Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
 
  32#include <linux/crc32.h>
  33#include <linux/vfs.h>
  34#include <linux/writeback.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/fs_context.h>
  38#include <linux/fs_parser.h>
  39#include "nilfs.h"
  40#include "export.h"
  41#include "mdt.h"
  42#include "alloc.h"
  43#include "btree.h"
  44#include "btnode.h"
  45#include "page.h"
  46#include "cpfile.h"
  47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  48#include "ifile.h"
  49#include "dat.h"
  50#include "segment.h"
  51#include "segbuf.h"
  52
  53MODULE_AUTHOR("NTT Corp.");
  54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  55		   "(NILFS)");
  56MODULE_LICENSE("GPL");
  57
  58static struct kmem_cache *nilfs_inode_cachep;
  59struct kmem_cache *nilfs_transaction_cachep;
  60struct kmem_cache *nilfs_segbuf_cachep;
  61struct kmem_cache *nilfs_btree_path_cache;
  62
  63static int nilfs_setup_super(struct super_block *sb, int is_mount);
 
  64
  65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  66{
  67	struct va_format vaf;
  68	va_list args;
  69	int level;
  70
  71	va_start(args, fmt);
  72
  73	level = printk_get_level(fmt);
  74	vaf.fmt = printk_skip_level(fmt);
  75	vaf.va = &args;
  76
  77	if (sb)
  78		printk("%c%cNILFS (%s): %pV\n",
  79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  80	else
  81		printk("%c%cNILFS: %pV\n",
  82		       KERN_SOH_ASCII, level, &vaf);
  83
  84	va_end(args);
  85}
  86
  87static void nilfs_set_error(struct super_block *sb)
  88{
  89	struct the_nilfs *nilfs = sb->s_fs_info;
  90	struct nilfs_super_block **sbp;
  91
  92	down_write(&nilfs->ns_sem);
  93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  95		sbp = nilfs_prepare_super(sb, 0);
  96		if (likely(sbp)) {
  97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  98			if (sbp[1])
  99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 101		}
 102	}
 103	up_write(&nilfs->ns_sem);
 104}
 105
 106/**
 107 * __nilfs_error() - report failure condition on a filesystem
 108 * @sb:       super block instance
 109 * @function: name of calling function
 110 * @fmt:      format string for message to be output
 111 * @...:      optional arguments to @fmt
 112 *
 113 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 114 * reporting an error message.  This function should be called when
 115 * NILFS detects incoherences or defects of meta data on disk.
 116 *
 117 * This implements the body of nilfs_error() macro.  Normally,
 118 * nilfs_error() should be used.  As for sustainable errors such as a
 119 * single-shot I/O error, nilfs_err() should be used instead.
 120 *
 121 * Callers should not add a trailing newline since this will do it.
 122 */
 123void __nilfs_error(struct super_block *sb, const char *function,
 124		   const char *fmt, ...)
 125{
 126	struct the_nilfs *nilfs = sb->s_fs_info;
 127	struct va_format vaf;
 128	va_list args;
 129
 130	va_start(args, fmt);
 131
 132	vaf.fmt = fmt;
 133	vaf.va = &args;
 134
 135	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 136	       sb->s_id, function, &vaf);
 137
 138	va_end(args);
 139
 140	if (!sb_rdonly(sb)) {
 141		nilfs_set_error(sb);
 142
 143		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 144			printk(KERN_CRIT "Remounting filesystem read-only\n");
 145			sb->s_flags |= SB_RDONLY;
 146		}
 147	}
 148
 149	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 150		panic("NILFS (device %s): panic forced after error\n",
 151		      sb->s_id);
 152}
 153
 154struct inode *nilfs_alloc_inode(struct super_block *sb)
 155{
 156	struct nilfs_inode_info *ii;
 157
 158	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 159	if (!ii)
 160		return NULL;
 161	ii->i_bh = NULL;
 162	ii->i_state = 0;
 163	ii->i_type = 0;
 164	ii->i_cno = 0;
 165	ii->i_assoc_inode = NULL;
 166	ii->i_bmap = &ii->i_bmap_data;
 167	return &ii->vfs_inode;
 168}
 169
 170static void nilfs_free_inode(struct inode *inode)
 171{
 172	if (nilfs_is_metadata_file_inode(inode))
 173		nilfs_mdt_destroy(inode);
 174
 175	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 176}
 177
 178static int nilfs_sync_super(struct super_block *sb, int flag)
 179{
 180	struct the_nilfs *nilfs = sb->s_fs_info;
 181	int err;
 182
 183 retry:
 184	set_buffer_dirty(nilfs->ns_sbh[0]);
 185	if (nilfs_test_opt(nilfs, BARRIER)) {
 186		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 187					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 188	} else {
 189		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 190	}
 191
 192	if (unlikely(err)) {
 193		nilfs_err(sb, "unable to write superblock: err=%d", err);
 194		if (err == -EIO && nilfs->ns_sbh[1]) {
 195			/*
 196			 * sbp[0] points to newer log than sbp[1],
 197			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 198			 */
 199			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 200			       nilfs->ns_sbsize);
 201			nilfs_fall_back_super_block(nilfs);
 202			goto retry;
 203		}
 204	} else {
 205		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 206
 207		nilfs->ns_sbwcount++;
 208
 209		/*
 210		 * The latest segment becomes trailable from the position
 211		 * written in superblock.
 212		 */
 213		clear_nilfs_discontinued(nilfs);
 214
 215		/* update GC protection for recent segments */
 216		if (nilfs->ns_sbh[1]) {
 217			if (flag == NILFS_SB_COMMIT_ALL) {
 218				set_buffer_dirty(nilfs->ns_sbh[1]);
 219				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 220					goto out;
 221			}
 222			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 223			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 224				sbp = nilfs->ns_sbp[1];
 225		}
 226
 227		spin_lock(&nilfs->ns_last_segment_lock);
 228		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 229		spin_unlock(&nilfs->ns_last_segment_lock);
 230	}
 231 out:
 232	return err;
 233}
 234
 235void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 236			  struct the_nilfs *nilfs)
 237{
 238	sector_t nfreeblocks;
 239
 240	/* nilfs->ns_sem must be locked by the caller. */
 241	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 242	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 243
 244	spin_lock(&nilfs->ns_last_segment_lock);
 245	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 246	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 247	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 248	spin_unlock(&nilfs->ns_last_segment_lock);
 249}
 250
 251struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 252					       int flip)
 253{
 254	struct the_nilfs *nilfs = sb->s_fs_info;
 255	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 256
 257	/* nilfs->ns_sem must be locked by the caller. */
 258	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 259		if (sbp[1] &&
 260		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 261			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 262		} else {
 263			nilfs_crit(sb, "superblock broke");
 264			return NULL;
 265		}
 266	} else if (sbp[1] &&
 267		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 268		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 269	}
 270
 271	if (flip && sbp[1])
 272		nilfs_swap_super_block(nilfs);
 273
 274	return sbp;
 275}
 276
 277int nilfs_commit_super(struct super_block *sb, int flag)
 278{
 279	struct the_nilfs *nilfs = sb->s_fs_info;
 280	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 281	time64_t t;
 282
 283	/* nilfs->ns_sem must be locked by the caller. */
 284	t = ktime_get_real_seconds();
 285	nilfs->ns_sbwtime = t;
 286	sbp[0]->s_wtime = cpu_to_le64(t);
 287	sbp[0]->s_sum = 0;
 288	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 289					     (unsigned char *)sbp[0],
 290					     nilfs->ns_sbsize));
 291	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 292		sbp[1]->s_wtime = sbp[0]->s_wtime;
 293		sbp[1]->s_sum = 0;
 294		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 295					    (unsigned char *)sbp[1],
 296					    nilfs->ns_sbsize));
 297	}
 298	clear_nilfs_sb_dirty(nilfs);
 299	nilfs->ns_flushed_device = 1;
 300	/* make sure store to ns_flushed_device cannot be reordered */
 301	smp_wmb();
 302	return nilfs_sync_super(sb, flag);
 303}
 304
 305/**
 306 * nilfs_cleanup_super() - write filesystem state for cleanup
 307 * @sb: super block instance to be unmounted or degraded to read-only
 308 *
 309 * This function restores state flags in the on-disk super block.
 310 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 311 * filesystem was not clean previously.
 312 */
 313int nilfs_cleanup_super(struct super_block *sb)
 314{
 315	struct the_nilfs *nilfs = sb->s_fs_info;
 316	struct nilfs_super_block **sbp;
 317	int flag = NILFS_SB_COMMIT;
 318	int ret = -EIO;
 319
 320	sbp = nilfs_prepare_super(sb, 0);
 321	if (sbp) {
 322		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 323		nilfs_set_log_cursor(sbp[0], nilfs);
 324		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 325			/*
 326			 * make the "clean" flag also to the opposite
 327			 * super block if both super blocks point to
 328			 * the same checkpoint.
 329			 */
 330			sbp[1]->s_state = sbp[0]->s_state;
 331			flag = NILFS_SB_COMMIT_ALL;
 332		}
 333		ret = nilfs_commit_super(sb, flag);
 334	}
 335	return ret;
 336}
 337
 338/**
 339 * nilfs_move_2nd_super - relocate secondary super block
 340 * @sb: super block instance
 341 * @sb2off: new offset of the secondary super block (in bytes)
 342 */
 343static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 344{
 345	struct the_nilfs *nilfs = sb->s_fs_info;
 346	struct buffer_head *nsbh;
 347	struct nilfs_super_block *nsbp;
 348	sector_t blocknr, newblocknr;
 349	unsigned long offset;
 350	int sb2i;  /* array index of the secondary superblock */
 351	int ret = 0;
 352
 353	/* nilfs->ns_sem must be locked by the caller. */
 354	if (nilfs->ns_sbh[1] &&
 355	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 356		sb2i = 1;
 357		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 358	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 359		sb2i = 0;
 360		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 361	} else {
 362		sb2i = -1;
 363		blocknr = 0;
 364	}
 365	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 366		goto out;  /* super block location is unchanged */
 367
 368	/* Get new super block buffer */
 369	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 370	offset = sb2off & (nilfs->ns_blocksize - 1);
 371	nsbh = sb_getblk(sb, newblocknr);
 372	if (!nsbh) {
 373		nilfs_warn(sb,
 374			   "unable to move secondary superblock to block %llu",
 375			   (unsigned long long)newblocknr);
 376		ret = -EIO;
 377		goto out;
 378	}
 379	nsbp = (void *)nsbh->b_data + offset;
 
