Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
 
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
 
 
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
 
 
 
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
 
 
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
 
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
 
  21#include <asm/setup.h>
 
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent CRC32
  35 *         checksum of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So its main role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
 194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 197	case E820_TYPE_PMEM:		/* Fall through: */
 198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 199	default:			pr_cont("type %u", type);		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 200	}
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205	int i;
 206
 207	for (i = 0; i < e820_table->nr_entries; i++) {
 208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209			who,
 210			e820_table->entries[i].addr,
 211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213		e820_print_type(e820_table->entries[i].type);
 214		pr_cont("\n");
 215	}
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 
 
 
 
 
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *	Visually we're performing the following
 245 *	(1,2,3,4 = memory types)...
 246 *
 247 *	Sample memory map (w/overlaps):
 248 *	   ____22__________________
 249 *	   ______________________4_
 250 *	   ____1111________________
 251 *	   _44_____________________
 252 *	   11111111________________
 253 *	   ____________________33__
 254 *	   ___________44___________
 255 *	   __________33333_________
 256 *	   ______________22________
 257 *	   ___________________2222_
 258 *	   _________111111111______
 259 *	   _____________________11_
 260 *	   _________________4______
 261 *
 262 *	Sanitized equivalent (no overlap):
 263 *	   1_______________________
 264 *	   _44_____________________
 265 *	   ___1____________________
 266 *	   ____22__________________
 267 *	   ______11________________
 268 *	   _________1______________
 269 *	   __________3_____________
 270 *	   ___________44___________
 271 *	   _____________33_________
 272 *	   _______________2________
 273 *	   ________________1_______
 274 *	   _________________4______
 275 *	   ___________________2____
 276 *	   ____________________33__
 277 *	   ______________________4_
 278 */
 279struct change_member {
 280	/* Pointer to the original entry: */
 281	struct e820_entry	*entry;
 282	/* Address for this change point: */
 283	unsigned long long	addr;
 284};
 285
 286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 292{
 293	struct change_member * const *app = a, * const *bpp = b;
 294	const struct change_member *ap = *app, *bp = *bpp;
 295
 296	/*
 297	 * Inputs are pointers to two elements of change_point[].  If their
 298	 * addresses are not equal, their difference dominates.  If the addresses
 299	 * are equal, then consider one that represents the end of its region
 300	 * to be greater than one that does not.
 301	 */
 302	if (ap->addr != bp->addr)
 303		return ap->addr > bp->addr ? 1 : -1;
 304
 305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 308static bool e820_nomerge(enum e820_type type)
 
 309{
 310	/*
 311	 * These types may indicate distinct platform ranges aligned to
 312	 * numa node, protection domain, performance domain, or other
 313	 * boundaries. Do not merge them.
 314	 */
 315	if (type == E820_TYPE_PRAM)
 316		return true;
 317	if (type == E820_TYPE_SOFT_RESERVED)
 318		return true;
 319	return false;
 320}
 321
 322int __init e820__update_table(struct e820_table *table)
 323{
 324	struct e820_entry *entries = table->entries;
 325	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 326	enum e820_type current_type, last_type;
 327	unsigned long long last_addr;
 328	u32 new_nr_entries, overlap_entries;
 329	u32 i, chg_idx, chg_nr;
 
 
 
 330
 331	/* If there's only one memory region, don't bother: */
 332	if (table->nr_entries < 2)
 333		return -1;
 334
 335	BUG_ON(table->nr_entries > max_nr_entries);
 
 336
 337	/* Bail out if we find any unreasonable addresses in the map: */
 338	for (i = 0; i < table->nr_entries; i++) {
 339		if (entries[i].addr + entries[i].size < entries[i].addr)
 340			return -1;
 341	}
 342
 343	/* Create pointers for initial change-point information (for sorting): */
 344	for (i = 0; i < 2 * table->nr_entries; i++)
 345		change_point[i] = &change_point_list[i];
 346
 347	/*
 348	 * Record all known change-points (starting and ending addresses),
 349	 * omitting empty memory regions:
 350	 */
 351	chg_idx = 0;
 352	for (i = 0; i < table->nr_entries; i++)	{
 353		if (entries[i].size != 0) {
 354			change_point[chg_idx]->addr	= entries[i].addr;
 355			change_point[chg_idx++]->entry	= &entries[i];
 356			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 357			change_point[chg_idx++]->entry	= &entries[i];
 358		}
 359	}
 360	chg_nr = chg_idx;
 361
 362	/* Sort change-point list by memory addresses (low -> high): */
 363	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 364
 365	/* Create a new memory map, removing overlaps: */
 366	overlap_entries = 0;	 /* Number of entries in the overlap table */
 367	new_nr_entries = 0;	 /* Index for creating new map entries */
 368	last_type = 0;		 /* Start with undefined memory type */
 369	last_addr = 0;		 /* Start with 0 as last starting address */
 370
 371	/* Loop through change-points, determining effect on the new map: */
 372	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 373		/* Keep track of all overlapping entries */
 374		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 375			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 376			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 
 
 
 
 
 377		} else {
 378			/* Remove entry from list (order independent, so swap with last): */
 
 
 
 379			for (i = 0; i < overlap_entries; i++) {
 380				if (overlap_list[i] == change_point[chg_idx]->entry)
 381					overlap_list[i] = overlap_list[overlap_entries-1];
 
 
 382			}
 383			overlap_entries--;
 384		}
 385		/*
 386		 * If there are overlapping entries, decide which
 387		 * "type" to use (larger value takes precedence --
 388		 * 1=usable, 2,3,4,4+=unusable)
 389		 */
 390		current_type = 0;
 391		for (i = 0; i < overlap_entries; i++) {
 392			if (overlap_list[i]->type > current_type)
 393				current_type = overlap_list[i]->type;
 394		}
 395
 396		/* Continue building up new map based on this information: */
 397		if (current_type != last_type || e820_nomerge(current_type)) {
 398			if (last_type) {
 399				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 400				/* Move forward only if the new size was non-zero: */
 401				if (new_entries[new_nr_entries].size != 0)
 402					/* No more space left for new entries? */
 403					if (++new_nr_entries >= max_nr_entries)
 
 
 
 
 
 
 
 
 404						break;
 405			}
 406			if (current_type) {
 407				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 408				new_entries[new_nr_entries].type = current_type;
 409				last_addr = change_point[chg_idx]->addr;
 
 410			}
 411			last_type = current_type;
 412		}
 413	}
 
 
 414
 415	/* Copy the new entries into the original location: */
 416	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 417	table->nr_entries = new_nr_entries;
 418
 419	return 0;
 420}
 421
 422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 423{
 424	struct boot_e820_entry *entry = entries;
 425
 426	while (nr_entries) {
 427		u64 start = entry->addr;
 428		u64 size = entry->size;
 429		u64 end = start + size - 1;
 430		u32 type = entry->type;
 431
 432		/* Ignore the entry on 64-bit overflow: */
 433		if (start > end && likely(size))
 434			return -1;
 435
 436		e820__range_add(start, size, type);
 437
 438		entry++;
 439		nr_entries--;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Copy the BIOS E820 map into a safe place.
 446 *
 447 * Sanity-check it while we're at it..
 448 *
 449 * If we're lucky and live on a modern system, the setup code
 450 * will have given us a memory map that we can use to properly
 451 * set up memory.  If we aren't, we'll fake a memory map.
 452 */
 453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 454{
 455	/* Only one memory region (or negative)? Ignore it */
 456	if (nr_entries < 2)
 457		return -1;
 458
 459	return __append_e820_table(entries, nr_entries);
 460}
 461
 462static u64 __init
 463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 464{
 465	u64 end;
 466	unsigned int i;
 467	u64 real_updated_size = 0;
 468
 469	BUG_ON(old_type == new_type);
 470
 471	if (size > (ULLONG_MAX - start))
 472		size = ULLONG_MAX - start;
 473
 474	end = start + size;
 475	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 
 476	e820_print_type(old_type);
 477	pr_cont(" ==> ");
 478	e820_print_type(new_type);
 479	pr_cont("\n");
 480
 481	for (i = 0; i < table->nr_entries; i++) {
 482		struct e820_entry *entry = &table->entries[i];
 483		u64 final_start, final_end;
 484		u64 entry_end;
 485
 486		if (entry->type != old_type)
 487			continue;
 488
 489		entry_end = entry->addr + entry->size;
 490
 491		/* Completely covered by new range? */
 492		if (entry->addr >= start && entry_end <= end) {
 493			entry->type = new_type;
 494			real_updated_size += entry->size;
 495			continue;
 496		}
 497
 498		/* New range is completely covered? */
 499		if (entry->addr < start && entry_end > end) {
 500			__e820__range_add(table, start, size, new_type);
 501			__e820__range_add(table, end, entry_end - end, entry->type);
 502			entry->size = start - entry->addr;
 503			real_updated_size += size;
 504			continue;
 505		}
 506
 507		/* Partially covered: */
 508		final_start = max(start, entry->addr);
 509		final_end = min(end, entry_end);
 510		if (final_start >= final_end)
 511			continue;
 512
 513		__e820__range_add(table, final_start, final_end - final_start, new_type);
 
