 size = biosmap->size;
 
 
 393		u64 end = start + size - 1;
 394		u32 type = biosmap->type;
 395
 396		/* Overflow in 64 bits? Ignore the memory map. */
 397		if (start > end && likely(size))
 398			return -1;
 399
 400		e820_add_region(start, size, type);
 401
 402		biosmap++;
 403		nr_map--;
 404	}
 405	return 0;
 406}
 407
 408/*
 409 * Copy the BIOS e820 map into a safe place.
 410 *
 411 * Sanity-check it while we're at it..
 412 *
 413 * If we're lucky and live on a modern system, the setup code
 414 * will have given us a memory map that we can use to properly
 415 * set up memory.  If we aren't, we'll fake a memory map.
 416 */
 417static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
 418{
 419	/* Only one memory region (or negative)? Ignore it */
 420	if (nr_map < 2)
 421		return -1;
 422
 423	return __append_e820_map(biosmap, nr_map);
 424}
 425
 426static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
 427					u64 size, unsigned old_type,
 428					unsigned new_type)
 429{
 430	u64 end;
 431	unsigned int i;
 432	u64 real_updated_size = 0;
 433
 434	BUG_ON(old_type == new_type);
 435
 436	if (size > (ULLONG_MAX - start))
 437		size = ULLONG_MAX - start;
 438
 439	end = start + size;
 440	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ",
 441	       (unsigned long long) start, (unsigned long long) (end - 1));
 442	e820_print_type(old_type);
 443	printk(KERN_CONT " ==> ");
 444	e820_print_type(new_type);
 445	printk(KERN_CONT "\n");
 446
 447	for (i = 0; i < e820x->nr_map; i++) {
 448		struct e820entry *ei = &e820x->map[i];
 449		u64 final_start, final_end;
 450		u64 ei_end;
 451
 452		if (ei->type != old_type)
 453			continue;
 454
 455		ei_end = ei->addr + ei->size;
 456		/* totally covered by new range? */
 457		if (ei->addr >= start && ei_end <= end) {
 458			ei->type = new_type;
 459			real_updated_size += ei->size;
 
 460			continue;
 461		}
 462
 463		/* new range is totally covered? */
 464		if (ei->addr < start && ei_end > end) {
 465			__e820_add_region(e820x, start, size, new_type);
 466			__e820_add_region(e820x, end, ei_end - end, ei->type);
 467			ei->size = start - ei->addr;
 468			real_updated_size += size;
 469			continue;
 470		}
 471
 472		/* partially covered */
 473		final_start = max(start, ei->addr);
 474		final_end = min(end, ei_end);
 475		if (final_start >= final_end)
 476			continue;
 477
 478		__e820_add_region(e820x, final_start, final_end - final_start,
 479				  new_type);
 480
 481		real_updated_size += final_end - final_start;
 482
 483		/*
 484		 * left range could be head or tail, so need to update
 485		 * size at first.
 486		 */
 487		ei->size -= final_end - final_start;
 488		if (ei->addr < final_start)
 489			continue;
 490		ei->addr = final_end;
 
 491	}
 492	return real_updated_size;
 493}
 494
 495u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
 496			     unsigned new_type)
 497{
 498	return __e820_update_range(e820, start, size, old_type, new_type);
 499}
 500
 501static u64 __init e820_update_range_saved(u64 start, u64 size,
 502					  unsigned old_type, unsigned new_type)
 503{
 504	return __e820_update_range(e820_saved, start, size, old_type,
 505				     new_type);
 506}
 507
 508/* make e820 not cover the range */
 509u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
 510			     int checktype)
 511{
 512	int i;
 513	u64 end;
 514	u64 real_removed_size = 0;
 515
 516	if (size > (ULLONG_MAX - start))
 517		size = ULLONG_MAX - start;
 518
 519	end = start + size;
 520	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ",
 521	       (unsigned long long) start, (unsigned long long) (end - 1));
 522	if (checktype)
 523		e820_print_type(old_type);
 524	printk(KERN_CONT "\n");
 525
 526	for (i = 0; i < e820->nr_map; i++) {
 527		struct e820entry *ei = &e820->map[i];
 528		u64 final_start, final_end;
 529		u64 ei_end;
 530
 531		if (checktype && ei->type != old_type)
 532			continue;
 533
 534		ei_end = ei->addr + ei->size;
 535		/* totally covered? */
 536		if (ei->addr >= start && ei_end <= end) {
 537			real_removed_size += ei->size;
 538			memset(ei, 0, sizeof(struct e820entry));
 
