Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
 
  32#include <linux/crc32.h>
  33#include <linux/vfs.h>
  34#include <linux/writeback.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/fs_context.h>
  38#include <linux/fs_parser.h>
  39#include "nilfs.h"
  40#include "export.h"
  41#include "mdt.h"
  42#include "alloc.h"
  43#include "btree.h"
  44#include "btnode.h"
  45#include "page.h"
  46#include "cpfile.h"
  47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  48#include "ifile.h"
  49#include "dat.h"
  50#include "segment.h"
  51#include "segbuf.h"
  52
  53MODULE_AUTHOR("NTT Corp.");
  54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  55		   "(NILFS)");
  56MODULE_LICENSE("GPL");
  57
  58static struct kmem_cache *nilfs_inode_cachep;
  59struct kmem_cache *nilfs_transaction_cachep;
  60struct kmem_cache *nilfs_segbuf_cachep;
  61struct kmem_cache *nilfs_btree_path_cache;
  62
  63static int nilfs_setup_super(struct super_block *sb, int is_mount);
  64
  65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  66{
  67	struct va_format vaf;
  68	va_list args;
  69	int level;
  70
  71	va_start(args, fmt);
  72
  73	level = printk_get_level(fmt);
  74	vaf.fmt = printk_skip_level(fmt);
  75	vaf.va = &args;
  76
  77	if (sb)
  78		printk("%c%cNILFS (%s): %pV\n",
  79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  80	else
  81		printk("%c%cNILFS: %pV\n",
  82		       KERN_SOH_ASCII, level, &vaf);
  83
  84	va_end(args);
  85}
  86
  87static void nilfs_set_error(struct super_block *sb)
  88{
  89	struct the_nilfs *nilfs = sb->s_fs_info;
  90	struct nilfs_super_block **sbp;
  91
  92	down_write(&nilfs->ns_sem);
  93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  95		sbp = nilfs_prepare_super(sb, 0);
  96		if (likely(sbp)) {
  97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  98			if (sbp[1])
  99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 101		}
 102	}
 103	up_write(&nilfs->ns_sem);
 104}
 105
 106/**
 107 * __nilfs_error() - report failure condition on a filesystem
 108 * @sb:       super block instance
 109 * @function: name of calling function
 110 * @fmt:      format string for message to be output
 111 * @...:      optional arguments to @fmt
 112 *
 113 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 114 * reporting an error message.  This function should be called when
 115 * NILFS detects incoherences or defects of meta data on disk.
 
 
 116 *
 117 * This implements the body of nilfs_error() macro.  Normally,
 118 * nilfs_error() should be used.  As for sustainable errors such as a
 119 * single-shot I/O error, nilfs_err() should be used instead.
 120 *
 121 * Callers should not add a trailing newline since this will do it.
 122 */
 123void __nilfs_error(struct super_block *sb, const char *function,
 124		   const char *fmt, ...)
 125{
 126	struct the_nilfs *nilfs = sb->s_fs_info;
 127	struct va_format vaf;
 128	va_list args;
 129
 130	va_start(args, fmt);
 131
 132	vaf.fmt = fmt;
 133	vaf.va = &args;
 134
 135	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 136	       sb->s_id, function, &vaf);
 137
 138	va_end(args);
 139
 140	if (!sb_rdonly(sb)) {
 141		nilfs_set_error(sb);
 142
 143		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 144			printk(KERN_CRIT "Remounting filesystem read-only\n");
 145			sb->s_flags |= SB_RDONLY;
 146		}
 147	}
 148
 149	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 150		panic("NILFS (device %s): panic forced after error\n",
 151		      sb->s_id);
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154struct inode *nilfs_alloc_inode(struct super_block *sb)
 155{
 156	struct nilfs_inode_info *ii;
 157
 158	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 159	if (!ii)
 160		return NULL;
 161	ii->i_bh = NULL;
 162	ii->i_state = 0;
 163	ii->i_type = 0;
 164	ii->i_cno = 0;
 165	ii->i_assoc_inode = NULL;
 166	ii->i_bmap = &ii->i_bmap_data;
 167	return &ii->vfs_inode;
 168}
 169
 170static void nilfs_free_inode(struct inode *inode)
 171{
 172	if (nilfs_is_metadata_file_inode(inode))
 173		nilfs_mdt_destroy(inode);
 174
 
 
 
 
 175	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 176}
 177
 
 
 
 
 
 178static int nilfs_sync_super(struct super_block *sb, int flag)
 179{
 180	struct the_nilfs *nilfs = sb->s_fs_info;
 181	int err;
 182
 183 retry:
 184	set_buffer_dirty(nilfs->ns_sbh[0]);
 185	if (nilfs_test_opt(nilfs, BARRIER)) {
 186		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 187					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 188	} else {
 189		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 190	}
 191
 192	if (unlikely(err)) {
 193		nilfs_err(sb, "unable to write superblock: err=%d", err);
 
 194		if (err == -EIO && nilfs->ns_sbh[1]) {
 195			/*
 196			 * sbp[0] points to newer log than sbp[1],
 197			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 198			 */
 199			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 200			       nilfs->ns_sbsize);
 201			nilfs_fall_back_super_block(nilfs);
 202			goto retry;
 203		}
 204	} else {
 205		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 206
 207		nilfs->ns_sbwcount++;
 208
 209		/*
 210		 * The latest segment becomes trailable from the position
 211		 * written in superblock.
 212		 */
 213		clear_nilfs_discontinued(nilfs);
 214
 215		/* update GC protection for recent segments */
 216		if (nilfs->ns_sbh[1]) {
 217			if (flag == NILFS_SB_COMMIT_ALL) {
 218				set_buffer_dirty(nilfs->ns_sbh[1]);
 219				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 220					goto out;
 221			}
 222			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 223			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 224				sbp = nilfs->ns_sbp[1];
 225		}
 226
 227		spin_lock(&nilfs->ns_last_segment_lock);
 228		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 229		spin_unlock(&nilfs->ns_last_segment_lock);
 230	}
 231 out:
 232	return err;
 233}
 234
 235void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 236			  struct the_nilfs *nilfs)
 237{
 238	sector_t nfreeblocks;
 239
 240	/* nilfs->ns_sem must be locked by the caller. */
 241	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 242	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 243
 244	spin_lock(&nilfs->ns_last_segment_lock);
 245	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 246	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 247	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 248	spin_unlock(&nilfs->ns_last_segment_lock);
 249}
 250
 251struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 252					       int flip)
 253{
 254	struct the_nilfs *nilfs = sb->s_fs_info;
 255	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 256
 257	/* nilfs->ns_sem must be locked by the caller. */
 258	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 259		if (sbp[1] &&
 260		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 261			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 262		} else {
 263			nilfs_crit(sb, "superblock broke");
 
 264			return NULL;
 265		}
 266	} else if (sbp[1] &&
 267		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 268		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 269	}
 270
 271	if (flip && sbp[1])
 272		nilfs_swap_super_block(nilfs);
 273
 274	return sbp;
 275}
 276
 277int nilfs_commit_super(struct super_block *sb, int flag)
 278{
 279	struct the_nilfs *nilfs = sb->s_fs_info;
 280	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 281	time64_t t;
 282
 283	/* nilfs->ns_sem must be locked by the caller. */
 284	t = ktime_get_real_seconds();
 285	nilfs->ns_sbwtime = t;
 286	sbp[0]->s_wtime = cpu_to_le64(t);
 287	sbp[0]->s_sum = 0;
 288	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 289					     (unsigned char *)sbp[0],
 290					     nilfs->ns_sbsize));
 291	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 292		sbp[1]->s_wtime = sbp[0]->s_wtime;
 293		sbp[1]->s_sum = 0;
 294		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 295					    (unsigned char *)sbp[1],
 296					    nilfs->ns_sbsize));
 297	}
 298	clear_nilfs_sb_dirty(nilfs);
 299	nilfs->ns_flushed_device = 1;
 300	/* make sure store to ns_flushed_device cannot be reordered */
 301	smp_wmb();
 302	return nilfs_sync_super(sb, flag);
 303}
 304
 305/**
 306 * nilfs_cleanup_super() - write filesystem state for cleanup
 307 * @sb: super block instance to be unmounted or degraded to read-only
 308 *
 309 * This function restores state flags in the on-disk super block.
 310 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 311 * filesystem was not clean previously.
 312 */
 313int nilfs_cleanup_super(struct super_block *sb)
 314{
 315	struct the_nilfs *nilfs = sb->s_fs_info;
 316	struct nilfs_super_block **sbp;
 317	int flag = NILFS_SB_COMMIT;
 318	int ret = -EIO;
 319
 320	sbp = nilfs_prepare_super(sb, 0);
 321	if (sbp) {
 322		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 323		nilfs_set_log_cursor(sbp[0], nilfs);
 324		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 325			/*
 326			 * make the "clean" flag also to the opposite
 327			 * super block if both super blocks point to
 328			 * the same checkpoint.
 329			 */
 330			sbp[1]->s_state = sbp[0]->s_state;
 331			flag = NILFS_SB_COMMIT_ALL;
 332		}
 333		ret = nilfs_commit_super(sb, flag);
 334	}
 335	return ret;
 336}
 337
 338/**
 339 * nilfs_move_2nd_super - relocate secondary super block
 340 * @sb: super block instance
 341 * @sb2off: new offset of the secondary super block (in bytes)
 342 */
 343static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 344{
 345	struct the_nilfs *nilfs = sb->s_fs_info;
 346	struct buffer_head *nsbh;
 347	struct nilfs_super_block *nsbp;
 348	sector_t blocknr, newblocknr;
 349	unsigned long offset;
 350	int sb2i;  /* array index of the secondary superblock */
 351	int ret = 0;
 352
 353	/* nilfs->ns_sem must be locked by the caller. */
 354	if (nilfs->ns_sbh[1] &&
 355	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 356		sb2i = 1;
 357		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 358	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 359		sb2i = 0;
 360		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 361	} else {
 362		sb2i = -1;
 363		blocknr = 0;
 364	}
 365	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 366		goto out;  /* super block location is unchanged */
 367
 368	/* Get new super block buffer */
 369	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 370	offset = sb2off & (nilfs->ns_blocksize - 1);
 371	nsbh = sb_getblk(sb, newblocknr);
 372	if (!nsbh) {
 373		nilfs_warn(sb,
 374			   "unable to move secondary superblock to block %llu",
 375			   (unsigned long long)newblocknr);
 376		ret = -EIO;
 377		goto out;
 378	}
 379	nsbp = (void *)nsbh->b_data + offset;
 