 380
 381	lock_buffer(nsbh);
 382	if (sb2i >= 0) {
 383		/*
 384		 * The position of the second superblock only changes by 4KiB,
 385		 * which is larger than the maximum superblock data size
 386		 * (= 1KiB), so there is no need to use memmove() to allow
 387		 * overlap between source and destination.
 388		 */
 389		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 390
 391		/*
 392		 * Zero fill after copy to avoid overwriting in case of move
 393		 * within the same block.
 394		 */
 395		memset(nsbh->b_data, 0, offset);
 396		memset((void *)nsbp + nilfs->ns_sbsize, 0,
 397		       nsbh->b_size - offset - nilfs->ns_sbsize);
 398	} else {
 399		memset(nsbh->b_data, 0, nsbh->b_size);
 400	}
 401	set_buffer_uptodate(nsbh);
 402	unlock_buffer(nsbh);
 403
 404	if (sb2i >= 0) {
 405		brelse(nilfs->ns_sbh[sb2i]);
 406		nilfs->ns_sbh[sb2i] = nsbh;
 407		nilfs->ns_sbp[sb2i] = nsbp;
 408	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 409		/* secondary super block will be restored to index 1 */
 410		nilfs->ns_sbh[1] = nsbh;
 411		nilfs->ns_sbp[1] = nsbp;
 412	} else {
 413		brelse(nsbh);
 414	}
 415out:
 416	return ret;
 417}
 418
 419/**
 420 * nilfs_resize_fs - resize the filesystem
 421 * @sb: super block instance
 422 * @newsize: new size of the filesystem (in bytes)
 423 */
 424int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 425{
 426	struct the_nilfs *nilfs = sb->s_fs_info;
 427	struct nilfs_super_block **sbp;
 428	__u64 devsize, newnsegs;
 429	loff_t sb2off;
 430	int ret;
 431
 432	ret = -ERANGE;
 433	devsize = bdev_nr_bytes(sb->s_bdev);
 434	if (newsize > devsize)
 435		goto out;
 436
 437	/*
 438	 * Prevent underflow in second superblock position calculation.
 439	 * The exact minimum size check is done in nilfs_sufile_resize().
 440	 */
 441	if (newsize < 4096) {
 442		ret = -ENOSPC;
 443		goto out;
 444	}
 445
 446	/*
 447	 * Write lock is required to protect some functions depending
 448	 * on the number of segments, the number of reserved segments,
 449	 * and so forth.
 450	 */
 451	down_write(&nilfs->ns_segctor_sem);
 452
 453	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 454	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 455	newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
 456
 457	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 458	up_write(&nilfs->ns_segctor_sem);
 459	if (ret < 0)
 460		goto out;
 461
 462	ret = nilfs_construct_segment(sb);
 463	if (ret < 0)
 464		goto out;
 465
 466	down_write(&nilfs->ns_sem);
 467	nilfs_move_2nd_super(sb, sb2off);
 468	ret = -EIO;
 469	sbp = nilfs_prepare_super(sb, 0);
 470	if (likely(sbp)) {
 471		nilfs_set_log_cursor(sbp[0], nilfs);
 472		/*
 473		 * Drop NILFS_RESIZE_FS flag for compatibility with
 474		 * mount-time resize which may be implemented in a
 475		 * future release.
 476		 */
 477		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 478					      ~NILFS_RESIZE_FS);
 479		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 480		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 481		if (sbp[1])
 482			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 483		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 484	}
 485	up_write(&nilfs->ns_sem);
 486
 487	/*
 488	 * Reset the range of allocatable segments last.  This order
 489	 * is important in the case of expansion because the secondary
 490	 * superblock must be protected from log write until migration
 491	 * completes.
 492	 */
 493	if (!ret)
 494		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 495out:
 496	return ret;
 497}
 498
 499static void nilfs_put_super(struct super_block *sb)
 500{
 501	struct the_nilfs *nilfs = sb->s_fs_info;
 502
 503	nilfs_detach_log_writer(sb);
 504
 505	if (!sb_rdonly(sb)) {
 506		down_write(&nilfs->ns_sem);
 507		nilfs_cleanup_super(sb);
 508		up_write(&nilfs->ns_sem);
 509	}
 510
 511	nilfs_sysfs_delete_device_group(nilfs);
 512	iput(nilfs->ns_sufile);
 513	iput(nilfs->ns_cpfile);
 514	iput(nilfs->ns_dat);
 515
 516	destroy_nilfs(nilfs);
 517	sb->s_fs_info = NULL;
 518}
 519
 520static int nilfs_sync_fs(struct super_block *sb, int wait)
 521{
 522	struct the_nilfs *nilfs = sb->s_fs_info;
 523	struct nilfs_super_block **sbp;
 524	int err = 0;
 525
 526	/* This function is called when super block should be written back */
 527	if (wait)
 528		err = nilfs_construct_segment(sb);
 529
 530	down_write(&nilfs->ns_sem);
 531	if (nilfs_sb_dirty(nilfs)) {
 532		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 533		if (likely(sbp)) {
 534			nilfs_set_log_cursor(sbp[0], nilfs);
 535			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 536		}
 537	}
 538	up_write(&nilfs->ns_sem);
 539
 540	if (!err)
 541		err = nilfs_flush_device(nilfs);
 542
 543	return err;
 544}
 545
 546int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 547			    struct nilfs_root **rootp)
 548{
 549	struct the_nilfs *nilfs = sb->s_fs_info;
 550	struct nilfs_root *root;
 
 
 551	int err = -ENOMEM;
 552
 553	root = nilfs_find_or_create_root(
 554		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 555	if (!root)
 556		return err;
 557
 558	if (root->ifile)
 559		goto reuse; /* already attached checkpoint */
 560
 561	down_read(&nilfs->ns_segctor_sem);
 562	err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
 
 563	up_read(&nilfs->ns_segctor_sem);
 564	if (unlikely(err))
 
 
 
 
 
 
 565		goto failed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567 reuse:
 568	*rootp = root;
 569	return 0;
 570
 
 
 571 failed:
 572	if (err == -EINVAL)
 573		nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
 574			  (unsigned long long)cno);
 575	nilfs_put_root(root);
 576
 577	return err;
 578}
 579
 580static int nilfs_freeze(struct super_block *sb)
 581{
 582	struct the_nilfs *nilfs = sb->s_fs_info;
 583	int err;
 584
 585	if (sb_rdonly(sb))
 586		return 0;
 587
 588	/* Mark super block clean */
 589	down_write(&nilfs->ns_sem);
 590	err = nilfs_cleanup_super(sb);
 591	up_write(&nilfs->ns_sem);
 592	return err;
 593}
 594
 595static int nilfs_unfreeze(struct super_block *sb)
 596{
 597	struct the_nilfs *nilfs = sb->s_fs_info;
 598
 599	if (sb_rdonly(sb))
 600		return 0;
 601
 602	down_write(&nilfs->ns_sem);
 603	nilfs_setup_super(sb, false);
 604	up_write(&nilfs->ns_sem);
 605	return 0;
 606}
 607
 608static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 609{
 610	struct super_block *sb = dentry->d_sb;
 611	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 612	struct the_nilfs *nilfs = root->nilfs;
 613	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 614	unsigned long long blocks;
 615	unsigned long overhead;
 616	unsigned long nrsvblocks;
 617	sector_t nfreeblocks;
 618	u64 nmaxinodes, nfreeinodes;
 619	int err;
 620
 621	/*
 622	 * Compute all of the segment blocks
 623	 *
 624	 * The blocks before first segment and after last segment
 625	 * are excluded.
 626	 */
 627	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 628		- nilfs->ns_first_data_block;
 629	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 630
 631	/*
 632	 * Compute the overhead
 633	 *
 634	 * When distributing meta data blocks outside segment structure,
 635	 * We must count them as the overhead.
 636	 */
 637	overhead = 0;
 638
 639	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 640	if (unlikely(err))
 641		return err;
 642
 643	err = nilfs_ifile_count_free_inodes(root->ifile,
 644					    &nmaxinodes, &nfreeinodes);
 645	if (unlikely(err)) {
 646		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 647		if (err == -ERANGE) {
 648			/*
 649			 * If nilfs_palloc_count_max_entries() returns
 650			 * -ERANGE error code then we simply treat
 651			 * curent inodes count as maximum possible and
 652			 * zero as free inodes value.
 653			 */
 654			nmaxinodes = atomic64_read(&root->inodes_count);
 655			nfreeinodes = 0;
 656			err = 0;
 657		} else
 658			return err;
 659	}
 660
 661	buf->f_type = NILFS_SUPER_MAGIC;
 662	buf->f_bsize = sb->s_blocksize;
 663	buf->f_blocks = blocks - overhead;
 664	buf->f_bfree = nfreeblocks;
 665	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 666		(buf->f_bfree - nrsvblocks) : 0;
 667	buf->f_files = nmaxinodes;
 668	buf->f_ffree = nfreeinodes;
 669	buf->f_namelen = NILFS_NAME_LEN;
 670	buf->f_fsid = u64_to_fsid(id);
 
 671
 672	return 0;
 673}
 674
 675static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 676{
 677	struct super_block *sb = dentry->d_sb;
 678	struct the_nilfs *nilfs = sb->s_fs_info;
 679	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 680
 681	if (!nilfs_test_opt(nilfs, BARRIER))
 682		seq_puts(seq, ",nobarrier");
 683	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 684		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 685	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 686		seq_puts(seq, ",errors=panic");
 687	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 688		seq_puts(seq, ",errors=continue");
 689	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 690		seq_puts(seq, ",order=strict");
 691	if (nilfs_test_opt(nilfs, NORECOVERY))
 692		seq_puts(seq, ",norecovery");
 693	if (nilfs_test_opt(nilfs, DISCARD))
 694		seq_puts(seq, ",discard");
 695
 696	return 0;
 697}
 698
 699static const struct super_operations nilfs_sops = {
 700	.alloc_inode    = nilfs_alloc_inode,
 701	.free_inode     = nilfs_free_inode,
 702	.dirty_inode    = nilfs_dirty_inode,
 703	.evict_inode    = nilfs_evict_inode,
 704	.put_super      = nilfs_put_super,
 705	.sync_fs        = nilfs_sync_fs,
 706	.freeze_fs	= nilfs_freeze,
 707	.unfreeze_fs	= nilfs_unfreeze,
 708	.statfs         = nilfs_statfs,
 
 709	.show_options = nilfs_show_options
 710};
 711
 712enum {
 713	Opt_err, Opt_barrier, Opt_snapshot, Opt_order, Opt_norecovery,
 714	Opt_discard,
 
 715};
 716
 717static const struct constant_table nilfs_param_err[] = {
 718	{"continue",	NILFS_MOUNT_ERRORS_CONT},
 719	{"panic",	NILFS_MOUNT_ERRORS_PANIC},
 720	{"remount-ro",	NILFS_MOUNT_ERRORS_RO},
 721	{}
 
 
 