 539			continue;
 540		}
 541
 542		/* new range is totally covered? */
 543		if (ei->addr < start && ei_end > end) {
 544			e820_add_region(end, ei_end - end, ei->type);
 545			ei->size = start - ei->addr;
 546			real_removed_size += size;
 547			continue;
 548		}
 549
 550		/* partially covered */
 551		final_start = max(start, ei->addr);
 552		final_end = min(end, ei_end);
 553		if (final_start >= final_end)
 554			continue;
 
 555		real_removed_size += final_end - final_start;
 556
 557		/*
 558		 * left range could be head or tail, so need to update
 559		 * size at first.
 560		 */
 561		ei->size -= final_end - final_start;
 562		if (ei->addr < final_start)
 563			continue;
 564		ei->addr = final_end;
 
 565	}
 566	return real_removed_size;
 567}
 568
 569void __init update_e820(void)
 570{
 571	if (sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map))
 572		return;
 573	printk(KERN_INFO "e820: modified physical RAM map:\n");
 574	e820_print_map("modified");
 
 575}
 576static void __init update_e820_saved(void)
 
 577{
 578	sanitize_e820_map(e820_saved->map, ARRAY_SIZE(e820_saved->map),
 579				&e820_saved->nr_map);
 580}
 
 581#define MAX_GAP_END 0x100000000ull
 
 582/*
 583 * Search for a gap in the e820 memory space from start_addr to end_addr.
 584 */
 585__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
 586		unsigned long start_addr, unsigned long long end_addr)
 587{
 588	unsigned long long last;
 589	int i = e820->nr_map;
 590	int found = 0;
 591
 592	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
 593
 594	while (--i >= 0) {
 595		unsigned long long start = e820->map[i].addr;
 596		unsigned long long end = start + e820->map[i].size;
 597
 598		if (end < start_addr)
 599			continue;
 600
 601		/*
 602		 * Since "last" is at most 4GB, we know we'll
 603		 * fit in 32 bits if this condition is true
 604		 */
 605		if (last > end) {
 606			unsigned long gap = last - end;
 607
 608			if (gap >= *gapsize) {
 609				*gapsize = gap;
 610				*gapstart = end;
 611				found = 1;
 612			}
 613		}
 614		if (start < last)
 615			last = start;
 616	}
 617	return found;
 618}
 619
 620/*
 621 * Search for the biggest gap in the low 32 bits of the e820
 622 * memory space.  We pass this space to PCI to assign MMIO resources
 623 * for hotplug or unconfigured devices in.
 
 
 624 * Hopefully the BIOS let enough space left.
 625 */
 626__init void e820_setup_gap(void)
 627{
 628	unsigned long gapstart, gapsize;
 629	int found;
 630
 631	gapstart = 0x10000000;
 632	gapsize = 0x400000;
 633	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
 634
 
 635#ifdef CONFIG_X86_64
 636	if (!found) {
 637		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 638		printk(KERN_ERR
 639	"e820: cannot find a gap in the 32bit address range\n"
 640	"e820: PCI devices with unassigned 32bit BARs may break!\n");
 
 
 641	}
 642#endif
 643
 644	/*
 645	 * e820_reserve_resources_late protect stolen RAM already
 646	 */
 647	pci_mem_start = gapstart;
 648
 649	printk(KERN_INFO
 650	       "e820: [mem %#010lx-%#010lx] available for PCI devices\n",
 651	       gapstart, gapstart + gapsize - 1);
 652}
 653
 654/*
 655 * Called late during init, in free_initmem().
 656 *
 657 * Initial e820 and e820_saved are largish __initdata arrays.
 658 * Copy them to (usually much smaller) dynamically allocated area.
 659 * This is done after all tweaks we ever do to them:
 660 * all functions which modify them are __init functions,
 661 * they won't exist after this point.
 