 380
 381	lock_buffer(nsbh);
 382	if (sb2i >= 0) {
 383		/*
 384		 * The position of the second superblock only changes by 4KiB,
 385		 * which is larger than the maximum superblock data size
 386		 * (= 1KiB), so there is no need to use memmove() to allow
 387		 * overlap between source and destination.
 388		 */
 389		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 390
 391		/*
 392		 * Zero fill after copy to avoid overwriting in case of move
 393		 * within the same block.
 394		 */
 395		memset(nsbh->b_data, 0, offset);
 396		memset((void *)nsbp + nilfs->ns_sbsize, 0,
 397		       nsbh->b_size - offset - nilfs->ns_sbsize);
 398	} else {
 399		memset(nsbh->b_data, 0, nsbh->b_size);
 400	}
 401	set_buffer_uptodate(nsbh);
 402	unlock_buffer(nsbh);
 403
 404	if (sb2i >= 0) {
 405		brelse(nilfs->ns_sbh[sb2i]);
 406		nilfs->ns_sbh[sb2i] = nsbh;
 407		nilfs->ns_sbp[sb2i] = nsbp;
 408	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 409		/* secondary super block will be restored to index 1 */
 410		nilfs->ns_sbh[1] = nsbh;
 411		nilfs->ns_sbp[1] = nsbp;
 412	} else {
 413		brelse(nsbh);
 414	}
 415out:
 416	return ret;
 417}
 418
 419/**
 420 * nilfs_resize_fs - resize the filesystem
 421 * @sb: super block instance
 422 * @newsize: new size of the filesystem (in bytes)
 423 */
 424int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 425{
 426	struct the_nilfs *nilfs = sb->s_fs_info;
 427	struct nilfs_super_block **sbp;
 428	__u64 devsize, newnsegs;
 429	loff_t sb2off;
 430	int ret;
 431
 432	ret = -ERANGE;
 433	devsize = bdev_nr_bytes(sb->s_bdev);
 434	if (newsize > devsize)
 435		goto out;
 436
 437	/*
 438	 * Prevent underflow in second superblock position calculation.
 439	 * The exact minimum size check is done in nilfs_sufile_resize().
 440	 */
 441	if (newsize < 4096) {
 442		ret = -ENOSPC;
 443		goto out;
 444	}
 445
 446	/*
 447	 * Write lock is required to protect some functions depending
 448	 * on the number of segments, the number of reserved segments,
 449	 * and so forth.
 450	 */
 451	down_write(&nilfs->ns_segctor_sem);
 452
 453	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 454	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 455	newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
 456
 457	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 458	up_write(&nilfs->ns_segctor_sem);
 459	if (ret < 0)
 460		goto out;
 461
 462	ret = nilfs_construct_segment(sb);
 463	if (ret < 0)
 464		goto out;
 465
 466	down_write(&nilfs->ns_sem);
 467	nilfs_move_2nd_super(sb, sb2off);
 468	ret = -EIO;
 469	sbp = nilfs_prepare_super(sb, 0);
 470	if (likely(sbp)) {
 471		nilfs_set_log_cursor(sbp[0], nilfs);
 472		/*
 473		 * Drop NILFS_RESIZE_FS flag for compatibility with
 474		 * mount-time resize which may be implemented in a
 475		 * future release.
 476		 */
 477		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 478					      ~NILFS_RESIZE_FS);
 479		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 480		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 481		if (sbp[1])
 482			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 483		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 484	}
 485	up_write(&nilfs->ns_sem);
 486
 487	/*
 488	 * Reset the range of allocatable segments last.  This order
 489	 * is important in the case of expansion because the secondary
 490	 * superblock must be protected from log write until migration
 491	 * completes.
 492	 */
 493	if (!ret)
 494		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 495out:
 496	return ret;
 497}
 498
 499static void nilfs_put_super(struct super_block *sb)
 500{
 501	struct the_nilfs *nilfs = sb->s_fs_info;
 502
 503	nilfs_detach_log_writer(sb);
 504
 505	if (!sb_rdonly(sb)) {
 506		down_write(&nilfs->ns_sem);
 507		nilfs_cleanup_super(sb);
 508		up_write(&nilfs->ns_sem);
 509	}
 510
 511	nilfs_sysfs_delete_device_group(nilfs);
 512	iput(nilfs->ns_sufile);
 513	iput(nilfs->ns_cpfile);
 514	iput(nilfs->ns_dat);
 515
 516	destroy_nilfs(nilfs);
 517	sb->s_fs_info = NULL;
 518}
 519
 520static int nilfs_sync_fs(struct super_block *sb, int wait)
 521{
 522	struct the_nilfs *nilfs = sb->s_fs_info;
 523	struct nilfs_super_block **sbp;
 524	int err = 0;
 525
 526	/* This function is called when super block should be written back */
 527	if (wait)
 528		err = nilfs_construct_segment(sb);
 529
 530	down_write(&nilfs->ns_sem);
 531	if (nilfs_sb_dirty(nilfs)) {
 532		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 533		if (likely(sbp)) {
 534			nilfs_set_log_cursor(sbp[0], nilfs);
 535			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 536		}
 537	}
 538	up_write(&nilfs->ns_sem);
 539
 540	if (!err)
 541		err = nilfs_flush_device(nilfs);
 542
 543	return err;
 544}
 545
 546int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 547			    struct nilfs_root **rootp)
 548{
 549	struct the_nilfs *nilfs = sb->s_fs_info;
 550	struct nilfs_root *root;
 
 
 551	int err = -ENOMEM;
 552
 553	root = nilfs_find_or_create_root(
 554		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 555	if (!root)
 556		return err;
 557
 558	if (root->ifile)
 559		goto reuse; /* already attached checkpoint */
 560
 561	down_read(&nilfs->ns_segctor_sem);
 562	err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
 
 563	up_read(&nilfs->ns_segctor_sem);
 564	if (unlikely(err))
 
 
 
 
 
 
 
 565		goto failed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567 reuse:
 568	*rootp = root;
 569	return 0;
 570
 
 
 571 failed:
 572	if (err == -EINVAL)
 573		nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
 574			  (unsigned long long)cno);
 575	nilfs_put_root(root);
 576
 577	return err;
 578}
 579
 580static int nilfs_freeze(struct super_block *sb)
 581{
 582	struct the_nilfs *nilfs = sb->s_fs_info;
 583	int err;
 584
 585	if (sb_rdonly(sb))
 586		return 0;
 587
 588	/* Mark super block clean */
 589	down_write(&nilfs->ns_sem);
 590	err = nilfs_cleanup_super(sb);
 591	up_write(&nilfs->ns_sem);
 592	return err;
 593}
 594
 595static int nilfs_unfreeze(struct super_block *sb)
 596{
 597	struct the_nilfs *nilfs = sb->s_fs_info;
 598
 599	if (sb_rdonly(sb))
 600		return 0;
 601
 602	down_write(&nilfs->ns_sem);
 603	nilfs_setup_super(sb, false);
 604	up_write(&nilfs->ns_sem);
 605	return 0;
 606}
 607
 608static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 609{
 610	struct super_block *sb = dentry->d_sb;
 611	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 612	struct the_nilfs *nilfs = root->nilfs;
 613	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 614	unsigned long long blocks;
 615	unsigned long overhead;
 616	unsigned long nrsvblocks;
 617	sector_t nfreeblocks;
 618	u64 nmaxinodes, nfreeinodes;
 619	int err;
 620
 621	/*
 622	 * Compute all of the segment blocks
 623	 *
 624	 * The blocks before first segment and after last segment
 625	 * are excluded.
 626	 */
 627	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 628		- nilfs->ns_first_data_block;
 629	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 630
 631	/*
 632	 * Compute the overhead
 633	 *
 634	 * When distributing meta data blocks outside segment structure,
 635	 * We must count them as the overhead.
 636	 */
 637	overhead = 0;
 638
 639	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 640	if (unlikely(err))
 641		return err;
 642
 643	err = nilfs_ifile_count_free_inodes(root->ifile,
 644					    &nmaxinodes, &nfreeinodes);
 645	if (unlikely(err)) {
 646		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 
 
 647		if (err == -ERANGE) {
 648			/*
 649			 * If nilfs_palloc_count_max_entries() returns
 650			 * -ERANGE error code then we simply treat
 651			 * curent inodes count as maximum possible and
 652			 * zero as free inodes value.
 653			 */
 654			nmaxinodes = atomic64_read(&root->inodes_count);
 655			nfreeinodes = 0;
 656			err = 0;
 657		} else
 658			return err;
 659	}
 660
 661	buf->f_type = NILFS_SUPER_MAGIC;
 662	buf->f_bsize = sb->s_blocksize;
 663	buf->f_blocks = blocks - overhead;
 664	buf->f_bfree = nfreeblocks;
 665	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 666		(buf->f_bfree - nrsvblocks) : 0;
 667	buf->f_files = nmaxinodes;
 668	buf->f_ffree = nfreeinodes;
 669	buf->f_namelen = NILFS_NAME_LEN;
 670	buf->f_fsid = u64_to_fsid(id);
 
 671
 672	return 0;
 673}
 674
 675static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 676{
 677	struct super_block *sb = dentry->d_sb;
 678	struct the_nilfs *nilfs = sb->s_fs_info;
 679	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 680
 681	if (!nilfs_test_opt(nilfs, BARRIER))
 682		seq_puts(seq, ",nobarrier");
 683	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 684		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 685	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 686		seq_puts(seq, ",errors=panic");
 687	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 688		seq_puts(seq, ",errors=continue");
 689	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 690		seq_puts(seq, ",order=strict");
 691	if (nilfs_test_opt(nilfs, NORECOVERY))
 692		seq_puts(seq, ",norecovery");
 693	if (nilfs_test_opt(nilfs, DISCARD))
 694		seq_puts(seq, ",discard");
 695
 696	return 0;
 697}
 698
 699static const struct super_operations nilfs_sops = {
 700	.alloc_inode    = nilfs_alloc_inode,
 701	.free_inode     = nilfs_free_inode,
 702	.dirty_inode    = nilfs_dirty_inode,
 703	.evict_inode    = nilfs_evict_inode,
 704	.put_super      = nilfs_put_super,
 705	.sync_fs        = nilfs_sync_fs,
 706	.freeze_fs	= nilfs_freeze,
 707	.unfreeze_fs	= nilfs_unfreeze,
 708	.statfs         = nilfs_statfs,
 
 709	.show_options = nilfs_show_options
 710};
 711
 712enum {
 713	Opt_err, Opt_barrier, Opt_snapshot, Opt_order, Opt_norecovery,
 714	Opt_discard,
 
 715};
 716
 717static const struct constant_table nilfs_param_err[] = {
 718	{"continue",	NILFS_MOUNT_ERRORS_CONT},
 719	{"panic",	NILFS_MOUNT_ERRORS_PANIC},
 720	{"remount-ro",	NILFS_MOUNT_ERRORS_RO},
 721	{}
 
 
 
 
 
 
 