 514
 515		real_updated_size += final_end - final_start;
 516
 517		/*
 518		 * Left range could be head or tail, so need to update
 519		 * its size first:
 520		 */
 521		entry->size -= final_end - final_start;
 522		if (entry->addr < final_start)
 523			continue;
 524
 525		entry->addr = final_end;
 526	}
 527	return real_updated_size;
 528}
 529
 530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 531{
 532	return __e820__range_update(e820_table, start, size, old_type, new_type);
 533}
 534
 535u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size,
 536				    enum e820_type old_type, enum e820_type new_type)
 537{
 538	return __e820__range_update(t, start, size, old_type, new_type);
 
 539}
 540
 541/* Remove a range of memory from the E820 table: */
 542u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 
 543{
 544	int i;
 545	u64 end;
 546	u64 real_removed_size = 0;
 547
 548	if (size > (ULLONG_MAX - start))
 549		size = ULLONG_MAX - start;
 550
 551	end = start + size;
 552	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 553	if (check_type)
 
 554		e820_print_type(old_type);
 555	pr_cont("\n");
 556
 557	for (i = 0; i < e820_table->nr_entries; i++) {
 558		struct e820_entry *entry = &e820_table->entries[i];
 559		u64 final_start, final_end;
 560		u64 entry_end;
 561
 562		if (check_type && entry->type != old_type)
 563			continue;
 564
 565		entry_end = entry->addr + entry->size;
 566
 567		/* Completely covered? */
 568		if (entry->addr >= start && entry_end <= end) {
 569			real_removed_size += entry->size;
 570			memset(entry, 0, sizeof(*entry));
 571			continue;
 572		}
 573
 574		/* Is the new range completely covered? */
 575		if (entry->addr < start && entry_end > end) {
 576			e820__range_add(end, entry_end - end, entry->type);
 577			entry->size = start - entry->addr;
 578			real_removed_size += size;
 579			continue;
 580		}
 581
 582		/* Partially covered: */
 583		final_start = max(start, entry->addr);
 584		final_end = min(end, entry_end);
 585		if (final_start >= final_end)
 586			continue;
 587
 588		real_removed_size += final_end - final_start;
 589
 590		/*
 591		 * Left range could be head or tail, so need to update
 592		 * the size first:
 593		 */
 594		entry->size -= final_end - final_start;
 595		if (entry->addr < final_start)
 596			continue;
 597
 598		entry->addr = final_end;
 599	}
 600	return real_removed_size;
 601}
 602
 603void __init e820__update_table_print(void)
 604{
 605	if (e820__update_table(e820_table))
 606		return;
 607
 608	pr_info("modified physical RAM map:\n");
 609	e820__print_table("modified");
 610}
 611
 612static void __init e820__update_table_kexec(void)
 613{
 614	e820__update_table(e820_table_kexec);
 
 615}
 616
 617#define MAX_GAP_END 0x100000000ull
 618
 619/*
 620 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 621 */
 622static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 
 623{
 624	unsigned long long last = MAX_GAP_END;
 625	int i = e820_table->nr_entries;
 626	int found = 0;
 627
 
 
 628	while (--i >= 0) {
 629		unsigned long long start = e820_table->entries[i].addr;
 630		unsigned long long end = start + e820_table->entries[i].size;
 
 
 
 631
 632		/*
 633		 * Since "last" is at most 4GB, we know we'll
 634		 * fit in 32 bits if this condition is true:
 635		 */
 636		if (last > end) {
 637			unsigned long gap = last - end;
 638
 639			if (gap >= *gapsize) {
 640				*gapsize = gap;
 641				*gapstart = end;
 642				found = 1;
 643			}
 644		}
 645		if (start < last)
 646			last = start;
 647	}
 648	return found;
 649}
 650
 651/*
 652 * Search for the biggest gap in the low 32 bits of the E820
 653 * memory space. We pass this space to the PCI subsystem, so
 654 * that it can assign MMIO resources for hotplug or
 655 * unconfigured devices in.
 656 *
 657 * Hopefully the BIOS let enough space left.
 658 */
 659__init void e820__setup_pci_gap(void)
 660{
 661	unsigned long gapstart, gapsize;
 662	int found;
 663
 
 664	gapsize = 0x400000;
 665	found  = e820_search_gap(&gapstart, &gapsize);
 666
 667	if (!found) {
 668#ifdef CONFIG_X86_64
 
 669		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 670		pr_err("Cannot find an available gap in the 32-bit address range\n");
 671		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 672#else
 673		gapstart = 0x10000000;
 674#endif
 675	}
 
 676
 677	/*
 678	 * e820__reserve_resources_late() protects stolen RAM already:
 679	 */
 680	pci_mem_start = gapstart;
 681
 682	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 683		gapstart, gapstart + gapsize - 1);
 684}
 685
 686/*
 687 * Called late during init, in free_initmem().
 688 *
 689 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 690 *
 691 * Copy them to a (usually much smaller) dynamically allocated area that is
 692 * sized precisely after the number of e820 entries.
 693 *
 694 * This is done after we've performed all the fixes and tweaks to the tables.
 695 * All functions which modify them are __init functions, which won't exist
 696 * after free_initmem().
 697 */
 698__init void e820__reallocate_tables(void)
 699{
 700	struct e820_table *n;
 701	int size;
 702
 703	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 704	n = kmemdup(e820_table, size, GFP_KERNEL);
 705	BUG_ON(!n);
 706	e820_table = n;
 707
 708	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 709	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 710	BUG_ON(!n);
 711	e820_table_kexec = n;
 712
 713	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 714	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 715	BUG_ON(!n);
 716	e820_table_firmware = n;
 717}
 718
 719/*
 720 * Because of the small fixed size of struct boot_params, only the first
 721 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 722 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 723 * struct setup_data, which is parsed here.
 724 */
 725void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 726{
 727	int entries;
 728	struct boot_e820_entry *extmap;
 729	struct setup_data *sdata;
 730
 731	sdata = early_memremap(phys_addr, data_len);
 732	entries = sdata->len / sizeof(*extmap);
 733	extmap = (struct boot_e820_entry *)(sdata->data);
 734
 735	__append_e820_table(extmap, entries);
 736	e820__update_table(e820_table);
 737
 738	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 739	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 740
 741	early_memunmap(sdata, data_len);
 742	pr_info("extended physical RAM map:\n");
 743	e820__print_table("extended");
 744}
 745
 746/*
 
 
 747 * Find the ranges of physical addresses that do not correspond to
 748 * E820 RAM areas and register the corresponding pages as 'nosave' for
 749 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 750 *
 751 * This function requires the E820 map to be sorted and without any
 752 * overlapping entries.
 753 */
 754void __init e820__register_nosave_regions(unsigned long limit_pfn)
 755{
 756	int i;
 757	unsigned long pfn = 0;
 758
 759	for (i = 0; i < e820_table->nr_entries; i++) {
 760		struct e820_entry *entry = &e820_table->entries[i];
 761
 762		if (pfn < PFN_UP(entry->addr))
 763			register_nosave_region(pfn, PFN_UP(entry->addr));
 764
 765		pfn = PFN_DOWN(entry->addr + entry->size);
 766
 767		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 768			register_nosave_region(PFN_UP(entry->addr), pfn);
 769
 770		if (pfn >= limit_pfn)
 771			break;
 772	}
 773}
 
 774
 775#ifdef CONFIG_ACPI
 776/*
 777 * Register ACPI NVS memory regions, so that we can save/restore them during
 778 * hibernation and the subsequent resume:
 779 */
 780static int __init e820__register_nvs_regions(void)
 781{
 782	int i;
 783
 784	for (i = 0; i < e820_table->nr_entries; i++) {
 785		struct e820_entry *entry = &e820_table->entries[i];
 786
 787		if (entry->type == E820_TYPE_NVS)
 788			acpi_nvs_register(entry->addr, entry->size);
 789	}
 790
 791	return 0;
 792}
 793core_initcall(e820__register_nvs_regions);
 794#endif
 795
 796/*
 797 * Allocate the requested number of bytes with the requested alignment
 798 * and return (the physical address) to the caller. Also register this
 799 * range in the 'kexec' E820 table as a reserved range.
 800 *
 801 * This allows kexec to fake a new mptable, as if it came from the real
 802 * system.
 803 */
 804u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 805{
 806	u64 addr;
 807
 808	addr = memblock_phys_alloc(size, align);
 809	if (addr) {
 810		e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 811		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 812		e820__update_table_kexec();
 813	}
 814
 815	return addr;
 816}
 817
 818#ifdef CONFIG_X86_32
 819# ifdef CONFIG_X86_PAE
 820#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 821# else
 822#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 823# endif
 824#else /* CONFIG_X86_32 */
 825# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 826#endif
 827
 828/*
 829 * Find the highest page frame number we have available
 830 */
 831static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn)
 832{
 833	int i;
 834	unsigned long last_pfn = 0;
 835	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 836
 837	for (i = 0; i < e820_table->nr_entries; i++) {
 838		struct e820_entry *entry = &e820_table->entries[i];
 839		unsigned long start_pfn;
 840		unsigned long end_pfn;
 841
 842		if (entry->type != E820_TYPE_RAM &&
 843		    entry->type != E820_TYPE_ACPI)
 