 
 
 
 
 722};
 723
 724static const struct fs_parameter_spec nilfs_param_spec[] = {
 725	fsparam_enum	("errors", Opt_err, nilfs_param_err),
 726	fsparam_flag_no	("barrier", Opt_barrier),
 727	fsparam_u64	("cp", Opt_snapshot),
 728	fsparam_string	("order", Opt_order),
 729	fsparam_flag	("norecovery", Opt_norecovery),
 730	fsparam_flag_no	("discard", Opt_discard),
 731	{}
 732};
 733
 734struct nilfs_fs_context {
 735	unsigned long ns_mount_opt;
 736	__u64 cno;
 737};
 738
 739static int nilfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 740{
 741	struct nilfs_fs_context *nilfs = fc->fs_private;
 742	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
 743	struct fs_parse_result result;
 744	int opt;
 745
 746	opt = fs_parse(fc, nilfs_param_spec, param, &result);
 747	if (opt < 0)
 748		return opt;
 749
 750	switch (opt) {
 751	case Opt_barrier:
 752		if (result.negated)
 753			nilfs_clear_opt(nilfs, BARRIER);
 754		else
 755			nilfs_set_opt(nilfs, BARRIER);
 756		break;
 757	case Opt_order:
 758		if (strcmp(param->string, "relaxed") == 0)
 759			/* Ordered data semantics */
 760			nilfs_clear_opt(nilfs, STRICT_ORDER);
 761		else if (strcmp(param->string, "strict") == 0)
 762			/* Strict in-order semantics */
 763			nilfs_set_opt(nilfs, STRICT_ORDER);
 764		else
 765			return -EINVAL;
 766		break;
 767	case Opt_err:
 768		nilfs->ns_mount_opt &= ~NILFS_MOUNT_ERROR_MODE;
 769		nilfs->ns_mount_opt |= result.uint_32;
 770		break;
 771	case Opt_snapshot:
 772		if (is_remount) {
 773			struct super_block *sb = fc->root->d_sb;
 774
 775			nilfs_err(sb,
 776				  "\"%s\" option is invalid for remount",
 777				  param->key);
 778			return -EINVAL;
 779		}
 780		if (result.uint_64 == 0) {
 781			nilfs_err(NULL,
 782				  "invalid option \"cp=0\": invalid checkpoint number 0");
 783			return -EINVAL;
 784		}
 785		nilfs->cno = result.uint_64;
 786		break;
 787	case Opt_norecovery:
 788		nilfs_set_opt(nilfs, NORECOVERY);
 789		break;
 790	case Opt_discard:
 791		if (result.negated)
 792			nilfs_clear_opt(nilfs, DISCARD);
 793		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794			nilfs_set_opt(nilfs, DISCARD);
 795		break;
 796	default:
 797		return -EINVAL;
 
 
 
 
 
 798	}
 
 
 799
 800	return 0;
 
 
 
 
 
 
 
 801}
 802
 803static int nilfs_setup_super(struct super_block *sb, int is_mount)
 804{
 805	struct the_nilfs *nilfs = sb->s_fs_info;
 806	struct nilfs_super_block **sbp;
 807	int max_mnt_count;
 808	int mnt_count;
 809
 810	/* nilfs->ns_sem must be locked by the caller. */
 811	sbp = nilfs_prepare_super(sb, 0);
 812	if (!sbp)
 813		return -EIO;
 814
 815	if (!is_mount)
 816		goto skip_mount_setup;
 817
 818	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 819	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 820
 821	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 822		nilfs_warn(sb, "mounting fs with errors");
 823#if 0
 824	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 825		nilfs_warn(sb, "maximal mount count reached");
 826#endif
 827	}
 828	if (!max_mnt_count)
 829		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 830
 831	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 832	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 833
 834skip_mount_setup:
 835	sbp[0]->s_state =
 836		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 837	/* synchronize sbp[1] with sbp[0] */
 838	if (sbp[1])
 839		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 840	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 841}
 842
 843struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 844						 u64 pos, int blocksize,
 845						 struct buffer_head **pbh)
 846{
 847	unsigned long long sb_index = pos;
 848	unsigned long offset;
 849
 850	offset = do_div(sb_index, blocksize);
 851	*pbh = sb_bread(sb, sb_index);
 852	if (!*pbh)
 853		return NULL;
 854	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 855}
 856
 857int nilfs_store_magic(struct super_block *sb,
 858		      struct nilfs_super_block *sbp)
 
 859{
 860	struct the_nilfs *nilfs = sb->s_fs_info;
 861
 862	sb->s_magic = le16_to_cpu(sbp->s_magic);
 863
 864	/* FS independent flags */
 865#ifdef NILFS_ATIME_DISABLE
 866	sb->s_flags |= SB_NOATIME;
 867#endif
 868
 
 
 869	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 870	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 871	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 872	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 873
 874	return 0;
 875}
 876
 877int nilfs_check_feature_compatibility(struct super_block *sb,
 878				      struct nilfs_super_block *sbp)
 879{
 880	__u64 features;
 881
 882	features = le64_to_cpu(sbp->s_feature_incompat) &
 883		~NILFS_FEATURE_INCOMPAT_SUPP;
 884	if (features) {
 885		nilfs_err(sb,
 886			  "couldn't mount because of unsupported optional features (%llx)",
 887			  (unsigned long long)features);
 888		return -EINVAL;
 889	}
 890	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 891		~NILFS_FEATURE_COMPAT_RO_SUPP;
 892	if (!sb_rdonly(sb) && features) {
 893		nilfs_err(sb,
 894			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 895			  (unsigned long long)features);
 896		return -EINVAL;
 897	}
 898	return 0;
 899}
 900
 901static int nilfs_get_root_dentry(struct super_block *sb,
 902				 struct nilfs_root *root,
 903				 struct dentry **root_dentry)
 904{
 905	struct inode *inode;
 906	struct dentry *dentry;
 907	int ret = 0;
 908
 909	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 910	if (IS_ERR(inode)) {
 911		ret = PTR_ERR(inode);
 912		nilfs_err(sb, "error %d getting root inode", ret);
 913		goto out;
 914	}
 915	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 916		iput(inode);
 917		nilfs_err(sb, "corrupt root inode");
 918		ret = -EINVAL;
 919		goto out;
 920	}
 921
 922	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 923		dentry = d_find_alias(inode);
 924		if (!dentry) {
 925			dentry = d_make_root(inode);
 926			if (!dentry) {
 927				ret = -ENOMEM;
 928				goto failed_dentry;
 929			}
 930		} else {
 931			iput(inode);
 932		}
 933	} else {
 934		dentry = d_obtain_root(inode);
 935		if (IS_ERR(dentry)) {
 936			ret = PTR_ERR(dentry);
 937			goto failed_dentry;
 938		}
 939	}
 940	*root_dentry = dentry;
 941 out:
 942	return ret;
 943
 944 failed_dentry:
 945	nilfs_err(sb, "error %d getting root dentry", ret);
 946	goto out;
 947}
 948
 949static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 950				 struct dentry **root_dentry)
 951{
 952	struct the_nilfs *nilfs = s->s_fs_info;
 953	struct nilfs_root *root;
 954	int ret;
 955
 956	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 957
 958	down_read(&nilfs->ns_segctor_sem);
 959	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 960	up_read(&nilfs->ns_segctor_sem);
 961	if (ret < 0) {
 962		ret = (ret == -ENOENT) ? -EINVAL : ret;
 963		goto out;
 964	} else if (!ret) {
 965		nilfs_err(s,
 966			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 967			  (unsigned long long)cno);
 968		ret = -EINVAL;
 969		goto out;
 970	}
 971
 972	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 973	if (ret) {
 974		nilfs_err(s,
 975			  "error %d while loading snapshot (checkpoint number=%llu)",
 976			  ret, (unsigned long long)cno);
 977		goto out;
 978	}
 979	ret = nilfs_get_root_dentry(s, root, root_dentry);
 980	nilfs_put_root(root);
 981 out:
 982	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 983	return ret;
 984}
 985
 986/**
 987 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 988 * @root_dentry: root dentry of the tree to be shrunk
 989 *
 990 * This function returns true if the tree was in-use.
 991 */
 992static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 993{
 994	shrink_dcache_parent(root_dentry);
 995	return d_count(root_dentry) > 1;
 996}
 997
 998int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
 999{
1000	struct the_nilfs *nilfs = sb->s_fs_info;
1001	struct nilfs_root *root;
1002	struct inode *inode;
1003	struct dentry *dentry;
1004	int ret;
1005
1006	if (cno > nilfs->ns_cno)
1007		return false;
1008
1009	if (cno >= nilfs_last_cno(nilfs))
1010		return true;	/* protect recent checkpoints */
1011
1012	ret = false;
1013	root = nilfs_lookup_root(nilfs, cno);
1014	if (root) {
1015		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1016		if (inode) {
1017			dentry = d_find_alias(inode);
1018			if (dentry) {
1019				ret = nilfs_tree_is_busy(dentry);
1020				dput(dentry);
1021			}
1022			iput(inode);
1023		}
1024		nilfs_put_root(root);
1025	}
1026	return ret;
1027}
1028
1029/**
1030 * nilfs_fill_super() - initialize a super block instance
1031 * @sb: super_block
1032 * @fc: filesystem context
 