 722};
 723
 724static const struct fs_parameter_spec nilfs_param_spec[] = {
 725	fsparam_enum	("errors", Opt_err, nilfs_param_err),
 726	fsparam_flag_no	("barrier", Opt_barrier),
 727	fsparam_u64	("cp", Opt_snapshot),
 728	fsparam_string	("order", Opt_order),
 729	fsparam_flag	("norecovery", Opt_norecovery),
 730	fsparam_flag_no	("discard", Opt_discard),
 731	{}
 732};
 733
 734struct nilfs_fs_context {
 735	unsigned long ns_mount_opt;
 736	__u64 cno;
 737};
 738
 739static int nilfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 740{
 741	struct nilfs_fs_context *nilfs = fc->fs_private;
 742	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
 743	struct fs_parse_result result;
 744	int opt;
 745
 746	opt = fs_parse(fc, nilfs_param_spec, param, &result);
 747	if (opt < 0)
 748		return opt;
 749
 750	switch (opt) {
 751	case Opt_barrier:
 752		if (result.negated)
 753			nilfs_clear_opt(nilfs, BARRIER);
 754		else
 755			nilfs_set_opt(nilfs, BARRIER);
 756		break;
 757	case Opt_order:
 758		if (strcmp(param->string, "relaxed") == 0)
 759			/* Ordered data semantics */
 760			nilfs_clear_opt(nilfs, STRICT_ORDER);
 761		else if (strcmp(param->string, "strict") == 0)
 762			/* Strict in-order semantics */
 763			nilfs_set_opt(nilfs, STRICT_ORDER);
 764		else
 765			return -EINVAL;
 766		break;
 767	case Opt_err:
 768		nilfs->ns_mount_opt &= ~NILFS_MOUNT_ERROR_MODE;
 769		nilfs->ns_mount_opt |= result.uint_32;
 770		break;
 771	case Opt_snapshot:
 772		if (is_remount) {
 773			struct super_block *sb = fc->root->d_sb;
 774
 775			nilfs_err(sb,
 776				  "\"%s\" option is invalid for remount",
 777				  param->key);
 778			return -EINVAL;
 779		}
 780		if (result.uint_64 == 0) {
 781			nilfs_err(NULL,
 782				  "invalid option \"cp=0\": invalid checkpoint number 0");
 783			return -EINVAL;
 784		}
 785		nilfs->cno = result.uint_64;
 786		break;
 787	case Opt_norecovery:
 788		nilfs_set_opt(nilfs, NORECOVERY);
 789		break;
 790	case Opt_discard:
 791		if (result.negated)
 792			nilfs_clear_opt(nilfs, DISCARD);
 793		else
 794			nilfs_set_opt(nilfs, DISCARD);
 795		break;
 796	default:
 797		return -EINVAL;
 
 
 
 
 
 
 798	}
 
 
 799
 800	return 0;
 
 
 
 
 
 
 
 801}
 802
 803static int nilfs_setup_super(struct super_block *sb, int is_mount)
 804{
 805	struct the_nilfs *nilfs = sb->s_fs_info;
 806	struct nilfs_super_block **sbp;
 807	int max_mnt_count;
 808	int mnt_count;
 809
 810	/* nilfs->ns_sem must be locked by the caller. */
 811	sbp = nilfs_prepare_super(sb, 0);
 812	if (!sbp)
 813		return -EIO;
 814
 815	if (!is_mount)
 816		goto skip_mount_setup;
 817
 818	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 819	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 820
 821	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 822		nilfs_warn(sb, "mounting fs with errors");
 
 823#if 0
 824	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 825		nilfs_warn(sb, "maximal mount count reached");
 
 826#endif
 827	}
 828	if (!max_mnt_count)
 829		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 830
 831	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 832	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 833
 834skip_mount_setup:
 835	sbp[0]->s_state =
 836		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 837	/* synchronize sbp[1] with sbp[0] */
 838	if (sbp[1])
 839		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 840	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 841}
 842
 843struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 844						 u64 pos, int blocksize,
 845						 struct buffer_head **pbh)
 846{
 847	unsigned long long sb_index = pos;
 848	unsigned long offset;
 849
 850	offset = do_div(sb_index, blocksize);
 851	*pbh = sb_bread(sb, sb_index);
 852	if (!*pbh)
 853		return NULL;
 854	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 855}
 856
 857int nilfs_store_magic(struct super_block *sb,
 858		      struct nilfs_super_block *sbp)
 
 859{
 860	struct the_nilfs *nilfs = sb->s_fs_info;
 861
 862	sb->s_magic = le16_to_cpu(sbp->s_magic);
 863
 864	/* FS independent flags */
 865#ifdef NILFS_ATIME_DISABLE
 866	sb->s_flags |= SB_NOATIME;
 867#endif
 868
 
 
 869	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 870	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 871	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 872	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 873
 874	return 0;
 875}
 876
 877int nilfs_check_feature_compatibility(struct super_block *sb,
 878				      struct nilfs_super_block *sbp)
 879{
 880	__u64 features;
 881
 882	features = le64_to_cpu(sbp->s_feature_incompat) &
 883		~NILFS_FEATURE_INCOMPAT_SUPP;
 884	if (features) {
 885		nilfs_err(sb,
 886			  "couldn't mount because of unsupported optional features (%llx)",
 887			  (unsigned long long)features);
 888		return -EINVAL;
 889	}
 890	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 891		~NILFS_FEATURE_COMPAT_RO_SUPP;
 892	if (!sb_rdonly(sb) && features) {
 893		nilfs_err(sb,
 894			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 895			  (unsigned long long)features);
 896		return -EINVAL;
 897	}
 898	return 0;
 899}
 900
 901static int nilfs_get_root_dentry(struct super_block *sb,
 902				 struct nilfs_root *root,
 903				 struct dentry **root_dentry)
 904{
 905	struct inode *inode;
 906	struct dentry *dentry;
 907	int ret = 0;
 908
 909	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 910	if (IS_ERR(inode)) {
 
 911		ret = PTR_ERR(inode);
 912		nilfs_err(sb, "error %d getting root inode", ret);
 913		goto out;
 914	}
 915	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 916		iput(inode);
 917		nilfs_err(sb, "corrupt root inode");
 918		ret = -EINVAL;
 919		goto out;
 920	}
 921
 922	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 923		dentry = d_find_alias(inode);
 924		if (!dentry) {
 925			dentry = d_make_root(inode);
 926			if (!dentry) {
 927				ret = -ENOMEM;
 928				goto failed_dentry;
 929			}
 930		} else {
 931			iput(inode);
 932		}
 933	} else {
 934		dentry = d_obtain_root(inode);
 935		if (IS_ERR(dentry)) {
 936			ret = PTR_ERR(dentry);
 937			goto failed_dentry;
 938		}
 939	}
 940	*root_dentry = dentry;
 941 out:
 942	return ret;
 943
 944 failed_dentry:
 945	nilfs_err(sb, "error %d getting root dentry", ret);
 946	goto out;
 947}
 948
 949static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 950				 struct dentry **root_dentry)
 951{
 952	struct the_nilfs *nilfs = s->s_fs_info;
 953	struct nilfs_root *root;
 954	int ret;
 955
 956	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 957
 958	down_read(&nilfs->ns_segctor_sem);
 959	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 960	up_read(&nilfs->ns_segctor_sem);
 961	if (ret < 0) {
 962		ret = (ret == -ENOENT) ? -EINVAL : ret;
 963		goto out;
 964	} else if (!ret) {
 965		nilfs_err(s,
 966			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 967			  (unsigned long long)cno);
 968		ret = -EINVAL;
 969		goto out;
 970	}
 971
 972	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 973	if (ret) {
 974		nilfs_err(s,
 975			  "error %d while loading snapshot (checkpoint number=%llu)",
 976			  ret, (unsigned long long)cno);
 977		goto out;
 978	}
 979	ret = nilfs_get_root_dentry(s, root, root_dentry);
 980	nilfs_put_root(root);
 981 out:
 982	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 983	return ret;
 984}
 985
 986/**
 987 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 988 * @root_dentry: root dentry of the tree to be shrunk
 989 *
 990 * This function returns true if the tree was in-use.
 991 */
 992static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 993{
 994	shrink_dcache_parent(root_dentry);
 995	return d_count(root_dentry) > 1;
 996}
 997
 998int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
 999{
1000	struct the_nilfs *nilfs = sb->s_fs_info;
1001	struct nilfs_root *root;
1002	struct inode *inode;
1003	struct dentry *dentry;
1004	int ret;
1005
1006	if (cno > nilfs->ns_cno)
1007		return false;
1008
1009	if (cno >= nilfs_last_cno(nilfs))
1010		return true;	/* protect recent checkpoints */
1011
1012	ret = false;
1013	root = nilfs_lookup_root(nilfs, cno);
1014	if (root) {
1015		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1016		if (inode) {
1017			dentry = d_find_alias(inode);
1018			if (dentry) {
1019				ret = nilfs_tree_is_busy(dentry);
1020				dput(dentry);
1021			}
1022			iput(inode);
1023		}
1024		nilfs_put_root(root);
1025	}
1026	return ret;
1027}
1028
1029/**
1030 * nilfs_fill_super() - initialize a super block instance
1031 * @sb: super_block
1032 * @fc: filesystem context
 
1033 *
1034 * This function is called exclusively by nilfs->ns_mount_mutex.
1035 * So, the recovery process is protected from other simultaneous mounts.
1036 */
1037static int
1038nilfs_fill_super(struct super_block *sb, struct fs_context *fc)
1039{
1040	struct the_nilfs *nilfs;
1041	struct nilfs_root *fsroot;
1042	struct nilfs_fs_context *ctx = fc->fs_private;
1043	__u64 cno;
1044	int err;
1045
1046	nilfs = alloc_nilfs(sb);
1047	if (!nilfs)
1048		return -ENOMEM;
1049
1050	sb->s_fs_info = nilfs;
1051
1052	err = init_nilfs(nilfs, sb);
1053	if (err)
1054		goto failed_nilfs;
1055
1056	/* Copy in parsed mount options */
1057	nilfs->ns_mount_opt = ctx->ns_mount_opt;
1058
1059	sb->s_op = &nilfs_sops;
1060	sb->s_export_op = &nilfs_export_ops;
1061	sb->s_root = NULL;
1062	sb->s_time_gran = 1;
1063	sb->s_max_links = NILFS_LINK_MAX;
1064
1065	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1066
1067	err = load_nilfs(nilfs, sb);
1068	if (err)
1069		goto failed_nilfs;
1070
1071	super_set_uuid(sb, nilfs->ns_sbp[0]->s_uuid,
1072		       sizeof(nilfs->ns_sbp[0]->s_uuid));
1073	super_set_sysfs_name_bdev(sb);
1074
1075	cno = nilfs_last_cno(nilfs);
1076	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1077	if (err) {
1078		nilfs_err(sb,
1079			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1080			  err, (unsigned long long)cno);
1081		goto failed_unload;
1082	}
1083
1084	if (!sb_rdonly(sb)) {
1085		err = nilfs_attach_log_writer(sb, fsroot);
1086		if (err)
1087			goto failed_checkpoint;
1088	}
1089
1090	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1091	if (err)
1092		goto failed_segctor;
1093
1094	nilfs_put_root(fsroot);
1095
1096	if (!sb_rdonly(sb)) {
1097		down_write(&nilfs->ns_sem);
1098		nilfs_setup_super(sb, true);
1099		up_write(&nilfs->ns_sem);
1100	}
1101
1102	return 0;
1103
1104 failed_segctor:
1105	nilfs_detach_log_writer(sb);
1106
1107 failed_checkpoint:
1108	nilfs_put_root(fsroot);
1109
1110 failed_unload:
1111	nilfs_sysfs_delete_device_group(nilfs);
1112	iput(nilfs->ns_sufile);
1113	iput(nilfs->ns_cpfile);
1114	iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117	destroy_nilfs(nilfs);
1118	return err;
1119}
1120
1121static int nilfs_reconfigure(struct fs_context *fc)
1122{
1123	struct nilfs_fs_context *ctx = fc->fs_private;
1124	struct super_block *sb = fc->root->d_sb;
1125	struct the_nilfs *nilfs = sb->s_fs_info;
 