 
 
 844			continue;
 845
 846		start_pfn = entry->addr >> PAGE_SHIFT;
 847		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 848
 849		if (start_pfn >= limit_pfn)
 850			continue;
 851		if (end_pfn > limit_pfn) {
 852			last_pfn = limit_pfn;
 853			break;
 854		}
 855		if (end_pfn > last_pfn)
 856			last_pfn = end_pfn;
 857	}
 858
 859	if (last_pfn > max_arch_pfn)
 860		last_pfn = max_arch_pfn;
 861
 862	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 863		last_pfn, max_arch_pfn);
 864	return last_pfn;
 865}
 866
 867unsigned long __init e820__end_of_ram_pfn(void)
 868{
 869	return e820__end_ram_pfn(MAX_ARCH_PFN);
 870}
 871
 872unsigned long __init e820__end_of_low_ram_pfn(void)
 873{
 874	return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT));
 875}
 876
 877static void __init early_panic(char *msg)
 878{
 879	early_printk(msg);
 880	panic(msg);
 881}
 882
 883static int userdef __initdata;
 884
 885/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 886static int __init parse_memopt(char *p)
 887{
 888	u64 mem_size;
 889
 890	if (!p)
 891		return -EINVAL;
 892
 893	if (!strcmp(p, "nopentium")) {
 894#ifdef CONFIG_X86_32
 895		setup_clear_cpu_cap(X86_FEATURE_PSE);
 896		return 0;
 897#else
 898		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 899		return -EINVAL;
 900#endif
 901	}
 902
 903	userdef = 1;
 904	mem_size = memparse(p, &p);
 905
 906	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 907	if (mem_size == 0)
 908		return -EINVAL;
 909
 910	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 911
 912#ifdef CONFIG_MEMORY_HOTPLUG
 913	max_mem_size = mem_size;
 914#endif
 915
 916	return 0;
 917}
 918early_param("mem", parse_memopt);
 919
 920static int __init parse_memmap_one(char *p)
 921{
 922	char *oldp;
 923	u64 start_at, mem_size;
 924
 925	if (!p)
 926		return -EINVAL;
 927
 928	if (!strncmp(p, "exactmap", 8)) {
 929		e820_table->nr_entries = 0;
 
 
 
 
 
 
 
 
 930		userdef = 1;
 931		return 0;
 932	}
 933
 934	oldp = p;
 935	mem_size = memparse(p, &p);
 936	if (p == oldp)
 937		return -EINVAL;
 938
 939	userdef = 1;
 940	if (*p == '@') {
 941		start_at = memparse(p+1, &p);
 942		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 943	} else if (*p == '#') {
 944		start_at = memparse(p+1, &p);
 945		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 946	} else if (*p == '$') {
 947		start_at = memparse(p+1, &p);
 948		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 949	} else if (*p == '!') {
 950		start_at = memparse(p+1, &p);
 951		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 952	} else if (*p == '%') {
 953		enum e820_type from = 0, to = 0;
 954
 955		start_at = memparse(p + 1, &p);
 956		if (*p == '-')
 957			from = simple_strtoull(p + 1, &p, 0);
 958		if (*p == '+')
 959			to = simple_strtoull(p + 1, &p, 0);
 960		if (*p != '\0')
 961			return -EINVAL;
 962		if (from && to)
 963			e820__range_update(start_at, mem_size, from, to);
 964		else if (to)
 965			e820__range_add(start_at, mem_size, to);
 966		else if (from)
 967			e820__range_remove(start_at, mem_size, from, 1);
 968		else
 969			e820__range_remove(start_at, mem_size, 0, 0);
 970	} else {
 971		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 972	}
 973
 974	return *p == '\0' ? 0 : -EINVAL;
 975}
 976
 977static int __init parse_memmap_opt(char *str)
 978{
 979	while (str) {
 980		char *k = strchr(str, ',');
 981
 982		if (k)
 983			*k++ = 0;
 984
 985		parse_memmap_one(str);
 986		str = k;
 987	}
 988
 989	return 0;
 990}
 991early_param("memmap", parse_memmap_opt);
 992
 993/*
 994 * Reserve all entries from the bootloader's extensible data nodes list,
 995 * because if present we are going to use it later on to fetch e820
 996 * entries from it:
 997 */
 998void __init e820__reserve_setup_data(void)
 999{
1000	struct setup_indirect *indirect;
1001	struct setup_data *data;
1002	u64 pa_data, pa_next;
1003	u32 len;
1004
1005	pa_data = boot_params.hdr.setup_data;
1006	if (!pa_data)
1007		return;
1008
1009	while (pa_data) {
1010		data = early_memremap(pa_data, sizeof(*data));
1011		if (!data) {
1012			pr_warn("e820: failed to memremap setup_data entry\n");
1013			return;
1014		}
1015
1016		len = sizeof(*data);
1017		pa_next = data->next;
1018
1019		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1020
1021		if (data->type == SETUP_INDIRECT) {
1022			len += data->len;
1023			early_memunmap(data, sizeof(*data));
1024			data = early_memremap(pa_data, len);
1025			if (!data) {
1026				pr_warn("e820: failed to memremap indirect setup_data\n");
1027				return;
1028			}
1029
1030			indirect = (struct setup_indirect *)data->data;
1031
1032			if (indirect->type != SETUP_INDIRECT)
1033				e820__range_update(indirect->addr, indirect->len,
1034						   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1035		}
1036
1037		pa_data = pa_next;
1038		early_memunmap(data, len);
1039	}
1040
1041	e820__update_table(e820_table);
1042
1043	pr_info("extended physical RAM map:\n");
1044	e820__print_table("reserve setup_data");
1045}
1046
1047/*
1048 * Called after parse_early_param(), after early parameters (such as mem=)
1049 * have been processed, in which case we already have an E820 table filled in
1050 * via the parameter callback function(s), but it's not sorted and printed yet:
1051 */
1052void __init e820__finish_early_params(void)
1053{
1054	if (userdef) {
1055		if (e820__update_table(e820_table) < 0)
 
1056			early_panic("Invalid user supplied memory map");
1057
1058		pr_info("user-defined physical RAM map:\n");
1059		e820__print_table("user");
1060	}
1061}
1062
1063static const char *__init e820_type_to_string(struct e820_entry *entry)
1064{
1065	switch (entry->type) {
1066	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1067	case E820_TYPE_RAM:		return "System RAM";
1068	case E820_TYPE_ACPI:		return "ACPI Tables";
1069	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1070	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1071	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1072	case E820_TYPE_PMEM:		return "Persistent Memory";
1073	case E820_TYPE_RESERVED:	return "Reserved";
1074	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1075	default:			return "Unknown E820 type";
1076	}
1077}
1078
1079static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1080{
1081	switch (entry->type) {
1082	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1083	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1084	case E820_TYPE_ACPI:		/* Fall-through: */
1085	case E820_TYPE_NVS:		/* Fall-through: */
1086	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1087	case E820_TYPE_PRAM:		/* Fall-through: */
1088	case E820_TYPE_PMEM:		/* Fall-through: */
1089	case E820_TYPE_RESERVED:	/* Fall-through: */
1090	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1091	default:			return IORESOURCE_MEM;
1092	}
1093}
1094
1095static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1096{
1097	switch (entry->type) {
1098	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1099	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1100	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1101	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1102	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1103	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1104	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1105	case E820_TYPE_RAM:		/* Fall-through: */
1106	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1107	default:			return IORES_DESC_NONE;
 
 
 