1033 *
1034 * This function is called exclusively by nilfs->ns_mount_mutex.
1035 * So, the recovery process is protected from other simultaneous mounts.
1036 */
1037static int
1038nilfs_fill_super(struct super_block *sb, struct fs_context *fc)
1039{
1040	struct the_nilfs *nilfs;
1041	struct nilfs_root *fsroot;
1042	struct nilfs_fs_context *ctx = fc->fs_private;
1043	__u64 cno;
1044	int err;
1045
1046	nilfs = alloc_nilfs(sb);
1047	if (!nilfs)
1048		return -ENOMEM;
1049
1050	sb->s_fs_info = nilfs;
1051
1052	err = init_nilfs(nilfs, sb);
1053	if (err)
1054		goto failed_nilfs;
1055
1056	/* Copy in parsed mount options */
1057	nilfs->ns_mount_opt = ctx->ns_mount_opt;
1058
1059	sb->s_op = &nilfs_sops;
1060	sb->s_export_op = &nilfs_export_ops;
1061	sb->s_root = NULL;
1062	sb->s_time_gran = 1;
1063	sb->s_max_links = NILFS_LINK_MAX;
1064
1065	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1066
1067	err = load_nilfs(nilfs, sb);
1068	if (err)
1069		goto failed_nilfs;
1070
1071	super_set_uuid(sb, nilfs->ns_sbp[0]->s_uuid,
1072		       sizeof(nilfs->ns_sbp[0]->s_uuid));
1073	super_set_sysfs_name_bdev(sb);
1074
1075	cno = nilfs_last_cno(nilfs);
1076	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1077	if (err) {
1078		nilfs_err(sb,
1079			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1080			  err, (unsigned long long)cno);
1081		goto failed_unload;
1082	}
1083
1084	if (!sb_rdonly(sb)) {
1085		err = nilfs_attach_log_writer(sb, fsroot);
1086		if (err)
1087			goto failed_checkpoint;
1088	}
1089
1090	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1091	if (err)
1092		goto failed_segctor;
1093
1094	nilfs_put_root(fsroot);
1095
1096	if (!sb_rdonly(sb)) {
1097		down_write(&nilfs->ns_sem);
1098		nilfs_setup_super(sb, true);
1099		up_write(&nilfs->ns_sem);
1100	}
1101
1102	return 0;
1103
1104 failed_segctor:
1105	nilfs_detach_log_writer(sb);
1106
1107 failed_checkpoint:
1108	nilfs_put_root(fsroot);
1109
1110 failed_unload:
1111	nilfs_sysfs_delete_device_group(nilfs);
1112	iput(nilfs->ns_sufile);
1113	iput(nilfs->ns_cpfile);
1114	iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117	destroy_nilfs(nilfs);
1118	return err;
1119}
1120
1121static int nilfs_reconfigure(struct fs_context *fc)
1122{
1123	struct nilfs_fs_context *ctx = fc->fs_private;
1124	struct super_block *sb = fc->root->d_sb;
1125	struct the_nilfs *nilfs = sb->s_fs_info;
 
 
1126	int err;
1127
1128	sync_filesystem(sb);
 
 
 
 
 
 
 
 
1129
1130	err = -EINVAL;
1131
1132	if (!nilfs_valid_fs(nilfs)) {
1133		nilfs_warn(sb,
1134			   "couldn't remount because the filesystem is in an incomplete recovery state");
1135		goto ignore_opts;
1136	}
1137	if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
 
1138		goto out;
1139	if (fc->sb_flags & SB_RDONLY) {
 
 
1140		sb->s_flags |= SB_RDONLY;
1141
1142		/*
1143		 * Remounting a valid RW partition RDONLY, so set
1144		 * the RDONLY flag and then mark the partition as valid again.
1145		 */
1146		down_write(&nilfs->ns_sem);
1147		nilfs_cleanup_super(sb);
1148		up_write(&nilfs->ns_sem);
1149	} else {
1150		__u64 features;
1151		struct nilfs_root *root;
1152
1153		/*
1154		 * Mounting a RDONLY partition read-write, so reread and
1155		 * store the current valid flag.  (It may have been changed
1156		 * by fsck since we originally mounted the partition.)
1157		 */
1158		down_read(&nilfs->ns_sem);
1159		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1160			~NILFS_FEATURE_COMPAT_RO_SUPP;
1161		up_read(&nilfs->ns_sem);
1162		if (features) {
1163			nilfs_warn(sb,
1164				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1165				   (unsigned long long)features);
1166			err = -EROFS;
1167			goto ignore_opts;
1168		}
1169
1170		sb->s_flags &= ~SB_RDONLY;
1171
1172		root = NILFS_I(d_inode(sb->s_root))->i_root;
1173		err = nilfs_attach_log_writer(sb, root);
1174		if (err) {
1175			sb->s_flags |= SB_RDONLY;
1176			goto ignore_opts;
1177		}
1178
1179		down_write(&nilfs->ns_sem);
1180		nilfs_setup_super(sb, true);
1181		up_write(&nilfs->ns_sem);
1182	}
1183 out:
1184	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1185	/* Copy over parsed remount options */
1186	nilfs->ns_mount_opt = ctx->ns_mount_opt;
1187
1188	return 0;
1189
1190 ignore_opts:
 
 
1191	return err;
1192}
1193
1194static int
1195nilfs_get_tree(struct fs_context *fc)
 
 
 
 
 
 
 
1196{
1197	struct nilfs_fs_context *ctx = fc->fs_private;
1198	struct super_block *s;
1199	dev_t dev;
1200	int err;
1201
1202	if (ctx->cno && !(fc->sb_flags & SB_RDONLY)) {
1203		nilfs_err(NULL,
1204			  "invalid option \"cp=%llu\": read-only option is not specified",
1205			  ctx->cno);
1206		return -EINVAL;
1207	}
1208
1209	err = lookup_bdev(fc->source, &dev);
1210	if (err)
1211		return err;
 
 
 
 
 
 
 
 
 
 
1212
1213	s = sget_dev(fc, dev);
1214	if (IS_ERR(s))
1215		return PTR_ERR(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217	if (!s->s_root) {
1218		err = setup_bdev_super(s, fc->sb_flags, fc);
1219		if (!err)
1220			err = nilfs_fill_super(s, fc);
 
 
 
 
 
1221		if (err)
1222			goto failed_super;
1223
1224		s->s_flags |= SB_ACTIVE;
1225	} else if (!ctx->cno) {
1226		if (nilfs_tree_is_busy(s->s_root)) {
1227			if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1228				nilfs_err(s,
1229					  "the device already has a %s mount.",
1230					  sb_rdonly(s) ? "read-only" : "read/write");
1231				err = -EBUSY;
1232				goto failed_super;
1233			}
1234		} else {
1235			/*
1236			 * Try reconfigure to setup mount states if the current
1237			 * tree is not mounted and only snapshots use this sb.
1238			 *
1239			 * Since nilfs_reconfigure() requires fc->root to be
1240			 * set, set it first and release it on failure.
1241			 */
1242			fc->root = dget(s->s_root);
1243			err = nilfs_reconfigure(fc);
1244			if (err) {
1245				dput(fc->root);
1246				fc->root = NULL;  /* prevent double release */
1247				goto failed_super;
1248			}
1249			return 0;
1250		}
1251	}
1252
1253	if (ctx->cno) {
1254		struct dentry *root_dentry;
1255
1256		err = nilfs_attach_snapshot(s, ctx->cno, &root_dentry);
1257		if (err)
1258			goto failed_super;
1259		fc->root = root_dentry;
1260		return 0;
1261	}
1262
1263	fc->root = dget(s->s_root);
1264	return 0;
 
 
1265
1266 failed_super:
1267	deactivate_locked_super(s);
1268	return err;
1269}
1270
1271static void nilfs_free_fc(struct fs_context *fc)
1272{
1273	kfree(fc->fs_private);
1274}
1275
1276static const struct fs_context_operations nilfs_context_ops = {
1277	.parse_param	= nilfs_parse_param,
1278	.get_tree	= nilfs_get_tree,
1279	.reconfigure	= nilfs_reconfigure,
1280	.free		= nilfs_free_fc,
1281};
1282
1283static int nilfs_init_fs_context(struct fs_context *fc)
1284{
1285	struct nilfs_fs_context *ctx;
1286
1287	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1288	if (!ctx)
1289		return -ENOMEM;
1290
1291	ctx->ns_mount_opt = NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
1292	fc->fs_private = ctx;
1293	fc->ops = &nilfs_context_ops;
1294
1295	return 0;
1296}
1297
1298struct file_system_type nilfs_fs_type = {
1299	.owner    = THIS_MODULE,
1300	.name     = "nilfs2",
 
1301	.kill_sb  = kill_block_super,
1302	.fs_flags = FS_REQUIRES_DEV,
1303	.init_fs_context = nilfs_init_fs_context,
1304	.parameters = nilfs_param_spec,
1305};
1306MODULE_ALIAS_FS("nilfs2");
1307
1308static void nilfs_inode_init_once(void *obj)
1309{
1310	struct nilfs_inode_info *ii = obj;
1311
1312	INIT_LIST_HEAD(&ii->i_dirty);
1313#ifdef CONFIG_NILFS_XATTR
1314	init_rwsem(&ii->xattr_sem);
1315#endif
 
 
1316	inode_init_once(&ii->vfs_inode);
1317}
1318
1319static void nilfs_segbuf_init_once(void *obj)
1320{
1321	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1322}
1323
1324static void nilfs_destroy_cachep(void)
1325{
1326	/*
1327	 * Make sure all delayed rcu free inodes are flushed before we
1328	 * destroy cache.
1329	 */
1330	rcu_barrier();
1331
1332	kmem_cache_destroy(nilfs_inode_cachep);
1333	kmem_cache_destroy(nilfs_transaction_cachep);
1334	kmem_cache_destroy(nilfs_segbuf_cachep);
1335	kmem_cache_destroy(nilfs_btree_path_cache);
1336}
1337
1338static int __init nilfs_init_cachep(void)
1339{
1340	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1341			sizeof(struct nilfs_inode_info), 0,
1342			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1343			nilfs_inode_init_once);
1344	if (!nilfs_inode_cachep)
1345		goto fail;
1346
1347	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1348			sizeof(struct nilfs_transaction_info), 0,
1349			SLAB_RECLAIM_ACCOUNT, NULL);
1350	if (!nilfs_transaction_cachep)
1351		goto fail;
1352
1353	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1354			sizeof(struct nilfs_segment_buffer), 0,
1355			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1356	if (!nilfs_segbuf_cachep)
1357		goto fail;
1358
1359	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1360			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1361			0, 0, NULL);
1362	if (!nilfs_btree_path_cache)
1363		goto fail;
1364
1365	return 0;
1366
1367fail:
1368	nilfs_destroy_cachep();
1369	return -ENOMEM;
1370}
1371
1372static int __init init_nilfs_fs(void)
1373{
1374	int err;
1375
1376	err = nilfs_init_cachep();
1377	if (err)
1378		goto fail;
1379
1380	err = nilfs_sysfs_init();
1381	if (err)
1382		goto free_cachep;
1383
1384	err = register_filesystem(&nilfs_fs_type);
1385	if (err)
1386		goto deinit_sysfs_entry;
1387
1388	printk(KERN_INFO "NILFS version 2 loaded\n");
1389	return 0;
1390
1391deinit_sysfs_entry:
1392	nilfs_sysfs_exit();
1393free_cachep:
1394	nilfs_destroy_cachep();
1395fail:
1396	return err;
1397}
1398
1399static void __exit exit_nilfs_fs(void)
1400{
1401	nilfs_destroy_cachep();
1402	nilfs_sysfs_exit();
1403	unregister_filesystem(&nilfs_fs_type);
1404}
1405
1406module_init(init_nilfs_fs)
1407module_exit(exit_nilfs_fs)
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * super.c - NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
 