 
1126	int err;
1127
1128	sync_filesystem(sb);
 
 
 
 
 
 
 
 
1129
1130	err = -EINVAL;
1131
1132	if (!nilfs_valid_fs(nilfs)) {
1133		nilfs_warn(sb,
1134			   "couldn't remount because the filesystem is in an incomplete recovery state");
1135		goto ignore_opts;
 
1136	}
1137	if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
 
1138		goto out;
1139	if (fc->sb_flags & SB_RDONLY) {
1140		sb->s_flags |= SB_RDONLY;
 
 
1141
1142		/*
1143		 * Remounting a valid RW partition RDONLY, so set
1144		 * the RDONLY flag and then mark the partition as valid again.
1145		 */
1146		down_write(&nilfs->ns_sem);
1147		nilfs_cleanup_super(sb);
1148		up_write(&nilfs->ns_sem);
1149	} else {
1150		__u64 features;
1151		struct nilfs_root *root;
1152
1153		/*
1154		 * Mounting a RDONLY partition read-write, so reread and
1155		 * store the current valid flag.  (It may have been changed
1156		 * by fsck since we originally mounted the partition.)
1157		 */
1158		down_read(&nilfs->ns_sem);
1159		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1160			~NILFS_FEATURE_COMPAT_RO_SUPP;
1161		up_read(&nilfs->ns_sem);
1162		if (features) {
1163			nilfs_warn(sb,
1164				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1165				   (unsigned long long)features);
 
1166			err = -EROFS;
1167			goto ignore_opts;
1168		}
1169
1170		sb->s_flags &= ~SB_RDONLY;
1171
1172		root = NILFS_I(d_inode(sb->s_root))->i_root;
1173		err = nilfs_attach_log_writer(sb, root);
1174		if (err) {
1175			sb->s_flags |= SB_RDONLY;
1176			goto ignore_opts;
1177		}
1178
1179		down_write(&nilfs->ns_sem);
1180		nilfs_setup_super(sb, true);
1181		up_write(&nilfs->ns_sem);
1182	}
1183 out:
1184	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1185	/* Copy over parsed remount options */
1186	nilfs->ns_mount_opt = ctx->ns_mount_opt;
1187
1188	return 0;
1189
1190 ignore_opts:
 
 
1191	return err;
1192}
1193
1194static int
1195nilfs_get_tree(struct fs_context *fc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196{
1197	struct nilfs_fs_context *ctx = fc->fs_private;
1198	struct super_block *s;
1199	dev_t dev;
1200	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201
1202	if (ctx->cno && !(fc->sb_flags & SB_RDONLY)) {
1203		nilfs_err(NULL,
1204			  "invalid option \"cp=%llu\": read-only option is not specified",
1205			  ctx->cno);
1206		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1207	}
1208
1209	err = lookup_bdev(fc->source, &dev);
1210	if (err)
1211		return err;
1212
1213	s = sget_dev(fc, dev);
1214	if (IS_ERR(s))
1215		return PTR_ERR(s);
 
1216
1217	if (!s->s_root) {
1218		err = setup_bdev_super(s, fc->sb_flags, fc);
1219		if (!err)
1220			err = nilfs_fill_super(s, fc);
1221		if (err)
1222			goto failed_super;
1223
1224		s->s_flags |= SB_ACTIVE;
1225	} else if (!ctx->cno) {
1226		if (nilfs_tree_is_busy(s->s_root)) {
1227			if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1228				nilfs_err(s,
1229					  "the device already has a %s mount.",
1230					  sb_rdonly(s) ? "read-only" : "read/write");
 
1231				err = -EBUSY;
1232				goto failed_super;
1233			}
1234		} else {
1235			/*
1236			 * Try reconfigure to setup mount states if the current
1237			 * tree is not mounted and only snapshots use this sb.
1238			 *
1239			 * Since nilfs_reconfigure() requires fc->root to be
1240			 * set, set it first and release it on failure.
1241			 */
1242			fc->root = dget(s->s_root);
1243			err = nilfs_reconfigure(fc);
1244			if (err) {
1245				dput(fc->root);
1246				fc->root = NULL;  /* prevent double release */
1247				goto failed_super;
1248			}
1249			return 0;
1250		}
1251	}
1252
1253	if (ctx->cno) {
1254		struct dentry *root_dentry;
1255
1256		err = nilfs_attach_snapshot(s, ctx->cno, &root_dentry);
1257		if (err)
1258			goto failed_super;
1259		fc->root = root_dentry;
1260		return 0;
1261	}
1262
1263	fc->root = dget(s->s_root);
1264	return 0;
 
 
1265
1266 failed_super:
1267	deactivate_locked_super(s);
1268	return err;
1269}
1270
1271static void nilfs_free_fc(struct fs_context *fc)
1272{
1273	kfree(fc->fs_private);
1274}
1275
1276static const struct fs_context_operations nilfs_context_ops = {
1277	.parse_param	= nilfs_parse_param,
1278	.get_tree	= nilfs_get_tree,
1279	.reconfigure	= nilfs_reconfigure,
1280	.free		= nilfs_free_fc,
1281};
1282
1283static int nilfs_init_fs_context(struct fs_context *fc)
1284{
1285	struct nilfs_fs_context *ctx;
1286
1287	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1288	if (!ctx)
1289		return -ENOMEM;
1290
1291	ctx->ns_mount_opt = NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
1292	fc->fs_private = ctx;
1293	fc->ops = &nilfs_context_ops;
1294
1295	return 0;
1296}
1297
1298struct file_system_type nilfs_fs_type = {
1299	.owner    = THIS_MODULE,
1300	.name     = "nilfs2",
 
1301	.kill_sb  = kill_block_super,
1302	.fs_flags = FS_REQUIRES_DEV,
1303	.init_fs_context = nilfs_init_fs_context,
1304	.parameters = nilfs_param_spec,
1305};
1306MODULE_ALIAS_FS("nilfs2");
1307
1308static void nilfs_inode_init_once(void *obj)
1309{
1310	struct nilfs_inode_info *ii = obj;
1311
1312	INIT_LIST_HEAD(&ii->i_dirty);
1313#ifdef CONFIG_NILFS_XATTR
1314	init_rwsem(&ii->xattr_sem);
1315#endif
 
 
1316	inode_init_once(&ii->vfs_inode);
1317}
1318
1319static void nilfs_segbuf_init_once(void *obj)
1320{
1321	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1322}
1323
1324static void nilfs_destroy_cachep(void)
1325{
1326	/*
1327	 * Make sure all delayed rcu free inodes are flushed before we
1328	 * destroy cache.
1329	 */
1330	rcu_barrier();
1331
1332	kmem_cache_destroy(nilfs_inode_cachep);
1333	kmem_cache_destroy(nilfs_transaction_cachep);
1334	kmem_cache_destroy(nilfs_segbuf_cachep);
1335	kmem_cache_destroy(nilfs_btree_path_cache);
1336}
1337
1338static int __init nilfs_init_cachep(void)
1339{
1340	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1341			sizeof(struct nilfs_inode_info), 0,
1342			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1343			nilfs_inode_init_once);
1344	if (!nilfs_inode_cachep)
1345		goto fail;
1346
1347	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1348			sizeof(struct nilfs_transaction_info), 0,
1349			SLAB_RECLAIM_ACCOUNT, NULL);
1350	if (!nilfs_transaction_cachep)
1351		goto fail;
1352
1353	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1354			sizeof(struct nilfs_segment_buffer), 0,
1355			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1356	if (!nilfs_segbuf_cachep)
1357		goto fail;
1358
1359	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1360			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1361			0, 0, NULL);
1362	if (!nilfs_btree_path_cache)
1363		goto fail;
1364
1365	return 0;
1366
1367fail:
1368	nilfs_destroy_cachep();
1369	return -ENOMEM;
1370}
1371
1372static int __init init_nilfs_fs(void)
1373{
1374	int err;
1375
1376	err = nilfs_init_cachep();
1377	if (err)
1378		goto fail;
1379
1380	err = nilfs_sysfs_init();
1381	if (err)
1382		goto free_cachep;
1383
1384	err = register_filesystem(&nilfs_fs_type);
1385	if (err)
1386		goto deinit_sysfs_entry;
1387
1388	printk(KERN_INFO "NILFS version 2 loaded\n");
1389	return 0;
1390
1391deinit_sysfs_entry:
1392	nilfs_sysfs_exit();
1393free_cachep:
1394	nilfs_destroy_cachep();
1395fail:
1396	return err;
1397}
1398
1399static void __exit exit_nilfs_fs(void)
1400{
1401	nilfs_destroy_cachep();
1402	nilfs_sysfs_exit();
1403	unregister_filesystem(&nilfs_fs_type);
1404}
1405
1406module_init(init_nilfs_fs)
1407module_exit(exit_nilfs_fs)
v4.6
 
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  19 *
  20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21 */
  22/*
  23 *  linux/fs/ext2/super.c
  24 *
  25 * Copyright (C) 1992, 1993, 1994, 1995
  26 * Remy Card (card@masi.ibp.fr)
  27 * Laboratoire MASI - Institut Blaise Pascal
  28 * Universite Pierre et Marie Curie (Paris VI)
  29 *
  30 *  from
  31 *
  32 *  linux/fs/minix/inode.c
  33 *
  34 *  Copyright (C) 1991, 1992  Linus Torvalds
  35 *
  36 *  Big-endian to little-endian byte-swapping/bitmaps by
  37 *        David S. Miller (davem@caip.rutgers.edu), 1995
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/string.h>
  42#include <linux/slab.h>
  43#include <linux/init.h>
  44#include <linux/blkdev.h>
  45#include <linux/parser.h>
  46#include <linux/crc32.h>
  47#include <linux/vfs.h>
  48#include <linux/writeback.h>
  49#include <linux/seq_file.h>
  50#include <linux/mount.h>
 