1108	}
1109}
1110
1111static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1112{
1113	/* this is the legacy bios/dos rom-shadow + mmio region */
1114	if (res->start < (1ULL<<20))
1115		return true;
1116
1117	/*
1118	 * Treat persistent memory and other special memory ranges like
1119	 * device memory, i.e. reserve it for exclusive use of a driver
1120	 */
1121	switch (type) {
1122	case E820_TYPE_RESERVED:
1123	case E820_TYPE_SOFT_RESERVED:
1124	case E820_TYPE_PRAM:
1125	case E820_TYPE_PMEM:
1126		return false;
1127	case E820_TYPE_RESERVED_KERN:
1128	case E820_TYPE_RAM:
1129	case E820_TYPE_ACPI:
1130	case E820_TYPE_NVS:
1131	case E820_TYPE_UNUSABLE:
1132	default:
1133		return true;
1134	}
1135}
1136
1137/*
1138 * Mark E820 reserved areas as busy for the resource manager:
1139 */
1140
1141static struct resource __initdata *e820_res;
1142
1143void __init e820__reserve_resources(void)
1144{
1145	int i;
1146	struct resource *res;
1147	u64 end;
1148
1149	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1150			     SMP_CACHE_BYTES);
1151	if (!res)
1152		panic("%s: Failed to allocate %zu bytes\n", __func__,
1153		      sizeof(*res) * e820_table->nr_entries);
1154	e820_res = res;
1155
1156	for (i = 0; i < e820_table->nr_entries; i++) {
1157		struct e820_entry *entry = e820_table->entries + i;
1158
1159		end = entry->addr + entry->size - 1;
1160		if (end != (resource_size_t)end) {
1161			res++;
1162			continue;
1163		}
1164		res->start = entry->addr;
1165		res->end   = end;
1166		res->name  = e820_type_to_string(entry);
1167		res->flags = e820_type_to_iomem_type(entry);
1168		res->desc  = e820_type_to_iores_desc(entry);
 
1169
1170		/*
1171		 * Don't register the region that could be conflicted with
1172		 * PCI device BAR resources and insert them later in
1173		 * pcibios_resource_survey():
1174		 */
1175		if (do_mark_busy(entry->type, res)) {
1176			res->flags |= IORESOURCE_BUSY;
1177			insert_resource(&iomem_resource, res);
1178		}
1179		res++;
1180	}
1181
1182	/* Expose the bootloader-provided memory layout to the sysfs. */
1183	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1184		struct e820_entry *entry = e820_table_firmware->entries + i;
1185
1186		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1187	}
1188}
1189
1190/*
1191 * How much should we pad the end of RAM, depending on where it is?
1192 */
1193static unsigned long __init ram_alignment(resource_size_t pos)
1194{
1195	unsigned long mb = pos >> 20;
1196
1197	/* To 64kB in the first megabyte */
1198	if (!mb)
1199		return 64*1024;
1200
1201	/* To 1MB in the first 16MB */
1202	if (mb < 16)
1203		return 1024*1024;
1204
1205	/* To 64MB for anything above that */
1206	return 64*1024*1024;
1207}
1208
1209#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1210
1211void __init e820__reserve_resources_late(void)
1212{
1213	int i;
1214	struct resource *res;
1215
1216	res = e820_res;
1217	for (i = 0; i < e820_table->nr_entries; i++) {
1218		if (!res->parent && res->end)
1219			insert_resource_expand_to_fit(&iomem_resource, res);
1220		res++;
1221	}
1222
1223	/*
1224	 * Try to bump up RAM regions to reasonable boundaries, to
1225	 * avoid stolen RAM:
1226	 */
1227	for (i = 0; i < e820_table->nr_entries; i++) {
1228		struct e820_entry *entry = &e820_table->entries[i];
1229		u64 start, end;
1230
1231		if (entry->type != E820_TYPE_RAM)
1232			continue;
1233
1234		start = entry->addr + entry->size;
1235		end = round_up(start, ram_alignment(start)) - 1;
1236		if (end > MAX_RESOURCE_SIZE)
1237			end = MAX_RESOURCE_SIZE;
1238		if (start >= end)
1239			continue;
1240
1241		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1242		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
 
 
1243	}
1244}
1245
1246/*
1247 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1248 */
1249char *__init e820__memory_setup_default(void)
1250{
1251	char *who = "BIOS-e820";
1252
1253	/*
1254	 * Try to copy the BIOS-supplied E820-map.
1255	 *
1256	 * Otherwise fake a memory map; one section from 0k->640k,
1257	 * the next section from 1mb->appropriate_mem_k
1258	 */
1259	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
 
 
 
 
 
 
1260		u64 mem_size;
1261
1262		/* Compare results from other methods and take the one that gives more RAM: */
1263		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
 
1264			mem_size = boot_params.screen_info.ext_mem_k;
1265			who = "BIOS-88";
1266		} else {
1267			mem_size = boot_params.alt_mem_k;
1268			who = "BIOS-e801";
1269		}
1270
1271		e820_table->nr_entries = 0;
1272		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1273		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1274	}
1275
1276	/* We just appended a lot of ranges, sanitize the table: */
1277	e820__update_table(e820_table);
1278
1279	return who;
1280}
1281
1282/*
1283 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1284 * E820 map - with an optional platform quirk available for virtual platforms
1285 * to override this method of boot environment processing:
1286 */
1287void __init e820__memory_setup(void)
1288{
1289	char *who;
1290
1291	/* This is a firmware interface ABI - make sure we don't break it: */
1292	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1293
1294	who = x86_init.resources.memory_setup();
1295
1296	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1297	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1298
1299	pr_info("BIOS-provided physical RAM map:\n");
1300	e820__print_table(who);
1301}
1302
1303void __init e820__memblock_setup(void)
1304{
1305	int i;
1306	u64 end;
1307
1308	/*
1309	 * The bootstrap memblock region count maximum is 128 entries
1310	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1311	 * than that - so allow memblock resizing.
1312	 *
1313	 * This is safe, because this call happens pretty late during x86 setup,
1314	 * so we know about reserved memory regions already. (This is important
1315	 * so that memblock resizing does no stomp over reserved areas.)
1316	 */
1317	memblock_allow_resize();
1318
1319	for (i = 0; i < e820_table->nr_entries; i++) {
1320		struct e820_entry *entry = &e820_table->entries[i];
1321
1322		end = entry->addr + entry->size;
1323		if (end != (resource_size_t)end)
1324			continue;
1325
1326		if (entry->type == E820_TYPE_SOFT_RESERVED)
1327			memblock_reserve(entry->addr, entry->size);
1328
1329		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1330			continue;
1331
1332		memblock_add(entry->addr, entry->size);
1333	}
1334
1335	/* Throw away partial pages: */
1336	memblock_trim_memory(PAGE_SIZE);
1337
1338	memblock_dump_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339}
v4.6
 
   1/*
   2 * Handle the memory map.
   3 * The functions here do the job until bootmem takes over.
   4 *
   5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
   6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
   7 *     Alex Achenbach <xela@slit.de>, December 2002.
   8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   9 *
 
 
 
  10 */
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/init.h>
  14#include <linux/crash_dump.h>
  15#include <linux/export.h>
  16#include <linux/bootmem.h>
  17#include <linux/pfn.h>
  18#include <linux/suspend.h>
  19#include <linux/acpi.h>
  20#include <linux/firmware-map.h>
  21#include <linux/memblock.h>
  22#include <linux/sort.h>
 
  23
  24#include <asm/e820.h>
  25#include <asm/proto.h>
  26#include <asm/setup.h>
  27#include <asm/cpufeature.h>
  28
  29/*
  30 * The e820 map is the map that gets modified e.g. with command line parameters
  31 * and that is also registered with modifications in the kernel resource tree
  32 * with the iomem_resource as parent.
 
 
 
 
 
 
 
 
 
  33 *
  34 * The e820_saved is directly saved after the BIOS-provided memory map is
  35 * copied. It doesn't get modified afterwards. It's registered for the
  36 * /sys/firmware/memmap interface.
 
 
 
 
  37 *
  38 * That memory map is not modified and is used as base for kexec. The kexec'd
  39 * kernel should get the same memory map as the firmware provides. Then the
  40 * user can e.g. boot the original kernel with mem=1G while still booting the
  41 * next kernel with full memory.
 
 
 
 
 
 
 
 
 
  42 */
  43struct e820map e820;
  44struct e820map e820_saved;
 
 
 
 
 
  45
  46/* For PCI or other memory-mapped resources */
  47unsigned long pci_mem_start = 0xaeedbabe;
  48#ifdef CONFIG_PCI
  49EXPORT_SYMBOL(pci_mem_start);
  50#endif
  51
  52/*
  53 * This function checks if any part of the range <start,end> is mapped
  54 * with type.
  55 */
  56int
  57e820_any_mapped(u64 start, u64 end, unsigned type)
  58{
  59	int i;
  60
  61	for (i = 0; i < e820.nr_map; i++) {
  62		struct e820entry *ei = &e820.map[i];
  63
  64		if (type && ei->type != type)
  65			continue;
  66		if (ei->addr >= end || ei->addr + ei->size <= start)
  67			continue;
  68		return 1;
  69	}
  70	return 0;
 
 
 
 
 
 
 
 
 
 
 
  71}
  72EXPORT_SYMBOL_GPL(e820_any_mapped);
  73
  74/*
  75 * This function checks if the entire range <start,end> is mapped with type.
  76 *
  77 * Note: this function only works correct if the e820 table is sorted and
  78 * not-overlapping, which is the case
  79 */
  80int __init e820_all_mapped(u64 start, u64 end, unsigned type)
 