 
  38#include "nilfs.h"
  39#include "export.h"
  40#include "mdt.h"
  41#include "alloc.h"
  42#include "btree.h"
  43#include "btnode.h"
  44#include "page.h"
  45#include "cpfile.h"
  46#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  47#include "ifile.h"
  48#include "dat.h"
  49#include "segment.h"
  50#include "segbuf.h"
  51
  52MODULE_AUTHOR("NTT Corp.");
  53MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  54		   "(NILFS)");
  55MODULE_LICENSE("GPL");
  56
  57static struct kmem_cache *nilfs_inode_cachep;
  58struct kmem_cache *nilfs_transaction_cachep;
  59struct kmem_cache *nilfs_segbuf_cachep;
  60struct kmem_cache *nilfs_btree_path_cache;
  61
  62static int nilfs_setup_super(struct super_block *sb, int is_mount);
  63static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  64
  65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  66{
  67	struct va_format vaf;
  68	va_list args;
  69	int level;
  70
  71	va_start(args, fmt);
  72
  73	level = printk_get_level(fmt);
  74	vaf.fmt = printk_skip_level(fmt);
  75	vaf.va = &args;
  76
  77	if (sb)
  78		printk("%c%cNILFS (%s): %pV\n",
  79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  80	else
  81		printk("%c%cNILFS: %pV\n",
  82		       KERN_SOH_ASCII, level, &vaf);
  83
  84	va_end(args);
  85}
  86
  87static void nilfs_set_error(struct super_block *sb)
  88{
  89	struct the_nilfs *nilfs = sb->s_fs_info;
  90	struct nilfs_super_block **sbp;
  91
  92	down_write(&nilfs->ns_sem);
  93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  95		sbp = nilfs_prepare_super(sb, 0);
  96		if (likely(sbp)) {
  97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  98			if (sbp[1])
  99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 101		}
 102	}
 103	up_write(&nilfs->ns_sem);
 104}
 105
 106/**
 107 * __nilfs_error() - report failure condition on a filesystem
 
 
 
 
 108 *
 109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 110 * reporting an error message.  This function should be called when
 111 * NILFS detects incoherences or defects of meta data on disk.
 112 *
 113 * This implements the body of nilfs_error() macro.  Normally,
 114 * nilfs_error() should be used.  As for sustainable errors such as a
 115 * single-shot I/O error, nilfs_err() should be used instead.
 116 *
 117 * Callers should not add a trailing newline since this will do it.
 118 */
 119void __nilfs_error(struct super_block *sb, const char *function,
 120		   const char *fmt, ...)
 121{
 122	struct the_nilfs *nilfs = sb->s_fs_info;
 123	struct va_format vaf;
 124	va_list args;
 125
 126	va_start(args, fmt);
 127
 128	vaf.fmt = fmt;
 129	vaf.va = &args;
 130
 131	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 132	       sb->s_id, function, &vaf);
 133
 134	va_end(args);
 135
 136	if (!sb_rdonly(sb)) {
 137		nilfs_set_error(sb);
 138
 139		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 140			printk(KERN_CRIT "Remounting filesystem read-only\n");
 141			sb->s_flags |= SB_RDONLY;
 142		}
 143	}
 144
 145	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 146		panic("NILFS (device %s): panic forced after error\n",
 147		      sb->s_id);
 148}
 149
 150struct inode *nilfs_alloc_inode(struct super_block *sb)
 151{
 152	struct nilfs_inode_info *ii;
 153
 154	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 155	if (!ii)
 156		return NULL;
 157	ii->i_bh = NULL;
 158	ii->i_state = 0;
 
 159	ii->i_cno = 0;
 160	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 
 161	return &ii->vfs_inode;
 162}
 163
 164static void nilfs_free_inode(struct inode *inode)
 165{
 166	if (nilfs_is_metadata_file_inode(inode))
 167		nilfs_mdt_destroy(inode);
 168
 169	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 170}
 171
 172static int nilfs_sync_super(struct super_block *sb, int flag)
 173{
 174	struct the_nilfs *nilfs = sb->s_fs_info;
 175	int err;
 176
 177 retry:
 178	set_buffer_dirty(nilfs->ns_sbh[0]);
 179	if (nilfs_test_opt(nilfs, BARRIER)) {
 180		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 181					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 182	} else {
 183		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 184	}
 185
 186	if (unlikely(err)) {
 187		nilfs_err(sb, "unable to write superblock: err=%d", err);
 188		if (err == -EIO && nilfs->ns_sbh[1]) {
 189			/*
 190			 * sbp[0] points to newer log than sbp[1],
 191			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 192			 */
 193			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 194			       nilfs->ns_sbsize);
 195			nilfs_fall_back_super_block(nilfs);
 196			goto retry;
 197		}
 198	} else {
 199		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 200
 201		nilfs->ns_sbwcount++;
 202
 203		/*
 204		 * The latest segment becomes trailable from the position
 205		 * written in superblock.
 206		 */
 207		clear_nilfs_discontinued(nilfs);
 208
 209		/* update GC protection for recent segments */
 210		if (nilfs->ns_sbh[1]) {
 211			if (flag == NILFS_SB_COMMIT_ALL) {
 212				set_buffer_dirty(nilfs->ns_sbh[1]);
 213				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 214					goto out;
 215			}
 216			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 217			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 218				sbp = nilfs->ns_sbp[1];
 219		}
 220
 221		spin_lock(&nilfs->ns_last_segment_lock);
 222		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 223		spin_unlock(&nilfs->ns_last_segment_lock);
 224	}
 225 out:
 226	return err;
 227}
 228
 229void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 230			  struct the_nilfs *nilfs)
 231{
 232	sector_t nfreeblocks;
 233
 234	/* nilfs->ns_sem must be locked by the caller. */
 235	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 236	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 237
 238	spin_lock(&nilfs->ns_last_segment_lock);
 239	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 240	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 241	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 242	spin_unlock(&nilfs->ns_last_segment_lock);
 243}
 244
 245struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 246					       int flip)
 247{
 248	struct the_nilfs *nilfs = sb->s_fs_info;
 249	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 250
 251	/* nilfs->ns_sem must be locked by the caller. */
 252	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 253		if (sbp[1] &&
 254		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 255			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 256		} else {
 257			nilfs_crit(sb, "superblock broke");
 258			return NULL;
 259		}
 260	} else if (sbp[1] &&
 261		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 262		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 263	}
 264
 265	if (flip && sbp[1])
 266		nilfs_swap_super_block(nilfs);
 267
 268	return sbp;
 269}
 270
 271int nilfs_commit_super(struct super_block *sb, int flag)
 272{
 273	struct the_nilfs *nilfs = sb->s_fs_info;
 274	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 275	time64_t t;
 276
 277	/* nilfs->ns_sem must be locked by the caller. */
 278	t = ktime_get_real_seconds();
 279	nilfs->ns_sbwtime = t;
 280	sbp[0]->s_wtime = cpu_to_le64(t);
 281	sbp[0]->s_sum = 0;
 282	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 283					     (unsigned char *)sbp[0],
 284					     nilfs->ns_sbsize));
 285	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 286		sbp[1]->s_wtime = sbp[0]->s_wtime;
 287		sbp[1]->s_sum = 0;
 288		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 289					    (unsigned char *)sbp[1],
 290					    nilfs->ns_sbsize));
 291	}
 292	clear_nilfs_sb_dirty(nilfs);
 293	nilfs->ns_flushed_device = 1;
 294	/* make sure store to ns_flushed_device cannot be reordered */
 295	smp_wmb();
 296	return nilfs_sync_super(sb, flag);
 297}
 298
 299/**
 300 * nilfs_cleanup_super() - write filesystem state for cleanup
 301 * @sb: super block instance to be unmounted or degraded to read-only
 302 *
 303 * This function restores state flags in the on-disk super block.
 304 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 305 * filesystem was not clean previously.
 306 */
 307int nilfs_cleanup_super(struct super_block *sb)
 308{
 309	struct the_nilfs *nilfs = sb->s_fs_info;
 310	struct nilfs_super_block **sbp;
 311	int flag = NILFS_SB_COMMIT;
 312	int ret = -EIO;
 313
 314	sbp = nilfs_prepare_super(sb, 0);
 315	if (sbp) {
 316		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 317		nilfs_set_log_cursor(sbp[0], nilfs);
 318		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 319			/*
 320			 * make the "clean" flag also to the opposite
 321			 * super block if both super blocks point to
 322			 * the same checkpoint.
 323			 */
 324			sbp[1]->s_state = sbp[0]->s_state;
 325			flag = NILFS_SB_COMMIT_ALL;
 326		}
 327		ret = nilfs_commit_super(sb, flag);
 328	}
 329	return ret;
 330}
 331
 332/**
 333 * nilfs_move_2nd_super - relocate secondary super block
 334 * @sb: super block instance
 335 * @sb2off: new offset of the secondary super block (in bytes)
 336 */
 337static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 338{
 339	struct the_nilfs *nilfs = sb->s_fs_info;
 340	struct buffer_head *nsbh;
 341	struct nilfs_super_block *nsbp;
 342	sector_t blocknr, newblocknr;
 343	unsigned long offset;
 344	int sb2i;  /* array index of the secondary superblock */
 345	int ret = 0;
 346
 347	/* nilfs->ns_sem must be locked by the caller. */
 348	if (nilfs->ns_sbh[1] &&
 349	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 350		sb2i = 1;
 351		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 352	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 353		sb2i = 0;
 354		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 355	} else {
 356		sb2i = -1;
 357		blocknr = 0;
 358	}
 359	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 360		goto out;  /* super block location is unchanged */
 361
 362	/* Get new super block buffer */
 363	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 364	offset = sb2off & (nilfs->ns_blocksize - 1);
 365	nsbh = sb_getblk(sb, newblocknr);
 366	if (!nsbh) {
 367		nilfs_warn(sb,
 368			   "unable to move secondary superblock to block %llu",
 369			   (unsigned long long)newblocknr);
 370		ret = -EIO;
 371		goto out;
 372	}
 373	nsbp = (void *)nsbh->b_data + offset;
 374	memset(nsbp, 0, nilfs->ns_blocksize);
 375
 
 376	if (sb2i >= 0) {
 
 
 
 
 
 
 377		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378		brelse(nilfs->ns_sbh[sb2i]);
 379		nilfs->ns_sbh[sb2i] = nsbh;
 380		nilfs->ns_sbp[sb2i] = nsbp;
 381	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 382		/* secondary super block will be restored to index 1 */
 383		nilfs->ns_sbh[1] = nsbh;
 384		nilfs->ns_sbp[1] = nsbp;
 385	} else {
 386		brelse(nsbh);
 387	}
 388out:
 389	return ret;
 390}
 391
 392/**
 393 * nilfs_resize_fs - resize the filesystem
 394 * @sb: super block instance
 395 * @newsize: new size of the filesystem (in bytes)
 396 */
 397int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 398{
 399	struct the_nilfs *nilfs = sb->s_fs_info;
 400	struct nilfs_super_block **sbp;
 401	__u64 devsize, newnsegs;
 402	loff_t sb2off;
 403	int ret;
 404
 405	ret = -ERANGE;
 406	devsize = i_size_read(sb->s_bdev->bd_inode);
 407	if (newsize > devsize)
 408		goto out;
 409
 410	/*
 