 
  51#include "nilfs.h"
  52#include "export.h"
  53#include "mdt.h"
  54#include "alloc.h"
  55#include "btree.h"
  56#include "btnode.h"
  57#include "page.h"
  58#include "cpfile.h"
  59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  60#include "ifile.h"
  61#include "dat.h"
  62#include "segment.h"
  63#include "segbuf.h"
  64
  65MODULE_AUTHOR("NTT Corp.");
  66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  67		   "(NILFS)");
  68MODULE_LICENSE("GPL");
  69
  70static struct kmem_cache *nilfs_inode_cachep;
  71struct kmem_cache *nilfs_transaction_cachep;
  72struct kmem_cache *nilfs_segbuf_cachep;
  73struct kmem_cache *nilfs_btree_path_cache;
  74
  75static int nilfs_setup_super(struct super_block *sb, int is_mount);
  76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78static void nilfs_set_error(struct super_block *sb)
  79{
  80	struct the_nilfs *nilfs = sb->s_fs_info;
  81	struct nilfs_super_block **sbp;
  82
  83	down_write(&nilfs->ns_sem);
  84	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  85		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  86		sbp = nilfs_prepare_super(sb, 0);
  87		if (likely(sbp)) {
  88			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  89			if (sbp[1])
  90				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  91			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
  92		}
  93	}
  94	up_write(&nilfs->ns_sem);
  95}
  96
  97/**
  98 * nilfs_error() - report failure condition on a filesystem
 
 
 
 
  99 *
 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
 101 * reporting an error message.  It should be called when NILFS detects
 102 * incoherences or defects of meta data on disk.  As for sustainable
 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
 104 * function should be used instead.
 105 *
 106 * The segment constructor must not call this function because it can
 107 * kill itself.
 
 
 
 108 */
 109void nilfs_error(struct super_block *sb, const char *function,
 110		 const char *fmt, ...)
 111{
 112	struct the_nilfs *nilfs = sb->s_fs_info;
 113	struct va_format vaf;
 114	va_list args;
 115
 116	va_start(args, fmt);
 117
 118	vaf.fmt = fmt;
 119	vaf.va = &args;
 120
 121	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 122	       sb->s_id, function, &vaf);
 123
 124	va_end(args);
 125
 126	if (!(sb->s_flags & MS_RDONLY)) {
 127		nilfs_set_error(sb);
 128
 129		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 130			printk(KERN_CRIT "Remounting filesystem read-only\n");
 131			sb->s_flags |= MS_RDONLY;
 132		}
 133	}
 134
 135	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 136		panic("NILFS (device %s): panic forced after error\n",
 137		      sb->s_id);
 138}
 139
 140void nilfs_warning(struct super_block *sb, const char *function,
 141		   const char *fmt, ...)
 142{
 143	struct va_format vaf;
 144	va_list args;
 145
 146	va_start(args, fmt);
 147
 148	vaf.fmt = fmt;
 149	vaf.va = &args;
 150
 151	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
 152	       sb->s_id, function, &vaf);
 153
 154	va_end(args);
 155}
 156
 157
 158struct inode *nilfs_alloc_inode(struct super_block *sb)
 159{
 160	struct nilfs_inode_info *ii;
 161
 162	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 163	if (!ii)
 164		return NULL;
 165	ii->i_bh = NULL;
 166	ii->i_state = 0;
 
 167	ii->i_cno = 0;
 168	ii->vfs_inode.i_version = 1;
 169	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 170	return &ii->vfs_inode;
 171}
 172
 173static void nilfs_i_callback(struct rcu_head *head)
 174{
 175	struct inode *inode = container_of(head, struct inode, i_rcu);
 176	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
 177
 178	if (mdi) {
 179		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
 180		kfree(mdi);
 181	}
 182	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 183}
 184
 185void nilfs_destroy_inode(struct inode *inode)
 186{
 187	call_rcu(&inode->i_rcu, nilfs_i_callback);
 188}
 189
 190static int nilfs_sync_super(struct super_block *sb, int flag)
 191{
 192	struct the_nilfs *nilfs = sb->s_fs_info;
 193	int err;
 194
 195 retry:
 196	set_buffer_dirty(nilfs->ns_sbh[0]);
 197	if (nilfs_test_opt(nilfs, BARRIER)) {
 198		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 199					  WRITE_SYNC | WRITE_FLUSH_FUA);
 200	} else {
 201		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 202	}
 203
 204	if (unlikely(err)) {
 205		printk(KERN_ERR
 206		       "NILFS: unable to write superblock (err=%d)\n", err);
 207		if (err == -EIO && nilfs->ns_sbh[1]) {
 208			/*
 209			 * sbp[0] points to newer log than sbp[1],
 210			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 211			 */
 212			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 213			       nilfs->ns_sbsize);
 214			nilfs_fall_back_super_block(nilfs);
 215			goto retry;
 216		}
 217	} else {
 218		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 219
 220		nilfs->ns_sbwcount++;
 221
 222		/*
 223		 * The latest segment becomes trailable from the position
 224		 * written in superblock.
 225		 */
 226		clear_nilfs_discontinued(nilfs);
 227
 228		/* update GC protection for recent segments */
 229		if (nilfs->ns_sbh[1]) {
 230			if (flag == NILFS_SB_COMMIT_ALL) {
 231				set_buffer_dirty(nilfs->ns_sbh[1]);
 232				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 233					goto out;
 234			}
 235			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 236			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 237				sbp = nilfs->ns_sbp[1];
 238		}
 239
 240		spin_lock(&nilfs->ns_last_segment_lock);
 241		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 242		spin_unlock(&nilfs->ns_last_segment_lock);
 243	}
 244 out:
 245	return err;
 246}
 247
 248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 249			  struct the_nilfs *nilfs)
 250{
 251	sector_t nfreeblocks;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 255	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 256
 257	spin_lock(&nilfs->ns_last_segment_lock);
 258	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 259	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 260	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 261	spin_unlock(&nilfs->ns_last_segment_lock);
 262}
 263
 264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 265					       int flip)
 266{
 267	struct the_nilfs *nilfs = sb->s_fs_info;
 268	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 269
 270	/* nilfs->ns_sem must be locked by the caller. */
 271	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 272		if (sbp[1] &&
 273		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 275		} else {
 276			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
 277			       sb->s_id);
 278			return NULL;
 279		}
 280	} else if (sbp[1] &&
 281		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 282			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 283	}
 284
 285	if (flip && sbp[1])
 286		nilfs_swap_super_block(nilfs);
 287
 288	return sbp;
 289}
 290
 291int nilfs_commit_super(struct super_block *sb, int flag)
 292{
 293	struct the_nilfs *nilfs = sb->s_fs_info;
 294	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 295	time_t t;
 296
 297	/* nilfs->ns_sem must be locked by the caller. */
 298	t = get_seconds();
 299	nilfs->ns_sbwtime = t;
 300	sbp[0]->s_wtime = cpu_to_le64(t);
 301	sbp[0]->s_sum = 0;
 302	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 303					     (unsigned char *)sbp[0],
 304					     nilfs->ns_sbsize));
 305	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 306		sbp[1]->s_wtime = sbp[0]->s_wtime;
 307		sbp[1]->s_sum = 0;
 308		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 309					    (unsigned char *)sbp[1],
 310					    nilfs->ns_sbsize));
 311	}
 312	clear_nilfs_sb_dirty(nilfs);
 313	nilfs->ns_flushed_device = 1;
 314	/* make sure store to ns_flushed_device cannot be reordered */
 315	smp_wmb();
 316	return nilfs_sync_super(sb, flag);
 317}
 318
 319/**
 320 * nilfs_cleanup_super() - write filesystem state for cleanup
 321 * @sb: super block instance to be unmounted or degraded to read-only
 322 *
 323 * This function restores state flags in the on-disk super block.
 324 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 325 * filesystem was not clean previously.
 326 */
 327int nilfs_cleanup_super(struct super_block *sb)
 328{
 329	struct the_nilfs *nilfs = sb->s_fs_info;
 330	struct nilfs_super_block **sbp;
 331	int flag = NILFS_SB_COMMIT;
 332	int ret = -EIO;
 333
 334	sbp = nilfs_prepare_super(sb, 0);
 335	if (sbp) {
 336		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 337		nilfs_set_log_cursor(sbp[0], nilfs);
 338		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 339			/*
 340			 * make the "clean" flag also to the opposite
 341			 * super block if both super blocks point to
 342			 * the same checkpoint.
 343			 */
 344			sbp[1]->s_state = sbp[0]->s_state;
 345			flag = NILFS_SB_COMMIT_ALL;
 346		}
 347		ret = nilfs_commit_super(sb, flag);
 348	}
 349	return ret;
 350}
 351
 352/**
 353 * nilfs_move_2nd_super - relocate secondary super block
 354 * @sb: super block instance
 355 * @sb2off: new offset of the secondary super block (in bytes)
 356 */
 357static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 358{
 359	struct the_nilfs *nilfs = sb->s_fs_info;
 360	struct buffer_head *nsbh;
 361	struct nilfs_super_block *nsbp;
 362	sector_t blocknr, newblocknr;
 363	unsigned long offset;
 364	int sb2i;  /* array index of the secondary superblock */
 365	int ret = 0;
 366
 367	/* nilfs->ns_sem must be locked by the caller. */
 368	if (nilfs->ns_sbh[1] &&
 369	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 370		sb2i = 1;
 371		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 372	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 373		sb2i = 0;
 374		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 375	} else {
 376		sb2i = -1;
 377		blocknr = 0;
 378	}
 379	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 380		goto out;  /* super block location is unchanged */
 381
 382	/* Get new super block buffer */
 383	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 384	offset = sb2off & (nilfs->ns_blocksize - 1);
 385	nsbh = sb_getblk(sb, newblocknr);
 386	if (!nsbh) {
 387		printk(KERN_WARNING
 388		       "NILFS warning: unable to move secondary superblock "
 389		       "to block %llu\n", (unsigned long long)newblocknr);
 390		ret = -EIO;
 391		goto out;
 392	}
 393	nsbp = (void *)nsbh->b_data + offset;
 394	memset(nsbp, 0, nilfs->ns_blocksize);
 395
 
 396	if (sb2i >= 0) {
 
 
 
 
 
 
 397		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398		brelse(nilfs->ns_sbh[sb2i]);
 399		nilfs->ns_sbh[sb2i] = nsbh;
 400		nilfs->ns_sbp[sb2i] = nsbp;
 401	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 402		/* secondary super block will be restored to index 1 */
 403		nilfs->ns_sbh[1] = nsbh;
 404		nilfs->ns_sbp[1] = nsbp;
 405	} else {
 406		brelse(nsbh);
 407	}
 408out:
 409	return ret;
 410}
 411
 412/**
 413 * nilfs_resize_fs - resize the filesystem
 414 * @sb: super block instance
 415 * @newsize: new size of the filesystem (in bytes)
 416 */
 417int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 418{
 419	struct the_nilfs *nilfs = sb->s_fs_info;
 420	struct nilfs_super_block **sbp;
 421	__u64 devsize, newnsegs;
 422	loff_t sb2off;
 423	int ret;
 424
 425	ret = -ERANGE;
 426	devsize = i_size_read(sb->s_bdev->bd_inode);
 427	if (newsize > devsize)
 428		goto out;
 429
 430	/*
 