  81{
  82	int i;
  83
  84	for (i = 0; i < e820.nr_map; i++) {
  85		struct e820entry *ei = &e820.map[i];
  86
  87		if (type && ei->type != type)
  88			continue;
  89		/* is the region (part) in overlap with the current region ?*/
  90		if (ei->addr >= end || ei->addr + ei->size <= start)
 
  91			continue;
  92
  93		/* if the region is at the beginning of <start,end> we move
  94		 * start to the end of the region since it's ok until there
 
  95		 */
  96		if (ei->addr <= start)
  97			start = ei->addr + ei->size;
 
  98		/*
  99		 * if start is now at or beyond end, we're done, full
 100		 * coverage
 101		 */
 102		if (start >= end)
 103			return 1;
 104	}
 105	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106}
 107
 108/*
 109 * Add a memory region to the kernel e820 map.
 110 */
 111static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
 112					 int type)
 113{
 114	int x = e820x->nr_map;
 115
 116	if (x >= ARRAY_SIZE(e820x->map)) {
 117		printk(KERN_ERR "e820: too many entries; ignoring [mem %#010llx-%#010llx]\n",
 118		       (unsigned long long) start,
 119		       (unsigned long long) (start + size - 1));
 120		return;
 121	}
 122
 123	e820x->map[x].addr = start;
 124	e820x->map[x].size = size;
 125	e820x->map[x].type = type;
 126	e820x->nr_map++;
 127}
 128
 129void __init e820_add_region(u64 start, u64 size, int type)
 130{
 131	__e820_add_region(&e820, start, size, type);
 132}
 133
 134static void __init e820_print_type(u32 type)
 135{
 136	switch (type) {
 137	case E820_RAM:
 138	case E820_RESERVED_KERN:
 139		printk(KERN_CONT "usable");
 140		break;
 141	case E820_RESERVED:
 142		printk(KERN_CONT "reserved");
 143		break;
 144	case E820_ACPI:
 145		printk(KERN_CONT "ACPI data");
 146		break;
 147	case E820_NVS:
 148		printk(KERN_CONT "ACPI NVS");
 149		break;
 150	case E820_UNUSABLE:
 151		printk(KERN_CONT "unusable");
 152		break;
 153	case E820_PMEM:
 154	case E820_PRAM:
 155		printk(KERN_CONT "persistent (type %u)", type);
 156		break;
 157	default:
 158		printk(KERN_CONT "type %u", type);
 159		break;
 160	}
 161}
 162
 163void __init e820_print_map(char *who)
 164{
 165	int i;
 166
 167	for (i = 0; i < e820.nr_map; i++) {
 168		printk(KERN_INFO "%s: [mem %#018Lx-%#018Lx] ", who,
 169		       (unsigned long long) e820.map[i].addr,
 170		       (unsigned long long)
 171		       (e820.map[i].addr + e820.map[i].size - 1));
 172		e820_print_type(e820.map[i].type);
 173		printk(KERN_CONT "\n");
 
 174	}
 175}
 176
 177/*
 178 * Sanitize the BIOS e820 map.
 179 *
 180 * Some e820 responses include overlapping entries. The following
 181 * replaces the original e820 map with a new one, removing overlaps,
 182 * and resolving conflicting memory types in favor of highest
 183 * numbered type.
 184 *
 185 * The input parameter biosmap points to an array of 'struct
 186 * e820entry' which on entry has elements in the range [0, *pnr_map)
 187 * valid, and which has space for up to max_nr_map entries.
 188 * On return, the resulting sanitized e820 map entries will be in
 189 * overwritten in the same location, starting at biosmap.
 190 *
 191 * The integer pointed to by pnr_map must be valid on entry (the
 192 * current number of valid entries located at biosmap). If the
 193 * sanitizing succeeds the *pnr_map will be updated with the new
 194 * number of valid entries (something no more than max_nr_map).
 195 *
 196 * The return value from sanitize_e820_map() is zero if it
 
 
 
 
 
 197 * successfully 'sanitized' the map entries passed in, and is -1
 198 * if it did nothing, which can happen if either of (1) it was
 199 * only passed one map entry, or (2) any of the input map entries
 200 * were invalid (start + size < start, meaning that the size was
 201 * so big the described memory range wrapped around through zero.)
 202 *
 203 *	Visually we're performing the following
 204 *	(1,2,3,4 = memory types)...
 205 *
 206 *	Sample memory map (w/overlaps):
 207 *	   ____22__________________
 208 *	   ______________________4_
 209 *	   ____1111________________
 210 *	   _44_____________________
 211 *	   11111111________________
 212 *	   ____________________33__
 213 *	   ___________44___________
 214 *	   __________33333_________
 215 *	   ______________22________
 216 *	   ___________________2222_
 217 *	   _________111111111______
 218 *	   _____________________11_
 219 *	   _________________4______
 220 *
 221 *	Sanitized equivalent (no overlap):
 222 *	   1_______________________
 223 *	   _44_____________________
 224 *	   ___1____________________
 225 *	   ____22__________________
 226 *	   ______11________________
 227 *	   _________1______________
 228 *	   __________3_____________
 229 *	   ___________44___________
 230 *	   _____________33_________
 231 *	   _______________2________
 232 *	   ________________1_______
 233 *	   _________________4______
 234 *	   ___________________2____
 235 *	   ____________________33__
 236 *	   ______________________4_
 237 */
 238struct change_member {
 239	struct e820entry *pbios; /* pointer to original bios entry */
 240	unsigned long long addr; /* address for this change point */
 
 
 241};
 242
 
 
 
 
 
 243static int __init cpcompare(const void *a, const void *b)
 244{
 245	struct change_member * const *app = a, * const *bpp = b;
 246	const struct change_member *ap = *app, *bp = *bpp;
 247
 248	/*
 249	 * Inputs are pointers to two elements of change_point[].  If their
 250	 * addresses are unequal, their difference dominates.  If the addresses
 251	 * are equal, then consider one that represents the end of its region
 252	 * to be greater than one that does not.
 253	 */
 254	if (ap->addr != bp->addr)
 255		return ap->addr > bp->addr ? 1 : -1;
 256
 257	return (ap->addr != ap->pbios->addr) - (bp->addr != bp->pbios->addr);
 258}
 259
 260int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
 261			     u32 *pnr_map)
 262{
 263	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
 264	static struct change_member *change_point[2*E820_X_MAX] __initdata;
 265	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
 266	static struct e820entry new_bios[E820_X_MAX] __initdata;
 267	unsigned long current_type, last_type;
 
 
 
 
 
 
 
 
 
 
 
 
 268	unsigned long long last_addr;
 269	int chgidx;
 270	int overlap_entries;
 271	int new_bios_entry;
 272	int old_nr, new_nr, chg_nr;
 273	int i;
 274
 275	/* if there's only one memory region, don't bother */
 276	if (*pnr_map < 2)
 277		return -1;
 278
 279	old_nr = *pnr_map;
 280	BUG_ON(old_nr > max_nr_map);
 281
 282	/* bail out if we find any unreasonable addresses in bios map */
 283	for (i = 0; i < old_nr; i++)
 284		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
 285			return -1;
 
 286
 287	/* create pointers for initial change-point information (for sorting) */
 288	for (i = 0; i < 2 * old_nr; i++)
 289		change_point[i] = &change_point_list[i];
 290
 291	/* record all known change-points (starting and ending addresses),
 292	   omitting those that are for empty memory regions */
 293	chgidx = 0;
 294	for (i = 0; i < old_nr; i++)	{
 295		if (biosmap[i].size != 0) {
 296			change_point[chgidx]->addr = biosmap[i].addr;
 297			change_point[chgidx++]->pbios = &biosmap[i];
 298			change_point[chgidx]->addr = biosmap[i].addr +
 299				biosmap[i].size;
 300			change_point[chgidx++]->pbios = &biosmap[i];
 