 
 
 
 
 
 
 
 
 411	 * Write lock is required to protect some functions depending
 412	 * on the number of segments, the number of reserved segments,
 413	 * and so forth.
 414	 */
 415	down_write(&nilfs->ns_segctor_sem);
 416
 417	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 418	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 419	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 420
 421	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 422	up_write(&nilfs->ns_segctor_sem);
 423	if (ret < 0)
 424		goto out;
 425
 426	ret = nilfs_construct_segment(sb);
 427	if (ret < 0)
 428		goto out;
 429
 430	down_write(&nilfs->ns_sem);
 431	nilfs_move_2nd_super(sb, sb2off);
 432	ret = -EIO;
 433	sbp = nilfs_prepare_super(sb, 0);
 434	if (likely(sbp)) {
 435		nilfs_set_log_cursor(sbp[0], nilfs);
 436		/*
 437		 * Drop NILFS_RESIZE_FS flag for compatibility with
 438		 * mount-time resize which may be implemented in a
 439		 * future release.
 440		 */
 441		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 442					      ~NILFS_RESIZE_FS);
 443		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 444		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 445		if (sbp[1])
 446			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 447		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 448	}
 449	up_write(&nilfs->ns_sem);
 450
 451	/*
 452	 * Reset the range of allocatable segments last.  This order
 453	 * is important in the case of expansion because the secondary
 454	 * superblock must be protected from log write until migration
 455	 * completes.
 456	 */
 457	if (!ret)
 458		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 459out:
 460	return ret;
 461}
 462
 463static void nilfs_put_super(struct super_block *sb)
 464{
 465	struct the_nilfs *nilfs = sb->s_fs_info;
 466
 467	nilfs_detach_log_writer(sb);
 468
 469	if (!sb_rdonly(sb)) {
 470		down_write(&nilfs->ns_sem);
 471		nilfs_cleanup_super(sb);
 472		up_write(&nilfs->ns_sem);
 473	}
 474
 
 475	iput(nilfs->ns_sufile);
 476	iput(nilfs->ns_cpfile);
 477	iput(nilfs->ns_dat);
 478
 479	destroy_nilfs(nilfs);
 480	sb->s_fs_info = NULL;
 481}
 482
 483static int nilfs_sync_fs(struct super_block *sb, int wait)
 484{
 485	struct the_nilfs *nilfs = sb->s_fs_info;
 486	struct nilfs_super_block **sbp;
 487	int err = 0;
 488
 489	/* This function is called when super block should be written back */
 490	if (wait)
 491		err = nilfs_construct_segment(sb);
 492
 493	down_write(&nilfs->ns_sem);
 494	if (nilfs_sb_dirty(nilfs)) {
 495		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 496		if (likely(sbp)) {
 497			nilfs_set_log_cursor(sbp[0], nilfs);
 498			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 499		}
 500	}
 501	up_write(&nilfs->ns_sem);
 502
 503	if (!err)
 504		err = nilfs_flush_device(nilfs);
 505
 506	return err;
 507}
 508
 509int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 510			    struct nilfs_root **rootp)
 511{
 512	struct the_nilfs *nilfs = sb->s_fs_info;
 513	struct nilfs_root *root;
 514	struct nilfs_checkpoint *raw_cp;
 515	struct buffer_head *bh_cp;
 516	int err = -ENOMEM;
 517
 518	root = nilfs_find_or_create_root(
 519		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 520	if (!root)
 521		return err;
 522
 523	if (root->ifile)
 524		goto reuse; /* already attached checkpoint */
 525
 526	down_read(&nilfs->ns_segctor_sem);
 527	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 528					  &bh_cp);
 529	up_read(&nilfs->ns_segctor_sem);
 530	if (unlikely(err)) {
 531		if (err == -ENOENT || err == -EINVAL) {
 532			nilfs_err(sb,
 533				  "Invalid checkpoint (checkpoint number=%llu)",
 534				  (unsigned long long)cno);
 535			err = -EINVAL;
 536		}
 537		goto failed;
 538	}
 539
 540	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 541			       &raw_cp->cp_ifile_inode, &root->ifile);
 542	if (err)
 543		goto failed_bh;
 544
 545	atomic64_set(&root->inodes_count,
 546			le64_to_cpu(raw_cp->cp_inodes_count));
 547	atomic64_set(&root->blocks_count,
 548			le64_to_cpu(raw_cp->cp_blocks_count));
 549
 550	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 551
 552 reuse:
 553	*rootp = root;
 554	return 0;
 555
 556 failed_bh:
 557	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 558 failed:
 
 
 
 559	nilfs_put_root(root);
 560
 561	return err;
 562}
 563
 564static int nilfs_freeze(struct super_block *sb)
 565{
 566	struct the_nilfs *nilfs = sb->s_fs_info;
 567	int err;
 568
 569	if (sb_rdonly(sb))
 570		return 0;
 571
 572	/* Mark super block clean */
 573	down_write(&nilfs->ns_sem);
 574	err = nilfs_cleanup_super(sb);
 575	up_write(&nilfs->ns_sem);
 576	return err;
 577}
 578
 579static int nilfs_unfreeze(struct super_block *sb)
 580{
 581	struct the_nilfs *nilfs = sb->s_fs_info;
 582
 583	if (sb_rdonly(sb))
 584		return 0;
 585
 586	down_write(&nilfs->ns_sem);
 587	nilfs_setup_super(sb, false);
 588	up_write(&nilfs->ns_sem);
 589	return 0;
 590}
 591
 592static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 593{
 594	struct super_block *sb = dentry->d_sb;
 595	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 596	struct the_nilfs *nilfs = root->nilfs;
 597	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 598	unsigned long long blocks;
 599	unsigned long overhead;
 600	unsigned long nrsvblocks;
 601	sector_t nfreeblocks;
 602	u64 nmaxinodes, nfreeinodes;
 603	int err;
 604
 605	/*
 606	 * Compute all of the segment blocks
 607	 *
 608	 * The blocks before first segment and after last segment
 609	 * are excluded.
 610	 */
 611	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 612		- nilfs->ns_first_data_block;
 613	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 614
 615	/*
 616	 * Compute the overhead
 617	 *
 618	 * When distributing meta data blocks outside segment structure,
 619	 * We must count them as the overhead.
 620	 */
 621	overhead = 0;
 622
 623	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 624	if (unlikely(err))
 625		return err;
 626
 627	err = nilfs_ifile_count_free_inodes(root->ifile,
 628					    &nmaxinodes, &nfreeinodes);
 629	if (unlikely(err)) {
 630		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 631		if (err == -ERANGE) {
 632			/*
 633			 * If nilfs_palloc_count_max_entries() returns
 634			 * -ERANGE error code then we simply treat
 635			 * curent inodes count as maximum possible and
 636			 * zero as free inodes value.
 637			 */
 638			nmaxinodes = atomic64_read(&root->inodes_count);
 639			nfreeinodes = 0;
 640			err = 0;
 641		} else
 642			return err;
 643	}
 644
 645	buf->f_type = NILFS_SUPER_MAGIC;
 646	buf->f_bsize = sb->s_blocksize;
 647	buf->f_blocks = blocks - overhead;
 648	buf->f_bfree = nfreeblocks;
 649	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 650		(buf->f_bfree - nrsvblocks) : 0;
 651	buf->f_files = nmaxinodes;
 652	buf->f_ffree = nfreeinodes;
 653	buf->f_namelen = NILFS_NAME_LEN;
 654	buf->f_fsid.val[0] = (u32)id;
 655	buf->f_fsid.val[1] = (u32)(id >> 32);
 656
 657	return 0;
 658}
 659
 660static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 661{
 662	struct super_block *sb = dentry->d_sb;
 663	struct the_nilfs *nilfs = sb->s_fs_info;
 664	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 665
 666	if (!nilfs_test_opt(nilfs, BARRIER))
 667		seq_puts(seq, ",nobarrier");
 668	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 669		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 670	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 671		seq_puts(seq, ",errors=panic");
 672	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 673		seq_puts(seq, ",errors=continue");
 674	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 675		seq_puts(seq, ",order=strict");
 676	if (nilfs_test_opt(nilfs, NORECOVERY))
 677		seq_puts(seq, ",norecovery");
 678	if (nilfs_test_opt(nilfs, DISCARD))
 679		seq_puts(seq, ",discard");
 680
 681	return 0;
 682}
 683
 684static const struct super_operations nilfs_sops = {
 685	.alloc_inode    = nilfs_alloc_inode,
 686	.free_inode     = nilfs_free_inode,
 687	.dirty_inode    = nilfs_dirty_inode,
 688	.evict_inode    = nilfs_evict_inode,
 689	.put_super      = nilfs_put_super,
 690	.sync_fs        = nilfs_sync_fs,
 691	.freeze_fs	= nilfs_freeze,
 692	.unfreeze_fs	= nilfs_unfreeze,
 693	.statfs         = nilfs_statfs,
 694	.remount_fs     = nilfs_remount,
 695	.show_options = nilfs_show_options
 696};
 697
 698enum {
 699	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 700	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 701	Opt_discard, Opt_nodiscard, Opt_err,
 702};
 703
 704static match_table_t tokens = {
 705	{Opt_err_cont, "errors=continue"},
 706	{Opt_err_panic, "errors=panic"},
 707	{Opt_err_ro, "errors=remount-ro"},
 708	{Opt_barrier, "barrier"},
 709	{Opt_nobarrier, "nobarrier"},
 710	{Opt_snapshot, "cp=%u"},
 711	{Opt_order, "order=%s"},
 712	{Opt_norecovery, "norecovery"},
 713	{Opt_discard, "discard"},
 714	{Opt_nodiscard, "nodiscard"},
 715	{Opt_err, NULL}
 716};
 717
 718static int parse_options(char *options, struct super_block *sb, int is_remount)
 719{
 720	struct the_nilfs *nilfs = sb->s_fs_info;
 721	char *p;
 722	substring_t args[MAX_OPT_ARGS];
 
 
 
 
 723
 724	if (!options)
 725		return 1;
 