 
 
 
 
 
 
 
 
 431	 * Write lock is required to protect some functions depending
 432	 * on the number of segments, the number of reserved segments,
 433	 * and so forth.
 434	 */
 435	down_write(&nilfs->ns_segctor_sem);
 436
 437	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 438	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 439	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 440
 441	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 442	up_write(&nilfs->ns_segctor_sem);
 443	if (ret < 0)
 444		goto out;
 445
 446	ret = nilfs_construct_segment(sb);
 447	if (ret < 0)
 448		goto out;
 449
 450	down_write(&nilfs->ns_sem);
 451	nilfs_move_2nd_super(sb, sb2off);
 452	ret = -EIO;
 453	sbp = nilfs_prepare_super(sb, 0);
 454	if (likely(sbp)) {
 455		nilfs_set_log_cursor(sbp[0], nilfs);
 456		/*
 457		 * Drop NILFS_RESIZE_FS flag for compatibility with
 458		 * mount-time resize which may be implemented in a
 459		 * future release.
 460		 */
 461		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 462					      ~NILFS_RESIZE_FS);
 463		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 464		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 465		if (sbp[1])
 466			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 467		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 468	}
 469	up_write(&nilfs->ns_sem);
 470
 471	/*
 472	 * Reset the range of allocatable segments last.  This order
 473	 * is important in the case of expansion because the secondary
 474	 * superblock must be protected from log write until migration
 475	 * completes.
 476	 */
 477	if (!ret)
 478		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 479out:
 480	return ret;
 481}
 482
 483static void nilfs_put_super(struct super_block *sb)
 484{
 485	struct the_nilfs *nilfs = sb->s_fs_info;
 486
 487	nilfs_detach_log_writer(sb);
 488
 489	if (!(sb->s_flags & MS_RDONLY)) {
 490		down_write(&nilfs->ns_sem);
 491		nilfs_cleanup_super(sb);
 492		up_write(&nilfs->ns_sem);
 493	}
 494
 
 495	iput(nilfs->ns_sufile);
 496	iput(nilfs->ns_cpfile);
 497	iput(nilfs->ns_dat);
 498
 499	destroy_nilfs(nilfs);
 500	sb->s_fs_info = NULL;
 501}
 502
 503static int nilfs_sync_fs(struct super_block *sb, int wait)
 504{
 505	struct the_nilfs *nilfs = sb->s_fs_info;
 506	struct nilfs_super_block **sbp;
 507	int err = 0;
 508
 509	/* This function is called when super block should be written back */
 510	if (wait)
 511		err = nilfs_construct_segment(sb);
 512
 513	down_write(&nilfs->ns_sem);
 514	if (nilfs_sb_dirty(nilfs)) {
 515		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 516		if (likely(sbp)) {
 517			nilfs_set_log_cursor(sbp[0], nilfs);
 518			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 519		}
 520	}
 521	up_write(&nilfs->ns_sem);
 522
 523	if (!err)
 524		err = nilfs_flush_device(nilfs);
 525
 526	return err;
 527}
 528
 529int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 530			    struct nilfs_root **rootp)
 531{
 532	struct the_nilfs *nilfs = sb->s_fs_info;
 533	struct nilfs_root *root;
 534	struct nilfs_checkpoint *raw_cp;
 535	struct buffer_head *bh_cp;
 536	int err = -ENOMEM;
 537
 538	root = nilfs_find_or_create_root(
 539		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 540	if (!root)
 541		return err;
 542
 543	if (root->ifile)
 544		goto reuse; /* already attached checkpoint */
 545
 546	down_read(&nilfs->ns_segctor_sem);
 547	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 548					  &bh_cp);
 549	up_read(&nilfs->ns_segctor_sem);
 550	if (unlikely(err)) {
 551		if (err == -ENOENT || err == -EINVAL) {
 552			printk(KERN_ERR
 553			       "NILFS: Invalid checkpoint "
 554			       "(checkpoint number=%llu)\n",
 555			       (unsigned long long)cno);
 556			err = -EINVAL;
 557		}
 558		goto failed;
 559	}
 560
 561	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 562			       &raw_cp->cp_ifile_inode, &root->ifile);
 563	if (err)
 564		goto failed_bh;
 565
 566	atomic64_set(&root->inodes_count,
 567			le64_to_cpu(raw_cp->cp_inodes_count));
 568	atomic64_set(&root->blocks_count,
 569			le64_to_cpu(raw_cp->cp_blocks_count));
 570
 571	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 572
 573 reuse:
 574	*rootp = root;
 575	return 0;
 576
 577 failed_bh:
 578	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 579 failed:
 
 
 
 580	nilfs_put_root(root);
 581
 582	return err;
 583}
 584
 585static int nilfs_freeze(struct super_block *sb)
 586{
 587	struct the_nilfs *nilfs = sb->s_fs_info;
 588	int err;
 589
 590	if (sb->s_flags & MS_RDONLY)
 591		return 0;
 592
 593	/* Mark super block clean */
 594	down_write(&nilfs->ns_sem);
 595	err = nilfs_cleanup_super(sb);
 596	up_write(&nilfs->ns_sem);
 597	return err;
 598}
 599
 600static int nilfs_unfreeze(struct super_block *sb)
 601{
 602	struct the_nilfs *nilfs = sb->s_fs_info;
 603
 604	if (sb->s_flags & MS_RDONLY)
 605		return 0;
 606
 607	down_write(&nilfs->ns_sem);
 608	nilfs_setup_super(sb, false);
 609	up_write(&nilfs->ns_sem);
 610	return 0;
 611}
 612
 613static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 614{
 615	struct super_block *sb = dentry->d_sb;
 616	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 617	struct the_nilfs *nilfs = root->nilfs;
 618	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 619	unsigned long long blocks;
 620	unsigned long overhead;
 621	unsigned long nrsvblocks;
 622	sector_t nfreeblocks;
 623	u64 nmaxinodes, nfreeinodes;
 624	int err;
 625
 626	/*
 627	 * Compute all of the segment blocks
 628	 *
 629	 * The blocks before first segment and after last segment
 630	 * are excluded.
 631	 */
 632	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 633		- nilfs->ns_first_data_block;
 634	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 635
 636	/*
 637	 * Compute the overhead
 638	 *
 639	 * When distributing meta data blocks outside segment structure,
 640	 * We must count them as the overhead.
 641	 */
 642	overhead = 0;
 643
 644	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 645	if (unlikely(err))
 646		return err;
 647
 648	err = nilfs_ifile_count_free_inodes(root->ifile,
 649					    &nmaxinodes, &nfreeinodes);
 650	if (unlikely(err)) {
 651		printk(KERN_WARNING
 652			"NILFS warning: fail to count free inodes: err %d.\n",
 653			err);
 654		if (err == -ERANGE) {
 655			/*
 656			 * If nilfs_palloc_count_max_entries() returns
 657			 * -ERANGE error code then we simply treat
 658			 * curent inodes count as maximum possible and
 659			 * zero as free inodes value.
 660			 */
 661			nmaxinodes = atomic64_read(&root->inodes_count);
 662			nfreeinodes = 0;
 663			err = 0;
 664		} else
 665			return err;
 666	}
 667
 668	buf->f_type = NILFS_SUPER_MAGIC;
 669	buf->f_bsize = sb->s_blocksize;
 670	buf->f_blocks = blocks - overhead;
 671	buf->f_bfree = nfreeblocks;
 672	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 673		(buf->f_bfree - nrsvblocks) : 0;
 674	buf->f_files = nmaxinodes;
 675	buf->f_ffree = nfreeinodes;
 676	buf->f_namelen = NILFS_NAME_LEN;
 677	buf->f_fsid.val[0] = (u32)id;
 678	buf->f_fsid.val[1] = (u32)(id >> 32);
 679
 680	return 0;
 681}
 682
 683static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 684{
 685	struct super_block *sb = dentry->d_sb;
 686	struct the_nilfs *nilfs = sb->s_fs_info;
 687	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 688
 689	if (!nilfs_test_opt(nilfs, BARRIER))
 690		seq_puts(seq, ",nobarrier");
 691	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 692		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 693	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 694		seq_puts(seq, ",errors=panic");
 695	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 696		seq_puts(seq, ",errors=continue");
 697	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 698		seq_puts(seq, ",order=strict");
 699	if (nilfs_test_opt(nilfs, NORECOVERY))
 700		seq_puts(seq, ",norecovery");
 701	if (nilfs_test_opt(nilfs, DISCARD))
 702		seq_puts(seq, ",discard");
 703
 704	return 0;
 705}
 706
 707static const struct super_operations nilfs_sops = {
 708	.alloc_inode    = nilfs_alloc_inode,
 709	.destroy_inode  = nilfs_destroy_inode,
 710	.dirty_inode    = nilfs_dirty_inode,
 711	.evict_inode    = nilfs_evict_inode,
 712	.put_super      = nilfs_put_super,
 713	.sync_fs        = nilfs_sync_fs,
 714	.freeze_fs	= nilfs_freeze,
 715	.unfreeze_fs	= nilfs_unfreeze,
 716	.statfs         = nilfs_statfs,
 717	.remount_fs     = nilfs_remount,
 718	.show_options = nilfs_show_options
 719};
 720
 721enum {
 722	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 723	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 724	Opt_discard, Opt_nodiscard, Opt_err,
 725};
 726
 727static match_table_t tokens = {
 728	{Opt_err_cont, "errors=continue"},
 729	{Opt_err_panic, "errors=panic"},
 730	{Opt_err_ro, "errors=remount-ro"},
 731	{Opt_barrier, "barrier"},
 732	{Opt_nobarrier, "nobarrier"},
 733	{Opt_snapshot, "cp=%u"},
 734	{Opt_order, "order=%s"},
 735	{Opt_norecovery, "norecovery"},
 736	{Opt_discard, "discard"},
 737	{Opt_nodiscard, "nodiscard"},
 738	{Opt_err, NULL}
 739};
 740
 741static int parse_options(char *options, struct super_block *sb, int is_remount)
 742{
 743	struct the_nilfs *nilfs = sb->s_fs_info;
 744	char *p;
 745	substring_t args[MAX_OPT_ARGS];
 
 
 
 
 746
 747	if (!options)
 748		return 1;
 
 
 749
 750	while ((p = strsep(&options, ",")) != NULL) {
 751		int token;
 752		if (!*p)
 753			continue;
 754
 755		token = match_token(p, tokens, args);
 756		switch (token) {
 757		case Opt_barrier:
 
 
 
 
 