 
 
 662 */
 663__init void e820_reallocate_tables(void)
 664{
 665	struct e820map *n;
 666	int size;
 667
 668	size = offsetof(struct e820map, map) + sizeof(struct e820entry) * e820->nr_map;
 669	n = kmalloc(size, GFP_KERNEL);
 
 
 
 
 
 670	BUG_ON(!n);
 671	memcpy(n, e820, size);
 672	e820 = n;
 673
 674	size = offsetof(struct e820map, map) + sizeof(struct e820entry) * e820_saved->nr_map;
 675	n = kmalloc(size, GFP_KERNEL);
 676	BUG_ON(!n);
 677	memcpy(n, e820_saved, size);
 678	e820_saved = n;
 679}
 680
 681/**
 682 * Because of the size limitation of struct boot_params, only first
 683 * 128 E820 memory entries are passed to kernel via
 684 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 685 * linked list of struct setup_data, which is parsed here.
 686 */
 687void __init parse_e820_ext(u64 phys_addr, u32 data_len)
 688{
 689	int entries;
 690	struct e820entry *extmap;
 691	struct setup_data *sdata;
 692
 693	sdata = early_memremap(phys_addr, data_len);
 694	entries = sdata->len / sizeof(struct e820entry);
 695	extmap = (struct e820entry *)(sdata->data);
 696	__append_e820_map(extmap, entries);
 697	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
 
 
 
 
 
 698	early_memunmap(sdata, data_len);
 699	printk(KERN_INFO "e820: extended physical RAM map:\n");
 700	e820_print_map("extended");
 701}
 702
 703#if defined(CONFIG_X86_64) || \
 704	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
 705/**
 706 * Find the ranges of physical addresses that do not correspond to
 707 * e820 RAM areas and mark the corresponding pages as nosave for
 708 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 709 *
 710 * This function requires the e820 map to be sorted and without any
 711 * overlapping entries.
 712 */
 713void __init e820_mark_nosave_regions(unsigned long limit_pfn)
 714{
 715	int i;
 716	unsigned long pfn = 0;
 717
 718	for (i = 0; i < e820->nr_map; i++) {
 719		struct e820entry *ei = &e820->map[i];
 720
 721		if (pfn < PFN_UP(ei->addr))
 722			register_nosave_region(pfn, PFN_UP(ei->addr));
 723
 724		pfn = PFN_DOWN(ei->addr + ei->size);
 725
 726		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 727			register_nosave_region(PFN_UP(ei->addr), pfn);
 728
 729		if (pfn >= limit_pfn)
 730			break;
 731	}
 732}
 733#endif
 734
 735#ifdef CONFIG_ACPI
 736/**
 737 * Mark ACPI NVS memory region, so that we can save/restore it during
 738 * hibernation and the subsequent resume.
 739 */
 740static int __init e820_mark_nvs_memory(void)
 741{
 742	int i;
 743
 744	for (i = 0; i < e820->nr_map; i++) {
 745		struct e820entry *ei = &e820->map[i];
 746
 747		if (ei->type == E820_NVS)
 748			acpi_nvs_register(ei->addr, ei->size);
 749	}
 750
 751	return 0;
 752}
 753core_initcall(e820_mark_nvs_memory);
 754#endif
 755
 756/*
 757 * pre allocated 4k and reserved it in memblock and e820_saved
 
 
 
 
 
 758 */
 759u64 __init early_reserve_e820(u64 size, u64 align)
 760{
 761	u64 addr;
 762
 763	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 764	if (addr) {
 765		e820_update_range_saved(addr, size, E820_RAM, E820_RESERVED);
 766		printk(KERN_INFO "e820: update e820_saved for early_reserve_e820\n");
 767		update_e820_saved();
 768	}
 769
 770	return addr;
 771}
 772
 773#ifdef CONFIG_X86_32
 774# ifdef CONFIG_X86_PAE
 775#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 776# else
 777#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 778# endif
 779#else /* CONFIG_X86_32 */
 780# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 781#endif
 782
 783/*
 784 * Find the highest page frame number we have available
 785 */
 786static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
 787{
 788	int i;
 789	unsigned long last_pfn = 0;
 790	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 791
 792	for (i = 0; i < e820->nr_map; i++) {
 793		struct e820entry *ei = &e820->map[i];
 794		unsigned long start_pfn;
 795		unsigned long end_pfn;
 796
 797		if (ei->type != type)
 
 798			continue;
 799
 800		start_pfn = ei->addr >> PAGE_SHIFT;
 801		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
 802
 803		if (start_pfn >= limit_pfn)
 804			continue;
 805		if (end_pfn > limit_pfn) {
 806			last_pfn = limit_pfn;
 807			break;
 808		}
 809		if (end_pfn > last_pfn)
 810			last_pfn = end_pfn;
 811	}
 812
 813	if (last_pfn > max_arch_pfn)
 814		last_pfn = max_arch_pfn;
 815
 816	printk(KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 817			 last_pfn, max_arch_pfn);
 818	return last_pfn;
 819}
 820unsigned long __init e820_end_of_ram_pfn(void)
 