 
 726
 727	while ((p = strsep(&options, ",")) != NULL) {
 728		int token;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729
 730		if (!*p)
 731			continue;
 732
 733		token = match_token(p, tokens, args);
 734		switch (token) {
 735		case Opt_barrier:
 736			nilfs_set_opt(nilfs, BARRIER);
 737			break;
 738		case Opt_nobarrier:
 739			nilfs_clear_opt(nilfs, BARRIER);
 740			break;
 741		case Opt_order:
 742			if (strcmp(args[0].from, "relaxed") == 0)
 743				/* Ordered data semantics */
 744				nilfs_clear_opt(nilfs, STRICT_ORDER);
 745			else if (strcmp(args[0].from, "strict") == 0)
 746				/* Strict in-order semantics */
 747				nilfs_set_opt(nilfs, STRICT_ORDER);
 748			else
 749				return 0;
 750			break;
 751		case Opt_err_panic:
 752			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 753			break;
 754		case Opt_err_ro:
 755			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 756			break;
 757		case Opt_err_cont:
 758			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 759			break;
 760		case Opt_snapshot:
 761			if (is_remount) {
 762				nilfs_err(sb,
 763					  "\"%s\" option is invalid for remount",
 764					  p);
 765				return 0;
 766			}
 767			break;
 768		case Opt_norecovery:
 769			nilfs_set_opt(nilfs, NORECOVERY);
 770			break;
 771		case Opt_discard:
 772			nilfs_set_opt(nilfs, DISCARD);
 773			break;
 774		case Opt_nodiscard:
 775			nilfs_clear_opt(nilfs, DISCARD);
 776			break;
 777		default:
 778			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
 779			return 0;
 780		}
 781	}
 782	return 1;
 783}
 784
 785static inline void
 786nilfs_set_default_options(struct super_block *sb,
 787			  struct nilfs_super_block *sbp)
 788{
 789	struct the_nilfs *nilfs = sb->s_fs_info;
 790
 791	nilfs->ns_mount_opt =
 792		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 793}
 794
 795static int nilfs_setup_super(struct super_block *sb, int is_mount)
 796{
 797	struct the_nilfs *nilfs = sb->s_fs_info;
 798	struct nilfs_super_block **sbp;
 799	int max_mnt_count;
 800	int mnt_count;
 801
 802	/* nilfs->ns_sem must be locked by the caller. */
 803	sbp = nilfs_prepare_super(sb, 0);
 804	if (!sbp)
 805		return -EIO;
 806
 807	if (!is_mount)
 808		goto skip_mount_setup;
 809
 810	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 811	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 812
 813	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 814		nilfs_warn(sb, "mounting fs with errors");
 815#if 0
 816	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 817		nilfs_warn(sb, "maximal mount count reached");
 818#endif
 819	}
 820	if (!max_mnt_count)
 821		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 822
 823	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 824	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 825
 826skip_mount_setup:
 827	sbp[0]->s_state =
 828		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 829	/* synchronize sbp[1] with sbp[0] */
 830	if (sbp[1])
 831		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 832	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 833}
 834
 835struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 836						 u64 pos, int blocksize,
 837						 struct buffer_head **pbh)
 838{
 839	unsigned long long sb_index = pos;
 840	unsigned long offset;
 841
 842	offset = do_div(sb_index, blocksize);
 843	*pbh = sb_bread(sb, sb_index);
 844	if (!*pbh)
 845		return NULL;
 846	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 847}
 848
 849int nilfs_store_magic_and_option(struct super_block *sb,
 850				 struct nilfs_super_block *sbp,
 851				 char *data)
 852{
 853	struct the_nilfs *nilfs = sb->s_fs_info;
 854
 855	sb->s_magic = le16_to_cpu(sbp->s_magic);
 856
 857	/* FS independent flags */
 858#ifdef NILFS_ATIME_DISABLE
 859	sb->s_flags |= SB_NOATIME;
 860#endif
 861
 862	nilfs_set_default_options(sb, sbp);
 863
 864	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 865	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 866	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 867	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 868
 869	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 870}
 871
 872int nilfs_check_feature_compatibility(struct super_block *sb,
 873				      struct nilfs_super_block *sbp)
 874{
 875	__u64 features;
 876
 877	features = le64_to_cpu(sbp->s_feature_incompat) &
 878		~NILFS_FEATURE_INCOMPAT_SUPP;
 879	if (features) {
 880		nilfs_err(sb,
 881			  "couldn't mount because of unsupported optional features (%llx)",
 882			  (unsigned long long)features);
 883		return -EINVAL;
 884	}
 885	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 886		~NILFS_FEATURE_COMPAT_RO_SUPP;
 887	if (!sb_rdonly(sb) && features) {
 888		nilfs_err(sb,
 889			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 890			  (unsigned long long)features);
 891		return -EINVAL;
 892	}
 893	return 0;
 894}
 895
 896static int nilfs_get_root_dentry(struct super_block *sb,
 897				 struct nilfs_root *root,
 898				 struct dentry **root_dentry)
 899{
 900	struct inode *inode;
 901	struct dentry *dentry;
 902	int ret = 0;
 903
 904	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 905	if (IS_ERR(inode)) {
 906		ret = PTR_ERR(inode);
 907		nilfs_err(sb, "error %d getting root inode", ret);
 908		goto out;
 909	}
 910	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 911		iput(inode);
 912		nilfs_err(sb, "corrupt root inode");
 913		ret = -EINVAL;
 914		goto out;
 915	}
 916
 917	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 918		dentry = d_find_alias(inode);
 919		if (!dentry) {
 920			dentry = d_make_root(inode);
 921			if (!dentry) {
 922				ret = -ENOMEM;
 923				goto failed_dentry;
 924			}
 925		} else {
 926			iput(inode);
 927		}
 928	} else {
 929		dentry = d_obtain_root(inode);
 930		if (IS_ERR(dentry)) {
 931			ret = PTR_ERR(dentry);
 932			goto failed_dentry;
 933		}
 934	}
 935	*root_dentry = dentry;
 936 out:
 937	return ret;
 938
 939 failed_dentry:
 940	nilfs_err(sb, "error %d getting root dentry", ret);
 941	goto out;
 942}
 943
 944static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 945				 struct dentry **root_dentry)
 946{
 947	struct the_nilfs *nilfs = s->s_fs_info;
 948	struct nilfs_root *root;
 949	int ret;
 950
 951	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 952
 953	down_read(&nilfs->ns_segctor_sem);
 954	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 955	up_read(&nilfs->ns_segctor_sem);
 956	if (ret < 0) {
 957		ret = (ret == -ENOENT) ? -EINVAL : ret;
 958		goto out;
 959	} else if (!ret) {
 960		nilfs_err(s,
 961			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 962			  (unsigned long long)cno);
 963		ret = -EINVAL;
 964		goto out;
 965	}
 966
 967	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 968	if (ret) {
 969		nilfs_err(s,
 970			  "error %d while loading snapshot (checkpoint number=%llu)",
 971			  ret, (unsigned long long)cno);
 972		goto out;
 973	}
 974	ret = nilfs_get_root_dentry(s, root, root_dentry);
 975	nilfs_put_root(root);
 976 out:
 977	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 978	return ret;
 979}
 980
 981/**
 982 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 983 * @root_dentry: root dentry of the tree to be shrunk
 984 *
 985 * This function returns true if the tree was in-use.
 986 */
 987static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 988{
 989	shrink_dcache_parent(root_dentry);
 990	return d_count(root_dentry) > 1;
 991}
 992
 993int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
 994{
 995	struct the_nilfs *nilfs = sb->s_fs_info;
 996	struct nilfs_root *root;
 997	struct inode *inode;
 998	struct dentry *dentry;
 999	int ret;
1000
1001	if (cno > nilfs->ns_cno)
1002		return false;
1003
1004	if (cno >= nilfs_last_cno(nilfs))
1005		return true;	/* protect recent checkpoints */
1006
1007	ret = false;
1008	root = nilfs_lookup_root(nilfs, cno);
1009	if (root) {
1010		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1011		if (inode) {
1012			dentry = d_find_alias(inode);
1013			if (dentry) {
1014				ret = nilfs_tree_is_busy(dentry);
1015				dput(dentry);
1016			}
1017			iput(inode);
1018		}
1019		nilfs_put_root(root);
1020	}
1021	return ret;
1022}
1023
1024/**
1025 * nilfs_fill_super() - initialize a super block instance
1026 * @sb: super_block
1027 * @data: mount options
1028 * @silent: silent mode flag
1029 *
1030 * This function is called exclusively by nilfs->ns_mount_mutex.
1031 * So, the recovery process is protected from other simultaneous mounts.
1032 */
1033static int
1034nilfs_fill_super(struct super_block *sb, void *data, int silent)
1035{
1036	struct the_nilfs *nilfs;
1037	struct nilfs_root *fsroot;
 
1038	__u64 cno;
1039	int err;
1040
1041	nilfs = alloc_nilfs(sb);
1042	if (!nilfs)
1043		return -ENOMEM;
1044
1045	sb->s_fs_info = nilfs;
1046
1047	err = init_nilfs(nilfs, sb, (char *)data);
1048	if (err)
1049		goto failed_nilfs;
1050
 
 
 
1051	sb->s_op = &nilfs_sops;
1052	sb->s_export_op = &nilfs_export_ops;
1053	sb->s_root = NULL;
1054	sb->s_time_gran = 1;
1055	sb->s_max_links = NILFS_LINK_MAX;
1056
1057	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1058
1059	err = load_nilfs(nilfs, sb);
1060	if (err)
1061		goto failed_nilfs;
1062
 
 
 
 
1063	cno = nilfs_last_cno(nilfs);
1064	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1065	if (err) {
1066		nilfs_err(sb,
1067			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1068			  err, (unsigned long long)cno);
1069		goto failed_unload;
1070	}
1071
1072	if (!sb_rdonly(sb)) {
1073		err = nilfs_attach_log_writer(sb, fsroot);
1074		if (err)
1075			goto failed_checkpoint;
1076	}
1077
1078	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1079	if (err)
1080		goto failed_segctor;
1081
1082	nilfs_put_root(fsroot);
1083
1084	if (!sb_rdonly(sb)) {
1085		down_write(&nilfs->ns_sem);
1086		nilfs_setup_super(sb, true);
1087		up_write(&nilfs->ns_sem);
1088	}
1089
1090	return 0;
1091
1092 failed_segctor:
1093	nilfs_detach_log_writer(sb);
1094
1095 failed_checkpoint:
1096	nilfs_put_root(fsroot);
1097
1098 failed_unload:
 
1099	iput(nilfs->ns_sufile);
1100	iput(nilfs->ns_cpfile);
1101	iput(nilfs->ns_dat);
1102
1103 failed_nilfs:
1104	destroy_nilfs(nilfs);
1105	return err;
1106}
1107
1108static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1109{
 