 
 
 
 758			nilfs_set_opt(nilfs, BARRIER);
 759			break;
 760		case Opt_nobarrier:
 761			nilfs_clear_opt(nilfs, BARRIER);
 762			break;
 763		case Opt_order:
 764			if (strcmp(args[0].from, "relaxed") == 0)
 765				/* Ordered data semantics */
 766				nilfs_clear_opt(nilfs, STRICT_ORDER);
 767			else if (strcmp(args[0].from, "strict") == 0)
 768				/* Strict in-order semantics */
 769				nilfs_set_opt(nilfs, STRICT_ORDER);
 770			else
 771				return 0;
 772			break;
 773		case Opt_err_panic:
 774			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 775			break;
 776		case Opt_err_ro:
 777			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 778			break;
 779		case Opt_err_cont:
 780			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 781			break;
 782		case Opt_snapshot:
 783			if (is_remount) {
 784				printk(KERN_ERR
 785				       "NILFS: \"%s\" option is invalid "
 786				       "for remount.\n", p);
 787				return 0;
 788			}
 789			break;
 790		case Opt_norecovery:
 791			nilfs_set_opt(nilfs, NORECOVERY);
 792			break;
 793		case Opt_discard:
 
 
 
 794			nilfs_set_opt(nilfs, DISCARD);
 795			break;
 796		case Opt_nodiscard:
 797			nilfs_clear_opt(nilfs, DISCARD);
 798			break;
 799		default:
 800			printk(KERN_ERR
 801			       "NILFS: Unrecognized mount option \"%s\"\n", p);
 802			return 0;
 803		}
 804	}
 805	return 1;
 806}
 807
 808static inline void
 809nilfs_set_default_options(struct super_block *sb,
 810			  struct nilfs_super_block *sbp)
 811{
 812	struct the_nilfs *nilfs = sb->s_fs_info;
 813
 814	nilfs->ns_mount_opt =
 815		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 816}
 817
 818static int nilfs_setup_super(struct super_block *sb, int is_mount)
 819{
 820	struct the_nilfs *nilfs = sb->s_fs_info;
 821	struct nilfs_super_block **sbp;
 822	int max_mnt_count;
 823	int mnt_count;
 824
 825	/* nilfs->ns_sem must be locked by the caller. */
 826	sbp = nilfs_prepare_super(sb, 0);
 827	if (!sbp)
 828		return -EIO;
 829
 830	if (!is_mount)
 831		goto skip_mount_setup;
 832
 833	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 834	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 835
 836	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 837		printk(KERN_WARNING
 838		       "NILFS warning: mounting fs with errors\n");
 839#if 0
 840	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 841		printk(KERN_WARNING
 842		       "NILFS warning: maximal mount count reached\n");
 843#endif
 844	}
 845	if (!max_mnt_count)
 846		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 847
 848	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 849	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 850
 851skip_mount_setup:
 852	sbp[0]->s_state =
 853		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 854	/* synchronize sbp[1] with sbp[0] */
 855	if (sbp[1])
 856		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 857	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 858}
 859
 860struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 861						 u64 pos, int blocksize,
 862						 struct buffer_head **pbh)
 863{
 864	unsigned long long sb_index = pos;
 865	unsigned long offset;
 866
 867	offset = do_div(sb_index, blocksize);
 868	*pbh = sb_bread(sb, sb_index);
 869	if (!*pbh)
 870		return NULL;
 871	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 872}
 873
 874int nilfs_store_magic_and_option(struct super_block *sb,
 875				 struct nilfs_super_block *sbp,
 876				 char *data)
 877{
 878	struct the_nilfs *nilfs = sb->s_fs_info;
 879
 880	sb->s_magic = le16_to_cpu(sbp->s_magic);
 881
 882	/* FS independent flags */
 883#ifdef NILFS_ATIME_DISABLE
 884	sb->s_flags |= MS_NOATIME;
 885#endif
 886
 887	nilfs_set_default_options(sb, sbp);
 888
 889	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 890	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 891	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 892	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 893
 894	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
 895}
 896
 897int nilfs_check_feature_compatibility(struct super_block *sb,
 898				      struct nilfs_super_block *sbp)
 899{
 900	__u64 features;
 901
 902	features = le64_to_cpu(sbp->s_feature_incompat) &
 903		~NILFS_FEATURE_INCOMPAT_SUPP;
 904	if (features) {
 905		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
 906		       "optional features (%llx)\n",
 907		       (unsigned long long)features);
 908		return -EINVAL;
 909	}
 910	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 911		~NILFS_FEATURE_COMPAT_RO_SUPP;
 912	if (!(sb->s_flags & MS_RDONLY) && features) {
 913		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
 914		       "unsupported optional features (%llx)\n",
 915		       (unsigned long long)features);
 916		return -EINVAL;
 917	}
 918	return 0;
 919}
 920
 921static int nilfs_get_root_dentry(struct super_block *sb,
 922				 struct nilfs_root *root,
 923				 struct dentry **root_dentry)
 924{
 925	struct inode *inode;
 926	struct dentry *dentry;
 927	int ret = 0;
 928
 929	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 930	if (IS_ERR(inode)) {
 931		printk(KERN_ERR "NILFS: get root inode failed\n");
 932		ret = PTR_ERR(inode);
 
 933		goto out;
 934	}
 935	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 936		iput(inode);
 937		printk(KERN_ERR "NILFS: corrupt root inode.\n");
 938		ret = -EINVAL;
 939		goto out;
 940	}
 941
 942	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 943		dentry = d_find_alias(inode);
 944		if (!dentry) {
 945			dentry = d_make_root(inode);
 946			if (!dentry) {
 947				ret = -ENOMEM;
 948				goto failed_dentry;
 949			}
 950		} else {
 951			iput(inode);
 952		}
 953	} else {
 954		dentry = d_obtain_root(inode);
 955		if (IS_ERR(dentry)) {
 956			ret = PTR_ERR(dentry);
 957			goto failed_dentry;
 958		}
 959	}
 960	*root_dentry = dentry;
 961 out:
 962	return ret;
 963
 964 failed_dentry:
 965	printk(KERN_ERR "NILFS: get root dentry failed\n");
 966	goto out;
 967}
 968
 969static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 970				 struct dentry **root_dentry)
 971{
 972	struct the_nilfs *nilfs = s->s_fs_info;
 973	struct nilfs_root *root;
 974	int ret;
 975
 976	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 977
 978	down_read(&nilfs->ns_segctor_sem);
 979	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 980	up_read(&nilfs->ns_segctor_sem);
 981	if (ret < 0) {
 982		ret = (ret == -ENOENT) ? -EINVAL : ret;
 983		goto out;
 984	} else if (!ret) {
 985		printk(KERN_ERR "NILFS: The specified checkpoint is "
 986		       "not a snapshot (checkpoint number=%llu).\n",
 987		       (unsigned long long)cno);
 988		ret = -EINVAL;
 989		goto out;
 990	}
 991
 992	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 993	if (ret) {
 994		printk(KERN_ERR "NILFS: error loading snapshot "
 995		       "(checkpoint number=%llu).\n",
 996	       (unsigned long long)cno);
 997		goto out;
 998	}
 999	ret = nilfs_get_root_dentry(s, root, root_dentry);
1000	nilfs_put_root(root);
1001 out:
1002	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1003	return ret;
1004}
1005
1006/**
1007 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1008 * @root_dentry: root dentry of the tree to be shrunk
1009 *
1010 * This function returns true if the tree was in-use.
1011 */
1012static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1013{
1014	shrink_dcache_parent(root_dentry);
1015	return d_count(root_dentry) > 1;
1016}
1017
1018int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1019{
1020	struct the_nilfs *nilfs = sb->s_fs_info;
1021	struct nilfs_root *root;
1022	struct inode *inode;
1023	struct dentry *dentry;
1024	int ret;
1025
1026	if (cno > nilfs->ns_cno)
1027		return false;
1028
1029	if (cno >= nilfs_last_cno(nilfs))
1030		return true;	/* protect recent checkpoints */
1031
1032	ret = false;
1033	root = nilfs_lookup_root(nilfs, cno);
1034	if (root) {
1035		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1036		if (inode) {
1037			dentry = d_find_alias(inode);
1038			if (dentry) {
1039				ret = nilfs_tree_is_busy(dentry);
1040				dput(dentry);
1041			}
1042			iput(inode);
1043		}
1044		nilfs_put_root(root);
1045	}
1046	return ret;
1047}
1048
1049/**
1050 * nilfs_fill_super() - initialize a super block instance
1051 * @sb: super_block
1052 * @data: mount options
1053 * @silent: silent mode flag
1054 *
1055 * This function is called exclusively by nilfs->ns_mount_mutex.
1056 * So, the recovery process is protected from other simultaneous mounts.
1057 */
1058static int
1059nilfs_fill_super(struct super_block *sb, void *data, int silent)
1060{
1061	struct the_nilfs *nilfs;
1062	struct nilfs_root *fsroot;
 
1063	__u64 cno;
1064	int err;
1065
1066	nilfs = alloc_nilfs(sb->s_bdev);
1067	if (!nilfs)
1068		return -ENOMEM;
1069
1070	sb->s_fs_info = nilfs;
1071
1072	err = init_nilfs(nilfs, sb, (char *)data);
1073	if (err)
1074		goto failed_nilfs;
1075
 
 
 
1076	sb->s_op = &nilfs_sops;
1077	sb->s_export_op = &nilfs_export_ops;
1078	sb->s_root = NULL;
1079	sb->s_time_gran = 1;
1080	sb->s_max_links = NILFS_LINK_MAX;
1081
1082	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1083
1084	err = load_nilfs(nilfs, sb);
1085	if (err)
1086		goto failed_nilfs;
1087
 
 
 
 
1088	cno = nilfs_last_cno(nilfs);
1089	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1090	if (err) {
1091		printk(KERN_ERR "NILFS: error loading last checkpoint "
1092		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
 
1093		goto failed_unload;
1094	}
1095
1096	if (!(sb->s_flags & MS_RDONLY)) {
1097		err = nilfs_attach_log_writer(sb, fsroot);
1098		if (err)
1099			goto failed_checkpoint;
1100	}
1101
1102	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1103	if (err)
1104		goto failed_segctor;
1105
1106	nilfs_put_root(fsroot);
1107
1108	if (!(sb->s_flags & MS_RDONLY)) {
1109		down_write(&nilfs->ns_sem);
1110		nilfs_setup_super(sb, true);
1111		up_write(&nilfs->ns_sem);
1112	}
1113
1114	return 0;
1115
1116 failed_segctor:
1117	nilfs_detach_log_writer(sb);
1118
1119 failed_checkpoint:
1120	nilfs_put_root(fsroot);
1121
1122 failed_unload:
 
1123	iput(nilfs->ns_sufile);
1124	iput(nilfs->ns_cpfile);
1125	iput(nilfs->ns_dat);
1126
1127 failed_nilfs:
1128	destroy_nilfs(nilfs);
1129	return err;
1130}
1131
1132static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1133{
 