 821{
 822	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
 823}
 824
 825unsigned long __init e820_end_of_low_ram_pfn(void)
 826{
 827	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_RAM);
 828}
 829
 830static void __init early_panic(char *msg)
 831{
 832	early_printk(msg);
 833	panic(msg);
 834}
 835
 836static int userdef __initdata;
 837
 838/* "mem=nopentium" disables the 4MB page tables. */
 839static int __init parse_memopt(char *p)
 840{
 841	u64 mem_size;
 842
 843	if (!p)
 844		return -EINVAL;
 845
 846	if (!strcmp(p, "nopentium")) {
 847#ifdef CONFIG_X86_32
 848		setup_clear_cpu_cap(X86_FEATURE_PSE);
 849		return 0;
 850#else
 851		printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n");
 852		return -EINVAL;
 853#endif
 854	}
 855
 856	userdef = 1;
 857	mem_size = memparse(p, &p);
 858	/* don't remove all of memory when handling "mem={invalid}" param */
 
 859	if (mem_size == 0)
 860		return -EINVAL;
 861	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 862
 863	return 0;
 864}
 865early_param("mem", parse_memopt);
 866
 867static int __init parse_memmap_one(char *p)
 868{
 869	char *oldp;
 870	u64 start_at, mem_size;
 871
 872	if (!p)
 873		return -EINVAL;
 874
 875	if (!strncmp(p, "exactmap", 8)) {
 876#ifdef CONFIG_CRASH_DUMP
 877		/*
 878		 * If we are doing a crash dump, we still need to know
 879		 * the real mem size before original memory map is
 880		 * reset.
 881		 */
 882		saved_max_pfn = e820_end_of_ram_pfn();
 883#endif
 884		e820->nr_map = 0;
 885		userdef = 1;
 886		return 0;
 887	}
 888
 889	oldp = p;
 890	mem_size = memparse(p, &p);
 891	if (p == oldp)
 892		return -EINVAL;
 893
 894	userdef = 1;
 895	if (*p == '@') {
 896		start_at = memparse(p+1, &p);
 897		e820_add_region(start_at, mem_size, E820_RAM);
 898	} else if (*p == '#') {
 899		start_at = memparse(p+1, &p);
 900		e820_add_region(start_at, mem_size, E820_ACPI);
 901	} else if (*p == '$') {
 902		start_at = memparse(p+1, &p);
 903		e820_add_region(start_at, mem_size, E820_RESERVED);
 904	} else if (*p == '!') {
 905		start_at = memparse(p+1, &p);
 906		e820_add_region(start_at, mem_size, E820_PRAM);
 907	} else
 908		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	return *p == '\0' ? 0 : -EINVAL;
 911}
 
 912static int __init parse_memmap_opt(char *str)
 913{
 914	while (str) {
 915		char *k = strchr(str, ',');
 916
 917		if (k)
 918			*k++ = 0;
 919
 920		parse_memmap_one(str);
 921		str = k;
 922	}
 923
 924	return 0;
 925}
 926early_param("memmap", parse_memmap_opt);
 927
 928void __init finish_e820_parsing(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929{
 930	if (userdef) {
 931		if (sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map),
 932					&e820->nr_map) < 0)
 933			early_panic("Invalid user supplied memory map");
 934
 935		printk(KERN_INFO "e820: user-defined physical RAM map:\n");
 936		e820_print_map("user");
 937	}
 938}
 939
 940static const char *__init e820_type_to_string(int e820_type)
 941{
 942	switch (e820_type) {
 943	case E820_RESERVED_KERN:
 944	case E820_RAM:	return "System RAM";
 945	case E820_ACPI:	return "ACPI Tables";
 946	case E820_NVS:	return "ACPI Non-volatile Storage";
 947	case E820_UNUSABLE:	return "Unusable memory";
 948	case E820_PRAM: return "Persistent Memory (legacy)";
 949	case E820_PMEM: return "Persistent Memory";
 950	default:	return "reserved";
 