 
1110	struct the_nilfs *nilfs = sb->s_fs_info;
1111	unsigned long old_sb_flags;
1112	unsigned long old_mount_opt;
1113	int err;
1114
1115	sync_filesystem(sb);
1116	old_sb_flags = sb->s_flags;
1117	old_mount_opt = nilfs->ns_mount_opt;
1118
1119	if (!parse_options(data, sb, 1)) {
1120		err = -EINVAL;
1121		goto restore_opts;
1122	}
1123	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1124
1125	err = -EINVAL;
1126
1127	if (!nilfs_valid_fs(nilfs)) {
1128		nilfs_warn(sb,
1129			   "couldn't remount because the filesystem is in an incomplete recovery state");
1130		goto restore_opts;
1131	}
1132
1133	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1134		goto out;
1135	if (*flags & SB_RDONLY) {
1136		/* Shutting down log writer */
1137		nilfs_detach_log_writer(sb);
1138		sb->s_flags |= SB_RDONLY;
1139
1140		/*
1141		 * Remounting a valid RW partition RDONLY, so set
1142		 * the RDONLY flag and then mark the partition as valid again.
1143		 */
1144		down_write(&nilfs->ns_sem);
1145		nilfs_cleanup_super(sb);
1146		up_write(&nilfs->ns_sem);
1147	} else {
1148		__u64 features;
1149		struct nilfs_root *root;
1150
1151		/*
1152		 * Mounting a RDONLY partition read-write, so reread and
1153		 * store the current valid flag.  (It may have been changed
1154		 * by fsck since we originally mounted the partition.)
1155		 */
1156		down_read(&nilfs->ns_sem);
1157		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1158			~NILFS_FEATURE_COMPAT_RO_SUPP;
1159		up_read(&nilfs->ns_sem);
1160		if (features) {
1161			nilfs_warn(sb,
1162				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1163				   (unsigned long long)features);
1164			err = -EROFS;
1165			goto restore_opts;
1166		}
1167
1168		sb->s_flags &= ~SB_RDONLY;
1169
1170		root = NILFS_I(d_inode(sb->s_root))->i_root;
1171		err = nilfs_attach_log_writer(sb, root);
1172		if (err)
1173			goto restore_opts;
 
 
1174
1175		down_write(&nilfs->ns_sem);
1176		nilfs_setup_super(sb, true);
1177		up_write(&nilfs->ns_sem);
1178	}
1179 out:
 
 
 
 
1180	return 0;
1181
1182 restore_opts:
1183	sb->s_flags = old_sb_flags;
1184	nilfs->ns_mount_opt = old_mount_opt;
1185	return err;
1186}
1187
1188struct nilfs_super_data {
1189	struct block_device *bdev;
1190	__u64 cno;
1191	int flags;
1192};
1193
1194static int nilfs_parse_snapshot_option(const char *option,
1195				       const substring_t *arg,
1196				       struct nilfs_super_data *sd)
1197{
1198	unsigned long long val;
1199	const char *msg = NULL;
 
1200	int err;
1201
1202	if (!(sd->flags & SB_RDONLY)) {
1203		msg = "read-only option is not specified";
1204		goto parse_error;
 
 
1205	}
1206
1207	err = kstrtoull(arg->from, 0, &val);
1208	if (err) {
1209		if (err == -ERANGE)
1210			msg = "too large checkpoint number";
1211		else
1212			msg = "malformed argument";
1213		goto parse_error;
1214	} else if (val == 0) {
1215		msg = "invalid checkpoint number 0";
1216		goto parse_error;
1217	}
1218	sd->cno = val;
1219	return 0;
1220
1221parse_error:
1222	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1223	return 1;
1224}
1225
1226/**
1227 * nilfs_identify - pre-read mount options needed to identify mount instance
1228 * @data: mount options
1229 * @sd: nilfs_super_data
1230 */
1231static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1232{
1233	char *p, *options = data;
1234	substring_t args[MAX_OPT_ARGS];
1235	int token;
1236	int ret = 0;
1237
1238	do {
1239		p = strsep(&options, ",");
1240		if (p != NULL && *p) {
1241			token = match_token(p, tokens, args);
1242			if (token == Opt_snapshot)
1243				ret = nilfs_parse_snapshot_option(p, &args[0],
1244								  sd);
1245		}
1246		if (!options)
1247			break;
1248		BUG_ON(options == data);
1249		*(options - 1) = ',';
1250	} while (!ret);
1251	return ret;
1252}
1253
1254static int nilfs_set_bdev_super(struct super_block *s, void *data)
1255{
1256	s->s_bdev = data;
1257	s->s_dev = s->s_bdev->bd_dev;
1258	return 0;
1259}
1260
1261static int nilfs_test_bdev_super(struct super_block *s, void *data)
1262{
1263	return (void *)s->s_bdev == data;
1264}
1265
1266static struct dentry *
1267nilfs_mount(struct file_system_type *fs_type, int flags,
1268	     const char *dev_name, void *data)
1269{
1270	struct nilfs_super_data sd;
1271	struct super_block *s;
1272	fmode_t mode = FMODE_READ | FMODE_EXCL;
1273	struct dentry *root_dentry;
1274	int err, s_new = false;
1275
1276	if (!(flags & SB_RDONLY))
1277		mode |= FMODE_WRITE;
1278
1279	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1280	if (IS_ERR(sd.bdev))
1281		return ERR_CAST(sd.bdev);
1282
1283	sd.cno = 0;
1284	sd.flags = flags;
1285	if (nilfs_identify((char *)data, &sd)) {
1286		err = -EINVAL;
1287		goto failed;
1288	}
1289
1290	/*
1291	 * once the super is inserted into the list by sget, s_umount
1292	 * will protect the lockfs code from trying to start a snapshot
1293	 * while we are mounting
1294	 */
1295	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1296	if (sd.bdev->bd_fsfreeze_count > 0) {
1297		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1298		err = -EBUSY;
1299		goto failed;
1300	}
1301	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1302		 sd.bdev);
1303	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1304	if (IS_ERR(s)) {
1305		err = PTR_ERR(s);
1306		goto failed;
1307	}
1308
1309	if (!s->s_root) {
1310		s_new = true;
1311
1312		/* New superblock instance created */
1313		s->s_mode = mode;
1314		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1315		sb_set_blocksize(s, block_size(sd.bdev));
1316
1317		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1318		if (err)
1319			goto failed_super;
1320
1321		s->s_flags |= SB_ACTIVE;
1322	} else if (!sd.cno) {
1323		if (nilfs_tree_is_busy(s->s_root)) {
1324			if ((flags ^ s->s_flags) & SB_RDONLY) {
1325				nilfs_err(s,
1326					  "the device already has a %s mount.",
1327					  sb_rdonly(s) ? "read-only" : "read/write");
1328				err = -EBUSY;
1329				goto failed_super;
1330			}
1331		} else {
1332			/*
1333			 * Try remount to setup mount states if the current
1334			 * tree is not mounted and only snapshots use this sb.
 
 
 
1335			 */
1336			err = nilfs_remount(s, &flags, data);
1337			if (err)
 
 
 
1338				goto failed_super;
 
 
1339		}
1340	}
1341
1342	if (sd.cno) {
1343		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
 
 
1344		if (err)
1345			goto failed_super;
1346	} else {
1347		root_dentry = dget(s->s_root);
1348	}
1349
1350	if (!s_new)
1351		blkdev_put(sd.bdev, mode);
1352
1353	return root_dentry;
1354
1355 failed_super:
1356	deactivate_locked_super(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357
1358 failed:
1359	if (!s_new)
1360		blkdev_put(sd.bdev, mode);
1361	return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
1362}
1363
1364struct file_system_type nilfs_fs_type = {
1365	.owner    = THIS_MODULE,
1366	.name     = "nilfs2",
1367	.mount    = nilfs_mount,
1368	.kill_sb  = kill_block_super,
1369	.fs_flags = FS_REQUIRES_DEV,
 
 
1370};
1371MODULE_ALIAS_FS("nilfs2");
1372
1373static void nilfs_inode_init_once(void *obj)
1374{
1375	struct nilfs_inode_info *ii = obj;
1376
1377	INIT_LIST_HEAD(&ii->i_dirty);
1378#ifdef CONFIG_NILFS_XATTR
1379	init_rwsem(&ii->xattr_sem);
1380#endif
1381	address_space_init_once(&ii->i_btnode_cache);
1382	ii->i_bmap = &ii->i_bmap_data;
1383	inode_init_once(&ii->vfs_inode);
1384}
1385
1386static void nilfs_segbuf_init_once(void *obj)
1387{
1388	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1389}
1390
1391static void nilfs_destroy_cachep(void)
1392{
1393	/*
1394	 * Make sure all delayed rcu free inodes are flushed before we
1395	 * destroy cache.
1396	 */
1397	rcu_barrier();
1398
1399	kmem_cache_destroy(nilfs_inode_cachep);
1400	kmem_cache_destroy(nilfs_transaction_cachep);
1401	kmem_cache_destroy(nilfs_segbuf_cachep);
1402	kmem_cache_destroy(nilfs_btree_path_cache);
1403}
1404
1405static int __init nilfs_init_cachep(void)
1406{
1407	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1408			sizeof(struct nilfs_inode_info), 0,
1409			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1410			nilfs_inode_init_once);
1411	if (!nilfs_inode_cachep)
1412		goto fail;
1413
1414	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1415			sizeof(struct nilfs_transaction_info), 0,
1416			SLAB_RECLAIM_ACCOUNT, NULL);
1417	if (!nilfs_transaction_cachep)
1418		goto fail;
1419
1420	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1421			sizeof(struct nilfs_segment_buffer), 0,
1422			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1423	if (!nilfs_segbuf_cachep)
1424		goto fail;
1425
1426	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1427			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1428			0, 0, NULL);
1429	if (!nilfs_btree_path_cache)
1430		goto fail;
1431
1432	return 0;
1433
1434fail:
1435	nilfs_destroy_cachep();
1436	return -ENOMEM;
1437}
1438
1439static int __init init_nilfs_fs(void)
1440{
1441	int err;
1442
1443	err = nilfs_init_cachep();
1444	if (err)
1445		goto fail;
1446
1447	err = nilfs_sysfs_init();
1448	if (err)
1449		goto free_cachep;
1450
1451	err = register_filesystem(&nilfs_fs_type);
1452	if (err)
1453		goto deinit_sysfs_entry;
1454
1455	printk(KERN_INFO "NILFS version 2 loaded\n");
1456	return 0;
1457
1458deinit_sysfs_entry:
1459	nilfs_sysfs_exit();
1460free_cachep:
1461	nilfs_destroy_cachep();
1462fail:
1463	return err;
1464}
1465
1466static void __exit exit_nilfs_fs(void)
1467{
1468	nilfs_destroy_cachep();
1469	nilfs_sysfs_exit();
1470	unregister_filesystem(&nilfs_fs_type);
1471}
1472
1473module_init(init_nilfs_fs)
1474module_exit(exit_nilfs_fs)