 301		}
 302	}
 303	chg_nr = chgidx;
 304
 305	/* sort change-point list by memory addresses (low -> high) */
 306	sort(change_point, chg_nr, sizeof *change_point, cpcompare, NULL);
 307
 308	/* create a new bios memory map, removing overlaps */
 309	overlap_entries = 0;	 /* number of entries in the overlap table */
 310	new_bios_entry = 0;	 /* index for creating new bios map entries */
 311	last_type = 0;		 /* start with undefined memory type */
 312	last_addr = 0;		 /* start with 0 as last starting address */
 313
 314	/* loop through change-points, determining affect on the new bios map */
 315	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
 316		/* keep track of all overlapping bios entries */
 317		if (change_point[chgidx]->addr ==
 318		    change_point[chgidx]->pbios->addr) {
 319			/*
 320			 * add map entry to overlap list (> 1 entry
 321			 * implies an overlap)
 322			 */
 323			overlap_list[overlap_entries++] =
 324				change_point[chgidx]->pbios;
 325		} else {
 326			/*
 327			 * remove entry from list (order independent,
 328			 * so swap with last)
 329			 */
 330			for (i = 0; i < overlap_entries; i++) {
 331				if (overlap_list[i] ==
 332				    change_point[chgidx]->pbios)
 333					overlap_list[i] =
 334						overlap_list[overlap_entries-1];
 335			}
 336			overlap_entries--;
 337		}
 338		/*
 339		 * if there are overlapping entries, decide which
 340		 * "type" to use (larger value takes precedence --
 341		 * 1=usable, 2,3,4,4+=unusable)
 342		 */
 343		current_type = 0;
 344		for (i = 0; i < overlap_entries; i++)
 345			if (overlap_list[i]->type > current_type)
 346				current_type = overlap_list[i]->type;
 347		/*
 348		 * continue building up new bios map based on this
 349		 * information
 350		 */
 351		if (current_type != last_type || current_type == E820_PRAM) {
 352			if (last_type != 0)	 {
 353				new_bios[new_bios_entry].size =
 354					change_point[chgidx]->addr - last_addr;
 355				/*
 356				 * move forward only if the new size
 357				 * was non-zero
 358				 */
 359				if (new_bios[new_bios_entry].size != 0)
 360					/*
 361					 * no more space left for new
 362					 * bios entries ?
 363					 */
 364					if (++new_bios_entry >= max_nr_map)
 365						break;
 366			}
 367			if (current_type != 0)	{
 368				new_bios[new_bios_entry].addr =
 369					change_point[chgidx]->addr;
 370				new_bios[new_bios_entry].type = current_type;
 371				last_addr = change_point[chgidx]->addr;
 372			}
 373			last_type = current_type;
 374		}
 375	}
 376	/* retain count for new bios entries */
 377	new_nr = new_bios_entry;
 378
 379	/* copy new bios mapping into original location */
 380	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
 381	*pnr_map = new_nr;
 382
 383	return 0;
 384}
 385
 386static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
 387{
 388	while (nr_map) {
 389		u64 start = biosmap->addr;
 390		u64 size = biosmap->size;
 391		u64 end = start + size;
 392		u32 type = biosmap->type;
 
 
 393
 394		/* Overflow in 64 bits? Ignore the memory map. */
 395		if (start > end)
 396			return -1;
 397
 398		e820_add_region(start, size, type);
 399
 400		biosmap++;
 401		nr_map--;
 402	}
 403	return 0;
 404}
 405
 406/*
 407 * Copy the BIOS e820 map into a safe place.
 408 *
 409 * Sanity-check it while we're at it..
 410 *
 411 * If we're lucky and live on a modern system, the setup code
 412 * will have given us a memory map that we can use to properly
 413 * set up memory.  If we aren't, we'll fake a memory map.
 414 */
 415static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
 416{
 417	/* Only one memory region (or negative)? Ignore it */
 418	if (nr_map < 2)
 419		return -1;
 420
 421	return __append_e820_map(biosmap, nr_map);
 422}
 423
 424static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
 425					u64 size, unsigned old_type,
 426					unsigned new_type)
 427{
 428	u64 end;
 429	unsigned int i;
 430	u64 real_updated_size = 0;
 431
 432	BUG_ON(old_type == new_type);
 433
 434	if (size > (ULLONG_MAX - start))
 435		size = ULLONG_MAX - start;
 436
 437	end = start + size;
 438	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ",
 439	       (unsigned long long) start, (unsigned long long) (end - 1));
 440	e820_print_type(old_type);
 441	printk(KERN_CONT " ==> ");
 442	e820_print_type(new_type);
 443	printk(KERN_CONT "\n");
 444
 445	for (i = 0; i < e820x->nr_map; i++) {
 446		struct e820entry *ei = &e820x->map[i];
 447		u64 final_start, final_end;
 448		u64 ei_end;
 449
 450		if (ei->type != old_type)
 451			continue;
 452
 453		ei_end = ei->addr + ei->size;
 454		/* totally covered by new range? */
 455		if (ei->addr >= start && ei_end <= end) {
 456			ei->type = new_type;
 457			real_updated_size += ei->size;
 
 458			continue;
 459		}
 460
 461		/* new range is totally covered? */
 462		if (ei->addr < start && ei_end > end) {
 463			__e820_add_region(e820x, start, size, new_type);
 464			__e820_add_region(e820x, end, ei_end - end, ei->type);
 465			ei->size = start - ei->addr;
 466			real_updated_size += size;
 467			continue;
 468		}
 469
 470		/* partially covered */
 471		final_start = max(start, ei->addr);
 472		final_end = min(end, ei_end);
 473		if (final_start >= final_end)
 474			continue;
 475
 476		__e820_add_region(e820x, final_start, final_end - final_start,
 477				  new_type);
 478
 479		real_updated_size += final_end - final_start;
 480
 481		/*
 482		 * left range could be head or tail, so need to update
 483		 * size at first.
 484		 */
 485		ei->size -= final_end - final_start;
 486		if (ei->addr < final_start)
 487			continue;
 488		ei->addr = final_end;
 
 489	}
 490	return real_updated_size;
 491}
 492
 493u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
 494			     unsigned new_type)
 495{
 496	return __e820_update_range(&e820, start, size, old_type, new_type);
 497}
 498
 499static u64 __init e820_update_range_saved(u64 start, u64 size,
 500					  unsigned old_type, unsigned new_type)
 501{
 502	return __e820_update_range(&e820_saved, start, size, old_type,
 503				     new_type);
 504}
 505
 506/* make e820 not cover the range */
 507u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
 508			     int checktype)
 509{
 510	int i;
 511	u64 end;
 512	u64 real_removed_size = 0;
 513
 514	if (size > (ULLONG_MAX - start))
 515		size = ULLONG_MAX - start;
 516
 517	end = start + size;
 518	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ",
 519	       (unsigned long long) start, (unsigned long long) (end - 1));
 520	if (checktype)
 521		e820_print_type(old_type);
 522	printk(KERN_CONT "\n");
 523
 524	for (i = 0; i < e820.nr_map; i++) {
 525		struct e820entry *ei = &e820.map[i];
 526		u64 final_start, final_end;
 527		u64 ei_end;
 528
 529		if (checktype && ei->type != old_type)
 530			continue;
 531
 532		ei_end = ei->addr + ei->size;
 533		/* totally covered? */
 534		if (ei->addr >= start && ei_end <= end) {
 535			real_removed_size += ei->size;
 536			memset(ei, 0, sizeof(struct e820entry));
 
 537			continue;
 538		}
 539
 540		/* new range is totally covered? */
 541		if (ei->addr < start && ei_end > end) {
 542			e820_add_region(end, ei_end - end, ei->type);
 543			ei->size = start - ei->addr;
 544			real_removed_size += size;
 545			continue;
 546		}
 547
 548		/* partially covered */
 549		final_start = max(start, ei->addr);
 550		final_end = min(end, ei_end);
 551		if (final_start >= final_end)
 552			continue;
 
 553		real_removed_size += final_end - final_start;
 554
 555		/*
 556		 * left range could be head or tail, so need to update
 557		 * size at first.
 558		 */
 559		ei->size -= final_end - final_start;
 560		if (ei->addr < final_start)
 561			continue;
 562		ei->addr = final_end;
 
 563	}
 564	return real_removed_size;
 565}
 566
 567void __init update_e820(void)
 568{
 569	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map))
 570		return;
 571	printk(KERN_INFO "e820: modified physical RAM map:\n");
 572	e820_print_map("modified");
 
 573}
 574static void __init update_e820_saved(void)
 
 575{
 576	sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map),
 577				&e820_saved.nr_map);
 578}
 
 579#define MAX_GAP_END 0x100000000ull
 
 580/*
 581 * Search for a gap in the e820 memory space from start_addr to end_addr.
 582 */
 583__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
 584		unsigned long start_addr, unsigned long long end_addr)
 585{
 586	unsigned long long last;
 587	int i = e820.nr_map;
 588	int found = 0;
 589
 590	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
 591
 592	while (--i >= 0) {
 593		unsigned long long start = e820.map[i].addr;
 594		unsigned long long end = start + e820.map[i].size;
 595
 596		if (end < start_addr)
 597			continue;
 598
 599		/*
 600		 * Since "last" is at most 4GB, we know we'll
 601		 * fit in 32 bits if this condition is true
 602		 */
 603		if (last > end) {
 604			unsigned long gap = last - end;
 605
 606			if (gap >= *gapsize) {
 607				*gapsize = gap;
 608				*gapstart = end;
 609				found = 1;
 610			}
 611		}
 612		if (start < last)
 613			last = start;
 614	}
 615	return found;
 616}
 617
 618/*
 619 * Search for the biggest gap in the low 32 bits of the e820
 620 * memory space.  We pass this space to PCI to assign MMIO resources
 621 * for hotplug or unconfigured devices in.
 