 
 951	}
 952}
 953
 954static unsigned long __init e820_type_to_iomem_type(int e820_type)
 955{
 956	switch (e820_type) {
 957	case E820_RESERVED_KERN:
 958	case E820_RAM:
 959		return IORESOURCE_SYSTEM_RAM;
 960	case E820_ACPI:
 961	case E820_NVS:
 962	case E820_UNUSABLE:
 963	case E820_PRAM:
 964	case E820_PMEM:
 965	default:
 966		return IORESOURCE_MEM;
 967	}
 968}
 969
 970static unsigned long __init e820_type_to_iores_desc(int e820_type)
 971{
 972	switch (e820_type) {
 973	case E820_ACPI:
 974		return IORES_DESC_ACPI_TABLES;
 975	case E820_NVS:
 976		return IORES_DESC_ACPI_NV_STORAGE;
 977	case E820_PMEM:
 978		return IORES_DESC_PERSISTENT_MEMORY;
 979	case E820_PRAM:
 980		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
 981	case E820_RESERVED_KERN:
 982	case E820_RAM:
 983	case E820_UNUSABLE:
 984	default:
 985		return IORES_DESC_NONE;
 986	}
 987}
 988
 989static bool __init do_mark_busy(u32 type, struct resource *res)
 990{
 991	/* this is the legacy bios/dos rom-shadow + mmio region */
 992	if (res->start < (1ULL<<20))
 993		return true;
 994
 995	/*
 996	 * Treat persistent memory like device memory, i.e. reserve it
 997	 * for exclusive use of a driver
 998	 */
 999	switch (type) {
1000	case E820_RESERVED:
1001	case E820_PRAM:
1002	case E820_PMEM:
 
1003		return false;
 
 
 
 
 
1004	default:
1005		return true;
1006	}
1007}
1008
1009/*
1010 * Mark e820 reserved areas as busy for the resource manager.
1011 */
 
1012static struct resource __initdata *e820_res;
1013void __init e820_reserve_resources(void)
 
1014{
1015	int i;
1016	struct resource *res;
1017	u64 end;
1018
1019	res = alloc_bootmem(sizeof(struct resource) * e820->nr_map);
 
 
 
 
1020	e820_res = res;
1021	for (i = 0; i < e820->nr_map; i++) {
1022		end = e820->map[i].addr + e820->map[i].size - 1;
 
 
 
1023		if (end != (resource_size_t)end) {
1024			res++;
1025			continue;
1026		}
1027		res->name = e820_type_to_string(e820->map[i].type);
1028		res->start = e820->map[i].addr;
1029		res->end = end;
1030
1031		res->flags = e820_type_to_iomem_type(e820->map[i].type);
1032		res->desc = e820_type_to_iores_desc(e820->map[i].type);
1033
1034		/*
1035		 * don't register the region that could be conflicted with
1036		 * pci device BAR resource and insert them later in
1037		 * pcibios_resource_survey()
1038		 */
1039		if (do_mark_busy(e820->map[i].type, res)) {
1040			res->flags |= IORESOURCE_BUSY;
1041			insert_resource(&iomem_resource, res);
1042		}
1043		res++;
1044	}
1045
1046	for (i = 0; i < e820_saved->nr_map; i++) {
1047		struct e820entry *entry = &e820_saved->map[i];
1048		firmware_map_add_early(entry->addr,
1049			entry->addr + entry->size,
1050			e820_type_to_string(entry->type));
1051	}
1052}
1053
1054/* How much should we pad RAM ending depending on where it is? */
 
 
1055static unsigned long __init ram_alignment(resource_size_t pos)
1056{
1057	unsigned long mb = pos >> 20;
1058
1059	/* To 64kB in the first megabyte */
1060	if (!mb)
1061		return 64*1024;
1062
1063	/* To 1MB in the first 16MB */
1064	if (mb < 16)
1065		return 1024*1024;
1066
1067	/* To 64MB for anything above that */
1068	return 64*1024*1024;
1069}
1070
1071#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1072
1073void __init e820_reserve_resources_late(void)
1074{
1075	int i;
1076	struct resource *res;
1077
1078	res = e820_res;
1079	for (i = 0; i < e820->nr_map; i++) {
1080		if (!res->parent && res->end)
1081			insert_resource_expand_to_fit(&iomem_resource, res);
1082		res++;
1083	}
1084
1085	/*
1086	 * Try to bump up RAM regions to reasonable boundaries to
1087	 * avoid stolen RAM:
1088	 */
1089	for (i = 0; i < e820->nr_map; i++) {
1090		struct e820entry *entry = &e820->map[i];
1091		u64 start, end;
1092
1093		if (entry->type != E820_RAM)
1094			continue;
 