 
1134	struct the_nilfs *nilfs = sb->s_fs_info;
1135	unsigned long old_sb_flags;
1136	unsigned long old_mount_opt;
1137	int err;
1138
1139	sync_filesystem(sb);
1140	old_sb_flags = sb->s_flags;
1141	old_mount_opt = nilfs->ns_mount_opt;
1142
1143	if (!parse_options(data, sb, 1)) {
1144		err = -EINVAL;
1145		goto restore_opts;
1146	}
1147	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1148
1149	err = -EINVAL;
1150
1151	if (!nilfs_valid_fs(nilfs)) {
1152		printk(KERN_WARNING "NILFS (device %s): couldn't "
1153		       "remount because the filesystem is in an "
1154		       "incomplete recovery state.\n", sb->s_id);
1155		goto restore_opts;
1156	}
1157
1158	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1159		goto out;
1160	if (*flags & MS_RDONLY) {
1161		/* Shutting down log writer */
1162		nilfs_detach_log_writer(sb);
1163		sb->s_flags |= MS_RDONLY;
1164
1165		/*
1166		 * Remounting a valid RW partition RDONLY, so set
1167		 * the RDONLY flag and then mark the partition as valid again.
1168		 */
1169		down_write(&nilfs->ns_sem);
1170		nilfs_cleanup_super(sb);
1171		up_write(&nilfs->ns_sem);
1172	} else {
1173		__u64 features;
1174		struct nilfs_root *root;
1175
1176		/*
1177		 * Mounting a RDONLY partition read-write, so reread and
1178		 * store the current valid flag.  (It may have been changed
1179		 * by fsck since we originally mounted the partition.)
1180		 */
1181		down_read(&nilfs->ns_sem);
1182		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1183			~NILFS_FEATURE_COMPAT_RO_SUPP;
1184		up_read(&nilfs->ns_sem);
1185		if (features) {
1186			printk(KERN_WARNING "NILFS (device %s): couldn't "
1187			       "remount RDWR because of unsupported optional "
1188			       "features (%llx)\n",
1189			       sb->s_id, (unsigned long long)features);
1190			err = -EROFS;
1191			goto restore_opts;
1192		}
1193
1194		sb->s_flags &= ~MS_RDONLY;
1195
1196		root = NILFS_I(d_inode(sb->s_root))->i_root;
1197		err = nilfs_attach_log_writer(sb, root);
1198		if (err)
1199			goto restore_opts;
 
 
1200
1201		down_write(&nilfs->ns_sem);
1202		nilfs_setup_super(sb, true);
1203		up_write(&nilfs->ns_sem);
1204	}
1205 out:
 
 
 
 
1206	return 0;
1207
1208 restore_opts:
1209	sb->s_flags = old_sb_flags;
1210	nilfs->ns_mount_opt = old_mount_opt;
1211	return err;
1212}
1213
1214struct nilfs_super_data {
1215	struct block_device *bdev;
1216	__u64 cno;
1217	int flags;
1218};
1219
1220/**
1221 * nilfs_identify - pre-read mount options needed to identify mount instance
1222 * @data: mount options
1223 * @sd: nilfs_super_data
1224 */
1225static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1226{
1227	char *p, *options = data;
1228	substring_t args[MAX_OPT_ARGS];
1229	int token;
1230	int ret = 0;
1231
1232	do {
1233		p = strsep(&options, ",");
1234		if (p != NULL && *p) {
1235			token = match_token(p, tokens, args);
1236			if (token == Opt_snapshot) {
1237				if (!(sd->flags & MS_RDONLY)) {
1238					ret++;
1239				} else {
1240					sd->cno = simple_strtoull(args[0].from,
1241								  NULL, 0);
1242					/*
1243					 * No need to see the end pointer;
1244					 * match_token() has done syntax
1245					 * checking.
1246					 */
1247					if (sd->cno == 0)
1248						ret++;
1249				}
1250			}
1251			if (ret)
1252				printk(KERN_ERR
1253				       "NILFS: invalid mount option: %s\n", p);
1254		}
1255		if (!options)
1256			break;
1257		BUG_ON(options == data);
1258		*(options - 1) = ',';
1259	} while (!ret);
1260	return ret;
1261}
1262
1263static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264{
1265	s->s_bdev = data;
1266	s->s_dev = s->s_bdev->bd_dev;
1267	return 0;
1268}
1269
1270static int nilfs_test_bdev_super(struct super_block *s, void *data)
1271{
1272	return (void *)s->s_bdev == data;
1273}
1274
1275static struct dentry *
1276nilfs_mount(struct file_system_type *fs_type, int flags,
1277	     const char *dev_name, void *data)
1278{
1279	struct nilfs_super_data sd;
1280	struct super_block *s;
1281	fmode_t mode = FMODE_READ | FMODE_EXCL;
1282	struct dentry *root_dentry;
1283	int err, s_new = false;
1284
1285	if (!(flags & MS_RDONLY))
1286		mode |= FMODE_WRITE;
1287
1288	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1289	if (IS_ERR(sd.bdev))
1290		return ERR_CAST(sd.bdev);
1291
1292	sd.cno = 0;
1293	sd.flags = flags;
1294	if (nilfs_identify((char *)data, &sd)) {
1295		err = -EINVAL;
1296		goto failed;
1297	}
1298
1299	/*
1300	 * once the super is inserted into the list by sget, s_umount
1301	 * will protect the lockfs code from trying to start a snapshot
1302	 * while we are mounting
1303	 */
1304	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1305	if (sd.bdev->bd_fsfreeze_count > 0) {
1306		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307		err = -EBUSY;
1308		goto failed;
1309	}
1310	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1311		 sd.bdev);
1312	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1313	if (IS_ERR(s)) {
1314		err = PTR_ERR(s);
1315		goto failed;
1316	}
1317
1318	if (!s->s_root) {
1319 		s_new = true;
 
1320
1321		/* New superblock instance created */
1322		s->s_mode = mode;
1323		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1324		sb_set_blocksize(s, block_size(sd.bdev));
1325
1326		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 
 
 
1327		if (err)
1328			goto failed_super;
1329
1330		s->s_flags |= MS_ACTIVE;
1331	} else if (!sd.cno) {
1332		if (nilfs_tree_is_busy(s->s_root)) {
1333			if ((flags ^ s->s_flags) & MS_RDONLY) {
1334				printk(KERN_ERR "NILFS: the device already "
1335				       "has a %s mount.\n",
1336				       (s->s_flags & MS_RDONLY) ?
1337				       "read-only" : "read/write");
1338				err = -EBUSY;
1339				goto failed_super;
1340			}
1341		} else {
1342			/*
1343			 * Try remount to setup mount states if the current
1344			 * tree is not mounted and only snapshots use this sb.
 
 
 
1345			 */
1346			err = nilfs_remount(s, &flags, data);
1347			if (err)
 
 
 
1348				goto failed_super;
 
 
1349		}
1350	}
1351
1352	if (sd.cno) {
1353		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
 
 
1354		if (err)
1355			goto failed_super;
1356	} else {
1357		root_dentry = dget(s->s_root);
1358	}
1359
1360	if (!s_new)
1361		blkdev_put(sd.bdev, mode);
1362
1363	return root_dentry;
1364
1365 failed_super:
1366	deactivate_locked_super(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367
1368 failed:
1369	if (!s_new)
1370		blkdev_put(sd.bdev, mode);
1371	return ERR_PTR(err);
 
1372}
1373
1374struct file_system_type nilfs_fs_type = {
1375	.owner    = THIS_MODULE,
1376	.name     = "nilfs2",
1377	.mount    = nilfs_mount,
1378	.kill_sb  = kill_block_super,
1379	.fs_flags = FS_REQUIRES_DEV,
 
 
1380};
1381MODULE_ALIAS_FS("nilfs2");
1382
1383static void nilfs_inode_init_once(void *obj)
1384{
1385	struct nilfs_inode_info *ii = obj;
1386
1387	INIT_LIST_HEAD(&ii->i_dirty);
1388#ifdef CONFIG_NILFS_XATTR
1389	init_rwsem(&ii->xattr_sem);
1390#endif
1391	address_space_init_once(&ii->i_btnode_cache);
1392	ii->i_bmap = &ii->i_bmap_data;
1393	inode_init_once(&ii->vfs_inode);
1394}
1395
1396static void nilfs_segbuf_init_once(void *obj)
1397{
1398	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1399}
1400
1401static void nilfs_destroy_cachep(void)
1402{
1403	/*
1404	 * Make sure all delayed rcu free inodes are flushed before we
1405	 * destroy cache.
1406	 */
1407	rcu_barrier();
1408
1409	kmem_cache_destroy(nilfs_inode_cachep);
1410	kmem_cache_destroy(nilfs_transaction_cachep);
1411	kmem_cache_destroy(nilfs_segbuf_cachep);
1412	kmem_cache_destroy(nilfs_btree_path_cache);
1413}
1414
1415static int __init nilfs_init_cachep(void)
1416{
1417	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1418			sizeof(struct nilfs_inode_info), 0,
1419			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1420			nilfs_inode_init_once);
1421	if (!nilfs_inode_cachep)
1422		goto fail;
1423
1424	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1425			sizeof(struct nilfs_transaction_info), 0,
1426			SLAB_RECLAIM_ACCOUNT, NULL);
1427	if (!nilfs_transaction_cachep)
1428		goto fail;
1429
1430	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1431			sizeof(struct nilfs_segment_buffer), 0,
1432			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1433	if (!nilfs_segbuf_cachep)
1434		goto fail;
1435
1436	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1437			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1438			0, 0, NULL);
1439	if (!nilfs_btree_path_cache)
1440		goto fail;
1441
1442	return 0;
1443
1444fail:
1445	nilfs_destroy_cachep();
1446	return -ENOMEM;
1447}
1448
1449static int __init init_nilfs_fs(void)
1450{
1451	int err;
1452
1453	err = nilfs_init_cachep();
1454	if (err)
1455		goto fail;
1456
1457	err = nilfs_sysfs_init();
1458	if (err)
1459		goto free_cachep;
1460
1461	err = register_filesystem(&nilfs_fs_type);
1462	if (err)
1463		goto deinit_sysfs_entry;
1464
1465	printk(KERN_INFO "NILFS version 2 loaded\n");
1466	return 0;
1467
1468deinit_sysfs_entry:
1469	nilfs_sysfs_exit();
1470free_cachep:
1471	nilfs_destroy_cachep();
1472fail:
1473	return err;
1474}
1475
1476static void __exit exit_nilfs_fs(void)
1477{
1478	nilfs_destroy_cachep();
1479	nilfs_sysfs_exit();
1480	unregister_filesystem(&nilfs_fs_type);
1481}
1482
1483module_init(init_nilfs_fs)
1484module_exit(exit_nilfs_fs)