 
 622 * Hopefully the BIOS let enough space left.
 623 */
 624__init void e820_setup_gap(void)
 625{
 626	unsigned long gapstart, gapsize;
 627	int found;
 628
 629	gapstart = 0x10000000;
 630	gapsize = 0x400000;
 631	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
 632
 
 633#ifdef CONFIG_X86_64
 634	if (!found) {
 635		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 636		printk(KERN_ERR
 637	"e820: cannot find a gap in the 32bit address range\n"
 638	"e820: PCI devices with unassigned 32bit BARs may break!\n");
 
 
 639	}
 640#endif
 641
 642	/*
 643	 * e820_reserve_resources_late protect stolen RAM already
 644	 */
 645	pci_mem_start = gapstart;
 646
 647	printk(KERN_INFO
 648	       "e820: [mem %#010lx-%#010lx] available for PCI devices\n",
 649	       gapstart, gapstart + gapsize - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650}
 651
 652/**
 653 * Because of the size limitation of struct boot_params, only first
 654 * 128 E820 memory entries are passed to kernel via
 655 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 656 * linked list of struct setup_data, which is parsed here.
 657 */
 658void __init parse_e820_ext(u64 phys_addr, u32 data_len)
 659{
 660	int entries;
 661	struct e820entry *extmap;
 662	struct setup_data *sdata;
 663
 664	sdata = early_memremap(phys_addr, data_len);
 665	entries = sdata->len / sizeof(struct e820entry);
 666	extmap = (struct e820entry *)(sdata->data);
 667	__append_e820_map(extmap, entries);
 668	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 
 
 
 
 
 669	early_memunmap(sdata, data_len);
 670	printk(KERN_INFO "e820: extended physical RAM map:\n");
 671	e820_print_map("extended");
 672}
 673
 674#if defined(CONFIG_X86_64) || \
 675	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
 676/**
 677 * Find the ranges of physical addresses that do not correspond to
 678 * e820 RAM areas and mark the corresponding pages as nosave for
 679 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 680 *
 681 * This function requires the e820 map to be sorted and without any
 682 * overlapping entries.
 683 */
 684void __init e820_mark_nosave_regions(unsigned long limit_pfn)
 685{
 686	int i;
 687	unsigned long pfn = 0;
 688
 689	for (i = 0; i < e820.nr_map; i++) {
 690		struct e820entry *ei = &e820.map[i];
 691
 692		if (pfn < PFN_UP(ei->addr))
 693			register_nosave_region(pfn, PFN_UP(ei->addr));
 694
 695		pfn = PFN_DOWN(ei->addr + ei->size);
 696
 697		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 698			register_nosave_region(PFN_UP(ei->addr), pfn);
 699
 700		if (pfn >= limit_pfn)
 701			break;
 702	}
 703}
 704#endif
 705
 706#ifdef CONFIG_ACPI
 707/**
 708 * Mark ACPI NVS memory region, so that we can save/restore it during
 709 * hibernation and the subsequent resume.
 710 */
 711static int __init e820_mark_nvs_memory(void)
 712{
 713	int i;
 714
 715	for (i = 0; i < e820.nr_map; i++) {
 716		struct e820entry *ei = &e820.map[i];
 717
 718		if (ei->type == E820_NVS)
 719			acpi_nvs_register(ei->addr, ei->size);
 720	}
 721
 722	return 0;
 723}
 724core_initcall(e820_mark_nvs_memory);
 725#endif
 726
 727/*
 728 * pre allocated 4k and reserved it in memblock and e820_saved
 
 
 
 
 
 729 */
 730u64 __init early_reserve_e820(u64 size, u64 align)
 731{
 732	u64 addr;
 733
 734	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 735	if (addr) {
 736		e820_update_range_saved(addr, size, E820_RAM, E820_RESERVED);
 737		printk(KERN_INFO "e820: update e820_saved for early_reserve_e820\n");
 738		update_e820_saved();
 739	}
 740
 741	return addr;
 742}
 743
 744#ifdef CONFIG_X86_32
 745# ifdef CONFIG_X86_PAE
 746#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 747# else
 748#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 749# endif
 750#else /* CONFIG_X86_32 */
 751# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 752#endif
 753
 754/*
 755 * Find the highest page frame number we have available
 756 */
 757static unsigned long __init e820_end_pfn(unsigned long limit_pfn)
 758{
 759	int i;
 760	unsigned long last_pfn = 0;
 761	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 762
 763	for (i = 0; i < e820.nr_map; i++) {
 764		struct e820entry *ei = &e820.map[i];
 765		unsigned long start_pfn;
 766		unsigned long end_pfn;
 767
 768		/*
 769		 * Persistent memory is accounted as ram for purposes of
 770		 * establishing max_pfn and mem_map.
 771		 */
 772		if (ei->type != E820_RAM && ei->type != E820_PRAM)
 773			continue;
 774
 775		start_pfn = ei->addr >> PAGE_SHIFT;
 776		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
 777
 778		if (start_pfn >= limit_pfn)
 779			continue;
 780		if (end_pfn > limit_pfn) {
 781			last_pfn = limit_pfn;
 782			break;
 783		}
 784		if (end_pfn > last_pfn)
 785			last_pfn = end_pfn;
 786	}
 787
 788	if (last_pfn > max_arch_pfn)
 789		last_pfn = max_arch_pfn;
 790
 791	printk(KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 792			 last_pfn, max_arch_pfn);
 793	return last_pfn;
 794}
 795unsigned long __init e820_end_of_ram_pfn(void)
 
 796{
 797	return e820_end_pfn(MAX_ARCH_PFN);
 798}
 799
 800unsigned long __init e820_end_of_low_ram_pfn(void)
 801{
 802	return e820_end_pfn(1UL << (32-PAGE_SHIFT));
 803}
 804
 805static void early_panic(char *msg)
 806{
 807	early_printk(msg);
 808	panic(msg);
 809}
 810
 811static int userdef __initdata;
 812
 813/* "mem=nopentium" disables the 4MB page tables. */
 814static int __init parse_memopt(char *p)
 815{
 816	u64 mem_size;
 817
 818	if (!p)
 819		return -EINVAL;
 820
 821	if (!strcmp(p, "nopentium")) {
 822#ifdef CONFIG_X86_32
 823		setup_clear_cpu_cap(X86_FEATURE_PSE);
 824		return 0;
 825#else
 826		printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n");
 827		return -EINVAL;
 828#endif
 829	}
 830
 831	userdef = 1;
 832	mem_size = memparse(p, &p);
 833	/* don't remove all of memory when handling "mem={invalid}" param */
 
 834	if (mem_size == 0)
 835		return -EINVAL;
 836	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 837
 838	return 0;
 839}
 840early_param("mem", parse_memopt);
 841
 842static int __init parse_memmap_one(char *p)
 843{
 844	char *oldp;
 845	u64 start_at, mem_size;
 846
 847	if (!p)
 848		return -EINVAL;
 849
 850	if (!strncmp(p, "exactmap", 8)) {
 851#ifdef CONFIG_CRASH_DUMP
 852		/*
 853		 * If we are doing a crash dump, we still need to know
 854		 * the real mem size before original memory map is
 855		 * reset.
 856		 */
 857		saved_max_pfn = e820_end_of_ram_pfn();
 858#endif
 859		e820.nr_map = 0;
 860		userdef = 1;
 861		return 0;
 862	}
 863
 864	oldp = p;
 865	mem_size = memparse(p, &p);
 866	if (p == oldp)
 867		return -EINVAL;
 868
 869	userdef = 1;
 870	if (*p == '@') {
 871		start_at = memparse(p+1, &p);
 872		e820_add_region(start_at, mem_size, E820_RAM);
 873	} else if (*p == '#') {
 874		start_at = memparse(p+1, &p);
 875		e820_add_region(start_at, mem_size, E820_ACPI);
 876	} else if (*p == '$') {
 877		start_at = memparse(p+1, &p);
 878		e820_add_region(start_at, mem_size, E820_RESERVED);
 879	} else if (*p == '!') {
 880		start_at = memparse(p+1, &p);
 881		e820_add_region(start_at, mem_size, E820_PRAM);
 882	} else
 883		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885	return *p == '\0' ? 0 : -EINVAL;
 886}
 
 887static int __init parse_memmap_opt(char *str)
 888{
 889	while (str) {
 890		char *k = strchr(str, ',');
 891
 892		if (k)
 893			*k++ = 0;
 894
 895		parse_memmap_one(str);
 896		str = k;
 897	}
 898
 899	return 0;
 900}
 901early_param("memmap", parse_memmap_opt);
 902
 903void __init finish_e820_parsing(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904{
 905	if (userdef) {
 906		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map),
 907					&e820.nr_map) < 0)
 908			early_panic("Invalid user supplied memory map");
 909
 910		printk(KERN_INFO "e820: user-defined physical RAM map:\n");
 911		e820_print_map("user");
 912	}
 913}
 914
 915static const char *e820_type_to_string(int e820_type)
 916{
 917	switch (e820_type) {
 918	case E820_RESERVED_KERN:
 919	case E820_RAM:	return "System RAM";
 920	case E820_ACPI:	return "ACPI Tables";
 921	case E820_NVS:	return "ACPI Non-volatile Storage";
 922	case E820_UNUSABLE:	return "Unusable memory";
 923	case E820_PRAM: return "Persistent Memory (legacy)";
 924	case E820_PMEM: return "Persistent Memory";
 925	default:	return "reserved";
 