1095		start = entry->addr + entry->size;
1096		end = round_up(start, ram_alignment(start)) - 1;
1097		if (end > MAX_RESOURCE_SIZE)
1098			end = MAX_RESOURCE_SIZE;
1099		if (start >= end)
1100			continue;
1101		printk(KERN_DEBUG
1102		       "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n",
1103		       start, end);
1104		reserve_region_with_split(&iomem_resource, start, end,
1105					  "RAM buffer");
1106	}
1107}
1108
1109char *__init default_machine_specific_memory_setup(void)
 
 
 
1110{
1111	char *who = "BIOS-e820";
1112	u32 new_nr;
1113	/*
1114	 * Try to copy the BIOS-supplied E820-map.
1115	 *
1116	 * Otherwise fake a memory map; one section from 0k->640k,
1117	 * the next section from 1mb->appropriate_mem_k
1118	 */
1119	new_nr = boot_params.e820_entries;
1120	sanitize_e820_map(boot_params.e820_map,
1121			ARRAY_SIZE(boot_params.e820_map),
1122			&new_nr);
1123	boot_params.e820_entries = new_nr;
1124	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1125	  < 0) {
1126		u64 mem_size;
1127
1128		/* compare results from other methods and take the greater */
1129		if (boot_params.alt_mem_k
1130		    < boot_params.screen_info.ext_mem_k) {
1131			mem_size = boot_params.screen_info.ext_mem_k;
1132			who = "BIOS-88";
1133		} else {
1134			mem_size = boot_params.alt_mem_k;
1135			who = "BIOS-e801";
1136		}
1137
1138		e820->nr_map = 0;
1139		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1140		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1141	}
1142
1143	/* In case someone cares... */
 
 
1144	return who;
1145}
1146
1147void __init setup_memory_map(void)
 
 
 
 
 
1148{
1149	char *who;
1150
 
 
 
1151	who = x86_init.resources.memory_setup();
1152	memcpy(e820_saved, e820, sizeof(struct e820map));
1153	printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n");
1154	e820_print_map(who);
 
 
 
1155}
1156
1157void __init memblock_x86_fill(void)
1158{
1159	int i;
1160	u64 end;
1161
1162	/*
1163	 * EFI may have more than 128 entries
1164	 * We are safe to enable resizing, beause memblock_x86_fill()
1165	 * is rather later for x86
 
 
 
 
1166	 */
1167	memblock_allow_resize();
1168
1169	for (i = 0; i < e820->nr_map; i++) {
1170		struct e820entry *ei = &e820->map[i];
1171
1172		end = ei->addr + ei->size;
1173		if (end != (resource_size_t)end)
1174			continue;
1175
1176		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 
 
 
1177			continue;
1178
1179		memblock_add(ei->addr, ei->size);
1180	}
1181
1182	/* throw away partial pages */
1183	memblock_trim_memory(PAGE_SIZE);
1184
1185	memblock_dump_all();
1186}
1187
1188void __init memblock_find_dma_reserve(void)
1189{
1190#ifdef CONFIG_X86_64
1191	u64 nr_pages = 0, nr_free_pages = 0;
1192	unsigned long start_pfn, end_pfn;
1193	phys_addr_t start, end;
1194	int i;
1195	u64 u;
1196
1197	/*
1198	 * need to find out used area below MAX_DMA_PFN
1199	 * need to use memblock to get free size in [0, MAX_DMA_PFN]
1200	 * at first, and assume boot_mem will not take below MAX_DMA_PFN
1201	 */
1202	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1203		start_pfn = min(start_pfn, MAX_DMA_PFN);
1204		end_pfn = min(end_pfn, MAX_DMA_PFN);
1205		nr_pages += end_pfn - start_pfn;
1206	}
1207
1208	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1209				NULL) {
1210		start_pfn = min_t(unsigned long, PFN_UP(start), MAX_DMA_PFN);
1211		end_pfn = min_t(unsigned long, PFN_DOWN(end), MAX_DMA_PFN);
1212		if (start_pfn < end_pfn)
1213			nr_free_pages += end_pfn - start_pfn;
1214	}
1215
1216	set_dma_reserve(nr_pages - nr_free_pages);
1217#endif
1218}