 
 926	}
 927}
 928
 929static unsigned long e820_type_to_iomem_type(int e820_type)
 930{
 931	switch (e820_type) {
 932	case E820_RESERVED_KERN:
 933	case E820_RAM:
 934		return IORESOURCE_SYSTEM_RAM;
 935	case E820_ACPI:
 936	case E820_NVS:
 937	case E820_UNUSABLE:
 938	case E820_PRAM:
 939	case E820_PMEM:
 940	default:
 941		return IORESOURCE_MEM;
 942	}
 943}
 944
 945static unsigned long e820_type_to_iores_desc(int e820_type)
 946{
 947	switch (e820_type) {
 948	case E820_ACPI:
 949		return IORES_DESC_ACPI_TABLES;
 950	case E820_NVS:
 951		return IORES_DESC_ACPI_NV_STORAGE;
 952	case E820_PMEM:
 953		return IORES_DESC_PERSISTENT_MEMORY;
 954	case E820_PRAM:
 955		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
 956	case E820_RESERVED_KERN:
 957	case E820_RAM:
 958	case E820_UNUSABLE:
 959	default:
 960		return IORES_DESC_NONE;
 961	}
 962}
 963
 964static bool do_mark_busy(u32 type, struct resource *res)
 965{
 966	/* this is the legacy bios/dos rom-shadow + mmio region */
 967	if (res->start < (1ULL<<20))
 968		return true;
 969
 970	/*
 971	 * Treat persistent memory like device memory, i.e. reserve it
 972	 * for exclusive use of a driver
 973	 */
 974	switch (type) {
 975	case E820_RESERVED:
 976	case E820_PRAM:
 977	case E820_PMEM:
 
 978		return false;
 
 
 
 
 
 979	default:
 980		return true;
 981	}
 982}
 983
 984/*
 985 * Mark e820 reserved areas as busy for the resource manager.
 986 */
 
 987static struct resource __initdata *e820_res;
 988void __init e820_reserve_resources(void)
 
 989{
 990	int i;
 991	struct resource *res;
 992	u64 end;
 993
 994	res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
 
 
 
 
 995	e820_res = res;
 996	for (i = 0; i < e820.nr_map; i++) {
 997		end = e820.map[i].addr + e820.map[i].size - 1;
 
 
 
 998		if (end != (resource_size_t)end) {
 999			res++;
1000			continue;
1001		}
1002		res->name = e820_type_to_string(e820.map[i].type);
1003		res->start = e820.map[i].addr;
1004		res->end = end;
1005
1006		res->flags = e820_type_to_iomem_type(e820.map[i].type);
1007		res->desc = e820_type_to_iores_desc(e820.map[i].type);
1008
1009		/*
1010		 * don't register the region that could be conflicted with
1011		 * pci device BAR resource and insert them later in
1012		 * pcibios_resource_survey()
1013		 */
1014		if (do_mark_busy(e820.map[i].type, res)) {
1015			res->flags |= IORESOURCE_BUSY;
1016			insert_resource(&iomem_resource, res);
1017		}
1018		res++;
1019	}
1020
1021	for (i = 0; i < e820_saved.nr_map; i++) {
1022		struct e820entry *entry = &e820_saved.map[i];
1023		firmware_map_add_early(entry->addr,
1024			entry->addr + entry->size,
1025			e820_type_to_string(entry->type));
1026	}
1027}
1028
1029/* How much should we pad RAM ending depending on where it is? */
1030static unsigned long ram_alignment(resource_size_t pos)
 
 
1031{
1032	unsigned long mb = pos >> 20;
1033
1034	/* To 64kB in the first megabyte */
1035	if (!mb)
1036		return 64*1024;
1037
1038	/* To 1MB in the first 16MB */
1039	if (mb < 16)
1040		return 1024*1024;
1041
1042	/* To 64MB for anything above that */
1043	return 64*1024*1024;
1044}
1045
1046#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1047
1048void __init e820_reserve_resources_late(void)
1049{
1050	int i;
1051	struct resource *res;
1052
1053	res = e820_res;
1054	for (i = 0; i < e820.nr_map; i++) {
1055		if (!res->parent && res->end)
1056			insert_resource_expand_to_fit(&iomem_resource, res);
1057		res++;
1058	}
1059
1060	/*
1061	 * Try to bump up RAM regions to reasonable boundaries to
1062	 * avoid stolen RAM:
1063	 */
1064	for (i = 0; i < e820.nr_map; i++) {
1065		struct e820entry *entry = &e820.map[i];
1066		u64 start, end;
1067
1068		if (entry->type != E820_RAM)
1069			continue;
 
1070		start = entry->addr + entry->size;
1071		end = round_up(start, ram_alignment(start)) - 1;
1072		if (end > MAX_RESOURCE_SIZE)
1073			end = MAX_RESOURCE_SIZE;
1074		if (start >= end)
1075			continue;
1076		printk(KERN_DEBUG
1077		       "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n",
1078		       start, end);
1079		reserve_region_with_split(&iomem_resource, start, end,
1080					  "RAM buffer");
1081	}
1082}
1083
1084char *__init default_machine_specific_memory_setup(void)
 
 
 
1085{
1086	char *who = "BIOS-e820";
1087	u32 new_nr;
1088	/*
1089	 * Try to copy the BIOS-supplied E820-map.
1090	 *
1091	 * Otherwise fake a memory map; one section from 0k->640k,
1092	 * the next section from 1mb->appropriate_mem_k
1093	 */
1094	new_nr = boot_params.e820_entries;
1095	sanitize_e820_map(boot_params.e820_map,
1096			ARRAY_SIZE(boot_params.e820_map),
1097			&new_nr);
1098	boot_params.e820_entries = new_nr;
1099	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1100	  < 0) {
1101		u64 mem_size;
1102
1103		/* compare results from other methods and take the greater */
1104		if (boot_params.alt_mem_k
1105		    < boot_params.screen_info.ext_mem_k) {
1106			mem_size = boot_params.screen_info.ext_mem_k;
1107			who = "BIOS-88";
1108		} else {
1109			mem_size = boot_params.alt_mem_k;
1110			who = "BIOS-e801";
1111		}
1112
1113		e820.nr_map = 0;
1114		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1115		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1116	}
1117
1118	/* In case someone cares... */
 
 
1119	return who;
1120}
1121
1122void __init setup_memory_map(void)
 
 
 
 
 
1123{
1124	char *who;
1125
 
 
 
1126	who = x86_init.resources.memory_setup();
1127	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1128	printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n");
1129	e820_print_map(who);
 
 
 
1130}
1131
1132void __init memblock_x86_fill(void)
1133{
1134	int i;
1135	u64 end;
1136
1137	/*
1138	 * EFI may have more than 128 entries
1139	 * We are safe to enable resizing, beause memblock_x86_fill()
1140	 * is rather later for x86
 
 
 
 
1141	 */
1142	memblock_allow_resize();
1143
1144	for (i = 0; i < e820.nr_map; i++) {
1145		struct e820entry *ei = &e820.map[i];
1146
1147		end = ei->addr + ei->size;
1148		if (end != (resource_size_t)end)
1149			continue;
1150
1151		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 
 
 
1152			continue;
1153
1154		memblock_add(ei->addr, ei->size);
1155	}
1156
1157	/* throw away partial pages */
1158	memblock_trim_memory(PAGE_SIZE);
1159
1160	memblock_dump_all();
1161}
1162
1163void __init memblock_find_dma_reserve(void)
1164{
1165#ifdef CONFIG_X86_64
1166	u64 nr_pages = 0, nr_free_pages = 0;
1167	unsigned long start_pfn, end_pfn;
1168	phys_addr_t start, end;
1169	int i;
1170	u64 u;
1171
1172	/*
1173	 * need to find out used area below MAX_DMA_PFN
1174	 * need to use memblock to get free size in [0, MAX_DMA_PFN]
1175	 * at first, and assume boot_mem will not take below MAX_DMA_PFN
1176	 */
1177	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1178		start_pfn = min(start_pfn, MAX_DMA_PFN);
1179		end_pfn = min(end_pfn, MAX_DMA_PFN);
1180		nr_pages += end_pfn - start_pfn;
1181	}
1182
1183	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1184				NULL) {
1185		start_pfn = min_t(unsigned long, PFN_UP(start), MAX_DMA_PFN);
1186		end_pfn = min_t(unsigned long, PFN_DOWN(end), MAX_DMA_PFN);
1187		if (start_pfn < end_pfn)
1188			nr_free_pages += end_pfn - start_pfn;
1189	}
1190
1191	set_dma_reserve(nr_pages - nr_free_pages);
1192#endif
1193}